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ABSTRACT

DISTRIHJTED PARAMETER SYSTEM MODELS

AND DISCRETE APPROJGIMATIONS

by Carl Henry Osterbrock

In recent years there have been rapid advances in both research

and exposition in the analysis of lumped parameter physical systems.

These advances have been the result, to a large degree, of the develop-

ment of a formal abstract structure of lumped parameter system theory.

This structure is based on the identification of the kinds of variables

involved in the analysis of a physical system and on a separation of

system equations into topological equations showing how components are

interconnected, and canponent equations which show the properties of

the components .

This thesis is concerned with the developnent of a structure for

distributed parameter system theory similar to that of lumped parameter

system theory, and a method for forming lumped approximations of dis-

tributed parameter mysical systems. The structure is shown to be

directly parallel to that of lumped parameter system theory, with the

same separation of system equations into field equations, which

correspond to the topological equations of the lumped parameter analysis,

and constitutive equations, which correspond to the component equations.





Carl Henry Osterbrock

Because of this close association between lumped and distributed

parameter system analysis, it is possible to form discrete approxima-

tions of distributed parameter systems which are lumped system models

of exactly the kind involved in the abstract structure of lumped

parameter system theory.

The mathematical tools used in the development are those of

vector differential calculus, essentially the mathematics generally

referred to as vector field theory. Examples of system models and

discrete approximations of these models are exhibited for electro-

magnetic fields, diffusion processes, fluid mechanics, ard magneto-

hydrodynam10 s .
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1. INTRODUCTION

The study of distributed parameter systems is more than two

hundred years old, and many of the important and basic contributions

to this study were made in the seventeenth and eighteenth centuries.

Early and lasting contributions were made by such men as Euler (1707-

83), Bernoulli (1700-83), d'Alembert (1717-83), Stokes (1819-1903),

Helmholtz (1821-9h) and Maxwell (1831-79). The mathematics used to

describe distributed parameter systems, essentially vector field

theory, is also old and well developed(1). However, very little

work has been done in developing methods of analysis which are

canmon to all kinds of systems. Such subjects as electromagnetic

fields, fluid mechanics, diffusion of particles, and conduction of

heat are commonly treated in separate books as separate subjects.

One method of analysis which has attracted much attention in

recent years is the approximation of a distributed parameter system

by a lumped parameter system, followed by the analysis of the simpler

lumped system by well known.methods. There is apparently no unifying

principle on which these methods are based. In some cases they

involve the roundabout procedure of obtaining partial differential

equations by a limiting process applied to a set of ordinary diff-

erential equations, followed by an approximation of the partial

differential equations by a set of ordinary differential equations(2).

The work of Gabriel Kron in this area has been directed toward

replacing a distributed parameter system by an analogous lumped

parameter electric network, and many results of this kind have been

published with very little justification(3’h’5).

l
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The study of lumped parameter systems is certainly as old as

the study of distributed parameter systems, and credit should prob-

ably be given to Kirchhoff (182h-87) for the origination of lumped

parameter system analysis as a formal area of study. Distributed

parameter systems are more fundamental than lumped parameter systems,

in the sense that every lumped system model is an analyst's approxi-

mation of a physical system that actually has distributed effects.

However, the analysis of lumped parameter systems is highly developed,

and the methods of analysis developed by Trent(6) and Koenig and

Blackwell(7) have been shown to have broad application and great

practical usefulness.

There are two important characteristics of the methods of

Trent and Koenig and Blackwell which can perhaps be claimed as reasons

for the success of the methods. One is that there is a careful

separation of the derivation of equations describing a physical sys-

tem from the solution of these equations. Another is that topo-

logical equations, which show how components are interconnected, are

carefully separated from component or constitutive equations, which

have nothing to do with the geometry of the system. A measure of the

success of topological methods is tne fact that they can be applied

to a wide variety of different kinds of physical systems including

mixed systems such as electromechanical devices.

The first objective of this thesis is the description of a

structure for distributed parameter system theory, similar to the

structure devised by Trent and Koenig and Blackwell for lumped

parameter system theory. Such a structure leads naturally to uni-
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'fied methods of formulating the equations which describe a broad

class of distributed parameter systems. The second major objective

of the thesis is the development of a systematic method for forming

an approximate discrete model of a distributed parameter system.

This involves dividing the system into a set of components, deriving

topological equations which describe how the components are inter-

connected, and deriving approximate component equations which charac-

terize the components. The two objectives of the thesis are closely

interrelated, because the discrete model should represent a true

approximation of the system equations. One motivation for developing

the discrete approximation is that the methods of lumped parameter

system analysis could be used to solve distributed parameter problems

if the equations describing the discrete model are properly formulated.

Digital computer programs for the solution of lumped parameter system

equations could then be used for distributed parameter problems.

Section 2 of the thesis is a brief description of the struc-

ture of lumped parameter system theory, as devised by Trent, Koenig

and Blackwell, and Seshu and Reed(8). Section 3 describes a struc-

ture for distributed parameter system theory, which is closely

parallel to the lumped parameter structure. The close relationship

between the two is emphasized by similar numbering of subsections

and equations in Sections 2 and 3. Section h of the thesis presents

a method for forming a discrete approximation of the distributed

parameter system equations, and Section 5 deals with four specific

examples of the general concepts discussed in the earlier sections.





2. THE STRUCTURE OF LUMPED PARAMETER SYSTEM THEORY

2.1 Introduction
 

The analysis of a physical system is a mental process used by

the analyst to help himself in thinking about the performance of the

system. The analysis consists of two major parts, formulation of

equations describing the system and solution of the equations. The

first of these is more important than the second, in that a correct

solution of equations is useless if they are improperly formulated.

Lumped parameter system theory can be claimed to be a fundamental

(9)
engineering discipline , in the sense that it includes a very

precise method of formulating the equations which describe a broad

class of physical systems, and that the resulting equations fit into

a very orderly structure.

(10)
Trent suggests that four steps are used by an analyst in

the mental process of formulating the equations that describe a

lumped parameter physical system: identification of physical effects,

choice of variables, identification of components, and derivation of

equations. Identification of pmysical effects essentially amounts
 

to the elimination of physical effects which are not to be considered

in the analysis. A complete analysis of a physical system should

include all known phenomena, such as electrical, magnetic, gravita-

tional and thermal effects. However, in some situations some physi-

cal phenomena are known to be completely unrelated to the problem at

hand and can be ignored; in other situations an analyst chooses to

ignore some physical effects on the basis of simplicity or conve-

nience. For example, in electric network analysis it seems quite

h
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natural to disguise the magnetic effects in inductors and the thermal

effects in resistors with terminal equations involving only electri-

cal variables. Identification of physical effects can be accomplished

by naming forms in which energy occurs; an operational method is to

name the kinds of meters involved in measurements on the physical

system.

Success in the analysis of a lumped physical system depends

upon the ability of the analyst to make a choice of variables, for
 

each physical effect to be considered, of two different kinds. One

kind of variable, called an across variable, is associated with two

points or regions of space. A real or conceptual measurement of an

across variable involves connecting a meter across (or "in parallel

with") these two points and does not involve an internal change in

the component or system under analysis. The other kind of variable,

called a through variable, is associated with a single point or a

single surface. Measurement of a through variable involves opening

or cutting the system at this point or surface and inserting a meter

in series with the system there. Success of the analysis furthermore

depends on the identification of particular kinds of through and

across variables, which are here called convenient variables. A

convenient across variable is one that satisfies a circuit equation

requiring that the sum of across variables around a closed path is

zero. A convenient through variable is one that satisfies an inci-

dence equation requiring that the sum of through variables incident

at a point is zero.

An analyst makes a major decision regarding the kind of informa-
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tion he seeks when he subdivides (perhaps mentally) a physical

system into parts, or makes an identification of components. The
 

analysis can provide no information regarding the internal behavior

of a component, but only information about behavior of variables at

the terminals of components. Part of the process of choosing com-

ponents is the identification of terminals on the components.

