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ABSTRACT

ON THE REALIZATION OF TIME DOMAIN MODELS
OF REAL LINEAR BIELEMENT SYSTEMS

by Donald John Rauch

In recent years there has been a trend in modern engineering analysis
to formulate mathematical models of physical systems as a set of linear,
first deriviative-explicit differential equations. The question now arises
as to whether a system graph can be synthesized from this same set of
equations. This thesis deals with the realization of time-domain models of

real linear bielement systems.

The problems that are considered in this thesis can be classified as
folilows:
1. The characterization of time-domain models of real linear bielement
systems,
2. The recognition of an arbitrary time domain model to be a real
linear bielement system, and

3. The synthesis of a graph from an acceptable time-domain model.

.From the time-domain analysis, real linear bielement systems are
characterized by their associated matrices. These systems are shown to be
reducible to a canonical graph. The canonical associated matrix corresponding
to a maximum order star tree of a canonical graph is best described as the
product of two symmetric matrices. Each of the symmetric matrices has a
distinctive sign pattern and exhibits the property of diagonal dominance.

All other associated matrices corresponding to arbitrary maximum order trees
of a graph can be made to exhibit these same properties by the use of a

similarity transformation.

A necessary condition for the recognition of time-domain models of real
linear bielement systems is that the associated matrix has real eigenvalues.
A sufficient condition is that the eigenvalues be real distinct. Three
techniques are derived for the decomposition of an arbitrary matrix into the
product of two symmetric matrices. A test is also provided to determine if

one of the matrices is diagonal.



Abstract Donald John Rauch

The synthesis of a graph is accomplished by interrelating the
decomposed matrix to the canonical associated matrix. Necessary and
sufficient conditions are given for the synthesis of a graph with positive,
negative and zero elements and for the synthesis of a graph with non-negative
elements. Flow charts are developed to illustrate how an arbitrary
coefficient matrix can be recognized and realized as the aséociated matrix of

a real linear bielement system.
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I. INTRODUCTION AND ANALYSIS

1.0 Introduction

In the last few years there has been an accelerated interest in time
domain modeling of linear physical systems (1’2’3’h’5). Mathematically, these
models are systems of first derivative-explicit differential equations

d
RX = Ax 10000

where X is a vector, sometimes referred to as the state vector, and A is a

real matrix.

Two questions now arise:
1. Under what conditions can the matrix A of Eq. 1.0.0 be realized by a
linear physical system? and
2. If A is realizable as a linear physical system, what are the element values

and their interconnection pattern?

These questions are a generalized form of the classical synthesis problem.
However, the concept of realizing a real time model of a system is strikingly
different from the classical concepts of systems synthesis whereby driving

point impedances, admittances or transfer functions are realized (6’7’8’9).

In Section 1.1 a complete time domain analysis of a RIC system is given
and the associated matrix A of this system i8 introduced. Some general
properties of associated matrices are also derived.

In Chapter II the class of graphs considered is restricted to real

linear bielement systems, that is, systems composed of g-elements (20)

10)

and lossey c- or l-elements ( . Koenig, Tokad and Bacon have already
considered the synthesis of LC graphs from the state model (ll). Real linear
bielement systems, hereafter referred to specifically as RC and RL graphs,
are classified by the subgraph of the system from which the formulation tree
is selected. Class 1 graphs are shown to be reducible to a canonical form.
The assoclated matrices of a class 1 graph are then shown to be interrelated

by a similarity transformation.

In Chapter III the necessary and sufficient conditions for realizing A



of Eq. 1.0.0 as a real linear bielement system are given. Three techniques

are developed for decomposing A into a bisymmetric form, that is, the product
of two symmetric matrices. A test is also developed to determine if one of
these symmetric matrices 1s diagonal. For matrices that are realizable, a
method is given for determining element valuecs and the f seg matrix of the
class 1 graph to be synthesized. From this information a graph is constructed.
Necessary and sufficient conditions are also given on the bisymmetric form of

A to guarantee that the synthesized graph will have no nezative elements.

In Chapter IV the synthesis method is described in detail and flow charts
are developed to indicate the operations in the realization of an A matrix as
a real linear bielement system. Examples of the synthesis method for both RC

and RL graphs are also given.,

1.1 Time Domain Analysis

The class of graphs considered is restricted as follows:
1. All components of the graph are to be g-elements, c-clements or l-elements.
2. The graph contains no drivers.
3. All initial conditions of the element variables are assuned to be zero.
The time domain analysis of a less restrictive class of graphs has been
rigorously carried out by Brown (2) and others (1’3’h’5). The results

pertinent to this dissertation follow.
As a direct consequence of Theorem A.l the following definition 1z made.

Definition 1.1.0: A tree T of a connected graph G is said to be a

fundamental tree if

l. As many c-elements as possible are branches of T, and

2. As many l-elements as possible arec chords of T.

(10)

Lemma 1.1.0: The f circuit and f seg matrices correspcnding to any

fundamental tree T of a connected RLC graph G are

Bll o o I o0 © 0 © Sll 812 Sl3
Bf = B21 B22 0 ol » Sf = |0 I 0 O 822 823 1.1.0
0O I 0 I 0 O

P31 P3p B33 O 534



where the columns of the unit matrices I of Bf correspond respectively to the
c-, g-, and l-elements of the cotree and the columns of the unit matrices I
of Sf correspond respectively to the c-, g-,‘apd l-elements of the tree.

Proof: Follows directly from Theorem A.2. 1

Definition 1.1.1: The branch (chord) 1-, g-, and c-element matrices 2 of

a connected graph G are the diagonal element value matrices Ll, Gl’ Cl (Lz, 62,
02) where the subscript 1 (2) indicates the elements are branches (chords) of

a tree (cotree).
Lemma 1.1.1: Corresponding to any fundamental tree T of any connected
RLC graph G, there exists a system of equations

d
'd_fngx

such that
=1
1
1162511 0 °© S
0 (L2+ S

s
(cy+ 13|,
-1
' L.S -§!. 0
33%1533) 513
1, a o le ylar .
8)o(Go7+ 82561 78,5) 81, -8 ,6,8,,(G + 8,56
-1
) "8,50,515 853(Gy+ 8

' -1
2822 ) S23 1.1.1

L 1
- 833 (Gy+ 8,,6,55,

. -1
220520) "Sp3
where
1. Gl’ Ll’ Cl
Definition 1.1.2 respectively.
2'

and 02, L2, C2 are branch element and chord element matrices of

SiJ and Bij for 1,3J = 1,2,3 are given in Lemma 1.1.1.
3. The prime and -1 superscript indicate the transpose and inverse of the

indicated submatrix respectively.

Proof: The lemma results directly from Eq. 9 of reference 2.

1. The matrices BiJ
positions as the B

and SiJ
and Si

of Lemma 1.1.0 are not necessarily in the same

13 of Theorem A.2.

2. See Eg. 2 of reference 2.

J



where the columns of the unit matrices I of Bf correspond respectively to the
c-, g-, and l-elements of the cotree and the columns of the unit matrices I
of Sf correspond respectively to the c-, g-,'and l-elements of the tree.

Proof: Follows directly from Theorem A.2. 1

Definition 1.1.1: The branch (chord) 1-, g-, and c-element matrices 2 of

a connected graph G are the diagonal element value matrices Ll’ Gl’ C1 (L2, G2,
C2) where the subscript 1 (2) indicates the elements are branches (chords) of

a tree (cotree).

Lemma 1.1.1l: Corresponding to any fundamental tree T of any connected
RLC graph G, there exists a system of equations

d
X = AX
such that
-1
]
A (Cy+ 5),C584;) © © 533 .
= - -1
S!' LS -S!. 0
© (Lp+ 833L,855) 513
1oy aele yele, . L -l
81o(0x7+ 85501 78,5) 8], =8)56,85,(G+ 85,56,85, )5y, 111
_l -l . .
-X ' ' '
833 (Gy+ 8,505855) 78,6581, 833(Gy+ 8,,6585,) "Spq
where
1. Gl’ Ll’ Cl and GE’ L2, 02 are branch element and chord element matrices of

Definition 1.1.2 respectively.
2. SiJ and BiJ for 1,J = 1,2,3 are given in Lemma 1.1.1.
3. The prime and -1 superscript indicate the transpose and inverse of the

indicated submatrix respectively.

Proof: The lemma results directly from Eq. 9 of reference 2.

1. The matrices B,, and S,, of Lemma 1.1.0 are not necessarily in the same

iJ iJ

positions as the Bij and Sij of Theorem A.2.

2. See Eq. 2 of reference 2.



Definition 1.1.2: The matrix A given by Eq. 1.1.1 is the associated
matrix of the connected RIC graph G.

Definition 1.1.3: Let T be any tree of a graph G. If the associated
matrix A corresponding to the tree T exists, then T is said to be a

maximum order tree.

Corollary 1l.1.1l: Every fundamental tree is a maximum order tree.

Proof: Follows directly from Lemma 1.1.1.

From Lemma 1.1.1 it is convenient to introduce the following notation.

Let
-1
cto R.. R o s
A= - N ey 13 1.1.2
[ 1
o L R, Rop -8, 0
where
1
C = Cy+ 5,055,
L=1L.+8'LS
2" "3371733’
-1 A1, (-1,
. Ry Ryp S10(Go + 8556 7855) 5y,
= -1
- 1 1 1
Ry1 By 853(Cy+ 8pa8p855) " Spa6,515 1.1.3

-1
- Q ]
8)08p850(Cy + 8556583,) Sp3

-1
833(Gy+ 856,85,) 8,3

Definition 1.1.4: The C matrix, L matrix, and R matrix of a connected
RLC graph are defined by Eq. 1.1l.3.

Lemma 1.1.2: The associated matrices corresponding to the fundamental
trees of blelement type connected graphs are:
l. RC Graphs

Apg = -C lR11
2. RL Graphs

App, = LR

e2



3. L1C Graphs

ALC-= - 13
-1 '
o LTJ|-85 0

vhere C, L, Rll and R22 are given in Eg. 1l.1.3 and Sl is given in Eq. 1.1.0,.

3
Proof: 1., 2., and 3., are obtained from Lemma 1l.1l.1 by allowing the

appropriate S terms of Lemma 1.1.0 to be null.

i3
Lemma 1.1.3: Let Dl and D2 be diagonal matrices of order n with real
positive diagonal entries. Let S., be any conformable matrix, then D,+ S, . D.S!
(12) iJ - 1 71572743
is positive definite .

Proof: Consider the matrix identity

I
1 - : : .
D, + sijnesij = [I 513] diag (Dl, D2) [sij] l.1l.k
By Theorem A.3, diag (Dl’De) 1s positive definite. Since [I Sij] is of

maximum rank, the conclusion follows from Theorem A.l.

Theorem 1.1.0: If the branch andé chord element matrices Cl’ Ca, Ll’ L2,

Gl and G2 have positive diagonal entries then
-1 -1

1 1 ~ 1] G K r
1. (cl+ sllces ll), (L2+S33L1833), (u2 + 845 Gy sge) and (Gl+s22 2522) are
positive definite, and

-1 , A1 -1 . - . .
2. 812((}2 + 835Gy 822) 8{, is positive semidefinite.
Proof: Part 1. follows directly from Lemma 1.1.3. By Theorem A.5.,

(G;l+sé2Gi1822)-l‘is positive definite. Part 2. of thc theorem now follows

from Theorem A.lL,

: : g i i en S -1 vl Ny
Corollary 1.1.0: IT 812 is of maximum rank, then °12(G2 + SE:Gl 822, 12

is positive definite.

Proof: By Theorems 1l.l.1 and A.5 (3;l+ St is positive definite.

The conclusion follows from Theorem A.l,

Theorem 1,1.1l: If Al and A2 are the associated matrices of the parts (lO)

P, and P, respectively, then A = diag (Al, A2) is the associated matrix of a

separable RLC iraph G obtained by uniting P, and P2 at only one vertex.

1

Proof: From Eq. l.1.2 for some maximum order tree T, of P,

1 1



-1 r
C 0 R R 0 S
Al _ . L 11 12 + 13 1.1.5
= [ '
0] L _R12 R22 -S13 0]
and for some maximum order tree T2 of P2
-1 B
Cc* 0] R* R* 0] S¥*
2
A2 = - -1 11 1 + 13 1.1.6
[] * -2 3
0O L LR, Ry S*3 0
where C, L and [Rij] are the C matrix, L matrix and R matrix of Pl and C¥,
* * _ *
L* and [R ij] are the C matrix, L matrix and R matrix of P2. S13 and S 13

Pl and P2

and P2 at one vertex. TlUT2 is a maximum order tree of P

are subsets of the f seg matrices of

P

from Eq. 1.1.2 the associated matrix is

respectively. Consider uniting

lUPE' Correspondingly

Rll

o)

Rla
0

’

By interchanging the second and third rows and columns Eq. 1.1.7 becomes

’

., O
-1

L

cx"L
O

0]

*
R 11
0

*!
R 12

Ri1 B
Rio Ryy
0 0
o 0

Rl2 0 ) -O 0 S13 0] ]
0 R*12 + 0 0] 0] S*13 ,
R22 0 -SJ:3 0] 0 0
0] R""22 0 -S*i3 0] o )
1.1.7
- - q
0 0 0 S13 0 0
0 0 + -Si3 0] 0] 0 |
R*ll R*12 0 0 0] S*13
Rﬁb R22_ _O 0] -S'*i3 0 )
1.1.8

From Egs. 1.1.5 and 1.1.6, Eq. 1.1.8 is recognized as

which completes the proof.

A = Dia



II. CHARACTERIZATION OF REAL LINEAR BIELEMENT SYSTEMS

2.0 Introduction

In this chapter the problem of characterizing time domain models of real

(12)

arevintroduced. In Section 2.2 all connected real linear

linear bielement systems is considered. In Section 2.1, the complete graph
and the star tree(13)
bielement systems are classified by the subgraph of the system from which the
formulation tree must be selected. In Section 2.3 the properties of class 1
systems are developed. These systems are shown to reduce to a canonical form
and all of the associated matrices of a graph are related to the canonical
associated matrix by similarity transformations. The entries of the C, L, and

R matrices are also formulated for the canonical system graph of class 1.

2.1 The Complete Graph

Definition 2.1.0: A complete graphl Qn+l is a n+l vertex graph such that

there is one and only one element between every pair of vertices. See Fig. 2.1.0.

The elements of a complete graph Qn+l will be designated by E, . in general,

iJ

or specifically as G,, for a g-element complete graph, ciJ for a c-element

iJ

complete graph, and Li for a l-element complete graph, where j>1 for i,j =

1,2,...,n. For i # j,Jthe element subscript ij implies the element is incident

to vertices i and J and is oriented from vertex i to J. For i = J, Eii is

defined to be the element incident to vertices i and n+l, with the orientation
toward vertex n+l. Vertex n+l is referred to as the "reference node".

