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ABSTRACT

INVESTIGATING THE ROLE OF ELEVATED FREE FATTY ACIDS IN EPITHELIAL-MESENCHYMAL
TRANSITION OF HEPATOCELLULAR CARCINOMA

By

Aritro Nath

Hepatocellular carcinoma (HCC) is one of the deadliest forms of cancer world-wide with
steadily increasing incidence and mortality rates in the United States. Advanced HCC are
characterized by increased prevalence of intrahepatic and extrahepatic metastases, and are
associated with very poor survival rates. Epidemiological studies indicate elevated free fatty
acid (FFA) levels, the physiological manifestation of obesity, may be associated with higher
mortality rates in HCC patients. Here, we investigated the effects of elevated FFA uptake on
the induction of epithelial to mesenchymal transition (EMT) program - a pathway involved in
metastatic progression of human cancers. Our initial studies with saturated FFA palmitate
(PA) revealed a significant loss of the obligate desmosomal protein desmoplakin (DSP) in
HepG2 cells, indicating a loss of cell adhesion. We next observed enhanced migration and
invasiveness in HepG2 and Hep3B cells in response to PA treatment and confirmed loss of cell
adhesion in the two cell lines. PA treatment resulted in cytotoxicity and expression of EMT-
markers in distinct populations within the treated cells. Additionally, we identified that the
Wnt/B-catenin and TGF- signaling pathways were activated, suggesting a possible
mechanism of EMT induction by PA. We further assessed the association between CD36, a FFA
uptake gene normally expressed at low levels in hepatocytes but found to be elevated in fatty

liver, and the activation of EMT program in human HCC. Our analysis revealed a significant



association between CD36 and expression of EMT markers in the cancer genome anatomy
(TCGA) liver cancer mRNA expression dataset, which was confirmed with protein samples
from human HCC tumor biopsies. Interestingly, both studies suggested that expression of
EMT markers were not correlated with body mass index of the patients. Given the role of
exogenous FFA uptake in promoting EMT and metastasis in HCC, we further analyzed somatic
mutations, copy number variations, and gene expression profiles of fatty acid uptake and
metabolism genes in context of metastatic progression in >8,000 samples from the TCGA
database across 12-different cancer types. Our analysis revealed a significant and previously
undocumented role of fatty acid uptake and fatty acid metabolism genes in the metastatic
progression of multiple human cancers, and demonstrated the utility of genes involved in

these pathways as strong prognostic biomarkers with significant influence on survival rates.
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CHAPTER 1: INTRODUCTION

1.1 The liver and hepatocellular carcinoma

The liver is the largest vital organ in the human body involved in biosynthesis, metabolism
and detoxification. The organ receives oxygenated blood from the hepatic artery as well as
deoxygenated, nutrient-rich blood from the gastrointestinal tract. Hepatocytes are the basic
functional cellular units of the liver that are lined by endothelial cells to form hepatic
sinusoids, which facilitates the flow of blood. The sinusoids also contain specialized
macrophages known as Kupffer cells, and the bile caniculi are located adjacent to sinusoids.
The hepatocytes are involved in the metabolism of nutrients obtained from the
gastrointestinal tract including glucose metabolism (gluconeogenesis, glycogenolysis), fatty
acid metabolism (lipogenesis and oxidation), cholesterol biosynthesis, ketone body formation
(ketogenesis) and production of bile. Additionally, hepatocytes are involved in the production
of albumin, insulin-like growth factor (IGF1), clotting factors including fibrinogen and
prothrombin, and acute phase proteins such as interleukin 1 (IL-1) and tumor necrosis factor
alpha (TNF-a). The liver also processes xenobiotics including toxic substrates and drugs in to
less harmful metabolites which can be then removed through the bile or urine. (Silverthorn

et al., 2009; Tortora and Anagnostakos, 1976; Tortora and Derrickson, 2008).

Hepatocellular carcinoma (HCC) is a major form of primary hepatic malignancy that results in
uncontrolled proliferation of hepatocytes. The process of HCC tumorigenesis takes nearly 3
decades to complete following the establishment of the primary risk factor — cirrhosis

(Thorgeirsson and Grisham, 2002). The genomic and transcriptomic investigation of pre-



neoplastic phase of HCC has led to the establishment of key alterations required for HCC
pathogenesis. It is well accepted that the molecular pathogenesis of HCC involves somatic
mutations in a diverse array of genes that accumulate along the course of the disease
progression from primary malignancy to invasive and metastatic HCC. Along with the loss-of-
function somatic mutations or loss of heterozygosity in the tumor suppressors APC and TP53,
the Wnt/B-catenin signaling pathway is frequently activated in HCC through activating
mutations in the B-catenin gene (CTNNBT) or loss-of-function mutations in AXINT and AXIN2,
which promote stem-cell like properties in the HCC cells (Kan et al., 2013; Taniguchi et al.,
2002). Normal adult liver cells exhibit expression of 3-catenin primarily at the cell membrane.
However, histopathological staining for the nuclear localization of B-catenin in human HCC
tumors shows strong association with poorly-differentiated HCC, suggesting a correlation
with HCC progression (Tien et al., 2005). Nuclear translocation of -catenin results in the
recruitment of the TCF/LEF complex at the promoter of targets, and activates the
transcription of a number of oncogenic genes including matrix metalloproteinase, cyclin D1,
c-myg, survivn, fibroblast growth factors and components of the Wnt signaling pathway itself

(Nejak-Bowen and Monga, 2011).

Somatic mutations were reported in the phosphatidylinositol 3-kinase (PIK3CA) oncogene in
HCC tumors (Lee et al., 2005). PIK3CA alterations were previously reported in multiple cancer
types, with somatic missense mutations increasing the kinase activity of the protein, resulting
in the activity of multiple receptor tyrosine kinase and AKT signaling pathways (Karakas et al.,
2006). In addition, invasive HCC tumors exhibit elevated production of vascular endothelial

growth factor (VEGF) and the pro-inflammatory JAK/STAT pathway which helps promote



angiogenesis and sustain proliferation (Kan et al., 2013; Zhu et al., 2013). More recently, the
loss of miR-122 and gain of miR-21 have been found to be strongly associated with the
pathogenesis of HCC (Tsai et al., 2012; Wagenaar et al., 2015). Additionally, alterations in the
SWI/SNF chromatin remodeling complex due to mutations in ARID1 and altered expression of
VCAM1 and CDK14 were found to be associated with invasive HCC (Huang et al., 2012). Gene
expression analysis of HCC tumor samples have revealed a significant role of elevated
expression levels of hepatocyte growth factor (HGF) and its receptor (MET) (Ueki et al., 1997),
epidermal growth factor receptor (EGFR) (Tanabe et al., 2008), oncofetal gene SAL4 (Yong et
al., 2013), osteopontin (OPN) (Ye et al., 2003) and the loss of CDKN1C, SLC22A1L, and IGF2

expression (Schwienbacher et al., 2000) in HCC pathogenesis.

1.2 Staging and clinical management

The strategies for clinical management of HCC are dependent on the staging of the tumor.
The most commonly used classification methods are the Barcelona Clinic Liver Cancer group
(BCLC) staging and Child-Pugh staging. Very early stage (stage 0, Child-Pugh A) patients
exhibit in situ lesions < 2cm in diameter, which can be treated with resection with >90% 5-
year survival rates (Dai et al., 2014). Early stage (BCLC-A, Child-Pugh A or B) patients with
single nodule >2cm or up to three nodules < 3cm in diameter are also candidates for surgical
resection or transplantation with >50% 5-year survival rates (Arii et al., 2000). Intermediate
stage HCC patients (BCLC-B, Child-Pugh A or B) with large lesions but no vascular invasion
and metastases are candidates for treatment with trans-catheter arterial chemoembolization
(TACE), but the survival rates are limited to about 16 months (Llovet and Bruix, 2003).

Advanced stage patients (BCLC-C, Child-Pugh A or B) with vascular invasion and intra-hepatic



or extra-hepatic metastases are candidates for targeted chemotherapy with the tyrosine
kinase inhibitor sorafenib which results in a median increase in survival rates to approximately
11 months (Llovet et al., 2008). Terminal stage (BCLC-D, Child-Pugh C) patient exhibiting

severe hepatic dysfunctions receive supportive care and have poor survival rates < 6 months.

1.3 Epidemiology and risk factors

Worldwide, HCC is the fifth-most common form of cancer but is responsible for the second-
highest number of cancer related deaths (Ferlay J, 2013). The highest incidence rates of HCC
at >20 cases per 100,000 individuals are observed in the sub-Saharan African region and
Eastern Asia, with similar patterns of high HCC-associated mortality rates observed in these
regions (Ferlay et al., 2013). While the incidence of rates of HCC has steadily declined in the
East Asian region, the numbers of HCC cases are steadily increasing in the United States.
Between 1975 and 2005, the overall incidence rates of HCC in the United States increased
more than three times from 1.6 to 4.9 per 100,000 individuals (age-adjusted rate), with nearly

three times higher incidence rates in men than in women (Altekruse et al., 2009).

Nearly 90% of HCC cases develop from cirrhosis of the liver resulting from chronic infection by
hepatitis B or hepatitis C viral infection, alcoholic liver disease, exposure of aflatoxins, and
hereditary hemochromatosis (El-Serag and Rudolph, 2007). Chronic hepatitis B infection
contributes to nearly 50% of all HCC cases globally, however in the United States, only about
10% of the HCC cases are directly attributable to hepatitis B infection (El-Serag, 2012). In
contrast, hepatitis C infection is associated with nearly 50% of the HCC cases in the United
States (ElI-Serag and Rudolph, 2007), whereas nearly 35% of the HCC patients are not infected

with either hepatitis B or C virus.



Hepatitis B infection mostly occurs through vertical transmission from infected mother to
newborn child in high prevalence regions, although, transmission through sexual and
parenteral routes are more frequent in regions of low prevalence (El-Serag, 2012). The risk of
developing HCC in patients with elevated serum marker levels of hepatitis B viral infection
(HBe antigen) is nearly 60 times higher than the baseline levels (Yang et al., 2002). The
influence of hepatitis B infection on risk of HCC is dependent on the genotype (A-H) of the
virus. For instance, although 90% of hepatitis B infection-associated HCC occur in patients
with cirrhosis (Yang et al., 2011), genotype B is associated with HCC development without the
occurrence of cirrhosis especially in children (Ni et al., 2004). In the United States, genotypes A
and D are most prevalent but genotype D is strongly associated with the risk of HCC
development. In addition, specific mutations in the hepatitis B core promoter have been

associated with either higher or lower risk of HCC development (Yang et al., 2008a).

Most cases of hepatitis C infection occur through contaminated blood products, unsafe
injections or sexual contact. Infection with hepatitis C virus is associated with a 20-fold
increase in risk of HCC compared to baseline levels (Hsu et al., 2015). The risk of elevated HCC
in hepatitis C virus infected individuals is strongly associate with fibrosis and cirrhosis, where
15-35% of the chronic infections result in cirrhosis (Freeman et al., 2001). A meta-analysis of
epidemiological studies suggested that co-infection with both hepatitis B and C viruses has
an odds ratio of 165 to develop HCC (Donato et al., 1998). The rates of hepatitis B related HCC
have remained constant; however hepatitis C related HCC cases are progressively increasing
in the United States, with large proportions of undiagnosed chronic hepatitis infections (Davis

etal, 2010).



Excessive alcohol intake is also associated with development of cirrhosis and progression to
HCC (Bagnardi et al., 2001). However, the combined synergistic effects of alcoholism and
hepatitis infection are associated with a two-fold higher odds ratio for developing HCC
(Donato et al., 2002). Hereditary hemochromatosis and iron overload are also linked with
cirrhosis and increased risk of development of HCC, with some reports suggesting a 200-fold
increase in HCC risk (Kowdley, 2004). In addition, consumption of aflatoxin-contaminated
food has been suggested to be associated with up to 28% of all HCC cases worldwide (Liu and
Wu, 2010). The predictors of HCC also include the age and gender of the patient with cirrhosis
from different etiologies, with a higher risk in patients of older age and male sex (Sangiovanni

et al., 2004).

1.4 Obesity and HCC

Epidemiological studies suggest a strong association between obesity with the risk of
developing several types of cancer (Bianchini et al., 2002). Mortality rates in men with a body
mass index (BMI) greater than 35 were 4.5 times higher, whereas in women the mortality rates
were 1.7 times higher than individuals with normal BMI (Calle et al., 2003). Meta-analysis of
cohort studies suggest a 1.9 fold increase in risk of developing HCC in overweight individuals

(Larsson and Wolk, 2007).

Obesity is strongly associated with type Il diabetes and metabolic syndrome, manifested in
the form of hyperglycemia, hyperinsulinemia and insulin resistance, and is associated with
increased cancer risk (Giovannucci et al., 2010). In the United States, diabetes was found to be
linked with a 2-3 fold increase in risk of HCC independent of additional risk factors (Davila et

al., 2005). Up to 20% HCC cases arise without an established cirrhosis, and emerging evidence
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suggest non-alcoholic fatty liver disease (NAFLD) to be a significant risk factor for non-
cirrhotic HCC (Baffy et al., 2012). Retrospective studies in patients with HCC of unknown
etiology suggest NAFLD to be the underlying cause in most cases (Bralet et al., 2000). In the
United States, NAFLD was reported to be the risk factor for HCC in about 38% of the patients
without underling cirrhosis (Sanyal et al., 2010). Given the increasing epidemic of obesity in
the United States, the numbers of HCC cases attributed to NAFLD are expected to climb in the

coming years.

The molecular pathogenesis of obesity and NAFLD-associated HCC is thought be associated
with low-grade, chronic inflammation. Excess accumulation of fats in the liver promotes the
release of pro-inflammatory cytokines (Hotamisligil, 2006). TNFa levels are upregulated in
NAFLD liver which can activate the oncogenic NFkB, JNK, and mTOR signaling pathways
(Stickel and Hellerbrand, 2010). The activation of STAT3 transcription factor downstream of IL-
1 and IL-6 activated interleukin signaling pathways is also strongly associated with excess
accumulation of fats (Marra and Bertolani, 2009). In addition, insulin resistance and excess
levels of insulin like growth factors (IGF) are strongly associated with the pathogenesis of HCC
(Chun et al,, 2014; Siddique and Kowdley, 2011). Epidemiological studies have shown that
diets rich in saturated fats contribute significantly towards elevating risk of NAFLD (Musso et
al., 2003; Zelber-Sagi et al., 2007). Diets in which saturated fats were replaced with poly-
unsaturated fats resulted in decreased abdominal obesity and improved insulin sensitivity
(Summers et al., 2002), whereas substituting unsaturated fats with saturated fats resulted in
increased insulin resistance (Vessby et al., 2001), suggesting a potential link between the

dietary fat intake and HCC pathogenesis.



1.5 Free fatty acids and cellular signaling

While NAFLD is characterized by increase in stored triglyceride levels in adipocytes, there is a
significant increase in the levels of free fatty acids (FFA) in the serum (Cheung and Sanyal,
2008). It is increasingly being recognized that the molecular pathogenesis of NAFLD and
obesity associated metabolic syndrome and insulin resistance is associated with elevated FFA
levels (Alkhouri et al., 2009). The patients with HCC exhibit a 20-30% decrease in plasma
triglyceride levels (Motta et al., 2001), while exhibiting significant increase in levels of mono

unsaturated and saturated FFAs (Jiang et al., 2006).

Studies in mice models over-expressing DGAT, the enzyme responsible for triglyceride
biosynthesis, show that the increase in levels of triglycerides alone is not sufficient to induce
insulin resistance (Monetti et al., 2007). Additionally, inhibition of triglyceride synthesis in
obese mice elevated FFA levels and promoted liver damage and fibrosis, while improving
steatosis (Yamaguchi et al., 2007). The esterification of FFAs to triglycerides may in fact serve
as a protective mechanism, as cells treated with saturated FFAs undergo lipotoxicity
(Listenberger et al., 2003). It is also clear that not all types of FFAs have similar effects on the
lipotoxic phenotype, as saturated FFAs have been shown to have significant impact on
apoptosis, while poly-unsaturated FFAs are in fact protective against the damage caused by

saturated FFAs (Alkhouri et al., 2009; Li et al., 2009).

Consequently, a number of studies have focused on the effects of saturated FFAs such as
palmitate, the most abundant saturated FFA in the plasma as well as in the diet, on
hepatocytes to understand the effects of obesity on pathogenesis and progression of liver
diseases (Musso et al., 2009b). Studies with multiple liver cell lines and primary mouse

8



hepatocytes show that saturated FFAs induce apoptosis in hepatocytes by activating the
intrinsic mitochondrial apoptotic pathway, resulting in activation of caspase 3 and 7 following
the release of cytochrome C, in a JNK signaling-dependent manner (Malhi et al., 2006a). Our
lab has previously established that the saturated FFA palmitate inactivates RNA-dependent
protein kinase (PKR) activity, thereby inducing apoptosis via altered expression and activity of
Bcl-2 (Yang and Chan, 2009). We further found that PKR regulates the activity and expression
of IRS1 and IRS2 proteins respectively, thereby playing a prominent role in palmitate induced
insulin-resistance (Yang et al., 2010). In addition, FFAs induce lysosomal apoptosis pathways
as well by inducing lysosomal permeabilization, Bax activation and translocation (Feldstein et
al., 2006). The FFA-induced lysosomal permeabilization also results in activation of NFkB
activation and TNF-alpha dependent apoptosis in human liver (Feldstein et al.,, 2004a).
Another mechanism of FFA induced lipotoxicity involves the activation of endoplasmic
reticulum stress (ER-stress) pathway (Ron and Walter, 2007). The ER membrane bound stress
sensor inositol requiring protein (IRE1), ATF6 and protein kinase RNA-like ER kinase (PERK)
activation leads to downstream splicing and activation of X-box binding protein (XBP1). PERK
activation inhibits cellular protein synthesis by inhibiting eukaryotic initiation factor 2 alpha
(elF2a), which leads to selective activation of ATF4 transcription factor. Both ATF4 and XBP
transcribe CHOP, which drives apoptosis by inhibiting Bcl-2 expression (McCullough et al.,
2001). Palmitate could also activate ER-stress response by promoting ATF4 transcription

directly in a CREB1 dependent manner (Cho et al., 2013)

Palmitate is known to activate cell surface receptors belonging to the TNF receptor gene

family, also known as death receptors. TNFR1 activation by TNF-a can lead to cellular



apoptosis through the activation of NFkB and JNK pathway (Malhi and Gores, 2008). In
addition, palmitate activates Fas and TRAIL, which can lead to direct induction of apoptosis
(Malhi et al., 2006b). NAFLD mice models show increased levels of Fas expression as well as
elevated levels of TRAIL receptors (Malhi et al., 2007; Siebler et al., 2007). The availability of
palmitoyl CoA is the rate limiting step in the synthesis of ceramide, a complex lipid also
containing sphingosine. Elevated ceramide levels are linked with insulin resistance (Summers,
2006) and apoptosis (Paumen et al., 1997). Elevated FFA levels are associated with increased
expression of mitochondrial cytochrome P450 enzyme 2E1 (CYP2ET) and elevated production
of reactive oxygen species (ROS) (Chalasani et al., 2003), which leads to increased DNA
damage and induction of apoptosis. In addition, palmitate can also activate the toll like
receptor 4 (TLR4) which leads to activation of NFkB, TNF-a and IL-6 (Suganami et al., 2005;

Szabo et al., 2005).

Studies involving primary liver and HCC cell lines have confirmed that palmitate induces
resistance to insulin signaling in hepatocytes (Ruddock et al., 2008). Insulin resistance is
associated with release of multiple pro-inflammatory signaling molecules including tumor
necrosis factor alpha (TNF-a), interlukin-6 (IL6) and leptin (Bugianesi, 2007). Additionally,
resistance to insulin signaling leads to increased activity of insulin-like growth factor 1(IGF1), a
hormone that stimulates hepatocyte growth and imparts resistance to apoptosis (Ish-Shalom
et al., 1997; Page and Harrison, 2009). Recent studies have also shown that activation of the
insulin receptor substrate 1 (IRS1), a key molecule involved in signal transduction
downstream of insulin receptor, can suppress the activity of TGF-f3 and reduce EMT (Shi et al.,

2009).
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1.6 Regulation of FFA levels

The levels of FFAs in the liver are dependent on the balance between the synthesize of FFAs
de novo (lipogenesis), exogenous uptake from the environment and processes that utilize
FFAs including oxidation of FFAs and synthesis of triglycerides and other complex lipids

(Musso et al., 2009a).

Circulating lipids serve as the largest source for FFAs and the hepatic uptake of FFAs takes
place in a controlled, active manner through specialized membrane proteins, instead of
passive diffusion across the plasma membrane (Stremmel et al., 2001). The uptake of lipids in
the cell is dependent on the integrity of lipid rafts in membranes, which are composed of
caveolins (CAV1-3) (Pohl et al., 2004). Mice models of CAV-T knockout were shown to be
resistant against diet-induced obesity and reduced lipid accumulation (Razani et al., 2002).
Fatty acid transport proteins, especially FATP2 and FATP5, are liver-specific members of the
family responsible for hepatic uptake and metabolism of FFAs. The transcription of FATP is
regulated by PPAR-a and PPAR-y in response to elevated lipid levels or activation of
inflammatory cytokine signaling pathways (Doege and Stahl, 2006; Gertow et al., 2006). Mice
knockout model of FATP5 were found to be resistant to diet induced obesity (Hubbard et al.,
2006). Another protein, the fatty acid translocase (CD36), catalyzes the dissociation of albumin
from fatty acids and membrane integration of protonized FFAs, thereby creating a diffusion
gradient across the plasma membrane which facilitates a flip-flop of FFAs across the
membrane. Interestingly, CD36 is expressed at very low levels in hepatocytes compared to
other cell types like muscle, adipose tissues, platelets, heart and endothelial cells (Musso et al.,

2009a). However, in conditions of obesity and high fat diet, CD36 expression levels were
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found to be significantly higher than normal hepatocytes (Koonen et al., 2007; Luiken et al.,
2001). The expression of CD36 is transcriptionally regulated by liver X receptor (LXR),
pregnane X receptor (PXR) and PPAR-y, while inhibition of CD36 results in resistance to diet-

induced steatosis (Zhou et al., 2008a).

Hepatic de novo lipogenesis in the fatty liver is driven by overexpression of the sterol-
regulatory element binding protein SREBP-1¢, which was originally described as a master
regulator of lipogenesis depending on the availability of cholesterol (Brown and Goldstein,
1997; Shimomura et al., 1999). Studies in rodent models showed that SREBP-1c expression is
regulated by the nutritional status of the animals, with higher expression observed in fed
state (Horton et al., 1998; Kim et al., 1998). SREBP-1c expression is regulated by LXR, a nuclear
transcription factor activated by sensing elevated lipid levels (Kim et al., 2009). The activation
of SREBP1-c has also been attributed to elevated levels of oxidative stress and induction of ER-

stress pathways in response to elevated FFA levels (Ozcan et al., 2004).

The activation of SREBP-1c is not sufficient to drive lipogenesis, and recent studies have
shown that the carbohydrate responsive element binding protein ChREBP, which senses
glucose levels and activates transcription of genes involved in de novo lipogenesis in
hepatocytes (Uyeda and Repa, 2006b). The expression of ChREBP was shown to be regulated
by LXR as well (Cha and Repa, 2007), and the inhibition of ChREBP in the liver of obese mice

resulted in alleviation of steatosis and insulin resistance (Dentin et al., 2006).

The LXR and PXR nuclear receptor transcription factors regulate the transcription of a number

of lipid metabolism enzymes, including fatty acid synthase (FASN), stearoyl-CoA desaturase
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(SCD1), lipase (LIPE), SREBP-1c and ChREBP (Musso et al., 2009a). The peroxisome proliferator-
activated receptors (PPARs) are another family of nuclear receptor transcription factors that
form heterodimers with retinoid X receptor (RXR) and regulate lipid metabolism in the liver.
The activation of PPARa results in elevated uptake of FFAs as well as increased rates of
peroxisomal and mitochondrial B-oxidation of FFAs in hepatocytes (Reddy and Hashimoto,
2001). Studies in mice models suggest that PPARa activation is essential for steatosis and
pathogenesis of HCC (Tanaka et al., 2008). PPARy is mostly expressed in adipocytes and
regulates FFA uptake in adipocytes for triglyceride synthesis and storage, thus preventing the
harmful effects of FFAs on the hepatocytes including metabolic syndrome and insulin
resistance (Savage et al., 2003). In vitro and in vivo inhibition of PPARy was shown to reduce
cell proliferation, induce apoptosis and prevent progression of HCC metastases (Shen et al.,
2012; Yu et al., 2010). PPARS is a FFA responsive nuclear receptor which enhances FFA
uptake, oxidation and is known to promote hepatic steatosis and insulin resistance
(Nagasawa et al., 2006). The activation of PPARS can promote proliferation of HCC cells via
activation of NFkB and cyclooxygenase-2 (COX-2) signaling pathways (Glinghammar et al.,

2003).

In terms of metabolic enzymes, the fatty acid synthase (FASN) gene is expressed at low levels
in most tissues but in several types of cancer cells, overexpression of FASN was observed,
which resulted in increased de novo lipogenesis and was associated with the progression of
cancer (Flavin et al., 2010). FASN catalyzes the synthesis of palmitate from acetyl-CoA and
malonyl-CoA. The levels of FFAs including palmitate are regulated by the synthesis of

triglycerides from the fatty acids by the diacylglycerol acyltransferase enzyme (DGAT) (Yen et
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al., 2008) and lipolysis of the triglycerides by lipase enzyme (LIPE) (Holm et al., 2000). Recent
studies suggest elevated LIPE levels may be associated with enhanced proliferation rates of

cancer cells (Kuemmerle et al., 2011).

