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ABSTRACT

0N MARGINAL SUBEROUPS

AND THEIR GWEALIZATIONS

By

Tommy Kay Teague

In this paper several problems concerning marginal subgroups

are investigated. in elenent a of G lies in the marginal subgroup

¢'(G) corresponding to the word ¢ if and only if ¢(gl, ... , gn) =

“81. ... , agi, ... , 3n) for all choices of g1, ... , 3n inG and

i = 1, 2, ... , n. Let A0 ‘-'-' l, and define Ami-l to be the complete

inverse image of ¢"(G/Aa). If a. is a limit ordinal, define Au =

U {A88 3 < a}. A group G is called ¢-nilpotent of class n 11‘ there

is a positive integer n such that and # A.n = G, and G is called

¢-hypercentra1 if there is an ordinal B such that AB = G.

In Chapter 2 some of the basic properties of ¢-hwpercentral

groups are developed. The following theoruns are proved:

ghggren. Let G0 = G, and inductively let Gall be the subgroup

generated by elements of the form ¢(g1, , gn)'1¢(glh1, , gnhn),

where each g1 c G, hi e G“. Define G“ = (KGB: B < a} for a a limit

ordinal. Then G is ¢—nilpotent of class n if and only if

6"“1 a! G“ = 1.

m. Acme G is ¢-hypercentral. Then ¢(G) has a

descending hypercentral series.

gheorun. Let ).(y1, ... , ym), 6(x1, ... , x“) be two words

such that 6(6) Q “6) for all G. Set ¢(y1, , ym, x1, , xn) =.
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(Marl, ... , ym), 9(1'1, ... , xnf]. If G is a group such that HG) is

nilpotent of class c, then G is ¢—nilpotent of class no greater than c.

Theorem. Let dn be the n-th derived word. For arw G, G is

dn-nilpotent if and only if dn_1(G) is nilpotent.

In Chapter 3, two generalizations of the marginal subgroup of

G are considered--one in G and the other in Aut(G). Define ¢°(G) =

{a c G: ¢(gl, ... , gi, ... , gn) = ¢(g1, ... , gn) for all choices of

g1, ... , gn in G and i = l, 2, ... , n} to be the c-marginal subgroup

of G. By substituting a c Aut(G) for a c G in the definition of ¢°(G),

it is possible to define the automargin 3(G) _C_:_ Aut(G).

Theorem. ¢°(G) = {a c G: ¢(gl, ... , agi, ... , gn) =

“81. ... , gia, ... , gn) for all choices of g1, ... , gn in G

arrii=1, 2, , &.

Theorem. Define Yn = [3:1, ... , xn]. Then y;(G) = Zn(G) for

n _>_ 1.

Ihgrem. Let ¢ be any outer commutator word. Then a(G) =

{a c Aut(G): [G, a] _C__ ¢'(G)}. In particular, Vn(G) = {a c Aut(G):

x0.

x mod zn_1(e) for all x a G} .

Marginal subgroups for outer commutator words were completely

characterized by R. F. Turner-Smith in 1964. In Chapter 4 the marginal

subgroup for another type of commutator, the Engel word e2 = [x, y, y],

is determined.

W. cam) = {a e G: [x, y, a][:a, y, X] = l for all x, y c G}.

92mm- eye) n CG(G'> = 22(6).

m. For m a c eye), [a, a, 613 = [.3, e, c] = 1.

Theorem. 22(G) (_:_ e§(G) ; 23(G), and e§(G)/ZZ(G) is an

elementary Abelian 3-group of central automorphisms on G' .



Tomy Kay Teague

m. If Z(G') flue) has no elements of order 3, or if G'

has no proper subgroup of finite index, then e;(G) = 22(G).

m. If [G: 5(a)] = m is finite, then e2(G) is finite with

order which divides a power of m.

m. If G is locally residually finite and e2 is finite-

valued on G, then e2(G) is finite.

121m. The preceding two theoruns also hold for the Engel

word 03 = [X. y. y. y]-
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INTRODUCTION

The concept of a marginal subgroup for a word ¢ was introduced

in 1940 by P. Hall [4]. It is known that the marginal subgroup of a

group for the word [x, y] is the center of the group. By analogy with

the ascending central series of a group, we may define its ascending

¢-series. Further, we may generalize the marginal subgroup itself by

considering elments in the group which do not change the value of the

word when they conjugate any of its variables. This in turn leads us

to consider automorphisms which do not affect the value of the word

when they are applied to arv of its variables. R. F. Turner-Smith

[21: page 328] has completely characterized the marginal subgroup for

an outer cmutator word. We conclude this paper with a characterization

of the marginal subgroup for the Eh'igel word of length two, which is not

an outer commutator word.

For the sake of coupleteness, Chapter I contains some definitions

ani theoruns essential to the reminder of the paper.

In Chapter II we develop some of the basic properties of ¢-

hypercentral groups. Marry of the usual theorems for hypercentral

groups are true in this new context. We are also able to define a lower

¢-series for a group. We give a complete characterization of dn-nilpotence

for any derived word :1n and necessary conditions for some other words.

Some possible ways to generalize the normalizer of a subgroup are also

suggested .
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Chapter III offers two generalizations of the marginal subgroup--

the c-marginal subgroup and the automargin of a group. An alternate

characterization of the c-marginal subgroup is given, and this subgroup

is computed for star nilpotent word. The automargin is shown to be minimal

for outer commutator words. In particular, the automargin of a group G

for a nilpotent word is shown to be the group of n-normal automorphisms

on G for some n.

In Chapter IV we consider the marginal subgroup E for the Engel

word of length two. A complete characterization of E is given, and

several interesting properties are brought to light. The relationship

of the subgroup of right Rigel elenents of length two to the metabolian

margin is considered. Some results concerning the relative size of the

verbal and marginal subgroups of G for the Engel word of length two are

also presented .



CHAPTER I

PREMNARIES

WwW. Let G be a group. The symbol 1 is

used interchangeably for the identity in G and for the unit group. By

a QC. (3 < G) (a <1G) (H c Char(G)) we mean that H is a subgroup of G

(a proper subgroup of G) (a normal subgroup of G) (a characteristic

subgroup of G). If H _C__ G, [Gas] is the index of H in G, 06(3) is the

centralizer of H in G, and NG(H) is the normalizer of H in G. If S is

a subset of G, then <3 is the subgroup of G generated by the eluents

of S. The order of an eluent g of G is written o(g), and 0(8) denotes

the cardinality of the set S. The infinite cyclic group is represented

by J, the cyclic group of order n by Jn, the symmetric group on n sym-

bols by Sn’ and the alternating group on n symbols by An.

If G‘ is a group for each a in some indexing set A, then the

(unrestricted) direct product of {Ga} a c A} is denoted by "{G‘: a e A}

and the direct Sumhytfilal a sh}. ByG§ 3 (egg H) wemeanG is

isomorphic to (a subgroup of) B.

By a class of groups we mean a class containing the unit group

as well as all isomorphic copies of amr manber of the class. Let 2 be

a class of groups. Then:

(a) $2 is the class of groups which are subgroups of )3 groups.

(b) Q}: is the class of groups which are quotients of 2 groups.

(c) E: is the class of groups which are extensions of 2 groups

3



by 2 groups.

(d) L2 is the class of groups in which every finitely generated

subgroup is a 2 group.

(e) DP): is the class of groups which are direct products of 2

groups.

If p;{s, q, E, L, or}, and if P22 2, we say 2 is P closed.

The center of G is CG(G), denoted by Z(G). Let 20(G) = l,

21(G) = Z(G). The ascerriing central series of G is defined recursively

by Zw1(G)/ZQ(G) = Z(G/Za(G)) for all ordinals a, and Za(G) =

UfZB(G): e < a} for all limit ordinals 0.. If there is a least finite

ordinal n such that Zn(G) = G, then G is nilpotent of class n. If

ZB(G) = G for some ordinal B, G is a ZA group.

IfG has an ascending normal series 13 GO <G1 <1 ... <IGO= G

where Gal-l/Ga is Abelian for each a, then G is an SN* group.

Forx, ythhe conjugateofxbyyisxy=y']5cyardthe

commutator ofx and y is [x, y] = x'lxy. For x eG, HC—lG, xH=

<xh: th>. RE, KQG, then[h, K]=<[h, k]: heH, ch>.

Ifxi eG, lsign, n23, wedefineEJcl, ... , xn] recursivelytobe

[[xl, ... , xn-l]’ xn]. Similarly, if X1(;_—._G, l S. i 5 n, nz 3, we

define [$1, ... , In] = [[Xl, ... , £51], In].

A subgroup A of Aut(G) stabilizes the normal series G = G0 9

G1t> ...DGn= lofG iIGQ=G1am[G1, figsfil, Ogisn- 1.

We shall make frequent use of the fact that if Gi <1 G for each i, then

A is nilpotent of class 5 n — 1 (see [7]). Also, for A I; Aut(G),

F(A) = {g c G: [g, a] = 1}.

Define [x, 1y] = [x, y] and Ex, my] recursively to be

[[x, (n - Dy], y]. An eleuent g c G is a left Engel elauent if to
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each x e G there is an integer n depending on x such that [x, ng] = 1.

Similarly, g c G is a right Engel elment if to each x c G there is an

integer n depending on x such that [g, nx] = 1. If every elenent of G

is a left mnel element, then G is called an Engel group. If H, K C; G,

define [11, 1x] = [3, x] and [3, mg recursively to be [[H, (n - 1m], K].

A group G is residually finite if for each 1 1 x e G there is a

normal Nx <1 G with x ¢ Nx such that G/Nx is finite.

An elenent a e G has infinite height in G if the equation

it“ = a has a solution in G for each integer n. A group G is complete

if each a e G has infinite height. A group G is ‘éernikov complete if

for each integer n G is generated by the n-th powers of all its eluents.

A group G satisfies the maximum (minimum) condition if each

proper according (descending) chain of subgroups of G is finite.

By [17: Theoran V1.7.b] every group has a unique maximum locally

nilpotent normal subgroup. We call this subgroup the Hirsch-Plotkin

radical of G.