Furthermore, if a complete graph is composed entirely of g-elements (or c-elements,
or l-elements) it will be designated by the superscript g (or ¢, or 1). That

is, Q§+l is a complete graph of n+l vertices and is composed entirely of

g-elements G, ., where j=2i, for i, j = 1,2,...,n.

iJ

Theorem 2.1.0: The number of elements e in a complete graph of v vertices

is

o o Y(v-1). 2.1.0

-2

(18)

l. This same definition wés used by Brown and Reed

T



Proof: By induction on v. Let v = 2, Tre conclusion follows from
q. 2.1.0 and Def. 2.1.0. Assume the theorem is true for v = n, for which

the number of elements en is

e = Eiﬁ:ll‘ 2.1.1

n 2
Now let
v = n+l, 2.1.2

The number of elenments SRE. by definition 2.,1.0, will be the number of
elements in the case where v = n plus n new elements, one each {rom the n

vertices to the n+l vertex. Hence,

a1 = €, 2.1.3

or from Eq. 2.1.1
n(n-1) n(n+l). |
*pl T Tz TR T 2ol

But from Eg. 2.1.2 n = v-1. Therefore, Eq. 2.1.4 becomes
B v(v-1)
2

e = L
n+l °

Hence, the theorem follows ty induction.

Property 2.1.0: Let Qm+1 be a complete graph of m+l vertices. Tre f

sez matrix corresponding to any star tree of Cm is

+1
J : B ! X X ; PO O o - DN B eee I eee 1IN
Byy Bpp Bgoees By Fyp Epg By oeeeBygy Sog B Fog o -1 i
1 0 0 ees O 1 1 1 eeel 0 o) v ese C eee I
0 1 o) eee 0 =1 0 0 es.0 1 1 1 eee 1 eoe O
O O l ...O O ‘*l O ...O -l O O oooo L 9]
S - :o"o

es 0000 LU I SR N ) e0 00000

O O O LI ] l O O O ou.-l 0 O O -oo-l oo.“‘:_

where the column corresponds to the elcrient of Qm+l listed above that cclumn.

Property 2.1.1: Let Sf be given bt Iq. 2.1.5, then
= o (w0 '
= [eiJ] = S, diag (wid) S




vm+l

Figure 2.1.0 Complete graph Q;+l of e elements with m+l vertices.

Figure 2.1.1 Star tree Ts of m+l vertices.



10

where diag (EiJ) = diag (Ell - 33.,.,EmmE12 13Elh.°.ElmE23 ol 25...E me e Fnl m
then
eijge‘ji:,EiJ fOI' 1>J i=l,2ooo, m"l
m J = 2,3,..9’ m 2‘l°6
e.. = 3 E., 1=1,2,..., m
ii kel ik

where Eik = Eki for i>k.

2.2 The Classification of Real Linear Bielement Systems,

From Section 1.1, all RLC systems are characterized by thelr associated
matrices. The rank of the associated matrix, by Eq. 1.1.1l, determines the
number of c-elements in the tree and the number of l-elements in the cctree,
Therefore, the rank of the associated matrix gives an indication as to the
number of vertices of the graph and the composition of its tree and cotree.
Since the reactive elements of a graph are assumed to te real, there is
always a finite résistance or conductance associated with each reactive
element, and hence there are at least as many g-elements as reactive elements
in a given system graph. In the following,real linear btielement systems
having associated matrices of order n are classified by the form of the

subgraph from which the maximum order tree is selected.
RC Graphs

Let A or order n be the associated matrix of a connected RC graph
G = Gc U Gg, where Gc and Gg are the sutgraphs of c- and g-elements of G
respectively. From Eq. 1.1.1, there are n c-elements in the tree of G.
Suppose the tree of G is composed entirely of c-elements, then Gc is

(10)

connected and has v = n+l vertices . Suppose now that the tree contains

g-elements such that c° is composed of two disjoint btut individually connected

(10)

the tree contains g-elements such that Gc is composed of three disjoint tut

subgraphs, then the number of vertices of Gc is v = n+2 Suppose now
individually connected subgraphs, then the number of vertices Gc is v = n+3,
This partitioning of Gc can be continued until Gc is composed of n partis.

each of which is an individual c-element. The number of vertices in this

case being v = 2n. This argument constitutes the proof of the following lemma.

)
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Lemma 2.2.0: Let G = Gc U G® be a connected graph composed of the
c-element subgraph Gc and the g-element subgraph Gg. If G has an associated
matrix of order n then the number of vertices of Gc and the form of Gc are

characterized as follows:

# of vertices
Class of Gc ' Form of G

1 n+l (::)

c

Gc is connected.

(X

2 n+2 (:;) <:;> : Gc = ; U G; where G;
. . . and G; are individually
. . . . connected.
7 1 I .
n 2n CllT czzT-oo'OcmT- G - cll U 022---U Cnn

RL Graphs

Let A of order n be the associated matrix of a connected RL graph
G = G1 U G& where Gl and G® are the subgraphs of l- and g-elements of G
respectively. From Eq. 1.1.1, there are n l-elements in the cotree of G.
Suppose the tree of G is composed entirely of g-elements, then Gg is connected.
Let the number of vertices of Gl be v. Suppose further that Gl is a complete
graph. The complete graph with the least number of vertices having n
elements is found by solving Eq. 2.1.0 for v. Therefore,

1+V1 4+ 8n.

5 2.2.0

vV =

In general, the solution of Eg. 2.3.0 is a real number r*, However, since

v is the number of vertices, r* must be rounded off to the next largest
integer r. The integer r, then, is the smallest number of vertices the
subgraph Gl can have if A is to be of order n. The largest number of
vertices of Gl is v = 2n corresponding to each l-element of the cotree being
isolated from one another by g-elements. Therefore, the bounds on the number

of vertices of Gl are
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r<<v<{ 2(n + p)

This argument constitutes the proof of the following lemma.

Lemma
l-element
matrix of

are given

1
2.2.1: Le

t
1
subgraph G

order n then the form of Gg and the bounds on the vertices of G

as follows:

of vertices

G=G UG

and the g-element subgraph Gg.

& be a connected graph composcd of the

If G has an associated
1

Class of Ge Form of Gg
min max
l g wg- oq
r<ovg en G G-is connected.
A . . g 8 _ A8 g . A0 g
2 r< v 2n+2 G2 G~ = Gl U G2 where Gl and G2
are individually connected.
3 r< v<< 2n+l @ G,i’ GG = Gf U GS U Cg where G%,
. . G% and G% are individually
. . connected.
. o 3 8 . ¢ SN & -
P r < vsgg(n+p) &E£> G2 . up G- = Gl U 02....U Gp where
6 £ g e e
i GB"'Gp are individually

2.3 Characterization of Class 1 Systems.

connected,

L A A N )

From Section 2.2, real lincar bielenmont systens whose associated motrices

of order n arc classified by the Torm of the subgraph from which the maximum

order tree is selected as classes 1, 2, se0ey Dy o«

In this section, systems

of class 1 are investigated and their characteristics developed in detail.
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RC Graphs
e = ¢ g ¢
Lemma 2.3.0: r Let Pp+l G U Pp+l be a part such that Gn+l is a

connected c-element graph of n+l vertices and Pg+l is a g-element part of
p+l vertices where G§+l and P§+l are united at p+l vertices, ngp. Then,

1. there exists a star tree T8 of Gg+

1 which is a subtree of a maximum

order tree of Pp+l’ and

2. the associated matrix is

- -1 -1 -1 -1
A= -C lRll = -C S12 [62 + SéaGl 822 ] Si2 for n<p
or
A=-cTR cls a8, £
=L Fp 7TV B1o¥oRp torm =P
Proof: Select any vertex of G:+l and label it n+l. Label the remaining

~ vertices 1, 2, ..., n. Consider the star representation TB of the n+l vertices
of G:+l given by the c-elements between vertices 1 and n+l, 2 and n+l, ..., n
and n+l. Since G§+l is connected, at least one of the c-elements, say °11’
of Ts is non-zero. . Furthermore, since Gn+l is connected, the maximum number
of c-elements in any tree of Pp+l is n. Ts has n c-elemegts. Let the tree
Tsi of Pp+l bgrcomposedrof T8 and '1'1 where Ti is a subgraph of ngl' Tsi is
acceptable as a formulation tree by Def. 1.1.3 if only the associated_matrix
corresponding to Tsi exists. The associated matrix corresponding to any
fundamental tree by Lemma 1.1.2 is ,

A= -c'lRll = - [cl + sllczsii] ’1312 [G;l +,Sé2GIlSé2] '1si2- 2.3.0
Since some of the elementg of Cl can be zero, it is only necessary to show
that C"l exists. By al;gwing the appropriate c-elements of the gomplete
. graph Q;+l to be zero, then G;+1 = Q§+l' Correspondingly, the subset S11 of
the f seg matrix of Pp+l is given by Eg. 2.1.5 for m = n. C is nonsingular
by Theorem A.6 if only C is not permutable into diag (Kil’ K22) vhere K , is
a q x q matrix and K22 isan-qxn - q matrix. Assume C is permutable into
this form. Then from Property 2.1.1, all c-elements between the vertices
1,2,..., q and q+1, q+2,..., n are zero, This is a contradiction since Gp

. n+l
is connected, except if these vertices are connected through vertex n+l. If
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the vertices 1,2,..., g are connected through n+l to gq+l1, gq+2, ..., n, then

11
Theorem A.6 to Kll and K,j2 and repeating the above argument, C is non-

K,, and K22 are to be examined individually for singularity. Applying

singular. Hence the associated matrix corresponding to Tsi exists and T 1is
s
a subtree of a maximum order tree which proves 1. of the conclusion. 2. of

the conclusion follows directly from Lemma 1.1.2.

Lemma 2.3.1: Consider the system of linear, nonhomogecneous, algebraic

equations
n
}: tikdiV = a5y fori=1,2,..., n
k:l 139
2.3.1
tijdij = aij for i< j; 1 =1,2,000, n-1

2,3,ooo, n

J
If tij # O for i, j=1,2,ee., n, then there exists a unique solution to Eq.

2.3.1 given by

n
[ a ] -(a - 2: a,, )/t ]
11 11 k#l 1% 11
n
dop (ayp- 2 a A
K72
n-1
dn (ann- E: ank)/trm
= k=1 2.3.2
45 a1/t
dl3 al3/tlﬁ
din SIAT
n-1 n n-1 n/tn~l n J
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Proof: Since t,, 40 for all ij, [dlg Qg eeedy dpyeendy wennid o
can be found directly from Eq. 2.2.1 by dividing aij by tiJ for i<); 1i=1,2,
seey n-1 and j=2,3,..., n. Substituting fhﬁa result into the remaining
equations of Eq. 2.3.1 gives d ., = (a;; -»%;1 lk)/t g for 1=1,2,..., n. Eq.
2.3.2 follows directly from these results.

Tneorem 2.3.0: Let P = G,y U Pg | be the graph of Lemma 2.2.0. Then
there exists a graph P +1 obtained by uniting Gc +1 with a complete g-element
graph. Qn +1 at n+l vertiﬂes such that the associated matrices of Pp l and

Pn+l are identical.

Proof: Let Pp+l be written as the union of two complete graphs Qp+l and

c g _p8 S
Qn+1 where Qp+ Pp+l and Qn+l = G +1° elect the tree Tsi which contains

'I‘S of Lemma 2.3.0 as a subtree, The f seg matrix by Lemma 1.1.0 is

I 0 S S
11 12
Ssi = 2.3.3

O I © 822

The associated matrix corresponding to T 5 by Lemma 2.3.0 for n<p is

_ -1 _ -1 -1 . =1 -1,
Ag = -C Ry = -C 312[_G2 + 85,6, Sea] 512
Now construct the graph P nal of the theorem where G +1 is given and the
elements of Qn are to be calculated. Select ™ as the tree of P . The
1 s n+l

f seg matrix of Pn+l by Lemma 1.1.0 is

Sg1 = [I 51 ofe] 2.3k
where Sll is the same as in Eg. 2.3.3 and 8*2 is identical to the first
n(n+l)/2 columns of S,, of Eq. 2.3.3. The associated matrix of P
corresponding to Ts by Lemma 2.3.0 for n=p is

A% =.c'lRelel =-C lsioo* Sh 2e345

Therefore, multiplying Egs.2.3.3 and 2.3.5 by-C and equating gives

R¥, = S* G*S*' = R 2.3.6

11 1272 11
Eq.2.3.6 can be written as Egq. 2.3.1 and hence satisfies the hypothesis of
Lemma 2.3.1. Therefore, there exists a unique set of diagonal entries

* * 1 . ERele) 1
GiJE'G2 such that the associated matrices of Pp+l and Pn+l are identical, thus
proving the theorem.
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[ng dl3 oncdln d23 oood2n coca.dn-l n]
ssey n-1 and j=2,3,..., n. Substituting fhgﬁ result into the remaining
equations of Eq. 2.3.1 gives d,, = (all - %; aik)/tii for i=1,2,..., n. Eq.

2.3.2 follows directly from these results.

Proof: Since tij # 0 for eall ij,
can be found directly from Eq. 2.2.1 by dividing aij by t

. _ nC g
Theorem 2,3,0: Let PP a7 G +1 U Pp+l be the graph of Lemma 2.2.0. Then

there exists a8 graph P +1 obtained by uniting G

41 with a complete g-element

graph. Qn 1 at n+l vertlces such that the associ ted matrices of Pp+l and

P are identical.
n+l
Proof: Let Pp+l be written as the union of two complete graphs Qp+l and

c & _"oB .
Qn+1 where Qp+l Pp+l and Qn+l = G +1° Select the tree Tsi

Ts of Lemma 2.3.0 as a subtree, The f seg matrix by Lemma 1.1.0 is

which contains

I 0 8,, S
s - 11 712 2.3.3

O I O 82Cj

The associated matrix corresponding to T 1 ty Lemma 2.3.0 for n<p is

-1 ﬁ-l -1 -1 -1,
= - = - g
Bg = =C "By = C 12[‘3 + 52,6 Sea] 12
Now construct the grapn P nil of the theorem where G +1 is given and the
elements of Qn are to be calculated. Seclect T as the tree of P . The
1 <] n+l

f seg matrix of Pn+l ty Lemma 1.1.0 is

= Sx
5%, [I 5., 012] 2.3.h

is identical to the first

where S., is the same as in Eq. 2.3.3 and SIQ

11

n(n+l)/2 columns of S,, of Eq. 2.3.3. The associated matvix of P

corresponding to T bj Icmma 2

-1 -1 B
A¥ =-CT'R¥) =-CTS},0X S} 3.5

2.0 for n=p is

-

*
ro

Therefore, multiplying Egs.2.3.3 and 2.3.5 by-C and equating gives

' =
Rfy = 51262515 = By 2.3.6

Eq.2.3.6 can be written as Eq. 2.3.1 and hence satisfies the hypothesis of
Lemma 2.3.1. Therefore, there exists a unique set of diagcnal entries
G;jE'GS such that the associated matrices of P and P are idontical, thus

p+l n+l
proving the theorem.



) 18 said to be eguivalent to the roph
o eguivalent

and G nve the sauns asocelianted matrix.
n+1l

Definition 2.3.0: The grapnh G
: P

1 TR - . )
Uoep and only if Gp+l

Definition 2.3.1: The graph Go+l is reducible to Gn+l for p>n il the

graphs G and G are equivalent.
p+ n

1 +1

Corcllary 2.2.0: livery part Pp+l of a RC gunph of class 1 having a
¢y al”

c-elements subgraph of n+l vertices can be recuced to a part P = (
1 grap ¢ L n+l Qn+l mn+l,

: < g* . .
n<p, vhere the complete grapas Qnal and Q;+l are united at n+l vertices.

