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ABSTRACT
CONTRIBUTIONS TO THE THEORY

OF RESTRICTED
POLYNOMIAL AND RATIONAL APPROXIMATION

By

Kathleen Ann Taylor

In Chapter I we consider the problem of approximating
functions continuous on a compact metric space S by elements
of a linear subspace V of C(S) in the following manner:

1. J, K, and L are compact subsets of S.

2. Two prescribed functions { and pu are given
and are assumed to be continuous on L and J respectively.

3. We allow as approximants the subset V1 of V
whose elements v are such that v(x) < u(x) for all x € J
and v(x) 2 £ (x) for all x € L.

4. For a given f € C(S), a best approximation

v, € V1 will be such that

max |v_(x) - £&)| = min {max |[v(x) - £0)|].
x€K v€V1 x€K

The existence of best approximations follows from
the usual compactness arguments. For functions f € C(S)
such that f(x) < £(x) for all x € L and p(x) 2 f£(x)
for all x € J, best approximations can be characterized
in terms of a linear functional based on the set of critical

points. There is a unique best approximation for each such
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f if and only if V is a Haar subspace. A Remes-type
algorithm is given to construct such best approximations.

We let V be a set of rational functions in Chapter
I1 and consider the same problem. If we properly restrict
the functions { and yu and the sets L and J we obtain
existence theorems, and for suitable f's we again characterize
best approximations in terms of a linear functional based on
the set of critical points. 1In special situations we have
uniqueness of the best approximation.

An expository presentation of the doctoral thesis of
Karl-Heinz Hoffmann is included (Chapter III) because it pre-
sents a very general theory of restricted approximations.

The relationship of his work to the results presented here is

discussed.
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INTRODUCTION

This paper will consider the approximation of func-
tions in a normed linear space by functions from some subset
of that space. Let C(S) be the linear space of continuous
real-valued functions on a space S normed with the uniform
norm. Let V be a subspace of C(S) and v, @ subset of
V whose elements satisfy certain prescribed conditions. We
shall examine questions of existence, characterization,
uniqueness, and computation of a best uniform approximation
to a given function f in C(S) by elements of Vl-

The problems considered in Chapters I and II are a
combined generalization of work done by P.J. Laurent [13]
and G.D. Taylor [21], [22], (23], [24].

In the paper by Laurent, S is the union of two compact
spaces K and L and V 1is a finite dimensional subspace of
C(S). For a fixed f € C(S), v, is the subset of V whose
elements are less than or equal to f on L. 1In this setting,
Laurent considers the problem of approximating f by elements
of V1 where the error in the approximation of f by v € V1
is defined to be the maximum of |£(x) - v(x)| on K.

In the work by Taylor, S is a compact subset of the

real line and V 1is a finite dimensional Haar subspace (the

definition of a Haar subspace will be given later) of C(S).



For two fixed extended real-valued functions { and
defined on S, V1 is the subset of V whose elements are
less than or equal to u and greater than or equal to ¢

on S. The error in approximating a given f € C(S) by

v €V, is defined to be the maximum of |f£x) - vix)| on s.

This paper will consider S to be the union of three
compact spaces J, K, and L, and V a finite dimensional
subspace of C(S); £ and , will be fixed real-valued
functions with { continuous on L and  continuous on
J. V1 will consist of elements of V which are greater
than or equal to £ on L and less than or equal to u on
J. For a function f € C(S), the error in approximation by
v € V1 will be defined to be maximum |f(x) - v(x)\ on K.
In Chapter I we shall assume {(x) < u(x) for all
x € J N L; in Chapter 11 we shall consider what happens when
L(xj) = p(xj) for j =1,...,n. The set V may be gen-
eralized polynomials or rational functions.

Chapter III is an expository presentation of the work
of K.H. Hoffmann [7] on non-linear Chebyshev approximation
with side conditions. Some remarks are made concerning the
application of Hoffmann's work to the problems considered in
Chapters I and II. Also some additional comments are made

concerning his uniqueness results.



CHAPTER I
CHEBYSHEV APPROXIMATION WITH GENERALIZED

POLYNOMIALS HAVING RESTRICTED RANGES:
INEQUALITY CASE

Section 1: Basic Definitions and Existence Theorem.

Let J, K, L be three (not necessarily disjoint)
compact subsets of a metric space and let S =J J KU L,
and assume K contains at least n points. By C(S) we
shall mean the space of continuous real-valued functions f
with the topology induced by the Chebyshev or uniform norm

H-“m, i.e. for f € C(S)
el = max G0
x€S

We shall denote by H-HK the seminorm on S as follows:
for f € C(S)
HfHK = max |£(x)]|.
x€K
Let WiseeosW be linearly independent elements of
C(S) and let V be the subspace of C(S) generated by
W.s...,Ww . Let 4 and be real-valued functions continuous
1 n b

on L and J respectively. In this chapter, we shall assume
L(x) <u(x) for all x € J N L.

Let V1 be the subset of V consisting of those

elements bounded above by u at each point of J and below



by 4 at each point of L, i.e.

v, = {v € V: v(x) < u(x) for all x € J and

v(x) 2 £(x) for all x € L}.

We shall assume V1 is non-empty. For a given real-

valued function f on S, we wish to find an element of V1
which is closest to f in the sense of minimizing the semi-

norm H-HK. That is, we want v €V, such that

*
e = V¥l = inf £ - vl = 0
vev
1
*
If such a v exists, it will be called a best restricted
approximation to f on K.

In the work done by G.D. Taylor [23] concerning approx-
imation by functions with restricted ranges on a compact sub-
set X of the real interval [a,b], the functions { and y
were assumed to be extended real-valued functions with the
following restrictions:

(i) 4 may assume the value -o, but not +w.

(ii) p may assume the value <w, but not -e.

(iii) X_°° = {x: L(x) = -»} and X+n° = {x: p(x) = 4w}
are open subsets of X.
(iv) 4 1is continuous on X . X and . is continuous
-

on X . X+°.
In the present setting, no generality is lost by assuming that
4 and | are continuous on L and J respectively. Indeed
let 4 and | be extended real-valued functions defined on L

and J, respectively, satisfying the above conditions; define
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L'=L.X and J'=J _.X . Then ¢ and , are con-
- +e

tinuous on the compact sets L' and J'. It is clear that

the subset V1 corresponding to { and p on L and J

is the same as Vi corresponding to {4 and p on L' and

J'. For convenience of notation we let L =1L' and J =J'.

Theorem 1.1: (Existence) Let f € C(S) be given. Then a
best restricted approximation to f on K exists.
Proof: Let v €V,. Then £ - VHK =p,2p- If w is any

element of v, such that |v - wHK > 2p1, then

e - wlly = v = wll, - € - vl >0, = o

Therefore we need only consider approximation by elements of

the set B where
B={wevy;: |v- w”K < 2p,}.

That is, p = inf ||f - w|lg - But B is a closed, bounded sub-
weEB

set of a finite dimensional normed linear space and therefore

compact. Since the seminorm H.HK is a continuous function

on B, the infimum is attained and a best restricted approx-

imation exists. |

Section 2: Kolmogorov-type Characterization Theorem.

In the classical problem of Chebyshev approximation
of a continuous function f on a compact set X by elements
*

of a linear subspace V of C(X), the best approximation v

is characterized by properties of the set of extreme points,

i.e. the set



E = {x € X: ‘f(x) - v*(x)\ = ||f - V*Hm}.

In 1948, Kolmogorov [12] proved that v* € V was a best
approximation to f if and only if

min (£(x) - v (x))v(x) < O

x€E
for all v € V. By altering the set E, G.D. Taylor [21]
characterized the best approximation to f in the case of
restricted approximation on a compact set. And P.J. Laurent
(13) was also able to characterize one-sided approximation on
two compact sets by this property. We show that similar
modifications in the set E make possible a characterization
of the best restricted approximation considered here.

For any v € Vl’ define the function e, € C(S) by
ev(x) = f(x) - v(x) for all x € S.

Now define the following sets of critical points for

=1
L}

~
x

€Kk e, () = |le i}
E, = {x € K: e (x) =-|le,|[;}-
G, = {x € L: v(x) =(xx)}.
G, =fx €J: v(x) =unx].

T S U , _
Let E,=E UE, and G, =G, UG . Using D, =E UG,

@8 our new set of '"critical points', we can obtain the follow-

ing Kolmogorov-type theorem.
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* *
Theorem 1.2: Let f € C(S) ~ V1 and v ¢ Vi Then v is
not a best restricted approximation to f if there exists a

function v € V such that

v(x) >0 for all x €E, UG,

v v

and

v(x) < 0 for all x €E L UG ,.
v v

Now suppose there exists a v, €V with
vo(x) > 4(x) for all x € L
and
vo(x) < w(x) for all x € J,
then the converse is also true.
Proof: If such a v exists, we shall show that there is a

*
positive number § such that v + §v is a better restricted

approximation to f. Let |lv|| =M. For x € E ,,

v
\f(x) - v*(x)\ = ||f - V*HK.
*
f -v
Let 60 = K—ZM—\E and define the sets
*
f-v
O1 ={x€S: f(x) - v*(x) > 1\__2_\\1( and v(x) > 0},
\ =N
O2 ={x €S: f(x) -v (x) < - —3— and v(x) < 0}.

For 6550 and yeol,

0 f(y) - @ +6v) () = £0) = v (3) - 6v(y) < £V |-



Similarly, for § < 60 and y € O2

-||£ - v*\\ <E@) -V (y) - V() = £E() - (v +8v)(y) < O.
K

Now O = O1 U 02 is an open set and E , € 0. Thus K . O
v

is compact and there is a number €y > 0 such that for

y €K .0,

l£6) - v | < )f - v - e

€

I1f we choose 1, then for § < § and y €K ~ 0

51 T 2m

1
€
lE®) - v ) = v < [|E - vl - e + 5 < (IE - V-
€
So for § < Eﬁ ’

£ - " + oV < I - vl

It remains to be shown that § can be chosen so that
*
v + 8v € Vl'
+ +
For x € G % v(x) > 0. By the compactness of G w2
v v

there is an open set U containing G+; such that for y € U
v

v(y) >0,

and
V() + 8v(y) 2 4(y) + 6v(y) > 4(y)-

Since L ~ U is again compact, there is a number €y

such that for y € L .~ U,

V') 2 L) +e,



€

2
Then for § < ™ and y €L .U,

* €y
v (y) tov(y) 2L@y) +57>20).

€

Thus for y € L, § < E% implies

&+ V) () > L(y).

For x € G-*, v(x) < 0. By the compactness of G-*,
v v
there is an open set W containing G-* such that for y € W,
v

v(y) < 0,

and

Vi) +6v(y) < w(y) + V() < p(y).

Since J ~ W 1is again compact, there is a number >0

€3
such that for y € J - W,

*
vV () su@) - eg-

€

3
So for § <« ™M and y € J . W,

* €3
vy +v(y) su@) - T <up@B).

By choosing § such that
6 < min {€1’€2)€3}/2M’

*
we obtain v + §v € Vl’ a better restricted approximation
to f.
*
Conversely, if v is not the best restricted approx-

imation, let w be a better approximation, i.e.
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£ - wlig < IE = vlge

Then for x € E ,
v

|f@x) - v*(x)\ = ||f - v*nK >\ -l 2 [£60) - we)|.

Thus

sgn W(x) - v (X)) = sgn [£(x) - v (x) - (£(x)

w(x))]

= sgn [£(x) - V" (x)]

*
and |w(x) - v (x)| 2d >0 for some d and all x €E _.

v
Consider
W) = T W0 + v ()).
* d
Let Hv - vo\\°° =M. For M#0 and 0 < § < Eﬁ’
Wx) - v (x) = I%E W) - v x) + i%E W, @) -V x)

is such that

*
w (x) - v*(x) >0 for x € E+;
v

and

* * -
w (x) v x)<0 for x € E %
v

For x € G+;, v*(x) =2(x). So

v

w(x) - v*(x) 2 0 and vo(x) - v*(x) > 0.
Thus w*(x) - v*(x) > 0.

For x € G-*, v*(x) = (). So
v
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* *
wx) - v (x) <0 and vo(x) -v (x) <O.

* * * *
Thus w (x) - v (x) <0, and w (x) - v (x) € V is the
desired function wv.
* +
If M=|v -v | =o0,¢ %« =G 4 =¢ and we have
v
shown
* +
wx) - v (x) >0 for x €E *
v

w(x) - v*(x) <0 for x € E-*.
v

*
So the function w(x) - v (x) € V satisfies the theorem. [}

Remark 1: The extra hypothesis on V required for the con-
verse of this theorem will be discussed in the next section.

+ + - - .
Remark 2: If (E 4,UG )N (E ,UG,) #¢ for a particular

Y v v v
fec) and v ¢ Vs then the v of Theorem 1.2 cannot

*

exist and v must be a best restricted approximation to f
even if the extra hypothesis is not satisfied by V. The con-
clusions drawn here are the same as those drawn by G.D. Taylor
23] and are included here for completeness.

+ - *
1. 1f EL,NE . #¢, then f -v =0 on K. This

v v
can occur even if f#v on S.

2. 1f E+; NG, # ¢, then for some x € KN J,
v v

f(x) - v*(x) = Hf - V*HK
and

Vi) = a®).
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To get closer to f at this point, we would have to have
*
vo(x) > w(x) thus removing v, from Vl. So v must be

a best restricted approximation.

3. If E N G+; # ¢, then for some x € KN L,
v v

F(x) - v (x) = -||f - V*HK
and

*
x (x) = L(x).

Again, to choose v, €V closer to f, vo(x) < L (x) which
*

would mean v, ¢ V). Thus v is a best approximation.

4. Let C(S) = {f € C(S): f(xx) 2 2(x) for all

x €L, f(x) su(x) for all x € J, and »p

m

inf ||f - v||, > 0.
- vevy
Then for £ € C(S) and any v € Vl,

+ 4+ - -
@, UG N (€, UG =

Section 3: Uniqueness and Related Results.

In this section we shall use Theorem 1.2 to obtain
characterization and alternation theorems which will be
important in constructing an algorithm to determine the best
restricted approximation. Laurent, in his one-sided approx-
imation problem, assumed that the set Vi contained an element
strictly less than the f to be approximated. This enabled
him to characterize the best approximation by means of a linear
functional on C(S) based on the critical points of the error
function with at least one of these points a maximum point for

the absolute value of the error curve. We shall make a similar
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assumption here in condition H and show that this assumption

is satisfied in the special case that V 1is a Haar subspace.

Condition H: We shall say V satisfies condition H provided

there is a v € V1 such that

v(x) < ux) for all x €J
and

v(x) > LX) for all x € L.

We can now characterize the best restricted approx-

*
imation v to f from v1 when V1 satisfies condition

H and (E+; (] G+;) N (E-* U G-*) = ¢ by means of a continuous
v v v v,
linear functional L in C(S) whose null space contains V.

Theorem 1.3: Let V satisfy condition H. Then a necessary

and sufficient condition for v* € V1 to be a best restricted

approximation to f € C(S) is that there exist k (< n+l)
critical points

X sXgse oo Xy in Dv*

such that {xl,xz,...,xk] n Ev* # ¢, and a linear functional
L defined by
k
Lth) = £ kih(x.):
i=1 '

such that L wvanishes on V and
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*
Proof: (Sufficiency) Suppose v satisfies the hypotheses
and that w € V1 is a better restricted approximation to f.

Then

e - wlly < YE - vl s

*
and v=w -v €V is such that

+
v(xi) >0 for x €E (xi > 0),

v(xi) <0 for x, €E * (xi < 0),

v

v(x;) S0 for x; €G 4 (; <0),
v
+

v(xi) 20 for X, € Gv* (ki > 0).

Since at least one X, € E , by hypothesis, L(v) > 0. This
v

is a contradiction to L vanishing on V, so v* is a best
restricted approximation.

(Necessity) Let {wl,...,wn} be a basis for V.
Let v* € V1 be a best restricted approximation to f with

corresponding set D ,. Denote by T the set
v

= {(zl,...,zn) € R" : z, = wi(x) for x €E L, UG

n - -
U {(zl,...,zn) €R z, = -wi(x) for x € Ev* U GV*}.

If 0 € R™ is not in co (') (the convex hull of T), by

the theorem on linear inequalities [3 , p. 19], there exists
n
- a point (c,s-ee5C ) € R" such that ¥ c,z, >0 for all
1 n i=1 i'i
(zl,...,zn) € '« But then the function v € V defined by

n
¥ c,w,(x) = v(x) 1is such that
= 11
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vx) >0 for x€E,
v

v(x) <0 for x €E
v

+
UG*’
v

UG -
v

*
This contradicts the fact that v is a best restricted
approximation (see Theorem 1.2). So ) € Rn must be in
co (). Then by the theorem of Caratheodory [3 , p. 17] we

can find k (< n+l) points =z in T, and k positive

l’lOO,Zk
real numbers 815000585 such that
k

0= T a.z,
i=1 *

and

1‘280
i=1 i

Since z; = i(wl(xi),wz(xi),...,wn(xi)) '‘we have

k
0= % aieiwj(xi) for j =1,...,n,
i=1
with
, + +
+1 if X, €EE UG *?
v v
e =

-1 if x, €E,L UG ,.

v v
Set ki = aiei and
k
= h .
L®) = E A&

L 1is a linear functional on C(S) vanishing on V. We

must show that at least one of the xi's is in E _. Suppose
v
not: then for each v € V we have that
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- for all x, € G
v(xi) L(xi) or a X v*

and

v(x;) =p(x;) for all x; € G 4
v

+
Indeed, if there is X, € G , for which
v

V) > LG =V ),

then Wx,) - v*(xi))xi >0

*
implying L(v - v ) > 0 which is a contradiction. So at
least one x, must be in E ,. |

v

The proof of the sufficiency did not require that

(E+; U G+;) n (E-* U G-*) = ¢. This condition is required
v v v v

for the proof of the necessity as shown by the following

example:

Example 1.1: Let f(x) =1 - x2 on the real interval [-1,1].
We wish to approximate f by polynomials of degree at most two
which are less than or equal to O = p(x) and greater than or

equal to -1 =g(x) on [-1,1].

- X




B
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Then one best restricted approximation to f is

*
v x) = - % x2.

+ -
The corresponding set D _ = {0} =E , =G _. A non-zero
v %V v 2
functional L cannot exist for v since {1, x, x'} is
a basis for V and if L(h) = \h(0) is to vanish on V, we

must have
L(1) = )\ = 0.

An n-dimensional subspace V < C(S) 1is called a Haar

subspace if every non-zero element of V has at most n-1 zeros.

Remark 1: 1In the previous theorem, if V is a Haar subspace,
k

then k = n+l. Since if k< n+l and I liwj
i=1

j=1,...,n, then, if k < n, adding points X1’ 0¥y

S all different from XyseeesXy and setting the corresponding

(xi) = 0 for

from

Xigos

n

iElxiwj(xi) =0 for j=1,...,n,

That is, det (wj(xi)) = 0 so there exist real numbers

31,...,3n, not all zero, such that

n
T Biwi(xj) =0 for j=1,...,n.
i=1
n
But then the function v(x) = £ Biwi(x) €V has n zeros,
i=1

which contradicts the Haar condition since v # 0. So

k = n+l.
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Tne

the

B



18

Remark 2: If S 1is a compact subset of the real line, V is

a Haar subspace of dimension n on a closed interval [a,b]
properly containing S, and V, contains at least two distinct
elements, then V satisfies condition H.

Proof: let v;(x) and v,(x) €V, with v, #v,. If either
vy or v, satisfies condition H, we are done. Suppose not.
Let v, = (v1 +v2)/2, v, € Vl. If x € G; = {x € J: vo(x) =

o
" (x)}, then

vl(x) = vz(x) = ().

+
Similarly, if x ¢ G, = {x € L: vo(x) = L (x)}, then
o

v,x) = "2(") =L(x).

So v  must meet and 4 at most n-1 times since V

is a Haar subspace and vV, - Vo can have at most n-1 =zeros.

If JA L =g, construct v € V such that for some § > 0,
+5 for x € G: ’

)
vix) =

-8 for X € G .
Vo

Then there is an open set U containing G: on which v(x)
o
is positive. L ~ U compact implies there is an €1 > 0 such

that

vo(x) - L(x) 2 €y for all x € L . U.

e
Thus for T]<E‘-‘-‘]-"“— ’
-]

vo(x) + Mv(x) >4(x) for all x € L.
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Also there is an open set W containing G; on which v(x)
o
is negative. J . W compact implies there is an €, > 0 such

that

p(x) - vo(X) z e, for all x € J . W.

€2

Thus for T > W ’
@

vo(x) + M) < u(x) for all x € J.

Then ﬁ < min {61’62}/2nvug’ implies vo(x) + Tv(x) € V1

and does not intersect either 4 (x) or u(x).

If JN L# g, order the points in G: J Gv and

o o]
label them

Xl < x2 <eo oL xn_l.

Without loss of generality, assume X € G: . Group these

o
points so that
< < X G+ int
Xy <eeo k1 are y points,
o
X <eoo<l X are G_ points,
kf+1 k2 Vo
-n"
Xy 41 <eee< X =% are Gv points (m+l < n-1).
m mtl o

The finite interval [a,b] properly contains S. Let

y, = @ < xl). Choose ¥q such that

X

<y1<xk+1

kl 1
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Similarly choose yi» 1 = 2,...,m, and let Yokl = b (> xn-l)'

Construct v € V [ 8, p. 28] such that

]
o

v(yi) for i=1,...,m,

v(x) 20 on [y, »y,],

vix) <0 on [yl,yz],

GDNVE) 20 on [yny 1

and v(x) # 0 for x € (a,b) . {yl,...,ym}.

