EMBEDDNG CANTOR SETS IN MANIFOLDS

Thasis for the Degree of Ph. D. MICHICAN STATE UNIVERSITY Richard Paul Osborne 1965

This is to certify that the thesis entitled
 "Embedding Cantor Sets in Manifolds"

presented by

Richard Paul Cskorne
has been accepted towards fulfillment of the requirements for Ph.D._degree in Mathematics

$$
\frac{\text { Dr. John G. Hocking }}{\text { Major professor }}
$$

Date January 22, 1965

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

ABSTRACT

EMBEDDING CANTOR SETS IN MANIFOLDS
by Richard Paul Osborne

This thesis is a study of the positional properties of Cantor sets in manifolds. Chapter I is essentially a generalization to E^{n} of Bing's work on tame Cantor sets in E^{3}. Characterizations of tame Cantor sets are given in terms of neighborhoods whose boundaries do not intersect the Cantor sets. It is also proved that the countable union of tame Cantor sets is tame.

The principal result of Chapter II is that each Cantor set in E^{n} lies on the boundary of an n-cell in E^{n}.

In Chapter III a very wild Cantor set is constructed in E^{4}. This Cantor set is then embedded in $S^{2} x S^{2}$ and it is shown that it lies in no open 4 -cell in $S^{2} \mathrm{x}^{2} S^{2}$. This shows that there is a simple closed curve in $S^{2} x S^{2}$ which bounds a disk but which lies in no open 4-cell.

EMBEDDING CANTOR SETS IN MANIFOLDS

By
Richard Paul Osborne

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the $r \in q u i r e m e n t s$
for the degree of'

DOCTOR OF FHILOSCPHY
Department of Mathematics
1965

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Professor J. G. Hocking for suggesting the problem of Chapter III, for his guidance and sympathetic ear, and for the use of his library during the research.

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ii
Chapter
I. TAME CANTOR SETS IN E^{n} 1
Introduction 1
Examples of Tame Cantor Sets. 3
Characterization of Tame Cantor Sets 7
Union of Tame Cantor Sets. 12
Local Tameness 15
II. AN EXTENSION THEOREM FCR HOMEOMORPAISMS O.V CANTOR SETS 23
III. A TAME CANTOR SET WHICH LIES IN NO OPEN
N -CELL 34
Introduction 34
The Construction of A 39
Homotopic non-triviality of $\dot{E}^{4}-A$ 42
A Cantor set in $S^{2} \times E^{2}$ which lies in no open 4-cell 44
A Cantor Set in $\dot{S}^{2} \dot{x} S^{2}$ which lies in no open 4-cell 45
Concluding Remarks and Conjectures. 50
BIBLIOGRAFHY 53

CHAPTER I

TAME CANTOR SETS IN E ${ }^{n}$

The surprising properties of the Cantor ternary set and its homemorphic images have provided the topologist with some of his most provocative examples. For instance, the "necklace" of Antoine formed the basis of the first counterexample to the Schoenfliess conjecture in dimension three. With the current interest in the topology of $n-$ dimensional Euclidean space E^{n}, the positional properties of Cantor sets have assumed new importance. Many recent results concerning tame and wild imbeddings in $E^{n!}$ depend upon such positional properties and it is the aim of this thesis to extend the knowledge of these Cantor sets and to apply this new knowledge to problems concerning E^{n}.

As far as possible throughout this thesis we will use C to represent n-cells, A to represent Cantor sets or sets used in the construction of Cantor sets, and superscripts to denote dimension.

Definition 1.l: A set $A \subset E^{n}$ will be called a Cantor set if it is a homeomorphic image of the Cantor ternary set on $[0,1]$.

The following well known theorem [23] is the principal tool used in constructing Cantor sets in E^{n} and will be used freely throughout this thesis without specific reference.

Theorem: Every 0-dimensional, compact, perfect, metric space is homeomorphic to the Cantor ternary set.

Definition 1.2: An arc $\alpha<E^{n}$ is tame if there is homeomorphism of E^{n} onto itself which maps α onto the unit interval on the positive X_{1} axis in E^{n}.

Definition 1. 3: (Bing) A Cantor set $A C E^{n}$ will be called tame if A lies on a tame arc in E^{n}.

Cantor sets in E^{n} may have very strange properties. The following examples are all tame Cantor sets in E^{n}. In these examples we rely upon graphic illustrations of the first few steps in the constructions instead of attempting to write out the analytical expressions for the sets involved. In every construction of interest of a Cantor set in E^{n} the set is constructed as the intersection of a sequence of compact neighborhoods.

Example 1: A Cantor set in the plane (E^{2}) whose projection onto the x-axis covers the interval [0, 1$]$.

Step 1

Step 3

With only slight modifications we can get a Cantor set in the plane unit square which intereects every straight line passing through the top and bottom of the square. This example is essentialiy the one given by Bing in [7].

Step 1

Step 3

Since the union of two Cantor sets is a Cantor set we can easily obtain from the above example a Cantor set in the plane which intersects every straight line cutting two opposite faces of the unit square.

This example can be generalized to the unit cube C^{n} in E^{n}. Let $C_{1}^{\prime}, C_{2}^{\prime}$, and C_{3}^{\prime} be the three largest n-cubes in the unit cube C^{n} whose projections in the x_{n}, x_{1} plane are the same as those in step 2 of the previous example. In each C_{i}^{\prime} we embed 3 n-cubes $C_{i, 1}, C_{i, 2}$ and $C_{i, 3}^{i}$ in a fashion similar to the embedding of the $C_{i}^{\prime \prime} s$ in C^{n} except that the roles of the X_{1} and X_{2} axes are interchanged. After ($n-1$) such steps we get $3^{n-1} n$-cubes $C_{1}, 1=1,2, \ldots$, 3^{n-1}, in C^{n} whose maximum dimension in the direction of any axis is $2 / 3$ and such that any straight line segment passing thru the faces $X_{n}=0$ and $X_{n}=1$ intersects the "top" and "bottom" of one of the 3^{n-1} embedded cubes. In each of these 3^{n-1} cubes $C_{1}, C_{2},---, C_{3} n-1$ we embed 3^{n-1} cubes in the same fashion as before to get $3^{2(n-1)}$ cubes whose maximum dimension along any of the axes is $(2 / 3)^{2}$. Continuing in this way we get a Cantor set A in C^{n} such that every straight line intersecting the faces $X_{n}=0$ and $X_{n}=1$ intersects A. The union of n such sets (one for each pair of faces) gives us a Cantor set in E^{n} which intersects every straight line meeting two opposite faces of the unit cube. As a matter of fact this example may be modified by choosing the starting cubes C_{1}, C_{2}, and C_{3} properly to give a Cantor set which intersects every straight line intersecting the interior of unit cube.

Although the following theorem appears to be trivial and is well known I have not been able to find a proof given in the literature. The proof is worth presenting because the technique involved here of constructing a homeomorphism as a limit of a sequence of homeomorphisms is a powerful tool used throughout this thesis.

Theorem 1.1: If a Cantor set $A C E^{n}$ is tame then there exists a homeomorphism h of E^{n} onto itself mapping A onto the Cantor ternary set in the $[0,1]$ on the X_{1} axis.

Proof: If A is tame than A lies on a tame arc α and since α is tame there exists a homeomorphism g of E^{n} onto itself maping α onto the interval $[0,1]$ on the X_{1}-axis. We have, then, a set homeomorphic with the Cantor ternary set imbedded in $[0,1]$. We may assume without loss of generality that the extreme points of $g(A)$ are 0 and l. Since every homeomorphism of [0.1] onto itself can be extended trivially to E^{n} we need only show that there is a homeomorphism of $[0,1]$ onto itself taking $g(A)$ onto the Cantor ternary set. Choose a countable dense set $\left\{a_{m}\right\}$ from $[0,1]-g(A)$ with the same order relation as the corresponding diadic rationals in (0,1), i.e., if $m=b_{1}+b_{2} \cdot 2+\ldots+b_{k} 2^{k-1}$ then a_{m} corresponds to the diadic rational $b_{1} \cdot 2^{-1}+b_{2}, 2^{-2}+$ $\cdots+b_{k} 2^{-k}$, where $b_{i}=0$ or 1 . Let I_{m} be the longest open interval in $[0,1]-g(A)$ containing a_{m}.

We define h_{1} to be an order-preserving homeomorphism of [0, 1] onto itself mapping I_{1} onto (1/3, 2/3). Suppose m + $1=b .+b_{2} \cdot 2+\ldots+b_{k} 2^{k-1}$. We choose h_{m+1} to be an order preserving homeomorphism of $[0,1]$ onto itself mapping I_{m+1} onto the interval
$h_{m}^{o h_{m-1}}{ }^{\circ} \cdots{ }^{o_{h}}{ }_{1}\left(\left(\frac{2 b_{1}}{3^{2}}+\frac{2 b_{2}}{3}+\ldots+\frac{2 b_{k}}{3^{k}}, \frac{2 b_{1}}{3}+\ldots+\frac{2 b_{k}}{3^{k}}+\frac{2}{3^{k+1}}\right)\right)$.
and being the identity outside of
$h_{m}{ }_{o_{m-1}}{ }^{0} \ldots{ }^{o_{h}}\left(\left(\frac{2 b_{1}}{3}+\frac{2 b_{2}}{3^{2}}+\ldots+\frac{2 b_{k}}{3^{k}}, \frac{2 b_{1}}{3}+\ldots+\frac{2 b_{k}+1}{3^{k}}\right)\right)$.
We define $h(x)=\lim _{m} h_{m}{ }^{o h} h_{m-1} O \ldots h_{1}(x)$. h is l-l by construction and since h is the uniform limit of continuous functions h is continuous.

Corollary 1.3: If A_{1} and A_{2} are any two tame Cantor sets in E^{n} then there exists a homeomorphism of E^{n} onto itself mapping A_{1} onto A_{2}.

We now wish to prove the following theorem which characterizes tame Cantor sets in E^{n}.

Theorem 1.3: A Cantor set $A C E^{n}$ is tame iff for each $\varepsilon>0$ there exists a finite number of disjoint, tame n-cells $\left\{C_{\varepsilon, i}\right\}$ covering A such that diam $C_{\varepsilon, i}<\varepsilon$ and $B d C_{\varepsilon, i} \cap_{A}=\varnothing$

To prove this theorem we shall need the following lemmas.

Lemma 1.4: C be an n-cell in the interior of an n-cell C^{n} and let $p \varepsilon$ Int C^{n} and U be an open neighborhood of p in Int C^{n}. There exists a homeomorphism h of C^{n} onto itself such that $h \mid B d C^{n}=1 d, h(C) \subset U$ and $p \varepsilon$ Int $h(C)$.

Proof: Think of C^{n} as the set of points of E^{n} such that $\left\|_{x}\right\| \leq 1$. If q and r are any two points of int C^{n} there exists a homemonphism g of C^{n} onto itself which is the identity on $B d C^{n}$ and $g(q)=r$. Now let q be the origin and let $g(p)=q$. We pick a point $r \varepsilon$ Int C and let $g^{\prime}(r)=$ q. We may now shrink $\mathrm{g}^{\prime}(\mathrm{C})$ by a homemorphism $\mathrm{g}^{\prime \prime}$ of C^{n} onto itself into $g(U)$. Now $\mathrm{g}^{-1} \mathrm{~g} \mathrm{~g}^{\prime}$ ' is the desired homeomorphism.

Lemma 1.5: Let C^{n} be a tame n-cell in E^{n} and let $p_{1}, p_{2}, \ldots, p_{k}$ and $q_{1}, q_{2}, \ldots, q_{k}$ be sets of distinct points in Int C^{n}. There exist tame, disjoint n-cells C_{1}, C_{2}, \ldots, c_{k} in Int C^{n} such that $\left\{p_{1}\right\} \cup\left\{q_{1}\right\} \subset$ Int $C_{i} \quad i=1,2, \ldots$, K.

Proof: For each $1=1,2, \ldots, K$ we pass disjoint polyhedral $\operatorname{arcs} \alpha_{i}$ from p_{i} to q_{i} and beyond so that p_{i} and q_{i} are not endpoints of α_{i}. Then we "swell up" each α_{i} into a tame n-cell. (This procedure of "swelling up" a polyhedral arc into an n-cell is a standard device in the literature).

Lemma 1.6: Let $C_{1}, C_{2}, \ldots, C_{k}$ be disjoint, tame n-cells in the interior of an n-cell C^{n} and let p_{1}, p_{2}, \ldots, p_{k} be any k points in (Int $C^{n}-\underset{i=1}{(k)} C_{i}$). Then there exist disjoint tame n-cells $C_{i}^{\prime}, \ldots, C_{k}^{\prime}$ in Int C^{n} such $C_{i} \cup\left\{p_{i}\right\}$
\subset Int C_{i}^{\prime} for each $1=1,2, \ldots, k$.
Proof: Choose k points $q_{1}, q_{2}, \ldots, q_{k}$ of C^{n} so that $q_{1} \varepsilon$ Int C_{1}. By Lemma 1.2 there exist disjoint n-cells $C_{1}^{\prime \prime}, C_{2}^{\prime \prime}, \ldots, q_{k}^{\prime \prime}$ such that $\left\{p_{1}\right\} \cup\left\{q_{1}\right\} \subset$ Int $C_{1}^{\prime \prime}$. Since C_{i} is tame it is collared [II] on the outside by a collar A_{1}. Without loss of generality we may suppose $\left(C_{i} \cup A_{i}\right) \cap\left(C_{j} \cup A_{j}\right)$ $=\varnothing$ for $i \neq j$. Now $C_{i} \cup A_{i}$ is an n-cell with C_{i} being a tame n-cell in Int ($C_{i} \cup A_{i}$). By Lemma 1.1 we may shrink C_{i} by a homeomorphism h_{i} so that $h_{i}\left(C_{i}\right) \subset$ Int $C_{i}^{\prime \prime}$ and $h_{1} \mid \operatorname{Bd}\left(C_{i} \cup A_{i}\right)=1 d$. Now $h_{1}^{-l}\left(C_{1}^{\prime \prime}\right)=C_{i}$ is the desired n-cell for each $i=1,2, \ldots, k$.