Derivation of equations describing a lumped physical system
 

involves the association of a linear graph with the system. Then the

topological characteristics of the graph, and of the system, are

expressed in terms of incidence (vertex, outset, seg, continuity or

equilibrium) equations in the through variables and circuit (mesh,

loop or compatibility) equations in the across variables. Matters

regarding the number of these topological equations that can be

written, their form, and their independence are a well known part of

linear graph theory. Constitutive equations (or component or

terminal equations) interrelate through and across variables for each

canponent. These equations are derived from existing fundamental

knowledge of physical principles, from laboratory measurements, or

from assumptions and inferences. An important aspect of the

separation of topological and constitutive equations is that approx-

imations and idealizations are isolated in the constitutive equations

rather than being involved in all of the system equations. Further-

more a nonlinear system is characterized by nonlinear constitutive

equations; the topological equations are always linear algebraic

equations.

The orderly formulation technique available in the analysis of
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lumped parameter systems leads to a very orderly structure of lumped

parameter system theory. This structure embodies the basic variables

which are necessary for the analysis of any system, a set of

postulates which form the basis for the analysis of a broad class of

physical systems, a set of important theorems regarding the nature

of the equations which can be formulated, and fermal procedures by

which the sets of equations describing a lumped parameter system can

be simplified. This structure is outlined in the following sub-

sections of this section, in essentially the form given by Trent,

Koenig and Blackwell, and Seshu and Reed. All statements in this

summary of the structure of lumped parameter system theory are

directed toward the special case of a physical system associated with

a connected linear graph. In most cases an obvious generalization

extends the statements to systems associated with graphs that are not

connected.

2.2 The Undefined Variables
 

Consider a lumped parameter physical system which is

isomorphic(6) to a linear graph having v vertices and e edges. The

isomorphism implies that there are associated with each edge of the

graph two variables, a through variable and an across variable.

These are the basic undefined variables in terms of which the analysis

is carried out: two sets of e real-valued functions of the real

variable t, time. The exl column matrix of through variables is

designated Y and the exl column matrix of across variables is

designated X.
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2.3 Characterization of’Multi-terminal Components

The terminal behavior of a two-terminal component is charac-

terized by one pair of physical measurements, and the variables

defined by these measurements are the two variables associated with

the linear graph edge corresponding to the component. For a

component with more than two terminals, not all of the possible pairs

of‘measurements are necessary to completely characterize the behavior

of the component. It can be shown(11) that at most, the set of

through and across variables defined by a set of n-l edges which form

a tree of the connected graph associated with an n-terminal electrical

component are independent. This leads to the following first

postulate in the structure of lumped parameter system theory.

Postulate 2.3 Let G be the n-vertex graph defined by
 

all possible pairs of two-terminal measurements on an

neterminal component, and let T be any tree of G. Then

the n-l pairs of measurements of through and across

variables, associated with the edges of T, are sufficient

to mathematically describe the terminal characteristics

of the n-terminal component.

2.h The Incidence Postulate

Electric currents satisfy Kirchhoff's current law, forces

incident at a point sum to zero, and other kinds of through variables

satisfy similar physical laws. These are embodied in the second

postulate of lumped parameter system theory.

Postulate 2.h Let Y be the exl column matrix of through
 

variables associated with a linear graph of e edges and

v vertices. Then

AY - 0, (2.14.1)
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where A is any (v-l)xe basis incidence matrix of the graph,

with its rows arranged in the same order as the columns of Y.

2.5 The Circuit Postulate
 

As in section 2.h, the circuit postulate is a generalization

of Kirchhoff's voltage law for electric networks, "compatibility"

rules that require that relative displacements and velocities sum to

zero around closed paths, and similar physical laws for other kinds

of acrosa variable 3 .

Postulate 2.5 Let X be the exl column matrix of across
 

variables associated with a linear graph of e edges and

v verticeso Then

Bx - 0, (2.5.1)

where B is any (e-v+1)xe basis circuit matrix of the graph,

with its rows arranged in the same order as the columns

of X.

2.6 Orthogonality
 

.The incidence and circuit matrices A and B satisfy the follow-

ing fundamental theorem<12) which, along with the Postulates 2.h and

2.5, leads to many important properties of the variables X and Y.

Theorem 2.6 Let A be any incidence matrix and B any
 

circuit matrix of the same linear graph, with their

colmnns arranged in the same order. Then

ABt - BAt - 0. (2.6.1)

2.? Auxiliary Variables
 

The well known "mesh" and "node" methods of formulation of

system equations can be justified rigorously on the basis of the
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existence of auxiliary variables. The existence of these variables

is shown by the following two theorems<13), which depend for their

proof on the Postulates 2.h and 2.5 and on Theorem 2.6.

Theorem 2.7,}_ For a graph of e edges and v vertices,
 

there exists a (e-v+l)xl column matrix of variables Ym

such that

r - strm, (2.7.1)

where Y is the exl column matrix of through variables

associated with the graph and B is any basis circuit matrix

of the graph.

Theorem 2.7.2 For a graph of e edges and v vertices,
 

there exists a (v-l)xl column matrix of variables Xn such

that

t

X - A X“, (2.7.2)

where X is the exl column matrix of across variables

associated with the graph and A is any basis incidence

matrix of the graph.

The auxiliary variables of the matrix Yfi are frequently referred to

as mesh through variables, and those of Xn as node across variables.

2.8 Conservation of Enerfl
 

In many physical systems, the product of the fundamental through

and across variables can be interpreted as power. In this case the

following theorem(lh) shows that the total power is zero, so that the

total energy in the system is constant.

Theorem 2.8 Let the variables in the column matrices X
 

and Y associated with a graph be arranged in the same order.

Then

th - xtr - 0. (2.8.1)
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This result does not depend in any way upon the nature of the rela-

tionships between through and across variables, but only upon the

Postulates 2.h and 2.5 and the orthogonality relation (2.6.1). A

postulational scheme different from the one used here is possible, if

conservation of energy is regarded as more fundamental than the

Kirchhoff rules (2.h.1) and (2.5.1); Arsove(15) has shown that (2.8.1)

and(2.h.l) or (2.5.1) imply (2.5.1) or (2.h.l) respectively.

2.9 Component Models
 

By'a component model is meant a mathematical description of

the terminal characteristics of a component. For a two-terminal

component this is a single equation in terms of the through variable

and the across variable which can be measured at the component

terminals. For an n-terminal component, the component model is a set

of n-l equations in terms of the n-l through variables and n-1 across

variables which, through Postulate 2.3, characterize the component.

When all of the component models are linear algebraic or differential

equations, the component equations can sometimes be put in one of two

forms which are especially convenient for later simplification.

These are a form in which the across variables are expressed as

explicit functions of the through variables,

x - zr + xd, (2.9.1)

and a ferm in which the through variables are expressed as explicit

functions of the across variables,

Y - wx + Yd, (2.9.2)

where Z and w are square matrices of order s whose elements are in

general operators in terms of the time derivative, and where X and
d

Yd are exl column matrices whose elements are specified functions of
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time. For many systems, especially those containing multi-terminal

components, the component model cannot be expressed in either of the

forms (2.9.1) or (2.9.2), but takes the form

zr wound, (2.9.3)

where D is a exl column matrix whose elements are specified
d

functions of time.

Wirth*s'work(16) on formulation of system equations in the

time domain includes methods of formulation which apply to component

models which include certain classes of nonlinear algebraic and

differential equations. One example of such a component model is

d x17 . Fun. X2, x3. Y1, Ya, Ya, t)

1? Y2_) LF3(X1, Kg, X3, Y1, Y3, Y3, t)

F-XsW. ”F3(Y3, t) (2°9'h)

Xo - Fo(t)

LYed L1H“)

where the system variables X and Y are subdivided into groups

   

Xo . . . X4 and Y0 . . . Y. according to the form of the component

equations into which they enter.