Let 8, = min w&) - v (x)),
o
XG[a,yl]ﬂJ
b, = min (v (x) - 4(x),
x€(y»y,INL
min wx) - vo(x)) if m is even,
xE[ym,b]nJ
Sl
min (vo(x) - L(x)) if m 1is odd.
xE[ym,b]nL
Let § = min §.. & >0 since each §, 1is positive
i=1,...,ml '

by construction. Multiply the function v described above

by an appropriate positive number T such that

]l < 6/2.
Then vo(x) + W) € V1 does not intersect either {(x) or
b(x). Hence V, satisfies condition H. | |

The Haar condition on V also assures uniqueness of

the best approximation. The following theorem is analogous to
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the Haar uniqueness theorem [3 , p. 81] in the standard
Chebyshev approximation theorem. Let Cl(S) = {f € C(5):

R I
E,UG)N (B, UG) =¢ for all ve Vl}.

Theorem 1.4: Assume condition H is satisfied for V an n-
dimensional subspace of C(S). Then a necessary and sufficient
*

condition for a best restricted approximation v to £ ¢ Cl(S)
to be unique is that there does not exist a linear functional

k

L(h) = I Ahx))

i=1

on C(S) such that k <« n, L vanishes on V, and at least

one xi € E %
v

Proof: (Sufficiency) Suppose no such functional L exists
and f has two best restricted approximations Vis Voo Then
Vo= (v1 + vz)/2 is also a best approximation and its char-
acterizing functional must be based on n+l points. Let
these be XyseeesX4s and the functional

n+l

L(h) = £ o;h(x.).
i=1 i i

The xi's must be critical points for v, and v, and

+ + - -+ + - -
E 2 Ev , Ev 2 Ev s Gv 2 Gv s Gv 2 Gv 5
1 o 1 o 1 o 1 - o

2E ,E =2E ,G 26 ,G 26 .
v v v

v(xj) =0 for j=1,...,n+l.



—
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By assumption, one of the x,6's, say X0 is an element of

3

E . Then let
Yo

D = det {wi(xj): i=1l,...,n; J=1,...,n4l; j # jo}.

Since L(wi) =0 for i=1,...,n,

n+1
r o
=1
j#jo

jo'i *40) -

wi(xj) = -y

n+l
i=1,3#io

fixed, we can find another solution {«

is not unique. So for

10+l
jo i’3=1,3#j0’

ajl =0 for some j;. But this gives a functional L' such

If D = 0, the solution {aj}

o with

that
n+l
! = ' 1 =
L' (h) 321 ajh(xj), (ajo ajo)
3%,

which vanishes on V. This is8 a contradiction and we conclude

D # 0. Since

n
T B.W.(x,) =0,
=1 173

we must have g, =0 for i = l,...,n; so v, =V,

(Necessity) Suppose condition H is satisfied and there
is a non-zero linear functional L based on n points XyseeesX
which vanishes on V. Then

n
Lh) = £ Ashix;)
i=1

and the {xi}zgl are a non-identically zero solution of

n

—

i:1 liwj(xi) =0 for j=1,...,n
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which implies det (w (xi)) = 0, and we can obtain a function

b
n
vix) = T qgw,(x)#0
jo1 1%
and
lIvll, = 1»

such that v(xi) =0 for i=1,...,n. By condition H, there

is a function v, €EV such that

1
vo(x) > 4(x) for all x € L,

vo(x) < w(x) for all x € J.

Let 26 = min {min (vo(x) - L(x)), min (W(x) - v _(x))}. Let
X€EL - x€J °
' = min {1,6}.. Choose f£(x) € C(S) such that

B, = 1Exp| =6' >0
and

~ *
sgn f(xi) = s8gn )\,-

* sgn A, if # 0
+1 if A. =0 .

Set f(x) = f(x) (L - |v(x)|). Consider
F(x) = vo(x) + f(x).

Since ‘f(x)\ <6', F(x) 2 4(x) for all x € L and
F(x) <p(x) for all x € J.

We claim: for any w € Vl’

IF - wl|_ = 6"
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If w€ Vl is such that
I - wl_ < ',

* *
then w = v° +v with v €V so

*
F-w=ef-v,

and @) =6".

* * '
Thus sgn v (xi) = sgn f(xi) = sgn 1, i=1l,...,n. But
n *
then ¢ xiv (xi) > 0 which is a contradiction. Now consider
i=1

vo(x) + w).

If 0<\x<56', v, t\v €V,. Moreover,

6'

Wn

[Fe) - (v, + 2w

|£G) - awv o)

A

lEe| @ - v ) + alve|

n

§'-(L - |vx)|) +a|lvx)|

6' - (&' - k)\v(x)‘ <8'" for 0 <<,

Thus, if we choose any ) such that 0 < ) < §', the function
v, + \v is a best restricted approximation to F and we have
constructed a function whose best restricted approximation is
not unique. ]

For the case that J =K = L, G.D. Taylor (23] proved
that if V 1is a Haar subspace, then best approximations are
unique for each f € C(S) which lies between the bounds. The

following corollary characterizes those subspaces which yield
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best approximations for all f € Cl(S).

Corollary: Assume V satisfies condition H. Then each

f € C;(s), has a unique best approximation from V, if and
only if V is a Haar subspace.

Proof: (Sufficiency) Suppose f € Cl(S) has two best
restricted approximations. Then, by Theorem 1.4, there is a
continuous linear functional L vanishing on V based on

k € n points. But by Remark 1 following Theorem 1.3, this
contradicts the Haar condition. Thus each f has a unique
best restricted approximation.

(1f f €V,, then f 1is the unique best restricted

1
approximation to f from V1 and it is unique since K
contains at least n points.)

(Necessity) If V 1is not a Haar subspace, there

exists a function v €V,

vl = T

with distinct points XpseeesX in S for which

vix,) =0 j=1,...,n.

3

Then, as in the proof of Theorem 1.4, we can construct a
function F € C(S) which does not have a unique best

restricted approximation. |

Alternation theorems are very useful in constructing and

recognizing the best approximation in the standard Chebyshev
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approximation of functions by elements of a linear space V.
G.D. Taylor [23] was able to show that an alternation theorem
is also valid in ordinary restricted approximation if we
modify slightly the idea of alternations. A similar theorem
is valid in the problem presented here. For the proof of
this theorem, it will again be necessary to assume that

+ .+ - ety = i
(Ev U Gv) n (Ev U Gv) ¢ for the given function £ and all

v €V1-

Theorem 1.5: Let S be a compact subset of [a,b], V be
an n-dimensional Haar subspace of (C[a,b], and f € Cl(S).

Then v €V is a best restricted approximation to f if

1

and only if there exist n+l consecutive points

Xy < Xy <een< X from EvUGv’

n+l

with at least one X, € Ev’ such that for

41 for x, €E UGt
1 v v

ox,) = - -
-1 for x, € E UG,
i v v

we have oGx) = (-D o).

Proof: (Necessity) If v is a best restricted approximation,

then Remark 1 following Theorem 1.3 implies that there exist

n+1 critical points

X, <X

1 2<ooo< Xn,

with at least one in Ev’ and a linear functional,
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n+1

Lth) = £ )\,h(x.),
{=1 i i

vanishing on V with
A, >0 if x, € E+'U G+,
i i v v
\. <0 if x,  €E_ UG .
i i v v

By a well known result for Haar systems [3 , p. 74], the xi's
must alternate in sign. Thus O(xi) = (-1)i+lo(x1).
(Sufficiency) Suppose such a v exists. Then con-

sider the matrix M

[ ) W) ... W ) O or -nlt
wl(xz) w2(x2) e e e wn(xz) 0 or (-1)2
M= . . . .
n+l
_wl(xn+1) w2(xn+1) ¢ wn(xn+1) 0 or (-1)

-~

where the element in the last columm is 0 if X, € Gv ~ E

and (-1)i if x, € Ev’ and at least one element is non-zero.

v

The system

()\1’"-’)\n+1) M -

=_Oeee OO

has a solution {xi}QZi such that not all the ), are zero.
Construct the linear functional

n+l
Lth) = £ Ah(x))
(=1 i i

which vanishes on V and for which the xi's alternate in

n+l n+l +1
sign. So, by choosing {x;}igl to be {Xi}i=1 or {'Xi}zgl
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so that

ki >0 for X € Ev U Gv
and

A" <0 for x, €EE UG ,
i i v v

Theorem 1.3 implies v 1is a best restricted approximation

for f. |

If f € E(S) we can get some idea of the size of

£ - VHK for all v € V, in terms of ||f - v*HK and

1
v - V*HK for v* a best restricted approximation to f.

E.W. Cheney [3, p. 80 ] proved a theorem relating these
quantities in the standard Chebyshev approximation problem

with V a Haar subspace, and also for V a set of generalized
rational functions. Similar theorems for the case of restricted
approximation were proved by G.D. Taylor 23] for V a linear
Haar subspace, and by Loeb and Moursund 6] for V a restricted

set of generalized rational functions. We shall assume Vi

satisfies condition H.

Theorem 1.6: (Strong Uniqueness Theorem) Let V be an n-

~ *
dimensional Haar subspace, f € C(S). Further let v be the
unique best restricted approximation to f from Vl' Then

there exists a constant vy > 0 depending only on £ such that

for any v € Vl,

IE - vlle = IE = vl * Vv = vl
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Proof: (If ||f - v*HK = 0, we can take y =1 since
e - vl = IV - ol +lE - VL= I - v

*
If v=v , the conclusion of the theorem holds for
*
any positive number vy, so we shall assume v # v . Since
*
v is the best restricted approximation to £, there is a

characterizing linear functional L based on points

n+l
{x_} o1 S E_UG _,
i‘i=1 v* v*
n+1
L(h) = 121 Bh(x,)s

with

+ +
sgn ei = o, = +] for x, €E UecG *?
v v

sgn Bi = o, = -1 for Xy € E-* U G-*,
v v

and {xi}::i nNE, ¥ ¢. We shall define the function sgn
v

as follows:

sgny if y #0
*
sgn (y) =
#  if y=o0.

Then for x, €6, and v € Vl,
v

* * * *
sgn (Vv -V )(xi) =sgn (f -v )(xi)’

*
ai(v - v )(xi) > 0.
Consider the set

U={vev: g, =-v)(x,) 20 forall x €6}
v

Notice that U is closed and we have shown V1 < U. For
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*
any Vv €U~ {v1},

*
max ci(v - v)(.) >0
x ,€E t
i *
v

* *
gsince L(v-v)=0 and v - v cannot have more than

n-1 zeros. Thus if

*
v )(xi) =0 for all x, € Gv*,

(v
°1(

we must have

*
oi(v v )(xi) < 0 for some X, €E _.

And if

*
oi(v v)(xi)>0 for some x.  €6G _,

we must have

*
oi(v v )(xi) < 0 for some X, €E .

It follows that there is a number y > 0 such that

min max ci(v* -v)(xi) =y >0
*
\|v -VHK=1 x €E
v
veu

Since it is the minimum of a positive function on a compact
*
S€t. Now let v €V, ~ {v }, then

%*
(v V) (X) = V*(x) - {(1 - __]'_)v*(x) +—-l— V(X)}°

v -vll, o™il o™ -vll,

let
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v =1 -—% )v*(x) + —5 v(x).
vl v -vll,
Let x, € c;*, that is v'(x,) = u(x,), then
vo(xi) - v*(xi) = - *1 v*(xi) + — v(xi)
V" -l V-l
1
< - —3 wx.) +—3 wx.) =0,
Wl
and o; < 0 so that
ci(vo - v*)(xi) = 0.
Similarly if X4 € G+*, v*(xi) = {,(xi) and
v
*
v (x;) -v (x,) =-—% v (x,) + vi(x,)
ot R
2 - * L(x.) + * L(x.) =0,
Hv 'VHK ’ HV "’HK :

and g, >0 so that
- 0
o. (v v )x,) =0.

*
We have shown that for every v € vV, ~ {v1i,

*

G-v)x) vo(x) - v*(x)

llo-v"l,

with v, €U and “vo - V*HK = 1. Now for v € v, ~ {v*},

let x ¢cE « Dbe such that
o v

max o)V - V)G,) = ol ) - VG, )
xiE E o o
v
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Then

€ - VHK 20, (f-Vv)(x )
o o

=0, (E -V ) *o, v -V, )
o o (o] o

2 lE - vl + AT - vl n

We define a function T on E(S) ={fec@):p>0
and f(x) 2 £(x) for all x € L and f(x) < p(x) for all
x €J}. T assigns to each f ¢ E(S) its best restricted

approximation v €V Theorem 1.6 easily yields a theorem

1.
which proves T 1is continuous. This theorem is a logical
corollary to the Strong Uniqueness Theorem and has been proved
by the various authors discussed previously. The original

proof of the continuity of T was done by Borel [1] for the

standard polynomial case.

Corollary: (Continuity of the Best Approximation Operator)
* o~

let £ € C(S). Then there exists a number ) corresponding
* * * ~

to £ such that if T(f ) =v ¢ vy and if f € C(S) 1is

arbitrary with T(f) = v, then
v - v¥l, = Mg - £

Proof: By the Strong Uniqueness Theorem there is a number

vy > 0 such that
* * * *
£~ - vnK 2 ||f -v HK +y|v - VHK for all v ¢ v,

Thus for any arbitrary f ¢ E(S) and corresponding v = T(f),
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vllv = vl < NES = vl - T - VL

< 1€ - fllg g - Vil - I - VT
T T [ M
< - el + U - gl +lE - V- IE -
= 2" - £
Now let >\=$. s

Section 4: Remes Algorithm for Calculating Best Restricted
Approximation

In order to obtain such a best restricted approximation
of a given continuous function f with bounds { and p from
a subspace V1 of a Haar space V of dimension n (2 1) we
can modify the algorithm developed by G.D. Taylor and M.J.
Winter [25]. We shall assume that J, K, L are non-empty
subsets of the real line. Thus S =J U KU L 1is contained
in some finite closed interval [a,b]. Assume K contains at

least n+l1 points and that V., satisfies condition H on

1
[a,b]. Let f € E(S) be the function to be approximated. Then

inf Hf - VHK =p>0.
vEV1

We shall choose n+l points of K

xl’l < X2’1 <coc< xn+1,1

and construct a best approximation vy, to f from the full

Haar space V on these n+l points. Next, we check to see

if vy €V, and if |f - v ||

g 18 greater than ‘f(xi,l) - vl(xi,l)‘
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for i=1,...,n+l. If |f - VIHK = ‘f(xi,l) - vl(xi,l)‘

and vy € Vl’ then we are done by Theorem 1.5. If not, we

replace one of the points X; 4 with a new point from S to
b}

get a set

Xl,z < x2,2 <o o oL Xn+1,2

2° We

repeat this procedure and obtain a sequence of functions

on which we find the best restricted approximation v

{vn} SV (possibly finite) which converge to the best restricted
approximation v € V.

let

X < X <eeeL X

1,1 < *2,1 n+l,1

be distinct points in K, and let

{wl(x),...,wn(x)}

be a basis for V. We further assume that f cannot be inter-
+1
polated on {xi 1}?_1 by any element of V. This can be done
,17i=
by selecting any set of n points, interpolating f on these
points and then selecting X+, 1 such that f(xn+1’1) # v(xn+1’1).
This can be done since p > 0. Then the system

n
j = =
151 ai,lwi(xj,l) + (-1) 41,1 f(xj,l) for j 1,...,n+l

has a unique solution {o since [wi(x)} is a Haar

}n+1
i,1’i=1
system. Set

n
Vl(x) =z

. ai,lwi(x).

1
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If Uf = leK = ‘dn+1’1\ = ‘f(xj) - vl(xj,l)‘ = el, and

vl(x) =2 4(x) for all x € L,

vl(x) < wu(x) for all x €J,

then by Theorem 1.5, vy is the desired best restricted

approximation to f from vl. If not, we define the follow-

ing quantities:

M1 = max {vl(x) -u®x): x € J},
m; = max (L) - vl(x): x € 1},
E, = £ - v1HK - e,-

let Y, = max {El’ Ml’ ml}. (In case of equality, let Y1 be
the first largest element.) Choose ¥y € S in the following

manner:

If y, =Ej, let y €K and \f(yl) - vl(yl)l = “f-vlnx.

If vy, =M, let y, €J and v, (y) - u(y)) = M-

If y;=m, let y €L and £(y;) - v,(y;) =m,.

We wish to exchange one of the x s for Yy Define: for

i»1
veyv,
+1, if v(x) = f(x) = 4(x) and x € L,
sgny (f(x) - v(x)) =<-1, if v(x) = f(x) = u(x) and x € J,
sgn (£(x) - v(x)), otherwise.
We then choose x which is to be replaced as follows:

jo,1
l.a. If ¥y < X),1 and
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sgny (£Cxy ) - v () ) = sgn, (£(y)) - v,0¢));
then replace xl’1 by Yy

i.e. xl,2 = y1

X =x for 1

1,2 i1 2,...,n+l.

1.b. 1If Yy $% and
sgny (£(x) 1) - vy(x) 1)) # sgn, (EGp) - vy

n n
then "replace xn+1’1 by Yqo

i.e. xl’2 = y1
xi,2 = xi-l,l for i =2,...,n+l.
2. If xj-l,l <y, < xj+1’1 for some j € {1,2,...,n+l}
(xo,l =8 xn+2,1 =b) and

sgnl(f(xj’l) - vl(xj,l)) = Bgnl(f(yl) - Vl(yl));
then replace xj’1 by Yy

i.e. X, ., =X for i # j

3.a. 1If Y12 X411 and
]
sgnl(f(xn+1,1) = vl(xn+1,1)) = Sgnl(f(yl) - Vl(yl));
then replace xn+1’1 by Yq»

Xi,2 = X1 for i =1,...,n

¥n+l,2 R4S






37

3.b. If ¥, 2 xn+1’1 and

sgny (e g 1) - V&4, p)) Feen (EG) - v )5

”" (1]
then '"'replace xl’1 by Yoo

L.e. X120 %i41,1

Xn+l,2 V1

Now {xg goeeesXigy od = (Oxy poeeeomyy 43 ~ x5, (DU Iy)]

for some jo. We wish to partition the set {xl’z,...,xn+1’2}

J (not necessarily all non-

into three disjoint sets K 22 Jo

2’ L

empty) in the following way:

xj,2 € K2 if xj,2 # yl,

and for jo such that x =
jo,2

]
<]

let xjo,2 € K2 if Y,

let x

jo,2 €7

o 1f vy =My

let x,

jo,2 €L, Iif Y, = my

2

We continue the process by solving the following system for

n+l
{oy, 2351 ¢
o i
151 @y MG D oy 5 = By ) for x5 €Ky
n
£y 0,200, TRE ) or Xy €0y
n

jEI dj,ij(xi,Z) = L(xi’z) for X, 5 € L2.
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n
Let vz(x) = z
j=

If ||f - v, =e

oy i G)s ey = oy ol 2llg = e,

1
and

vz(x) 2 L (x) for all x € L,

vz(x) < u@x) for all x € J,

then vz(x) is the desired best restricted approximation.
If not, we find Yp2 Y, in the same manner and continue the
iteration. Suppose we have not obtained the best restricted

approximation but we have found v, based on the points

k

X <X

l,k <-oo< X

2,k n+l,k

and at least one of these is in K. Further we have

sgny (EGey ) = v Gy ) = DI sgny (B ) - v G 0)

for i=1,...,n+l. 1If, as before, Vi is not the best

restricted approximation to £, then we can find

<]
]

Hf -V - e

kHK k?

M, = max {v, (x) - u@x): x €J},

~

m = ma (L(x) - vk(x): x € L},

Yy = max {Ek, Mk’ mk} (treat equality as before).

Choose Yie € S so that

if v =Eo £ - v ol = I - v [l

if v =M, v O - w(y,) = M

if Yk = b L(yk) - vk(yk) = oy
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Replace x by Y 38 described before and form

jo,k

{xl,k+1"”’xn+1,k+1} - ({xl,k"'°’xn+1,k} ~ {xjo,k}) U (%)
with

<eoe< X

¥,k < %2 k41 n+l, k+l

and partition into three disjoint sets

ESTWSLELE ’xn+l 1)

Kit1? Dirr> Jun? SO that 1Y Lipr Y Tin = D e %k 3
and for X5kt T %k € {xl,kf"°’xn+l,k} ~ {xjo,k} then

Xkt © Kerr PO p € Ko

Xkl € D X € Lo

Xkl S T HEOXy e € T
For X, w1~ Yk

¥kl € K HEove = Eps

Xkl € e 1Eove T M

Xkl € L POV T My
n
_ n+l
Now set vk+1(x) = jz TR, j(x) where {aj k+1} is
the solution of the system
n i
j=1 Oy 11"y i) T D o e TR ) PO Xy € Ky
n
j£1a1.k+1wj(xi,k+1) SeGar) T X e €
n
= L (x ) for «x €L

J‘Elaj,kﬂwj 5 ka1 1,k+1 ikl © k4l

K # ¢. Suppose K = 4; then by construction

k+1 k+1
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)) = (-1) i+lsgn1(f(x )).

sgny (F0¢; 1) ™ Ve e IR TS LR AT

Thus, if we assume, without loss of generality, that

- = +
58y (B0 1)~ Vk®q 1)) =
Lee. Vi1 k) S )
and
S 4Gk ) 1 1 is oad
AACTIRWED

2 p.(xi k+1) 1if 1 1is even.
b
Then if v €V, v # v, implies
v(x) = vk(x)

for some x, xi,k+1 <£x < xi+1,k+1’ for each i =1,...,n.
Thus (v - vk)(x) has n zeros. This is a contradiction
since V 1is an n-dimensional Haar space.

Again we check to see if vk+1(x) is the desired best
restricted approximation and if it is not we continue.