Lemma 1.7: Let $C_{1}, C_{2}, \ldots, C_{k}$ be tame, disjoint ncells in Int C^{n}, let $p_{1}, p_{2}, \ldots, p_{k}$ be points of $C^{n}-{ }_{i}=1 C_{i}$ and let $U_{1}, U_{2}, \ldots, U_{k}$ be disjoint neighborhoods of p_{1}, p_{2}, \ldots, p_{k} respectively in $C^{n}-\underbrace{k}_{i=1} C_{i}$. There exists a homeomorphism h of C^{n} onto itself such that $h \mid B d C^{n}=1$ and $p_{i} \varepsilon h\left(C_{i}\right) \subset U_{1}$ for $1=1,2, \ldots, k$.

Proof: By Lemma 1.5 there exist disjoint tame n-cells $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$ such that $\left\{p_{1}\right\} \cup C_{i} \subset$ Int C_{i}^{1}. By Lemma 1. . 4 there exists a homeomorphism g of C^{n} onto itself such that $p_{i}^{\varepsilon} g\left(C_{i}\right) \subset U_{i} \cap C_{i} \subset U_{i}$ and $g \mid\left(C^{n}-\underset{i=1}{(K)} C_{i}^{\prime}\right)=i d$.

Proof of the main theorem: For each $k=1,2,3 \ldots$ we choose a covering $\left\{c_{k, i}: i=1, \ldots N_{k}\right\}$ of A with the following properties: 1) $C_{k, i} \cap C_{k, j}=\varnothing$ for $\left.i \neq j, 2\right) C_{k, i}$ is a tame n-cell with bicollared boundary for each k and i,3) diam $C_{k, i}<1 / 2^{k}$ for each $1=1,2, \ldots, N_{k}$ and 4) $C_{k+1, ~}$, C Int $C_{k, j}$ for some $j=1,2, \ldots N_{k}$. The choice of such a sequence of coverings of A may be done inductively. For $k=1$ choose a covering satisfying l) thru 4) by using the hypothesis of the theorem. Suppose $\left\{C_{k, i}: i=1, \ldots N_{k}\right\}$ has been chosen. Since $\underset{i \neq 1}{\left|N_{k}\right|} B d \mid\left(C_{k, i}\right) \cap A=\varnothing$ there exists $N>0$ such that $d\left(\left(\mathbb{N}_{i=1} B d C_{k, i}\right), A\right)>N$. Now we cover A by a set of disjoint, tame n-cells of diameter less than $\min \left(1 / 2^{k+l}, N\right)$. This then gives us the $\mathrm{desin}_{\mathrm{N}}$ red set $\left\{\mathrm{C}_{k+1, i}: 1=1, \ldots, N_{k+1}\right\}$ It is clear that $\bigcap_{k=1}^{\infty}\left(\bigcup_{i=1}^{N_{k}} C_{k, i}\right)=A$.

Next we define a set of homeomorphisms $\left\{h_{k}\right\}$ of E^{n} onto itself. Let C_{1} be a tame n-cell in E^{n} with ${\underset{i=1}{\left(N_{1}\right)} C_{1, i} C \text { Int } C_{1}, ~}_{1}$ and let α be a tame arc in C_{I} which intersects the interior of each $C_{1, i}$. Define $h_{1}=i d$. Assume now that h_{k} has been defined so that i) α contains points in the interior of $h_{k}{ }^{0} h_{k-1}{ }^{0} \ldots h_{1}\left(C_{k, i}\right)$ for each $\left.i=1,2, \ldots, N_{k}, i 1\right)$ $\left.h_{k} \mid E^{n}-\left(U C_{k-1, i}\right)=i d, i i i\right) h_{k}$ moves no point farther than $1 / 2^{k-l}$ and iv) diam $h_{k}^{0} h_{k-1}{ }^{0} \ldots{ }^{0} h_{l}\left(C_{k, i}\right)<1 / 2^{k}$. Now since α intersects $B d C_{k, i}$ for each $i=1,2, \ldots, N_{k}$ it follows
that in each $C_{k, i}$ there are points of α in $C_{k, i}$ not in
 $\left.N_{k+1}\right\}$ using another parameter j so that $C_{k+1, j, i} \subset C_{k, j}$ for $i=1,2, \ldots, M_{j}$ Let $\left\{p_{k+1, j, i}: 1=1, \ldots, M_{j}\right\}$ be points of $\left(\alpha \cap \operatorname{Int} c_{k, j-} \sum_{i=1}^{M j} C_{k+1, j, i}\right.$ and $\operatorname{let}\left\{U_{k+1, j, i}: i=1\right.$, $\left.2, \ldots, M_{j}\right\}$ be a set of disjoint neighborhoods of the points $\left\{p_{k+1, j, i}: i-1,2, \ldots, M_{j}\right\} \operatorname{ly} \operatorname{lng} \operatorname{in} C_{k, j}-\underbrace{M, j}_{i=1} C_{k+1, j, i}$. By Lemma 1.6 there exists a homeomorphism g_{j} of $C_{k, j}$ with the desired properties 1$)---i v)$ for each f. We define $h_{k+1}=$ $\mathrm{g}_{1}{ }^{0} \mathrm{~g}_{2}{ }^{0} \ldots{ }^{0} \mathrm{~g}_{\mathrm{Nk}}$.

Finally we define h by $h(x)=\lim _{k \rightarrow \infty} h_{k} h_{k-1}^{u} \ldots_{k} j_{1}^{0} h_{1}(x)$. If $X \notin A$ then there exists N such that for $k>N x \notin \underbrace{N}_{i=1} C_{k, i}^{1}$ hence h_{k} leaves x fixed. We see that h is a homomorphism on $E^{n}-A$. Let $x, y \in A$ and $d(x, y)>1 / 2^{k}$ then if $x \varepsilon C_{k, i}$ $y \notin C_{k, i}$ it follows that $h(x) \neq h(y)$. We must yet show that h is continuous but this follows from the fact that h is the uniform limit of a sequence of continuous functions. Clearly then, h is a homeomorphism of E^{n} onto itself such that $h(x) \varepsilon \alpha$ for each $x \in A$. This follows from the fact that

$$
d\left(h_{k}^{0} h_{k-1}^{0} \ldots{ }^{0} h_{1}(x), \alpha\right)<1 / 2^{k}
$$

Note: In the hypothesis of the previous theorem we specified that the coverings of A be composed of tame n-cells. This was not necessary, for, given any n-cell C^{n}, C^{n} can be approximated from the inside by a tame n-cell. To see this
let B_{r}^{n} denote the ball in E^{n} of radius r, let g be a homeomorphism of B_{l}^{n} into E^{n} and let A be a compact subset of Int $\left(g\left(B_{1}^{n}\right)\right)$. There is a $\delta>0$ such that $\operatorname{Int}\left(g\left(B_{1-\delta}^{n}\right)\right)$ contains $A . g\left(B_{l-\delta}^{n}\right)$) is a bicollared $(n-1)$ sphere in E^{n} hence by the generalized Schoenflies theorem [10] $g\left(B_{l-\delta}^{n}\right)$ is a tame n-cell containing A in its interior. Theorem 1.8: The union of two disjoint, tame Cantor sets in E^{n} is tame.

Proof: Let A_{1} and A_{2} be disjoint tame Cantor sets and suppose that $d\left(A_{1}, A_{2}\right)=\delta$. Let $\varepsilon>0$ be given. Cover A_{1} by a set of disjoint open n-cells of diameter less than $\min (\delta / 2, \varepsilon)$. Cover A_{2} similarly. We then have an covering of $A_{1} \cup A_{2}$ by disjoint n-cells. An application of Theorem 1.7 completes the proof.

Theorem 1.9: Let A be a Cantor set in E^{n}. A is tame iff A lies on a tame $(n-1)$ - sphere in E^{n}.

Proof: If A is tame then A lies on a tame arc α. Let h be a homeomorphism of E^{n} onto itself mapping α onto the unit interval on the x_{1}-axis. The boundary S of the unit cube in E^{n} contains $h(\alpha)$ hence $h^{-1}(S)$ is a tame $(n-1)$ sphere containing α.

Suppose now that A lies on a tame $(n-l)$-sphere S. Let $C C S$ be an $(n-l)-c e l l$ such that $A C I n t C$. Since S is tame C is tame so there is a homeomorphism h of E^{n} onto itself
such that $h(C)$ is a subset of the hyperplane $x_{n}=0$. Let α be an arc in $h(C)$ containing A. Klee has given a homeomorphism of E^{n} onto itself mapping such an arc into the x_{n}-axis. Evidently then α is tame, hence A is tame.

The next theorem establishes that the union of two tame Cantor sets is tame. A generalization of the process used in the proof of this theorem will be used later to show that if a Cantor set is the countable union of tame Cantor sets it is tame.

The following lemmas are needed in the proof of the result mentioned above:

Lemma 1.10: Let $h^{\prime}: I^{\prime} \rightarrow I^{\prime}$ be a homeomorphism of I^{\prime} leaving the endpoints of I^{\prime} fixed, let I^{\prime} be the unit interval on the X_{1}-axis in E^{n} and let C^{n} be the $n-c e l l$ in ${ }^{\text {. }}$ E^{n} defined by

$$
\begin{aligned}
& C^{n}=\left\{x: x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } x_{2}^{2}+x_{3}^{2}\right. \\
& \left.+\ldots+x_{n}^{2} \leq l \text { and } 0 \leq x_{1} \leq l\right\} . \text { Then } n ' \text { can be }
\end{aligned}
$$

extended to a homeomorphism h of E^{n} which is the identity outside of C^{n}.

Proof: Let $S=\left\{x: x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{2}^{2}+x_{3}^{2}+\ldots\right.$, $+x_{n}^{2}=1$ and $\left.x_{1}=1 / 2\right\}$. For each point $x \in S$ and each $r_{\varepsilon} I^{\prime}$ let $\ell_{x, r}$ be the line segment joining x and r. Now define $h(y)=\left\{\begin{array}{l}y \text { if } y \not d \ell \quad x, r \text { for same } x \in S \text { and } r \varepsilon I^{\prime} \\ y^{\prime} \text { if } y \varepsilon \ell{ }_{x, r} \text { where } y^{\prime} \varepsilon \ell_{x, h(r)} \text { and } d\left(y^{\prime}, I^{\prime}\right)=d\left(y, I^{\prime}\right) .\end{array}\right.$
h is the desired homeomorphism.

Lemma 1.11: Let C^{n} be an n-cell in $E^{n}, n \neq 4$. C^{n} can be approximated by a polyhedral n-cell, i.e., given $\varepsilon>0$ there exists a polyhedral n-cell, P^{n}, such that $d\left(x, B d C^{n}\right)<\varepsilon$ for all $x \in B d P^{n}$ and $P^{n} \subset C^{n}$.

Proof: We use the theorems due to Bing [8] and Connell [18] which say that for $n \neq 4$ stable homeomorphisms of E^{n} can be approximated by piecewise linear homeomorphisms. Let A_{n} be an n-simplex in Int C^{n}. Now Int C^{n} - Int Δ_{n} is a half open annulus [10] so there is a tame n-cell $D^{n} C C^{n}$ such that D^{n} - Int Δ_{n} is an annulus and $d\left(x, B d C^{n}\right)<\varepsilon / 2$ for every $x \varepsilon B d D^{n}$. Since D^{n}-Int Δ_{n} is an annulus there exists a stable homeomorphism h of E^{n} mapping $B d \Delta_{n}$ onto $B d D^{n}$. Using the aforementioned theorem we approximate h to within $\varepsilon / 2$ by apiecewise linear homeomorphism f. Then $f\left(\Delta_{n}\right)$ is the desired piecewise linear (polyhedral) cell.

Theorem l.12: The union of two tame Cantor sets in $E^{n}, n \neq 4$, is tame.

