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ABSTRACT

ON MARGINAL SUBGROUPS
AND THEIR GENERALIZATIONS

By
Tommy Kay Teague

In this paper several problems concerning marginal subgroups
are investigated. An element a of G 1lies in the marginal subgroup
#*(G) corresponding to the word ¢ if and only if ¢(gl, cee 9 gn) =
¢(81. cee s 884y ses gn) for all choices of gy, «se y 8, in G and
i=1,2, .e. y Nn. Let Ao = 1, and define Aci-l to be the complete
inverse image of §*(G/Ay). If a is a limit ordinal, define A =
U {ABz B <aj. A group G is called @-nilpotent of class n if there
is a positive integer n such that A _, ¥ A, =G, and G 18 called
¢-hypercentral if there is an ordinal g such th'at Ae = G,

In Chapter 2 some of the basic properties of @~hypercentral
groups are developed. The following theorems are proved:

Theorem. Let G° = G, and inductively let G='1 be the subgroup
generated by elements of the form §(gy, «.. , gn)'1¢(glh1. ces 3 Bphy)y
where each g, € G, h, e G%. Define ¢* = [1{GPs g < a} for o a limit
ordinal. Then G is @-nilpotent of class n if ard only if
¢rlg#gP=1,

Theorem. Assume G is @-hypercentral. Then ¢(G) has a
descending hypercentral series.

Theorem. Let A(¥ys see 5 Yp)s 0(X)y oo » X;) be two words
such that 6(G) & A(G) for all G. Set $(y)y eee 5 Jyo Xyy oo 5 X)) =
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[A(Fys oee s Ty)s 0(xg, oo 5 X))o If G is a group such that A(G) is
nilpotent of class c, then G is ¢-nilpotent of class no greater than c.

Theorem. Let dn be the n-th derived word. For any G, G is
d -nilpotent if and only if d _,(G) is nilpotent.

In Chapter 3, two generalizations of the marginal subgroup of
G are considered--one in G and the other in Aut(G). Define ¢S(G) =
{a ¢ G3 #(8ys oo s g:, eee s By) = $(€qs +eo » g,) for all choices of
€19 e++ » By in Gand 1 =1, 2, ... n} to be the c-marginal subgroup
of G, By substituting a e Aut(G) for a e G in the defimition of ¢°(G),
it is possible to define the automargin @(G) C Aut(G).

Theorem. @¢°(G) = {a ¢ G: Bgys coe » 8Bys ooo 5 By) =
¢(81, coe 3 B3B8y eoe s gn) for all choices of Bys +ee 9 By in G
and 4 =1, 2, ... , nr.

Theorem. Define Y, = [xl. cee s xn'_]. Then y:(G) = Zn(G) for
n> 1.

Theorem. Let ¢ be any outer commutator word, Then $(G) =

{a e Aut(G): (6, a] & ¢'(G)}. In particular, Vn(G) = {a ¢ Aut(G):
x = x mod Z__,(G) for all x e G}.

Marginal subgroups for outer commutator words were completely
characterized by R. F. Turner-smith in 1964, In Chapter 4 the marginal
subgroup for another type of commutator, the Engel word e, = [x, ¥, y],
is determined.

Theorenm. OE(G) = {a e G [x, ¥, al[a, ¥, x] =1 for all x, y ¢ GJ.

Corollary. e3(G) N G;(G') = Z2,(G).

Theorem. For any a ¢ e3(G), [a, G, G13 =[a3,6,6] = 1.

Theoram. Z,(G) & e3(G) & Z3(G), and oE(G)/ZZ(G) is an

elementary Abelian 3-group of central automorphisms on G'.
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Theorem. If Z(G') [1Z(G) has no elements of order 3, or if G*
has no proper subgroup of finite index, then e3(G) = Z,(G).

Theorem. If [Gs 63(G)] = m is finite, then e,(G) is finite with
order which divides a power of m.

Iheorem. If G is locally residually finite and e, is finite-
valued on G, then ez(G) is finite.

Theorem. The preceding two theorems also hold for the Engel

word .3 = [x’ Y» ¥ Y]-
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INTRODUCTION

The concept of a marginal subgroup for a word ¢ was introduced
in 1940 by P. Hall [4]. It is known that the marginal subgroup of a
group for the word [x, y] is the center of the group. By analogy with
the ascending central series of a group, we may define its ascending
@¢-series, Further, we may generalize the marginal subgroup itself by
considering elements in the group which do not change the value of the
word when they conjugate any of its variables. This in turn leads us
to consider automorphisms which do not affect the value of the word
when they are applied to any of its variables. R. F. Turner-Smith
[21: page 3287 has completely characterized the marginal subgroup for
any outer cammutator word. We conclude this paper with a characterization
of the marginal subgroup for the Engel word of length two, which is not
an outer commutator word.

For the sake of completeness, Chapter I contains some definitions
and theorems essential to the remainder of the paper.

In Chapter II we develop some of the basic properties of ¢-
hypercentral groups. Many of the usual theorems for hypercentral
groups are true in this new context. We are also able to define a lower
@-series for a group. We give a complete characterization of d,,-nilpotence
for any derived word d, and necessary conditions for some other words,
Some possible ways to generaligze the normalizer of a subgroup are also

suggested.
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Chapter III offers two generalizations of the marginal subgroup--
the c-marginal subgroup and the automargin of a group. An alternate
characterization of the c-marginal subgroup is given, and this subgroup
is computed for any nmilpotent word. The automargin is shown to be minimal
for outer commutator words. In particular, the automargin of a group G
for a milpotent word is shown to be the group of n-normal automorphisms
on G for some n.

In Chapter IV we consider the marginal subgroup E for the Engel
word of length two. A complete characterization of E is given, ard
several interesting properties are brought to light. The relationship
of the subgroup of right Engel elements of length two to the metabelian
margin is considered. Some results concerning the relative size of the
verbal and marginal subgroups of G for the Engel word of length two are

also presented.



CHAPTER 1
PRELIMINARIES

NOTATION AND DEFINITIONS, Let G be a group. The symbol 1 is
used interchangeably for the identity in G and for the unit group. By

HC G (H<G) (H<G) (H ¢ Char(G)) we mean that H is a subgroup of G
(a proper subgroup of G) (a normal subgroup of G) (a characteristic
subgroup of G). If H(_ G, [G:H] is the index of H in G, cG(a) is the
centralizer of H in G, and NG(H) is the normalizer of H in G. If S is
a subset of G, then <> is the subgroup of G generated by the elements
of S. The order of an element g of G is written o(g), and o(S) denotes
the cardinality of the set S, The infinite cyclic group is represented
by J, the cyclic group of order n by Jns the symmetric group on n sym-
bols by S,, and the alternating group on n symbols by A,.

If G, is a group for each a in some indexing set A, then the
(unrestricted) direct product of {G,: a e A} is denoted by n{G,s a e A}
and the direct sum by £{G,s a ¢ A}. By G = H (G (C H) we mean G is
isomorphic to (a subgroup of) H,

By a class of groups we mean a class containing the unit group
a8 well as all isomorphic copies of any member of the class, Let I be
a class of groups. Thens

(a) ST is the class of groups which are subgroups of L groups.

(b) QT is the class of groups which are quotients of T groups.

(¢) Er is the class of groups which are extensions of T groups

3



by T groups.

(d) LT is the class of groups in which every finitely generated
subgroup is a T group.

(e) DPT is the class of groups which are direct products of T
groups.
1fPC {8, Q, E, L, P}, and if P£ (_ L, we say T is P closed,

The center of G is CG(G), denoted by Z(G). Let ZO(G) =1,
Zy(6) = 2(G). The ascending central series of G is defined recursively
by 241 (6)/2,(G) = 2(G/2,(G)) for all ordinals a, and Z (G) =
{2g(G)s B < o} for all limit ordinals a. If there is a least finite
ordinal n such that Zn(G) = G, then G is milpotent of class n, If
ZB(G) = G for some ordinal 38, G is a ZA group.

If G has an ascending normal series 1 = Gy 9Gy 9 ... <1GO=G
where Go:i-llGa is Abelian for each a, then G is an SN* group.

For x, y e G the conjngatoofxbyyisxy=y'lnuﬂtho
commutator of x and y is [x, y] = x5, For x eG, HC G, xfi =
<xPtheH>, IfH, KC G, then[H, K]=<[h, k]s h e H, k ¢ K >.
IfxeG,1<i<n nz3, wedeﬁ.ne[x.l, eee 3 X, ] recursively to be
[[xys oee s xn_l], xn]. Similarly, Af X, C G, 1<i<n, n23, ve
define [X1, oo » X ] = [[X1s eee » X 3]s X ]

A subgroup A of Aut(G) stabilizes the normal series G = Gy &
Gy > oo > Gy =1 of G Af Gh =G, and [Gy, A] C Gy, 0S4 <n= 1,
We shall make frequent use of the fact that if Gy < G for each i, then
A is ndlpotent of class < n - 1 (see [7]). Also, for A & Aut(G),

F(A) = {g e Gs [g, A] = 1}.
Define [x, 1y] = [x, y] and [x, ny] recursively to be

[([xs (n = 1)y]s, Y] An element g e G is a left Engel element if to
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each x ¢ G there is an integer n depending on x such that [x, ng] = 1.
Similarly, g € G is a right Engel element if to each x e G there is an
integer n depending on x such that [g, nx] = 1. If every element of G
is a left Engel element, then G is called an Engel group. If H, KC_ G,
define [H, 1K] = [H, K] and [H, nK] recursively to be [[H, (n - 1)X], K].

A group G is residually finite if for each 1 # x e G there is a
normal N, < G with x ¢ N, such that G/N, is finite,

An element a ¢ G has infimite height in G if the equation
x® = a has a solution in G for each integer n. A group G is complete
if each a e G has infimite height. A group G is Cernikov complete if
for each integer n G is generated by the n-th powers of all its elements,

A group G satisfies the maximum (minimum) condition if each
proper ascending (descending) chain of subgroups of G is finite.

