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ABSTRACT

A MULTIMODAL DISTRIBUTION BASED cwsmsms ALGORITHM

By

Vasudeva Ananda Rao

A new mathematical model is prOposed for the clustering

prdblem.encountered in data analysis and pattern recognition.

The set of multivariate observations on the objects to be grouped

is considered as having been generated by an unknown multivariate

continuous probability distribution having one or more distinct

modes. This distribution is not treated as a mixture of several

source pdfs. The clustering problem is identified as that of

(1) the estimation of the number and location of the modes of

such a distribution and (2) the selection of a suitable distance

measure to group the observations based on a 'similarity measure'

defined as the distance of each observation from the modes. A

practical method is proposed for estimating the number and location

of the modes and for detecting the structure in the data in the

form of clusters. This method does not require that the number of

clusters desired be specified in advance.

For pattern classification in the absence of training

patterns from each class, the clusters so detected are treated as

the sets of training patterns for "learning" purposes. An algo-

rithm is presented for classification of patterns from unknown
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class using a minimum distance-to-mode decision rule. Apart from

the Euclidean and Mahalanobis generalized distance measures, two

other intuitively apealing distance measures are also discussed.

Excellent numerical results have been obtained using test data.
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CHAPTER I

Motivation
 

1.1 Introduction:

In many diverse disciplines the scientist collects data in

the form of p measurements or observations on each of N indi-

viduals or objects. He is interested in grouping these individuals

into subgroups in such a manner that members of a subgroup are

highly similar or associated and relatively unassociated with

members not belonging to the subgroup. For example: in electrical

engineering, one is interested in the detection of signals of

unknown characteristics that recur frequently in a background of

random noise; in medicine, to group electrocardiograms of EEGs

into subgroups [D-l]; in psychology and sociology, to group peOple

into types that may relate to treatment categories or behaviour

categories; in information retrieval, to find classes of descriptors

for articles and papers [G-l]; in numerical taxonomy, to group

species of living organisms into hierarchic trees, etc. Such group-

ing is a very valuable tool in data analysis.

1.2 Pattern Recognition and Cluster Analysis:

One of the aims of pattern recognition study is to find

meaningful descriptions to adequately characterize a set of data.

The principal objective of cluster analysis as applied to pattern

recognition is to gain more information about the structure of a

l



data set than is possible by more conventional methods such as

factor analysis or principal components analysis [N-l]. In the

statistical sense the pattern classification problem (2 class case)

may be defined as a discriminatory problem as follows:

A vector random variable X of observed values x is

distributed over some p-dimensional space according to distribution

F or G. The problem is to determine which of the two distribu-

tions x came from.

A statistical approach to the above problem can be con-

sidered to fall into one of three subproblems:

(i) F and G are completely known.

(ii) F and G are known with the exception of some finite

set of parameters.

(iii) F and G are unknown except possibly for assumptions

about the existence of densities, continuity, symmetry, etc.

Subproblem (i) has been completely solved by the Neyman-

Pearson lemma and results in a likelihood ratio (LR) test. This

LR test yields Optimum results in the sense of minimum probability

of misclassifications.

In the formulation of the approach to subproblem (ii) one

assumes the availability of training samples from each of the two

distributions. It is also assumed that the forms of F and G

are given but one or more parameters are unknown. The problem

then reduces to one of parameter estimation or one can also employ

learning strategies. Once these parameters have been estimated

using the training samples the LR test is applied as though F

and G were completely known.



The "parametric" approaches to subproblems (i) and (ii)

appear reasonable provided the assumptions made are justifiable

in practice in that the assumed parametric forms are good repre-

sentations of the data. But when little g_priori knowledge exists

about the underlying probability distribution associated with each

pattern class, these parametric approaches to the classification

problem become questionable in the sense that bad results may be

Obtained. This conclusion has led researdhers to require less

stringent assumptions about the form of the data structure and this,

in turn resulted in the emergence of a variety of nonparametric

pattern recognition procedures as approaches to subproblem (iii).

One such approach is to treat the pdf of the observations as a

mixture of several unknown source pdfs and then try to identify

these pdfs. Such an approach has been considered among others by

Teicher [T-l, T-2, T-3], Yakowitz [Y—l, Y-Z], Yakowitz and Spragins

[Y-S], and Stanat [8-5]. Application and develOpment of this

technique under the name of "unsupervised learning" or "learning

without a teacher" has been mainly done by Fralick [F-3],

Spragins [8-4], Patrick [P-3], Hilborn and Lainiotis [H-l],

Patrick and Costello [P-4] and Patrick and Hancock [P-Z]. However

it is known that the class of mixture distributions which have a

unique solution for the parameters of the individual distributions

constituting the mixture, is limited and whether or not it admits

a unique solution depends on the identifiability of the mixture

distribution [F-6, Y-l, Y-2, Y-3].

Cluster analysis is another type of approach which has been

pursued for a solution to subproblem (iii). It is a non-parametric



technique to determine a type of structure describing a set of

empirical data. A second way that cluster detection is applicable

to pattern recognition is by providing an answer to the question

whether or not a given set of features constitutes a good feature

space in which to discriminate a given set of pattern classes [Z-l].

1.3 Literature Survey:

Clustering techniques have been used as long ago as 1939 by

Tryon [T-A]. At present there are a number of proposed clustering

procedures available. Widely used in numerical taxonomy [8-3]

are agglomerative and divisive hierarchical clustering schemes.

Here a small and fixed set of patterns is given and a matrix is

computed whose (i,j)th entry is the association or similarity be-

tween the i-th and j-th patterns. The agglomerative procedures

[L-Z] generally link together the most similar patterns. Then the

similarities between the groups of grouped patterns and the re-

maining groups (or patterns) are recomputed using the minimum,

maximum, or mean similarity between the two groups. The pro-

cedure continues in this manner linking together the most similar

patterns or groups. Michener and Sokal [M-4], Ward [W-l], and

McQuitty [M-Z] were early users of this scheme. In a recent paper

Rohlf [R-Z] describes sequential agglomerative hierarchical cluster-

ing schemes in particular detail and preposes several new methods.

The divisive procedures [L-Z] begin with all patterns in

the same group and splitting the group into the two most dissimilar

groups. Edwards and Cavalli-Sforza [E-l] suggest dividing the

points or patterns into two groups such that the sum of squared



distance between the sets is a maximum. They define this as a

cluster and suggest an algorithm to find the two sets with the

desired property. Because the total sum of squared distance is

a constant for a given sample of points, maximizing the between-

set sums of squared distance is equivalent to minimizing the

within-set sum of squared distance. Their algorithm is to examine

all 2“"1 - l partitions of the N points and select the one which

gives the minimum‘within-set sum of squared distance. Lance and

Williams [L-l] suggest successively splitting the groups in a way

which is expected to reduce the variance the greatest for the split

groups. Mattson and Dammann [M-l] suggest successively splitting

each group by thresholding the dominant eigenvector of the co-

variance matrix of that group. Wirth g£.§l_[W-4] suggest thres-

holding the association or similarity matrix and defining the

components of the resulting graph as clusters. Thresholding is

done successively from strict thresholds to more liberal thres-

holds. Jardine and Sibson [J-l] outline a theoretical framework

within which the preperties of classificatory systems, which operate

on data in the form of a dissimilarity coefficient on a set of

objects, may be discussed. Hierarchical clustering schemes are

also discussed by Johnson [J-Z].