Proof: Let A_{1} and A_{2} be tame Cantor sets in E^{n}. A_{1} lies on a tame $\operatorname{arc} \alpha_{1}$ and A_{2} lies on a tame $\operatorname{arc} \alpha_{2}$. We may think of α_{2} as being on the x_{1}-axis in E^{n} and we assume that the endpoints of α_{2} are not in $A_{1} \cup A_{2}$. Let $\varepsilon>0$ be given and let $A_{3}=\alpha_{2} \cap\left(A_{1} \cup A_{2}\right) . A_{3}$ is a subset of a tame Cantor set on α_{2}. Blow α_{2} up into an n-cell C^{n} given by
$x: d\left(x_{1}, \alpha_{1}\right) \leq \varepsilon / 3$. Let $x_{1}, x_{2}, \ldots, x_{k+1}$ be a finite set of points of $\alpha_{2}-A_{3}$ such that $0<x_{1+1}-x_{1}<\varepsilon / 2$ for $1=1$, $2, \ldots, k$ and x_{1} and x_{k} are the endpoints of α_{2}. We define $C_{i}^{\prime}=\left\{y: y=\left(y_{1}, y_{2}, \ldots, y_{n}\right), x_{1} \leq y_{1} \leq x_{i+1}, y \in C^{n}\right\}$ for $1=1,2, \ldots, k$. Evidently the C_{1} s are n-cells of diameter less than ε which cover α_{2}. Shrink each C_{i}^{\prime} to form a new n-cell $C_{i}^{\prime \prime} C C_{i}^{\prime}$ so that $C_{i}^{\prime}-\operatorname{Int} C_{i}^{\prime \prime}$ is an annulus and $A_{3} \cap C_{i}^{\prime \prime}=A_{3} \cap C_{i}^{\prime} \cdot$ By Lemma $1 . l l$ there exists a polyhedral (with respect to $\mathcal{\alpha}_{1}$) n-cell \mathcal{C}_{i} such that $C_{i}^{\prime \prime} \in \operatorname{Int} \mathcal{C}_{i}$ and ${\underset{C}{i}}$ CInt C_{i}^{\prime}. If necessary we rotate \mathcal{C}_{i} slightly to get an n-cell C_{i}^{*} such that $C_{i}^{\prime \prime} C \operatorname{Int} C_{i}^{*} C \operatorname{Int} C_{i}^{\prime}$ and $B d C_{i}^{*}$ in $_{1}$ is a finite set P_{i}. For each $p \varepsilon P_{i}$ choose $C p$ to be a small n-cell containing p contained Int $C_{i}^{\prime}-C_{i}^{\prime \prime}$ and so that for any $\mathrm{qeP}_{i} \quad \mathrm{Cq} \cap \mathrm{Cp}=\varnothing$. Let $h_{i, p}$ be a homeomorphism of $\mathrm{Cp} \cap \alpha_{1}$, onto itself which leaves the endpoints of $C p \quad 1$ fixed and maps a point of $\left(C p \cap \alpha_{1}\right)-A_{1}$ onto p. By Lemma $1.10 h_{i p}^{\prime}$ can be extended to a homeomorphism $h_{i p}$ of E^{n} which is the identity outside of Cp .

Finally we define $h_{i}=p_{E}^{\pi} P i h_{i p}$ and set $C_{i}=h_{i}^{-1}\left(C_{i}^{*}\right)$. The set $\left\{C_{i}: i=1, \ldots, K\right\}$ is a disjoint collection of n cells which cover $\alpha_{2} \cap\left(A_{1} \cup A_{2}\right)$ such that $\operatorname{BdC}_{i} \cap\left(A_{1} \cup A_{2}\right)=0$. The remaining points of $A_{1} \cup A_{2}--\underset{i=1}{(k)} C_{i}$ can be written as the union of two disjoint tame Cantor sets hence by Theorem 1.8 is a tame Cantor set. Since $A_{1} U_{A}-\bigvee_{i=1}^{(k)} C_{i}$ is tame it may be covered by a disjoint system of n-cell of diameter less than ε whose intersection with $\underbrace{\bigotimes_{i}}_{i=1} C_{i}$ is void.

A study of local properties of embeddings of Cantor sets in E^{n} is of some interest in its own right and will enable us to prove the global theorem on the union of tame Cantor sets which is a generalization of Theorem l.l2.

Definition 1.4: A Cantor set $A C E^{n}$ is said to be locally tame at $x \in A$ if there exists a neighborhood N_{x} of x such that $A \cap N_{x}$ is a tame Cantor set.

Theorem 1.13: A Cantor set $A C E^{n}$ is tame iff it is locally tame at each of its points.

Proof: Suppose A is locally tame at each of its points. It follows from the definition of local tameness that A may be covered by a finite set $N_{1}, N_{2}, \ldots, N_{k}$ of open subsets of E^{n} such that $N_{1} \cap A$ is a tame Cantor set and $B d N_{i} \cap A=\varnothing$. Define $N_{i}^{\prime}=N_{1}$ and $N_{i}^{\prime}=N_{i}--\underbrace{k}_{j=1} N_{j}$. Since $N_{1} \subset N_{1}$ and $N_{1} \cap A$ is tame, it follows that $N_{i} \cap A$ is tame (or empty). The collection $\left\{N_{1}: 1=1,2, \ldots, k\right\}$ is an open cover of A such that $N_{i} \bigcap_{N_{j}}^{\prime}=\varnothing$ for $i \neq j$. Thus $A=\bigvee_{i=1}^{k}\left(N_{i} \cap A\right)$ is a decomposition of A into a finite number of disjoint tame Cantor sets which by Theorem 1.8 is tame. The proof of the converse is trivial.

Definition 1.5: An arc $\alpha \subset \mathrm{E}^{\mathrm{n}}$ will be called locally
tame at $\mathrm{x} \varepsilon \propto$ if there exists an open n-cell neighborhood N_{x} of x and a homeomorphism $h: N_{x} \rightarrow E^{n}$ such that $h\left(N_{x}\right)=$ E^{n} and $h\left(N_{x} \cap \alpha\right)$ is the x_{1} axis in E^{n}.

One might have expected that local tameness of a Cantor set would be defined in terms of local tameness of arcs. That such a definition is equivalent to that given is shown by the following theorem.

Theorem 1.14: A Cantor set $A C E^{n}$ is locally tame at $\mathrm{x} \varepsilon \mathrm{A}$ iff A lies on an arc which is locally tame at x .

Proof: Suppose A lies on an arcowhich is locally tame at x. Let N_{x} be a neighborhood of x and $h: N_{x} \rightarrow E_{n}$ be a homeomorphism of N_{x} onto E^{n} such that $h\left(N_{x} \cap \alpha\right)$ lies on the x_{1}-axis. Now let N_{x}^{\prime} be a compact neighborhood of $h(x)$ such that $B N_{x}^{\prime} \cap h\left(A \cap N_{x}\right)=\varnothing$. Then $h(A) \cap N_{x}^{\prime}$ is a tame Cantor set. Let $\varepsilon>0$ be given and choose $\delta>0$ such that $d(x, y)$ $<\delta$ implies $d\left(h^{-1}(x), h^{-1}(y)\right)<\varepsilon$ for each x and y in N_{x}^{\prime}. Cover $h\left(A \cap N_{x}\right) \cap N_{x}^{\prime}$ by a disjoint family $\left\{C_{k}\right\}$ of n-cells of diameter less than δ such that $\left(U B d C_{k}\right) \cap h\left(A \cap N_{x}\right)=\varnothing$ The family $\left\{h^{-1}\left(C_{k}\right)\right\}$ is a covering of $A \cap h^{-1}\left(N_{x}^{\prime}\right)$ by a disjoint collection of n-cells of diameter less than ε such that $\left(U B d h^{-1}\left(C_{k}\right)\right) \cap A=\varnothing . \quad$ By Theorem 1. 3 $A \cap h^{-1}\left(N_{x}^{\prime}\right)$ is a tame Cantor set.

Conversely suppose A is tame at x. Let N_{x} be a neighborhood of x such that $N_{x} \cap A$ is a tame Cantor set. We may suppose that N_{x} is an n-cell such that $B d N_{x} n^{A}=\varnothing$. Let α be a tame arc containing $N_{x} \cap A$. Let α^{\prime} be an ${ }^{\prime}$ arc in $E^{n}-N_{x}$ containing $A-N_{x} \quad \alpha$ and α^{\prime} are disjoint arcs so they may be connected to get an arc α "。 α " contains A and is locally tame at x.

In recent papers by Cantrell and Edwards [16] and by Cantrell [14] it has been shown that if an arc in $E^{n}, n \geq 4$, is wild it must fail to be locally tame at an entire Cantor set of points. Papers [12], [13] and [15] have been written by Cantrell in which a principal objective is to establish the analogous result for S^{n-1} in $E^{n}, n \geq 4$, i.e., if an ($n-1$)-sphere S^{n-1} in $E^{n}, n \geq 4$, is wild then s^{n-1} fails to be locally flat on a Cantor set of points (see [ll] for the definition of local flatness for spheres) Although this statement has not yet been proved it has been shown to be related to a generalized annulus conjecture [15]. One might wonder what sort of wildness properties a Cantor set in E^{n} could have. Could a Cantor set be wild at just one point? The following set of theorems is aimed at answering such questions. Although these theorems are the same in statement to those established by Bing [7] for E^{3} the proofs used by Bing could not be generalized to the case of $E^{n}, n>3$.

Theorem 1.15: If A is a Cantor set in E^{n} which is locally tame at each of its points with the possible exception of a single point $\times \mathcal{D E A}^{\circ}$, then A is tame.

Proof: In [7] Bing established this theorem for $n=3$; consequently we assume that $n \geq 4$. Let $\left\{N_{i}\right\}$ be a decreasin; sequence of open neighborhoods of x_{0} such that $B d N_{i} \cap A=\varnothing$
and diam $N_{i}<1 / i$ for each $i=1,2,3, \ldots$ Now since A_{i} $=\left(N_{i}-N_{i+1}\right) \cap A$ is locally tame at each of its points A_{i} is a tame Cantor set for each i. For each i let $C_{i, 1}, C_{i, 2}$, $\ldots, C_{i, k}$ be a disjoint collection of n-cells such that $B d C_{1, j} \cap A=\varnothing, C_{i, j} C N_{1}-N_{i+1}$ and $A_{1} C_{j=1}^{\left(K_{1}\right)} C_{i, j}$. It is easily verified that the n-cells may be so chosen. For each $C_{i, j}$ let $_{1, j}$ be a tame arc in $C_{i j}$ containing $C_{i j} \cap A$. Define $B_{k}=\left\{x: x \in E^{n}\right.$ and $\left.d\left(x, x_{o}\right) \leq l / k\right\}$, let $>$ be an ordering on pairs of integers defined by $(1, j)>(m, \ell)$ if $i>m$ or $i=m$ and $j>\ell$, and choose $\underset{(\infty)}{\operatorname{arcs}} \beta_{i j}$ as follows: let β_{11} be a tame arc in $E^{n}--\underbrace{\infty}_{i=1} \mid\left(k_{1}\right) \quad$ joining an endpoint of 11 to an endpoint of Λ_{12}. Suppose now that arcs $\beta_{i, j}$ have been chosen for each $i<m$, let β_{m}^{ℓ}, be a tame arc in $B_{m-1}-((i, j)>(m, \ell+1)$ $\left.c_{i j}\right)-(i, j)<(m),\left(\alpha_{i, j} U_{\beta_{i j}}\right)$ going the free endpoint of $\chi_{m},{ }^{\ell}$ with an endpoint of $\eta_{m, \ell+1}$ for $\ell=1,2, \ldots, k_{m}-1$ and let $\beta_{m, k_{m}}$ be a tame arc in $B_{m}{ }^{-}(i, j)>(m+1,1) C_{i, j}$ $(i, j) U_{<(m, k m)}\left(\alpha_{i j} U_{\left.\beta_{i j}\right)}\right.$ joining the free endpoint of $\alpha_{m, k_{m}}$ to a free endpoint of $\alpha_{m+1,1}$. (See Figure 3.)

Figure 3
$\operatorname{Let} \alpha=\bigcup_{i=1}^{\infty} \underset{j=1}{\left(K_{i}\right)}\left(\alpha_{i j} \cup B_{i j}\right) \cup\left\{x_{0}\right\}$. Then α is a metric continuum with exactly two non-cut points, hence is an arc. By the method of construction α is locally flat except possibly on a countable set. By the result of Cantrell [14] such an arc in $E^{n}, n>4$ must be tame.

Corollary 1.16: The set of points at which a Cantor set $A=E^{n}$ is wild can contain no isolated point.

Proof: Suppose a Cantor set A is wild at the point x_{0} and suppose there is a neighborhood $N_{x_{0}}$ of x_{0} such that $A \cap N_{x_{c}}$ is locally tame at each point except x_{0}. The Cantor set $A / \mathbb{N}_{\mathrm{x}_{0}}$ contradicts the previous theorem.

Corollary 1.17: The set of points at which a wild Cantor set $A \subset E^{n}$ fails to be locally tame is a Cantor set.

Proof: Let W denote the set of points of A at which A fails to be locally tame. From the definition of local tameness it is clear that W is a closed subset of A and by Corollary l.16, W contains no isolated points. It follows that W is closed and dense-in-itself hence W is a Cantor set.

Theorem 1.18: If a Cantor set $A \subset E^{n}$ is locally tame at each of its points with the possible exception of the points of a tame Cantor set B in A, then A is tame.