Proof: From Lemma 2.2.0, class 1 graphs satisly the hypothesis of Theorem

2.3.0 and hence are rcducible to Pn+l' Some of the elements of the complete
ax=} =} c 8 3 g* Yooy N e
granhs Qn+l and Qn+l may be wero.
Definition 2.3.2: A graph Pn+l is said to be a canonical RC zraph of class 1

= o° e ; ‘o 5 ite
)= Qn+1 U Qn+l where the two complete graphs are united at

. c T
n+l vertices and where Qn+l has 2 conneccted subsiranh composced of non-zero

if and only if Pn+

c-elements incident to all n+l vertices. The associated matrix corresponding

to any maximum order star tree TS of Pn+l is said to be the canonical

associated matrix of a RC graph of class 1.

!
SO 2.1 \ = 3 s = S ! ¢ th scg mated
Theorem 2.3.1: lct S_ [bIll :olg] [I o Slg]b the f scg matrix

corresnending to a maximum order star tree Ts of'" a canonical RC ;raph Gn+l ol
class 1. Thoen the canonical associated matrix of Gn+l is

\ -1,

A = =C Rll
sucn that

u I I ' c, © I
1 = - S =
L. ¢ = leys] = S11CSma = [I 511] . , 2.3.7
C 02 Sll

wiere Cl = diag (Cll’°22""’cnn) and C2 = dlag (clE’Cl3,'"’Jln’;23""’c2n’
"”Cn-l n) are the branch and chord c-clement matrices respectively.
:) = . = g 2. <8
2. Rpq [giJ] 51205510 3

where G, _ diag (Gll’G2£"'”Gnn’Gle’Gl3""’Gln""’Gn-l n) is the chord

g-element matrix.
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1] 13 for 1#3 and i,j=1,2,...n
81y = %1

2.3.9
€41 €13

for i=1,2,...n

G, |

m

[y

[y

]
C Cae
T™Ms i pMIe
[Dag ag

Proof: 1. and 2. follow directly from Lemma 1.1.2. SIll and 812 of the
hypothesis are given by Eq. 2.1.5 where m=n. 3. follows from 1. and 2. and
Property 2.1.1.

Lemma 2.3.2: Let Si’ SJ”" be the f seg matrices corresponding to the
maximum order trees Ti’ TJ"” respectively, of a connected graph G, then

there exists nonsingular matrices (lij and PJi such that

8y = Clijsjpji’ 2.3.10

where a 13 = a;.]j' ati and at 3 and ati are submatrices of the incidence matrix

whose columns correspond to the elements of the trees T

; and Ti; respectively,
(14)
and PJ

i is a permutation matrix vhich rearranges the columns of S, to have

J

the same element ordering as the columns Si'
Proof: Follows directly from Theorem A.1l7.

Theorem 2.3.2: The associated matrix of every part Pp+l of a separable
RC graph of class 1 is similar to the canonical associated matrix of some

canonical RC graph -of class 1 and conversely.

. c Ex
Proof: By Corollary 2.3.0, Pp+l can be reduced to Pn+l = Qn+l U Qn+l

where Q;+l and g:l are complete graphs united at n+l vertices. Let AJ be

the associated matrix corresponding to some maximum order tree TJ of Pn+l'
J

and Ss be the
3 and TS respectively. By Lemma

By Lemma 2.3.0, Pn+l has a maximum order star tree Ts' Let S
f seg matrices corresponding to the trees T
2.3.2,

S, = (lsjsjpjs. 2.3.11
Let Ss and SJ be partitioned such that the columns of the 1,1 submatrix

correspond to the c-elements and the columns of the 1,2 submatrix correspond
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to the g-elements of Pn+l’ Eq. 2.3.11 becomes

Pll (0]
S = [Ssl_l Ssl2] = as,j[sjll S‘112] ’ 2.3.12
0] P22
where,PJS is partitioned to conform to the partitioning of SJ' Pll rearranges

the columns of Sjll corresponding to c-elements such that the leading columns
of SJ
SJl2 corresponding to g-elements. Since for a class 1 RC graph there are no
g-elements in the tree Ts’ then P,.,=I. Let the branch and chord c-element

22
matrices corresponding to the tree T, be written

J
= diag (cl,cz). 2.3.13

llPll correspond to the c-elements of Ts' P22 rearranges the columns of

€

Then the diagonal branch and chord c-element matrix C8 corresponding to the

tree Ts is the same matrix as C, with the elements rearranged on the

J
diagonal. In fact,

c 2.3.1h4

— '
8 PllCJPll'

Since the g-element chord matrix G2 is not rearranged, then G2 is the same for

both trees T, and Ts. The associated matrix of Pn+l corresponding to the tree

J
T8 by Lemma 2.3.0 is

- - [ -1 [
Ag = (ssllcsssll) Ssl2G2Ssl2 " 2.3.15

Substituting the relations of Egqs. 2.3.12 and 2.3.14 into Eq. 2.3.15 gives

-1
= - 1 ' ' ' 1 '
Ag = (asJSJllPllPllc,jPllPllS,jllas,j) as,js,jl2G23.jl2asJ' 2.3.16
Since PllPil = I and by taking the inverse of a product of square matrices,
Eq. 2.3.16 becomes
_ -1 ' -1
Ag = - (g3 (85210455217 841268312 Ohg - 2.3.1
The associated matrix corresponding to the tree TJ by Lemma 2.3.0 is
-1 ‘
- - [ [}
AJ = (sjncjsjn) 3312023312' 2.3.18
Therefore Eq. 2.3.17 is written as
-1
= ! !
A = asj a0 2.3.19

By Definition A.2, A, is similar to As which proves the theorem.

J
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Converse: The converse follows directly by solving Eq. 2.3.19 for AJ‘

Corollary 2.3.2.0: The associated matrices Al’AE""’Aj""Ak"" of a

part P +1 corresponding to the trees Tl, 2""’Tj"" K2 of a class 1 RC
graph are similar.

Proof: By Theorem 2.3.2,;the associated matrices AJ and Ak are similar to
the associated matrix As corresponding to the star tree T8 which exists by
Lemma 2.3.0. Therefore, from Eq. 2.3.19

=1 ' 1= '
Ag = 8J Aj 8y = Clsk AkClsk 2.3.20

for all j and k. Solving Eg. 2.3.20 for A, in terms of Ak gives

J
Ads0 A O Ol3 2.3.21

Therefore, by letting

Ojk OBJO 2.3.22

Eq. 2.3.21 becomes

[} 1'1
A = ijAkQJk , 2.3.23

for all jJ and k, and by Def. A.2, Ak is similar to A

J .
Corollary 2.3.2.1: The associated matrix of a connected RC graph G of

class 1 is similar to the canonical associated matrix of some canonical RC

graph of class 1 and conversely.

Proof: From Theorem 2.3.2 for each separable part Pi, i=1,2,...m,

Osg sa . _ 2.3.2h4
By Theorem l.l.l, the associated matrix of G is
[ 1 1 [ A2 1, .1 1 A1 1.-1
AJ <:> CXBJ A CXSJ
2 e O 2 O 2 O
Ay = Osy Ag Qey 2.3.25

O ..AI; O a‘;‘J LC) 'Al: O .am

e - - -

vhere diag (At,Ai,...,AE) is the associated matrix of a union of m-canonical

RC graphs of class 1 at one vertex and hence is a canonical RC graph of class 1.

Converse: The converse follows directly by solving Eq. 2.3.25 for

1 .2 m
diag (AB,AS,. .o ,As).
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RL Graphs
. - 1. . - -
Lemma 2.3.2: Let Pp+l = Gp+l U GX.‘e a part su?goghat Gp+l is a connected
g-element graph of p+l vertices and GV is a forrest of l-element graphs

having v vertices, where G§+l and Gi are united at v vertices, v<p. Then,

l. there exists a star tree TS of G§+l which is a maximum order tree of

P y and
p+l -1
2. the associated matrix of P is A = =L

-1
p+1l )

7 ]
S53(Gy + 855G585,) Sy

+1 and label it p+l. Label the remaining

vertices 1, 2, ..., p. Consider the star representation T of the p+l
g s

p+l

Proof: Select any vertex of Gg

vertices of G given bty the g-elements tetween vertices 1 and p+l, 2 and

p+l, ..., p and p+l. Since G§+l is connected, at least one of the g-elements,
say G,,, of T 1is non-zero. Furthermore, by the connectedness of Gg sy the

11 s (10) p+l
maximum numbter of g-elements in any tree of Pp+1 is p . Ts has p g-elements.,

Ts is an acceptable formulation tree by Def., 1.1.3 if only the associated
matrix corresponding to TS exists. The associated matrix corresponding to Ts
by Lemma 1.1.2 is

-1 ? Q : -1
A= -L 523(G1 + °22G2522) 523.

Since some of the g-elements of Ts can be zero, it is oaly necessary to

show that (G, + S..G.S!'.) is nonsingular. By allowing the appropriate
1 2272722 2 g 2

- r + =
g-elements of the complete graph Qp+l to be zero, then Gp?l p+1°

Correspondingly, the sukset 822 of the f seg matrix of P is given ty

p+1
Eq. 2.1.5 for m=p. G, + S..G,S!, is nonsingular bty Theorem A.6 if only it

1 2272722
cannot be permuted into diag (Kll’ K22) where Kl

+ S

1 is a @ x @ matrix and

y . H N 4 N 4
K22 is a p-q x p-q matrix. Assume Gl 22G2822 is vermutarle into thi

form. Then from Property 2.1.1, all g-elements tetweer *hs verti es 1. O,
.esy q and g+l; g+2, ..., P are zero., This is a contradiction s.nce

g
Gp+l
p+l. If the vertices 1, 2, ..., q and g+l1, q+2, ..., P are :zonnected

through p+1, then K

is connected, except if these vertices are connected througn vertex

11 and K22 are to be examined individually for singularity.

Applying Theorem A.6 to K,, and K,)2 and repeating the atove argument,

Gl + 822G28é2 is nonsingular. Hence, the associated mairix corresponding to

TS exist, and kence, T_ is a maximum order tree of Pp+l which prove part 1.

=

of the lemma. Part 2. of the lemma follows from Lemma 1.1l.Z2.
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Lemma 2.3.3: Let Sf be given by Eq. 2.1.5, then st% is nonsingular.

Proof: From Eg. 2.1.5,

—

m -l . [ . -l

-l m 3 .
|-

sfsf = 2.3.26

. . =1

"l o . . -l m

is a m x m matrix. By Theqjem A.6, SfS% is nonsingular.

Ky Ko

Lemma 2.3.4: Let K = where and are square submatrices
. KiE K22 , Kll K22 : ’

be a positive definite matrix, then Kil and Ké2 are positive definite.

Proof: Since K is positive definite, then

K1 504

[x' X! >0 2.3.27
Ki2 K22 X2
for all vectors X = [ ! Xé]'; Let X, = 0, it then follows from Eq. 2.3.27

that

2

XiK11X1> 0 2.3.28

for all Xl¥0. By Definition A.1l, Kil is positiie definite. Similarly, by
letting X;=0, it then follows from Eq. 2.3.27, that

1
XK p0%e™ O 2.3.29
for X2¥O. Hence, K22 is positive definite by Definition A.l which proves the

lemma.

Theorem 2.3.3: Let Pp+l = G§+l U Gl be the graph of Lemma 2.3.2. Then
there exists a graph P obtained by uniting Gl with a complete g-element
graph Qv at v vertices such that the associated matrices of P and Pv are

identical.

Proof: TLet P +1 be written as the union of two complete graphs Qp 41 and
1

Q where Qp+1 P+l and Qv v' Select Ts of Lemma 2.3.2 as the tree of

P

b4l The f seg matrix by Lemma 1.1.0 is
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5, = [I 5.0 523] . 2.3.30

Since there are in general more g-elements than l-elements, S8 can be

partitioned as follows

* *
Iv o) 822 823

w0
"

2.3.31
*
o I 852 0
1
where Iv corresponds to the branches of Ts which are incident to Gv' The

assoclated matrix corresponding to Ts by Lemma 2.3.2 is

.=l _ =la, [ ' ] -1
Ag = -L Ryp = =L "S53 Gy + 85505855 | "853 2.3.32
K
-1 : 11 K12
! -— -

Let [Gl + S22G2822 ] =K = ok where Kll is a v x v matrix.
K12 22

Gl + 822G2Sé2 is positive definite by Theorem 1.1.0. K 1s positive definite

by Theorem A.S. K11 is positive definite by Lemma 2.3.4. Therefore Eq. 2.3.32
is written

>
I
]
=
jos]
1

S*
T [s*' o] K1 Ko 23| 2.3.33

23
]
or Ko KpldLO

-1 Loy,
Ag = -LTRy, = -L7SEIK) SX.. 2.3.34

Now construct the graph Pv of the theorem where Gi is given and the elements
* *

of Qs are to be calculated. Select the tree Tg from Qs such that T; is a

subtree of TS. The f seg matrix of Pv by Lemma 1.1.1 is

s* = [ I, S%, 853], 2.3.35

where 852 and S%. are identical to the submatrices of Eq. 2.3.31. The

23
associated matrix corresponding to T; by Lemma 2.3.2 is
l "l —l

= -L s} [GI + sx.6asx1] TSk

A¥ = -L” . 2.3.36

*
R32 23 23

Let Egs. 2.3.34 and 2.3.36 be equated and then premultiplied by S¥*.L and

23
postmltiplied by Sgé which gives
-1
* * ! * *' * ¥* ! %* * 1 * *1 e3e
523523%11535523 = 825533 [Gl + 522G5322] 534523 2.3.37
853 is given by Eq. 2.1.5 and hence by Lemmsa 2.3.3, 853853 is nonsingular.

Therefore, Eq. 2.3.37 is written as
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G¥ O I

[I 552] 1 = Kﬁ 2.3.38
0] GE Sgé
where Kii exists since Kil was shown to be positive definite. Eq. 2.3.38 can

be written as Eq. 2.3.1 and hence satisfies the hypothesis of Lemma 2.3.1.
Therefore, there exists a unique set of diagonal entries Gij diag (G{, Gg)
such that the associated matrices of Pp+l and Pv are identical, thus proving

the theorem.

Corollary 2.3.3: Every part Pp of a RL graph of class 1 heving a
*
l-element subgraph of v vertices cen be reduced to a part P = Qv U Qg
v<p+l, where the complete graphs Qv and Qv are united at v vertices.

Proof: By Lemma 2.2.1, class 1 graphs satisfy the hypothesis of Theorem
2.3.3 and hence are reducible to P . Some of the elements of the complete

graphs Q and Qs may be zero.

Definition 2.3. 3 A graph P is said to be a canonical RLAEE_Ph of class 1
if and only if P Q U Qv where the two complete graphs are united at v

vertices and where Qv has a connected subgraph composed of non-zero g-elements

incident to all v of the vertices. The associated matrix corresponding to

any maximum order star tree of Pv is sald to be the canonical associated matrix

of a RL graph of class 1.

