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ABSTRACT

EMBEDDING CANTOR SETS IN MANIFOLDS

by Richard Paul Osborne

This thesis is a study of the positional properties of
Cantor sets in manifolds. Chapter I is essentially a general-
ization to E" of Bing's work on tame Cantor sets 1n E3.
Characterizations of tame Cantor sets are given in terms of
neighborhoods whose boundaries do not intersect the Cantor
sets. It 1s also proved that the countable union of tame
Cantor sets 1s tame.

The principal result of Chapter II is that each Cantor
set in E" lies on the boundary of an n-cell 1n o

In Chapter III a very wild Cantor set 1s constructed

in Eu. This Cantor set 1s then embedded in 82 X S2 and 1t

is shown that it lies in no open 4-cell in 82 X Sz. This
2
shows that there 1s a simple closed curve in S2 x S° which

bounds a disk but which lies in no open 4-cell.



EMBEDDING CANTOR SETS IN MANIFOLDS

By

Richard Paul Osborne

A THESIS

Submitted to
Michigan State Unlversity
in partial fulfillment of the requirements
for the degree cf
DOCTOR OF PHILOSCPHY

Department of Mathematics

1965



ACKNOWLEDGMENTS

The author wishes to express his gratitude to Professor
J. G. Hocking for suggesting the problem of Chapter III, for
his guldance and sympathetic ear, and for the use c¢f his

library during the research.

i1



TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . . . . e e . .. . . . it
Chapter
I. TAME CANTOR SETS IN E™ 1
Introduction . . . . . . 1
Examples of Tame Cantor Sevs . . 3
Characterization of Tame Cantor Sets 7
Union of Tame Cantor Sets. . . . . 12
Local Tameness . « « o o « . 15
II. AN EXTENSION THEOREM FCR HOMEOMORPIISMS OXN
CANTCR SETS . . . . . . . . . 23
III. A TAME CANTOR SET WHICH LIES IN NO OPEXN

N-CELL . s e . . . . . e . 34
Introduction . . .. e e e e 34
The Construction of A . c ey . . . 39
Homotoplc non- trigialigy of E —A . 42

A Cantor set in S° x E¢ which 1lies in no
open 4-cell . 3 . 4y

A Cantor Set in S2 X S wbich lies in no
open U4-cell . . . .. 45
Concluding Remarks and Congoctu"es . 50
BIBLIOGRAFHY . . . . . ; , . . . . . 53

1ii



CHAPTER I
TAME CANTOR SETS IN E™

The surprising properties of the Cantor ternary set
and i1ts homemorphic images have provided the topologist
with some of his most provocative examples. For instance,
the "necklace" of Antoine formed the basis of the first
counterexample to the Schoenfliess conjecture in dimension
three. With the current interest in the topology of n-
dimensional Euclidean space En, the positional properties
of Cantor sets have assumed new importance. Many recent
results concerning tame and wild imbeddings in Enldepend
upon such positional properties and it 1s the aim of this
thesls to extend the knowledge of these Cantor sets and to
apply this new knowledge to problems concerning E",

As far as possible throughout this thesis we will use
C to represent n-cells, A to represent Cantor sets or sets
used in the construction of Cantor sets, and superscripts
to denote dimension.

Definition 1.1: A set A<:En will be called a Cantor

set if it 1s a homecmorphic image of the Cantor ternary

set on [0, 1].



The following well known theorem [23] is the principal
tool used in constructing Cantor sets 1in E" and will be
used freely throughout this thesis without specific reference.
Theorem: Every O-dimensional, compact, perfect, metric
space 1is homeomorphic to the Cantor ternary set.

Definition 1.2: An arcX CE” is tame if there is

homeomorphism of E" onto itself which maps A onto the unit

interval on the positive X, axis in E".

1
Definition 1.3: (Bing) A Cantor set ACE™ will bpe

called tame if A lies on a tame arc in E".

Cantor sets in E" may have very strange propertles.
The following examples are all tame Cantor sets in E?. In
these examples we rely upon graphic illustrations of
the first few steps in the constructions instead of
attempting to write out the analytical expressions for the
sets involved. 1In every construction of interest of a
Cantor set in E” the set is constructed as the intersection

of a sequence cf compact neighborhoods.



Example 1: A Cantor set in the plane (E2) whose pro-

Jection onto the x-axis covers the interval [0, 1].

Step 1 Step 2

Step 2

With only slight modifications we can get a Cantor set
in the plane unit square which intersects every straight
line passing through the top and bottom of the square. This

example is essentially the one given by Bing in [7].



Step 1 Step 2
Step 3
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Since the union of two Cantor sets 1s a Cantor set
we can easily ohtain from the above example a Cantor set
in the plane which intersects every straight line cutting

two opposite faces of the unit square.



This example can be generalized to the unit cube

n
c? 1in E". Let Ci, Cé, and Cé be the three largest n-cubes

in the unit cube C" whose projections in the X > X plane

1
are the same as those 1n step 2 of the previous example.

In each Ci we embed 3 n-cubes C! C

1 !
i,1° %12 and Ci,3 in a
fashion simllar to the embedding of the Ci's in c" except
that the roles of the X1 and X2 axes are interchanged.
After (n-1) such steps we get 3n—l n-cubes C i=1,2,---,

i’

n—l, in C" whose maximum dimension in the direction of

3
any axls 1s 2/3 and such that any straight line segment

passing thru the faces Xn=0 and Xn=1 intersects the "top"

n-1

and "bottom" of one of the 3 embedded cubes. In each

n-1

of these 3n—l cubes C C C,n-1 we embed 3 cubes

1° 29‘_-, 3
in the same fashion as before to get 32(n-1)

cubes whose
maximum dimension along any of the axes 1s (2/3)2. Con-
tinuing in this way we get a Cantor set A in c™ such that
every stralght line intersecting the faces Xn=0 and Xn=1
intersects A. The union of n such sets (one for each

pair of faces) gives us a Cantor set in E" which intersects
every straight line meeting two opposite faces of the unit
cube. As a matter of fact thils example may be modified by

choosling the starting cubes C C2, and C., properly to glve

1° 3
a Cantor set which intersects every straight line inter-

secting the interior of unit cube.



Although the following theorem appears to be trivial
and 1s well known I have not been able to find a proof
~given in the literature. The proof 1s worth presenting
because the technique involved here of constructing a homeo-
morphism as a limit of a sequence of homeomorphisms 1s a
powerful tool used throughout this thesis.

Theorem 1.1: If a Cantor set ACE"™ is tame then there

exlists a homeomorphism h of E" onto itself mapping A onto
the Cantor ternary set in the [0,1] on the Xl axis.

Proof: If A is tame than A lies on a tame arc & and
since ¥ is tame there exlsts a homeomorphism g of E™ onto
itself mapping « onto the interval [0,1] on the X -axis. We
have, then, a set homeomorphic with the Cantor ternary set
imbedded in [0,1]. We may assume without loss of generality
that the extreme points of g(A) are 0 and 1. Since every
homeomorphism of [0.1] onto itself can be extended trivially
to E" we need only show that there is a homeomorphism of
[0,1] onto itself taking g(A) onto the Cantor ternary set.
Choose a countable dense set {ap} from [0,1] -g(A) with
the same order relation as the corresponding diadic

rationals in (0, 1), f.e., 1f m =by + b, * 2 + ... +p, 2571

then a_ corresponds to the diadic rational bl.2_l+ b2,2—2 +

-k
+ bk2 , Where bi

longest open interval in [0, 1] -g (A) containing a.

= 0 or 1. VLet Im be the



We define h, to be an order-preserving homeomorphism of

1
(0, 1] onto itself mapping Il onto (1/3, 2/3). Suppose m +

_ . k-1
l="D>b. + b2 2+ ... + bk2 . We choose hm+1 to be an order

preserving homeomorphism of [0, 1] onto itself mapping Im+l

onto the interval
2b, 2b 2b 2b 2b

1
3

w
w
2O BV
w

We deflne h (x) = h_oh

mlim°° m m_lo...ohl(x). h is 1-1 by con-

struction and since h i1s the uniform 1limit of contilnuous
functions h is continuous.

Corollary 1.2: If Al and A2 are any two tame Cantor

sets in E” then there exists a homeomorphism of E" onto

itself mapping Al onto A2.

We now wish to prove the following theorem which
characterizes tame Cantor sets in E".

Theorem 1.3: A Cantor set ACE"™ is tame iff for each

e>0 there exlsts a finite number of disjoint, tame n-cells

{Cc_ .} covering A such that diam C. 4y<e and BdC_ N, =g

e,1 , 1A

To prove this theorem we shall need the following lemmas.



Lemma 1.4: C be an n-cell in the interior of an n-cell

" and let pe Int c” and U be an open neighborhood of

C
p in Int c™. There exists a homeomorphism h of c” onto
itself such that h | BdC™ = 1d , h(C)C U and pe Int h(C).
Proof: Think of ¢ as the set of points of E” such
that ”xll 1. If q and r are any two points of int ch
there exlsts a homemonphism g of c” onto itself which 1is
the identity on Bdc™ and g(q) = r. Now let g be the origin
and let g(p) = q. We pick a point re Int C and let g'(r) =
Q. We may now shrink g'(C) by a homemorphism g'' of ch

onto itself into g(U). Now 8_1

g"g' 1s the desired homeo-
morphism.
Lemma 1.5: Let C be a tame n-cell in E" and let

pl, p2, ey pk and ql, q2’..., Q. be sets of distinct points

in Int C". There exist tame, aisjoint n-cells Cl, C2, ey
C, in Int c™ such that ;Wi e ¢y 1=1, 2, ...,
K.

