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ABSTRACT

ON THE REALIZATION OF TIME DOMAIN MODELS

OF REAL LINEAR BIELEMENT SYSTEMS

by Donald John Rauch

In recent years there has been a trend in modern engineering analysis

to formulate mathematical models of physical systems as a set of linear,

first deriviative-explicit differential equations. The question now arises

as to whether a system graph can be synthesized from this same set of

equations. This thesis deals with the realization of time-domain models of

real linear bielement systems.

The problems that are considered in this thesis can be classified as

follows:

1. The characterization of time-domain models of real linear bielement

systems,

2. The recognition of an arbitrary time domain model to be a real

linear bielement system, and

3. The synthesis of a graph from an acceptable time-domain model.

.From the time-domain analysis, real linear bielement systems are

characterized by their associated matrices. These systems are shown to be

reducible to a canonical graph. The canonical associated matrix corresponding

to a maximum order star tree of a canonical graph is best described as the

product of two symmetric matrices. Each of the symmetric matrices has a

distinctive sign pattern and exhibits the property of diagonal dominance.

All other associated matrices corresponding to arbitrary maximum order trees

of a graph can be made to exhibit these same properties by the use of a

similarity transformation.

A necessary condition for the recognition of time-domain models of real

linear bielement systems is that the associated matrix has real eigenvalues.

A sufficient condition is that the eigenvalues be real distinct. Three

techniques are derived for the decomposition of an arbitrary matrix into the

product of two symmetric matrices. A test is also provided to determine if

one of the matrices is diagonal.



Abstract Donald Jehn Ranch

The synthesis of a graph is accomplished by interrelating the

decomposed matrix to the canonical associated matrix. Necessary and

sufficient conditions are given for the synthesis of a graph with positive,

negative and zero elements and for the synthesis of a graph with non-negative

elements. Flow charts are developed to illustrate how an arbitrary

coefficient matrix can be rec0gnized and realized as the associated matrix of

a real linear bielement system.
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I. INTRODUCTION AND ANALYSIS

1.0 Introduction
 

In the last few years there has been an accelerated interest in time

domain modeling of linear physical systems (1’2’3’h’5). Mathematically, these

models are systems of first derivative-explicit differential equations

d
fix ‘ AK 1.000

where X is a vector, sometimes referred to as the state vector, and A is a

real matrix.

Two questions now arise:

1. Under what conditions can the matrix A of Eq. 1.0.0 be realized by a

linear physical system? and

2. If A is realizable as a linear physical system, what are the element values

and their interconnection pattern?

These questions are a generalized form of the classical synthesis problem.

However, the concept of realizing a real time model of a system is strikingly

different from the classical concepts of systems synthesis whereby driving

point impedances, admittances or transfer functions are realized (6’7’8’9).

In Section 1.1 a complete time domain analysis of a RLC system is given

and the associated matrix A of this system.is introduced. Some general

pr0perties of associated matrices are also derived.

In Chapter II the class of graphs considered is restricted to real

linear bielement systems, that is, systems composed of g-elements (10)

and lossey c- or 1-elements (10). Kbenig, Tbkad and Bacon have already

considered the synthesis of LC graphs from the state model (11). Real linear

bielement systems, hereafter referred to specifically as RC and RL graphs,

are classified by the subgraph of the system from which the formulation tree

is selected. Class 1 graphs are shown to be reducible to a canonical form.

The associated matrices of a class 1 graph are then shown to be interrelated

by a similarity transformation.

In Chapter III the necessary and sufficient conditions for realizing A



of Eq. 1.0.0 as a real linear bielement system are given. Three techniques

are developed for decomposing A into a bisymmetric form, that is, the product

of two symmetric matrices. A test is also developed to determine if one of

these symmetric matrices is diagonal. For matrices that are realizable, a

method is given for determining element values and the f seg matrix of the

class 1 graph to be synthesized. From this information a graph is constructed.

Necessary and sufficient conditions are also given on the bisymmetric form of

A to guarantee that the synthesized graph will have no negative elements.

In Chapter IV the synthesis method is described in detail and flow charts

are developed to indicate the Operations in the realization of an A matrix as

a real linear bielement system. Examples of the synthesis method for both RC

and RL graphs are also given.

1.1 Time Domain Analysis
 

The class of graphs considered is restricted as follows:

1. All components of the graph are to be g-elements, c-elements or l-elements.

2. The graph contains no drivers.

3. All initial conditions of the element variables are assumed to be zero.

The time domain analysis of a less restrictive class of graphs has been

(2) and others (1’3’h’5). The results

pertinent to this dissertation follow.

rigorously carried out by Brown

As a direct consequence of Theorem A.l the following definition is made.

Definition 1.1.0: A tree T of a connected graph G is said to be a
 

fundamental tree if
 

1. As many c-elements as possible are branches of T, and

2. As many l-elements as possible are chords of T.

(10)
Lemma 1.1.0: The f circuit and f seg matrices corresponding to any
 

fundamental tree T of a connected RLC graph G are

FB 0 O I O O1 VI 0 O S S S ‘1

ll ll 12 I3

Bf = 321 322 o o I o , sf = o I o o 822 823 1.1.0

B B B O O I O

31 32 33 J O 533     



where the columns of the unit matrices I of Bf correspond respectively to the

c-, g-, and 1-elements of the cotree and the columns of the unit matrices I

of Sf correspond respectively to the c-, g-, and l-elements of the tree.

Proof: Follows directly from Theorem A.2. 1

Definition 1.1.1: The branch (chord) 1': g-, and c-element matrices 2 of

a connected graph G are the diagonal element value matrices Ll’ G1, Cl (L2, G2,

C2) where the subscript l (2) indicates the elements are branches (chords) of

a tree (cotree).

Lemma 1.1.1: Corresponding to any fundamental tree T of any connected
 

RLC graph G, there exists a system of equations

ggx = AX

such that

A = - (01+ slicesil)"l 0 0 S13 +

o (L2+ Sé3LlS33)-l 'Si3 0

512(951+ SéeGils22)-lSi2 '312G2352(G1+ S22G28é2 )-ls23 1 1 1, . .
-1 -l_ t t v I 1

S23 (01* S22G2522) S22G2512 S23(G1+ 522G2822) S23

where

1. G1, Ll’ Cl

Definition 1.1.2 respectively.

2. and B for i,J = 1,2,3 are given in Lemma 1.1.1.

313 in
3. The prime and -1 superscript indicate the transpose and inverse of the

and G2, L2, C2 are branch element and chord element matrices of

indicated submatrix respectively.

Proof: The lemma results directly from Eq. 9 of reference 2.

 

l. The matrices B and S of Lemma 1.1.0 are not necessarily in the same
ij 13

positions as the B13 and S13 of Theorem A.2.

2. See Eq. 2 of reference 2.



where the columns of the unit matrices I of Bf correspond respectively to the

c-, g-, and l-elements of the cotree and the columns of the unit matrices I

of Sf correspond respectively to the c-, g-, and l-elements of the tree.

Proof: Follows directly from Theorem.A.2. 1

Definition 1.1.1: The branch (chord) 1-, g-, and c-element matrices 2 of
  

a connected graph G are the diagonal element value matrices Ll’ G1, Cl (L2, G2,

C2) where the subscript l (2) indicates the elements are branches (chords) of

a tree (cotree).

Lemma 1.1.1: Corresponding to any fundamental tree T of any connected
 

RLC graph G, there exists a system of equations

—x-Ax
such that

A = - (01+ SllC2Sil)"l
O 0 513 +

0 (L2+ Sé3Lls33)’l
‘Si3 o

812(G;l+ Sé2Gl1522)-lsi2 '512G28é2(G1+ S22G25é2 )-1523 1 1 l

- Sé3 (Gl+ S22G28é2)-1322G2
3i2 Sé3(G1+ SeeGesée)-1523 , O .

where

1. G1, Ll’ Cl and G2, L2, C2 are branch element and chord element matrices of

Definition 1.1.2 respectively.

2. Sid and 313 for i,J = 1,2,3 are given in Lemma 1.1.1.

3. The prime and -l superscript indicate the transpose and inverse of the

indicated submatrix respectively.

Proof: The lemma results directly from Eq. 9 of reference 2.

 

l. The matrices B and S of Lemma 1.1.0 are not necessarily in the same

13 13

positions as the B and S of Theorem A.2.

13 13

2. See Eq. 2 of reference 2.



Definition 1.1.2: The matrix A given by Eq. 1.1.1 is the associated

matrix of the connected RLC graph G.

  

Definition 1.1.3: Let T‘be any tree of a graph G. If the associated

matrix A corresponding to the tree T exists, then T is said to be a

 

maximum order tree.
 

Corollary 1.1.1: Every fundamental tree is a maximum order tree.
 

Proof: Follows directly from Lemma 1.1.1.

From Lemma 1.1.1 it is convenient to introduce the following notation.

Let

-1
c o R R o s

A = _ -1 11 12 + , 13 1.1.2

I I

o L R12 R22 -813 o

where

— '

C ’ C1+ S11% 11’

L = L + s' L s
2 33 1 33’

-1 , -1 -1 ,

R R11 R12 S12(G2 + S22G1 322) S12
- B -1

-! l 1

R21 R22 S23(61+ 522G2322) S2292512 1'1°3 ‘

' -1
_ c I

S126252.2(G1+ 822G2522) S23

-1
'

S23(91+ $22G25é2) S23

Definition 1.1.h: The C matrix, L matrix, and R matrix of a connected

RLC graph are defined by Eq. 1.1.3.

 

Lemma 1.1.2: The associated matrices corresponding to the fundamental
 

trees of bielement type connected graphs are:

1. RC Graphs

ARC = ”c-1R11

2. RL Graphs

ARL ‘ 'L-lR22



3. LC Graphs

-1 '

O L --S13 0

where C, L, Rll and R22 are given in Eq. 1.1.3 and S is given in Eq. 1.1.0°

13

Proof: 1., 2., and 3. are obtained from Lemma 1.1.1 by allowing the

appropriate S terms of Lemma 1.1.0 to be null.

13

Lemma 1.1.3: Let D1 and D2 be diagonal matrices of order n with real

positive diagonal entries. Let Si

(12)

 

be any conformable matrix, then D + S .D 83.
j 1 1J 2 13

is positive definite

Proof: Consider the matrix identity

I
' - i . l

Dl+ 3131328ij - [I 513] dlag (D1, D2) [8,3] 1.1.;

By Theorem A.3, diag (Dl’DE) is positive definite. Since [I 813] is of

maximum rank, the conclusion follows from Theorem A.A.

 

Theorem 1.1.0: If the branch and chord element matrices Cl’ C2, L1’ L2,
 

G1 and G2 have positive diagonal entries then

-1 -1 .
1. (01+ s c s' ), (12+s' L s ), (02 + s: G see) and (sl+s Gls~0) are

11 2 ll 33 l 33 22 l 22 2 22

positive definite, and

-1 ' -l -l , . . . . .
2. 812(G2 + S22Gl 822) 812 18 peeitive sem1defin1te.

Proof: Part 1. follows directly from Lemma 1.1.3. By Theorem A.5.,
 

(G;l+sé2GilSE2)-l is positive definite. Part 2. of the theorem now follows

from Theorem A.h.

. . ._ 1 ml, , xul (a

12 18 of maX1mun rank, then D12(G2 + 5216 S ,Corollary 1.1.0: If S J l 23
 

is positive definite.

Proof: By Theorems 1.1.1 and A.5 (351+ S Gl 8,2)wl is positive definite.
 

The conclusion follows from Theorem A.h.

(10)

l 2

P1 and P2 respectively, then A = diag (Al, A2) is the associated matrix of a

Theorem 1.1.1: If A and A are the associated matrices of the parts
 

separable RLC graph G obtained by uniting P and P2 at only one vertex.

1

Proof: From Eq. 1.1.2 for some maximum order tree T of P1
1 1 



       

C'1 o R R o 5

A1 = - o L'1 RIl R12 + -s' 013 1.1.5
12 22 13

and for some maximum order tree T2 of P2

4:71 * «x- *

A2 = - C 0.1 R 11 R 12 + O 813 1.1.6

0 L R*i2 R*22 -S*'i3 0

where C, L and [Rig] are the C matrix, L matrix and R matrix of P1 and C*,

L* and. [R*iJ] are the C matrix, L matrix and R matrix of P2. 813 and 8*13

are subsets of the f seg matrices of P1 and P2 respectively. Consider uniting

P1 and P2 at one vertex. TlUT2 is a maximum order tree of P1UP2' Correspondingly

from Eq. 1.1.2 the associated matrix is

”5'1 -1 (:> C' r ”R11 0 R12 0 I [-0 0 S13 0 ‘

A = C* -1 0 R*ll O R*12 0 0 0 3*13

L -1 Ri2 0 R22 0 -Si3 0 0 0

L O L* ‘50 R*i2 o R*22_ _o -s*l'3o o d

1.1.7

       

c"1 -1 (:> R11 R12 0 o 0 S13 0 <3 7

A = L -1 Ri2 R22 0 '813 o o o

c* -1 o o R*ll R*12 o o 0 3*13

_ O L* _ . go 0 R432 R*22‘ _o o 'S*1'3 o _

1.1.8

From Eqs. 1.1.5 and 1.1.6, Eq. 1.1.8 is recognized as

A = Diag (Al, A2)

which completes the proof.



 

II. CHARACTERIZATION OF REAL LINEAR BIELEMENT SYSTEMS

2.0 Introduction

In this chapter the problem of characterizing time domain models of real

linear bielement systems is considered.i In Section 2.1, the complete graph (12)

(13)
and the star tree are introduced. In Section 2.2 all connected real linear

bielement systems are classified by the subgraph of the system from.which the

formulation tree must be selected. In Section 2.3 the preperties of class 1

systems are developed. These systems are shown to reduce to a canonical form

and all of the associated matrices of a graph are related to the canonical

associated matrix by similarity transformations. The entries of the C, L, and

R matrices are also formulated for the canonical system graph of class 1.

2.1 The Complete Graph
 

Definition 2.1.0: A cgmplete graphl Qn+1 is a n+1 vertex graph such that
 

there is one and only one element between every pair of vertices. See Fig. 2.1.0.

The elements of a complete graph Qn+1 will be designated by E in general,

13

or specifically as G for a g-element complete graph, CiJ for a c-element

13

complete graph, and L for a 1-e1ement complete graph, where 32:1 for i,j =

13

1,2,...,n. For i ¥ 3, the element subscript ij implies the element is incident

to vertices i and j and is oriented from vertex i to J. For i = J, E11 is

defined to be the element incident to vertices i and n+1, with the orientation

toward vertex n+1. Vertex n+1 is referred to as the "reference node".