A word is an elenent of the countably generated free group

< x1, x2, ... >. A law in a group G is a word such that every substi-

tution of slanents from G for the variables of the word yields the

identity of G. If S is a set of words, then the variety determined

by S is the class of all groups G such that the elenents of S are laws

in G. For am word ¢ we denote by ¢(G) the verbal subgroup of the group

G generated by all the values of ¢ obtained by substituting elenents

from G for the variables of ¢. The associated marginal subgroup ¢"(G)

of G consists of all a c G such that ¢(g1, ... , 3n) =

“g1. ... , agi, ... , gn) for every g1 e G, i = l, 2, ... , n. We also

refer to ¢"‘(G) as the ¢.nargin of G.
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The word Vl = y1(x) = x in one variable is an outer comnutator

word of weight w(y1) = 1. If 6 = 6(x1, ... , xn) and l 3 Myl, ... , ym)

are defined outer commutator words such that w(e) = n and w“) = m,

then ¢ = ¢(x1. . 25,”) = [90:1, . x“). "(xnv-v , agnmfl

is an outer comnutator word of weight w(¢) = m + n. We write

¢ = [9, l]. Particular mmples of outer commutator words we consider

are the derived (or solvable) words, defined by do = x, d =
n

[d104, dud], and the nilpotent (or lower central) words, defined by

Y1 = ’9 Yul-l = [Yn’ Y1]-

We define en = en(x, y) = [x, rw] to be the keel word of length

n. For n > 1, we note that °n is not an outer commutator word.

Most of the itens referred to in this section are discussed in

detail in [lo], [13]. [17]. [18] or [21].

m. We include here some known results on marginal

subgroups. For the proofs, see P. Hall [5] or P. W. Stroud [20].

IMLL For arqr group G and word ¢,

(a) ¢(G) is fully invariant in G and ¢‘(G) c Char(G).

(b) ¢(¢‘(G)) = 1.

(o) if x/¢‘(G) = z(G/¢*(G)), then [x, ¢(G)] = 1. In particular,

U76). ¢(G)] 3 lo

(d) if H _C;_ G such that G = MVG), then ¢"(H) = Hfl ¢"(G) and

NW = ¢(H)-

11m 1...... If {Gas a c A} is a set of groups, 95 a word, then

¢*(11{Gaz a e A}) = u{¢"(Ga)x a a A} .

mm. Let a = 9(x1, ... , xm) and x = Myl. ... , yn)

be two words ard let ¢ = ¢(x1, , xm, yl, , yn) :-
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[90:1, ... , 35“), Myl, ... , yn)]. Then in am group G:

(a) ¢(G) = [6(6), x(G)].

(b) if U = CG(9(G)), v = cG(l(G)). L/U = l*(G/U). M/V =

9*(G/V), then ¢"'(G) = Lfl M.

mM. y;(G) == Zn_1(G) for any group G and n 2 l.

m1.5. If e and x are words such that MG) _C_ e(G) for

all groups G, then e“(G) Q l“(G) for all groups G.

We shall also need the following theorans. For the proofs see

[17] or [18].

mb.6- (N/C Theorem) If H _C_ G, then

NG(H)/CG(H)C,; Aut(H). ‘

Theorgg L1. (3 Subgroups Leanna) If L, M, and N are subgroups

of a group G, then [L, M, N]C' _C_ ([L, N, HIM, N, L])G.

Ingran Lg. (Levi's Theorem) If e2 is a law in a group G,

then G is nilpotent of class at most three and y3(G) has exponent

dividing three.

 



CHAPTER II

¢-mmcmm1. GROUPS

In this chapter we shall eXplore some generalizations of groups

with transfinite ascending and descending central series. Unless we

state otherwise, ¢ = ¢(x1, ... , xn) is an arbitrary word in n variables.

 9331mm L1. (a) An ascending invariant series where ~

A0 = l, Adi-1M0. C ¢'(G/Au) for each ordinal c, and Au = U {A83 8 < a}

for a a limit ordinal, is called anmEagles for G.

I
n
l
i
E
l
i
-
m

1
"

'
v
‘
l
a
n
r

J
-

'

-
‘
. l l

(b) The p.229; Q-sgges for G is the ascending ¢-series where

Adl/Aa = ¢‘(G/Aa) for each ordinal c.

eorau 3,3. Let A0 = 1 <1 A1 4 ... be an ascendirg ¢-series

for G, and let G0 = 1 <1 G1 4 ... be the upper ¢-series for G. Then

Au ; Go. for each ordinal a.

m. We induct on c. Certainly Au _(_:_ Ga for c = o, 1.

Thus assume AB Q GB for all 1 5 B < a. If a is a limit ordinal,

then A“ = UfAB: B < a}; U{GB: B < a} = Ga by the irrluction

hypothesis. Now assme a-l exists. Suppose a c Au so that “(1-1 s

¢'(G/Aa_1). Then we see that ¢(g1, ... , agi, ... , shun].al-

¢(g1, ... , gnu“_1 for every 1 and g1, ... , gn in G. Since

A(1»1 Q G'0.»

“81: ... 9 381’ ... a Sr,”“.1"¢(81. ... , gn)Ga_1. Hence a c Go.

lby the induction hypothesis, we must also have that

and the theoran follows.

Definition £1.3- Suppose G0 = l a G1 d ... is the upper ¢-series

for G. If G = Ga for some ordinal 0., then G is Q-Mercentral. If

8
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G = Gn 1 Gnu1 for some finite ordinal n, then G isWm 93 glass

1;.

We note by Theoran 2.2 that a group G is ¢-hypercentral if and

only if every properly ascending ¢-series for G reaches G.

Ihggrem 2.43. Subgroups and homomorphic images of a ¢-hyper-

central group G have upper ¢-series of length no greater than that of

the upper ¢-series for G.

23922. Let G0 = 1 <1 G1 <1 ... <1 Ga = G be the upper ¢-series

for G, and let H g; G. we claim that H n Gal/H 0 Ga _C_ ¢‘(H/Ga n H)

for each ordinal (1. Suppose a c 60+]. 0 H\ Gan H. Then a c Gui-l

and “"1” , ahi, , hn)¢(h1, , hi, , hn)'1 cGan H

for every 1 and hl’ ... , 1'51 in H. Hence “(Gan H) c W(H/Ga F) H) and

Ho: l<lfll= Hfl G14 ... <IHO= H060: His an ascending ¢-series

\G
a

for H.

Now suppose H Q G. Let G = (3/11, aGaH c GatlH/Ga . We may

assmne a c 0&1' For every 1 and g1, ... , 3n c G,

¢(81! 0" 9 381! 00° 9 8n)Ga = ¢<gls 0'0 9 819 000 9 8n)Ga Since

 

Gal/Ga = ¢’(G/Ga). Consequently m1, ... , agi, ... , gn)GaH ==

¢(g1, , g1, , gn)GaH. This implies GarlH/GZHE ¢"'(G'/G:fi).

Hence 1 <1 GlH/H <1 ... <1 GOH/H = G/H is an ascending ¢-series for G/H.

 

The following two statements are due to Rhemtulla [15]:

2221322322933 Li. (Rhantulla) For H <1 G define ¢(H A G) =

< ¢(g1, ... , gn)"1¢(gl, ... , hgi, ... , gn): l _<_ is n, h c H,

g1, ... , gn cG >.

1112223211. g,_6_. (Rhemtulla) 'For any G, ¢(H A G) is the smallest

K <1 G, x g H such that H/K 5:; ¢‘(G/K). Also, ¢(H) Q ¢(H A G) _C_ H n¢(G).

 I
fi
h
'
fl
'
W
V
K
-
G
L
Y
‘
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Theoren 2.6 suggests a way to describe descending ¢-hypercentral

series as well as ascending ones.

W241. (a) A descending invariant series A0 = G 9

A1 9 ... of a group G where Au/Amlg ¢‘(G/Ac,.l) for each ordiml 0.,

and Au =n {A83 5 < a} for c a limit ordinal, is called aW

£2212 for G-

(b) Them B35193; for'G is the descending ¢-series

G0 = G > 61> ... where Gui-l = ¢(G°‘ A G) for each ordinal a, and

6
3 II 0 {G83 3 < c} for c. a limit ordinal.

The proofs of Theorans 2.8-2.11 are identical to the proofs

of the corresponding theorans for central series and will be omitted.

The statments thuselves are included only for the sake of completeness.

mgag. It Go a G1 c is the lower ¢-series for G

and A0 = G > A1» ... is a descendirg ¢-series for G, then

G"L 9; AOL for each ordinal a.

W_2_,_2. A group G is ¢-nilpotent of class 11 if and only if

G“‘1 1 Gn = 1.

111m w. Suppose G/H is ¢-hypercentral, where H C; W (G).

Then G is ¢-hvpercentral.

MAE. IfG is ¢-Wpercentral andl< H<1G, then

H n¢"'(G) > 1.

w241.2. Assume G is ¢-nilpotent of class n. Then

¢(G) is nilpotent of class less than n.

m. For convenience, we write the upper ¢-series as

G = G() :> G1 > 1> Gn = 1, where (ii/G1+1 =¢*(G/G1+1). Define

D1(G) = y1(¢(G)) for i 2 1. We claim that D1(G) _C_ G, for 1 5 i 5 n.

Since G/G1 = ¢*(G/Gl), we have that ¢(G)G1/G1 = ¢(G/Gl) = 1 and thus

 Wtfi
r

-
x
u
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that D1(G) = ¢(G) E G Assume then that 01(G) (_:_ G1L for i ,>_ 1.1.

Hence D1(G/G1+1) = D1(G)Gfi1/G#1C;_ G1/Gfi1 = ¢"'(G/G1,1) and

D1+1(G) = [D1(G), ¢(G)] ;_ Git-1‘ Thus D1(G) Q; 61 for each 1 5 i 5 n.

In particular, Dn(G) Q; Gn = 1 an! ¢(G) is nilpotent of class less

than n.