The three superficially different hierarchical clustering

schemes of Sokal and Michener [M24], Edwards and Cavalli-Sforza

[E-l], and Williams and Lambert [W-B] have been compared by Gower

[G-2] and suggestions made for their improvement.

Most popular among the non-hierarchical clustering schemes

have been those iterative schemes beginning with an arbitrary set

I



of all inclusive and mutually exclusive clusters and successively

improving the set of clusters by transferring patterns from one

cluster to another until no further improvement is available.

Such methods use as an evaluation index, what has been called

the "C Criterion" by Switzer [8-6]. As a means of evaluating

any given partition of the sample, the within cluster distance

or scatter [W-Z] or between cluster distance or the ratio of total

scatter to within cluster scatter is used [F-4]. To circumvent

the computational time consuming difficulty involved in examining

all possible partitions of the sample [F-Z], Friedman and Rubin

[F-é], use what they call a "hill climbing" algorithm. In

principle their procedure attempts to examine only those partitions

of the data for which the ratio of total scatter to within-group

scatter is high. The logic of this technique can also be found

in [F -S] .

A technique for clustering which is very popular is the

ISODATA (Iterative Self-Organizing Data Analysis Technique (A))

of Ball and Hall [B-l]. This technique clusters all of the data

into distinct and independent groups. A computed mean or average

response pattern is used to represent a group of patterns, and the

iterative process creates new average response patterns to improve

the accuracy of trial or existing average response patterns. The

process also combines average response patterns that are so similar

that their being separate fails to provide a significant amount of

information about the structure of the response patterns. Each

response pattern is put into that group for which the squared

distance between it and the average response patterns (group mean)



is the least. ISODATA implements an intuitively appealing mathe-

matical idea for clustering patterns. It is not itself a standard

statistical procedure, such as analysis of covariance or factor

analysis. The order of computations and the setting of the various

thresholds in the algorithm were motivated by heuristic reasoning

and the performance of the program with standard data sets [D-Z].

Jones and Jackson [J-3] suggest an iterative technique where

clusters are found one at a time. An initial pattern is picked to

be the first pattern in the cluster. Patterns are successively

transferred into and out of the cluster in a way which increases

the within-cluster similarities and decreases the in-cluster to

out-cluster similarities.

Graph-theoretical procedures have also been applied for

clustering. Bonner [B-3] starts out by thresholding the associa-

tion or similarity matrix and defining as "core clusters" the

maximal complete subgraphs (cliques) of the resulting graph. Then

the smaller core clusters are merged into large core clusters

and largely overlapping core clusters are merged. Gotlieb and

Kumar [G-l] discuss graph theoretical clustering methods useful

in information retrieval applications. Zahn [Z-l] describes graph

theoretical algorithms based on the minimal spanning tree of a

graph and which are capable of detecting several kinds of cluster

structure in arbitrary point sets. The concept of the minimal

spanning tree of a graph (MST) for single linkage cluster analysis

(SLCA) is also discussed by Gower and Ross [G-B]. They show that

all the information required for the SLCA of a set of points is

contained in the MST of the graph of these points. Augustson and



Minker [A-Z] also analyze some graph theoretical clustering

techniques as applied to information retrieval.

The statistical technique of Principal Components analysis

used for clustering of multivariate data involves treating the

number of observations (N) in p-dimensions as N points in an

p-dimensional metric space and projecting these points onto a

space of smaller dimensions with minimum.loss of statistical in-

formation; that is, the inherent structure in the data is approx-

imately preserved under the mapping. The primary interest is in

mapping onto two or three dimensions since the resultant data con-

figuration can be easily evaluated by human observations in three

or less dimensions. Rao [R-l] discusses the application of this

technique to clustering. Nunnally [N-B] describes the application

of factor analysis procedures in clustering. Dubes [D-Z] has an

interesting report on cluster analysis and decision making with a

correlation matrix wherein he describes minimum-average-distance

clustering and mean-squared clustering with particular reference

to Gaussian distributions.

A non-linear mapping technique useful in clustering multi-

variate data is discussed by Sammon [8-1]. The idea behind Sammon's

method is similar to that of Kruskal [K-Z] who discusses the

technique as applied to non-metric hypothesis. An interesting new

mathematical formulation of the clustering problem has been provided

by Ruspini [R-3].

1.4 Contribution of the Thesis:

From the literature survey of the last section it is clear

that, basically, cluster analysis techniques call for the identifica-

tion of those regions of the observation space where the patterns



are most heavily concentrated, thereby establishing a structure in

the data in the form of clusters. In this thesis, it is believed

that, to detect such a structure, it is not absolutely necessary

(1) to treat the underlying pdf of the observations as a mixture

of several component pdfs and then (2) try to identify the indi-

vidual source pdfs. It is sufficient to consider that the under-

lying pdf, is, in general, governed by a multivariate continuous

distribution with one or more distinct modes. Since the mode of a

pdf is that outcome which is likely to occur most often, the

estimation of the number and location of the modes provides a clue

to the structure of the data. Accordingly the method for cluster-

ing proposed in this thesis is based on the premise that such an

estimation of the number and location of the modes of a mmltimodal

multivariate pdf underlying a set of empirical data is a key to a

solution to the clustering prdblem. Thereafter, the selection and

application of a suitable distance measure determines the identity

and membership of the clusters in a straightforward manner.

This intuitively appealing idea, not found in the literature,

is presented and offered as a practical solution for the clustering

problem. The performance of this method on data sets, both real

and artificial, is found to strengthen the belief in such an

approach. Specifically the contributions of this thesis are:

(i) A new mathematical model is proposed for the clustering

problem. The set of multivariate observations, on the objects to

be clustered, is assumed to have been generated by a multivariate

continuous probability distribution whose density function has one

or more distinct modes. This pdf is not treated as a mixture of
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several source pdfs as is sometimes done in the classification

problem.[Y-l] of pattern recognition.

(ii) In his discussion on nonparametric decisions based

on distance to modes, Nilsson [N-Z] assumes the existence of a

method to find good estimates for the modes of a probability

density function, given the set of training samples. This thesis

provides a practical method, guided by statistical theory, for the

estimation of such modes. Once the modes have been estimated from

a set of training samples, a starting point for the abstraction

phase of the pattern recognition problem is available. The

abstraction phase of the problem can then be completed using, for

example, a piecewise linear machine, implementing a minimum dis-

tance classifier.

1.5 Organization of the Thesis:

Chapter II presents the proposed model for clustering and

discusses the relevant mathematical preliminaries. Chapter III

describes an algorithm for the estimation of the number and loca-

tion of the modes of a multivariate, multimodal pdf. Chapter IV

extends the mode seeking algorithmto clustering and summarizes

the results obtained on a few real and simulated sets of data,

using both supervised and unsupervised learning techniques. Con-

clusions and suggestions for future work are included in Chapter V.



CHAPTER II

Mathematical Preliminaries

2.1 Introduction:

In this chapter the theoretical preliminaries required

for a solution to the clustering problem are discussed. The prob-

lem is stated in the framework of a simple mathematical model.

The basic assumptions made are:

(i) that there exists a probability distribution which

generates the multivariate observations to be clustered: and

(ii) that the probability density function (pdf) of this

distribution is of the continuous type characterized by one or

more distinct modes.

The word mode, as used here, denotes the location of a

local maximum in the pdf. Assumption (ii) implies that the pdf

need not necessarily be symmetric.

(iii) the number of observations is large compared with the

number of dimensions of each observation.

(iv) the observations are independent.