Proof: For each 1 = 1,2, ..., K we pass disjoint

polyhedral arcs°<i from Py to Qg and beyond so that Py and
qi are not endpoints of« 1 Then we "swell up" eacho(i
into a tame n-cell. (This procedure of "swelling up" a
polyhedral arc into an n-cell i1s a standard device in the

literature).



Lemma 1.6: Let C C ..., C, be disjoint, tame

1 722 k
n-cells in the interior of an n-cell C” and let Pys Ppos «v+s
p, be any k points in (Int c% -- }éﬁci). Then there exist
disjoint tame n-cells Cj, ..., C! in Int ¢ such CiL){pi}
C 1Int C; for each 1 =1, 2, ..., K.
Proof: Choose k points Q5 Ao ces of C" so that

Qg€ Int Ci' By Lemma 1.2 there exist disjoint n-cells

c¥, C5, ..., G such that {pi}L/{qi}c:Int Cy. Since C, is

tame it is collared [11] on the outside by a collar Ai’

Without loss of generality we may suppose (C 1UAi)f\(CJUAJ)

=g for i # J. Now Ci\J A, is an n-cell with C, being a

1
tame n-cell in Int (CiJ Ai). By Lemma 1.1 we may shrink

" and

C1 by a homeomorphism h i

4 SO that hi(Ci)C: Int C

_ -1 "
hy| Ba(C;UA;) = 1d. Now h; (C{) =C; 1is the desired n-cell

i
for each 1 = 1,2, ..., k.
Lemma 1.7:  Let Cl’ 02, o s o Ck be tame, disjoint n-
n n tk
cells in Int C°, let py, P,, ..., P, be points of C _igf, Cy

and let U_,U ., U, be disjoint neighborhoods of P1sPys

1°72° k
n_ ¥
Py respectively in C° - 1=1 Ci'

h of C" onto itself such that h|Bdc™ = 1 and pye h(C)C Uy

There exists a homeomorphism

for 1 =1, 2, ..., k.
Proof: By Lemma 1.5 there exist disjoint tame n-cells

1 ! 1 1
C{s Cbs «.., Cp such that {pi}l/ C;, CInt C;. By Lemma 1.4

there exists a homeomorphism g of c? onto itself such that

n _ g _
pie g(c,)cu,/lcicu, and g| (C° - ;2] cI) = id.
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Proof of the main theorem: For each k =1, 2, 3 ...

we choose a covering {C :i=1, of A with the following

k,1° k}

properties: 1) Ck,i/7ck,3 =@ for i1 # j, 2) Ck,i is a tame

n-cell with bicollared boundary for each k and 1,3) diam

k -
Ck,i< 172" for each 1 =1, 2, ..., N, and 4) Ck+l, i C

Int-Ck 3 for some jJ = 1, 2, ... Nk' The choice of such a
]

sequence of coverings of A may be done inductively. For
k = 1 choose a covering satisfying 1) thru 4) by using the

hypothesis of the theorem. Suppose {Ck i:i=l,...Nk}
})

N
been chosen. Since };%}Bdl (Ck i) /1A= there exists N> 0
3

such that d (Y% Ba ¢

has

k.1)> A)> N. Now we cover A by a set of

i=1
disjoint, tame n-cells of diameter less than min (1/2k+l, N).
/ < i=
This then gives us the desired set le+l’i.i 1,...,Nk+l}
/”\ k_// i
It is clear that, ( 1=1 k,i) = A.
Next we define a set of homeomorphisms {h } of E" onto
N
itself. Let C, be a tame n-cell in E" with 111 ¢y ;& Int C)

and leto be a tame arc in Cl which intersects the interior

of each Cl i Define h, = id. Assume now that h, has been
b

1 k
defined so that i)X contains points in the interior of

0 0 =
h, "hy 7. hl(Ck,i) for each 1 1, 2, ..., N i1)

1 Ko
n —
hkl E (L/Ck_l’i) = 1d, 1i1) h, moves no point farther than
k-1 . 0 o o Kk .
1/2 and iv) diam h, hk—l ceahy (ck,i)< 1/2%. Now since
AL intersects BA4C for each 1 =1, 2, ..., N it follows

k,i k
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that in each C

N
\ 1,

=1 Cke1, 1 _
Nk+l} using another parameter j so that ck+1,J,iC:Ck,J for

K,1 there are points of<Xin Ck,i not in

Now we renumber the set {Ck+1,i:i = 1,2, ...,

i=1,2, ..., M Let | i =1, ..., M,} be points

3 Prel, 3,17 3!
of (£ /] Int Ch j= Y21 Cw1,y,1 and let{ Uppy g 4ot = 1,

2, ..., M,} be a set of disjoint neighborhoods of the points

J Mj
{ pk+1,j,i:i -1, 2, «u., Mj} lying in ck’J -~ Ck+1,J,i.
By Lemma 1.6 there exists a homeomorphism g, of C with the
J k,J

desired properties 1)---iv) for each j. We define h vy =

0 0 1]
€1 8 - "By

Finally we define h by h(x) = im b Oh U,..% (x).
—+>® k k-1 N 1
If X#A then there exists N such that for k>N x¢ 2, C
i=1 “k,i

hence hk leaves x fixed. We see that h is a homemorphism

on E" - A. Let X,y €A and d(x,y)> 1/2k then i1f xe Cp 4
3

thk’i it follows that h(x) # h(y). We must yet show that

h is continuous but this follows from the fact that h is the
uniform 1imit of a sequence of continuous functions. Clearly
then, h is a homeomorphism of E? onto itself such that h(x)ed
for each x eA. This follows from the fact that

d(h . %h (x), )< 172K

0 0
k Pk-1
Note: In the hypothesis of the previous theorem we

specified that the coverings of A be composed of tame n-cells.

n

This was not necessary, for, glven any n-cell Cn, C" can be

approximated from the inside by a tame n-cell. To see this



1z

let B? denote the ball in E" of radius r, let g be a homeo-
morphism of B? into E" and let A be a compact subset of

Int (g(B?)). There is adé> 0 such that Int (g(B?_s))
contains A. 8(32_5)) is a bicollared (n-1) sphere in
E™ hence by the generalized Schoenflies theorem [10]
g(B?_G) is a tame n-cell containing A in its interior.

Theorem 1.8: The union of two disjoint, tame Cantor

sets in E" 1s tame.
Proof: Let Al and A, be disjoint tame Cantor sets and
suppose that d(Al’A2) = 8§ ., Let ¢> 0 be given. Cover Al
by a set of disjoint open n-cells of diameter less than
min (§/2,e). Cover A2 similarly. We then have an
covering of AlUA2 by disjoint n-cells. An application

of Theorem 1.7 completes the proof.

Theorem 1.9: Let A be a Cantor set in En. A 1s tame

iff A lies on a tame (n-1) - sphere in ™,

Proof: If A is tame then A lies on a tame arc«.
Let h be a homeomorphism of E" onto itself mapping &£ onto
the unit interval on the xl-axis. The boundary S of the
unit cube in E® contains h(« ) hence h™1(S) is a tame (n-1)
sphere containing« .

Suppose now that A lies on a tame (n-1)-sphere S. Let

CcS be an (n-1)-cell such that A<Int C. Since S is tame

C is tame so there is a homeomorphism h of E" onto itself
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such that h(C) 1s a subset of the hyperplane X, = 0. Let
« be an arc in h(C) containing A. Klee has given a homeo-
morphism of E" onto itself mapping such an arc into the
xn-axis. Evidently theny is tame, hence A 1s tame.

The next theorem establishes that the union of two
tame Cantor sets 1is tame. A generalization of the process
used in the proof of this theorem will be used later to show
that if a Cantor set is the countable union of tame Cantor
sets it is tame.

The following lemmas are needed in the proof of the
result mentioned above:

Lemma 1.10: Let h':I'»I' be a homeomorphism of I'

{leaving the endpoints of I' fixed, let I' be the unit

interval on the X,-axis in En and let Cn be the n-cell in '

1
E" defined by
n _ . _ 2 2
c' = {x: x = (Xl’ Xos «oes xn) and X, t X3
+ ... 4 xi <1land 0 < x; < 1}. Then h' can be

extended to a homeomorphism h of E" which is the identity

outside of Cn. .

Proof: Let S ={x:x = (xl, Xos oo xn), xg + x2 +

3 ces

+ xi = 1and x; = 1/2}. For each point xeS and each rel'

let lx r be the line segment joining x and r. Now define

5

h(y) ={y if y #2 X7 for same xeS and rel'
bl

(r) and d(é',I') = d(y,I').

|
y' if yszx ,h(r

et
r where y'e X

L]

h is the desired homeomorphism.
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Lemma 1.11: Let C" be an n-cell in E7, n # 4.

Cl’l

can be approximated by a polyhedral n-cell, i.e., given
€> 0 there exists a polyhedral n-cell, Pn, such that
d(x,Bdc™)<e for all xeBdP" and P7cch.

