OVERDUE FINES:
25¢ per day per item

RETURNING LIBRARY MATERIALS:

Place in book return to remove
charge from circulation records




© 1980

ALFRED JOSEPH VANDERZANDEN

All Rights Reserved



SOME RESULTS FOR THE WEIGHTED EMPIRICAL PROCESS CONCERNING
THE LAW OF THE ITERATED LOGARITHM AND WEAK CONVERGENCE

By

Alfred Joseph Vanderzanden

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Statistics and Probability

1980



"ABSTRACT

SOME RESULTS FOR THE WEIGHTED EMPIRICAL PROCESS CONCERNING
THE LAW OF THE ITERATED LOGARITHM AND WEAK CONVERGENCE

By

Alfred Joseph Vanderzanden

In this paper we establish two main results for the weighted
empirical process. The first result is a functional law of the
iterated logarithm when the underlying random variables are i.i.d.
Uniform [0,1]. The second result is the weak convergence of the
weighted empirical process to a Gaussian process with almost sure
continuous sample paths when the underlying random variables repre-
sent an array of row indebendent random vectors taking values in the

k-dimensional unit cube [0,11X.
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1. SUMMARY

The weighted empirical process deserves special recognition
among stochastic processes. It serves as a fundamental tool in the
study of statistics based on ranks, as they occur in nonparametric
statistics, because of the ability to express these rank statistics
in terms of the weighted empirical process (see Koul (1970a) and
Koul and Staudte (1972)). Furthermore, some statistical prohedures
have recently been proposed by Sinha and Sen (1979) and Koul (1980)
which involve the weighted empirical process directly.

In this paper we establish two main results for the weighted
empirical process. The first result is a functional law of the
iterated logarithm when the underlying random variables are i.i.d.
Uniform [0,1]. This appears in Section 2 as Theorem 2.2.1 and
extends the work of Finkelstein (1971) using some ideas found in
James (1975) and Kuelbs (1976). The second result appears in Section
3 as Theorem 3.2.2 and establishes the weak convergence of the
weighted empirical process to a Gaussian process with almost sure
continuous sample paths when the underlying random variables repre-
sent an array of row independent random vectors taking values in the
k-dimensional unit cube [O,l]k. Theorem 3.2.2 extends the work of
Koul (1970), Withers (1975), énd Shorack (1980) using the fluctuation
inequalities of Bickel and Wichura (1971) which we present in

Section 4.



2. A FUNCTIONAL LAW OF THE ITERATED LOGARITHM FOR THE
WEIGHTED EMPIRICAL PROCESS

. 2.1. Introduction

Let Y],Yz,... be. a sequence of random variables defined on
a probability space (Q,F,P) such that P(Yi € [0,1]1) =1 for
each i =1,2,... . Furthermore, let C1sCos.-- be a sequence of

real numbers and define
N
(2.1.1) =) &, N=1,2,...
In this section the weighted empirical process is defined by
N
(2.1.2) VN(t) = .2] ci[I(Yi_g t) - P(Yi.g t)l, te[0,11.
]=

We also define the "normalized" weighted empirical process by

(2.1.3)  X(t) = vy (t)/ /2 oﬁ log Tog oﬁ , tero,Il.

Functional laws of the iterated logarithm have been
established for the XN process by Finkelstein (1971) when Y],Yz,;..

are i.i.d. Uniform [0,1] and c; = 1 for all i; and also by

Philipp (1977) when Y15Yps... are strictly stationary strongly

mixing Uniform [0,1] and c; = 1 for all 1. James (1975) and

Wellner (1977) have extended Finkelstein's (1971) result to

empirical processes of the form wX, where w(t), t € [0,1] is a

N
suitable weight function, Yi:Y55... are i.i.d. Uniform [0,11,

2



and ¢y = 1 for all i. In this paper we extend Finkelstein's
(1971) result in a way different from James and Wellner. We still
require Y],Yz,... to be i.i.d. Uniform [0,1] but we allow the
weights CysCos.-- to be arbitrary real numbers satisfying two
regularity conditions.

Before stating the main result we introduce some notation
adopted from Kuelbs (1976).

If (M,d) is a metric space and A =M we define the dis-
tance from x € M to A by d(x,A) = inf{d(x,y) : y € A}. If
{xN} is a sequence of points in M, then C({xN}) denotes the
cluster set of {xN}. That is, C({xN}) is the set of all possible
limit points of the sequence {xN}. We write {xN} +— A if both
;12 d(xN,A) =0 and C({xN}) = A.

If r(s,t), s,t € T ¢ (-»,2) 1is a nonnegative definite real-
valued function, we define H(I') to be the reproducing kernel
Hilbert space generated by the kernel T and "'"H(F) denotes the

associated norm on H(T). For an extensive discussion of reproducing

kernel Hilbert spaces see Aronszajn (1950).

2.2. The law of the iterated logarithm for weighted empirical
processes

Let the space of real-valued functions on [0,1] which are

right continuous on [0,1] and have left limits on (0,11 be
denoted by D[O0,1]. Endow the space D[0,1] with the metric

generated by the supremum norm

(2.2.1) |Iixll, = sup{|x(t)| : t € 0,11}, x € DCO,11,



and let D denote the o-field generated by the H-”m-open balls of
Dro,11.