[
Theorem 2.3.4: Let S, = [8122= 823] = [I 822| 823] be the f seg matrix

corresponding to a maximum order star tree T of a canonicel RL graph P of

class 1. Then the canonical associated matrix of Pv is

-1
Ag = -L R22

such that
1. L = L2 = dia.g (Lll, L22, ce ey Lnn, Ll2’ Ll3’ ceey Lln) ccey Ln-l n)
2.3.39

where L2 is the chord l-element matrix,

2. = 5'3[ 122 G Size]-lsa = Sp3 [313] -1823 2.3.40

where GB = diag (Gl’ 62), Gl and G2 are the branch and chord g-element matrices

respectively, and

3. gij = .(;iJ for i#3j, 1,3,=1,2,...,n

n
8y = Z G,y 5 for 1=1,2,...,n

2.3.41
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*
et o [z 1

i
[I S¥ ] = K 2.3.38
22 , 11
o G ||sx

where Kii exists since Kll was shown to be positive definite. Eq. 2.3.38 can
be written as Eq. 2.3.1 and hence satisfies the hypothesis of Lemma 2.3.1.

* O
1 diag (Gl, Ge)
such that the associated matrices of Pp+l and Pv are identical, thus proving

Therefore, there exists a unique set of diagonal entries G

the theorem.

Corollary 2.3.3: Every part P +1 of a RL graph of class 1 having a
*
l-element subgraph of v vertices can be reduced to a part P = Qv U Qs

v<p+l, where the complete graphs Qv and Qv are united at v vertices.

Proof: By Lemma 2.2.1, class 1 graphs satisfy the hypothesis of Theorem
2.3.3 and hence are reducible to P . Some of the elements of the complete

graphs Q and Q may be zero.

Definition 2.3. 3 A graph P is said to be a canonical RL graph of class 1
if and only if P Q U Qv where the two complete graphs are united at v

vertices and where Qv has a connected subgraph composed of non-zero g-elements

incident to all v of the vertices. The associated matrix corresponding to

any maximum order star tree of Pv is said to be the canonical associated matrix

of a RL graph of class 1.

|
Theorem 2.3.h: Let §_ = [s 22| 823] [I s22| 523] be the f seg matrix

corresponding to a maximum order star tree T of a canonical RL graph P of

class 1. Then the canonical associated matrix of Pv is

-1
As = =L R22
such that
l, L = L2 = diag (Lll, L22, LIRS ) Lnn, Lla’ Ll3’ ce oy Lln, LECIC ] Ln—l n)
2.3.39

where L2 is the chord l-element matrix,

-1

| L = 1

2. Ryp = 835 [3122 G 5122] 853 = 55 [gij] 2.3.40

where G = diag (Gl, G2), G, and G, are the branch and chord g-element matrices
respectively, and

3. 8y = 'Gij for i#3, 1,3,=1,2,...,n

n 2.3.41
gii = Z Gij for i=1,2,...,n
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where GijEGs’

Proof: 1. and 2. follow directly from Lemma 1.1.2. 3122 and 823 of the

hypothesis are given by Eq. 2.1.5 where m=n. 3. follows from 2. and Property
2.1.1.

Theorem 2.3.5: The associated matrix of every part Pp+l

RL graph of class 1 is identical to the canonical associated matrix of some

of a separable

canonical RL graph of class 1 and conversely.

g§333~ By Corollary 2.3.3 P_,) can be reduced to P, = Qi U Qs*ﬁhere Qt
and Qv are complete graphs united at v vertices. Let AJ be the associated
matrix corresponding to some maximum order tree TJ of Pv' By Lemma 2.3.2,
Pv has a maximum order star tree Ts' Let SJ and SB be the f seg matrices
corresponding to TJ and Ts respectively. By Lemma 2.3.2,
(]BJ a0 2.3.h2
Let Ss and SJ be partitioned such that the columns of the 1,1 submatrix

correspond to the g-elements and the columns of the 1,2 submatrix correspond
to the l-elements of P . Eq. 2.3.42 becomes

P
[8322 8523] = Clsj [3322 5323] 011 p ’ 2.3.43
22

where Pjs is partitioned to conform to the partitioning of SJ’ Pll

the columns of 8322 corresponding to g-elements such that the leading columns
of S

rearranges

J22Pll correspond to the g-elements of Ts' P22 rearranges the columns of

8323 corresponding to l-elements. Since for a class 1 RL graph, there are no
l-elements in Ts’ then P22=I. Let the branch and chord g-element matrices

corresponding to T, be written

J

G, = diag (G,,G,)- 2.3.44

J

Then, the diagonal branch and chord g-element matrix Gs corresponding to the
tree T8 is the same matrix as GJ with the elements rearranged on the

diagonal. In fact,

G = PllGJPll 2.3.45

Since the l-element chord matrix L2 is not rearranged, then L2 is the same
for both trees Ts and T,. The associated matrix of Pv corresponding to the

J
tree TB by Lemma 2.3.2 is
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, -1

Ay = L s 3[ seeGsSézz] Sy03° 2.3.L6
Substituting the relations of Eqs. 2.3.43 and 2.3.45 into Eq. 2.3.46 gives

-1
1 1 1 L}

Ag = -1 3,1230 [asj 322P11PllG.jPllPllS,j22as,j] Qes803° 2.3.47
Since PllPil = I and by taking the inverse of a product of square matrices,
Eq. 2.3.47 becomes |

A = -L7Ys: [ G.S! ]"ls | 2.3.48

Ch je3 L ®32275 322 Je3’ "o

By Lemma 2.3.2, the right hand side of Eq. 2.3.48 is recognized as the
associated matrix of the reduced graph Pv corresponding to the tree TJ' Hence

A8 = AJ which proves the theorem.

Converse: The converse follows directly from Eq. 2.3.48.

Corollary 2.3.5.0: The associated matrices Al, A2, ey AJ’ ceey Ak’ ces

of a part Pp corresponding to the maximum order trees Tl, T2, vy TJ’ ey
T

k

y o+« Of & class 1 RL graph are identical.

Proof: By Theorem 2.3.5, the associated matrices AJ and Ak are identical
to the associated matrix As corresponding to the star tree Ts which exists by

Lemma 2.3.2. Hence,

8

for all J and k, thus proving the corollary.

Corollary 2.3.5.1l: The associated matrix of a connected RL graph G of

class 1 is identical to the canonical associated matrix of a canonical RL

graph of class 1 and conversely.

Proof: From Corollary 2.3.5.0 the associated matrix for each separable
S S
part P, i=1, 2, ..., m is

1 i
AJ ='A8. 2.3.50
Hence, by Theorem 1.1.1, the associated matrix of G is
'Al 7 -Al =
e O "2 O
AJ As
A= . = . . 203-51
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-1 Co1-1

Ag = -L S'23[ 822Gsss22] Sgo3* 2.3.46
Substituting the relations of Eqs. 2.3.43 and 2.3.45 into Eq. 2.3.46 gives

-1
1 1 ]

Ag = -L” 33230 [asj J22 11P11GJP11P115322033] (ay8s23° 2-3.47
Since Pllpil = I and by taking the inverse of a product of square matrices,
Eq. 2.3.47 becomes

A = -L7ls [ G.s! ]'ls . 2.3.48

8 Jas Jea " j Jea Jas

By Lemma 2.3.2, the right hand side of Eq. 2.3.48 is recognized as the
associated matrix of the reduced graph Pv corresponding to the tree TJ' Hence

A8 = Aj which proves the theorem.

Converse: The converse follows directly from Eq. 2.3.48.

Corollary 2.3.5.0: The associated matrices Al, A2, cesy AJ’ ceey Ak’ ces

of a part Pp+1 corresponding to the maximum order trees Tl, T2, eevy Tj’ ceey
Tk’ s« Of & class 1 RL graph are identical. o,
Proof: By Theorem 2.3.5, the associated matrices AJ and Ak are identical
to the associated matrix As corresponding to the star tree TB which exists by
Lemma 2.3.2. Hence,
= A = . .
A8 3 Ak 2.3.49
for all j and k, thus proving the corollary.

Corollary 2.3.5.1: The associated matrix of a connected RL graph G of

class 1 is identical to the canonical associated matrix of a canonical RL

graph of class 1 and conversely.

Proof: From Corollary 2.3.5.0 the associated matrix for each separable
G S
part P, i=1, 2, ..., m is

i 1
AJ ='As' 2.3.50
Hence, by Theorem 1.1.1, the associated matrix of G is
[ At 1 [a ]
e O |*e O
AJ A
A= . = 8 . . 2.3.51
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. 1 2 m . .
where diag (As’ As"" AS) is the associated matrix of a union of m canonical
RL graphs of class 1 at one vertex and hence, is a canonical RL graph of class
l.

Converse: The converse follows directly from Eq. 2.3.51
2.4 Conclusion.

Lemmas 2.2.0 and 2.2.1 classify all connected real linear bielement
systems whose associated matrix is of order n. The classification is
essentially a tabulation of all possible subgraphs from which the maximum

order trees of the system graph are selected.

In Section 2.3, system graphs of class 1 are considered. From physical
considerations, the g-element subgraphs of class 1 systems have at least as
many vertices as the c- or l-element subgraphs. By Corollaries 2.3.0 and
2.3.3 the g-element subgraphs are reduced to an equivalent subgraph which
retains only the vertices of the reactive elements of the system. The
reduction of the g-element subgraph is similar to the element elimination
process of Brown and Tokad(IS). Furthermore, the reduction could be
accomplished by using the wye-delta transformation on the graph. Since all
class 1 systems reduce to the same basic structure, Definitions 2.3.2 and
2.3.3 define this structure to be a canonical graph of class 1. The
canonical graph is unique in that it always has a maximum order star tree.
Corresponding to the maximum order star tree, the canonical associated matrix

is defined.

(16)

By Lemma 2.3.2, there exists an equivalence relation between the f seg
matrices of a graph. As a result of this equivalence, a similarity relation
is derived for the associated matrices of a class 1 graph. Theorem 2.3.2
gives the similarity relationship for class 1 RC graphs. By Theorem 2.3.5 the
similarity transformation for class 1 RL graphs reduces to the identity
transformation. Therefore, the associated matrix of a RL graph is independent

of the formulation tree.

A description of the entries in the C matrix, L matrix and R matrix for
canonical RC and RL graphs is given in Theorems 2.3.1 and 2.3.4. Matrices

having similar properties to the C, L and R matrix have been previously



(17) (18)

considered by Cederbaum and Brown . The effect of changing the
orientation of elements of the graph on the cancnical associated matrix is
readily calculated by the use of the similarity transformation of Theorems

2.3.2 and 2.3.5.

It is postulated from the results of Section 2.3 that cach of the other
classes of system graphs$ is rcducible to a canonical graph. Correspondingly,
a canonical associated matrix could be defined for each class and a
similarity transformation between the associated matrices derived. Finally
the entries of the C, L and R matrices of each canonical graph are to be
described and tabulated. This tabulation would then give all possible forms

of the associated matrices of a real linear bielement system.



IIT. SYNTHESIS OF A CLASS OF REAL LINEAR BIELEMENT SYSTEMS

3.0 Introduction

In this chapter, the necessary and sufficient conditions on a given
matrix such that it is realizable as a class 1 real linear bielement system,
hereafter referred to as a RC or RL graph, are developed. 1In Section 3.1
the conditions for the decomposition of a square matrix into the product of
two symmetric matrices are given. Three techniques are developed for this
decomposition. A test is also derived to determine if the given matrix can
be decomposed as the product of a diagonal matrix and a symmetric matrix.

The results of Section 3.1 are used to determine sufficient conditions for the
synthesis of RC and RL graphs in Sections 3.2 and 3.3 respectively. The
analysis of Section 1.1 imposes the necessary conditions for RC and RL graph

synthesis.

3.1 Decomposition of a Square Matrix.

From the time domain analysis of RC and RL systems of Section 1.1, the
associated matrix is always written as the product of two symmetric matrices.
Therefore, it is fundamental for synthesis that a given matrix be factorable

into the product of two symmetric matrices.

Theorem 3.1.0: If there are n real, distinct eigenvalues of the real

matrix A, then A is factorable as
A=-C R 3.1.0
where C is positive definite and R is real symmetric.

Proof: Since A is real and its eigenvaluesll, A2’ ooy An are real,

distinct, there exists a nonsingular real matrix P by Theorem A.16 such that
a=pP AP 3.1.1
whereA: diag (,\l, )*2’ ceey ,\n) Let Eq. 3.1.1 be rewritten as follows
A= P"l(P"lP')AP = (P'P)'lP'AP, 3.1.2
By letting

C=P'P 3.1.3

28
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and
R =-P'AP 3.1.k4

then A is factorable as in Eq. 3.1.0., By Theorem A.T7 C is positive definite.
Since P andJﬂ&are real, R is real, Also, since R = R', R is symmetric by

definition.

Theorem 3.1.1: Let the matrix equation

-1
f = |ec_ . g + |a =0 forQLLS, § =1,2,...0
(o] =[] "89] * [*g] g
3.1.5
where ¢,. =¢C,., .. = g., and where a,.'s are known constants, be written as
1) J1 1J J1 1J

2 . . .
a system of n nonlinear algebraic equations

falB(caj,g j) =0 foro(,ﬁ , 3=1,2, «vu,n

in n +n variables ccx., glgj. If A has real, distinct eigenvalues and if
2
Jacobian J with respect to any of the n variables does not vanish at some

pOint (Cijo’ giJo))

n vwhere xij are the remaining n variables and a n dimentional neightorhood
b* such that

2
then there exists n wunique equations ¢q(xij)’ q=1,2,..4,

1. ¢q(xij) is continuous in b¥; q=l,2,...,n2.
2. Cilo = ¢q*(xijo) where gq*, g** = 1,2,..., such that
g = ¢ *x(x ) % + q** = n2

-Xij0|<b*; a’p =l’2’oto,no

2
|<b*; q=l,2,...,‘n .

is a continuous for |x.. - X..
ij ijo
X, .
1J

Proof: The conclusion follows immediately from the Implicit Functior

Theorem, Theorem A.8, if only there exists a point such that [Cijo] -l[ gijo]
+ [aij = 0. However, A satisfies the hypothesis of Theorem 3.1.1 and

hence the point known to satisfy Egq. 3.1.5 is given by Egs. 3.1.3 and 3.1.L.

Theorem 3.1.1 indicates there are infinitely many points that will allow
A to be factored into the product of two symmetric matrices, provided of
course, the Jacobian of the hypothesis does not vanish. Since the solution of

a 'system of nonlinear algebraic equations is at best difficult to find, an
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easier method of generating the symmetric C and R matrices is desirable.
Such a method is readily obtained after the matrix equation A + C-lR = 0 is
premultiplied by C giving CA + R = O. This new matrix equation is theh
written as a system of n2 linear algebraic equations in n2 + n unknowns. As
in the nonlinear case, the solution to.the linear system is found as functions
of n of the unknowns. Therefore, by selecting arbitrary values for the n
unknowns, a symmetric C and R matrix is calculated. The C matrix must be
checked to insure that it is nonsingular, since a singular C matrix will not
give the desired factoring of A. This method of finding the C and R matrix
will be much easier than the direct solution of Eq. 3.1.5. The results of
this discussion is given by the following theorem.

Theorem 3.1.2: Let the matrix equation

ocp] - [0 < [ixg] o o

= = t
13 = ch, gij gji and where a 3 8 are known constants, be written

as a system of n 1linear algebraic equations

(g~ Nsc +g = 0 for (X 3=1,2,...n
‘o'l o 1/3ko<k oS B -

15’ giJ If the Jacobian J of %3( with respect to any

n2 of the variables does not vanish then there existd a solution of n2 of the

where c

in n2+n variables c

variables in terms of the remaining n variables.