By [17s Theorem VI.7.b] every group has a unique maximm locally
nilpotent normal subgroup. We call this subgroup the Hirsch-Plotkin
radical of G.

A word is an element of the countably generated free group
<Xy Xyp eee >. A law in a group G is a word such that every substi-
tution of elements from G for the variables of the word ylelds the
identity of G. If S is a set of words, then the variety determined
by S is the class of all groups G such that the elements of S are laws
in G. For any word ¢ we denote by @#(G) the verbal subgroup of the group
G generated by all the values of ¢} obtained by substituting elements
from G for the variables of (). The associated marginal subgroup ¢*(G)
of G consists of all a e G such that ¢(gy, «es » 8,) =
¢(gl, cee 3 BBy eoo s gn) for every gy ¢G, 1 = 1, 2, ... , n. We also
refer to ¢*(G) as the ¢-margin of G.
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The word y; = yl(x) = x in one variable is an outer commutator
word of weight w(yl) =1, Ife= e(xl, coe 3 xn) and )\ = X(yl, cee » ym)
are defined outer commutator words such that w(6) = n and w()\) = m,
th.n ¢ = ¢(xl’ eee Mn) = [e(x].’ cee xn), X(xm.lg eee 9 M_n)]
is an outer commutator word of weight w(¢) = m + n. We write
@ =[6, \]. Particular examples of outer commutator words we consider
are the derived (or solvable) words, defined by dj = x, d_ =

n
[dn_l, dn_lj, and the nilpotent (or lower central) words, defined by

Y1 = % Y1 = [yne M)

We define e = o (x, y) = [x, ny] to be the Engel word of length
n. For n> 1, we note that e, 1s not an outer commutator word.

Most of the items referred to in this section are discussed in
detail in [10], [13], [17], [18] or [21].

THEOREMS. We include here some known results on marginal
subgroups. For the proofs, see P, Hall [ 5] or P, W, Stroud [20].

Theorem 1.1. For any group G and word ¢,

(a) ¢(G) is fully invariant in G and ¢*(G) e Char(G).

(b) ¢(#%(s)) = 1.

(e) if k/¢°(G) = 2(G/¢*(G)), then [K, ¢(G)] = 1. In particular,
[¢%(s), 8(c)] = 1.

(d) if H(C G such that G = HJ*(G), then ¢*(H) = H[] ¢*(G) and
$(G) = ¢(H).

Theorem 1.2. If {G,t a e A} is a set of groups, ¢ a word, then
¢*(n{Ggsaen})=n{g*G)s aeal}.

Theorem 1,3. Let 6 = 0(Xyy eee 5 Xp) and A = A(¥yy eoe » ¥p)
be two words and let ¢ = ¢(x1, cee 3 Xy F19 see s V) =
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[0(x1s oo 5 Xp)o A(Fys oce » ¥,)]e Then in any group Gs

(a) ¢(e) = [o(G), A(G)].

(b) 4if U= Cg(e(G)), V = Cg(A(G)), L/U = A*(G/U), M/V =
0*(G/V), then ¢*(c) = L1 M,

Theorem 1.4. y;(G) = zn—l(G) for any group G and n 2 1.

Theorem 1.5. If 6 and )\ are words such that A(G) . 6(G) for
all groups G, then 6*(G) & A\*(G) for all groups G. r“

We shall also need the following theorems. For the proofs see
[17] or [18].

Theorem 1,6. (N/C Theorem) If H C_ G, then
Ng(H) /g (B) CC Aut(H).

Theorem 1,7. (3 Subgroups Lemma) If L, M, and N are subgroups
of a group G, then [L, ¥, NI C ([L, N, ¥][¥, N, L])C.

Theorem 1,8. (Levi's Theoream) If e, is a law in a group G,
then G is nilpotent of class at most three and Y3(G) has exponent
dividing three.



CHAPTER II
@-HYPERCENTRAL GROUPS

In this chapter we shall explore some generalizations of groups
with transfinite ascending and descending central series. Unless we
state otherwise, ¢ = ¢(x1, ese 5 X ) is an arbitrary word in n variables,

Definition 2,1. (a) An ascending invariant series where -
Ag= 1y A /A, O ¢*(G/A,) for each ordinal a, and A, = U{AB: B<aj
for a a limit ordinal, is called an ascending g-series for G.

(b) The upper @g-series for G is the ascending @-series where
Ay /A, = ¢*(G/A,) for each ordinal a.

sorem 2,2, Let Ay =1 <A 9 ... be an ascending ¢-series
for G, and let G, = 1 9 G, < ... be the upper ¢-series for G. Then
A, & G, for each ordinsl a.

Proof. We induct on a. Certainly A, C G, fora =0, 1.
Thus assume AB C GB for all 1< g <a. Ifa is a limit ordinal,
then A = U{As: B<a}o U{Gaz B <a} =G, by the induction
hypothesis, Now assume a-1 exists., Suppose a ¢ Au so that "Aa-l e
¢'(G/Aa_1). Then we see that $(g1, cee » 884y oo » 3n)Aq,.1
¢(g1, cee 1y gn)Aa-l for every i and gy, ... » g, in G. Since

Ay c G,y DY the induction hypothesis, we must also have that
B(Bys eoo » 88ys ooe » 8,)Gy ) = B(B)s» ooe » 8,)G, 1+ Hence a ¢ G,
and the theorem follows.

Definition 2,3. Suppose Gy = 1 <Gy < ... is the upper @-series
for G, If G = C'o. for some ordinal a, then G is @g-hypercentral. If

8

E - armr r— o any o e
i
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G=6G ¥ G _, for some finite ordinal n, then G is g-nilpotent of class
n.

We note by Theorem 2,2 that a group G is @-hypercentral if and
only if every properly ascending @-series for G reaches G,

Theorem 2,4. Subgroups and homomorphic images of a @-hyper-
central group G have upper @-series of length no greater than that of
the upper @-series for G.

Proof. LetG,=1<G, 9 ... < Go = G be the upper @-series
for G, and let H C G, We claim that H °a+1/H NG, C q&‘(n/cCJL N H)
for each ordinal a. Suppose a ch:fl NH\ Gaﬂ H. Then a cGa:"l\ Ga
ard @(hyy ooe y 8By, eee s BB(H, wee y by e, B )R e G N H
for every 1 ard hy, ... , h in H. Hence a(Gaﬂ H) e ¢‘(H/Ga N H) and
Hy=14H = HN Gy < ..o <1Ho= HN Go= H is an ascending @-series
for H.

Now suppose H a4 G. Let G = G/H, o HeG le/GaH' We may
assume a ¢ Ga+1' For every 1 and €19 seeo 9 B, € G,

¢(81, ece 9 agi, cee 9 gn)Ga= ¢(81’ ece 9 gi, cee gn)Ga since

Ga+1/Ga = ¢"(G/Ga). Consequently ¢(g1, coe s 8Byy see s gn)GaH =
ﬂsl, ese 9 q’ eees %_)GQHO This implies GwIH/GO.H g_ ¢‘(6/GQH).
Hence 1 « Gll-l/H d eee @ GOH/H = G/H is an ascending @-series for G/H.

The following two statements are due to Rhemtulla [15]s

Definition 2,5. (Rhemtulla) For H < G define §(H A G) =
< ¢(gl, cee y gn)"1¢(gl. eee s hgyy oo 5, g)31l<ign, held
B1r coc s € e G >,

Theorem 2,6. (Rhemtulla) For any G, $(H A G) is the smallest

K 4G, KC H such that H/K C ¢*(G/K). Also, $(H) C ¢(H A G) C H N¢(G).

1700 g gt pn
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Theorem 2.6 suggests a way to describe descending (J=hypercentral
series as well as ascending ones,
Definition 2,7. (a) A descending invariant series A; = G o
Ay & ... of & group G where A /Ay & #°(G/Ay;) for each ordinel a,
and A, = {AB: § <a} for o a limit ordinal, is called a desgending

g-serjes for G.

(b) The Jower @-series for G is the descending (J-series

Go =G> Glb «es Where Ga‘-l = ¢(Ga A G) for each ordinal Qy and

N {Gaz B <a} for a a limit ordinal.

(#)
]

The proofs of Theorems 2,8-2,11 are identical to the proofs
of tﬁo corresponding theorems for central series and will be omitted.
The statements themselves are included only for the sake of completeness.

Theorem 2,8. If °> ' > ... 1s the lower g-series for G
and Ag =G> A D> ... 15 a descending (J-series for G, then
6" C A, for each ordinal a.

Theorem 2,9. A group G is @-nilpotent of class n if and only if
¢™lggt=1,

Theorem 2,10. Suppose G/H is ¢=hypercentral, where H C_ ¢*(G).
Then G is @-hypercentral.

Theorem 2,11. If G is @=hypercentral and 1 < H < G, then
HNne¢*@) > 1.

Theorem 2,12. Assume G is @~nilpotent of class n., Then
¢(G) is nilpotent of class less than n,

Proof. For convenience, we write the upper @-series as
G =GyD Gy > eee O Gy = 1, where Gy/Gyyy =¢*(G/Gyyq). Define
D4(G) = v4(#(G)) for 4 > 1. We claim that Dy(G) C_ Gy for 1 <4 < n,
Since G/G, = #*(G/G, ), we have that $(G)G; /G = ¢#(G/Gy) = 1 and thus

3=

L) B Tt v B S or pvrve
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that D,(6) = ¢(c) & Gy. Assune then that D,(G) C G, for 4 > 1.
Hence Dy (G/Gyyq) = D4(G)Gyy./Gyyy & Gy /Gyyq = #*(G/Gyy;) and

Dyy1(6) = [D4(G), $(G)] & Gyyq. Thus D,(G) C G, for each 1 <4 g n.
In particular, D, (G) G, = 1 and ¢(G) is milpotent of class less
than n.

