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ABSTRACT

NUCLEAR SPIN-LATTICE RELAXATION

OF SEVERAL NUCLEI IN

ANTIFERROMAGNETIC Rb2MnClu-2H20

by Charles Emery Taylor

Rubidium Manganese Chloride di-hydrate

(Rb2MnClu-2H2O) is a triclinic crystal which becomes

antiferromagnetic below 2.2A0K. Measurements of the

nuclear spin—lattice relaxation time Tln have been

made as a function of temperature for four nuclei,

Rb87, Rb85, 0135, and H1, in the temperature range

from l.6°K to 0.45°K, and in one instance, for Rb87,

to O.32°K. Standard rf pulse techniques were used,

and the experiments were carried out in zero ex-

ternal magnetic field. The temperature dependence

of T1n was qualitatively the same for all four lines,

and a least squares fit to the data for each line was

made using a theory based on a two magnon Raman re—

laxation mechanism, which, in the small k approxi-

mation gives

T '1 =
w x —1

1n 2KITAE/T x(e -1) dx

The values of 2K and T which give the best fit to
AE



Charles Emery Taylor

the data along with the frequencies of the measured

lines at l.l°K and the nuclear spin are given in the

table for each nucleus.

Freq. (MHZ)

Nucleus Spin at l.l°K 2K(sec)—l(°K)-3 TAE(OK)

Hl 1/2 18.1 1.96 x 103 2.15

0135 3/2 8.53 1.08 x 103 2.u7

Rb87 3/2 3.89 9.73 x 102 2.36

Rb85 5/2 3.22 1.33 x 102 2.0M

The value of 2K for protons is calculated from the

theory and found to be too small be a factor of one to

two orders of magnitude, suggesting that the small k

approximation is not applicable in this case. An ap-

proximate theory, utilizing all k from O to km, is

developed and used to calculate the proton T The
ln'

result is in good agreement with experiment. The

following conclusions are drawn: (1) relaxation

occurs via an intrinsic two magnon Raman process and

is not due to the presence of paramagnetic impurities,

(2) the temperature dependence of Tln is influenced

by a large energy gap in the magnon spectrum, (3) the

influence of the quadrupole moment on the temperature

dependence of T is small, and (A) the use of the
ln

small k approximation is not consistent with the pres-

ence of a large energy gap in the magnon spectrum.
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I. INTRODUCTION

The nuclear spin-lattice relaxation time of nuclei in

antiferromagnetically ordered materials was first measured

by Hardeman and Poulis in 1956.1 The relaxation was found

to result primarily from the magnetic interaction between

the nuclei and the exchange-coupled electron spin system.2

At temperatures low enough that the latter can be repre—

sented mathematically by the spin wave approximation,3

the dominant relaxation process can be described as in-

elastic scattering of spin waves by the magnetic dipole

field of the nucleus,” with an associated nuclear spin

flip. Thus the relaxation mechanism depends on the spin—

wave or magnon population, which is strongly temperature

dependent. Existing theories of the relaxation process

can therefore be judged by comparing the predicted temp—

erature dependence of T with that obtained experiment-
In

ally.

It has been the purpose of the work described in this

thesis, (I) to construct a reasonably inexpensive appara—

tus capable of measuring T from A.2°K to O.A5°K over a
In

frequency range from 3 to 20 MHz, (2) to use this appara-

tus to measure T as a function of temperature for a
1n

87
number of nuclear species (H1, Cl35, Rb and Rb85) in





antiferromagnetic single crystals of Rb2MnClu~2H2O and

(3) to compare the results with those predicted by magnon

relaxation theory.

Background
 

Nuclear Magnetization. Nuclear spins in an antiferro—
 

magnet see a strong magnetic field produced by the ordered

electron spins. The static Hamiltonian for a given nu-

5
clear spin is

MN = 11135. = —me-H (1.1)

where u is the magnetic moment of the nucleus, YN is the

nuclear gyromagnetic ratio, I is the dimensionless angular

momentum operator, and H is the average local field at the

nucleus due to the electron spins. We have neglected the

nuclear dipole-dipole interaction because it is small com—

pared to the interaction between the nucleus and the elec-

tron and have chosen a nucleus whose quadrupole moment is

zero.

If we choose a coordinate system for which R is in

the z—direction, H = kH, and

3: = -yN ’hHIZ (1.2)
N

The allowed energies of the nuclear spin, given by the

eigenvalues Of‘HN’ are





Em = —yNfiHm m = I, I—1, ...I (1.3)

where m represents the eigenvalues of IZ. The energy

difference between adjacent states is therefore

AB = fiyNH = nwL, where wL is the classical Larmor pre-

cession frequency, or resonant frequency, of the system.

Because the energy of the nuclear spin is quantized,

the magnetic moment cannot assume an arbitrary orientation

with respect to the magnetic field, but can take up only

those orientations for which the z-component of the angu-

lar momentum is given by JZ = hm.

In discussing the methods for measuring Tln’ we will

be interested in the total nuclear magnetization M of the

sample, given by

M = (1.“)
_ g Bk

th nucleus andwhere Bk is the magnetic moment of the k

the index k runs from 1 to N, the total number of nuclei.

In thermal equilibrium, the expectation value of the total

nuclear magnetization must be parallel to the magnetic

field,6 H, so that the x— and y-components of M are zero.

To find the z—component of the magnetic moment, it is neces-

sary to determine the relative populations of the Zeeman

levels. For simplicity, consider a system of nuclei with

spin I = l/2. At thermal equilibrium, the populations

of the Zeeman levels are proportional to the Boltzmann

factor exp(—Em/kBT) where T is the absolute temperature





of the lattice.7 Let N+ and N— represent the populations

of the ground and excited states respectively. The ratio

of N+ to N— is then

+ YNhH/kBT

N_ = e (1.5)

2

which is greater than one. There are therefore more

spins with m = +l/2 than with m = —l/2 and as a result

there is a net nuclear magnetization in the z-direction

iven by

g
YN‘hH

v D Y‘h —-——

_ _ + — N _ N — k T

MZ - g Ukz - (N ‘N )—§— — —§—(N )(e B " 1) (1.6)

In general k T is much greater than Y nH. Assuming that
B N

this is the case, from equation (1.5) we have N+ z N

so that N— 2 N/2 where N is the total.number of nuclei.

Similarly expanding the exponential in equation (1.6)

and using N— = N/2 gives

M = Nv2fi2H

z HkBT (1.7)

If the nucleus has an electric quadrupole moment,

the situation is not as simple. The gradient of the

crystalline electric field partially removes the degen-

eracy of the nuclear energy levels.8 The internal mag-

netic field produces Zeeman splitting of the remaining

degenerate levels. Although the energy levels are no

longer necessarily equally spaced, the populations are

still proportional to the Boltzmann factor, and at thermal





equilibrium there exists a nuclear magnetization M which

is parallel to M.

Nuclear Spin—Lattice Relaxation. If a non-equilibrium
 

distribution of the spins is produced, for example by an

rf pulse at the resonant frequency, the system will relax

back to the equilibrium distribution in a time character—

ized by the nuclear spin-lattice relaxation time, Tln'

The subscript n has been added to emphasize that we are

considering nuclear as opposed to electron spin relaxa-

tion processes. By Tln we mean the time constant asso-

ciated with the exponential recovery of the z—component of

9
the magnetization from a non—equilibrium situation.

T1n is a good measure of the strength of the inter—

actions between a nuclear spin and the lattice, since it

is these interactions which provide the relaxation mech—

anism. The term "lattice" is used loosely here, and

would be more properly replaced by the word "surroundings."

In antiferromagnets, for example, the nuclei relax to the

electron spin system which eventually gives the energy

thus absorbed to the lattice in the form of phonons.

Examples of possible interactions10 leading to spin—

lattice relaxation in solids are (l) the magnetic inter—

action between the nuclei and paramagnetic impurities,

(2) the interaction between the nuclear quadrupole moment

and the gradient of the crystalline electric field,

(3) the changing magnetic field at the nuclear site due





to phonon—induced fluctuations of the electron spin sys—

tem and (A) the changing magnetic field at the nuclear

site due to exchange—induced fluctuation of the ordered-

electron spin system. Of these the last is generally

the dominant mechanism in the temperature range studied.

The effect of paramagnetic impurities will be discussed

in Chapter V, but it is evidently much smaller than the

dominant mechanism in our case. The second and third

examples both depend on the phonon population which is

negligible for temperatures very small compared to the

DeBye temperature.ll We are left with the effect of the

interaction between the nuclei and the exchange-coupled

electron spin system. The low energy thermal excitations

of this system are called magnons. The nucleus relaxes

to the magnon system, and the energy thus absorbed is

eventually transferred to the lattice, but in quanta which

are generally much larger than the nuclear quanta,l2

so that the nuclear relaxation will be independent of the

relaxation time of the atomic spins.



II. MEASUREMENT METHODS

Measurements of Tln’ the nuclear spin—lattice relaxa-

tion time, were made in zero external magnetic field using

standard radio frequency (rf) pulse techniques to be

described below. These techniques depend on the detec-

tion of free induction decay (FID) signals and spin

echoes. This chapter will present a brief discussion of

these phenomena.

Theory

The theory of spin echoes and free induction decay

l3,lA,l5 The brief discussion given inis well known.

this chapter can be supplemented by the above references.

For simplicity, consider a system of spin l/2 nuclei

in a magnetic field M directed along the z-axis. If

the system is in thermal equilibrium, at time t = O, the

populations of the two Zeeman energy levels will be pro—

portional to the Boltzmann factor, leading to a net

magnetization parallel to M of magnitude MZ(O) = M0,

given by Eq. (1.7) as discussed in Chapter I. In

equilibrium no net magnetization perpendicular to M

exists. However, a circularly polarized magnetic field

H—1’ applied to the system in the formof frequency wL,





of an rf pulse will produce a non—equilibrium situation

in which a transverse magnetization ML does exist. As

will be shown, the precession of M; can be deteCted and

the amplitude of the detected signal can be used under

certain circumstances to measure the spin—lattice relax—

ation time Tln

A classical description of the phenomena of spin

echoes and free induction decay leads to the same equa-

tions as the quantum mechanical theory, and has the

advantage that it is easily visualized, so it will be

used here. In Figure 2.lA, the net magnetization MO

is shown parallel to M. A magnetic field Ml,

cular to M and rotating at the Larmor frequency, exerts

perpendi-

a torque MO x M on MO, caus1ng Mb to precess about M1
1

with angular frequency w H When the angle 6
1=YN1'

between MO and M becomes non—zero, the torque MO x H

will cause M0 to precess about M at the Larmor frequency.