Proof: Write the system of tio f c =0 =
rite N4 equa ns Cxl}(gcng, J) C15[3, J

1, 2, ..., n in matrix form.

BlX = B2Y 3.1.9

vhere X is a column matrix composed of the n2 variable for which the Jacobian
J ¥ O, and Y is a column vector .of the remaining n variables. B, and B ‘are

1 2

the corresponding coefficient matrices. For the linear system Det Bl = J#o0.

Hence Bl is nonsingular and the system of Eq. 3.1.9 has the solution
X = BllBeY 3.1.10

which proves the theorem.

Definition 3.1.0: A real matrix A or order n is said to be bisymmetric



if and only if A can be factored into the product of two real symmetric

matrices of order n.

Theorems 3.1.0, 3.1.1 and 3.1.2 give alternate methods of factoring a
real matrix into the product of two real symmetric matrices. Let the real
matrix A be symmetric, then C = I and R = -A is a satisfactory decomposition
of A. Since a diagonal matrix is a special form of a symmetric matrix, it is

convenient to introduce the following definition.

Definition 3.1.1: A real matrix A of order n is said to be quasisymmetric
if and only if A can be factored into the product A = -L7iR (or -RL”l) where L

is a real nonsingular diagonal matrix and R is a real symmetric matrix. If

A= -L-lR the A is said to be left quasisymmetric. If A = --RL-l then A is

said to be right quasisymmetric.

Since every quasisymmetric matrix is by definition bisymmetric but not
convergely, it is convenient to develop a method whereby a given bisymmetric

matrix can be tested for quasisymmetry.

Theorem 3.1.3: If a real matrix A is quasisymmetric, then the position

of the zero entries of A are idential to the position of the zero entries of A’.

Proof: By hypothesis, A is quasisymmetric. By Def. 3.1.1, A can either
be left or right quasisymmetric. Without loss of generality, assume A to be
left quasisymmetric. Therefore A = -L-lR where L is real, nonsingular and
diagonal and R is real symmetric. Since L is nonsingular, L has no zero
entries on the diagonal. Therefore, the zero entries of A are determined
entirely by the zero entries of R. Since R is symmctric, the zero entries of
R and R' are identical. Correspondingly, the zero entries of A = -L-lR and.

A' = -RL-l are identical.

Definition 3.1.2: A real square matrix A is said to be zero-symmetric

if and only if the zero entries of A are identical to the zero entries of A'.

If A has no zero entries, then A is zero-symmetric by definition.

Definition 3.1.3: Let A = [aij] for i, j=1, ..., n be a zero-

symmetric, bisymmetric matrix. Then the ratio matrix R is defined as



B ®10 n
1 -
21
) = O
8.31
1 (::)- ®1n
- —
a nl 3.1.11

an2
annl n
0 I
- n n-l_
for all 8,5 £ 0. If both ey = 0 and By = 0, then R is given by Egq. 3.1.11

with the row containing aij/aji deleted.

Theorem 3.1l.4: A zero-symmetric, bisymmetric matrix A or order n is

quasisymmetric if and only if the rank of the ratio matrix R is less than n.

Proof: Since A can either be left or right quasisymmetric, without loss

of generality assume A to be left quasisymmetric. The matrix reiation
. -1 .
[aij] = diag (1, 1, «.. 1) [gij] 3.1.12

fori, j=1, 2, ... n and where gij = 8.4 is written as a system of n” - n

J

equations in n unknowns lk’ k=1, 2, ... n, as
ElI=0n 3.1.33

where R is the ratio matrix and 1 is the vector [ll 12 coe ln] '« By Theorem
A.9, the rank of R less than n is both necessary and sufficient for A to be

quasisymmetric.

3.2 Synthesis of RC Graphs.

From the anal;,sis of RC graphs, the order of the associated mairix 1is
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alvays equal to the number of c-elements in the tree. Consequently, the
number of vertices v of a canonical RC graph is given in Lemma 2.2.0. In the
synthesis of class 1 RC graphs, the coefficient matrix A is assumed to te the
associated matrix corresponding to some maximum order tree., Hence, if A is
of order n, then the number of vertices of the synthesized class 1 RC graph
Gv will be v = n + 1. Before proceeding to the synthesis of RC graphs, the
relationship between the matrices characterized in Section 2.3 and those

obtained by the decomposition techniques of Section 3.1 is derived.

Lemma 3.2.0: Let C be a real symmetric matrix, then C is factorable
into the triple product of Eq. 2.3.7.

Proof: By Theorem A.10 there exists a unitary matrix (14)

is the jth column of V such that

V = [vi v2 eeo vn] where vJ

C= VYV 3.2.0

where [| is a diagonal matrix. Consider the maximum rank matrix T constructed

from the columns of V as follows.
T = [ V] Vo eee v (vl-ve) (vl-v3) ces (vl-vn)

(V2-v3) (V2-Vu) ...(V2-Vn) o.oooo(vn-l'vn)] 3.2.1
Since the columns of a unitary matrix are orthogonal, it is easily shown that

S =V'T 3.2.2

111
where SIll is a subset of the f seg matrix of a canonical RC grarh as given
in Theorem 2.3.1. Let C of the kypothesis te equated to C of Eq. 2.3.7

C = 571,C45]y," 3.2.3
Eq. 3.2.3 is a system of (n2+n)/2 linear nonhomogeneous algetraic equations
in (ne*n)/E unknowns Cijecs for i<y, 1, =1, 2, ..., n, which satisfies
the hypothesis of Lemma 2.3.1. Hence, C is factoratle into the tripie
product of Eq. 2.3.7.

Lemma 3.2.1: Let R e a real symmetric matrix. Then R is factorable
into the triple product of Eq. 2.3.8.

Proof: The proof is identical to the proof of Lemma 3.2.2 with C

replaced »y R, Ssll replaced by S,, and Eq. 2.3.7 replaced by Eq. 2.3.8.

12
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Theorem 3.2.0: The associated matrix A of order n of a connected RC

(or RL) graph has n real eigenvalues.

Proof: Consider a canonical RC (or RL) graph whose f seg matrix SB
corresponding to a maximum order star tree Ts is given in Theorem 2.3.1
-1

(or Theorem 2.3.4) for p=n. The associated matrix As = ~-C R

11
(or Ag = 7t

R22) corresronding to Ts is also given in Theorem 2.3.1

(14, 16, 17)

(or Theorem 2.3.4). The characteristic equation for the system of

differential equations whose associated matrix is AS is given by

p(A) = 0= Det (A, - A1) = Det (-C-lRll - A1) (or Det (-=L"1R22 - AD).
3.2.4

Equivalently

p(A) = Det (R, + Ac) =0 (or Det (Ry, + AL)). 3.2.5

p(A) is an nth order polyromial in A, and hence has n roots. For the given
f seg matrix C (or L) is positive definite by Theorem 1.1.0. From Eg. 1.1.3,
Rll (or R22) is symmetric ty definition. By Theorem A.1ll the eigenvalues
of A are real. By Corollary 2.3.2.1 (or Coroliary 2.3.5.1), the associated
matrix of every connected RC (or RL) graph is similar (or idertical) to some
canonical RC (or RL) graph. By Theorem A.12 similar matrices have the same
characteristic equations and hence the same eigenvalues. The conclusion of
the theorem is now evident.

ax

Definition 3.2.0: Let 3T " AX be a system of lirear first derivative-

explicit differential equations. A is said to be the coefficient matrix of

the system.

Theorem 3.2.1: If and only 1f the cocefficient matirix A of crder n 1s

nonsingular bisymmetric then there exists a canonical RC graph Gﬁ*l for which

A is a canonical associated matrix.

Proof: Sufficiency: By hypothesis A is factoratle into the product of

two nonsingular matrices as A = C-lR. By Lemma 3.2.0, C is factora%le into
the triple product of IEq. 2.3.7. By Lemmsa 3.2.1, R is factoratle into tkre
triple product of Eq. 2.3.8. The f seg matrix Ss correspeniding to star tree

Ts is given
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5, = [SIll 512] 3.2.6
where SIll and 512 are given in the proofs of Lemma 3.2.0 and 3.2.1
respectively. The element values Cij and Gij are found as in the proofs of

Lemmas 3.2.0 and 3.2.1 respectively. Hence, by construction, there exists a

canonical RC graph Gn+l for which A is the canonical associated matrix.

Necessity: By Theorem 2.4.0, A is bisymmetric. By Theorem 1.1.0 and
Corollary 1.1.0, C and Rll
nonsingular by Theorem A.13. By Theorem A.l4, Det A = Det C~

are positive &efinite and hence C and R are
1

Det R22:>O.
Therefore A is nonsingular by Theorem A.1l5.

Corollary 3.2.1: If the coefficient matrix A has real, distinct,

negative, non-zero eigenvalues, then there exists a canonical RC graph with A
as a canonical associated matrix such that A = -C-lR where C and R are

positive definite.

Proof: From Theorem 3.1.0, A is factorable as -C-lR where C is positive

definite.. From Eq. 3.1l.4

R=-P'AP =P (-\)P. 3.2.7

Since all the eigenvalues are distinct and nonzero, [\is diagonal and
nonsingular. Therefore, R is nonsingular since P is nonsingular. Since all
of the eigenvalues are negative, then (1/\) is positive definite by Theorem
A.3. Hence ty Theorem A.4, R is positive definite. By Def. 3.1.0, A is
bisymmetric. A 1s nonsingular since C and R are positive definite. Therefore

from Theorem 3.2.1 the conclusion of the corollary follows.

Corollary 3.2.1 imposes one condition on the coefficient matrix A such
that it can be decomposed into the product of two positive definite matrices.
Theorem 1.1.0 and Corollary 1.1.0 indicate that the C and tne R matrix being
positive definite is a necessary condition for the RC graph to have non-
negative elements. Necessary and sufficient conditions for which a coefficient
matrix is realizatle as a canonical RC graph with non-negative elements is

given in the following theorem.

Theorem: 3.2.2: If and only is the coefficient matrix A‘=:[aij] order
. -1
n is bysymmetric such that [ aij] = - [Cij] [gij] where
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1. c¢,, L0
135 for i 4 j 1, 3=1,2, ooy n
85K ©
2. cii>0
fOI‘ i=l’ 2, coey Ne.
gy > O

n
3. 2c1i> Z Cix for at least one 1 and
k=1
n
2, > Y ey, for all other i,
k=1
n
Egii > kglgik for at least one i and

n
2gii > kglgik for all other i

A O
and such that neither [c..] nor [g ] are permutable into where
ij i 0 B

A and B are square, then there exists a canonical RC graph Gn+l with non-

negative elements for which A is a canonical associated matrix.

Proof: Sufficiency: From 1., 2., and 3. of the hypothesis and by
Theorem 2.6 [ciJ] and [gij] are nonsingular. Therefore, A is nonsingular.
By hypothesis, A is bisymmetric, and hence, from Theorem 3.2.1, there exists

a canonical RC graph Gn+l' The element values are calculated by writing
o]

Eq. 3.2.3 as a system of n” equations. This system of equations satisfies
the hypothesis of Lemma 2.3,1 in such a way that all element values are non-

negative.
Necessity: Follows directly from Theorem 2.3.1.

3.3 Synthesis of RL Graphs.

In the synthesis of RC graphs, it was determined that the order of the
associated matrix uniquely gives the number of vertices for each class of
graphs. This is not the case for the RL graph. The order of the associated
matrix gives only the bounds on the number of vertices v of the l-element
subgraph Gi of the RL graph. However, since the g-element subtgrarh Gg of the
RL grarh can be reduced to have the same vertices as Gi, the bounds on the

vertices are to be used in the synthesis of RL graphs.
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Definition 3.3.0: Let the matrix S} of order (v-1, v(v-1)/2) be given
by S, of Eq. 2.1.5,

s* = S, 3.3.0

then S, 1s defined to be the set of all matrices CTV of order (v-1, n)
J
composed of any n columns of S: for v=r, r+l, ..., 2n and where r is the

smailest positive integer such that r(r+l)/2 > n.

Lemma 3.3.0: Sv n for v=r, r+l, ..., 2n of Def. 3.3.0 is the set of
- )

all submatrices 523 of the f seg matrix as given in Theorem 2.3.h-for all
canonical RL graphs Gv having only n nonzero l-elements distributed on the v

vertices for r s;'v<; 2n where r is the smallest integer satisfying

r(r+l)/2 > n.

Proof: Consider 83 of Eq. 3.3.0. 83 = 823
the hypothesis for all v(v-l)/2 l-elements nonzero. Since only n of the

of the canonical graph Gv of

l-elements are nonzero, then 52 is composed of n of the columns of S;. But

3

SV 0 is the set of all matrices Cf; composed of n columns from 83. By Lemma
J
2.2.1, the number of vertices v is bounded by r and 2n. Therefore, the

conclusion follows for all GV where r g vg en.,

Lemma 3.3.1: Let R be a real symmetric matrix of order n. If

e .
Det ((TVR Cf;) £ 0 for some (j;re Sy,n then R is factorable into the triple
product of Eq. 2.3.40.

Proof: Let R be equated to R,, of Eq. 2.3.40.

-1
= ' ! a
R = 523[3122G38122] 523 3.3.1
Let 823 of Eq. 3.3.1 be equal to}SV of the hypothesis. This can always be
done since ty Lemma 3.3.0 Sv n ie the set of all 823 for a canonical RL graph
) .

Gv and since by Corollary 2.3.5.1 the associated matrix of the graph is
independent of the formulation tree. Let Eq. 3.3.1 be premultiplied by (f;
and pogtmultiplied by Cf&, Therefore

d.RO, = 0,0, [5122Gssi22] -ldv i 3.3.2

By hypothesis, Det (O‘VRO"’I) # 0, and hence Eq. 3.3.2 is solved as follows

SI22GsSi22 = cxvcj; [CTQchl] -lCT;CT;‘ 3.3.3
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From Eq. 3.3.3, SIZQGsSé2 is a real, symmetric matrix. Hence, by Theorem

A.10, there exists a unitary matrix V = [vl Vg oo v‘j ...] where v.j is the

jth column of V such that

' -—
SI22688122 =V'yv 3.3.4
where [/ is a diagonal matrix. Let T be the transformation of Eq. 3.2.1.
Therefore,
— []
Spop = V'T 3-3-5

where 8122 is a subset of the f seg matrix of a canonical RL graph as given
in Theorem 2.3.4. Eq. 3.3.4 is a system of linear nonhomogeneous algebraic
equations which satisfy the hypothesis of Lemma 2.3.1. Hence R is factorable
into the triple product of Eq. 2.3.L40.

Theorem 3.3.0: 1If and only if the coefficient matrix A of order n is
left duasisymmetric‘where A= -L-lR and such that Det (CTVRCT;) # O for some
o} €S then there exists a canonical RL graph G, for which A is the

v<Tv,n v

associated matrix.