Proof: We use the theorems due to Bing [8] and Connell
[18] which say that for n # 4 stable homeomorphisms of E”
can be approximated by plecewise linear homeomorphisms.
LetAh be an n-simplex in Int c™. Now Int ¢" - Int An is
a half open annulus [10] so there is a tame n-cell p"e ¢l
such that D" - Int An is an annulus and d(x, Ban)<e /2 for
every Xxe BaD". Since D"-Int An is an annulus there exists
a stable homeomorphism h of g™ mapping Bd An onto BdD".
Using the aforementioned theorem we approximate h to within
€/2 by apliecewise linear homeomorphism f. Then f(An)

is the desired pilecewise linear (polyhedral) cell.

Theorem 1.12: The union of two tame Cantor sets in

n

E', n# 4, is tame.

Proof: Let A1 and A2 be tame Cantor sets in En. A

lies on a tame aPC¢X1 and A2 lies on a tame arch2. We

1

may think of Né as being on the x,-axls in E" and we assume

1
that the endpoints ofy , are not in AlL/A2' Let €> 0 be

given and let A =¢(2r\(A1L/A2). A, is a subset of a tame

3 3
Cantor set ono(2. Blowo(2 up into an n-cell ch given by
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x:d(xl,c«fl)ie/3 . Let Xys Xps eevs X be a finite set

of points of“’(2 - A, such that 0O<x - xy<e/2 for 1 =1,

3 i+1

2, ..., kK and X, and X, are the endpoints of 0(2. We define

3

! n

Ci = {y:y = (yl, Yos =oes yn), xiiyiixi+l, yeC }for
i=1,2, ..., k. Evidently the Cis are n-cells of diameter

less than e which covery ,. Shrink each C; to form

a new n-cell Cf'L'C.Cj'_ so that Ci - Int C; is an annulus and

A3/}CE = A3ﬂ Ci{. By Lemma 1.11 there exists a polyhedral

(with respect to o<1) n-cell &i such that C;cInt 61 and

61C_Int Ci. If necessary we rotate ?}i slightly to get an

n-cell C¥* such that C" CInt C*¥*CInt C! andBd C¥*. .  is
i i i i i 1

a finite set Pi' For each pEPi choose Cp to be a small

n-cell containing p contained Int Ci' - Cg and so that for

any qui CaqnNCp = @. Let hi D be a homeomorphism of
3

Cp/]O( 1> onto itself which leaves the endpoints of Cp 1

fixed and maps a point of (Cp/]« 1) - Al onto p. By Lemma

1.10 hip can be extended to a homeomorphism hip of EP which
is the identity outside of Cp.

_ _ -1
4 = ngi hip and set Ci = hi

The set {Ci:i =1, ..., K} 1s a disjoint collection of n-

Finally we define h (C¥*).

1

cells which cover &2!'\(A1U A2) such that BdCif}(AluA2) = §.

&/
i=1
the union of two disjoint tame Cantor sets hence by Theorem

The remaining points of AlU A2 - Ci can be written as

1.8 is a tame Cantor set. Since AIUA 5 - iuf/l Ci is tame it

may be covered by a disjoint system of n-cell of diameter
&

less than ¢ whose 1Intersection with 1=1

C, 1s void.

i
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A study of local properties of embeddings
of Cantor sets in E" is of some interest in its own right
and will enaﬁle us to prove the global theorem on the union
of tame Cantor sets which is a generalization of Theorem 1.12.

Definition 1.4: A Cantor set ACE" is said to be

locally tame at xeA if there exists a neighborhood Nx of
X such that A/7Nx is a tame Cantor set.

Theorem 1.13: A Cantor set AC‘_En is tame 1iff it is

locally tame at each of its points.
Proof: Suppose A is locally tame at each of its

points. It follows from the definition of local tameness

that A may be covered by a finite set Nl’ N2, ey Nk of
open subsets of g" such that Ni/7A is a tame Cantor set
k
= t = ! = __U {
and Bd Ni/}A ¢. Define NJ N, and N} N, =1 NJ.

Since NI CN, and N,/TA 1s tame, it follows that Nj /1A s
tame (or empty). The collection {N':i =1, 2, ..., k}

is an open cover of A such that N /7N'— g for 1 # j. Thus
A L\//(N'/?A) is a decomposition of A into a finite number
of disjoint tame Cantor sets which by Theorem 1.8 is tame.

The proof of the converse is trivial.

Definition 1.5: An arcxti.En will be called locally

tame at xe« if there exists an open n-cell neighborhood

N of x and a homeomorphism h:Nx+En such that h(Nx) =

E" and h(Nx/Io() is the x. axis in E"

1
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One might have expected that local tameness of a
Cantor set would be defined in terms of local tameness of
arcs. That such a definition is equivalent to that given
is shown by the following theorem.

Theorem 1.14: A Cantor set AC‘_En i1s locally tame at

xeA 1ff A lies on an arc which 1is locally tame at x.

Proof: Suppose A lies on an arceg which is locally tame
at x. Let Nx be a neighborhood of x and h:Nx*En be a
homeomorphism of N_ onto E" such that h(Nx/7dV) lies on the
xl—axis, Now let N% be a compact neighborhood of h(x) such
that Bd N;/]h(A/7NX) = g. Then h(A)/?N; is a tame Cantor
set. Let e€> 0 be given and choose 6> 0 such that d(x,y)
< 6§ implies d(h_l(x), h—l(y)) <e¢ for each x and y in
N:. Cover h(A/]Nx)/7N% by a disjoint family {C,} of n-cells
of diameter less than é& such that (U Bd Ck)n h(A/7Nx) =0
The family {h™7(C,)} is a covering of A/] h-l(N)'() by a
disjoint collection of n-cells of diameter less than e
such that (U Bd h-l(Ck))n A = ¢g. By Theorem 1.3
A/?h—l(Ni) is a tame Cantor set.

Conversely suppose A is tame at x. Let Nx be a neighbor-
hood of x such that Nx/7A is a tame Cantor set. We may
suppose that NX is an n-cell such that Bd Nxﬁ A =¢. Let
X be a tame arc containing Nx/)A. Letc(’ be an arc in

En

.y ! T
- NX conpalning A - Nxe d andx are disjoint arcs so
they may be connected to get an arcc’("° C& " contains A and

is locally tame at x.
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In recent papers by Cantrell and Edwards [16] and by
Cantrell [14] it has been shown that if an arc in E', n > b
is wild it must fail to be locally tame at an entire Cantor
set of points. Papers [12], [13] and [15] have been written

by Cantrell in which a principal objective is to establlsh

n-1 n

the analogous result for S in E', n > 4,

n-1

i.e., 1f an (n-1)-s'phere S in En, n > 4, is wild then

Sn"l falls to be locally flat on a Cantor set of points

(see [11] for the definition of local flatness for spheres)
Although this statement has not yet been proved 1t has been
shown to be related to a generalized annulus conjecture [15].
One might wonder what sort of wildness properties a Cantof
set in E" could have. Could a Cantor set be wild at Just
one point? The following set of theorems is aimed at
answering such questlions. Although these theorems are the
same in statement to those established by Bing [7] for E3
the proofs used by Bing could not be generalized to the case
of E, n»>3.

Theorem 1.15: If A is a Cantor set in En which 1is

locally tame at each of its points with the possible exception
of a single point xpeA, then A is tame.

Proof: In [7] Bing established this theorem for
n = 3; consequently we assume that n>4. Let {Ni} be a decreasin:;

sequence of open neighborhoods of xg such that Bd Nif]A =g
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and diam Ni<1/i for each 1 = 1, 2, 3, .... Now since Ai

= (Ni - Ni+1)n A is locally tame at each of its points A,

is a tame Cantor set for each i. For each i let C G R
- 5 s BN

& eyt Ci Xk be a disjoint collection of n-cells such that
na (&
- - &
Bd Ci’Jﬂ A=9, Ci,jC:Ni - Ni+l and AiC’J=l ci,J‘ It
is easily verified that the n-cells may be so chosen. For

each ci,j letx be a tame arc in Cij containing Cijﬂ A.

1,J
Define By = {x:x €E" and d(x, xo)i 1/k}, let > be an ordering

on pairs of integers defined by (i, j) >(m,&) if i>m or

1 =mand j>&, and choose arcs B1J as follows: let Bll
‘el \k
n ;
be a tame arc in E -- 1=1 j=1 joining an endpoint of-, 11

to an endpoint of~112. Suppose now that arcs Bi 3 have been
s

= v
chosen for j;ch i<m, let Smf be a tame arc in B , (1,5) (m,2+1)
Cij) = (1,1)<(m, ) (26 4557 sij) Jjoing the free endpoint of
W(m,l with an endpoint ofq m,1+lf°r L= 1,)2, vy km-l
and le? em’km be a ZTme arc in Bm- (1,1 ;(m+1,l)ci,J'

L/ 4
(1,3) “<(m,km) (‘(1j 811y Joining the free endpoint of o m,k

to a free endpoint Ofﬁ\m+1,l'

(See Figure 3.)
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BVARSY) |
Leta(_i=l =1 (o(iJUBiJ.) U {xp}. Then«is a metric
continuum with exactly two non-cut points, hence 1s an

arc. By the method of constructiones is locally flat except
possibly on a countable set. By the result of Cantrell [14]

such an arc in E", n>4 must be tame.