In order to eliminate the visual confusion which this

introduces, Figures 2.lB through 2.lF are drawn in a coor-

dinate system (x', y', z') rotating about the z—axis at

frequency 9 = —kyNH. In the rotating frame the magneti-

16
zation sees an effective field, in this case equal to

Ml, which is constant in time. Ml has been chosen to lie

in the x'—direction. If M1 is removed after a time

_ = n . . .
te — tfl/2 265’ the net magnetization Will be in the

x'—y' plane, and Mz(tn/2) will be zero (Fig. 2.lC). Such
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a pulse of M1 is called a 90° pulse because it causes

M0 to precess 90° around Ml. When M is removed, M
1

will remain stationary in the rotating reference frame

and hence will precess at frequency w in the lab system.
L

This precessing magnetization will induce an emf in a coil

whose axis is in the x-y plane. The magnitude of the emf

induced will be proportional to the magnitude of the net

component of M in the x—y plane, which in turn depends

initially on the magnitude of the z-component of M that

existed just before the pulse was applied. This is shown

in Appendix A.

In the experiments for this thesis, the magnetic

field M was the local magnetic field in the crystal,

resulting from the antiferromagnetically ordered electron

spins. Due to local field inhomogeneities, the local

field has different values for different crystallograph—

ically equivalent spins leading to a spread in Larmor

precession frequencies. Therefore, as viewed in the

rotating frame, the magnetization fans out (Fig. 2.lD).

As the spins get further out of phase, the net transverse

magnetization goes to zero and the resulting signal also

decays to zero. Such a signal is called a free induction

decay tail or an FID.

It is possible to bring the spins back into coherence

by the application of a second pulse of M1 a time t after

the first pulse. For simplicity, we consider that M1

is again along the x'—axis and that its duration is such

that M precesses through 180° around Ml (Fig. 2.lE).
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The spins that had precessed ahead of the center of the

distribution by an angle o are now behind the center by

the same angle. (These spins are labeled f in Figs.

2.lD and 2.lE.) Similarly those that lagged by ¢ (labeled

s in Figs. 2.lD and 2.lE) are now ahead by ¢~ Therefore

at a time 2t after the first pulse the spins will have

regrouped (Fig. 2.lF) and will produce an emf in the

receiver coil, which is called a spin echo. Figure 2.lG

shows the pulses necessary for formation of an FID and

a spin echo.

It should be noted that in general rf power is fed

into the sample in the form of a linearly polarized rf

pulse of frequency w This can be decomposed into twoL'

circularly polarized fields, one rotating at frequency

w in the same sense as the nuclear precession, and the
L

other rotating at frequency w in the opposite sense.
L

The effect of the latter can be shown to be neglibible,

and it is usually neglected. The Hl discussed above is the

circularly polarized component rotating in the same sense

as the Larmor precession, and it is this component that

produces the nuclear resonance.

Relaxation Effects
 

The above discussion has neglected the effects of

relaxation phenomena. Application of a 90° pulse re-

sults in a non-equilibrium configuration of the spin
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system. Through the mechanism discussed briefly in

Chapter I, the spins are able to return to the equili-

brium distribution, giving up their energy to the lattice.

Thus the z-component of the nuclear magnetization grows

from zero, right after the 90° pulse, to Mb after a suf-

ficient length of time. The return to equilibrium is

expressed by the equation

Mz(t) = MOEI—exp(-t/Tln)] (2.1)

which is derived in Appendix B. As explained earlier,

the size of the FID after a 90° pulse is proportional

to the magnitude of the z-component of M that existed

just prior to the 90° pulse. It is therefore a measure

of the degree to which the system has returned to equili—

brium. The two pulse method for measuring Tln takes

advantage of this, and is discussed later in this chapter.

Relaxation to equilibrium.also affects the ampli-

tude of the spin echo. As the time t between the two

echo forming pulses is increased, the amplitude of the

echo decreases. This is usually due to mutual spin

flips between neighboring nuclei which conserve energy

but destroy the phase coherence of the transverse com-

ponents of the nuclear magnetic moments. The resulting

decay of the transverse magnetization can be described

by an exponential with time constant T the spin-spin
2n’

relaxation time. We assume throughout this discussion

that T >> T . T
1n 2n processes are not important in the

2n
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method for measuring T using a spin echo, to be de-
1n

scribed later in the chapter, except that if T2n is too

short, the apparatus will not be capable of producing

a visible echo. (If T for example, is much less than
2n’

the minimum time t between the two pulses, the echo ampli-

tude will be zero at time 2t.) However, if an echo is

Visible, the size of the echo will be proportional to

the initial magnetization in the z-direction. This

forms the basis for the three pulse method for measuring

Tln'

Two Pulse Method
 

Starting with an equilibrium situation, application

of a 90° pulse (Pl) leads to a free induction decay tail

of magnitude A = Aw. If a second 90° pulse (P2) is

applied at a time t later, the amplitude of the FID will

depend on the size of the z—component of the magnetiza-

tion which existed at time t. Repeating the above ex—

periment for various t's, ranging from t << T to

In

t >> Tln’ will result in FID amplitudes from 0 to Aw.

Since A is proportional to M (see Appendix A), A(t) has

the same form as Eq. (2.1)

A(t) = Am[l-exp(—t/Tln)] (2.2)

From (2.2)

exp(-t/Tln) = l — % (2.3)





1A

and

A _ -t

11’1(l - 'A- ) - T__ (2.“)

w ln

Therefore a plot of ln(l — % ) versus t should yield a

00

straight line of lepe -l/T passing through ln 1.
ln

A sample graph is shown in Fig. 2.2.

The second pulse of the sequence need not be a 90°

pulse, since a 6° pulse will still produce some trans-

verse magnetization. The amplitude of the FID will be

smaller by a factor of sin 6. It is imperative, however,

that Pl be a 90° pulse. Otherwise there would always

be a z-component of nuclear magnetization and the inter-

pretation of the FID following the second pulse would

be more complicated.

P1 is called a saturating pulse because it reduces

the z—component of the nuclear magnetization to zero.

If the resonance line width is large, it may be necessary

to replace Pl by a string of pulses, called an rf comb.l7

Energy from the pulses is fed into the resonance line at

one frequency and diffuses to the rest of the line

through cross-relaxation processes. The duration of the

comb should be long compared to the cross relaxation

time18 so that the whole line is saturated, otherwise

the apparent return to equilibrium will be characteristic

of cross-relaxation rather than spin—lattice relaxation

processes.
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Three Pulse Method
 

The three pulse sequence consists of a 90° pulse,

Pl, followed after time t by an echo forming pair of

pulses, (P2) and (P3) respectively. As mentioned above,

the size of the echo is proportional to the z-component

of nuclear magnetization immediately preceding pulse P2.

Therefore if the separation between P1 and P2 is varied

from times t << Tln to times t >> Tln’ the separation

between P2 and P3 being kept constant, the amplitude of

the echo will change from A = O to A = Am, where Am is

the echo amplitude with pulse Pl turned off. The equa-

tion for A as a function of time is the same as that for

the two pulse sequence, since in each case A is directly

proportional to the z-component of the magnetization

existing just before P2. Care must be taken that the

sizes and shapes of pulses P2 and P3 do not change when

P1 is turned on and off. If they do change, it is a sign

that the equipment is incapable of supplying the neces—

sary power. It should be noted that P2 and P3 need not

be 90° and 180° pulses respectively in order to form

an echo. The 90°-180° case is easy to visualize and

was used as an example only. The same technique can be

used when P2 and P3 have angles 62 and 63, as long as

a measurable echo is formed. In order that the echo

amplitude be as large as possible, the time between P2

and P3 should be much less than T and T .

ln 2n
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The experimental procedure for measuring T n using

1

the two and three pulses will be given in Chapter III

after the apparatus has been discussed.



III. EXPERIMENTAL APPARATUS AND PROCEDURE

In order to measure the nuclear spin—lattice re—

laxation times of nuclei in antiferromagnetic crystals

in the temperature range from A.2°K to 0.A5°K the experi-

mental apparatus must (1) supply sequences of high voltage

rf pulses of variable frequency and length to the sample

at liquid Helium temperature, (2) pick up, amplify, and

display the rf signals induced in the sample by these

pulses, (3) be able to maintain a constant temperature

during measurements, and (A) allow for measurement of

the temperature from A.2°K to 0.A5°K to an accuracy of

i0.005°K. The equipment used falls into two categories,

low temperature apparatus and electronic apparatus.

Low Temperature Apparatus

3

 

Two systems, a He system and a He“ system, were used

to cover the temperature range from 0.A5°K to A.2°K.

3 3 l9
Helium System. Figure 3.1 shows the glass He dewar
 

immersed in liquid He“. The sample was dropped into

3
position through the He pumping line, oriented by tap—

ping the tip, and held in place by a few drops of Dow

Corning 70A fluid which freezes on cooling. Temperatures

as low as 0.A5°K could be reached by pumping on the

18
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He3 bath. The temperature was determined by measuring

the vapor pressure of the He3 bath using an NRC Alphatron

pressure gauge connected to a 1/8" teflon tube posi—

tioned just above the surface of the liquid He3. A

calibration of Alphatron pressure versus temperature was

made by measuring the susceptibility of ferric ammonium

alum as a function of Alphatron pressure. Ferric am—

3
monium alum obeys the Curie law in the He temperature

range. The temperature was determined from the value

of the susceptibility at the given pressure. The sus-

ceptibility coils2O shown in Fig. 3.2 were used with

3
dewar in which the T measurements werethe same He

1n

made.

The receiver coil was wrapped around the tip of

the He3 dewar. This meant that the filling factor (see

Appendix A) for the coil was much less than one. Since

the use of the He3 dewar was necessary only below l.l7°K

(the lower limit of the Hel4 system), measurements above

this temperature were made in a He” system where the

receiver coil could be wrapped directly on the sample.

Heliumu System. The Heu dewar is shown in Fig. 3.3.
 

The means for transmitting the rf pulses to the sample

and receiving the induced signal have been omitted and

are shown.later. By controlling the pumping rate on

the He”, temperatures from A.2°K to l.l7°K could be

reached and held to an accuracy better than i0.005°K.
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Fig. 3.2. Susceptibility coils.
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Above about 2.2°K, a mercury manometer was used to measure

the vapor pressure of the He“. Conversion from pressure

to temperature was made using the National Bureau of

Standards' "1958 HeLl Scale of Temperatures." Below 2.3°K

a manometer using oil of known density was used. The ratio

of the density of the oil to the density of mercury when

multiplied by the height of the oil column gave the

pressure in mm of Hg, which was then converted to temp-

erature as above.

Electronic Apparatus 

A block diagram of the electronic apparatus is

shown in Fig. 3.A. The triggering apparatus provides

trigger pulses for the oscilloscope, the amplifier gate

circuit and the Arenberg rf oscillator. Rf pulses from

the Arenberg are tuned and shaped and fed to the transmit-

ter coil. The small rf voltage induced in the sample

by these pulses is picked up by the receiver coil ampli—

fied by the rf amplifier, and displayed on the oscillo—

scope. All connections were made with RG59 and RG62

coaxial cable with BNC connectors. Where low capacitance

was a necessity, RG62 cable with a capacitance of l3pf/ft

was used.