1.7 Epithelial-mesenchymal transition

Intermediate and terminal stage HCC are associated with high rates of vascular invasion and
metastases with very high recurrence rates even after surgical resection, and poor survival
rates. Most HCC metastases occur as intrahepatic metastases, while common sites of
extrahepatic metastases include lung, bone, peritoneum, spleen and lymph nodes (Tung-Ping
Poon et al., 2000). The invasiveness of HCC tumors is dependent on infiltration into the portal
vein (Toyosaka et al., 1996). Recent evidence suggest that activation of the epithelial to
mesenchymal transition or EMT program may be involved in the molecular pathogenesis of
metastasis in several cancers, including HCC (Lamouille et al, 2014). For example, the
expression of mesenchymal markers vimentin (VIM) (Hu et al., 2003) and TWIST (Lee et al,,
2006b) were found to be correlated with metastatic ability of HCC cell lines and these were

confirmed in histopathological staging of metastatic human HCC samples.

In context of cancer progression, EMT can be described as a set of well-orchestrated series of
events that enable changes in cell-cell and cell-matrix interactions, reorganize cytoskeleton,
and activate signaling pathways that enable the cells to invade through the extra cellular
matrix into the surrounding vasculature (Radisky, 2005). A key feature of epithelial tissues, like
the liver, is structural integrity maintained via cell-cell interactions involving tight junctions,
gap junctions, adherence junctions and desmosomes. In addition, the intermediate

cytoskeletal filament network and cell-matrix interactions maintain the structure and polarity
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of the epithelial tissues (Radisky, 2005). The activation of EMT program enables the cells to
acquire properties of mesenchymal cells, including loss of adhesion and polarity, and gain of
motility, invasiveness, growth signals and plasticity — features that are strongly associated

with occurrence of metastases in human cancers and poor prognosis (Tsai and Yang, 2013).

The defining feature of cells undergoing EMT is the loss of E-cadherin (CDH1) expression,
which acts as tumor suppressor by maintaining cell-cell adhesion via adherence junction and
by sequestering and inactivating the Wnt-signaling transcription factor 3-catenin (Hajra and
Fearon, 2002). The loss of E-cadherin expression has been linked to metastasis and poor-
prognosis of several cancer types (Dorudi et al.,, 1993; Kowalski et al., 2003; Sanders et al.,
1999). The mechanism of loss of E-cadherin expression involves transcriptional repression by
a number of core EMT transcription factors, including snail (SNAIT) (Batlle et al., 2000), slug
(SNAI2) (Bolos et al., 2003), twist (TWISTT1, TWIST2) (Yang et al., 2004), and zeb (ZEB1, ZEB2)
(Comijn et al., 2001; Grooteclaes and Frisch, 2000). In addition, cells undergoing EMT exhibit
loss in expression levels of a number of additional epithelial markers, including claudins
(CLDN4, CLDN?), occluding (OCLN), desmoplakin (DSP), mucin (MUCT) and cytokeratins (KRTS,
KRT18), along with gain of mesenchymal markers including fibronectin (FNT), vimentin (VIM)

and smooth-muscle actin (ACTA2) (Thiery and Sleeman, 2006).

The activation of EMT program requires expression of the core EMT transcription factors that
are regulated by a number of different upstream signaling pathways. TGF-$ signaling via
autocrine or paracrine signaling is known to promote invasiveness and metastasis (Muraoka-
Cook et al., 2005) via the induction of EMT program (Xu et al., 2009). Similarly, activation of the

Wnt/f-catenin signaling pathway has been investigated as a potent inducer of EMT (Fodde
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and Brabletz, 2007). In addition, the activation of oncogenic RAS signaling pathway, PI3K/AKT
signaling pathway and receptor tyrosine kinase pathways, including FGF, EGF, TGF and IGF,

have been strongly associated with EMT program (Larue and Bellacosa, 2005).

Nearly 60% of HCC patients exhibit loss of E-cadherin and activation of B-catenin, which
strongly correlate with intrahepatic metastases and poor survival rates (Zhai et al., 2008).
Similarly, TWIST, SNAIL, and SLUG over expression were found to be associated with EMT
induction and poor prognosis of the HCC patients, along with the activation of TGF-f3

signaling pathway (Battaglia et al., 2009; Giannelli et al., 2005; Lee et al., 2006a).

1.8 Summary and hypotheses

HCC is one of the deadliest forms of cancer with increasing incidence rates in the United
States. Advanced-stage HCC is associated with intrahepatic and extrahepatic metastases and
has very poor survival rates in response to existing therapeutic regimen. While the molecular
mechanism of HCC pathogenesis from various etiologies has been extensively studied, little is
known about the mechanism of progression to metastasis. Epidemiological studies suggest
elevated FFA levels in HCC patients, which correlate with poor survival rates. Therefore, it is
imperative to understand the mechanism by which FFA promote HCC progression, and use

this knowledge to identify better, putative, therapeutic targets.

Cancer is a complex disease arising from the combinatorial effect of a number of cellular
changes. It is recognized that these events do not arise from mutations to a single gene, but
rather from complex interactions between several cellular pathways, which allow a normal

cell to transform into a cancerous cell (Fertig et al., 2011; Hornberg et al., 2006). Hanahan and
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Weinberg described six “hallmark” capabilities that cells acquire during the course of their
development into tumors: sustained proliferation, resistance to growth suppressors, evasion
of cell death, unlimited replicative potential, induction of angiogenesis, and capability to

invade and metastasize (Hanahan and Weinberg, 2000).

The relationship between genotype and phenotype is complex and not always easily ascribed
to changes in a single gene but rather is a composite result of the different components in the
biological systems. This coupled with the availability of ‘omics’ data, have revolutionized the
previous view of single gene-phenotype correlation by demonstrating the importance of a
“systems” view that captures the inter-relationships between genes. Thus, from a systems
biology perspective, a cell can be considered an integrated system of molecular components
such as nucleotides, proteins and metabolites that together form a complex network of
interacting signaling and regulatory pathways. Cancer can be considered a perturbed state of
such networks, and it has been suggested that elucidating the topological and dynamic
features of these networks can help generate plausible hypothesis to identify novel markers
and therapeutic target. Network modeling approaches can be applied to study the dynamics
of signaling and regulatory pathways that may be involved in the progression of cancer. The
motivation behind these approaches is to prevent cancer progression by inactivating tumor-
specific signaling pathways. However, we still lack suitable strategies to identify ideal
candidates from large-scale network models. Potentially, a graph-theoretic solution can be
utilized to identify suitable targeted therapeutic candidates from, for instance, an EMT or fatty
acid metabolism regulatory network. In chapter 2 (section 1), we investigate the

importance of network hierarchy in determining the efficacy of a drug on simulated signaling
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networks (Nath and Chan, 2012). We test the utility of this approach on a model drug-target
signaling network. This proof-of-concept study establishes a method that could be applied in

the future to analyze the drug-response networks of patients with elevated FFA levels.

In recent years, a number of studies have integrated large-scale biological networks with
transcriptomic data to identify functional transcriptional regulatory or signaling modules
relevant to cancer (Chuang et al., 2007; Ulitsky and Shamir, 2007). The advantage of using
such an integrated framework for analysis is that they utilize topological properties of
networks along with features contained in the high-throughput data itself. In general, these
approaches start with a constraint graph (representing a biological network), consisting of
nodes (representing genes or proteins, etc.) and edges (representing biological relationship
between nodes). Next, gene expression data is mapped on to the network. Various heuristics
then seek sub-networks or modules that share high similarity of expression between
connected components. The resultant modules can then be studied further to elucidate
regulatory programs or identify network markers that can explain the phenotype. An
important class of large scale biological data analysis involves study of similarity relationships
between genes from transcriptomic data. These approaches rely on the assumption that
genes that exhibit similar expression patterns across different conditions share a common
function. For instance, two genes that are co-expressed may be regulated by a common
transcription factor or may be involved in a common molecular complex or pathway. In
chapter 2 (section 2), we adapt one such approach based on information theory to quantify
the synergy or co-operativity between expression levels of two genes in palmitate treated

HepG2 cells (Wang et al., 2011). This approach reflects on the contribution of two interacting

18



genes as whole, instead of the sum of their individual parts, and could reveal new insights

into the genetic mechanism by which FFAs could promote HCC progression.

The synergy analysis of HepG2 cells revealed that desmoplakin expression levels were
significantly reduced in palmitate treated cells. Given the fact loss of DSP, a cell adhesion
protein, is a characteristic feature of cells undergoing EMT. In chapter 3, we investigate the
role of palmitate on the induction of EMT program by characterizing the in vitro effects of
palmitate on migration, invasion, cell adhesion and EMT marker expression in HepG2 and
Hep3B cells (Nath et al., 2015). We further identify the upstream signaling pathways that
activate EMT program in the palmitate treated cells. We further hypothesize that the CD36-
mediated uptake of FFAs is critical for EMT induction in HCC cells. To assess the critical role of
elevate FFA uptake via CD36, we analyze the association between CD36 and EMT markers in

TCGA liver cancer mRNA dataset and human HCC tumor biopsies.

In the past several years, significant advances have been made in high-throughput
sequencing technologies that have permitted the comparison of cancer genomes to
reference human genomes across multiple cancer types. The establishments of cancer
genome sequencing consortiums like The Cancer Genome Atlas (TCGA) and International
Cancer Genome Consortium (ICGC) has provided a platform to integrate data from hundreds
of datasets (Wheeler and Wang, 2013). The TCGA project has provided a wealth of knowledge
in context of the landscape of somatic mutations and copy number variations that are
frequently observed across all human cancers (Beroukhim et al., 2010; Ciriello et al., 2013;
Zack et al.,, 2013). However, a very large proportion of the genetic alterations from the

genome-wide studies were found at very low frequencies, and determining the functional
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relevance of such alterations remains a fundamental challenge. An alternative, hypothesis-
driven, approach to utilize the wealth of TCGA information involves systematic probe of a
specific pathway or gene signature in single or multiple cancer types across genomic and
transcriptomic datasets. For example, a systematic exploration of components of mammalian
SWI/SNF complex revealed a significant role of the chromatin remodeling complex in
tumorigenesis (Kadoch et al,, 2013). Along similar lines, APOBEC cytidine deaminase
mutations were found to be a common feature across several cancer types (Roberts et al.,
2013). In addition to establishing statistical association between genetic alterations and the
phenotype, the analysis of TCGA data in these studies determined clinical relevance of the
alterations by demonstrating their influence on patient prognosis and survival. Thus, analysis
of existing, large-scale datasets can provide novel insights into the biology of cancers, help in
the discovery of prognostic biomarkers and potential therapeutic targets. As little is known
about the role of fatty acid uptake and metabolism in cancer progression, we hypothesize
that the alterations in fatty acid uptake and metabolism promote the induction of EMT and
metastatic progression of multiple human cancers. In chapter 4, we construct a literature-
derived network of genes involved in cancer cell metabolism and compare the mutation,
copy number variation and gene expression patterns between primary and metastatic tumors
across multiple cancer types (Nath and Chan, 2015). We further assess the predictive and
prognostic utility of the genes with significant accumulation of alterations in metastatic

tumors based on their influence on patient survival rates.

In chapter 5, we summarize the findings from the preceding chapters and discuss the future

studies that can be derived from this work. We discuss the potential mechanism behind loss
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of DSP expression and its influence on the induction of EMT program via the oncogenic
activity of junction plakoglobin (JUP). We then discuss the potential role of physical
interactions between palmitate and key Wnt signaling and ER-stress pathway proteins as an
alternate mechanism of EMT induction. Finally, we discuss the future application of the
network modeling approach combined with TCGA omic and clinical data to predict the role of

fatty acid uptake and metabolism genes as drug efficacy and resistance biomarkers.
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CHAPTER 2: APPLYING SYSTEMS APPROACH TO CANCER RESEARCH

2.1 RELEVANCE OF NETWORK HIERARCHY IN CANCER DRUG-TARGET SELECTION

2.1.1 Introduction

Targeted cancer therapy aims to treat cancer by disrupting the specific pathways that play a
key role in the growth and progression of cancer cells. Such an approach contrasts with
traditional intervention strategies such as cytotoxic agents (Chabner and Roberts, 2005) and
radiotherapy (Bernier et al., 2004), both of which have reached a plateau in management of
cancers due to side-effects and drug resistance (Stein et al., 2004). The traditional strategies
are non-specific in terms of their mode of action, while targeted therapeutics disable specific
proteins of a signaling pathway that are essential for tumor growth with minimal impact on
normal tissues (Sawyers, 2004). A key step in developing targeted therapies is the
identification and evaluation of suitable targets for rational drug design. However, using
conventional target-centric drug discovery approach, i.e. targeting a gene or molecule that is
mutated in cancer, it has been difficult to identify suitable targets owing to the abundance of
mutated genes associated with a cancer (Futreal et al, 2004) and the vast genetic
heterogeneity observed within a tumor (Vogelstein and Kinzler, 2004). Systems biology
provides an alternative approach to model cancer pathways from a global perspective
instead of focusing on individual components. From a systems biology perspective, a cell can
be considered an integrated system of molecular components such as nucleotides, proteins
and metabolites that together form a complex network of interacting signaling and

regulatory pathways. Cancer can be considered a perturbed state of normal networks, and it
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has been suggested that elucidating the topological and dynamic features of these networks

could help identify novel drug targets (del Sol et al., 2010; Hood and Friend, 2011).

Cancer networks have been analyzed to identify “hub” proteins (van der Greef and McBurney,
2005), which have been thought to be essential for tumor growth and maintenance owing to
their large number of interactions and ability to integrate multiple signaling
pathways(Butcher, 2005; Rajasethupathy et al., 2005). Hub proteins are a common feature of
scale-free biological networks. In a scale-free network most of the components have very few
connections, whereas a small set of component (i.e. hubs) have a large number of
connections (Kitano, 2004b). This uneven distribution of connections suggests that in order
for any two components to communicate, it is highly probable that they must link through a
hub protein (See Figure 1A). Based on this concept, inactivating a hub protein that connects
multiple deregulated pathways in cancer could provide potential therapeutic intervention,
regardless of the genetic heterogeneity. While this ideology to determine targets based on
connectivity appears relevant for an undirected scale-free network, we propose that since
cellular signaling and regulatory pathways can be represented as directed networks, the
significance of a candidate in terms of its therapeutic potential is dependent on its
hierarchical properties. Specifically, we hypothesize that nodes at higher levels of the
pathway hierarchy can serve as better drug targets than nodes that are at lower levels of the
hierarchy. This hypothesis is based on the assumption that directed signaling and regulatory
networks are similar in architecture to commonplace pyramidal networks that are oriented
towards ordered control (Yu and Gerstein, 2006b). In such chain-of-command networks,

information is passed on from a small number of high-level nodes or “master regulators” to
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lower-level nodes or “worker nodes” that are present in much larger numbers through mid-
level “middle manager” nodes (See Figure 1B). Drawing parallels to common place hierarchies
would beg one to question whether the master regulators are more significant than the
worker nodes, since the flow of information through the rest of the network is dependent on
the master regulators. In order to answer this question, the hierarchical architecture of the
yeast and E.coli transcriptional regulatory network was determined by Yu and Gerstein (Yu
and Gerstein, 2006b). These hierarchical networks were rearranged to assign hierarchical
levels to each node and then further analyzed in subsequent studies(Bhardwaj et al., 2010) to
determine the relative importance of regulators with respect to their level of hierarchy. These
analyses concluded that network rewiring events that affect higher-level nodes had more
impact on cell proliferation and survival. In other words, hierarchy played a more significant

role in determining the importance of regulators than hubs.

In this section, our goal is to demonstrate the importance of hierarchy in cancer signaling and
regulatory networks from the point of view of drug-target selection. First, we construct a
model hierarchical network that depicts a regular pyramidal topology. We then apply a
Boolean network modeling approach on the model network to test the hypothesis that the
nodes at the top level of the hierarchy serve as better drug targets. We evaluate the
effectiveness of a drug target in terms of its ability to modulate the output from a signaling
network. This criterion is derived from fundamental assumptions of the targeted drug-
discovery paradigm (Hellerstein, 2008): targets represent potentially rate-limiting steps in the
disease pathway, and the effect on the phenotype will be determined by identification of

drugs specific to these targets. We also discuss the effect of targeting nodes at higher vs.
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lower levels on this property. Next, we take a closer look at the hierarchy of the targets of
FDA-approved drugs as compared to the rejected drugs for treating prostate cancer. Finally,
we construct a global transcriptional regulatory network and directional protein-protein
interaction network and rearrange them into hierarchical levels to map and discuss the

properties of known cancer genes and FDA-approved cancer drug-targets.

Figure 1: Types of biological network. A. An undirected graph representing the human
MAPK signaling network (Bandyopadhyay et al., 2010). The sizes of the nodes in the network

are scaled according to degree. This network is an example of a scale-free graph with few hub
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Figure 1 (cont’d)

nodes (large circles) containing high degrees while most nodes (small circles) have low
degree. Since, a large number of nodes are connected to the rest of the network through hub
nodes, any change to the hub nodes can alter the structure of the network dramatically. B. A
directed graph representing a predicted transcriptional regulatory network of cancer genes
obtained from the OMIM morbidity map. The network was constructed using the Promoter
Analysis and Interaction Network generation Tool (PAINT)(Vadigepalli et al., 2003) and
arranged into hierarchical levels according to the breadth first-search (BFS) algorithm (see
methods for details on BFS algorithm). The nodes at the top level of the hierarchy act as the

master regulators while the nodes at the bottom act as worker nodes.
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2.1.2 Methods

2.1.2.1 Constructing a model hierarchical network

The network topology of our model was adapted from the architecture of E.coli and yeast
regulatory networks(Yu and Gerstein, 2006b). The pyramidal topology is also observed in
human cancer-related signaling networks. For example, the EGFR signaling pathway in the
KEGG pathways in cancer (hsa05200) consists of the EGF receptor at the top of the hierarchy.
Ligands specific to the EGF receptor initiate multiple signaling cascades in the cell. In order to
enhance cell proliferation, multiple pathways are activated downstream of EGFR, including
the Ras/Raf signaling cascade and PKB/Akt signaling pathway. Each of these pathways
culminates into several effectors that are involved in enhancing proliferation. We attempted
to design the model network used in our analysis so that it captured the pattern of flow of
information in such signaling networks. The model network was constructed in the form of a
regular pyramid featuring three levels of hierarchy. The network consisted of few master
regulators at the top level and several worker nodes at the bottom level with intermediate
numbers in the middle level. The signaling information was restricted to flow from lower level
nodes to upper level nodes, i.e. no upward edges were allowed. The top level of the hierarchy
served as receivers of signal input, whereas the bottom level nodes served as effectors of
signal output from the network. A comparison between simplified EGFR pathways resulting in
proliferation and the model network is shown in Figure 2. Given an input, we analyzed the
effects of drugs affecting different nodes in this model network measured in terms of

reducing the output.
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Figure 2: Hierarchy in EGFR pathway. A comparison of simplified model of EGFR induced
signaling pathways involved in enhancing proliferation and model network used in our
analysis. The model network was designed as a pyramidal hierarchy. The nodes in the top
level receive input signal, which is transmitted through the hierarchy down to effecter nodes

in the bottom level and that results in a phenotypic output.

2.1.2.2 Boolean modeling approach to select drug-targets from model network

We chose a Boolean approach to model flow of signal information in our model network to
capture the dynamic features of information flow through the network. The Boolean model is
a logical model that represents the state of the network components in discrete states, with
the dynamic progression of the system occurring in discrete time steps. In such a network,
components can be present in either of two discrete states: active (1 or on) or inactive (0 or

off). A function is then applied to determine the state of a component for each time step. The
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method used in our simulation defines the state of a component using an equation derived
from De Morgan’s law (Zielinski et al., 2009), such that the state of a node X(t), at time t is

determined by the formula:
X(t)=X(t-D+1-]Ja-A)x]J@-B;)x[1- X (t-1)]

Where, A; is the product of the signal from the " incoming acitvating node with edge weight
to X, B; is the product of the signal from the /" incoming inactivating node with edge weight
to X and /1 is the product of all incoming edges of types A and B to X. This approach was
previously applied in a study of 3 pro-survival pathways: Epidermal Growth Factor Receptor,
Insulin-like Growth Factor, and Insulin Receptor signaling pathways and the trends obtained
from the simulation were confirmed to be similar to the experimental results (Zielinski et al.,

2009).

IIIII

In our simulations, node “I” served as the input node for the network, whereas as node “O”

was used to monitor the output from the network. Only the top level nodes were eligible to
receive input from node “I”, while only the bottom level nodes were eligible to elicit an
output to node “O”. Weights were assigned according to the outgoing edges of a given node
assuming each of its target nodes had equal probability of receiving a signal. The weight was
thus calculated by dividing the default edge weight (0.8) by the number of outgoing edges

IIIII

from the node. The simulation was run using an input to node “I” increasing from 0 to 1 in 20
discrete time steps of size 0.05. For drug-targets simulations, a node was chosen at random

for complete inhibition by a drug at each of the three levels of hierarchy. The output from the

network was measured in the unmodified network, and then compared to the outputs from
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various network perturbations that represent the addition of a targeted drug. Multiple pair-
wise comparisons were made between the outputs using Student’s-test with p-value cut-offs
adjusted according to Bonferroni’s correction (adjusted p-value cut-off = 0.01/n, where n =

number of comparisons).

2.1.2.3 Constructing a global transcriptional regulatory and directed protein interaction

network

A transcriptional or gene regulatory network consists of nodes representing transcription
factors and their target genes that are connected by directed edges. The transcriptional
regulatory network used in our study was constructed using information from the
transcriptional regulatory element database (TRED)(Jiang et al., 2007a). The TRED database is
an integrated repository of cis- and trans- regulatory elements for humans. This database
curates transcriptional regulatory information for the target genes of 36 cancer-related
transcription factor families from published experimental evidence. We used the cancer-
related transcription factor and target information to construct a cancer-specific

transcriptional regulatory network (See Table 1).

We also constructed a directed protein-protein interaction (dPPI) network to capture the
global signaling. Unlike transcriptional regulatory networks, the edges of a protein interaction
networks are undirected, which prevents their direct rearrangement into a hierarchical
topology. However, a number of recent studies have provided algorithms to infer the
orientation of edges in an undirected protein interaction network (Gitter et al., 2011; Liu et al.,
2009; Vinayagam et al., 2011). The dPPI used in our study was constructed using information

from the work by Vinayagam et al. (Vinayagam et al., 2011) (See Table 1).
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Table 1: Features of the global networks

Network Type Nodes | Edges | Interaction
TRED | Transcriptional regulatory network | 1840 | 4512 Protein-DNA
dPPI Signaling network 6339 | 34814 | Protein-Protein

2.1.2.4 Assigning hierarchical topology to directed networks

To assign hierarchical topology to each global network required an algorithm that achieved

the following objectives:

1. All nodes must be assigned to a specific hierarchical level in the network

2. The flow of information should only take place in the decreasing order of hierarchy
from the top to the bottom level nodes. In other words, there should be no upward
pointing edges

3. Each network should have one unique solution when rearranged using the algorithm

4. The algorithm should be able to deal with loops or feedback, a common feature of

complex signaling and regulatory networks

We chose the breadth-first search (BFS) method to rearrange our networks into a hierarchical
topology. This approach was used by Yu et al. (Yu and Gerstein, 2006a) to assign hierarchical
levels to yeast and E.coli regulatory networks. In this method, all nodes without any outgoing
edges or with only auto-regulatory edges are assigned to the bottom level of the hierarchy,
and each direct regulator of a bottom level node is placed on a level directly above the
bottom level node. This procedure is repeated for each subsequent level of the hierarchy. To

rearrange the TRED and dPPI networks, we first identified all those nodes that had no
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outgoing edges in the network and assigned them as the bottom level or level 1 nodes. Then,
using a one-level deep BFS search, we identified all the direct regulators of the bottom level
nodes, and placed them in level 2. Next, we repeated the search until the subsequent levels of
the hierarchy were filled with the remaining nodes. The rearrangement of the two global
networks resulted in hierarchies consisting of three levels. The BFS approach allowed for the
presence of loops within the network, whilst ensuring that there were no edges that pointed
upwards in the hierarchy. The application of the algorithm yielded only one possible solution

for each network.
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2.1.3 Results and Discussion

2.1.3.1 Modeling approach to select drug-targets from hierarchical network

The aim of targeted therapies is to inhibit specific pathways that are active in cancer. We
constructed a model network and evaluated how the signal transduction is perturbed upon
disruption of nodes at different levels of the hierarchy. We hypothesized that the nodes at the
higher levels of the hierarchy can serve as better drug-targets than nodes at the lower levels.
Figure 3A shows a network model that we used to test this hypothesis using the Boolean
modeling approach. We first simulated the flow of signal in the unmodified network. The
output from this simulation is plotted as control in Figure 3B. Next, we targeted node A1 at
the top-level of the hierarchy with drug 1 while leaving the rest of the network intact and
plotted the output. Similarly, we targeted nodes B1 and C1 with drugs 2 and 3 respectively
and plotted their outputs in Figure 3B. The final outputs from each simulation and their
comparison to control are listed in Table 2. The impact of drug 1 targeting the top-level node
A1 resulted in a significant decrease of output to 56% of control (p-value << 0.001). Drug 2
targeting the middle level node resulted in a decrease of output to 78% of control, which was
also determined to be statistically significant (p-value = 0.002). However, drug 3 targeting the
bottom level node C1 resulted in a decrease of output to 89% of control, which was not
statistically significant (p-value = 0.135). Assuming that the output represents the influence of
the signaling cascade on phenotype, the results from this simulation support our hypothesis

that nodes at higher levels of the pyramidal hierarchy have the highest impact.

Cancer tumors have been described as a “robust” system (Kitano, 2004c), where robustness is

defined as the ability of the tumor to maintain a stable functioning state despite
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perturbations (Kitano, 2004a). The source of these perturbations could be either stochastic
changes that modify the dynamics of the cancer signaling network (Huang, 2011), or
deterministic genetic mutations that affect tumor suppressor genes and oncogenes (Stratton
et al., 2009). A tumor is not only able to survive but gains selective growth advantage as a
result of these changes. Ideally, a targeted drug should be able to break-through the
robustness of the tumor signaling network. The results from the simulation suggest that
targeting the top-level of the hierarchy has the most significant impact on the network
output. In other words, targeting the top-level maximizes the deleterious effect on the
“robustness” of the network. However, tumors are noted to be robust against several lines of
cancer therapies. Tumors achieve robustness through functional redundancy which is derived
from cellular heterogeneity (Kitano, 2004c). Tumor cell heterogeneity enables a sub-
population of cells to survive after a chemotherapeutic regimen, which can lead to
reappearance of the tumor (McClellan and King, 2010). This trait of cellular heterogeneity is
achieved by tumors through redundancy. In other words, tumors are able to maintain signal
transduction by using alternate pathways. Therefore, it has been suggested that
heterogeneity in tumors can be tackled by targeting multiple targets in the signal

transduction pathways (Faivre et al., 2006; Petrelli and Giordano, 2008).