Remark 2,13. Suppose G has upper ¢-series Gy= 196G, < ...
< Go = G, Then [G(:"l’ ¢c)] & G, so that the group A = ¢(G)2(G)/2(G) F—:
of automorphisms on G stabilizes the upper (-series for G. By a result
of Hall and Hartley [7s Theorem Al], A and consequently $(G) have
a descending hypercentral series.

Example 2,14. The converse to Theorem 2,12 is not true.

Let G = 5. Since y;(e) = 2(G) = 1 by Theorem 1.4, G 1s not y,-milpotent.
However, YZ(G) = G' has order 3 and is certainly nilpotent.

Theorem 2,15. If 6 and )\ are two words such that 6(G) & A (G)
for all groups G, then a A-hypercentral group is also 6-hypercentral.

Broof. Lot1<1A1<1 0o <Ao=Gbothoupper A-series for G.
By hypothesis and Theorem 1.5 we have that \*(H) C 6*(H) for all H.
Since then A /A, = A\*(G/A,) & 6%(G/A;) for each a, we have that
la« A1 4 ... 9 AO = G 1s an ascerding 6-series for G. Hence G is
6-hypercentral.

Corollary 2,16. If G is nilpotent, then G is 6-milpotent for
any outer commutator word 6 of weight greater than one.

Theorem 2,17. Let 6 and )\ be two words such that 6(G) T A(G)
for all groups G. Set ¢ = [0, A]. If G is a group such that A(G) is
nilpotent of class ¢, then G is @-milpotent of class < c,

Proof. Define 51(G) = [A(G), A(G)], S44(G) = [ 54(G),A(G)]
for 4 2 1. By hypothesis, 5 (G) = 1, 50.1(G) # 1. We induct on c.
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For ¢ = 1, we have that 1 = 5,(G) = [A(G), A(&)] = [A(G), 8(G)] = ¢(G).

This implies ¢*(G) = G. Hence G is @-nilpotent of class 1.

Now assume that for every group G such that A(G) is nilpotent
of class < ¢, G is @-nilpotent of class < c. Let A(G) be nilpotent
of class c-l for some G. Then S ,(G) = [Sc(G), AMG)] =1, 5,(6) 7 1.
By Theorem 1.3(b), 5 (G) & c;(x(@)) N c(e(a)) O ¢*(G). Let
G = G/¢*(c). Then s (G) = 5.(G) = 1. By the induction hypothesis,

G is @-nilpotent of class < c¢. By the arguments used in the proof of
Theorem 2.10, G is ~nilpotent of class < ctl,

Example 2.18. Let G = S5 and recall dj = (4, d,;]. Since
dl(G) = G' is nilpotent, G is d,-nilpotent by Theorem 2.17 but not
dl-m.lpotent. Hence the converse of Theorem 2.15 does not hold.

Example 2,19. Let 6 = [@#, ¢] be a word in 2n variables.

Note that we get the result of Theorem 2.15 for § by Theorems 2,12
and 2,17, That is, if G is ¢-nilpotent, then ¢(G) is nilpotent

by Theorem 2.12. By Theorem 2.17, G is §-nilpotent. The advantage
of Theorem 2.17 in general is that ¢(G) nilpotent is a weaker
condition than G @-nilpotent, as was shown in Example 2,14,

Example 2,20. The hypothesis that 6(G) C A(G) for a1l G in
Theorem 2.17 is essential. Let H = S;. Note Y5 = K7y yl] and
YZ(G) c yl(G) for all G. Then H is not yB-nilpotent although
YZ(H) = H' is nilpotent.

Theorem 2,2)1. For any milpotent word y, define ¢, = [y,, v,]-
Then y,(G) is nilpotent if and only if G is ¢,-nilpotent.

Proof. The necessity follows immediately from Theorem 2.17.
Now assume that G is ¢n-n:|.1potent. We seek another characterization
of ¢7(G). By Theorem 1.3(b) and Theorem 1.4,
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#3(6)/Clv,_(G)) = ¥3(G/CG(v,(6))) = 2, 1(G/C(v,(G))). Hence #(G)
= {a e Gi [a, g €30 o0 5 8] € Coly (@) v, () = Z(y, (G)) for
a1l gyy e 5 €y In G}
= {a ¢ Gt [[8sXpy eee s X ]y [Xppys oo s Xpp]] 48 @ law in GJ.
Let 1 = Ay 9 Ay 9 ... 9A =G be the upper ¢,-series for G, where
t is a positive integer. Since our characterigzation of ¢;(G) holds

for any G, we may conclude ‘that A ={a eG:

i+l
[[as 855 eee s B8 o[B8 4y ooo s 8y 1] € Ay for all gz, «ee » By, in G
for 0 < 1 < t-1. In particular, v,(v,(G)) = [y, (G), v (®)] & A, ;.

We claim in fact that y(;_3)m2(v,(G)) C A _yforlgcicgt,
This has been shown for 1 = 1. Assume the statement holds for some
1< i< t. Then by the induction hypothesis we have that
[[y( 1.1)n+2("n(6))’ (n-1)6], yn(G)] c Ay 4 q° This implies that
Vane20Vnl®)) = Y040 yrarn-1#1(n (@) & Ay _(347)c Hence
Y(t,-l)nO-Z(Yn(G)) - Ay = Ao =1 and yn(G) is nilpotent of
class < (t-1)n+ 1.

Theorem 2,22, For any G and n> 1, G is d -nilpotent if and
only if d__,(G) is milpotent.

Proof. Sinced = [dn-l’ dn-lj’ the sufficiency follows from
Theorem 2.17. Hence assume G is dn-nilpotont of class t, where t is
a positive integer. For each a ¢ G define the words Wor Wy see s Wi
cee by Wy = wo(a.) = a and w = wk(a) = wk(a, Xy eee s xzk) =
["k-l' dk_l]. Let MC G, HC G. By wk(a, M) we shall mean the
subgroup generated by elements of the form wk(h, Myy eee s mzk),
where h e H, my ¢ M for251_<_2k. Wonotowo(ﬂ, M) = H for any M.

We claim d’;‘(K) = {a e K3 v (a) is a law in K} for any group K.
This is clear for n = 1, since di(K) = Z(K) by Theorem 1.4 and




W
a ¢ Z(K) if and only if wl(a, x) = [(a, x] 15 a law in K. For arbitrary
n we have d7(K)/Cy(dp,_,(K)) = d,* (K/Cx(d, _;(K))) by Theorem 1,3(b).
By the induction hypothesis, a e d;(l() if and only if "n-l(‘) is a law
mod Cx(dn_l(l()). This is equivalent to saying w,(a) = wn_l(a), dn—lj
is a law in K. Hence the claim is proved for any group K.

Let 1 = Ao d 460 9 At=-’ G be the upper dn-sorios for G. By
the above claim, we know that A, ={a e Gs w (s, G) O Ai-l} for
lsist, Let H=d,,(G). We clain that y, . (H) C A, for
0< jJ< t. This is evident for j = 0, so assume it is true for some

0< j<t. We further assert that ijskl(ﬂ) c ws“t-,j’ G) for

this latter conjecture holds for

{

t- t-J°
s = 0 by assumption. Hence assume it is true for some 0 < s < n,
a2l = [V gy (B0 B] & [Wg(Ry_y» )y d,(6)] =
'ﬂl“b- 5 G) by the induction assumption and the fact that

0 < s <n. Since wo(A J, G) = A
Then vy

R ds(G) for 0 € 8 < n=1. Hence the latter conjecture holds. In
particular, Y(ji-l)ni-l(m c wn(At_J, G) At_(y_l) by our
characterization of A, 3 Hence the first conjecture holds. Conse-
quently, v, m_l(H) C A, =Ay=1and H=d _,(G) is nilpotent of
class s tn.

Corollary 2,23. If G is a group such that d (G) is nilpotent,
1<H4qG, thenl < HN dn:l(G).

Broof. By Theorem 2.22, G is d  ,-nilpotent. The corollary
now follows from Theorem 2.11.

Remark 2,24, A group G is yl-hyporcom.nl if and only if
G = 1, since y;(G) =1, Forn>1, G is yn.hyp.rcontral if and only
if G is hypercentral, since the marginal subgroups for such words are
in the upper central series for G by Theorem 1.4,
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However, although a dj-hypercentral group is dn-hypercontral
for n > 2 by Theorem 2,15, d -nilpotence for some n > 2 does not imply
dz-m1potonce. Let G = 5,. The derived series for G is
19V, 94, 4G, where V, is the four-group. Hence d3(G) = 1 so that
G = d‘B'(G) is d3-nilpotent of class one. Since G' = dl(G) = A, is not
nilpotent, G is not dz-rﬂ.lpotent by Theorem 2.22,

The following lemma is evidently well-known.

Lemma 2,25, Let ¢ = ¢(x) = x2, Then ¢*@G) = {a e 2(G)s al = 1}
for any G.

Proof. Let H= {a c 2(G): a® = 1}. Clearly H 1s a subgroup
of G contained in ¢*(G). Let a e ¢*(G). Then (ax)? = x2 for all

2= 12 = l. Furthermore, for any x e G,

x ¢ G, In particular, a
a~lxa = axa = axaxxl = x%71 = x. Hence a ¢ Z2(G) and H = ¢*(G).

Theorem 2,26. Let ¢ = ¢(x) = x2, Suppose G is @¢-milpotent
of class n, Then G is nilpotent of class < n and has exponent
dividing 27, |

Proof. By Lemma 2,25, the upper @-series for G is an
ascending central series of length n. Hence G is nilpotent of class
< n. Since the quotients in the upper (J-series for G are elementary
2-groups, G has exponent dividing 2@,

Theorem 2,27. Assume G is e,-nilpotent of class n. Then

(a) ez(G) is nilpotent of class < n.

(b) there is a sequence G, = 14614 voe <Gn= G of
subgroups of G such that Gi+1/61 is nilpotent of class at most three.

(¢) G is solvable of length < 2n.