Triggering Apparatus. Figure 3.5 shows the equipment 

that generates the trigger pulses for the rf oscillator,

the oscilloscope and the rf amplifier gate. The initial

trigger pulse is provided by the circuit21 at the top
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left in Fig. 3.5, which uses a A layer diode (-J+—)

(Motorola A6305A). This pulse triggers a series of

Tektronics 163 pulse generators and Tektronics 162

waveform generators which feed into the pulse sequence

circuit shown at the bottom of Fig. 3.5. This circuit

permits the sequences shown in Fig. 3.6 to be used.

Switch Sl selects the saturation technique; either an

rf "comb" of saturating pulses or a single saturation

pulse may be used. Switch S2 selects the pulse to trig—

ger the oscilloscope and S3 selects the pulse with which

to gate the rf amplifier. Switches SA’ 85, and S6 allow

any pulse to be turned on or off independently. The

diodes in the pulse sequence circuit prevent the pulses

from seeing the output impedances of the other pulse

generators.

Rf Oscillator. An Arenberg Ultrasonics Laboratory pulsed

rf oscillator Model PG—65O was modified to allow external

triggering by two or more pulses of varying lengths.

High voltage was supplied by a 2500 volt external power

supply shown in Fig. 3.7. An rf pulse output power

up to lkW over a frequency range from 3 to 20 MHz was

attainable, giving circularly polarized rf magnetic

fields (Hl) on the order of 5 gauss. The Arenberg

was designed to give a rectangular pulse (i.e., a pulse

with no tail) when terminated by a 930 termination.
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Tuning and Damping Circuit. A shielded variable air 

capacitor (15—180 pf) connected in series with the line

was used to tune the circuit to series resonance so that

the voltage across the transmitter coil was a maximum.

Figure 3.8 shows the tuning capacitor and the damper

circuit which damps out the ringing induced at the trail—

ing edge of the rf pulse by the series resonant condi-

tion. The damper, based on a circuit by Skopas,22 is

essentially two diodes back to back, biased in such a

way that the circuit offers low resistance to low volt-

ages and high resistance to high voltages. Thus the Q

of the circuit is low during the tail of the pulse and

it quickly damps out. Typical pulse shapes are shown in

Fig. 3.9.

Transmitter and Receiver Coils. Rf power reached the 

transmitter coil through a coaxial line (see Fig. 3.10)

made from a German silver tube with a number 30 copper

wire as the center conductor, the latter insulated

with ten gauge teflon insulation. The wire was then

threaded through styrofoam cylinders which acted as

insulating spacers. The same type of coaxial line was

used to carry the rf signal from the receiver coil to the

top of the dewar. The capacitance of the lines was kept

as small as possible by using the largest size tubing

consistent with the space available and the method of

supporting the teflon coil from. Table 3-1 shows the

size, length and approximate capacitance of each coaxial
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(A)

(B)

(C)

 
(D)  
  

Fig. 3.9 Typical transmitter and receiver outputs for

undamped (left) and damped (right) transmitter pulse.

Graticle is 6xlOcm. x—scale is 5 sec/cm.

(a) and (b) transmitter pulse with y = lOOv/cm and 5v/cm

(C) and (D) receiver output with y = 2v/cm and 0.2v/cm

(E) gated receiver output with y = 0.2v/cm
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Table 3—1

 

  

System Transmitter Coax Receiver Coax

Length Diam. Cap. Length Diam. Cap.

(inches) (inches) (pf) (inches) (inches) '(pf)

He3 A5 3/LI 3o 3/II 30

He“ 37 5/8 30 1/2 35

   





3A

3 and He“ systems.line in the He

The coil form for the transmitter coil was made

from teflon. For maximum signal and minimum receiver

dead time the coils should be oriented so that (l) the

transmitter coil is perpendicular to the internal field

M at the nucleus under study (so that M x‘Ml is a max-

imum), (2) the receiver coil is perpendicular to M

(to get the maximum possible FID after a 90° pulse),

and (3) the transmitter and receiver coils are ortho-

gonal (to minimize pickup in the receiver, due to the

transmitter pulse). Use of the teflon coil form

(Fig 3.10) insured that requirement (3) was reasonably

well satisfied. Proper orientation of the crystal,

knowing the internal field directions for the different

nuclei studied, allowed requirements (1) and (2) to be

satisfied to within i10°.

In the teflon form for the He3 system, the hole

in the center for the sample and receiver coil was made

so as to slide easily over the receiver coil and make a

firm fit on the tip of the He3 dewar. For the He”

system, the sample, with the receiver coil wrapped

directly around it, was held in place in the hole in

the teflon by two styrofoam wedges, and the teflon form

made a firm fit on the receiver coaxial lead.

The number of turns on the transmitter coil for a

given frequency range was determined by trial and error,
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maximizing the rf pulse voltage in the desired frequency

range. Similarly the number of turns on the receiver

coil was maximized subject to the condition that the

tank circuit of the rf amplifier be tunable over the

desired frequency range. Table 3-2 gives the number

of turns on receiver and transmitter coils for the

different frequencies and systems used.

The teflon form for the HeliumLl system was sur-

rounded by a thin walled brass can which was soldered

to the coax leads by means of several criss-crossed wires.

This can, not shown in Fig. 3.10, out down considerably

on 60 cycle pickup. The can was Open at the tOp and

had holes bored in the bottom so that Helium could flow

freely around the sample.

The Rf Amplifier. The induced rf signal was amplified
 

by the circuit shown in Fig. 3.11. The amplification

was linear in the range used (output signals up to

one volt) and the signal was observed undetected so

that A, the amplitude of the signal on the scope, was

proportional to A', the amplitude of the induced signal

before amplification (see Appendix A). The receiver

coil is connected in parallel with tuning capacitor CT’

forming the tank circuit for the amplifier, which can

be tuned to the desired frequency. Modifications neces—

sary for good high frequency response (15 to 20 MHz)

are indicated in the figure. Because the transmitter
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and receiver coils were not exactly orthogonal, pickup

due to the transmitter pulse induced high Q ringing in

the tank circuit, saturating the amplifier for as long as

100 microseconds. Crossed diodes at the inputs to the

first and second stages were used to cut down on this

receiver dead time. It was further out to less than

15 microseconds and in some cases to about 7 microseconds

by gating diode Dl, which introduced a low resistance in

parallel with the tank circuit. This lowered the Q and

damped out the oscillations. The gate pulse was derived

from a Tektronics 161 pulse generator and could be

triggered to gate the receiver during and after any one

of the pulses. It was important that the transmitter

pulse have a sharp cut—off to prevent the receiver coil

from picking up the ringing tail of the transmitted pulse.

To prevent ringing caused by the sharp trailing edge of

the gate pulse, a simple shaping circuit, shown in

Fig. 3.12, was used, which put a smooth tail on the gate

pulse leaving the Tektronics 161. Typical receiver

output under various conditions is shown in Fig. 3.9.

Oscilloscope. A Tektronics type 531 oscilloscope with
 

a high gain Tektronics Type H plug—in preamplifier,

was used for most of the measurements. In general no

scale with sensitivity greater than 0.1 volt/cm was used.

Procedure for Taking Data
 

The discussion in Chapter II alluded to two dif-

ferent pulse sequences used in measuring Tln" The two
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V (see Fig. 3.5)
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pulse method was used when no useable echo signal was

obtainable. This was the case for C135 and proton

85
resonance lines. When a good echo was observed (Rb

and Rb87 resonance lines) the three pulse method was

used. The procedure followed when taking data is out-

lined below for both the two pulse and the three pulse

methods.

Two Pulse Method.
 

(1) Come to equilibrium at some temperature T.

(2) With Pl off, tune the transmitter and receiver until

the maximum free induction signal is obtained

after P2.

(3) Adjust the repetition rate so that the system is

in equilibrium before each two pulse sequence.

(M) Turn on P1 so that ti, the initial time between the

two pulses, is short compared to the expected Tln'

(5) With the s00pe triggered by P2, adjust P1 to a 90°

pulse by making it the minimum length that reduces

the FID after P2 to zero. It may be necessary to

make fine adjustments on the transmitter frequency

to do this.

(6) Turn off Pl and record the FID amplitude (A = Aw)

somewhere on the tail subject to the condition that

when P1 is turned on, the FID amplitude at that

point on the tail is zero when t = ti.

(7) Now record A as a function of t from t = t1 until



A1

A reaches Am, and graph this as described in Chap-

ter II. T1n for the given T can then be found from

the slope of this graph, as shown in Fig. 2.2.

Three Pulse Method.
 

(1) Come to equilibrium at some temperature T.

(2) With Pl off, tune the transmitter and receiver

until an echo is observed. Adjust the lengths of

P2 and P3 and the time between them to give the

best echo possible.

(3) Adjust the repetition rate so that the system is

in equilibrium before each three pulse sequence.

(A) Turn on P1 with t = ti’ the initial time between

P1 and P2, short compared to the predicted Tln'

(5) With the scope triggered by P3, increase the length

of Pl from zero to the smallest value that makes

the echo amplitude go to zero. This will make Pl

a 90° pulse. Fine adjustment of the transmitter

frequency is advisable at this point.

(6) Turn off pulse P1 and record the echo amplitude.

This value is Am.

(7) Now turn on Pl and measure A as a function of the

separation between P1 and P2, and graph in the same

way as for the two pulse sequence. Again, T for

ln

the given T can be found from the slope of the graph.





IV. RELAXATION THEORY

The nuclear and electron spin systems in an anti—

ferromagnet are coupled by the hyperfine interaction.

The strength of the magnetic field at a particular nucleus

depends on the type of hyperfine interaction involved.

Three types are generally considered,23 leading to

(l) dipolar fields, (2) transferred hyperfine fields,

and (3) direct hyperfine fields. Transferred hyperfine

fields arise from overlap of the wavefunctions of elec-

trons of nominally non-magnetic atoms and those of elec—

trons of paramagnetic ions. A spatial redistribution

of the spin magnetization then occurs with an associated

hyperfine interaction.2u The direct hyperfine fields,

produced by the electron spin and orbital moments,exist

at the nuclei of magnetic atoms.

The nuclear energy levels are determined by the

average internal magnetic field due to the hyperfine inter—

action and by the electric quadrupole interaction (which

may be important for Cl and Rb nuclei). Transitions

between these energy levels are induced by the time vary—

ing fluctuations of the internal field, which provide

the mechanism for spin—lattice relaxation of the nuclear

spin system. The non—static part of the internal field,

M2
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taken as a perturbation, is produced by thermal fluc-

tuations in the electron spin system and can thus be

described, at sufficiently low temperatures, by non-

interacting magnons. In this chapter we introduce ex-

pressions for the electron spin operators in terms Of mag—

non creation and annihilation operators and derive the

magnon dispersion relation. We then discuss magnon re—

laxation mechanisms and their dependence on the magnon

dispersion relation, introduce the perturbation Hamil—

tonian and the total static Hamiltonian, and derive an

expression for T based on the two magnon (Raman)
ln

relaxation mechanism.