In order to simulate the effects of cellular heterogeneity, we modified the weights of two
nodes in the bottom level so that they have enhanced impact on the output of the system. In
network 2, the edge weights of node C1 and C7 were increased by 25% as compared to the
other bottom level nodes (See Figure 4A). This was done to mimic the increase in activity that

results from either genetic stochasticity or due to enabling mutations in oncogenes. We
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measured the output of the network with the modified edge weights in Figure 4B. Then, we
used drug 1 to target node A1 and drug 2 to target node B1 to measure network output. Next,
we targeted each of the nodes C1 and C7 with drugs 3 and 4 respectively and plotted their
outputs. Additionally, we plotted the output for the combinatorial effect arising from
simultaneous use of drugs 3 and 4. The final outputs from each simulation and their

comparison to control are listed in Table 3.

Targeting the modified nodes C1 and C7 with drugs 3 and 4 resulted in a decrease in output
to 87% and 95% of control respectively, neither of which were statistically significant (p-
values = 0.073, 0.424 respectively) individually. Combinatorial use of both drugs 3 and 4
resulted in a decrease in output to 81% of control. However, this decrease was also not
statistically significant (p-value = 0.008). Drug 2 targeting the middle level node B1 resulted in
a significant decrease in output to 77% of control (p-value = 0.001). Once again, targeting the
node A1 with drug 1 resulted in the most significant drop in output to 56% of control (p-value
<< 0.001). In fact, the output from drug 1 is significantly lower than the combinatorial output
from drug 3 and drug 4 (p-value << 0.001). The results from this simulation suggest that
targeting a drug at the top of the hierarchy produces a better reduction in network output in

the presence of heterogeneity.

A distinct advantage of this modeling approach is that it provides the flexibility to modify the
complexity of the simulation by adding or removing components from the network. For
example, one can easily expand the model to include additional pathways and study effects
of cross-talk on network output. Furthermore, the accuracy of the output from the

simulations can be enhanced by including information from experimental evidences. For
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example, the initial levels of the nodes in the network can be set according to the expression
or activity levels of the individual nodes, whereas the edge weights can be set based on
actual kinetic parameters derive from experimental evidence. Thus the overall accuracy
would improve with the availability of experimental data. This approach can then be used to
model pathways activated in cancer and select suitable targets and for experimental

verification.
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Figure 3: Target inhibition simulation 1. A. Network 1 to test the hypothesis that nodes at
the higher level of a pyramidal hierarchy have the highest impact on the network output. The
network consists of nodes (circles) in 3 hierarchical levels: nodes A1 and A2 at the top level,
nodes B1 to B4 in the middle level and nodes C1 to C7 at the bottom level. A drug-target was
random chosen at each level of the hierarchy. Drug 1 targets the node A1, drug 2 targets the

node B1 and drug 3 targets the node C1.The drugs are shown as round-rectangles. Diamond-
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Figure 3 (cont’d)

shaped nodes | and O represent input and output nodes respectively. The sizes of edges are
proportional to their weights and the direction of arrow indicates flow of information in the
network. B. Output from the simulation of signal flow through the network. Control indicates
output levels recorded from the unmodified network. Drugs 1 to drug 3 indicate the output
levels from the network when each of the respective targets was inhibited by a drug. The
output for control and each drug treatment is plotted against discrete-value time steps on the

X-axis.
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Figure 4: Target inhibition simulation 2. A. Network 2 to test the hypothesis that nodes at
higher level of a pyramidal hierarchy serve as better drug targets even with heterogeneity
enhancing multiple bottom-nodes in the network. The components of the network used for
this simulation are the same as network 1. Edge-weight of nodes C1 and C7 were increased by
25% to 1.0 to represent enhanced activity. In this simulation, drug 1 targets the node A1, drug

2 targets the node B1, drug 3 targets the node C1 and drug 4 targets node C7. The drugs are
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Figure 4 (cont'd)

shown as round-rectangles. Diamond-shaped nodes | and O represent input and output
nodes respectively. The sizes of edges are proportional to their weights and the direction of
arrow indicates flow of information in the network. B. Output from simulation for signal flow
through the network. Control indicates output levels recorded from the unmodified network.
Drugs 1 to drug 4 indicate the output levels from the network when each of the respective
targets was inhibited by a drug. The combinatorial effect of using drugs 3 and 4
simultaneously was also recorded. The output for control and each drug treatment is plotted

against discrete-value time steps on the x-axis.

Table 2: Results from network 1 simulations

Condition | Target Output P-value*
Control - 0.338 -

Drug 1 A1l 0.191 0.000
Drug 2 B1 0.265 0.002
Drug 3 1 0.302 0.135

(*Bonferroni correction adjusted p-value cut-off = 0.003)
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Table 3: Results from network 2 simulations

Condition Target Output P-value*
Control - 0.350 -

Drug 1 Al 0.195 0.000
Drug 2 B1 0.269 0.001
Drug 3 c1 0.306 0.073
Drug 4 c7 0.331 0.424
Drug3+Drug4 | C1+C7 0285  0.008

(*Bonferroni correction adjusted p-value cut-off = 0.002)

2.1.3.2 Drugs targeting signaling pathways in prostate cancer and their network
properties

The simulations with the model networks emphasized the impact of the nodes that are higher
in the pathway hierarchy. To investigate the relevance of hierarchy in drug-target selection
with a working example, we examined the drugs approved for targeted therapy in prostate
cancer. Prostate cancer is one of the most common forms of cancer in men; an average of 1 in
every 6 men in the United States has a lifetime risk of developing prostate cancer (Siegel et al.,
2011). When detected at an early stage, prostate cancer is treatable with radiation therapy or
through surgical removal of the prostate. However, the treatment of advanced or metastatic
prostate cancer is primarily based on castration, or depriving prostate cells of androgen(Shen
and Abate-Shen, 2010). We obtained a list of drugs that are approved by the FDA for the

treatment of prostate cancer, along with a list of drugs that have been rejected. We then
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mapped the targets of these drugs on the androgen receptor pathway (modified from
O’donell et al. (O'Donnell et al., 2004)). Additionally, we considered some drugs that have
been clinically tested to target various components of the EGFR pathway, which is suggested
to play a role in castration resistant prostate cancer (Di Lorenzo et al., 2002). The EGFR
pathway (modified from KEGG: hsa05200) showing the relevant components that are
targeted by the approved and rejected drugs, combined with the androgen pathway and
their respective phenotypic outputs is depicted in Figure 5. The network was organized in a
simple hierarchy such that there were no edges present that pointed upwards from the lower
to higher level nodes. Then, the drug targets within their respective pathways were ranked
from top to bottom according to their relative position in the hierarchy. Next, we examined
and compared the efficacy and safety of these approved and rejected drugs. The order of the
drugs discussed below follows the ranked order in the hierarchy, and the major features of

these drugs are tabulated in Figure 6.
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Figure 5: Drugs-targets mapped on signaling pathways in prostate cancer. Different
components of the AR network and EGFR network are shown in circles, with arrows indicating
direction of regulation. Dark-colored triangles are FDA-approved drugs with T-headed edges

indicating the component of the network that is targeted by the drugs.
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Figure 5 (cont'd)

Light-colored triangles are drugs that have been rejected by FDA, with dashed T-headed
edges indicating the component of the network targeted by the drug. In general, targets of

FDA-approved drugs map higher on the hierarchy as compared to targets of rejected drugs.

AR-pathway related drugs
Level* Drug Target Indication Efficacy FDA status Side-effects
1 Degarelix GnRHR Advanced PC 0% decrease in festosterone levels, Approved for PC
20% reduction in PSA levels
1 Leuprolide GnRHR Advanced PC 7% decrease in testosterone levels Approved for PC
. 64% reduction in PSA levels, 42%
b ' !
2 Abiraterone CYP17A1 CRPC reduced risk of progression Approved for PC
3 Finasteride  S-alpha reductase  PC prevention 25% reduced risk of progression Rejected Increased risk of higher grade PC
3 Dutasteride  S-alpha reductase  PC prevention 23% reduced risk of progression Rejected Increased risk of h'g.hﬂ grade FC,
Cardiac failure
EGFR-pathway related drugs
Level* Drug Target Indication Eifficacy FDA status Side-effects

1 Erlotinib EGFR. CRPC 40% clinical benefit, median PSA Approved for other cancers,

levels under trial for PC
1 Gefitinib EGFR CRPC Median PSA levels Approved for other cancere,

under trial for PC
2 Ruxolitinib JAK CRPC < 10% response Trials terminated by Adverse effects in 4% of the patients
_manufacturer
3 Rofecoxib COX PC Prevention (efficacy not reported) Trials terminated by Cardiac events in 36% of the patients
manufachirer
*Level ranks are assigned to according to order of hierarchy in targeted pathway (see figure 5)

Figure 6: Outcome from clinical trials of drugs targeting different components of the AR

and EGFR pathways.

2.1.3.3 Drugs targeting androgen receptor pathway

Level 1 drugs. Degarelix is an FDA-approved drug that blocks GnRH receptor to suppress
gonadotropin secretion (Broqua et al., 2002). Stage Il clinical trials revealed that degarelix
treatment achieved decrease in testosterone to castration levels (0.5ng/ml) in approximately
90% of the patients 3 days after treatment (Gittelman et al., 2008). These levels of
testosterone were maintained at castration levels after T month of treatment. This study also
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reported that 90% decrease in PSA levels were achieved after 56 days of treatment. Phase IlI
clinical trials with degarelix measured the efficacy of the drug in terms of reducing
testosterone levels to castration levels. These trials reported a decrease in testosterone levels
in approximately 97% of the patients over 1 year period of treatment (Klotz et al., 2008). The
phase Il trials also reported that no systemic allergic reactions were induced as a result of
degarelix treatment. Leuprolide is another drug approved for prostate cancer treatment that
acts as a GnRH agonist and blocks the activation of GnRH receptors. Initial open-label studies
with leuprolide acetate showed that testosterone reached castration levels in 100% of the
enrolled patients within 42 days (Perez-Marreno et al., 2002). Phase lll studies with leuprolide
treatment showed approximately 97% of the patients show a decrease in testosterone levels

after 57 days (Heyns et al., 2003).

Level 2 drug. Castration resistant prostate cancer (CRPC) tumors remain dependent on
hormone driven stimulation for growth and maintenance (Titus, 2005). Abiraterone acetate
is a selective inhibitor of CYP17A, a key enzyme involved in the biosynthesis of androgen and
estrogen. Phase | clinical trials of the drug indicated a decrease of prostate specific antigen by
>50% in 64% of the patients (Ryan et al., 2010). In a clinical phase I/l study, the drug was
found to decrease PSA levels by >50% in 67% of the CRPC patients, while a decline of >90%
was achieved in 19% of the patients (Attard et al., 2009). Phase lll clinical trials with metastatic
CRPC patients confirmed that PSA reduction following Abiraterone treatment was associated
with a 42% decrease in risk of disease progression (de Bono et al., 2011). Furthermore, phase

Il trials revealed that most common side effects were limited to fatigue, whereas cardiac
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events associated with the treatment were not statistically significant when compared to

placebo control group (13% in treated vs. 11% in control).

Level 3 drugs. The drug Finasteride inhibits one isoform of 5-alpha reductase, whereas
Dutasteride is a drug that inhibits both isoforms of 5-alpha reductase (Bramson et al., 1997).
Long term studies with finasteride for the treatment of benign prostatic hyperplasia indicated
a reduction in risk of progression to prostate cancer by 25%(Thompson et al., 2003). However,
there was a 27% increase in higher-grade tumors as determined by Gleason score, while
surgical intervention was recommended in 23% of the patients due to increase in PSA levels
or based on digital prostate examination. Additional concerns due to significantly increased
severe side effects were also noted in this study. Long term studies with dutasteride indicated
an approximately 23% reduction in risk of progression to prostate cancer (Andriole et al.,
2010). The incidence rate of progression to higher-grade tumors based on Gleason score did
not improve with the drug treatment, and was found to be statistically similar to placebo
treatment group. Additionally, concerns were raised because a significantly higher
percentage of the patients receiving dutasteride suffered from cardiac failure compared to
placebo group. The FDA issued a warning that the use of both 5-alpha reductase inhibitor
drugs increased the risk of higher-grade prostate cancer (FDA, 2011) which led to subsequent
suspension of marketing and pursuit for approval of dutasteride for prostate cancer

treatment (GlaxoSmithKline, 2011).

2.1.3.4 Drugs targeting the EGFR pathway

Gene expression studies comparing localized androgen-dependent and metastatic

androgen-independent prostate cancers against normal prostate epithelial cells and tissues
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emphasized a critical role played by the AR and the EGFR pathways (Mimeault, 2005). Multiple
studies have reported that overexpression of EGFR and its ligands correlates with advanced
grades of prostate cancer(Bartlett et al., 2005; Hernes et al., 2004; Mimeault et al., 2003;
Zellweger et al.,, 2005). Enhanced expression of EGFR and the ensuing signaling cascade may
stimulate proliferation and anti-apoptotic pathways, providing an androgen independent

mechanism of disease progression.

Level 1 drugs: Monocentric phase Il trials with Erlotinib, an EGFR inhibitor, show clinical
benefit in 40% of the patients (Gravis et al., 2008). Clinical benefit was assessed on the
Karnofsky performance status (KPS) and pain based on visual analog scale. Monocentric Phase
Il trials in HRPC patients with Gefitinib, another EGFR inhibitor, indicated stabilization of PSA
levels in 14% of the patients, however, no significant decrease in PSA levels (Canil, 2004).
Another phase Il trial based on combination therapy with docetaxel, a chemotherapeutic
agent, and gefitinib showed reasonable tolerance to the therapeutic course. However, this
study also suggested no significant decrease in PSA levels in patients receiving the treatment.
Similar results were obtained from other combination clinical studies confirming that while
gefitinib was well tolerated by patients in combination therapies, it did not induce a
significant decrease in PSA levels (Canil, 2004; Small et al., 2007). A caveat of the randomized
clinical trials was that the EGFR-expression status of the patients was not taken into account.
An investigation on the EGFR expression levels in prostate cancer tissues showed that EGFR
overexpression is observed in more than 10% cells of tumor tissues in approximately 37% of
the patients (Shuch, 2004). Furthermore, this distribution was shown to be non-uniform for

different races within the population, with African-American prostate cancer patients
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showing significantly higher association with EGFR overexpression. Studies on efficacy of
EGFR inhibitors may benefit in future trials that take EGFR status of the patients into

consideration.

Level 2 drugs: Downstream effectors of EGFR pathway have been also clinically tested for
targeted therapy. Ruxolitinib is a drug that targets the janus kinase proteins (JAKs) which are
involved in the JAK-STAT signaling pathway induced downstream of EGFR. Phase Il clinical
trials of treament with Ruxolitinib produced dismal results with less than 10% of the patients
showing response to the drug (ClinicalTrials.gov, 2011). This study was terminated since 70%
of the patients showed disease progression along with death or adverse events in an

additional 14% of the patients.

Level 3 drugs: Nonsteroidal anti-inflammatory drugs (NSAIDs) were suggested to be
associated with decreased risks of advanced prostate cancer in multiple epidemiological
studies (Langman, 2000; Nelson and Harris, 2000; Norrish et al., 1998). The rationale behind
use of NSAIDs is based on the fact that the molecular target of NSAIDs, COX-2, is
overexpressed in prostate cancer cells(Gupta et al., 2000; Richardsen et al., 2010). COX-2
together with iNOS (inducible form of NOS-2) are induced downstream of EGFR pathway
through the PKB/Akt signaling cascade and can enhance angiogenesis (Chiarugi et al., 1998;
Davel et al., 2002). In prostate cancer patients, Rofecoxib, a COX-inhibitor drug was evaluated
in a long term clinical trial to study its efficacy and safety. However, the trials were terminated
before completion because the drug was pulled-off the market by the manufacturer after FDA

raised safety concerns (Topol, 2004). The clinical study reported that 36% of the patients
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suffered from cardiovascular events during the course of the treatment (van Adelsberg et al.,

2007).

From the above discussion, drugs targeting nodes at a higher level in the hierarchy were
approved by the FDA for use in prostate cancer treatment, whereas the drugs targeting
pathways lower down in the hierarchy were rejected. One of the striking features of the drugs
that target the pathways higher in the hierarchy is their relative efficacy in preventing the
progression of cancer when compared to drugs at targeting the lower levels of the hierarchy.
For instance, in the androgen receptor pathway, the drugs targeting the GnRH receptor and
CYP17A1 have much higher success in terms of end-point clinical output when compared to
the drugs that target 5-alpha reductase (See Figure 6). These outcomes from the clinical
studies in prostate cancer patients lend support to the results of our simulation, and further
support the idea that the hierarchical level of the nodes plays an important role in

determining their potential relevance as drug targets.

2.1.3.5 Features of cancer genes and drug-targets in global hierarchical networks

We constructed a global transcriptional regulatory network (TRED) and a directional protein
interaction network (dPPI) and rearranged the networks into regular hierarchies based on the
breadth first search approach (see methods). Next we obtained the list of known cancer
genes from the OMIM morbid map (Amberger et al., 2009) and a list of genes that are
targeted by approved anti-cancer drugs from the DrugBank (Wishart, 2006). A total of 54
cancer genes were mapped onto the TRED network while 70 cancer genes were mapped onto
the dPPI network. Additionally, 16 drug-target genes were mapped onto the TRED network,

whereas 13 drug-targets were mapped onto the dPPI network. The frequency distribution of
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the cancer genes and the drug-target genes normalized to the number of nodes present in
each level of the hierarchy is shown in Figure 7. Note that the architecture of the global dPPI
and TRED networks does not make them suitable for direct comparison with the pathway-
based networks models used in our simulation or the prostate cancer drug-target network
because neither of these two networks directly corresponds to a specific input or a
phenotypic output. That said we find that a larger proportion of cancer genes and drug-
targets map to the middle and upper levels of the hierarchy than the bottom level of the dPPI
network. The distribution of the cancer genes correlates with the distribution of drug-targets
in each level (Pearson’s correlation coefficient = 0.99). The distribution of cancer genes in the
TRED network follows an expected pattern, with low frequency in the lower level as
compared to the middle and upper levels. However, the distribution of drug-targets does not
correlate with that of the cancer genes in the TRED network (Pearson’s correlation coefficient
= 0.22). Although, the middle level has a higher frequency of drug-targets than the lower
levels, there were no drug-targets that mapped to the top level. We posit that the top level of
the TRED hierarchy could be considered in future studies to assess their potential as drug-

targets.

Next, we compared the drugs that targeted genes at the higher levels of the hierarchy as
compared to drugs that targeted genes at the bottom level of the hierarchy. Target genes
with their respective hierarchical levels in the two networks, along with a list of FDA-approved
drugs are listed in Table 4. 8 of the 32 listed drugs target a gene in the bottom level of the
hierarchy, whereas 24 drugs target a gene that is mapped at a higher hierarchical level in at

least one of the networks. This difference is statistically significant (Chi-squared p-value =
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0.0047). Although these global networks are not directly applicable to selecting drug-targets,
it is noteworthy that a larger proportion of the drugs target genes at the higher levels of these
global hierarchies. The findings from the global network map lend further support to our
hypothesis that the components at the higher hierarchical levels have more impact and thus

could serve as better drug-targets.

Table 4: Hierarchical levels of target genes in TRED and dPPI networks with respective

FDA-approved drug.

Target Entrez | Number | TRED | dPPI Names of drugs

gene name | GenelD | ofdrugs | level | level

ESR1 2099 7 2 2 Chlorotrianisene, conjugated
estrogens, Ethinyl Estradiol,
Fulvestrant, Megesterol, Tamoxifen,
Toremifene

CYP19A1 1588 3 3 - Exemestane, Letrozole, Testolactone

TOP2A 7153 3 3 1 Epirubicin, Etoposide, Valrubicin

BCL2 596 2 3 1 Docetaxel, Paclitaxel

DHFR 1719 2 - 1 Pemetrexed, Trimetrexate

GNRHR 2798 2 3 - Abarelix, Leuprolide

TYMS 7298 2 3 - Capecitabine, Fluorouracil

EGFR 1956 2 3 2 Erlotinib, Gefitinib

ADRA1A 148 1 3 1 Nilutamide

ERBB2 2064 1 3 2 Trastuzumab

FCGR1A 2209 1 3 2 Porfimer

FOLH1 2346 1 3 - Capromab

LDLR 3949 1 3 1 Porfimer

LHCGR 3973 1 3 1 Goserelin

MTRR 4552 1 3 1 Hydroxocobalamin

PGR 5241 1 2 1 Megestrol

TUBB2C 10383 1 - 1 Vinblastine
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Figure 7: Distribution of cancer genes and drug targets on A. the dPPI network B. the
TRED network. Numbers on the x-axis represent the hierarchical levels in each network, with
level 3 corresponding to bottom level, level 2 corresponding to middle level and level 1

corresponding to top level of the hierarchy. The size of the bars indicate frequency of the
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Figure 7 (cont’d)

cancer genes (light-colored) and the drug targets (dark-colored) normalized to the number of

genes within their respective hierarchical levels.
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2.1.4 Summary

In this section, we suggested that the selection of candidates for targeted therapy in cancer
signaling networks is influenced by their hierarchal properties. The Boolean modeling
approach was able to capture the signaling dynamics of a pyramidal signaling network in the
presence or absence of drugs that targeted different components of the network at distinct
hierarchical levels and found drugs targeting the higher levels were more influential. The
approach used for the simulation can be used as a framework for future studies, with
enhanced accuracy imparted with the inclusion of experimental information where available.
We provided further support to our hypothesis by analyzing the hierarchical mapping of FDA-
approved drugs for prostate cancer treatment, compared to drugs that have been rejected.
We found that all FDA-approved drug-targets occupy a higher hierarchical level in their
respective signaling pathways as compared to drugs that were rejected. In fact, the higher
level drugs had a better overall efficacy than drugs at the lower level. Additionally, we
constructed global transcriptional regulatory and PPl networks to analyze the mapping of the
cancer genes and FDA-approved drug-targets on these networks. We found that a
significantly larger proportion of drugs approved by the FDA targeted genes that occupy
higher levels of the hierarchy. Overall, the results from these analyses support our hypothesis
that nodes at the higher levels of network hierarchy have more influence and could serve as

better drug-targets for cancer therapy.
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2.2: SYNERGY ANALYSIS REVEALS ASSOCIATION BETWEEN INSULIN SIGNALING AND

DESMOPLAKIN EXPRESSION IN PALMITATE TREATED HEPG2 CELLS

2.2.1 Introduction

Accumulation of lipids (primarily triglycerides) in hepatocytes is considered a hallmark and
pre-requisite for development of non-alcoholic fatty liver disease (NAFLD) (Donnelly et al.,
2005). With increasing prevalence of obesity among adults and children, NAFLD has become
the most common form of chronic liver disease in developed countries (Angulo, 2007).
Studies have shown that diets rich in saturated fats contribute significantly towards
increasing the risk of NAFLD (Musso et al., 2003; Zelber-Sagi et al., 2007). Consequently, a
large number of studies have focused on the effects of free fatty acids (FFA) on hepatocytes to
understand the pathogenesis of NAFLD and related liver diseases (reviewed in (Musso et al.,

2009b)).

In recent years, systems biology approaches utilizing high-throughput (microarray)
measurements have been applied to gain significant insights into the cytotoxic effects of
FFAs on hepatocytes using either static (Li et al., 2007a; Li et al., 2007b; Srivastava et al., 2007;
Yang et al., 2009b) or dynamic gene expression profiles (Li et al., 2008). While these efforts
have focused predominantly on identifying individual target genes, some researchers have
suggested a more complex scenario, whereby genes cooperate in regulating cellular events

in response to FFA treatment (Remenyi et al., 2004).

In this study, we analyzed the cytotoxic effects of palmitate treatment, the most common FFA

in the diet, on HepG2 cells. First, we selected a subset of genes affected by FFA treatment by

55



mapping their gene expression to metabolite profiles (Srivastava and Chan, 2008; Srivastava
et al., 2007) . This allowed the integration of multi-level data and further helped to alleviate
the computational burden associated with the analysis of a large set of gene expression data.
Next, we used an integrative methodology to reconstruct a gene cooperation network using
the concept of “Information Synergy” (Anastassiou, 2007). The underlying principle of
information synergy states that if two genes cooperate to affect a phenotype, then the joint
expression of these two genes should provide more information on the phenotype than the
sum of the information contributed independently by each of the genes. Thus, the gain in
information or information synergy could be used to quantitatively asses the cooperative
effect of any two genes on a phenotype. To help elucidate the processes that may be altered

we analyzed the pathways that were enriched in the network.

Our search for over-represented pathways in the synergy network recovered insulin signaling
pathway as the most significantly enriched pathway. This is notable given the fact that almost
all patients diagnosed with NAFLD have concomitant insulin resistance (Bugianesi et al.,
2005). Ruddock et al. confirmed that palmitate treatment induces resistance to insulin
signaling in hepatocytes (Ruddock et al., 2008). We further expanded our search to the
neighbor genes of the insulin signaling pathway in the synergy network and recovered
desmoplakin (DSP), a junction protein, as the top neighbor. The DSP protein is an obligate
component of functional desmosomes at intercellular junctions. DSP together with
plakoglobin and plakophilin forms the intracellular desmosomal plaque (Getsios et al., 2004),
which serves as an anchor for keratin intermediate filament attachment (Rampazzo et al.,

2002). In general, junction proteins are known to be inhibited during chronic liver diseases,
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including cirrhosis and hepatitis (Vinken et al., 2006). It has also been shown that the loss of
expression and abnormal localization of junction proteins, including DSP, is correlated with
progression of HCC (Cao et al., 2007). However, the effects of palmitate on DSP protein

expression have not been previously reported.