Theorem 2.2.1. If Y],Yz,... are i.i.d. Uniform [0,1] random vari-

ables and CysCps... are any real numbers satisfying

2
log log N

(2.2.2) 1im oﬁ = and lim ( max c%) — = 0,
N-so Noo  1<i<N oN

then with respect to (D[0,11, D, ll-[_) we have

(2.2.3) P(XN +~ B) =1

where XN is the normalized weighted empirical process (2.1.3) and

B = {x € H(Tr) : "x“H(P) <1} with TI(s,t) = (s A t) - st, s,t € [0,1].
Theorem 2.2.1 will follow from Lemma 1.1 in Kuelbs (1976) once

we establish Lemma 2.2.1 and Lemma 2.2.2 which we now state.

Lemma 2.2.1. Suppose the assumptions of Theorem 2.2.1 are satisfied

and let T denote any finite subset of [0,1], then with respect to

(RT, Il 1) we have

(2.2.4) P(Xy + BT) = 1
where RT is the space of all real-valued functions defined on T,
Ixll + = max |x(t)| for all x € RT, XT is the process (2.1.3)

R teT N

T s the

restricted to T, BT = {x € H(FT) s x| T <1}, and T
restriction of I(s,t) = (s A t) - st gor % x T.

Before stating Lemma 2.2.2 we introduce some additional nota-
tion adopted from Kuelbs (1976).

If T-= {tO’t]"“’tm} where 0 = to <ty <<ty = 1 and
if x € D[0,1], then we define AT(x) to be the continuous polygonal



function such that

(2.2.5) ((8) = (It 1) + (it
2.2.5 Ar(x)(t) = (77— )x(t, + (T )x(t;

T ti - ti_" 1-] ti - .i_-l 1
for te€[t, » t;] and i=1,2,...,m.

Lemma 2.2.2. Suppose the assumptions of Theorem 2.2.1 are satisfied,
T= {tO’tl""’tm} where 0 = to < t] <...< tm =1, and

1
max |t; - t: .| <=, then
PP R LY.

(2.2.6) P(||XN - AT(XN)Hm < op for all sufficiently large N) =1

here X, fis th (2.1.3) 2 m\/%(ti "~ 4.1)
where S e process led), = max ~ - ’

and p > 1.

Lemmas 2.2.1 and 2.2.2 will be proved shortly, but we first
show they imply Theorem 2.2.1. With this in mind let TM’ M=1,2,...
denote any sequence of increasing finite subsets of [0,1] such that

the points in TM satisfy

0=¢t,, < ty, <...< t for M=1,2,...

MO M1 M

’mM
(2.2.7) |
and lim max t,. - t, . = 0.

If the assumptions of Theorem 2.2.1 are satisfied, then Lemma 2.2.2

gives P(lixy - ATM(xN)nw <or, for all sufficiently large N) =1

for each M =1,2,... Hence, it follows that P(Tim [X, - A (X, <
N M

or for each M) = 1. Using (2.2.7) we have 1lim ¢ = 0 so that
Mo M

M

2.2.8 P(Tim Tim (X, - A, (X =0)=1.
( ) (&NEIN TM(N)IL,‘, )

Relation (2.2.8) shows that condition (ii.c) of Lemma 1.1 in Kuelbs
(1976) is satisfied.



Since T(s,t) = (s A t) - st is continuous on [0,1] x [0,1],
Lemma 3 in Oodaira (1972) implies that B = {x € H(T) : "x”H(P) <1}
is compact in (C[0,11, [l-[.)) where C[0,11 is the space of all
real-valued continuous functions on (0,11 and |[Ix|| = sup{|x(t)]| :
t € [0,1]} for all x € C[0,1]. Furthermore, from the Theorem on

page 351 in Aronszajn (1950) it is easy to show that

T

(2.2.9) {x € H(PT) : Hx"H( .31 ==y :y¢€ H(r) and

r)

where T can be any nonnegative definite function on [0,1] x [0,1]
and T any finite subset of [0,1]. Hence, Lemma 2.2.1 applied to
each TM’ M=1,2,... shows that condition (i.) of Lemma 1.1 in
Kuelbs (1976) is satisfied. Thus, Theorem 2.2.1 now follows from
Lemma 1.1 in Kuelbs (1976).

Proof of Lemma 2.2.1.

Let T = {t]’tZ""’tm} denote any finite subset of [0,1].
Let Y],Yz,... and CysCoseee be as in Theorem 2.2.1 and define

Zy = (Z3(t))s Z3(ty),e.ny Zo(8)), 0 = 1,2,...

where Zi(t) Ci[I(Yi <t)- P(Yi <t)l, t€r0,11,1i=1,2,...

N
:
Then Ay = (y(t)) Xy(t)ee e ly(tg)) = 3 24/ /2 ok 10g log o

N
1 - m =l =
and ;7 121 Cov(Z;) = (r(ti’tj))i,j=] =T where TI(s,t) = (s at) - st.
N

Lemma 2.2.1 now follows immediately from the multivariate law of the
iterated logarithm, Thereom 1 in Berning (1979), applied to Zss
i=1,2,... O



The proof of Lemma 2.2.2 depends on several results which we
present in the following Lemmas.
Lemma 2.2.3. If T = {tO’t]""’tm} where 0 = t0 < t] <...< tm =1
and X(t), t € [0,1] 1is any stochastic process, then

(2.2.10) X - Ap(X), < max [ sup  |X(t) - X(t;_y)] +
I<i<m telt, .t

sup [X(ti) - X(t)|1
telt, 1»t,]

where AT(X) is the continuous polygonal function defined in (2.2.5).
Proof. For any t € [0,1] there exists i ¢ {1,2,...,m}
such that ti_y <t <t;. Hence,

t, -t -t
X(E) = AR = [ DX(E) = X(ty 1 ¢ g DX(E) = X(ty)]]