(d) if every element of G has odd order, then G is nilpotent
of class < 3n,
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Proof. Part (a) follows from Theorem 2,12, Let
G0 =14 Gl d .ee d Gn = G be the upper oz-sories for G. Since
61/61_1, 1 <1< n, is in the variety determined by e,, it is mlpotent
of class at most three by Levi's Theorem and thus metabelian., Parts
(b) and (c) now follow.

Kappe [9: Satz III, Teil 4] has shown that a right Engel element
of length two and odd order is in the third center. Under the
hypotheses of part (d), o;(G/Gi) c 23(6/61) for 0 < 1 < nl,

Hence G is yu-nilpotent and thus nilpotent.

In Theorem 4.16 we shall show that eE(G) c Z3(G) for all G.
Consequently the hypotheses in part (d) may be dispensed with and we
may conclude that any oz-nilpotont group of class n is nilpotent of
class < 3n.

Defindtion 2,28. Define H¢(G) = Hy = {a e G
¢(gl, cee 3 gn)°l¢(sl, ces 5 884y oee 5 €) € H for every 1 and
By ooe s gninG} to be the g-normalizer of H in G.

It is not difficult to see that H¢(G) C. G and that Ha G
implies that H (_ H¢(G).

Theorem 2,29. If G is @-hypercentral and H < G, then Hy & H.
In particular, if also H < G, then H < H¢.

Proof. Let Gy = 1<4G; < ... 9G =G be the upper @-series for
G. There is an ordinal § such that Gy O H, Gg,) € H. Choose a e Gpr1?
a ¢ H. We know that GB_‘_I/GB = ¢‘(G/GB). In particular, for g, ..
g, in G, we have ¢(g1, cee y gn)’1¢(g1, coe s BBgy see gn) is in
Gg C H, since a e Ggyy. Hence a e H¢(G), a ¢ He

Remark 2,30. Perhaps a more natural way to define a
@-normalizer H(@, G) of H (_ G is the set a ¢ G such that
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¢(h1, coe s @by, ooy hn) e H for every 1 and hy, ... , h, e H, This
@-normaliger is NG(H) for ¢ = Y, but it is not necessarily a subgroup
for every word {.

From the definitions we have that H¢(G) is a subset of H(¢, G).
Hence by Theorem 2,29 we may conclude that a proper subgroup of a
@-hypercentral group is a proper subset of H(@, G).

Remark 2,3l. For any word ¢ we may define a @-solvable group G
to be a group possessing a finite normal series Ay = l« Al d ..e d
A, = G such that A, /A, = #*(Agy1/Ay). It is clear that a @-nilpotent
group is also @J-solvable. We may equivalently define a group G to be
@¢-solvable if and only if the descending series G o @¢#(G) & ... > ¢™(G)
> ¢1(G) = ¢(¢™(G)) > ... reaches 1 in finitely many steps. A group
is yz-solvable if and only if it is solvable. Many of the standard

theorems for solvable groups can be generalized to -solvable groups,

[ p———



CHAPTER III
MARGINAL AUTOMORPHISMS

In this chapter we will consider two generalizations of the
marginal subgroup of G--one in G and the other in Aut(G).

Definition 3,1. Let ¢ = ¢(x1, ees » X ) be a word in n
variables, G a group. Define §°(G) = {a ¢ G: #(g)s «ev » 8Fs ovv » &)
= ¢(gl, cee 3 B4» ese s B,) for all choices of €19 e+ » By in G and
1=1,2, «eo o n} to be the o-marginal subgroup of G corresponding
to ¢.

Theorem 3,2. In any group G,

(a) ¢°(G) e Char(G).

(b) if K/¢*(G) = 2(G/¢*(G)), then Z(G)K C ¢°(G). 1In
particular, ¢*(G) & ¢°(G).

(e) [¢%0), ¢(x)] = 1.

(d) ¢°%(G) = {a e G: ¢(gl, cos s 885y see s Bp) =
¢(gl, eoe 3 B8y eee 3 By) for all choices of gy, «es 4 B, iNG
and 1 = 1, 2, ... , n}.

Proof. (a) Let a, b ¢ ¢°(G), €)s ¢+ » B, in G. Then
#(8ys ooe s g;-lb, coe s Bp) = B(Eys eoe s g;-l, cee s Bp) =
B(&ys oo s (sfl)‘, oo s By) = B(Bys coe s Bys coe s 8y) fOr
each 1. Hence a~lb e ¢c(G) and ¢%(G) C G,

Now let a e Aut(G). Then #(gf, ... , (gg')aa, cee s BO) =

B(EYs ove s Bys ooo 9 B) = B(BYs ooe s By oo s 8)E =

18
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¢(gg'_, cee g%). This shows that a® e ¢°(G), since a e Aut(G).

(b) It is clear that Z(G) (_ ¢°(G) from the defimtion of
¢%(G). Let k e K, gy» +++ » B, € G. Then for each i we have
g59*(G) = £,0°(G). Hence [g,, k] ¢ §*(G) and #(g), «ev » BNy oev s €p)
= B(8ys eoe s B3[By0 Ko eee s ) = B(Bys soe s By oo s Bp)e
Therefore K C_ ¢°(G).

(c) Let a e §%(G). Then ¢(gl, ses » gn)a = ¢(8§. vee s B) T
#(8ys oo » 8,). Hence ¢#%(G) commutes elementwise with ¢(G).

(d) Call the set on the right K. Let a ¢ ¢%(G). Then
B(Eys eoe 5 88y con s By) = B(Bys oo 5 (08y)% cov ) g)) =
¢(g1, coe s ByBy oo s gn) for each i, Hence ¢°(G) C K. Conversely,
for a ¢ K, we have ¢(gl, cee s g;, cee s gn) =
#(gys oo s (a‘lgi)a, coe s &) = B( g ooe s a(a’lgi), coe s By =
#(gys < » B4s eee » &) for each 1. Hence #%(G) = K.

Example 3.3. It 18 not difficult to see that yS(G) = 2(G).
Furthermore, yg(G) = {a e Gs [ax, y] = [xa, y] for all x, y ¢ G} =
{aeGi[a, x,y]=1forall x, yeG}= Z,(G) by Theorem 3.2(d).

To classify yg(G) for any n > 1, we need the following theorem. The
proof is identical to that of [20s Lema 3(b)].

Theorem J,4. Let ) = A(X), eee » X)) and 0 = 0(¥35 ove » ¥p)
be two words and define ¢(xl, cor s Xps Fis eee s yn) =
[A(xys eee s %)y B(¥ys ooe » ¥p)]e If U= C,(A(G)), V= C;(8(G)),
L/U = 0°(G/U), M/V = A°(G/V), then §°(G) = L N M.

Theorem 3,5. In any group G, y:(G) = Zn(G) for n> 1.

Proof. We induct on n. The cases n= 1, 2 were verified in

Example 3.3. We recall thaty = [vn_l, y11. Let U = q;(yn_l(c)),
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V= CG(yl(G)) = 2(G). Then define L and M by L/U = Y;(G/U) = 2(G/u)
and M/V = Ynfl(G/V) =2 _,(G/V). We see then that L = {a e Gt
[a, 6] & Cgly_,(6))} and M = 2,(G). By Theorem 3.4, v2(G) =
L 012,(G) = 2,(G) and the result follows,
Since Z(G) O ¢°(G) for all words @, it seems natural to
replace a ¢ G with a e Aut(G) for every group G in Definition 3.13
Definition 3,6. Let G be a group, ¢ = ¢(x1, ces 3 X ) & word
in n variables. Define the automargin #(G) of G corresponding to ¢
by $(G) = {a e Aut(G)s B(Bys vee » By oee 5 &) =
¢(sl, cee 3 By oo s 3n) for each1 =1, 2, ... , n and every
s oo » B, in G}e
Definition 3,7. Define the marginal automorphisms on G
corresponding to the word ¢ by ¢#'(G) = {a e Aut(G)s [G, a] & ¢*(G)}.
Lema 3,8. Assume H e Char(G) and L = {a ¢ Aut(G)s
(G, a1 & H}. Then L < Aut(G).
Proof. Let a, bel, x e G, Then[x, ab] =[x, b]x, a]b e H
and [x, a~1] = ([x, a‘|"1)“'l ¢ H, since H ¢ Char(G). Hence L C Aut(G).
Furthermore, for a ¢ L, b ¢ Aut(G), [G, a®] = [6® —, a]? =
(G, a]b c H? = H. Therefore L < Aut(G).
Theorem 3,9. For any group G and any word ¢,
(a) §(6) < aut(G), ¢*(6) < Aut(G), ¢'(c) & §(G).
(b) ¢(6) & F(B(6)) & F(#*(G)). In particular,
#(c/F(B(6))%) = 1.
(e) 1f F((G)) < G, then [G, §(G)] & C;(F(F(c))).
(d) 1f I is the group of automorphisms on G induced by ¢°(G),
then I, < Aut(G), I & @(G).



21
Proof. (a) We may show $(G) = Aut(G) the same way we
showed ¢%(G) (C G in the proof of Theorem 3.2(a). Now let a e a(G),

b ¢ Aut(G). Then, for each 1, s oo » B, G,

-1 -1 5 -
¢(51' see 9 S: ‘bv eee 9 Sn) = ¢(8§ y eee 9 (8: )%y eee 8: 1)b=
¢(B‘{.l. eee 82.1’ cee g:.l)b = ¢(gl’ eee gn). Hence we have

that @(G) < Aut(G). The fact that ¢#*(G) < Aut(G) follows from Lemma .
3.8. Finally, let a e $'(G), ;5 +oe » €, € G. Then, for each 1,
B(Bys ooe s s coe 5 By) = B(Bys ooe s B3 Bss 8]y eoe s By) =
#(8ys oo+ 5 Bys oo » &) Therefore #*(G) C d@).

(b) Let a e §(G). For €15 o s By € Gy ¢(81. cee Bn)a =

¢(8;. eee s &) = $(8yy +ee s g,). Hence each element of #(G) is
fixed by each element of $(G) so that ¢(G) C F(@(G)). By part (a),
$'(c) C $(6) so that also F(F(G)) & F(#*(G)).