2.2 _A Mathematical Model for the Clustering Problem:—

Let x1,x ,...,xN denote the p-dimensional observations

2

(features, measurements) of N objects. Assume these observations

are values of a random variable, X - (X1,X2,...,Xp), having a

cumulative distribution function (cdf) F(x), and the corresponding

11
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probability density function (pdf) f(x). Let f(x) be continuous

and characterized by G distinct modes, that is,

f(x) = f(x1,x2,...,xp; M1,M2,...,MC)

where Mi’ i = 1,2,...,G, denotes the i-th distinct

p-dimensional mode vector of f(x).

Then the clustering problem is:

(i) Estimate G, the number of modes of f(x);

(ii) Estimate the column vectors Mi’ i = 1,2,...,G; and

(iii) Define a distance measure d(x ’Mi)’ j = 1,2,...,N;

J

i = 1,2,...,G, which partitions the set of observa-

tions into C groups, n1,n2,...,nG such that

x 6 n if and only if

j i

d(x ,Mi)<d(x ); ia‘k; k=l,2,...,G.

J j ’Mk

It is immediately evident from the statement of the problem

that what is mainly needed for the clustering procedure is a good

and robust method to estimate the number and locations of the modes

of a multivariate, multimodal pdf. It should be noted that the

clustering procedure dictated by the above model does not require

that the number of clusters or groups be specified a priori. A1-

most all existing techniques such as Friedman and Rubin's [F-h]

require that the number of clusters to be formed be specified in

advance. ISODATA [B-l] also calls for the value of a parameter

to be specified to indicate the number of clusters desired by the

user. The absence of the need to specify in advance, the number

of modes desired, is claimed to be a distinct advantage of this

model. It is also emphasized that the model does not treat the
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pdf generating the observations as a mixture of several source pdfs.

2.3 Estimation of Mbdes and Mathematical Results:

The problem of directly estimating the mode of a univariate

unimodal continuous pdf, f(x), has been considered by Grenander

[6-4], Venter [V-l]. Other approaches to the estimation of modes

appear as an extension of the related problem of estimating f(x)

from a set of independent samples. For multiple mode determination

as required by the model proposed here, density estimation in some

manner is a necessity and this will be of major concern in the

remaining sections of this chapter.

In order to estimate the density from a set of independent,

identically distributed observations, various approaches have been

proposed in the statistical literature . A potential function

type of approach has been suggested by Aizerman and Braverman [A-l].

Kashyap and Blaydon [K-l] suggest a stochastic approximation type

of approach. Other methods have been proposed by Chernoff [C-l],

Murthy [M-G], Parzen [P-l]. In this thesis the univariate version

of the estimator for the pdf proposed by Loftsgaarden and Quesenbury

[L-3] is considered for mode estimation. The multivariate case is

handled by a method motivated by Mattson and Dammann [M-l]. The

p-dimensional observations are first projected on to the principal

eigenvectors of the sample covariance matrix of the observations.

For the univariate set of data so obtained, the modes are estimated,

and then reprojected back into the original space.

Because the probability density function is, in general,

assumed to be multimodal with distinct modes, an extension of the



14

method for mode estimation of unhmodal distributions is considered.

This is an adaptation of the method originally suggested by Fu and

Henrichon [F-7].

Let x1,x2,...,xN be independent observations on a p-dimen-

sional random variable X = (X1,X2,...,Xp) with absolutely con-

tinuous cumulative distribution function (cdf), F(x1,x2,...,xp),

and the corresponding pdf, f(x) = f(x1,x2,...,xp);

Let 2 = (zl,zz,...,zp) be a point at which f(x) is

positive and continuous;

Let dz(rN) denote the Euclidean distance from the point

z to the rN-th closest observation 6 {x1}:=1 where

{rN} is a non-decreasing sequence of positive

integers satisfying

lim r ~ m

N-ocn N

r

lim ‘E' = 0 and

N
N—m

-5 *

lim N r = m for some 5 > 0 .

N

N—coo

Theorem 2.1: (Loftsgaarden and.Quesenberry)

Under the above hypothesis, the estimate of f(x) at the

point 2, given by the estimator

rN-l 2. p g'

tum = N (pm (2) 2 [dzoan n

is consistent.

 

Proof:

Proof of the above theorem can be found in [L-3].

 

Loftsgaarden and Quesenberry suggest the use of an integer

closest to /N as a value of rN-
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The following corollary to the above theorem is obtained

in the univariate case (p = 1).

A consistent estimate of f(x) at z is given by

(rN-l) /N

£N(Z) = W")- . (2.2)

2 N

Lemma 2.1: (Owen) [0-1]

Let f(x) be a uniformly continuous probability density

function and {fN(x)} be a sequence of estimates of f(x).

Let M, be the value of x, assumed to be unique, where

1

max f(x) occurs and I1 is an interval over which f(x) is con-

xEI1

tinuous.

Further let M be the value of x where max £N(x)

1N x61

1

occurs.

If fN(x) is a consistent estimate of f(x), then M
1N

is a consistent estimate of M1.

Proof of this lemma has been given by Owen.

Extension to Multiple Mode Estimation:

As before, let x1,x2,...,xN be independent observations

on a univariate random variable and dz(rN) be defined as before.

Let f(x) be uniformly continuous and positive over an interval

I and let there exist a unique mode M1 E I .
l 1

Let a new estimate of the mode M1 be formed as follows:

M' = x

where x is

(k) (k)

the k-th smallest observation from the set of N observations and

is the k-th order statistic, i.e., x
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k=ArgCMin d (r)x. 61D;
1 {x(i) Ma) 1

lN

contained in the interval I1 which yields the minimum value of

dz(rN) as computed by the procedure of Loftsgaarden and

that is, the estimate M of the mode is that order statistic

Quesenberry.

Further let fN(x), for x E I be constructed in a step-
19

wise fashion according to

(rN-1)/N

fa“) = 2 dx “:9 ’ “(1)

(1)

Lemma 2.2: OMoore and Henrichon)

 

Sx S x(i+1).

The estimate fN(x) converges uniformly, in probability,

to f(x), x E 11.

Proof: see [M-S].

From lemmas (1) and (2),

TheoremL2.2:

M' is a consistent estimate of the mode M1; i.e.,

lN

Proof:

By Lemma 2.2 we know that the estimate fN(x) constructed

in the manner indicated converges in probability to f(x), x E 11.

.Applying Lemma 2.1 and the fact that max fN(x) occurs at the

x61

1

value of x(i) where d (r is minimum, the theorem follows.)
x(i) N

Q.E.D.
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For estimation of the modes in the case of a multimodal,

univariate pdf, consider the set of L relative maxima (assumed

L L
unique), ”mi}i=l located at modes {Mi}i=1 respectively, and

such that M1 6 I1 = (a21_1,a21), i = 1,2,...,L where

a1‘< a2 <...< 82L° Further let the pdf f(x) be uniformly con-

tinuous and positive over the intervals {Ii}i=1’ and the estimates

MkN of Mk be determined by

= x

MkN (j)

where j = Arg [Min [hx (r ) x , E I }] .
i (i) N ‘ (1) k

Then, as an immediate consequence of Theorem 2.2,

Corollary:

The set of estimates [M, }:=1 converges in probability

L
to the set {Mi}i=l'

2.4 Chapter Summary:

In this chapter a new model for cluster analysis was pro-

posed. The problem of cluster detection was identified with that

of estimating the number of modes and the modes themselves of a

multimodal pdf with distinct modes. The remainder of the chapter

related to the theoretical aspects of mode estimation.