< IX(E) = X(ty_ )]+ IX(E) - X(tg)]
and (2.2.10) now follows immediately. 0O
Lemma 2.2.4. Let N € {1,2,...} be fixed. Suppose YI’YZ""’YN

are independent real-valued random variables defined on a probability

space (Q,F,P) and CysCps...»Cy are any real numbers. Define

N

(2.2.11) M(t) = ,X] Cey/P(Y; € (a,t])ICI(Y; € (a,t]) - P(Y; € (a,t1)]
1=

and
N

(2.2.12) R(t) = .Z] Cey/P(Yy € (t,b1)I0I(Y; € (t,b1) - P(Y; € (t,b1)]
‘|=

where a and b are any two real numbers.

Then {M(t), F](t), te T]} is a martingale and
{R(t), Fz(t), te TZ} is a reversed martingale where T] < [a,»)



and T2 < (-=,b] are such that M(t) is well-defined for all t € T
and R(t) 1is well-defined for all t € T2. F](t) and Fz(t) are
the o-fields defined in (2.2.13) and (2.2.16), respectively.

Proof. We first show that {M(t), t € T,} 1is a martingale with

respect to the nondecreasing family of o-fields
(2.2.13) {Fy(t), t €Ty}

where F](t) is the o-field generated by the class of sets of the
form {Yi € (a,s]} for some i € {1,2,...,N} and some s € [a,t].

Let s,t € T] with s < t. Then it is easy to show that for
each i € {1,2,...,N}

(2.2.14) P(Y1 € (a.t]lFl(s)) I(Yi € (a,s])

* P(Y; € (a,sT) I(Y; € (a,s1).

Using (2.2.14) we obtain

(2.2.18) P(Y; £ (a,s1)P(Y; € (a,t1|F(s)) - P(Y, € (a,t])]

= P(Y; £ (a,t1)LI(Y; € (a,s]) - P(Yy € (a,s1)3.

From (2.2.15) and (2.2.11) it now follows that

N
E(M(t)|Fy(s)) .Z] [cy/P(Y; £ (a,t1)IP(Y; € (a,t]IFy(s)) -

1:
P(Y-i € (a,tl1)]

N

I Ccy/P(Yy € (a,s1)I0I(Y; € (a,s]) - P(Y; € (a,s1)]
i=]

M(s).



This shows {M(t), F](t). t € T]} is a martingale.
Next we show {R(t), t € T,} is a reversed martingale with

respect to the nonincreasing family of o-fields
(2.2.16) (Fa(t), t € Ty}

where Fz(t) is the o-field generated by the class of sets of the
form {Yi € (s,b]} for some i € {1,2,...,N} and some s € [t,b].

Let s,t € T2 with s < t. Then it is easy to show that for
each i€ {1,2,...,N}

P(Y; € (s,t])
(2.2.17) P(Y; € (s,b1|F,(t))= I(Y; € (t,b]) + PV, € (€,57) I(Y; £ (t,b1).

Using (2.2.17) we obtain

(2.2.18) P(Y; £ (t,b1)IP(Y; € (s,bI[Fp(t)) - P(Y; € (s,b1)3
= P(Yy £ (s,bI)CI(Y; € (t,b]) - P(Y; € (t,b])].

Finally, from (2.2.18) and (2.2.12) it follows that

N

- P(Yi € (s,b1)1

E(R(s)[Fy(t))

N
= [ci/P(Yi £ (t,b1)ICI(Y; € (t,b1) - P(Y; € (t,b1)]
i=1
= R(t).
This shows {R(t), Fz(t), t € T,} 1is a reversed martingale. 0

Lemma 2.2.5. Let N € {1,2,...} be fixed. Suppose Yl’Yz""’YN
are independent real-valued random variables defined on a probability

space (Q,F,P) and c,c,,...,Cy are any real numbers. Define
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the random variable X by
N

(2.2.19) X = 'Z] [Ci/P(Yi £ (a,b])II(Y; € (a,b]) - P(Y; € (a,b])]
1=

where a and b are any real numbers such that a < b and X is

well-defined. Then for any o > 0 we have

(2.2.20)  E exp(aX) < expla®f(ag)Var(X))

"~ where

(2.2.21) B8 = max [|cy| max{1, P(Y, € (a,b)/P(Y, ¢ (a,b])}]
1<i<N ! !

and f(x), x € (-»,») 1is the positive, strictly increasing, continuous

function defined by

(2.2.22) (X =1 -x)/x% if x#0

f(x) =
1/2 if x=0.

Proof. For each i =1,2,...,N Tlet
Xj = Cey/P(Yy € (a,b1)ICI(Y; € (a,b]) - P(Y; € (a,b1)].