Furthermore, if a complete graph is composed entirely of g-elements (or c-elements,

or 1-elements) it will be designated by the superscript g (or c, or 1). That

is, Q§+1 is a complete graph of n+1 vertices and is composed entirely of

g-elements G ., where 323i, for i, J = 1,2,...,n.

iJ

Theorem 2.1.0: The number of elements e in a complete graph of v vertices
 

is

mi)- 2.1.0e: 2

 

<18).
1. This same definition was used by Brown and Reed

7



Proof: By induction on v. Let v = 2. The conclusion follows from

Eq. 2.1.0 and Def. 2.1.0. Assume the theorem is true for v = n, for which

the number of elements en is

- EAEZLA' 2.1.1
en — 2

Now let

v = n+1. 2.1.2

The number of elements en+l’ by definition 2.1.0, will be the number of

elements in the case where v = n plus n new elements, one each from the n

vertices to the n+1 vertex. Hence,

en+1 = en + n, 2.1.3

or from Eq. 2.1.1

n+1 2 2

But from Eq. 2.1.2 n = v-l. Therefore, Eq. 2.1.h becomes

__ V(V-l_l

n+1 _ 2 °

 0

Hence, the theorem follows by induction.

Property 2.1.0: Let Qm+l be a complete graph of m+l vertices. The f

seg matrix corresponding to any star tree of Cm is

+1

fl ‘ Y P 9 our E,r C . T . 0.. L 000 E

E11 E192.n33 ... ITmn L12 L13 IUJ+ ° Lflnl .33 I24 L2‘) 2m inwl m

Pl 0L 0 so. 0 l l 1 cool 0 O 0 see 0 00. n

O l O .0. O “l A) O .000 1 1 1. 0.0 l 000 I“

O O 1 ... O O -l O ...O -l O O ... O ... W

S =

3.1.5

  O O O 000 l O O O ...-l O O 0 .00‘1 see”:
- d

where the column corresponds to the element of Qm1 listed above tht column.

Property 2.1.1: Let Sf be given b Eq. 2.1.5, then

H W '= [e13]=8f diao ( iJ.) Sf

 



 
1.

v

m+1

Figure 2.1.0 Complete graph Q;+1 of e elements with m+1 vertices.

—_--

I/I’ \\\\

9 G.
\

\

e ‘\
\

\.

G E 0
E

E22

E11 Emm

1O

vm+l

Figure 2.1.1 Star tree TB of m+l vertices.
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where diag (E13) e diag (E11E22E33...EmmEl2El3Elu...ElmE23E2uE2S...E2m...Em_l m)

then_

€1J=eji==EiJfOTI>J 131,2000, m‘l

m J: 2,3,..0’ m 2.106

en: E Eik’ i=1,2,...,m

k=l

where Eik = Elsi for i>k.

2.2 The Classification of Real Linear Bielement Systems.
 

From Section 1.1, all RLC systems are characterized by their associated

matrices. The rank of the associated matrix, by Eq. 1.1.1, determines the

number of c~elements in the tree and the number of leelements in the cotree.

Therefore, the rank of the associated matrix gives an indication as to the

number of vertices of the graph and the composition of its tree and cotree.

Since the reactive elements of a graph are assumed to be real, there is

always a finite resistance or conductance associated with each reactive

element, and hence there are at least as many g-elements as reactive elements

in a given system graph. In the following,real linear bielement systems

having associated matrices of order n are classified by the form of the

subgraph from which the maximum order tree is selected.

RC Graphs

Let A or order n be the associated matrix of a connected RC graph

G = GC U G8, where Gc and G8 are the subgraphs of e- and goelements of G

respectively. From Eq. 1.1.1, there are n c-elements in the tree of G.

Suppose the tree of G is composed entirely of caelements, then GC is

connected and has v = n+1 vertices (10)° Suppose now that the tree contains

g-elements such that GC is composed of two disjoint but individually connected

subgraphs, then the number of vertices of Gc is v = n+2 (10). Suppose now

the tree contains g-elements such that GC is composed of three disjoint but

individually connected subgraphs, then the number of vertices Gc is v = n+3.

This partitioning of Gc can be continued until Gc is composed of n parts.

each of which is an individual c-element. The number of vertices in this

case being v = 2n. This argument constitutes the proof of the following lemma.
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Lemma 2.2.0: Let G a GC U‘G8 be a connected graph composed of the
 

c-element subgraph Gc and the g—element subgraph G8. If G has an associated

matrix of order n then the number of vertices of Gc and the form of Gc are

characterized as follows:

# of vertices

Class of Gc ' Form of G

1 n+1 <::)

C

  

Gc is connected.

c c c c

2 n+2 (:;> (:2) . G = l U G2 where G1

. . . . and G: are individually

. . connected.

1 l i .
n 2n 01].? CzZToooooCnnTo G - Cl]. U 0220.0U Cnn

RL Graphs

Let A.of order n be the associated matrix of a connected RL graph

G = G1 U Gg where G1 and G8 are the subgraphs of 1- and g-elements of G

respectively. From Eq. 1.1.1, there are n l-elements in the cotree of G.

Suppose the tree of G is composed entirely of g-elements, then G8 is connected.

Let the number of vertices of G1 be v. Suppose further that G1 is a complete

graph. The complete graph with the least number of vertices having n

elements is found by solving Eq. 2.1.0 for v. Therefore,

' l + V l + 8n.
V = 2 2.200
 

In general, the solution of Eq. 2.3.0 is a real number r*. However, since

v is the number of vertices, r* must be rounded off to the next largest

integer r. The integer r, then, is the smallest number of vertices the

subgraph G1 can have if A is to be of order n. The largest number of

vertices of G1 is v = 2n corresponding to each l-element of the cotree being

isolated from one another by g-elements. Therefore, the bounds on the number

of vertices of G1 are
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I‘S;\JS; 2(n + p)

This argument constitutes the proof of the following lemma.

1 3'

Lemma 2.2.1: Let G = G U GL be a connected graph composed of the

l

l-element subgraph G and the g-element subgraph Gg. If G has an associated

l

 

matrix of order n then the form of G6 and the bounds on the vertices of G

are given as follows:

~# of vertices

  

 

Class of Ge Form of Gg

min max

1 r.g; vs; 2n an> : Ggis connected.

. S G S 8 S 8
’3 ° ... 3
2 1 g v< 2n+2 G2 . G - Gl U G2 where Gl and G2

are individually connected.

q r 8 . 8 _ S 8 .8 8
3 r g VS 2n+h @ GD . G — Gl U G2 U C3 where Gl’

. . G% and 0% are individually

. . connected.

If; I f,» O, ,. 5,; .-

p r g vg2(n+p) {15) G; ..... G; : G{3 2 G3’ U G2” . .U G; where

(Igg) GESQ 0 0G2 are individually

'
6
0
?

connected.

2.3 Characterization of Class 1 Systems.
 

From Section 2.2, real linear bielement systems whose associated matrices

of order n are classified by the form of the subgraph from which the maximum

order tree is selected as classes 1, 2, ..., p, ... In this section, systems

of class 1 are investigated and their characteristics developed in detail.
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RC Graphs

.r g c 8 c
Lemma 2.3.0. Let Pp+l Gn+1 U Pp+l be a part such that Gn+1 is a

connected c-element graph of n+1 vertices and Pg+l is a g-element part of

c

n+1 c

1. there exists a star tree TB of Gn+

p+1 vertices where G and Pg+l are united at p+1 vertices, ns:p. Then,

1 which is a subtree of a maximum

order tree of Pp+1’ and

2. the associated matrix is

4 - _ -1 -1 ; -1 ]-1 ,

or

A 4 c'lR -c'1s G s' r —

2322:: Select any vertex of Gfi+l and label it n+1. Label the remaining

- vertices 1, 2, ..., n.» Consider the star representation T8 of the n+1 vertices

of G241 given by the c-elements between vertices 1 and n+1, 2 and n+1, ..., n

and n+1. Since G2+1 is connected, at least one of the c-elements, say 011’

of T8 is non-zero- .Furthermore, since Gn+1 is connected, the maximum number

of c-elements in any tree of PP+l is n. T8 has n c-elements. Let the tree

T31 of Pp+1 be composedof TB and T1 where T1 is a subgraph of P311' T81 is

acceptable as a formulation tree by Def. 1.1.3 if only the associated matrix

corresponding to TSi exists. The associated matrix corresponding to any

fundamental tree by Lemma 1.1.2 is .

A a -0'1R11 = - [C1 + 511C2Sii] -1812:[G£l +,Sézcilsé2] 'lsiz- 2.3.0

Since some of the elements of C can be zero, it is only necessary to show
1

that C"1 exists. By allowing the appropriate cgelements of the complete

, graph Q:+l to be zero, then G:+l = Q:+1' Correspondingly, the subset S11 0

the f seg matrix of Pp+l is given by Eq. 2.1.5 for m a n. C is nonsingular

by Theorem A.6 if only C is not permutable into diag (311’ K22) where K11 is

a q x q matrix and K22 is a n - q x n - q matrix. Assume C is permutable into

f

this form. Then from Property 2.1.1, all c-elements between the vertices

1,2,..., q and q+l, q+2,..., n are zero. This is a contradiction since 63+}

is connected, except if these vertices are connected through vertex n+1. If~
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the vertices l,2,..., q are connected through n+1 to q+1, q+2, ..., n, then

K11 and K22 are to be examined individually for singularity. Applying

Theorem A.6 to K11 and K22 and repeating the above argument, C is non-

singular. Hence the associated matrix corresponding to Tsi exists and TS is

a subtree of a maximum order tree which proves 1. of the conclusion. 2. of

the conclusion follows directly from Lemma 1.1.2.

Lemma 2.3.1: Consider the system of linear, nonhomogeneous, algebraic
 

equations

t.1d,1 =8... for i=l,2,eoe’ 1’1

lxi 11C 1.1.

x
. l

.
L
I
‘
1
5

2.3.1

=a,,. fori<j;id see "'tij 13 13 1,2, , n l

2’3””; nHJ’

If tij # O for i, j = 1,2,..., n, then there exists a unique solution to Eq.

2.3.1 given by

n

Pd T ”(a - Z a 1)/t -
ll ll k¥l 1A ll

n

d , (a - Z a 1)/t J

2& 22 kf2 2 32

nml

dnn (ann- Z a'nk)/tnn

:: kzl 2.3.2

dl2 812/t12

d13 ala/tl3

dln aln/tln

_dn-] n1 _ an-l n/tn~1 n J    
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[dlg dl3 ...dlnc123 ...d2n .....dn‘l n]

13 for i<J; 121,2,

..., n-1 and J:2,3,..., n. Substituting Thfis result into the remaining

equations of Eq. 2.3.1 gives dii = (aii .. ‘gi aikvtii for i=1,2,..., n. Eq.

2.3.2 follows directly from these results.

Proof: Since tifi # 0 for all 13,

can be found directly from Eq. 2.2.1 by dividing ai :by t

C

Theorem 2.3.0: Let Pp+1 = Gn+l p+l

there exists a graph Pn+1 obtained by uniting GC

U Pg be the graph of Lemma 2.2.0. Then
 

1 with a complete g--e1ement

graph. Qn*+1 at n+1 vertices such that the associated matrices of Pp1 and

P are identical.

n+1

Proof: Let Pp+1 be written as the union of two complete graphs Qp+laand

8
Qn+1 Where Qgp+l =Pp+l and Qn+l = G;+1. Select the tree Tsi which contains

T8 of Lemma 2. 3.0 as a subtree. The f seg matrix by Lemma 1.1.0 is

 

C‘

I 0 S11 ”12
881 2 2.3.3

0 I 0 S22

The associated matrix corresponding to Ts i by Lemma 2.3.0 for n<:p is

_ -l _ -l -1 ,-1-1 ,

As ‘ “C R11 ’ “C S12[G2 + S22G1 S22] S12

Now construct the graph Pn+1 of the theorem where G:+1 is given and the

elements of Qn: are to be calculated. Select T as the tree of P . The

1 s n+1

by Lemma 1.1.0 is

z: 0*

531 [I S11 ”12] 2.3.u

f seg matrix of Pn+1

where Sll is the same as in Eq. 2.3.3 and 8*2 is identical to the first

n(n+l)/2 columns of 812 of Eq. 2.3.3. The associated matrix of Pn+l

corresponding to TS by Lemma 2.3.0 for n=p is

A%'=-C_lR* =-c15* 0* 3*? 2.3.5
s 11 12212

Therefore, multiplying Eqs.2.3.3 and 2.3.5 by-C and equating gives

'X'X"_

R11:5120‘2812 R11 2°3°6

Eq.2.3.6 can be written as Eq. 2.3.1 and hence satisfies the hypothesis of

Lemma 2.3.1. Therefore, there exists a unique set of diagonal entries

G* €'G* such that the associated matrices of P and P . are identical, thus
13 2 p+1 n+1

proving the theorem.
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dl3 eocdm d23 ooodgn ooooodn-ln

ij for21<.j; i=1, 2,

..., n-1 and j:—2 ,3,..., n. Substituting ihgs result into the remaining

equations of Eq. 2.3.1 gives dii = (aii ~bzgi aik)/tii for i=l,2,..., n. Eq.

2.3.2 follows directly from these results.

Proof: Since t.J # o for all ij, [dm

can be found directly from Eq. 2. 2.1 by dividing ai by t

. _ C ‘8 .
Theorem 2.3.0. Let Pp+l 1 Gn+1 U Pp+l be the graph of Lemma 2.2.0. Then

there exists a graph Pn+1 obtained by uniting G:+1 with a complete g-element

 

graph. Qn:1 at n+1 vertices such that the associated matrices of Pp+l and

P are identical.

n+1

Proof: Let Pp+l be written as the union of two complete graphs Qp+laand

c g _ g 3

Qn+l where Qp+l Pp+l and Qn+1 = G:1° Select the tree Tsi which contains

T8 of Lemma 2.3.0 as a subtree. The f seg matrix by Lemma 1.1.0 is

 

I o s s

s 2 ll 12 2.3.3

0 I 0 822

The associated matrix corresponding to TS i by Lemma 2.3.0 for n<:p is

-1 ”-1 =1 -l -l ,
= .‘ = u QAB C Rll c 312 [ G; + 528G1 s22] .12

Now construct the graph Pml of the theorem where G:+1 is given and the

elements of Qn: are to be calculated. Select T as the tree of P . The

l s n+1

by Lemma 1.1.0 is

:2 0*531 [I sll s12] 2.3.u

where Sll is the same as in Eq. 2.3.3 and 8* is identical to the first
’)

n(n+l)/2 columns of S of Eq. 2.3.3. The associated matrix of P

f seg matrix of Pn+1

12 n+1

corresponding to Ts by Lemma 2. .O for n:p is

A* =-ClR* =~CnlS*0* 8*” 2 ‘ 5
11 12 2 12 '3'

Therefore, multiplying Eqs.2.3.3 and 2.3.5 by-C and equating gives

¥ *' =

R11= s12G2S12 R11 2.3.6

Eq.2.3.6 can be written as Eq. 2.3.1 and hence satisfies the hypothesis of

Lemma 2.3.1. Therefore, there exists a unique set of diagonal entries

ijE‘GS such that the associated matrices of P and P
p+l n'1 are idfntical, thus

'1’).

proving the theorem.