Here, we investigated the effects of palmitate treatment on the expression of DSP in HepG2
cells. Furthermore, since DSP was recovered as a neighbor of insulin signaling pathway, we
analyzed the effect of insulin treatment on DSP expression. We found that palmitate
treatment leads to the loss of DSP expression and treatment with insulin enhanced the
recovery of DSP expression following palmitate treatment. Thus, our study indicates that the
junction protein DSP, in synergy with insulin signaling, may be a novel target in the pathology

of fatty liver disease.
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2.2.2 Materials and Methods

2.2.2.1 Datasets and network analysis

HepG2 cells purchased from American Type Culture Collection (ATCC) were exposed to
different FFA treatments for 48 hours. Gene expressions measurements were described in our
previous work (Srivastava and Chan, 2008; Srivastava et al., 2007). Gene selection, synergy

network construction and pathway analysis were performed as described (Wang et al., 2011)

2.2.2.2 Cell culture and treatment

HepG2 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Invitrogen)
containing 10% fetal bovine serum (Invitrogen) and 2% Penicillin-streptomycin (Invitrogen).
Cells were incubated at 37 °C and in 10% CO,atmosphere. Confluent cells were treated with
0.7mM palmitate (Sigma) dissolved in DMEM culture medium for 48 hours. Cells were treated
with TnM insulin in culture medium for 24, 48 and 72 hours. DMEM culture medium was used

as control for all treatments.

2.2.2.3 Immunofluorescence

Cells were fixed in 3.7% formaldehyde for 20 min. Cells were then washed twice with PBS and
treated with 5% Triton-X for 10 min. at room temperature to permeabilize cell membrane.
This was followed by washing twice with PBS and incubation with 1% BSA to block non-
specific protein interactions. The cells were then incubated with 5ug/ml anti-rabbit DSP
primary antibody (Abcam ab71690) overnight at 4°C. After washing twice with PBS, cells were
incubated in AlexaFluor-488 (Molecular Probes A11001) conjugated goat anti-rabbit

secondary antibody (green) for 1 hour at room temperature. Cells were washed with PBS and
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cell nuclei were stained (blue) using DAPI (Molecular Probes D1306) at a concentration of
300nM for 5 min. Coverslips were mounted in ProLong Gold (Molecular Probes P36934) and

incubated in the dark for 24 hours.

Confocal imaging was performed on an Olympus FluoView 1000 Inverted IX81 microscope,
using a 40X oil objective. Blue and green images were taken sequentially, using a Kalman
average of 2X. The intensity graph was constructed by normalizing the total green
fluorescence intensity to total blue fluorescence intensity (to account for the number of cells)
in 3 separate fields of view for each sample. Multiple comparisons between fluorescence
levels across different treatment conditions were performed using one-way ANOVA followed

by Tukey’s HSD post-hoc analysis with p-value cut-off set at 0.05.
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2.2.3 Results

2.2.3.1 Information synergy network

Based upon the concept of information synergy, we reconstructed a gene-cooperation
network composed of 570 genes with 4376 connection edges. The reconstructed network
suggested potential gene targets and pathways that may play important roles in the
induction of the cytotoxic phenotype. We interrogated gene pairs in terms of their ability to
jointly distinguish phenotypes. Positive, zero and negative information synergies represent
gene pairs that provide synergistic, no and redundant information on the phenotype,
respectively. The pathways enriched in the synergy network were explored through KEGG

enrichment analysis and the top 10 pathways are listed in Table 5.

As seen in Table 5, cellular activities such as insulin signaling, adherence
junction/cytoskeleton regulation, amino acid metabolism, and ubiquitin-mediated
proteolysis are highly enriched in the synergy network. Indeed, it has been suggested in the
literature that palmitate treatment affects several of these enriched pathways, including
insulin signaling inhibited by palmitate in hepatoma cells (Ruddock et al., 2008), ER stress and
the ubiquitin mediated protease pathways (Guo et al., 2007; Zhou et al., 2007), as well as
adherence junction and cytoskeleton structure (Draghici et al., 2007; Swagell et al., 2005).
Palmitate has been also shown to modulate the metabolism of various amino acids
(Srivastava and Chan, 2008) which may be important players in palmitate-related cytotoxicity.
For example, arginine metabolism provides substrate for nitric oxide synthetase (NOS) and
palmitate treatment was found to enhance cell death by increasing NOS activity and NO

production (Tsang et al., 2004).
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Table 5. Top ten KEGG pathways ranked by their p-values enriched in the synergy

network
Pathway names Genes in p-value Affected by Palmitate
network
04910: Insulin 15 6.68E-07 Known (Ruddock et al., 2008)
signaling pathway
04520: Adherens 10 2.10E-05 Known (Draghici et al., 2007; Swagell et al.,
junction 2005)
00310: Lysine 7 0.00014 Known (Srivastava and Chan, 2008)
degradation
00330: Arginine and 6 0.00053 Known (Srivastava and Chan, 2008)
proline metabolism
04916: 8 0.00556
Melanogenesis
04120: Ubiquitin 9 0.00644 Known (Smith et al., 2008; Zhou et al.,
mediated proteolysis 2007)
04010: MAPK 13 0.00658 Known (Gao et al., 2010)
signaling pathway
05210: Colorectal 7 0.00716
cancer
04310: Wnt signaling 9 0.00942 Known (Franch-Marro et al., 2008)
pathway
04810: Regulation of 11 0.00981 Known (Borradaile et al., 2006; Swagell et

actin cytoskeleton

al., 2005)

2.2.3.2 Neighbor genes relevant to insulin signaling pathway

We investigated the associations between the enriched pathways and their neighbors in the

synergy network. Neighbors were defined as genes in the network connected to at least one

gene of the enriched pathway. The connections in the network represent cooperative

relationships between the genes. Therefore, we assumed that the neighbor genes, especially

those connected to multiple members of an enriched pathway may function cooperatively

with the enriched pathway in the associated phenotype.
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We evaluated the biological relevance of insulin signaling, the most significantly enriched

pathway, and its neighbor genes. In the synergy network, there are a total of 262 neighbor

genes connected to the insulin signaling pathway (Figure 8) and most of these neighbor

genes (more than 90%) are connected to one or two insulin signaling genes. We focused on

only those neighbor genes that are connected to 3 or more insulin signaling genes in the

synergy network. For each of these neighbor genes, the statistical significance of its

association with the insulin signaling pathway was evaluated by the hyper-geometric test.

The neighbor genes significantly associated with insulin signaling are listed and ranked

according to their p-values in Table 6.

Table 6. Neighbors significantly associated with insulin signaling pathway

Connections | Degree
Gene to insulin (overall p-value Association with insulin signaling
signaling network)
DSP 3 12 4.18E-03 Unknown
ACADSB 3 12 4.18E-03 Unknown $
PANK3 3 15 7.50E-03 Known, (Leonardi et al., 2005)
SLC39A3 3 18 9.60E-03 Known, (Huang et al., 2010; Nicolson
et al., 2009; Smidt et al., 2009)
ICA1 3 20 1.24E-02 Known, (Buffa et al., 2008)
TTYH1 3 30 2.94E-02 Known, (Anderson et al., 2009)
EP400NL 3 31 2.94E-02 Unknown
EGFR 3 36 3.59E-02 Known, (Chong et al., 2004; Prada et
al., 2009)
C60rf150 3 37 3.59E-02 Unknown
FAM69B 3 37 3.59E-02 Unknown
HOMER2 8 180 4.84E-02 Known, (Rong et al., 2003; Shiraishi

et al., 2004)

$ACADSB is involved in the metabolism of fatty acids and branch chained amino acids (Arden

et al.,, 1995). Prolonged treatment with long chain FFAs, including palmitate, increases FA

oxidation (Ceddia, 2005; Srivastava and Chan, 2008), which has been proposed to serve as a
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Table 6 (cont'd)

protective mechanism against the potential toxic effects of long chain fatty acids (Ceddia,
2005; Kahn et al., 2005). Insulin, on the other hand, down-regulates FA oxidation in various
cell types (Dyck et al., 2001; Topping and Mayes, 1972). Since palmitate can impair the insulin
signaling pathway (Storz et al., 1999), it is reasonable that ACADSB emerges as a top neighbor

of the insulin signaling pathway.
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Figure 8. Sub-network for insulin signaling genes and their neighbor genes in the
synergy network. Yellow nodes represent insulin signaling genes, and pink, green, blue and
black nodes represent the neighbor genes connecting to one, two, three and more insulin
signaling genes, respectively. The fifteen insulin genes, the top three neighbor genes (in Table
6) and the four genes connecting to more than three genes were labeled with gene names for

reference.
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2.2.3.3 DSP: the top neighbor

The junction protein, DSP, was recovered as the top-neighbor of insulin signaling pathway
from the synergy network. Loss of DSP expression has been reported in more severe forms of
liver disease, i.e. cirrhosis and HCC, but this has not been implicated in the pathology of fatty
liver disease. Hence, we investigated the effects of palmitate treatment on the expression of
DSP in HepG2 cells. Since, DSP was recovered as a neighbor of the insulin signaling pathway,
we also studied the effect of insulin treatment on DSP expression. HepG2 cells were grown to
confluency and treated with palmitate containing media. We observed cellular expression of
DSP by measuring the fluorescence levels of DSP with immunostaining and confocal
microscopy (Figure 9). Relative intensity of DSP against nuclear staining was used to quantify
and normalize the amount of DSP under each treatment condition (Figure 10). Finally, we
compared changes in relative DSP expression between treatment conditions and determined

statistically significant pairs using Tukey’s HSD post-hoc analysis (Figure 10).
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Figure 9. Immuno-fluorescence images of HepG2 cells stained for DSP (green) and cell
nuclei (blue) obtained using confocal microscopy (see methods). Scale bars represent 50um.
A) Untreated, control cells grown in regular growth media. B) Cells treated with palmitate for
48 hours show decrease in DSP levels C) Cells treated with palmitate for 48 hours and
recovered in normal growth media for 72 hours show partial recovery of DSP expression. Cells
treated with palmitate for 48 hours and recovered in growth media with insulin for D) 24
hours and E) 48 hours show partial recovery, whereas for F) 72 hours show complete recovery

of DSP expression.
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Figure 10. Quantitative effects of palmitate and insulin treatment on DSP expression
Bars indicate relative expression of DSP under various treatment conditions. Palmitate
treatment significantly decreases DSP expression whereas subsequent treatment with insulin
restores DSP expression. Lines represent pairs of condition where changes in DSP level are
significant. * indicates significant difference (p < 0.05) from control cells. ** indicates

significant difference (p < 0.05) from palmitate (48 hours) treated cells.
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2.2.3.4 Palmitate reduces DSP expression while insulin enhances recovery of DSP

expression

First, we evaluated the effect of palmitate treatment on DSP expression. We treated HepG2
cells with 0.7mM palmitate for 48 hours and observed the fluorescence levels of DSP (Figure
9B). When compared to control (Figure 9A), we found that palmitate treated cells showed a

significant decrease in DSP expression levels (p < 0.05).

Next, we examined the recovery of DSP expression in palmitate treated cells by removing
palmitate after 48 hours of treatment and adding regular growth medium. The cells were
allowed to grow for another 72 hours (Figure 9C) and showed some recovery of DSP
expression with time, albeit statistically different from control (p < 0.05). To assess the effect
of insulin on the recovery of DSP expression, we treated HepG2 cells with physiological
concentration of insulin (1nM) (Yang et al., 2010) for up to 72 hours, following the removal of
palmitate after 48 hours of treatment. Fluorescence levels of DSP in the cells were analyzed
every 24 hours. As seen in Figure 9D-E, cells treated with insulin for 24 and 48 hours show
partial recovery of DSP levels compared to palmitate treated cells (p < 0.05), but cells treated
with insulin for 72 hours show a prominent increase in DSP levels (p < 0.05) (Figure 9F). In fact,
the levels of DSP after 72 hours of insulin treatment are statistically similar to the levels in the
control cells (p > 0.05). The results suggest the expression of DSP that was lost upon palmitate
treatment recovered to basal levels by treating the cells with insulin. Although, cells did
recover some expression of DSP after removal of palmitate from the medium, the recovery

was not restored to basal levels.
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Thus, our experiment supports the association of the palmitate-induced cytotoxic phenotype
with the DSP-insulin signaling pathway in our network. Namely, that DSP and insulin
signaling act synergistically to ensure the proper function of adherence junctions and the lost
or reduction in DSP expression and insulin signaling by palmitate treatment contributes to
the cytotoxic effect of palmitate. Thus suggesting that in liver cells DSP may be a novel target

of palmitate-induced cytotoxicity.
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2.2.4 Discussion

In this section, we applied the information synergy analysis approach to microarray data from
palmitate treated HepG2 cells: a condition relevant to NAFLD and HCC. We showed that DSP
is a novel target of palmitate treatment. Third, we showed that insulin impacts DSP
expression, and palmitate, known to antagonize insulin signaling, also negatively impacts
DSP, contributing to the cytotoxic effect of palmitate. Overall, we suggest that a synergy
network-based gene and pathway association analysis has the potential to reveal novel
targets or mechanisms underlying biological processes, exemplified by the uncovering of DSP

as a novel player in palmitate-induced cytoxicity.

The concept of synergy is intuitive and relevant to biological systems. For example, two
transcription factors may play a cooperative role in determining the expression of a common
gene. Similarly, interactions may occur between signaling proteins, i.e. cross-talk, and such
associations may also be seen in receptor mediated transduction. Information synergy aims
to capture cooperative effects, and in this study, on the impact of these effects on the
induction a particular phenotype. There are several examples of synergistic interactions
implicated in the pathology of fatty liver disease. For example, Smith J.J et al. showed that
two groups of transcription factors worked in a combinatorial manner to control the
transcriptional responses to fatty acids (Smith et al., 2007), thus supporting that cooperativity
is important in regulating cellular processes. Similarly, co-expression of HNF4 and GATA
transcription factor could synergistically activate the expressions of two genes involved in
cholesterol homeostasis, and their binding sites are essential for maximal synergism (Sumi et

al., 2007). Peroxisome proliferator activated receptors (PPARs), one of the best characterized
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nuclear receptors that mediate transcriptional activities of long-chain unsaturated fatty acids,
was found to selectively cooperate with fatty acid binding proteins (FABPs) to regulate
transcription (Tan et al., 2002). Sterol receptor element-binding protein (SREBP-1¢), a
gatekeeper of lipotoxicity (Slawik and Vidal-Puig, 2006), functions together with BETA2, LXRs
and SP1, to regulate various cellular processes, such as insulin signaling (Amemiya-Kudo et al.,
2005), lipid synthesis (Higuchi et al., 2008), and cholesterol biosynthesis (Reed et al., 2008). It is
evident from these examples that identifying genes with cooperative effects (Anastassiou,
2007), instead of limiting efforts to individual genes, has the potential to reveal novel genes or
interactions, and ultimately help elucidate the mechanism of progression of complex diseases
such as NAFLD. Although synergistic gene pairs have been shown valuable in discriminating
phenotypes, interpreting the roles of the individual gene pairs remains a challenge due to the
lack of sufficient functional or structural annotations for many of the genes, thereby
formulating plausible hypotheses of the gene pairs more difficult. In contrast, organizing the
individual gene pairs into a network (synergy network) and then performing gene module
level analysis (Wang et al., 2008), i.e. identifying the pathways over-represented in network or
pathway-gene associations, could help to hint at potential mechanisms as shown in our
study. Nevertheless, investigating individual gene pairs would still be valuable in the future.
Since the gene pairs identified from the microarray data do not necessarily interact directly
with each other, future investigation of individual gene pairs coupled with physical
interaction data (i.e. protein-protein and protein-DNA interaction) should further improve the

analysis.
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The application of information synergy methodology to microarray data obtained from FFA-
treated HepG2 cells revealed insulin signaling as the most significantly enriched biological
pathway. Thus, our analysis successfully recovered insulin signaling as a hallmark
characteristic pathway involved in fatty liver disease (Mattar et al., 2005). We further examined
and confirmed the effects of palmitate treatment on DSP, the top synergistic neighbor of
insulin signaling pathway. We found that expression of DSP is reduced by palmitate
treatment in HepG2 cells. DSP is a desmosomal protein essential for intercellular attachment
by desmosomes. In a study of adhesion molecules in HCC, Cao et al. found that moderately
differentiated hepatocytes tend to show a reduction in DSP protein expression, whereas
poorly differentiated hepatocytes show complete loss of DSP protein expression (Han et al.,
2007). It has been suggested that DSP expression levels are inversely correlated with cell
growth and division. As shown in a study with squamous cell carcinoma, inhibition of EGF
(epidermal growth factor) using antagonists led to an increase in DSP protein levels (Lorch et
al., 2004). Another study has suggested that DSP may play a role in tumor-matrix interaction
as it was found to be a major component of exosomes secreted by mesothelioma cells
(Hegmans et al., 2004). Other studies have also suggested that loss of desmosomes may be
associated with epithelial to mesenchymal transition (EMT) by means which hepatocytes may
acquire malignant characteristics (Chidgey and Dawson, 2007). Although, such associations
were reported in HCC, our results suggest that the impact on DSP may be an early event in
the pathogenesis of fatty liver disease. In other words, reduced expression of DSP may

contribute to the progression to more severe forms of liver diseases.
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From Table 5, adherens junction was identified as a highly enriched category in our synergy
network. Treatment with palmitate has been shown to affect cellular adherence and
cytoskeletal structure in hepatocytes (Draghici et al., 2007; Swagell et al., 2005), although the
exact mechanism and whether DSP is involved in mediating these processes is unknown.
Since, keratins require DSP at the desmosomal plaque for anchoring to the cell membrane
(Rampazzo et al.,, 2002), our results open up the possibility that loss of cytoskeletal structure
may be associated with the loss of DSP. Previous studies have shown that inherited
mutations in DSP are a characteristic feature of a number diseases of the skin and heart
including, skin fragility or wooly hair syndrome (Whittock et al., 2002), arrhythmogenic right
ventricular dysplasia (Rampazzo et al., 2002; Yang et al., 2006), lethal acantholytic
epidermolysis bullosa (Jonkman et al., 2005), and dilated cardiomyopathy with wooly hair and
keratoderma (Uzumcu et al., 2006). It is notable that in recent years some research groups
have suggested the risk of cardiovascular disease (CVD) may be elevated in NAFLD patients
(Edens et al., 2009; Targher et al., 2010; Targher et al., 2008). Given that alterations in DSP
expression are associated with heart disease and since DSP levels are reduced by palmitate
treatment, it raises the possibility that DSP may serve as a potential link between fatty liver

disease and heart disease.

We also explored the relationship between DSP and insulin signaling and found that insulin
treatment enhances the recovery of DSP expression lost due to palmitate treatment. It is
known that palmitate can induce resistance to insulin signaling in hepatocytes (Ruddock et
al., 2008) and several mechanisms have been proposed to explain this observation. Studies

have suggested that PKCA (Protein Kinase C, alpha isoform), known to be activated by lipids
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(diacylglycerols) (Ekinci and Shea, 1999), shares an antagonistic relationship with insulin
signaling, and that knock-out of PKCA enhances insulin signaling (Leitges et al., 2002).
Interestingly, the activation of PKCA also affects the dynamics of desmosomal complex at the
plasma membrane (Bass-Zubek et al., 2008; Hobbs et al., 2010). Junction plakoglobin co-
localizes with DSP at the desmosomal plaque. It has been shown in a study with mice
cardiomyocytes that inhibition of DSP expression leads to a change in localization of
plakoglobins from the cytoplasm to the nucleus. This was shown to antagonize Wnt/(3-
catenin signaling pathway, and trigger the accumulation of fat droplets (Garcia-Gras et al.,
2006) due to the role of Wnt signaling in regulating adipogenesis via CREB and protein kinase
A (PKA) (Chen et al., 2005; Ross et al., 2000). It is noteworthy that Wnt signaling is a
significantly enriched pathway in the synergy network (See Table 1). Wnt signaling is
frequently attenuated in HCC patients and is associated with poor prognosis (Polakis, 2000).
Furthermore, recent studies have confirmed that activation of Wnt signaling enhances insulin
sensitivity (Abiola et al., 2009; Yoon et al., 2010). This suggests that palmitate induced loss of
DSP protein can further enhance insulin resistance through the Wnt/B-catenin signaling
pathway. Thus, it may not be a coincidence that DSP was recovered as a synergistic pair to the

insulin signaling pathway in the network.
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CHAPTER 3: ELEVATED FREE FATTY ACID UPTAKE VIA CD36 PROMOTES EPITHELIAL-

MESENCHYMAL TRANSITION IN HEPATOCELLULAR CARCINOMA

3.1 Introduction

The incidence rates of HCC have more than tripled in the United States over the past four
decades with a steadily increasing mortality rate (Altekruse et al., 2014; Njei et al., 2015).
Surgical resection and liver transplantation are potentially curative treatment modalities
available for HCC detected at early stages, however, most cases are diagnosed at an advanced
stage at which radiotherapy and chemotherapy are either not feasible or are ineffective
(Altekruse et al., 2012). Advanced HCC tumors demonstrate high proclivity towards vascular
invasion resulting in intrahepatic metastases, which are strongly associated with high post-
resection recurrence rates and overall poor prognosis (Tang, 2001; Tung-Ping Poon et al.,
2000). Therefore, understanding the mechanisms of HCC progression is important for
developing new therapeutic approaches. Evidence from epidemiological studies suggested a
link between obesity, manifested in the form of elevated fatty acids, and HCC tumorigenesis
and increased mortality (Calle et al.,, 2003; El-Serag and Rudolph, 2007; Nair, 2002).
Surprisingly, the influences of obesity and elevated fatty acid levels have not been evaluated

with respect to the molecular pathogenesis of invasive HCC.

Cancer cells frequently exhibit alterations in fatty acid metabolism to sustain growth and
proliferation, fulfill energy requirements and provide metabolites for anabolic processes
(Currie et al., 2013). It has been observed that FFA levels are significantly elevated in the

plasma of HCC patients (Table 7). However, the precise role of elevated FFA levels in
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tumorigenesis and cancer progression remains controversial. A number of in vitro and animal
studies have shown that accumulation of FFAs, especially saturated FFA palmitate, leads to
mitochondrial dysfunction and generation of reactive oxidative species (ROS) that contributes
to loss of cellular homeostasis and cell death, a phenomenon termed as lipotoxicity (Duncan,
2008). Additionally, elevated saturated FFAs were shown to enhance TNF-a and IL-6 cytokine-
induced inflammation (Ajuwon and Spurlock, 2005), aggravate insulin resistance (Kennedy et
al., 2009) and enhance endoplasmic reticulum stress (Wei et al., 2006) in hepatocytes. On the
other hand, fatty acid synthase, the rate limiting enzyme in the de novo lipogenesis pathway
was shown to promote proliferation of cancer cells (Menendez and Lupu, 2007). Elevated
FFAs were also shown to enhance tumor formation in a mouse model of chemically induced

HCC via activation of pro-inflammatory cytokines (Park et al., 2010).

In a previous study exploring the lipotoxic pathways activated by saturated FFAs, we reported
a synergistic association between abrogation of insulin signaling and loss of desmoplakin
protein (Wang et al., 2011), an obligate component of the desmosomal cell adhesion
complex. As desmosomes are lost during epithelial-mesenchymal transition (EMT) (Chidgey
and Dawson, 2007), our study suggested a possible role of FFAs in this phenomenon. EMT can
be described as a set of well-orchestrated changes, driven by the expression of key
transcription factors including SNAIL, ZEB and TWIST, which allow epithelial cells to acquire a
mesenchymal phenotype, resulting in enhanced migration, invasiveness, and resistance to
apoptosis, thus facilitating progression to a metastatic phenotype (Kalluri and Weinberg,
2009; Thiery, 2002). Several clinical reports described enhanced expression of EMT-genes in

advanced stage HCC, correlating with poor prognosis, increased rates of metastases and
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elevated mortality rates (Marquardt et al., 2014; Yang et al., 2009a; Zhou et al., 2014). Based on
our findings, combined with the epidemiological observations, we hypothesized that
elevated FFAs may play a role beyond lipotoxicity or activation of pro-inflammatory

pathways, and promote the induction of EMT in HCC.

Evidence shows that fatty acids are actively transported across cell membrane by specialized
proteins instead of by passive diffusion (Stremmel et al., 2001). In the liver, the major proteins
involved in fatty acid transport and trafficking included the fatty acid transport proteins,
FATP2 (SLC27A2) and FATP5 (SLC27A5) and the fatty acid binding proteins (FABP1, FABP4,
and FABP5). The CD36 or fatty acid translocase protein mediates the uptake of fatty acids in a
variety of cell types but is expressed at very low levels in normal liver cells, however, its
expression is increased in hepatocytes from rodent models of diet-induced obesity, which
also correlated with elevated fatty acid uptake (Koonen et al., 2007; Luiken et al., 2001). Thus,
alterations in CD36 expression could be involved in enhancing the uptake of FFA into the

livers of obese HCC patients.

Here we investigated the association between obesity and elevated uptake of FFAs with the
induction of EMT program in human HCC. We first probed the association using mRNA
expression data derived from the TCGA liver cancer dataset and then confirmed the
observations in human HCC tumor samples. Our data suggests that elevated expression of
fatty acid uptake proteins including CD36, and not BMI, was associated with EMT progression.
We further established that the saturated FFA palmitate induced EMT in HCC cells by

activating the Wnt/B-catenin and TGF-f signaling pathways. Additionally, inhibition of CD36
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resulted in reduced migration in liver cancer cells, confirming a critical role of the fatty acid

uptake protein in the progression of the EMT program.