Then it is clear that X]’XZ""’XN are independent random variables
with EX; =0 and |[X;] <8, i=1,2,...,N where g is defined in
(2.2.21). With f as defined in (2.2.22) we have eX =14+ x4+ xzf(x)

so that for all o >0 and i =1,2,...,N we have

ECT + aX, + azng(axi)]
2..2
1+ of(aB) Exf

E exp(axi)

1+a

A

< exp{azf(aB) Var(Xi)} since 1+ x <e”.
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Therefore,
N
E exp(aX) = E exp(a .Z] X;)
i=
N
= I E exp(axi)
i=1
N 2
< T exp{a“f(aB) Var(Xi)}

i=]

exp{alf(aB) Var(X)}. O

Lemma 2.2.6. Suppose A(N), N = 1,2,... 1is a nondecreasing sequence
of positive numbers and {UN(t), teT}, N=1,2,... 1is a sequence of
independent stochastic processes defined on a probability space
(2,F,P) and taking values in the space of real-valued functions de-
fined on T ¢ (-»,»). Define {NN(t), teT} by wN(t) = igl Ui(t)
and assume there is a countable subset {tj, J=1,2,...} of T

such that sup{|[Wy(t)|, t € T} = sup{le(tj)l, j=1,2,...}. Then

for any positive integers N] 5_N2 and € 3_¢(N],N2) we have

(2.2.23) P ()| ) < 2p( IwNz(t)l € A(N‘))
.2. max  sup > e) < 2P(sup > =

N NN, teT (V) ter MNp) 7 2 (N
where
(2.2.24) ¢F(N5N,) = sup —§§———-[Var(wN2(t)) - Var(wN](t))J.

teT A (N])

Proof. Let e > 0. Since A(N), N=1,2,... 1is a nondecreas-

ing sequence of positive numbers, the event

{ LI
max  sup > €
N <N<N, teT AN)
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is contained in the event A where

>
n

{ max sup [W(t)] > e A(N;)}
N <N<N,, teT

(2.2.25)

{ max sup |NN(tj)| > e A(Ny)}

N,<N<N, hEd
For N € {N],...,Nz} and j € {1,2,...} define

(2.2.26) By ={ max max [W (t;)] <eA(N;) and

N,<n<N 1<i<j
Wy (t;)] > e A(N))}

NJ

and

(2.2.27) Gy = iy () = Wy(ty)] <% € AN}

It is clear that for each N € {N],...,Nz} the family
{BNj’ J =1,2,...} consists of pairwise disjoint events. Further-
more, since BNj depends only on {Ui(t), teT), i=1,2,...,N
and CNj depends only on {Ui(t), teT}, i-= N+1,...,N2, we have
for each N € {N;,...,N,} that the families {BNj’ j=12,...} and
{ch’ j=1,2,...} are statistically independent since the processes
U],Uz,... are independent. Extending Loéve's Lemma for Events on

page 246 in Loéve (1963) to countable collections of events we obtain

N
2 ©
(2.2.28) [inf{P(Cy;)s Ny <N <Ny, §>1HP(U U B
N=N] J=1
N2 o0

Plu U B.L

N=Ny g=1 NI

N2 -

It is easy to show A =U,-y U,_, By. where A is defined
N-N] J=1 "Nj

N
. . 2 )
in (2.2.25). On the other hand, in the event UN=N] Us=r ByiBnj

3
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we have for some N € {N]....,Nz} and some j € {1,2,...} that
uy(t5)] > € x(n ) and [y (t5) - y(ty)] <% A(N)). Therefore,
IH (t )| > 5 ¢ A(N ) and it follows that

N, Wy ()]

(2.2.29) v u
N=N, J=1

A(N )

BgCng < (SUP (N, T > 2 T, i

Furthermore, for each N € {N],...,Nz} and j € {1,2,...} Chebysev's
inequality gives

1 - P(C

Ng) = Py (£5) - Wy(ep)] > 5 A(N}))

< (E—T%T‘—]—)-)ZVar(NNz(tj) - Wy (t4)).

Using the definition of “N and the independence of UN' N=1,2,...
we get Var(NNz(tj) - NN(tj)) §_Var(wN2(tj)) - Var(wN](tj)). There-
fore,

2 2
(2.2.30) sup [1 - P(CN )] < sup (m) [Var‘(WNz(t)) - Var(wN](t))].

J>1 teT

N]<N<N2

The expression on the right-hand side in (2.2.30) will be less than
or equal to 1/2 if

(2.2.31) € > sup o— [Var (W, (t))-Var(w (t))]

teT A (N )

Hence, if (2.2.31) is satisfied, then (2.2.25), (2.2.28),
(2.2.29), and (2.2.30) give

[Wy_(t)] o ANy

PIA) < 2 P(sup —pry > 2 3w, )

and the lemma is proved. 0
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Proof of Lemma 2.2.2.

Let 0<a<b<1 such that b-a 5.%3 Recall that CysCose -

is a sequence of real numbers such that oﬁ = Z?sl c? + o and

log log cﬁ 2 2
( max c3) ——5—— >0 as N>~ Hence, CN/cN-l +0 as N -» o,

1<i<N ! oN

Let p > 1, set A(N) fv/% oﬁ log log oﬁ, and choose a positive integer
N0 such that

A(N) > 0 and cﬁ/oﬁ_],5 p-1 forall N> NO’

Next choose a number n such that oﬁ _5‘p". Finally, for each
0

k=1,2,... define

(2.2.32)  N(K) = min{N > Ny @ o > o™k},

It is easy to show that the sequence {N(k), k = 1,2,...} has
the following properties:

n+k+1

(2.2.33) N(K) < N(k+1) and o™k < oﬁ(k) <o for k=1,2,...