Proof: Let $\varepsilon>0$ be given. Using Theorem 1.7 we shall show that A is tame by covering it by a set of disjoint n-cells of diameter less than ε whose boundaries do not intersect A. Cover B by disjoint $n-c e l l s C_{1}, C_{2}, \ldots, C_{k}$ of diameter less than $\varepsilon / 2$ such that $B \cap\left(\sum_{1=1}^{k} B C_{i}\right)=\varnothing$. Let $0<2 \delta<\min _{1 \neq j} d\left(C_{i}, C_{j}\right)$. We restrict our attention now to a particular C_{i}. Let $0<\delta_{i}<d\left(B, B d C_{i}\right)$, let $n_{1_{-}}=$ $\min \left(\varepsilon / 2, \delta, \delta_{i}\right)$ and let $N_{i}=\left\{x: d\left(B d C_{i}, x\right) \leq \eta_{i}\right.$. The Cantor set $A \cap N_{i}$ is tame at each of its points hence it is tame by Theorem 1.13. Cover $A \cap N_{i}$ by disjoint n-cells of diameter less than η_{i} whose boundaries do not intersect $A \cap N_{i} . \quad \operatorname{Let} C_{i, 1}, C_{i, 2}, \ldots, C_{i, m}$ be the set of all such n-cells containing a point of $\mathrm{BdC}_{1} \cap \mathrm{~A}$. Next we choose homeomorphisms $h_{1,1}, h_{1,2}, \ldots, h_{i, m}$ with the properties:

1) $h_{i, j} \mid E^{n}-C_{i, j}=1 d$ and 2) $h_{i, j}\left(A \cap C_{i j}\right) \cap B d C_{i}=\varnothing$ Define $h_{i}=h_{i, 1}{ }^{0} h_{i, 2}{ }^{0} \ldots h_{i, m}$. Now $h_{i}^{-1}\left(C_{i}\right)$ is an n-cell of diameter less than ε such that $\operatorname{Bd~}_{\mathrm{i}}^{-1}\left(\mathrm{C}_{\mathrm{i}}\right) \cap \mathrm{A}=\varnothing$. If we have defined h_{i} for each i and we define $h=h_{1}^{0} h_{2}^{0} \ldots$ ${ }^{0} h$, then $h^{-1}\left(C_{1}\right), h^{-1}\left(C_{2}\right), \ldots, h^{-1}\left(C_{k}\right)$ is a covering of B by disjoint n-cells of diameter less than ε such that $A \cap\left(\underset{i=1}{(k)} \operatorname{Bdh}^{-1}\left(C_{i}\right)\right)=\varnothing$. Since $A-\left(\underset{i=1}{(k)} h^{-1}\left(C_{i}\right)\right)$ is tame it may be covered by disjoint n-cells of diameter less than ε which do not intersect ${ }_{i=1}^{(k)} h^{-1}\left(C_{i}\right)$.

Corollary 1.19: Each wild Cantor set in E^{n} contains a Cantor set which is wild at each of its points.

Proof: Let A be a wild Cantor set in E^{n} and suppose A fails to be locally tame on Cantor set W. Then W must be wild at each of its points, for if W were locally tame at $x \in W$ then there would be a neighborhood N_{x} of x such that $N_{x} \cap W$ is tame. But then $A \cap N_{x}$ is locally tame except for the points of a tame Cantor set, contradicting Theorem 1.17.

Corollary 1.20: The set of points at which a Cantor set is wild is empty or is a Cantor set which is not locally tame anywhere.

Using the previous results we may prove the following theorem on the union of tame Cantor sets in E^{n}. This theorem was given by Bing [7] for E^{3} and the proof now generalizes easily. It is repeated here for the sake of completeness. Theorem 1.21: If the Cantor set $A \subset E^{n}$ is the countable union of tame Cantor sets A_{1}, A_{2}, \ldots then A is tame.

Proof: If A were wild then by Corollary 1.18, A would contain a Cantor set A^{\prime} which is wild at each of its points. The Baire-Moore theorem tells us that no compact Hausdorff space is the union of a countable number of closed subsets, no one of which contains an open subset of the space (for a proof see[23]). So A^{\prime} must contain a Cantor set $A^{\prime \prime}$ which is open in A^{\prime} and which lies in one A_{i}. But the A^{\prime} is not locally tame at any of its points. This contradicts the fact that A_{i} is locally tame at each of its points.

CHAPTER II

AN EXTENSION THEOREM FOR HOMEOMORPHISMS ON CANTOR SETS

In 1921 L. Antoine [3] gave an example of a Cantor set in E^{3} whose complement was not simply connected. This then was the first known example of a wild embedding of a Cantor set in E^{n}. Shortly thereafter (1924) J. W. Alexander [l] showed that the Cantor set of Antoine, often called Antoine's necklace, was contained in a 2 -sphere in E^{3} disproving the Schoenflies theorem for E^{3}. Concurrently Alexander [2] gave an example of a 2-sphere in E^{3} which was wild at a tame Cantor set of points. In 1949 Artin and Fox [5] constructed 2-spheres in E^{3} which were wild at a single point. Shortly thereafter (1951) Blankinship [9], a student of Fox, published a paper in which he generalized the construction of Antoine's necklace to E^{n} for any $n \geq 3$, i.e. he constructed Cantor sets in E^{n} whose complements were not simply connected. In this same paper he showed that these generalized necklaces must lie on the boundary of a K-cell, $0<K \leq n$; thus giving a method for constructing wild $K-c e l l s$ and spheres in E^{n}. In this chapter we shall show that every Cantor set in $E^{n}, n \geq 2$, lies on the boundary of a K-cell in E^{n}. This
theorem is a direct extension for E^{n} of the well known theorem [25]: Any o-dimensional, compact subset of a Peano space lies on an arc.

We shall need the following lemmas.
Lemma 2.1: Let U be a component of the set V in a locally connected space X. Then $B d U \subset B d V$ and if V is open then U is open.

Proof: Let $x \in B d U$; then for each neighborhood N_{x} of x in $X \quad N_{x}$ contains points of U and U^{\prime} (the complement in X of U). If x were not a boundary point of V then there would ie an epen connected neighborhood N_{x} of x which was contained in V. Then $U U_{N}$ is a connected subset of V properly containing U, contrary to the assumption that U was a component of V. If V is open then $B d V \cap V=\varnothing$ so BdUnU $=$ \forall and U is open.

Lemma 2.2: Let U be a bounded, connected, open subset of E^{n} and let A be a compact subset of U. Then there exists a polyhedron $P \fallingdotseq U$ such that $A \subset$ Int P and Int P is connected.

$$
\text { Proof: Let }=\min _{x \in A} d(x, B d U) \text {. Triangulate }
$$

E^{n} by a triangulation T of mesh less than $\delta / 2$ and let P^{\prime} be the polyhedron composed of all simplexes of T contained in the star of a simplex containing a point of A. Let $P_{1}, P_{2},---P_{k}$ be the closures of the components of the interior of F^{\prime}. Since U is connected there is an arc α joining each of the polyhedra $P_{1}, P_{2}, \cdots, P_{k}$.

Let $\delta^{\prime}=\min _{x \in \alpha} d(x, B d U)$, let T^{\prime} be a refinement of T of mesh less than $\delta^{\prime} / 2$ and define $P \prime$ to be the set of all simplexes of T ' which are contained in the star of a simplex which contains a point of α. Finally define $P=P \cdot U P{ }^{\prime \prime}$. P is then the desired polyhedron.

Lemma 2.3: Let $\varepsilon>0$ be given and let A be a compact, O-dimensional subset of E^{n}. Then there exists a finite collection of disjoint, open, connected subsets $\left\{U_{1}: 1=1,2, \cdots\right.$ $\cdot, \mathrm{K}\}$ of E^{n} which cover A and such that 1) diam $\left.U_{i}<\varepsilon, 2\right)$ \bar{U}_{1} is a polyhedron and 3) $E^{n}-\bar{U}_{1}$ is connected.

Proof: First we select an open neighborhood N_{x} of each point x of A of diameter less thancsuch that $B d N_{x} \cap A=$ \varnothing. Select from this cover of A a finite subcover N_{1}, N_{2}, \cdots, N_{p}. Now let $N=\bigcup_{\ell=1}^{P} N_{\ell}-\underbrace{P}_{\ell=1}\left(B d N_{\ell}\right)$. By Lemma 2.1 each component V_{j} of N is an open set whose boundary is in $\operatorname{BdN}=\bigcup_{\ell=1}^{\mathrm{P}} \operatorname{BdN}_{\ell} ;$ thus $\operatorname{BdV}_{f} \cap A=\varnothing$. The set $\left\{V_{j}\right\}$ is an open cover of A hence there is a finite subcover $\left\{V_{1}: i=1,2, \cdots, m\right\}$ of A by sets of $\left\{V_{j}\right\}$. We now have a finite covering $\left\{V_{1}: j=1,2 . \cdots, m\right\}$ of A by disjoint, open, connected subsets of E, each of diameter less than ε such that $B d V_{i} \cap A=\varnothing$. Now for each 1 apply Lemma 2.2 to get a polyhedron in V_{i} whose interior W_{1} is connected and contains $V_{1} \cap A$. Finally for each i let U_{i} be the complement of the unbounded component of $E^{n}-W_{i}$. If $U_{i} \subset U_{j}$ for $1 \neq j$ drop this set from the list of polyhedra covering A. We now have the desired covering of A.

Lemma 2.4: Let P and Q be disjoint compact polyhedra in E^{n} both of which are the union of $n-s i m p l e x e s$ and let α be a polyhedral arc with endpoints p and q such that $\alpha \cap P=\{p\}$ and $\alpha \cap Q=\{q\}$ and q is in the interior of an ($n-1$)-simplex σ of Q. Then α can be "blown up" into a polyhedral n-cell C such that $C \cap P$ and $C \cap Q$ are $(n-1)-$ cells in $B d P$ and $B d Q$ respectively and for a given $\varepsilon>0$ $d(\bar{x}, \alpha)<\varepsilon$ for any $x \in C$.

Proof: Let α_{1} be a line segment in E^{n} and let P_{1} and P_{2} be ($n-1$-dimensional hyperplanes in E^{n} intersecting α_{1} at its endpoints a_{1} and a_{2} respectively. Let σ_{1} be an ($n-1$)-simplex in P_{1} containing p and not intersecting P_{2}. Then the set C_{1} consisting of all points lying on line segments parallel tod 1_{1} with one endpoint in σ_{1} and the other endpoint on P_{2} is a polyhedral n-cell. To see that C_{1} is, indeed, an n-cell is a straightforward but messy computation in analytic geometry.

Now, starting at p, number the linear segments of α in order: $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ Let $p=a_{1}, a_{2}, \cdots, a_{k-1}=q$ be the set of endpoints of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ where a_{i} and a_{i+1} are endpoints of α_{1}. Let σ_{1} be an ($n-l$)-simplex in BdP such that $\operatorname{dram} \sigma_{1}<\varepsilon, p \varepsilon \sigma$, and α_{1} does not lie in the ($n-1$)-dimensional hyperplane determined by σ_{1}. Let P_{2} be a ($n-1$.) dimensional hyperplane intersecting α_{1} and α_{2} at a_{2}. Applying the remarks of the above paragraph blow α_{I} up into
an n-cell C_{1} such that $B d C_{1} \cap P_{1}$ and $B d C_{2} \cap P_{2}$ are ($n-1$)simplexes. Now apply the entire process again to α_{2} and $\mathrm{BdC}_{1} \cap \mathrm{P}_{2}$. We continue expanding in this fashion until we come to α_{k}. Choose $\sigma_{k+1} \subset \sigma$ so that $q \varepsilon \sigma_{k+1}$ and so the n-cell generated by lines parallel to α_{k} with endpoints in σ_{k+1} intersects C_{k-1} in an $(n-1)=$ simplex. $C=\underbrace{k+1}_{i=1} C_{i}$ is the desired n-cell.

Theorem 2.5: Let A be a Cantor set in E^{n}. Then A lies on the boundary of an n-cell $C^{n} C E^{n}$. Furthermore C^{n} can be so chosen that A is tamely imbedded in AdC ${ }^{\text {n }}$. (Note that C^{n} itself may well be wild in E^{n} and in fact C^{n} must be wild if A is wild.)

Proof: Let C_{0} be a polyhedral n-cell in E^{n} whose distance from A is 1 . Let $P_{11}, P_{1,2}, \cdots, P_{1, k_{1}}$ be disjoint polyhedra of diameter less than $1 / 2$ such that Int $P_{1, i}$ is connected and. $A C_{1=1}^{(k)}$ Int $P_{1, i}$ (Lemma 2.3). Let α be a polygonal arc in BdC_{0}, let $x_{1,1}, x_{1,2}, \cdots, x_{1, k l}$ be k_{1} distinct points of α and let $y_{1,1}, \dot{y}_{1,2}, \cdots, \dot{y}_{1, k_{1}}$ be k_{1} points such that $y_{1, i}$ lies in the interior of an ($n-1$)-simplex on the boundary of $P_{1, i}$. Choose disjoint polyhedral $\operatorname{arcs} \alpha_{1,1}, \alpha_{1,2}, \cdots, \alpha_{1, k_{1}}$ so that the endpoints of $\alpha_{1, i}$ are $x_{1, i}$ and $y_{1, i}$ and so that $\alpha_{1, i} \cap C_{0}=$ $\left\{x_{1,1}\right\}$ and $\left.\alpha_{1, i} \cap \bigcup_{j=1}^{k} P_{1, i}\right)={ }_{\left\{Y_{1, i\}}\right.}$. Applying Lemma 2.4 blow each $\alpha_{1,1}$ up into a polyhedral n-cell $C_{1,1}$ such that $c_{1, i} \cap\left(\underset{j \neq 1}{\cup} c_{1, j}\right)=\varnothing, c_{1, i} \quad c_{0}$ is a polyhedral $(n-1)$-cell
and $C_{1, i} P_{P_{1, i}}$ is a polyhedral ($n-1$)-cell. Let $T_{0}=C_{0}$. Let h_{1} be a homeomorphism of C_{0} onto $C_{1}=C_{0}\left(\sum_{i=1}^{1} C_{1, i}\right)$ such that $h_{1}\left(X_{1,1}\right)=Y_{1,1}$.