CHAPTER III

A Mode Seeking Algorithm

3.1 Introduction:
 

The goal of this chapter is to provide a computational

procedure to estimate the number, G, and the p-dimensional vectors

Mj’ j = 1,2,...,G, of the modes of a multimodal, multivariate pdf,

f(x), of Section 2.2. The mathematical results of the last chapter

were directed towards the estimation of the modes of a univariate

pdf because one of the problems encountered in a direct application

of the mode seeking techniques to a multivariate problem consists

of deciding how to store the boundaries which separate the observa-

tion space into regions containing only one mode. To appreciate

this problem one has only to note that in the one dimensional case

these boundaries are simply points on the real line. In two

dimensions the corresponding boundaries are curvesand it is not

easy to store arbitrary curvesin a computer. The problem is even

more difficult in a higher dimensional space. One method of

circumventing this difficulty is to project the multivariate

observations on to the principal eigenvectors of the sample co-

variance matrix [M-l] to get a univariate set of data; estimate

the modes in this one dimensional space and finally transform back

to the original p-dimensional space.

18
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The direction of the eigenvector associated with the largest

eigenvalue of the sample covariance matrix of the observations is

the direction of maximum dispersion. This is the reason for pro-

jecting the observations on to the eigenvectors rather than pro-

jecting onto the coordinate axes of the p-dimensional observation

space. If separation between the data does indeed exist, it should

be more easily detected along the eigenvectors [H-Z].

3.2 Mode Estimation Procedure for the Multivariate Case:

The proposed mode estimation procedure can be summarized

as follows:

Step (i) Compute the principal eigenvectors associated

with the sample covariance matrix determined from a set of independent

observations.

Step (ii) Project the multivariate observations onto the

first principal eigenvector to obtain a univariate data set.

Step (iii) Apply the procedure of Section 3.4 and estimate

the number and locations of the local minima for this univariate

set and the modes along this eigenvector.

If only one mode is found go to step (iv); else, go to

step (v).

Step (iv) Using the next principal eigenvector repeat

the procedure from step (ii). If all the eigenvectors have been pro-

cessed and only one mode is found along each eigenvector, compute the

location of the mode and transform back to the original Space. Stop.

Step (v) Partition the observation space into regions

by hyperplanes perpendicular to the eigenvector and passing
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through the points of minima. Classify the observations into sub-

sets corresponding to these regions.

Step (vi) For each new region so obtained repeat the

procedure from step (1).

Figure 1 depicts the details of this procedure in flow

chart form, .An illustration of the procedure applied to a two

dimensional data set is given in Figure 2.

3.3 Mathematical Details of the Algorithm:

* * *

Let x1,x2,...,xN denote the N, p-dimensional column

vectors corresponding to the p feature measurements on each

object; that is,

x = ; i=l,2,...,N . (3.3.1)

  x

L 194

The asterisk indicates that these are raw measurements.

The j-th feature average, m is defined as the sample

1

mean for the j-th feature:

N

Z x

*

j -= 1,2,...,p (3.3.2)

i=1

8

II

2
[
H

and the vector of feature averages is

m B i . (3.3.3)
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x2; 1(1) A

 
 

‘ (b) ”
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X2 9 f(x)
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£00
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(d) ’ x1 (f) ?

Region 2 Eigenvector 2
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Note: Sketch intended only for visualizing

the steps involved in the algorithm.

Figure 2. Two dimensional mode estimation example
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Define the normalized measurements as

xij = xij - US (3.3.4)

and the normalized observation vector is

r
x117

‘12

xi = . . (3.3.5)

  X.

L 1P4

These normalized vectors are arranged in the form of a

(N X p) matrix, [A] :

    

T F ‘7

x1 x11 x12 .... x1p

T

x2 x21 x22 .. . x2p

m = s = ::::::'::::::::::::: - <3-3-6>
T

Lst L_XN1 xN2 °°'° prJ

The (p X p) sample covariance matrix, [S], is:

[33 = DYE—1 [HT [A] (3.3.7)

and is assumed to be positive definite.

Let x1,x2,...,xp be the eigenvalues of [S] arranged

in order such that

k1 > X2 >...> )‘p .

The first principal (column) eigenvector, C1, of [S] is

the eigenvector corresponding to the eigenvalue x1. The remaining

(column) eigenvectors are, respectively, CZ’C3"°"Cp: and the
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(p X p) matrix of eigenvectors is

[C] = [C1,C2,...,Cp] .

In step (1) these eigenvectors Cl,C2,...,Cp, of [S]

are computed treating the entire observation space as one region.

The univariate set of step (ii) is obtained by projecting

the N observations onto C .

  

1

Let V k represent the univariate data set obtained by

projecting the observations onto the k-th eigenvector Ck. Then

(V a

1k

V2k

V k = I = [A]Ck ; k = 1,2,...,p . (3.3.8)

LVNks

The p data sets so obtained can be arranged as the

columns of a (N X p) matrix, [V], given by,

[V] = [A][C] . (3.3.9)

In step (iii) the mode seeking procedure of Section (3.4)

is applied to the data set represented by the first column of [V].

If only one mode is detected for this set, the procedure is applied

to the set given by the second column of [V] and so on as mentioned

in step (iv).

For the set of observations in each region of the observa-

tion space obtained in step (v), a sample covariance matrix [S],

a matrix of eigenvectors [C] and a matrix [V] is obtained.
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Suppose that for the i-th region, only one mode is

detected for each of the data sets corresponding to

V(i) V(1) (i)
1 ,v .2 ,...,v.p .

i-th region, in the transformed space, are the elements of some

The components of the mode vector for the

row of [V(i)], say, the j-th row.

The mode vector for the region, in the original observa-

tion space is therefore,

M“)= [C(1)T.J'lv(i)T+

. . T . . .

= [C(1)1v§1) + m(1); since [C(1)]T[C(1)] = [I] (3.3.10)

where

[C(i)] is the matrix of eigenvectors for the i-th region;

(1) (i) V(i) V(i)
V = V . e e o g

1 [ 31 V32 vjp ]

and

rm{1)1

m“) = :

(i)

m. J

is the vector of feature averages for the Ni observations in

  

the i-th region.

3.4 Algorithm for Mode Estimation - The Univariate Case:

The theoretical formulation of the mode estimation prob-

1em for the univariate multimodal case, as presented in the last

chapter, requires that those intervals on the real line where
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distinct modes are assumed to exist, be known first. This is a

condition which must be satisfied prior to the application of

Theorem 2.2. Once these intervals have been identified, a con-

sistent estimate of the mode of the underlying pdf of observations

falling in this region, can be obtained in a straightforward

manner. The problem therefore reduces to that of finding intervals

{11}E=1 on the real line. One method which suggests itself

immediately is to actually obtain the pointwise density estimate

of the univariate pdf using the estimate

(r -l) /N

£N(z) = 2 dz(rN)

and to plot these to identify the intervals containing the local

extrema. The futility of this approach can be appreciated if one

actually constructs such a plot. The local variations in the

pointwise density estimate are too great to be of any use in

isolating the intervals under consideration.

To overcome these difficulties Fu g£_§l_[F-7] suggest the

following three "necessarily vague" guidelines:

(1) Some means of smoothing the pointwise approximation

of the underlying density estimate is necessary;

(ii) Modes of an underlying density which are further

apart from each other should be more readily detected; and

(iii) Modes which have associated with them a high prob-

ability mass should be more readily detected.