2
fo] 2
(2.2.34) Hm—g—(b‘ll = p = 1im A(NT))
oo 0% 1) koo AZ(N(K))

Let Vy(t) = I3, cilI(Y; < t) - P(Y; < t)] be the weighted
empirical process (2.1.2) where Y{sYps... are i.i.d. Uniform (0,13
random variables. Furthermore, let {WN(t), t € [a,b]} denote either
{VN(t) - VN(a), t € [a,b]} or {VN(b) - VN(t), t € [a,b]}. We now
apply Lemma 2.2.6 to {NN(t), t € [a,bl}, A(N) f\/% 05 log log oﬁ s

N] = N(k) and N, = N(k+1) for k = 1,2,... to obtain
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(8]

(2.2.35) P( max sup > g)
N(K)<N<N(K+1) tefa,b] A(N)

2P W t S A(N(k
hY (tzgg,b] l N(k+])( )I > 2’1( (k)))

provided

2 8
(2.2.36) € 2> tégg,b] ;?ZEZ;;; [var(wN(k+])(t)) - Var(WN(k)(t))].

Using the fact that Y]’YZ"" are i.i.d. Uniform [0,1], it is easy
to see that the right-hand side of (2.2.36) is less than or equal to
BLoR(ks1) - Ou(k)1(b-2)/AZ(N(K)). Hence, (2.2.35) will hold if

2 2 2 2
(2.2.37) e” > 8(b-a)[oN(k+]) - oN(k)]/k (N(k)).
Using Lemma 2.2.4 we obtain that

VN(t) - VN(a)
My(t) = —— Tta)— » b € [2;,b] is a martingale and

VN(b) - VN(t) ‘
Ry(t) = —3—= oty L€ [a,b] is a reversed martingale.

In the case HN(t) = VN(t) - VN(a) we have for all o > 0 and
§>0

P( sup [Wy(t)| > &) <P( sup [My(t)] >$)
teCa,b] tefa,b]

<P(sup M(t)>8)+P( sup (-M(t))>39)
téla,b] tefa,b]

2.2.38) = P t 8
( ) (tefgfb] exp(aM (t)) > exp(as))

+P -aMy(t
(teE:?b] exp(-aMy(t)) > exp(as))

< exp(-as)CE exp(aMN(b)) + E exp(-aMN(b))].
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Inequality (2.2.38) follows from Theorem 3.2, page 353 in
Doob (1953) since exp(aMN(t)) is a submartingale for all a € (-»,).

Applying Lemma 2.2.5 with X = MN(b) and X = -MN(b) (2.2.38)
can be continued to yield

(2.2.39) P( sup |wN(t)| >68) < 2 exp{-as + azf(aBN)Var(MN(b))}
tefa,b]

where

(2.2.40) By = max |c.
N 1<i<N | 1’

and

Var(My (b)) = oA(b-a)/r1 - (b-a)1.

Hence, (2.2.35), (2.2.37) and (2.2.39) give
| Wy (t)l
max sup
N(K)<N<N(k+1)teCa,b] *‘"’

< 4 exp{ M}.

P(
(2.2.41)
ta f(aBN(k+l))°N(k+l) _(—b- )

for k=1,2y..., a >0, and &2

where Wy (t) =V (t) - VN(a) In the same way, (2.2.41) can be shown
to hold if HN(t) = VN(b) - VN(a).

Now set

(2.2.42) =AMk e 1-(ba) 4 (55 4)

ON(k#1) 2P

and define

B AN(k+1)) C he
(2.2.43) vy, = %’%1 - N(k;l) :fl b-gb a)y,
ON(k+1) p




The

(2.2.44)

The assump

imply lim

k-»c0

17

n the right-hand expression in (2.2.41) can be written as
2 2
_ A (N(k+1)) €1 - (b-a)
4 expl- 7 4% ba K
N(k+1)
tions imposed on the sequence C1sCpsene and (2.2.34)

if 62 >-%9L91%)373 then for all sufficiently large k we have

2 > 8(b-a

equal to

(2.2.45) 4 expl-AZN(KF))/0f 4} = 4T10G Of 7))

Sin

oh(ke1) - Fu() VA N(K)) and (2.2.84) is Tess than or

-2

< 4[log ;:»"'H(H]'2 = 4[ (n+k+1)l0g pjl'2 .

-2

ce the series Z:=1 4 (n+k+1)log p] © < =, the Borel-

Cantelli lemma, (2.2.41), (2.2.44) and (2.2.45) give
(2.2.46) 0 = P( (L] f finitel k)
2. = max > ¢ for infinitely many
N(K)N<N(K+1) t€Ta,b] a0
P( IN (t)] for infinitel N).
= P( sup > ¢ for infinitely many
tela,b] a0y
Therefore, for each p >1, 0<a<b<1, b-a 5_%- and
e > ? _b'g-a we have

(2.2.47)

where NN(

now follow

[Wy(t)]
P( sup __—T_T- e for all sufficiently large N) =
tela,b] AN

t) is either VN(t) - VN(a) or VN(b) - VN(t). Lemma 2.2.2
s from (2.2.47) and Lemma 2.2.3. a



3. WEAK CONVERGENCE OF THE WEIGHTED EMPIRICAL PROCESS WITH
MULTIDIMENSIONAL PARAMETER

3.1. Introduction

For each N = 1,2,... let Cni» i=1,2,...,N be any real
numbers and ]et YNi = (YNi],YNiZ,... ,YN,ik), i = ],Z,o-o,N be k'
variate (k > 1) random vectors taking values in the k-dimensional
unit cube [O,IJk. In this section we define the weighted empirical

process by

N
= k
(3.1.1) VN(t) = igl cNi[I(YNi <t)- P(YNi <t)l, tero,]

where, as usual, if x = (x],xz,...,xk) and y = (y],yz,...,yk),
then we write x <y if and only if X < ¥4 for all i =1,2,...,k.