Magnon Operators
 

The transformation from electron spin variables

8+, 8- and SZ to magnon variables Aip and A is dis-

kp

25,26,27
cussed in many references. The following discussion

is adapted from Kittel.27 Consider that N electron spins

lie on two interpenetrating sublattices, q and r, such

that the N/2 spins on sublattice q are aligned in the

+ z—direction and the N/2 spins on sublattice r are aligned

in the - z—direction. Further, consider the case where

the nearest neighbors of a spin on sublattice q are all

on sublattice r and vice versa. In the absence of an

applied magnetic field, the Hamiltonian for the electron

spin system is





U4

D-I
Z

E = -2J 2 s1 Sj — 2pOHAZ sqj + 2pOHA§ sr. (A.l)

i<j J

where J is the nearest neighbor exchange integral, “0

is the Bohr magneton and H is a fictitious magnetic
A

field which aligns spins on sublattice q in the

+ z—direction and spins on sublattice r in the — z-direc—

tion, thus representing the effect of the crystalline

anisotropy.28

We now express the electron spin Operators

+

S = S + iS and S- = S - iS in terms of spin-devia-

X y X y

tion creation and annihilation Operators using the

Holstein—Primakoff transformation.29

3* = (2S)%(l — a+ a /2S)%a (u 2)
<13 <13 qJ‘ qj '

s“. = (2S)%a+.(l — a+a ./2S)% (u.3)
QJ ClJ ClJ an.

3+ — (2s)1/2a+ <1 _ /2s)% (u 4)
r2 r1 artart '

s' - (2S)%(l a+ /2S)%a (u 5)
r2 ‘ riarz r2 ‘

The operator agj creates one unit of spin deviation on

the jth electron on sublattice q, and ar2 destroys one

unit of spin deviation on the 2th electron on sublattice r.

The spin deviation operators obey boson commutation

relations

[a. + = 6 6

li’ah23 ih 32 3 l = Q:rs h = q,r (A.6)
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In (A.A) the operator a: has been associated with s:
2 £

because we want both 833 and S$z to result in an increase

in the total + z—component of the electron magnetization.

Similarly a has been associated with s; Using the
r£

£°

identity SjOSj = S(S+l) and Eq. (“-6) One can calculate

Z +

S o = S _ 8- ca 0 14'

QJ QJ QJ ( 7)

z _ _ +

Sri ’ S + ariarz (“'8)

The Operator a+.a Operating on an eigenstate Of

QJ QJ

the system gives the number of spin deviations on the

3th electron of the q sublattice.29 It is therefore

called the number operator. Thus the expectation value

of 8:3 is given by the value of S minus the expectation

value of the number of spin deviations on atom j of

the q sublattice.

We now transform to spin—wave variables bik’ bik’

which destroy and create magnons of wave vector k on the

ith sublattice, i = q,r. The transformations are

P +ik-r '
2 2 — —j

b = — e a . A.qk [N] g (N < 9)

P — k'r
+ 2 2 l—-—j +

b = — e a . 4.10

qk [N] g qJ ( )

P —'k-r
_ 2 2 l— —2

brk - [N] g e ar2 (4.11)

P +ik-r
+ _ 2 2 — —2 +

bI’k - [if] g, e 3162’ (”.12)
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Thus, qualitatively the magnon creation Operator creates

a spin deviation on each site of one sublattice and im—

poses a definite phase relationship on the spin deviae

tions through the sinusoidal term.

If we assume that the number of spin deviations is

small, i.e., that <agjaqj>/S << 1 we can expand the square

root in each of Eqs. (4.2) through (4.5). This consti-

tutes the spin-wave approximation. This gives for (4.2),

+

3.3.8.

+ _ a q '
sqj — (2S) (aqj _ ——iE§i—Ei + ...) (4.13)

Using the inverse of the transformations (4.9) and (4.10)

we have, neglecting third and higher order magnon terms

P -'k°r
+ 48 2 l— —j

S . = —— b + 4.14

qJ [N J E e qk ( )

Similarly

1 ° .

- 4S 6 "15 gj +
. = —— b + ... 4.1

Sqa [N ] § 8 qk ( 5)

1 ‘ o

+ _ 4S 6 '15 £2 +
sr2 — [N—] § e brk + ... (4.16)

P +ik°r
— _ 4s 2 — —i

srg — [F') E e hPk + ... (4.17)

From (4.7) through (4.12) we have

2 2 i<5_§'>.£j +
S . = S — — b b + ... 4.18

qJ [N]k£.e qk qk' ( )

Z _ 2 —i(1£—L_(_')°_l:£ +

srl —s + [fi]kg e brkbrk, + ... (4.19)
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Notice that S+ and S— involve odd numbers of magnon oper-

ators while SZ involves an even number.

If we now express SHE from (4.1) in terms of magnon

variables, we find that, assuming nearest neighbor coup-

ling only

I

>IE = D—IO + “1 + constant terms (4.20)

I

where 3+1 represents higher order magnon terms (three

or more) and

_ + + + +
ZHC>- —2st£ [yk(bqkbrk + bqkbrk) + (bqkbqk + brkbrk)]

+ +
+ 2uOHAE (bqkbqk + brkbrk) (4.21)

_ 1 ik'é _
Yk - 2% e — — - Y-k (“.22)

The vector g connects a given spin with its 2 nearest

neighbors and we have assumed that the crystal has a

center of symmetry. In arriving at (4.20) identities

of the following form have been used.30

i(k—k')'r.

—~ 3:42 e 2 akk, (4.23)

J

1(k—k')°r.
-—— 3+ _N +

2 e b b , — - Zb b (4.24)
jkk' qk qk 2 k qk qk .

(4.23) can be proved by writing out the sum explicitly

and grouping the terms in sums of geometric progressions.

(4.24) follows directly. Because of terms like
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bgkb;k, Eq. (4.20) is not diagonal as it stands. The

transformation which diagonalizes >40 is defined by

+

bqk = CklAkl + ck2Ak2 (”'25)

_ +
brk - CklAk2 + Ck2Akl (4.26)

+ _ +
bqk — CklAkl + cszk2 (4.27)

+ _ +

brk ‘ CklAk2 + Ck2Ak1 (”'28)

here c c are real and mu t satisf c 2 c 2 = 1

W kl’ k2 S y k1 ‘ k2 °

. . + =
The latter equation 1nsures that [Akp’Atp'] szdpp"

This is the boson commutation relation. Substitution

of (4.25) through (4.28) in (4.21) shows that the off-

diagonal terms cancel if

  

pk -Yk 4

Ckl - ( 2_ 2)% Ck2 — < 2—6 2)% ( '29)

pk Yk pk k

w 00 1/

9k = 1 + _A + [(1 + —£ 2 — y 2]2 (4.30)
w w k
e e

where we = 2JzS and wA = 2uOHA. Using the boson commuta—

tion relations and substituting Eqs. (4.25) through (4.30)

in (4.21), we get

_ + +
:H0 - é wk(AklAk1 + Ak2Ak2 + 1) (4.31)
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with wk given by

2 2 P)2

wk = [(006 + wA - we Yk ]2 (4.32)

Eq. (4.32) is the dispersion relation for antiferromag-

netic magnons which is discussed in the next section.

In the diagonalized representation, for each magnon

of wavevector k, there are two degenerate modes, p, where

+

kp
p

k and polarization p; Akp annihilates the same magnon.

Notice that it is not as simple to "picture" these magnons

= 1,2. The Operator A creates a magnon of wavevector

as it was when a given magnon was confined to one sub-

lattice. The Operator A+ A when Operating on an eigen-

kp kp

state of the electron spin system gives the number of

magnons of wavevector k and polarization p in that system.

This can be derived by considering an eigenstate

l...nkp...) in which there are nkp magnons present in

the mode kp, where 5 runs over the N/2 wavevectors and

p = 1,2. From magnon theory31 we have

A+l n )-(n +1)1<°-| n +1) (433)kp kp — kp ...kp 0.. O

1

= /2 _-Akpl' nkp ) (nkp) I kp l...) (4.34)

Therefore

4+4 I n )=<n )1/2-(n >1’2| n > (435)kp kp . kp"° kp kp . kp"° .

and

A+ A = n (4.36)

kp kp kp
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We can then write 2H0 in (4.31) as

= 37 1/

k k

TO express the spin Operators in terms of the magnon

Operators in the diagonalized representation we sub-

stitute Eqs. (4.24) through (4.27) into (4.14) through

(4.19). Neglecting third and higher order terms, we have

+ 481/2 "15°33 + 4 8

qu ” [N‘] E e (CklAkl + Ck2Ak2) ( '3 )

P +ik-r
— _ 482 ——j +

qu ' [N‘] E e (CklAkl + Ck2Ak2) (”'39)

P —°k°r
+ _ 4s2 l——5L +

Srf ' [N— E e (CklAk2 + Ck2Akl) (4.40)

P +ik r

- _ 482 ——;L +

Sri ‘ [N’] £ 8 (CklAk2 + Ck2Ak1) (4.41)

i(k—k')°r.
Z _ a — — J +

qu ‘ S ’ [N]k;,e (CklAkl + Ck2Ak2>

x (c A + c A+ ) (4 42)
k'l k'l k'2 k'2 '

-i(k-k')°r
z _ 2 — — x +

Srf '3 + [N] E,e (CklAk2 + Ck2Akl)
kk

x(c .4 +0 4") (443)
k'l k'2 k'2 k'l °

The Magnon Dispersion Relation
 

The dispersion relation for antiferromagnetic magnons
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was given in Eq. (4.32) and is repeated here for con-

venience.

)2 — w 2yk2]% (4.44)wk = [(we + wA e

It is customary to write this in the small k approximation

using Yk2 = l — bk2, which is obtained from the defini-

tion of Yk’ (4.22), by expanding the exponential to

second order in k, and squaring the result, again keeping

only terms to second order in k. If there is a center

Of symmetry in the crystal, linear terms in the sum will

cancel. Then

1

2 2 + wA2Jé (4.45)wk = [we bk + 2wewA

An important feature of this dispersion relation is

that for k = 0, we have

[2m + w 2:|1/2 (4.46)
w Ak = EwA

so that there is an energy gap in the magnon spectrum.

The effect Of the gap is to suppress the excitation of

where T ismagnons for temperatures T less than TAE’ AE

defined by

(4.47)

The general shape of the dispersion relation in

the first Brillouin zone is shown in Fig. 4.1. The

dashed line is the long wavelength (small k) approxi-

mation to hm disregarding Brillouin zone effects and
k

assuming wA = 0. Note that the larger T

ter will be the dispersion curve.