(¢) From [F(#(G)), #(G)] = 1 it follows that
[F($@G)), #(G), G] = 1. since F(F(G)) < G by hypothesis, we have that
(G, F(F(G)), #(c)] & [F(F(G)), #(G)] = 1. Therefors, by the Three
Subgroups Lemma applied to the holomorph of G by @(G), we have that
[, #(c), F(B(e))] = 1.

(d) It follows from the defimitions that I, C @(G). By
Theorem 3.2(a), $°(G) e Char(G). Thus ¢°(G)/2(G) ¢ Char(G/Z(G)). This
implies that I, e Char(Inn(G)), where Inn(G) is the group of inner
automorphisms on G, Since Inn(G) < Aut(G), we have also that I, is
normal in Aut(G).

Theorem 3,10. Suppose $(G) = F(¢'(G)). Then

(a) if ¢*(G) = 1, G = ¢(a).

(b) if ¢*(G) € 2(G) and ¢*(G) 1lies in a class £ = {5, DP}%,



G/@(G) e L.

(¢) if ¢*(6) C 2(G) and both ¢*(G) and ¢*(G) are finite, then
G/@(G) is finite.

Proof. If ¢*(G) = 1, then for a e Aut(G), [G, a] & #*(G)
if and only if o = 1. Hence ¢'(G) = 1, ¢(G) = F(¢*'(G)) = F(1) = G and
(a) follows.

By hypothesis, ¢'(G) C v3(G). Hence F(a) < G for each a e ¢*(G)
and G/@(G) = G/F(9'(G)) = G/ N{F(a)s a e $*(GRC n{a/F(a)s a e @*(G)}
= of[G, o]t @ ¢ #*(&)] & nf#*(G)ys « e #*(G)}. Parts (b) and (c)
now follow,

Theorem 3,11. Assume ¢(G) C 6(G) for all groups G. Then

(a) o'(G) & ¢*(G) for all G.

(b) ¢+(c)/e*(G) C ¢*(G/6*(G)) for all G.

Proof. (a) By Theorem 1.5 we have that 6*(G) L ¢*(G) for all
G. Hence [G, 6'(G)] & 6*(G) C ¢*(G) and 6'(G) & ¢'(G).

(b) By part (a) and Theorem 3.9(a) we know that 6'(G) < ¢'(G).
Let £ e ¢'(G). Since 6*(G) e Char(G), we may take f to be an automor-
phism on G/6*(G). Then, for any g ¢ G, (g6*(G))¥ = gfo*(c). But
f e ¢*(G) implies that [g, £] e ¢*(G) so that [g, £]6*(G) e
@*(c)/6*(G) C ¢*(G/e*(G)). Hence £ ¢ ¢'(G/0*(G)). Also
(20*(6))f = gfe*(G) = g0*(G) if and only if [g, £f] ¢ 6*(G). Thus
f ¢ §*'(G) induces the identity on G/6*(G) if and only if f e 6'(G).

The proof of the following is similar to the proof of
Theorem 3.11(b): .

Theorem 3,12. For any G and word ¢, $(G)/@*(G) < Aut(G/¢*(G)).

Remark 3,13. Let G = J,, ¢ = ¢(x) = xX?. Since ¢*@G) =
{x e Gt x° = 1} has index two, we see that Aut(G/¢*(G)) = 1 and
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§(e) = ¢°(6) = Aut(G).

Remark 3,14. We now asks for what words 6 can 6*(G) have index
two in G or, more generally, be maximal in G? If 6*(G) is maximal in
G, then there is a cyclic subgroup H of G such that G = He*(G). By
Theorem 1.1(d), we see that 6(G) = 6(H). If cyclic groups are in the
variety determined by 6-=for example, when 6 is an outer commutator
word of weight greater than one-~then 6(G) = 1 and G = 6*(G), contrary
to the maximality of 6*(G).

Theorem 3,15. Let )\ = x(xl, cee xm) and 0 = e(yl, cee g yn)
be two words and define #(xy, oo 5 X 5 F3s eee » ¥) =
[A(X)s eee s X))y 8(Fys oee s F)]e I X(G) = A7(G) and 8(G) = 0°(G)
for all G, then §(G) = ¢'(G) for all G.

Proof. Suppose f ¢ #G), U= CG(X(G)), V= CG(e(G)). Since
verbal subgroups are fully invariant, U and V are characteristic in G.
Thus we may assume that f is an automorphism on G/U and on G/V.

Since f ¢ #(G), we have
[).(xl, cee s x{, cee s xm), e(yl, coe y yn)'_l =
[).(xl, coe 3 Xyy oee s x,)s e(yl, ves s yn)] for all Xy, «o0 , X

m’
Vys eoe 9 ¥y in G, This is equivalent to saying that 1 =

[A(x)s oee s x{, coe s X ARy oo 5 X4y 0oy )gm)'l, 8(¥1s eoe » ¥y)]
or ).(xl, cee p x:, ces 3 xm)v= x(xl. T xm)V. By
hypothesis, £ ¢ A(G/V) = A*(G/V) so that (G, £Iv/vC Az*(G/V). By a
similar argument, we may conclude that (G, £U/U C 6*(G/U). By
Theorem 1.3(b), [G, £] & ¢*(G). Therefore f ¢ $'(G). Consequently,
by Theorem 3.9(a) we have that $(G) = ¢°(G).

Corollary 3,16. Let ¢ be any outer commutator word. Then

#@G) = ¢'(G) for all G.
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Proof. wWe induct on the weight w(¢) of ¢. The word Y, = x
is the only outer commutator word of weight one. Then, for f e Aut(G),
gf = g for all g if and only if £ = 1. Hence vj(6) = ¥,(6) = 1.

Now assume that w(¢) > 1, ¢ = (A, 0], where w()), w(6) are
less than w(@). By the induction hypothesis, A(G) = A'(G), 6(G) = 8'(G)
for all G. Consequently, @(G) = ¢*(G) for all G by Theorem 3.15.

Example 3,17. The conclusion of Corollary 3.16 does not
hold for ¢ = ¢(x) = x°. By Lemma 2.25, ¢*(G) = {a ¢ 2(G)s a® = 1}
for any G, Let G = 83. The set H of squares of elements of G is the
derived group of G, the normal subgroup of order three. Since G is
centerless, we may consider G to be a group of automorphisms on itself.
Certainly H as a subgroup of Aut(G) fixes each element of H. Hence
17 HC §(6). But ¢'(G) = {a e Aut(G): [G, a] C ¢*(6) =1} = 1.

We recall that a o y3(G) = ;ﬁG) Af and only if a 15 a normal
automorphism; that is, a commutes with the inner automorphisms.
Franklin Haimo [ 3] and W. E. Deskins [1] have oconsidered higher
normal automorphisms. In particular, define Tl(G) = yé(G) and
T.(6) = {a ¢ Aut(G)s x" @ x mod 2,(G) for all x ¢ G} for n> 1
to be the p-normal automorphisms of G. By Corollary 3.1§ we may now

add that T,(G) = y ! (6) = Vnﬂ(c) for n2 1.
Theorem 3,8. Let ¢ = ¢(x) = x, n2 1. Then Y (6)N §(a) =
Y2(6) N $°(G). If n= 2, then also #'(G) T Y,(G) so that
v,(6) N §(6) = ¢*(a).
Proof. Let a e VZ(G) N @(G). Then (x™)® = x™ for all x e G.
This implies 1 = (x")"1(x")% = [x", a] =[x, a]", since [x, a] ¢ 2(G).

Hence a ¢ $*(G). By Theorem 3.9(a), we have Y,(G) N F(e) = ¢*(6) NV, ()

Itn=2,¢*G)={x e2(G)s x¥*=1). Hence ¢*(G) Y,(8).
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Corollary 3,19. Assume G = S5 + T, T is torsionfree Abelian
and S=¢ {<aa>s a ¢ I}, where o(aa) is a prime power. Let ¢ = ¢(x)

= x", Assume further that if a, has order p:u, then m, > 2s, where p:

is the p -share of n. Then ¢*@G)=1¢ {<.§:“-s>s acI}and ¢°(G) =
#(a) is Abelian.

Proof. Since G is Abelian, @'(G) = #(G) by Theorem 3.18, Also, -
¢*@c) = ¢*(T) + 2{¢'(<aa>)t aeclI}= Z(¢‘(<a(?)z a ¢ I} by Theorem 1,2
and the fact that T is torsionfree.

Let <& be a sutmand of 5, where o(a) = pm, m> 2s. We know

(<) ={x e <>t x" =1} ={x ¢ <>t P’ =1} = <P >, Write
n = p°t, where (p, t) = 1. Since also (o(a), t) = 1, there is a
b ¢ <a> such that a = b'. Hence aP° = b*P° = bP and *(<a>) =
<(aps)pm.zs> = <(bpm-23)">. Then $*'(G) stabilizes the series

1 < ¢*(G) 9 G. Consequently @'(G) is Abelian.

Remark 3,20. Let G = £{(J,) 3 o ¢ I}, ¢ = §(x) = x°. By
Corollary 3.19, 9'(G) = @(G) is Abelian. Since f ¢ Aut(G) defined
by xf = x™ is in ¢*(G), we have that ¢*(G) # 1. We also note that
if o(I) = 1, then §*(G) = @(G) = Aut(G) = Jse

Also, for ¢ = xz, if G is torsionfree Abelian or periodic
vhere each element has odd order, then ¢'(G) = @(G) = 1 by Corollary
3.19. Furthermore, if G is Gernmikov complete, it is generated by

its n-th powers so that ¢'(G) = ¢§(G) = 1 for ¢ = #(x) = x°,



CHAPTER IV
THE ENGEL MARGIN

In this chapter we shall investigate the marginal subgroup
for the Engel word e, of length two. We note that Theorem 1.3(b)
does not apply, since e, 15 a commutator with a repeated variable.
The metabelian margin d;(c) will play a role with e3(G) for each G,
so we will also derive some results for dz and, where possible,
exterd them to any solvable word dn'

By "Engel word" we will mean "Engel word of length two".
For any G we will write M = M(G) = d3(G) and E = E(G) = e)(G) for
the metabelian and Engel margins of G respectively.