2.10 System Models
 

A system model is a complete mathematical description of the

physical system. Such a mathematical description is included in the

previous sections: the 26 equations in terms of e through variables

and 6 across variables, including e topological equations (2.h.l) and

(2.5.1) and 6 component equations in a form such as (2.9.1), (2.9.2),

(2.9.3) or (2.9.h). In most practical problems this model is cumber-

some because of the large number of equations and unknowns, and the

word formulation is generally meant to include some process of
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reduction of the number of equations and unknowns. The particular

process that can be employed and the form of the resulting system

model depends upon the form of the component model that is available.

Four examples are exhibited here, corresponding to each of the

examples of component models discussed in section 2.9.

If the component model can be written in the form (2.9.1),

equation (2.7.1) can be used in place of (2.h.1). Substitution of

(2.9.1) into (2.5.1), and of (2.7.1) into this result yields the

"mesh" or "chord" model,

t
BZB Ym * BXd 0. (2.10.1)

If the component model available is (2.9.2), equation (2.7.2)

is used in place of (2.5.1). substitution of (2.9.2) into (2.h.1),

and of (2.7.2) into the result yields the "node" or "branch" model,

AWAtXn + Ara - 0. (2.10.2)

When the component model (2.9.3) must be used, both (2.7.1)

and (2.7.2) are used instead of the Postulates 2.h and 2.5. Sub-

stitution of (2.7.1) and (2.7.2) into(2.9.3) results in a mixed, or

"branch-chord" set of equations

t _ t
ZB rm WA xn + Dd. (2.10.3)

Wirth<16) has shown how a system model can be formulated in

the normal form; a system of equations explicit in the first deriva-

tives of some of the system variables. When the component model is

available in the form (2.9.h) and when the equations satisfy certain

properties, (2.h.l), (2.5.1) and (2.9.h) can be combined to yield the
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system model

d
Y t__ x11, _ 61(X1b. ac: ) (2.10.10

(11'; Yac LG3(xlb! Y3C’ t)

r-

where Xi ' Liib-i
10

,

Y : Ysbi

3 r

L. ”c-  
and where the subscript b refers to the branches of a suitably chosen

tree and the subscript c refers to the chords of the same tree.



 

 



3. THE STRUCTURE OF DISTRIBUTED PARAMETER SYSTEM THEORY

3.1 Introduction
 

In the analysis of distributed parameter systems, as in lumped

parameter system analysis, it is important that a careful separation

be made between the process of formulation of equations and the pro-

cess of solution of those equations. The four steps in the process

of formulating equations discussed in£3ection 2.1 apply also to

distributed parameter systems. Truesdell(17) considers the matter

of identification of physical effects in a discussion of equipresence
 

as one of the important aspects of the general theory of constitutive

eQuations; he points out the fact that it is rarely possible to in-

clude more than one kind of physical effect in the analysis of a

distributed parameter system problem. It is generally true that

early developnents in any area of study are concerned with only a

very limited number of physical effects. More sophisticated methods

of analysis are required for the more difficult problems involving

different kinds of phenomena. At the present time the coupling

between electric and magnetic fields seems to be well understood,

while the coupling between thermodynamic variables and the stress and

rate of strain variables of fluid mechanics is not. An area of

recent interest in which coupling effects are important is magneto-

hydrodynamic s .

Many distributed parameter systems are characterized by vector

fields, and the choice of variables in the analysis of these systems
 

amounts to the choice of two suitable vector point functions. The

association of an across variable with two points, in lumped parameter

15
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system analysis, suggests that a vector point function should be

called an across variable if its line integral along some curve is

significant. Thus if

b

“ab =1 ‘S 5.51

then 5 is called a vector across variable and “ab is a scalar across

variable associated with the two points a and b. The association in

lumped parameter system analysis of a through variable with a single

point or surface suggests that a vector point function should be

called a through variable if its surface integral is significant. If

BS ' jss 0d; ,

then S is called a vector through variable and BS is a scalar through

variable associated with the surface S. The requirement that the sum

of scalar across variables around any closed path be zero is equiva-

lent to the requirement that the line integral of the associated

vector across variable around any closed path be zero. Then by

Kelvin's transformation ("Stokes's theorem"),

fiai' - j(curl a).d§-o,

c s

where C is the closed curve bounding the surface S. Since this is to

hold for any closed curve C,

curl a - O,

and so a convenient vector across variable is one whose curl is zero

(a lamellar or irrotational vector point function). Similarly, the

requirement that the sum of lumped parameter through variables

incident at a point be zero is equivalent to the requirement that the

surface integral of a vector through variable over any closed surface
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be zero. Then by Gauss's theorem,

S.d§ - (div 6) dv - o,

s v

where S is the closed surface bounding the volume V. Since this is

to hold for any closed surface,

div 5 - O,

and so a convenient vector through variable is one whose divergence is

zero (a solenoidal vector point function).

Involved in the identification of components, in distributed
 

parameter system analysis, is the choice between a continuum descrip-

tion of the problem and a discrete approximation to the continuum

description. The equations of the classical theory of fields are

partial differential equations whose independent variables are time

and three space coordinates. Truesde11(l7) gives a strong justifica-

tion for studying this continuum description of matter in addition to

the perhaps more fundamental description in terms of the motion of

particles. In the continuum description of distributed parameter

systems, choice of components is not a part of the analysis; a

problem is described by a set of boundary conditions on the bounding

surface of some region in space, along with a set of partial differ-

ential equations which apply to the entire region. On the other hand

a discrete approximation of the continuum description does involve

the selection of a set of subregions, which can be called components,

and a mathematical description of these subregions. The process of

forming such a discrete approximation is discussed in Section h.

Derivation of equations involves equations of two broad types.
 

Field equations, which correspond to the topological equations of
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lumped parameter system theory, have to do with the intrinsic

characteristics of dynamical variables and not with the properties

of the medium under analysis. For a continuum description in terms

of vector point functions they have the form of a compatibility

equation stating that the curl of a vector across variable is zero,

and an incidence (or equilibrium or continuity) equation showing that

a vector through variable is solenoidal. Constitutive equations, the

equivalent of component equations in lumped parameter system theory,

interrelate through variables and across variables and describe the

particular characteristics of the medium under analysis. Because of

the inherent complication of distributed parameter systems,

constitutive equations are frequently obtained from assumptions,

rationalizations or generalizations of simple experimental evidence.

The following subsections show the structure of distributed

parameter system theory which follows from the formulation procedure

discussed above. This structure corresponds closely to the lumped

parameter system theory structure in Section 2, and the numbering of

postulates, theorems and equations is similar to that used in Section 2

in order to emphasize this correspondence.

3.2 The Undefined Variables
 

Consider a distributed parameter physical system, confined to

a closed region V with bounding surface S. Analysis of the system

depends upon the identification of two complementary functions, a

through variable and an across variable. These are the undefined

variables of the abstract structure of distributed parameter system

theory: two real-valued scalar, vector or tensor functions of time

and the three space coordinates. In the case of complementary vector
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point functions, the through variable is designated by the generic

symbol i and the across variable by i.

3.3 Characterization of Continua
 

Some relatively simple continuum problems are characterized by

scalar point functions; for example, that of a fluid at rest. Other

more complicated distributed parameter systems, especially some

involving coupling between.more than one kind of physical phenomenon,

require a description in terms of second-order tensors. There is a

large class of physical systems which are completely characterized by

vector point functions. This leads to the following first postulate

in the structure of distributed parameter system theory.

Postulate 3.3 Let i and y be two complementary vector
 

point functions, which are measurable in a distributed

parameter physical system confined to a closed region V

with bounding surface S. Then the characteristics of

the physical system are completely determined by the

values of i and y at every point in.V and on S.

3.h The Divergence Postulate
 

Electric current density, magnetic induction and many other

vector through variables satisfy the requirement that their normal

surface integrals over any closed surface are zero. Gauss's theorem

then requires that the volume integral of the divergence of such a

vector point function over any volume be zero, and thus that the

divergence itself is zero. This serves as the basis for the following

postulate, equivalent to the incidence postulate of lumped parameter

system theory.
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Postulate 3.h Let i by the through vector point function
 

associated with a distributed parameter system confined to a

region V with bounding surface S. Then

div y - O (3.h.1)

throughout V.