AB 18, the flat—



  



 

    
0 km: 72 /0

Fig. 4.1. Typical dispersion curve for antiferronar—U

netic magnons.
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Magnon Relaxation
 

At temperatures low enough that the spin wave approx—

imation is valid, relaxation of a nuclear spin might

be expected to occur via one magnon (direct), two magnon

(Raman), three magnon, or higher order relaxation mech—

anisms. In the direct process, the nuclear spin flips

and a magnon of wavevector k and energy th, where wL

is the nuclear resonance frequency, is emitted. Such

+

processes involve a magnon creation operator Ak The

two magnon process can be described as magnon scattering;

a magnon of wave vector k is absorbed, the nuclear spin

flips and a magnon of wavevector k' is emitted where

Ek = Ek' —'th. This requires two-magnon terms like

AkAk' in the perturbing Hamiltonian. Three magnon

processes involve terms like AkAk'Ak'

the absorption of two magnons (wavevector k' and k"),

, which represents

the creation of one magnon (wavevector k) and a simul—

taneous flip by the nuclear spin. Conservation of

energy requires in this case

B + E = E — flu) (4.48)

In discussing the importance of these three relaxa-

tion mechanisms it is necessary to consider the effect

of the antiferromagnetic magnon dispersion relation.

First consider the effect of the energy gap on the

direct process. A nuclear resonance frequency of lOMHz

corresponds to a temperature of about 10-30K. This is
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well below TA in almost all antiferromagnets so that it

is generally impossible to have a direct process and

still conserve energy.

Next consider the effect of a large energy gap on

the three magnon process. For T a T
AE N’

trum will be essentially flat and again it will be im—

32

the magnon spec-

possible to conserve energy. For T large, we are
AE

left with the two magnon process as the dominant relax—

ation mechanism.

The Perturbation Hamiltonian
 

Relaxation of the nuclear spin system occurs through

hyperfine coupling of the nuclei to the fluctuations

in the electron spin system. In this section we discuss

the Hamiltonian which will be used as a perturbation

in calculating T We will consider only the dipolar

ln'

contribution to the hyperfine interaction. The form—

alism for transferred hyperfine interaction is the

same; only the coupling terms are different. The

Hamiltonian for the hyperfine interaction 3H1 is then

3'1 = #16191 (4.49)

_ _i_ .

E ‘ Z di[§i ‘ [ 2] (§-i 314%] (”'50)
1 r.

1

where d1 = —yéh/ri3, ri is the vector joining the nucleus

and the ith spin and the sum runs over all electron spins.
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T is the Operator which represents the magnetic field

at the nucleus due to all the electron spins. We have

tacitly assumed that the interactions between the nuclei

can be neglected, since they are small compared to the

hyperfine interaction. Further we assume that the inter-

action 2H1 has little effect on the motion of the atomic

spins.

By writing Si = <§i> + Si)’ T may be split into

a constant part U and a fluctuating part y. The eigen-

states |xn) of the nucleus are then determined by EHU,

the static part of 3H given by
l)

MU = —yN‘hU_°I (4.51)

where U is identical to Eq. (4.50) with Si replaced by

<§i>. Transitions between the eigenstates are induced

by the fluctuating part of :H1 and it is these transitions

that contribute to the relaxation of the nuclear Spin

system. We can write the fluctuating part of EH1 as

\JHV = —yfihy°l (4.52)

3 2

v = ) dimsi — [5—] (asi'gimil (4.53)
i i

where

6§i = §i — <Si> (4.54)
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The Total Static Hamiltonian
 

The discussion in this and the following section

is based on a paper by Van Kranendonk and Bloom.2 Since

our experiments were done in zero external magnetic field,

and since we assume that the hyperfine interaction does

not appreciably affect the electron spin system, we can

write the Hamiltonian for the electron Spins as

3+8 = —2J Z si-s. (4.55)

i<j J

where_S_i is the vector spin operator of the ith electron

spin in units of h, J is the isotrOpic coupling constant

and is the same for all spins. Equation (4.55) assumes

the absence of anisotropy. The total static Hamiltonian

JHSS is

Jigs =318 +D+U (4.56)

Since we have assumed that J-IU has little effect

on the motion of the atomic spins, the electron eigen-

states are determined by gas. Some care must be taken

in choosing the eigenstates of 3H8 in order that the

matrix elements of V are well behaved. Following

Van Kranendonk,2 we represent the eigenstates Of 3H8

by IEq), where o represents a number of constants Of the

motion so chosen that for fixed a and a', the matrix

elements (E'q'|y|Eo) are smooth functions of E and E'.

The eigenstates Of the total static Hamiltonian

gigs can the“ be l“epr’esented by IEoci), where the + and ..
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indicate the relative sign of m, the nuclear spin quantum

number. The - sign corresponds to the excited state,

while the + sign refers to the ground state.

Two Magnon Relaxation
 

In Appendix B, Eq. (B—l2), it is shown that the

relaxation time T1n is given by

= 2w+ (4.57)

ln

H
I
P

where W+ is the probability per unit time that the nu—

clear spin flips from its excited state to its ground

state. Using time dependent perturbation theory33

the probability per unit time that the nucleus flips, the

electron spin system being initially in state IEa), is

given by

WHEOL) =fig-EE'IQ(E'CX')I(E'OL' + |31V|Ea—)|2 dE' (4.58)

where p(Eo)dE is the number of states IEa) in energy

range dB for a given a. E' is determined by the condition

that E' = E + th where th is the energy given up by

the nucleus when dropping from the excited level to the

ground state. The electron spins are assumed to be in

thermal equilibrium.

The probability per unit time that the nuclear spin

flips is then

W+ = wyZEd) = %EIe-BEW+(EG)Q(Ed)dE (4.59)

a
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where Z is the partition function

-BE

2 = {e n s = —L (4.60)

1'1

In the integrand, p(Eo)dE represents the number of

states IEa) for a given a, e-BEn gives the probability that

the state IEq) is occupied, and W+(Ea) gives the proba-

bility that the nuclear spin flips if the electron sys-

tem is in lEa).

We are interested in Obtaining a theoretical eXpres-

sion for T1n based on the two magnon Raman process dis-

cussed earlier. Therefore, considering only those

terms YR in 31V which lead to Raman processes, we have

as the perturbation Hamiltonian for Raman processes

Y+ !_ l__ '+

_YthR 1 YNh[2(VR I + VR I ) + VZIZ] (4.61)

where V': = V; i iV§, and where the prime indicates

that the dot product has been evaluated in the (x', y',

z') coordinate system in which 2' is defined as the

direction of the net internal field at the nuclear site

and hence is the direction Of nuclear quantization.

Figure (4.2) shows the relationship between the (x, y, z)

and (x', y', z') coordinate system. The z-axis is de-

fined by the direction of the electron magnetization,

and has been drawn at an angle 6 to the z'-axis. The

y'-axis has been drawn in the x—y plane for ease in

calculating the perturbation Hamiltonian. The only term



 



axis of quoniizolion of

electron Spins

axis of quonlizo’rion of

nuclear spin

Z/

 
 

y/

 
the y’— oxis lies in the

Fig. 4 .2. Coordinate systems ( x, y , Z Z and (x' , ' , x, ' Li .
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in (4.61) that will couple the states (E'q' +| and IEa—)

"YN‘h 1__ 1+

2 VR I .

that the nucleus flips due to Raman processes, the elec—

 
is Therefore the probability per unit time

tron spin system being initially in state IEq) is,

from (4.21),

2 '_ 2

w+(Ed) = HEE'IQ(E'Q')I(E'a'+l3HR |Ed—)| dE' (4.62)

where

\3,‘- _ 1 '— '+
R _ _éyNhVR I (4.63)

To write down the explicit form for Vé_, it is necessary

to recall that only fluctuations in the z—component of

S contribute to two magnon processes. We therefore take

63x and 68y to be zero. Then, from Eq. (4.53) we can

write

v_ _ v_ 3 l_

VR — E di[68i — ;—§ (asizrizwi 1 (4.64)

1

Since the transformation to magnon operators is gen—

erally written in the (x, y, z) coordinate system, we

'—

express 681 in this system. Then

I A A

= 'l. = '
681x 1 késiz SSiZ Sln 6 (4.65)

' 8' A 4 66dsiy — J 'kGSiZ - 6812(0) — O ( . )

r_ l v

68. = 68. - i68. = GS. Sin 6 (4.67)

1 1x 1y 1z
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'—

Then VR can be written

R 2 lZ 1 1z

v" = ) di[sin e — 3 (r. )rf‘lcs. (4.68)

i r

i

6812 is easily expressed in terms of magnon creation

and annihilation operators by substituting the expecta—

tion values of the Operators SZ

qJ

and (4.43)) into Eq. (4.54). However not all two magnon

z
and Srj (Eqs. (4.42)

terms in (4.42) and (4.43) are Raman terms. If we con—

sider only those terms which have the Raman form A+ A

kp kp’

then for the two sublattices we have

i(k—k')-r.
Z__2_ —— —-j +

asqj ' [N] 2,9 (Cklck'lAklAk'l
kk

+66 A+A) (469)
k2 k'2 k'2 k2 °

-i(k-k')-r
z _ 2 — — -—£ +

6Srj ‘ '[lek,e (Ck2ck'2Ak'lAkl

+ c c A+ A ) (4 70)
kl k'l kz k'z '

where we have used the fact the [Akp’Ak'p] = 0 for k # k'.

'-

Using (4.69) and (4.70) in (4.68) we can write VR as

Vh— = [%] (dkk'lAklAk'l + d* A+ A ) (4 71)
k,k' kk;2 k2 k'2 '

k#k'

where

=r_i _n_r

dkkip D (E E )Ckpck'p D (E E )Ck,3—pck;3-p (4.72)
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D'(k) = EDieXp(i§'gi); D"(5) = EDJeXp(i§ Ed) (4.73)

Di = -(Yéh/ri3) [sin e — [;;§]zi(xi-iyi)] (4.74)

i

and where p represents the polarization mode of the mag-

nons, p = 1,2, and * means complex conjugate. The fact

that k and k' in (4.69) and (4.70) are dummy indices and

can be interchanged has been used in deriving (4.71).

Using (4.63) in (4.62) gives

TT

Wl<EOL) = fiYN2n2) fp(E'd')l(E'd'|vé*|Ec)|2dE' (4.75)
a?