 
 

Definition 2.3.0: The graph GD is said to be ~quivalent to the graph
+

( * ‘ 1' r‘ ‘s '1 ~ ‘0 11 1‘ .7 w w >. 4 "' '3. ‘ a '- I" u

6nd hr 1 MwVL ta; sin. isscCiatec matiix.

rs

K“ " -C‘ — ,7 ’ ' 1

un+l 11 aLd only if Gp+l

Definition 2.3.1: The graph G0+1 is reduC1ble to Gn+l for p:»n if the
 

graphs Gp+1 and Gn+1 are equ1valcnt.

 

Corollary 2.3.0: Every part Pp+l of a RC graph of class 1 having a

. i
Q g ‘X‘

c-elementn sub ra h of n+1 vertices can be TCHUCCd to a dart P = Q -
* Q g ‘p i n+1 Qn+1 n+1,

. c 8* . .
nsgp, where the complete graphs Qn4l and Qn+l are united at n+1 vertices.

Proof: From Lemma 2.2.0, class 1 graphs satisfy the hypothesis of Theorem

2.3.0 and hence are reducible to Pn+1' Some of the elements of the complete

“ g*

and Q may be xero.

n

c

rsnhs Q

g a‘ Q ‘n +1+1

Definition 2.3.2: A graph Pn+

- QC U Qg
+1 _ Kn+l n+1

n+1 vertices and where Qn+l has a connected subgraph compos-d of non-zero

1 is said to be a canonical RC graph of class 1

where the two complete graphs are united at

 
 

if and only if Pn

c-elements incident to all n+1 vertices. The associated matrix corresponding

to any maximum order star tree TS Of Pn+1 is said to be the canonical

associated matrix of a RC graph of class 1.
 

 

I

-.. ’3 . \ C‘ _. ‘ f‘ —- C‘ ' '3 1 6) one: 7 V p“Theoiem 2.,.1. Let us _ [5111 3012] - [I all! 81;]bc tat f seg matilX

corresponding to a maximum order star tree TS of a canonical RC graph Gn+1 Of

class 1. Then the canonical associated matrix of Gn+l is

. ~l T

A —- -C 31].

{uxfii that

q 1 ‘ , C O I
1 : . . : C = . ,1. L LclJJ SIllCSUIll [I 811] l ' 2 3 7

O CO Slj

‘12“4' 1 : C)-.firr :1 C‘« 000 (1‘1 : (3":10. 000 \1‘ " » oooQC

“ltle L1 i“° (“11’ 22’ ’Cnn) ‘“ C2 1CD (Cl2’cl3, ’ in’“2«’ ' 2n’

) are the branch and chord c-element matrices respectively.

9. : a. —__- C“ 2. 1'81 R11 [glJ] s qu 2 3

where G2 = diag (Gll’G23"'"Gnn’G12’G13""’Gln’°'°’G -1 n) is the chord

g-element matrix.
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3. c = -C

13 13 for 1;; and i,j=1,2,...n

311 = 11

n
2.3.9

o = X C

11 3:1 13

‘ fOI' i=l,2,oeen

‘ 2”:g = G .

ii 3:1 13

Proof: 1. and 2. follow directly from Lemma 1.1.2. SIll and $12 of the

hypothesis.are given by Eq. 2.1.5 where m=n. 3. follows from 1. and 2. and

Property 2.1.1.

Lemma 2.3.2: Let Si’ 83,... be the f seg matrices corresponding to the

maximum order trees T1, T3,... respectively, of a connected graph G, then

there exists nonsingular matrices (lid and P31 such that

= ‘ s P 2. .10

(111 1 11’ 3

where 013:0;1ati and at: and ati are submatrices of the incidence matrix

whose celumns correspond to the elements of the trees 'I'J

(in) which rearranges the columns of SJ to have

and T1, respectively,

~and PJi is a permutation matrix

the same element ordering as the columns 81'

Proof: Follows directly from Theorem.A.17.

Theorem 2.3.2: The associated matrix of every part Ep+l of a separable
 

RC graph of class 1 is similar to the canonical associated matrix of some

canonical RC graph-of class 1 and conversely.

Proof: By Corollary 2. 3.O,Pp+l can be reduced to PM =Qn+1 U Qn+1

where Qi+1 and Qn*l are complete graphs united at n+1 vertices. Let AJ be

the associated matrix corresponding to some maximum order tree T of P

J n+l'

By Lemma 2.3.0, Pn+1 has a maximum order star tree Ts' Let S and Sa be the

J

f seg matrices corresponding to the trees TJ and T8 respectively. By Lemma.

2.3.2,

”(193j 38' ‘ 2.3.11

Let SS and SJ be partitioned such that the columns of the 1,1 submatrix

correspond to the c-elements and the columns of the 1,2 submatrix correspond
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to the g-elements of Pn+1° Eq. 2.3.11 becomes

P11 0

Se: [Sell S1112] = 05,3[8311 8312] : 2.3.12

0 P22

where P s is partitioned to conform to the partitioning of S rearranges. P
J . . J 11

the columns of 8311 corresponding to c-elements such that the leading columns

0? Sjllpll

$312 corresponding to g-elements. Since for a class 1 RC graph there are no

correspond to the c-elements of Ts' P22 rearranges the columns of

g-elements in the tree Ts’ then P22=I. Let the branch and chord c-element

matrices corresponding to the tree T be written

J

c =diag (01,02). 2.3.13
J

Then the diagonal branch and chord c-element matrix CB corresponding to the

tree TS is the same matrix as C with the elements-rearranged on the

J

diagonal. In fact,

C = P' 2.3.1h
s llcjpll'

Since the g-element chord matrix G is not rearranged, then G is the same for

2 2

both trees T and T8. The associated matrix of Pn+1 corresponding to the tree

J

TS by Lemma 2.3.0 is

A = -(s c s )‘ls G 5' 2.3.15
'

s sll s all 312 2 812. _

substituting the relations of Eqs. 2.3.12 and 2.3.1h into Eq. 2.3.15 gives

-1__ _ I I I I I I

As " (asJSJllPllPllCJPllPllSjllasj) a335312G25312asJ’ 2'3'16

Since Pllpll = I and by taking the inverse of a product of square matrices,

Eq. 2.3.16 becomes

I'1 I '1 I I
A8 = '03,; (3311035311) 8312G28312 033‘ 2.3.17

The associated matrix corresponding to the tree TJ by Lemma 2.3.0 is

I ’1 I
AJ = '(3311033311) 8312628312. 2.3.18

Therefore Eq. 2.3.17 is written as

I -1 !A8 = (133 A3 SJ. 2.3.19

By Definition A.2, A is similar to As which proves the theorem.

J



l9

Converse: The converse follows directly by solving Eq. 2.3.19 for A3'

Corollary 2.3.2.0: The associated matrices Al’A2"°"AJ”"Ak"" of a
 

part P5+1 corresponding to the trees Tl,T2,...,T

graph are similar.

J,...Tk,... of a class 1 RC

Proof: By Theorem 2.3.2,?the associated matrices AJ and AR are Similar to

the associated matrix A8 corresponding to the star tree T8 which exists by

Lemma 2.3.0. Therefore, from Eq. 2.3.19

- I' I

AS - 0leAjagj= 018k Akask 2.3.20

for all j and k. Solving Eq. 2.3.20 for A3 in terms of Ak gives

awash: “1.0.1.0531 2.3.21

Therefore, by letting

03k: 03308121 23°22

Eq. 2.3.21 becomes

-1
_ i IA3 _ ijikajk , 2.3.23

for all 3 and k, and by Def. A.2, Ak is similar to AJ'

Corollary 2.3.2.1: The associated matrix of a connected RC graph G of
 

class 1 is similar to the canonical associated matrix of some canoniCal RC

. graph of class 1 and conversely.

Proof: From Theorem 2.3.2, for each separable part P1, i=l,2,...m,

=()sjA361% ° - ' 2.3.2h

By Theorem 1.1.1, the associated matrix of G is

- l - _ _ -

A .

J

.20
3 SJ . 83" 2.3.25

o'm o -m own 0 -m
L A3 (183 As Cl

2

..4 i- } — L ..1 — ..a

l

where diag (As’As

RC graphs of class 1 at one vertex and hence isma canonical RC graph of class 1.

a: ' A: ‘ 'a:
JO? 0 A: O 302 ~ 0 ‘

        
,...,A:) is the associated matrix of.a union of m-canonica1

Converse: The converse follows directly by solving Eq. 2.3.25 for

I 2 m
(118.8 (A8 ’AS’ 0 e 0 ,AS) 0
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RL Graphs

 

Lemma 2.3.2: Let P _ = G8 U G1 be a part such that eg is a connected
p+l p+1 y. (10) P+l

gnelement graph of p+1 vertices and Gv is a forrest of leelement graphs

1 . .
having v vertices, where G8 and Gv are united at v vertices, vsgp. Then,

p+1

1. there exists a star tree TS of G§+1 which is a maximum order tree of

Pp+l’ and l

G g __"I 9
2. the assoc1ated matrix of Pp+l is A _ L 823(Gl + 822G2822

8

p+1

vertices l, 2, ..., p. Consider the star representation T8 of the p+l

vertices of G:

-1
) 523.

Proof: Select any vertex of G and label it p+1. Label the remaining
 

+1 given by the gmelements between vertices l and p+1, 2 and

S

p+1

, of T is nonezero. Furthermore, by the connectedness of G

is p . Ts has p gaelements.

p+l, ..., p and p+1. Since G is connected, at least one of the g-elements,

say G g , the

1

maximum number of geelements in any tree of Pp+l

Ts is an acceptable formulation tree by Def. 1.1.3 if only the associated

matrix corresponding to Ts exists. The associated matrix corresponding to T8

by Lemma 1.1.2 is

1
___"I

A — L 82 G S

3(G1 + D22 2 22

Since some of the gnelements of TS can be zero, it is only necessary to

show that (G1 + 822G2Ség) is nonsingular. By allowing the appropriate

. a S S _ E
guelements of the complete g1aph Qp+1 pel — Qp+l'

of the f seg matrix of Pp_ is given by

to be zero, then G

Correspondingly, the subset S 1

. ch-
22

Eq. 2.1.5 for map. G1 + 82202822 18 non51ngular by Theorem A.6 if only it

cannot be permuted into diag (K11, K29) where K

- e . ’ . G - . '. “2 ' nt-b ".. ;hi-K22 is a p q x p q matrix. Assume l + S22G2822 1s permc a le info t 3

form. Then from Property 2.1.1, all guelements between the verti es 1. 2,

11 is a q x q matrix and

..., q and q+1, q+2, ..., p are zero. This is a contradiction since

8

Gp+l

p+1. If the vertices l, 2, ..., q and q+l, q+2, ..., p are connected

through p+l, then Kll and K22

Applying Theorem A.6 to K11 and K22 and repeating the above argument,

is connected, except if these vertices are connected through vertex

are to be examined individually for singularity.

G1 + S22G2S22 is nonsingular. Hence, the associated matrix corresponding to

TS exist, and hence, Ta is a maximum order tree of Pp+l which prove part 1.

of the lemma. Part 2. of the lemma follows from Lemma 1.1.2.
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be given by Eq. 2.1.5, then S S' is nonsingular.Lemma 2.3.3: Let S f f

f

Proof: From Eq. 2.1.5,

 

P _

m -1 o o o -1

"1 m o O

t-

Sfo . . . . 2'3'26

. . -1

-1 o o o -1 m   
is a m x m matrix. By Theorem A.6, S Sf is nonsingular.

 

 

f

1&1 K12
Lemma 2.3.h: Let K = , where K11 and K22 are square submatrices,

I .

K12

be a positive definite matrix, then K11 and K22 are positive definite.

Proof: Since K is positive definite, then

K11 Ki2 X1

[Xi Xé >0 2.3.27

"12 K22 X2

for all vectors X = [ ' Xé]'. Let X = 0, it then follows from Eq. 2.3.27

that

2

Xilglxl> 0 2.3.28

for all xlalo. By Definition A.l, K11 is positive definite. Similarly, by

letting X =0, it then follows from Eq. 2.3.27, that
1

X2x22x2> O 2' 3'29

for X2¥O. Hence, K is positive definite by Definition A.1 which proves the

lemma.

22

Theorem 2.3.3: Let Pp+1 = G:+1 U G1 be the graph of Lemma 2.3.2. Then

there exists a graph Pv obtained by uniting G1 with a complete g-element

 

graph Q?*at v verticesvsuch that the associated matrices of PD+1 and P; are

identical.

Proof: Let P +1

1 g G1

Qv where Qp+l = Gp+l and Qv= v' Select T8 of Lemma 2. 3. 2 as the tree of

Pp+l°

be written as the union of two complete graphs Qp+1 and
 

The f seg matrix by Lemma 1.1.0 is
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S8 = [I 822 823] . 2.3.30

Since there are in general more g-elements than l-elements, S8 can be

partitioned as follows

I O S* S*

_ v 22 23

SS “' , 2.3031

*
O I 852 0

l

where Iv corresponds to the branches of TS which are incident to Gv' The

associated matrix corresponding to TS by Lemma 2.3.2 is

_ -l _ _ -l , [ , ] -1

As ” ‘L R22 ‘ L S23 G1 + S22G2S22 523 2.3.32

K

-1 1 ll Kl2
I ._ ..

Let [G1 + 822G2822 ] — K — Ki K where Kll is a v x v matrix.

2 22

G1 + S22G28é2 is positive definite by Theorem 1.1.0. K is positive definite

by Theorem A.5. Kll is positive definite by Lemma 2.3.h. Therefore Eq. 2.3.32

is written

8*

_ -l _ -1 , K11 Ki2 23
AS _ -L R22 - -L [SS3 0] , 2.3.33

'

or K12 K22 O

A = -L'lR = -L‘ls*'K s* 2 3 3n
3 22 23 11 23' ° °

Now construct the graph Pv of the theorem where G: is given and the elements

* *

of Q5 are to be calculated. Select the tree T; from Q5 such that T; is a

subtree of T8. The f seg matrix of Pv by Lemma 1.1.1 is

* _ * *SS .. [Iv 522 523], 2.3.35

where SS2 and 333 are identical to the submatrices of Eq. 2.3.31. The

associated matrix corresponding to T; by Lemma 2.3.2 is

-1 -1 -l
* - - * = _ v * * *t , . .AS - L R22 L 553 [G1 + 522G5522] $33 2 3 36

Let Eqs. 2.3.3h and 2.3.36 be equated and then premultiplied by S§3L and

pOStmultiplied by S*' which gives

23

-l
* *' * *' = * *' * * *' * *'. . .