Corollary 1.16: The set of points at which a Cantor

set A<E" is wild can contain no isolated point.

Proof: Suppose a Cantor set A is wild at the point
Xg and suppose there 1is a neighborhood NXo of xp such that
A/]NXo i1s locally tame at each point except xg. The Cantor
set A/NXO contradicts the previous theorem.

Corollary 1.17: The set of points at which a wild

Cantor set AcE™ fails ta be locally tame is a Cantor set.

Proof: Let W denote the set of points of A at which
A falls to be locally tame. From the definition of local
tameness 1t is clear that W is a closed subset of A and by
Corollary 1.16,W contains no isolated points. It follows
that W 1s closed and dense-1n-itself hence W 1s a Cantor
set.

Theorem 1.18: If a Cantor set ACE" is locally tame

at each of its points with the possible exception of the

points of a tame Cantor set B in A, then A is tame.
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Proof: Let ¢€> 0 be given. Using Theorem 1.7 we
shall show that A is tame by covering it by a set of disjoint
n-cells of diameter less than € whose boundaries do not

C C

10 Cos +ovs Oy
of dlameter less than /2 such that B/ (¥ Bd c,) = 0.

intersect A. Cover B by disjoint n-cells C

Let 0 < 2 é<min d(Ci, C,). We restrict our attention
1£] J

now to a particular C Let 0<é4 < d(B, BdCi), letny

i
min (e/2,6,6,) and let N, = {x:d(BdCy,x}<n; . The

Cantor set A/7Ni i1s tame at each of its points hence it is
tame by Theorem 1.13. Cover A/INi by disjoint n-cells of

diameter less than n whose boundaries do not intersect

i

C C be the set of all such

1,12 71,22 *"*"? Yim
n-cells containlng a point of BdCi/]A. Next we choose

A/)Ni. Let C

homeomorphisms hi,l’ hi,2’ c ooy hi,m with the properties:
n
1) h E°" - C = 14 and 2) h A/(C N BdC, =
- 0 0 - -
Define hi hi,l hj_’2 N hi,m Now hi (Ci) is an n-cell

of diameter less than ¢ such that Bd hIl(Ci)/YA =g, If

we have defined h, for each 1 and we define h = hg h2°...

Ohk, then h'l(cl) , h—l(Cz) ,
by disjoint n-cells of diameter less than e such that

. h_l(Ck) is a covering of B

A/](iufl Bdh'l(ci)) = @. Since A-( iu:‘/lh‘l(ci)) is tame it

may be covered by disJoint n-cells of diameter less than e
‘ k
which do not 1ntersect;‘=/1 h~t(c,).

Corollary 1.19: Each wild Cantor set in E" contains a

Cantor set which is wild at each of its points.
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Proof: ©Let A be a wild Cantor set i1n E" and suppose
A fails to be locally tame on a Cantor set W. Then W must
be wild at each of its points, for if W were locally tame
at xeW then there would be a neighborhood Nx of x such that
Nx/7w is tame. But then A/)ins locally tame except for
the points of a tame Cantor set, contradicting Theorem 1.17.

Corollary 1.20: The set of polnts at which a Cantor

set 1s wild is empty or is a Cantor set which is not locally
tame anywhere.

Using the previous results we may prove the following
theorem on the union of tame Cantor sets in E'. This theorem
was given by Bing [7] for E3 and the proof now generalizes
easily. It 1is repeated here for the sake of completeness.

Theorem 1.21: If the Cantor set Ac:_En i1s the countable

union of tame Cantor sets A A then A 1s tame.

10 BAos -
Proof: 1If A were wild then by Corollary 1.18, A would

contain a Cantor set A' which 1s wild at each of its points.

The Baire-Moore theorem tells us that no compact Hausdorff

space 1is the union of a countable number of closed subsets,

no one of which contains an open subset of the space (for

a proof see[23]). So A' must contailn a Cantor set A"

which is open in A' and which lies in one Ai' But the A'

is not locally tame at any of its points. This contradicts

the fact that Ai i1s locally tame at each of its points.



CHAPTER II

AN EXTENSION THEOREM FOR HOMEOMORPHISMS
ON CANTOR SETS

In 1921 L. Antoine [3] gave an example of a Cantor
set 1n E3 whose complement was not simply connected.
This then was the first known example of a wild embedding
of a Cantor set in E". Shortly thereafter (1924) J. W.
Alexander [1] showed that the Cantor set of Antoine, often
called Antoine's necklace, was contained in a 2-sphere
in E3 disproving the Schoenflies theorem for E3. Con-
currently Alexander [2] gave an example of a 2-sphere in
E3 which was wild at a tame Cantor set of points. 1In
1949 Artin and Fox [5] constructed 2-spheres in E3 which
were wild at a single point. Shortly thereafter (1951)
Blankinship [9], a student of Fox, published a paper in
which he generalized the construction of Antoine's neck-
lace to E" for any n>3, i.e. he constructed Cantor sets
in E" whose complements were not simply connected. 1In
this same paper he showed that these generalized necklaces
must lie on the boundary of a K-cell, OfKin; thus giving
a method for constructing wild K-cells and spheres in E",

In this chapter we shall show that every Cantor set

in En, n>2, lies on the boundary of a K-cell in E’. This

23



theorem is a direct extension for E” of the well known
theorem [25]: Any O-dimensional, compact subset of a
Peano space lies on an arc.

We shall need the following lemmas.

Lemma 2.1: Let U be a component of the set V in a
locally connected space X. Then BdU< B4V and if V 1is
open then U 1s open.

Proof: Let xeBdU;then for each neighborhood Nx of
x in X Nxcontalns points of U and U' (the complement in
X of U). If x were not a boundary point of V then there
would te ann cpen connected neighborhood NX of x which was
contained in V. Then UuNx is a connected subset of V
properly containing U, contrary to the assumption that U
was a component of V. If V is open then BdVaV = g so BdUnU =
¥ and U is open.

Lemma 2.2: Let U be a bounded, connected, open
subset of E” and let A be a compact subset of U. Then
there exists a polyhedron PzU such that AC Int P and Int P
is connected.

Proof: LetY = min d(x,BdU). Triangulate
XeA

B by a triangulation T of mesh less than 6/2 and let P’
be the polyhedron composed of all simplexes of T contained

in the star of a simplex contalning a point of A. Let

Pl’ P2,———, Pk be the closures of the components of the
interior of P'. Since U is connected there is an arc
Joining cach of the polyhedra Pl’ P2, Y, Pk’



Let 8' = min d(x, BAU), let T' be a refinement of T of
mesh lessx::;n §'/2 and define P" to be the set of all
simplexes of T°' whicﬁ are contalned in the star of a simplex
which contains a point of . Finally define P = prup”.
P 1s then the desired polyhedron.

Lemma 2.3: Let €>0 be given and let A be a compact,

O-dimensional subset of En. Then there exists a finite

collection of disjoint, open, connected subsets {U,:1 = 1,2,""°

i

‘,K} of E? which cover A and such that 1) diam U, <e , 2)

Ui is a polyhedron and 3) E" - Ui'is connected.

i

Proof: First we select an open neighborhood Nx of
each point x of A of dlameter less thangsuch that Bd Nx/]A =

g. Select from this cover of A a finite subcover N N

VIRV v
Np’ Now let N = =1 N2'2=1 (Bsz). By Lemma 2.1 each
component VJ of N i1s an open set whose boundary is in
P
BAN = 2:{ BdN,; thus BdVJITA = . The set{VJ} is an open

o o o

cover of A hence there 1s a finite subcover {Viz i=1,2, ,m}

of A by sets of {VJ}. We now have a finite covering

{Vi: J=1,2.""",m} of A by disjoint, open, connected subsets

of E? each of diameter less than e such that BdVv,n A = g,

i
Now for each 1 apply Lemma 2.2 to get a polyhedron in Vi

whose interior wi 1s connected and contains Vi/]A. Finally

for each 1 let Ui be the complement of the unbounded com-

ponent of E"-W If U,c U, for 1 # J drop this set from the

i’ i J
list of polyhedra covering A. We now have the desired

covering of A,
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Lemma 2.4: Let P and Q be disjoint compact polyhedra in
E" both of which are the union of n-simplexes and let  be
a polyhedral arc with endpoints p and g such that
A 1P = {p} and 41 Q = {q} and q is in the interior of
an (n-1)-simplex & of Q. Then &« can be "blown up" into
a polyhedral n-cell C such that CAP and C/Q are (n-1)- .
cells in BdP and BdQ respectively and for a given €>0
d(x, o )<e for any xeC.

Proof: Leto(l be a line segment in E" and let P1
and P2 be (n-1l)-dimensional hyperplanes in ok intersecting

o( 1 at its endpoints a, and a2 respectively. Leta‘l be an

1

(n-1)-simplex in P. containing p and not intersecting P2.

1

Then the set C, consisting of all points lying on 1line

1
segments parallel tod 1 with one endpoint ina‘l and the
other endpolnt on P2 is a polyhedral n-cell. To see
that C1 1s, indeed, an n—dell is a straightforward but
messy computation in analytic geometry.