TO calculate Wl(Ec) we evaluate (E'o'lVé—IEa) for

particular initial and final states using (4.71) and then

sum over all allowable final states. Suppose that in

the Raman process a magnon kp' is absorbed and a magnon

E'p' is emitted. Let the final state |E'd') be repre-

sented by IE', nfip, dn', p'), by which we mean there

A

are n$p magnons present in the mode mp, where m runs over

the %N wave vectors and p = 1,2, plus one additional

magnon Of polarization p' and wavevector k' lying in

the solid angle dQ'. Here n' = n - 5 6 ,.
mp mp m1 pp

initial state IE6) is then IE, nmp). The length of g'

must be such that energy is conserved, so E' = E + th.

we

The

Since E and E' are generally much larger than th,

may set E' = B when making calculations. Recalling that

+ l)%|...n + l...) (4.76)..n ...) = (n k
k
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and

k|"'nk"') = (nk)%l...nk-l...) (4.77)

Eq. (4.75) becomes

2ny2h 2

W+(Ed) = I
 ) 6(2'6 )(nkp,+l)(nk,p,)|d (4 78)

kkgp'

where the sum over a' involves an integration over ko

and a summation over modes k'p', where k' ranges over

the g values in the first Brillouin zone. The density

of states for fixed on is given by Appendix C

_ 2
0(Ea) - :3 f(5,p)k ko (4.79)

where f(k,p) = land /ak| 1. With Van Kranendonk we assume

kp

that f(k,p) is independent of p and the direction of k,

and that the first Brillouin zone can be replaced by a

Sphere of radius km such that

m
l
z

(4.80)

The latter assumption, in conjunction with the use of

E = E', means that we can set k = k'. Then (4.78) be—

comes, using (4.79), summing over k'p' and integrating

over dflk,

2nyN2fi

Wi(Ed) = ———§—— (4w)) )—3f(k)k2

N J k'

X (nkp,+l)(nkp,)|dkk' p,l2 (4.81)





64

 

 

or 4

V2Y§f1 km 4 2

W+(Ed) = 2N3 £70 f(k)k (nkp+l)(nkp){ldkk',pl )dk (4.82)

where v = (V/N) and the curly brackets mean that ldkk' p|2

9

should be averaged over all directions k and k'.

The total transition probability W+ is equal to the

average of (4.81) over all initial states lEd). There—

fore

VZYfifi km 4 — — 2 4 8
W) - 3 Efo f(k)k (nkp+l)(nkp){|dkk,’p| }dk ( . 3)

2w p

where nkp is the average value of the population of mag—

nons in mode kp. For non—interacting magnons this is

given by the boson occupation number,

a = (ex—1)‘1- x =‘fiw /k T (u 84)
kp ’ kp B °

At temperatures low enough that only long wavelength

magnons are excited, the following approximations can be

2
made, where we assume (wA/we) << (wA/we) << 1.

_ 2 2“A a

2m

2 _ 2 _ 2 A -;
Ckl - Ck2 - 372(bk + ——w;) 2 (“.86)

_ 2. _
dkkgp — Dckp , D — ng — gbj (4.87)

Using Eqs. (4.84) through (4.87) in (4.83) gives, after
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changing variables from k to x and performing an inte—

gration by parts,

3 w x —l
W+ = KT x(e —1) dx (4

fTAE/T

where x = fiwk/kBT,

K = (4

3 “E 5 3
TN w (4)3 nb kBTN

 

4 4 2 2 2

and

3kBTN

” = 2JS(S+l)z (u

 

The relaxation time may then be found from Eq. (4.57)

giving

1 3 w
— = 2KT j

Tln TAE/T

For large values of T, the lower limit approaches

zero and the integral approaches a constant, n2/6. The

temperature dependence of T is then given by

ln

for T >> TAE'

x(eX-l)_ldx (4.

T «T3 (4.

.88)

.89)

.90)

91)

92)



V. EXPERIMENTAL RESULTS AND DISCUSSION

Rubidium Manganese Chloride di-hydrate (szMnClu-2H2O)

is a triclinic crystal with space group PI3u which be-

comes antiferromagnetically ordered below TN = 2.240K.35

The internal fields are of such magnitude that nuclear

magnetic resonance experiments can be readily performed

on four nuclei, Rb85, Rb87, 0135 and H1. We have

measured T the nuclear spin—lattice relaxation time,
ln’

as a function of temperature for these four nuclei in

the temperature range from l.6°K to O.45°K and in one

instance, for Rb87, to O.32°K. Table 5.1 shows the

frequencies (at l.lOK) of the lines studied, together

with the magnitude and type of the corresponding

36
internal magnetic fields. These lines were chosen

for detailed study because of their good signal to

noise ratios. Less extensive data on other lines

showed the same temperature dependence of Tln' All

measurements were made in zero external magnetic field,

using the standard pulse techniques discussed in

Chapter II.

Temperature Dependence of Tln

The results are shown in Figures 5.1 through 5.5,
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Table 5.1 Information on frequencies and magnetic

fields for resonance lines studied.

Magnitude of

Freq. at l.l°K Internal Field

Nucleus MHZ (Oersteds) Type

Rb87 3.89 1.879 dipolar

Rb85 3.22 1.879 dipolar

35 transferred

Cl 8'53 19.49 hyperfine

H1 18.1 u.296 dipolar
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where T n is plotted vs. T on log—log paper. Although
l

the electric quadrupole moments of 0135, Rb87 and Rb85

differ by a factor of four, the temperature dependence

of their relaxation times appears to be the same

(Fig. 5.5) and further, is the same as that for the

proton, which has no quadrupole moment. Therefore,

we will neglect the effects of the quadrupole interac—

tion, and, in the initial discussion of the results,

will consider only the Rb87 relaxation, for which

the data is the most extensive.

The theoretical expression for T1n derived in

Chapter IV for Raman relaxation resulted in T1n a T

for T >> TAE’ Similar calculations based on three-

magnon relaxation processes37 lead to Tln a T_5 for

T >> TAE' If relaxation occurred via one of these

processes, and if T were much greater than T

-3

AE’ a

graph of log T vs. log T would be a straight line of
In

slope -3 or -5. Evidence of such temperature depend—

38,39
ences above T does exist in other crystals.

AE

However, the data for Rb87 in Fig. 5.4 clearly cannot

be fit by a single straight line. This suggests that

we are studying a temperature range where magnon energy

gap effects are important.

The size of the energy gap in the magnon disper—

sion relation can be calculated from the value of the

experimentally determined critical field, Hc’ required

to produce the spin—flop phenomenon.“0 The calculation
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is based on the relation)-ll

k T = H = (2H H + H 2)1’2 (5 1)
B AE $40 0 g”o E A A ‘

where

guOHE = hwe gIIOHA = th (5.2)

An estimate of HE can be obtained from the approximate

relation

suOHE = kBTN (5.3)

. 42 .
Measurements by Casey, NagaraJan, and Spence 1n

RbZMnClu°2H2O show no critical field effects below

8.3 kgauss at 1.1°K, which sets a lower limit on Ho‘

Thus from (5.1) we have TAE Z l.lOK. Blatt, Butterworth

and Abeleu3 searched for critical field effects in the

same crystal using thermal detection methods. They

found no evidence of a spin—flop phase above about

1.2°K, though they did detect an antiferromagnetic-

paramagnetic phase transition at about 18 kgauss.

Although measurements at lower temperatures may detect

a spin—flop transition, an estimate of TAE based on

their existing data gives T = T

AE N'

Another estimate of TAE can be made by comparison

with MnCl2-4H2O, which exhibits a magnetization curve

very similar to that of Rb MnClu°2H 0. Figure 5.6
2 2

plots (M/MO) vs. (T/TN) for MnCl2-4H20uu and



 



4
%

(
M
/
M
o
)

m
a

'I
>

’0
1

'0
)

R
I

'0
0

L
o

I

Fi gr.

 
I: r
,1 . U .

PbpMnCl '2

‘ 2 4

If

. r")

/

(,

Magnetization

(3) .

0 U. I" V G 15 For H”CI '“
.......



 



76

RbZMnCluo2H20.245 The shape of the magnetization curve

is related to TA since the ratio of M(T) to M0 will
E

depend on the number of magnons present at temperature

46
T. In MnCl2 4H2O, TAE - .8TN,

~ 0

expect TAE — 1.8 K for Rb2

The three estimates of TAE cited above suggest that

there is a large energy gap in the magnon spectrum which

we therefore might

MnClu'2H2O.

supports our qualitative conclusions from the shape of

the curve in Fig. 5.4.

In order to compare the temperature dependence

 

of Tln with theory we must determine the relaxation

mechanism. As discussed in Chapter IV, the presence

of a large gap eliminates direct and three—magnon

processes, leaving the two magnon Raman process as the

dominant intrinsic relaxation mechanism. There is the

possibility that the relaxation is not intrinsic, but

occurs via a paramagnetic impurity. We believe, however,

that the measured Tln's are intrinsic for the following

reason. As the temperature is lowered, electron relaxa—

tion times, Tle’ of almost all measured ionsLl7

48
pr0portional to T_1 above 10K and in general T1n a TIe

where a is between 0.25 and 1. Therefore, if impurity

become

relaxation were dominant in our experiments, the steep

temperature dependence of T1n for Rb87 down to O.32°K

would not be observed.

The theoretical temperature dependence of T1n





77

for Raman relaxation in the small k approximation is,

from (4.88),

 

% = 2KT3f; /T x(eX—l)_ldx (5.4)

ln AE

where

6n“(5+1)“v2|p|2y 38
l N

K= 3 .353 (5.5)

TN 4w (3 )b kBTN

A least squares fit of the Rb87 data to (5.4) for

various values of TAE gave TAE = 2.36°K. The solid line

'in Fig. 5.4 represents the theoretical Tln for this

value of TAE' Similar fits to the other three nuclei

gave optimum T 's within ilO% of this value, as shown
AE

in Table 5.2. It is emphasized that the values of K

given in Table 5.2 were determined by fitting (5.4)

to the data, and were not evaluated from (5.5).

Calculated Values of T
 

In

A calculation of the order of magnitude of K in

the small k approximation involves estimates of the

parameters n, v, b and D in (5.5). It is easiest to

calculate K for the proton for two reasons. First,

the internal field at the proton site is largely deter—

mined by the nearest neighbor Mn ion which simplifies

the calculation of D. Second, the proton has no quad-

rupole moment, so that quadrupole effects do not in-

fluence the observed T and the free ion YN can be used
ln
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Table 5.2. Results of least squares fit to equation

(5.4) for the four nuclei studied

 

 

Nucleus Spin 2K(sec-l(°K)—3) TAE(°K)

Hl 1/2 1.96 x 103 2.15

0135 3/2 1.08 x 103 2.u7

Rb87 3/2 0.973 x 103 2.36

Rb85 5/2 0.133 x 103 2.04
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in the calculations. We calculate below a numerical

value for 2K for the proton site studied. In the molec-

ular field approximation n = 1, but in higher order

49
approximation it is a function of S, z and lattice

topology such that n varies between extremes of 0.68

and 0.86. Based on this we take n = 0.8. Following

50 51 %v2/3.