S23523131523823 S23523 [G1 + S22G2322] S23323 2 3 37

SS3 is given by Eq. 2.1.5 and hence by Lemma 2.3.3, S§3S§é is nonsingular.

Therefore, Eq. 2.3.37 is written as



G* 0 I

[I 322] l e Ki: 2.3.38
* I

0 G2 852

where K11 exists since Kll was shown to be positive definite. Eq. 2.3.38 can

be written as Eq. 2.3.1 and hence satisfies the hypothesis of Lemma 2.3.1.

Therefore, there exists a unique set of diagonal entries GiJ diag (Cf’ G5)

such that the associated matrices of PP+1 and P; are identical, thus proving

the theorem.

Corollary 2. 3. 3: Every part PP+1 of a BL graph of class 1 having a
 

*

l-element subgraph of v vertices can be reduced to a part PV 2 Qv U Q3

v<:p+l, where the complete graphs Qv and Qv*are united at vvvertices.

Proof: By Lemma 2.2.1, class 1 graphs satisfy the hypothesis of Theorem

2. 3. 3 and hence are reducible to Pv . Some of the elements of the complete

graphs Q1 and Q? may be zero.

Definition 2. 33 A graph Pv is said to be a canonical RL_graph of class 1

if and only if Pv 4Q U'Qv wherevthe two complete graphs are united at v

vertices and where Qv has a connected subgraph composed of non-zero g-elements

 

incident to all v of the vertices. The associated matrix corresponding to

any maximum order star tree of Pv is said to be the canonical associated matrix
 

of a BL graph of class 1.

I I
Theorem 2.3.h: Let s8 = [:5122: 823] = [I 322. 323] be the f seg matrix

corresponding to a maximum8order star tree T8 of a canonical RL graph Pv of

 

class 1. Then the canonical associated matrix of Pv is

-1
As - -L R22

such that

1. L = L = diag (L11, L2 ...,Ln

22’ n’ L12’ L13’

where L2 is the chord l-element matrix,

= I I -1 _ g [ ] "l

2. R22 5223 [8122 GS 5122] s23 - 823 gm $23 2.3.ho

where G8 = diag (G1, 62), G

respectively, and

l and G2 are the branch and chord g-element matrices

3' siJ = -GiJ for i¥j, i,j,=l,2,...,n

n 2.3.h1

811 = 4: G13 for i=l,2,...,n



*cl 0 I -1

[I 822] o = Kll 2.3.38

* *1

G2 S22

-l

where K11

be written as Eq. 2.3.1 and hence satisfies the hypothesis of Lemma 2. 3. l.

*

iJ diag (G1, G2)

such that the associated matrices of PP+l and Pv are identical, thus proving

exists since K11 was shown to be positive definite. Eq. 2.3.38 can

Therefore, there exists a unique set of diagonal entries G*

the theorem.

Corollary 2. 3 3: Every part P?+1 of a BL graph of class 1 having a

*

l-element subgraph of v vertices can be reduced to a part Pv = Qv U Q5

 

v<:p+l, where the complete graphs Qv and Qv*are united at vvvertices.

Proof: By Lemma 2.2.1, class 1 graphs satisfy the hypothesis of Theorem

2. 3 3 and hence are reducible to Pv . Some of the elements of the complete

graphs Q1 and Q5*may be zero.

Definition 2. 3. 3: A graph Pv is said to be a canonical RL_graph of class 1

if and only if Pv QQ U'Qv wherevthe two complete graphs are united at v

vertices and where nghas a connected subgraph composed of non-zero g-elements

 
 

incident to all v of the vertices. The associated matrix corresponding to

any maximum order star tree of Pv is said to be the canonical associated matrix
 

of a BL graph of class 1.

l l

o o : = I ITheorem 2 3 h Let sS [$122l $23] [ s22. s23] be the f seg matrix

corresponding to a maximum8order star tree T8 of a canonical RL graph Pv of

 

class 1. Then the canonical associated matrix of Pv is

-1

As - “L R22

such that

l. L = L2 = diag (L11, L22, coo, Lnn, L12, 1113,000, Lln’ coo, Ln-1 n)

, 2-3-39

where L2 is the chord l-element matrix,

-1 -l
t l = l

2' R22 S23 [SI22 Gs SI22] S23 323[gi.j] S23 ‘ 2’3"“0

where G8 = diag (G1, G2), G1 and G2 are the branch and chord g—element matrices

respectively, and

3' 81J = -Gij for i¥J, i,J,=l,2,...,n

2.3.hln

s11 = 2; G13 for i=l,2,...,n
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where 6136 Gs'

Proof: 1. and 2. follow directly from Lemma 1.1.2. 8122 and 823 of the

hypothesis are given by Eq. 2.1.5 where m=n. 3. follows from 2. and Property

2.1.1.

Theorem 2.3.5: The associated matrix of every part Pp+l of a separable
 

RL graph of class 1 is identical to the canonical associated matrix of some

canonical RL graph of class 1 and conversely.

. l 3* 1
Proof. By Corollary 2.3.3 PP+l can be reduced to Pv = Qv U'Qv where Qv

T—

and Q5 are complete graphs united at v vertices. Let AJ be the associated

J of P§. By Lemma 2.3.2,

Pv has a maximum order star tree Ts' Let SJ and S8 be the f seg matrices

matrix corresponding to some maximum order tree T

corresponding to T and TS respectively. By Lemma 2.3.2,

38 = (lsjsJPJS. 2.3.u2

be partitioned such that the columns of the 1,1 submatrix

J

Let S8 and SJ

correspond to the g-elements and the columns of the 1,2 submatrix correspond

to the l-elements of Pv’ Eq. 2.3.h2 becomes

P11 0

[5822 8823] = 08.1[8322 8323] ’ 2'3"”
O P

22

where P s is partitioned to conform to the partitioning of S . P rearranges

J J 11

the columns of 8322 corresponding to g-elements such that the leading columns

of S correspond to the g-elements of Ts' P rearranges the columns of

J22P11 22

$323 corresponding to l-elements. Since for a class 1 RL graph, there are no

l-elements in Ts’ then P22=I. Let the branch and chord g-element matrices

corresponding to T be written

3

G = diag (G1,G2). 2.3.hh

3

Then, the diagonal branch and chord g-element matrix G8 corresponding to the

tree TS is the same matrix as GJ with the elements rearranged on the

diagonal. In fact,

.... I

Gs ‘ PllGJPll' 2°3°h5

Since the l-element chord matrix L

for both trees T8 and TJ

tree T8 by Lemma 2.3.2 is

2 is not rearranged, then L2 is the same

. The associated matrix of P; corresponding to the
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_ -l , , -1

s - 4" Ss23 [SS22GSSS22] 8823'

Substituting the relations of Eqs. 2.3.h3 and 2.3.h5 into Eq. 2.3.h6 gives

A 2.3.h6

_ -1 l I t V ' ' -1

As " ”L 5323053 [ 0333322P11P11G3P11P11532203,3] 0333323 2'3'”

Since PllPll = I and by taking the inverse of a product of square matrices,

Eq. 2.3.h7 becomes

A --L’ls' [5 GS' ]"ls I 231+8
B - 323 J22 J J22 323' ° '

By Lemma 2.3.2, the right hand side of Eq. 2.3.h8 is recognized as the

associated matrix of the reduced graph Pv corresponding to the tree T Hence3.

As = A3 which proves the theorem.

Converse: The converse follows directly from Eq. 2.3.h8.

Corollary 2.3.5.0: The associated matrices Al, A2, ..., AJ’ ..., Ak, ...
 

of a part Pp+1 corresponding to the maximum.order trees T1, T2, ..., T3, ...,

T , ... of a class 1 RL graph are identical. ; .;
k

Proof: By Theorem 2.3.5, the associated matrices AJ and AR are identical

to the associated matrix As corresponding to the star tree T8 which exists by

Lemma 2.3.2. Hence,

= A =
. .A8 J Ak 2 3 h9

for all 3 and k, thus proving the corollary.

Corollary 2.3.5.1: The associated matrix of a connected RL graph G of
 

class 1 is identical to the canonical associated matrix of a canonical RL

graph of class 1 and conversely.

Proof: From Corollary 2.3.5.0 the associated matrix for each separable

Partp, i=1, 2, ...,miS

A3 = A8. 2.3.50

Hence, by Theorem 1.1.1, the associated matrix of G is

P A: ' FA: _

A? O A: O

A = o = 0 0 2 o 3 o 51

O A? O A:
_ J _ J    
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_ -l , , -1

As“ L Ss23[ Ss22GsSs22] 5323' 2'3'L‘6

substituting the relations of Eqs. 2.3.u3 and 2. 3.h5 into Eq. 2.3.46 gives

-1
1 3 !

A3: “L153353230 [0335322P11Pi1GJP11P115322033] 09.33J23 23'”

Since PllPll = I and by taking the inverse of a product of square matrices,

Eq. 2.3.h7 becomes

A e-L'ls' [3 GS' ]'ls . 2.3.h8
8 J23 J22 J J22 J23

By Lemma 2.3.2, the right hand side of Eq. 2.3.h8 is recognized as the

Henceassociated matrix of the reduced graph Pv corresponding to the tree TJ'

AB = AJ which proves the theorem.

Converse: The converse follows directly from Eq. 2.3.h8.

Corollary 2.3.5.0: The associated matrices Al, A2, ..., AJ’ ..., Ak’ ...
 

of a part Pp+l corresponding to the maximum order trees T1,T2, ..., T3, ...,

Tk’ ... of a class 1 RL graph are identical. ; .;

Proof: By Theorem 2.3.5, the associated matrices AJ and AR are identical

to the associated matrix AB corresponding to the star tree T8 which exists by

Lemma 2.3.2. Hence,

8

for all J and k, thus proving the corollary.

Corollary 2.3.5.1: The associated matrix of a connected RL graph G of
 

class 1 is identical to the canonical associated matrix of a canonical RL

graph of class 1 and conversely.

Proof: From Corollary 2.3.5.0 the associated matrix for each separable

‘I"'

Part-0P , i=1, 2, .00, 11118

AJ =AS. 203-50

Hence, by Theorem 1 l 1 the associated matrix of G is

FA: - FA: _

A? O A2 O

A = . e 3 . . 2.3.51

0 A. O A“
t 3i 8    



26

l m

where diag (A8, A:,... AS) is the associated matrix of a union of m canonical

RL graphs of class 1 at one vertex and hence, is a canonical RL graph of class

1.

Converse: The converse follows directly from Eq. 2.3.51

2.h Conclusion.
 

Lemmas 2.2.0 and 2.2.1 classify all connected real linear bielement

systems whose associated matrix is of order n. The classification is

essentially a tabulation of all possible subgraphs from which the maximum

order trees of the system graph are selected.

In Section 2.3, system graphs of class 1 are considered. From physical

considerations, the gmelement subgraphs of class 1 systems have at least as

many vertices as the c- or l-element subgraphs. By Corollaries 2.3.0 and-

2.3.3 the g-element subgraphs are reduced to an equivalent subgraph which

retains only the vertices of the reactive elements of the system. The

reduction of the g-element subgraph is similar to the element elimination

process of Brown and Tokad(15). Furthermore, the reduction could be

accomplished by using the wye-delta transformation on the graph. Since all

class 1 systems reduce to the same basic structure, Definitions 2.3.2 and

2.3.3 define this structure to be a canonical graph of class 1. The

canonical graph is unique in that it always has a maximum order star tree.

Corresponding to the maximum order star tree, the canonical associated matrix

is defined.

(16)
By Lemma 2.3.2, there exists an equivalence relation between the f seg

matrices of a graph. As a result of this equivalence, a similarity relation

is derived for the associated matrices of a class 1 graph. Theorem 2.3.2

gives the similarity relationship for class 1 RC graphs. By Theorem 2.3.5 the

similarity transformation for class 1 RL graphs reduces to the identity

transformation. Therefore, the associated matrix of a BL graph is independent

of the formulation tree.

A description of the entries in the C matrix, L matrix and R matrix for

canonical RC and RL graphs is given in Theorems 2.3.1 and 2.3.h. Matrices

having similar properties to the C, L and R matrix have been previously



(17) (18)
considered by Cederbaum and Brown . The effect of changing the

orientation of elements of the graph on the canonical associated matrix is

readily calculated by the use of the similarity transformation of Theorems

2.3.2 and 2.3.5.

It is postulated from the results of Section 2.3 that each of the other

classes of system graphs is reducible to a canOnical graph. Correspondingly,

a canonical associated matrix could be defined for each class and a

similarity transformation between the associated matrices derived. Finally

the entries of the C, L and R matrices of each canonical graph are to be

described and tabulated. This tabulation would then give all possible forms

of the associated matrices of a real linear bielement system.



III. SYNTHESIS OF A CLASS OF REAL LINEAR BIELEMENT SYSTEMS
 

3.0 Introduction
 

In this chapter, the necessary and sufficient conditions on a given

matrix such that it is realizable as a class 1 real linear bielement system,

hereafter referred to as a RC or RL graph, are developed. In Section 3.1

the conditions for the decomposition of a square matrix into the product of

two symmetric matrices are given. Three techniques are developed for this

decomposition. A test is also derived to determine if the given matrix can

be decomposed as the product of a diagonal matrix and a symmetric matrix.

The results of Section 3.1 are used to determine sufficient conditions for the

synthesis of RC and RL graphs in Sections 3.2 and 3.3 respectively. The

analysis of Section 1.1 imposes the necessary conditions for RC and RL graph

synthesis.

3.1 Decomposition of a Square Matrix.
 

From the time domain analysis of RC and RL systems of Section 1.1, the

associated matrix is always written as the product of two symmetric matrices.

Therefore, it is fundamental for synthesis that a given matrix be factorable

into the product of two symmetric matrices.

Theorem 3.1.0: If there are n real, distinct eigenvalues of the real
 

matrix A, then A is factorable as

A = -0- R 3.1.0

where C is positive definite and R is real symmetric.

Proof: Since A is real and its eigenvalues Al’ A2, ..., A n are real,
 

distinct, there exists a nonsingular real matrix P by Theorem A.16 such that

A = 2’1 P 3.1.1

whereA: diag (Al, A2, ..., An). Let Eq. 3.1.1 be rewritten as follows

A = P”l(P"lP')AP -_- (P'P)-lP'AP , 3.1.2

By letting
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and

R = -P'AP 3.1.11.

then A is factorable as in Eq. 3.1.0. By Theorem A.7 C is positive definite.

Since P andA are real, R is real. Also, since R = R', R is symmetric by

definition.