Suppose now that the sets $P_{m, 1}, P_{m, 2}, \cdots, P_{m, k_{m}}$, $C_{n, 1}, C_{m, 2}, \cdots, C_{m, k_{m}}$ and C_{m} together with T_{m} and h_{m} have been defined. For the moment we restrict our attention to a polyhedron $P_{m, i}$. Applying Lemma 2.3 we get disjoint polyhedral $P_{m+1,1}^{1}, P_{m+1,2}^{1}, \cdots, P_{m+1,}^{1}, i_{1}$ in Int $P_{m, 1}$ of iameter less than $1 / 2^{m+1}$ whose interiors cover $P_{m, i} \cap A$. Let $f_{m}=h_{m}{ }^{0} h_{m-l}{ }^{0} \cdots{ }^{0} h_{1}$ and choose distinct points $x_{m+1, l}^{1}$, $x_{m+1,2}, \cdots x_{m+1, l_{i}}^{i}$ of $f_{m}(\alpha) \cap B d P_{m, i}$. For each $j=$ $1,2, \cdots, l_{1}$ let $Y_{m+1,1}^{1}$ be a point in the interior of an ($n-1$)-simplex on the boundary of $P_{m+1, j}^{1}$. At this point, in order to avoid ever increasing numbers of subscripts or superscripts, we shall reorder the $P_{m+1, j}^{1}{ }^{\prime}, j=1,2, \ldots, l_{i}$, $1=1,2,-\cdots, k_{m}$ lexicographically in (i,j) (and correspondingle the $X_{m+1, j}^{1}$'s and $Y_{m+1, j}^{1}$'s). So we now have an ordering using two subscripts $P_{m+1,1}, P_{m+1,2}, \cdots P_{m+1}, k_{m+1}$. Now let $\alpha_{m+1,1}, \alpha_{m+1,2},---\alpha_{m+1}, k_{m h}$ be disjoint polyhedral arcs such that 1) $x_{m+1,1}$ and $y_{m+1,1}$ are the endpoints of $\alpha_{m+1, i}$, 2) $\alpha_{m+1, i} \subset P_{m, j}$ for some $\left.j_{i}, 3\right) \alpha_{m+1, i} \cap B d P_{m, j}=$ $\left\{x_{m+1, i}\right\}$, 4) $\alpha_{m+1, i} \cap \operatorname{Bd}\left(P_{m+1,1}\right)=\left\{y_{m+1,1}\right\}$ and 5) $\alpha_{m+1,1} \cap$ $\left(\ell \not \sum_{m+1, \ell}\right)=\varnothing$ (See Figure 4). Next we wish to define the set T_{m+1}. Let $S_{\varepsilon, x}=\left\{y: y \varepsilon C_{0}\right.$ and $\left.d(x, y) \leq \varepsilon\right\}$ and let $z_{m+1, i}=$

$$
1
$$

$f_{m}^{-1}\left(x_{m+1, i}\right)$. Choose $\varepsilon_{m+1}>0$ small enough so that $S_{\varepsilon_{m+1}}, Z_{m+1, i}$ ClInt $T_{m}, \varepsilon_{m+1}<1 / 2^{m+1}$ and $S_{\varepsilon_{m+1},} Z_{m+1, i} \cap S_{m+1, j}=$ \varnothing for $1 \neq j$.
Define $T_{m+1}=\sum_{i=1}^{k} S_{\varepsilon_{m+1}, ~} Z_{m+1, i}$. Applying Lemma 2.4 blow each $\alpha_{m+1,1}$ up into a polyhedral $n=c e l l C_{m+1, i}$ such that 1) $C_{m+1, i} \cap C_{m+1, j}=\varnothing$ for $i \neq j$, 2) $C_{m+1, i} \cap C_{m, j}$ is an $(n-1)$-cell in $f_{m}\left(T_{m+l}\right)$, 3) $C_{m+1}, i^{\cap} P_{m+l, i}$ is an (n-l)-cell. Let $C_{m+1}=C_{m} U\left({\left.\underset{i=1}{k_{m+1}} C_{m+1, i}\right) \text { and choose } a ~}_{m}\right.$ homeomorphism $h_{m+1}: C_{m} \rightarrow C_{m+1}$ of C_{m} onto C_{m+1} such that $h\left(x_{m+l, i}\right)=y_{m+l, i}$ and $h_{m+l} \mid C_{m}-f\left(T_{m+l}\right)=i d$. Finally $\underset{m \rightarrow \infty}{\text { we define }} f(x)=\lim f_{m}(x)$. Since f is the uniform limit $m \rightarrow \infty$ of a sequence of continuous functions f is continuous. Because the domain of f is C_{0}, a compact set, we need only show that f is ll to establish that f is a homeomorphism. Clearly $T_{m+l} \subset T_{m}$ and $T=\bigcap_{m=1}^{\infty} T_{m}$ is a Cantor set in $B d C_{o}$. For any point $x \in C_{0}=T$ there exists an N such that for $m>N$ $x \notin T_{m}$ thus for all $m>N f_{m}(x)=h_{m}\left(f_{m-1}(x)\right)=f_{m-1}(x)$ so $f=f_{N}$ in a neighborhood of x and f is a homeomorphism in a neighborhood of x. We see that f is $1-1$ on $C_{o}-T$. Since f is continuous $f\left(\mathrm{BdC}_{\circ}\right)$ is compact. Now for any point af $d\left(a, f_{m}\left(B d C_{o}\right)\right)<l / 2^{m}$ hence $d(a, f(B d C))=0$ so $a \varepsilon f(B d C)$ and $A \subset f\left(\mathrm{BdC}_{0}\right)$. Because $\mathrm{f}_{\mathrm{m}}\left(\mathrm{BdC}_{0}\right) \quad \cap \mathrm{A}=\varnothing$ for each m and $h_{m}, m=1,2,---$ is eventually the identity on each $\& \notin$ T it follows that $A \subset f(t)$. Since for each $z_{\varepsilon} T$ there exists a sequence $\left\{Z_{m}\right\}$ of points from the $\operatorname{set}\left\{Z \mathrm{~m}, i: i=1,2,---, X_{m}\right\}$ such that $d\left(z_{m}, z\right)<1 / 2^{m}$ and $d\left(f_{m}\left(Z_{m}\right), A\right)<l / 2^{m}$. Let $\varepsilon>0$ be
given, by uniform continuity of f there is a $\delta>0$ such that for $d\left(x, y k<\delta d(f(x), f(y))<{ }^{\varepsilon} / 2\right.$. Choose m large enough so that $1 / 2^{m}<\delta$ and $1 / 2^{m-2}<\varepsilon / 2$. We have

$$
\begin{aligned}
d(f(z), A) & \leq d\left(f(z), f\left(Z_{m}\right)\right)+d\left(f\left(z_{m}\right), f_{m}\left(Z_{m}\right)\right) \\
& +d\left(F_{m}\left(z_{m}\right), A\right) \\
& \leq \varepsilon / 2+1 / 2^{m-1}+1 / 2 m .
\end{aligned}
$$

It follows that $f(z) \subset A$ hence $f(T) \subset A: f(T)=A$. No:
let $y \neq z$ be another point of T and let $\left\{Y_{m} ; m=1,2, \ldots\right\}$ be a sequence of points from $\left\{子_{m, i}: i=1,2,---k m, m=1,2,---\right\}$ such that $\mathrm{d}\left(\dot{y}_{\mathrm{m}}, \mathrm{y}\right)<1 / 2^{\mathrm{m}}$. There exists N such that for $m>N d\left(z m, y_{m}\right)>\gamma>0$. Now since $\lim _{m \rightarrow \infty} f_{m}\left(z_{m}\right)=f(z)$ and $\lim _{m \rightarrow \infty}$ $f_{m}\left(y_{m}\right)=f(y)$ and from the fact that $f_{m}\left(y_{m}\right)$ and $f_{m}\left(z_{m}\right)$ are eventually in distinct, disjoint polyhedral neighborhoods it follows that $f(y) \neq f(z)$.

Finally we want to show that $A \subset f(\alpha)$. This follows from the fact that $\alpha\left(f_{m}(\alpha), a\right)<1 / 2^{m}$ for each a A.

Note that $f\left(C_{0}\right)$ is an n-cell which is polynedral except at the points of A.

At first glance the above theorem may not so appear but it is an extension theorem which may be stated thus:

Corollary 2.6: Let f^{l} be a homeomorphism mapping the Cantor ternary set on the x_{1}-axis in E^{n} into E^{n}. f^{l} can be extended to a homeomorphism f of the unit cube C^{n} in E^{n} into E^{n}.

If f^{l} can be extended to C^{n} it can surely be extended to any face of C^{n}, thus:

Corollary 2.7: Each Cantor set in E^{n} is tamely imbedded in the boundary of a K-cell in E^{n} for $0<K \leq n$.

Note that if f^{l} could be extended farther to a neighborhood of the unit interval on the $x_{1}-$ axis then A would be tame.

It is not difficult to see that Theorem 2.5 may be generalized to piecewise linear manifolds. The analogs of the Lemmas 2.2, 2.3, and 2.4 are easily established and the proof of Theorem 2.5 follows as before. Thus we have

Theorem 2.8: Let M^{n} be a piecewise linear n-manifold. Then each Cantor set in M^{n} lies on the boundary of an n-cell in M^{n}.

It might have been tempting to assert that each Cantor set in an n-manifold lies in some open n-cell. However the arguments of [21] show that this is not the case.

Without the piecewise linear structure and Lemmas 2. 2 , 2.3, and 2.4 are meaningless so a proof of Theorem 2.5 for manifolds without piecewise linear structure would involve a proof quite different from the one used for piecewise linear manifolds. Perhaps the local linear structure could be used.

Corollary 2.9: Let A be the Cantor ternary set on the real line and let $f: A \longrightarrow M^{n}$ be a homeomorphism of A into a piecewise linear manifold M^{n}. Then f is homotopically trivial.

Proof: f may be extended to a map F of the unit square D^{2} to M^{n}. Since $F\left(B d D^{2}\right)$ is homotopically trivial f is.

A generalization of Corollary 2.9 to continuous maps of Cantor sets into Peano continua is possible. One need only show that each map of the Cantor set into a Peano continuum can be extended to the cone over the Cantor set.

A TAME CANTOR SET WHICH LIES IN NO OPEN N-CELL

Characterizing spaces by certain properties of the set of homeomorphisms of the space onto itself is not new in topology. Such properties as homogeneity and nearhomogeneity have long been used to characterize simple closed curves in the plane. In 1960 Hocking and Doyle characterized the n-sphere [19] by a property called invertibility. (A space S is invertible if for every open set $U C S$ there is a homeomorphism h of S onto itself such that $h(S-U) C U$.$) They showed that an invertible n-$ manifold is an n-sphere and that a weakly invertible open n-manifold is E^{n}. (A space S is weakly invertible if for each open set $U C S$ and each compact set $C C S$ there is a homeomorphism h of S onto itself such that $h(C) C U$). As a natural generalization of weak invertibility Hocking and Doyle undertook the study of what was called weak dimensional invertibility [21]. (An n-manifold M^{n} is weakly k-invertible if every compact subset of M^{n} of dimension k lies in an open n-cell in M^{n}). By the use of a theorem of Stallings [26] it is easily shown that if $k>[n / 2]$ then a. k-invertible, compact, combinatorial n-manifold is an n-sphere. A very
surprising theorem proved in [21] states that a 0 -invertible 3-manifold is S^{3}. This theorem may be restated as follows: Let M^{3} be a compact 3 -manifold such that each compact, 0 -dimensional set in M^{3} lies in an open 3 -cell. Then M^{3}. is a 3-sphere. In [21] it was observed that in all of the decided cases an (n - 3)-invertible, compact, combinatorial n-manifold is an n-sphere, the only undecided case being $n=4$.

It is natural then to attempt to find an example of a compact, combinatorial 4 -manifold M^{4} with the property that every 0-dimensional, compact subset of M^{4} lies in an open 4 -cell in M^{4}. In [21] Hocking and Doyle indicated that M^{4} would have to be simply connected.

With these facts in mind it is natural to conjecture that each compact, 0-dimensional subset of $S^{2} \times s^{2}$, the topological product of 2 -spheres, lies in an open 4 -cell. It is the purpose of this chapter to show that this is not the case, 1.e. that $S^{2} \times S^{2}$ contains a Cantor set which lies in no open 4 -cell.

Definition 3.1: In the space $S^{n} \times E^{m}$ any set of the form $\{x\} x^{m}$ where $x \in S^{n}$ will be called a parameter m-plane. If P is a parameter m-plane in $S^{n} \times E^{m}$ and $\left\{h_{t}\right\}$ is an isotopy of $S^{n} \times E^{2}$ onto itself then $h_{1}(P)$ will be celled a curved paraneter m-plane. In $S^{n} \times S^{m}$ a parameter m-sphere and a curved parameter m-sphere are similarly defined.

Theorem 3.1: Let $A \subset S^{n} \times S^{m}$ be compact. If A intersects every curved parameter m-sphere then A lies in no open ($n+m$) cell in $S^{n} \times S^{m}$.

Proof: Suppose A lies in an open ($m+n$) cell C, then given $\varepsilon>0$ there is an isotopy $\left\{h_{t}\right\}$ of $S^{n} \times S^{m}$ onto itself such that $h_{l}(A)$ has diameter less than ε and $h_{t} \mid S^{n} \times S^{m}-C=1 d$. Let S^{n} and S^{m} be metrized in the metric which they inherit as unit spheres in $\mathrm{E}^{\mathrm{n}+1}$ and
 product metric i.e. $d\left((x, y),\left(X^{\prime}, y^{\prime}\right)\right)=\left(\left[d_{n}\left(x, x^{\prime}\right)\right]^{2}+\right.$ $\left.\left[d_{m}\left(y, y^{\prime}\right)\right]^{2}\right)^{1 / 2}$ where d_{n} and d_{m} are the metrics for s^{n} and S^{m} respectively. Now $d\left(\{x\} \times S^{m},\left\{x^{\prime}\right\} \times S^{m}\right)=d_{m}\left(x, x^{\prime}\right)$. If we choose x^{\prime} so that $d_{n}\left(x, s^{\prime}\right)>\varepsilon$ then $\{x\} x S^{m}$ and $\left\{x^{\prime}\right\} \times \mathrm{S}^{\mathrm{m}}$ cannot intersect the same set of diameter less than ε, i.e. they cannot both intersect $h_{1}(A)$. Suppose $\{x\} \times S^{m}$ does not intersect $h_{1}(A)$ then $h_{1}^{-1}\left(\{x\} \times S^{m}\right)$ is a curved parameter m-sphere which does not intersect A. A similar construction will establish the following: Theorem 3.2: Let $A \subset S^{n} \times E^{m}$ be compact. If A intersects every curved parameter m-piane then A lies in no open $(p+q)$-cell in $S^{n} \times E^{m}$.