Proof: Sufficiency: By hypothesis A is left quasisymmetric, therefore

factorable as -L-lR where L is diagonal and R is symmetric. By Lemma 3.3.1
R is factorable into the triple product of Eq. 2.3.&0. The f seg matrix SS

corresponding to a star tree TB is given by

By = [S'I22. 823 ] 3.3.6
where 8122 is given by Eq. 3.3.5 and 823 = Cf; of the hypothesis. The g-element
values GiJ are calculated as in the proof of Lemma 3.3.1. The l-element
values are obtained directly by setting L = L2 of Eq. 2.3.39. Hence by
construction, there exists a canonical RL graph Gv for which A is the

assoclated matrix.

Necessity: By Theorem 2.3.4, A is left quasisymmetric. Leto:r = S2
This is always possible by Lemma 3.3.0. From Eq. 2.3.40, calculate
1) — 1 1)
Det (823R22823) = Det (CXVR(j;). By Lemma 2.3.3, 823823 is nonsingular.
Hence, Det (823R28é3) # O which completes the proof.
Theorem 3.3.1l: If and only 1f the coefficient matrix A or order n is

left quasisymmetric where A = -L-lR such that

3°
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]
1. Det (CXQR(I;) £ O for some Cfve Sv,n
2. L is diagonal and positive definite, and

3. For [sij] = O:,O:’,(CvaO?,);lO'v()’",

8y < O for i £ J

81 >0 for all 1 and
n

2g,, = kglgik for all i

where i, j =1, 2, ..., n, then there exists a canonical RL graph Gv with

r s;'vsé 2n having non-negative elements for which A is the associated matrix.

Proof: Sufficiency: The hypothesis satisfies the conditions of Theorem

3.3.0, hence there exists a canonical RL graph Gv for which A is a canonical

associated matrix. By Theorem A.3, the l-elements calculated from L are

positive since L is diagonal and positive definite. All other l-elements

of the Gv are zego. The g-element values ij are calculated by wfiting Eq. 3.3.4
as a system of n linear nonhomogeneous algebraic equations. This system of
equations satisfies the hypothesis of Lemma 2.3.1 in such a way that all

element values are non-negative.

Necessity: Follows directly from Theorem 2.3.4 when Equation 2.3.40 is
solved for [8122 Gs Si22] » This can always be done by premultiplying the

and postmultiplying it by S}

equation by S 23°

23

3.4 Conclusion.

In Section 3.1, sufficient conditions for the decomposition of a real
square matrix into a bisymmetric form were given. Theorems 3.1.0, 3.l.i and
3.1.2 give three different techniques for generating the bisymmetric form.
Theorem 3.1.3 allows a given bisymmetric matrix to be tested for quasisymmetry.
In Sections 3.2 and 3.3, the necessary and sufficient conditions for the
synthesis of class 1 RC and RL graphs are given. Theorem 3.2.0 gives a
necessary condition for any coefficient matrix to be realized as an associated
matrix. The synthesis technique is given in the sufficiency proof of Theorem
3.2.1 for the RC graph and Theorem 3.3.0 for the RL graph. In Theorems 3.2.2
and 3.3.1, diagonal dominance first discussed by Burlington (20) gives the |
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necessary and sufficient conditions for the synthesis of non-negative element

RC and RL graphs respectively.



IV. THE SYNTHESIS METHOD

L.0 Introduction.

In this chapter the results of Chapter 3 are developed into a synthesis
method whereby an arbitrary coefficient matrix is examined for acceptance in
the class of realizable matrices and acceptable coefficient matrices are
realized as real linear bielement systems. Flow charts are then developed
for the determinatioh of acceptable coefficient matrices and for the synthesis
of RC and RL graphs. To illustrate the synthesis method, five examples are
carried out in detail.

4,1 Determination of Realizable Coefficient Matrices.

Before proceeding to the actual synthesis technique, the class of
coefficient matrices that can be realized as real linear bielement systems is

determined. An outline of the determination procedure follows:

1. Theorem 3.2.0 imposes a necessary condition for the decomposition of the
coefficient matrix A. Therefore, the first step is to test A for real
eigenvalues. If the eigenvalues of A are real distinct, then Theorem
3.1.0 gives a sufficient condition for the decomposition. If the
eigenvalues of A are not distinct, then the decomposition technique of
Theorem 3.1.2 is applied to determine if A is bisymmetric.

2. Theorems 3.2.1 and 3.3.0 imply that if A is to be realized as a RC or RL
graph then A must be
a. nonsingular bisymmetric,

b. nonsingular left quasisymmetric, or
c. singular left quasisymmetric.

Therefore, A must be tested for singularity. Theorems 3.1.3 and 3.1.4 give

the necessary and sufficient conditions for A to be quasisymmetric. Therefore,

A must be tested for zero-symmetry and the rank of the ratio matrix must be

calculated. Finally, A must be checked for left or right quasisymmetry.

The procedure for determining if an arbitrary coefficient matrix is
realizable as a real linear bielement system is illustrated in the flow chart
of Fig. 4.1.0.

Example 1: Consider the coefficient matrix A given by

L1
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Coefficient
Matrix A of
Order n
Are The
Eigenvalues of F‘ﬁo_‘ Stop
A Real?
Is A
Nonsingular?
Yes No
Is A Is A No Sto
Zero-symmetric? Zero-symmetric? [ P
Yes Yes
Is The Rank Is The Rank
No
of B<n? of B<n? 5| Stop
No V Yes Yes
Is A Left Is A Left go Stop
No Quasisymmetric? Quasisymmetric?
No Y Yes Yes
RC Graph Synthesis - ‘ RL Graph Synthesis

Figure 4.1.0 Flow Chart for the Determination of Acceptable Coefficient
Matrices '
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-1 -0.2
A = . h’oloo
O -lo"l'

The eigenvalues of A are calculated as the roots of Det (A - )\I)vs 0.

Ay
A, = -1k

Therefore A is nonsingular. A is not zero-symmetric. Hence, from Fig.

Hence,
"loo

L.1.1

4.1.0, A can only be realized as a RC graph.

Example 2: Consider the coefficient matrix given by

8 2 =2

A=| 2 -2 -10 |. k.1.2
5 1 =22

The eigenvalues of A are
)\l = -2.715
A, = -8.170 4.1.3
=-21.116
A3

Therefore A'is nonsingular. Since A has no zero entries, A is zero-symmetric
by definition. The ratio matrix from Def. 3.1.2 is

1 -1 0
E=|1 0 -2/5]. h.1.k
0 1 -10

The rank of R is 3, and hence, A can be realized only as & RC graph.

Example 3: Consider the coefficient matrix given by

-8 L ok
A= | 0 -12 -k4|. 4.1.5
0 -4 -12

The eigenvalues of A are



Therefore A is nonsingular.

be realized as a RC graph.

L

Al:’ -8
A=

)(3 = =16

4.1.6

Since A is not zero-symmetric, then A can only

In this example, there is no guarantee that A can

be decomposed since the eigenvalues of A are not distiﬁct.

" Example L4: Consider the coefficient matrix given by

The eigenvalues of A are

Therefore A is singular. By inspection, A is symmetric and hence left-
quasisymmetric. Hence, from Fig. 4.1.0, A can be realized only as the

2 1 1
A=|1 3 -2,
1 -2 3

Ay= o
A~2 = -3
A.3 = -5

associated matrix of an RL graph.

Example 5: Consider the coefficient matrix given by

The eigenvalues of A are

Therefore, A is nonsingular.

2y 7T 11
A=-|14 46 14 |.
33 21 T2
Aq = -16.765
Ao = -37.485
A 3 = -87.755

L.1.7

4.1.8

L.1.9

4.1.10

Since A has no zero entries, A is zero-symmetric
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b, definition. The ratio matrix from Def. 3.1.2 is

1 -1/2 0
E= |1 O -1/} L.1.11
0 1 -2/3

From Eq. 4.1.11, Det R = O, and therefore the rank of R is less than the order
of A. Hence, A is quasisymmctric. A must now be checked for left or right.
quasisymmetry. If A is right quasisymmetric, then A can only be realized by
a RC graph. If A is left quasisymmetric, then A can be realized as a RC graph
or a RL graph.

4.2 The Synthesis liethod.

The technique for s;nthesizing RC and RL sraphs is described below and

summarized in the flow charts of Figures 4.2.0 and 4.2.1.
RC Graphs

If the coefficient matrix A or order n is nonsingular bisymnetric, then
A can be factored into the product of two real symmctric matrices. Any of
the methods of Section 3.1 can be used to accomplish this decomposition. If
the eigenvalues of A are not all nejative, then from vhysical considerations
it is useless to look for a positive element grash. However if all ei jenvalues
of A are negative, then all possible decompositiorns of A should be examined
and compared with 1., 2., and 3.0f Theorem 3.2.2 to determine if all of the
element values are non-nezative. If none of these decompositions of A zives
an all non-negative element graph, then A is assuned to be the associated
matrix corresponding to some other maximum order tree rather than a star tree
of the graph and the similarity transformation of Theorem 2.3.2 is made on A
for every other tree of the graph. In each case this zives a rew A matrix.
Fach new A matrix must now be decomposed and examined for non-nejzative
elements. If none of these decompositions gives a non-negative element
graph, then it must be concluded that no positive element class 1 graph
exists for which A is the associated matrix, and hence, only a RC graph with

some negative elements can be synthesized.
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RL Graphs

If the coefficient matrix A or order n is left quasisymmetric then A is
factorable as -L-lR where L is real, nonsingular diagonal and R is real
symmetric. CT;RCT; must now be tested for singularity where Civeisv,n . If
for some Cfv, Cj;RCj; is nonsingular then A can be realized as a RL graph Gv'
Here again, from physical considerations, it is useless to search for a
positive element graph if all of the eigenvalues are not negative. However,
if all of the eigenvalues are negative, then GVR 6", for all Gvf S v, Bhould
be tested for singularity. Corresponding to each va for which (T;RC?; is
nonsingular there exists a RL graph va The element values must be checked
for each graph to determine if they are negative. If all of the graphs have
negative elements, then it can be concluded that no all positive element
class 1 RL graph exists for which A is the associated matrix, and hence, only
a ﬁL graph with some negative elements can be synthesized.

The examples of Section 4.1 are now synthesized as RC or RL graphs.
These examples are to illustrate the Synthesis Method and to point out some
of the more subtle properties not directly developed in the preceeding

chapters.

Example 1: From Example 1 of Section 4.1, A is realizable as a RC graph.
Since A satisfies the hypothesis of Theorem 3.1.0, then A = -C-lR where C is
given by Eq. 3.1.3 and R is given by Eq. 3.1l.4. The P matrix can be found by

calculating the eigenvectors (lg)lof A. Therefore
-2k k
p=f + 2 4.2.0
0 -2k

where k, and k. are arbitrary constants. Letting k

1 2
Equation 3.1.3 is

1 = k2, then the C matrix of

C=P'P=k . . l"’oe'l

The R matrix of Eq. 3.1l.4 is

1. A technique for calculating the eigenvectors is given in § l, Chapter IV.
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Perform
Facm‘_’l“ As ]l e | Similarity
-C R Transformation
* on A
Calculate
Element -—| Refactor A
Valuif No
Are All Yes Are All
Eigenvalues - Elements
Negative? 0?
{ No ers
Construct Canonical RC Graph Gn+1

Figure L.2.0 Flow Chart for RC Graph Synthesis.

Factor A As Select Is Det (. RO!)
-1 ——— ——— A
-L"°R o’v esv, n = 07
[ Yes | *No
Calculate
A Mo Element
Values
Are All Ye Are A1l
Elements e Eigenvalues
0? Negative?

Y ves B

Construct Canonical RL Graph Gv

Figure 4.2.1 Flow Chart for RL Graph Synthesis.
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R = -PAP = &

The f seg submatrices are calculated as in

C11

| 1

S = [S | S ] =
8 Illl 12 0
Substituting Eqs. 4.2.1 and 4.2.3 into Eq.

of Lemma 2.2.1, the c-element values are

Cll c11 + c12
Cop| = | %22 * 12
C10 - 12

where k was assumed to be unity.

G.S.

R = 8,,G,5,,-

By applying the conclusion of Lemma 2.2.1,

Gy €11 * &p
Goo | = | 82 * 810
Gy - 85

Therefore, from Eq. 4.2.3, 4.2.4 and 4.2.6,

Ly -2
. h.2.2
"'2 606
Lemmas 3.2.0 and 3.2.1. Hence
[}
Cop Cioy G131 Gpp Gpp
|
0 1 1 0 1
I . k.2.3
1 -1 : 0 1 -1

3.2.3 and applying the conclusion

2
=13, L.2.4
2
From Eqs. 4.2.2 and 4.2.3,
Lk.2.5
the g-element values are
2
= |2 . L.2.6
L.6
the canonical RC graph G, for

3

which A 18 the corresponding canonical associated matrix is constructed in

Figure 4.2.2.

Figure 4.2.2 Synthesized RC Graph G

3

of Example 1.
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An interesting result of this method of factoring the A matrix is that
the signs of the entries in the P, C and R matrices are somewhat arbitrary.
This result follows directly from the fact that p, which is the 1th column of

i
P is an eigenvector of A corresponding to ;[1(19), But any constant times

(19)

an eigenvector is alsc an eigenvector + Therefore, the P matrix can be

written as

P* = PD L.,2.7

1
where the columns of B are made up from a particular set of eigenvectors and
Dl is a diagonal matrix with arbitrary, nonzero constants on the diagonal.
When the eigenvalues are distinct, as is the case here, the A matrix is

similar to a diagonal matrix. That is,
A=pPAP 4.2.8
Let (5 be a diagonal matrix with only +1 or -1 on the diagonal. Therefore,
60-1-060"
Since diagonal matrices commute, Eq. 4.2.8 is written as

A= P'lAIP P'l(S'A(S P. 4.2.9

By letting P of Eq. 4.2.9 equal P* of Eq. 4.2.7, then
-1 -1¢-1
A= O AW, 4.2.10

Hence, from Eqs. 4.2.8 and 4.2.10, a general P matrix is given by

P = 62131 4.2.11

where Dl,(s and B are defined in the above discussion. Therefore, the signs
of the entries in the columns of P are changed by changing the signs of the

arbitrary constants in D. and the signs of the entries in the rows of P are

1
changed by changing the signs of the diagonal entries of 65. Correspondingly,

from Eq. 4.2.11 and Eq. 3.1.3
= ' = 1
c=p2O0® =D P 4.2.12
and from Eq. 4.2.11 and Eq. 3.1.h4

R=-DR'OA\SED, = -DE'/\ BD, . 4.2.13
Therefore, by changing the signs of the entries of Dl’ the sign pattern of
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the C matrix and the R matrix are also changed. Although Egqs. 4.2.11, L4.2,12
and 4.,2.13 give a technique for changing the sign patterns of the P, C and R
matrices, it is clear that the sign of each entry of these matrices can not

be selected arbitrarily. The ability to change certain signs is illustrated

-

in the next example.