M3‘13. Suppose G has upper ¢-series G0 = l 4 Gl a" ...

<1 G0 = G. Then [God-1‘ ¢(G)] (_._—__ Go. so that the group A g ¢(G)Z(G)/Z(G)

of automorphisms on G stabilizes the upper ¢-series for G. By a result

of Hall and Hartley [7: Theorem 11], a and consequently ¢(G) have

a desceniing hypercentral series.

m3.111. The converse to Theorem 2.12 is not true.

Let G = 83. Since 73%) = 2(G) = 1 by Theorem 1.1+, G is not y nilpotent.2.

However, y2(G) = G' has order 3 and is certainly nilpotent.

m£45. If e and l are two words such that 9(G) t; 1(G)

for all groups G, then a A-hypercentral group is also 9-hypercentral.

m. Letl<1A1<1 ... <AO=Gbetheupper x-series forG.

By hypothesis and Theorem 1.5 we have that 1"(H) _C_ 9"(H) for all H.

Since then Aau/Aa = AVG/Au) g; 9"(G/Aa) for each a, we have that

1 <1 A1 4 ... <1 A0 = G is an ascerding 9-series for G. Hence G is

9-1wpercentral.

99m g,l_6_. If G is nilpotent, then G is e-nilpotent for

am outer commutator word 9 of weight greater than one.

mom 21,12. Let 9 and 1 be two words such that e(G) Q 1(G)

for all groups G. Set ¢ = [9, A]. If G is a group such that 1(G) is

nilpotent of class c, then G is ¢-nilpotent of class 5 c.

m. Define 31(6) = [1(6), 1(6)]. 331(6) = [ S,(G).>.(G>]

for i Z 1. By Wpothesis, Sc(G) = l, Sc_1(G) 1 1. We induct on c.
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For c = l, we have that l = 81(G) = EKG), A(G)] = EKG), 9(6)] = ¢(G).

This implies ¢*(G) = G. Hence G is ¢-nilpotent of class 1.

Now assume that for every group G such that MG) is nilpotent

of class _<_ c, G is ¢-nilpotent of class 5 c. Let MG) be nilpotent

of class c0-1 for some G. Then Sd1(G) = [Sc(G), 1(6)] = 1, Sc(G) 7‘ 1.

By Theorem 1.3(b), Sc(G) ; CG().(G)) n CG(6(G)) (_:__ ¢"'(G). Let

G = G/¢"‘(G). Then Sca?) = 32257 = '1'. By the induction hypothesis, s—r

G is ¢-nilpotent of class 5 c. By the arguments used in the proof of I

Theorem 2.10, G is ¢onilpotent of class 5 ed.

m5.1.8; Let G = 53 and recall d2 = [d1, d1]. Since

d1(G) = G' is nilpotent, G is dz-nilpotent by Theoran 2.17 but not

 

{
g
r
-
I
r
;

dl-nilpotent. Hence the converse of Theorem 2.15 does not hold.

M212 .2412. Let 6 = [¢, ¢] be a word in 2n variables.

Note that we get the result of Theoran 2.15 for 6 by Theorems 2.12

ard 2.17. That is, if G is ¢-nilpotent, then ¢(G) is nilpotent

by Theoran 2.12. By Theoran 2.17, G is b-nilpotent. The advantage

of Theoran 2.17 in general is that ¢(G) nilpotent is a weaker

condition than G ¢-nilpotent, as was shown in Example 2.11+.

Ebcample 2.429. The hypothesis that 6(G) 9; ).(G) for all G in

Theoran 2.17 is essential. Let H = 83. Note Y3 = [y2, VI] and

y2(G) Q; y1(G) for all G. Then H is not ya-nilpotent although

y2(H) = H' is nilpotent.

m 232),. For any nilpotent word Yn define ¢n = Eva, yn].

Then yn(G) is nilpotent if and only if G is ¢n-nilpotent. '

23292. The necessity follows immediately from Theorem 2.17.

Now assume that G is ¢n-nilpotent. We seek another characterization

of ¢;(G). By Theorem 1.3(b) and Theorem 1.4,
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¢:,(G)/CG(Yn(G)) = v;(G/Cg(vn(G))) = Zn_1(G/Cg(yn(G))). Hence ¢';,(G)

= {a e G: D. 82. 53. . an] e CG(vn(G))n yum) = Z(Yn(G)) for

all g2, ... , gn in G}

= {a c G: [[a,x2, ... , 251],[xm,1, ... , xzn]] is a law in G}.

Let 1 = A0 <1 A1 <1 ... < At = G be the upper ¢n-series for G, where

t is a positive integer. Since our characterisation of ¢;(G) holds

1

(Ia, g2, ... , gn],[gn‘_l, ... , SZn-U e A1 for all g2, ... , 32n in G]

for 0 5 i 5 t-l. In particular, y2(yn(G)) = [yn(G), yn(G)] _C_ A

for amr G, we may conclude 'that A+1 = {a e G: F

t-l’

We claim in fact that y(1_1)m2(yn(G)) 2 A91 for l _<_ i 5 t.

 This has been shown for i = 1. Assume the statuent holds for some ~"-——

1 5 i < t. Then by the induction hypothesis we have that

Yint2(Yn(G)) = Y(i-l)nt2+n-l+l(yn(G)) 9:— At-(fl-l)’ H’m’

v(t_1)m_2(yn(6)) C; At.t = A0 = l and yn(G) is nilpotent of

61888 S (t-l)n+ lo

Ihggran 2,22. For any G and n _>_ 1, G is dn-nilpotent if and

only if dn_1(G) is nilpotent.

2322!- Since dn = [dn-l’ dn-IJ’ the sufficiency follows from

Theorem 2.17. Hence assume G is dn-nilpotent of class t, where t is

a positive integer. For each a e G define the words wo, wl, ... , wk,

by "0 = wok) = a and HR = “1““) = wk“. 1&2. . 121.) =

[wk_1, dk_1]. Let M g G, HC_Z G. By wk(H, H) we shall mean the

subgroup generated by elments of the fem wk(h, m2, ... , mzk),

whereheH, m1 cH for25i52k. Wenotewo(H, M) = H for amyM.

We claim ‘13“) = {a c K: wn(a) is a law in K} for any group K.

This is clear for n = 1, since dim) ‘-'-' 200 by Theorem 1.1+ and
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a e 200 if and only if w1(a, x) = [a, x] is a law in K. For arbitrary

n we have d;(K)/Cx(dn_1(x)) =- dn:1(K/Cx(dn_1(l())) by Theorem 1.3(b).

By the induction hypothesis, a e d;(K) if arr). only if wn_1(a) is a law

mod CH(dn-1(K))' This is equivalent to saying wn(a) = [fin-1‘3» dn—l]

is a law in I. Hence the claim is proved for aw group H.

Let 1 = A0 4 ... 4 At = G be the upper dn-series for G. By

the above claim, we know that A1 ={a e G: wn(a, G) Q A14} for

l 5 i 5 t. Let H = dn_1(G). We claim that antlw) _C__ At-j for

O 5 j 5 t. This is evident for j = 0, so assume it is true for some

0 5 j < t. We further assert that y

 Jmum) Q new. a) for

At-j’ this latter conjecture holds for {
F

O 5 s 5n. Since "D‘At-j’ G) =

s = 0 by assumption. Hence assume it is true for some 0 5 s < n.

(a) = [va8,101). H] 91.. mum. G). asap] =

wed-lut-j’ G) by the induction assumption an! the fact that

H E d8(G) for O 5 s 5 11-1. Hence the latter conjecture holds. In

particular, Vii-nun“) 5;; "nut-j’ G) <;_ lbw”) by our

characterisation of At-j' Hence the first conjecture holds. Conse-

quently, yuflm) _C; 1,,t = A0 = 1 and H = dn_1(G) is nilpotent of

class 5 tn.

W2.23. If G is a group such that dn(G) is nilpotent,

1 < H 4 G, then 1 < H n dn:1(G).

21:921. By Theoru 2.22, G is dml-nilpotent. The corollary

now follows frat Theorem 2.11.

m2.21}. A group G is yl-hypercentral if and only if

G = 1, since y;(G) = 1. For n > 1, G is yn-hypercentral if and only

if G is hypercentral, since the marginal subgroups for such words are

in the upper central series for G by Theorem Lb.
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However , although a dZ-hypercentral group is dn-hypercentral

for n > 2 by Theorem 2.15, dn-nilpotence for some n > 2 does not imply

dZ-nilpotence. Let G = S“. The derived series for G is

1 4 Va 4 A,+ 4 G, where V“ is the four-group. Hence d3(G) = 1 so that

-nilpotent of class one. Since G' = d1(G) = A4 is not

3

nilpotent, G is not dZ-nilpotent by Theorem 2.22.

._. e
G d3(G) is d

The following lemma is evidently well-known.

m3.35. Let ¢ = ¢(::) = x2. Then ¢*(G) = {a e Z(G): a2 = l]

for any G.

2;gg_. Let H== {a c Z(G): a2 = 1}. Clearly H is a subgroup

of'G contained in ¢‘(G). Let a c ¢*(G). Then (ax)2 = x? for all

x c G. In particular, a2 = 12 = 1. Furthermore, for arm 1: c G,

a‘l'xa = axa = axaaor'l = 2(2):":L = 1:. Hence a c 2(G) and H = ¢*(G).

Ihggzau §‘_2_6_. Let ¢ = ¢(x) = x2. Suppose G is ¢onilpotent

of class n. Then G is nilpotent of class 5 n and has exponent

dividing 2". 1

2:93;. By Lama 2.25, the upper e¢-series for G is an

ascending central series of length n. Hence G is nilpotent of class

5 n. Since the quotients in the upper ¢-series for G are elmentary

2-groups, G has exponent dividing 2".

Thyran 2432. Assume G is ez-nilpotent of class n. Then

(a) e2(G) is nilpotent of class < n.

(b) there is a sequence 008 14G14 ... 4Gn= G of

subgroups of G such that 51+1/G1 is nilpotent of class at most three.

(c) G is solvable of length 5 2n.