Table 7: FFA levels in normal liver and HCC
Reference FFA values HCC FFA (fold Estimated HCC
mmol/L (Tavares De change) (Zhou et FFA values
Almeida et al., 2002) al., 2012a) mmol/L
Palmitate 0.097+17 249 0.199-0.284
(C16:0)
Oleate 0.085+11 3.16 0.234-0.303
(€18:1)
Linoleate 0.053+12 1.79 0.055-0.116
(C18:2)
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3.2 Materials and Methods

3.2.1 Human HCC tumor samples, TCGA data and EMT score calculation

De-identified, IRB-approved frozen samples were obtained from the “International Registry of
Patients with or at Risk for Hepatobiliary Cancers, Including Hepatocellular Carcinoma,
Cholangiocarcinoma, and Gallbladder Adenocarcinoma, and those Patients with Normal Risk
Factors” (Mayo Clinic IRB#: 707-03; PI: Dr. Lewis R. Roberts). Patient clinical information,
including body mass index, was provided by Mayo Clinic. Total cellular proteins were
extracted from the tumor samples using T-PER protein extraction reagent (Pierce, 78510)
supplemented with protease inhibitor cocktail tablets (Roche, 04693159001) according to the

manufacturer's protocol.

Liver cancer gene expression data (mRNA, normalized RNAseqV2 RSEM) were retrieved from
the TCGA database (Cancer Genome Atlas Research, 2008) using the cBioPortal for cancer
genomics (Cerami et al., 2012a; Gao et al.,, 2013). Expression levels were log, transformed and
EMT scores were calculated using a previously published metric (Salt et al., 2013). EMT score =
Sum of mesenchymal gene expression (CDH2, FN1, SNAI1, SNAI2, TWIST1, TWIST2, VIM, ZEBI,
ZEB2) — Sum of epithelial gene expression (CDH1, CLDN4, CLDN7, MUC1, TJP3). Hierarchical
clusters and heatmap visualizations were generated using the GENE-E matrix analysis

platform (http://www.broadinstitute.org/cancer/software/GENE-E/index.html) with TCGA

gene expression data (MRNA, RNAseq z-scores) retrieved using the cBioPortal. Clusters were
obtained using the average linkage method with 1-Pearson’s correlation coefficient as the

distance metric.
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3.2.2 Cell lines, culture medium and treatment

Human liver cancer cell lines (HepG2, Hep3B) were obtained from ATCC, cultured in DMEM
(Gibco, 11965), supplemented with 10% FBS (Gibco, 16000) and 1% penicillin/streptomycin

(Gibco, 15140), and maintained in a humid, 5% CO, environment at 37°C.

FFA preparation media was made by dissolving 2% w/v BSA (US Biologicals, A1311) in serum-
free DMEM supplemented with 1% penicillin/streptomycin. Palmitate medium was prepared
from a high concentration (40mM) stock solution made by dissolving sodium palmitate
(Sigma, P9767) in dH,O heated to 70°C. An aliquot from the stock was then added drop wise
to 2% BSA medium with constant stirring to achieve the desired final palmitate concentration.
Oleate (Sigma, 07501) and linoleic acid (Sigma, L8134) media were prepared by directly
dissolving the appropriate amounts in BSA media. FFA media with serum was prepared by

adding FBS to a final concentration of 10%.

Chemical inhibitors: 0.5mg/ml TGF-B Rl Kinase Inhibitor (Calbiochem, 616451), Tmg/ml -
Catenin/Tcf Inhibitor Il iCRT3 (Calbiochem, 219332), 5mg/ml LGK-974 (Selleck chemicals,
S7143) and 25mg/ml Sulfosuccinimidyl Oleate (SCBT, sc-208404) stocks were prepared in

100% DMSO and diluted to indicated concentrations for in vitro experiments.

3.2.3 Dispase-based dissociation assay

Dispase assay was adapted from previous studies (Calkins et al., 2005; Huen, 2002). Cultured
monolayers in 6-well plates were washed twice with ice-cold PBS. 2ml of Dispase (1 U/ml)
enzyme solution (Stemcell technologies, 07923) was added to each well and incubated at

37°C for 30 min. The released monolayers were then carefully aspirated into a 15ml centrifuge
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tube and washed with ice-cold PBS by centrifuging at 1g for 1 min. The monolayers were then
disrupted by applying mechanical stress by pipetting 5x with a 1 ml pipette (tube labels were
concealed and pipetted in randomized order to avoid bias). The resulting fragments were
stained with crystal violet (0.05% w/v in methanol) and transferred to 6-well plates for
recording images with a light microscope. Images were analyzed to calculate fragment

number and size distribution using ImagelJ software (Schneider et al., 2012).

3.2.4 Scratch-wound healing, migration and invasion assays

For scratch-wound healing assays, cells were seeded in 24-well plates with regular media.
After a 24-hour acclimatization period, the cells were washed with PBS and cultured for 5 days
in FFA or BSA media with serum to encourage EMT induction. Media was refreshed every 48
hours. Following the 5 day incubation, cells were washed with PBS and using the tip of a
sterile 10uL pipette tip, a single scratch was made on the cell surface within each well.
Perpendicular marks were made to standardize viewing fields. Cells were then cultured in the
corresponding serum-free FFA or BSA media and wound healing was monitored over a 48-
hour time course. The serum-free media avoided confounding effects of proliferation. Three
standardized bright-field images were recorded for each scratch at the 0, 24, and 48-hour
time points. The rates of migration were assessed by either quantifying the percentage of
open wound area using T-scratch package (Geback et al., 2009) or by counting the number of
individual migrating cells in the wound area using automated particle analysis with ImageJ

software.
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For modified Boyden’s chamber assays, following 5 days culture in FFA or BSA media with
serum, cells were collected by trypsinization, neutralized with regular media, washed with
PBS by centrifugation at 200g for 3 min. and counted using a hemocytometer. The cells were
then re-suspended in FFA or BSA medium without serum and seeded on BD Biocoat 8um
membrane inserts (BD Biosciences, 354480) with Matrigel coating (for invasion assay) or
without Matrigel coating (for migration assay). The inserts were placed in wells containing
regular DMEM media containing 10% FBS as chemoattractant. After 24 hours, the inserts were
removed, washed with PBS, fixed in methanol and stained with crystal violet (0.05% w/v in
methanol). The bottom surfaces of the stained inserts were then observed under a light

microscope, and the numbers of stained cells were counted in 5 fields/insert.

3.2.5 Cytotoxicity/metabolic activity assays and Oil Red O staining

Cytotoxicity and metabolic activity were assessed by microplate assays. Cells were seeded in
96-well plates and treated with PA or BSA with serum over 5 days, followed by serum free
treatment. Cytotoxicity was detected using the LDH cytotoxicity detection kit (Roche,
11644793001) following the manufacturer’s protocol. Metabolic activity was determined by

AlamarBlue assay (Pierce, 88952) following the manufacturer’s protocol.

For Oil Red O staining, cells treated in 6-well plates were washed with PBS and fixed with 10%
formaldehyde at room temperature for 1 hour. Cells were washed 2x with dH,0 and washed
2x with 60% isopropanol for 5 min. each at room temperature. The cells were then allowed to
dry in a fume hood for 30 min. Next, 1 ml of Oil Red O (Sigma, 00625) staining solution
(35mg/ml in 60% isopropanol) was added and incubated for 10 min. at room temperature.

Cells were washed 4x with dH,O and bright-field images were recorded at 40X magnification.
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For the elution assay, the cells were allowed to air-dry for 30 min and the dye was eluted by
adding 1Tml 100% isopropanol and incubating on a shaker for 10 min. The eluted dye was
mixed by pipetting and aliquoted in a 96-well plate to measure absorbance at 500nm with

100% isopropanol as blank.

3.2.6 qRT-PCR and arrays

Total mRNA for gRT-PCR and PCR array studies was extracted from cells using RNeasy Mini
Plus kit (Qiagen, 74134) according to the manufacturer’s protocol. cDNA was synthesized
from Tpg of total mMRNA using High-capacity cDNA reverse transcript kit (Applied Biosystems,
4368814) following the manufacturer’s protocol. gRT-PCR experiments were performed in a
MyiQ thermal cycler (BioRad) with Sybr-Green mastermix (BioRad, 170-8882) and 200ng of
template/reaction using the following sets of primers (Operon) designed using the

Primer3/NCBI Primer-BLAST tool (Ye et al., 2012):

Table 8: Primers used in qRT-PCR analysis

Primer Sequence (5'->3')

SNAIL Forward CACTATGCCGCGCTCTTTC

SNAIL Reverse GCTGGAAGGTAAACTCTGGATTAGA
SLUG Forward GGACACATTAGAACTCACACGGG
SLUG Reverse GCAGTGAGGGCAAGAAAAAGG
ZEB1 Forward ATGCAGCTGACTGTGAAGGT
ZEB1 Reverse GAAAATGCATCTGGTGTTCC
ZEB2 Forward TATGGCCTACACCTACCCAAC
ZEB2 Reverse AGGCCTGACATGTAGTCTTGTG
TWIST Forward GCAGGGCCGGAGACCTAG
TWIST Reverse TGTCCATTTTCTCCTTCTCTGGA
FOXC2 Forward GCAGGGCTGGCAGAACAG
FOXC2 Reverse CGCGGCACTTTCACGAA

GAPDH Forward CAGCCGCATCTTCTTTTGCG
GAPDH Reverse TGGAATTTGCCATGGGTGGA

83




The following thermal cycling settings were used: 95°C for 10 min. followed by 40 cycles at
95°C for 30 sec., 62°C for 1 min. and 72°C for 1 min. The fold-change values were calculated as

delta-delta Ct (ddCt) values from a minimum of three independent biological replicates.

The PCR array study was performed with an 84-gene EMT pathway-specific array
(SABiosciences, PAHS-090Z) according to the manufacturer’s protocol. The top 20 genes were
ranked by fold change magnitude and analyzed for KEGG pathway enrichment using the

DAVID bioinformatics tool (Huang et al., 2007).

3.2.7 Western blots

Cells were washed with ice-cold PBS and incubated with ice-cold RIPA buffer supplemented
with protease inhibitor cocktail tablets (Roche, 04693159001) for 30 min. on ice with gentle
shaking. The extracts were transferred to pre-chilled tubes and centrifuged for 10min. at
10,000g to separate cell debris from supernatant with proteins. Total protein levels were
quantified with micro BCA assay (Pierce, 23235), reduced in Laemmli buffer (NEB, B7703S) and
resolved on 10% SDS-PAGE gels by loading 20-40ug of protein per well. The resolved proteins
were transferred to 0.45um nitrocellulose membrane and blocked (5% BSA or milk in TBST) for
1 hour at room temperature. The membranes were incubated with specific primary-
antibodies diluted in incubation buffer (2.5% BSA, 0.01% sodium azide in TBST) overnight at
4°C, followed by incubation with isotype-specific secondary antibodies diluted (1:1000) in
TBST for 1 hour at room temperature. For reprobing, the membranes were incubated 2x in

stripping buffer (0.2M glycine, 0.1% SDS, 1% Tween20, pH=2.2) for 5 min each followed by
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two washes with PBS and TBST for 5 min. each. The membranes were then blocked and
incubated in antibodies as described above. Chemiluminescence was detected with ECL

substrate (Pierce, 34080) in a BioRad gel doc. Band intensities were quantified with ImageJ

software and normalized to loading control (GAPDH).

Table 9: List of antibodies

Antibody Source (catalog) WB Dil.
ZEB1 Origene (TA802298) 1:2000
ZEB2 Origene (TA802113) 1:2000
PORCN Millipore (MABS21) 1:2000
CD36 Millipore (CBL168) 1:2000
SNAI1 SantaCruz (sc28199) | 1:1000
DSP Abcam (ab71690) 1:500
CDH1 Cell Signaling (3195) | 1:1000
VIM Cell Signaling (3932) | 1:1000
TGFB Cell Signaling (3711) | 1:1000
GAPDH Cell Signaling (5174) | 1:2000
VIM-647 Cell Signaling (9856) | -
CTNNB!1 Cell Signaling (8480) | -
SMAD2/3 Cell Signaling (8685) | -

3.2.9 Confocal microscopy

Cells were cultured in glass-bottom 24-well plates (In Vitro Scientific) and treated with FFA or
BSA medium. After treatment, cells were washed 2x with ice-cold PBS and fixed with 3.7%
formaldehyde for 10 min. at 37°C, washed 2x with PBS, and permeabilized with 0.5% TritonX-
100 for 10 min. at room temperature. After 2x washes with PBS, the samples were incubated
in blocking buffer (1% BSA in PBS) for 1 hour at 37°C. Next, the cells were incubated with
diluted primary antibodies (CDH 1:500, VIM, 1:500, B-catenin 1:1000, SMAD2/3 1:2000) in
incubation buffer (0.5% BSA with 0.01% Sodium Azide in PBS) overnight at 4°C. After the

overnight incubation, samples were washed 2x with PBS and incubated in respective
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secondary antibodies (AlexaFluor 488) diluted in PBS for 1 hour at 37°C in the dark. Cells were
washed 2x with PBS and incubated in nuclear counter stain Hoechst 3342 (Invitrogen) for 10
min. at room temperature. After the final incubation, cells were washed twice with PBS and
covered with ProLong Gold (Molecular Probes) anti-fade solution for imaging. Images were
recorded with an Olympus FluoView 1000 Inverted IX81 microscope, using a 40X oil objective
using identical exposure and PMT settings for each primary antibody-fluorophore pair across

the different treatment conditions.

3.2.10 Flow cytometry

Cells were washed twice with ice-cold PBS, trypsinized, and counted. Next, the cells were
resuspended in PBS to a final concentration of 1x10°¢ cells/ml. A total of 100ul of the cell
suspension was aliquoted into microcentrifuge tubes. For live/dead staining, we added 1ul of
Zombie Violet stain (BioLegend, 423113) into each tube and incubated for 30 min. at room
temperature in the dark (all subsequent steps were performed under minimal light
conditions). The cells were then washed with ice-cold incubation buffer (0.5% BSA in PBS with
0.01% Sodium Azide) by centrifugation at 200g for Tmin. and fixed with a freshly prepared 4%
paraformaldehyde solution in PBS (pH = 6.9) for 10 min. at 37°C. The samples were placed on
ice for 1 min., washed with incubation buffer and subsequently permeabilized with 0.5%
Triton X-100 in PBS for 20 min. on ice. For primary antibody incubation, cells were washed
twice with incubation buffer and resuspended in primary antibodies diluted in incubation
buffer (CDH 1:200, DSP 1:200, VIM-647 1:50) for 1 hour at room temperature. For secondary
antibody staining (CDH and DSP), cells were washed twice with incubation buffer and

incubated in isotype-specific Alexa488 secondary antibody diluted (1:1000) in incubation
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buffer for 30 min. at room temperature. After completion of all staining steps, the cells were
washed with incubation buffer and resuspended in 500ul incubation buffer. The samples
were then analyzed on an LSRII flow cytometer system (BD Biosciences) with 1x10* events

recorded per sample.

87



3.3 Results

3.3.1 CD36 expression, and not BM|, is associated with degree of EMT

We investigated the association between patient BMI, expression levels of hepatic fatty acid
uptake proteins and EMT progression in the TCGA liver cancer dataset. The TCGA samples
were grouped according to the patient’s BMI and an EMT score was assigned to each sample
to assess the degree of EMT. We observed that the EMT score was not significantly different
between the low and high BMI groups (p=0.99) (Figure 11A), suggesting that BMI did not
influence the degree of EMT in HCC patients. Additionally, most genes involved in hepatic FA
uptake also did not show a significant difference in expression levels between the two BMI
groups. However, CD36, a fatty acid uptake protein that is normally expressed at very low
levels in hepatocytes, was the exception among the FA uptake genes as it showed increased
expression in the high BMI group (p=0.04) (Figure 11A). Furthermore, among the FA uptake
genes, CD36 was the gene for which the expression significantly correlated with BMI (r=0.26,
p=2x1073), indicating that altered CD36 expression could be a major contributor to elevated
FA uptake in obese HCC patients (Figure 11B). Although the EMT score was not significantly
correlated with the BMI of patients (r=0.05, p=0.55), the expression of the mesenchymal
markers ZEB1 (r=0.17, p=0.04) and FNT (r=0.23, p=6x103) were both correlated with BMI
(Figure 11B). Next, we clustered the genes involved in FA uptake, epithelial and mesenchymal
genes in the TCGA dataset with samples ordered according to EMT score (Figure 11C). As
expected, the epithelial and mesenchymal genes clustered with other members of their
respective groups. Intriguingly, the FA uptake genes clustered closer to the mesenchymal

genes than the epithelial genes. We further investigated the association between FA uptake
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genes and EMT score and found that the expression levels of CD36 (r=0.27, p=1x10*), FABP4
(r=0.35, p=9.7x107), FABP5 (r=0.18, p=0.01), and SLC27A5 (r=0.16, p=0.03) were significantly
correlated with the EMT score (Figure 11D). These results suggest that while BMlI itself did not
have an influence, the expression of FA uptake genes was strongly associated with the degree
of EMT in HCC patients. Given the lack of expression in normal hepatocytes and exclusive
association with both BMI and EMT score, CD36 emerged as an ideal candidate for

subsequent studies.

To verify the association between FA uptake gene expression and EMT observed in TCGA
data, we further investigated the protein expression of CD36 and EMT in human HCC tumor
samples. The clinical samples were divided into two groups according to the patient’s BMI
information. Total cellular proteins were resolved and immunoblotted to detect the
expression levels of various EMT markers (Figure 12A). Vimentin (VIM), a mesenchymal
intermediate filament network protein, was measured along with E-cadherin (CDH) and
desmoplakin (DSP), cell-adhesion molecules that served as indicators of epithelial
characteristics. Expression levels of the mesenchymal marker VIM (p=0.02) were significantly
higher in high BMI tumor samples, but levels of epithelial markers CDH (p=0.32) or DSP
(p=0.13) were not significantly altered (Figure 12A and 12B). Next, we measured the
expression levels of ZEB1, ZEB2 and SNAIL1 as transcriptional activation markers of EMT.
While the expression levels of SNAIL1 (p=0.05) were significantly higher in high BMI tumor
samples, ZEB1 (p=0.23) and ZEB2 (p=0.43) did not differ significantly (Fig. 2A and 1B). In
addition to the EMT markers, we further measured expression levels of TGFB and PORCN as

respective indicators of the activation of TGF-f3 and Wnt/B-catenin signaling pathways. In the
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high BMI patient group, the expression levels of TGFB (p=0.001) were significantly higher, but
PORCN (p=0.27) levels did not change (Figure 12A and 12B). While the expression levels of
some EMT markers were elevated in the high BMI patients, the disparities in significance

levels suggest that BMI alone was not sufficient to predict EMT.

Next, we compared expression levels of the EMT markers with CD36 expression across all the
samples, irrespective of BMI. As shown in Figure 12C, the expression of VIM (p=0.01), SNAIL1
(p=0.22), ZEB1 (p=6x10°) and ZEB2 (p=6x10*) were positively correlated with CD36
expression. Additionally, the expression levels of TGFB (p=0.17) and PORCN (p=0.04) also
showed positive correlation with CD36 expression. While the comparison of EMT markers
between high BMI and low BMI patients was inconclusive, the significant association of CD36
with ZEB1, ZEB2 and VIM corroborate the observations made in the TCGA analysis - that
elevated CD36 expression may be indicative of the activation of EMT program. Additionally,
the expression levels of TGFB and PORCN also showed positive correlation with CD36
expression, suggesting that the TGF-3 and Wnt/B-catenin signaling pathways may be the
drivers of EMT program activation in the tumor samples with elevated CD36 levels. These
results indicate that the elevated levels of CD36 and the consequently elevated uptake of

FFAs may be involved in HCC progression via EMT.
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Figure 11: Fatty acid uptake and EMT markers in TCGA liver cancer dataset.
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Figure 11 (cont’d)
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A. Effect of patient’'s BMI on EMT and FA uptake gene expression. Box plot showing

comparison of EMT scores, mRNA expression levels of hepatic FA uptake genes and CD36 in

groups of patients with BMI < 25 (Low BMI) or > 25 (High BMI). P-values indicate significance

levels from two-tailed Student’s T-test. B. Scatter plots showing correlation between BMI (X-

axis) and EMT score, CD36, ZEB1 or FN1 (Y-axis). The solid red line indicates linear fit, with 95%
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Figure 11 (cont’d)

confidence intervals indicated by dotted black lines. r indicates Pearson’s correlation
coefficient and p-values indicate significance of correlation (two-tailed). Only the EMT or FA
uptake genes with significant correlations with BMI are shown here. C. Heatmap showing
relative expression levels of hepatic fatty acid uptake genes and EMT genes in the TCGA liver
cancer dataset. Gene clusters (vertical axis) were obtained by hierarchical clustering and
samples (horizontal axis) were ordered according to the EMT score. D. Scatter plot showing
association between the fatty acid uptake genes (Y-axis) and EMT score (X-axis) in the TCGA
dataset. The solid red line indicates linear fit, with 95% confidence intervals indicated by
dotted black lines. r indicates Pearson’s correlation coefficient and p-values indicate

significance of correlation (two-tailed).

93



A Low BMI High BMI
CD36
VIM
CDH1
DSP
SNAIL
ZEB1
ZEB2

TGFB
PORCN

GAPDH

o
n
o
w
N

Normalized protein expression
LN
.+
Normalized protein expression
>

s
L >
>

>
Normalized protein expression

DSP SNAIL1 ZEB1
p=0.05 :

©

n
o
)
w

e
>

o

Normalized protsin expression
°
Normalized protsin expression
Normalized protein expression
.
L]

%%
.
Iy
'
o
%,
g,

°
I
e
'Y
@

>

Normalized protein expression
o
o ®
.
-
>
Normalized protein expression

Normalized protein expression

e
3

Figure 12: CD36 and EMT marker expression in human HCC tumors
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Figure 12 (cont’d)

C

PORCN

A. Western blots showing expression levels of CD36 and various EMT markers in tumor
samples grouped according to BMI. High BMI group (n=8) represents tumor samples obtained
from individuals with BMI = 30 and low BMI group (n=8) indicates individuals with BMI < 25.
Samples were blotted with specific primary antibodies against the indicated protein with
GAPDH used as loading control. B. Expression levels of proteins were determined by
quantifying the background-subtracted band intensities normalized to GAPDH. Each dot
represents relative expression levels of individual samples, with the horizontal bar indicating
the median of the distribution. P-values indicate significance of difference in means between
low BMI and high BMI groups determined by Mann-Whitney U test. C. Scatter plot showing
association between CD36 (X-axis) and EMT marker (Y-axis) expression. The solid lines
indicate linear fit and the dotted lines indicate 95% confidence intervals. r indicates Pearson’s

correlation coefficient and p-values indicate significance of correlation (two-tailed).

95



3.3.2 FFA treatment enhances migration and invasion

Having found an association between the fatty acid uptake protein CD36 and EMT regulators,
we sought to study the effects of fatty acids themselves on the metastatic behavior of liver
cancer cells. We hypothesized that elevated FFAs enhance EMT rates in liver cancer cells. To
test this, we first evaluated the rates of migration in human liver cancer cell lines treated with
various FFAs. Human HepG2 cells were cultured in media containing carrier control (BSA), the
saturated FFA palmitate (PA), monounsaturated FFA oleate (OL), n-6 polyunsaturated FFA
linoleic acid (LA), the combinations of PA + LA, or the combination of OL + LA (Fig. 13A and
13B). As shown in Figure 13A and 13C, the percentage wound closure in BSA was not
significant (Day 7 p=0.39, Day 10 p=0.16). In comparison, cells treated with PA and OL
exhibited significant wound closure by day 7 (Day7, Day10 p<0.01). However, the cells
maintained in polyunsaturated LA also did not show a significant reduction in open-wound
area (Day 7 p=0.63) (Fig. 13B and 13D). We further evaluated the behavior of cells maintained
in media containing a combination of different FFAs observing that cells co-treated with PA
and LA still showed significant migration (Day 7 p=0.02) but this effect was not seen in cells
co-treated with OL and LA (Day 7 p=0.16) (Figure 13B and 13D), suggesting that while
saturated FFAs significantly enhanced migration rates, polyunsaturated FFAs did not enhance

migration in liver cancer cells.

The strong effect of PA on cell migration prompted us to further investigate the role of PA in
enhancing EMT. We evaluated the dose-dependent effect of PA on migration of liver cancer
cells. In this experiment, we treated HepG2 and Hep3B cells, two liver cancer cell lines with

different etiologies and inherent metastatic potentials, with different concentrations of PA. In
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line with the higher inherent metastatic potential of Hep3B cells, we observed higher overall
migration rates in PA treated Hep3B cells as compared to HepG2 cells (Figure 14A and 14B).
Both HepG2 and Hep3B cells treated with 0.3mM or 0.4mM PA show significant increases in
the number of cells migrating into the open wound area when compared to BSA treated cells
(24/48 hours p<0.05) (Figure 14A). While lower concentrations of PA did not have a significant
effect on the migration of HepG2 cells, 0.2mM PA did have a significant effect on migration of
Hep3B cells at 48 hours (p<0.05). Since both cell lines showed a significant increase in
migration rates at a minimum concentration of 0.3mM, we used this concentration for all
further experiments. Note that the level of palmitate in the serum of normal individuals is
approximately 0.1mM, whereas in an HCC patient it has an expected range of 0.2-0.3mM
(Table 7). Thus, the minimum concentration of PA which was found to enhance HepG2 and

Hep3B cell migration rates was very similar to the levels found in HCC patients.

As expected in cells undergoing EMT, we noticed a distinct change in the morphology of PA
treated HepG2 cells. The cells were immunostained for the cytoskeletal protein keratin 18
following 5 days of treatment with BSA or PA. Interestingly, while all BSA treated HepG2 cells
appeared as round or polygonal shaped, some colonies within PA treated cells exhibited an
elongated, spindle-shape, characteristic of mesenchymal cells, along with reduced keratin 18
levels (Figure 14C). This observation further provided evidence that PA treatment may be

inducing EMT in the liver cancer cells.

The effects of palmitate on the migration and invasiveness of HepG2 and Hep3B cells were
confirmed using the modified Boyden’s chamber assay. These experiments were performed

by seeding 5-day treated PA or BSA cells in cell culture inserts in the absence of serum. After
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24 hours, both HepG2 and Hep3B cells treated with PA exhibited enhanced migration and

invasion compared to BSA treated controls (Figure 14D).