Now, starting at p, number the linear segments off in
order: o(l,a(a, "',o(k. Let p = a;, a5, """, 8,1 =q
be the set of endpoints °f°<1’0(2” "',o(k where a, and
a;,q are endpoints of‘o(i. Letar-1 be an (n-1)-simplex in
BdP such that dfama"l<e, pec, andO(l does not lie in the
(n—l)-dimehsional hyperplane determined by g Let P2 be
a (n-1) dimensional hyperplane intersecting a(l and 0(2 at a,.

Applying the remarks of the above paragraph blowa(1 up into
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an n-cell C, such that BdC,/1P, and BdC,/) P, are (n-1)-
simplexes. Now apply the entire process again tod D) and

BdClan. We contlnue expanding in this fashion until we

come toa(k. Choosed‘k+1<-‘-a" so that qeo~,,, and so the
n-cell generated by lines parallel too(k with endpoints in
k+1

o4, intersects C,_; in an (n-1) = simplex. C =/, cC,
1s the desired n-cell.

Theorem 2.5: Let A be a Cantor set in En. Then A

lies on the boundary of an n-cell cc E®. Furthermore C" can
be so' chosen that A is tamely imbedded in Bac”. (Note
that C" itself may well be wild in E" and in fact C" must
be wild 1f A 1is wild.)
Proof: Let Cyp be a polyhedral n-cell in E" whose

distance from A is 1. Let P P P be dis-

11 " 1,2° ’ 1,1{l
Joint polyhedra of diameter less than 1/2 such that Int

\&y)
P is connected and.AC Int P

1,1 i=1
be a polygonal arc 1n BdC,, let x

1,1 (Lemma 2.3). Let o«

1,1° %,2° > ¥ k1

be k., distinct points ofof and let Yy 1
3

1 ¥q,2° » Y1,k
be kl points such that ¥, ; lies in the interior of an
3

(n-1)-simplex on the boundary of P Choose disjoint

1,1°

polyhedral arcsxl,l, 0(1’2, ,0(1’1(1 so that the end-

1,1 and yl,i and so thato(l,in Co =

k

» v =

{xl,i} ando(l,iﬂl j=1 Pl,i) = {Yl,i} . Applying Lemma 2.4

points of‘éfl ; are X
b

blow eacha(l 4 up into a polyhedral n-cell C; , such that
3 F) -

Cl,in( Y

371 Cl,,j) =g, 01,1 C, is a polyhedral (n-1)-cell
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and C, . 1P is a polyhedral (n-1)-cell. Let T = C . Let
1,1 1,1

0
be a homeomorphism of C_onto C, = Co(Ey Cy ) such

By
that h, (xl,i) = Yl,i'

Suppose now that the sets Pm,l’ Pm,2’ ttty, Pm,km,
Cn,l’ Cm,2’ tt, C m,k, and Cm together with Tm and hm

have been defined. For the moment we restrict our attention

to a polyhedron Pm i* Applying Lemma 2.3 we get disjoint
3

i i . i
o o z
m+1,1° Tm+1,2° > P in Int P

m+l, 1 m,1i
meter less than l/2m+1 whose interiors cover Pm ih A. Let
3

polyhedra P of dia-

- o 0...0 i,
£, - h,"hp 1 h, and choose distinct points X

m+l,1°
1 X 1 of f (4)/7Bd P For each J
m+l,2° m+l, L m m,i°

1,2, "‘,21 let Ymil,i be a point in the interior of an

1
m+l,J"

in order to avoid ever increasing numbers of subscripts

1 '
m+1,3 50 d oty

1=1,2, » k lexlcographically in (1,j) (and correspond-

i i
ingly the Xm+l,J m+1,J

ordering using two subscripts P

X

(n-1)-simplex on the boundary of P At this point,

or superscripts, we shall reorder the P = 1,2, ...

's and Y 's). So we now hawe an

m1,2° "7 Fn » Kyl
be disjoint polyhedral

m+l,1° P

Now letd g 5ol 20 ~=» Apyy, Koy

arcs such that 1) xm+1,i and ¥

m+l,1 are the endpoints of

o(
{x

m+l,i/)Bd Pm,ji -

mfl,i m+l,1 /\Bd(Pm+1,i) = {ym+1,i} and 5) « m.+1,in
(zgﬁ Pm+1,£) = @ (See Figure 4). Next we wish to define the

m1,1° 2)°(m+1,1C Pm,j;‘ for some j,, A

b, 4)o¢

set T,y. Let S_ o ={y: yeC  and d(x,y) <e} and let 2 mb1,1 "
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-1 +

£ (xm+l,i)’ Choose e, ,>0 small enough so that Sem+l, Zmi1,1
m+1l
CInt T, e,y <1/2 and Sepiq ) Zpel,i s m+l,j =
@ for 1 # J.
k
_ untl
Define Tm+1 = I;{ S€m+l, Zm+1,1° Applying Lemma 2.4 blow
each ‘{1n+1,1 up into a polyhedral n=cell C:m+l,i such that
1) Cm+l,i /)Cm+1,j =@ for 1l #j, 2) Cm+1,1’70 m’ji is
- - 0,/.) .

an (n-1)-cell in fm (Tm+l), 3)ka+1,1 Pm+1,i is an

-1)- = m#l
(n 1) cell. Let Cm+l CmU ( jﬁ-—:j]t Cm+1’i) and choose a
homeomorphism hm+l: Cm++cm+l of Cmonto Cm+l such that

h(x and h |[c_ - f£(T

m m+l) = id. Finally

m1,1) = Ym#l 1 m+1
we define f(x) = lim fm (x). Since f is the uniform limit

m->o
of a sequence of continuous functions f 1s continuous.

Because the domain of f 1s Co’ a compact set, we need only

show that f is 1-1 to establish that f 1s a homeomorphism.

oo

= N
Clearly T ,,CT_and T p=1 T, 1s a Cantor set in BdC .

For any point xeCO=T there exists an N such that for m>N

= = )
X £ Tm thus for all m>N fm(x) h (fm_l(x)) f (x) so

m m-1

f = fN in a neighborhood of x and f is a homeomorphism in

a neighborhood of x. We see that f is 1-1 on CO - T. Since

f is continuous f(BdC,) is compact. Now for any point acA
da, £ (BdC))< 1/2™ nhence d(a, £ (BdC )) = 0 so aef(BdC)

and ACf(BdC_ ). Because f _(BdC_) /]A = ¢ for each m

and hm, m=1,2,--- is eventually the identity on each 8 ¢

T it follows that ACf(t). Since for each e T there exists
a sequence {Zm} of points from the set {2 m.i - i=1,2,---, Xm}

’ -

such that d(Z_,%) <1/2™ and 4 (£ (2.),A) <1/2™. Let e-0 be
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given, by uniform continuity of f there is a §>0 such that
for d(x,y}<s d(f(x),f(y))¢%/2. Choose m large enough so

m-2
<

that 1/2<sand 1/2 €/2. We have

A£(8) M) d(£(s), £(8)) + A(£@ ), £_ (8 )
+d (F_(8), A)
< 24+ 172™t 4 1/0m.

It follows that f(&)c A hence f(T)c A: f(T) =A. o
let y # 2 be another point of T and let {Ym; m=1,2, ---1}
be a sequence of points from %%m,i: 1=1,2,-—-km, m=1,2,---}
such that d (ym’y)< 1/2™, There exists N such that for
m>N d(s _, ¥_) >§ >0. Now since éif £, (&) = f(8) andmliz
fﬁ(yﬁ) = f(y¥) and from the fact that fm(ym) and fmGZm) are
eventually in distinct, disjoint polyhedral neighborhoods it
follows that f(y) # £ (8).

Finally we want to show that Ac f(y). This follows
from the fact that d(f («), a)< 1/2™ for each aeA.

Note that f(CO) is an'n—cell which is polyhedral
except at the points of A.

At first glance the above theorem may not so appear

but it 1s an extension theorem which may be stated thus:

Corollary 2.6: Let fl be a homeomorphism mapping

1

the Cantor ternary set on the x,-axis in E" into E". f

1
can be extended to a homeomorphism f of the unit cube ch

in E" into E".
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If fl can be extended to C" it can surely be extended
to any face of Cn, thus:

Corollary 2.7: Each Cantor set in E? is tamely imbedded

in the boundary of a K-cell in E" for O<K<n.

Note that 1if fl could be extended farther to a neighbor-
hood of the unit interval on the Xq- axis then A would be tame.
It is not difficult to see that Theorem 2.5 may be
generalized to plecewise linear manifolds. The analogs of the

Lemmas 2.2, 2.3, and 2.4 are easily established and the proof

of Theorem 2.5 follows as before. Thus we have

Theorem 2.8: Let M" be a plecewise linear n-manifold.

Then each Cantor set in M" lies on the boundary of an n-cell
in M7,

It might have been tempting to assert that each Cantor
set in an n-manifold lies in some open n-cell. However the
arguments of [21] show that this is not the case.

Without the piecewlise linear structure and Lemmas 2.2,
2.3, and 2.4 are meaningless so a proof of Theorem 2.5 for
manifolds without plecewise linear structure would involve a
proof quite different from the one used for pilecewise linear
manifolds. Perhaps the local linear structure could be used.

Corollary 2.9: Let A be the Cantor ternary set on the

real line and let f:A— M" be a homeomorphism of A into a
plecewise linear manifold M?. Then f is homotopically trivial.