(d) if every elment of G has odd order, then G is nilpotent

of class 5 3n.
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M. Part (a) follows from Theoran 2.12. Let

G0 = l 4 G1 4 ... 4 Gn = G be the upper ez-series for G. Since

Gi/Gi-l’ l 5 i 5 n, is in the variety determined by e2, it is nilpotent

of class at most three by Levi's Theorem and thus metabelian. Parts

(b) and (c) now follow.

Kappe [9: Sat: III, Teil 1+] has shown that a right Engel element

of length two and odd order is in the third center. Under the

hypotheses of part (d), e;(G/Gi) _C_ 23(6/61) for o 5 i 5 n-l.

Hence G is yu-nilpotent and thus nilpotent.

In Theorun 4.16 we shall show that e§(G) (______ 23(G) for all G.

Consequently the hypotheses in part (d) may be diapensed with ani we

may conclude that arw ez-nilpotent group of class n is nilpotent of

class 5 311.

W_2_,2§. Define H¢(G) = H¢ = {a e G:

«81, ... , gn)'l¢(g1, ... , agi, ... , gn) c H for every 1 and

g1, , gninG} tobetheWoinnG.

It is not difficult to see that H¢(G) C; G a!!! that H 4 G

implies that H L; H¢(G).

Ihgqran 532. If G is ¢-hypercentra1 and H < G, then H¢ g H.

In particular, if also H 4 G, then H < 11¢.

m. Let G0 = 1 4 G1 4 ... 4 Ga = G be the upper ¢-series for

G. There is an ordinal e such that GB Q H, G8+1 (Z; H. Choose a e Gan,

a é H. We know that GB'tl/GB = ¢'(G/GB). In particular, for g1, ... ,

gn in G, we have ¢(g1, ... , gn)'1¢(g1, ... , agi, ... , gn) is in

GB g, H, since a c Gad-1° Hence a c H¢(G), a t H.

mw. Perhaps a more natural way to define a

¢—normalizer H(¢, G) of H g; G is the set a c G such that
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¢(h1, ... , ahi, ... , hn) c H for every 1 ard hl, ... , hh e H. This

¢-normaliser is NG(H) for ¢ = y2, but it is not necessarily a subgroup

for every word ¢.

From the definitions we have that H¢(G) is a subset of H(¢, G).

Hence by Theorem 2.29 we may conclude that a proper subgroup of a

¢-hypercentral group is a proper subset of H(¢, G).

3223;}; 5.11. For any word ¢ we may define a BM group G

to be a group possessing a finite normal series A0 = l 4 A1 4 ... 4

an = G such that Aid/A1 = ¢"(a1+l/ai). It is clear that a ¢.ni1potent

group is also ¢esolvable. We may equivalently define a group G to be

 ¢-solvab1e if and only if the descending series G D ¢(G) D ... D ¢n(G) 3"“

D WWI-(G) == ¢(¢n(G)) D ... reaches 1 in finitely many steps. A group

is yzesolvable if and only if it is solvable. Many of the standard

theorems for solvable groups can be generalized to ¢-solvab1e groupS.



CHAPTE III

MARGINAL AUTOMORPHISMS

In this chapter we will consider two generalizations of the _a u

marginal subgroup of G--one in G and the other in Aut(G). r

Definition 1;. Let g) = ¢(x1, , xn) be a word in n

variables, G a group. Define ¢°(G) = {a c G: ¢(gl, ... , 3;, ... , gn)

= ¢(g1, ... , g1, ... , 3n) for all choices of g1, ... , gn inG and

i=1, 2, ... ,n} tobetheWMochorrespording

tc¢.

 

2m 2&- In any group G.

(a) ¢°(G) e Char(G).

(b) if K/¢"'(G) = Z(G/¢*(G)), then Z(G)K ; ¢¢(G). In

partisan. Ms) E; ¢°(G).

(c) [¢°(G). ¢(G)] = 1-

(d) ¢°(G) = {a cG: ¢(g1, , agi, , gn) =

¢(g1, ... , gia, ... , gn) for all choices of g1, ... , gn inG

and 1: 1, 2, , n}.

Erggf. (a) Let a, b c ¢°(G), g1, ... , gn in G. Then

1b
¢(819 0-0 9 8;. 9 H- 9 Sn) = ¢(819 0-0 9 8:41, 0" 3 8n) 3

¢<81s 0-0 s (8;-1)a9 0-0 a 8n) = ¢(81, eee , 81, cos , 8“) for

each 1. Hence a'lb c ¢°(G) and ¢c(G) E G.

ac

Now let 0. e Aut(G). Then ¢(g§, ... , (3g) 8%) =

¢<g1’ "' ’ 3;! ... 9 8n)“: ¢(819 ... , 31, ... , gn)°‘=

18
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“8%. , 3%). This shows that a“ c ¢°(G), since a c Aut(G).

(b) It is clear that mm C. ¢°(G) from the definition of

¢°(G). Let k e K, g1, ... , gu e G. Then for each i we have

g:¢‘(G) = gym). ‘ Hence [gi, k] c rm and ¢(g1, , glg, , gn)

'3 W81. ... , gi[g1, k], ... , 3n) = ¢(g1, ... , g1, ... , gn).

Therefore x g; ¢°(G).

(c) Let a e ¢°(G). Then ¢(g1, . gm)"L = (Kai. , g3)

“31. . gn). Hence ¢°(G) commutes elementwise with ¢(G).

(d) Call the set on the right K. Let a c ¢°(G). Then

“81. ... , agi, ... , gn) = ¢(g1, ... , (agi)°‘, ... , gn) =

¢(g1, , gia, , gn) for each 1. Hence ¢°(G) _C_ 1:. Conversely,

for a e K, we have ¢(g1, ... , gi‘, ... , gn) =

“81. . (1431):. . an) = ¢( 81. . “$131). . 3n) =

“81. ... , g1, ... , 3n) for each 1. Hence ¢°(G) = K.

m1,1. It is not difficult to see that y§(G) = 2(6).

Furthermore, y§(G) = {a c G: [a, y] = [n, y] for all x, y c G} =

{a c G: [a, x, y] = 1 for all x, y c G} = 22(G) by Theorem 3.2(d).

To classify y§(G) for arm n a 1, we need the following theoran. The

proof is identical to that of [20; Lemma 3(b)].

m1.3. Let x = A(x1, ... , X“) and 9 = 9(y1, ... . yn)

be two words and define ¢(x1, ... , xm, yl, ... , ya) =

[10:1, , :3“), 9(y1, , yn)]. If U = CG(1(G)), v= CG(O(G)),

L/U = e°(G/U), M/V == A°(G/V), then ¢°(G) = L n M.

H.223! 1,5. In arw group G, y§(G) = Zn(G) for n; 1.

2399;. We induct on n. The cases n = 1, 2 were verified in

Example 3.3. We recall that yn = [yn_1. yl]. Let u = CG(yn_1(G)),
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v = CG(yl(G)) = z(G). Then define L and M by L/U = vim/U) = z(G/u)

and 14/11 = yn31(G/v) = zn_1(G/V). We see then that L = {a e G:

[a, G] _C; CG(yn.1(G))} and M = Zn(G). By Theorem 3.», yg(G) =

L n Zn(G) = Zn(G) and the result follows.

Since Z(G) (_:_ ¢°(G) for all words d, it seems natural to

replace a c G with c e Aut(G) for every group G in Definition 3.1:

Qefinition Lg. Let G be a group, «S = ¢(x_1, , xn) a word

in n variables. Define the automargin 5(G) of G corresponding to q)

bya(G) = {a c Aut(G): ¢(gl, ... , q, ... , gn) =

“81. ... , g1, ... , gn) for each i = 1, 2, ... , n and every

g1, ... , gn in G}.

Defigitign 1,1. Define the marginal automomhims on G

correSponding to the word ¢ by ¢'(G) = {a e Aut(G): [G, c] _<_: ¢"(G)}.

Lama Lg. Assume H c Char(G) and L = {a e Aut(G):

[G, c] g H}. Then L <1 Aut(G).

2599;. Let a, b e L, x e G. Then Ex, ab] = [x, b][x, a]b e H

and [x, a'l] = ([x, a]‘1)a-l e H, since H c Char(G). Hence L _C; Aut(G).

Furthermore, for a c L, b e Aut(G), [G, ab] = [Gb'1, a]b =

[G, a]b _C_:_ Hb = H. Therefore L 4 Aut(G).

111.9322! 1.2. For any group G and any word ¢,

(a) 6(6) <1 Aut(G). we) <1 Aut(G). MG) _C; 6(6).

(1») ¢<a> 9. make» 1:. mm». In partisans.

¢<GIF<8(G))G) = 1.

(c) if man» s a. then [6. 8(6)] .C_: quake)».

(d) if Io is the group of automorphisms on G induced by ¢°(G),

then Ic <1 Aut(G), I,: _C_:_ 6(G).
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Prggf. (a) We may show WG) E Aut(G) the same way we

showed ¢°(G) Q G in the proof of Theorcn 3.2(a). Now let a e 3(G),

b e Aut(G). Then, for each i, g1, ... , 8n e G,

b'lab
m1. . s,

-l -l -1

“8; s ... s 82 o ... s 8: )b= ¢<819 ... , 3n)' Hencewe have

" -l ..

’ "' 9 8n) = ¢<8§ a "0 e (8: )‘9 see , 3:1)b=

that 6(G) 4 Aut(G). The fact that ¢'(G) <1 Aut(G) follows from Lemma

3.8. Finally, let a e ¢'(G), g1, ... , gn e G. Then, for each i,

“31. . 3;, . 3n) = (“31. , g1[g1, a], . gn) ==

“31. . g1. . 8n)- Therefore ¢'(G) QWG).

(b) Let a cam). For g1, ... , gn e G, ¢(g1, ... , 3n)“ =

“31‘. . 3;) = “31. . gn). Hence each element of ¢(G) is

fixed by each element of 3(G) so that ¢(G) g H(6(G)). By part (a),

MG) ; 3(G) so that also F<$(G)) ._C_ F(¢'(G)).