Neglecting the effect of all but the nearest neighbor

Van Kranendonk and Moriya we take b =

Mn ion, we find D to be 1.61 x 103erg(oe)"lcm_3 when

the internal field makes an angle of 10° to the magneti-

zation and have used r1 = 2.728.52 The Mn ground state

has S = 5/2, and YN for protons is 2.7 x 10)4 sec-loe-l.

These estimates give 2K = .037 x 103 sec-1(0K)—3. This

is too small by a factor of about 50, making the calcu-

lated T1n too long by the same factor.

There are two reasons why T determined by the
1n

small k approximation is too long. In discussing these

it will be useful to consider Eq. (4.83) which is

rewritten below

2 2
V v h k _ _

WI = ___H__ ifom f(k)ku(nkp+l)(nkp){|d3 2}dk (5.6)

28 p
kk',pI

First, we have assumed a linear spin wave theory in

which spin waves do not interact. If one considers

interacting magnons, it is found that it is easier

to create a magnon if there is already one present.

Taking this into account, a renormalization of the
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energy hm must be made,53 with the result that the number
k

of spin waves at a given temperature increases. This

in turn increases the transition probability and lowers

T
1n'

w

Second, the small k approximation with EA << 1

e

leads to an expression for wk such that for k 2 km,

the integrand in (5.6) is so small that extension of

the upper limit of integration from km to infinity does

not affect the value of the integral. However, for

appreciable anisotrOpy, this is not the case, for rea-

sons discussed below.

The following calculation of T is an attempt
1n

to remedy the defects in the small k approximation within

the framework of a linear spin wave theory. We start

from Eq. (5.6). It is necessary to obtain expressions

f(k), and c . First, approximate the disper-
k’ Yk k

sion curve by a straight line such that (Fig. 5.7)

for w

ak (T — T )
_ B N AE

‘fiwk - w k + kBTA (5.7)
 

Then

 

_ w

f(k) — akB(TN _ TAB) (5.8)

Second, notice that Yk defined by (4.22) has a maximum

carries the k dependence of Ckl and

|2 Taking

value of one. Yk

c which are needed in determining Id
k2 kkip

as TAE the value 1.8°K determined earlier by comparison
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with Mn012-4H2O, and using (5.1) through (5.3) we find

“A
E; z .4. Now Ckl’

and (4.30)

c and pk are defined by (4.29)
k2

_ pk ’Yk

ck1 ‘ (p 2 _ Y 2)g 0kg - 2 Y 2 g (5.9)

k k

  

(L) U.) 3,

= l + —£ + [(1 + 49-)2 — 2 2
w (I)

e e

0k (5.10)

Using (wA/we) = .4, we find that pk for Yk = 1 is less

than 20% smaller than pk for Yk = 0. Since we are

interested only in order of magnitude estimates, let

 

Yk = 0. Then ck2 = 0 and ck1 = l, and in the determina—

tion of dkk'p we will have only one term. The result is

9

that

2 _ 2 _ 2
ldkkgll — Di — D (5.11)

Eq. (5.6) then becomes

2 2
v y h k 4 x

N m k n .e 2
WI = —————— f D dk (5.12)

2“3 0 akB(TN — TA) (ex—1)2

where x = hwk/kBT. Changing variables from k to x gives

 

v2YN26w602 SITN/T 4 ex

W - T (x—x ) ——~———— dx (5.13)
3H2 6’ T /T g x 2

2w a kB(TN—TAE) AE (e —I)

This expression makes no restrictions on k, and it can

be shown that the integrand is far from negligible at

x = ——. At T = 10K, numerical integration of (5.13)
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gives WI 2 2 x 102sec_l, so T1n = 2.5 msec. The degree

of agreement with our measured value of 1.75 msec is

probably fortuitous, and the above calculation is meant

simply to indicate that large k magnons cannot be neg-

lected when the slope of the dispersion curve is small.

As a check on the validity of the temperature de-

pendence of (5.13), WI was calculated for T = .5°K.

The result was WI = 16.6 sec—1 which gave T1n 2 30 msec

again in close agreement with the experimental value

of 40 msec.
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A calculation of T for Rb and Rb85 is more

1n

difficult, because the internal field at the rubidium

site is not dominated by one Mn ion, as it was for H1,

but is determined by three or four neighboring Mn ions.5u

Any estimate of D would be more approximate than the

calculation of D for protons and no such estimate has

been made. However, since Rb85 and Rb87 occupy the same

crystallographic site, we can attempt to explain the

difference in the Tln values for the two nuclei. Neg-

lecting quadrupole effects, this difference arises from

the YNZ factor in Eq. (5.5). The nucleus with larger

YN (Rb87) will relax faster. Qualitatively this is seen

to be the case. To make a quantitative determination

of T it is necessary to determine an effective YN
In

for each isotope.

Relaxation at the C135 sites occurs through fluctua—

tions in the transferred hyperfine interaction,
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LHIS = I-é-S where A is the hyperfine tensor. Since

the internal field at the C135 sites is essentially paral—

lel to the magnetization direction, the (x, y, z) and

(x', y', z') coordinate systems are identical. The terms

in A which couple IX and Iy to fluctuations in S2 are

the anisotropic terms AXZ and Ayz' The Hamiltonian

which induces nuclear transitions from the excited

state to the ground state via two magnon Raman terms can

be obtained from

3115 = %(AXZ — iAyZ)cSSZI+ (5.1M)

using Eqs. (4.69) and (4.70). Taking the resultant

expression as the perturbation Hamiltonian in (4.62)

we can derive an expression for T1n based on the trans-

ferred hyperfine interaction. However, we have no ex—

perimental values for the terms AXZ and Ayz’ and so can-

not make a quantitative estimate of Tln for 0135.

Conclusions
 

The measurements of Tln vs. T in antiferromagnetic

Rb2MnClu'2H20 suggest the following qualitative conclu—

sions. First, the relaxation occurs via a two magnon

Raman relaxation mechanism and is not due to impurity

relaxation processes. Second, there is evidence that

T is being affected by a large energy gap k T in
ln B AE

the magnon spectrum since the plot of log Tln vs. log T
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is not a straight line, and a large energy gap does

indeed introduce an exponential dependence in the the-

oretical expression for T Third, since the qualita-
1n

tive temperature dependence of T is the same for quad-
1n

rupolar and non-quadrupolar nuclei, the effect of the

quadrupole moment on the temperature dependence of T1n

is not critical. Finally, it has been shown that when

the dispersion curve is relatively flat, the effect of

high k magnons is important.

Several areas of interest are open for further

experiment. Measurements of T for nuclei in an antifer-
1n

romagnet where “A << we would allow better comparison

with theory. Preliminary measurements of proton Tl's

 

in CsMnCl3-2H20, which might satisfy this requirement,

indicate T a T-4.5. No attempt has yet been made to
1n

35
measure Cl relaxation rates in this crystal.

Because values of HA and TAB are well known for

MnCl2'4H2O, measurements of Tln for H1 and C135 in this

crystal would permit a more accurate check on the

theoretical expressions for T and would help in the
1n

interpretation of data in Rb2Mn01u°2H20.

 



 

REFERENCES

86



IO.

ll.

l2.

13.

14.

15.

16.

17.

REFERENCES

G. E. G. Hardeman, N. J. Poulis, and W. Van der Lugt,

Physica XXII, 48 (1956).

J. Van Kranendonk and M. Bloom, Physica XXII, 545

(1956)-

P. W. Anderson, Phys. Rev. 86, 694 (1952).

T. Moriya, Progr. Theoret. Phys. (Kyoto) 16, 23 (1956).

C. P. Slichter, Principles of Magnetic Resonance

(Harper and Row, New York, 1963), p. 2.

Ibid., p. 15.

A. Abragam, The Principles of Nuclear Magnetism

(Oxford: Clarendon Press, 1961), p. 2.

T. P. Das and E. L. Hahn, Solid State Physics

(F. Seitz and D. Turnbull, eds., Academic Press,

New York, 1958), Supplement 1, p. 5.

 

A. Abragam, op. cit., p. 44.

J. Van Kranendonk and M. Bloom, op. cit., p. 546.

Ibid., p. 547.

Ibid., p. 546.

E. L. Hahn, Phys. Rev. 80, 580 (1950).

H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630

(1954).

I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46

(1957).

C. P. Slichter, 0p. cit., p. 20.

A. Narath, Hyperfine Interactions (A. Freeman and

R. Frankel, eds., Academic Press, Inc., New York,

 

1967), po 297.

87

Inc.
3

 





18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

88

A. Abragam, 0p. cit., p. 157.

J. A. Cowen, R. D. Spence, H. VanTill, and H. Wein—

stock, Rev. Sci. Instr. 36, 914 (1964).

The susceptibility coils were a smaller version of

those described by H. VanTill, Ph.D. Thesis, Michi-

gan State University (1965), Chapter I.

Lancaster, Popular Electronics, (Sept., 1965),

60.

 

D

p

J. J. Skopas, Rev. Sci. Instr. 36, 1436 (1965).

A Narath, op. cit., p. 300.

V. Jaccarino, Magnetism (G. T. Rado and H. Suhl,

eds., Academic Press, Inc., New York, 1963), Vol.

IIA, p. 316.

 

Ibid., p. 348.

J. Van Kranendonk and J. H. Van Vleck, Revs. Mod.

Phys. 36, 1 (1958).

C. Kittel, Quantum Theory of Solids (John Wiley and

Sons, Inc., New York, 1963), p. 58.

 

Idem.

T. Holstein and H. Primakoff, Phys. Rev. 66, 1098

(1940).

C. Kittel, op. cit., p. 51.

D. C. Mattis, The Theory of Magnetism (Harper and

Row, New York, 1965), p. 153.

 

A. Narath, Op. cit., p. 325.

L. I. Schiff, Quantum Mechanics (McGraw Hill Book

Company, Inc., New York, Second Edition, 1955),

P- 199.

S. J. Jensen, Acta Chem. Scand. 16, 2085 (1964).

 

H. Forstat, N. D. Love, and J. N. McElearney, private

communication.

J. A. Casey, Ph.D. Thesis, Michigan State University

(1967).

 





37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

89

L. B. Welsh, Ph.D. Thesis, University of California,

Berkeley, (1966).

Idem.

N. Kaplan, R. Louden, V. Jaccarino, H. J. Guggen-

heim, D. Beeman, and P. A. Pincus, Phys. Rev.

Letters, 11, 357 (1966).

A. H. Morrish, The Physical Principles of Magnetism

(John Wiley and Sons, Inc., New York, 1965), p. 475.

Ibid., p. 616.

J. A. Casey, op. cit.

J. Butterworth, private communication.

R. D. Spence and V. Nagarajan, Phys. Rev. 149, 191

(1966).

R. D. Spence, private communication.

J. Rives, private communication.

C. D. Jeffries, Dynamic Nuclear Orientation (J. Wiley

and Sons, Inc., New York, 1963), chapter 3.