3.5 The Curl Postulate
 

The following postulate is a generalization of the point form

of the requirement that the line integral of many vector across

variables, such as electric field intensity, around any closed path

is zero. Kelvin's transformation then requires that the normal

surface integral of the curl of the variables be zero for any surface;

since the surface is arbitrary, the curl of the variable is zero

everywhere in the region where the line integral is zero.

Postulate 3.5 Let i be the across vector point function
 

associated with a distributed parameter system confined to

a region V with bounding surface S. Then

curl i - O (3.5-1)

throughout V.

3.6 OrthogonaliqZ
 

The vector differential operators curl and divergence satisfy

the identities shown in the following theorem<18> which, along with

the Postulates 3.h and 3.5, leads to important properties of the

variables i and i.

Theorem 3.6 Let 5 - curl 5 and 3 - grad o, where 5
 

and a are any vector and scalar point functions,

respectively, with continuous mixed second partial
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derivatives. Then

- div curl 6 - 0 (3.6.1)9
’
!

div

0
|

and curl - curl grad a - 0 (3.6.2)

3.? Auxiliary Variables

The following two theorems(19) are the converses of (3.6.1) and

(3.6.2). They provide for the existence of auxiliany variables which

are convenient in the simplification of system equations, and depend

for their proof on the two Postulates 3.h and 3.5.

Theorem 3.7.1 Let i be a vector point function which

has continuous first partial derivatives and satisfies

(3.h.l) in same region V. Then there exists a vector

point function G such that

i - curl 5 (3.7.1)

in V.

Theorem 3.7.2 Let i be a vector point function which
 

has continuous first partial derivatives and satisfies

(3.5.1) in some region V. Then there exists a scalar

point function d such that

x - grad ¢ (3.7.2)

in V.

The auxiliary variable 5 is usually referred to as a vector potential

function, and J as a scalar potential function.

3.8 Conservation of Energy
 

It is frequently possible to make a physical interpretation of

the scalar product of the fundamental through and across variables,

i.i, as the time derivative of energy density. In this case a volume
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integral of the product i-y over a region V is the time rate of flow

of energy into V, and if this volume integral is zero then the total

energy contained in V is constant in time.

Consider the volume integral of i.§ over a volume V with

bounding surface S, where i and § satisfy the Postulates 3.L and 3.5.

Then, using (3.7.1) and (3.5.1),

I (i.§)dv . fO-Eocurl fi)dv

v v

- J{(uocurl i — div(§ x 5))dv

V

- (div (5 x x))dv.

V

Gauss's theorem yields

ICE-flaw - ffixi-fims, (3.8.1)

V S

where n is the unit outward normal vector at the surface element ds.

Using (3.7.2) and (3.h.1), and Gauss's theorem again, in the same

integral,

f (ii-5")d\r - ] (i-grad ¢)dv

v v

[(div .5; - d div §)dv

v

f (div dy)dv

V

fswoofinds. (3.8.2)

The volume integral is zero provided the integrand in either (3.8.1)

or (3.8.2) is zero, thereby proving the theorem below.

Theorem 3.8 Let i and 5 be vector point functions which
 

satisfy (3.b.1) and (3.5.1) in a closed region V with
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bounding surface S, and let d'and u be the associated

scalar and vector potential functions. Then

LOW)“ '- 0. (3.8.3)

provided any one of the following conditions is

satisfied:

,§, doru is zero on 83X
I

is normal to n on S;
R
N

or u is parallel to 5 on S;M
n

is parallel to u on S.X
I

3.9 Constitutive Equations
 

Constitutive equations interrelate the basic through and

across vector point functions, and in general can be complicated

partial differential equations; nonlinear media are characterized by

nonlinear constitutive equations. When a constitutive equation is

linear, it is especially convenient to express it in one of two

special forms. These are a form in which the vector across variable

is expressed as an explicit function of the vector through variable,

i-L§+%, 03A)

and a form in which the through variable is expressed as an explicit

function of the across variable,

§‘- Wfli + yd, (3.9.2)

where Z and'fi are dyadics whose components are, in general, operators

in the time derivative and the gradient operator and where id and §a

are specified vector point functions ("source functions"). When

neither (3.9.1) nor (3.9.2) can be obtained, a slightly more general

form of the constitutive equation for a linear system is
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20; - 13.5:- + ad, (3.903)

where dd is a specified vector point function.

3.10 System Models
 

A system model, a complete mathematical description of the

physical system, takes the form of a partial differential equation or

a set of such equations for a distributed parameter system. One

system model is the set of three equations composed of the field

equations (3.h.1) and (3.5.1), along with one of the constitutive

equations (3.9.1), (3.9.2) or (3.9.3). This set of equations can be

reduced to a system model in terms of a single equation through the

use of the auxiliary variables of Section 3.7.

When the constitutive equation (3.9.1) is available, (3.7.1)

can be used in place of (3.h.1). Substitution of (3.9.1) into (3.5.1),

and of (3.7.1) into the result, yields a system model in terms of a

vector potential function,

curl (Zocurl u) + curl Ea - 0. (3.10.1)

When the constitutive equation can be written in the form

(3.9.2), (3.7.2) can be used in place of Postulate 3.5. Substitution

of (3.9.2) into (3.h.1), and of (3.7.2) into the result, yields a

system model in terms of a scalar potential function,

div (Wograd d) + div id - 0. (3.10.2)

If neither (3.9.1) nor (3.9.2) is available as a constitutive

equation, but the constitutive equation can be written in the form

(3.9.3), both auxiliary variables are used. Substitution of (3.7.1)

and (3.7.2) into (3.9.3) yields

Zocurl i - Tograd d + dd, (3.10.3)
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a system model of a single equation in terms of both a scalar poten-

tial function and a vector potential function.



 



h . DISCRETE APPROXIMATIONS

h.l Association of a Linear Graph with a Distributed

’Parameter System

 

 

It was pointed out in Section 3.1 that one step in the process

of formulating system equations is not the same for distributed

parameter systems as for lumped parameter systems. The analysis of a

lumped parameter system always involves the subdivision of the system

into a set of smaller systems, called components, which are inter-

connected at external terminals to form the original system; the

choice of these components is always arbitrary to some degree. The

formulation of the partial differential equations of a continuum

description of a distributed parameter system, however, involves no

such division of the system into smaller parts.

It is frequently true that although the partial differential

equations describing a distributed parameter system can be formulated,

no solution of these equations is known except in a limited number of

very special cases; the Navier—Stokes equations of fluid mechanics are

a well known example. In this situation it is desirable to direct

attention toward an approximate solution of the equations. This can

be done by formulating the system model and then seeking an approxi-

mate solution by numerical methods, or by formulating the system

model and then replacing this partial differential equation model by

a set of ordinary differential equations(2). Instead of these methods,

attention is directed here toward a method in which the approximation

is made a part of the formulation procedure; a lumped parameter

approximation of the distributed parameter system is made by dividing

26
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the region of space in question into subregions, and the field and

constitutive equations are approximated by the topological and

component equations of lumped parameter system theory;

A discrete approximation to a three-dimensional distributed

parameter physical system is formed by dividing the region of interest

into a set of subregions; the name microelements was suggested for

these subregions by E. c. Koenig<20) , and they are the components of

the resulting lumped parameter physical approximation of the dis-

tributed parameter physical system. The shape of the microelements

is that of a rectangular parallelopiped with faces parallel to the

coordinate system. The simplest and most convenient shape for the

microelements is a rectangular parallelopiped. A linear graph can be

associated with a set of microelements by associating a vertex of the

graph with the center of each microelement, and a graph edge with

each of the six faces of the microelement. A typical rectangular

microelement and the associated graph edges are shown in Figure h.l.l.

The choice of the size and shape of the microelements is one of the

,/L
/ lnwa‘gmfil

I

I /// / edges

A¢-— ~43

I

l

l

l

 

 

 

microelement   

Figure h.1.1. Microelement and associated linear

graph edges
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arbitrary choices made by the analyst. No difficulty is encountered

in the association of the graph with the microelements when the micro-

elements are not all chosen to be of the same size, as suggested by

Figure h.1.2.