Proof: f may be extended to a map F of the unit square

2

D to M™. Since F(BdD2) is homotopically trivial f is.
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A generallization of Corollary 2.2 to continuous maps of
Cantor sets into Peano continua 1s possible. One need only
show that each map of the Cantor set into a Peano continuum

can be extended to the cone over the Cantor set.



CHAPTER III

A TAME CANTOR SET WHICH LIES IN
NO OPEN N-CELL

Characterlzing spaces by certaln propertles of the
set of homeomorphisms of the space onto 1tself 1s not new
in topology. Such properties as homogenelty and near-
homogenelty have long been used to characterize simple
closed curves in the plane. In 1960 Hocking and Doyle
characterized the n-sphere [19] by a property called
invertibility. (A space S 1s invertible if for every open
set UCS there 1s a homeomorphism h of S onto 1tself such
that h(S - U) CU.) They showed that an invertible n-
manifold is an n-sphere and that a weakly invertible open
n-manifold is E". (A space S 1s weakly invertible 1if for
each open set U<S and each compact set C<S there 1s a
homeomorphism h of S onto itself such that h(C) CU). As a
natural generalization of weak invertibility Hocklng and
Doyle undertook the study of what was called weak dimensional
invertibility [21]. (An n-manifold M7 s weakly k-invertible
if every compact subset of M? of dimension k lies in an
open n-cell in M?). By the use of a theorem of Stallings
[26] 1t 1is easily shown that if k > [n/2] then a.k-invertible,

compact, combinatorial n-manifold is an n-sphere. A very

34
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surprising theorem proved in [21] states that a O-lnvertible
3-manifold is S3. Thils theorem may be restated as follows:
Let M3 be a compact 3-manifold such that each compact,
O-dimensional set in M3 lies in an open 3-cell. Then M3.
is a 3-sphere. In [21] it was observed that in all of the
decided cases an (n - 3)-invertlble, compact, combinatorial
n-manifold is an n-sphere, the only undecided case being
n =4,

It 1s natural then to attempt to find an example of

a compact, combinatorial 4-manifold Mu with the property

that every 0O-dimensional, compact subset of Ml4 lies 1in an

open 4-cell in Mu. In [21] Hocking and Doyle indicated

that Mu would have to be simply connected.

With these facts in mind it 1s natural to conjJecture

that each compact, O-dimensional subset of S2 X 82, the

topological product of 2-spheres, lies in an open 4-cell.
It 1s the purpbse of thils chapter to show that this 1s not
the case, 1.e. that S2 X 82 contalins a Cantor set which

lies 1in no open lU-cell.

Definition 3.1: In the space s" x =™ any set of the

form {x} xE™ where xeS" will be called a parameter m-plane.

If P 1s a parameter m-plane in s” x E™ and {ht} 1s an 1sotopy

2

of S x E° onto itself then hl(P) willl be c2lled a curved

i T n m
parameter m-plane. In S x S a parameter m-sphere and a

curved parameter m-sphere are similarly defined.
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Theorem 3.1: Let ACS" x s™ be compact. If A

intersects every curved parameter m-sphere then A lies 1in
no open (n + m) -cell in s™ x s™.

Proof: Suppose A lies in an open (m + n) --cell C,
then given €>0 there is an 1sotopy {ht} of s" ;’Sm onto
itself such that hl(A) has diameter less than e and

h|S" x 8" - ¢ = 1d. Let S" and S™ be metrized in the

n+1

metric which they inherit as unit spheres in E and

E® 1 respectively. Metrize sP x s¢ by the standard

product metric i.e. da((x,y), (X',y')) = ([dn(x,x')]2 +
[a,(y,y") 1512

s™ respectively. Now d({x} x Sm, {x'} x s™) = dm(x,x').

where dn and dm ére the metrics for Sn and

If we choose x' so that dn(x,s') >¢ then {x} x S™ and
{x'} x Sm cannot intersect the same set of diameter less

than €, 1.e. they cannot both intersect hl(A). Suppose

{x} 'x S™ does not intersect hl(A) then hIl ({x} x 8™)
1s a curved parameter m-sphere which does not intersect A.
' A
A similar construction will establish the following:

Theorem 3.2: Let ACS"™ x E™ be compact. If A

intersects every curved parameter m-plone then A lles in
no open (p + g)-cell in s® x E™.
The ébove theorem makes it clear that 1f an example

could be given of a Cantor set which intersects every

n 2
S

curved parameter plane in x E then such a Cantor set

could not lie in an open (n + 7)-cell. Such a Cantor set:

"approximating" 82 in S2 X E2 will be constructed.
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In giving the construction of a Cantor set in E”, which
willl be used in "approximating" a 2-sphere and in verifying
the desired properties of 1t we shall use the following
lemmas, the first is due to Blankinship [9], the second 1is a
generalization of Artin's work in [4].

Lemma 3.3: Let dr’ds’Ds be arbltrary real numbers
with 0<ds§DS. Let S be a compact set in E” contained in the

set defined by x_ = dr and O<dxixsiDs' Let S be the set

r
_Benerated by rotating S about the (n-2) -nlane defined by X, *
dr’ Xy = 0, or more explicitly
S = {x] x € EY and there exists y ¢ S and there exists
® such that Xy =¥y if i1 # r or s and X, = dr + Y sin o,
Xg = Vg cos- 0}
Then

a) for each (y,9) ¢ S x E' (mod 2n), the correspondence

(y,0)—x where Xy = Yy 1 #rors, x

S

r = dp ty 81in0, xg =

Vg cos® 1s a homeomorphism onto é. We can therefore use the
palr (y,0) as a set of coordinates for S.

b) if ﬁ 1s the set 1n é conslsting of all points with
representations (u,0) for which u e U € S,a < © < 8,2 -a< 27
where U # @ then max {diam U, ds p(B - a)} <diam U < .i'nm
U + Ds p(B-a)
where

p(@) =(2sinl/2 © 1f 0 < 6 < =

2 1f m# <0 < 2n
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c) 1f x ¢ S then d, - Dg = x, < d, + Dg.

n+ 1

Lemma 3.4: Let E" be the hyperplane in E defined

by x, , ; = 0. Let E] be the half space in E" defined by

X 20, let S be a set in Ef and let C be a simple closed

n
curve in the complement of S. Let S be the set in E® t1

which we get by rotating S about the hyperplane defined by

X =X

n = 0, 1.e.

+ 1
= {x: dye S and Jo 3 0< ©<27 and x;, =y, for i #

n S

norn+1, x, =y, cosd, x sino}

n+1=yn

Then C is null homotoplc in ok o é iff C is null homotopic
in E? - S.

Proof: If C 1s null homotopic in E? «~ S then certainly

C 1s null homotopic in E? 1 é. Conversely we define the
n+ 1

continuous map f: E ——*Ef by f(x) =y 1f x 1s the image

of y under a rotation of E? about the hyperplane Xo = X, 4 17

0. It 1is clear from the definition that x € é 1ff f(x)e S.

Suppose C 1s null homotopic in ok 1 é, i.e. that C

n+1_é. Let g: D2-—>En+l-§‘>

2

bounds a singular disk in E

be a continuous map such that g|BdD

2 onto C. Then because f 1s the identity on C,fg:

i1s a homeomorphism of

BdD

2——+E§ - S 1s a continuous map such that fg{BdD2 is a

2

D

homeomorphism of BAD” onto C. Thus C bounds a singular
disk in E? - S and hence C 1is null homotopic in ﬁ? - S.
It should be remarked that the properties of linked

sets established in ([24] and [9] will be heavily relied
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upon 1n verifying the properties of the Cantor sets constructed.
In a sense the Cantor set constructed will be a generallzation
of Antolne's construction and indeed Antolne's necklace 1is

the Cantor set used in E3 to approximate the one sphere.

The Cantor set to be constructed here is not, however, the

same as that constructed by Blankinship in [9]. The Cantor
sets of Blankinship could be used to "approximate" a surface

homeomorphic to S* x S3x - - - xS* (n - 2 factors) in ED.

The Construction

1
Let S+ be the unit circle 1in the xl,x2—plane in Eu.

1
Rotate S-- about the 2-dimensional hyperplane defined by X, =
X, = 0 to get a 2-sphere 1n the X15 X5 xu-hyperplane.

Direct calculation using Lemma 3.3 shows that we get the

2 2 2

2-sphere whose equations are Xq + X5 + X, = 1l and x3 = 0.

This willl be the 2-sphere which 1s approximated by the Cantor
set to be constructed.

1 1
Expand S 1into a solid torus 73 homeomorphic to S X D2 where

2 N .
D™ 1s:. the two dimensional disk, T3 lying in the Xx;, X,, X 3=

hyperplane. We shall use only the half of T3 with Xy > 0 and

we shall refer to it as To.
3

In T3 embed four cyclically linked solid tori Tl’ - - -,

Tz (figure 5) so that the diameter of é% and Tg 1s less than

2/3 the dlameter of T3. Rotate T3 about the plane defined

by X, = X = 0 to get Tu which 1s homeomorphic to 52 X D2.

In T% the rotated images of T3 = T§/7T§, 73 = TgfiT and T3

1 2 3
will be Tg, Tg and Ti resoectively where Ti and T; are
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Figure 5.
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homeomorphic to Tu and Tg is homeomorphic to S' x S' x D2.