 

Ibid., p. 77.

J. Van Kranendonk and M. Bloom, Physica 22, 555

(1966).

Ibid., p. 557.

T. Moriya, op. cit., p. 29.

J. A. Casey, private communication.

V. Jaccarino, Magnetism (G. J. Rado and H. Suhl,

eds., Academic Press, Inc., New York, 1963), Vol.

IIA, p. 325.

 

R. D. Spence, private communication.

 



 

APPENDICES

9O



 

APPENDIX A

DETECTION OF FREE INDUCTION DECAY

AND SPIN ECHO SIGNALS
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4

Consider a cylindrical receiver coil of circular

cross-section with diameter d, having n turns, oriented

with its axis in the x—y plane, say along the y-axis.

The coil is connected in parallel to a tunable capac—

itor C (see Fig. 3.10). Assume that a 90° pulse of
t

Hl has just been applied so that M, the magnetization

originally in the z—direction, is now precessing in

the x-y plane as shown in Fig. 2.10. Assume further

that the phase of the precession is such that

My = M COS (DLt (14.1)

where wL is the Larmor precession frequency. The mag—

netic induction By accompanying My is

By = 41rMy = 4NM cos th (A.2)

The magnetic flux through the coil is then

2

¢ = ByAeffeCtive = (4NM cos th);1%— n (A.3)

Where ;, called the "filling factor" denotes the frac-

tion of coil volume which is occupied by the sample.

Letting K = w2d2nc, and using Faraday's law, the in—

duced emf is given by

_ —d¢ = ~ '
e — Ed? KmL M Sin th (A.4)

If Ct is tuned so that the tank circuit has a resonance

frequency w the voltage across the coil is given by
L,

92
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= = ' = ' 'V Qe QKwL M s1n th (A ) Sin mLt (A.5)

Lc011 mL

where Q = "REEII—— . This is an rf voltage of frequency

wL. Note that A' is proportional to the filling factor

C and to M, the magnitude of the z-component of magneti-

zation just before the 90° pulse. As discussed in

Chapter II, this voltage decays to zero because the

individual moments, which make up M, get out of phase.
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Consider a system of spin 1/2 nuclei in a magnetic

field H along the z-axis. Let N+ be the number of nuclei

in the state m +g and let N_ be the number of nuclei

in the state m —%. Then N, the total number of spins

is given by

N=N +N (3.1)

Define n by

n = N — N (B.2)

The nuclear magnetization M is therefore proportional to

n. Now

+ _

_ _ + _ dN
t —NW+-NW+————dt (B-3)

d 2 I
Q

where W+ denotes the probability per second that the

coupling which produces spin—lattice relaxation will

induce a transition upward in energy. Similarly W

denotes the probability per second that the coupling

will induce a downward transition. At thermal equili-

brium, with dN+/dt = O, we get using (B.3)

(B.4)

7:
12
:

l

2
1
2

+
-
+

where W+ and W+ are not equal because of the coupling

between the nuclear spins and the lattice. Now from

(B.1) and (B.2),

Z

II

(1/2)(N + n)

(13.5)

N = (1/2)(N — n)

95  
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Using (B.2), (B.4) and (B.5) we can derive an expression

for the population difference at thermal equilibrium.

This is

_ w+-w+

no ‘ N[W] (3'6)

using (B.3) and (B.5) we find

9% = N(w+_w+) — n(W++W+) (B.7)

and using (B.6)

9% = (no-n)(W++W+) (B 8)

The solution of this equation is

n = no _ ce-(W++W+)t
(B.9)

where c is determined by the initial conditions. Thus

the approach to equilibrium is exponential with a char-

acteristic time

 

Tln = w+iw+ (3'10)

From Eq. (1.5) and (B.4)

35.3. = .YhH/kBT (3.11)

We generally consider temperatures such that kBT >> th,

so that W+ 2 W+. Therefore we can write

T = —l— (3.12)
1n 2 +
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without much error.

Recall that MZ is proportional to n. Therefore

—t/Tln

= _ I

MZ MO C e (B.l3)

Applying (B.l3) to the situation depicted in Fig. 2—1C,

where M has been rotated 900 about H1 and now lies in

the x-y plane, we have

—t/T1n

M = M (1-e
z o

) (13.14)

Since when t = O, MZ = O and from (B.l3), c' = Mo'
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The density of magnon states p(Ed) is derived as

follows. Let p(Ed)dE be the number of states in energy

range dB at E for kO in solid angle d9. This is the same

as the number of states in range dk at kO for kO in dB,

which we represent by C(ko)dko. So

3k

p(Ed)dE = C(k0)dkO = C(ko)[§E]kodE (C,1)

Now

C(k )dk = ~y—k 2 sin e dodedk (c 2)
O O 8W3 0 O O

so

= _v_ 2
C(ko) 81T3kO dQ (C.3)

Therefore

p(Ed)dE = —y—f(k p )k 2dQ (C 4)
8n3 —o’ o 0 °

where

aEk —l

17(5)!” " W2 (0.5)
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APPENDIX D

LIST OF DATA FOR T VS. T
1n

FOR H1, C135, R685, AND R687

100



 



1

 

 

DATA FOR H

T(°K) Tl (sec) Date T(°K) Tl (sec) Date

1.286 3.65x10'“ 5/12/67 0.550 3.20x10‘2 5/13/67

1.285 3.90x10‘“ " 0.550 2.95x10’2 "

1.170 5.80x10‘“ " 0.550 3.10::10'2 "

1.170 6.40x10'“ " 0 550 3.00x10‘2 "

1.010 9.60x10‘Ll " 0.520 3.65x10‘2 "

1.010 1.13x10'3 " 0.520 4.00x10'2 "

0.835 2.85x10‘3 " 0.500 . 4.00x10'2 "

0.835 3.10x10‘3 "

0.835 3.50x10‘3 " 5

0.765 4.30x10’3 "

0.765 4.80x10’3 "

0.680 1.08x10'2 "

0.680 1.07x10’2 "

1.225 5.35x10‘“ 5/13/67

1.100 9.80x10‘” "

1.110 8.00x10‘” "

0.725 8.30x10'3 "

0.725 7.00x10‘3 "

0.725 7.10).:10’3 "

0.600 1.92x10'2 "

0.590 2.00x10'2 "

2 H
0.550 2.80x10‘
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DATA FOR 0135
 

 

T(°K) T1 (sec) Date. T(°K) Ti (Sec) Date

1.280 1.05x10‘3 2/ 6/67 0.885 5.70x10'3 2/10/67

1 280 8 50x10‘“ " 0 790 9.20X10-3 H

1.010 3.20x10‘3 " 0 780 1.50x10'2 n

1 001 3.40x10‘3 " 0.768 1.40x10‘2 4

0.865 6.40x10‘3 " 0 750 1.50x10‘2 "

0.845 7.20x10‘3 " 0,727 2.00x10‘2 H

0.705 2.00x10-2 " 0,707 2.10x10_2 H

0.700 1.80'x10'2 " 0.668 2.50x10’2 "

0.637 2.60x10'2 " 0.617 4 10X10-2 H

0.645 2.60x10‘2 " 0.617 0,50x10-2 H

0.600 3 40x10“2 " 0,585 5.40x10“2 H

0.605 3.40x10’2 " 0,501 1.08x10‘1 u

0 550 5 70x10‘2 " 0.550 9.00x10‘2 4

0.550 6 00x10-2 " 0,502 2.00x10_1 H

0.503 1.80x10-l " 0,502 2.00x10—l H

1.140 1.40x10“3 2/10/67

1.140 1.35x10'3 "

1.055 2.20x10‘3 "

1.055 2.20x10‘3 H

0.980 3.38x10'3 "

0.980 3.30x10‘3 4

0.885 5.20x10‘3 "

0.885 6.00x10'3 "

0.885 5.00x10"3 "
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T(°K)

1.042

0.992

0.973

0.934

0.933

0.879

0.879

0.887

0.806

0.806

0.764

0.764

0.730

0.730

0.680

0.680

0.640

0.610

0.610

0.616

0.585

0.555

0.525

0.503

0.503

T1

1.

2

1.

C
D
N
O
\
O
\
J
‘
:
J
Z
'
L
U
U
O

(sec)

53x10-

.l7x10-

82x10-

.20x10-

.50x10"

.4OX10-

.80x10-

.50x10-

.4OX10—

.80x10_

.20x10_

.50x10—

.50x10_

.40x10-

.l6x10_

.22x10_

.65x10_

.75x10_

.10x10-

.90x10_

.72x10_

.30x10—

.30x10-

.3OX10—

.70X10—

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

l .

1

1

1

1

1

1

1

DATA FOR Rb
85
 

Date

3/10/67

7'

H

H

T(°K)

0.492

0.473
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T1 (sec)

7.85x10_

1.00x10+

1

0

Date

3/10/67

1!

 



 



T(°K)

1.317

1.317

1.317

1.224

1.224

0.842

0.912

0.912

0.724

0.707

0.572

0.538

0.532

1.030

1.030

1.030

1.030

0.975

0.975

0.975

0.920

0.920

0.881

0.881

T1

w
k
)

C
»

.
t

H
+
4

.
D

\
m

~
J

+
4

H
«
0

c
m

-
<

l
\
)

G
C
D
W
K
I
'
I
W
U
O
U
O
U
U
U
U

.80x10_

.80x10—

.40x10—

.80X10-

.95x10‘

.40x10-

.80x10-

.20x10—

(sec)

4

4

4

.14x10'3

.02x10"3

.20x10—3

.00x10‘3

.80x10'3

2

2

2

2

2

.80x10”3

.20x10“3

.00x10‘3

.05x10‘3

.10x10‘3

.20x10‘3

.40x10"3

.60x10‘3

.40x10’3

.50x10'3

.00x10'3

DATA F0RRb87
 

Date

5/05/67

3/07/67

H

T(

104

OK)

.800

.787

.787

.738

.727

.646

.617

.577

.587

.552

.550

.517

.509

.488

.450

.432

.296

.320

.497

.220

.258

.258

.258

.258

T

.00x10-

.06x10-

.08x10-

.30x10_

.76x10-

.60x10_

.30X10-

.70x10_

.20x10‘

.00x10-

.OOX10—

.23X10_

.23X10-

.70x10_

.60x10—

.20X10-

.40x10-

.70x10—

.00x10—

.04x10—

(sec)

.
t

.
2

t
-

H

.07x10‘3

.10x10'3

.03x10“3

.07x10'3

Date

3/07/67

H

  



 



T(°K)

1.286

1.210

1.596

0.035

0.032

T (sec)

9

1

.00x10
4

1.42x10‘3

4

2

0

.00x10

.70x10

.50x10

0

0

4

DATA FOR R087
 

Date

4/28/67

4/05/67

6/14/67

H
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