The proof of the convergence of the algorithm results

from a series of lemmas.

lemma 1.1: If V is an n-dimensional Haar subspace of

cfa,b], A >0 is given, § >0 and

n
S = {(xl,...,xn) €ER: ac< X) <o XS b, with

‘xi-xi+1\26>0 for i =1,...,n},

then there exists C > 0 such that for any v € V with



an
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\v(i'i)\ < A for some (il,...,fin) € S, we have “v“m =
max {\v(x)‘: x € [a,b]} < C.
In fact there exists an N such that if
n
ve) = T AW,
i=1
then ‘xi\ <N, i=1l,...,n, where {wl,...,wn} is a fixed
basis for V.
Proof: Suppose there is a sequence of functions
n
v (x) = 151 Aji7; (x) such that for some i, ‘kiok‘ -~ ® as
k -+ ». Then we can find a subsequence {vj} < {vk} such

that

A 2 |, for i =1,...,n and all j,
i, ij

and

\kilj‘ - as j - w,

M
Then ‘K-l—\ < 1 and by taking additional subsequences we can

td .
obtain {v,} € {v.} with \-34“1 - \. a finite number.
1 ] A 1
it
By assumption, for each k there is an element
X, = (X..5000sX € S with
j 1J’ bl nj)
v, (x., < A,
lvy G,

Since S is compact, by taking another subsequence we can

. Mk
obtain f{u 1€ {VL} with ‘xik‘ - ®, \KI-|-* \; @nd

1
{xk} - X = (xl’noo,xn) e S. NOW

n
b )| = | E M )| <A+ e
=



1 r—
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for v=1,...,n, for any given ¢ >0 and k sufficiently
large.

n
Set Mv = \ T xiwi(xv)\. Then consider

i=1
n T
b)) 121 A &) = MLk 151 A K wix)).

Now for any ¢ >0 and k sufficiently large,

n A
ik
| £ v.x)| >M - ¢
i=1 M ok bV v
1
n )‘i n
since § —w. (x) - T \w. (x).
=l M BV gm TRV
But then

ik
il 2 2% vl ~e as 3o

=1 A
n
unless M =0. But § )\, w,(x) =w(x) €V, and if M =0,
Y j=1 ii v

for v=1,...,n, then w(x) has n zeros so A = 0 for

i=1,...,n. This is a contradiction since ki = 1. Thus

‘xik‘ is bounded for each Vi |

Lemma 1.2: If the iteration does not terminate at the kEE
step, then
@ sy (F6y yepp) 7 Ve i) = 880 (G hp) = Vi O i)

i=1,...,n+l,

(A1) sen (G ) 7 Vi &y 1)) © ('1)i+15g“1(f("1,k+1)
- Vk+1(x1;k+1))’ i=1,...,n+l

(iii) e+l Z Sk

(V) epyy zmax {£0x; o) =40y () X g € Ll



(vi)

Proo

Comp

5g1

by C

With,

e
Thig

Stop,
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€

) e > max {p(xi’ Jk+1}’

k+1 LR CFIWED L P

i) v is the best approximation to f on

k+l

{xl,k+1,...,xn+1’k+1} = Xk+1 wlth respect to \Y

where

k+1

Y 1 ={veEvVv: vi) 24(x) for all x € (X L)

k+ K1

and v(x) < u(x) for all x € (Xk+1 nJj

and ||f - v, = max [f@x) - v,
XX K
Proof: This proof is as in [25] but is included here for

completeness. (i) is proved by induction. First
sgny (EGe, ) = VG, ,)) = (1) lsgn (£, ) - vi(x; L))
1 i,2 14,2 1 1,2 11,2

by construction. Also L2 U J2 consists of at most one point.
Without loss of generality, we can assume sgn,(f(x, .) - v,(x, ,) = +1L.
1 1,2 11,2
1) Suppose L2 U J2 = ¢. If (i) does not hold then
vl(xi,Z) 2 vz(xi’z) if i 1is even and vl(xi,Z) < vz(xi’z)

if i is odd, since sgnl(f(xi 2) - Vz(xi 2)) = (‘1)i+1
b} ?

2 1

n times and by the Haar condition v

sgnl(f(xl,Z) - v2(x1,2))' So v, would meet v_ at least

= v,. Then since

2 1
L, U J, = ¢ e, = £ - VIHK. Further, since Y, = max {El,Ml,ml},
we have v, € V1 and v, is the desired best approximation.

This contradicts the assumption that the iteration does not

stop. Thus (i) holds.

2) Suppose L, U J, ¥ p. If Y1 = ®ye xio’z €L,
i
-1) otl

If io is odd, sgnl(f(xio’z) - v1<xio,2)) = ( =1 and

"1("10,2) SV Gy ) IE sen (flx; ) - v, (x; 5)) =

o)
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'Sgnl(f(xi,Z) - vl(xi 2))s i # i, then v, (x. ) 2 v, ,)

b b ’

if i is odd and v2(xi’2) < vl(xi ) for i even. Again,

»2

counting zeros, v, = vy is the desired approximation contradict-

ing the hypothesis that the iteration does not stop. Other
cases follow in a similar manner.

If (i) holds for k=21 and Vi is not the best

restricted approximation, consider cases:
3) 1f Lk+1 U Jk+1 = ¢, the argument given in 1) above

works.
4) 1f L1 Y i # ¢, then for %) kbl €L,

v 1) < v

K1,k el &5 )

and for x,

i k+1 €J

k+1

Vi) 2 Vi1 &y )

Also, sgn) (FCx; 10q) = Vie®y 4p)) = #1 1f %, g €1

and sgnl(f(xi ) - vk(xi,k+1)) = -1 if €J

Xkl S Ykl

)) # sgnl(f(xi

yktl

If sgnl(f(xi ) -

ek T Ve ke et T Vet g i)

for xi,k+1 € Kk+1’ we would again have Vil = Vi which

contradicts the hypothesis, so (i) holds.

Now (ii) is an immediate consequence of (i).

(iii). Suppose that for some k, e+l < ey and,
without loss of generality, sgnl(f(xl’k+1) - vk(xl,k+1)) = +1.
i d
For xi,k+1 € Jk+1 we must have i even an
Vie® i) % Vit )
and for

xi,k+1 € Lk+l’ we must have 1 odd and
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Vie®5 1) S Vi &)

So for xi,k+1 € Kk+1

1EGy ) = Vil aad ) 2 180y ) = Vi O )| = ey

since ‘f(xi,k+1) - vk(xi,k+1)‘ 2 ek ze 1 Now by (i),
vk(xi,k+1) < vk+1(xi,k+1) for i odd
and
vk(xi,k+1) 2 vk+1(xi,k+1) for i even.
Again counting the zeros of Vil - Yk and invoking the Haar
condition, we see that Vil = vk which is a contradiction.
S0 et ” %k

(iv) and (v) are proven in essentially the same manner,
so only one will be included here. We shall use induction to
prove (v).

If k=1 and J2 = ¢, the conclusion follows. If

k=1 and J, # ¢, then {xio,Z} =J, for some i and
vl(xi ,2) - (xy ’2) = M1 > ||£ - vlna - e
o o
> -f (x; ’2) + vl(xi ’2) - e,
o o
So e2 > p.(xi ’2) - f(xi ,2).
o o
Suppose (v) is true for k = 1. Then if xi,k+1 is
such that xi,k+1 € Jk N Jk+1’ by (iii) and the induction
hypothesis,
- f .
Crt1 ~ O 2 max {ulxy ) - By DXy €T N I)

= max {0y 1) - FGG )t X g € TN Tl
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Jk and J

then J

can differ by at most one point. If J cJ

k+1 k+l k’

K+l = Jk n Jk+1 and (v) is proven by the above state-

ments. If J, ., ~J, = {xio,k+1}’

vk(xio,k-t-l) - “'(xio,k-i-l) =M > | - vl - e
> vk(xio,k+1) - f(xio,kﬂ) T Ck+1”

Thus

Ctl TP ) TR )
o o
. . < -
(vi) Using Theorem 1.5 with K Xk+1 n K,
' = !' = d ' =
L Xk+1 nL,J Xk+1 nJ, an V1 Vk+1, we conclude
that Vi+l is the best restricted approximation to f on
K' from Vi. |

For convenience of notation, let £' denote the sum

over those i € {l,...,n+1} for which X, € K, let "
H]

"

denote the sum over thdse i for which x,. € Lk; let ¢
ik

denote the sum over those i for which xi K € Jk.
]

Lemma 1.3: If the iteration does not terminate at the kgh

step, for each k 2 2 there exist constants xlk""’kn+1,k

satisfying
= ¢! " "
W e TENECp I LO) BTN,
Gi) 'l =1
n+l
(iii) 121 kikwj(xik) =0 for j=1,...,n,

(iv) Xik sgnl(f(xik) - vk(xik)) >0 for i=1,...,n+l,
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n+1
) ) ‘kik‘ <A<o and A is independent of k,
i=1

@) e ey = Il TEGg) v gL - e

+ 2" gl 1) = v e gl e - v ol
(vii) \xik\ 2\ >0, A is independent of i and k.

Proof: By Lemma 1.2 (iv), we conclude that Vi is a best

restricted approximation to f on K' (with corresponding

L', J') from V!. Then by Theorem 1.3 there exists a linear
1

functional

n+1
L(h) = £ phix,.)
i=1
with x. € D _, and
' VK
+
B, >0 if x, €E uet,
1 1 Vk Vk
8. <0 if x,,  €E- UG ,
i ik vk vk

and such that L vanishes on V. Now let A = Bi/z"ai\.

Then
2'\xik‘ = 1’
Xik sgnl(f(xik) - vk(xik)) >0 for i=1,...,n,
and
n+l
151 Xikwj(xik) =0 for j=1,...,n.

Thus (ii), (iii), and (iv) are valid.

Since Kk ¢ ¢ for all k and

Vi) = AGy) for x € Ly,



W
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Vg = uxg) for xy €5,
(iii) implies
L] "
T EOe )+ I LG )+ B ()

= 2')\ik(f(xik) = vk(xik))

R RV ELCHWIR R A CIR)

]
e T, |

ek.

To prove (v) we shall show that the sequence
@
{(xlk"'°’xn+1,k)}k=1 is separated. (This proof is the same
as in [25] except for the construction of the function which
gives the contradiction.) Suppose the sequence is not separated,
(-]
then we may extract a subsequence {(xlj""’xn+1,j)}j=1 for

which there exists a grouping of (xlj"'°’x into g+ 1

n+1,j)

groups (o < n-1),

(xlj,...,xilj), (Xi1+1,j,oc-’xizj)’Oo-a(xia+1’j’-.o,xn+1,j)’

for all j,
such that
1) there exists ¢ > 0 so that for any two points
xij and xkj from distinct groups, we have ‘xij - xkj‘ 2 ¢
for all j. (If there is only one group, this is vacuously

true.)

2) Setting io = 0, ia+1 = n+l

r
I, ={x¢€sS: x, <x €Xx .}, r=0,1,...,0,
J i3 1)
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* *
then there exist xo,...,x0

*
X and x,
r

*
- X for
1r+1’j r

X, -
lr+1 > ]

such that

r =0,1,...,0, as

Due to the continuity of £, u, £ and the compactness of

j—o&.

K, J, L there exists

either

or

1>0

such that for x € JN L we have

bx) - £(x) 2 1
f(x) - L(x) 217.

Let & = min {e),M}/2. Let v_ €V interpolate

£(x7) + 6
=
at x:, r = 0,1,...,0 where "+" or "-" is chosen as follows:
* * * *
choose f(xr) + 6 if x. €JN L and f(xr) - L(xr) <M
* *
choose f(xr) -6 if x: €JN L and f(xr) - L(x:) 2"
* *
choose f(xr) + 6 if X €L~ J;
* *
choose f(x_ ) -6 if x_€ J ~ L.
r r
Otherwise choose '"+'" or "-"™ so that
* _ * r
v &) = £G) + (-1)7s.
Since ¢ < n-1, v, exists. We also have
) 2 4(x") for x €L
v, xr) L(xr) or x_ €L,
* * ¢ *
vo(xr) < u(xr) or x_ € J.
There exists a 3o such that j 2 jo implies
C r
v (x) su(x) for all x € [(U I,)Nn J],
° r=0 j
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r

[e)
v (x) 2 L(x) for all x € (Cu Ij) n Lj,
r=0 -
[¢)
and |£(x) - vo(x)l <e, forall x¢ [(UIHN K].

r=0 J
But this contradicts the fact that vj(x) is the best
restricted approximation to f on {xlj’°°"xn+1,j}’ Hence,
the sequence is separated. Now define a family of functions

TN € V such that
pk(xik) = sgn xik’ i€ {l,.00,n+1} o {io},

where i) 1is the first integer such that xiok € Kk' Now
by Lemma 1.1, there exists a number C > 0 such that

lo i, < c. By (iii)

" e ®pid T I Oegg) = TN ()

or
=g ) 2 ) st lcs
n+1
and by (ii) T |a, | sCc+ 1 for all k.
j=1 K

Now consider

m

C T Cke1 T I A0 ) I A0 0 BN ()
- =gl
= Z'Xik(f(xik) - vk-l(xik)) + z")‘ik(l’(xik) - vk-l(xik))
SRR ILCICHPIER T MR R ACNIPY LV
=gl lEeg) - v 600 - ek-l\
e g e - v G|

s RS ORI APTCIRI P
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If (vii) does not hold, then by taking subsequences,

there is an index i a1 < io < n+l) such that
\)\ij\-o as j - .
o
By (v), we may again choose subsequences so that

)\ij—o)\. i*io

and

X.,, » X, for i=1,...,n+l.

We notice that x, # Xy for i # j, i,j =1,...,n+l, since

{xlj""’xn+1 j} is separated. Applying (iii) we conclude
b4

n+l
T AW.(x,) =0 for j=1,...,n.
=1 i i
ivi
o

But, by the Haar condition, this implies Xi =0 for all 1

which contradicts (ii). Thus (vii) must be satisfied. |

We can now show that the algorithm described above is

valid.

Theorem 1.7: If the iteration does not terminate after a

finite number of steps, the sequence {vk}:=1 converges
*
uniformly to the best restricted approximation v to f

from V,, and e  converges to £ - v*“K.

k
Proof: (This proof is essentially the same as in [25].) We

shall first show that e - e < € - v*“K = p.
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1) In Lemma 1.2, we proved Ve is the best restricted

approximation to f on {xlk""’xn+1,k}' Since this is unique

(Theorem 1.4), we must have

*
since v €V and

*
v (x) 2 4(x) for x € {xlk’.."xn'*'l,k} n L,

*
v x) su(x) for x € {xlk’“"xn+1,k} nJd.

e < e for all k implies {ek} - e < p.

2) By the above bound on e,, Lemma 1.2 (iv) and (v)

k’
and Lemma 1.1 imply the existence of a number B > 0 such

that \\vknm < B for all k. Then since V is closed and
{vk}:=1 is bounded in the norm, there exists a convergent
subsequence of {v,} converging to v €V, and \£ - v\\°° =e.

3) It remains to be shown that v € V By Lemma

X
1.3 (vi) and (vii)

€ " Cper 2 M max (B s M g m o)

< 0, lim supm_< 0. That is,

Thus 1lim sup E, = 0, lim sup M "

k k k k k
v(x) 2 £(x) for all x € L,
v(x) < p(x) for all x € J.

*
Since the best restricted approximation is unique, v = v ,

e=p*= Hf -VHK'
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Example: Let S =[0,1] =K, J =[%,1], L =[0,%],V =
polynomials of degree < 1. vl(x) =1, vz(x) = x

2
f(x) =x px) =1 L(x) =0

\
J 169

Let xl,l =0, x2,1 =%, x3’1 =1
0y (1) +0,(0) = oy = 0
a (1) +a, () +ay = %
Sol i = - l = ] = . l
olution a 8 az og 8
1
Then vl(x)=-§+x, e1=%,
Bp={max |x -x+gl}-2=0
xG[O:I]
1 1
M = max {(-—+x)-1}=-—
1 XG[’EJ] 8 8
m; = max {0-(-§l'+x)}=%
XGEO:%]
Thus y1=m1 Yy =O=x1’1
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K, = {X,20 X35}
J2 =9

L, = {x

2 1,23

Then solve
al(l) + az(o) =0
a (1) + az(%) +og =%

0 (D) + (D) - oy =1

Solution oy =0

= 2
0’2 6
R §
o3 6
Th ( ) = - e = l
en Vz X 6 X ’ 2 6
2 5 1 1
E, = max x -Zx|}-< =+
2 6 144
x€[0,1] 6
M, = max {% x -1} = - %
x€[%,1]
5
m, = max {o - r x} =0
x€[0,%)
= 2
Y, = By Yo T 12
5
xl’3 =0 , x2’3 12 ° x3’3 1
a0 (1) +a,(0) =0
2 = 23
a () + o, (§3) + oy = 7
0'1(1) + 0'2(1) - a3 =]
=] = lég = - éé— e. = 22_
o *» ¥y T 204 * %3 206 ° °3 2

etc.

>

o



CHAPTER 1I
CHEBYSHEV APPROXIMATION WITH RATIONAL

FUNCTIONS HAVING RESTRICTED RANGES: CONSIDERATION
OF EQUALITY IN THE BOUNDS

Section 1l: Introduction

In this chapter we wish to consider the problem pre-
sented in Chapter I with rational functions as the approx-
imants. We shall assume S =J U KU L 1is a closed interval
of the real line, with J, K and L compact subsets of S.
K will be assumed to have a sufficient number of points so
that two approximants equal on K, are also equal on S.

This will be stated more explicitly later.

Let P be the set of functions spanned by {wl,...,ws}
where wl,...,ws are s linearly independent functions in
C(S), and let Q be the set of functions spanned by
{vl,...,vt} where VisesesV, are t linearly independent
functions in C(S). The set R of approximants to be con-
sidered will depend on P and (.

For the first part of this Chapter, as in Chapter I,
we shall assume { and  are given real-valued functions

with f continuous on L and p continuous on J, such that
2(x) < u(x) for all x €J N L.

In the latter part of this chapter we shall allow

55
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£L(x) <u(x) for all x€JNL,

where { and  are suitably controlled.
In any case we shall restrict our attention to a sub-

set R1 of R where

R1 ={r €R: r(x) <spu() for all x € J, and

r(x) 2 £(x) for all x € L}.

Assuming R, # ¢, Wwe wish to find r € R; such that for a

1
given f € C(K),

m
©

IE = el =t e - ol

If such an r, exists, it will be called a best restricted

rational approximation to f on K.

Section 2: The Existence Problem

Let P be the set of polynomials of degree less than
or equal to n and let Q be the set of polynomials of degree

less than or equal to m, and let R be given by

n i m j
R={rx)=(Z ax / Z bjx ): ai,bj (i=0,...4n; j =0,...,m)
i=0 j=0
m
are real numbers and Y bjxj >0 for all x € S}.
j=0

It is well known (3, p. 154] that a best unrestricted rational
approximation from R exists for every f € C(S). The follow-
ing simple example due to Loeb [147 shows that best restricted

approximations do not always exist.
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Example 2.1: Let f4(x) = -1 for x € L = {0}, u(x) =0
for x € J = {0}, s =[0,1] =K, f(x) =1, P= {ax +b: a,b
are real numbers}, Q = {cx + d: c¢,d are real numbers}.
Now let
r (x) = ;ﬁ for k=1,2,...
k

Ty € R1 for each k. Let x € (0,1] be fixed, then

lim rk(x) = 1.

koo
Thus the sequence {rk} converges point wise to the function
r(x) =1 on (0,1] and the continuous extemsion of r(x)
to [0,1] is r(x) = 1. But then r ¢ R,- Therefore f
does not have a best restricted approximation from Rl’

To eliminate the problem in this example, for this
section we shall assume J =L and J contains no isolated
points. Since J 1is a compact subset of the real line with
no isolated points, it is a perfect set [18, p. 61].

The proofs of the following existence theorems are
similar to the proofs in the standard rational case found in

[3, pp. 154-155]. We shall assume R, ¥ ¢ in each case.

Theorem 2.1: Let K, J = L be perfect sets. Let P and
Q be the polynomials of degree less than or equal to n and
m respectively. For a given f € C(K), a best restricted

rational approximation from R1 to £ on K exists.

be a sequence in R, such that

Proof: Let 1

{rk}:ﬂ

tim [|£ - ]l = p

k—
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where rk(x) = pk(x)/qk(x) with

n .
_ i
P () = iio ks €F
and
o i
qk(x) = IEO bikx e Q'

We lose no generality in assuming quum =1 for each k,

thus nqk“K < 1. Also, for k sufficiently large

£ -« <p+te.

il

This implies

eyl < el + o +

and
lpllg < el = lagllg < WEllg + 0 + e

Then the sequences {‘aik‘}:nl’ {‘bjk‘}:=1 are bounded
sequences for each i = 0,1,...,n, j = 0,1,...,m [19, p. 80].

Thus there exists a subsequence of {rk} for which

a, - ai for 1i=0,1,...,n
and

b.,, » b for j = 0,1,...,m

jk ]
with b-1 # 0 for some j since “q“°° = 1. Then
n i
P(x) - p(x) = T ax
k {m0 1
and
- i
q (x) »q(x) = T b.x".
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Now q(x) 2 0 for all x € S. So for x € S such that

q(x) ¥ 0, let

Then

lim rk(x) = r(x)

ko

for all x € S such that q(x) # 0.
S =J UK 1is a perfect compact subset of the real
line so q has at most m zeros in S. Since for any

e >0 and k sufficiently large

Iz, =l <o+ e
we have
lrex) - £x)| < p

for all x € K with q(x) # 0, and

L(x) < rk(x) < uw(x) for x €J =1L
implies

L(x) < r(x) <p(x)

for all x € J =L with q(x) # 0.