We also define the "normalized" weighted empirical process by

(3.1.2) Zy(t) = Vy(t)/oy » t e r0,11¢
where
' N
2 _ 2
(3-]03) ON = 12] cNi .

Our goal is to establish sufficient conditions for the ZN
process (3.1.2) to converge weakly in the generalized Skorohod metric
space (D,,d) as defined in Bickel and Wichura (1971). To be sure,
weak convergence of the ZN process has been studied by many authors

under a variety of conditions. Therefore, so that our result can be

18
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put in perspective with other established results, we shall briefly
indicate what has already been done.

To begin with, when k =1, (lf?ﬁN cﬁi)/oﬁ + 0, and for each
N=1,2,..., Yygo 1= 1,2,...,N are statistically independent, Koul
(1969), Koul (1970b), Withers (1975), and Shorack (1980) each prove
that Z, converges weakly in (Dk,d). Conditions imposed by these
authors on the distribution funtions of the YNi vary, but the least
restrictive condition is stated in Withers (1975) and Shorack (1980),
namely

N
(3.1.4) 1im Tim  sup L )

> cﬁi P(Yy; € (t,t+61) = 0.
6+0 Now t€[0,1-8105 1

1

Shorack (1973) also proves ZN converges weakly, but is limited to
the case CNi T 1 and an assumption much stronger than (3.1.4) is
imposed.

Several authors have studied the weak convergence of Iy when
YNi’ i=1,2,...,N are not independent but satisfy specific "mixing"
conditions. For example, when k = 1 see Billingsley (1968), Sen
(1971), Deo (1973), Yokoyama (1973), Yoshihara (1974), Withers (1975),
Mehra and Rao (1975), and Koul (1977). The first five authors only
consider the case CNi T 1 and assume YN{’ i=1,2,... are
identically distributed with a continuous distribution function or
with a Uniform [0,1] distribution. Withers (1975) and Koul (1977)
both assume
(3.1.5) sup N( max Cﬁi)/°§ < o,

N>1  1<i<N

Furthermore, Withers (1975) assumes (3.1.4) holds along with some other

v
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regularity conditions. Koul (1977) assumes the average of the dis-
tributions P(YNi <t), i=1,2,...,N is Uniform [0,1]. Mehra and
Rao (1975) assume each YNi is Uniform [0,1] and either

( max Cﬁ-)/0§ +0 or sup NS( max Cﬁi)/cﬁ <o for some &§ >0
1<i<N ! N>1 1<i<N

depending on the kind of "mixing" condition assumed.

Weak convergence of ZN with respect to metrics stronger than
the usual Skorohod metric d has been studied in the case k =1 by
Pyke and Shorack (1968), 0'Reilly (1974), Mehra and Rao (1975),
Withers (1976), and Shorack (1980). These authors require Cni = 1
or (3.1.5) except when YNi’ i=1,2,...,N are either i.i.d.

Uniform [0,1] or identically distributed as Uniform [0,1] and
satisfy a certain kind of "mixing"” condition in which case

(_max cﬁi)/oﬁ + 0 suffices.

1<i<N

Among those authors who have studied the weak convergence of
Zy when k > 2 we have Bickel and Wichura (1971), Neuhaus (1971),
Sen (1974), Riuschendorf (1974), Neuhaus (1975), Yoshihara (1975/76),
and Rischendorf (1976). The first six authors each limited their
study to the case Cni T 1. Bickel and Wichura (1971) also assumed
YNi’ i=1,2,... were i.i.d. with a continuous distribution function
while Neuhaus (1971) assumed YNi’ i=1,2,... were i.i.d. with a
distribution function satisfying a Lipschitz condition. Sen (1974)
and Riischendorf (1974) both assumed Yyi» 1= 1,2,... satisfied a
certain "mixing" condition. Sen (1974) also assumed YNi’ i=1,2,...

were identically distributed and had Uniform [0,1] marginal dis-

tributions while Riischendorf (1974) assumed
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Sup sup P(YNi € A) < u(A)
N>1 1<i<N

k

for some measure u on (0,117 with continuous marginals.

. =1, assumed

Neuhaus (1975), in addition to assuming Cni

YNi’ i=1,2,... were independent and the average of the distribu-

tion functions of Y i=1,...,N had Uniform [0,1] marginals.

Ni®
Yoshihara (1975/76) assumed YNi’ i=1,2,... satisfied a certain
"mixing" condition and were stationary in addition to assuming

CNi = 1.

Rischendorf (1976) is the only author that has studied the weak
convergence of the multiparameter weighted empirical process with
general weights CNi Most of the results obtained by Riischendorf
(1976) depend on his Lemma 2.1 appearing on page 913 in the same
article. From Ruschendorf's description of the proof of Lemma 2.1
it appears to this writer that the proof is incorrect. Hence, at
this time no further comment will be made concerning the results in
Riischendorf (1976).

In this paper we extend the results of Koul (1970b), Withers
(1975), and Shorack (1980) to the multidimensional parameter weighted

empirical process in the case where YNi’ i=1,2,...,N are

statistically independent (see Theorems 3.2.1 and 3.2.2).