The approach adopted in this thesis is the construction

of an equal bin-count histogram as a primary approximation to the

underlying density. This histogram approach performs the
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integrating effect of assumption (i), that is, local variations

in the pointwise density approximation will tend to be smoothed.

A discussion on three types of histograms useful for analyzing a

set of empirical data can be found in Dubes [D-l]. The equal

bin-count histogram approximation was motivated by this dis-

cussion. The construction of histograms for estimating the modes

has also been suggested by Sebestyen and Edie [8-2]. Such an

approach may also be useful to achieve the three objectives

referred to above but their method is not used in this chapter

and hence not discussed further.

In an equal bin-count type of histogram the widths of the

various bins indicate the concentration of the probability mass

in any interval. Bins with a smaller width imply a higher con-

centration just as in the equal bin width type of histogram a bin

with more height is indicative of more observations lying in the

interval specified by the bin width.

The first step in the algorithm to estimate the modes is

the construction of a histogram. The number of bins desired is

specified by the user. This number, NB, must be, preferably,

selected such that the number of observations N, (sample size/

region count) is a multiple of NB. Once this number is specified

the bin divisions are chosen to fulfill the condition that all

bins are required to have the same, or as close to the same as

possible, number of counts. The smaller the number of bins

specified the greater will be the smoothing effect; that is,

specifying a large number of observations per bin supresses the

local variations in the histogram approximation to a greater
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extent. The locations of the bin divisions carry the information

required for further analysis.

An extrema seeking technique is then applied to this

histogram in order to determine appropriate intervals in which

to search for local maxima. The algorithm for selecting these

intervals depends on a parameter, PARA, to be specified by the

user. This parameter decides the value of a threshold which

essentially determines how much local variation will be tolerated

before a decision to Specify an extremum interval is made. The

algorithm first seeks bin divisions to be used in determining the

intervals of existence of local minima between successive modes.

The criterion used to store such an interval is that:

(i) there exist a bin to the left of the chosen bin such

that the difference in their widths is greater than the threshold

specified and

(ii) there exist a bin to the right satisfying a similar

condition.

The threshold is calculated as PARA times the minimum bin

width. From simulation studies it is found that the value of PARA

in the range 1 to 10 gives good results.

The points at which relative minima exist are then chosen

as the midpoints of these bins. The set of intervals {Ii}E=1

in which modes are assumed to exist is now available. The

techniques of the last chapter are now applied to estimate the

mode in each interval.

A flow chart for the algorithm is given in Figure 3.
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Figure 3. Flow chart for univariate mode estimation
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From the flow chart it is observed that the number of

modes is controlled by the following parameters to be specified

by the user:

(i) PARA, the parameter controlling the threshold to be

used in finding the interval where the local minima of the pdf

exist; and

(ii) MCNT, the minimum number of observations the user

allows in any region. If any region is found to contain less

number of observations than MCNT, then adjacent regions are lumped

till this criterion is satisfied.

The estimate of the location of the mode in any interval

is controlled by the value of rN used in the expression for the

pointwise density estimate derived by Loftsgaarden and Quesenberry.

They suggest the use of an integer closest to ‘/N, where N is

the number of observations in a region. To use a more general

value r is taken as the integer closest to PAR ./N where PAR
N

is a third parameter to be specified by the user.

3.5 Results of Tests:

The algorithm presented in this chapter was tested on

different sets of simulated as well as real data. The simulated

sets of data were obtained by Monte Carlo methods. The results

of such test runs are summarized in Tables 1 and 2. The time shown

in each case refers to runs on a CDC 6500 digital computer.

Data set # 1. Simulated data generated by a mixture of two uni-

variate Weibull pdfs given by

f(X) a 0.4 * W(x301981,61) + 0.6 * W(XEO'2:52:52)
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where

A51 9"1 1 3' .
W(x;ai.ei.5i) = ;* (x-si) 1 * exp [- 071* (“'51) 11. 1f x 2. 5i

= 0, if x < 61 ; i = 1,2 .

= 1.0 ; 51 = 62 = 2.0 ; 6 = 0.0 ; 6 = 2.0 .
°’1=°’2 1

Data set # 2: Simulated Data:

Mixture of two dimensional Gaussian distributions given by

f(x1,x2) = 0.3 * N(x1,x2 ; “1,21) + 0.7 * N(x1,x2;u2,22)

0 -200.

Where ”1 = [o] ; ”2 = [-2 o]

1.0 0.0 0.25 o‘

0.0 1.0 0 0.25

Referring to the results in Table 1, it should be noted that the

estimated mode locations for both the sets of data are for a

mixture of the two distributions. They are not necessarily the

same as the mode locations of the component pdfs. The theorem

given below shows that indeed such is the case except under special

conditions. This theorem and the proof are given only to explain

the results obtained for the simulated data sets. It is pointed

out that in the model prOposed in Chapter II, the pdf is not treated

as a mixture of pdfs.

Theorem 3.4.1:

Let f1(x) and f2(x) be two continuous pdfs of the multi-

variate random variable X = (X1,X2,...,Xp) and let f(x) be a
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mixture of f1 and f2 given by

£0!) = 91 £101) + p2 £201) ;p1 + p2 = 1 .

If x!n is a mode of f(x) and x0 is a mode of f1(x),

then the mode xm is not the same as x0 unless sz is zero

at x = x .

‘m

Proof:

At any mode of f(x),

V f(x) = plovf1(x) + p2°Vf2(x) = 0 .

Since Vf1(x)‘x-xo = 0, locally, in a neighborhood of x0, we have

the expansions

Vf1(x) 8 [B1] (x - x0) +-temms involving higher order terms,

vf2(x) =.A2 + [B2] (x - x0) + terms involving higher order terms,

where

A2 = Vf2(x) =3 and

x 0

[B1] and [B2] are square matrices depending on x0.

Retaining only the first order terms, the mode xm occurs when

p1[B1] (x - x0) +-p2 A2 +p2 [B2] (xm - x0) = 0

from which

"m = xo ’ “’1 [B1] + P2 [323)-1 A2

P_1 -1

3 KO ‘ [p2 [Bl] +'[Bz]] A2
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assuming that the indicated inverse exists.

If A2 = vf2(x) 8 0 at x = x x = x, O

O m 0 Q.E.D.

The last condition may be interpreted as either the two

distributions are well separated in the observation space or a

mode of one of the densities occurs where the other density is a

constant.

The theoretical modes of the mixture pdf for the Weibull

data are 0.7070 and 2.7035 respectively. Considering the fact

that the estimated modes were for data produced by simulation,

there is reasonably good agreement between the ideal and estimated

‘mode locations.

The two artificial data sets were used only to illustrate

the feasibility of the mode seeking algorithm. Applications to

real data are considered next.

Data sets # 3,,4, 5 and 6:

The sets of data mentioned in Table 2 were selected from

150 four dimensional patterns used by Fisher in a classical paper

[F-l]. Each pattern represents an iris and each feature repre-

sents a measurement on the iris. The patterns are divided into

three species/classes called Setosa, versicolor and virginica

with fifty patterns in each class.

In each of the tests all the four measurements were used

for mode estimation. The parameter, PAR, to be specified, was

varied for the different runs to demonstrate its effect on the

estimate for the mode locations.

The iris data set has been used by many research workers

to test the performance of the algorithms proposed for clustering



T
a
b
l
e

2
.