Lemma 4,1. In any group G,

(a) d7(6)/Cy(d, 1(6)) = 4 *,(6/C (d, 1(G))). In particular,
M@G) = {a ¢ Gs [[a, x], [y, 2]] 458 a law inGl.

(®) Z,(m1)/2(6) & dp(G). In partioular, Z; & M.

(c) [M, a (6)] C 2(d,(6)) for n2 1 and [M, G] & 2(G*).

Proof. (a) This follows from Theorem 1.3(b), since dn is an
outer commutator word for each n, We note in particular that
M/cg(G*) = z(c/cG(G')). The secord statement was verified in the proof
of Corollary 2.22,

(b) We Anduct on n. For ne 1, Zl(G) C q(G) = 2(G).
For n> 1, let G = 8/Cy(d, 1(G)). Then I(G) = 4. (&) 2

26
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zn(n-l) /2(3) by part (a) and the induction hypothesis. Furthermore,

[Zn(nr1)/2¢8)s n(n-1)/2(6)] & 2, (1) /2 - n(ne1) /2 = 2,(G) and
[2,(6), 4, 1(6)] S [2,(6), v (G)] = 1 so that

[Zp(m1)/2(®)s Wm-1)/2(6)] S Gy(a, 1(6)). Consequently,

21y /200 S Zp(n1)/2(® S GG and 2,y 00(0) &

d3(a)C(d,,_,(G)) = d7(G), as desired.

(e) By part (a), [, d (6)] & a,(6) Nc () &
d4,(6) N C,(d (&) = 2(d,(G)). Similarly, (M, 6] &
G* NG(G*) = 2(G*).

Lenma 4,2, For eachme M, x ¢ dn(G), n> 1, define fm(x) =
[x, m]. Then

(a) £ e Hom(d (G), 2(d (G))).

(b) Ker £ =d (G) if and only Af M - CG(dn(G)).

(c) dn‘_l(G) C Ker £

Proof. (a) By Lemma 4.1(¢), fm(dn(G)) = [dn(G), mn) &
z(dn(G)). Let x, y e dn(G), m e M, Then fm(xy) =[xy, m] =
[x, m}y, m] =[x, nfy, m] = fm(x)fm(Y).

(b) This follows immediately from Lemma 4.1(c). We note for
n=1 that Ker f = G' 1f and only if M = CG(G'), since CG(G') C M
by Lemma 4.1(a).

(¢) From the fact that dnl-l(G) cC d,(G) for all G, we have

that d3(6) & d V,(G) for all G by Theorem 1.5. Then £.(d ,,(6)) =

[dnl‘l(G)’ m] - [dnq-l(G)s d;(G)] -C— [dm.l(G)o dn:].(G)] =1by
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Theorem 1,1(c). Certainly d .,(G) cC dn(G).

Corollary 4,3. For eachm e M and all gy5 ++e » Bn G,
[4,(81s eeo » B0-1)%, 4 (8on-1y1s oeo » Bpn)] =
(4,085 ooe » Bone1)s d (850115 eoe 5 Bon)].

Proof. Define £ e Hom(d (G), Z(d (G))) as in Lema 4.2.
Lot a=d (g oo » Eon-1), b= d, (gn-1 15 oec » 8pn)e Then
[a®, b] = [af(a), b] = [a, 5](*) £ (a), b] = [a, ], since
£.(a) ¢ 2(a (G)).

Remark 4,4. By the N/C Theorem, n/cG(G')C; Aut(G'). By
Lemma 4,1(c), we also know that [M, G*] & 2(G'). Thus M/c, () C
v5(G*).

Theorem 4,5. Ifdm_l(G) # 1, then for each m ¢ M there is an
x ed (G), x 7 1, such that m e Gz(x). In particular, M
<Ggix)t xe dn(G)’ x¥ 1>,

Exrcof. Deny. Then there is an m ¢ M such that X" 4 x for all
x ¢ d (G), x # 1. Define £ as in Lema 4.2, For x, y ¢ d(G),
£,(x) = £,(y) implies that x L& = y'ly" or that yx"l = (pt'l)“.
By assumption, x = y and £ 1is an isomorphism from d (G) onto a
subgroup of Z(dn(G)). Hence dn(G) = 2(d,(G)) and dpy4(G) = 1,
a contradiction.

We now turn to the Engel margin E. For convenience we define
El=(a eGs [ax, y, ¥] =[x, ¥, ¥] for all x, y ¢ G} and L(G) =
{a ¢Gs [a, x, x] = 1 for all x e G} to be the subgroup of right
Engel elements of length two. It is not difficult to show that
EC E e Char(G). We will need the following lemma. For the proofs
of the various parts, see [9].
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Leoma 4,6. (Kappe) In any group G, where a ¢ L(G), g, h e G,

(a) L(G) e Char(G).

(b) [a, g h]=[a, h, g]'l.

(&) [a (&) B]] = [a, & BI°.

(d) [a, & [hy g]] = 1.

(e) if a has odd order, then a ¢ 23(6).

Lema 4,7. Every a ¢ E(G) is both a right and a left Engel
element. In particular, Z,(G) O E(G) & L(G).

Proof. Let x ¢ G, Then(x, a, a] =[x, 1, 1] =1 and
(ay x, x] =1, x, x] = 1. Hence a is both a left and a right Engel
element of length two. Furthermore, eZ(G) C YB(G) for all G implies
that y;(e) C o;(G) for all G by Theorem 1.5. By Theorem 1.4, y;(G) =
Zz(G) and the result follows.

Theorem 4,8. In any group G,

(a) E = {as [a, x] © CG(xG) for all x ¢ G} = L(G).

(b) [as x] e cG(xG) N C4(a) for alla e £, x ¢ G. Furthermore,
[a, x]” = [ar, xsj for all integers r and s,

(c) a% and x*1 are Abelian for a e Ey» X ¢ G,

(4) B C I, where I= n{cG((xG)')s x e G} 4 G.

Broof. (a) Let a e E,. Then (ay, x, x] = [y, x, x] for all
X, y ¢ G. This is equivalent to saying that 1 = [[ay,x]y, x]'l, x] =
([a» x]y[y, x{y, x]'l, x] = [[a, x]y, x] for all x, y e G. Since x
and y are indeperndent, we may conclude that a ¢ El if and only if
1=[a, x, ¥] for all x, y ¢ G or, equivalently, [a, x] e G;(x°) for
all x,

That E, C L(G) follows from [a, X, ] = 1 by letting y = 1.
Conversely, let a e L(G). We have, for x, y ¢ G, [a, X, ¥ ] =
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(ay x, %, y]] = [a» x, [x, ¥]][as %, x][x’ y]. By the definition of

L(G) we see that [a, x, x] = 1. By Lemma 4.6(d) we also have that
(as %, [x, ¥]]= 1. Hence [a, X, ¥]=1anda ¢ E .

(b) Since a is a right ingel element, we have [a, x] e C.(a)
by [9s Lemma 2.1]. Part (a) says that [a, x] ¢ C (x") for all x e G.
The remainder of part (b) follows from [18s Theorem 3.4.4].

(c) From part (b) we see that a* = a[a, x] e Cy(a), since
a and [a, x] are in Gy(a). This implies that a° is Abelian.

The proof that xPl is Abelian follows similarly from x* =
{x, a], [x, a] e ¢.() C ¢, (x).

(d) By part (b) we may conclude that [a, x¥] ¢ cG((xy)G) =
G, (%) for all a e B, %, ¥ e G.

We claim now that (x0)' = S, where S = < [x¥, x*]s w, z ¢ G >.
Clearly s O (xG)'. A generator a of (&) may be written a =
[GELTL «r (E1)¥m, (E)ard oo (x1)Vn] for elements y, e G.

By [18s Theorem 3.4.2] we may write a = n [ (x1)¥1, (:1)¥3]%4,J for

G

2, 3 e x’. But £ g G, So we may assume (xG)' is generated by elements
9

of the form [(xtl)", (xﬂ')'] for various w, 2 ¢ G. Then [(x'l)", xz]

(=, x"‘]"l)(""l)w = ([x% ] 45 4n's, since 5 @ G. Similarly,
we may show that [x", (x"1)%] and [(x"1)¥, (x™2)%] are in S. Hence the
claim follows.

Let a ¢ E;. By Lema 4.6(c), we have [a, [x", x*]] =
[[as x"], x*]° = 1. By the claim this implies that a e Cz((x%)").
Furthermore, x° < G, (x°)' ¢ Char(x¥) for each x imply (x°)* < G.

By the N/C Theorem, C5((x*)') 9 G for each x ¢ G. Therefore I < G.



3

Theorem 4,9. In any group G, E = E(G) = {a ¢ Gt 1 =
[x, a, yIx, y, a] for all x, y € G}.

Proof. Set E, = {a ¢ Gs [x, ay, ay| = [x, ¥, y] for all x,
y ¢ G}. We know E, = {a ¢ Gt [a, x] e C;(x") for all x ¢ G} by Theorem
4.8(a) and E = By n E,» Let S be the set given on the right in the
statement of the theorem. Suppose a ¢ S, xe G. Then 1 =
[x, a, x][x, x, a] =[x, a, x]. This implies that a e E, = L(G).
Since also E C_ E s it suffices to show that E 0 B} = E, NE, =

Flﬂ S. Then, forx,yeG,aeE‘.lnEzifarﬂorﬂ.yif

[xo L) Y-] = Ex9 ay, GY]

=[x, ay, YIx, ay, a]y
= [[x, ¥Txs aT¥, y)[x 51[x, a7, a]”

x, a¥ X, & v
Yl o, 51x 30 a1 T 0z, o7, o7

By assumption, [a, x| e CG(xG). Since CG(xG) 4 G by the N/C

= [x, Y Y]

Theorem, we also have that [a, x]y e CG(xG). Consequently, conjugation
by [x, a1 is irrelevant in the last statement above because all the

commutators are in xG. Therefore the above is equivalent to

[ ¥ ¥1 =[x 3 31[x aF, y)x, v, aP[[x, aT7, a7 or
1=[x, a, y[[x, ¥, a][[x, a]y, a] for all x, y ¢ G, a e E(G).