Theorem 3.1.1: Let the matrix equation

ol

f = C . g e + a = O fora,fl, j = 1,2,ooon

[0‘3] [0“] [I33] [Cw] 3.1.5

where c.. = c.., g.. = g.. and where a..'s are known constants, be written as

lJ Jl lJ Jl 13

2 . . .

a system of n nonlinear algebraic equations

f c . . = O for ‘13 ' = 1 2 ... nQIB(CXJ’g J) a) .9 J J ) 7

in n +n variables ccx., glgj. If A has real, distinct eigenvalues and if

2

Jacobian J with respect to any of the n variables does not vanish at some

 

2

point (e. , g. ), then there exists n unique equations ¢q<xij)’ q=1,2,...,
ljo 130

n where Xij are the remaining n variables and a n dimentional neighborhood

b* such that

1. ¢q(xij) is continuous in b*; q=l,2,...,n2.

2. c., = ¢q*(X.. ) where q*, q** = 1,2,..., such that

) q’X’ + q'X'* = n2

A.
Oh,

x..

1J

2

|<b*; q:1,2’ooo,ri o
 is a continuous for lx.. - x..

13 1J0

Proof: The conclusion follows immediately from the Implicit Function
 

Theorem, Theorem A.8, if only there exists a point such that [c130] 'l[:gijo]

4- [aij = 0. However, A satisfies the hypothesis of Theorem 3.1.1 and

hence the point known to satisfy Eq. 3.1.5 is given by Eqs. 3.1.3 and 3.1.h.

Theorem 3.1.1 indicates there are infinitely many points that will allow

A to be factored into the product of two symmetric matrices, provided of

course, the Jacobian of the hypothesis does not vanish. Since the solution of

a system of nonlinear algebraic equations is at best difficult to find, an
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easier method of generating the symmetric C and R matrices is desirable.

Such a method is readily Obtained after the matrix equation A + C-lR = 0 is

premultiplied by C giving CA + R = 0. This new matrix equation is then

written as a system of n2 linear algebraic equations in n2 + n unknowns. As

in the nonlinear case, the solution to the linear system is found as functions

of n of the unknowns. Therefore, by selecting arbitrary values for the n

unknowns, a symmetric C and R matrix is calculated. The C matrix must be

checked to insure that it is nonsingular, since a singular C matrix will not

give the desired factoring of A. This‘method of finding the C and R matrix

will be much easier than the direct solution of Eq. 3.1.5. The results of

this discussion is given by the following theorem.

Theorem 3.1.2: Let the matrix equation

[fa/3] = tow] [733] * tad”

 

where ciJ = ch’ g13 = 8J1 and where a 3’8 are known constants, be written

as a system of n linear algebraic equations

n

f (g c )= a c +3 =0for fl J:l2...n

ozfi ozfi’ow kgiflkak 0&3 O" ’ ” 318

in n2+n variables Cij’ gij' If the Jacdbian J of §3( with respect to any

n2 of the variables does not vanish then there exists a solution of n2 of the

variables in terms of the remaining n variables.

Proof: Write the s stem of e uations f c = 0 ‘x3 =
______ y q cxl3(gcxx3: J) CX: 9 J

l, 2, ..., n in matrix form.

B X = BéY 3.1.9
1

where X is a column matrix composed of the n2 variable for which the Jacobian

J ¥ 0, and Y is a column vector-of the remaining n variables. B1 and B2 are

the corresponding coefficient matrices. For the linear system Det B1 = J ¥ 0.

Hence B1 is nonsingular and the system of Eq. 3.1.9 has the solution

X = BllBeY 3.1.10

which proves the theorem.

Definition 3.1.0: A real matrix A or order n is said to be bisymmetric
  



if and only if A can be factored into the product of two real symmetric

matrices of order n.

Theorems 3.1.0, 3.1.1 and 3.1.2 give alternate methods of factoring a

real matrix into the product of two real symmetric matrices. Let the real

matrix A be symmetric, then C = I and R = -A is a satisfactory decomposition

of A. Since a diagonal matrix is a special form of a symmetric matrix, it is

convenient to introduce the following definition.

Definition 3.1.1: A real matrix A of order n is said to be quasisymmetric

if and only if A can be factored into the product A = -L-lR (or -RL”l) where L

  

is a real nonsingular diagonal matrix and R is a real symmetric matrix. If

A = -L-lR the A is said to be left quasisymmetric. If A 3 -RL-1 then A is
 

said to be right quasisymmetric.
 

Since every quasisymmetric matrix is by definition bisymmetric but not

conversely;it is convenient to develop a method whereby a given bisymmetric

matrix can be tested for quasisymmetry.

Theorem 3.1.3: If a real matrix A is quasisymmetric, then the position
 

of the zero entries of A are idential to the position of the zero entries of A1.

2322:; By hypothesis, A is quasisymmetric. By Def. 3.1.1, A can either

be left or right quasisymmetric. Without loss of generality, assume A to be

left quasisymmetric. Therefore A = -Lan where L is real, nonsingular and

diagonal and R is real symmetric. Since L is nonsingular, L has no zero

entries on the diagonal. Therefore, the zero entries of A are determined

entirely by the zero entries of R. Since R is symmetric, the zero entries of

R and R' are identical. Correspondingly, the zero entries of A = -L“1R and

A' = «RLEl are identical.

Definition 3.1.2: A real square matrix A is said to be zeroesymmetric
 

 

if and only if the zero entries of A are identical to the zero entries of A'.

If A has no zero entries, then A is zero-symmetric by definition.

Definition 3.1.3: Let A = [813] for i, J = 1, ..., n be a zero-
 

symmetric, bisymmetric matrix. Then the ratio matrix B is defined as



 

a _.

F 12

l ' a

21
8. 1

1 mi. 0
8.31

l O -i}:
8.

a n1 3.1.11

0 O o o o o l '-

_. ...J

 

  
for all aij ¥ 0. If both 6.1 0 and aJi = 0, then R is given by Eq. 3.1.11

J

with the row containing aij/aji deleted.

Theorem 3.1.h: A zeroesymmetric, bisymmetric matrix A or order n is
 

quasisymmetric if and only if the rank of the ratio matrix H is less than n.

Proof: Since A can either be left or right quasisymmetric, without loss
 

of generality assume A to be left quasisymmetric. The matrix relation

. «l .

[aid] _ diag (ll, 12 ... 1n) [gig] 3.1.12

for i, j = l, 2, ... n and where gij = gji’ is written as a system of ng - n

equations in n unknowns lk’ k = l, 2, ... n, as

H I”: 0 3.1.13

where R is the ratio matrix and I is the vector [ll 12 ... 1n] '. By Theorem

A.9, the rank of R less than n is both necessary and sufficient for A to be

quasisymmetric.

3.2 Synthesis of RC Graphs.
 

From the analysis of RC graphs, the order of the associated matrix is
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always equal to the number of c‘elements in the tree. Consequently, the

number of vertices v of a canonical RC graph is given in Lemma 2.2.0. In the

synthesis of class 1 RC graphs, the coefficient matrix A is assumed to be the

associated matrix corresponding to some maximum order tree. Hence, if A is

of order n, then the number of vertices of the synthesized class 1 RC graph

Gv will be v = n + 1. Before proceeding to the synthesis of RC graphs, the

relationship between the matrices characterized in Section 2.3 and those

obtained by the decomposition techniques of Section 3.1 is derived.

Lemma 3.2.0: Let C be a real symmetric matrix, then C is factorable

into the triple product of Eq. 2.3.7.

 

2332:: By Theorem A.lO there exists a unitary matrix (1h)

V = [v1 v2 ... vn] where v is the Jth column of V such that

J

c = V”LLV’ 3.2.0

where [1 is a diagonal matrix. Consider the maximum rank matrix T constructed

from the columns of V as follows.

T = [v1 v2 ... vn (vl-v2) (vl—v3) ... (vl-vn)

(V2-V3) (Vg—Vu) ...(V2uvn) 0.0000(Vnul’vn)] 3.201

Since the columns of a unitary matrix are orthogonal, it is easily shown that

S = V'T 3.2.2

Ill

where SIll is a subset of the f seg matrix of a canonical RC graph as given

in Theorem 2.3.1. Let C of the hypothesis be equated to C of Eq. 2.3.?

C 2 SIii“s5111' 3'2‘3

2

Eq. 3.2.3 is a system of (n +n)/2 linear nonhomogeneous algebraic equations

in (n2+n)/2 unknowns Cijecs for iSj, i, j = l, 2, ..., n, which satisfies

the hypothesis of Lemma 2.3.1. Hence, C is factorable into the triple

product of Eq. 2.3.7.

Lemma 3.2.1: Let R be a real symmetric matrix. Then R is factorable

into the triple product of Eq. 2.3.8.

Proof: The proof is identical to the proof of Lemma 3.2.2 with C

replaced by R, Ssll replaced by S and Eq. 2.3.? replaced by Eq. 2.3.8.

12
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Theorem 3.2.0: The associated matrix A of order n of a connected RC
 

(or RL) graph has n real eigenvalues.

Proof: Consider a canonical RC (or RL) graph whose f seg matrix Ss
 

corresponding to a maximum order star tree Ts is given in Theorem 2-3-1

-l

(or Theorem 2.3.h) for p:n. The associated matrix AS = «C R11

1
(or AS = -L- R corresponding to TS is also given in Theorem 2.3.1)

22 (In. 16. 17)
(or Theorem 2.3.A). The characteristic equation for the system of

differential equations whose associated matrix is AS is given by

-l «l
p()\) = o = Det (As - A1) = Det (-c R11 -A1) (or Det (~L R22 - AD).

3.2.u

Equivalently

p(A) = Det (Rll + AC) = 0 (or Det (R22 + AL». 3.2.5

p()[) is an nth order polynomial in )L, and hence has n roots. For the given

f seg matrix C (or L) is positive definite by Theorem 1.1.0. From Eq. 1.1.3,

Rll (or R22) is symmetric by definition. By Theorem A.ll the eigenvalues

of A are real. By Corollary 2.3.2.1 (or Corollary 2.3.5.1), the associated

matrix of every connected RC (or RL) graph is similar (or identical) to some

canonical RC (or RL) graph. By Theorem A.l2 similar matrices have the same

characteristic equations and hence the same eigenvalues. The conclusion of

the theorem is now evident.

d2 .

Definition 3.2.0: Let 3% = AX be a system of linear first derivative-
 

explicit differential equations. A is said to be the coefficient matrix of
 

the system.

Theorem 3.2.l: If and only if the coefficient matrix A of order n is
 

nonsingular bisymmetric then there exists a canonical RC graph G,1+1 for which

L.J.

A is a canonical associated matrix.

Proof: Sufficiency: By hypothesis A is factorable into the product of

two nonsingular matrices as A = C-lR. By Lemma 3.2.0, C is factorable into

  

the triple product of Eq. 2.3.7. By Lemma 3.2.l, R is factorable into the

triple product of Eq. 2.3.8. The f seg matrix SS corresponding to star tree

TS is given
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s8 = [8111 s12] 3.2.6

where SIll and 812 are given in the proofs of Lemma 3.2.0 and 3.2.1

respectively. The element values Cij and Gij are found as in the proofs of

Lemmas 3.2.0 and 3.2.1 respectively. Hence, by construction, there exists a

canonical RC graph Gn+l for which A is the canonical associated matrix.

Necessity: By Theorem 2.h.0, A is bisymmetric. By Theorem 1.1.0 and

Corollary 1.1.0, C and Rll are positive definite and hence C and R are

l
nonsingular by Theorem A.l3. By Theorem A.lh, Det A = Det C- Det R22>-O.

Therefore A is nonsingular by Theorem A.lS.

Corollary 3.2.1: If the coefficient matrix A has real, distinct,
 

negative, non-zero eigenvalues, then there exists a canonical RC graph with A

as a canonical associated matrix such that A = -C-lR where C and R are

positive definite.

Proof: From Theorem 3.1.0, A is factorable as ~C-lR where C is positive

definite.. From Eq. 3.1.A

R = -P'AP = P'(-A)P. 3.2.7

Since all the eigenvalues are distinct and nonzero, [\is diagonal and

 

nonsingular. Therefore, R is nonsingular since P is nonsingular. Since all

of the eigenvalues are negative, then (:/\) is positive definite by Theorem

A.3. Hence by Theorem A.h, R is positive definite. By Def. 3.1.0, A is

bisymmetric. A is nonsingular since C and R are positive definite. Therefore

from Theorem 3.2.1 the conclusion of the corollary follows.

Corollary 3.2.1 imposes one condition on the coefficient matrix A such

that it can be decomposed into the product of two positive definite matrices.

Theorem 1.1.0 and Corollary 1.1.0 indicate that the C and the R matrix being

positive definite is a necessary condition for the RC graph to have non-

negative elements. Necessary and sufficient conditions for which a coefficient

matrix is realizable as a canonical RC graph with non-negative elements is

given in the following theorem.

 

Theorem: 3.2.2: If and only is the coefficient matrix A =[:aij] order

. -l

n is bysymmetric such that [ aij] — - [Cid] [gij] where



36

l. c ‘<: 0
\\

13 for i g j i, j = 1, 2, ..., n

$1345; 0

2. cli>0

f0ri=l, 2’ 000,110

gii::> 0

n

3. 2cii> Iglcik for at least one i and

n

2cii;;z Egacik for all other i.

n

2gii> 2 g k for at least one i and

k=1 1

n

2gii > kglgik for all other 3 .

A O

and such that neither [c. .] nor [g ] are permutable into where

13 13 o B

A and B are square, then there exists a canonical RC graph Gn+1 with non~

negative elements for which A is a canonical associated matrix.

 

3322:: Sufficiency: From 1., 2., and 3. of the hypothesis and by_

Theorem 2.6 [cij] and [gij] are nonsingular. Therefore, A is nonsingular.

By hypothesis, A is bisymmetric, and hence, from Theorem 3.2.1, there exists

a canonical RC graph Gn+l'g The element values are calculated by writing

Eq. 3.2.3 as a system of nL equations. This system of equations satisfies

the hypothesis of Lemma 2.3.1 in such a way that all element values are non-

negative.

Necessity: Follows directly from Theorem 2.3.1.

3.3 Synthesis of RL Graphs.
 

In the synthesis of RC graphs, it was determined that the order of the

associated matrix uniquely gives the number of vertices for each class of

graphs. This is not the case for the RL graph. The order of the associated

matrix gives only the bounds on the number of vertices v of the l-element

subgraph G: of the RL graph. However, since the g-element subgraph Cg of the

RL graph can be reduced to have the same vertices as Ci, the bounds on the

vertices are to be used in the synthesis of RL graphs.
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Definition 3.3.0: Let the matrix 5; of order (v-l, v(v-l)/2) be given

of Eq. 2.1.5,

 

'by Sf

53 = sf 3.3.0

'then 8V is defined to be the set of all matrices CT of order (v-l, n)
:n V

(zomposed of any n columns of S3 for v = r, r+1, ..., 2n and where r is the

smallest positive integer such that r(r+l)/2 > n.