The above theorem makes it clear that if an example could be given of a Cantor set which intersects every curved parameter plane in $S^{n} \times E^{2}$ then such a Cantor set could not lie in an open ($n+$?)-cell. Such a Cantor set "approximating" S^{2} in $S^{2} \times E^{2}$ will be constructed.

In giving the construction of a Cantor set in E^{4}, which will be used in "approximating" a 2 -sphere and in verifying the desired properties of it we shall use the following lemmas, the first is due to Blankinship [9], the second is a generalization of Artin's work in [4].

Lemma 3.3: Let d_{r}, d_{S}, D_{S} be arbitrary real numbers with $0<d_{s} \leq D_{s}$. Let S be a compact set in E^{n} contained in the set defined by $x_{r}=d_{r}$ and $0<d_{x} \leq x_{s} \leq D_{s}$. Let \tilde{S} be the set generated by rotating s about the ($n-2$) nilane defined by $x_{r}=$ $d_{r}, x_{s}=0$, or more explicitly
$\widetilde{S}=\left\{x \mid x \varepsilon E^{\eta}\right.$ and there exists $y \varepsilon S$ and there exists θ such that $x_{i}=y_{i}$ if i $\neq r$ or s and $x_{r}=d_{r}+y_{s} \sin \theta$, $\left.x_{s}=y_{s} \cos -\theta\right\}$
Then
a) for each $(y, 0) \in S \times E^{\prime}(\bmod 2 \pi)$, the correspondence $(y, \theta) \longrightarrow x$ where $x_{1}=y_{i}, 1 \neq r$ or $s, x_{r}=d_{r}+y_{s} \sin \theta, x_{s}=$ $y_{s} \cos \theta$ is a homeomorphism onto \tilde{S}. We can therefore use the pair (y, θ) as a set of coordinates for \tilde{S}.
b) if \tilde{U} is the set in \tilde{S} consisting of all points with representations (u, θ) for which $u \varepsilon U \subset S, \alpha \leq \theta \leq \beta, ?-\alpha \leq 2 \pi$ where $U \neq \varnothing$ then $\max \left\{d i a m U, d_{S} p(\beta-\alpha)\right\} \leq \operatorname{diam} U \leq i \operatorname{am}$ $U+D_{s} p(\beta-\alpha)$
where

$$
p(\theta)=\left\{\begin{array}{l}
2 \sin 1 / 2 \theta \text { if } 0 \leq \theta \leq \pi \\
2 \text { if } \pi \leq \theta \leq 2 \pi
\end{array}\right.
$$

c) if $x \in \tilde{S}$ then $d_{r}-D_{S} \leq x_{r} \leq d_{r}+D_{S}$.

Lemma 3.4: Let E^{n} be the hyperplane in E^{n+1} defined by $x_{n+1}=0$. Let \bar{E}_{+}^{n} be the half space in E^{n} defined by $x_{n} \geq 0$, let S be a set in $\overline{E_{+}^{n}}$ and let C be a simple closed curve in the complement of S. Let \widetilde{S} be the set in E^{n+1} which we get by rotating S about the hyperplane defined by $\begin{aligned} & x_{n}= x_{n}+1=0,1 . e . \\ & \tilde{s}=\{x: \exists y \in s\end{aligned}$ n or $\left.n+1, x_{n}=y_{n} \cos \theta, x_{n+1}=y_{n} \sin \theta\right\}$ Then C is null homotopic in $E^{n+1}-\tilde{S}$ ff C is null homotopic in $\bar{E}_{+}^{\mathrm{h}}-\mathrm{S}$.

Proof: If C is null homotopic in $\bar{E}_{+}^{n}-S$ then certainly C is null homotopic in $E_{+}^{n+1}-\tilde{S}$. Conversely we define the continuous map $f: E^{n+1} \longrightarrow E_{+}^{n}$ by $f(x)=y$ if x is the image of y under a rotation of \bar{E}_{+}^{n} about the hyperplane $x_{n}=x_{n}+1=$ 0 . It is clear from the definition that $x \in \tilde{S}$ if $f(x) \varepsilon S$. Suppose C is null homotopic in $E^{n+1}-\dot{S}$, ie. that C bounds a singular disk in $E^{n+1}-\tilde{S}$. Let $g: D^{2} \rightarrow E^{n+1}-\tilde{S}$ be a continuous map such that $g \mid B A D^{2}$ is a homeomorphism of $B_{d D}{ }^{2}$ onto C. Then because f is the identity on $C, f g$: $D^{2} \longrightarrow \bar{E}_{+}^{n}-S$ is a continuous map such that $f g \mid B d D^{2}$ is a homeomorphism of BdD^{2} onto C. Thus C bounds a singular disk in $\bar{E}_{+}^{n}-S$ and hence C is null homotopic in $\bar{E}_{+}^{n}-S$.

It should be remarked that the properties of linked sets established in [24] and [9] will be heavily relied
upon in verifying the properties of the Cantor sets constructed. In a sense the Cantor set constructed will be a generalization of Antoine's construction and indeed Antoine's necklace is the Cantor set used in E^{3} to approximate the one sphere. The Cantor set to be constructed here is not, however, the same as that constructed by Blankinship in [9]. The Cantor sets of Blankinship could be used to "approximate" a surface homeomorphic to $S^{4} \mathrm{x}^{1} \mathrm{x}-\ldots \mathrm{x}^{2}\left(\mathrm{n}-2\right.$ factors) in E^{n}.

The Construction

Let $S!$ be the unit circle in the x_{1}, x_{2}-plane in E^{4}. Rotate $S^{1 .}$ about the 2-dimensional hyperplane defined by $x_{2}=$ $x_{4}=0$ to get a 2 -sphere in the x_{1}, x_{2}, x_{4}-hyperplane. Direct calculation using Lemma 3.3 shows that we get the 2-sphere whose equations are $x_{1}^{2}+x_{2}^{2}+x_{4}^{2}=1$ and $x_{3}=0$. This will be the 2 -sphere which is approximated by the Cantor set to be constructed.

Expand S^{1} into a solid torus T^{3} homeomorphic to $S^{1} X D^{2}$ where D^{2} is : the two dimensional disk, T^{3} lying in the $x_{1}, x_{2}, x_{3}-$ hyperplane. We shall use only the half of T^{3} with $x_{2} \geq 0$ and we shall refer to it as $\overline{\mathrm{T}}^{3}$.

In T^{3} embed four cyclically linked solid tori T_{1}^{3}, \ldots, T_{4}^{3} (figure 5) so that the diameter of T_{1}^{3} and T_{2}^{3} is less than $2 / 3$ the diameter of T^{3}. Rotate $\overline{\mathrm{T}}^{3}$ about the plane defined by $x_{2}=x_{4}=0$ to get T^{4} which is homeomorphic to $\varepsilon^{2} \times D^{2}$. In T^{4} the rotated images of $\overline{\mathrm{T}}_{1}^{3}=\mathrm{T}_{1}^{3} \cap \overline{\mathrm{~T}}_{2}^{3}, \overline{\mathrm{~T}}_{2}^{3}=\mathrm{T}_{2}^{3} \cap \overline{\mathrm{~T}}$ and $\overline{\mathrm{T}}_{3}^{3}$ will be T_{1}^{4}, T_{2}^{4} and T_{2}^{4} resyectively where T_{1}^{4} and T_{2}^{4} are

Figure 5.
homeomorphic to T^{4} and T_{3}^{4} is homeomorphic to $S^{\prime} x S^{\prime} \times D^{2}$. In $\mathrm{T}_{3}{ }^{4}$ construct a generalized Antoine's necklace \tilde{A}, as done by Blankinship [9]. Let g be the linear map of E^{4} which shrinks T^{4} to the size of T_{1}^{4} and T_{2}^{4} and leaves the center of the image at the origin. Let f_{1} and f_{2} be Euclidean motions such that $f_{1} g$ maps T^{4} onto T_{1}^{4} and $f_{2} g$ maps T^{4} onto T_{2}^{4}. Define $\mathrm{g}^{\mathrm{k}}=$ gogo...og (k factors $)$ and let $f_{k, i}=g^{k} f_{i}\left(g^{-l}\right)^{k}$. Now set

$$
\begin{aligned}
& A_{1}^{\prime}=\tilde{A}_{1} \\
& A_{2}^{\prime}=A_{1}^{\prime} \cup f_{0,1} g\left(\tilde{A}_{1}\right) \cup f_{0,2} g\left(\tilde{A}_{1}\right) \\
& A_{3}^{\prime}=A_{2}^{\prime} \cup f_{1,1} f_{0,1} g^{2}\left(\tilde{A}_{1}\right) \cup f_{1,2} f_{0,1} g^{2}\left(\tilde{A}_{1}\right) \cup f_{1,1} f_{0,2} g^{2}\left(\tilde{A}_{1}\right) \\
& A_{4}^{\prime}=A_{3}^{\prime} \cup f_{1, j, ~} f_{0,2} g^{2}(\vdots
\end{aligned}
$$

Define the sequence $\left\{A_{\alpha}: \alpha=1,2,3, \ldots\right\}$ by

$$
\begin{aligned}
& A_{0}=T^{4} \\
& A_{1}=A_{1}^{\prime} \cup T_{1}^{4} \cup T_{2}^{4} \\
& A_{2}=A_{2}^{\prime} \cup f_{o, 1} g_{1}\left(T_{1}^{4}\right) \cup f_{o, 2} g\left(T_{1}^{4}\right) \cup f_{o, 1} g\left(T_{2}^{4}\right) \cup f_{o, 2} g\left(T_{2}^{4}\right) \\
& A_{3}=A_{3}^{\prime} \cup\left(i, j, k=1,2 \quad f_{I, i} f_{o, j} g^{2}\left(T_{k}^{4}\right)\right)
\end{aligned}
$$

Finally define $A=\bigcap_{\alpha=1}^{\infty} A_{\alpha}$. A is the desired Cantor set. Note that A is the union of a countable union of linked generalized necklaces together with limit points. These limit points constitute a tame Cantor set in the x_{1}, x_{4}-hyperplane.

Compactness of A follows from compactness of A_{α} for each α and from the fact that $A_{\alpha} \subset A_{\alpha-1}$.

A is certainly 0 -dimensional at each point of ${ }_{i}=_{1} A_{i}$ and for each point x of $A-\bigcup_{i=1}^{\infty} A_{i}^{\prime}$ there is a neighborhood of x of the form $h_{1_{1}} h_{1_{2}}---h_{1_{k}}\left(T^{4}\right)$ which has diameter less than $(2 / 3)^{k}$ times the diameter of T^{4} and whose boundary does not intersect A. It follows that A is 0 -dimensional at each of its points; hence A is 0 -dimensional.

That A is perfect is not difficult to establish although
it is of no interest to us in the arguments to follow.
Let C be the circle in the x_{1}, x_{3}-plane which is the boundary of the intersection of this plane with T^{3}.

Lemma 3.5: C is not null homotopic in $E^{4}-A$.
Proof: By the theorems of [17] we see that C is not null homotopic in $\bar{E}^{3}-\stackrel{3}{=}_{1}^{3} T_{i}^{3}$. Lemma 3.4 then assures us that C is not null homotopic in $E^{4}-\underbrace{3}_{i=1} T_{i}{ }^{4}$.
Let $B_{1}{ }^{n}=T_{1}{ }^{n} \cup T_{2}{ }^{n} \cup T_{3}{ }^{n}$

$$
\begin{aligned}
& B_{2}^{n}=T_{1}^{n} \cup f_{0,1} g\left(B_{1}^{n}\right) \cup f_{0,2} g\left(B_{1}^{n}\right) \\
& B_{3}^{n}=T_{1}^{n} \cup\left({ }_{i=1,2^{f}}^{f_{0, i} g\left(T_{3}^{n}\right)\left(i \cup j=1,2^{f} f_{1,1} f_{0, j} g^{2}\left(B_{1}^{n}\right)\right)}\right.
\end{aligned}
$$

Set $B^{n}=\bigcap_{\alpha=1}^{\infty} B_{\alpha}{ }^{n}$. Note that B^{4} is like A except that the generalized Antoine's necklaces of Blankinship have not been substituted for the 4-tubes.

The sets $B_{\alpha}{ }^{4}, \alpha=1,2,3, \ldots$ and B^{4} can be constructed in yet another way: by rotating B_{α}^{3} and B^{3} about the x_{1}, x_{3}-plane. Now by Theorem 1 of [17] we see that C is not null homotopic in $\bar{E}^{3}-B_{\alpha}^{3}$ for each. It follows that C is not null homotopic in $\bar{E}^{3}-B^{3}$. For if it were then it would bound a singular disk D in $\bar{E}^{3}-B^{3}$. But such a disk would lie a positive distance from B^{3} hence it would not intersect $\bar{E}^{3}-B_{\alpha}^{3}$ for a sufficiently large α. This contradicts the fact that C is not null homotopic in $\bar{E}^{3}-B_{\alpha}{ }^{3}$. Applying Lemma 3.4 we see that C is not null homotopic in $E^{4}-B^{4}$.