R
e
s
u
l
t
s

o
f
M
o
d
e
E
s
t
i
m
a
t
i
o
n

-
R
e
a
l

D
a
t
a

 

D
a
t
a

S
e
t

S
a
m
p
l
e

#
o
f

C
o
m
p
u
t
e
r

P
a
r
a
m
e
t
e
r
s

L
o
c
a
t
i
o
n

o
f
M
o
d
e
s

 

C
a
t
e
g
o
r
i
e
s

S
i
z
e
 

P
A
R
A

P
A
R

M
C
N
T

M
o
d
e
s

F
o
u
n
d

 

(
1
)

(
2
)

(
3
)

C
P

t
i
m
e

 

I
R
I
S

V
e
r
s
i
c
o
l
o
r
&

V
i
r
g
i
n
i
c
a

1
0
0

1
.
0

1
.
5
0

3
5

6
.
3
9
1
4

2
.
7
9
3
7

4
.
5
1
3
8

1
.
3
8
1
8

5
.
9
4
2
3

2
.
9
5
2
7

4
.
9
4
3
8

1
.
8
3
1
0

4
.
3
6

s
e
c
s

 

I
R
I
S

S
e
t
o
s
a

&

V
e
r
s
i
c
o
l
o
r

1
0
0

1
.
0

2
.
0
0

3
5

5
.
2
0
8
6

3
.
5
3
1
3

1
.
4
5
6
6

0
.
2
0
0
7

6
.
2
3
3
8

2
.
4
3
2
4

5
.
0
6
9
0

1
.
5
9
2
5

4
.
2
8

s
e
c
s
_

 

I
R
I
S

S
e
t
o
s
a
&

V
i
r
g
i
n
i
c
a

1
0
0

1
.
0

1
.
0
0

3
5

5
.
1
1
5
0

3
.
4
4
2
0

1
.
5
3
4
2

0
.
2
0
2
9

7
.
3
1
5
3

2
.
6
0
7
8

7
.
4
4
3
0

2
.
8
9
9
9

3
.
4
7

s
e
c
s

   
I
R
I
S

S
e
t
o
s
a

V
e
r
s
i
c
o
l
o
r

V
i
r
g
i
n
i
c
a

 1
5
0

1
.
0  

1
.
0
0  

 3
5

 
 5

.
1
1
5
0

3
.
4
4
2
0

1
.
5
3
4
2

0
.
2
0
2
9

 5
.
5
5
0
1

2
.
4
7
1
7

4
.
4
7
2
8

1
.
3
9
6
0

 6
.
8
3
9
2

2
.
5
1
4
4

6
.
6
5
4
1

2
.
5
6
9
3

 4
.
4
3

s
e
c
s

 
 

38



39

as well as classification. It is known [Z-l] that the setosa species

are well separated from the versicolor and virginica categories.

The latter two are fairly 'mixed'. In two dimensions, this fact

has been illustrated by Samuon [8-1] and Dubes [D-2].

The location of the modes given in Table 3 for data sets

5 and 6 (using the same sets of parameters) shows this very well.

The mode location for the setosas remained the same whereas for

the virginicas it changed when pooled with the versicolors.

Results for data set 4 show the effect of changing the parameter,

PAR, (used in computing rN) on the location of the mode. Though

not specifically shown in the table, for the set 4, with PAR = 1.0,

the mode location for the setosas is found to be identical to the

location estimated for sets 5 and 6. It is evident that for well

separated groups the modes remain stationary and they are perturbed

if the sets are fairly mixed.

3.6 Chapter Summary:

In this chapter a practical technique for the estimation

of the number and location of the modes of a multivariate multi-

modal pdf is presented. The points to be noted are:

(i) The histogram approximation to the underlying pdf is

used only to find the intervals in which to seek the location of

the mode and not for the estimation of the modes themselves.

(ii) The equal bin count type of histogram rather than

the equal bin width type is used for the approximation.

(iii) Pointwise density approximations are not computed

for estimating the mode.
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(iv) The mode estimating procedure did not require that

the whole underlying density be absolutely continuous. What is

required is that the density be absolutely continuous over an

interval containing the pointwise mode estimate.

(v) ADEriori knowledge of the number of modes is not

a requirement to start the procedure although this number is

controlled by the user in specifying the parameters PARA and MCNT.

The method presented in this chapter is believed to be

useful in a number of cluster seeking problems. Other methods

for handling the multivariate problem directly (instead of obtain-

ing first a univariate data set) may or may not be computationally

faster, but such methods have not been considered in this chapter.



CHAPTER IV

Cluster Seeking and Pattern Classification

4.1 Introduction:

In this chapter two applications of the mode seeking

algorithm are presented, namely the use of the estimated modes

for clustering, and the utilization of the clusters so formed

for pattern classification.

The underlying assumption behind the clustering procedure

is that the modes are the prototype observations around which each

of the observations or patterns tend to cluster. A cluster is

defined to be the set of those observations surrounding a mode

which is nearest to them in the sense of some metric. Hence the

measure of "similarity" is the distance of an observation from

each of the modes.

A general statement of the pattern classification problem

involves the consideration of its three fundamental aspects, char-

acterization, abstraction and generalization. Characterization

involves the selection of the independent variables which char-

acterize the different classes from which the patterns originated.

Abstraction refers to the process of obtaining a decision rule for

classifying a new pattern with vector x of unknown class. The

decision rule is arrived at using all the available information.

The ability of the decision rule or classifier to correctly

41
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categorize the samples from unknown class is called generalization.

In the classification procedure prOposed here, the clusters

produced by the clustering algorithm are used as the sets of train-

ing samples from the G pattern classes. Assuming that there

exists a pdf underlying each pattern class, the mode of the pdf

is estimated using the mode seeking algorithm of Chapter III.

Classification of any patterns with unknown class is achieved using

a minimum distance classifier.

It should be noted that the modes used for the clustering

algorithm are not necessarily identical to the modes of the

clusters estimated during the classification phase referred to

above, because the data sets are slightly different. If the data

.are initially well separated in the observation space, the two

sets of modes tend to be identical.

As is usually done in most pattern classification studies,

to test the "goodness" of the algorithms, tests are performed on

data sets whose sources are known in advance. The measure of

performance is stated in terms of the percentage or number of

observations misclassified.

4.2 A Similarity Measure and an.Algorithm for Clustering:

Let x1,x2,...,xN be the vectors of the observations

which are to be grouped using the measure of similarity defined

by the Euclidean distance d(xi’Mj) between the observation

vector x1 and the estimated mode vector Mj' The vectors Mj

are assumed to be available as a result of the mode seeking

algorithm.
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Let n1,n2,...,nG denote the G clusters each corre-

Sponding to an estimated mode with vector Mj.

N

Then the set of observation vectors [xi}i_1 is parti-

tioned into the G clusters such that

xi E n if and only if

.1

d(x1,Mj) < d(xisr’Lk) 3 j H k: Vk .

Even though the extension of the mode seeking algorithm

for determining cluster membership is straightforward, it is

given in flow chart form in Figure 4, for the sake of completeness.

4.3 Distance Measures for Classification:

In addition to the Euclidean and the Mahalanobis generalized

distance functions, two other heuristically motivated measures are

tried for classifying an unknown pattern X, using a minimum

distance-to-mode classifier. The four measures are summarized

(1)
below, where M denotes the mode of the i-th cluster.