So

lre)| < max {Jallp, My, lIEllg + 03 = M

for all x € S such that q(x) # 0. Let z € S be such that
q(z) = 0. Since p € P, q € Q are continuous functions and

for all x near 2z but different from =z



60

lpx)| s M |qx)|,

q(z)

0O implies p(z) = 0. Since p and q are polynomials
with a common zero, they have a common factor. Thus
3
X -z X
p(x) X2)7p ()

i
1 -z)lq_x)
qo(z) ¥ 0. Since r is bounded for x near z, (j-i) 2 O.

with Po € P, qO €Q, and Po(z) #0,

Repeating this argument for all the zeros of q in S, we

* *
obtain p € P, q €Q, q*(x) >0 for all x € S and

*
ES’Q. = P_-(}_{). for x € S s8uch that q(x) * 0,

*
lim BX) = P )  for 2z ¢S such that q(z) = 0.
q(x) *
X2 q (x)

* * * *
Thus we have p (x)/q (x) € Ry since p (x)/q (x) € R and

for x €J =1

L (x)qy (x) < p(x) < pu(x)q(x) for each k,

so letting k = =
L(x)q(x) < p(x) < pux)qx),

(x)
L(x) < q(x) = w(x) for q(x) #0,

so by continuity

*
te) sEEL <) for all x €J =L

q (x)

*
* *
Also \\L* - f“K < p. Thus p /q is a best restricted rational

q

approximation to f from R,. |
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If we let P and Q take on a more general form we
must change R slightly in order to insure the existence of
best rational approximations. E.W. Cheney [3, p. 155 ]
proved the existence of ordinary best rational approximations

from the set R described below.
We shall assume the functions {wl,...,ws} which span
P and {vi,...,vt} which span Q are two sets of linearly

independent analytic functions and that R 1is as follows:

R ={r(x) € C(S§): r(x)q(x) = p(x) for some

p(x) € P and q(x) €Q}.

We again assume K, J, and L are perfect sets and that

J = L.

Theorem 2.2: Let K and J =L be perfect sets and P and
Q be subspaces of analytic functions of C(S) of dimensions

s and t, respectively. For a given £ € C(K), a best restricted

rational approximation to f from R1 exists.
Proof: Let {rk}:-l be a sequence in R1 such that
£ - rkHK - p as k- o

where Py € P and 9 € Q are such that
rk(x)qk(x) = pk(x) for all x € S.

We can again assume ||q.|| = 1 for each k, then (g, =1,

and for k sufficiently large

HrkHK < “fnx tpte
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and
el = legllg Naglle < NEllg + 0 + e

Thus by the compactness of K there exist functions

and q € Q with

for a subsequence of {rk}. Now define a function

r(x) = p(x)/q(x) for x € S, with q(x) # 0. Then

r(x)q(x) = p(x),
and

lim rk(x) = r(x).

ko

This implies

\r(x) - f(x)l <p for x €K
and

L(x) sr(x) sux) for x €J =1,

whenever q(x) # 0. Now let

M= max [l + s el Nl

Then

lrx)| < M.

Now let z € S be such that q(z) =0. S =KUJ

is

peEpP

a

perfect set and q 1is an analytic function so there is a
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neighborhood N of 2z such that N < S and for x € N,
using Taylor series, we obtain
= i
q(x) = £ c.(x - 2)
j=2v

and

px) = £ d (x -2
iz

with Cvd # 0. Since r is bounded by M for x €N . {z},
"
vz2y and
£ d;(x-2)t
lim ——— = r(2)

X~z T cj(x-z)J

is the continuous extension of r to 2z, with

r(z)q(z) = p(z).

Now lim rk(x) = r(x) for all x € S, thus

k-0

2(x) s r(x) su(x) for all x €J L

and

Hr - fHK < P>
so r 1is a best restricted rational approximation to f
from R;- | |

Section 3: Characterization of Best Restricted Rational
Approximations

In this section we will not be concerned with the
existence of best approximations but rather with characteriza-
tions. Thus we shall assume only that P and Q are s,
respectively t, dimensional subspaces of C(S) where J, K, L

are arbitrary compact subsets of the real numbers and
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S =JU KU L. We shall also assume £(x) < p(x) for all

X € J N L. Now let R be as follows:

S t
R=1{r€c(): r(x) = Law (x)/Tb,v, (x) where
‘ T R 0 U
al,...,as, bl,...,bt are arbitrary real numbers
t
and g b,v,(x) >0 for all x € S}.
=1 3

Then
R1 ={r €R: L(x) sr(x) for all x € L

and r(x) < pu(x) for all x ¢ J)

as before.

For a given f € C(K) and r € R, we again denote

1

the set of critical points as in Chapter I.

Ef = {x €K: £(x) - r(x) = ||f - £},
E; ={x € Ki f(x) - r(x) = -||f - rnK}’
-
Er = El’ U Er ’
+
G ={x €Ll rkx) =1&x},
G; ={x€J: r(x) =ux],

el =G+uc'.
r r r

Then the following theorem holds for restricted rational
approximation. It is a generalization of Theorem 1.2.
Theorem 2.3: Let £ € C(K) and inf |[f - r|| = p > 0. Then

reR
r is not a best restricted rational approximation to f if
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there exists a function ¢ € P + roQ such that

s(x) >0 for all x € E. UG,
ro r0

p(x) < 0 for all x € Ero U Gro.

The converse holds if there exists an T € R1 with

rl(x) > 4 (x) for all x € L
and

ri(x) < u(x) for all x € J.

Proof: If ¢(x) exists, let

p(x) = p(x) +r q(x),

and

llell, = M-

po(X) + 6p(x)
q,(x) - 6q(x)

We wish to show that for some § > O, r6 is a better restricted

rational approximation to f than r. Since qo(x) >0 on

Consider ra(x) = , where r (x) = po(x)/qo(x).

S, there is a 50 such that qo(x) - 86q(x) >0 on S for
5 < 50. Set o(x) = sgn (f(x) - ro(x)).

Consider the following open sets:

_ . f uf-roHK d 0
01 ={x €s: x) - ro(x) >—F— an p(x) > 0},
| £-x |
o2 ={xes: fx) - ro(x) < - ———32—5 and @¢(x) < 0}.
+ -
Ero = 01 and Ero = 02. Llet O = 01 U 02. By continuity,

we can choose §, small enough so that f(x) - ré(x) has

1
the same sign as f(x) - ro(x) on 0 for all § < min {61,60}.



66

Now for x € O and § < min {61,60},

[£6) - rg )| = o) (EGx) - 1, ()

o) (E®) - 1 () + o) (r (x) - 1, (x))

- - S o)
= ‘f(x) - ro(x)\ o(x) (qo_éq) x)
< \f(x) - ro(x)\ < ||f - roHK'

Since O 1is an open set, K ~ O 1is compact and there is an

€1 > 0 such that for all x € K ~ 0,
|fx) - ro(x)l +ep s ||f - ro\lx.

Then for x € K ~ O,

|f(x) - ré(x)‘ < ‘f(x) - ro(x)‘ + \ro(x) - ré(x)\

A N P I )
< g -l

Me
: _1 = i -
for & < min {6 _,8,, v } where 1 :ég (a, - 8,a) ().
That is ||f - ré“K < |[f - rllg-

If x € G: s p(x) > 0 and by the compactness of G:
o o
there is an open set U on which ¢(x) > 0. Then

=6

X
o) T () = g6 ()

<0 for 8§ <56,
o

and thus ré(x) > ro(x) 2 4(x) for all x € U. L . U is again

compact and there exists a number > 0 such that

€2

ro(x) 2 L(x) + €, for all x €L _ U
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and
=)
r_(x) = +r x) > X
6™ 7 g sy Gy T ot 7 46O
€, n
for & < min {8 , o ].
Similarly for x € G; ’ ¢(x) < 0. So there is an
(o]
open set V containing G; on which @¢(x) < 0. Then
o
r (x) ~-r.(x) = - 8 X >0 for § < §
o 8 (qo'GQ)(X) o

and p(x) 2 ro(x) > ré(x) for all x € V. Since J ~ V s

compact there exists a number €q > 0 such that

ro(x) S px) - €3 for all x €J ~ V,

and

5

T () = (q,-84

X
) + ro(X) < p(x)

. €3 1
for & < min {60, —ZM—]-
Thus by choosing ¢ = min [31,52,33} and

. el
5 < min {60,61, ZM}’ we obtain

ré(x) € R1

and
I - el < lE - e -

Conversely, suppose there exists r1 € R1 with

rl(x) > 4 (x) for all x € L,

rl(x) < w(x) for all x € J,

and that rz(x) is a better restricted rational approximation
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to f than ros i.e.

IE - eylly < 1€ = 2]l

Let rl(x) = pl(x)/ql(x) and rz(x) = pz(x)/qz(x).

Let T = min qz(x) >0 since S 1is compact. If
XES
P, (x) + 6p; (x)
rl(x) # rz(x), let L qz(x) r éql(x) . For all § > 0,

qZ(X) + éql(x) >0 for all x € S. Thus ré(x) € R. Let

p(x) = [q,(x) + 6q1(X)](r6(X) - r (X))

= [py(x) +6p;(x)] - r (x)[q,(x) + 8q,(x)] € P +rQ.

Since qz(x) + 6q1(x) >0 for all x €8S,

sgn ¢(x) = sgn (ré(x) - ro(x)).

5 q, ()

rG(X) - rz(x) = m (r

1 &) -1, ().

en for < I
then for & < (e 5,10

|r6(x) - rz(x)‘ < ¢ for any ¢ > 0.
Now ||f - rZHK < |f - roHK and

r,(x) -r (x) = (f(x) - r (x)) - (f(x) - r,(x))
implies

rz(x) - ro(x) >0 for all x € E:O,

rz(x) - ro(x) < 0 for all x € Er .

o

The compactness of Er implies there exists > 0 such
o

€1
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that
\rz(x) - ro(x)| > e, for all x¢ Ero.

Choose & such that |r,(x) - ré(X)l < €,/2. Then

ré(x) - ro(x) ré(X) - rz(x) + rz(x) - ro(x)
and

r x) -r (x) >0 for all x€E+,
8 o ro

r6(x) - ro(x) <0 for all x € Ero

+
Now let x € Gr » then
o

P, () 2 L(x)a, ()
and
Pl(x) > L(x)ql(x)-

L(x)q, (x) + 8L(x)q, (x)
qy(x) + 69, (x)

a,(x) + 6q,; (x)

So r6 (x) > = L(x)

= 1(x).
Since ro(x) = £ (x)

Ty x) - ro(x) >0 for all x € G:o.

Similarly if x € G; , then
o

Py (x) < n(x)q, (x)
and

PLX) < px)q; (x).

(x)q, (x) + du(x)q, (x) q,() + 8q; (x)
So ré(x) < qz(x) T éql(x) = b (x) qz(x) y 6q1(x) =pnx),
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and since ro(x) =p(x),

r x) -r (x) <0 for all x € G .
& o r,

Thus  ¢(x) = [p,(x) + 6p,(x)] - r (x)[q,(x) + 69, (x)] is
the desired function.
If rl(x) = rz(x), let ¢x) = pz(x) - ro(x)qz(x) and

sgn ¢(x) = sgn (rz(x) - ro(x)) since

p(x) = a4y (x) (1) - r ().

on E: and ¢(x) <0 on E_ .,

r
o (o]

Since rz(x) > 2(x) on L and rz(x) < w(x) on J, it

o

We have shown ¢(x) >

follows that g(x) >0 on G: and ¢(x) <0 on G; . | |
(o] o

let £ € C(K) and r ¢ Rl. Again we can say r is

a best restricted rational approximation to f if
+ .+ - -
(E,UGHN(E_UG) #¢
as in Chapter I:
1. ETnc # E NGt ¢ implies that to
- E_ ¥ o or E , T o impli
get closer to f we would have to take r ¢ R,-
+ -
2. i i f - = 0.
E_N Er # ¢ implies || rHK

Since we shall again be primarily interested in those f € C(K)

for which this intersection is empty for all r ¢ Rl’ let

C(K) = (£ € C(K): p = inf ||£ -] >0 and
r€R1

+ o+ - -
(Er U Gr) n (Er U Gr) = ¢ for all r ¢ Rl}.

Condition H for the case of rational functions becomes:
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Condition H: The subspace R of C(S) will be said to

satisfy condition H if there exists an element ry € R1 such

that

r(x) < u(x) for all x €J
and

r(x) > 4(x) for all x € L.

Remark: 1If R1 contains two distinct elements r1 and r2
and either P + r1Q or P+ rZQ is a Haar subspace, then R
satisfies condition H.

Proof: Suppose P + er is a Haar subspace of dimension d.

Let
r () = p;(x)/a, (x),
rz(x) = pz(x)/qz(x)‘

Then
pl(X) + pz(x)

o) T I e, <N

Further, since rl(x), rz(x) 2 4(x) for all x € L and

rl(x), r2(x) < wu(x) for all x € J,

ql(X)L(X) +9,(x)L(x)
q,(x) +q,(x)

ro(x) > = 4(x) for all x € L,

9, G (x) + g, x)p(x)
q;(x) +q,()

ro(x) < =u(x) for all x € J,

with equality occurring if and only if both rl(x) and rz(x)

intersect the bounding curve at that point. Since P + er

is
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a Haar subspace containing P; - T = ql(rl - r2), r, can

intersect £ and pu  in at most d-1 points. Then construct

*

* . _ +
® = P +r2q (;P+r2Q with ¢(x) =41 for x €G

r b}

o

p(x) = -1 for x ecr (3, p. 78]. Then
(o]

* * +
(P +24q)&x) >0 for xe G  (here r =1, =1),
o

* * -
(p +pq)x) <0 for xEGr (here r =« =u).
o

<+
Now there exists an open set U in L containing Gr on

* * °
which p +4 q >0 and an open set V in J containing

- * *
Gr on which p 4+ q < 0. Also we can find positive real
o

numbers such that

€1°€2

r, () 2 4(x) + e for x€L.U,

ro(x) spx) - ¢ for x €J . V.

2
*
There is a §_ > 0 such that for § <8 _, (9 - 8a)(x) >0
on S.
Now assume § < 60 and let x € U. Then

* *
(po + 5p ) (x) @ q, - 89 ) (x)

- > = = L(x).
(qo - 8q ) (x) (<:1o - 8q ) (x)

And x € V implies

* *
(pg ¥ 6P )(x) (g, - Spa ) (x)
<

* * = p(x).
(q, - 69 ) (x) @, - 89 ) ()

By continuity we can choose § sufficiently small so that

*
(p, + 6P ) (x)

>4(x) on L _y
(q, - 69 ) ()
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and

(p, + 67 ) ()
* <u(x) on J .V, |
(a, - 62 )0

Now, as in Theorem 1.3, we shall characterize best

approximations by means of a linear functional.

Theorem 2.4: Suppose R satisfies condition H. Then a

*
necessary and sufficient condition for r € R1 to be a best
restricted rational approximation to f € E(K) is that there

exist k (< dim (P + r*Q) + 1) critical points

X in E UueG ,

1,-..,Xk
r r

such that {xl,...,xk} nNE, ¥ ¢; and a linear functional L
r
defined by

k
L) = T Ahx)

i=1l

*
such that L wvanishes on P+ r Q and

+ +
Xi >0 for X, €EE UG .,
r r
xi < 0 for xi €EE UG * °
r r
*
Proof: (Sufficiency) Suppose r satisfies the hypotheses

and r 1is a better restricted rational approximation to f£.

Then

IE - el < lIE = £
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For p(x) and q(x) such that r(x) = p(x)/q(x), consider

p(x) - r*(X)q(X)- Now
* *
sgn (p(x) - r (x)q(x)) =sgn (r(x) - r (x))
since q(x) > 0 for all x € S.

r*(xi) >0 for all x; € E (xi > 0),

r(xi)
r(xi) - r*(xi) < 0 for all x, €E _ (ki < 0),

*

r(xi) -r (xi) 20 for all x, € G * (ki > 0),
* -

r(xi) -r (xi) £ 0 for all x, €G (xi < 0).

By hypothesis, at least one X €E ., so
r

L(p(x) - r (x)q(x)) > 0.

This is a contradiction to L vanishing on P + r*Q, so r
is a best restricted rational approximation.
(Necessity) Let r* be a best restricted rational
approximation to f with corresponding sets E ,, G ,. Let
r r

* * *
{pl,...,pn,r qpseeest qm} be a basis for P+ r Q. Let T

be defined by

r = {(zl,...,zn+m) € Rn+m: z; = pi(x), i=1,...,n;

* +
r (x)q;(x),i =1,...,m for x EE*UG+*}
r r

N
]

) € Rn+m: z, = -pi(x), i=1,...,n;

«sZ .
>“n4m i

[
-
.

.

-r*(x)qi(x), i=1l,...,m for x € E—* Uc,l-
r r

N
]
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0 € col) since otherwise, by the theorem on linear inequal-

ities [3, p. 19] there is a vector (Cl""’cn-hn) such that

ntm n
£ cz >0 for all Z ¢ . But then g(x) = £ c.p, (x) +
Soid ZoTid

i=1 i=1

u * . o + + ;
i2_',1cn+ir q;(x) 1is positive on Er* U G 4 and negative on

= r

E-* U G-*. This contradicts Theorem 2.3. But O € co(l)

r r
implies there exist k (< n+mtl) positive constants

8s-+-»B, and k points 'z'l,...,?'fk of T such that

Letting

f"l if ;i (pl(xi) 3o ’pn(xi) ar*ql(xi) seee ar*qm(xi))

-1 if Zi = (-pl(xi)"“’"pn(xi)’-r ql(xi);""'r qm(xi))

and ), = B.e., we obtain
i ii

Kk
L(th) = T A\ h(x))
=14

*
which is a continuous linear functional vanishing on P + r Q
with

)‘i>0 for x GE*UG*,

)‘i<0 for x.EE*UG*.

must be in E %+ Suppose not; then
r

for each r ¢ Ry» r(x) = p(x)/q(x), we have

At least one of the xi's

+
{,(xi) for X, €G ,»

r(xi) _
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r(xi) = “‘(xi) for xi € Gr*.

Indeed, if there is an r € R1 with

+
r(xi) > l,(xi) for some xiG G ,»

r
then
*
r(x;) - r (xi) >0
and
*
p(x;) - ra(x;,) >0.
Thus
(p( *a(x,)) > 0
A (Px) - ralxy
*
so L(p -rq) >0 which is a contradiction. [ |

Remark: If P + r*Q is a d-dimensional Haar subspace, then

k=d + 1. (For proof see Remark 1 following Theorem 1.3.)

Although Theorem 1.4 has no direct generalization to
the case of rational approximation, the following theorem,
valid in the standard case [3, p. 1647 and in ordinary restricted

rational approximation [15] remains valid in our case.

Theorem 2.5: Let f € E(K) and r* € Rl be a best restricted
*
rational approximation to f. If P+ r Q is a Haar subspace
*
then r i8 unique.
*

Proof: Suppose P+ r Q is a Haar subspace of dimension d
and that ro(x) = po(x)/qo(x) is also a best restricted rational

* *
approximation to f. Then P, - T qo € P+rQ and

*

1
I,"T *g (P, -t q).
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Since qo(x) >0 for all x € S, we have

* *
sgn (po -r qo) = sgn (ro -r).

*
Now the linear functional characterizing r as a best
approximation must be based on d + 1 points by the Remark
*
following Theorem 2.4. Further, ||f - ro“l( =||f -r “K’ thus

for X €E 4,
r

sgn (ry - T () = sgn [(£ - 1)) - (£ - r )@,
i.e.,

+
20 for x €E ,,

* r
(r, - ) (x) ]
< 0 for x €E _.

r

n

+ *
Also x € G, implies r (x) = {(x) so

r

*
(r, - 1) =20,

- . . *
and x € G implies r (x) = p(x) so
r

x - ) x) s 0.

* . + +
But then L(po-rqo)zo since )\i>0 for xiEE*UG*

- - * I T
and xi<0 for xieE*UG*. However po-rqo€P+rQ,

* r r *
thus L(po - r qo) =0 and (po -r qo)(x) must have n + 1

= ¥ *
zeros. Thus P,=Td_ and r =r. |

In the case of ordinary restricted rational approxima-
tion, an alternation theorem analogous to Theorem 1.5 is valid

(1531. This is also true here.
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Theorem 2.6: Let S = [a,b], f € C(K) and R satisfy con-
dition H. Llet r € Rl’
1. 1f e(x) = f(x) - r(x) has at least 2 + v

alternations (i.e. there are distinct points

X <Xy <o X in [a,b]

1 v+1

with at least one of the following holding at each point

a. e )| = llellgs x; €K,
or
b. r(x,) =4(x), x; €L,
or
c. r(x;) =p@), x, €7,
and for

+1 if e(xi) =HeHK or r(xi) =L(xi),

o(x;) =
-l if e(x)) = —HeHK or r(x) =u(x.),

c(xi) = (-1)io(xo) also holds for i = 0,1,...,v+l) where
v is the maximum number of zeros of elements in P + rQ, then
r 1is a best restricted rational approximation to f from Rl'
2. If r is a best restricted rational approximation
to f, then e has at least 1 + 7 alternations where T is

the dimension of the largest Haar subspace of P + Q.

Proof: 1. Suppose e(x) has 2 + vy alternations and r is
not the best restricted rational approximation to f from Rl'

Then by Theorem 2.3 there exists g(x) € P + rQ such that




p(x) >0
and

p(x) < 0

But e alternates 2 + v

least 1 +v zeros since
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+
for all x €E+UG
r r

for all x € E UG .
r r

times, thus ¢(x) must have at

it is continuous. This is a

contradiction, thus r must be a best restricted rational

approximation to f from

Rl.