Now a and [x, a]¥ are elements of &€, By Theorem 4.8(c), a®
is Abelian. This implies that [[x, a]’, a] = 1. Therefore E(G) is
contained in the set S,

We have already shown that 5 is a subset of E, = L(G).

Consequently, all the above arguments are reversible and we may conclude
that S = E(G).
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Corollary 4,10. In any group G, E(G)OCG(G') = ZZ(G)‘

Proof. We need only verify that B(G) N C4(G') O 2,(G) by
Lemma 4,7. Let a ¢ E(G) ﬂCG(G'). By Theorem 4.9, 1 =
[x, ay yIx, y, a1 for a11 x, y ¢ G, But a ¢ CG(G') implies that
[xy y, a] = 1 and thus that [x, a, y] =1 for all x, y ¢ G, Hence
ae ZZ(G).

Corollary 4,11. (a) Suppose a e L(G), X, y e G. Then
[x, a, ¥] = [a, ¥, x].

(b) E(G) ={a eGs [x, yy a2, ¥, X] = 1 for all x, y € G},

Proof. (a) [a, ¥, x] = [ay %, y]™* by Lemma 4.6(b),

= [[x oJ7%, 577

[a, x]

= (([x, a 7D
=[x, a, y], since [a, x] ¢ CG(xG)
by Theorem 4.8(a).

(b) Let S be the set given on the right in the statement of
part (b). By part (a) and Theorem 4.9, we have that E(G) is a subset
of S.

To prove the opposite inclusion, we need only show that S is a
subset of L(G) and then use part (a)., Suppose a ¢ S, X ¢ Go Then
[x, x, a] 2, x, x] = [a, x, Xx] = 1, Hence a ¢ L(G) and the theorem
follows.

Corollary 4,12. In any group G, [M, G] NEG) & 2,(6).

Proof. By Lerma 4.1(a), we have M/CG(G') = Z(G/CG(G')). Hence
M, GINEC C;(G') 0 E = 2,(G) by Corollary 4.10.

Theorem 4,13, Let a e E(G). Then[a, G, G13 =[al, G, G] = 1.

]
by

[P



33

Proof. Let x, y ¢ G, By Theorem 4.11(b), [x, y, afa, ¥, x] =

1. Then[x, y, a] = [a, [x, ¥]1™ = ([a) %, ¥]*)™} by Leama 4.6(c),

= [a, ¥, x]° by Lemma 4.6(b).
Hence 1 =[x, y, af 2, ¥, x| = [a, ¥, x]z[a, ¥, x| =[ay ¥ x'\3. By
Theorem 4.8(c) we have that a¥ 45 Abelian, Hence [ay x, y]3 =1
for all x, y e G implies [a, G, G| has exponent dividing three, and
[a, x, y']3 = [aB, X, y] =1,

The following two corollaries are immediate from Theorem 4.13:

Corollary 4,14. For any group G, E:/Z2 has exponent three.

Corollary 4,15. If E has no elements of order three, then
E= 22'

Theorem 4,16. In any group G, E(G) & 23(6) C M(G). In
addition, l:‘./z2 is an elementary Abelian 3-group.

Proof. We need a slightly stronger result than our Lemma
4,6(e). In his proof, Kappe [9s Sats III, Teil 4] shows that for
aelL(G), x,y, 2¢G, [a, x4 ¥, z]u =1, Since a.G is Abelian by
Theorem 4.8(c), we may assert that [a“, X, ¥, 2] = 1 or au e ZB(G).
By Corollary 4.14, for a ¢ E C E = L(G), we also have dez0)C
2,(G). Henos a = atad)l e Z,(6) and B(G) & 2,(6). It follows
now from Lemma 4.1(b) that ZB(G) C M(G). The second statement then
follows from Corollary 4.14,

Corollary 4,17. In any group G, E(G) is nilpotent of class
no greater than three and metabelian, and [E, E, E] has exponent three.
Furthermore, if CG(G') C E(G), then M(G) = ZB(G).

Eroof. The first statement follows immediately from Levi's
Theorem, since e, is a law in E(G). Alternatively, we may conclude

that E(G) has nilpotence class no greater than three and is metabelian

1y
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from Theorem 4,16, By the same theorem, we know that [E, E, E] C_ Z(E)
is Abelian. Hence Theorem 4,13 implies that [E, E, E] has exponent
three.

suppose C.(G') C E. By Corollary 4.10 this implies that
C,(G*) = 2,(G). From Lema 4.1(a), M/C (G') = Z(G/CG(G')). Hence
M(G) = 23(6).

Theorem 4,18. (a) [G', M, E,] = [G', E, M] =[M, G, G'] = 1.

(v) [G, M, EI] = [Me, El, G] =[G, G, M'] = 1, In particular,
(M, B C 2(0).

Proof. (a) By Lemma 4.1(c), [M, G]& 2(G') so that 1 =
(M, G, G*]. Nowlet a ¢ E,mcM, X ¢cG'. By Lemma 4.6(c),
[a, [my x]] = [a, m, x]° = 1. This implies [G', M, §]=1. Bythe
Three Subgroups Lemma, we also have that [G', Ep» M] = 1.

(b) As in the proof of part (a), M' C Z(G') so that 1 =
(G, G, M']. Let a ¢E, xeM', g ¢cG. We have[a, [g, x]] =
[a, & x]z = 1, Hence [M', G, El] = 1 and, as above, [M', E)» G]=1.

Corollary 4,19. Suppose M'/F(A) is divisible, where A C
Aut(M'), A = Ech(M')/cG(M') and F(A) ={x e M's x* = x for all a ¢ A)
is the set of points fixed by A. Then

(a) [M', a] is divisible for each a ¢ A, In particular,
(¥, E ] =M, A] 45 divisible.

(b) for allece Ey, x e M, fa(x) =[x, o] defines a homo-
morphism from M' onto a direct divisible summand of Z(G).

(c) for all e e E,, m e M, there is a homomorphism t = t(m, o)
from G' into a direct divisible summand of Z(G) such that

{x eG's [x, m] e M'} C Ker t.
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Proof. By Theorem 4.18(b), [M', E,] O 2(G). For e e E,, let
a ¢ A be the automorphism on M' corresponding to oCG(M'). Then
M*/F(a) = [M*, a] = [M', e] O 2(G), where F(a) = Ker f_ and
[u'y a] = £ ('), Since 1*/F(a) = (¥*/F(A))/(F(a)/F(A)) 1s divisible,
we have that [M', e] is a divisible subgroup of Z(G) and hence a
summand of Z(G). Furthermore, [M', El] =<'y o]t e ¢ E > is
divisible because it is generated by divisible subgroups of Z(G).
Parts (a) and (b) now follow.

Let e ¢ E:l, m ¢ M. Define the homomorphism :!'° from M' onto
', o] as in part (b). We know M* (_ Z(G') and [M', e] is divisible.
Since then [M', e] is an injective Z-module, fe may be extended to
£ ¢ Hom(z(G'), [¥', e]). Define f ¢ Hom(G', 2(G')) as in Lema
4.2(a). Then t = f7f e Hom(G', [M',e]). If x ¢G' such that
[x, m] e M', then t(x) = f:fm(x) = f:([x, m]) = £ ([x, m]) =
[x, m, ] ¢ [G*, M, Elj = 1 by Theorem 4,18(a).

Remark 4,20, By Theorem 4.16, E C_ Z. so that [G', E] C 2(G).

3
Then for all a ¢ E, x e G, fa(x) =[x, a] defines a homomorphism from
G' into Z(G).

We shall investigate the action of E and F.l on G'. By Remark
L4 we know that M/CG(G') acts as a group of Abelian central auto-
morphisms on G'. Then (El ﬂM)/(Elﬂ CG(G')) c M/CG(G') is also
such a group. Let A, C_ Aut(G') be the corresponding group of auto-
morphisms. Furthermore, E/Z, = (E (1 M)/(E n Ce(G*))C A, by
Corollary 4.10 and Theorem 4,16, Let A; __ A, be the corresponding

group of automorphisms on G°'.
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Theorem 4,21. (a) If Exp(2(G')) = n < =, then Exp(,) | n.

(b) If G*' is a p-group, A T A, is periodic, then A is a p-group.

(¢) If G' is polycyclic, then A = E/22 is finmte.

Proof. (a) Suppose Z(G') has exponent n. Then, for x e G',
aeAh, 1=[x,a]®=[x, a™] by Theorem 4.8(b), Consequently, a=1
ard A, has exponent dividing n.

(b) Now assume A is poriodi.c. By Theorem 4.18(a) we may
conclude that [G', M, B,] = [G*, A, A] = 1. Thus A stabilizes the
nomal series 1 < [G', A] 9 G' of G'. By the arguments used in
[2s Corollary 5.33], we have that A is a p-group.

(c) Smirnov [19] has shown that a solvable group of automor-
phisms of a polycyclic group is polycyclic. By Theorem 4.16 we have
that L.I. is a finitely generated periodic Abelian group. Hence Al is
findte.

Theorem 4,22, If 2(G)N Z(G') has no elements of order three,
then E = Zz.

Proof. We shall show that Al =1l. Let a ¢ Ay. By Theorem
4,16, E C 23. Hence [G', E] = [G*, Al] C 2(G)N 2(G*'). Then, by
Corollary 4.14, 1 =[x, a.3_'] =[x, a]3. By hypothesis, this implies
that 1 = [x, a]. Consequently a = 1.

Theorem 4,23, Suppose A, # 1 is not torsionfree. Then G' has
a proper subgroup of finite index.