(c) From [F(3(G)), 8(G)] = 1 it follows that

[F(3(G)), 6(a), G] = 1. Since F(3(G)) <1 G by hypothesis, we have that

[G, H(6(G)), 3(6)] ; [F(6(G)), 3(6)] = 1. Therefore, by the Three

Subgroups Lanna applied to the holomcrph of G by 3(G) , we have that

[6. 3m). F(3(G))] = 1.

(d) It follows from the definitions that To C; 8(G). By

Theoren 3.2(a), ¢°(G) e Char(G). Thus ¢°(G)/Z(G) c Char(G/Z(G)). This

implies that Ic e Char(Inn(G)), where Inn(G) is the group of inner

automorphisms on G. Since Inn(G) 4 Aut(G), we have also that IQ is

normal in Aut(G).

211.222 1.19. Suppose ¢(G) = F(¢'(G)). Then

(a) if ”(6) = 1s G = ¢(G)-

(b) if ¢"(G) C; um and ¢*(G) lies in a class 5: = {5, DP}Z,
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G/¢(G) e 2.

(c) if ¢"'(G) Q Z(G) and both ¢'(G) and ¢*(G) are finite, then

G/¢(G) is finite.

5:23;. If ¢"(G) = 1, then for c c Aut(G), [G, a] Q ¢'(G)

if and only if c = 1. Hence ¢'(G) = 1, ¢(G) = F(¢'(G)) = F(1) = G and

(a) follows.

By hypothesis, ¢'(G) _<_:_ yé(G). Hence F(c) 4 G for each a. c ¢'(G)

and G/¢(G) = G/F(¢'(G)) = G/MNG): c c ¢'(G)1Q «(G/Na): c c ¢'(G)1

5 «KG, (1]: c. c ¢'(G)] Q w{¢'(G)a: c. e ¢'(G)] . Parts (b) and (c)

now follow.

111m 1.1;. Assume ¢(G) Q 9(G) for all groups G. Then

(a) 6'(G) Q ¢'(G) for all G.

(b) ¢'(G)/e'(G) 9; ¢'(G/e‘<G)) for an G.

mg. (a) By Theorem 1.5 we have that 9*(G) Q ¢*(G) for all

G. Hence [G, e'(G)] Q 9"(G) Q ¢"‘(G) and 6'(G) Q ¢'(G).

(b) By part (a) and Theorem 3.9(a) we know that 9'(G) 4 ¢'(G).

Let f c ¢'(G). Since 9"(G) e Char(G), we may take f to be an automor-

phism on G/e’(G). Then, for my g c G, (g9"'(G))f == gf9*(G). But

f e ¢'(G) implies that [g, f] e ¢"'(G) so that [g, f]9"'(G) c

¢"(G)/e“(G) Q ¢*(G/9"(G)). Hence f c ¢'(G/e"‘(G)). Also

(ge"(G))f = gfe"(G) = ge"(G) if and only if [g, f] e 9*(G). Thus

1' e ¢'(G) induces the identity on G/G"(G) if arr! only if f c 6'(G).

The proof of the following is similar to the proof of

Theorem 3.11(b): .

Tim M. For are G and word ¢. 3(G)/¢'(G)<; Aut(G/¢"(G)).

my; 1.11. Let G = .1“, ¢ = ¢(x) = x2. Since we) =

{x e G: x2 = 1} has index two, we see that Aut(G/¢*(G)) = 1 and

 



23

3(6) = ¢'(G) = Aut(G).

MET—E 1,13. We now ask: for what words 9 can 6*(6) have irdex

two in G or, more generally, be maximal in G? If 6"(G) is maximal in

G, then there is a cyclic subgroup H of G such that G = He*(G). By

Theorem 1.1(d), we see that 9(G) = 6(H). If cyclic groups are in the

variety determined by e--for example, when 9 is an outer comutator

word of weight greater than one-~then 6(G) == 1 and G = 9"(G), contrary r“

to the maximality of 9"(G). i

ML}- Let ). = )‘(Ll’ ... , xm) and 6 = 9(y1, ... , yn)

be two words and define ¢(x1, ... , xm, yl’ ... , yn) =

 [10:1, , xm), 6(y1, , yn)]. If {(G) = A'(G) and 3(G) = 6'(G)

for all G, then We) = ¢'(G) for all G.

2:99;. Suppose f c 3(G), U = CG(A(G)), v = CG(9(G)). Since

verbal subgroups are fully invariant, U and V are characteristic in G.

Thus we may assume that f is an automorphism on G/U and on G/V.

Since f c 3(6), we have

[k‘xl’ eee ’ Xi, eee , Km), 9(y1’ ... ’ yn)] =

[A‘xlfi 000 9 x1, see 9 xm)’ 9(y1’ eee ’ yn)] for an H, eee , xm,

ylg eee ’ yn in Ge This 13 finial-Om to B‘M that 1 2

[30:1, ... , xi, ... , xm)l(xl, ... , x1, ... , 5Y1, 6(y1, ... , yn)]

or Magi, ... , xf, ... , xm)V= Abel, ... , x , ... , xm)v. By

hypothesis, f c i-(G/V) = A'(G/v) so that [G, :jv/v Q 1"(G/V). By a

similar argmnent, we may conclude that [:G, f]U/U L; 0"(G/U). By

Theorem 1.3(b), [G, 1‘] Q ¢"'(G). Therefore f c ¢'(G). Consequently,

by Theoran 3.9(a) we have that WG) = ¢'(G).

mm 1.16. Let ¢ be any outer commutator word. Then

8(a) = Me) for all G.
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£5222. We induct on the weight w(¢) of ¢. The word Y1 = at

is the only outer comutator word of weight one. Then, for f e Aut(G),

gf = g for all g if and only if f = 1. Hence yi(6) = ?1(G) = 1.

Now assume that w(¢) > 1, ¢ = [1, 6], where w().), w(9) are

less than w(¢). By the induction hypothesis, {(6) = A'(6), 3(6) = 0'(G)

for all G. Consequently, 8(G) = ¢'(6) for all G by Theorem 3.15.

Mp}; 1,12. The conclusion of Corollary 3.16 does not r

hold for ¢ = ¢(x) = x2. By Lanna 2.25, ¢*(G) = {a c 2(6): a2 = 1]

for em G. Let 6 = S The set H of squares of slanents of G is the3.

derived group of G, the normal subgroup of order three. Since 6 is

 centerless, we may consider 6 to be a group of automorphisms on itself.

Certainly H as a subgroup of Aut(G) fixes each element of H. Hence

1 1 HQ 8(G). But ¢'(G) = {a e Aut(G): [G, a] Q ¢"'(G) = 1} = 1.

We recall that a c yé(6) = QC) if and only if a is a normal

automorphism; that is , a comutes with the inner automorphisms.

Franklin Haimo [3] and W. E. Deskins [l] have considered higher

mrmal automorphisms. In particular, define T1(G) = 6(6) and

Tn(6) = {a c Aut(G): xa .- 3: mod Zn(6) for all x e G} for n > 1

to be the my;Wof 6. By Corollary 3.16 we may now

add that Tn(6) = yn;1(G) = Inn(G) for n 2 l.

madam 2.11;: Lot 9) = we = x“. n .>. 1. Then ‘v'zm n 3(a) =

;2(6) n ¢'(6). If n = 2, then‘also ¢'(6) _C; 'y-z(6) so that

?2(G) n We) = ¢'(6).

£3991. Let a e ;2(6) 0 3(6). Then (xn)‘ = x1'1 for all x e 6.

This implies l = (xn)"]'(xn)a = Ex", a] = [x, a]n, since [x, a] c 2(6).

Hence a c ¢'(G). By Theorem 3.9(a), we have 72m) 0 3(a) = ¢e(o) 0 372(6).

If n = 2, ¢'(G) = {x e 2(6): 2:2 = l} . Hence ¢'(G) Q ?2(G).
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W3, 2. Assume 6 = S + T, T is torsionfree Abelian

and S = I: {<aa>: c. c I}, where o(aa) is a prime power. Let ¢ = ¢(x)

= x". Asstme further that if ad has order pzu, then ma 2, 239 “11°” P;

is the pa-share of n. Then ¢*(6) = 2 {<a52a-s>: a c I} and ¢'(G) =

5(6) is Abelian.

m. Since G is Abelian, ¢'(G) = 6(G) by Theorem 3.18. Also, .—-—.-

¢'(G) = ¢"(T) + 2{¢'(<aa>)z c c I} = >:{¢"'(<ao?)x c c I} by Theorem 1.2

ani the fact that T is torsionfree.

Let <9 - be a surnand of S, where o(a) = pm, m z 25. We know

 
s -s

Wk») = (x c <a>: xn = l} = {x c <a>: xp 1} = (a >. Write

n = pst, where (p, t) = 1. Since also (o(a), t) = 1, there is a

s s

b c <a> such that a = bt. Hence ap = bt'p b11 and ¢"'(<a>) =

<(aPs)Pm'28> = <(me'28)“>. Then ¢'(6) stabilizes the series

1 4 ¢'(G) 4 6. Consequently ¢'(G) is Abelian. '

my 1.39. Let G = ”“196 c c 1), ¢ = ¢(x) = x2. By

Corollary 3.19, ¢'(G) = 6(G) is Abelian. Since f c Aut(G) defined

by x1‘ = x'1 is in ¢'(G), we have that ¢'(G) 7‘ 1. We also note that

if o(I) = 1, then ¢'(6) = 3(G) = Aut(G) ’-l-’ J2.

Also, for ¢ = x2, if 6 is torsionfree Abelian or periodic

where each elanent has odd order, then ¢'(G) = 3(6) = l by Corollary

3.19. Furthermore, if 6 is Cornikov complete, it is generated by

its n-th powers so that ¢'(G) = 3(6) = 1 for ¢ = ¢(x) = x".



CHAPTER IV

THE HEEL mm

In this chapter we shall investigate the marginal subgroup

for the Ehgel word e2 of length two. We note that Theorem 1.3(b)

does not apply, since e2 is a commutator with a repeated variable.