Example 2: From Ex. 2 of Section 4.1, A is realizable as an RC graph.
Using the decomposition technique of Theorem 3.1.Q, a specific P matrix is
first found to be

2.618 2.387 1.000
P=|0.778 7.308 6.975 Lh.2.14
1.000 1.000 13.533

By letting D = = I in Eg. L.2.11, then P = B. Therefore, Eq. 4.2.12

becomes
| 8.39 12.92 21.57
C=PFPB= |12.92 60.10 66.89 4.2.15
21.57 65.89 232.80
and Eq. 4.2.13 becomes
t8.8 87.5 321.8
R=-P'AR=| 07.5 212.7 1hL3.5 4.2.16
321.8  LL43.5  LOOT.5
where A = diag (-8.170, -2.715, -21.116). The subsets of the f seg matrix

3 o]
SIll and 812 are calculated as in Lemmas 3.2.0 and 3.2.1. Hence

11 Cop C33 C1p €15 O3

1 o0 o0 1 1 o

C G

11 Gpp O33 Gpp Gy3 Gpg
1 0 0o 1 1 o0

6 1 o0 -1 o0 1 c 1 o -1 o 1

|
S¢ = [sIlli 512]

o o 1 o0 -1 -1 6 o0 1 0 -1 -1

L.2.17

Substituting Eq. 4.2.15 and S 11 of Eq. 4.2.17 into Eq. 3.2.3 and applying

I
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the conclusion of Lemma 2.2.1, the c-elements are

-Cll— i cll+c12+cl£- [ 42.88]
Co2 €22%¢12%23 139.91
033 = C33+C) 3+Co3 i 321.26
Cipo -¢,, -12.96
C 5 -c, -21.57

I 023 ] | -3 | i -66.89_

Substituting Eq. 4.2.16 and S

the conclusion of Lemma 2.2.1T2the g-elements are
—Gll i i 811+312+gl3— [ 478.1 ]
Goo Boot8)1o+803 Th3.7
G33 ) 833+8)3+853 ) 4772.8
G0 815 -87.5
G5 -85 -321.8
| Go3 | L83 4 L35

4.2.18

of Eq. 4.2.17 into Eq. 4.2.5, and applying

h.2.19

Therefore, the canonical RC graph Gh for which A is the associated matrix is

constructed in Fig. L4.2.3 and the element values are given in Eq. 4.2.18 and

Eq. 4.2.19.

&)

Figure 4.2.3 Synthesized RC graph G, of Examples 2 and 3.
I
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Using the same method, a new set of element values can be calculated by
letting

D, = O = diag (-1, 1, -1). 4.2.20
Therefore Eq. 4.2.12 becomes
i
8.39 -12.92 21.57
C =D,P'ED, = [-12.92 60.10 -66.89 4.2.21

L21.57 -66.89 232.80

and Eq. 4.2.13 becomes
68.8 -87.5 321.8
R = -Dlm'Ale = |-87.5 212.7 -L4ui3.5|. L.2.22
321.8 -443.5 L0OT.S

The f seg matrix is given by Eq. 4.2.17, and the element values are calculated
as in Eqs. 4.2.18 and 4.2.19. Correspondingly, the element values are
- -

- -

c,, [ 17.04 ] Gy, [ 303.1

Cos -19.71 Gop -318.3

033 i 187.48 - G33 ) 3885.8 .03
Cis 12.92 Gy 5 87.5

Cs -21.57 Gy3 -321.8

_0234 _66.894 | Gps3 i hu3.5d

Eq. 4.2.23 gives another set of element values for the graph G, of Fig. 4.2.3.
Therefore, by comparing Eq. 4.2.23 with Eqs. 4.2.18 and 4.2.19, the number of
negative elements in Gh has been changed from six to four, and hence,
changing the sign pattern of the P matrix has reduced the number of negative
elements in the synthesized graph.

From the last two calculations, it is evident that the technique of
Theorem 3.1.0 for decomposing A will never give a positive element graph.
Hence, let A be factored by the method of Theorem 3.1.3. Therefore,

CA + R = 0 is conveniently written as
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Cc

11

=C

=C

12

13

12

€20

-C

23
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Therefore, from Eq. 4.2.24

By subtracting le from f12’ f

813

f
11

f22

f33

o1

T

£

fl3

£

f

23 |

-8 0 o
0 -2 0
0 0 -22
0O 2 0
2 0 o°
O 0 5
-2 0 O©
0-10 O
0O 0 1

nine unknowns.

-8

0 ©
-2 0
0 =22
2 0
o 5
10 1

C13 -8 2 2
o3 2 -2 10
¢33 5 1 =22

-2 -5 0 1 o0
2 0 -1 0 1
0O 2 10 0 0

8 -5 0 0 O©

2 -1 0 0 O°

0o 8 -2 0 O

10 22 0 0 O
2 2 0 0 0

0O -2 2 0 O

31 from fl3

Rewriting Eq. 4.2.25 gives

1

0]

0]

1

0

0]

Solving Eq. 4.2.26 gives

Tl
€11

-

2
2
0

-6

10

d f
an 3

5 ©0
o 1
-2 -10
-1 5
b 2
2 20

€)1 “815 "853

815 8p “Bp3 | =0 L.2.2k4
813 “€x3 B33
aAr T
o 0o ofley
0o o o]
C
0o 0 o 033
12
=1 0 0 cl3 = 0.
1 0 0 €23 4.2.25
g
0 -1 0 11
€5
0 -1 0
€33
0 0 -1 €12
g
o 0 -1 13
d | eys

5 from f23, the variables 8,5’

and 323 can be eliminated. Hence, Eq. 4.2.25 reduces to six equations in

12

13 | L.2.26

23




3

¢y Cpp 3| |8 2
[fij] = | 12 % Cp3 || 22
13 %3 %33 L° 0t -
Therefore, from Eq. 4.2.24
fll -8 0 0 -2 -5 0 1
fon 0O -2 0 -2 0 -1 O
£33 0O 0-22 0 2 10 O
f | = O 2 0 8 -5 0 o0
1o 2 0 0 2 -1 0 o
f31 O 0 5 0 8 -2 o0
f15 -2 0 0 10 22 0 O
o 0-10 0 2 22 0 O
-f23 ] ] 0O 0 1 0 -2 2 0
By subtracting f21 from fl2’ f3l from fl

2
10 | +
22

0O O
1 O
0 1
0O O
0 O0
0O O
0O O
0O ©
0O O
3 and f3

€11 “812 "833

813 "823 833
O 0 O© ¢y
o o ol |2
Cc
0O 0 0° 033
12
-1 0 O 13 |= 0.
21 0 o €23 4.2.25
g
0 -1 0© 1l
8o
0 -1 © 833
o o -1] |82
g
0 0 -1 813
4 8
| 3 A
5 from f23, the variables 8107

g13 and 323 can be eliminated. Hence, Eq. 4.2.25 reduces to six equations in
Rewriting Eq. 4.2.25 gives

nine unknown

-8 0 0
0O -2 O
0 0 -22

-2 2 0
2 0 5

i 0 10 1

S.

1

0

0]

1

0]

0

Solving Eq. 4.2.26 gives

-

Fcll

€20

2

2

5 O
o 1
-2 =10
-1 5
2
2 20

12

13 Lh.2.26

23




5k

¢y 150 21 -27
Chn 6 -3 93
€12
c 36 126 30
33 1
= ES 013 ,-I>.2.27
811 1296 408 -216
[
Bap 108 -6 242 | L 23
[ 833 | 792 2676 180_
By letting
c12 1
c)3 | = L8l o |, 4.2.28
c23 2
Eq. 4.2.27 becomes
-%1— [ 96 |
c22 192
c 96
33 | = 4.2.29
g1, 864
8n 592
L g33 i i 1152 |
Solving f,,, fl3 and f23 of Eq. 4.2.25 for 3Py 313 and 823 and evaluating
with Eqs. 4.2.28 and 4.2.29 gives
®11
Fgle 2 0 0 2-1 0|]Ce2 6
(]
- 33 | _
83| = -2 0 01l022 O ¢1s = 48| 6 L.2.30
hglu 0O 01 0-2 2 ©)3 6
| ©23 ]

From Eqs. 4.2.28, L4.2.29 and
The f seg matrix is given by

4.2.30, the C and R matrix can be constructed.

Eq. 4.2.17. The element values are calculated
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as in Egs. 4.2.18 and h°2.19°l Therefore,

‘11 €117%127%13 0
Cap | 22712723 48
C C33=C12=Co 0
Ciz = ciz 323 | ¢ N 4.2.31
C15 ¢ 0

[ Cp3 ¢o3 ] | 96 |

and

611 1178127613 268
Gan 82378107623 16
33| _ | 337137823 _ e 4.2,32
G2 812 2688
Gy €5 288

LGo3d | 823 1 L2888

are the element values of the RC graph Gu of Fig. 4.2.3. Hence, from the
decomposition technique of Theorem 3.1.2 a non-negative element graph is
synthesized.

Example 3: In the previous examples, the coefficient matrix A was
factored such that it could be realized as a non-negative element graph. In
this example, a positive element RC graph cannot be synthesized directly
from the coefficient matrix. However, if A is assumed to be the coefficient
matrix corresponding to a maximum order path tree, a non-negative element

RC graph is synthesized for which A is realized as the associated matrix.

Applying the decomposition technique of Theorem 3.1.2 to Example 3
of Sec. 4.1 gives

1. The sign differences between Eqs. 4.2.31, 4.2.32 and Eqs. 4.2.18, 4.2.19
occur because of the assumed sign pattern of Eq. 4.2.24.
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€11 12 ~C313 -6 bk €11 “&12 8;3
[fij] = | -e1p Cpp oy 0-12 b |+ |-g, By, "8y | = 0.  k.2.33
.. - 0 -4 -12 -g.. -
€13 %23 °33 813 "B23 &33
Eq. 4.2.33 is rewritten as
r 1 F- T1r -
fll 8 o0 0 o o O 1 0O O O O O 11
£, 0-12 0 -4 0 4 0 1 o o o ol]l°Cee
€33
£ 0 0-12 0 -4 4 0 0o 1 0 0 O
33 , €12
f21 0O o0 o 8 o o O O 0 -1 0 O c13
f,|=|% o o1 4 0o 0o 0o o0 -1 0 O €23 | = o.
g
£ 0O 0 0 0 8 0 0 O O O -1 O 11
g
£ » 0 o 4 12 0 0 0 0 0 -1 of]-®
£ 0O 0 -4 0 -4 12 0 0 © 0 -
32 0 1 &
=y 0 -4 0 -4 012 0 0 0 0 0 -1 | 823 b.2.3h
From f,,, f,; and f3l of Eq. 4.2.34
811 11
812 = 012 . I+02035
€13 €13

Substituting Eq. 4.2.35 into the remaining five equations of Eq. 4.2.34 and

gsolving for five of the variables in terms of the remaining four vafiables

gives
(.. ] (s 0 0o o ol*[ o v u o]
11
Cop O -4 0o o0 1 o -k 0 12| |eg,
gp | =-]0-12 1 0 0 o -4 o u]||%2]. 4.2.36
Cc
g 0O 0 0 1 o 12 0 -k 4 13
33 cos
| 855 | 0 0o 0 o 1] |-+ o0 -k 12|
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After performing the indicated operations, Eq. 4.2.36 becomes

1 0-1-1 O

c22 l-11 0] (c33

g, | = |16 -812 32 €12 4.2.37
(o]
13

g 12 0 4 -4

33 _°23_
&5 | 4 0 L -12 ]

Eqs. 4.2.35 and 4.2,37 determine all of the entries in the C and the R matrices.
Correspondingly, the element values can be calculated. However, from the

first row of Eq. 4.2.37, there exists no positive values of 15 and c13 which

10 = c13 = 0, then ¢y = O. This

implies the C matrix is singular and hence, is not a satisfactory solution.
It can then be concluded that no positive element solution exists for which A

will make c11 positivé. Furthermore, if c

is realized as the associated matrix corresponding to a maximum order star
tree. Therefore, assume A is the associated matrix of Gh of Fig. 4.2.3
corresponding to the maximum order path tree of Fig. 4.2.L4.

The relationship between A and the associated matrix for a star tree 1is
given by Eq. 2.3.19. Therefore,

Figure L4.2.4 Path Tree TJ of G-

1 1 1 8 L4 4 1-10 -8 -4 o0
v"l [ -
As = ClsJ‘A(lsJ = [0 1 1 0 -12 -4 0 1-1]| = 0-16 o] L4.2.38
0O 0 1 0 -4 -12 0O 0 1 o -4 -8

where (lsj is given in Lemma 2.3.2.

Factoring AB by the method of Theorem 3.1.3 gives



[fij] =

from which

-

From

fll

f22

f33

fo1

12

£
£15

f32

f23

1 12
12 %22
“¢13 "%23
-8 0 o0

0-16 0
o o -8
0 0 0
4 0 o
O 0 o0
0 0 O
0O 0 o
O 0 -4

+ o

O

117 T330 Top0 T3y T13
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-8 -4
0 -16
0 -4
o 0 1
O 4 o
0O 0 0
0O 0 ©
L 0 o
8 0 o0
8 0 o
o 8 o0
L 16 o
and f3
©11
€33
=8 5
013
c23

0

-8

811 €10
t | "8 &

'813 '323

O O o0 -1 O

0O 0O O -1 O

o Of Eq. L.2.L0

-gl3

-323

=0 4.2.39

h.2.40

L.2.41

Substituting Eq. 4.2.41 into the remaining three equations of Eq. 4.2.39 and
solving for three variables in terms of the remaining four variables gives
-1

€11

C =

33

€20

-l

0O O
)
o 1

O 8 L4 o0
O O L4 8
16 4 L o

C
Cc

Cc

After performing the indicated operations, Eq. 4.2.42 becomes

22
12
13

| €23 |

. L.2.42



1 0O 2 1 O

c = 0O 01 2

33

8o 16 -4 -4k 0
By letting

Eq. 4.2.43 becomes

and Eq. 4.2.41 becomes

| €23

59

L

8

-

L.2.43

L.2.hh

L.,2.45

L.2.46

Eqs. 4.2.4k4, 4.2.45 and L4.2.46 give the entries in the C and R matrices. The

element values of the RC graph Gh of Fig. 4.2.3 are calculated symbolically

in Egs. 4.2.31 and 4.2.32.

Hence,
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cll 0 Gll 0
Cpp 0 Gpp 4
3012 {aa |53 ]2 |°] b.2.4T
012 0 G12 0
013 1 Gy3 8
[C5] |1 [C23] | 8]

From Eq. 4.2.47, all elements are either positive or zero. Therefore, by the
use of a similarity transformation of A, a positive element graph is
synthesized.

Example 4: From Ex. 4 of Sect. 4.1, A can only be realized as the
associated matrix of an RL graph. Since A is symetric, a satisfactory
factoring of A is

L= I&ndR= "Ao h’oaoue

The number of vertices of a canonical RL graph for which A can be the
agsgsociated matrix is given by Lemma 2.2.1 as .