EMT induction also decreases cell adhesion. To test if PA treatment resulted in loss of liver
cancer cell adhesion, we performed a dispase-based cell dissociation assay. After the 5-day
treatment with PA or BSA, cultured monolayers were released using the dispase enzyme and
subjected to mechanical stress. We found that applying mechanical stress on PA treated
HepG2 and Hep3B cells resulted in fragmentation of the monolayer into a large number of
smaller-sized particles. In comparison, control cells resulted in fewer, larger-sized particles or
sheets (Figure 14E and 14F). Thus, we inferred that PA treatment promoted loss of cell

adhesion in both HepG2 and Hep3B cells, thereby destabilizing the monolayer.
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Figure 13: Differential effects of FFA on migration.

A & B. Scratch-wound healing assays. HepG2 cells were grown to 80% confluence in regular
medium, and a scratch was introduced on the monolayer. The cells were then cultured in

regular media containing either BSA (control), PA (0.4mM), OL (0.4mM), LA (0.4mM), PA
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Figure 13 (cont’d)

(0.2mM) + LA (0.2mM) or OL (0.2mM) + LA (0.2mM). The migration of the wound front was
monitored over a 10-day period to establish an empirical time-frame within which the cell
front acquired the ability to migrate across the wound. Phase contrast images were recorded
at 40X magnification (scale bar=50um) C & D. Bar graph showing the open wound area in
treated cells calculated using the T-scratch package at different time points normalized to
open wound area at 0 hr. P-values indicate significance levels (n=3) determined by Student’s

t-test (two tailed).
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Figure 14: PA mediated EMT induction.
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Figure 14 (cont’d) A. Scratch-wound cell migration assays. HepG2 and Hep3B cells were
treated with different concentrations of PA (0.TmM to 0.4mM) and BSA (control) for 5 days in
presence of serum. A wound was introduced on the cell monolayer on 5" day and imaged
after switching to serum-free medium (0 hour time point). The wounds were imaged after 24
and 48 hours in 3 fields of view and the number of cells at each time point were quantified.
The plot indicates average number of migrating cells in the wound area at 24 and 48 hours
normalized to the number of migrating cells in the wound area at 0 hour time point (n=3). P-
values indicate the significance levels compared to BSA at a given time point determined by
Tukey's test following one-way ANOVA. B. Phase contrast microscopy images of HepG2 and
Hep3B cells treated with BSA or PA (0.3mM) recorded 48 hours after scratching at 40X
magnification (scale bar=50um). C. Changes in morphology upon PA treatment. Confocal
images of HepG2 cells were obtained following 5 day treatment with PA (0.3mM) or BSA.
Nuclei are indicated with blue fluorescence and keratin 18 with green fluorescence. Images
were recorded at 40X magnification (scale bar=100um). D. Boyden’s chamber assays. HepG2
and Hep3B cells were cultured in PA (0.3mM) or BSA for 5 days in presence of serum. The cells
were then trypsinized, counted and 1x10%cells were re-seeded in the upper compartment of
Boyden’s chamber inserts (migration/invasion) without serum. The inserts were placed in
wells containing regular media supplemented with 10% FBS as a chemoattractant. The bar
graph indicates the average number of migrating or invading cells (+SEM, Standard Error of
the Mean) counted in 5 fields of view per insert (n=3). P-values indicate significance levels
determined by Student’s t-test (two-tailed). E. Bright field images at 5X (scale bar=400um)

magnification showing fragmentation in monolayers of BSA or PA treated Hep3B or HepG2
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Figure 14 (cont’d)

cells following dispase treatment and application of mechanical stress. F. Particle analysis
following dispase assay. Bar graphs showing average particle count and fragment diameter
(+SEM) determined from 5 independent images panels obtained after dispase treatment and
applying mechanical stress to BSA or PA treated HepG2 and Hep3B cells. P-values indicate

significance levels determined by Student’s t-test.

3.3.3 Cytotoxicity vs. EMT in FFA treated cells

A number of previous studies have established that PA is in fact cytotoxic to liver cancer cells,
and elevated levels may cause lipotoxicity. Indeed, when HepG2 and Hep3B cells were treated
with PA at different concentrations, we noticed significant cytotoxicity at the concentrations
corresponding to enhanced migration in cell lines (Figure 15A). Note this experiment was
performed after the 48-hour serum-free treatment with PA or BSA and serum-starvation can
also contribute to cytotoxicity. Next, we assessed the metabolic rates in the PA and BSA
treated cells before and after serum starvation. While the metabolic activity rates were
reduced in both serum-starved PA (HepG2 66%, Hep3B 71%) and BSA (HepG2 47%, Hep3B
80%) treated cells after 48 hours, the basal metabolic rates were significantly higher in PA
treated cells when compared to BSA at both 0 (HepG2 2.2 fold, Hep3B 2.7 fold) and 48 hours
(HepG2 3.1 fold, Hep3B 2.4 fold) (Figure 15B). Thus, despite lipotoxicity, the PA treated cells
were overall more metabolically active than the BSA treated cells. We further measured
metabolic activity by staining for neutral lipids and fatty acids using Oil Red O dye. As shown
in Figure 5C, both PA-treated HepG2 and Hep3B cells show enhanced staining with Qil Red O

after 48 hours of serum-starvation compared to BSA treated cells. Additionally, we quantified
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the relative levels of the dye eluted from stained cells and found significantly higher levels in

PA treated cells (Hep3B p<0.05, HepG2 p<0.01) (Figure 15D).

From these experiments, we hypothesized that while PA induced cell death in a proportion of
the liver cancer cells, a distinct surviving population of cells remained metabolically active
and acquired the ability to undergo EMT. To further confirm this point, we measured the
changes in expression levels of various EMT markers in the PA treated liver cancer cells. We
used flow cytometry to analyze the population distribution of cytotoxicity and EMT markers.
We stained PA or BSA treated HepG2 cells with a cell death indicator dye (Zombie Violet)
followed by formaldehyde fixation. The fixed cells were then permeabilized and
immunophenotyped for CDH1, DSP (epithelial markers), and VIM (mesenchymal marker).
After background subtraction from unstained cell populations, we analyzed the percentage
of cells that were positively stained for each marker. As expected, we found that upon PA
treatment a larger percentage of cells stained positive for Zombie Violet as compared to BSA
treatment (upper left quadrant, Figure 16A). Moreover, another separate population of cells
stained positive for the epithelial and mesenchymal markers (lower right quadrant Fig. 6A).
The percentage of cells that stained positive for CDH in BSA (45.42%) was significantly higher
than PA (15.63%) (x?>=21.43, df=1, p<0.001). Similarly, a higher percentage of DSP staining was
observed in BSA (75.67%) compared to PA (33.13%) (x>=26.7, df=1, p<0.001). In contrast, a
larger number of PA cells (63.57%) showed positive staining for

VIM, compared to BSA cells (50.6%) (x>=3.5, df=1, p=0.03).

The expression of the EMT markers was further confirmed by observing the immunostaining

using confocal fluorescence microscopy. HepG2 and Hep3B cells were fixed, permeabilized
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and stained to detect CDH and VIM expression (Figure 16B). The PA treated cell population
showed reduced CDH expression and increased VIM expression in both HepG2 and Hep3B
cells. Within the population of PA treated Hep3B cells, a few cells show very high expression

levels of VIM, further corroborating presence of distinct cell populations.

The mRNA expression levels of the EMT transcription factors SNAILT (p<0.05), ZEB2 (p<0.01)
and TWISTT (p<0.05) were significantly higher in PA treated HepG2 cells and similarly ZEBT
and FOXC2 were expressed at higher levels in the PA treated cells (p=0.06) (Figure 16C). The
lower fold-change observed in the gRT-PCR experiment reflects population average across all

cells, including cytotoxic and EMT cells, within a treatment condition.
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Figure 15: Cytotoxicity vs. metabolic activity.
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Figure 15 (cont’d)
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A. LDH cytotoxicity assay. Bar graph showing average cytotoxicity (+SEM) in HepG2 or Hep3B

cells following 5 day (with serum) and 2 day (without serum) treatment with BSA or PA at
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Figure 15 (cont’d)

different concentrations (n=3). P-values indicate significance levels comparing average LDH
release in PA treated cells with BSA treated cells determined by Student’s t-test (two tailed). B.
AlamarBlue assay. Bar graph showing the relative metabolic activity rates represented by
average fluorescence (xSEM) from reduced AlamarBlue reagent (resazurin) in HepG2 or
Hep3B cells following 5 day treatment (with serum) and 2 day (without serum) with BSA or PA
(n=3). P-values indicate significance levels determined by Student’s t-test (two tailed).
Numbers above bars indicate the percentage of proliferating cells at 48 hours compared to 0
hours. C. Neutral lipids and fatty acids in HepG2 or Hep3B cells were stained with Oil Red O
following 5 day (with serum) and 2 day (without serum) treatment with BSA or PA. Bright-field
microscopy images were recorded at 40X magnification (scale bar=50um). D. Relative levels
of lipids and fatty acids in BSA and PA treated cells were quantified by eluting the Oil Red O
dye and measuring relative absorbance at 500nm. Bar graph shows average absorbance
(£SEM) in BSA and PA treated cells. P-values indicate significance levels comparing average

absorbance in BSA or PA treated cells determined by Student’s t-test (two tailed).
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Figure 16 (cont’d)
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Figure 16 (cont’d)
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A. Density plots showing distribution of cells co-stained with zombie violet (Y-axis) and either
CDH, DSP or VIM (X-axis) in HepG2 cells treated with BSA or PA (0.3mM). The bars represent
staining thresholds for zombie violet (horizontal bar) or the protein markers (vertical bar).
Lower left quadrant represents background staining, upper left quadrant represents cells
stained with only zombie violet, upper right quadrant represent cells co-stained with zombie
violet and protein marker and lower right quadrant represent cells stained with protein
marker only. The numbers in the plot represent the percentage of total cells within that
quadrant. B. Confocal images showing expression levels of CDH and VIM in HepG2 and
Hep3B cells. Blue indicates nuclear staining and green indicates CDH or VIM staining. Images
were recorded at 40X with identical exposure and PMT settings maintained between BSA and
PA treated cells for a given marker (scale bar = 100um). C Bar graph showing fold-change in
MRNA expression levels of various EMT transcription factors determined by gqRT-PCR in PA

(0.3mM) treated HepG2 cells compared to corresponding expression levels in BSA treated
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Figure 16 (cont’d)

cells (GAPDH normalized). P-values indicate significance levels compared to BSA determined

by Student’s t-test (two tailed), n = 3.

3.3.4 FFA treatment activates Wnt and TGF-f3 signaling

With evidence to support that PA treatment activated the EMT-program, we next sought to
understand the driving mechanism behind EMT activation in the PA treated cells. We used the
mMRNA samples from BSA and PA treated HepG2 and Hep3B cells and profiled the expression
levels of genes that were representative of known EMT-inducing signaling pathways using a
PCR-based array (Figure 17A). In this study, we ranked the genes obtained from the array
according to the PA vs. BSA fold-change and analyzed the enrichment of KEGG-pathways in
the top 20 genes (Figure 17B). While the hedgehog signaling pathway was enriched in the
HepG2 cells, we did not find a significant increase in the sonic hedgehog ligand (SHH) and its
downstream transcriptional activator GL/T mRNA levels in PA treated HepG2 cells. We found
that the TGF-beta and Wnt signaling pathways were significantly enriched in the set of top 20
genes from both HepG2 and Hep3B cells (Figure 17B). Interestingly, a distinct set of genes
within these pathways were upregulated in the two cell lines (Figure 17A). Recall that in the
human HCC tumor samples in Figure 12C, we found a positive correlation between CD36 with
TGFB (TGF-beta signaling ligand) and PORCN (Wnt signaling mediator). These results provide
a point of convergence between the correlations observed in the human HCC studies and the
experiments with PA treated liver cancer cells — that TGF-beta and Wnt signaling pathways

are activated in both cases and may be the drivers behind activation of EMT program.
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The activation of TGF-beta and Wnt signaling pathways promote the subsequent activation of
EMT transcription factors, driving the expression of several other anti-apoptotic and
proliferative oncogenes. This requires the activation and nuclear translocation of downstream
transcriptional effectors of TGF-beta and Wnt signaling pathways. Thus, to assess the
activation of the two pathways, we investigated the intracellular localization of SMAD2/3 and
[3-catenin in BSA and PA treated cells. The overall expression levels of 3-catenin were higher
in both HepG2 and Hep3B cells after PA treatment (Figure 17C-D). Moreover, the expression
of B-catenin was restricted to the cell membrane and cytoplasm in BSA treated cells, while in
PA treated cells we clearly observed its increased localization to the nucleus, suggesting that
the Wnt signaling pathway was activated upon PA treatment of both HepG2 and Hep3B cells.
The expression levels of SMAD2/3 were higher in PA treated Hep3B cells (Figure 17E) but did
not seem to change in PA treated HepG2 (Figure 17F) cells, corroborating the data from the
array (Fig. 7A). Additionally, SMAD2/3 staining showed considerably higher nuclear
localization in PA treated Hep3B cells (Figure 17E), but this change was not distinct in the PA
treated HepG2 cells (Figure 17F). This indicated differing mechanisms of EMT induction in the
two cell lines and a proclivity of the hepatoblastoma-derived HepG2 cells towards activation

of the Wnt-signaling pathway.

We further investigated the mRNA expression profiles of the Wnt (Figure 18A) and TGF-beta
(Figure 18B) signaling genes in the TCGA dataset in context of CD36 expression. The
components of these two signaling pathways that share a similar expression pattern as CD36
(marked clusters in dashed box) reveal possible mechanism by which these pathways may be

associated with elevated FFA uptake. The BMP family ligands (GDF5, BMP4), NODAL, and the
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transcriptional effector (SMAD3) of TGF-beta signaling pathway show similar expression
pattern as CD36. Similarly, the Wnt ligand (WNT7A) and the canonical Wnt signaling
transcription factors CTNNB1, LEF1 and TCF7 clustered with CD36. Additionally, genes involved
in non-canonical Wnt signaling pathways including planar polarity pathway (DAAM1, ROCK2)
that regulates cytoskeletal rearrangement, and the Wnt/Ca* pathway (PPP3R1, NFATC3) that
regulates cell adhesion and migration, also exhibit similar expression patterns as CD36. Next,
we analyzed the expression patterns of transcription factors that are known to be activated
by elevated free fatty acids (Figure 18C). We found that the fatty-acid responsive transcription
factors, PPARA and PPARD, that can transcriptionally upregulate CD36 (Zhou et al., 2008b),
show strong positive correlation with CD36. Furthermore, a number of downstream
transcriptional effectors of inflammatory pathways (TNF-q, Jak/Stat, IL1-signaling) activated
by free fatty acids, including NFKB1, FOS and HIF1A show similar expression pattern as CD36.
These transcription factors can upregulate the expression of Wnt and TGF-beta signaling
pathway components, and also upregulate expression of EMT transcription factors. Figure 8D
provides an outline of the influence of elevated uptake of FFA on the various signaling
pathways constructed using the results from our in vitro experiments with PA treated HCC
cells, and the evidence from TCGA analysis. As shown in the schematic, the uptake of FFA via
CD36 is a key event in the induction of EMT program in HCC cells. Therefore, we hypothesized

that inhibition of CD36 would result in abrogation of the EMT phenotype.

To verify the critical role of CD36 in mediating the effects of PA on the liver cancer cells,
HepG2 cells were cultured in BSA or PA along with Sulfo-N-succinimidyl oleate (SSO) - a

chemical that binds irreversibly to the CD36 receptor and inhibits fatty acid uptake (Coort et
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al., 2002). After the 5-day treatment period, we measured the protein expression levels of
CDH and VIM (Fig. 9A). Note that the PA treatment expression levels reflect the population
average across both cytotoxic and EMT cells. We found that inhibiting CD36 activity with SSO
resulted in significant upregulation of CDH in not only PA treated cells, but also in BSA treated
cells (Fig. 9B). In other words, the inhibition of CD36 was sufficient to recover the mild-EMT
phenotype that was observed in BSA treated cells as well. Additionally, the expression levels
of VIM were significantly reduced in PA treated cells when CD36 was chemically inhibited

(Figure 19Q).

To assess the role of TGF-beta and Wnt signaling pathways in mediating the activation of EMT
program, we measured the effect of inhibiting these pathways in PA treated HepG2 cells. We
found that migration rates were significantly reduced in PA treated cells when they were co-
treated with a B-catenin/Tcf inhibitor Il inhibitor against the Wnt signaling pathway (Lee et
al., 2013) or TGF-B1 Rl kinase inhibitor against the TGF-beta signaling pathway (Sawyer et al.,
2003) (Figure 19D). Additionally, the inhibition of the PORCN enzyme activity with LGK974
(Liu et al.,, 2013a) also resulted in significant reduction of migration rates (Figure 19E). Finally,
the inhibition of CD36 with SSO reduced migration rates in PA treated cells (Figure 19E),
confirming the importance of CD36 in mediating PA induced EMT in the liver cancer cells.
These experiments confirm that the induction of EMT by PA is mediated by CD36 and requires

activation of TGF-beta and Wnt signaling pathways.
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Figure 17: EMT pathways induced by PA.
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Figure 17 (cont’d)
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Figure 17 (cont’d)
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Figure 17 (cont’d)

A. Heatmap showing relative fold-change in mRNA expression levels of various EMT-related
genes in PA (0.3mM) vs. BSA treated cells measured by EMT-array. The enlarged heatmap
shows fold change in expression levels of the components of TGFB- and Wnt-signaling
pathways included in the array. B. The top 20 genes ranked according by fold-change in the
array were enriched for KEGG pathways. The table shows the term (KEGG pathway) enriched,
number and percentage of genes in the input set belonging to the pathway and significance
levels of enrichment. C-F. Confocal images showing expression of (3-catenin or SMAD2/3
(green) and nuclei (blue) in HepG2 and Hep3B cells treated with BSA or PA (0.3mM). The
overlap panel shows pixels where both green and blue fluorescence co-localize, therefore
indicating cells displaying translocation of B-catenin or SMAD2/3 transcription factors to the
nucleus. Images were recorded at 40X with identical exposure and PMT settings maintained

between BSA and PA treated cells for a given marker (scale bar = 100um).
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Figure 18: Correlation matrix heatmaps showing the association between mRNA
expression z-scores (TCGA) of CD36. A. Wnt signaling pathway genes (KEGG) B. TGF beta
signaling pathway (KEGG) C. PPARs and transcriptional mediators of inflammatory pathways
known to be induced by free fatty acids. Genes are clustered with average linkage hierarchical
clustering using 1-Pearson’s correlation as distance metric. Black boxes in A and B show the
nearest neighbors of CD36 with strong positive correlation, with enlarged list showing the
names of genes in that cluster. D. Overview of the influence of elevated free fatty acid uptake
on cell signaling pathways resulting in the induction of EMT program. Red ovals represent
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Figure 18 (cont’d)

genes that were upregulated in vitro in PA treated HCC cells; orange ovals represent genes
that show positive correlation with CD36 in the TCGA dataset; white ovals represent genes
that did not show a significant correlation with CD36 in the TCGA dataset. Dashed black
arrows show transport/translocation, solid black arrows and bar-headed lines indicate
positive and negative regulation respectively. Blue arrows indicate consequence of activation

of the proteins in context of the EMT program.
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Figure 19: CD36 and TGF-beta/Wnt-signaling mediate PA effects. A. Western blots
showing expression of CDH and VIM in HepG2 cells treated with BSA or PA (0.3mM) for 5 days
with serum. Additionally, the cells were co-treated with either 100uM SSO (CD36 inhibitor) or
DMSO (solvent control). B-C. Bar graphs showing quantification of blots indicating expression

levels of CDH and VIM normalized to GAPDH in BSA or PA treated cells (h=3). P-values indicate
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Figure 19 (cont’d)

significance levels comparing SSO treated (+SSO) BSA or PA treated cells with DMSO control (-
SSO) cells determined by Student’s t-test (two tailed). D. HepG2 cells were treated with PA
(0.3mM) and DMSO (control), B-catenin/Tcf inhibitor Il (100nM) or TGF-1 Rl kinase inhibitor
(50nM) in presence of serum for 5-days, followed by wound-healing assay in serum-free
media over 48 hours. Bar graph indicates average wound closure (wound closure = 100 - %
open wound area) normalized to 0 hour time point (n=3). P-value indicates significance levels
comparing the open wound area in inhibitor treated cells with control cells determined by
Student’s t-test (two tailed). E. HepG2 cells were treated with PA (0.3mM) and DMSO (control),
CD36 inhibitor SSO (100uM) or porcupine inhibitor LGK974 (100nM) in presence of serum for
5-days, followed by Boyden’s chamber migration assay over 48 hours in serum-free media,
with 10% FBS containing regular medium as chemoattractant. Bar graph indicates the
average number of migrating cells (n=3). P-value indicates significance levels comparing the
number of migrating cells with inhibitor treatment against control, determined by Student’s

t-test (two tailed).
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3.4 Discussion

Although obesity has been strongly associated with progression and high mortality rates in
HCC patients (Calle and Kaaks, 2004; Calle et al., 2003), the role of FFAs in HCC progression has
remained undefined. Our results provide the first direct evidence that elevated FFA uptake
promotes HCC progression by activating the EMT program. By investigating the expression
profile of hepatic fatty acid transport proteins in comparison to markers of EMT progression,
we showed an association between FFA uptake and EMT. However, we also observed that
BMI was not associated with the degree of EMT, highlighting the specific role of FFAs and
their cellular uptake in this process. Note that BMI itself may not be an accurate indicator of
the level of fatty acids in an individual, as athletic and fit individuals with higher bone density
or muscle mass could have high BMI despite low fat levels. Further, BMI at the time of HCC
diagnosis may not be fully reflective of the patients BMI during carcinogenesis due to the

frequent occurrence of paraneoplastic weight loss once the cancer is established.

Since BMI was not associated with EMT, we speculate that higher CD36 levels in certain HCC
patients could contribute to the accumulation of FFAs in the liver independent of BMI. This
notion is supported by evidence from expression analysis of human NAFLD subjects which
associated enhanced CD36 expression with higher liver fat content (Greco et al., 2008). CD36
knockout studies in mice also showed that loss of CD36 prevented hepatic steatosis in
animals fed with high fat diet (Zhou et al., 2008b), confirming the crucial role of CD36 in
hepatic fat accumulation independent of other FA uptake proteins. This study also found that

the transcription of CD36 in the liver was regulated by the FA-responsive transcription factors
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PPAR-q, PPAR-y, LXR and PXR, suggesting that a positive feedback loop elevated the hepatic

uptake of FFAs.

The fundamental role of the hepatic FFA pool is to produce energy via (-oxidation and
provide materials for the biosynthesis of membranes and complex lipids, and other metabolic
pathways. Given the increased energy and anabolic demands of rapidly proliferating cancer
cells, it is clear why alterations in fatty acid metabolism may be required for tumor
progression. Indeed, rewiring of energy metabolism pathways is increasingly being
recognized as an emerging hallmark involved in the tumorigenesis of a wide variety of
cancers (Currie et al., 2013; Hanahan and Weinberg, 2011). But the role of FFAs in HCC
tumorigenesis likely extends beyond cellular sustenance. Our in vitro experiments confirmed
that FFAs induced EMT in HCC cells via the activation of Wnt and TGF[ signaling pathways.
The Wnt ligands (WNT5A, WNT5B, WNT11) were upregulated in PA treated HepG2 cells
whereas the downstream transcription factors (CTNNB1, TCF4) of Wnt signaling were
upregulated in Hep3B cells. Despite different mechanism of activation, both cell lines
exhibited nuclear translocation of [-catenin in PA treated cells. The activation of TGF(
signaling was evidenced by the increase in expression of the TGF ligands in both HepG2
(BMP2, BMP7, TGFB2) and Hep3B (BMP7, TGFB2, TGFB3) cells. However, while Hep3B cells
showed both increase in expression and nuclear translocation of SMAD2/3 upon PA

treatment, we did not observe a similar effect in HepG2 cells.

There are several possible mechanisms by which FFAs could activate Wnt and TGFf3 signaling
in HCC cells. For instance, an important consequence of elevated hepatic FFA accumulation is

the enhanced production of pro-inflammatory cytokines such as TNF-a and IL-6 in the liver
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microenvironment (Feldstein et al., 2004b) (Weigert et al., 2004). These cytokines activate
oncogenic transcription factors including NF-kB, AP-1 and STAT3 (Grivennikov et al., 2010)
which provides a potential link between FFA-induced inflammation, activation of Wnt and
TGF-B signaling and progression via EMT. NF-kB was shown to influence Wnt signaling by
upregulating the [3-catenin associated transcription factor LEFT (Yun et al., 2007), and along
with AP-1 co-regulated the expression of WNT10B ligand (Katoh and Katoh, 2007). Further,
studies have shown that expression of NF-kB is essential for EMT induction in multiple
carcinomas (Batra et al., 2011; Huber et al., 2004; Li et al., 2012). Along similar lines, AP-1 was
shown to influence the induction of the EMT program by regulating the expression of TGFf3,
ZEB1 and ZEB2 (Bakiri et al., 2014). The STAT3 transcription factor was shown to mediate the
induction of EMT by regulating SNAIL (Yadav et al., 2011), ZEBT (Xiong et al., 2011), TWIST
(Zhang et al,, 2012) and the mesenchymal markers VIM and CDH2 (Colomiere et al., 2008).
Another potential mechanism of EMT induction could be the activation of the unfolded
protein response or ER-stress pathway by FFA (Wei, 2006). A recent study showed that XPB1,
the substrate of ER-stress sensor IRE-1, recruits the RNA polymerase complex to several HIF1a
targets, thereby regulating the activity of HIF1a (Chen et al., 2014). The involvement of HIF1a
in promoting EMT is well documented in multiple cancers via the activation of Wnt signaling
(Jiang et al., 2007b) and the direct regulation of TWIST (Yang et al., 2008b), TCF3 and ZEB
(Krishnamachary, 2006). In addition to fatty acid uptake, CD36 also mediates uptake of HDL
(high density lipoproteins) (Brundert et al., 2011) and oxidized LDL (low density lipoproteins)
(Park et al., 2012) in hepatocytes. A recent study suggests the uptake of oxidized LDL requires

binding of fatty acids to CD36 (Jay et al., 2015). Elevated oxidized LDL accumulation has been
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associated with increased ROS accumulation, induction of ER-stress and activation
inflammatory pathways in the liver (Bieghs et al.,, 2010; Musso et al., 2013; Van Rooyen et al.,

2011), thereby potentially activating the pro-EMT signaling pathways discussed above.