The metabelian margin d;(6) will play a role with e§(6) for each 6,

so we will also derive some results for d2 and, where possible,

«Item than to am solvable word dn'

By "Bagel word" we will mean ”Rigel word of length two“.

For any a we will write 14 a M(6) a dam.) and E - 3(a) = e;(6) for

the metabelian and mel margins of G respectively.

I‘m in.- In W group G.

(a) d;(G)/c5<dn_l<o>) = d;1(G/ca(dn.1(o))). In particular.

14(6) = {a c 6: [[a, x], [y, 3]] is a law in 6}.

(b) awn/2(a) g; d;(6). In particular, 23 _C_ u.

(c) [11, dn(6)] g; Z(dn(6)) for nz 1 and (M, G] ; 2(6').

m. (a) This follows from Theorem: 1.3(b), since <11,1 is an

outer mutator word for each n. We note in particular that

M/CG(6') = 2(6/CG(6')). The second statement was verified in the proof

of Corollary 2.22.

(b) We irduct on n. For n -= 1, 21(6) E dam) = 2(6).

For n > 1, let 3 s 6/Co(dn_1(6)). Then 3:365 . dn:1(6) _D_
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zn(n_1)/2(E) by part (a) and the itduction hypothesis. Mthermore,

[zn(nf1)/2(G)’ n(n~l)/2(6)] ; zn(nO-l)/2 - n(n-l)/2(G) = Zn“) ”‘1

[2156). dmlflifl Q [Zn(G). vn(G)] = 1 so that

[zn(n|'1)/2(G)’ “(151),2‘Gn Q CG(dn-1(G))° CommmtJ-Ya

 

anrfi-lflzm _C'__"_ zn(n—l)/2<E) Q dn(6) an! zn(nI-l)/2(G) _C_

d;(6)CG(dn_1(6)) = d;(6), as desired.

(o) By part (a). (M. drawn ..C_ «1,,(6) 0 066') E

dn(6) n cG(dn(c)) =- Z(dn(6)). Similarly, [11, c] C;

G' (1066') = 2(6').

m942;. For each m c M, x c dn(6), n 2 1, define fm(x) =

[x, m]. Then

(9.) fm e Hon(dn(G). 2(dn(G))).

(b) Ker in = dn(6) if and only if M S; CG(dn(6)).

(o) dnflfG) L; Ker in.

11-39;. (a) By Lemna u.1(c), rm(dn(c)) = [dn(6), n] _<‘__',

Z(dn(6)). Let x, y e dn(6), m e M. Then fm(xy) = [xy, m] =

[x, m]y[y, m] = [x, me, m] = fm(x)fm(Y).

(b) This follows immediately from Lanna 4.1(c). We note for

n =- 1 that Ker in = 6' if and only if M = 66(6'), since 06(6') 9; M

by Lemma b.1(a).

(c) From the fact that dm1(6) _C; d2(6) for all 6, we have

that d;(6) _C_ dn:1(6) for all s by Theorem 1.5. Then fm(dm_1(6)) =

[dm1(6), m] _C_ [dm1(c), d;(6)] _C_ [dm1(c), dn:1(6)] = 1 by
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Theorem l.l(c). Certainly dm1(6) C_Z dn(6).

W553. For eachm on an} all 31, ... , Ezn inG,

[dn(g1, ... , an-l)”, dn(g2n-l..1, ... . 82n)] =

[dn(g1, ... . San-l), dn(32n'1+l’ ... 9 8210]-

m. Define in c Hom(dn(6), Z(dn(6))) as in Lama u.2.

Let a = dn(gl, ... , gzn-l), b = dn(g2n-l+1. ... , gzn). Then

[3, b] = Drum, b] = [... b]rm(‘)[fm(a), a] = [a, 1.], since

rm“) c Z(dn(G)).

5.31333 £53. By the N/C Theoran, M/CG(6')C~: Aut(G'). By

Leena n.1(c), we also know that [14, 6'] _C_ zm'). Thus M/CG(6') g;

ygo').

MM. If (Int-1m) 1 1, then for each m c )4 there is an

x e dn(6), x f 1, such that m c Cc(x). In particular, M c;

< CG(x)s x c dn(6), x If 1 >.

M. Dew. Then there is an m c M such that it” 3' x for all

x e dn(6), x 7‘ 1. Define fm as in Lanna 4.2. For x, y e dn(6),

fm(x) = fm(y) implies that a4»? = y‘lf' or that yr’l = (37:61)”.

By assmnption, x = y and 1’m is an isomorphism from dn(6) onto a

subgroup of Z(dn(6)). Hence dn(6) = 2(dn(6)) and dm1(6) = l,

a contradiction.

We now turn to the Ehgel margin E. For convenience we define

El=(a c6: [6, y, y]=[x, y, y] forallx, yeG) ardL(6)=

{a cos [a, x, x]= 1 forallx cc} to bethe subgroup of right

Rigel elasents of length two. It is not difficult to show that

E 5; El c Char(G). We will need the following lama. For the proofs

of the various parts, see [9].
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m M. (Kappe) In amr group 6, where a c L(6), g, h e 6,

(a) L(G) c Char(G).

(b) [a, g, h] = [a, h, gj'l.

(c) [a, [3. 11D" [as so b.12-

(d) [a, g, [h, g]] = l.

(e) if a has odd order, then a c 23(6).

mgr-,1. Every 3 c E(G) is both a right all a left @301

el-aent. In particular, 22(6) _C_Z_ 133(6) ,9; L(6).

m. Let x c 6. Then [x, a, a] = [x, l, l] = l and

[a, x, x] = [1, x, x] = 1. Hence a is both a left and a right Engel

element of length two. Furthermore, e2(6) g; y3(6) for all 6 implies

that y3(G) Q e203) for all 6 by Theorem 1.5. By Theorem 1A, y;(6) =

22(6) an! the result follm.

M2 is. In any group G.

(a) £1 = {at [a, x] c 060:6) for all x c G} = L(6).

(b) [a, x] c 660:6) n CG(a) for all a a El, 1: c 6. Furthermore,

[a, 12]" = [a,, 1:8] for all integers r and s.

(c) aG and xEl are Abelian for a c £1, at e 6.

(d) E31 _C__ I, where I = fl{CG((xG)'): x e 6} <1 6.

m. (a) Let a c 31. Then [ay, 3:, x] = [y, x, x] for all

x, y c 6. This is equivalent to saying that l = [[ay,ny, le, x] =

[[a, x]y[y, ny, xJ'l, x] = [[a, fly, x] for all x, y e G. Since at

and y are irdependent, we may conclude that a c El if and only if

1 = [a, x, xy] for all x, y c 6 or, equivalently, [a, x] e 660:6) for

all 3:.

That 31 _C; L(G) follows from [a, x, at?) = 1 by letting y = 1.

Conversely, let a e L(6). We have, for x, y c 6, [a, x, 15'] =
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[a, x, xfx, y]] = [a, x, [x, y]][a, x, x][x’ y]. By the definition of

L(G) we see that [a, x, x] = 1. By Lemma 4.6(d) we also have that

[a, x, [x, y]] = 1. Hence [a, 1:, xy] = l and a e E1.

(b) Since a is a right angel element, we have [a, x] e CG(a)

by [9: Lemma 2.1]. Part (a) says that [a, x] c cG(xG) for all x c G.

The remainier of part (b) follows from [18: Theorem 3.1%].

(c) From part (b) we see that a" = a[a, x] e CG(a), since Ea

a and [a, x] are in CG(a). This implies that aG is Abelian. '

The proof that xEl is Abelian follows similarly from x‘1 =

xfx, a], [x, a] c CG(xG) Q CG(x).

(a) By part (b) we may conclude that [a, xy] c CG((xy)G) = L" 
°G("G) for all a a El, x, y e G.

We claim now that (xG)' = s, where s = < [36“, x']: w, z c G >.

Clearly s _C_:_ (xG)'. A generator a of (xG)' may be written a =

[(xflm (xfl'Wm, (36”)le (filflnj for elements y1 c G.

By [18: Theorem 3.4.2] we may write a = 11 [(xflfli, (xfl)y3]"i,3 for

2.1.3 a 1:6. .But 2:9 <1 G, so we may assume (xG)' is generated by elements

of the form [(actl)“, (film for various w, s a G. Then [(x'l)", x‘] =

([x", x‘]'1)(x'1)w = ([x“, x"])(x‘1)" is in 5, since 8 o G. Similarly,

we may show that [x", (x'1)”] and [(x'l)", (x'l)z] are in 5. Hence the

claim follows.

Let a e E1. By Lemma n.6(c), we have [a, [x", x‘j] =

[[a, x"], x212 = 1. By the claim this implies that a c CG((xG)').

Furthermore, xG <1 G, (xG)' o Char(xG) for each x imply (xG)' <1 G.

By the u/c Theorem, CG((xG)') <1 G for each x c G. Therefore I <1 G.
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Thgrem 542. In any group 6, E = E(G) = (a c G: l =

[x, a, y][x, y, a] for all x, y c 6}.

m. Set 1?.2 = {a c 6: Ex, ay, ay] = [x, y, y] for all x,

y c 6}. We know El = (a c 6: [a, x] e CG(xG) for all x c 6} by Theoran

4.8(a) and E = El 0 E2. Let S be the set given on the right in the

statanent of the theorem. Suppose a c S, x e 6. Then 1 =

[x, a, XIX, x, a] = [x, a, x]. This implies that a c El = L(6).

Since also E E E1, it suffices to show that E 0 E1 = E1 0E2 ’-

E108. Then, forx,yc6,acElnEzifand onlyif

EX. 1!. fl = [X. ay. ay]

' [1. W. 111:. ay. at]y

= [[x, y'l[x, 3])” VIE"! 5’1"» fly: fly

x, a y x, a y

E 3m. aJ’. ylx. r. alt “as. ally. sly.