The homotopy relations computed in [9] assure us that replacing $\mathrm{T}_{3}{ }^{4}$ in B^{4} by the generalized Antoine's necklace does not change the homotopic non-triviality of C in $E^{4}-B^{4}$. (This can be proven by an argument similar to that used in Lemma 3.10.)

Define:

$$
\begin{aligned}
& H_{1}=B_{1}^{4} \\
& H_{2}=\left(T_{3}^{4} \cap A\right) \cup\left(i=1,2^{f} \circ, i^{g}\right) \\
& H_{3}=\left(T _ { 3 } ^ { 4 } \cup \left(\cup_{i=1,2^{f}}^{\left.\left.f_{0, i} g\left(T_{3}^{4}\right)\right) \cap A\right) \cup\left(i, j,=1,2^{f} i, j f_{0,1} g^{2}\left(B_{1}^{4}\right)\right)}\right.\right.
\end{aligned}
$$

By repeated use of the above remark we can conclude that C is not null homotopic in $E^{4}-H_{\alpha}, \alpha=1,2,3, \ldots$.

Suppose now that C is null homotopic in $E^{4}-A$, i.e. that C bounds a singular disk D in $E^{4}-A$. Let the distance from D to A be greater than diam $T^{4} \cdot(2 / 3)^{k}$. Then D cannot intersect H_{k}, a contradiction. This proves the lemma.

Definition 3.2: Let $h: T^{4} \longrightarrow S^{2} \times D^{2}$ be a surjective homeomorphism $n=3,4$, let $A \subset T^{4}$ be the Cantor set constructed above and let of Int D^{2}. Then $h(A)$ will be said to approximate $S^{n} x$ \{o\} in $S^{n} x D^{2}$. $h(A)$ also approximates $S^{n} x\{0\}$ in $S^{n} x$ Int $D^{2}=S^{n} \times E^{2}$.

As an immediate consequence of the construction of approximating Cantor sets we get the following theorem.

Theorem 3.6: $S^{2} \times E^{2}$ contains a Cantor set which lies in no open 4-cell.

Proof: Let A approximate $S^{2} x$ \{0\} in $S^{2} \times D^{2}$. Then the one-sphere C which is the boundary of $\{p\} x D^{2}$ for $p \varepsilon S^{n}$ is not null homotopic in $\left(S^{2} \times D^{2}\right)$ - A, hence neither C not any of its homotopic images bounds a disk in the complement of A. Thus each parameter disk in $S^{2} \times D^{2}$ intersects A. Applying Theorem 3.1 we get the desired result.

Corollary 3.7: $S^{2} \times E^{2}$ is not O-invertible.
Bing [5] has given an example of a simple closed curve in $S^{1} \mathbf{x} E^{2}$ which bounds a 2-cell but lies in no 3-cell. We may now prove the following:

Theorem 3.8: There is a simple closed curve in $S^{2} x^{2}$ which bounds a disk but lies in no open 4 -cell.

Proof: Let A be a Cantor set in $S^{2} \times E^{2}$ approximating a parameter S^{2}. Using Theorem 2.8 construct a disk D^{2} whose boundary Contains A. Since A lies in no 4 cell C lies in no 4-cell.

The following theorem provides a negative answer to the question which was the genesis of this paper, namely, is $S^{2} \times S^{2} 0$-invertible?

Theorem 3.9: In the 4 -manifold $S^{2} \times S^{2}$ there exists a Cantor set which lies in no open 4 -cell.

Proof: Let $S_{1}{ }^{2}$ and $S_{2}{ }^{2}$ be 2 -spheres, let K be an annular region about the equator of S_{2}^{2}, let D_{1} and D_{2} be the closures of the complementary comains of K and let S_{1} and S_{2} be the boundaries of D_{1} and D_{2} respectively. Let A_{1} be a Cantor set in $S_{1}^{2} \times D_{1}$ which approximates $S_{1}{ }^{2} x\left\{p_{1}\right\}, p_{1} \varepsilon$ Int D_{1}, and let A_{2} be a Cantor set in $S_{1}^{2} \times D_{2}$ which approximates $S_{1}^{2} \times\left\{p_{2}\right\}, p_{2} \varepsilon$ Int D_{2}. Finally let $A \subset S_{1}{ }^{2} X_{2}{ }^{2}$ be given by $A=A_{1} \cup A_{2}$. We shall show that A lies in no open 4 -cell in $S_{1}{ }^{2} \mathrm{X}_{2}{ }^{2}$. As a first step in establishing this we need the following lemmas.

Lemma 3.10: Let $\mathrm{f}: \mathrm{D}^{2} \longrightarrow \mathrm{M}$ be a continuous map of a disk D^{2} into a space M and let C be a simple closed curve in D^{2} bounding the disk B in D^{2}. If $f(C)$ is null homotopic in subspace N of M then there is a map $g: D^{2} \longrightarrow M$ such that $g(x)=f(x)$ for $x \in D^{2}$ - Int B and $g(B) \subset N$.

Proof: Assume that $\mathrm{f} \mid \mathrm{C}: \mathrm{C} \rightarrow \mathrm{N}$ is null homotopic. By a well known result of Borsuk (see for example [23]) f|C can
be extended to a map f^{\prime} on $p C$, the join of C with a point, so that $\mathrm{f}^{\prime}(\mathrm{pC}) \mathrm{CN}$. Since such a join is homeomorphic to B we define $g: D^{2} \longrightarrow M$ to be

$$
g(x)=\left[\begin{array}{l}
f(x) \text { for } x\left(D^{2}-\text { Int } B\right) \\
f^{\prime}(x) \text { for } x B
\end{array}\right.
$$

Since the two definitions agree on C, g is continuous. Lemma 3.11: The simple closed curve $C=\{q\} x S_{1}$, $\mathrm{q}_{\varepsilon \mathrm{S}_{1}}{ }^{2}$ is not null homotopic in $\left(S_{1}{ }^{2} \mathrm{x}_{2}{ }^{2}\right)$ - A.

Proof: If C were null homotopic in $\left(S_{1}{ }^{2} \times S_{2}{ }^{2}\right)-A$ then C rold bound a singular disk D in $S_{1}{ }^{2} \times S_{2}{ }^{2}-A$. Give $\mathrm{S}_{1}{ }^{2} \times \mathrm{S}_{2}{ }^{2}$ a polyhedral structure so that $\mathrm{S}_{1}{ }^{2} \times \mathrm{D}_{1}$, $S_{1}^{2} \times D_{2}$ and $S_{1}^{2} \times K$ are polyhedral. Let $d\left(A, D^{d}\right)>\Sigma$ and using the analog of Lemma 2.4 for manifolds let N_{1} and N_{2} be polyhedral neighborhoods of A_{1} and A_{2} respectively such that $d\left(x, A_{1}\right)<\Sigma$ for each $x \in N_{1}$ and $d\left(x, A_{2}\right)<\Sigma$ for each $x \in N_{2}$. Then $S_{1}^{2} \times D_{1}-\operatorname{Int} N_{1}$ and $\left[\left(S_{1}^{2} \times D_{2}\right)-\operatorname{Int}\left(N_{2}\right)\right] U\left(S_{1}^{2} \times K I\right.$ are polyhedra in which C fails to be null homotopic. An application of the simplicial approximation theorem produces a singular polyhedral disk in $S_{1}^{2} \times S_{2}^{\prime}-\operatorname{Int}\left(N_{1} \cup N_{2}\right)$ whose boundary is C, i.e. we get a simplicial mapping s of a polyhedral disk D into $S_{1}^{2} \mathrm{x}_{2}^{2}$ - Int $\left(N_{1} \cup N_{2}\right)$ such that $\mathrm{s}(\mathrm{Bd} \mathrm{D})=\mathrm{C} . \operatorname{Let} \mathrm{C}_{1}, \mathrm{C}_{2},: . ., C_{K}$ be polyhedral simple closed curves in D which bound disks B_{1}, B_{2}, . . . , B_{k} in D respectively such that ${\underset{k}{1}}_{C_{1}}^{C_{k}} \mathrm{Bds}^{-1}\left(\mathrm{~s}(\mathrm{D}) \cap\left(S_{1}^{2} \times D_{2}\right)\right)$ and s^{-1}
 k, $s\left(C_{i}\right)$ is homotopically trivial in $S_{1}{ }^{2} x k$ then k
applications of Lemma 3.9 produces a singular disk in $\left(S_{1}^{2} \times D_{1} \cup S_{1}^{2} \times \mathrm{K}\right)-N_{1}$ whose boundary is C, contradicting known properties of A. Assume that for some 1 , say $1=j$, $s\left(C_{j}\right)$ is not null homotopic in $S_{1}{ }^{2} \mathrm{xK}$. Then $s\left(C_{j}\right)$ is not null homotopic in $S_{1}^{2} \times D_{2}$ - Int N_{2}. Let $C_{j, 1}, C_{j, 2}$, . ., $C_{j, 1}$ be polyhedral simple closed curves in B_{j} which bound disks $B_{j, 1}, B_{j, 2}, \ldots$. , $B_{j, 1}$ in B_{j} respectively such that $C_{j, 1} \subset \operatorname{Bd}\left[S^{-1}\left(s_{l}\left(\dot{B}_{j}\right) \cap\left(S_{.}^{2} \times D_{1}\right)\right)\right]$ and $s^{-1}\left(s\left(B_{j}\right)\right.$ Int
$\left.\left(S_{1}^{2} \times D_{2}\right)\right) C_{i=1}^{\ell} B_{j, 1}$. If for each $1=1,2 \ldots, l, s\left(C_{j, 1}\right)$ is null homotopic in $S_{1}{ }^{2} x K$ then we have a contradiction. If some $C_{j, i}$ is not null homotopic in $S_{1}{ }^{2} \times D$ we continue as before using $C_{j, i}$ and $B_{j, i}$. This sets up an infinite regression, which is impossible due to the polyhedral structure of D. Hence we have a contradiction. This completes the proof of the lemma.

Now suppose $\mathrm{ACS}_{1}{ }^{2} \mathrm{x} \mathrm{S}_{2}{ }^{2}$ were contained in an open 4-cell. It is an easy exercise to show that A would lit in a collared 4 -cell C^{4} in $S_{1}{ }^{2} \times S_{2}{ }^{2}$. If we could find a curve C^{\prime} in $S_{1}{ }^{2} \times K-C^{4}$ which is not null homotopic in $S_{1}{ }^{2} \times K$ then we would have a contradiction. For we would have a curve C^{\prime} in $S_{1}{ }^{2} \mathrm{X} \mathrm{S}_{2}^{2}$ - A which is homotopic to C or a multiple of C in $S_{1}{ }^{2} \mathrm{x}_{2}{ }^{2}-\mathrm{A}:$ but since C^{\prime} would lie in the complement of $C^{4} C^{\prime}$ would be homotopically trivial in the complement of C^{4}. Hence C^{\prime} would be homotopically trivial in the complement of A. We now proceed to show that $\left(S_{1}^{2} X K\right)-C^{4}$ does, indeed, contain a closed curve which is not homotopically trivial in $S_{1}^{2} \times k$.

Let S^{2} be a polyhedral 2-sphere, let f be a homeomorphism of S^{2} onto a curved parameter sphere S^{\prime} in $S_{1}{ }^{2} \times S_{2}{ }^{2}$ $-C^{4}$ and let $s: S^{2} \longrightarrow\left(S_{1}^{2} \times S_{2}^{2}\right)-C^{4}$ be a simplicial map which is homotopic to f.

Lemma 3.12: The l-skeleton of $s\left(S^{2}\right) \cap\left(S_{1}^{2} \mathrm{x} \mathrm{K}_{1}\right)$ contains a closed curve which is not null homotopic in $S_{1}^{2} \times S_{1}$.