? T

I I
 

linear graph

Y

--_| ’fl-_$-- -~§“\M edges
0- <K\~~-¢b-_+~’/)E’/\/
 

 

I

: *‘V microelement

t/ boundaries

2. a

Figure h.l.2. Graph edges associated with microelements

of different sizes

     

u.2 Association of Variables with the Linear

Graph Approximation

 

 

A scalar through variable and a scalar across variable are

associated with each edge of the linear graph of the lumped parameter

approximation formed by the procedure described in Section h.l. The

scalar through variable is the surface integral of the vector through

variable of the continuum model, over the face of the microelement

with which the edge is associated. The scalar across variable is the

line integral of the vector across variable of the continuum model,

along a path between the centers of the two microelements with which

the vertices of the graph edge are associated. Then a volume integral

of the incidence postulate (3.h.1) over the microelement, transformed

with Causs's theorem, yields the incidence relation (2.h.l) for the

lumped approximation. Similarly, a surface integral of the curl
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postulate (3.5.1), along with Kelvin's transformation, yields the

circuit relation (2.5.1) of lumped parameter system theory. The

component equations of the lumped approximation are then the line or

surface integrals of the corresponding constitutive equations of the

continuum model.





S. EXAMPLES or SYSTEM MODELS

5.1 Electromagnetic Fields
 

0f central importance in any discussion of electromagnetic

fields are the two Maxwell equations,

curl 5v - .6 (5.1.1)

curl H' - f , (5.1.2)

where 5', 8, h', and i are the usual electric field intensity, time

derivative of magnetic displacement density, magnetic field intensity,

and electric current density, respectively. In terms of the kind of

system model discussed in Section 3, the first important interpretation

of these equations is that the variables 8 and i are solenoidal;

div 8 - -div curl 5' - 0 (5.1.3)

div I - div curl h' - 0 . (5.1.h)

Thus 8 is a convenient vector through variable for magnetic field

analysis, and i is a convenient vector through variable for electric

fields. The Maxwell equations also clearly show that electric and

magnetic effects are interrelated, and that the two physical phenomena

should be analyzed together using two sets of variables, one for each

of the two physical effects. An interpretation of (5.1.h) can be made

here that is slightly different from the usual one. One of Maxwell's

great achievements was the substitution of (5.1.h) for the equation

of continuity,

div i'c + £55 - o , (5.1.5)

and Gauss's law,

p - div 3 , (5.1.6)

where IE, p and d are conduction current density, charge density, and

30
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electric displacement density, respectively. In terms of the dis-

cussion of Section 3, Maxwell's contribution was the substitution of

a convenient vector through variable, "total" current density 1, for

an inconvenient vector through variable, the conduction current

density {0.

Equations (5.1.3) and (5.1.h), along with Theorem 3.7.1, imply

that there must exist functions 5" and 5" such that

b - curl 3" (5.1.7)

i - -curl h" . (5.1.8)

Substitution of (5.1.7) and (5.1.8) into (5.1.1) and (5.1.2) yields

curl 5 - 0 (5.1.9)

curl H - o , (5.1.10)

where

5'- 5' + 3" (5.1.11)

5 - ht + h" . (5.1.12)

Thus 5 and H are convenient vector across variables for electric and

magnetic effects respectively. The vector point function 3" is the

time derivative of a function generally called the magnetic vector

potential function and generally designated by the symbol K. The

similar electric vector potential function E" is not a part of the

usual developments of electromagnetic field theory.

Equations (5.1.7) and (5.1.8) are coupling equations, showing

how electric and magnetic effects are interrelated, and should proper-

ly be included among the constitutive equations. These coupling

equations are of the kind called "inverse" by Firestone<21> because

each relates a through variable to an across variable. Other
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constitutive equations are required to canplete the system model,

relating I to 5' and b to 5'. For a linear, isotropic and homogeneous

medium these constitutive equations are simply

I - 68' + 635%. (5.1.13)

6 - (3;? (5.1.11.)

The field equations (5.1.3), (5.1.1:), (5.1.9) and (5.1.10) and

the constitutive equations (5.1.7), (5.1.8) and (5.1.11) through

(5.1.lh) agree with the general structure of Section 3. The treatment

of two physical effects together and the presence of coupling equations

add a minor complication. The discussion of conservation of energy

in Section 3.8 is also complicated slightly by the coupling equations.

Because of the very special form of these coupling equations, a

developnent similar to that of Section 3.8 leads to the well known

Poynting theorem and to the concept of radiated power.

There are several reasons for the use of the time derivative

of the magnetic displacement density, 8, rather than 3, as the magnetic

vector through variable. One reason is that it is 8, not 5, which is

usually measured in any sort of physical measurement of magnetic

fields. Another is that the important field equation (5.1.3) follows

directly from (5.1.1), while the use of 5 as the magnetic vector

through variable would depend on rather weak arguments in support of

the assertion that this variable is solenoidal. The use of 8 rather

than 5 leads to emphasis in the constitutive equations (5.1.13) and

(5.1.lh) on an important difference between electric and magnetic

fields: the absence of a "magnetic conduction current density" term

corresponding to ons'. Finally, 8 is the proper choice for a magnetic





33

through variable because the inner products 6-5 and {.5 both can be

interpretted as power density and can be added directly in discussions

of conservation of energy.

The classification of dynamical variables as through and across

variables leads to a close association between 5 and h. as across

variables and between I and 8 as through variables. This is in agree-

ment with the early historical view in which 5 and h' were named field

intensities, and 5 and d were named flux densities. It is in direct

disagreement with the more modern view, discussed at length by Summer-

(22)
fold , in which 3 and 5 are called variables of "intensity" and h'

and d are called variables of "quantity".

Several special cases arise in connection with electromagnetic

fields when the constitutive parameters a, 6 and p. take on special

values, or when the driving functions are of special kinds. One

important case occurs when 0’- 0, or when 0' is small enough that

the constitutive equation (5.1.13) can be approximated by

I «3%. (5.1.15)

Under this condition no important change occurs in the structure of

the equations describing the field. Similarly, if e is small enough

to allow (5.1.13) to be approximated by

i - o-S' , (5.1.16)

the structure of the system of equations remains essentially un-

changed. In both of these special cases there is perfect coupling

between electrical and magnetic effects, as in the more general case;

the only simplification that occurs is that the electrical constitu-

tive equation is changed.





3h

More extreme changes occur in the equations when u is shall

enough, or the time variations of the variables are slow enough, to

allow (5.1.7) to be approximated by

curl 5" - O . (5.1.17)

Then the system equations reduce to

curl 53 - 0 (5.1.18)

div 5 ' 0 (501019)

I - (0-. 5525);) . (5.1.20)

These equations can be combined using the scalar potential formula-

tion shown in Section 3.10,

div ((a'+ 557W“) - o , (5.1.21)

or (0+ 6 5%)V395 = O , (5.1.22)

if a" and 55 are not functions of position. In this special case the

equations (5.1.3), (5.1.8), (5.1.10), (5.1.12), and (5.1.1h) describing

magnetic fields are unchanged. However, the simplified equations

(5.1.18) through (5.1.20) can be analyzed by themselves, without

consideration of magnetic effects. Equation (5.1.8) shows that the

electric field produces a magnetic field, but the magnetic field has

negligible effect on the electric field variables and can be ignored.

The equations (5.1.18) through (5.1.20) characterize distributed

parameter resistance-capacitance components that are Currently being

used, along with lumped components, in electrical networks.