By assumption, [a, x] c CG(xG). Since CG(xG) <1 6 by the N/C

= [xi Y9 Y]

Theorem, we also have that [a, fly a CG(xG). Consequently, conjugation

by [x, a-Iy is irrelevant in the last statment above because all the

commutators are in 1:6. Therefore the above is equivalent to

[x, Y! fl = [x, 3'9 VIE", sly: YIX’ 3" a.1311"! fly, 31y 01'

l = [x, a, y][x, y, a][[x, fly, a] for all x, y c 6, a c E(G).

Now a arxi Ex, ajy are elanents of 9.6. By Theoran 4.8(c), aG

is Abelian. This implies that [[x, fly, a] = 1. Therefore E(G) is

contained in the set S.

We have already shown that S is a subset of E1 = L(6).

Consequently, all the above argments are reversible and we may conclude

that s = E(G).
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9.933453: 3.1.9- In are group G. E(G)flCG(G') = 22(6).

Proof. We need only verify that E(G) n CG(G') (_:_ 22(6) by
 

Leanna u.7. Let a c E(G) ncG(G'). By Theorem n.9, 1 =

[x, a, y1[x, y, a for all ,x, y o G. But a c CG(6') implies that

[x, y, a] = 1 and thus that [x, a, fl = 1 for all x, y c G. Hence

a s 22(6).

W353- (a) Suppose a c L(6), x, y e G. Then

[)9 a. y] = [aa 3'. X.)-

(b) E(G) = {a c G: [x, y, a][a, y, x] = l for all x, y c G).

zgo_o_f. (a) [a, y, x] = [a, x, y]'1 by Lemma 4.6(b),

= [be «0-1. yTl

7;
.

 "f\
v
.

0

[as x]

= «[x. a. y1'1r1)

= [x, a, y], since [a, x] c CG(xG)

by Theoran 4.8(a).

(b) Let S be the set given on the right in the statanent of

part (b). By part (a) ard Theorun 4.9, we have that E(G) is a subset

of 3.

To prove the opposite inclusion, we need only show that S is a

subset of L(G) and then use part (a). Suppose a c S, x e 6. Then

[x, x, a'][a, x, x] = [a, x, x] = 1. Hence a c L(G) and the theoren

follow.

M£42. In arw group 6, [14, 6] 013(6) 2 22(6).

23:393. By Lanna 4.1(a), we have M/CG(6') = 2(6/CG(G')). Hence

[M, G] n E E CG(6') n E = 22(6) by Corollary Lalo.

1.12222; 5.13. Let a e E(G). Then [a, 6, G13 = [a3, G, G] = 1.
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m. Let x, y c 6. By Theoran 4.ll(b), [1, y, 31;, y, x] =

1. Then [x, y, a] = [a, [1, y']]'1 = ([a, x, ysz)":L by Lama 4.6(c),

= [a, y, x]2 by Lena b.6(b).

Hence 1 = [a, y, {[a, y, x] = [... y, xfia, y, x] = [a, y, x13. By

Theorem 4.8(c) we have that a6 is Abelian. Hence [a, x, y]3 = 1

for all x, y c 6 implies [a, 6, 6] has eXponent dividing three, and

[8, x, y]3 = [‘3’ X, y] B 1. Pa";

The followirg two corollaries are immediate from Theoran “.138

922% 4,1“. For any group 6, 13/22 has exponent three.

W1+, 5. If E has no elasents of order three, then

E = 22. : 
mm. In any group 6, E(G) _C_ 23(6) _C; 14(6). In

addition, E/Z2 is an elmentary Abelian 3-group.

2m. We need a slightly stronger result than our Lama

n.6(e). In his proof, Kappe [9: Sate III, Teil b] shows that for

a c L(6), x, y, s c 6, [a, x, y, 15]“ = 1. Since aG is Abelian by

Theoran n.8(c), we may assert that Ea“, x, y, s] = l or a“ s 23(6).

By Corollary ml», for a c E _C; E1 = L(6), we also have a3 e 22(6) _C_

23(6). Hence a = a“(a3)-1 c 23(6) and E(G) 9: 23(6). It follows

now from Lemma n.1(b) that 23(6) g M(6). The second statement then

follows from Corollary 4.1“.

99mm £5.12. In am group 6, E(G) is nilpotent of class

no greater than three and metabelian, and [a, E, B] has exponent three.

Nrthemore, if CG(6') _C_ E(6), then M(6) = 23(6).

M. The first statement follows imediately from Levi's

Theorem, since e2 is a law in E(G). Alternatively, we may conclude

that E(G) has nilpotence class no greater than three an! is metabelian
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from Theorem: 4.16. By the same theormn, we know that [E, E, E] g; Z(E)

is Abelian. Hence Theoren 4.13 implies that [E, E, E] has exponent

three.

Suppose CG(6') _C_; E. By Corollary 1+.lO this implies that

CG(6') = 22(6). From Lemma n.1(a), M/CG(6') = 2(6/CG(6')). Hence

14(6) = 23(6).

heorem 3,18. (a) [6', M, E1] = [6', E1, 11]=[1~1, G, 6'] = 1.

(b) [G, 14', E1] = 04', E1, G] = [G, G, M'] = 1. In particular,

[M', E1] _C_ um.

2:22;. (a) By Lemma 4.1(c), [11, G]g2(G') so that l =

 

 [11, G, 6']. Now let a e E1, m c 11, x c 6'. By Lemna n.6(c),

[a, [m, x]] = [a, m, x]2 = 1. This implies [6', M, E1] '-" 1. By the

Three Subgroups Lamas, we also have that [6', E1, M] = l.

(b) As in the proof of part (a), M' _C_:_ 2(6') so that l =

[6, 6, M']. Let a e E1, x e M', g c 6. We have [a, [g, x]] =

[a, g, x]2 = 1. Hence DU, 6, E1] = 1 ani, as above, [M', E1, 6] = 1.

W3.12. Suppose M'/F(A) is divisible, where A g;

Aut(M'), A g ElCG(M')/CG(M') and F(A) = {x c M': xa = x for all a c A}

is the set of points fixed by A. Then

(a) [M', a] is divisible for each a e A. In particular,

[111, E1] = [M', a] is divisible.

(b) for all e e E1, 3: c M', f°(x) = [x, e] defines a homo-

morphism from M' onto a direct divisible sumard of 2(6).

(c) for all e e E1, m c M, there is a homomorphism t = t(m, e)

from 6' into a direct divisible summam of 2(6) such that

{x 126': [x, m] cM'}g_Ker t.
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22221:. By Theorem 4.18(b), [111, El] _C; 2(6). For e c F1, let

a c A be the automorphism on 111 corresponding to eCG(M'). Then

M'/F(a) ’é’ [111, a] = [111, e] _C; 2(6), where F(a) = Ker f. and

[111, a] = f°(M'). Since M'/F(a) ’-‘-' (M'/F(A))/(F(a)/F(A)) is divisible,

we have that [111, e] is a divisible subgroup of 2(6) and hence a

smumand of 2(6). Barthermore, [111, El] = < [111, e]: e e E1 > is

divisible because it is generated by divisible subgroups of 2(6).

Parts (11) and (b) now follow.

 

Let a e E1, 111 c M. Define the homomorphism fo from 11' onto

[M', e] as in part (b). We know 11' _C_‘_ 2(6') and [M', e] is divisible.

 Since then [M', e] is an injective Z-module, fe may be extended to

f: c Han(Z(G'), [111, e]). Define f1m c Hom(G1, Z(6')) as in Lema

4.2(a). Then t = f';fIII c hom(G1, [111,e]). If x c 6' such that

[x, m] e 111, then t(x) = fzfmu) = f;([::, m]) = f°([x, m]) =

[x, m, e] c [6', M, E1] = l by Theoren 4.l8(a).

mg 4,20. By Theoran 4.16, E _C_ Z so that [65 E] _C; 2(6).
3

Then for all a c E, x e 6', fa(x) = [x, a] defines a homomorphism from

G1 into 2(6).

We shall investigate the action of E ani E1 on 6'. By Runark

4.4 we know that M/CG(6') acts as a group of Abelian central auto-

morphisms on G1. Then (1;1 rho/(1‘10 CG(6')) C; M/CG(G') is also

such a group. Let A2 Q Aut(G') be the corresponding group of auto-

morphisms. Furthermore, E/Zz = (E n M)/(E n CG(G1))(; A2 by

Corollary 4.10 and Theoran 4.16. Let A1 _C_ A2 be the corresponding

group of automorphisms on 6 ' .
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Ihggren 442;. (a) If Encp(Z(6')) = n < 19, then Eltp(A2) | n. A

(b) If G1 is a p-group, A Q A2 is periodic, then A is a p-grcup.

(c) If G1 is polycyclic, then A1 ’5 13/22 is finite.

m. (a) Suppose 2(6') has exponent n. Then, for x e 6',

c c A2, 1 = [x, 0]" = [x, 11“] by Theorem 4.8(b). Consequently, c“ = 1

an! A2 has exponent dividing n.

(b) New assimie A is periodic. By Theorem 4.18(a) we may

conclude that [G1, 11, El] -- [G1, A, A] = 1. Thus A stabilizes the

nomal series 1 c [G1, A] <1 6' of 6'. By the arguments used in

[28 Corollary 5.33], we have that A is a p-grcup.

(c) Smirnov [19] has shown that a solvable group of automor-

phisms of a polycyclic group is polycyclic. By Thecru 4.16 we have

that Al is a finitely generated periodic Abelian group. Hence A1 is

finite.

m$33. If Z(G)n 2(6') has no elements of order three,

then E = 22.

m. We shall show that A1 = 1. Let a c A1. By Theorem

11.16, E g 23. Hence [G1, E] = [G1, Al] ; zccm 2(G1). Them, by

Corollary 4.14, 1 =- [x, c3] = [x, c]3. By hypothesis, this implies

that 1 =1 [x, (1]. Consequently c. = l.

m.4423. Suppose A2 3‘ l is not torsionfree. Then 6' has

a proper subgroup of finite iniex.

m. For 1 =f a c A2, the homomorphism from 6' into 2(6')

defined by fa(x) = [x, a] for each x c 6' is nontrivial. We may fini

an a e E10 M \ Elf) CG(6') such that (x, a] = Ex, a] for all x 116'.