Proof: Suppose to the contrary that each closed curve in the l-skeleton of $s\left(S^{2}\right) \cap\left(S^{2} \mathrm{x} K\right)$) is null homotopic in $S_{1}^{2} x$ K. Let U_{1} be a component of $s^{-1}\left(s\left(S^{2}\right) \cap\right.$ (Int $\left(S_{1}^{2} x\right.$ $\left.D_{1}\right)$) and let C_{1} be a simple closed curve in BdU_{1} such that U_{1} lies entirely in one component B_{11} of $S^{2}-C_{1}$. Let B_{12} be the other component of $S^{2}-C_{1}$. Since $s\left(C_{1}\right)$ is homotopically trivial in $S_{1}^{2} \times$ K there exist simplicial maps s_{11} and s_{12} of S^{2} into $S_{1}^{2} \mathrm{x}_{2}^{2}$ such that $\mathrm{s}_{11}\left(\mathrm{~B}_{11}\right) \subset \mathrm{S}_{1}^{2} \times \mathrm{K}, \mathrm{s}_{11} \mid\left(\mathrm{B}_{12} \cup \mathrm{C}_{1}\right)=$ $s\left|\left(B_{12} \cup C_{1}\right)=s\right|\left(B_{12} \cup C_{1}\right), s_{12}\left(B_{12}\right) C S_{1}^{2} \times \mathrm{K}$ and $s_{12}\left(B_{11} \cup C_{1}\right)=s \mid\left(B_{11} \cup C_{1}\right.$

Let $\pi_{2}\left(S_{1}{ }^{2} \times S_{2}{ }^{2}\right)$ be the 2-dimensional homotopy group of $S_{1}{ }^{2} \times S_{2}^{2}$. Let $t: S^{2} \longrightarrow S_{1}^{2} \mathrm{x}\{\mathrm{p}\}, \mathrm{pes}_{2}{ }^{2}$, be a homeomorphism. Then $\pi_{2}\left(S_{1}{ }^{2} \mathrm{x}_{2}{ }^{2}\right)$ is the abelian group generated by [s] and [t], where [] denotes homotopy class. Since [s ${ }_{11}$]* $\left[s_{12}\right]=[s]$ (* is homotopy juxtaposition) it follows that either $\left[s_{11}\right]$ or $\left[s_{12}\right]$ contains a non-zero multiple of $[s]$, i.e. either $\left[s_{11}\right]$ or $\left[s_{12}\right]$ can be written as $p[t] * q[s]$ where $q \neq 0, p$ and q integers. If $\left[s_{11}\right]$ contains a non-zero multiple of $[s]$ we continue as above with s_{11} and another component U_{2} of $s_{11}^{-1}\left(s_{11}\left(S^{2}\right)\right.$ (Int $\left.S_{1}{ }^{2} \times \mathrm{D}_{1}\right)$). Notice that $\mathrm{s}_{11}\left(\mathrm{~B}_{11}\right) \subset \mathrm{S}_{1}{ }^{2} \mathrm{xK}$. If [$\left.\mathrm{s}_{11}\right]$
contains no non-zero multiple of [s] we proceed as follows: let U_{2} be a component of $s_{12}^{-1}\left(s_{12}\left(S^{2}\right) \cap \operatorname{Int}\left(S_{1}^{2} \times D_{2}\right)\right)$, let C_{2} be a simple closed curve in $B d U_{2}$ such that U_{2} lies entirely in one component B_{21} of $S^{2}-C_{2}$, and let B_{22} be the other component of $s^{2}-C_{2}$. We should note that $C_{2} C$ \bar{B}_{11} and that $s_{12}\left(\bar{B}_{12}\right) \subset s_{1}^{2} \times \mathrm{K}$. Since $\mathrm{s}_{12}\left(\mathrm{C}_{2}\right)=\mathrm{s}\left(\mathrm{C}_{2}\right) \mathrm{C}$ $\mathrm{S}_{1}{ }^{2} \mathrm{xK}, \mathrm{s}_{12}\left(\mathrm{C}_{2}\right)$ is homotopically trivial in $\mathrm{S}_{1}{ }^{2} \mathrm{xK}$. Hence there exist simplicial maps s_{21} and s_{22} of S^{2} into $\mathrm{S}_{1}^{2} \mathrm{x}_{2}^{2}$ such that $\mathrm{s}_{21}\left(\mathrm{~B}_{21}\right) \subset \mathrm{S}_{1}^{2} \mathrm{xK}, \mathrm{s}_{21}\left(\mathrm{~B}_{22} \cup \mathrm{C}_{2}\right)=$ $s_{12} \mid\left(B_{22} \cup C_{2}\right)$. Thus we have $\left[s_{21}\right] *\left[s_{22}\right]=\left[s_{12}\right]$. Hence either $\left[s_{21}\right]$ or $\left[s_{22}\right]$ is a non-zero multiple of $\left[s_{12}\right]$. Continuing these arguments in a finite number of such steps we must arrive at a simplicial map $\mathrm{s}_{\mathrm{k}, 1}: \mathrm{S}^{2} \longrightarrow \mathrm{~S}_{1}{ }^{2} \mathrm{x}_{2}{ }^{2}$ which is a non-zero multiple of $[s]$ and $s_{k, 1}\left(S^{2}\right)$ is a subset of either $S_{1}^{2} x\left(D_{1} \cup K\right)$ or $S_{1}^{2} x\left(S_{2} \cup K\right)$. In either case we have a contradiction because either of these spaces can be continuously deformed onto $S_{1}^{2} x$ ip\}, p a point of D_{1} or D_{2}, hence any map of S^{2} into one of these subspaces is homotopic to a multiple of [t] only.

This completes the proof of Theorem 3.9.
We should observe that the Cantor set A defined in the proof of the previous theorem may be considered to lie in one of the half spaces $S_{1}{ }^{2} \times D_{1}$. To verify this we need only note that there is a parameter 2 -sphere in $S_{1}{ }^{2} \mathrm{X}_{2}{ }^{2}$ which does not intersect A, so A is a subset of $S_{1}^{2} \times\left(S_{2}^{2}-p\right)=S_{1}^{2} \times E^{2}$. It is easily seen that there is a homeomorphism mapping A into $S_{1}{ }^{2} \times D_{1}$.

Theorem 3.14: Let A be a Compact set in $\operatorname{Int}\left(S^{k} \times D^{m}\right)$, let S be a parameter k-sphere $\ln S^{k} \times D^{m}$ and let h be a nomeomorphism of $S^{k} \times D^{m}$ into an n-manifold $M^{n}, n=k+m$. If $h(S)$ lies in an open n-cell in M^{n} then $h(A)$ lies in an open n-cell in M^{n}.

Proof: Let C^{n} be an open n-cell containing S. Then $h^{-1}\left(C^{n}\right)$ is a neighborhood of S in $S^{k} x D^{m}$. There exists Σ. 0 such that if $d(x, S)<\varepsilon$ then $x \varepsilon h^{-1}\left(C^{n}\right)$. Let $p: S^{k} x$ $D^{m} \longrightarrow D^{m}$ be the natural projection and let $p(S)=x \varepsilon D^{m}$. Let B be an m-cell in Int D^{m} such that $p(A) \subset B$. There is a homeomorphism g_{1} of D^{m} onto itself such that $g_{1}(B)$ is in an Σ -neighborhood of x and $g_{1} \mid B d D^{m}=i d$. Let (x, y) be the coordinates of a point of $S^{k} \times D^{m}$. Define the homeomorphism $g: S^{k} \times D^{m} \longrightarrow S^{k} \times D^{m}$ by $g((x, y))=\left(x, g_{1}(y)\right)$. We can easily see that $g(A) \subset h^{-1}\left(C^{n}\right)$ and $g \mid B d\left(S^{k} \times D^{m}\right)=1 d$. Finally we define the surjective homeomorphism $f: M^{n} \longrightarrow M^{n}$ by

$$
f(t)=\left\{\begin{array}{l}
h g^{-1}(t) \text { for } t \& h\left(S^{k} \times D^{m}\right) \\
t \text { otherwise }
\end{array}\right.
$$

f maps $h(A)$ into C^{n} : so $h^{-1}\left(C^{n}\right)$ is an n-cell containing A.
Corollary 3.15: Let A be a Cantor set in $S^{k} \times D^{m}$, let M^{n} be an n-manifold with or without boundary, $n=k+m$, and let $h: S^{k} \times D^{m} \longrightarrow M^{n}$ be a homeomorphism. If $A \subset$ Int $\left(S^{k} \times D^{m}\right)$ is a Cantor set and if $h\left(S^{k} x\{p\}\right), p \varepsilon D^{m}$, lies in an open n-cell in M^{n} then A lies in an open n-cell.

Although it appears likely the converse of the above corollary has not yet been established for $S^{2} \times S^{2}$. A proof
of this theorem would seem to depend on establishing the analogs of Lemmas 3.11 and 3.12 for non-trivial embeddings of $s^{2} \times D^{2}$.

Theorem 3.9 could easily be generalized to $S^{k} \times S^{2}$ if one could construct a Cantor set in $S^{k} \times D^{2}$ with properties analogous to those of the Cantor set constructed in $S^{2} \times D^{2}$. The proofs of the remaining lemmas do not depend on the dimension of S^{k} and could easily be generalized. I strongly suspect that the Cantor set of Blankinship could be used for this purpose in the following way: let $S_{1}^{l} \mathrm{x}_{2}{ }^{1} \mathrm{x} .$. $\mathrm{x} \mathrm{S}_{\mathrm{k}}{ }^{l}$ be the Cartesian product of k l-spheres where each lsphere is parameterized by the real numbers modulo 2π, let $\mathrm{f}^{\prime}: \mathrm{S}_{1}{ }^{l} \times \mathrm{S}_{2}{ }^{1} \mathrm{x} \cdot . \mathrm{X}_{\mathrm{k}}{ }^{l} \longrightarrow \mathrm{~S}^{k}$ be the map defined by $f^{\prime}\left(\theta_{1}, \theta_{2}, . ., \theta_{k}\right)=x \varepsilon S^{k}$ where x is the point on S^{k} with polar coordinates $\theta_{1}, \theta_{2}, . . ., \theta_{k}$ and let $\mathrm{f}: \mathrm{S}_{1}{ }^{1} \mathrm{x}$ $S_{2}^{l} x . . . S_{k}{ }^{l} \times D^{2} \longrightarrow S^{k} \times D^{2}$ be the natural extension of f^{\prime}. It is not difficult to see that if A is the Cantor set of Blankinship in $S_{1}^{l} \mathrm{x}_{2}{ }^{1} \mathrm{x} \cdot \mathrm{x}_{\mathrm{k}}{ }^{1} \times \mathrm{D}^{2}$ then $\mathrm{f}(\mathrm{A}$) is a Cantor set in $S^{k} \times D^{2}$. The generalization of Theorem 3.9 then depends on proving that $f(A)$ has the desired properties in $S^{k} \times D^{2}$.

The foregoing results lead quite naturally to another conjecture. If one can approximate a k-sphere in a campact, piecewise linear n-manifold $M^{n}, n \geq k+2$, then why not approximate the k-skeleton of M^{n} by linking many Cantor sets together? If it could be shown that the k-skeleton lies in an
open n-cell iff the Cantor set does then, by a theorem of Stallings [26], M^{n} is the n-sphere, $n>2$. Thus we are led to the following:

Conjecture: The only compact, piecewise linear nmanifold, $n>2$, which is 0 -invertible is the n-sphere.

A proof of this conjecture would lead to a generalization of the characterization by Bing [6] of the 3-sphere, namely: If M^{n} is a compact piecewise linear n-manifold such that each simple closed curve in M^{n} lies in an open $n-c e l l$ then M^{n} is an n-sphere. Bing's result was originally proposed as a weakened form of the Poincare conjecture for 3-manifolds. If one looks at the above conjecture from this point of view it is indeed surprising!

BIBLIOGRAPHY

1. J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. of Nat. Acad. of Sciences, U.S.A., 10 (1924), pp. 8-10.
2. J. W. Alexander, Remarks on a point set constructed by Antoine, Proc. of Nat. Acad. of Sciences, U.S.A., 10 (1924), pp. 10-12.
3. L. Antoine, Sur l'homeomorphisme de deux figures et de leurs voisinages, J. Math. Pures Appl., 4 (1921), pp. 221-325.
4. E. Artin, Zur Isotopie zweidimensionaler Flachen im R_{4}, Abhandlungen aus dem Math. Seminar, Hamburg IV (1926), pp. 174-177.
5. E. Artin and R. H. Fox, Some wild cells and spheres in three dimensional space, Ann. of Math., (2) 49 (1948), pp. 979-990.
6. R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S^{3}, Ann. of Math., 68 (1958), pp. 17-37.
7. R. H. Bing, Tame Cantor sets in E^{3}, Pacific J. of Math., ll (2) (1961), pp. 435-446.
8. R. H. Bing, Stable Homeomorphisms of E^{5} can be approximated by piecewise linear ones, Amer. Math. Soc. Notices, 10 no. 7 (1963), p. 666.
9. W. A. Blankinship, Generalization of a construction by Antoine, Ann. of Math, 53 (1951), pp. 276-297.
10. M. Brown, A proof of the Generalized Schoenflies Theorem, Bull. Amer. Math. Soc., 66 (1960), pp. 74-76.
11. M. Brown, Locally flat embeddings of topological manifolds, Topology of 3-Manifolds and Related Topics, M. K. Fort Jr. editor, Prentice-Hall.
12. J. C. Cantrell, Almost locally flat embeddings of S^{n-1} in S^{n}, Bull. Amer. Math. Soc., 69 (1963), pp. 716-718.
13. J. C. Cantrell, Non-flat embeddings of S^{n-1} in S^{n}, Mich. Math. J., 10 (1963), pp. 359-362.
14. J. C. Cantrell, n-frames in Euclidean k-space, mimeographed notes.
15. J. C. Cantrell, Some relations between the annulus conjecture and the union of flat cells theorems, mimeographed notes.
16. J. C. Cantrell and C. H. Edwards, Jr., Almost locaily polyhedral curves in Euclidean n-space, Trans. of Amer. Math. Soc., 107 (1963), pp. 13-19.
17. R. P. Coelho, On the groups of certain inkages, Portugaliae Math., 6 (1947), pp. 57-65.
18. E. H. Connell, Stable homeomorphisms can be approximated by piecewise linear ones, Bull. Amer. Math. Soc., 69 (1963), pp. 87-90.
19. P. H. Doyle and J. G. Hocking, A characterization of Euclidean space, Mich. Math. J., 7 (1960), pp. 199-200.
20. P. H. Doyle and J. G. Hocking, Invertible spaces, Amer. Math. Monthly, 68 (1961), pp. 959-965.
21. P. H. Doyle and J. G. Hocking, Dimensional invertibility, Pacific: J. of Math., 12 (1962), pp. 1235-1240.
22. H. Gluck, Unknotting S^{1} in S^{4}, Bull. Amer. Math. Soc., 69 (1963), pp. 91-94.
23. J. G. Hocking and G. S. Young, Topology, Reading, Massachusetts, 1961.
24. A. Kirkor, Wild 0 -dimensional sets and the fundamental group, Fund. Math., 45 (1958), pp. 228-236.
25. R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Colloquium Publications, Vol. XIII.
26. E. C. Zeeman, The Poincare conjecture for $n \geq 5$, Topology of 3-manifolds and Related Topics, PrenticeHall, pp. 199-204.