In T'u construct a generalized Antoine's necklace A’

3
as done by Blankinship [9]. Let g be the linear map of Eu

which shrinks Tu to the size of TlLl and T24 and leaves the

center of the image at the origin. Let f. and f2 be

4

1
Eucllidean motions such that flg maps TLl onto Tlu and f2g
maps Tu onto Tzu. Define gk = gogo...og (k factors) and
_ k -1.k
let fk,i = g fi(g )". Now set
- A
Ay = Ay
| — '
Ay = A1 U T, 18081 U £, ,e(A))
2,7 2,7 2,5
- [ \
Ay = Ay Uy 11 To,1 8 (A U Iy of 187 (AU 4f, ,e" (A
2.
Ufl,2f0,2g (;&]
- ' U 3¢2
Ay =3 U g Yuo1,0 fo,1 T1,5 Toc &8 (A
Define the sequence {Aa: a = 1,2,3, ... } by
A = Tu
o)
Yy b
= t
Al AluTl V) T2
4 b y 4
- ] N
Ry = RyUT, 1&(T ) U Ty Le(T ) Ur, 1e(Ty ) U g, Le(T,
A

f ) )

1 U 2
37830 (4 k=12 1,1 To,5 8 (T

(-]

Finally define A =a4} Aa. A 1s the desired Cantor set. Note
that A is the union of a countable union of linked generalized
necklaces together with 1limit points. These 1limlit polnts

constitute a tame Cantor set 1n the X1 xu—hyperplane.
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Compactness of A follows from compactness of Aa for

each a and from the fact that AQCAOl 1

A is certainly O-dimensional at each point of i¥lAi

oo

and for each point x of A - 1¥1Ai there 1is a nelghborhood

h, ---h (Tu) which has diameter
1, 1, iy
less than (2/3)k times the diameter of Tu and whose boundary

of x of the form h

does not intersect A. It follows that A is O-dimensional at

each of 1ts points; hence A is O-dimensional.

That A 1s perfect 1is not difficult to establish although

it 1s of no interest to us in the arguments to follow.

Let C be the circle in the x X.,-plane which 1s the

1> 73
boundary of the intersection of this plane with T3.
Lemma 3.5: C 1s not null homotopic in Eq - A.
Proof: By the theorems of [17] we see that C is not
null homotopic in §3 - flei3' Lemma 3.4 then assures us
that C is not null homotopic in ELl - iélTiu'

n _ n n n
Let By = T, U T, L}T3

1
n _ n n n
B, = T, L/fo,lg(Bl )L/fo’2 g(B,")
n _ n ) n | 2 n
By T, l/(igl,2fo,ig(T3 ) (Yyoq,0f1,1T0 58 (B )

n=3ori
Set B" = i Ban Note that B is like A except that the

generalized Antolne's necklaces of Blankinshilip have not been

substituted for the U-tubes.



43

The sets Bau, a =1, 2, 3, --- and Bu can be con-
structed in yet another way: by rotatilng Ba3 and B3 about
the xl,x3—plane. Now by Theorem 1 of [17] we see that C is
not null homotopic in g3 - Ba3 for each . It follows that
C 1s not null homotopic in E3 - B3. For if it were then 1t
would bound a singular disk D in £3 - B3. But such a disk
would lie a positive distance from B3 hence it would not
intersect ES - Bq3 for a sufficiently large a. This contra-
dicts the fact that C is nétnull homotopic in §3 - Ba3.

Applying Lemma 3.4 we see that C is not null homotopic in

Eu - Bua
The homotopy relations computed in [9] assure us that
replacing T3u in Bu by the generalized Antoine's necklace

does not change the homotopicnon-triviality of ¢ in E' - BY,

(This can be proven by an argument similar to that used in

Lemma 3.10.)

Define:
_ Y
i =B u
Hy = (T3 1A UGY) of) e)
- L‘ ’4 s ) ! B 2 Ll
Hy = (T3°U (igl’2fo,ig(T3 DAY (U oy ofy Ty 187 (B )

By repeated use of the above remark we can conclude that C

is not null homotopic 1n Eu - Ha, a =1, 2, 3, ---.
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Suppose now that C 1s null homotopic in Eu - A, 1.e. that

C bounds a singular disk D in Eu - A. Let the distance from

D to A be greater than diam~Tu : (2/3)k. Then D cannot

Intersect Hk’ a contradiction. Thils proves the lemma.

Definition 3.2: Let h : T@ — S° x D° be a surjective

homeomorphism n = 3,4, let A c Tu be the Cantor set constructed

above and let oe Int D2. Then h(A) will be said to approximate
s™ x {o} in s" x D2. h(A) also approximates s x {o} 1in
s™ x Int D° = s" x E°.

As an i1mmediate consequence of the construction of
approximating Cantor sets we get the followlng theorem.

Theorem 3.6: 82 X E2 contains a Cantor set whlch lies |

in no open 4-cell.

Proof: Let A approximate 82 x {o} 1in S2 X D2. Then

the one-sphere C which 1s the boundary of {p} x D2 for pe sh
is not null homotopic in (S2 X D2) - A, hence nelther C not
any of 1ts homotopic images bounds a disk in the complement
of A. Thus each parameter disk in S2 X D2 intersects A.
Applying Theorem 3.1 we get the desired result.

Corollary 3.7: S2 X E2 is not O-invertible.

Bing [5] has given an example of a simple closed curve

in S* x E2 which bounds a 2-cell but lies in no 3-cell. We

may now prove the following:

Theorem 3.8: There 1is a simple closed curve in 82 X E2

which bounds a disk but lies in no open 4-cell.
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Proof: Let A be a Cantor set in 82 X E2 approximating
a parameter S2. Using Theorem 2.8 construct a disk D2 whose
boundary C contains A. Since A lies in no 4 cell C 1lies in
no 4-cell.

The following theorem provides a negative answer to
the question which was the genesls of thils paper, namely,

1s 8% x S° O-invertible?

2

Theorem 3.9: In the 4-manifold S° x 82 there exlsts

a Cantor set which lies in no open U-cell.

2 2

Proof: Let Sl and 32 be 2-spheres, let K be an

annular region about the equator of Sg, let D1 and D2 be
the closures of the complementary domains of K and let
Sl and 82 be the boundaries of Dl and D2 respectively.

5 .

Let Al be a Cantor set in S1 X D1 which approximates

812 X {pl}, Py € Int Dl’ and let A2 be a Cantor set in

812 X D2 which approximates 812 b {p2} ; Pyo€ Int D2.

Finally 1let A C‘Sl2 X 822 be gliven by A = Al U A2. We shall
show that A lies in no open l-cell in 812 X 822 As a first
step in establishing thls we need the followlng lemmas.

Lemma 3.10: Let f:D2———+ M be a continuous map of a

disk D2 into a space M and let C be a simple closed curve in
D2 bounding the disk B i1n D2. If £(C) 4s null homotopic in
subspace N of M then there is a map g:D2 — M such that
g(x) = £(x) for x ¢ D° - Int B and g(B) < N.

Proof: Assume that f|C:C -+ N is null homotopic. By

a well known result of Borsuk (see for example [23]) f|C can
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be extended to a map f' on pC, the joiln of C with a point,
so that f'(pC)Cc N. Since such a join is homeomorphic to B

we define g:Dz———+ M to be

g(x) = f(x) for x (D2 - Int B)
f'(x) for x B

Since the two definitions agree on C, g is continuous.

Lemma 3.11: The simple closed curve C = {q} x Sl’

qesd . 2 x 892) - A,

1 is not null homotopic in (Sl

Proof: If C were null homotopilc in (Sl2 X 822) - A

then C »suld bound a singular disk D' in 812 X 822 - A,

Give 812 X 822 a polyhedral structure so that Sl2 X Dl’
2

S1 x D, and 812 x K are polyhedral. Let d(A,Dl) >f and

using the analog of Lemma 2.4 for manifolds let N1 and N2

be polyhedral neighborhoods of Al and A2 respectively such

that d(x,Al) <Lz for each xeN, and d(x,A2) <t for each xeN

1 2"

Then S 2 x D, - Int N, and [(812 X D2) - Int (N2)](J(Slzx K)

1 1 1
are polyhedra in which C fails to be null homotoplic. An

application of the simplicial approximation theorem produces

2 -
1 X Sé - Int (Nl(J N2) whose

boundary 1s C, i1.e. we get a simpliclal mapping s of a poly-

hedral disk D into Sl2 X 822 - Int (Nlcj N2) such that

a singular polyhedral disk in S

s(Bd D) = C. Let C C C, be polyhedral simple

12 Coo e, Cp
closed curves in D which bound disks B
1

1» B2, e e, Bk in D

(s(D) N (sl2 x D,)) and st

respectively such that C, C Bds "~
k k
2 .
U » =
(s(D) N Int (S1 X D2)) Ci=lBl' If for each 1 1, 2, . .

k, s (Ci) is homotopically trivial in 812 x K then k
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applications of Lemma 3.9 produces a singular disk in

2 2
(Sl x DU S,

known properties of A. Assume that for some 1, say 1 = J,

X K)- Nl whose boundary 1s C, contradicting

s(CJ) 1s not null homotoplec in S 2 x K. Then s(C,) 1s not

1 J
2
null homotopic in Sl X D2 - Int N2. Let CJ,l’ Cj,z’ o e ey

CJ 1 be polyhedral simple closed curves in BJ which bound
y
disks Bj,l’ BJ’2, o e ey Bq,l in BJ respectively such that

c _c:Bd[Sfl(s(é )f\(Sz,x D,))] and s™1(s(B,) Int
Jsi 2 J . 1 J .
(s,° x D,))e Y, By ;. If foreachi=12...,1,s(

12 X K then we have @& contradiction.

2
1

This sets up an inflnite regres-

is null homotopic in S

If some C 1s not null homotople in S x D we continue as

J,1

before using C and B

J,1 J,1°
sion, which 1is impossible due to the polyhedral structure of

D. Hence we have a contradiction. Thils completes the proof
of the lemma.

12 X 822 were contained 1n an open

h-cell. It is an easy exercise to show that A would lie

in a collared U4-cell Cu in Sl2 X 822.