2. let r be a best restricted rational approxima-

tion to f from Rl' Let

M be a Haar subspace of P + rQ

of dimension T with basis ¢1,...,¢,n. Theorem 2.3 implies

there does not exist ¢ €

>0

o (x)
<0

M with

for all x € ETU G¥
r r

for all x € E UG .
r r

Then by the theorem on linear inequalities [3, p. 19],

0 € co ([(g;(x),-

U { (-, (x

So, by the theorem of Cara
points Xo < X7 <eeo< Xy
BO’ cee ’Bk such that

k

L 8.e.9,.(x.)
j=p LT3

g
:
U
2
U]
®
[

+
L (R)): € EX UG}
),---,-cpn(X))= x € E; U G;}).

theodory there exist k+ 1 (< T + 1)

in E_ UG, and positive numbers

=0 for j=1,...,7

. + + - - . - -
+1 if x]..GEI_UGr and €5 1 if xiEErUGr.
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k
L AN (x,) =0 for j=1,...,7.
i=0 *J 1
Since k >1 contradicts the Haar condition, k =17 and by
]
A8

a wvell-known lemma for Haar systems [3, p. 74] the

alternate in sign. This means that e alternates in sign

at least 71+ 1 times since the sign of )‘i is determined

by the critical point x; €E_UG.. B

It was mentioned in Chapter I that a Strong Uniqueness

Theorem holds for rational approximations both in the standard

theory and in the restricted case. Likewise it is valid here.

The proof uses the following lemma found in [3, p. 1657].

* * * *
Lemma 2.1: Let r =p /q € R be such that for P + r Q

as a subspace of C(K) we have dim (P + r*Q) =d=s +t - 1.

If p€ P, q €Q satisfy

lell, + lall = 1"l + lla*|l,s

*
P =rq,

and
q(x) 2 0 for all x € K,

* *
them p = p and q = q on K.
* *
Proof: If r =0, then p =0 and p = 0. Furthermore

dim Q = 1. Since HqHK = \\q*HK and q(x)q*(x) =2 0, it follows

*
that q = q on K.
* *

* * *
r #0, then p=rq and p =r q implies

If

* *
p,p € PN r Q. However,

dim (P +r'Q) < dim P + dim Q - dim (P n r'Q).
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Thus dim (P N r*Q) <1, and so p is a scalar multiple of
* * * *

p . Since HpHK = ||p HK and p(x)p (x) 20, p =p and

*

q =q on K. B

S are such that

We shall assume that P, Q, K and

on

if P1sPy € P, 454, € Q are such that Py = Pys 4y =9y
K, then Py =P, and q, =4q, on S. This will be the case
if P, Q are spaces of analytic functions of C(S) and K

has an infinite number of points or if P, Q are Haar sub-

spaces of C(S) and K contains at least maximum {s,t}

points. We shall assume K 1is a perfect set (this implies

K contains an infinite number of points).

*
Theorem 2.7: Let r Dbe a best restricted rational approxima-

f € E(K) from Rl' If P+ r*Q is a Haar subspace

s+t - 1=d, then there exists a

tion to
of C(S) of dimension

number +vy > 0 such that for all r € Rl’
* *
£ - rllg 2 N - ol + vz - .

*
Proof: If r =r we can choose any positive number for .

*
Thus we shall assume r # r . Suppose no such vy exists.

Then there is a sequence {r = pn/qn} S Ry with

A

g™ - =l

Yn

and v -0 as n - =,
n

We may assume

lell + lall, = 1-
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Then by the compactness of P and Q, there exist P, € P,

qOEQ such that {pn} converges uniformly to p_  on K,

{qn} converges uniformly to q, on K and

HPOHK + “qonx = L

Setting r, = po/qo whenever q, # 0, we have r -~ Also

Yy 0 and

eyl = el = e =

T

implies Hrn“l( and Hr* - rnHK are bounded.
*

Yn 2
- rn”K

Now r is a best restricted rational approximation

to f so there is a continuous linear functional L vanishing

*
on P+ r Q where

d+1

L(h) = £ ah(x))
=1 b 1

with X €E UG _,, at least one X, €E ., and
r r r

+ +
>0 for x, €E UG,
r r

A,

i
< 0 for xiGE*UG*.
r r

Let o(xi) = sgn )‘i' Then for r = p/q € Rl’

*
ox) - r q)(xi) 2 0 for X, € Gr*.

Thus for r = pn/qn

*
0l) (7 = T 9 (x) 20 for x, €6 5,

and taking limits



.hqllnr,lﬂ.wv.'...‘ah.llallg‘
gm .
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*
ox)(p - rq)lx;) 20 for x € Gr*-

Now for xi € Er*,

IE - r ll -l - 2Tl

ylle - el

() (E = r )6,) = ol ) (E = T)(x)

\")

= o) - ),

Thus letting n - o,

0= c(xi) (r* - ro)(xi).

Since qo(x) 20
020k ) (x.)
cxirqo po i
or

o) (b, = T'q ) (x,) = 0.

*
But L(po -r qo) =0, so

*
g(xi) (po -r qo) (xi) =0 for i=1,...,d+1

*
and since P+ r Q is a Haar subspace of dimension d, P, =Td .
*

mn
0

*
P and q,

Then, using the lemma, we conclude P,
* *

Now qn - q and q (x) >0 for all x € K implies there exists

a number § > 0 such that qn(x) > 8 for all x € K and n

sufficiently large.

If x, € Gr* and r = p/q € Rl’ we have

cx)(p - T D (x;) 2 0

*
and L(p -rq) =0, so
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*
max o(x.)(rq - p)(x;) >0
i i
x .€E
i *
r
* *

since P+ r Q is a Haar subspace and no ¢ € P+ r Q can
have zeros at all X, €E L, UG .- Thus there is a number

r r
¢ >0 such that

inf max o(xi)(r*q - p) (xi) = ¢
¢=p-T q€T xieEr*
llellg=1

where T 1is the closed set

T={p - r*q €P+ r*Q: c(xi)(p - r*q)(xi) 20

for all «x, € Gr*}.

*
(Notice that if p/q € Ry> then p -1 q €T.) Now for r,

let X0 € Er* be such that

*
e ol (5, - p) () = o) a - P, )
i

Then consider the following:

* *
Yol = rlle = e = w fl = WE - =il
2 oy ) (E = £ )G, ) - o, ) (E = T, )

- cT(Xin

*
Y - rn)(xin)
1

in) qn (x in)

= o(x, )t a, - P ) (x
*
z o(x; ) aq, - p)G;)
*
2 clle’a, - pll

c 6“r* - rn“K'

)
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That is, Y, ¢ 6. But this contradicts Y, 0. Thus there

is a y>0 such that

e - el = N - e+ Ve - )

for all r €R . [ |

The continuity of the best approximation operator can

now easily be shown as in the polynomial case.

* ~
Corollary: Let f € C(K) with best restricted rational

* *
approximation r € Rl' Let P+ r Q be a Haar subsapce of

C(S) of dimension s + t - 1. Then there exists a number

8 > 0 such that for any f € E(K) with a corresponding best

restricted rational approximation r,

I - ell, < elle" - .

Proof: For any f € E(K) with corresponding best restricted

rational approximation r, the previous theorem implies

Ve - 2l < NE - ol - NET -

Thus
L T e T N P
T T T T T
<N - fll +UE - £l -
So

e - el < 2v e - € G=2v"H. n
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Section 4: Equaltiy in the Bounding Curves

In all our considerations in Chapter I and in the first
two sections of this chapter, we have assumed that the functions

{ and p satisfy
L(x) < p(x) for all x € J N L.

In this section we wish to investigate the problem of finding
a best restricted rational approximation if we allow 4 (x) = u(x)
for some x € JN L. Since results for the case of generalized
rational approximation are valid for generalized polynomial
approximation, we will consider the following problem:
let S = [a,b] be a finite interval of the real line
and K, J =L perfect sets, Let Z(x), w(x) be continuous
real valued functions on J =L with () < u(x) for x € J.
Let P be the subspace of C(S) spanned by the s
linearly independent elements wl(x),...,ws (x) and Q the
subspace of C(S) spanned by the t 1linearly independent
elements vl(x),...,vt(x). Now for a fixed £ € C(K) the
existence Theorems 2.1 and 2.2 are valid for the corresponding

sets R and R; <R, when R, # ¢. No special properties are

1
required of £ and pu other than those imposed in the first
part of this chapter.

However the characterization theorems in the second

section of this chapter required

L(x) < u(x) for all x € J.
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G.D. Taylor [24] and L.L. Schumaker and G.D. Taylor
(22 considered the problem of existence and characterizations
of best ordinary restricted approximation (where
§=K=J=1L=[a,b]) to a given function £ € C(S) for the
equality case by extended Chebyshev polynomials, and remarked
that for ordinary rational functions the same results could
be obtained. The concept of an extended Chebyshev system, found

in (8, p. 6 7], is very useful here.

Definition: Let U be the space spanned by n linearly
independent functions pj,....p in cfa,b]. U will be called
an extended Chebyshev system of order p provided y € C(p-l)[a,b],

i=1,...,n and for all choices t» i=1,...,n,
a stl €ees< tnsb,

(equality can occur in groups of at most p consecutive ti's)

EZ(tl) Ez(tz) ¢ ° o az(tn)

*(1,...,n
U >= L] . . . . L] L] L] L] . . L Ll L] > 0
Eyseeest

() G (t) « o oD ()
~ - . .~ - (s) .
where p,i(tj) p.i(tj) if tj-l < tj, p.i(tj) My (tj) if
tj-s-1<tj-s B, .= tj, 1 <1ié€n.

Let v € U. We say v has a zero of order v (< p-1)
if = ' =,,.= (V'l) =
at € € [a,b] i v(to) v (to) v (to) 0 and
v(v) (to) # 0. We say v has a zero of order at least p at

t, € La,b] if v(to) = v'(to) =...= v(p-l)(to) = 0.
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We shall assume P and Q are extended Chebyshev
systems of the same order ), and that 4f(x) and p(x) are

as follows:

L(xi) = u(xi) for 1 =1,...,k;
(let T = {xl,...,xk} < J),

£L(x) < u(x) for all x€J ~T,
and there exists § > 0 such that

m,~1
i

L(x) = T a;
j=0

j(x - xi)j - ‘x - xi‘ 1

for x € [xi -8, x, +6]NnJ,
m, -1
i j mi-
px) = jzo aij(x - xi) + ‘x - xi\

for x € [xi -8, x, * 51N J,

k. o ,
where {mi}i=1 is a set of positive integers, {aij : i —kl,...,k,
j= 0,...,mi-1} is a set of real numbers, and let m = § m_,
(mi <\ for 1i=1,...,k).

We wish to consider the set

R={r(x) =px)/qx): px) € P, q(x) €Q, q(x) >0

for all x € s},

and

R, = {r € Rt L(x) < r(x) <p(x) for all x € J}.

We shall assume Ry #¢, T € Ry implies r(j)(xi) =ay, for

j = 0,...,!!11‘1 and i = l,ooo’ko Let
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C,(8) = {f € C(S8) ~R: f(xi) =a, , i=1,...,k}.

For f € CI(S) and r € Rl’ recall

E} = {x €Ki £(x) - t(x) = ||f - o]l ],
E; ={x € K: f(x) - r(x) = -||f - rHK},
G: ={x€eJ~T: rx)=tx)]},
c; ={XxX€J~T: r(x)=p}.

If for a fixed £ € Cl(S) and some r € Rl’
+, .t - -
(E,UG)N (E_UG) #g,

then r is a best restricted rational approximation since
our previous remarks concerning this case are still valid.

Thus we shall restrict our attention to £ € E(S) where

CE) ={fec,®: ElUGHN E UG =g
for all r € R,}.

*
For r € Rl’ consider the set

* * * o
M,={p+rqeP+rQ: (p-rqd
r

(xi) = 0,

i=1,..0,k, § =0,1,.00,m -1].

*
(Let the dimension of P +r Q be d. Then the dimension of

M, is d-m.) The condition (p - r*q)(j)(xi) =0 is equi-
r
valent [ 207 to (p/q)(j)(xi) = r*(j)(xi) (the proof proceeds

by induction using p(j)(xi) = [(p/q)q](j)(xi)). M, is a

r

subspace of C(S) and if r, € R, with r_ = pl/ql, then

1



ﬂ..ﬁ!i.?.ﬂ.l,l]lé‘
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*
Pp-Tq €M, by the form of f and u. Each element
r .

mi at x. for

has a zero of order at least i

o EM,
r
i=1’..‘,k.

The following lemma is a Kolmogorov type theorem. It

will be used to construct a linear functional which characterizes
a best restricted rational approximation.

~ * *
f €C(S). Let r € R1 with P+ r Q an

Lemma 2.2: Let
A and dimension d. 1If

extended Chebyshev system of order
m, <)\ for i=1,...,ky, and m < d-1, then r is not a

best restricted rational approximation to f if there is an

element ® EM with
r

6(x) >0 for all x € EY_yc*,,
r r

¢p(x) < 0 for all x €E , UG 4.
r r

* * *
Proof: Suppose such a ¢ =p +r q exists and let r =p /q .

*
| %
Consider r, = R*ﬁﬂ = ai . Since q*(x) >0 for all x €S,
q - &p &

for sufficiently small positive § (say § < 61),

*
(@ -8q)x) = qé(x) >0 for all x € S.

Thus r6 €R. g€EM " implies (p +r*q)(j)(xi) =0 for
r

1= 1,000,k §=0,0,m 15 i, (o/-0) D)) = 3 )

= aij for i=1,...,k and j = 0,...,mi-1. We wish to

show that there is a § > 0 such that T € R,y and rs is
*

a better restricted rational approximation to f than r .



AT bt Iwn'ﬁ‘
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*
* \£-x )
fx) -r x) > -

*
* Hf'r HK
Uf{x €s: f(x)-r(x)<-——2-—- and ¢(x) < 0}.

Let 0 = {x € S: and @¢(x) > 0}

Then x € 0N K implies

1260 - £ 0| < 1€ - 2

and for x € K ~ 0

\f(x) - ré(x)\ < ||f - r*\\K

for 6§ sufficiently small, say 0 < § < 60, as in the proof

*
of Theorem 2.3. So ||f - rGHK <||f -« HK Since

*
are extended Chebyshev systems of

r6 = B*—ﬂg and P, Q
qQ - 08q (m.)
order )\ 2 mtl, r, t
i=1,...,k. So, using Taylor series,
m, -1 my
i j (@,) (x-x,)
(x - xi) + r, (c) _Fn-:)-i—

is continuous in a neighborhood of X»

r. x) = ¥ a,
1S} =0 ij
and each x € [xi - €

for some ¢, x. - ¢, <c sx, +
L § i i €y

+ ei]’ i=1,...,k, we conclude that

x,
i
L(x) = T (x) < px) for all x € ([xi - e X, + ei] nJ).
k
Now setting U = U ([xi -e %, ei] N S), we can find §

i=1l
sufficiently small, say § < 6ys SO that

L(x) < r6(x) < w(x) for all x € (0 =L1L) ~ U.

Then & < min {8, 61,62} gives r; € Ry and

I£ - rellg < llE-<T,. W
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~ * *
Theorem 2.8: Let f € C(S), r € Ry and P+ r Q be an
extended Chebyshev system of order )\ and dimension

d =s +t - 1. Suppose also that m, <\ for i=1,...,k

and m < d-1. Then the following statements are equivalent:

1, r* is a best restricted rational approximation
-

to f.

2. The origin of Euclidean d-m space belongs to the
convex hull of {o(x)%: & € E L UG .} where o(x) = +1 if

+ + r r - -

x €EL,UG,, and o(x) =-1 if x€E UG ,, and
" Tr r r r h
X = (¢1(x),...,¢d_m(x)) with QyrecesPqy 2 basis for M . ’

r
3. There exists a continuous linear functional

*
L € (c[a,b]) basedon y =d -m+ 1 points yl,...,yu

in E L, UG ,,
r r

L(h)

o
Z \hO)
i=1
-+
>0 for yieE*UG+*’
r r
with
A, <0 for Yy €EE,L UG,
r r

such that L(g) =0 for all ¢ €M .
r
4. There exist d - m + 1 points

z, <2, <ees<l 2 in E + UG

2 d-mtl

such that

oz mE) = (D Moz pm(z ), 1= 1, ,d-mi

m, m
where n(zi) = sgn {(zi - xl) eee (2, - Xx



93

Proof: (1. = 2.) Suppose 2. is not true. Then by the theorem

on linear inequalities [3, p. 197, there is a ¢ € M , with
r
o(x)p(x) >0 for all x € E , UG 4, i.e.
r r

+ +
p(x) >0 for x €E , UG ,
r r

and

p(x) <0 for x € E'* U G'*.

r r

*
But then, by Lemma 2.2, r 1is not a best restricted rational
approximation.

- + .+
(2. 2 3.) 1If o ¢ co({(¢1(y),...,¢d_m(y)): y€E _ UG %)
r r
U (g3 seees-gy ()): v € E", UG™.}), then by the Theorem
r r
of Caratheodory there exist positive numbers {ai}¥=1 with

yYy<d-m+1l and
y

z
i=

laic<yi)$<yi> =3

where E(Yi) = (@ (7)sev sy (¥;)) Now letting A, =o,0(y,),

we obtain

¥
E Xi@j(yi) =0 for j=1,...,d-m,

i=1
and v
L) = £ Ah0))

i=1

is a continuous linear functional on C[a,b] whose null

space contains M .. If y<d -m+ 1, then det [¢5(§i)] =0
r
i,j =1,...,d-m where ;i =y, for i =1,...,y and

- ,d-m . . .
{yi}i=y+1 is a set of points in (S ~ T) -~ {yl,...,yy}.

Then there exist constants 51""’Bd-m’ not all zero, with

)
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d-m -
£ B.9.(y.) =0.
j=1 4371
d-m d-
But then ¢= T B.¢. €M has d - m zeros at {yi}i=T
i=1 373 r

and thus a total of at least d zeros. This is a contradiction

* *
since P+ r Q 1is an extended Chebyshev system and M , € P + r Q.

r
Thus y=d -m+ 1.
d-m+l
(3.2 4.) We have T A o.(y.) =0 for j=1,...,8-m,
=1y 1
and y,; < Yo <eoo< Yy 1) {yi}i=1 < Er* V] Gr*. Let
o, = ‘Xi" i=1,...,d-mrtl. We can use Cramer's rule to solve
d-mt+l
122 aic(ui)wj(yi) = -alc(y1)¢j(yl), j=1,...,d-m,

and obtain

it o )
aid(yi) (-1) alc(yl) (Ai/Al) for i=2,...,d-mtl,

where

QoY 90 ) 9Oy e wl(yd-m+1)

4, = . .
l .

Pa-m1) o0 Panio1)) Panis)) ot PanCdomi)
for i =1,...,d-mtl,

b, #0 for i=1,,..,d-m+l since A, =0 implies the
existence of a non-zero function ¢ € P + r*Q with d zeros
which cannot happen since P + r*Q is an extended Chebyshev
system.

Now let ZyseeesZg o9 be an arbitrary set of d - m -1

consecutive points in S ~ T. Construct the function ¢(x)




p; &)

px) =

Qd_m(x)

*
p€M, and ¢ # 0 since P+ rQ is an extended Chebyshev
r .

system. ¢ has exactly d-1 zeros counting multiplicities.
¢ changes sign at each z; and at x, if and only if
is odd. Let Z, =¥ 49 i=1,...,d-m-1. Then
"p(yl) = AZ’
9o(y,) = B
1f X, aeeenX, € (yl’y2)’ then
1 1
m, +...4m,
i i,
sgn A, = sgn @(y;) = (-1) 1 sgn 9(y,)
m, +...+mi
= ¢ “1 sgn 8
= (n(yz)/ﬂ(yl)) Sgn Al’
Now let Z, =Yys 25 T Vi i=2,.0.,d-m-1. If
X osesX then
9(y,) = =83,
CP(Y3) = 'Azi
and
+...m,
"1 mJLZ
-sgn B, = sgn @(y,) = (-1) sgn (y,)
+..I
510 M,
= (-1) sgn 8,

95

¢1(zl) oee cpl(zd )

-m-1

P4-n(z1) ®d-nZd-m-1)

=-(m (y3)/n (yz)) sgn B,-

m

i
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Continuing in this manner, we obtain

sgn A, . T (n(yk+1)/ﬂ(yk)) sgn 8,5, k = 1,...,d-m,

or
(-1) oy = (MG MO0 )»

and thus

k+1

c(yk)rr(yk) = (-1) °(y1)"(y1)'

(4.= 1.) Assume l. is not true, that is, r € Rl

and ||f - roHK < ||f - r*“K. Let r = pO/qo with

eyl *+ lagllg = 1o 1%l + lla¥ll = 1 and By - £'q, €M -

r
Let x € E ,. Since \£ - roHK < ||f - r*“K, and
r

* *
- = - - (f -
L f -r ( ro),

*
we have sgn (ro -r )(x) =o(k) for all x € E _. Also
r

r €R

o 1 implies

* +
(ro -r )(x) =20 for all x €G _,

r
* -
(r0 -r)(x) <0 for all x € G ,-
r
Thus, if we define
*
+1 if ro(x) =r (x) = 4L(x),

* * *
sgn (r, - T )() =-1 if r () =T () =px),

*
sgn (r° - r )(x) otherwise,

* *
then sgn (ry, - r )(x) = o(x) for all x €E 4, UG 4, and

r r

by 4. there exist points ZyseeesZd_ng] in E , UG 4, with
r

r

T -..-‘
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i+1 sgn* (ro - r*) (zl)rr(zl)

(-1)

sgn* (ro - r*)(zi)n(zi)

for i=1,...,d-mtl.