Lemma 3.3.0: Sv n for v = r, r+1, ..., 2n of Def. 3.3.0 is the set of

)

all.submatrices S23 of the f seg matrix as given in Theorem 2.3.h for all

canonical RL graphs Gv having only n nonzero l-elements distributed on the v

 

vertices for r g v< 2n where r is the smallest integer satisfying

r(r+l)/2 2 n.

Proof:1 Consider S; of Eq. 3.3.0. 8; = 823 of the canonical graph Gv of

the hypothesis for all v(v-l)/2 l-elements nonzero. Since only n of the

 

l-elements are nonzero, then S ‘is composed of n of the columns of 8;. But

23

8V n is the set of all matrices CT; composed of n columns from 8;. By Lemma

)

2.2.1, the number of vertices v is bounded by r and 2n. Therefore, the

conclusion follows for all Gv where rg vg 2n.

Lemma 3.3.1: Let R be a real symmetric matrix of order n. If

, .

Det (dvR UV) ,4 0 for some dve Sv,n then R is factorable into the triple

product of Eq. 2.3.h0.

 

Proof: Let R be equated to R2 of Eq. 2.3.AO.
2

R — s' s G S' '15 3 1
- 23[ 122 s 122] 23 3'3'

Let S23 of Eq. 3.3.1 be equal to‘Sv of the hypothesis. This can always be

done since by Lemma 3.3.0 Sv n is the set of all 823 for a canonical RL graph

’ .

CV and since by Corollary 2.3.5.1 the associated matrix of the graph is

independent of the formulation tree. Let Eq._3.3.1 be premultiplied by (1;

and postmultiplied by'Cfé, Therefore

ddev = 0’va [5122Gssi22] -10", 03' 3.3.2

By hypothesis, Det (cvacf;) g o, and hence Eq. 3.3.2 is solved as follows

I I t 'l 1

SI22GsSI22 = CTrCIr [CTch7t] CTVCT§- 3-3-3
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From Eq. 3.3.3, 8122GSSé2 is a real, symmetric matrix. Hence, by Theorem

A.lO, there exists a unitary matrix V = [:v1 v2 ... VJ ...] where vJ is the

3th column of V such that

v _ 1
3122088122 _ v uv 3.3.h

where LL is a diagonal matrix. Let T be the transformation of Eq. 3.2.1.

Therefore,

... ' '

$122 ‘ V T 3'3'5

where SI22 is a subset of the f seg matrix of a canonical RL graph as given

in Theorem 2.3.h. Eq. 3.3.h is a system of linear nonhomogeneous algebraic

equations which satisfy the hypothesis of Lemma 2.3.1. Hence R is factorable

into the triple product of Eq. 2.3.h0.

Theorem 3.3.0: If and only if the coefficient matrix A of order n is

left quasisymmetricwhere A = -L-1R and such that Det (CffRCIG) ¥ 0 for some

(j £8 then there exists a canonical RL graph G for which A is the
v v,n v

associated matrix.

Proof: Sufficiency: By hypothesis A is left quasisymmetric, therefore
 

 

factorable as -L-lR where L is diagonal and R is symmetric. By Lemma 3.3.1

R is factorable into the triple product of Eq. 2.3.h0. The f seg matrix 88

corresponding to a star tree T8 is given by

Ss = [3122.523 ] 3°3‘6

I22 is given by Eq. 3.3.5 and 323 = 0’v of the hypothesis. The g-element

values G13 are calculated as in the proof of Lemma 3.3.1. The l-element

'values are obtained directly by setting L a L2 of Eq. 2.3.39.‘ Hence by

construction, there exists a canonical RL graph Gv for which A is the

where S

associated matrix.

Necessity: By Theorem 2.3.h, A is left quasisymmetric. Let(j; = S23.

This is always possible by Lemma 3.3.0. From Eq. 2.3.h0, calculate

: __ l t
Det (S23R22823) — Det ((7;R(j;). By Lemma 2.3.3, 823823 is nonsingular.

Hence, Det (823R2Sé3) ¥ 0 which completes the proof.

Theorem 3.3.1: If and only if the coefficient matrix A or order n is

left quasisymmetric where A = -L-1R such that
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l. Det (UVR UV) ,4 O for some (j/ve Sv,n

2. L is diagonal and positive definite, and

3. For [813] = O’vaflOlvRUQJO’vO/i

gij < o for 1 {j

gii :>() for all i and

n

2gii 2 Z gik for all 1

k3]. ~

where i, j = l, 2, ..., n, then there exists a canonical RL graph Gv with

r s; v*$; 2h having non-negative elements for which A is the associated matrix.

Proof: Sufficiency: The hypothesis satisfies the conditions of Theorem
  

3.3.0, hence there exists a canonical RL graph Gv for which A is a canonical

associated matrix. By Theorem A.3, the l-elements calculated from L are

positive since L is diagonal and positive definite. All other 1-elements

of the Gv are zego. The g-element values ij are calculated by writing Eq. 3.3.h

as a system-of n linear nonhomogeneous algebraic equations. This system of

equations satisfies the hypothesis of Lemma 2.3.1 in such a way that all

element values are non-negative.

Necessity: Follows directly from Theorem 2.3.h when Equation 2.3.h0 is

solved for [8122 GS 8&22] . This can always be done by premultiplying the

equation by S and postmultiplying it by Sé3.

23

3.h Conclusion.
 

In Section 3.1, sufficient conditions for the decomposition of a real

square matrix into a bisymmetric form were given. Theorems 3.1.0, 3.1.1 and

3.1.2 give three different techniques for generating the bisymmetric form.

Theorem 3.1.3 allows a given bisymmetric matrix to be tested for quasisymmetry.

In Sections 3.2 and 3.3, the necessary and sufficient conditions for the

synthesis of class 1 RC and RL graphs are given. Theorem 3.2.0 gives a

necessary condition for any coefficient matrix to be realized as an associated

matrix. The synthesis technique is given in the sufficiency proof of Theorem

3.2.1 for the RC graph and Theorem 3.3.0 for the RL graph. In Theorems 3.2.2

and 3.3.1, diagonal dominance first discussed by Burlington (20) gives the .
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necessary and sufficient conditions for the synthesis of non-negative element

RC and RL graphs respectively.



IV. THE SYNTHESIS METHOD
 

h.0 Introduction.
 

In this chapter the results of Chapter 3 are developed into a synthesis

method whereby an arbitrary coefficient matrix is examined for acceptance in

the class of realizable matrices and acceptable coefficient matrices are

realized as real linear bielement systems. Flow charts are then develOped

for the determination of acceptable coefficient matrices and for the synthesis

of RC and RL graphs. To illustrate the synthesis method, five examples are

carried out in detail.

h.l Determination of Realizable Coefficient Matrices.
 

Before proceeding to the actual synthesis technique, the class of

coefficient matrices that can be realized as real linear bielement systems is

determined. An outline of the determination procedure follows:

1. Theorem 3.2.0 imposes a necessary condition for the decomposition of the

coefficient matrix A. Therefore, the first step is to test A for real

eigenvalues. If the eigenvalues of A are real distinct, then Theorem

3.1.0 gives a sufficient condition for the decomposition. If the

eigenvalues of A are not distinct, then the decomposition technique of

Theorem 3.1.2 is applied to determine if A is bisymmetric.

2. Theorems 3.2.1 and 3.3.0 imply that if A is to be realized as a RC or RL

graph then A must be

a. nonsingular bisymmetric,

b. nonsingular left quasisymmetric, or

c. singular left quasisymmetric.

Therefore, A must be tested for singularity. Theorems 3.1.3 and 3.1.h give

the necessary and sufficient conditions for A to be quasisymmetric. Therefore,

A must be tested for zero-symmetry and the rank of the ratio matrix must be

calculated. Finally, A must be checked for left or right quasisymmetry.

The procedure for determining if an arbitrary coefficient matrix is

realizable as a real linear bielement system is illustrated in the flow chart

of Fig. h.l.0.

Example 1: Consider the coefficient matrix A given by

#1



#2

 

 

Coefficient

Matrix A of

Order n   

 
 

 

Are The

Eigenvalues of Tin2—‘ Stop

A Real?

     

 

 

   

  

   

 

   

 

   

  

    

 

 

 

     

  

   
 

Is A

Nonsingular?

Yes No

Is A
13 A N° Sto

Zero-symmetric? Zero-symmetric? P’— P

Yes Yes

Is The Rank Is The Rank No Sto

or R<n? or R<n7 -’-w P

No V Yes Yes

Is A Left Is A Left 0 ' Step

No Quasisymmetric? Quasisymmetric?

No Y” Yes   
RC Graph Synthesis

   

 

RL Graph Synthesis

   

Figure h.l.0 Flow Chart for the Determination of Acceptable Coefficient

Matrices

 

 

 



1+3

-1 -O.2

A = 0 )4.1.0

0 -101;

The eigenvalues of A are calculated as the roots of Det (A - AI) F O.

  

Hence,

}[ = -1.0

.11 u.1.1

2 = -l.h

Therefore A is nonsingular. A is not zero-symmetric. Hence, from Fig.

h.l.0, A can only be realized as a RC graph.

Example 2: Consider the coefficient matrix given by

F-B 2 -2 _

A i 2 -2 -10 . A.l-Z

_ 5 l -22 _

The eigenvalues of A are

A, = -2.715

}\2 = -8.170 u.1.3

=-21.116
A3

Therefore Aiis nonsingular. Since A has no zero entries, A is zero-symmetric

by definition. The ratio matrix from Def. 3.1.2 is

  

F'l -1 o -

m = 1 0 -2/5 . h.1.h

_’o 1 -10 J

The rank of E is 3, and hence, A can be realized only as a RC graph.

Example 3: Consider the coefficient matrix given by

H8 u If

A = O -12 -h . h.l.5

O -h -12   
The eigenvalues of A are



Ah

A1 = '8

A2 = -8 h.1.6

A3 e -16

Therefore A is nonsingular. Since A is not zero-symmetric, then A can only

be realized as a RC graph. In this example, there is no guarantee that A can

be decomposed since the eigenvalues of A are not distinct.

‘ Example A: Consider the coefficient matrix given by

P 2 1 1 q

A = l 3 -2 0 hole?

1 -2 3  
The eigenvalues of A are

A}. = 0

A2 = '3
1+.l.8

A.3 = '5

Therefore A is singular. By inspection, A is symmetric and hence left-

quasisymmetric. Hence, from Fig. h.1.0, A can be realized only as the

associated matrix of an RL graph.

Example 5: Consider the coefficient matrix given by

  

F2. 7 11 _

A ,—. - 11. 1+6 11. . 1.4.9

_33 21 72j

The eigenvalues of A are

A1 = -16.765

A2 = -37.u85 h.1.1o

A3 = -87.755

Therefore, A is nonsingular. Since A has no zero entries, A is zero-symmetric
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‘by definition. The ratio matrix from Def. 3.1.2 is

  

’1 -1/2 0 '

a = 1 o -1/; u.1.11

_o 1 -2/3J

From Eq. h.l.ll, Det B = O, and therefore the rank of H is less than the order

of A. Hence, A is quasisymmetric. A must now be checked for left or right-

quasisymmetry. If A is right quasisymmetric, then A can only be realized by

a RC graph. If A is left-quasisymmetric, then A can be realized as a RC graph

or a RL graph.

A.2 The Synthesis Method.
 

The technique for synthesizing RC and RL graphs is described below and

summarized in the flow charts of Figures A.2.0 and A.2.l.

RC Graphs

If the coefficient matrix A or order n is nonsingular bisymmetric, then

A can be factored into the product of two real symmetric matrices. Any of

the methods of Section 3.1 can be used to accomplish this decomposition. If

the eigenvalues of A are not all negative, then from physical considerations

it is useless to look for a positive element graph. However if all eigenvalues

of A are negative, then all possible decompositions of A should be examined

and compared with l.,'2., and 3.of Theorem 3.2.2 to determine if all of the

element values are non-negative. If none of these decompositions of A gives

an all non-negative element graph, then A is assumed to be the associated

matrix corresponding to some other maximum order tree rather than a star tree

of the graph and the similarity transformation of Theorem 2.3.2 is made on A

for every other tree of the graph. In each case this gives a new A matrix.

Each new A matrix must now be decomposed and examined for non-negative

elements. If none of these decompositions gives a non-negative element

graph, then it must be concluded that no positive element class 1 graph

exists for which A is the associated matrix, and hence, only a RC graph with

some negative elements can be synthesized.
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RL Graphs

If the coefficient matrix A or order n is left quasisymmetric then A is

factorable as -L-1R where L is real, nonsingular diagonal and R is real

symmetric. (jvde must now be tested for singularity where 6v6 Sv . If

for some Cfv’ C71RC7" is nonsingular then.A can be realized as a RLvgraph Gv .

Here again, from physical considerations, it is useless to search for a '

positive element graph if all of the eigenvalues are not negative. However,

if all of the eigenvalues are negative, then 0/vvRU for all 6v €Sv should

be tested for singularity. Corresponding to each 6:, for whichV0,ng' is

nonsingular there exists a RL graph Gv. The element values must be checked

for each graph to determine if they are negative;- If all of the graphs have

negative elements, then it can be concluded that no all positive element

class 1 RL graph exists for which A is the associated matrix, and hence, only

a RL graph with some negative elements can be synthesized.

The examples of Section h.l are now synthesized as RC or RL graphs.

These examples are to illustrate the Synthesis Method and to point out some

of the more subtle properties not directly developed in the preceeding

chapters.

EXample 1: From Example 1 of Section h.l, A is realizable as a BC graph.

Since A satisfies the hypothesis of Theorem 3.1.0, then A - -C-1R where C is

given by Eq. 3.1.3 and R is given by Eq. 3.1.h. The P matrix can be found by

calculating the eigenvectors (19)lof A. Therefore

-2k k

P = l 2 #0200

O ~2k2

where k1 and k2 are arbitrary constants. Letting k

Equation 3.1.3 is

l 2 k2, then the C matrix of

C = P'P = k . . A.2.l

The R matrix of Eq. 3.1.h is

 

l. A technique for calculating the eigenvectors is given in §’+, Chapter IV.
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Figure A.2.l Flow Chart for RL Graph Synthesis.



AB

A 2

R = "P' P = k e h0202

' -2 606

The f seg submatrices are calculated as in Lemmas 3.2.0 and 3.2.1. Hence

' 1

C11 C22 C12 n G11 G22 G12
I

| l o l I l o 1

s = [s . s ] = I . A.2.3

3 I11! 12 o 1 -l : o 1 -1

substituting Eqs. h.2.1 and A.2.3 into Eq. 3.2.3 and applying the conclusion

of Lemma 2.2.1, the c-element values are

   

F- - - F -

C11 Fell + c12 2

_Cl2_ _ " °12J - 2 a   
where k was assumed to be unity. From Eqs. A.2.2 and A.2.3,

By applying the conclusion of Lemma 2.2.1, the g-element values are

  

F ' - F —

G11 Fgll + g12 2

022 = 822 + g12 = 2 . A.2.6

_GlBJ L - 312 J -h'6.i

    
Therefore, from Eq. A.2.3, A.2.h and A.2.6, the canonical RC graph G3 for

which A is the corresponding canonical associated matrix is constructed in

Figure A.2.2.