12 x K - CLl which 1s not null homotoplc in 812 x K

then we would have a contradiction. For we would have a curve

C' in S C X 822

1
- A: but since C' would lle in the complement of

Now suppose AC.S

If we could find a

curve C!' in S

- A which is homotopilc to C or a multlple of C

2 2
in Sl X 82

C)4 C' would be homotopically trivial in the complement of Cu.

Hence C' would be homotopically trivial in the complement of

A. We now proceed to show that (Sl2‘x K) - Cu does, 1ndeed,

contaln a closed curve which 1s not homotopically trivial in
2

Sl x K.
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Let 82 be é polyhedral 2-sphere, let f be a homeo-

2 2

!
morphism of 82 onto a curved parameter sphere S in S X S2

2

1

- c" and let s : s —+(sl2 X 522)- ¢! be a simplicial map
which 1s homotopic to f.

Lemma 3.12: The l-skeleton of s(Sz)n(Sl2 X Kl) con-

tains a closed curve which is not null homotopic in 812 X S1°

Proof: Suppose to the contrary that each closed curve

in the l-skeleton of s(S2)r)(S2 x K)) is null homotopic in

2
Sl x K. Let Ul

Dl)) and let Cl be a simple closed curve in BdUl such that Ul

2
lies entirely in one component B11 of S° - Cl' Let 812 be
2

the other component of S™ - C.,. Since s(Cl) 1s homotopilcally

1
trivial in 812 X K there exist simplicial maps s and s of
2 2

11 12
2 2 ~
S into 5,° x 8,° such that s,,(Bj;) @8, x K, s;;[(B,UcC)) =

= 2 =
s|(5120 C, )= SI(Blé’CI)’ 515(B;,)€8,° x K and 51,(ByUC )=s [ (B UC,

Let n2(Sl2 X 822) be the 2-dimensional homotopy group

2 2 Ll 2
of Sl X 82 . Let t:ST— S1

phism. Then 1r2(Sl2 X 822) is the abelian group generated by

- 2
be a component of s 1 (s(S2) N (Int (Sl X

x {p} , p5822, be a homeomor-

[s] and [t], where [ ] denotes homotopy class. Since [sllj *
[512] = [s] (* 1s homotopy Juxtaposition) 1t follows that
either [511] or [312] contains a non-zero multiple of [s],
i.e. either [sll] or [312] can be written as p[t] * q[s]
where g# 0, p and q iIntegers.

If [sll] contains a non-zero multiple of [s] we continue
"1 (s,,(57)

2 x K. If [s

as above with s

N (Int 312

11 and another component U2 of S11

X Dl)).. Notice that sll(Bll) c S

1 ll:l
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contains no non-zero multiple of [s] we proceed as follows:

-1 2 2
let U, be a component of 515 (512(8 ) Int (Sl X D2)),

2
let 02 be a simple closed curve in Bd U2 such that U2 lies
entirely in one component B of S2 - 02, and let B be

21 22
the other component of S2 - C2. We should note that Czc

= — ) _
B,, and that s,,(B;,) ¢ S;° x K. Since s,,(C,) = s(C,)¢

2 2
Sl x K, 512(02) 1s homotoplcally trivial in Sl

Hence there exist simplicial maps S5q and S55 of S2 into

2 2 2 _
S,” X 5,7 such that s,,(B5,;) & S;” x K, s5; (B,, U C,) =

* =
sl2|(B22 L)Cz). Thus we have [521] [522] [812]' Hence

x K.

either [321] or [522] is a non-zero multiple of [512]. Con-

tinuing these arguments in a finite number of such steps we

. Q
] ’1S —_— Sl X © o which

is a non-zero multiple of [s] and Sy i(82) is a subset of
3

2 2
elther S, x (Dl(J K) or S,

have a contradiction because either of these spaces can be

rnust arrive at a simplicial map s
X (S2 U K). In either case we

continuously deformed onto 812

hence any map of S2 into one of these subspaces 1s homotoplc

Xx {p} , p a point of Dl or Dz’

to a multiple of [t] only.

This completes the proof of Theorem 3.9.

We should observe that the Cantor set A defined 1in the
proof of the previous theorem may be considered to lle in cne

of the half spaces S x D,. To verify this we need only note

2
1 1
that there 1s a parameter 2-sphere in 812 X 822 which does not

intersect A, so A 1s a subset of Sl2 X (822 - p) = Sl2 X E2.

It is easlly seen that there 1s a homeomorphism mapping A into

2 x D..

Sp 1
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Theorem 3.14: Let A be a Compact set in Int(Sk X Dm),
k

let S be a parameter k-sphere in S x D™ and let h be a homeo-

K ¥ D™ into an n-manifold M®, n = k+m. If h(S)

morphism of S
lies in an open n-cell in M? then h(A) lies in an open n-cell
in M7,

Proof: Let c” be an open n-cell containing S. Then

h~t (c™) 1is a neighborhood of S in s¥ x D™. There exists :

0 such that if d(x, S) <z then x ¢ h-l(Cn). Let p:Sk X

D™ —— D™ be the natural projection and let p(S) = x ¢ p™
Let B be an m-cell in Int D™ such that p(A) ¢ B. There 1s a
homeomorphism 8 of D™ onto itself such that gl(B) 1s in an ¢
-neighborhood of x and glle D™ = 1d. Let (x,y) be the co-

ordinates of a point of Sk x D™. Define the homeomorphism

k x D" —— Sk x D™ by g((x,y)) = (x,gl(y)). We can easliy

g:S
-1l,.n k m

see that g(A) € h""(C") and g|Bd(S" x D) = id. Finally we

define the surjective homeomorphilsm £t — M° by

£(t) = {h g h™¥(t) for t ¢ h (35 x D™)

t otherwise
f maps h(A) into c: so h-l(Cn) is an n-cell containing A.

Corollary 3.15: Let A be a Cantor set in sX x D™,

let M" be an n-manifold with or without boundary, n = kt+m,

k x D™ —— M"? be a homeomorphism. If A ¢ Int

and let h:S

(s¥ x ™) is a Cantor set and if h(S¥ x {p} ), p ¢ D™, 1lies

in an open n-cell in M? then A lies in an open n-cell,
Although 1t appears likely the converse of the above

corollary has not yet been established for S2 X 82. A proof
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of thils theorem would seem to depend on establishing the

analogs of Lemmas 3.11 and 3.12 for non-trivial embeddings

of s2 x D°.
Theorem 3.9 could easily be generalized to Sk X 82 if
one could construct a Cantor set in Sk X D2 wlth properties
2 2

analogous to those of the Cantor set constructed in S™ x D™.
The proofs of the remaining lemmas do not depend on the
dimension of Sk and could easlly be generalized. I strongly

suspect that the Cantor set of Blankinship could be used for

this purpose in the following way: let Sll X S2l X

X Skl be the Carteslian product of k l-spheres where each 1-

sphere 1s parameterized by the real numbers modulo 2r , let

1 1 1
] .
f' :S X 52 X « « « X Sk

1
f! (Ol, Ohs + v ) @k) = X ¢ Sk where x 1s the point on S

with polar coordinates ol, 02, AN Ok and let f:Sll X

821 X « « . X Skl X D2 — Sk X D2 be the natural extension

of £f'. It is not difficult to see that 1f A 1s the Canter

1 1 1 2
1 X S2 X . « « X Sk Xx D° then f(A)
is a Cantor set in Sk X D2. The generalization cf Theorem

———+Sk be the map defined by
k

set of Blankinship in S

3.9 then depends on proving that f(A) has the desired proper-
ties in Sk X D2.

The foregoing results lead quite naturally to another
conjecture. If one can approxlimate a k-sphere 1n a campact,
plecewise linear n-manifold Mn, n 2 k + 2, then why not ap-

proximate the k-skeleton of M" by linking many Cantor sets

together? 'If it could be shown that the k-skeleton lles 1n an
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open n-cell 1ff the Cantor set does then,by a theorem of
Stallings [26],Mn is the n-sphere, n > 2. Thus we are led
to the following:

Conjecture: The only compact, plecewlse linear n-

manifold, n > 2, which 1s 0O-invertible 1s the n-sphere.

A proof of this conjecture would lead to a generallz-
ation of the characterization by Bing [6] of the 3-sphere,
namely: If M? is a compact plecewlse linear n-manifold such
that each simple closed curve in M? 1ies in an open n-cell
then M" is ah n-sphere. Bing's result was originally proposed
as a weakened form of the Poincare conjecture for 3-manifolds.
If one looks at the above conjecture from this point of view

it 1s indeed surprising!
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