*
If ro(zi) =r (zi) for i 1,...,d-mt+l, then

*q = 0
Pp - T4, = _
since M , is an extended Chebyshev system and Lemma 2.1
r
*
yields roEr . This is a contradiction since r, is a
*
better restricted rational approximation to f than r . 5
" b
So let z; be such that ro(zi) $r (zi), FUCTTRTFL P
*
such that ro(zi+y) =r (zi+Y) for y=1,...,t and
*
ToZige) # 7 (Byypyy). Assume X ,ec00x) € (22,0, 4))

and that mjl +...+ mj2

441 = "D

+ + +
ZiEE*UG*. If ZiEE*:
r r r

is odd, g(zi) =+l and t is odd.

t+1

Then o(z c(zi) = -1, o(zi) = +4+1 1implies

* *
£z) -r(e) <|f - |l <lE-7| =£@) -1 @)

* + *
Thus ro(zi) -r (zi) > 0. 1If z; € Gr*, r (zi) = L(zi)
*
and ro(zi) > L(zi), so ro(zi) -r (zi) > 0. Similarly
*
°(zi+t+1) = -1 implies ro(zi) -r (zi) < 0. Also
(r-r*)(j)(x)=0 for j =0 m,-1, i = j j
o i seeesm -1, 120000 dpe
*
Thus counting multiplicities, r,-r hasa total of at

least qu +...+m,, + t =zeros in (zi,z This is an

j2

even number. If r,

i+
)

*
r had no other zeros in (Zi’z

i+t+l

we would have c(zi) = O(zi+t+1)' Since this is not true we

must have at least m.jl

Other cases must give the same result, that is,

+...+ mj2 +t + 1 zeros in

CPELIWV) b
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if ro(zj) # r*(zj), ro(z ) = r*(z ) for y=1,...,w

. JHy jty
and ro(zj+w+1) $r (zj+w+1)’ and if x{ll,...,x{‘2 € (zj’zj+w+1)
then r - r* has at least m +...+m +w + 1 =zeros in
° 1 1)
(Zj’zj+v+1)' This is also true if w = 0.

Now let io be the least positive integer such that

*
r (z,)#r (z.,) and let |
o ij i, 1
*
such that r (z, ) #r (z, ). Then if X _,...,x _ € (z, ,z, )
o' i, i, jl j2 i1
and the rest of T 1is exterior to (zi ’Z ), looking at
o 1
subintervals as above if necessary, m,, +...+m _ + (i, - 1)
jl j2 1 o
*
zeros are interior to (zi 224 ). This means that ro-r has

o 1
a total of d =zeros, counting multiplicities, in [a,b].

be the greatest positive integer

* *
Now consider P, - T4, €M _,. We have shown that P, - T dg

r
has a zero of multiplicity m, at each X, and from the above
*
discussion, counting other zeros as simple zeros, (p_ -t qo)(Y) =0
*
whenever (ro -r )({y) =0 since qo(y) >0 for all y € S.
*

Th r has d zeros But * € P+ r*
us po q0 ros. u po r qo Q an

extended Chebyshev system of dimension d which implies

*
Pp ~ T 4 = 0. We have already shown this to be a contradiction. I

Theorems concerning the uniqueness of the best restricted
rational approximation in the equality case described here differ
only slightly from the same theorems in the inequality case.

The simple modifications needed for their proofs will be mentioned
but the details will not be carried out. (For uniqueness results
in a more general setting where the forms of 4 and p are

not specified, see L.L. Schumaker and G.D. Taylor [22].)




e T



99

Theorem 2.9: Let £ € E(S) and r* € Rl be a best restricted
rational approximation to f. If P + r*Q is an extended

Chebyshev system of dimension d and order ) with m, E DY

for i =1,...,k and m < d-1, then r* is unique.

Proof: This follows in the same manner as the proof of

Theorem 2.5. It is necessary only to note that if r = po/qo € R,
then P, + r*q0 EM <P+ r*Q, and that the linear functional

L whose existence is given by Theorem 2.8 vanishes on M _. B

r

Both in Chapter I and Section 3 of Chapter II, we found

it necessary to add another restriction, condition H, to the
set of approximants in order to say that the set of points Yi»
on which the characterizing functional L depends, included
a point of E ,. So far in this section we have not made such
an aSSumptionrbut neither have we any guarantee that one of the
yi's described above is in E ,. This will be necessary for

r

the proof of the Strong Uniqueness Theorem given here, so we

introduce condition H'.

Condition H': The set R will be said to satisfy condition H'

if there exists an r € R with

1

L(x) <« r(x) < u(x) for all x € (J =1) ~ T.

Lemma 2.3: Given the hypotheses of Theorem 2.9 and R satisfy-
ing condition H', then the set of points in 3. of Theorem 2.8

on which L is based must contain at least one element of E -
r

Proof: If all the yi's are in G ,, then for each r ¢ Rys

r
r(x) = p(x)/q(x), we have
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<+
L(y;) for y, €G
r

r(y;)

and

“‘(yi) for yl E G-*-
r

r(y;)

Since if for some Yi € G-*
r

r(y;) <w(yy) = r*(yi),

then
r( *(y.) <0
yi) -r (yi <
and *
p(y;) - r q(yi) <0,
SO

*
NGpo-rgy) >0

*
which gives L(p - r q) > 0, but this is a contradiction

*
since p -r q € M, and thus
r

*
L(p - rq) =0.

But since H' is satisfied, there must be at least one Y €E ,. |

r
*
Theorem 2.10: Let r Dbe a best restricted rational approxima-
tion to £ € E(S) from R1 and let R satisfy condition H'.
*
If P+ rQ is an extended Chebyshev system of dimension
s+t -1=d and order ) and m, <\ for i=1,...,k

and m < d-1, then there exists a number <y > 0 such that

for all r € Rl’

e - el 2 NE = 2l + vlle - £

The proof is the same as in the inequality case,

Theorem 2.7, and again we obtain the continuity of the best
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restricted rational approximation operator.

Corollary: Let f* € E(S) with best restricted rational
approximation r* € Ry- Let dimension (P + r*Q) =s+t-1=4d
and P + r*Q be an extended Chebyshev system of order ),

m, <)\ for i=1l,...,k and m < d-1. Then there exists a

number g > 0 such that for any f € C(S) with a corresponding

best restricted rational approximation r,

Ie™ -l < BIE - £l

Comments: 1. In Chapter I we can consider ordinary unrestricted
approximation by choosing L =J = 3, or regular restricted
approximation by letting J = K = L. One-sided approximation
can also be considered by choosing either { or pu equal to
the function to be approximated and the appropriate J or
L = K and the other to be the empty set.

2. In Chapter II the assumption J = L was used to
show the existence of best restricted rational approximations
by bounding the sequence {rn} for which ||f - rnHK - p.
The same result is obtained if we assume J < K, L& K or
J~K=Lw.K. In this way we could consider usual un-
restricted rational approximation or one-sided rational approxima-
tion. However if we do not assume J, L are perfect sets we
cannot guarantee existence (see example 2.1).

3. The results of Section 4 of Chapter II can be
obtained with arbitrary compact subsets J, K, L of the real

line if Q = span {1} since existence of best restricted
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approximations follows from compactness considerations in
this case. We would assume P to be an extended Chebyshev
system of order )\ (= m, for i =1,...,k) and dimension

d (zm+ 1). Interpolation and approximation can then be

considered.



CHAPTER III

NON-LINEAR CHEBYSHEV APPROXIMATION
WITH SIDE CONDITIONS

A very general treatment of Chebyshev approximation
with side conditions was given by Karl-Heinz Hoffmann in his
doctoral thesis [7]. In this chapter we shall present an
expository discussion of his work. Some of the results of
Chapters I and II can be obtained using the theory presented
here,namely the Kolmogorov theorems and the characterizations
of best approximations by continuous linear functionals.
However, in obtaining results applicable to so many different
problems, some practicality is lost. For example the unique-
ness theorem presented in this chapter is difficult to apply
to any specific problem and the uniqueness theorems obtained
in Chapters I and II are not results of this work.

Any unreferenced result in this chapter is taken from

the thesis of Karl-Heinz Hoffmann.

Section 1: Definitions and Statement of the Problem and
Standard Theory

We wish to consider approximating a continuous func-
tion f which maps a compact Hausdorff space Q into a
Hilbert space H. 1let C(C[Q,H] denote the set of continuous
functions from Q to H with the topology induced by the

uniform norm,

103
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el = max £GO|s
x€Q
and let E be a Banach space. We shall assume that there
is an open subset P of E and a continuous function F

such that

F : P - c[Q,H],

and for Y € P we shall denote

F@) = v(-,) € clQ,H].

Now let V = {v(-,d): U € P} be the set of approximating
functions.

We may further restrict the set of admissible approx-
imants to a subset of V whose elements satisfy given side
conditions. Let K be the scalar field for the Hilbert
space H. We shall assume that K is either the reals or
the complex numbers. Two kinds of side conditions are con-

sidered. Let

()

]
p—
A J

g.: Qj X P-K for j ., k',

where the sets Q are compact Hausdorff sets. Define

3
V1,o ={vC,w ev: £@) =0, i=1,...,k},
V = . . (j) 0. f 11
0,1 = {v(-,¥) €V: Re gj(t ,A) = 0; for a
t(j) € Qj, and j = 1,...,k'},
Vi,1 " V1,0M VYo,1
V =v0

0,0
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When we wish to refer to any one of these sets without
specifying which one we shall write Va,B‘

The problem to be considered in this chapter is
the following:

(T) For a given function f € C[Q,H], we wish to find

v =v(,d) €V such that
o o «»8

£ - von < ||f - vl| for all v ¢ va,B’

that is, vo satisfies

£ - vl = E(£,V, g) = inf NE - vi|.

The concept of extremal signatures will play an
important role in the characterization of the v, described
above. Since we have not required Q to be a metric space,
the definitions used here differ slightly from the standard
definitions given by B. Brosowski [2].

Let ,Ay be a non-empty set of ordered pairs (e,M)
where ¢ € C[Q,H] with |lg| <1 and M cQ is closed and
non-empty, and e‘M (the restriction of ¢ to M) maps M
into the unit sphere of H. We define an equivalence relation

on ,47 as follows:

(el,Ml), (€2’M2) € xf are equivalent if

and € = e ‘ .

The following definitions explain precisely the

concept of signatures used in this work.
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Definition 3.1:

1. Let ¥ = (¢,M) be an equivalence class of/gy.
£ 1is called a signature.
2. If 21 = (el,Ml) and 22 = (€2’M2) are two

signatures, we say 21 o 22 if

Ml C M2
and

€1\M1 = e‘Z\MZ

for any arbitrary members (el,Ml) € z, and (€Z’M2) €%,

3. ¥ 1is called an extremal signature for

v(-,4) €V with respect to V if for any representative
o o,B o,

(€’M) (S

min Re (g¢(x), v(x,d) - v(x,mo» <0
xeM

for all v(-,¥) € VG’B'

4. 1If a signature 3 1is extremal for every element

v(-,U) € Va with respect to V it is called extremal

B a,B

for V .
o

—  o,8

When it is clear that we mean § 1is extremal for

v(-,ﬂo) € Va with respect to V we shall just say g

-] o,sB

is extremal for v(-,Y) €V .
o,B

The following examples will help to clarify the above
definitions.
Example 3.1: Let Q be the interval [a,b] of the real

line and V be the polynomials of degree less than or equal

to n. For f € cla,b], let v_ =v(:,U)) be the best
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approximation to f in the uniform norm. Then by the

Chebyshev alternation theorem, there exist n + 2 points

A <€ X, < X, <...X <b
1 n

2 +2

such that for y =0 or 1 (fixed)

- Y

fx;) - vo(xi) f - voH.

Now let M = {xl,... and e(xi) = (-l)Y+1. Then

’xn+2}

(e,M) is an extremal signature for v € V, since if
min e(x) (v(x) - v (x)) >0,
o
x€EM
v(x) - vo(x) must change sign at least n + 2 times. But
since v(x) - vo(x) cannot have more than n zeros this is

a contradiction.

The next example, due to B. Brosowski [2], shows that
extremal signatures do not always exist.

Example 3.2: Llet V =C[Q,H] and £ = (¢,M) any signature.

Now for (e¢,M) € ¥ we have ¢ € C[Q,H] =V. Since ¢ # 0,

Re (G(X),Q(X)) > 0.

Thus the inequality
min Re (¢(x),v(x)) < O
x€M
is invalid for v(x) = ¢(x) and therefore no signature can

be extremal.
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The following inclusion theorem makes use of extremal
signatures.
Theorem 3.1: Let f € C[Q,H] with T extremal for

VO = v(-’ﬂjo) € VQ”B. If (¢,M) € £ and

£(x) - vx,U) = e|f(x) - vx,U)||, for all x € M,
then

|

min Hf(x) - v(x,mo)HH < E(f,Va ) < Hf - VOL.

XEM ,B

Meinardus and Schwedt [17] proved a similar inclusion
theorem for the approximation of real or complex valued func-
tions and this can easily be generalized to the case of approx-
imation with side conditions.

Let the signature x[f] be defined as follows:

£[£] = (c,ML£]) where
Mie) = (x e [£6oll, = €,

¢ €8, = {e€ClQH]: |el 51, etx) = \ffx > x € ML)

Using this signature, the Kolmogorov criterion can be stated

as:

Theorem 3.2: Let f € C[Q,H], Vy 8 < c(Q,H]. 1f g[f - N
b

is extremal for v_=v(., Y ) €V then v is a solution
o o o,B o

of the problem (T) for f.

This theorem gives a sufficient condition for v,

to be an absolute or global minimal solution to the problem

(T), i.e., if v, satisfies the hypotheses of Theorem 3.2,

then
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B - v || <|[[f -v|]| for all v ¢ Vo8

We shall call v, a local minimal solution of the
problem (T) if there is a neighborhood (in the relative

topology on Va ) U_ of v, such that

o

»B

£ - VOH < ||f - vi|, for all v € u,-

Throughout this chapter we shall not be concerned
with the existence of a solution to the problem (T) but
rather with the characterization of solutions whenever they

do exist.

Section 2: Structure of V and Properties of the Side
Conditions

We wish to assume the Frechet differentiability of
the functions v, fi’ gj with respect to the parameter .

Thus the following well known definition is in order [5, p. 92].

Definition 3.2: Let X, Y be normed linear spaces and Z an

open set in X. A function h mapping Z into Y is said

to be Frechet differentiable at a point U € Z 1if there exists

a bounded linear operator Dh(YU)(:) (called the Frechet

derivative) mapping X 1into Y such that for all b € X
het+ 1) - h@ - Dha) )|, = ol

for |lvll, ~ .

Consider the following properties:
(DP1l) The elements v(:,U) € V are Frechet differentiable

with respect to the parameter Y at every point U € P. 1In
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this case, for each point b € E, Dv(*,¥)b € C[Q,H]. Let
U] = {Dv(-,Yb: b € E} and denote the Hamel dimension

of AuU] by d[u].

(D2) The functions fi (i =1,...,k) are Frechet differ-

entiable at every point Y € P and

DE@(): E~K, i=1,...k

(D3) The functions gj (j =1,...,k") are Frechet differ-

entiable at each point Y € P and
ng(°,ﬂ)(-): E - C[Qj,K], for j =1,...,k',

where the topology on C[Qj,K] is that induced by the

uniform norm.

Assuming one or more of these properties we wish to
find necessary conditions for a local minimal solution of (T).
The regularity conditions given below will enable us to con-

struct functions in V

a,B
For v(v,mo) € V1 1 ve define
= ¢ (D) . @G) -
Mj {t e Qj' gj (t ’mo) 0}’
J ={1,...,k"},

o
L}

o = {i ey M; * ¢}

Definition 3.3:

1. The side conditions (S) are said to be (R1l)-regular

at mo if they satisfy (D2) and for every b € E such that
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Dfi(mo)b =0, 1i=1,...,k,

there exists a curve U(s) in P (U(C:): [0,1] - P, con-

tinuous), Frechet differentiable at the point s 0 with

Frechet derivative 9%'(0) and a real number s, € (0,1

such that

fi(ﬂ(S)) =0, for s € [0,so] and i =1,...,k,

™ (0) =9,
and there exists a real number ) > 0 with
%' (0) = Ab.

2. The side conditions (S) are said to be (R2)-regular

at mo if they satisfy (D3) and there exists a b € E such

that

Dfi(ﬂo)b =0 for i=1,...,k
and

Re ng(t(j),ﬂo)b > O for all j 6 Jo’ t(j) E M..

3. The side conditions are called regular at

if (D2), (D3), (R1) and (R2) are satisfied.
The following example will illustrate these definitions.

Example 3.3: Suppose E is Euclidean (n+l)-space, Q = [0,1],

H = reals, V is the set of polynomials of degree less than
n .
or equal to n, and for U = (ao,...,an) €EE, vix,% = & aixl.
i=0
For a fixed f € C[Q,H], we require v(x,d) to interpolate
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f at xl,...,xk. Then let
n i
£ = a x, - fx. for j =1,...,k
J() iio lJ (J)’ J 3 9 b}
and
n i
DE. @b =% bx, , for j=1,...,k,
j j=q 1]

for b= (b ,...,b ) € E.
(o} n

Now suppose mo € E 1is such that
fj(mo) =0, for j=1,...,k.
Then if ij(ﬂo)b = 0, let

U(s)

[
=2
o
+
2
o

and (R1) is satisfied with s, 1.

Now suppose we further require v(x,U) = f(x)

[0,17. Then let Q, =Q-= (0,17 and

=}

g 06U = £ ax - £(x),
i=0

n .
Dg, (x,b = T b.x'.
i=0 !

In this case (R2) cannot be satisfied since

n .
- i
Dgl(x,ﬂo)b iEo bix >0
n i
and f = b.x, =0
n j(ﬂo)b iEO i*;

are incompatible. However, if we let Q1 < [0,1] & {xl,...,x

and k <[] - 1 then (R2) will be satisfied for some b

(8, p. 30].

K}
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The following lemma guarantees the existence of

functions in V "close" to a given function v (-,%) ¢V .
1,1 1,1

Lemma 3.1: Let the side conditions (S) satisfy (D2), (D3) and

(R1) at uo' Then for each b € E such that

Dfi(ﬂo)b =0 for i=1,...,k
and

6] : GD)
Re ng(t ,mo)b >0 for j € Jo, t € Mj’

there exists a curve U(.) in P, Frechet differentiable

at the point s = 0, and a real number S, € (0,1 such that

fi(M(S)) =0 for s € [0,31], i=1,...,k,
Re gj(t(j),m(s)) 20 for s ¢ [0,31], j €3, t(j) € Qj’
UO) = mo’
and
A' (0) = b for some ) > O.

Proof: By the (R1l) regularity, there exist a curve U(s)

and s, € (0,11 such that

fi(M(S)) =0 for s € [O,So] i=1,...,k,
AO0) = Yy
and
U' (0) = )\b for some ) > O.

Since Y(s) 1is continuous and Y(0) = U,

U(s) - U() = o(s).
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Also g‘(t(j),°) is continuous for each t(j) € Qj’ SO
]

) PPN C)
g, (), u()) - g, (D)0 + 510)

&) 3)

i)
[gj (t ,QI(S)) = gj (t ’mo)] + [gJ (t ,uo) = gj (t

+ sAb)]

o(s) + o(s).

So gj(t(j),m(s)) = gj(t(j),ﬁlo + s\b) + o(s), and

Re gj(c(j),m(s)) = Re gj(t(j),mo) + s\ Re Dg (¢ B0 3 + o(s
by the Frechet differentiability of gj(t(j),-). Then con-
sider cases:

l. jeJ- Jo. This means Re gj(t(j),mo) >0 on
Qj which is a compact set. Thus for some sufficiently

small Sy

)

Re gj(t ,U(G)) 2 0 for s € [O,sl].

2. j € Jo. M, 1is compact, so there is an open set
]

U. 2 M, on which
J ]

Re Dg.(t(j),ﬂ )b 2d >0,
J (o]
and for some s, € (0,51],
Re gj(t(j),ﬂ(s)) >0 for t) € Uj and s € [0,s 7.

Now Qj ~ U is again compact and t(j) € Qj ~ Uj implies

3

Re gj(t(j),m(s)) 20 for s € [0,53],

where s, € (O,sz] by the same argument used in part 1. B

(j),m

(o]

)
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Using this lemma we obtain the following Kolmogorov
type theorem:
Theorem 3.3: Suppose V satisfies (D1) and the side con-
ditions (S) satisfy (D2), (D3), (R1l) and (R2). If

v = V(',Qlo) eV

o is a local minimal solution of (T) for

1,1
f € c[Q,H], then for all b € E such that

Dfi(mo)b =0 for i=1,...,k,
and

Re Dg,(t(j),m )b 20 for j€J, t(j) €M,
J o o J
we have

min Re (f(x) - v (x), Dv(x,4 )b) < O.
xeM[f-v ] © ©

Proof: The proof proceeds as in the standard case, i.e.

we assume there is a b1 € E satisfying the hypothesis and

such that
Re (f(x) - VO(X), DV(x,mo)bl) >0

for all x € M[f - VO]. Then we construct a better approx-

imation to f  using v s b,, and lemma 3.1. First, since

1’
(R2) is satisfied there is a bo € E with

Dfi(ﬂlo)bO =0 for i=1,...,k,
and

) . (3)
Re ng(t ,Mo)b0 >0 for jE€ JO, t € Mj'
Then, for o > 0 and sufficiently small,

b = bl + o bo € E,
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Dfi(uo)b =0 for i=1,...,k,

(3) . Gy
Re ng(t ,mo)b >0 for j € Jo, t ¢ Mj’

and Re (f(x) - vo(x), Dv(x,uo)b) >0 for all x € M(f - vo]
by the linearity of Dv(x,mo)(-). Let U be an open set

containing M[f - v,] and a >0 such that
Re (f(x) - vo(x), Dv(x,ﬂo)b) > 2a >0 for all x € U.
By lemma 3.1, there is a curve Y in P such that

v(-,U(s)) € Vl,l’

AO) =Y,

o

and

A’ (0) = \b, with 3 > 0.
By (D1),

Ve ,u(s)) - v U ) - DvGe,U ) (AGs) - o)

= o(jucs) - u )l

and since for any inner product Re (a,b) = -(l|all) (l|b]|), we

have

Re(f(X)-vo(x),V(x,m(S))-V(x,Mo)) = Re(f(x)-vo(X),DV(X,MO)(M(S)-NO))
+ Re(f(X)-vo(X),V(x,ﬂ(S))-V(x,mo)-DV(x,ﬂo)(w(S)-ﬂo))

2 Re (f (x)-v_(x),Dv(x,¥ ) @(s)-U))-o(lucs) - ¥ |lo)-

Dv(-,ﬂo)b € C[Q,H] for each b € E, and Dv(x,ﬂo)(-) is a
continuous linear operator from E into H for each x € Q.