If a has finite order, then there is an integer n such that an e CG(6').
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Thus 1 = [x, a]n = [a:, an] and 6'/I(er f0L “=’ fa(6') C; z(G1) is a non-

trivial direct sum of cyclic groups each of order bourded by n. In

particular, there are subgroups H and C of 6' such that 6' IKer fa =

H/Ker fa + C/Ker fa and C/Ker fa is nontrivial and finite. Consequently

H < G1 and 6'/H é C/Ker fa is finite.

M‘_+_,_2_4. If E > 22, then 6' has a proper subgroup of

finite iniex. f—

2.119.111 If E > 22, then A1 is a nontrivial torsion subgroup of

A2 by Theorem 4.16. Hence A2 # l is not torsionfree and the theorem 3

applie8 .

 
It is known that no complete, or even Cernikov complete, group L

can have a proper subgroup of finite irrlex (see [10: p. 234]). The

following two corollaries come directly from this fact.

Cgrolgn 4,25. If 6' is Cernikov complete, then E = 2.2.

gm 4,26. If 6 is metabelian ard 6' is divisible,

then E = 22.

m4,32. If 6'/(6' fl CG(Eln M)) is periodic, then

A2 has no clanents of infinite height.

m. Suppose a 11: El HM \ E1 066(6') is such that the irduced

automorphism a c A2 has infinite height. Let x c 6', and seems there is

an integer n such that xn c CG(E1 H M). By hypothesis, there is a B c A2

such that c = a“. Thus we may find b c 131 mm Elf] CG(6'), y e

E1 0 06(6') such that a = bny. Then [x, a] = [x, buy] = [x, b”] =

Elan, b] = l by Theorun 4.8(b) and a 1: El 0 66(6'), contrary to assumption.

We note that since A1 has bounded exponent, it can have no

elements of infinite height; certainly no nontrivial element of A1
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can be divided by 3 = mpul). Similarly we may show that A2 has no

elqnents of infinite height if 2(6') has bounded exponent by Theorun

h.21(a).

Theorgg M. Assume 2(6') is torsionfree. Then A2 is

torsionfree.

firm. Let 1 3‘ a e A2, o(a) = n < 0°. Then there is an x c 6'

such that 1 4 (x, a] c 2(6'). But 3, c1“ = 1):, an] = 1 so that

o([x, a1) I n. Hence a has infinite order. Since A1 Q A2 is

torsion, we must have that A1 = 1 or E = 22.

The proof of Theoran 15.29 is an improvement on a result of

Turner-Smith [22: Lanma 3.2], who has shown that for an automorphism

group A on 6, A has to have bouxded exponent whenever the set

{[x, c‘l: x c 6, a c A} is finite.

Theoran ‘_+_,_2_2. If a e E1 is such that Sa ={[x, a]: x c 6') is

finite, then aZ(6) c ELI/2(6) has finite order. The orders of all such

elements are bounded if the cardinalities of the sets are bounded.

£3933. Assume that Sat has n elements, 3: c 6'. Then at least

two of the elements [x, a‘], [1:2, a], ... , [xml, a] are the same.

Hence there is an integer k = k(x) _<_ n depending on x such that

[x, ak] = [xk, a] = 1 by Theorem n.8(h). Since the k's are bourded

by n, we may assert that [x, an!) = l for all 3:. Consequently

an: e 2(6).

M{51. We have proved that if 2(6) 0 2(6') has no

elments of order three, or if 6' has no proper subgroup of finite

irdex, then E(G) = 22(6). We shall now show that there exists a group

6 such that 22(6) < E(G) < 23(6).
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Let H = < a1, a2, a3: 2:3 >. Levi and van der Waerden [11] have

shown that H has nilpotence class exactly three and satisfies the law

e
2

class at least three having no elments of order three (see for example

. Hence E(H) = H = 230-!) > 2201). Let K be amr group of nilpotence

[17: p. 198]). By Theorem n.22, E0!) = 220:) < Z300 _C; K. Let

G = H x K. By Theorem 1.2, we have E(G) = £201) 3: E(K) = H x 2200.

Consequently 22(G) < E(G) < 23(G).

We have also shown that E E; El = L(G). Define NA(G) =

fl {NG(H): H maximal Abelian subgroup of G} to be the A-Norm (or

Abelian-Norm) of G. Kappe [9] introduces this concept and proves

that a c NA(G) if arr! only if [g, h] = l for g, h c G implies that

[a, g, h] = 1. By Corollary l&.10 it follows immediately that

E g NA(G) 9; E1.

Definition m. We shall. say that a word ¢ satisfies the

Wmif [G: ¢"(G)] = m finite implies ¢(G) finite with

order which divides a power of m for all groups G.

Schur showed that Y2 satisfies the Schur-Baer property; Baer

eacterded this result to am outer commutator word 53 (see [20]). We

shall need the followirg theoran. For a proof (due to P. 31:11), see

[20: Theoran 2].

Iheorun 343;. If ¢ generates a locally residually finite

variety, then ¢ satisfies the Schur-Baer property.

M£51}. If ¢ c fez, e3}, then ¢ satisfies the Schur-

Baer property.

m. Suppose ¢ = e2. A group in the variety generated by ¢

is nilpotent by Levi's Theoran. A finitely generated nilpotent group
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is residually finite by P. Hall [6]. Consequently a finitely generated

group in the variety generated by ¢ is residually finite and Theoran

“.33 applies.

Let ¢ = e3. Heineken [8] has shown that a group in the variety

generated by ¢ is locally nilpotent. Hence a finitely generated group

in this variety is also residually finite ard the theorun follows as

above.

£922.33 94%. We note that in P. Hall's proof of Theorun ‘0.33

we may sharpen the result somewhat if we put some restrictions on G

itself. That is, if ¢‘(G) is locally residually finite for all G in

some class 2 such that 2 = (Q, 8):, then ¢ satisfies the Schur-Baer

property for all G c 2. In particular, we have the following:

Theoran 9415. If G satisfies the maximum or the mirdmm

coalition, or if G is an SN"l group, then en satisfies the Schur-Baer

property for G.

23:22:. Suppose G satisfies the maximum condition. Then, by

[17: Theorem V1.8.J], we have that the set of left Ehxgel elements

(of all lengths) is the Hirsch-Plotkin radical R. Since then

e;(G) _C_ R is locally nilpotent, it is locally residually finite. By

Ranark “.3“, en satisfies the Schur-Baer property for G.

Vilyacer [23] has shown that an angel group satisfying the

minimum condition is locally nilpotent. Plotkin [115] has proved that

an mgel group which is also an SN"I group is locally nilpotent. Hence

the ranainier of the theorun follows as above.

P. Hall has made the following three conjectures concerning

arbitrary words ¢ ani groups G (see Turner-Smith [21]):
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I. If ¢ is finite-valued in G, then ¢(G) is finite.

II. The word ¢ satisfies the Schur-Baer property.

III. If G has the maximum condition on subgroups and ¢(G) is

finite, then G/¢"(G) is firdte.

It is not known whether these conjectures are universally true.

We have shown that Conjecture II is satisfied for ¢ c {e2, e3}.

Our results are more limited for these words ani the other two F—

conjectures.

We shall need the following lama. The arguments follow those

.
'
M

A
E
L
'
1
1
“
_
*
.

 
used in [22: Praposition 1]. E

MM. Suppose G is in a class of groups in which

Conjecture II is satisfied locally for ¢. If G is also locally

residually finite, then ¢ an! G satisfy Conjecture I.

21:29.: Assme ¢ is finite-valued on G. Then there is a

finitely generated subgroup H of G such that ME!) = ¢(G). Since ¢ is

finite-valued on H, we have that the set of eluents of the form t =-

¢(h1, , ahi, , hn)'1¢(h1, , hi, , hn) for a, h1 c a,

1 g i 5 n, is finite. Lot 121, see , tk be the nontrivial values. By

hypothesis, H is residually finite. Hence we may find I. <1 B such that

H/L is finiteaniti #1., 15151:. Leta cL, 111, , hncH.

Then w= ¢(h1, , ahi, , hn)'1¢(h1, , hn) eL. Since no

such nontrivial elment can be in L, we must have that w = l and

L _C; ¢‘(H). Hence H/¢"(H) is finite ani, since Conjecture 11 holds

in H, we have that ¢(H) = ¢(G) is finite.

mm. If ¢ c {e2, e3} arrl G is locally residualJy

finite, then ¢ and G satisfy Conjecture I.
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25923:. By Theoran “.33 we know that ¢ satisfies the Schur-

Baer property. Hence Conjecture II is satisfied for ¢ in amr group

ani the result follows from the lunma.

3m}; 9.1.3.8; Conjectures I and III seem quite difficult to

verify for Engel words. Conjecture I has been substantiated for

nilpotent ard solvable words but not for outer commutator words

in general (see [16] and [21]). Conjecture III was proved for any

outer commutator word by P. Hall (see [21]). We note that Theorem

“.36 verifies Mersljakov's [12] variant of the last conjecture for

finitely generated residually finite groups G and ¢ c {e2, e3}:

IV. If ¢ is finite-valued on G (where G does not necessarily

satisfy the maximum condition), then G/¢“(G) is finite.

Merzljakov [12] proves that for an arbitrary word and an

arbitrary linear group over a field all four conjectures are true. We

note also that Turner-Smith [22] has shown that all three conjectures

hold for every word ¢ and every group G in the class of groups whose

homomorphic images are all residually finite-mfor example, the class of

polycyclic groups .

Iheorg £532. If G satisfies the maximum condition ard yn(G)

is finite for some n, then G/en:l(G) is finite.

22292.: By Remark 4.38 we know that Conjecture III holds for

yn. Hence G/y;(G) is finite. That y;(G) _C_:_ °n:l(G) follows from the

fact that en_1(G) _<‘;_ yn(G) ani Theorem 1.5. Hence Glen:1(G) is

finite.
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