(1) Euclidean distance function:

dE(x,M(i)) = [(x - M(i))T(x - 11(1))115 . (4.3.1)

(11) Mahalanobis generalized D2-measure:

dM(x,M(i)) = (x - M(i))T [swj'1(x - M(i)) (4.3.2)

where [8"] is defined as the sum of the sample

covariance matrices of all the clusters.
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Figure 4. Flow chart for the clustering algorithm
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"Symmetric" generalized distance measure:

(1)) = (x Mu) T (i)
) (4.3.3)dS (x ,M )[S(1)](x - M

where [8(1)] is a (p X p) matrix preportional

to the inverse of the second-moment matrix of the

observations in the i-th cluster, with respect to

the mode, M(i), of the cluster. It is defined as

N
N11

-

]= "—[z (x1‘1) - 151505;“) - M(i))T] 1 (4.3.4)

j=-1

[S (1)

where the asterisk denotes that raw measurements

are implied and N1 is the number of observations

in the i-th cluster.

'Asymmetric' generalized distance measure:

/2

dAS(x ,M(1))—9 9” 9 + 4‘" (4.3.5)
2w

where:

.. 1148(1) A (1) 1(1)

with a e x ; b = M - M ;

b t[SA(1)-]a +8t[Sfii)]b- 21) CESSA(;)]b ;

[bSAfin > 0 ;S

II

(a - b)N[s:1)] (a- b) >0; and'
1 ll

J‘lx

Md<i>
is a vector representing the center of a

constant unit distance ellipse. A detailed deriva-

tion of the measures (iii) and (iv) is given in

Appendix A.
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The 'asymmetric' distance measure is motivated by the

belief that if the pdf underlying the observations in any cluster

is asymmetric in the sense that the mean is different from the mode,

the distance measure chosen should reflect this skew. Because the

dispersion of the observations is, in general, not the same in all

directions, it is felt that the measure of distance used should

reflect this.

4.4 A Classification Algorithm:

Based on the minimum distance-to-mode decision rule, an

algorithm for classifying a pattern vector x, from unknown class,

is given in Figure 5 in flow chart form.

4.5 Results:

The clustering algorithm and its application to pattern

classification using the different distance measures are tried

on the sets of data used in Chapter III. Another set of real

data tested consisted of measurements of different types of

grain. Ehrlich and Weinberg [E-2] discuss how grain shape may

be described as precisely as needed by a Fourier series expansion

of the radius about the center of mass utilizing co-ordinates of

peripheral points. They also give illustrative examples to show

that the shape variables easily discriminate grain differences

arising from geographic, stratigraphic and process factors. In

pattern recognition parlance this may be considered as their method

of feature extraction. Professor Weinberg made available a set

of eight feature measurements for each of the grains - Navy Bean,



47

Estimate modes

of given data set;

Clustering

Phase

Identify clusters

using Euclidean

metric

l
Estimate M(i): - modes

of the clusters

 

 -
—
b

 

 

Learning Phase

Choose distance

measure for

classification

1

 

 

 
 

 

  

Compute

(i)
d(XaM 1) Classification

JV 3 Phase

Find > [Decide

k = ArgCMin {d(x,M(1))})
x 6 C1188 STOP

1

 
 

Figure 5. Flow chart for classification



48

Wheat and Oats. As the sample size of each variety of grain is

small compared with the number of features only four out of the

eight features are chosen for the test. Specifically, the avail-

able sample sizes are:

Navy Bean: 46

Oats : 50

Wheat : 42

The results of these tests are summarized in Table 3.

The mode seeking algorithm is also applied to estimate

the modes of the pdf underlying the actual training sets as dis-

tinct from the sets identified by the clusters. For each data

set two types of tests are conducted; first using all the samples

from each training set and next using a subset of the set from

each class. Both the tests gave encouraging results. The results

of the former type of test are tabulated in Table 4.

An inSpection of the results in Table 3 reveal that with

one exception all the reclassifications based on the initial

cluster membership are worse almost inversely proportional to the

degree of the intuitive sophistication of each distance measure.

The reason for this is not known and has not been investigated further.

4.6 Chapter Summary:

In this chapter a clustering procedure is discussed using

the simdlarity measure defined by the distance of an observation

point from the modes of the distribution which generated the set

of observations. If the ultimate aim is clustering of a set of

empirical data, the algorithm can be terminated at this stage.
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However if the aim is to detect a cluster structure for

pattern classification analysis, the clusters generated could be

used as sets of training patterns, their modes estimated and a

pattern vector x from unknown class, classified using a

minimum distance-to-mode classifier.

It is also demonstrated that if training subsets from known

classes are availabe §_priori, then the algorithm could be used

for classification studies.

Different distance measures are discussed even though the

two intuitively more sophisticated measures performed poorly on

the data sets mentioned.

It may be recalled that in the mode seeking algorithm the

observation space is partitioned into regions and the modes are

estimated for observations in each such region. To explain why

the observations in these regions are not treated as the final

clusters, one has only to note that the modes could also be

estimated using other procedures which do not call for such

partitioning. The algorithm to seek clusters may also be used

with such mode seeking methods.



CHAPTER V

Conclusions and Suggestions for Future Work

5.1 Thesis Summary:

In this thesis a new model for the clustering problem is

presented. The formulation of the problem is based on assumptions

which are not severely restrictive. The assumptions are of a

nature similar to those generally made in most of the methods for

the statistical analysis of the pattern recognition problem. The

model is motivated by the belief that to find a cluster-structure

in a set of empirical data, it is not necessary to treat the under-

lying pdf as a mixture of several source pdfs. The pdf need be

treated, in its own right, as one governed by a multi-modal continuous

distribution with one or more distinct modes. This leads to the

identification of the clustering problem with that of estimating

the modes.

An algorithm is given to estimate these modes and the modes

estimated are used to detect the cluster membership. As no clas-

sified training samples from each pattern class are available 5

priori, the clusters so formed are taken to be the training sets

for training a minimum distance classifier. However if training

patterns from each class are available in advance, it is shown

that the mode seeking algorithm could be used to complete the

abstraction phase of the pattern classification problem.
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.Apart from the standard.Euclidean and the Mahalanobis

Dz-measure, two heuristically motivated distance measures are

discussed. Even though the reasoning involved in the derivation

of these new measures seems to be intuitively sound, the measures

performed poorly contrary tO expectation. However the Mahalanobis

Dz-measure gives very good results when used in conjunction with

the prOposed model and strengthens the belief about the suit-

ability Of the model.

5.2 Conclusions:

The clustering procedure prOposed is useful in a number of

situations. However it is not hard to imagine examples where this

approach may not give the desired results. One such situation is

described by two concentric point sets in a plane. Ideally, one

would like to obtain from a clustering algorithm applied to this

set, exactly two clusters. However the scheme proposed here is

likely to detect more than two clusters. It is doubtful whether

any of the presently available clustering techniques will produce

exactly two concentric clusters without rejecting any of the

observations.

The method will certainly perform very well in situations

where the ratio of the inter-cluster distance to intra-cluster

distance is high; that is, in situations where the data are well

separated into groups in the observation space. Such a performance

is, of course, to be expected of any good clustering algorithm.

As implemented the algorithm is slightly more expensive as

regards computer time involved, compared with the ISODATA, Operating
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on the same data sets. However this higher cost is compensated

by the better performance produced at least in the case of the

iris versicolor and virginica data sets. It is not claimed that

the performance will be better in general but certainly the results

are comparable to those of other pOpular algorithms currently in use.

The mode seeking algorithm is ideally suited for obtaining

non-parametric decision rules based on distance to modes, given

the training samples from each class.

In cases where the number of clusters present is not known

in advance, the applicability of this procedure is quite clear. In

fact this is a distinct advantage claimed for this method.