A final special case is the stationary one, where all time

derivatives of field variables are zero or negligible. Then the

system model reduces to

curl 5' - 0 (5.1.23)

div 1 = O (5.1.2h)
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i -oé" (5.1.25)

curl H - 0 (5.1.26)

div 6 - 0 (5.1.27)

5 - 5' + 5" (5.1.28)

curl h" - -i (5.1.29)

6 MW . (5.1.30)

Here it is necessary to use the flux density 5 as one of the variables,

rather than its time derivative 8. The electrical equations (5.1.23)

through (5.1.25) can be analyzed by themselves, since the magnetic

field variables do not enter them. Also the magnetic equations

(5.1.26) through (5.1.30) can be analyzed as a group, if the current

density 1 is considered a known driving function. These two sets of

equations are the basis for direct-current electric and magnetic

network analysis.

In order to form a lumped approximation of the continuum sys-

tem model of electromagnetic fields, as in Section h, scalar variables

are defined in terms of surface and line integrals of the vector var—

iables of the continuum model. These variables are the time deriva-

tive of the magnetic flux associated with a surface S,

¢S :- Jsg‘dg 9 (5.1.31)

the electric current associated with a surface S,

“)3 . Isi'dg ’ (5.1.32)

the magnetic scalar potential ("magnetomotive force") associated with

the two endpoints of a space curve,

b

Gab I \LhJI , (5.1.33)

and the electric scalar potential associated with the two endpoints
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of a space curve,

Bab . 3.08.81 ° (501.311)

a

According to equations (5.1.11) and (5.1.12), the across variables

can each be divided into two parts:

b-

aab I ‘fah°aI

b b

- (51.31 + jh'Hdl

a a

dab - aéb + egb ; (5.1.35)

flab ' 5'51

6 b

. X 51.5]: + S 51!.EI

a a

Bab - 31b + Bab 0 (591036)

This suggests that each graph edge in the linear graph associated with

the discrete approximation should be replaced by two edges in series,

as indicated in Figure 5.1.1. The through variables d and m are

)3)c‘;b é%‘*gb cotfififis cotfifiZ)

o———4>-———«o————e>————o de-——e>————c»———%>-———<>

a b or 13

Figure 5.1.1. Linear graph edges for electric and

magnetic variables

related to the across variables a' and B' by constitutive equations

which for a linear, isotropic and homogeneous medium are derived from

equations (5.1.13) and (5.1.lh). For example, for a set of micro-

elements with faces parallel to the coordinate planes in a Cartesian

coordinate system, with side lengths Ax, Ay, and Az, and for a graph
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edge associated with a microelement face with sides Ay and A2,

51-! 8'.d§

x quz

i beyAz

Bh'

‘ fl '5‘? Am

* “€93 eat (“.2”)

J, i A“ 53;- a; , (5.1.37)

(0 . {“15

x JhyAz

‘ ixAyAz

Be'

A
x

(OW-3;c * E '5?) AVA!

(UAEAZ +6A AZ 5%) ekAX

O'AyAz gym a
‘

(ox ( AX + AX a?) g); 0 (501.38)

The coefficients BEE“?- , 59%?- , and 6“ M can be identified as the

inductance, conductance and capacitance of a microelement, respectively.

 

Because two different physical effects are under analysis, it

is clear that the linear graph associated with a discrete approximation

for an electromagnetic field should contain two disjoint subgraphs,

one for electrical and one for magnetic variables. The electrical and

magnetic microelements need not be the same, and in fact it is conven-

ient to choose two different sets of microelements in a very special

way. After choosing a set of electrical microelements, a set of

magnetic microelements is chosen such that the center of each magnetic

microelement is at the vertex of an electrical microelement, and vice

versa. Then the two associated linear graphs are interlaced but

disjoint. For example, a single electrical edge and the four magnetic
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graph edges which surround it are shown in Figure 5.1.2. The coupling

    L .1
58,05)

 

Figure 5.1.2. Magnetic graph edges and an associated

electric graph edge

equations (5.1.7) and (5.1.8) provide the remaining constitutive equa-

tions for the discrete approximation:

«mz - ‘J' I.d§

quy

-§}cur1 fi"-dl

—(h"Ay + h"Ax + h"Ay + h"Ax)

1 a 3 4

a) ‘ .. a" .- 0," .. a" - a." 0 (501039)

Z 1 8 3 4

In the same way, each magnetic through variable can be expressed in

terms of four electric across variables, such as

32 - S S.d§

AxAy

- t§curl 5"-dl

‘ e"Ay + e"Ax + e"Ay + e"Ax

1 z 3 4

a, * 51+ :3; + B; + a; . (5.1.110)
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5.2 Diffusion Processes

Many physical processes, such as heat conduction and particle

diffusion, are described or approximately described by the three

equations(23)

div 3' + g? - 0 , (5.2.1)

3' ' -kisrad d , (5.2.2)

o - ksd . (5.2.3)

Substitution of (5.2.2) and (5.2.3) into (5.2.1) yields

div (klgrad 9‘) " k2 gg

or if k; is constant,

. . 1539.2
v d h 2,, (5.2.10

which is the diffusion equation. In heat conduction, for example,

3' is heat flow per unit area, 9 is amount of heat per unit volume,

d is temperature, k1 is specific heat capacity, and k3 is heat capacity

per unit volume.

The equations (5.2.1) through (5.2.3) are not in the general

form exhibited in Section 3, but they serve as a basis for formulating

a system model in that form. As a first step, it is clear that the

scalar point function d is a scalar across variable and that an assoc-

iated vector across variable should be defined as

2' -grad 95 . (5.2.5)

In the example of heat conduction, g would be called the temperature

gradient. From (5.2.5), one of the field equations is

curl g - -curl grad d - O , (5.2.6)

and (5.2.2) becomes the constitutive equation

3' - klé ° (50207)
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The continuity equation (5.2.1) shows that the through variable 3' is

not a convenient variable because its divergence is not zero. A con-

venient through variable can be constructed by the same artifice used

to define tctal electric current density in electromagnetic field

theory, as in Section 5.1. An auxiliary variable a is defined by

p - div 5 . (5.2.8)

Then (5.2.1) becomes

. 35’ ,
d1V(3' +31?) " 0 , (50209)

or div 3 - 0 , (5.2.10)

where 3 s 3' + 3" (5.2.11)

and ' 3"'-§§% . (5.2.12)

A constitutive equation for the auxiliary variable 3" can be obtained

from (5.2.3), (5.2.8) and (5.2.12):

div 3" -‘%§

- kagrad %5 (5.2.13)

grad div 3" - kagrad 3%

grad div 3" - -k2é. (5.2.1h)

The equations above constitute a system model for diffusion

processes in the general form of Section 3; they consist of the field

equations (5.2.6) and (5.2.10), and the constitutive equations (5.2.7),

(5.2.11) and (5.2.lh). The use of equation (5.2.8) as a definition of

the auxiliary variable 5 is essentially the same as the method used by

Sommerfeld(22) in stating a definition of the electrical variable

called flux density or electric displacement density. It does not

define a completely because both the divergence and curl of a vector

point function must be specified in order to define it completely.
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Since a is an auxiliary variable there is nothing to prevent its curl

from being arbitrarily specified.

In order to form a discrete approximation of this system model,

a scalar through variable can be defined as

“s - f 3'd5 3 (5-2-15)

8

and a scalar across variable can be defined as

b

“a - J'g'di . (5.2.1o)

a

These variables would be interpretted physically, for a heat flow

problem, as the heat flow associated with a surface S and the temper-

ature difference between two points a and b, respectively. In order

to form a discrete approximation for a diffusion process, components

can be chosen and a linear graph associated with the components as

described in Section h. Then the field equations (5.2.6) and (5.2.10)

become the ordinary Kirchhoff law equations of lumped systems analysis.