Broof. For 1# a e A,, the homomorphism from G' into Z(G')
defined by f (x) = [x, o] for each x ¢ G' 1s nontrivial. We may find
an a ¢ 5jN M\ E) N G;(G*) such that [x, a] = [x, a] for all x ¢ G".
If a has finite order, then there is an integer n such that a® ¢ CG(G').

F.’T
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Thus 1 = [x, a]” = [x, a"] and G'/Ker £ % £ (6') C 2(G') 15 a non-
trivial direct sum of cyclic groups each of order bounded by n, In
particular, there are subgroups H and C of G' such that G'/Ker £ =
H/Ker fa + C/Ker £ and C/Ker f, is nontrivial and finite. Consequently
H<G* and G'/H % C/Ker £ 1is finite.

Corollary 4,24, If E> 22, then G' has a proper subgroup of
firdte index,

Proof. 1If E> Zp, then A is a nontrivial torsion subgroup of
A, by Theorem 4.16. Hence A, # 1 1s not torsionfree and the theorem
applies,

It is known that no complete, or even Cernikov oomplete, group
can have a proper subgroup of finite index (see [10: p. 234]), The
following two corollaries come directly from this fact.

Corollary 4,25. If G* is Germikov complete, then E = Z,.
Corollary 4,26. If G is metabelian and G' is divisible,
then E = Zz.

Theorem 4,27. If G'/(G' N CG(Eln M)) is periodic, then

A2 has no elements of infinite height.

Eroof. Suppose a ¢ B} NM\ E, ﬂCG(G') is such that the induced
automorphism a ¢ Az has infinite height. Let x ¢ G', and assume there is
an integer n such that x" ¢ CG(EI. N M), By hypothesis, there is a § ¢ A,
such that a = 8", Thus we may find b ¢ E; NM\ E N C(G'), y ¢
E, NC4(G*) such that a = bYy. Then [x, a] =[x, by] = [x, b7] =
[x”, b] = 1 by Theorem 4.8(b) ard a e E, N Gg(G"), contrary to assumption.

We note that since Al has bounded exponent, it can have no
elements of infinite height; certainly no nontrivial element of Al
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can be divided by 3 = E:p(Al). Similarly we may show that A, has no
elements of infinite height if Z(G') has bounded exponent by Theorem
4.21(a).

Theorem 4,28, Assume Z(G') is torsionfree. Then Az is
torsionfree.

Proof. Let 17 a ¢ A,, o(a) = n<ew, Then there is an x c G*
such that 1 # [x, a] ¢ 2(G'). But [x, a]® =[x, a] = 1 so that
o([x, a]) | n. Hence a has infinite order. Since A, " A, is
torsion, we must have that Al =lorE-= Zz.

The proof of Theorem 4.29 is an improvement on a result of
Turner-Smith [ 223 Lemma 3.2], who has shown that for any automorphism
group A on G, A has to have bourded exponent whenever the set
{[x, als xeG, ae A} is finite.

Theorem 4,29. If a ¢ E, is such that S ={[x, a]s x ¢ G'} is
finite, then aZ(G) ¢ El/Z(G ) has finite order. The orders of all such
elements are bounded if the cardinalities of the sets are bounded.

Proof. Assume that S_ has n elements, x ¢ G'. Then at least
two of the elements [x, al, [xz, aly eee o [x"n', a] are the same,
Hence there is an integer k = k(x) < n depending on x such that
[x, ak] = [:xk, a] = 1 by Theorem 4,8(b). Since the k's are bounded
by n, we may assert that [x, am] = 1 for all x. Consequently
a™ ¢ 2(6).

Remark 4,30, We have proved that if Z(G) Z(G') has no
elements of order three, or if G' has no proper subgroup of finite
index, then E(G) = Zz(G). We shall now show that there exists a group
G such that 22<G) < E@G) < Z3(G).
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Let H=< ays 8y, a33 x3 >. Levi and van der Waerden [11] have
shown that H has nilpotence class exactly three and satisfies the law
°

2
class at least three having no elements of order three (see for example

o Hence E(H) = H= ZB(H) > Zz(H). Let K be any group of nilpotence

[17s p. 198]). By Theorem 4.22, E(K) = zz(x) < z3(1() C K. Let
G = Hx K. By Theorem 1.2, we have E(G) = E(H) x E(K) = H x Z,(K).
Consequently Zz(G) < E(G) < Z3(G).

We have also shown that E C El = L(G). Define NA(G) =
N {NG(H)x H maximal Abelian subgroup of G} to be the A-Norm (or
Abelian-Norm) of G. Kappe [9] introduces this concept and proves
that a ¢ NA(G) if and only if (g, h] = 1 for g, h e G implies that
[ay 8 h] = 1. By Corollary 4.10 it follows immediately that
ECNG S E.

efinition 4,31. We shall say that a word ¢ satisfies the
Schur-Baer property if [G: ¢*(G)] = m finite implies ¢(G) finite with
order which divides a power of m for all groups G.

Schur showed that Y, satisfies the Schur-Baer property; Baer
extended this result to any outer commutator word ¢ (see [20]). We
shall need the following theorem. For a proof (due to P. Hall), see
(203 Theorem 2].

Theorem 4,32, If ¢§ generates a locally residually finite
variety, then ¢ satisfies the Schur-Baer property.

Theorem 4,33. If ¢ e {02, 03}, then ¢ satisfies the Schur-
Baer property.

PBroof. Suppose @ = o,. A group in the variety generated by ¢

is mlpotent by Levi's Theorem. A finitely generated nilpotent group
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is residually finite by P, Hall [6]. Consequently a finitely generated
group in the variety generated by ¢ is residually finite and Theorem
L.33 applies.

Let § = e.. Heineken [8] has shown that a group in the variety

3¢
generated by ¢ is locally nilpotent. Hence a finitely generated group
in this variety is also residually finite and the theorem follows as
above,

Remark 4,34, We note that in P, Hall's proof of Theorem 4.33
we may sharpen the result somewhat if we put some restrictions on G
jtself. That is, if ¢*(G) is locally residually finite for all G in
some class ¥ such that £ = {Q, S})T, then ¢ satisfies the Schur-Baer
property for all G ¢ . In particular, we have the following:

Theorem 4,35. If G satisfies the maximum or the minimum
condition, or if G is an SN group, then e  satisfies the Schur-Baer
property for G.

Proof. Suppose G satisfies the maximum condition. Then, by
[17s Theorem VI.8.j], we have that the set of left Engel elements
(of all lengths) is the Hirsch-Plotkin radical R. Since then
e;(G) C R is locally mlpotent, it is locally residually finmite. By
Remark 4,34, o satisfies the Schur-Baer property for G.

Vilyacer [23] has shown that an Engel group satisfying the
mimimum cordition is locally nilpotent. Plotkin [14] has proved that
an Engel group which is also an sN* group is locally rdlpotent. Hence
the remainder of the theorem follows as above.

P. Hall has made the following three conjectures concerning
arbitrary words ¢ and groups G (see Turner-Smith [21])s
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I. If ¢ is finite-valued in G, then ¢(G) is finite.
II. The word ¢ satisfies the Schur-Baer property.
III., If G has the maximum oondition on subgroups and @(G) is
fimite, then G/@*(G) is finite.

It is not known whether these conjectures are universally true,
We have shown that Conjecture II is satisfied for ¢ ¢ {02, 03}.

Our results are more limited for these words amd the other two
conjectures,

We shall need the following lemma. The arguments follow those
used in [223 Proposition 1].

Lomma 4,36. Suppose G is in a class of groups in which
Conjecture II is satisfied locally for §. If G is also locally
residually fimite, then ¢§ and G satisfy Conjecture I.

Proof. Assume ¢ is finite-valued on G. Then there is a
finitely generated subgroup H of G such that ¢(H) = @(G). Since ¢ is
finite-valued on H, we have that the set of elements of the form t =
B(hyy oee y ahyy ooy hn)'1¢(h1, ees » Byy eee y b)) for a, h, e H,
1<1<n, is finite. Let tl’ cee tk be the nontrivial values. By
hypothesis, H is residually finite. Hence we may find L < H such that
H/L is finite and t, §L, 1 <1< k. Let a ¢L, by, .c. , h ¢ H,
Then w = $(ly, «ee 5 &y, eee » B)P(hy, veu , hy) e L. Since no
such nontrivial element can be in L, we must have that w= 1 and
L C ¢*(H). Hence H/¢*(H) is finite and, since Conjecture II holds
in H, we have that @¢(H) = @¢(G) is finmite.

Theorem 4,37. If ¢ ¢ {e,, 03} and G is locally residually
finite, then ¢ and G satisfy Conjecture I,
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Proof. By Theorem 4,33 we know that ¢ satisfies the Schur-
Baer property. Hence Conjecture II is satisfied for @ in any group
and the result follows from the lemma.

Remark 4,38. Conjectures I and III seem quite difficult to
verify for Engel words. Conjecture I has been substantiated for
nilpotent and solvable words but not for outer commutator words
in general (see [16] and [21]). Conjecture III was proved for any
outer commutator word by P. Hall (see [21]). We note that Theorem
4,36 verifies Merzljakov's [12] variant of the last conjecture for
finitely generated residually finite groups G and @ ¢ { ) 03}:

IV, If ¢ is finite-valued on G (where G does not necessarily
satisfy the maximum condition), then G/@*(G) is finite,

Merzl jakov [ 121 proves that for an arbitrary word and an
arbitrary linear group over a field all four conjectures are true. We
note also that Turner-Smith [ 22] has shown that all three conjectures
hold for every word {) and every group G in the class of groups whose
homomorphic images are all residually finite--for example, the class of
polycyclic groups.

Theorem 4,39. If G satisfies the maximum condition and Yn(G)
is fimte for some n, then G/en:l(G) is finite.

Eroof. By Remark 4.38 we know that Conjecture III holds for
Y, Hence G/y;(G) is finite. That y*(G) T °n:1(G) follows from the
fact that °n-1(G) C Yn(G) and Theorem 1.5. Hence G/on:l(G) is
finite.
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