3K vghb, : L.2.49
Therefore, from Eq. 3.3.0
L1 T2 Iyp
l O 1 4,2.50
S* =
3 1o 1 A
and
Lyg Bpp L33 Lyp L3 Log

Sf: = /0 1 0 -1 0 1], 4.2.51
O 0 1 0 =1 -1
By Def. 3.3.0, .dv is a matrix composed of any three columns of either Sg, Sf:,

S?).* or Sg. Let dv = S"3" and consider
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1 01 2 11 10 7 =5
cf;ncf; = [0 1 -1 1 3 -2 0 1| = |-510]. k.2.52
1-2 3 1 -1

The determinate of Eq. 4.3.4 does not vanish, and hence by Lemma 3.3.1, R is
factorable into the triple product of Eq. 2.3.40. Therefore, carrying out
the operations of Eq. 3.3.3 glves

1] 3 -1
S.,,G_8S

oo =35 ’
122”8°I22 1 2

4.2.52

vhere S, is given by Eq. 3.3.5. From Egs. 4.2.48 and 4.2.52, A satisfies
the hypothesis of Theorem 3.3.1 and hence there exists a canonical RL graph
G3 with non-negative elements for which A is the associated matrix. The f

seg matrix is

]
> Gy Gpp Gypy Lyp Loy Iyp
- - |
5, = [3122 : v] =1 0o 1 !'1 o I 4.2.53
' .
0 1 -1 !0 1 -1

The g-elements are calculated from Eq. 4.2.42 by applying the conclusion of

Lemma 2.2.1. Hence

Gy 11812 1

1
G22 = 822"'812 = 3- 2 . )4 2. 5)4-
Gio 81 1

The l-elements are obtained directly from Eq. 4.2.48. Therefore, from Egs.

4.2.48, 4.2.53 and 4.2.54, a canonical RL graph G3 of Fig. 4.2.5 is constructed

Figure 4.2.5 Synthesized RL Graph G, of Exs. 4 and 5.

3
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Other solutions to this example can be attempted by returning to Eq.
4.2.52 and using different(f;'s obtained from S of Eq. 4.3.4. However,
there are no other solutions since any CT; composed of the columns of SE
Eq. 4.2.52 becomes a singular matrix and hence, Eq. 4.2.52 cannot be solved

]
for S;,,6 Sipp+ A similar statement is true for all (J € S¥ and (J € Sg-

Example 5: From Ex. 5 of Sect 4.1, A is quasisymmetric. Using the
factoring technique of Theorem 3.1.2, a solution to LA + R = O is

1 0 O 2y 7 11
L=]0 2 O0],R= T 23 7. 4.2.55
o 0 3 1 7 24

Since the order of A is three, as in Ex. 4, then the bounds on the number of
vertices of the RL graph G is given by Eq. 4.2.49 and correspondingly S§ and
Sj are given by Egs. 4.,2.50 and 4.2.51 respectively. Let Cfv = S§ and

consider

1 0 1 2h 7T 11 1 O T0 =21

o’vRo’;,=01-1 7 23 7||l0o 1] = [-21 30]{.
11 7 24 |1 -1 4.2.56

The determinate of Eq. 4.2.56 does not vanish, hence by Lemma 3.3.1, R is
factorable into the triple product of Eq. 2.3.40. Therefore cafrying out the
qperations of Eq. 3.3.3 gives
107 =97 ‘
S.+~-G_S! = 1 h.2.57
I227s 122
® 1659 | -97 227

where 8122 is given in Eq. 3.3.5. The f seg matrix is the same as in Ex. 4 and
is given by Eq. 4.2.53. The g-element values are calculated symbolically in
Eq. 4.2.54 and the l-elements are known from Eq. 4.2.55. Hence,

- p— - ~ - - —

[
Gy 10 L 1
G = 1 110 |, | L =] 2. 4.2.58
22 e 22
| G | 9T ] LMo ] L3
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Eq. 4.2.58 gives the element values for the canonical RL graph G, of Fig.

L.2.5.

3

Another solution of Ex. 5 is obtained by returning to Eq. 4.2.56 and
using a new Uv€ Sﬁ'. Therefore, let

and without repeating all of the details, there exists a canonical RL graph
Gh such that A is the assoclated matrix. The element values for Gh of Fig.
4.2.6 are

G | (2] [1y] (1]

Cop 3 Lo 2

33| . 102 ° , b3l _ |2 . 4.2.59
G120 1 Lo 0

6,5 2 Ly, 0

6, | 1] | 1) o

Figure 4.2.6 Synthesized Graph G), of Example 5.

Other RL graphs can be synthesized by considering a new dv€ Sf:, or
S"S* or Sg. This procedure, of course, can be repeated for all
UVGSu,3 U 85,3 U S6,3’ Furthermore, if desired, A is realizable as the
associated matrix of a canonical RC graph Gh since A is nonsingular

bisymmetric.
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4.3 Conclusion.

In this chapter, the synthesis method is described and illustrated in
the flow charts of Figs. 4.1.0, 4.2.0 and 4.2.1. Section 4.1l gives the
conditions under which a coefficient matrix can be realized as the associated
matrix of a real linear bielement system. Section 4.2 describes the synthesis
procedure whereby an acceptable coefficient matrix is decomposed and a RC or

RL graph is constructed. Five examples are also given.,

In Ex. 1, the decomposition technique of Theorem 3.1.0 is illustrated.
The method immediately synthesized a positive element graph. The same
decomposition technique is used in Ex. 2. However, it is shown that only
graphs with some negative elements can be synthesized. The linear decomposition
technique of Theorem 3.1.2 is then applied to Ex. 2, with the results that a
positive element graph 1s synthesized. In Ex. 3 the eigenvalues of A are
negative and nondistinct. A is shown to be bisymmetric by the decomposition
technique of Theorem 3.1.2. However, a positive element graph cannot be
synthesized from A. A is then assumed to be the associated matrix
corresponding to a maximum order path tree. The appropriate similarity
transformation is made on A and the new matrix is realized as the associated
matrix corresponding to a star tree of a positive element graph. In Ex. 4, a
singular matrix is realized as the associated matrix of a RL graph. In Ex. 5,
two RL graphs are synthesized from a nonsingular left. quasisymmetric

coefficient matrix.

Ideally, in the decomposition of a given matrix into the product of two
symmetric matrices, it would be desirable to have a closed form solution to
the nonlinear algebraic system of Eq. 3.1.5 in terms of n of the variables.
Then by using conditions 1., 2. and 3. of Theorem 3.2.2 or conditions 2. and
3. of Theorem 3.3.1 as bounds on the solutions, an optimum decomposition
should be attainable. Because of the inherent difficulty in the solution of
nonlinear algebraic equations, the decomposition technique of Theorem 3.1.1

was avoided in all of the examples.



V. CONCLUSION

5.0 Discussion of Results

In the preceding chapters a new concept of the classical synthesis
problem is developed. The problem involves the realizatlion of time domain
models of the form of Eq. 1.0.0 as real, linear, bielement systems. In this
sense, the synthesized graph can be thought of as a real time model of the
process described by Eq. 1.0.0.

Almost all classical synthesis techniques employ the same basic approach
in solving the synthesis problem. That is, each technique assumes a
fundamental topology for the graph and then generates conditions on the
mathematics such that the impedance, admittance or transfer function is
realizable. Examples of this method are the Foster, Brune, Darlington,
Bott-Duffin, image parameter and etc. methods 6, 7, 8). Guillemin(QS) has
stated that one of the shortcomings of this approach is the rigidness of the
assumed topology of the graph. It is felt that the synthesis technique of
Chapter III has overcome this objection in part, without abandoning the basic
approach entirely. This is accomplished by assuming the canonical topology
for the graph to be the union of complete graphs, each complete graph being
composed entirely of one type of element. The use of the complete graph gives
a generalized topology to the synthesis problembsince all other topological
structures such as paths, pis, tees, ladders and lattices are but special

cases of the complete graph.

In Chapter II, arbitrary real linear bielement systems are classified
according to a subgraph of the system from which the formulation tree is
seleqted. The fundamental properties of class 1 systems are then investigated
in detail. Class 1 systems are found to be reducible to a cancnical form.
The associated matrix corresponding to any maximum order star tree of a
canonicdl graph is defined to be the canonical associated matrix. The sign
pattern and the magnitude of the entries in the canonical associated matrix
are then calculated. All other associated matrices of a class 1 system
graph are related to the canonical associated matrix by a similarity
transformation. For the RC graph, this similarity transformation is found
from the incidence matrix. For the RL graph, the similarity transformation

65



66

reduces to the identity transformation and hence, the associated matrix is

independent of the formulation tree.

In Chapter III, a necessary condition and three techniques are given
for the decomposition of an arbitrary real square matrix into its
bisymmetric form. A test is also developed to determine when a bisymmetric
matrix is quasisymmetric. From these results necessary and sufficient
conditions are also developed to guarantee the synthesized graph has only
non-negative elements. Theorem 3.2.0 points out the well known fact that the
eigenvalues of real linear bielement systems are real, correspondingly, if

the eigenvalues are negative, these systems can be classified by their

transient solutions as overdamped.

In Chapter IV, a synthesis method is developed from which a digital
computer program can be written. It is conceivable with the use of dynamic
programming techniques (23), that an optimum solution to the synthesis

problem can be obtained.
Since the synthesized graph can be thought of as a real time model of
the process described by Eq. 1.0.0, one application of this technique is in

the area of adaptive control systems.

Model
!
y
Inpug Gain —3>= Process Qutput —
Figure 5.0.1 Elemental Adaptive System.
(2h). The

Consider the adaptive control system of Figure 5.0.0
dynamics of the process are adaptively controlled by the use of a "model" of
the system. One method of obtaining this "model"™ for suitable processes is
as follows. First, the process 1s analyzed and a time domain model of the
system in the form of Egq. 1.0.0 is obtained. Then this time domain model is
realized by the synthesis techniques of Chapter III. If the process is
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nonlinear, then a "model" can be synthesized by several linear approximations

over the operating range of the process.

5.1 Additional Problems.

As with any reséarch many additional problems arise which warrant
further investigation. The following are five problems yhich fit in this

category.

In Chapter I, restrictions were made on the graph to exclude all drivers

(2)

and to assume all initial conditions to be zero. These restrictions should
be removeq and their effect on the synthesis procedure investigated. Brown
has given the preliminary analysls for such an investigation.

In Chapter II, only class 1 systems were considered. It was postulated
in the conclusion of Chapter II that all other classes of RC and RL systems
have similar properties to class 1 systems. Further investigation is needed
in this area. IJIdeally, it would be convenient to have a canonical graph and

associated matrix for each class of systems.

The flow chart of Fig. 4.1.0 shows that only coefficient matrices that
are nonsingular left quasisymmetric can be realized as either a RC or RL
network. Therefore a closer investigation of nonsingular left quasisymmetric
matrices should give a new dimension to the duality concept of graphs.

Another interesting problem is the relationship between classical
synthesis and the synthesis of graphs from time domain models. Some research

in the area has already been done(ll).

Finally, for the "modeling" of adaptive control systems it would be
extremely useful to develop a synthesis technique for realizing time domain
models of RIC systems.
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APPENDIX A

THEOREMS AND DEFINITIONS FROM

REFERENCES

Definition A.l: (1k4, p. 256)l A real symmetric matrix A is called a

positive definite matrix if and only if the corresponding quadratic form Po-

X'AX is positive definite.

Definition A.2: (16, p. 261) A is similar to B if and only if there

exists a matrix P such that B = PAP‘l, with P nonsingular.

Theorem A.l: (2, p. 505) Let G be a connected graph containing R-, L-, b
c-, Ne-,and Nh-elements such that there are no all Ne-element circuits and no
all Nh-element segs. Then there exists a tree T of G such that
1. all Ne-elements plus as many C-elements as possible are branches of T, and

2. all Nh-elements plus as many L-elements as possible are chords of T.

Theorem A.2 : (2, p. 506) For any graph G as indicated in Theorem 2 and
tree T satisfying (1) and (2) of Theorem 2, the f-circuit and f-seg equations,

respectively, are:

-ve -
- - le
Bll B12 0 Blh U 0 0 0 le

le 322 323 B2h 0] U 0 0 vCl o
B31 0] 0] B3h 0] 0 U 0 VR2
_Bhl Bh2 Bl‘3 th 0] 0] 0 UJ VL2
VCE
-vh .

1. Parentheses give the reference and page number.

T1




T2

]
Th

(U0 0 0 s S5, S5 8, [T,

0 U 0 0 sy 8, 0 Sy |[In|

0 0 U 0 0 55, 0 8y ||y

| ° 0 0 U 8y, S Sy S ]| e E
I02 !

. By ;‘

where the columns of the unit matrix of the f-circuit (f-seg) equations

correspond to the elements of the cotree (tree) of G and the columns of the i;
non-unit matrix of the f-circuit (f-seg) equations correspond to the elements

of the tree (cotree) of G. The subscripts e, R1 or R2, L1 or L2, Cl or C2, h

indicate the V or I variables associated with Ne" R-, L-, C-, Nh-elements,
respectively.

Theorem A.3: (14, p. 257) The diagonal matrix D _(,\I,Ae, s A )

n
is positive definite if and only if all the )}s are positive.

Theorem A.4t: (21, p. 142) Let P be a real matrix of order (r,n) and
rank r (<n, naturally). Then TPT' is positive definite. If P is positive
semidefinite, then TPT' is positive definite or semidefinite.

Theorem A.5: (14, p.257) The real matrix A is symmetric and positive
definite if and only if A-l exists and is symmetric and positive definite.

Theorem A.6: (27, p. 148) Let A = [aiJ] is an arbitrary matrix. If

A cannot be transformed by a symmetrical permutation into the form [P Q]

where P and R are square and O is zero matrix and if o R

Iaiil;;jE; laijl for all 1

and a ;.| > 2: a for at least one i
ii j=1 i)
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then A ig nonsingular.

Theorem A.T: (16, p. 273) A real symmetric matrix A is positive
defingjte if and only if there exists a real nonsingular matrix P such that
A= PP'. ‘

Theorem A.8: (23, p. 147) (Implicit function theorem). Let T = (fl,...

v > fn) be a vector valued function defined on an open set S in En+k with
V& ues in E  Suppose T€C' on S. Let (5?0, 'fo) = 0 and for which the n x n
d&+terminate det [:Djfi( X3 Eb )] # O. Then there exists a k-dimensional
e X ghborhood TO of to and one, and only one, vector-valued function g, defined
on Tb and having values in En’ such that

i. g€c' on Ty

1 8 () = x5 _

ii1. T (g(T); t) = O for every t in To

Theorem A.9: (14, p.118) A necessary and sufficient condition that the

8ystem of m homogeneous linear equations in n unknowns,

I
za X =O, i-‘-‘l’ 2, ooo,m
j=1 19

have a nontrivial solution is that its coefficient matrix have a rank less

than the number of unknowns.

Theorem A.10: (14, p. 228) If A is a real symmetric matrix, there
exists an orthogonal matrix U such that U'AU is a diagonal matrix whose

diagonal elements are the characteristic roots of A.

Theorem A.11: (1k, p. 266) The roots ),, A 5» +-+» A Of the
equation det [A-IAB] = O, where A and B are symmetric and B is positive

definite, are all real.

Theorem A.12: (16, p. 313) Similar matrices have the same

characteristic polynomial.

Theorem A.13: (14, p. 255) If X'AX is positive definite, then det A>O.

Theorem A.l4: (14, p. 58) The determinant of the product of two square
matrices of order n is equal to the product of their determinants.
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Theorem A.15: (14, p. 65) A square matrix A has an inverse if and only
if det A #Oo

Theorem A.16: (22, p. 133) If the characteristic roots of a matrix A
are dis+tinct, then A is similar to a diagonal matrix.

Theorem A.17: (4, p. 4=50) Let A, and A, represent any two cut-set

matrices of a given connected graph G. Then there exists nonsingular

transSformations relating A, and A,.
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