The constitutive equation (5.2.7) provides component equations

for the discrete approximation. For a linear graph edge associated

with a microelement face perpendicular to the x axis in a Cartesian

coordinate system,

(9;: u I 3|.d3

lyAz

‘ jihyAz

, kIQZAz

Ax ‘52:Ax

,kA
wk ‘ —1%§%Ed' . (5.2.17)

X

Equation (5.2.13) shows the dependence of the auxiliary vari-

able 3" on the scalar point function 5 rather than on the vector

across variable g. Consider the volume integral of (5.2.13) over
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a microelement with volume AV and bounding surface AS:

(div 3")dv - [Mk3 3% dv

AV

f 3" odg - I k: 33% dv

AS AV

The scalar through variable ”(iv and the scalar across variable 9! must

be associated with an external reference vertex in the linear graph

associated with the discrete approximation. The linear gram edges

associated with each microelement in the system then have the form

indicated in Figure 5.2.1. The through variable (”Xv corresponds

“‘42 ) ¢az
 

/£§z 1 ¢j1

 

 

 

 
 

 

Figure 5.2.1. Microelement for diffusion process and

associated graph edges

closely to the "inertial. forces" in lumped mechanical systems or to

capacitive currents in lumped electric systems.

5 .3 Fluid Mechanics
 

Variables of central importance in the study of the motion of

fluids are the pressure 11 and the velocity of the fluid motion 17. The
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a microelement with volume AV and bounding surface AS:

(div 3")dv - k3 addv

AV 3?.AV

f3"od§ - f kaazgdv

AS AV

033v ‘ (kaAV) % 0 (5.2.18)

The scalar through variable a)" and the scalar across variable 9! must
AV

be associated with an external reference vertex in the linear graph

associated with the discrete approximation. The linear graph edges

associated with each microelement in the system then have the form

indicated in Figure 5.2.1. The through variable ”XV corresponds

 

 

 

  

  

€043,553;

l )/2'1s§zs'¢51

l ,"
/

«2’ van I ’/

3'3"— - - - ‘— -/":": at"
’l ' \ th, *2

I I '

I ll

‘3n.2§9r’(//// ' ¢1£y356

L1 ' 3;

“wk

Figure 5.2.1. Microelement for diffusion process and

associated graph edges

closely to the "inertial.forces" in lumped mechanical systems or to

capacitive currents in lumped electric systems.

5.3 F1uid.Mechanics
 

Variables of central importance in the study of the motion of

fluids are the pressure n and the velocity of the fluid motion 5. The
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analysis of fluid motion is usually directed toward finding the

velocity of a fluid with specified constitutive characteristics,

under the influence of specified body forces and boundary conditions.

Of the many equations used to describe fluid motion, a few can be

considered especially important and basic. The principle of con-

servation of mass leads to the equation of continuity<2h),

dp - _

R+pdivv 0

'bp - - _

or ‘St'+ vograd p + pdiv v 0 (5.3.1)

where p is the fluid density. Conservation of linear momentum leads

to Cauchy's equation of’mution,

V.T 4- of I p 3% , (5.3.?)

where T is the second order stress tensor and f is the external body

force per unit mass. Furthermore, conservation of angular momentum

requires that the stress tensor be symmetric. A constitutive equation

for a fluid is usually considered to be an equation that relates the

stress tensor and the rate of deformation tensor V, the symmetric part

of the velocity gradient tensor grad v. A large class of fluids are

characterized by the constitutive equation of Stokes,

T - -ni + P (5.3.3)

1" - W +317"? . (5.3.1.)

where I is an identity tensor, P is the viscous stress tensor, and B

and B'are scalars which in general are functions of the components of

V. A Newtonian fluid is a linear Stokesian fluid, for which (5.3.h)

becomes

F - 1(trV)f + qu (5.3.5)

where (trV) is the trace of the rate of deformation tensor, and x and

u are constants. Substitution of (5.3.3) into (5.3.2) leads to
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a microelement with volume AV and bounding surface AS:

(div 3")dv - [Mk3 g-g dv

AV

§ 3" 0d§ ' f k; 36% dv

AS AV

(D'A'v ‘ (kaAV) gg 0 (5.2.18)

The scalar through variable “Xv and the scalar across variable 9‘ must

be associated with an external reference vertex in the linear graph

associated with the discrete approximation. The linear gram edges

associated with each microelement in the system then have the form

indicated in Figure 5.2.1. The through variable (”XV corresponds
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Figure 5.2.1. Microelement for diffusion process and

associated graph edges

closely to the "inertial. forces" in lumped mechanical systems or to

capacitive currents in lumped electric systems.

5 .3 Fluid Mechanics
 

Variables of central importance in the study of the motion of

fluids are the pressure It and the velocity of the fluid motion 17. The
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analysis of fluid motion is usually directed toward finding the

velocity of a fluid with specified constitutive characteristics,

under the influence of specified body forces and boundary conditions.

Of the many equations used to describe fluid motion, a few can be

considered especially important and basic. The principle of con-

servation of mass leads to the equation of continuity‘zu),

dp - _
a? + pdiv v 0

'bp - - -
or .SE-+ vograd p + pdiv v 0 (5.3.1)

where p is the fluid density. Conservation of linear momentum leads

to Cauchy's equation of motion,

v.1' + or - p 211%, (5.3.2)

where T is the second order stress tensor and f is the external body

force per unit mass. Furthermore, conservation of angular momentum

requires that the stress tensor be symmetric. A constitutive equation

for a fluid is usually considered to be an equation that relates the

stress tensor and the rate of deformation tensor V, the symmetric part

of the velocity gradient tensor grad v. A large class of fluids are

characterized by the constitutive equation of Stokes,

T - an + P (5.3.3)

I3 - 8V +UV-V , (5.3.11)

where I is an identity tensor, F is the viscous stress tensor, and B

and B'are scalars which in general are functions of the components of

V. A Newtonian fluid is a linear Stokesian fluid, for which (5.3.h)

becomes

2 - x(trV)f + qu (5.3.5)

where (trV) is the trace of the rate of deformation tensor, and k and

u are constants. Substitution of (5.3.3) into (5.3.2) leads to
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p g- - pf - grad n + V-P . (5.3.6)

In the special case of a Newtonian fluid, (5.3.6) becomes the Navier-

Stokes equation,

pg- pf - grad n + (X+ p)grad div ‘7 + (Nav- . (5.3.7)

In order to cast the equations of fluid mechanics in the form

described in Section 3, basic variables must be chosen from among the

scalars p and n, the vector v. and the tensors T, V, P and grad )7.

Attention is directed toward the pressure n and the velocity 5, because

these variables are of particular interest and because they are the

variables commonly used in describing lumped approximations of fluid

systems. The appearance of grad u in (5.3.6) suggests the use of the

pmmweywmm

f) - «grad n (5.3.8)

as the vector across variable; 5 automatically satisfies the relation

curl 5 - - curl grad n = O . (5.3.9)

In the special case of an incompressible fluid, (5.3.1) reduces to

di" ‘7 ' 0 3 (5.3.10)

and this suggests that the velocity be used as the vector through

variable. In order to account for compressibility, a device similar

to that used in Section 5.2 can be employed to define a convenient

through variable. Let

5-3+§ (sin)

where div v - E. p + 2‘--w'r'ograd p . (5.3.12)
93? 9

Then div 5 - div 5 + div 5

Idivv+}p-%£+%vogradp

div u - 0 (5.3.13)

for both compressible and incompressible fluids. The choice of



 



115

velocity and pressure gradient as variables leads to a classification

of the equations describing fluid motion in the form of Section 3.

The equations consist of the field equations (5.3.9) and (5.3.13), and

the constitutive equations (5.3.11), (5.3.12) and (5.3.7). For a

compressible fluid, (5.3.12) must be supplemented by an equation of

state, which relates the scalars p and n. The constitutive equation

(5.3.7) can be written in the form

p-pg-pT-(l+u)graddivx7ouvzv'

f5 - pg” vii-grad? - of - (X+ Mgrad div? wflb'r' . (5.3.111)

The term pf in (5.3.1h) must be interpretted as a forcing function.

The presence of the convective component pgograd v is responsible for

the inherent nonlinearity of the equations, even in the incompressible

case where p is a constant.