Thus, the CD36-mediated increase in hepatic FFA accumulation could facilitate the
production of EMT-inducing factors. The creation of an environment promoting EMT would
not only play a role in progression of HCC, but may also provide a conducive environment for
liver metastases arising from other organs, such as colorectal cancers. The majority of
colorectal cancer patients (>50%) develop liver metastases (Jemal et al., 2007), and while
surgical resection of the liver metastases facilitates long-term survival, only a small fraction of
the patients are candidates for resection (Misiakos et al., 2011). Given the need for better
chemotherapy options for both advanced colorectal cancers and HCC, future studies
investigating the mechanism of EMT induction, and the role of elevated FFAs and FA uptake

proteins are warranted to reveal novel therapeutic targets.
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CHAPTER 4: GENETIC ALTERATIONS IN FATTY ACID TRANSPORT AND METABOLISM
GENES ARE ASSOCIATED WITH METASTATIC PROGRESSION AND POOR PROGNOSIS OF

HUMAN CANCERS

4.1 Introduction

Metastases are responsible for the majority of cancer-related mortalities (Mehlen and
Puisieux, 2006). While the progression of primary malignancies to metastasis may be driven
by linear progression of tumors via accumulation of mutations, or by parallel evolution of
metastatic tumors, it is evidently clear that the genetic alterations driving tumorigenesis are
distinct from the ones involved in metastatic progression (Klein, 2009; Yokota, 2000). Cancer
cells frequently rewire cellular metabolism to increase ATP synthesis, enhance production of
macromolecules and maintain redox status, and the acquisition of such alterations is
increasingly being recognized as an important hallmark of cancer (Cairns et al, 2011;
Hanahan and Weinberg, 2011). However, it is unclear if these genetic alterations in metabolic
pathways can provide a selective advantage towards the metastatic progression of cancer

cells.

One of the most commonly observed, and widely studied, metabolic rewiring event during
cellular transformation is the increased uptake of glucose and the switch to aerobic glycolysis
(Warburg effect) (Shaw, 2006). Despite the poor efficiency of ATP generation compared to
mitochondrial oxidative phosphorylation (OXPHOS), the switch to aerobic glycolysis increases
the availability of intermediate metabolites required for anabolic processes including nucleic

acid and amino acid biosynthesis that are essential for the sustenance of rapidly proliferating
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cancer cells (Vander Heiden et al., 2009b). Often ignored, another important source of energy
and anabolism in cancer cells is fatty acids (FA) metabolism — almost all tumors gain the
ability to synthesize long-chain fatty acids de novo by upregulating the expression of fatty
acid synthase (FASN) (Kuhajda, 2006). Besides constituting lipid membranes, FAs serve as a
rich source of energy production through mitochondrial fatty acid oxidation (FAO). Tumor
cells overexpressing the brain isoform of carnitine palmitoyltransferase (CPT1C), the enzyme
responsible for mitochondrial uptake of FAs, are more aggressive and resistant to
therapeutics (Zaugg et al., 2011a). From a metabolic perspective, adaptations observed
during malignant transformation are very similar in nature to those observed in embryonic
and adult hematopoetic stem cells, namely, they metabolize glucose through aerobic
glycolysis (Simsek et al., 2010; Zhou et al., 2012b). More recently, researchers have established
that FA metabolism also plays a major role in the maintenance of stem cells. De novo
lipogenesis are highly active in adult neural stem cells, and increased FASN expression is
essential for the proliferation and maintenance of the undifferentiated state of the stem cells
(Knobloch et al., 2013). In addition, PPAR-regulated mitochondrial FA oxidation are critical for
the maintenance of hematopoietic stem cells (Ito et al, 2012). The parallels between
characteristics of stem cells and aggressive cancer cells extend beyond metabolic rewiring to
proliferative, migratory and self-renewing properties, and the acquisition of stem cell-like
features in cancer cells is closely associated with increased invasiveness and metastasis
(Brabletz et al., 2005; Pardal et al., 2003). At the functional level, the activation of epithelial-
mesenchymal transition (EMT) program enables metastatic dissemination of the cancer cells

including the capability for self-renewal (Mani et al., 2008). Hence, the progression of EMT and
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cancer stem cell-like features in tumors confer resistance to therapeutics and are associated

with poor prognosis (Singh and Settleman, 2010).

The parallels between highly aggressive cancers and stem cells raise the possibility that the
genes regulating cellular metabolic pathways, especially fatty acid metabolism, may be
altered during metastatic progression of human cancers. Here, we studied the genetic
alterations in metabolic genes associated with metastatic progression using the multi-cancer
TCGA pan-cancer datasets. We adapted a hypothesis-driven approach, wherein we
constructed a literature curated pathway model of genes altered in cancer cells that regulate
glycolysis (Warburg effect) or FA metabolism, including FA uptake. Next, we identified the
genes exhibiting significant accumulation of mutations or copy number alterations (CNA) in
metastatic tumors as compared to primary tumors. We further established a prognostic gene
signature by analyzing the gene expression patterns of metabolic genes in context of EMT
progression in seven different TCGA datasets. The prognostic value of the alterations and
gene signature were validated by stratification of the pan-cancer samples and evaluating the
influence on survival rates. Our analysis revealed that the Warburg effect genes with
significant prognostic influence (TP53, STK11) were uniformly mutated across all tumor types
(primary or metastatic). However, genes involved in FA uptake (CAV1, CD36) and de novo
lipogenesis (PPARA, PPARD, MLXIPL) were amplified at higher frequencies in metastatic
tumors. In addition, the OXPHOS gene SCO2, a transcriptional target of p53 was also amplified
in metastatic tumors. Contrary to expectations, the expression levels of SCO2 were higher in
p53 mutation background, with significant influence on prognosis. By analyzing gene

expression data, we found that CAV1, CD36, MLXIPL, CPT1C and CYP2ET were the top ranked
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genes associated with EMT phenotype. Stratification of samples based on copy numbers or
expression profiles of the genes identified in our analysis revealed significant influence on

patient survival rates.
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4.2 Methods

4.2.1 Cancer-specific metabolic pathway model

We selected the enzymes and signaling or transcriptional regulators of glucose or fatty acid
metabolism based on the criteria that they are altered in cancer cells. For glucose metabolism,
we included the genes that are involved in the switch to aerobic glycolysis or Warburg effect
in cancer cells. This process is controlled by the oncogenes HIF1a (HIF1A), c-MYC (MYC) and
OCT1 (POU2FT1) that control the transcription of glycolytic enzymes, in addition to PDK1
(pyruvate dehydrogenase kinase 1) that prevents entry of pyruvate into TCA cycle by
inhibiting pyruvate dehydrogenase. The glycolytic enzymes activated by HIF1a include
PFKFB4 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4), which diverts glucose
towards the pentose phosphate pathway, and PFKFB3, which promotes glycolysis. AKT1
activates mTOR, which in turn activates HIF1A, whereas the tumor suppressor liver kinase B1
(STK11) activates AMPK (PRKAAT) which can inhibit the activity of mTOR. PKM (Pyruvate
kinase) catalyzes the final step of glycolysis converting phosphoenol pyruvate to pyruvate
generating one molecule of ATP. However, the M2 isoform of pyruvate kinase expressed at
high levels in cancer cells inhibits the catalytic conversion step, and promotes the utilization
of the substrates through the pentose phosphate pathway. The tumor suppressor p53
controls glycolysis by regulating the transcription of TP53-induced glycolysis and apoptosis
regulator or TIGAR (C7120RF5) and SCO2 which regulates the assembly of ETC associated

cytochrome C oxidase complex.

For fatty acid metabolism, we included genes that may alter the availability of fatty acids to

the cancer cells from external sources, in addition to the de novo lipogenesis and fatty acid
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oxidation genes altered in cancer cells. ATP-citrate lyase (ACLY) controls the synthesis of
acetyl-CoA from citrate, thus, linking carbohydrate metabolism to fatty acid synthesis. The
conversion of acetyl-CoA to malonly-CoA is catalyzed by acetyl-CoA carboxylase complex
(ACACA, ACACB). Fatty acid synthase (FASN) then catalyzes the condensation of malonyl-CoA
and acetyl-CoA into fatty acid. The master regulator of fatty acid synthesis genes, SREBP
(SREBFT), is in turn transcriptionally regulated by the Liver X Receptor (NRTH3) and PPAR-a
(PPARA) that function as a heterodimer with retinoid X receptor (RXRA). ChREBP (MLXIPL)
regulates the transcription of lipogenic enzymes FASN, ACACA and ACACB and is activated by
elevated glucose levels. The rate limiting step in mitochondrial oxidation is the transport of
fatty acids across the membrane through carnitine palmitoyltransferase 1 (CPT1). Among the
different isoforms, the brain isoform CPT1C is expressed at elevated levels in cancer cells to
increase FA oxidation and ATP production. PPAR-a induces expression of CYP2ET which is
involved in the oxidation of fatty acids and ketolysis as a part of the cytochrome P450
complex. In peroxisomes, acetyl-CoA C-acyltransferase (ACAAT) catalyzes final step of (-
oxidation yielding acetyl-CoA whereas the CYP4A enzymes (CYP4A11, CYP4A22) catalyze
microsomal w-hydroxylation of fatty acids in the endoplasmic reticulum. The dicarboxylic acid
generated as a result of w-oxidation of fatty acids can serve as substrates for 3-oxidation or
serve as PPAR ligands. The balance between stored lipids and free fatty acids are regulated by
DGAT enzymes (DGAT1, DGAT2) which catalyze the esterification of fatty acids to triglycerides,
whereas lipase enzymes LIPE and MGLL produce free fatty acids by hydrolyzing triglycerides
and mono-acylglycerids, respectively. PPAR-y (PPARG) promotes lipid storage by regulating

expression of esterification enzymes and opposes lipid synthesis, whereas PPAR-& (PPARD)
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promotes fatty acid transport and oxidation. The poly unsaturated fatty acid activated nuclear
receptor FXR (NRTH4) inhibits the activity of LXR and regulates SREBF1, PPARA and PPARG, and
inhibits lipogenesis. PXR (NR1/2)) induces the transcription of fatty acid transport protein
CD36 but suppress expression of FA oxidation genes PPARA and ACAAT. The accumulation of
fatty acids in the cells from exogenous sources is mediated by the transport proteins caveolin
(CAVT1), CD36 and fatty acid trans proteins FATP (SLC27A1-6). In addition, the intracellular
trafficking of fatty acids and their interactions with nuclear receptors like PPARs and LXR are

regulated by fatty acid binding proteins FABP (FABP1-7, PMP2, FABP9).

4.2.2 Mutation analysis

Pan-cancer gene-level somatic mutations data was obtained from the Cancer Browser
(PANCAN AWG version 2014-08-22). The pan-cancer samples were divided into two groups:

primary and metastatic based on sample type information.

We used the Fisher’s exact test to identify the mutations with significantly different frequency
in metastatic samples compared to primary tumor samples. For each gene, the test was
applied to a 2x2 contingency table of expected and observed mutation frequency for
metastatic and primary tumor samples. The observed mutation frequency of a gene in each
group were calculated as (number of samples with non-synonymous mutations in the group)
/ (total number of samples in group). Expected mutation frequencies for each gene were
calculated as the product of mutation frequency of the gene in the complete dataset
(metastatic + primary tumor) and total number of samples in a group. Genes were considered
significant with a p-value cut-off set at 0.05 with stringent false discovery rate control

(Bonferroni's method). Basal mutation frequencies were calculated as the (cumulative
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mutation frequency of all genes in the PANCAN dataset) / (total number of genes x total

number of samples).

To evaluate the influence the mutations on survival, we generated Kaplan-Meier survival
curves by stratifying the patients in the complete pan-cancer dataset into two groups: no
mutation and mutation. The significance of differences in survival rates were calculated using
the log-rank (Mantel-Cox) test, with p-value <0.05 considered significant. The combined
effects of multiple mutations in a sample were assessed by first obtaining the sum of
mutations in all genes within a category. The samples were then stratified into three groups:
no mutations, one mutation or multiple mutations, and the significance of differences in
survival rates were calculated using the log-rank test, with p-value <0.05 considered

significant.

4.2.3 Copy number variation analysis

Pan-cancer gene-level somatic copy number alterations data (GISTIC2 normalized) was
obtained from Cancer Browser (PANCAN version 2014-08-22). We discretized the copy
number data of each gene in a sample by binning the copy number calls as gain or loss using
a threshold of =1 to denote samples with copy number gain and <-1 to denote samples with

copy number loss.

The copy number gain or loss frequencies for each by tumor type were calculated as (number
of samples with copy number gain or loss in a group) / (total number of samples in a group).
Expected CNA frequencies were calculated as the product of dataset CNA frequency and total

number samples in a group. For each gene, a 2x2 contingency table of expected and
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observed CNA frequencies for metastatic and primary tumor samples were analyzed with
Fisher's exact test, with a p-value cut-off set at 0.05 with stringent false discovery rate control

(Bonferroni's method).

To assess the combined influence of the CNAs with significant accumulation in metastatic
tumor samples, we stratified the samples in the complete pan-cancer dataset by grouping the
samples in to two homogenous subsets based on the CNA profiles of the six significant genes
using the K-means clustering algorithm (Euclidean distance metric). The resulting clusters
with high copy numbers and low copy numbers of the six genes were then used to generate
survival curves using the Kaplan-Meier method and the significance of differences in survival
rates were determined using log-rank (Mantel-Cox) test with p-value cut-off set at 0.05. The
influence of individual genes were determined by stratifying the samples as copy number
gain/loss or no change, and significance of difference in survival rates were obtained with log-

rank test with p-value cut-off set at 0.05.

We used the tumorscape database (http://www.broadinstitute.org/tumorscape) to assess if

the six significant genes obtained in our analysis overlapped with the known peaks of somatic
CNA across all cancers (Beroukhim et al., 2010). The ideograms depicting the loci with known
somatic CNA peaks and genomic location of the six significant genes were created using the

NCBI genome decoration tool (http://www.ncbi.nlm.nih.gov/genome/tools/gdp).

4.2.4 Gene expression analysis

The TCGA pan-cancer RNAseq dataset (lllumina HiSeqV2, version 2014-08-28, RSEM

normalized) and all clinical information files were retrieved using the Cancer Browser
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(Goldman et al., 2012; Lopez, 2013). For individual TCGA cancer types, RNAseq datasets
(Ilumina HiSeqV2, version 2014-08-28, RSEM normalized) were retrieved from cBioPortal for
cancer genomics (Cerami et al., 2012b). Next, we log2 transformed all mRNA expression data

and merged survival data from the clinical information file matched by sample ID.

We classified the genes based on the metastatic potential of each sample denoted by the EMT
score. We first calculated the EMT score for each tumor sample in the pan-cancer or individual
cancer datasets using the formula: EMT score = Sum of mesenchymal gene expression (CDH2,
FNT, SNAIT, SNAI2, VIM, TWIST1, TWIST2, ZEB2, ZEB2) - Sum of epithelial gene expression (CDH1,
CLDN4, CLDN7, MUCT, TJP3). To demonstrate the utility of EMT score as indicator of metastatic
potential, we compared the average EMT scores across different pan-cancer subtypes
(normal, primary, blood derived and metastatic) using the Tukey’s HSD post-hoc test
following one-way ANOVA. We further stratified the pan-cancer samples as “low EMT” if EMT
score < Avg. EMT score or “high EMT” if EMT score > Avg. EMT score, and assessed the effect
on survival rates using the log-rank test. To identify the genes that were associated with
activation of the EMT program in the individual cancers, we classified the genes based on
their similarity to the EMT score using the nearest neighbor algorithm. The distances were
calculated using Pearson’s correlation coefficient (family wise error rate controlled,
Bonferroni’'s method), and the significant positive and negative neighbors were used to

assess the overall effect on metabolism in samples in context of EMT.

We further evaluated if the expression levels of the individual genes can predict the
stratification of the samples in a given cancer type by EMT score. We classified the samples as

low or high EMT based on the average EMT score. Using this binary classification of the
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samples as the dependent variable, we analyzed the ability of all model genes to predict the
classification using logistic regression analysis. For the logistic regression analysis, we used
the likelihood ratio method to obtain the variables with significant association with EMT score
indicated by the odds ratio (exponentiation of beta coefficient) and 2-tailed p-values from
Wald chi-square test of significance. The -log10 transformed p-values were then used to
assign ranks in each cancer type (lowest rank = highest p-value). We then summed ranks
across all cancer types to obtain a cumulative rank-sum for each gene. Next, we retrieved the
top and bottom 5 genes with the lowest and highest cumulative rank-sum, respectively, and
clustered the samples (K-means, k =2) based on the expression profiles of the two gene
signatures. The sample stratification based on the gene signatures were used to assessed the
survival rates of the patients using Kaplan-Meier curve analysis with the log-rank (Mantel-Cox)

test.

4.2.5 Statistical analysis

Hierarchical clustering, nearest neighbor analysis and heatmap visualizations were performed

using GENE-E matrix analysis platform (http://www.broadinstitute.org/cancer/software/GENE-

E/). All other classification and statistical analysis procedures were performed using SPSS

Statistics v20.
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4.3 Results

In order to identify the metabolic genes that are significantly altered in metastatic cancer
cells, we first constructed a literature-derived pathway model of genes that regulate FA
metabolism and glycolysis in cancer cells and analyzed for changes in mutations, copy
number alterations and mRNA expression patterns that altered significantly in metastatic
tumors (Figure 20a). We further validated the clinical relevance of these alterations by their
ability to predict patient survival rates. The list of candidate genes in the literature-based
model (herein denoted as model genes) was restricted to genes previously reported to be
significantly altered between normal and cancer cells, and included enzymes, signaling or
transcriptional regulators of glucose metabolism (Warburg effect), FA oxidation, and
lipogenesis (including lipolysis and esterifaction) (Figure 20b) (Cairns et al., 2011; Carracedo et
al., 2013; Currie et al., 2013; Dang, 2012; Musso et al., 2009a) . Additionally, we included the FA
transport genes since elevated uptake of exogenous FFAs contributes to the cellular FA pool
(Musso et al., 2009a). To investigate the influence of genetic alterations in the model genes,
we compared the mutation, CNA and gene expression profiles of the model genes between
tumors classified as primary or metastatic in the TCGA pan-cancer datasets, or against a
composite EMT-score in the TCGA datasets of individual cancers. The mRNA expression-based
EMT score, consisting of relative expression levels of mesenchymal and epithelial genes,
served as a proxy for metastatic status(Salt et al., 2013). Using analysis of variance (ANOVA)
test followed by Tukey’s post-hoc test, the EMT score was significantly higher in the pan-
cancer metastatic tumors than the primary tumors (p=2.1x10"3) (Figure 21a). In addition, we

evaluated the influence of the EMT score on the patient’s prognosis by classifying the samples
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by their mean EMT score (Figure 21b), and found significant reduction in survival rates in the

high EMT subset (p=1.6x10").
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Figure 20: Overview of approach and metabolic alterations in cancer cells.
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Figure 20 (cont’d)

A. Schematic showing the approach and datasets used in the study to identify metabolic
alterations that are relevant to metastatic progression of cancer cells. Mutation, CNA and
mMRNA expression data of the genes in the literature-derived model were analyzed for
statistical significance in samples stratified by metastatic status. B. Literature-derived
metabolic pathway model showing the genetic alterations that control glucose and fatty acid
metabolism in cancer cells. The genes affecting FA transport were included in the pathway as
potential contributors to the FFA pool. Silver ovals = proteins/enzymes, gold ovals =

transcription factors, blue box = metabolites, dashed lines = transport, yellow box = ATP.
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Figure 21. EMT scores and influence of mutations on survival

A. Distribution of EMT scores in different tumor types in the pan-cancer gene expression
dataset. Boxplots show mean and SEM with whiskers indicating 1-99* percentile. P-values
indicate significance of difference in means from Tukey’s HSD post-hoc analysis (following
one-way ANOVA). B. EMT score as a metric for metastatic potential and impact on patient
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Figure 21 (cont’d)

survival rates. Kaplan-Meier survival curve for the pan-cancer patient tumors stratified
according to Low EMT (< Avg. EMT score) or High EMT (= Avg. EMT score). Kaplan-Meier
survival curve for pan-cancer tumors stratified by the mutation status of C. TP53 and D. STK11.
(B-D). P-value indicates significance levels from the comparison of survival curves using the

Log-rank (Mantel-Cox) test.

4.3.1 Accumulation of FA metabolism gene mutations in metastatic tumors

We evaluated the influence of non-synonymous mutations in the FA metabolism and
Warburg effect genes from the pan-cancer dataset. We found that mutations in the tumor
suppressors TP53 (p=4.5x10"3) and STK11 (LKB1, p=0.002) resulted in significant reduction in
survival rates (Figure 21¢,d). Both TP53 and STK71 are among the 127 significantly mutated
genes identified in the mutation landscape study of the pan-cancer cohort (Kandoth et al.,
2013). In addition, we evaluated the role of cumulative mutations within each model category
and found the most frequently mutated genes in the Warburg effect category, however TP53
alone contributed nearly 97% of the mutations in this group. Thus in the Warburg effect
group, mutations in TP53 and STK11 contribute significantly to reduced survival rates
(p=2.7x107), whereas mutations in the FA transport and metabolism group of genes did not
influence survival. However, when compared to primary tumors, 83% of the FA oxidation,
65% of the lipogenesis and 41% of FA uptake genes exhibited significantly higher mutation
frequency in metastatic tumors, whereas only 15% of the Warburg effect genes showed this

trend.
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We next evaluated the accumulation of CNAs in metastatic tumors. For this analysis, we used
the GISTIC2 calls from the pan-cancer CNA dataset to calculate the frequency of patients with
either a copy number gain or copy number loss, defined as a GISTIC call >1 or <1, respectively.
We used the Fisher’s exact test to compare if the gain or loss frequencies were significantly
different between metastatic and primary tumors (Figure 22a). We did not observe significant
difference in copy number loss frequencies of any gene between primary and metastatic
tumors. However, 6 genes were amplified at significantly higher frequencies in metastatic
tumors: SCO2 (p=1.1x10"°), MLXIPL (p=2.1x10*), PPARA (p=1.2x107°), PPARD (p=4x107°), CAV1
(p=3.4x10*) and CD36 (p=3.5x10*). To further assess the prognostic role of these genes, we
classified the pan-cancer tumors into two clusters using their CNA profiles (Figure 22b). The
samples were classified as low copy number (Cluster 1) or high copy number (Cluster 2) based
on the 6-genes, identified in the previous step. A Kaplan-Meier curve analysis of the two
clusters indicates a reduction in survival rates in the high copy number cluster (p=3.2x10-%°)
(Figure 22c). When compared to the known regions of focal somatic copy number alterations,
none of the six genes overlapped with focal peak regions of amplification (Beroukhim et al.,
2010) (Figure 22d). However, CAVT (p=8.3x10°) and CD36 (p=0.01) were both significantly
amplified across all cancers according to the genome-wide GISTIC analysis

(http://www.broadinstitute.org/tumorscape).

The carbohydrate response element binding protein ChREBP encoded by MLXIPL transcribes
lipogenic enzymes LPK, ACCT and FASN and gluconeogenesis enabling enzyme G6Pase in
response to increased levels of carbohydrates (lizuka et al., 2004; Uyeda and Repa, 2006a).

While the fatty acid synthesis reaction requires NADPH, the switch to aerobic glycolysis in
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cancer cells promotes pentose phosphate pathway, which serves as the major source of
cellular NADPH (Vander Heiden et al., 2009a). The PPAR transcription factors (PPARA, PPARD)
transcribe genes that regulate a number of lipid metabolism pathways including lipolysis,
fatty acid uptake, oxidation and lipogenesis, and together with the amplification of the fatty
acid transporters, CAV1 and CD36, would result in elevated synthesis and accumulation of
fatty acids. The expression of CAVT has been previously discussed in the context of tumor
growth (Sotgia et al., 2012), and has been found to be associated with metastasis and poor
prognosis of prostate (Ayala et al., 2013), pancreatic metastasis (Huang et al., 2011) and
gastric cancer (Nam et al., 2013). While not as extensively studied, the fatty acid translocase
encoding CD36 has been recently reported to be associated with the progression of breast
cancer (DeFilippis et al., 2012), glioblastoma (Hale et al., 2014) and the in vitro proliferation of
sarcoma and breast cancer cells (Kuemmerle et al., 2011). The p53-regulated SCO2 gene,
encodes a protein that, together with SCO1, regulates the assembly of electron transport
chain-associated cytochrome C oxidase complex (Matoba et al., 2006). Mutations in TP53
downregulate the transcription of SCO2, thereby preventing the assembly of this critical
OXPHOS complex and increase the cell’s reliance on glycolysis for ATP. However, we found
that the SCO2 gene was frequently amplified in metastatic tumors and these alterations
corresponded to the mRNA levels of SCO2 (Figure 23a). Contrary to expectations, SCO2 mRNA
levels were significantly higher in tumors bearing TP53 mutations (Figure 23b) and higher
SCO2 expression was associated with poorer prognosis (Figure 23c). Additionally, the
combined impact of p53 mutation and high SCO2 expression resulted in the lowest survival

rates compared to unaltered state of both genes or altered state of one of the two genes
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(Figure 23d). It was reported that both mutations and overexpression of SCO2 gene can delay
the assembly of cytochrome C oxidase on the mitochondrial membrane (Leary et al., 2009).
However, it remains to be identified whether SCO2 amplification serves as a mechanism to
bypass the influence of p53 mutation on OXPHOS, or whether SCO2 amplification further

disrupts OXPHOS thereby driving the cell towards glycolysis.