3.2. MWeak Convergence of the Weighted Empirical Process

For k =1,2,... let (Dk,d) denote the (separable) metric
space of real-valued functions defined on [0,1]k which are "con-
tinuous from above, with limits from below" as defined in Bickel and

Wichura (1971). Furthermore, let Ck denote the set of all continuous
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real-valued functions defined on [0,1]k

. If t = (t"’tz,oo-,tk)
is a point in RK we define the norm of t by |it| =
max{|tj| :J=12...,k}. Also, if §>0 and x € D, then we

define wa(x) to be the usual modulus of continuity, namely

k

(3.2.1) wg(x) = sup{|x(s) - x(t)| : s,t € 0,11 and lis - tl < s3.

The main results of this section concern the "normalized"
weighted empirical process (3.1.2) and are stated as Theorem 3.2.1

and Theorem 3.2.2 .

k

Theorem 3.2.1. Llet ZN(t), t € (0,11 denote the process in (3.1.2)

and assume

(3.2.2) YN]’YNZ""’YNN are statistically independent for each
N=1,2,...,

(3.2.3) Vim ( max cﬁi)/oﬁ =0,
Noo  1<i<N

and for each j = 1,2,...,k
—_— 1 N
(3.2.4) 1im 1im sup - ) CNi P(x < Yyis <X * §) =0.
60 Now x€L0,1] oy =1 J

Then for all € > 0

(3.2.5) 1im Tim P(w (Zy) > €) = 0 .
§+0 Nooo

Theorem 3.2.2. If in addition to the assumptions of Theorem 3.2.1

we also have

(3.2.6) 1im Cov(ZN(S), ZN(t)) = T'(s,t)
Nooo

k

for all s,t € [0,1]", then
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ZN converges weakly in (Dk,d) to a zero mean Gaussian
process Z having covariance T and P(Z € Ck) = 1.

The proof of Theorem 3.2.1 is quite similar to the proof of
Theorem 2.2 in Koul (1970b). The main tools used in proving Theorem
3.2.1 are the fluctuation inequalities of Bickel and Wichura (1971)
[see Lemma 4.1 and Theorem 4.1 in Section 4 of this paper] while
Koul (1970b) uses the fluctuation inequalities in Billingsley (1968).

Theorem 3.2.1 will be proved after first establishing four
lemmas. The first lemma, Lemma 3.2.1, provides a nécessary and
sufficient condition for (3.2.5) to hold. This condition (3.2.9)
is more convenient to work with than (3.2.5) when applying Bickel
and Wichura's (1971) fluctuation inequalities. The second lemma,
Lemma 3.2.2, provides sufficient moment inequalities to justify the
use of the fluctuation inequalities in Bickel and Wichura (1971).
Finally, the third and fourth lemmas, Lemma 3.2.3 and Lemma 3.2.4,
provide inequalities from which Theorem 3.2.1 will follow easily.
Theorem 3.2.2 will then follow from Theorem 3.2.1 and an easy
application of the multivariate version of the Lindeberg-Feller
Central Limit Theorem.

Keeping the preceding remarks in mind let us for each Borel

k

set A in R" define

N
=1

Furthermore, for each 6§ >0 and j = 1,2,...,k let A(j,8) denote

k

the class of all subsets A < [0,1]1" having the following form
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(3.2.8) A= [O,t]] XoooX [o’tj-IJ x (X,y] x [O,tj+]] XoooX [O,tk]

where 0 < y-x < 6.

k

Lemma 3.2.1. Let ZN(t), t € [0,1]" denote the process in (3.1.2).

Then

(3.2.5) 1im TTE'P(WG(ZN)_g €) =0 forall €>0
50 Now

if and only if

(3.2.9)  1im Tim Pwid(z,) > €) = 0 forall >0 and j=1.2,....k
50 Moo

where
(3.2.10)  wi)(z,) = supt|zZy(R)] : A € A(3.6)3,

ZN(A) is defined in (3.2.7) and A(j,8) 1is the class of sets of
the form (3.2.8).

Proof. First observe that if s = (51’52""'Sk) and
t = (t],tz,...,tk) are any two points in [O,IJk with |[|s - t]| < ¢
and u = (s] VEses v tk), then s <u, t<u, (s -ul <5,

and it - u]| < 6. Hence, by the triangle inequality we have
IZN(s) - ZN(t)| 5_[ZN(s) - ZN(u)| + |ZN(t) - ZN(u)l
and it follows that

(3.2.11)  wi(Zy) < wg(zy) < 2 wi(zy)

where

(3.2.12) wi(Zy) = sup{|Zy(s) - Zy(t)| : s,t € [0,11%, s < t,

lIs - tll < 6}.
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It is now clear that (3.2.5) will hold if and only if
(3.2.13) lim Tim P(wé(ZN) >¢€) =0 forall €>0.
§+0 Nooo

We now show (3.2.13) is equivalent to (3.2.9).

Let s = (s],...,sk) and t = (t],...,tk) be any points in

[0,13X with s <t and |s - t| <. Then (3.1.2) and (3.2.7)
give
(3.2.14) Zy(t) - Zy(s) = Zy(CO,t] \ [0,s1).