In a lumped approximation of the continuum model, the scalar

variables associated with the vector variables are the across variable,

pressure difference,

b .

flab - SaPOJI , (503015)

and the through variable, volume flow rate,

.8 - JE‘dg 0 (5.3.16)

S

Consider, for simplicity, the case of a compressible inviscid fluid

in which body forces are negligible and in which pressure variations

about a mean value no are small enough so that nonlinear terms can be

neglected. This set of conditions closely approximates the problem

of acoustics. The system equations then become

curl E - 0 (5.3.17)

div {1' - 0 (5.3.18)
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{i . ; * § (503.19)

div .7 - h? (5.3.20)

5- 95%. (5.3.21)

From (5.3.21), the pressure difference associated with a linear graph

edge corresponding to a microelement face normal to the x-axis is

x+Ax_ -

fix ' 8 pear

x

a
prx

'3v

”3%“
poAx d(VXQyAz)

a

3532 at

poAx de

11x ‘ my. (5.3.22)

where po is the mean density corresponding to the mean pressure no.

A volume integral of (5.3.20) leads to

AV - (;V(div w)dv (5.3.23)

“AV ‘K—a-f , (5.3.2h)

where K - (p §%)n is the bulk modulus of the fluid. The component

equations (5.3.22) and (5.3.2h), along with the topological equations

which are the integrals of (5.3.17) and (5.3.18), lead to a system

linear graph similar to the one shown in Figure 5.2.1. The symbol

OAV represents a volume flow from each vertex of the graph to an

external reference vertex.
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The two terms due to viscosity in the constitutive equation

(5.3.lh) are more difficult to approximate in the lumped model. One

of the viscosity terms is

51 ' ‘(x + H)8rad div 5 . (5.3.25)

The corresponding pressure difference, for a graph edge associated

with the x coordinate direction, is

“1x - rugs:

- (xi u)((div ‘7). - (div The.)

- -(x + u)((div fi),—- (div my“)

nix - (Wflhmgwx - (“av)x) . (5.3.26)

from equations (5.3.11), (5.3.13) and (5.3.23). Thus there is a

pressure difference associated with each edge which is proportional

to the difference between the values of the volume flow rates directed

from the two vertices of the edge, toward the reference vertex. The

second viscosity term in (5.3.1h) is

1'52 - aw . (5.3.2?)

This leads to a pressure difference, for a graph edge associated with

the x coordinate direction, of

x+Ax_

flax . S p: oaI

x

3 -quVavx

azvx cavx aavx

‘ ~HAx(--e'‘jyrs '3-1fl .

The usual incremental approximations of the partial derivatives can

be used:

bavx vx(x+Ax) + vx(x-Ax) - 2vx

’72:: ‘ WV“.
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B'v e (x+Ax) + e (x-Ax) - 29

"53:; " AyAz x T1157 x - (5.3.28)

Thus

. Ax ex(x+Ax) + ex(x-Ax) - 2ex

“'x ' quz (Ai)‘:’ *

e (y+Ay) + e)(y~qy) - 2e 9 (z+Az) + e (z-Az) - 20

x (330% x + X 135‘“ x). (5.3.29)

Here .x is the volume flow rate associated with the graph edge with which

"ax is associated; ek(x+Ax) and ex(x-Ax) are the flow rates associated

with the two graph edges which are parallel to this but displaced from

it by amounts :Ax in the x coordinate direction. Thus this pressure

difference due to viscosity depends on a flow rate and on the six

parallel, adjacent flow rates surrounding the first.

5.11 Magnetohydrodynamics

Magnetohydrodynamics (MHD) has to do with the interaction of

an electromagnetic field with a plasma, or ionized gas(25). An

analysis of MHD involves the properties of the electranagnetic field,

the mechanical properties of the fluid, and the coupling between the

two. The motion of the fluid in a magnetic field produces a component

of electric field intensity, 5"' - -‘5 x 5, in addition to the two

components discussed in Section 5.1. This coupling from fluid to

electrical effects is accompanied by a coupling from electrical to

fluid effects; a body force 5e - - i x 5 must be added to the con-

stitutive equation (5.3.1h) in Section 5.3.

The equations needed to characterize MHD are the electromagnetic

field equations (5.1.3), (5.1.1:) and (5.1.7) through (5.1.114), and the

fluid equations (5.3.9) and (5.3.11) through (5.3.lh). Equation



 



h9

(5.1.11) must be changed to

5 - 3' + 5" + 5"' , (Soh.1)

where 6'” =- - v x 5. (5.11.2)

Also, equation (5.3.111) should be changed to

fiw§+pG-sadi-pI-(anraddiv?

- 11V“)? - i x 5 , (5.14.3)

where f is now the resultant of any body forces other than that due

to the electromagnetic field. The coupling terms (5.h.2) and

5° ' - f x 5 (5.11.11)

correspond to "inverse" couplers because they relate across variables

to through variables. It should be noted that the coupling equations

require the use of the magnetic flux density 5, even though the time

derivative 5 was found to be a more convenient variable in Section 5.1.

A discrete approximation of the continuum model can be formed

for the electromagnetic field variables as in Section 5.1 and for the

fluid variables as in Section 5.3. Thus three disjoint graphs are

required, for the electrical, magnetic and fluid variables. Discrete

approximations for the coupler equations (5.11.2) and (5.11.11) must be

added to complete the equations describing the MRI) process.

Consider a special case, which is the situation usually analyzed

in connection with MHD power generation and in connection with solar

MHD waves. Let the magnetic flux density be

S - 60 + 81 (5.11.5)

where b°))b1

and where 50 is constant in time and space. This amounts to line-

arizing the coupling equations (5.11.2) and (5.14.11), so that they
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become

4
|5'” . _

x 80 (5.h.6)

X 60 0 (501107)

For simplicity, let 50 be directed along the z coordinate axis, so

p6 - .- H
v

that

to - bOE . (5.h.8)

Then the electric potential difference due to the coupling term

(5.h.6), for a linear graph edge associated with the x axis, is

stx

Bu: 3 J ‘3'"; .5]:

X X

ell'Ax

x

I
-

a

'
1

‘
4 > N 5
'

B;' ‘ - . (5.h.9)

Similarly, (3;) 6 ex , (5.1..10)

sg' - 0 . (5.h.1l)

Also, the pressure differences due to the coupling term (S.h.7) are

flex ‘ - 2%»wg , (5.h.12)

nay a 2§~mk , (5.h.13)

nez - o . (5.h.1h)

Thus the potential differences and pressure differences, in the x and

y coordinate directions, due to the coupling are related to the volume

flow rates and electric currents in the respective normal directions.

The use of equations (5.h.9), (5.h.lO), (5.b.12) and (5.h.13) can be

facilitated by choosing microelements for the fluid variables which
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are displaced in the x and y coordinate directions from the micro-

elements used for the electric variables.



 

 

 



6. CONCLUSION

Section 3 of this thesis presents a formal structure for

distributed parameter system theory, built on a postulate concerning

the variables required to characterize a physical system, two

postulates regarding the nature of these variables, and four important

theorems based on the postulates. These lead to convenient forms in

which system models can be generated, at least when the medium under

analysis is characterized by linear constitutive equations. This

structure, along with the content of the postulates and theorems, is

directly parallel to that of lumped parameter system theory. The

important postulates and theorems which form the structure of lumped

parameter system theory are outlined in Section 2.

Section h of the thesis presents a.method by which a discrete

approthation of a distributed parameter system can be formulated,

based on the structure of Section 3. Because of the connection

between the structure of distributed parameter system theory and that

of lumped parameter system theory, the resulting discrete approxima-

tion is a lumped parameter system model which fits exactly into the

structure of Section 2. The examples of Section 5 exhibit both

continuum models and lumped approximations for four different kinds

of physical systems which agree with the abstract prototypes of

Sections 3 and h.

Recent efforts toward the development of a formal abstract

structure for lumped parameter system analysis have resulted in two

important scientific advances. One is the research in the analysis
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of sophisticated lumped parameter systems that has been based on the

abstract theory. The second important result of the developnent of

this structure is concerned with exposition. Lumped parameter system

theory has become recognized as a fundamental engineering discipline,

and the abstract structure has provided an effective teaching tool.

The formal structure of distributed parameter system theory should

provide the same kind of stimulus for research and teaching in this

area of study .
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