In addition to the literature-curated model genes, we also analyzed the influence of the lipid
and carbohydrate metabolism gene sets obtained from the REACTOME database. We found
that copy number gains in only 2 out of the 471 lipid (CYP27B1, SUMF2) and 1 out 235
carbohydrate (PHKGT) metabolism genes had a significant impact on survival rates. Further,
mutations in only 3 lipid (NEU3, PIK3CA, PRKD1) metabolism genes influenced survival rates
while none of the carbohydrate metabolism gene mutations had a significant impact. Of the
significant CNA and mutation genes, only PIK3CA mutations frequency varied significantly

between primary and metastatic tumors.
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Figure 22 (cont’d)
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Figure 22 (cont’d)

A. Comparison between primary and metastatic tumors for frequency of tumors with copy
number gains in metabolic genes. Red bars indicate the frequency of tumors that show a
copy number gain (defined as GISTIC2 normalized copy number gain > 1), grey bars indicate —
log10 of the p-value from Fischer’s exact test (two-tailed) comparing copy number gain
frequency of each gene between primary and metastatic tumors. Inset bar graph shows
average copy numbers of the six significant genes in primary and metastatic tumors. B.
Heatmaps showing copy number alterations in pan-cancer tumors split into clusters. The
tumors were clustered (K-means, k=2) according to the copy number profiles of the 6 genes
with significant accumulation of copy number gains in metastatic tumors (SCO2, MLXIPL,
PPARA, PPARD, CAV1 and CD36). C. Kaplan-Meier survival curve for pan-cancer tumors
stratified by the two copy number distribution clusters. P-value indicates significance levels
from the comparison of survival curves using the Log-rank (Mantel-Cox) test. D. Ideograms
depicting the genomic location of the six significant copy number gains. Blue boxes indicate
the cytogenetic bands that were identified as focal somatic number alterations gain peaks in
the GISTIC analysis of TCGA data across all cancers, and the gray bars show the distance

between the six genes to the nearest gain peak.
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Figure 23. SCO2 overexpression in TP53 mutation background

A. Bar graph showing average SCO2 expression levels in tumors loss or gain in copy number
compared to somatic levels in the pan-cancer dataset. B. Bar graph showing average
expression of SCO2 in context of p53 mutation background. P-values in A and B indicate
significance level from one-way ANOVA. C. Kaplan-Meier survival curves indicating the

influence of tumor stratification on the basis of low (n=4366) or high (n=3025) SCO2
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Figure 23 (cont’d)

expression in the pan-cancer dataset. D. Kaplan-Meier survival curves showing the influence
of wild-type p53 and low SCO2 expression (n=1561), wild-type p53 with high SCO2 expression
or mutant p53 with low SCO2 expression (n=1269), and mutant p53 with high SCO2
expression (n=495) on the survival rates in the pan-cancer dataset. P-values in ¢ and d
indicate significance levels from the comparison of survival curves using the Log-rank

(Mantel-Cox) test.

4.3.2 Establishing a metabolic gene expression signature associated with metastatic

progression

We performed an association analysis between the mRNA expression profiles of the model
genes and the EMT score for several epithelial cancers from the TCGA database: breast cancer
(BRCA), colorectal adenocarcinoma (COADREAD), kidney renal clear cell cancer (KIRC), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), ovarian cancer (OV) and
prostate adenocarcinoma (PRAD). Using the nearest neighbor algorithm based on Pearson’s
correlation with stringent family-wise error rate control (Bonferroni’s FWER), we identified the

model genes with either significant positive or negative association with EMT score.

An intriguing generalized pattern emerged from this analysis. We found that elevated
expression of fatty acid uptake genes, CAV1 and CD36, were consistently associated with a
high EMT score across all cancers. We also observed cancer type-specific alterations in the
pathways. For instance, in ovarian cancer, the Warburg effect genes typically altered in all

other cancer types were not associated with the EMT score. Similarly, the expression levels of
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FA oxidation and lipogenesis genes were not associated with the EMT score in lung cancer.
One possible explanation may be that the alterations related to Warburg effect in ovarian
cancer and FA oxidation/lipogenesis in lung cancer might be early events in the
tumorigenesis of these cancer types. These patterns are reflected in the simplified schematics
in Figure 24a-g, showing the expected influence of the genes significantly associated with
EMT score in each cancer type. Here, we note that the processes that could elevate the FFA
pool were strongly associated with EMT score. For instance, we observe reduced expression
of esterification genes in 4 cancer types, and increased lipolysis in 3 cancer types.
Furthermore, the appearance of CAVT and CD36 across the cancer types in this study clearly
supports the role of elevated FA uptake and accumulation in the progression and
maintenance of metastatic tumors. Overall, we observed that the genes in fatty acid uptake
pathway constituted the largest percentage of significant genes associated with EMT score
among the four categories analyzed (Figure 24h). Additionally, the largest fractions of
significant Warburg effect genes were contributed by the breast cancer dataset, whereas the
colorectal cancer contributed the largest fraction of significant FA uptake genes. The breast
and colorectal cancer datasets together contributed nearly half of all the significant genes in

this analysis.

We next derived a gene signature using a logistic regression based approach to calculate the
odds ratio for the influence of each gene on EMT and patient prognosis in individual cancer
types (Figure 25a). The genes were ranked based on their influence on EMT score across all
the cancer types using a cumulative rank-sum metric obtained from the odds ration p-values

(Figure 25b). Based on the cumulative ranks, the top 5 genes identified were CPT1C, CAV1I,
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CD36, MLXIPL, and CYP2EI1. The fatty acid uptake genes CAV1 and CD36, as well as the
carbohydrate response element binding protein encoding MLXIPL, also exhibited significant
accumulation of copy number gain in the pan-cancer metastatic tumors (Figure 22a). CPT1C
mediates the uptake of long-chain fatty acid across the mitochondrial membrane to activate
[3-oxidation, and promotes tumor adaptation under metabolic stress conditions (Zaugg et al.,
2011b). CYP2E1 encodes the mitochondrial cytochrome P450 2E1 protein that is involved in
fatty acid, ketone body, ethanol and xenobiotic metabolism. Mutations and over expression
of this gene elevates oxidative stress and inflammation (Abdelmegeed et al., 2012), and
CYP2ET alterations correlated with the development of malignant tumors (Leung et al., 2013;
Trafalis et al., 2010). Using the 5-gene signature to classify the pan-cancer samples based on
MRNA levels found the high expression cluster (Cluster 2) resulted in dramatic decrease in the
survival rates of the patients (p=1.2x10"?) (Figure 25c). In contrast, the clusters based on the
bottom ranked genes did not influence the survival rates (p=0.421) (Figure 25d). For
validation, the prognostic value of the 5-gene signature were used to clustered two
independent TCGA datasets that were not used to generate the gene signature — head and
neck squamous cell carcinoma (HNSC) and skin cutaneous melanoma (SKCM). The clusters
with high expression of the signature genes resulted in significant decrease in survival rates of
both head & neck cancer (p=0.003) and melanoma (p=0.006) patients. Thus, the metabolic
gene signature identified in the analysis successfully predicted poor prognosis in unrelated
cancer dataset, further supporting the role of fatty acid uptake and metabolism in metastatic

progression of cancers.
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Figure 24 (cont’d)

Heatmaps showing expression profiles of EMT and metabolic genes in A. Breast invasive
carcinoma, BRCA (n=1037) B. Colorectal adenocarcinoma, COADREAD (n=352) C. KIRC
(n=518) D. Liver hepatocellular carcinoma LIHC (n=191) E. LUAD (n=230) F. Ovarian serous
cystadenocarcinoma, OV (n=261) G. Prostate adenocarcinoma, PRAD (n=236). The tumor
samples (X-axis) are ordered according to EMT score shown in bottom row of each heatmap
and genes (Y-axis) are arranged in hierarchical clusters (average linkage method, Pearson’s
correlation distance metric). Genes with significant positive (+) or negative (-) correlation with
EMT score are listed next to the heatmap, along with a schematic of the metabolic processes
predicted to be altered on the basis of significant correlation in each cancer type. H. Circos
diagram showing the relationship between the percentage of significant EMT-associated
genes within each cancer type and the percent contribution to the total number of significant

EMT-associated genes within each model category.
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Figure 25 (cont’d)

A. Odds ratio obtained from logistic regression analysis demonstrating association between
individual metabolism genes and EMT (low or high) across the seven cancer types, with
shades of grey indicating increasing odds ratio. B. Bar graphs showing cumulative rank sum of
odds-ratio —-log10 p-value of individual genes across all seven cancer types. T1-5 and B1-5
indicate the five top and bottom ranked genes respectively. C-D. Kaplan-Meier survival curve
for pan-cancer tumors stratified by two mRNA expression clusters. The sample clusters were
obtained by K-means (k=2) using (C) top 5 genes (CPT1C, CAV1, CD36, MLXIPL, CYP2ET) or (D)
bottom 5 genes (PFKFB3, PPARG, FABP7, CYP4A22, SLC27A6) from the rank-sum analysis. P-
value indicates significance levels from the comparison of survival curves using the Log-rank
(Mantel-Cox) test. E-F Kaplan-Meier survival curves for (E) head & neck cancer (HNSC) or (F)
melanoma (SKCM) tumors stratified by the mRNA expression profiles of the top-ranked genes

identified in the previous analysis.
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4.4 Discussion

In recent years, deregulated glycolysis and fatty acid metabolism has been linked with
resistance to chemotherapeutics in multiple cancer types (Zhao et al., 2013). Consequently,
the regulators of cancer cell metabolism have emerged as attractive therapeutic targets and
primarily include genes that are significantly altered between normal and cancer cells, such as
glucose transporters (GLUT1, GLUT4), hexokinase (HKT), pyruvate kinase (PKM2) and fatty acid
synthase (FASN) (Tennant et al., 2010; Vander Heiden, 2011). Given the prognostic impact of
the activation of EMT program and metastasis, the objective of this study was to identify the
metabolic alterations that are not only relevant to carcinogenesis, but are acquired during
metastatic progression of cancer cells. Figure 26 provides a summary of the genes with
prognostic consequences that are significantly altered between primary and metastatic

tumors (highlighted in red).

One of the prime requirements of rapidly replicating malignant cells is fulfilling increased
energy demands. We found that mutations in the tumor suppressor genes that control
Warburg effect, TP53 and STK71, uniformly influenced survival rates across all tumors.
However, the mutation frequencies were not elevated in metastatic tumors, suggesting that
the switch to glycolysis may occur during early stages of cancer progression. Glycolysis
produces ATP at greatly reduced efficiency as compared to mitochondrial OXPHOS and in
vitro studies with malignant cancer cells have reported that OXPHOS may still contribute to
the bulk of ATP produced by cancer cells depending on the availability of oxygen(Guppy et
al., 2002; Rodriguez-Enriquez et al., 2008). In such a scenario, alternate pathways must

provide the acetyl CoA that is metabolized in the TCA cycle to produce NADH and FADH, for
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ATP synthesis through OXPHOS. B-oxidation of fatty acids could be advantageous to cancer
cells by providing a supply of acetyl CoA, NADH and FADH, during aerobic glycolysis but
would require a steady supply of the substrate, free fatty acids. The intracellular pool of free
fatty acids can be positively influenced by lipolysis of stored triglycerides, elevated uptake of
fatty acids from the environment, or lipogenesis using carbon from carbohydrates, amino
acids or oxidized fatty acids. While the upregulation of FASN is well documented in cancer
cells, we did not observe a significant change in metastatic cells. Instead, we observed
significant amplification of PPARA and MXIPL in metastatic tumors which could upregulate the
transcription of lipogenesis genes. Moreover, we found amplifications in the FA uptake genes
CAV1 and CD36. While recent studies showed that cancer cells activate lipid scavenging
pathways during nutrient starvation (Kamphorst et al., 2013; Young et al., 2013), our results
suggest that metastatic cancer cells might increase the cellular FA pool by elevating the
uptake of exogenous FAs. Furthermore, we observed gain of CPT1C and CYP2ET expression
which may be indicative of increased mitochondrial FA oxidation in metastatic tumors.
Additionally, CYP2ET could also contribute to elevated ATP production by facilitating the
breakdown of ketone bodies (Bonuccelli et al., 2010). Elevated utilization of ketone bodies in a
MDA-MB-231 breast cancer xenograft model (Martinez-Outschoorn et al., 2012) was shown to
promote their metastatic potential. These results indicate that alterations in regulators of FA

metabolism could be a key adaptation in highly aggressive metastatic cancer cells.

In addition to providing energy, the elevated mitochondrial oxidation of FAs also affect
cellular redox status by elevating the levels of reactive oxygen species (ROS) and by reducing

the NAD*/NADH ratio (Furukawa et al., 2004). ROS are well known as potent DNA-damage
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inducing agents that not only increase genomic instability to drive malignant transformation,
but also influence signaling pathways that increase proliferation and confer resistance to
apoptosis (Fruehauf and Meyskens, 2007; Ishikawa et al., 2008; Schumacker, 2006). Elevated
NADH levels induce proliferation and migration by repressing transcription of E-cadherin by
regulating the activity of CtBP co-repressor (Zhang et al., 2002; Zhang et al., 2006). Recently,
reduced NAD*/NADH ratios were shown to drive the metastatic progression of MDA-MB-435
and MDA-MB-231 breast cancer xenografts by activating AKT/mTOR and autophagy signaling
pathways while increasing the NAD*/NADH ratio inhibited tumor growth (Santidrian et al.,

2013).
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Figure 26. Summary of alterations in metastatic tumors

A. Metabolic pathway model modified to indicate the genes that were identified as
significantly altered in metastatic tumors with significant impact on patient prognosis. The
red-highlighted ovals show genes with metastasis-associated gain-of-function alterations
with prognostic significance. The blue-highlighted ovals show the genes with loss-of-function
alterations with prognostic significance in cancer but did not differ between primary and
metastatic samples B. Distribution of average mRNA expression levels of SCO2 grouped by
CNAs in the pan-cancer dataset. P-value indicates significance level from one-way ANOVA

analysis.
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Figure 26 (cont’d)

C. Expression levels of SCO2 in the pan-cancer dataset according to TP53 mutation

background. P-value indicates significance level from one-way ANOVA analysis.
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CHAPTER 5: SUMMARY AND FUTURE PERSPECTIVES

5.1 Summary

The objective of this study was to establish the role of elevated free fatty acid uptake in the
metastatic progression of hepatocellular carcinoma. In the first part of this study, we applied a
network analysis approach as a proof-of-concept to demonstrate the utility of network
approaches to identify suitable targets from biological data. We then applied a synergy-based
approach to identify insulin signaling and its top-neighbor, DSP, as the top targets in
palmitate treated HepG2 cells. By showing that palmitate treatment resulted in loss of DSP, a
marker of cells undergoing EMT, we rationalized that elevated FFA levels can potentially

activate the EMT program in HCC cells.

In the second part of this study, we studied the relationship between the expression levels of
hepatic fatty acid uptake proteins and EMT markers in the publicly available TCGA gene
expression dataset, and confirmed our results in human HCC tumor biopsy protein samples.
We found that the expression levels of CD36 were significantly associated with the EMT
marker expression, while obesity, as indicated by BMI, did not influence EMT score. We further
tested the role of elevated FFA levels on the induction of EMT program by assessing the
physical and molecular profiles of HepG2 and Hep3B cells treated with palmitate. Our results
further demonstrated a population-based expression pattern of EMT marker expression
independent of cells undergoing lipotoxicity. We further established that WNT and TGFB
signaling pathways mediated palmitate induced EMT, and inhibition of CD36, WNT or TGFB

signaling abrogated the migratory effects of palmitate.
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In the third part of this study, we extended the hypothesis of altered fatty acid uptake and
metabolism promoting EMT and metastasis to multiple cancer types. We first constructed a
literature-curated model of metabolic genes altered in cancer cells, including genes
regulating glycolysis (Warburg effect), fatty acid oxidation and lipogenesis (including lipolysis
and esterification) and fatty acid uptake. We then performed association analysis with the
somatic gene-level mutations and CNA data from the 12-tumor type TCGA pan-cancer
dataset to identify the metabolic genes significantly enriched in metastatic tumors and
demonstrated the functional relevance by analyzing the effect of these alterations on patient
survival rates. Additionally, using a logistic regression approach, we established a metabolic
gene signature that was correlated with the epithelial to mesenchymal (EMT) gene expression
pattern in 7 tumor types and strongly influenced patient survival rates in the pan-cancer as

well as in 2 independent tumor types.

Mutations in genes regulating the Warburg effect, STK11 (LKB1) and TP53, uniformly
influenced survival rates across all tumor types, but were not specifically enriched in
metastatic tumors. Further, SCO2 - a mitochondrial oxidative phosphorylation gene
transcriptionally regulated by TP53 — was significantly amplified in metastatic tumors and the
expression levels of SCO2 were significantly higher in tumors with TP53 mutation
background, contradictory to the expected reduction in transcription. Moreover, the net
influence of high SCO2 expression and TP53 mutation resulted in the worst prognosis in terms
of survival rates, whereas low SCO2 expression and wild-type TP53 were associated with the

highest survival rates.
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Amplifications in the fatty acid uptake genes CAV1 and CD36 were significantly enriched in
metastatic tumors. In addition, genes regulating lipogenesis: PPARA, PPARD and MLXIPL were
also significantly amplified in metastatic tumors. Stratification of the pan-cancer tumors
based on the copy number profiles of these 6 genes (including SCO2) revealed significant
reductions in survival rates. While elevated lipogenesis has been documented in malignant
transformation, our results show a strong influence of exogenous fatty acid uptake in

metastatic progression.

The mRNA expression levels of fatty acid uptake genes CAV1 and CD36, lipogenesis regulator
MLXIPL, mitochondrial fatty acid uptake gene CPT1C, and the fatty acid oxidation and ketolysis
enzyme CYP2E1, were identified as the top genes significantly associated with EMT across 7
individual cancer types (breast, colorectal, kidney, lung, liver, ovarian, and prostate).
Stratification of the pan-cancer samples based on the mRNA expression profiles of these 5
genes significantly influences survival rates. The prognostic utility of this gene-signature was

further verified in two independent cancer types (head and neck, and melanoma).

5.2 Future Perspectives

5.2.1 Regulation of DSP expression and the role of JUP dynamics in EMT program

In this study, we found that palmitate treatment resulted in the significant loss of
desmoplakin protein, which served as a rationale for further studying the role of palmitate in
inducing EMT in HCC cells. However, the precise role of DSP in the EMT program is not
currently known. We profiled the DSP expression levels in the TCGA pan-cancer dataset and

stratified patients based on low, basal or high DSP mRNA expression levels, and observed a
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significant reduction in the survival rates of the patients with low DSP expression (Figure 27A).
The analysis of DSP promoter revealed ZEB binding sites, which further led us to speculate
that ZEB1 or ZEB2 may be responsible for the repression of DSP transcription in HCC and
other cancers. By analyzing the mRNA expression data from TCGA pan-cancer, we observed a
significant negative correlation between the expression levels of DSP and ZEB1 or ZEB2
(Figure 27B), a pattern reflected across the pan-cancer datasets (Figure 27C). Furthermore, the
mMRNA levels of ZEBT or ZEB2 were significantly correlated with the methylation of DSP gene
(Figure 27D), suggesting that the ZEB transcription factors may be responsible for the
transcriptional repression. The loss of DSP could potential lead to the induction of the EMT
program itself (Figure 28). One possible mechanism of EMT induction could involve the
oncogenic translocation of JUP protein from the desmosomal plaque to the cytoplasm or the
nucleus. As DSP function as an obligate component of the desmosomes, the loss of DSP could
lead to the disruption of inner plaque thereby releasing JUP into the cytosol. The JUP protein
is very similar in structure to [3-catenin bearing conserved armadillo repeats involved in the
physical interactions with E-cadherin and the GSK3B-AXIN-APC repression complex
(Zhurinsky et al., 2000). Thus, the presence of excess free JUP in the cytosol cold possibly
outcompete B-catenin from sequestration at the cell junctions or by the repression complex.
Furthermore, JUP could also function as transcriptional activator of the Wnt signaling target
genes, as the DNA-binding domains of both JUP and B-catenin are similar, and both proteins
can interact with the TCF/LEF complex (Maeda et al., 2004). Thus, loss of DSP and
translocation of JUP to either the cytoplasm or the nucleus could facilitate the activation of

Wnt target genes. Preliminary results indicate that siRNA-mediated DSP knockdown indeed
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results in nuclear translocation of JUP (Figure 27E). This hypothesis could be further validated
using ZEB1 and ZEB2 chromatin immunoprecipations (ChIP) or promoter bash studies with
DSP-promoter luciferase reporters. In addition, the translocation of JUP in response to DSP
knockdown and correlation with induction of the EMT program could be characterized. The
role of DSP loss in promoting tumor growth and metastasis could be further studied in vivo
using an HCC model. A liver-specific inducible DSP knockdown (cre-lox) rodent model could
be subjected to N-nitrosodiethylamine (DEN) induced hepatocarcinogenesis (Heindryckx et
al., 2009). Once the adult animals subjected to DEN treatment develop primary tumors, DSP
expression can be disrupted in the liver to study the effect of loss of DSP expression on HCC

progression and metastasis.

5.2.2 EMT-promoting molecular pathways induced by PA via direct physical interactions

Alongside the potential influence of DSP loss on EMT induction, palmitate could potentially
induce EMT via direct physical interactions with cellular proteins. The transport of WNT
ligands across the cell membrane for autocrine or paracrine signaling requires covalent
attachment of a palmitate molecule to the WNT ligand by a process known as palmitoylation
(Gao et al,, 2011). This process is catalyzed by the WNT pathway-specific palmitoyl acetyl-
transferase enzyme porcupine (PORCN), which itself requires palmitoylation for activation
(Gao and Hannoush, 2013). We have previously found increased activity of serine palmitoyl
acetyl-transferase (SPT), an enzyme that catalyzes the covalent attachment of palmitate to L-
serine in the ceramide biosynthesis pathway, in animals fed with a high saturated fat diet as
well as in response to palmitate treatment in vitro (Geekiyanage and Chan, 2011; Liu et al.,

2013b). Thus, the induction of the WNT pathway could be contingent upon palmitoylation of
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PORCN and WNT ligands in response to elevated levels of palmitate. Another potential
mechanism of EMT induction may involve physical interaction between palmitate and IRE1 to
directly induce the ER-stress pathway. Recent studies from our group suggest that palmitate
can physically interact with the luminal domain of IRE1 and could result in dimerization and
activation of the IRE1 protein (Cho et al., 2012). Thus, the activation of XBP1 and HIF1a
downstream of palmitate-induced IRE1 activation could be an alternate mechanism of EMT

induction.

5.2.3 Identifying novel drug-targets by applying hierarchical modeling on TCGA data

The role of exogenous FA uptake in malignancies has received less attention compared to
alterations in glycolytic pathways and de novo lipogenesis. The revelation from our analysis of
the TCGA datasets suggests that association between FA uptake and EMT or metastatic
progression is not just restricted to HCC but extends to multiple cancers. Future studies could
focus on evaluating the role of alterations in FA uptake genes in conferring drug resistance in
retrospective clinical analysis. In addition, the patient-serum levels of FFAs could be included
as variables in drug response studies. Further, understanding the precise role of SCO2 in
regulating OXPHOS could reveal new mechanisms by which glycolytic switch is regulated in
cancer cells. Importantly, the significant alterations identified from the analysis, including
CAV1, CD36, MLXIPL, CYP2E1, CPT1C, PPARA and PPARD could be further validated in vitro or in

vivo to understand their mechanism in promoting metastasis.

The next phase of TCGA project data release will include clinical information, including the
details of chemotherapeutic regimen, duration of treatment and patient response, in multiple

cancer types. This data, combined with the existing genomic and transcriptomic data could
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be used to predict the role of the fatty acid uptake and metabolism genes in determining
drug response and efficacy. In this direction, a hierarchical network of metabolism and EMT
genes could be constructed and modeled using TCGA data for all cancers or individual cancer
types. This hierarchical model, similar to the one discussed in chapter 2, could be used to
simulate the effects of targeting different pathway components which can be validated using
actual clinical data. Additionally, the pharmacogenomic analysis of genetic variations in the
fatty acid uptake and metabolism genes in context of drug-resistance and efficacy could
further establish the clinical utility of these genes as important prognostic biomarkers and as

putative drug targets.

One of the biggest challenges that emerged in the post-next generation sequencing era is
the identification of new clinically actionable genetic alterations. Apart from a limited number
of mutations with large effect-sizes, it remains a major challenge to generate new testable
hypotheses from the existing omic data. Thus, an integrated systems biology approach that
utilizes domain knowledge and large-scale omic datasets would be useful to understand the

complex interactions that influence progression of cancer.
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Figure 27. Analysis of DSP in TCGA datasets and effect on DSP knockdown on JUP.
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Figure 27 (cont’d)
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Figure 27 (cont’d)
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Figure 27 (cont’d)

Control
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JUP JUP/Nucleus

A. Kaplan-Meier survival curves showing the influence of stratification of patients by DSP
expression levels. Inset bar graph shows mean DSP mRNA expression in the three groups
(low, basal, high). B. The expression profiles of DSP, ZEB1 and ZEB2 (X-axis) across the pan-
cancer database grouped by cancer type (Y-axis). Red indicates high expression levels, while
blue indicates low expression levels, with inverse patterns observed between DSP and ZEB1
or ZEB2 in almost all cancer types. C-D. Scatter-plots showing correlation between (C) DSP
and ZEB1 or ZEB2 expression in pan-cancer dataset or (D) DSP methylation and ZEB1 or ZEB2
expression in TCGA LIHC dataset. Red line indicates linear fit, with r indicating Pearson’s

correlation coefficient and p-value showing significance of correlation. E. Confocal images
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Figure 27 (cont’d)

showing the expression and localization of JUP (green) in control or DSP siRNA knockdown

(25mM) HepG2 cells, with blue indicating nucleus.
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Figure 28. Summary of future studies on mechanism of PA induced EMT.
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