 
Figure A.2.2 Synthesized RC Graph G of Example 1.

3
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An interesting result of this method of factoring the A matrix is that

the signs of the entries in the P, C and R matrices are somewhat arbitrary.

This result follows directly from the fact that pi which is the 1th column of

P is an eigenvector of A corresponding to ;\i(19)' But any constant times

an eigenvector is also an eigenvector (19). Therefore, the P matrix can be

written as

* ..
P .. 12131 l+.2.7

where the columns of E are made up from a particular set of eigenvectors and

I)1

When the eigenvalues are distinct, as is the case here, the A matrix is

is a diagonal matrix with arbitrary, nonzero constants on the diagonal.

similar to a diagonal matrix. That is,

A = P’lAP 11.2.8

Let (5 'be a diagonal matrix with only +1 or -1 on the diagonal. Therefore,

66=I=<56'l.

Since diagonal matrices commute, Eq. h.2.8 is written as

A = P'lAIP .-. P'lé 'JAé P. A.2.9

By letting P of Eq. A.2.9 equal P* of Eq. A.2.7, then

-1 -l -l
A = Dl IE (5 A591. #210

Hence, from Eqs. A.2.8 and A.2.lO, a general P matrix is given by

P = 6le h.2.11

where Dl’<5 and E are defined in the above discussion. Therefore, the signs

of the entries in the columns of P are changed by changing the signs of the

arbitrary constants in D and the signs of the entries in the rows of P are
l

changed by changing the signs of the diagonal entries of'(5. Correspondingly,

from Eq. A.2.ll and Eq. 3.1.3

c = 1311266le = Dlr'mnl 14.2.12

and from Eq. A.2.ll and Eq. 3.1.h

R = -DP'6A6RD1 = ..Dle'ArDl. 1+.2.13

Therefore, by changing the signs of the entries of D1, the sign pattern of
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the C matrix and the R matrix are also changed. Although Eqs. A.2.ll, u.2.12

and A.2.13 give a technique for changing the sign patterns of the P, C and R

matrices, it is clear that the sign of each entry of these matrices can not

be selected arbitrarily

in the next example.

Example 2:

. The ability to change certain signs is illustrated

.1

From Ex. 2 of Section n.1, A is realizable as an RC graph.

Using the decomposition technique of Theorem 3.1.0, a specifie.P matrix is

first found to be

By letting D1 = (S =

becomes

and Eq. A.2.l3 becomes

R = “EL/XE =

2.618

0.778

 _1.000

p

8-39

12.92

 _21.57

' 68.8

87.5

 321.8

2.387

7.308

1.000

12.92

60.10

66.89

87.5

212.7

AA3.5

1.000

6.975

13-533

I in Eq. u.2.11, then P = m.

21.57-

66.89

232.80‘J

321.8

AA3.5

 A007.5

 d

 

A.2.1A

Therefore, Eq. A.2.12

A.2.15

A.2.16

where ‘[\= diag (-8.170, -2.715, -21.116). The subsets of the f seg matrix

S111 and S12

I

Ss = [_81115 Sl2] =

 

substituting Eq. 4.2.15

11 22 C33 C12 C13 C23
C C

1 0

0 1

0 0

and SIl

0

0

1

l

l

-1

o _

1

0

1

0

1

I

l

I

I

l

I

l

I

I

-l I

l

are calculated as in Lemmas 3.2.0 and 3.2.1. Hence

G11 G22 G33 G12 G13 G23

1 0

0 1

-l -l  
A.2.17

of Eq. A.2.17 into Eq. 3.2.3 and applying
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the conclusion of Lemma 2.2.1, the c-elements are

substituting Eq. h.2.l6 and S

P

 L

1

C11

C22

C33

C12

013

 C23 .

cll+cl2+cl3

c22+°12+°23

+0 +0

c33 13 23

'°l2

-cl3

-C   _ 23 -

'F h2.88-

139.91

321.26

-12.96

~21.S7

  -66.89
L

the conclusion of Lemma 2.2.1, the g-elements are

7

 L

1

G11

G22

G33

G12

G13

1

- 311+312+g13-

g22+312+323

g33*313+323

‘312

-813

L’323 1   G23 1

_ h78.l '

7A3.7

h772.8

-87.5

-321.8

  _-hh3.5 _

, h.2.18

2 of Eq. A.2.17 into Eq. A.2.5, and applying

. A.2.19

Therefore, the canonical RC graph GA for which A is the associated matrix is

constructed in Fig. A.2.3 and the element values are given in Eq. A.2.18 and

Eq. A.2.l9.

 

 

 

 

 
 
 

 
 

'5' .11

32
IV,

013

¢v~ases sqfwvve

3

v2 t /(;3

C23

22 C22

33

G11 Va G33

Figure A.2.3 Synthesized RC graph GA of Examples 2 and 3.
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Using the same method, a new set of element values can be calculated by

letting

D1 = 6 = diag (-1, 1, -1). A.2.20

Therefore Eq. A.2.12 becomes

8.39 -12.92 21.57

C = D P'FD - -12.92 60.10 -66.89 h.2.21

L21.57 -66.89 232.80   
and Eq. A.2.l3 becomes

_’68.8 -87.5 321.8-

R = -Dlr[[xmnl = -87.5 212.7 -hh3.5 . h.2.22

  L321°8 -uu3.s h007.5_

The f seg matrix is given by Eq. A.2.17, and the element values are calculated

as in Eqs. A.2.18 and h.2.19. Correspondingly, the element'values are

    

”011 q T 17.0u‘ Fell- _ 303.1-

022 -19.71 022 -318.3

033 = 187.A8 - and G33 3 3885.8 . A.2.23

012 12.92 312 87.5

013 -21.57 013 -321.8

_023_J __66.894 _023_ _ uh3.5_    
Eq. A.2.23 gives another set of element values for the graph Gh of Fig. A.2.3.

Therefore, by comparing Eq. A.2.23 with Eqs. A.2.18 and A.2.l9, the number of

negative elements in CA has been changed from six to four, and hence,

changing the sign pattern of the P matrix has reduced the number of negative

elements in the synthesized graph.

From the last two calculations, it is evident that the technique of

Theorem 3.1.0 for decomposing A will never give a positive element graph.

Hence, let A be factored by the method of Theorem 3.1.3. Therefore,

CA + R = 0 is conveniently written as
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Rewriting Eq. A.2.25 gives
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Solving Eq. A.2.26 gives
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from f23, the variables 812’

and g23 can be eliminated. Hence, Eq. A.2.2S reduces to six equations in

A.2.26
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from f23, the variables 312’
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and g23 can be eliminated. Hence, Eq. A.2.25 reduces to six equations in

A.2.26
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_°11 - P 150 21 -27

C22 6 -3 93

c33 - 1 36 126 30

311 E8 1296 u08 -216

g22 108 -6 2A2

Lg33 _ _ 792 2676 180

By letting

P°12 _ -‘11

cl3 = A8 0 ,

bc23 ‘ _ 2_

Eq. A.2.27 becomes

_cll- _ 96-

022 192

c33 96

gll = 86A

322 592

_ g33 _ .. 1152 d

Solving f12’ f13

with Eqs. A.2.28 and h.2.29 gives

— q

C

    
  

11

F812“ b 2 0 0 2 -1 0 q :22

g13 = -2 0 0 10 22 0 C33

12

g1h _ 0 o 1 0 -2 2 _ cl3

Lc23 i

 

6°12

l3

 

#8

 

 
c

-231

 

h.2.27

A.2.28

A.2.29

and f23 of Eq. A.2.25 for 812’ 813 and g23 and evaluating

h.2.30

From Eqs. A.2.28, A.2.29 and A.2.30, the C and R matrix can be constructed.

The f seg matrix is given by Eq. A.2.17. The element values are calculated
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£18 in Eqs. A.2.18 and A.2.l9.l Therefore,

      

C11 ffll’°l2”c13 0

C22 1 c22'°l2‘c23 “8

C c -c -c O

33 = 33 13 23 = , 14-.2931

012 C12 #8

C13 013 O

.023 J ‘C23 1 -96..

sand

G11 g11'812'813 288

G22 g23'812'823 16

G s -s -s 576
33 a 33 13 23 = A.2.32

Gl2 gl2 288

Gl3 gl3 288

_G23J bge3 _ -2882      
are the element values of the RC graph GA of Fig. A.2.3. Hence, from the

decomposition technique of Theorem 3.1.2 a non-negative element graph is

synthesized.

Example 3: In the previous examples, the coefficient matrix A was

factored such that it could be realized as a non-negative element graph. In

this example, a positive element RC graph cannot be synthesized directly

from the coefficient matrix. However, if A is assumed to be the coefficient

matrix corresponding to a maximum order path tree, a non-negative element

RC graph is synthesized for which A is realized as the associated matrix.

Applying the decomposition technique of Theorem 3.1.2 to Example 3

of Sec. h.l gives

 

l. The sign differences between Eqs. A.2.3l, A.2.32 and Eqs. A.2.18, A.2.l9

occur because of the assumed sign pattern of Eq. A.2.2h.
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Eq. A.2.33 is rewritten as
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811 ‘312 “513

-812 822 -823 = 0. 11.2033

-‘313 “823 533-

0 0 0 0“ rell -

0 0 0 0 c22

C

1 o 0 0 33

C12

0 -1 0 0 cl3

0 -1 0 0 C23 = 0.

s

0 0 -1 0 11

s

0 0 -l 0 é22

33

0 0 0 -1

8l2

0 O 0 '1J __323 A.2.3A

. A.2.35

substituting Eq. A.2.3S into the remaining five equations of Eq. A.2.3A and

solving for five of the variables in terms of the remaining four variables

gives

r

c11

   

"I. 0

0 -1.

O -12

O 0

_O O

0 O

0 0

1 0

0 l

0 0

-l

  
-12

-A  -A 12

c33

C12

13

 23  

. A.2.36
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I

After performing the indicated operations, Eq. A.2.36 becomes

p - p -

      

°11 0 -1 -l 0

e22 1 -1 l o [c33

g22 = 16 -8 12 32 °12 A.2.37

C

13
g 12 0 A -A

33 c23_

pg234 L A 0 A -l2_

Eqs. A.2.35 and A.2.37 determine all of the entries in the C and the R matrices.

Correspondingly, the element values can be calculated. However, from the

first row of Eq. A.2.37, there exists no positive values of 012 and cl3 which

12 = cl3 = 0, then ell = O. This

implies the C matrix is singular and hence, is not a satisfactory solution.

It can then be concluded that no positive element solution exists for which A

will make cll positive. Furthermore, if c

is realized as the associated matrix corresponding to a maximum.order star

tree. Therefore, assume A is the associated matrix of GA of Fig. A.2.3

corresponding to the maximum order path tree of Fig. A.2.A.

The relationship between A and the associated matrix for a star tree is

given by Eq. 2.3.19. Therefore, 1

Figure A.2.A Path Tree TJ of GA'

F1 1 11 '-8 A A- P1 -1 0-1 —-8 -A 0‘

1‘1 I _
As = (183 A(18J = 0 1 1 0 -12 -A 0 1 -1 - o -16 0 A.2.38

o 0 1J L 0 —A -12 0 0 1 L 0 -A -8J        
where C133 is given in Lemma 2.3.2.

Factoring A8 by the method of Theorem 3.1.3 gives
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Substituting Eq. A.2.A1 into the remaining three equations of Eq. A.2.39 and

solving for three variables in terms of the remaining four variables gives
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0
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O
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A
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.After performing the indicated operations, Eq. A.2.A2‘becomés

°23_

q

22

12 .

l3

 

A.2.A2



    
  

    

    

cll O 2 1 0 C22

c
= O O 2 2 A.2.AC33 1 ci3 3

_322q> _16 -A -A 0‘ C23

By letting

c22-11 1

c O

12 = , A.2.AA

C13 1

- 033—1 _ l .-

Eq. A.2.A3 becomes

' ‘ ' 7C11 1

C33 = 3 , A.2.A5

-522. n12-

and Eq. A.2.Al becomes

811 8

2

833 2*

g12 = O ' A.2.A6

513 8

._ 823- L. 84    
Eqs. A.2.AA, A.2.A5 and A.2.A6 give the entries in the C and R matrices. The

element values of the RC graph G“ of Fig. A.2.3 are calculated symbolically

in Eqs. A.2.3l and A.2.32. Hence,
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"all” '0' ”611- '0‘

022 0 G22 A

C33 = 2 and G33 a 8 . A.2.A?

012 0 012 0

C13 1 013 8

-023- Ll'd IeG23J ..81       
From Eq. A.2.A7, all elements are either positive or zero. Therefore, by the

use of a similarity transformation of A, a positive element graph is

synthesized.

Example A: From Ex. A of Sect. A.l, A.can only be realized as the

associated matrix of an RL graph. Since A is symmetric, a satisfactory

factoring of A is

L = I and R = -A. A.2.A8

The number of vertices of a canonical RL graph for which A can be the

associated matrix is given by Lemma 2.2.1 as 5

3gvge. ' 1n2A9

Therefore, from Eq. 3.3.0

L11 L22 912

l 0 l A.2.50

8* =

3 0 '1 -1

and

L11 L22 L33 L12 L13 L23
.

l 0 0 l 1 0'1

SE = 0 l O -l O l . A.2.51

  0 0 l 0 -1 -l.‘

By Def. 3.3.0, ‘7; is a matrix composed of any three columns of either 8*, Sfi,

S; or 8g. Let (f; a S? and consider
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h - D -[

    

1 0 1 2 1 1 1 0 7 -5

C7§RC73 = 0 1 -1 1 3 -2 0 1 s -5 10 . A.2.52

_1 -2 34 _l -1_

The determinate of Eq. A.3.A does not vanish, and hence by Lemma 3.3.1, R is

factorable into the triple product of Eq. 2.3.A0. Therefore, carrying out

the Operations of Eq. 3.3.3 gives

1. 3 '1

s G s' = 5 , A.2.52
I22 8 I22 -1 2

where 8122 is given by Eq. 3.3.5. From Eqs. A.2.A8 and A.2.52, A satisfies

the hypothesis of Theorem 3.3.1 and hence there exists a canonical RL graph

G3 with non-negative elements for which A is the associated matrix. The f

seg matrix is

I

I C7 11 G22 G12: L11 L22 L12
.. ... I88 _ [sI22 : v] _ 1 o 1 l 1 0 1 A.2.53

' O

0 1 -1 ; 0 1 -1

The g-elements are calculated from Eq. A.2.A2 by applying the conclusion of

Lemma 2.2.1. Hence

1 r- q

   

611 F 811"512 l

1
622 = 822+812 = 3' 2 )4 e 2 0 5’4-

_Gl2 3 _'312 A -1 1   
The l-elements are Obtained directly from Eq. A.2.A8. Therefore, from Eqs.