Thus
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IDv e,y ) (D)) = sup |IDvx,Y ) ()]
c E=1
< sup max HDv(x,ﬂo)(c)H = sup HDV(~,MO)(C)H
llellg=1 xeQ el =1

= |lpv(e,u ) (]
This implies
Re (£(x) -V (x) v (x,U(s))-v(x,U_)) = ks Re(£(x)-v_(x),Dv(x,¥ )b)
+ Re (£(x)-v_(x),Dv(x,¥ ) (U(s)-U -Asb)) - o([ucs) - U ll.)

2 As Re(f(x)-v (x),Dv(x,8 )b) - [|£-v [|-|IDv(-,8 ) (D][o(s) - ols)

= 2a)s - o(s), for all x € U.

Thus there exists a real number s, > 0 such that s ¢ [0,s,]

implies
Re (f(x) - vo(x), v(x,U(s)) - v(x,mo)) 2 A\as for x € U.

Now let h=|f - v | - max [f(x) - v (). h>0
xEQ~U
since Q ~ U 1is compact and M[f - vo] € U. For s =0,

v ee,ues)) = vee,ull, < [IDvesd) @) - 4l + o)

< \s an(-,mo)HHbHE + o(s).

So for some 0 < S35, and s € [0,83]

l[vee,ues)) - vesU) L < 2as |IDv L) -ivll -

Choose so such that

a , h }.
axlov L P ellg” v L) el

0 < s, < min {s.,,



- g IR
£ ;
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Then for x € U,
£ Ge)-v 6,2 DT = €60 -v 6,8 )3 - 2Re (£ () -v_ () 4w 66,85 )
- Ve + IV eUGs)) - veU )

< ||f - VOHZ -2 axs_ + 4 xzsz HDV(°’MO)H§

< |lf - vol®
For x€Q ~ U,
Hf(x)-v(x,m(so))HH < Hf(x)-vo(x)\lH + Hv(x,ﬂlo)-v(x,&u(s))!\H

S|If - vyl - b+ 3 - v |-

o
Therefore v(-,m(so)) is a better approximation to f than
v(-,mo). This is a contradiction, so

min (f(x) - Vo(x)’ Dv(x,¥ )b) < 0. .
xeM[ £-v ] ©

The following lemma will be used to prove a generaliza-
tion of the "zero in the convex hull" property of the set of

extreme points in standard Chebyshev approximation.

Lemma 3.2: Let Vi satisfy (D1) and gj (j € J) satisfy
t]

(D3). Then the family of functionals
3= {Ex - v ), Dv(x,4)(:)) € C[E,K]: x €Q} U

tu e, Purc) ecexy: @ euy
jes © J
o
is an equicontinuous family with respect to the norm topology

defined on E.
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Proof: We shall show that {ng(t(J)

L)

»%) (-) € C[E,K]:
€ Mj} is equicontinuous. A similar proof shows
{(Ex) - v (x), Dv(x,4 ) (*)) € C[E,K]: x €Q} is equi-
continuous and the conclusion follows since a finite union
of equicontinuous families is equicontinuous.

Let ¢ > 0 be given and bo € E fixed. We wish to

find & > 0 such that for any b satisfying Hbo - bHE < 6

we have
G, Gy
Hngo(t ,QIO)(b)HH < ¢ for all t € Mjo
Since
‘ G) G,
Ipg, (& 4G, - Dl = max |Dg, (£ Lu) G, - B
o ¢ % e o

j0

= pg, ¢, - o] = loe, ) fiv, - b,

(o} o

. €
if we choose 6jo < Dg . ("mo)H , then for Hbo - bHE < 6j
o
1 G)
JngO<t U (o - B, < e
G
and §, is independent of t ° €M, . .
Jo o

Remark: The convex hull of an equicontinuous family of

functions is also equicontinuous.

Theorem 3.4 is the main result of Hoffmann's thesis
(7, Thm 1.10, p. 337 and gives a sufficient condition for

v €V to be a local best approximation when V is
o 1,1 1’1

regular. It will be used later to characterize local best

b

(o}
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approximation when V1 1 satisfies further restrictions.
b
Theorem 3.4: Let V1 1 satisfy (D1) and let the side con-
b

ditions (S) satisfy (D2), (D3), (R1l) and (R2). If v, = v(.,mo)
is a local minimal solution from Vl,l for f € c[Q,H], then
the following are valid and equivalent:

(A) 1In the dual space E*, the weak * closure of the

convex hull of the set of functionals 3,
o= {(f&x) - v (x), Dv(x,¥)-) € C[E,K]: x € M[f - vo]] U
[u (o, @ uy e cleky: 9 em iy,
jeg 3 © J
o

and the linear space # spanned by the functionals

(DE @ ): i =1,...,k},

have non-empty intersection.

(B) For all b € E with the property that

DE.@U )b =0 for i=1,...,k,
i*Yo
and
(i)

Re ng(t(J),mo)b 20 for jEJ,t € My

we have
min Re (f(x) - v (x), Dv(x,U )b) < O.
xeMLf-v ] ° ©
o
Proof: Theorem 3.3 says that (B) must be satisfied if v,
is a minimal solution.
Assume (A) is not true, that is, N £ = 5. Then

Ascoli's Theorem [6, p. 64] implies that co(%) (closure

*
’

*
with respect to the ¢g(E ,E) topology) is compact in E
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since for cach p € E

H (b) = {(£(x)-v_ (x),Dv(x,U )b) € K: x € M f - VO]}

and

(J) . () .
Hj(b) {ng(t U )b € K: t € Mj}, j€J,

are compact sets, and in a finite dimensional space the convex
hull of a compact set is again compact. So the convex hull
of the above sets is compact for each b € E.

#£ 1is a finite dimensional subspace of E* and is
o(E*,E) closed. Then by a standard separation theorem [5,
p. 1477 for convex sets, there is a c(E*,E) cont inuous
functional on E* which strictly separates ¥ and .
According to the representation theorem for o(E*,E) con-
tinuous functionals [11, p. 140], there is an element b ¢ E

such that

@) : (3)
Re ng(t ,mo)b >0 for jE€ Jo, t € Mj
and
Re (f(x) - vo(x), Dv(x,mo)b) >0 for x € Mf - vO]

and

DE, ()b = 0.

But then, by Theorem 3.3, v, cannot be a local minimum.
This is a contradiction, thus £N § # ¢. This proof also
shows (B) = (A).

(A) implies (B) will be shown indirectly, so we

assume that there exists a b0 € E such that

Dfi(ﬂlo)bo =0 for i=1,...,k,
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j . () |
Re ng(t(J),mo)bo 20 for jEJ,t 3 ewm,,

]
and

Re (f£(x) - vo(x), Dv(x,mo)bo) >0 for all x € M[f - v.].

By proceeding as in the proof of Theorem 3.3, we obtain

b € E such that

Dfi(mo)b =0 for i=1,...,k,

i) : (i)
Re ng(t ,mo)b >0 for j € Jo, t € Mj’

and

Re (f(x) - vo(x), Dv(x,¥ )b) >0 for x € M f - v

But then N £ = ¢. Since the sets Mj g € JO), and

M f - vo] are compact, coJ N £ = ¢. | |

The usual '"zero in the convex hull'" theorem is a
corollary to the above theorem since if there are no side
conditions we can set fl(m) = 0. Then £ = {0} and

0 € co(¥). More particularly, if v(-,¥) is linear in ¥,

DV (+,8 )b = v(,b_ + A )= v(-,U)
and

3= {(EGx) - v (x), v(x,b) - v(x,¥)) € C[E,K]: x & Mf - v 1}.

We make the following definitions for convenience of
notation:

i{mo] will be the linear subspace of (C[Q,H] con-
sisting of all elements Dv(-,mo)b with b € E.

11,0[2103 = {Dv(,u )b € AU ]J: DE @ )b =0, i =1,...,k}.

i& (¥ ] is a linear subspace.
,0- "o
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£y 18] = (DVC U be LU )0 Re Dgy D )b = 0;

j€Jg, ¢ (3) € Mj}. ib’l[mo] is a convex cone.

Let ) LU =& olU1N £ ([U]- & ,lU] s
a convex cone.

If we do not wish to specify any particular set, we
will write za,etmoj. (@,B € {0,1}).

Assume that the Banach space E 1is of finite dimension
n. Let the set V satisfy (D1) and the side conditions (S)
satisfy (D2), (D3), (R1) and (R2). Every element in i[ﬂoj
can be written in the form

Dv(-,U )b =

: aiDv(.’mO)bi

1

(] g BR=]

where bl""’bn form a basis for E and Uyseees are
elements of the scalar field K for E. The following
theorem relates the minimal solution and a linear operator

on Cc[Q,H].

Theorem 3.5: Let v0 = v(-,mo) be a local minimal solution

from v, , for f € c[Q,H]. Then for (e,Mf - v.]) in

b

ol f - v_] there exist points
X seeesX (rz=1) from MTf - vo],
&) )
‘1

,...,tsj from Mj for each j € Jo,

and real numbers

and
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v. » 1= 1,000,k

such that
(i) gj(tgj),mo) =0, i-= 1,...,sj; jed,,
(ii) p.. >0, i = 1,...,sj; j € Jo’
(iii) ). >0, i =1,...,r,

dim £, O[Qjo] + 1, if H is real,
9

(iv) r+ T s. <

2%
1, 2 dim £ U]+ 1, if H is complex,
and
S
i ) (1)
R CCRE U SRR A A Tt
o]
k £ _ * *
+E YDPE M) =0 €

Proof: 1If v, is a local minimal solution from V1 1 for
’
*
f € c[Q,H], then by Theorem 3.4, the g(E ,E) closure of
co(X) and the linear space £ have non-empty intersection
*

- *
in E . Thus O of the quotient space E /£ 1lies in the

convex hull of the set of elements

{c +£: ¢ € co(V)}.

* *
The dimension of E is n, so E /£ has dimension n - k.
* *
By the Theorem of Caratheodory [3, p. 17], 0 €E is a
convex linear combination of at most n - k+ 1 (or

2n - 2k + 1) elements of the form

c+4L, L €L
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It follows that the dimension of ia’o[mo] =n - k.
Now every element of £ can be written as a linear
combination of the elements Dfi(uo)(i =1,...,k). So there

exist points

XqsewesX, € M f - VO]

)] 6D . s
tl ""’tsj eMj,JEJO H

and real numbers Xi’ Mo Yy such that

j’

ki > 0’ i= 1:'°°sr;

>0, 1i=1,... j ;
[V s 1 ’ ,Sj’ j € JO

1]
with
di +
r + .2 sj < dim za’o[mo] 1
jeJ
0
(or < 2 dim 1& O[MO] + 1 in the complex case)
b}
and
s
= n. (eG.), DV S8 -) : 3 a0
Z X‘ € X. 9 x-’ ¢ + z Eu..Dg. ti ’m .
i=1 i i i’o j€3, i=1 1] 7] (o]
k *
& Y;Pf @) =0

r must be greater than or equal to 1 since, by (R2), there

is a bo € E such that

"
(@

Df. (Y )b for i =1,...,k
i o' o
and

i) . )
Re ng(t ,ﬂo)bo >0 for j € Jo’ t € Mj.

Finally, gj(t(J),mo) = 0 since t(j) € M,.
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Section 3: A Special Class of Non-Linear Approximation
Problems

In this section we shall discuss a property of V
which will make the Klomogorov criterion both necessary and

sufficient for a best approximation.

Definition 3.4: Let satisfy (D1). Then V is

VQ’sB a8

called an equibasis system if for every element

v =v(,q) €V , the signature % 1is extremal with
o) (o] O”B

respect to V 8 if and only if it is extremal for the zero
(o 31

element with respect to Z, B[mo]. (¢, are the same for
b}

£ and V.)

Not every set V is an equibasis system as the

following example shows.

Example 3.4: Let the set V consist of all elements of the

form
2
v(x,a) = a - 4a (x - %)2

where a is a real number and let v be defined on [0,1].

The linear space %] consists of all elements

DV(x,5)b = b - 4b(x - %)

where b is any real number. The signature § = (¢,M) where

M= {0,1},

e € 8, ={e€cl0,1): |e()| s 1, (0) =-1= ()]}

w
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is extremal for A %]; that is
. 2
min e(x)[1 - 4(x - %) b < 0

x€{0,1}

for all real numbers b. However it is not extremal for

VoY) =k - (x - )2,

-
since for all b # %,
. 2 2 2
min e@x)[b - 4b"(x - %) -5+ (x - %] £0. B
x€{0,1}
Many familiar sets are equibasis systems. b

Example 3.5: Let V be a linear subspace of C[Q,H], i.e.
the functions v (-,Y) are linear in Y € P and P is a

subspace of E. Let the side conditions fi’ i=1,...,k,
be linear functionals. Then V1,0 is an equibasis system.

By definition 3.2, we have

v(-,4 +b) - V("mo) = V('ab) = DV("mO)(b):
(o)
and

£, +b) - fi(ﬂo) =f£.®) =DE, )M, i =1,...,k

Now let § = (¢,M) be extremal for v(x,ﬂo) €Vyo
b}

={v(-,¥U) €V: £, =0 for i= 1,...,k}. Then
min e(x) (Vv(x,by) - v(x,mo)) <0
xEM
f 1 h . F
or all b € P such that v(x,by) € Vl,O or

Dv(-,U )b €2 o = (DV(-, U )b: DE )b =0, i =1,....k],

we have Dfi(ﬂlo)b 0 for i=1,...,k and

DE; ()b = £, +b) - £,U) = £, +b).
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Thus v(x,ﬂ,[o +b) € Vl,O’ so
min e(x)(Dv(x,Uo)b -0) <0
xeM
for all Dv(x,U )b € *ﬁ,o[”o] and T is extremal for 0
with respect to i& O[Mo]. Likewise, if we know
min e(x) Dv(x,Y,)by - 0) <0
xeM
for all Dv(x,mo)bl € i&’o[mo], and if v(x,b) € vl,O then

£.(6) =0, i =1,...,k, and

0=£(b) - £,@) = £, - %) =DE, A - %),
for i =1,...,k.

Thus Dv(x,ﬂo)(b - ﬂo) € i& O[Mo] and

DV(X,QIO) (b - mo) = v(x,b) - V(x,&lo)

SO

min e(x) (v(x,b) - v(x,¥4 )) <0
xeM °

and ¥ 1is extremal for v(x,U ) €V . B
o 1,0

Example 3.6: Let pl,...,pm; ViseeesV be two sets of

linearly independent real-valued continuous functions defined

on a compact metric space Q. For Y = (al,...,am, bl""’bn)
€ Rn+m’ let
m
£1a#1@)
r(x,4Y) = —————,
. bivi(x)

MB

i

and set
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n+m n
V={rx,): YER and I bivi(x) >0 for all x €Q}.
i=1
We claim V is an equibasis system. Let % = (¢,M) be

. o
extremal for r, = r(x,ﬂo) in V where Y = (al,...,am ,

bi,...,bg). Then

min e(x) (r(x,9) - r(x,4)) <0
xeM
for all r € V. We must show

min e (x) (Or (x,U )b) < 0
xeM

-+m .
for all Dr(x,¥ )b € LU ] = (Dr(x,¥)b: b € RV}, e,
£ 1is extremal for O with respect to i{mo]. By the extension

theorem of J. Dugundji [2, p. 147, there is an element

(e;M) € £ such that for all x € Q ~ M,

lex)| < 1.

Now,
min ((e(x) +r (x) - r X))@, ) - f(x)) < 0.
o o o
xeM
So the signature g[(e(x) + ro(x)) - ro(x)] =y is extremal
for r, with respect to V, and, by Theorem 3.2, r, is a

minimal solution for ¢ + r € c[Q]. Thus Theorem 3.3 implies

min e(x)Dr(x,ﬂo)b <0,

xXEM
i.e.,
1 m n
min ¢ (x) - (ig aipi(x) - ro(x)'g bivi(x) = 0.
x€EM . b?v,(x) i=1 i=1
i=1 b1t

This says ¥ is extremal for O with respect to i{%o].
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Conversely, if ¥ 1is extremal for 0 ¢ iiwo], then
n

since I bgvi(x) > 0,
i=1

m n
min ¢(x) ( T aiui(x) - ro(x) > bivi(x)) < 0,

xXEM i=1 i=1
n
and if 121 bivi(x) > 0, then for Y = (al,...,am, bl,...,bm),
r(x,d) € v and
min e(x) (r(x,¥) - r(x,¥))) < 0.
XEM
So £ 1is extremal for v, with respect to V. |

Example 3.7: Let Q be a compact metric space and V a
subset of C[Q,H] with the following property:

To each pair U, mo € P and every real number
t € [0,1], there is a parameter %U(t) and a continuous

function

g: Q X[O’I-]"R’
such that

1. gx,0) >0 for all x €4Q,
2, (1 - tg)"('amo) + tgv(')m) = V(',Ql(t)) = 0(t)

for t - 0.

Meinardus and Schwedt [17] called such a set asymptotically
convex. We shall also assume that our set V satisfies (D1)
and has the following two properties:

3. The function 9Y(t), given above, is Frechet-dif-
ferentiable.

4. AWO) =9 ..

(o]
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The following property was proven by B. Brosowski [2].
(F) DV("mo)m.(o) = g("o) (V('a‘u) = V("uo))

where '(0) is the Frechet derivative of (t) at the
point t = 0. Thus Dv(-,Mo)ﬂ'(O) is a function from
(0,17 into c[Q,H].
An asymptotically convex set which satisfies 3. and

4. is an equibasis system. Let ¥ be extremal for v(-,ﬂo) €V
with respect to V. Then for all ?;:ﬁ; €z,

min Re (¢X),v(x,U) - vx,A )) <0

xXEM °
for all v(-,9) € V. Again using the extension theorem of

J. Dugundji, we can find ¢(x) such that
le®)| < 1 for all x €Q ~ M.

And, as in the last example, ¥ = e (x) + vo(x)) - vo(x)].
So by Theorem 3.3
min Re (e(x), Dv(x,¥ )b) < O
o
xeM
for all D(-,mo)b € i[mo], and § is extremal for 0 with
respect to i{mo].
Conversely, if § 1is extremal for 0, using (F) we
obtain
min Re(G(x) ,v(x,%l) = v(x,ﬂl )) <0
XEM °
for all v(-,¥) € V, that is § 1is extremal for v,= v(-,mo)

with respect to V. n
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In the previous examples, no side conditions were
assumed. When side conditions are required, we must consider
more localized properties. In the remainder of this section
we shall assume that the side conditions are regular and that
for a fixed mo € P and each b € E satisfying (R1l), there

is an associated curve mb in P such that
ub(S) =u + xb(S)b,
where xb is a continuous, real-valued, positive function,
differentiable at s = 0 and
0) =0
xb( ) ’
'(0) > 0.
)\b( )
The set of elements Y € P which lie on any such curve is

denoted by a,-

Definition 3.5: Let v, EV . A set wo is called a

osB
ne;ghborhood+ of v in V if
o a,B
W= {v(-,W € va’e: Yea]l.
Definition 3.6: A set V is called a local+ equibasis

(o2

system if for every ﬂo € P:
Whenever the signature 3 is extremal for 0 with
respect to ié B[uo], there exists a 10ca1+ neighborhood
’

wo cV of vo = v(-,ﬂo) such that § is extremal for

o,

Vo with respect to wo.



ko
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+ .
In general, the neighborhood Wo is not an open
set with respect to the norm topology, but consists of separate

paths in V with vV, as origin.

Example 3.8: Let V be a linear subspace of C[Q,H] and
let the side conditions satisfy (D2), (D3), (R1) and (R2).
Let I be extremal for 0 with respect to £, 1[ﬂo], that is
bl
min Re (¢(x), Dv(x,¥ )b) < O
o

xXEeM

for all Dv(-,ﬂo)b € ia,l[ﬂo]. By (R1) and (R2), there is

a curve
s) = + s
U, () = U+ A (&)
satisfying the side conditions and

ms(O) =

\%
o

Ay ()

U (0)

xé(O)b with x;(O) > 0.
By the linearity of V,
min (e(x), v(x,¥ (s)) - v(x,U)) <0
XEM b °
for all elements mb(s) of a%. Thus ¥ is locally+

extremal for v(-,ﬂo) €V Since the argument above is

1,1°

reversible, the set V is a local+ equibasis system.

1,1
A similar argument shows that a system of rational
functions or a modified asymptotically convex system with

side conditions satisfying (R1) and (R2) is a local+ equibasis

system.
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Definition 3.7: Let Va 8 be a subset of C[Q,H]. An
bl
element vo ev is called a local+ minimal solution for
(¢ &
f € c[Q,H] if there is a neighborhood™ W < v of v
(o] Q/,B o

such that v, is a minimal solution for f from wo.
We can characterize a best approximation to a func-

tion f € Cc[Q,H] from an equibasis system.

Theorem 3.6: Let be a subset of C[Q,H] and an

V1,1

equibasis system. The element v(-,mo) € V1 1 is a local

minimal solution for f with respect to Vi if and only if
b

min Re (f(x) - v (x), Dv(x,4 )b) < O
xEM[f-vo] ° °

for all Dv(-,mo)b € ia,l[mo]'
Proof: This theorem is an immediate consequence of Theorems

3.2, 3.3 and the fact that V is an equibasis system.