5.3 Suggestions for Future Work:

The two new distance measures used for classification are

based on a heuristically sound principle, that the distance measure

employed must in some way reflect the dispersion of the Observations.

The manner of implementation adopted here did not give encouraging

results. The reasons for instability, that is, why with a distance

measure as implemented, the results diverge instead of converging

to form 'ideal' clusters (or remain stationary) are worth investiga-

tion. Other methods of implementing this notion may also be con-

sidered for future work. It is quite possible that better results

may be obtained. Iterations performed with all the four distance

measures show no further improvement in performance. Even with the

classical.Euclid and Mahalanobis distance measures, the iterative

process diverges and the reason for this divergence requires

further investigation.
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Another area of future work is the estimation of the modes

of a multivariate pdf directly from the Loftsgaarden and Quesenberry

estimator of Chapter 11, instead of first constructing a uni-

variate data set. A stochastic approximation approach to estimate

the pdf [K-l] may result in a computationally more economical method

to solve the problem of mode estimation.
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Appendix A

This appendix discusses the motivation behind the use of

the symmetrical and asymmetrical generalized distance measures

referred to in Chapter IV and gives the details of the derivations

leading to (4.3.3) thru (4.3.6).

I. Symmetricygeneralized distance:

A generalized second order distance metric, D2, between

two points X and Q in a p-dimensional space is

2 T

D = (X -Q) [S] (X -Q) (A-l)

where [S] is a (p X p) positive definite matrix. We seek a

particular matrix [S] which satisfies the condition that the

average of the distances of the points in a cluster from

their mode is 1. That is, a matrix [8(1)] is sought such that,

for the i-th cluster,

i . . . . -(1) _ M(1))T[S(1)](x*(l) _ M(1)) = 1 . (A.2)
(11*

J1 j1
1
r
d

=
2

.1.

Nij

The existence of such a matrix is shown below:

Assume that the inverse of the matrix defined by

"1
z (x310) _

1=1

(1)M (gm _ M(1) T
) j )

exists. Then a matrix satisfying the condition (A.2) is given by
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N

. Ni . . . .
[3(1)] _[2:(Xj() _ 149598;“) _ M<1>)T]-1 . (A.3)

j:

To prove this, we note,

N, N

1 1 2 1 i *(1)_M(1>1(1>*1(> <1)
—zn=—z<x >13 (x -M>
Nij=1j Nij=l 5' 1 j

Ni

= .1. 2 mm {(M*(1) _M(1))'r [s<1)3(x’f(1> _ Mm”

N1 j=1 j 3

Ni

...1. z trace mm] (xfo) _M(1>)(x*<1>_ M(1>)T }

N1 j=l J 3

N1

= '1- trace { 1: [8(1)] (x*u) - 11(1))(55‘1) - M(1))T}
Ni j=1 j J

*(i) _ Mo) *(1) _ (1)1

j M H
)(XjNT trace {[S(i)i]2 (x

1 j=l

Substituting for [8(1)] the expression given by (A.3)

 

trace [1] =

The symmetric generalized distance measure between a pattern vector

(i)
x and a mode M of the i-th cluster is now defined as:

(1) 4 _M<1)T <1) <1)
(18(ng )=(x ) [S ](X'M ) . (11.4)

It is to be observed that [8(1)] is proportional to

the inverse of the second moment matrix of the points in

the i-th cluster, with respect to the mode, M(i), of the cluster

and is a measure of the dispersion of that cluster.

The name "symmetric generalized distance" is used to dis-

tinguish it from the asymmetric measure discussed next.
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II. Asymmetricygeneralized distance:

For defining the asymmetric generalized distance measure

the ellipsoidal surfaces described by

(x-Q)T[S] (x-Q) =1

are centered at a new point which reflects the dispersion of the

points in a cluster. The measures of the diSpersion along

each axis, both to the left and to the right of the mode M(1)

are computed. The center of the ellipsoid is obtained by shifting

M(i) by the average of these dispersions along each axis. To

be more specific:

*(1)

jk

vector of the i-th cluster; j = 1,2,...,N

Let x be the k-th component of the j-th pattern

1; k = 1,2,...,p; and

further let this component be designated

*(i) . *(i) (i)
ijk if xjk Mkl

l
A

(A.5)

and

*(i) if *<1>>M<i)
rxjk xjk k ("'6)

where 141:1)

Also let L(1) and R(i) be the number of vectors from

(i)
is the k-th component of the mode vector M

the i-th cluster satisfying the inequalities (A.5) and (A.6)

respectively.

Define a measure of "spread to the left" and "spread to

the right" along the k-th axis as:

'1

A

H
.

V

Spread to the left

II
D

E 1(1) Z (LX:1((i-) - Mlgi))2]!5 (A.7)

n



 

and

spread to the right = 0:1)

r

R01) 1
Q 1 *(i) (i) 2 2

[Rm n§1(rx“k -Mk )1 . (A.8)

Associated with each estimated mode vector, M(1), define a new

vector, Mé‘l), whose k-th component is given by

(i) <1) <1) (1)
' = -Mk Mk + [Mok rok ]/2 (A-9)

Referring to (A.l) we now seek a matrix [S:;)] such

(1)
that (A.2) holds except that instead of the vector M for

the i-th cluster, we use the new vector M'(i).

Proceeding as before a solution for [8:;)] is

. N "1 . . . .

[31131)] = 31% z (xgu) - M'(1))(x:(1) - 14'(1))T]’1 . (11.10)

j=l

Consider the equation

(Y -M'(i))T [31%)] (Y 44"”) = 1 (11.11)

which defines an ellipsoid centered at M'(1).

The unit of distance for computing the distance to modes

is defined as the length of the vector from the mode M(i) to

the surface of the ellipsoid, measured in the direction of the

vector (X - M(i)) where X is any point the distance to which

(i) (i)
from M is required. It is assumed that M lies interior

to the ellipsoid. The distance measure is not valid if the assump-

tion is not satisfied.
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In two dimensions, the definition of unit distance" is

illustrated in Figure 6.

Denote the various vectors as in the figure,

X _ Ml(i) ;B. = M(i) _ M'(i)
....

a

(i)
and 2 = x - M .

In terms of the unit distance, \cl‘, the distance between

M(1) and X, is given by the scalar, D, being the ratio,

(1)9-c
dAS(X,M ) — D — fzir .

Let

[W] 9- [sjsi’l -

We have

(x - M(i)) = Z = (Y - M(i)) D .

Substituting in (A.ll) and arranging terms,

(x - M'(i) D + M(i) (D-l))T[W](X - m'(i) D + M(i)(D-l)) = D2 (A.12)

which is the equation of an ellipsoid centered at

DMWD+M“)am).

It is to be noted that with a symmetric distribution,

the mean and the mode are the same and hence M'(i) = M(i) imply-

ing that the center of the ellipsoid is at the mode/mean.

Equation (A.12) is a quadratic in D and solving for D,

we get
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0(1)

 

  
r 2 '-

L.

(1) ...

L C’2

(Y - M'(1))[ SAS(i)]( Y - M'(i))=l

 
 

l l l

(1) (1) .x

{.01 r 01 2

Figure 6. EXplanation of the asymmetrical distance measure
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D = qg+,/q2 + 4wr

2w

where

t t t

q = b [W]a + a [W]b - 2b [W]b

t

w = l - b [W]b > 0

if the point M(l) is interior to the ellipsoid;

and r = (a-b)t [W] (a-b) > 0

assuming [W] to be positive definite.
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