A.2.A8, A.2.53 and A.2.5A, a canonical RL graph 63 of Fig. A.2.5 is constructed

 
Figure A.2.5 Synthesized RL Graph G of Exs. A and S.

3
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Other solutions to this example can be attempted by returning to Eq.

A.2.52 and using differenth;'s Obtained from SE of Eq. A.3.A. However,

there are no other solutions since any C7; composed of the columns of SE

Eq. A.2.52 becomes a singular matrix and hence, Eq. A.2.52 cannot be selved

!

for SI22G38122° A similar statement is true for all dvesg and Uve 83.

Example 5: From Ex. 5 of Sect A.l, A is quasisymmetric. Using the

factoring technique of Theorem.3.1.2, a solution to LA + R = O is

r1 0 0” '2A 7 111

L = o 2 0 , R s 7 23 7 . A.2.55

__0 0 3 J11 7 2A    
Since the order of A is three, as in Ex. A, then the bounds on the number of

vertices of the RL graph Gv is given by Eq. A.2.A9 and correspondingly s; and

SE are given by Eqs. A.2.50 and A.2.51 respectively. Let (7; a 8* and

    

3

consider '

l 0 1 F2A 7 11- _1 0-. 70 -21

(ngcj; = 0 1 -1 7 23 7 o 1 = -21 30 .

_ll 7 2A_J _1 '1. A.2.56

The determinate of Eq. A.2.56 does not vanish, hence by Lemma 3.3.1, R is

factorable into the triple product of Eq. 2.3.A0. Therefore carrying out the

Operations of Eq. 3.3.3 gives

107 -97

s G s' = l ' A.2.57
122 8 I22 E's—9- _97 227

where $122.is given in Eq. 3.3.5. The f seg matrix is the same as in Ex. A and

is given by Eq. A.2.53. The g-element values are calculated symbolically in

Eq. A.2.5A and the l-elements are known from Eq. A.2.55. Hence,

        

A - "-10“ PL " "'1'
G11 11

G = 1 110 , L a 2 . A.2.58
22 iggg. 22

-612 _ _ 97 1 -L12.. _ 3 .
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Eq. A.2.58 gives the element values for the canonical RL graph G3 of Fig.

A.2.5.

Another solution of Ex. 5 is obtained by returning to Eq. A.2.56 and

using a new O’VE‘SE. Therefore, let

and without repeating all of the details, there exists a canonical RL graph

GA such that A is the associated matrix. The element values for GA of Fig.

A.2.6 are

  

F611. - 2 - “‘11- F 11

G22 3 L22 2

G33 = 102 2 , L33 - = 3 . A.2.59

G12 1 L12 0

G13 2 L13 0

-6231 _l . L L23 _ ° -      
 

 

 
 

 

  

 
Figure A.2.6 Synthesized Graph GA of Example 5.

Other RL graphs can be synthesized by considering a new ave St, or

$5 or 3;. This procedure, of course, can be repeated for all

6 6S U S U S6 . Furthermore, if desired, A is realizable as the
V hi3 5:3 )3

associated matrix of a canonical RC graph GA since A is nonsingular

bisymmetric .
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h.3 Conclusion.
 

In this chapter, the synthesis method is described and illustrated in

the flow charts of Figs. h.l.0, h.2.0 and h.2.1. Section h.l gives the

conditions under which a coefficient matrix can be realized as the associated

matrix of a real linear bielement system. Section h.2 describes the synthesis

procedure whereby an acceptable coefficient matrix is decomposed and a RC or

RL graph is constructed. Five examples are also given.

In Ex. 1, the decomposition technique of Theorem 3.1.0 is illustrated.

The method immediately synthesized a positive element graph. The same

decomposition technique is used in Ex. 2. However, it is shown that only

graphs with some negative elements can be synthesized. The linear decomposition

technique of Theorem 3.1.2 is then applied to Ex. 2, with the results that a

positive element graph is synthesized. In Ex. 3 the eigenvalues of A are

negative and nondistinct. A is shown to be bisymmetric by the decomposition

technique of Theorem 3.1.2. However, a positive element graph cannot be

synthesized from A. A is then assumed to be the associated matrix

corresponding to a maximum order path tree. The appropriate similarity

transformation is made on A and the new matrix is realized as the associated

matrix corresponding to a star tree of a positive element graph. In Ex. h, a

singular matrix is realized as the associated matrix of a RL graph. In Ex. 5,

two RL graphs are synthesized from a nonsingular left quasisymmetric

coefficient matrix.

Ideally, in the decomposition of a given matrix into the product of two

symmetric matrices, it would be desirable to have a closed form solution to

the nonlinear algebraic system of Eq. 3.1.5 in terms of n of the variables.

Then by using conditions 1., 2. and 3. of Theorem 3.2.2 or conditions 2. and

3. of Theorem 3.3.1 as bounds on the solutions, an optimum decomposition

should be attainable. Because of the inherent difficulty in the solution of

nonlinear algebraic equations, the decomposition technique of Theorem 3.1.1

was avoided in all of the examples.



V. CONCLUSION
 

5.0 Discussion of Results
 

In the preceding chapters a new concept of the classical synthesis

problem is developed. The problem involves the realization of time domain

models of the form of Eq. 1.0.0 as real, linear, bielement systems. In this

sense, the synthesized graph can be thought of as a real time model of the

process described by Eq. 1.0.0.

Almost all classical synthesis techniques employ the same basic approach

in solving the synthesis problem. That is, each technique assumes a

fundamental t0pology for the graph and then generates conditions on the

mathematics such that the impedance, admittance or transfer function is

realizable. Examples of this method are the Foster, Brune, Darlington,

Bott-Duffin, image parameter and etc. methods (6’ 7’ 8). Guillemin(25) has

stated that one of the shortcomings of this approach is the rigidness of the

assumed topology of the graph. It is felt that the synthesis technique of

Chapter III has overcome this Objection in part, without abandoning the basic

approach entirely. This is accomplished by assuming the canonical topolOgy

for the graph to be the union of complete graphs, each complete graph being

composed entirely of one type of element. The use of the complete graph gives

a generalized topology to the synthesis prOblem since all other topological

structures such as paths, pis, tees) ladders and lattices are but special

cases of the complete graph.

In Chapter II, arbitrary real linear bielement systems are classified

according to a subgraph of the system from which the formulation tree is

selected. The fundamental properties of class 1 systems are then investigated

in detail. Class 1 systems are found to be reducible to a canonical form.

The associated matrix corresponding to any maximum order star tree of a

canonical graph is defined to be the canonical associated matrix. The sign

pattern and the magnitude of the entries in the canonical associated matrix

are then calculated. All other associated matrices of a class 1 system

graph are related to the canonical associated matrix by a similarity

transformation. For the RC graph, this similarity transformation is found

from the incidence matrix. For the RL graph, the similarity transformation

65
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reduces to the identity transformation and hence, the associated matrix is

independent of the formulation tree.

In Chapter III, a necessary condition and three techniques are given

for the decomposition of an arbitrary real square matrix into its

'bisymmetric form. A test is also developed to determine when a bisymmetric

matrix is quasisymmetric. From these results necessary and sufficient

conditions are also developed to guarantee the synthesized graph has only

lion-negative elements. Theorem.3.2.0 points out the well known fact that the

eigenvalues of real linear bielement systems are real, correspondingly, if

the eigenvalues are negative, these systems can be classified by their

transient solutions as overdamped.

In Chapter IV, a synthesis method is develOped from which a digital

computer program can be written. It is conceivable with the use of dynamic

prOgramming techniques (23), that an optimum solution to the synthesis

problem can be obtained.

Since the synthesized graph can be thought of as a real time model of

the process described.by Eq. 1.0.0, one application of this technique is in

the area of adaptive control systems.

 

Model 

  
 

 
 

 

 
 

 

In ut Gain —fi Process [ Out ut 7

   
 

 
 

Figure 5.0.1 Elemental Adaptive System.

Consider the adaptive control system of Figure 5.0.0 (2h). The

dynamics of the process are adaptively controlled by the use of a "model" of

the system. One method of obtaining this "model" for suitable processes is

as follows. First, the process is analyzed and a time domain model of the

system in the form of Eq. 1.0.0 is obtained. Then this time domain model is

realized by the synthesis techniques of Chapter III. If the process is
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nonlinear, then a "model" can be synthesized by several linear approximations

over the Operating range of the process.

5.1 Additional Prdblems.

As with any research many additional prdblems arise which warrant

further investigation. The following are five problemswhich fit in this

category.

In Chapter I, restrictions were made on the graph to exclude all drivers

(2)

and to assume all initial conditions to be zero. These restrictions should

be removed and their effect on the synthesis procedure investigated. Brown

has given the preliminary analysis for such an investigation.

In Chapter II, only class 1 systems were considered. It was postulated

in the conclusion of Chapter II that all other classes of RC and RL systems

have similar properties to class 1 systems. Further investigation is needed

in this area. Ideally, it would be convenient to have a canonical graph and

associated matrix for each class of systems.

The flow chart of Fig. h.l.0 shows that only coefficient matrices that

are nonsingular left quasisymmetric can be realized as either a BC or RL

network. Therefore a closer investigation of nonsingular left quasisymmetric

matrices should give a new dimension to the duality concept of graphs.

Another interesting problem is the relationship between classical

synthesis and the synthesis of graphs from time domain models. Some research

in the area has already been done<ll).

Finally, for the "modeling" of adaptive control systems it would be

extremely useful to develop a synthesis technique for realizing time domain

models of RLC systems.
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APPENDIX A
 

THEOREMS AND DEFINITIONS FROM

REFERENCES
 

Definition A.l: (1h, p. 256)1 A real symmetric matrix A is called a

positive definite matrix if and only if the correSponding quadratic form

X'AX is positive definite.

 

 

Definition A.2: (16, p. 261) A is similar to B if and only if there

exists a matrix P such that B = PAP-l, with P nonsingular.

 

Theorem A.l: (2, p. 505) Let G be a connected graph containing R-, L-,

C-, Ne-,and Nh-elements such that there are no all Ne-element circuits and no

all Nh-element segs. Then there exists a tree T of G such that

1. all Ne-elements plus as many C-elements as possible are branches of T, and

 

2. all Nh-elements plus as many L-elements as possible are chords of T.

Theorem A.2 : (2, p. 506) For any graph G as indicated in Theorem 2 and

tree T satisfying (1) and (2) of Theorem 2, the f-circuit and f-seg equations,

 

respectively, are:

  

ve

— VRl

all 312 0 Blu U 0 0 0T le

B21 322 323 32% 0 U 0 0 vCl - 0

B31 0 0 33h 0 0 U 0 vR2 ‘

_Bu1 Bh2 Bu3 Bun 0 O O U. vL2

v02

u. Vh .4  
 

l. Parentheses give the reference and page number.
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-Ie _

IRl

r U 0 O 0 S11 S12 S13 Slh'- IL1

0 U 0 0 S21 322 0 52h ICl a 0

0 0 U 0 0 s32 0 S3h 1R2

_ O O O U Sui Su2 3&3 Shh _ IL2

IC2

fa-  
where the columns of the unit matrix of the f-circuit (f-seg) equations

correspond to the elements of the cotree (tree) of G and the columns of the

non-unit matrix of the f-circuit (f-seg) equations correspond to the elements

of the tree (cotree) of G. The subscripts e, R1 or R2, L1 or L2, C1 or C2, h

indicate the V or I variables associated with Ne-’ R-, L-, C-, Nh-elements,

respectively.

Theorem A.3: (11+, p. 257) The diagonal matrix .D-(,\1,A2, ..., A )

is positive definite if and only if all the ,kfs are positive.

n 

Theorem A.h: (21, p. 1&2) Let P be a real matrix of order (r,n) and
 

rank r ¢$;n, naturally). Then TPT' is positive definite. If P is positive

semidefinite, then TPT' is positive definite or scmidefinite.

Theorem A.5: (1h, p.257) The real matrix A is symmetric and positive

definite if and only if A'1 exists and is symmetric and positive definite.

 

 

Theorem A.6: (27, p. 1A8) Let A = [:3131 is an arbitrary matrix. If

A cannot be transformed.by a symmetrical permutation into the form [P Q]

where P and R are square and O is zero matrix and if 0 R

laiil;zjéé.laijl for all i

and a > Z a for at least one i
ii J-i ij
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them. fit is nonsingular.

figheorem A.7: (16, p. 273) A real symmetric matrix A is positive

definite if and only if there exists a real nonsingular matrix P such that

A = PP'. '

 

 

Theorem A.8: (23, p. 1A7) (Implicit function theorem). Let f'a (f1,...

—. _, - +k With

values in En Suppose fEC' on S. Let (x0, t0) a 0 and for which the n x n

de=13erminate det [:Din( E'; t6 )] ¥ 0. Then there exists a k-dimensional

nQtlghborhood T of t

" ’ fn) be a vector valued function defined on an open set S in En

and one, and only one, vector-valued function E, defined
0 0

‘3r1 Tb and having values in En’ such that

i. 560' on To,

11. E (E6) = Eb

iii. 3" (§(t); t) = 0 for every t in To.

Theorem A.9: (1h, p.118) A necessary and sufficient condition that the

system of m homogeneous linear equations in n unknowns,

 

n

:5 X =0, 131,2, coo,m

3:1 13 3

have a nontrivial solution is that its coefficient matrix have a rank less

than the number of unknowns.

Theorem A.lO: (1h, p. 228) If A is a real symmetric matrix, there

exists an orthogonal matrix U such that U‘AU is a diagonal matrix whose

 

diagonal elements are the characteristic roots of A.

Theorem A.ll: (111., p. 266) The roots Al, A2, ..., An of the

equation det [As/XE] = 0, where A and B are symmetric and B is positive

definite, are all real.

Theorem A.l2: (16, p. 313) Similar matrices have the same
 

characteristic polynomial.

Theorem A.l3: (11+, p. 255) If X'AX is positive definite, then det A>O.
 

Theorem A.lh: (1h, p. 58) The determinant of the product of two square

matrices of order n is equal to the product of their determinants.
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Theorem A.15: (11+, p. 65) A square matrix A has an inverse if and only

if det A *0.

Theorem A.l6: (22, p. 133) If the characteristic roots of a matrix A

are distinct, then A is similar to a diagonal matrix.

 

I'Lheorem A.l7: (’4, p. h-SO) Let Al and A2 represent any two cut-set

matrices of a given connected graph G. Then there exists nonsingular

transformations relating Al and A2.
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