1,1

Theorem 3.7: Let be a subset of C[Q,H] and a local®

Vi1
equibasis system. The element v(-,uo) € V1 1 is a 1oca1+
b

minimal solution (with respect to a neighborhood+ of vo) for
the function f if and only if
min Re (f(x) - v (x), Dv(x,U )b) < O
x€M[f-vo] © ©

for all Dv(-,mo)b € ia,l[uo]'

Theorem 3.8: Let be a (10ca1+) equibasis system.

V1,1
Then v(-,ﬁo) € V1 1 is a local (loca1+) minimal solution
9
* kS
for f € c[Q,H] if and only if the o(E ,E) closure (in E')

of the convex hull of the set @,
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I = {(E&) - v (), Dv(x,¥ )-) € C[E,K]: x € MLE - v 1]
U [jiéJ {ng(t(j),*uo)- € ClE,X]: j €I, e ¢ M7,
o

and the linear space 3 spanned by the functionals
Df.(ﬂ )9 i= 1:°'°’ka
1 (0]

have non-empty intersection.
Proof: The necessity follows from Theorem 3.4.

(Sufficiency) We assume that v, is not a local
(loca1+) minimal solution for f. Then the signature
cannot be extremal for O with respect to za’l[uoj. So there
is an element Dv(-,¥ )b € iﬁ,ltmo] such that for all

x € M[f - vo],
Re (f(x) - vo(x), Dv(x,ﬁo)b) > 0.

*
But then the intersection of the g(E ,E) closure of the
convex hull of the set § and the linear space # must be

empty. This is a contradiction. |

As a corollary to this theorem we have the following

result of Cheney and Loeb [4].

Corollary: Let V be the set of generalized rational func-
tions as in example 3.6 and C[Q] the linear space of real-
valued functions defined on a compact metric space Q. Then
a necessary and sufficient condition for r, €V to be a
minimal solution for f € C[Q] 1is that the zero of Euclidean

(n+m) -space lie in the convex hull of the set
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(EE) = 1 G 6 se e (K), =V G)r (K),eee =y ()T ()]

x € M[f - ro]}.

Section 4: Results Concerning Uniqueness

The following theorem characterizes those equibasis

systems which yield unique approximations. P-q

Theorem 3.9: Let c Cc[Q,H] be an equibasis system.

Vi1

Thenthe following assertions are equivalent:

(A) Every f € c[Q,H] has at most one minimal d
solution in Vl,l'
(B) For all v =v(-,4) €V and every signature
o o 1,1
T extremal for A the difference v - \A with v(.,%) € Vi,
3
and v - \A # 0 is non-zero in at least one point x € M

of the signature §%.

(C) For each f € C[Q,H] ~ vy and for every best
]

1

approximation v €V for f£

1,1

llv - VOH < 2||f - vOH for all v € Vl,l'

(D) For every pair of functions f,,f, € C[Q,H] ~V,
b}

and for every pair of best approximations vy = v(-,ml) € Vl 1
’

for f, and v_= v(-,mz) for f£

1 2 2?

Hvz - V1H < Hfl - Vzn + nfz - VlH'

1

extremal signature T and an element v € V1 1 with
9

Proof: (A) = (B). Suppose there exists v, € V] and an
bl

vo- v, 20
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and

v(x) - vo(x) =0 for all x € M.

Then, we claim, there is a function f € C[Q,H] ~ Vi for
b
which v, and v are both minimal solutions with respect

to V1 1+ Let
m(x) = ||v(x) - vo(x)HH for all x € Q,

m(x) € c[Q,H],

K = max m(x).

x€Q

Let (g,M) € ¥. Then define
h(x) = ¢(x) (K - m(x)).

<K for x €Q ~ M,
el {
=K for x € M.
Set f(x) =h&) + vo(x). Then v is a minimal solution

for f with respect to Vi with
I
Hf - voH = K.

Since ¢ c g[f - v.], £ is extremal for v  with respect to
V, 1 @and therefore so is L f - v_]. Then by the Theorem 3.2,
]
v, is a minimal solution. But, v € V1 1 is also a minimal
b

solution since for all x € Q,

lEx) - vy = [[hex) + v &) - vl

< Hh(x)“H + v ) - v(x)HH
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< leGOllg& = mG)) + m(x)

< K.

(B) = (A). Suppose there is an element f € C[Q,H]

with two best approximations VoV € Vl 1 Then the signature
b

A =zlf -v 10l - v]

is extremal for v, and v with respect to {2, p. 1057].

V1,1

For every point x € MA’

f(x) - vo(x) = fx) - vx).

So

v(x) - vo(x) =0 for all x € MA'

But this contradicts (B) unless v(x) = vo(x).
A) = (C). Let v, € V1 1 be the unique minimal
b

solution for f € C[Q,H] ~ V., ,; that is

1,1

£ - VOH < ||f - v|| for all v € Vl,l'

Then

lvo = vl - lIf - vll < {[£ - ]I,
vy, - vil < 2| - vi.

(C) = B). If (B) is not true, we wish to show there

is a function £ € C[Q,H] ~ V with a best approximation

1,1

vo € Vl,l such that for some v € Vl,l’

live - Vil = 2lE - .
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Note: Hvo - v - |l - v = E - VOH < ||f - vl| for all
v ¢ V1,1' Thus Hvo - v = 2t - V.
Now let v sV give a contradiction to (B) with the

signature Y. Let m, E, ¢ be as in the proof of (A) = (B).

Set

h(x) =% e(G) (K - mx) +% ex)(vx) - v_(x)).

=1

For x € M, Hh(x)”H = since v(x) - vo(x) = 0. For

2 -
x €Q ~ M RGO, = 5® - me)) + Hve) - v |, =3
Now define f(x) = h(x) + vo(x). Then the following are
true:

Lo v, - vl = 2[f - v|| since lf(x) - vl

— = K/2 for x € M,
= %K - m(X))He(x)HH

< E/Z for x €Q ~ M.
2. v, is a minimal solution for f with respect

to V since

1,1

NIR|

IE = v ll =] =

and $ c g[f - vo], so, by Theorem 3.2, v, is a best approx-
imation for f.

(C) » (D). Let v, be a best approximation to f

1

and v, a best approximation to f2. Then, by (C),

1

“Vz - V1H < ZHfl - VzH’

vy = voll < 2liE, - vyl

Thus
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vy = vall < Eq = vyl + i€, - il

(D) = (B). Again suppose that there exist a vy
and v, and a signature ¥ extremal for v, contradicting

(B). Define

ho) =% e(x) K - m(x)) + 5(v, (x) - v _(x)),

hy®) = % eG) (K - m(x)) + 5V _(x) - v, (x)).

Then setting

fo(x) ho(x) + vo(x)

and

fl(x) hl(x) + vl(x)

will give the desired contradiction to (D).

Lo v, - vqll = £y - voll + 1€, - v,||, since

K/2 for x € M,
1,60 = v Gl = lIE 60 = vl

<K/2 for x €Q ~ M.

2. v, is a minimal solution for f .
o]

i/Z for x € M,
e, 00 - v, ll,

< E/Z for x €Q ~ M,

and £ c z[f - vo]. Since ¥ was extremal for Vs Vv, is

a best approximation to fo.
3. ||£,G) - vl(x)\\H =K/2 as above. So < zlf; -v,].

It remains to be shown that § 1is extremal for v We know

1-
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Re (e(x), vo(x) - vl(x)) =0 for all x € M
and

min Re (g(x), v(x) - vo(x)) <0 for all v € V1 1°
xEM i

But these imply
min Re (e(x), v(x) - Vo(x)) <0
xEM

for all v €V, ;. Therefore 1 is extremal for v,. |
b4

Remark: Suppose Vl,1 is a finite dimensional linear sub-

space of C[Q,H]. The existence of a best approximation for

any f € C[Q,H] 1is well known. Theorem 3.9 says that every

f € c[Q,H] has exactly one best approximation v = v(-,U)) € V1,1

if and only if
o, < 2lg].
By (C), each f # 0 has a unique best approximation v, if
Ivg - vl < 22 - ]

for all v ¢ Vl . Since V SO

1 is linear, v =0 € V
b

1,1 1,1°
llvoll < 2li£]]

Conversely, if v, is a best approximation for f, it follows
that v, oV is a best approximation for f - v for each

v € V1,1° Thus
lvo - vl < 2l - v||.

By Theorem 3.9, v must be unique.



— — — ——— — — — — ——————— ——



142

Section 5: A Special Case

We wish to consider approximation of functions

f € c[Q,H] by elements of a subset of c[Q,H] when

V1,1

the elements of V1 1 are determined by a finite dimensional
b

parameter space E.

Theorem 3.10: Let the subset of C[Q,H] be an equi-

V1,1

basis system and let the parameter space E of the elements

of have finite dimension n. Then v, = v(-,Mo) is

Vi1

a minimal solution from Vi, for fe€ c[Q,H] if and only
b

if there exist points

XpseeesX, from M[(f - vo] (r 2 1),

tiJ),...,ts%) from Mj’ j e Jo,

and real numbers {xi}i, {uij}’ {Yi}ﬁ such that

(

gj(ciJ),mO) =0 for i= 1,...,sj; j €I,

uij >0 for i 1,...,sj; j € Jo’
ki >0 for i=1,...,r,

with
— (dim £1,0[mo] +1 if H is real,
r+ % sj sz
j€J . . .
&y 2 dim £1,0£Mo] + 1 if H is complex,
and
S,
: ] ()
T A (e(x,)Dv(x_ ,¥)*) + £ L w, .Dg . (£77,%)-
R 1 i i’"o . . ij 73 i o
i=1 jer, i=1
k *
+ E Xini(ﬂo)- =0 .

1

i
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Proof: The necessity has been established in Thcorem 3.5.

(Sufficiency) Assume
S

j
xi(e(xi), Dv(x,,% )b) + z E “ingj(t
1 JCJO i=1

(3)

i

9 )b
o

n™Mn

i

<+

. Yini(mo)b =0

1

ne o=

for all b such that Dv(:,Y )b € £, 1[mO]. By the defini-
?

tion of iﬁ 1[”01 we conclude
b

r
z )\.(E(X.)) DV(X-’M )b) <0,
. i i i’%o
i=1

i.e. min Re (eg(x), Dv(x,mo)b) <0
XEM

for all Dv(x,mo)b € £1,1[ﬂ0]. This means g[f - VO] is
extremal for O with respect to £1’1[910]. Since Vi1 s
an equibasis system, y[f - vo] is extremal for v(-,U)

with respect to V . Thus v(-,mo) is a minimal solution

1,1
for f € c[q,H]. [ |

An analogous theorem holds in the case that Vi
b
. + . . . .
is a local equibasis system which characterizes a local

minimal solution.

Section 6: Relation of Chapter III to Chapters I and II.

Some of the results of Chapters I and II can be
obtained from the theory of Chapter III. Consider the prob-
lem presented in Chapter I. Here Q =K and H = real
numbers. The Banach space E = P is Euclidean n-space Rn,

and the function F : P - C[Q,H] 1is defined by




e e e e ——— e



144

n
iEI aiwi(x)

F (@)

where 9 = (al,...,an) € P=R" and Wisee,W, are linearly

independent elements of C[Q,H] = C(K).
n
Ve={vx,¥ =F@: YER],

Vi = vew: v, = 4(x) for all x €L

and v (x,¥) < u(x) for all x ¢ JJ.

V1 1 is the subset of V obtained by the restrictions:
b
£ : R" = R,
£, = 0;
1

g;: L X R" =R,

gl(xyu) =v(x,U) - Lx);

n
g2: J X R —-»Rl’

gz(x,m) =px) - v(x,%N).

(The restriction fl(m) = 0 1is stated for convenience and
does not limit the set of approximants, i.e., Vl,O =V.) The
functions v, fl’ g,» 8, are all Frechet-differentiable with
respect to the parameter Y with the following Frechet
derivatives:

Let b = (bl""’bn) € Rn be arbitrary,

Dv (x,¥) (b) =

"™

byw, (x),

i=1

Df1<QJ) (b) = 0,
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n
Dg, (8 (b) = L bW, (x),
=1

(=N

Dgz (.‘( )m)b = -

. biwi(x).
i

1

(I g B=]

Remark 1: The side conditions S = {fl,gl,gz} are (R1l)-

regular for all Y € R" since
Df, @) (b) = 0 for all b € R".

Set UY(t) =Y + tb, for t ¢ [0,1]. Then

fl(ﬂl(t)) =0 for all t € [0,1]
and

A(0)

]
=

and

U’ (0) (Db.

Remark 2: The side conditions S = {fl,gl,gz} are (R2)-

regular for all ¥ € R" if and only if V satisfies con-

dition H, i.e. if and only if there is an element v(x,ﬂl) € V1 1
b

such that

v(x,ml) > 2 (x) for all x € L

and

v(x,ml) < w(x) for all x € J.

Proof: Suppose the side conditions are R2 regular for all
A € R". Fix moé R" and let voo= v(x,mo), then there is a

b € R" such that

Dgi(t(i),ﬂo)b >0
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for a11 ¢ ¢ My, i =1,2. Now
B _ o+
My = {x € L: g (x,4) =0} = G,
(o]
and
M, ={x €J: g,(x,¥) = 03} = GVO.

1f M, =M, = o then v, satisfies condition H. If
, i i+l (1)
M1 J M2 # ¢» then Dgi(t( ),mo)b = (-1) v (t ,b) and by
choosing & sufficiently small we obtain v(x,¥ + 6b)
satisfying condition H as follows. Without loss of generality,
assume M, # ¢- Now by the compactness of Ml there is an

open set U containing Ml such that for all x €U

v(x,b) > 0.

And again by the compactness of L ~ U there is a positive

number > 0 such that

€1
v(x,U) - L(x) 2 €1

for all x € L . U. Then for 61 > 0 such that 61 < —

where T = ||v(x,b)||, we have
v(x,Q,Io + 61b) > 4 (x) for all x € L.
Similarly choosing 62 suitably small, we have
v(x,&[o + 62b) < u&) for all x € J,

thus § < min (61,62) implies v(x,m0 + §b) satisfies con-

dition H.




147

If condition H is satisfied by v(x,wl) and for

ER,M UM #4, 1 =9, -% . Th
NO . » My U 9 ¢, let b = ul o en

(i)

Dg, (t" 7,4 )b >0

for a1l ¢ ¢ M, i=1,2. W

Remark 3: V1 1 is an equibasis system.
b

Proof: Suppose T = (e,M) 1is extremal for v(x,%)) € Vi1
bl

and that there exists Dv(x,mo)b € i& 1[mo] such that
b

min e(x)Dv(x,Mo)b > 0.
xeM

Now Dv(x,uo)b € i& 1[M0] implies
b

(1) (1)

vie by = pg, (¢ ®

,mo)b 2 0 for all ¢t € My»

and

(2) (2) (2)

-v(t ,b) = Dgz(t ,mo)b 20 for all ¢t EM

2t
But then for some sufficiently small 3§,

VYU, +6b) = VGa,U) + BV Gb) €V,

and Dv(x,¥ )b € £, (U] with

min e(X)DV(Xsﬂo)éb >0
XEM

implies
min e(X) (v(x,¥4 + 8b) - v(x,4 )) >0
o o
xeM
Which is a contradiction.
Suppose ¥ 1is extremal for 0 € iﬁ,l[mo] and

there exists b € R® such that v(x,b) € V1 1 and
b}
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min e(x) (v(x,b) - v(x,¥)) > 0.
xeM

Since v(x,b) - v(x,4) = Dv(x,¥ ) (b - U ) and

pg, P u)® - u) =ve @D,y - veP )20 for anl

(¢Y)
t € Ml’

(2) (2) (2)

-Dg,(t" ", U ) (b - U) =v(t  T,b) -v(t T, Y) <0 for all

Dv(x, U ) (b - U) €2 [U]. But

min e(x)Dv(x,mo)(b - mo) >0
xeM

is a contradiction.

We also have the signature g[f - v ] = (e,Mf - v ]) where

v = Dk 17600 - w00l = I - vl - By

and
f(x)—vo(x)

(-:(x) = W for x € M[f - VO].

Then Theorem 3.6 is equivalent to Theorem 1.2 and Theorem

3.10 is equivalent to Theorem 1.3.

+
For Chapter II, let E = RS t, and for
s+t
U= (agsees8 , bryeaab ) €R
s
iElaiu].(X)
F(al,...,as, bl""’bt) =rx,d) = T
zbw (x)
3=1
t
for U such that g bjwj(x) >0 for all xS =JJ KU L.
3=1

The side conditions for the case
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L(x) < p(x) for all x €J =1L

are:

fl(m) = 0,
gl(x9m) =rx,d) - Lt(x) for x €L,

SZ(X,m) = H-(x) -r(x,4% for x € J.

o o o
Then for mo = (al,az,...,as, bi,...,bz), b = (al,az,...,as,
bl,bz,...,bt), r(x,9) = ro(x),
Df, (@ )b = 0, '
1 /8 t
Dr(x,%o)b B <_§1aiui(X) - TO(X).§1bjwj(x) >
T obow, () VT "
Dgl(x,ﬂo)b = Dr(x,ﬂo)b,

Dgz (X ’mo)b = -Dr (X )uo)b .

Then the side conditions are (R1l)-regular as before and (R2)-

regular at mo if and only if there exists ¢ € P + rOQ such

that

¢(x) >0 for x € Ml
and

p(x) <0 for x € MZ‘
Remark 4: V,. 1 1s again an equibasis system.

’
Proof: Suppose Y 1is extremal for r(x,mo) € V1 1 and there
b

exists b € E such that Dr(x,mo)b € i& 1LMO] and
bl

min e(x)Dr(x,ﬂo)b > 0.
x€EM
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& can be chosen sufficiently small so that

s
T (ad + sa ., (x)
j=1 & i’
s = ré(x) € V1 1 Then
o b}
b, - §b.)w,
jEI( j ) J) J(X)
5 s
r () - T () = (% ap, 60 _
o i=1
T (b, - 6b.)Wj(X)
j=1 h| J
t
+r Ibw, (x))
o j=1 J ]
is such that ;

min e(x)(r_ (x) - r (x)) >0
XEM 6 ©

which is a contradiction.
Conversely if § 1is extremal for O ¢ ia,l[mo],

and there exists r(x,b) € V1 1 such that
b}

min €(x) (r(x,b) - r(x,¥)) >0,

XxEM
then
1 S t
- = — iy - W, (x)T .
r(x,b) - r(x,¥) . iilalul(x) r .Elbjwj(x)
T b.w,(x) J
o 33
Thus

min e(x)Dr (x,% )b > 0,
XEM

which is a contradiction.
Then Theorem 3.6 is equivalent to Theorem 2.3 and

Theorem 3.10 is equivalent to Theorem 2.4.
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For the case {(x) < u(x), the side conditions are:

s t
f (M) = Z a,W.(x ) - a (X )’
1 RaPh U ! 10 j “ °¥3
s t t
= - '
fz(ﬂ) ) 121a w (xl) 11 jElijj(xl) alO jzlijj(x ),
© s (m,~1) m,-1 m, -1 t  (m -1-))
fml(M) = lzlalwl (xl) )\zl {( )al S\ 1 E b_] j (xl)}9
s t
£ @@ = £aw (x,) -a sz(X),
! 1 2 20 jep 39
s (m, -1) m -l m -1 t (m, -1-3)
£y @ = Elalwl () - XEl {c )ak,x-l jElijj ()1
z mi
i=1
gl(x>m) = r(x’u) = '{;(x) for x € L,

gz(x,m) =ux) - rx,9) for x € J.

Remark 5: These side conditions are (R1l)-regular.

s+t
Let b = (cps--e5C s dpyeeeyd) €R and

Dfi(m)b =0 for i=1,...,m=

n™M =
3

Set U(t) =« + tb, for t € [0,1]. Since the fi's are

linear in ¥, Dfi(ﬂ)b = fi(b)’ and Dfi(M)h 0 for

i=1,...,m implies

]
o

£LQU(E) = £,Q) + ¢ £, (b)

for all t € [0,1]. Also %'(0) =b.
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+
Remark 6: (R2)-regularity is impossible, since if b ¢ R® t

is such that

Dfigmo)b 0 for i=1,...,m

then fi(u)b =0 for i=1,...,m. That is

.sb) = .) = . fo i =1,...,k,
r@f ) L@R M&ﬁ r J

and thus
Dgl(xj,ﬂ)b = Dgz(xj,M)b =0 for j =1,...,k.

However if we redefine Q; to be L ~U and Q2 to be
J ~ U where U 1is any open set containing T, then (R2)-
regularity follows from the existence of an element ¢ € Mr

(where r = r(x,4)) such that

o(x) >0 for all x €L ~T
and

p(x) <0 for all x €J ~ T.

V1 1 is again an equibasis system.
b

The results concerning uniqueness obtained by
Hoffmann deal with uniqueness of best restricted approxima-
tion to every continuous function f£.

Example 1 of Chapter I shows that Hoffmann's unique-
ness theorem cannot apply to the work of Chapters I and II.
In this example we let f(x) -1 - xz, K =[0,1], J =[0,1],
L = [0,1] with p(x) =0, £(x) = -1. Then we considered

best restricted approximations to f from
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2
Vi1 7T {aXZ +bx +c: gx) <ax +bx +c <p(x) for all
3

x € (0,17 where a, b, ¢ are real numbers}.

Now vl(x) =0 € Vl,l and vy is a best restricted approx-
imation also vz(x) = -% x2 is a best restricted approxima-
tion. Thus f does not have a unique best restricted approx-
imation.

The results of Chapters I and II bevond the char-

acterization theorems do not follow from the material pre-

sented in Chapter III.
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