It is also clear from (3.2.7) that if A and B are disjoint Borel

sets in Rk, then ZN(A UB) = ZN(A) + ZN(B). Hence, if we define

Aj, j=1,2,...,k by
(3.2.15) Aj = [O,s]] X, . .X [O’Sj-l] x (Sj’tj] x [O,tj+]] X.o.X [O,tk],

then A]’Az""’Ak is a partition of the set [O0,t] \ [0,s] and
it follows from (3.2.14) that

k
(3.2.16) ZN(t) - ZN(S) = jzl ZN(Aj) .
Since Aj € A(j,8), j =1,2,...,k (3.2.16) gives
. K- (3)
(3.2.17) wa(ZN) 5_j§] Ws (ZN).
On the other hand if A € A(j,S8), then A has the form

A= [O,U]] XeooX [OQUJ'_'I] X (X,YJ X [O’Uj"']] XoooX [o’uk]

where 0 < y-x < 8.
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If s = (51’52""’sk) and t = (t]’tZ"“’tk) are defined by

ts for i # j, then s,t € [O,IJk,

sj = X, tj =y and S; T Uy

s<t, [Is-t] <s, and
A =T[0,t] \ [0,s].

Hence, ZN(A) = ZN([O,t] \ [0,s]) = ZN(t) - ZN(s) and it follows that
(3.2.18) wéJ)(zN) <wy(zy) forall §=1,2,....k .

Lemma 3.2.1 now follows from (3.2.13), (3.2.17), and (3.2.18). O
Lemma 3.2.2. Let Y1’Y2""’YN be statistically independent k-
variate random vectors taking values in Rk, let C1sCosentsCy be

any real numbers, and for each Borel set A in Rk define

N
ZN(A) = iZ] ci[I(Yi €A) - P(Yi €A)]

and

=

_ 2
uN(A) = izl c; P(Yi €A) .
Then

(3.2.19)  E[Z(M)]%|Z,(B)|% < 3 WA(AUB) if A and B are disjoint;
and

(3.2.20) E[Zy(A)|* < 3 1E(A) + (| max Ay (A).

<i<N

k

Proof. For each Borel set A in R° and i =1,2,...,N

define

X(Ai) I(Yi €A) - P(Yi € A)

and

P(A;) = P(Y; € A) .
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k

Now let A and B denote any two Borel sets in R". Since Y],Y

are independent and E X(Ai) =0 forall i=1,2,...,N and all

Borel sets A, we have

N N
2 2
ElzZy(R)]°|2y(B)| = iz Z] kzl lz]c $CkSq ECX(A)X(AS)X(B))X(B))]

N 4 N N 2 2
(3.2.21) = ¥ ¢ 3G (A, )x2 (By) + T T cfc 2 EX2 (A, ) ILEX2 (8;)1
i=1 =1 g1 13
itj

Z c [E X(A )X(B JILE X(A )X(B ).
i=1 j=1
#J

since [X(A;)] <1 and E X°(A;) < P(A;), (3.2.21) gives the

Mz
=z

+ 2

following result when A = B.

4 4 2.2 42 2
E|Zy(A)] 12] e ¥t (A;) +3 2] JZ c3 th X“(A{)ICE X (Aj)]

4]

IA

( max cf) Z] ciP(A,) + 3 z cip(a,)12

1<i<N

This proves (3.2.20).
If A and B are disjoint, then E X(Ai)X(Bi) = -P(Ai)P(Bi)
and E X2(A;)X%(B;) < P(A;)P(B;) so that
Elzy(A)1%]2,(8)]° < 2 cIP(AIP(B,) + 3 z ) cZc2p(a,)P(8;)
i=1 j=1 1 J
i#J
T coan ) e
< 3C c;P(A;)IL csP(B,)1.
g1 1 Ty T

Hence, (3.2.19) follows. O
Lemma 3.2.3. Let Y]’YZ"f”YN be statistically independent k-

variate random vectors taking values in [0,1]k; let CsCosevtsCy

23
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be any real numbers; for each Borel set A in Rk

define ZN(A) =
X c;LI(Y; € A) - P(Y; € A)1; for each j=1,2,...,k and each

Bore] set B in R define ZNJ(B) Z ¢, [I(Y €8B) - P(Yij € B)]

and uNj(B) Z ci P(Yij € B) where Yi (Yil’ iZ""’Yik) for
i=1,2,...,N; and for each j = ..k, 6§ >0, and x € [0,1]
let A(j,8,x) denote the class of all subsets A of the form

A= [0,8)] x...x [0,t; 4] (x,tj] X [0,t5,,1 x...x [0,t, ] where
t. € [x, x*§] and t; € (0,1] for i # j. Then for each € > 0,

J
§>0,j=1,2,...,k, and x € [0,1]

(3.2.22) Nwmnﬁm|:AeML&n}znguaﬂuawnlz%

KC, (2,4)

+ . S X+6]
g 0o

where Ck(2,4) is a constant depending only on k.

Proof. Let €¢>0,6 >0, j € {1,2,...,k}, and x € [0,1].

k

For each t = (t],...,tk) in R“ define

N
1§] c1[I(Y <t) - P(Y,i < t)i,

7,(t)

tx = (t],oo-,tj_-l ,X,tj_n,...,tk),
and

(3.2.23) Xy(t) = Zy(t) - Z,(t,) .

Let us first observe that the fluctuation inequalities in Bickel and
Wichura (1971) (see Section 4, Lemma 4.1 and Theorem 4.1 in this
paper) can be applied to the stochastic process XN(t), t € T where
T=Ty xTy xeoox T,
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T3

[x, x+6] , and T1 =[-6, 1 + 8] for i #].

If t (t],...,tk) is a point in the lower boundary of T,

2(T) (see Section 4 (4.2)), then either tj =x or t;=-§ for

some 1 #j. If tj = x, then t = tx and XN(t) = 0. If ti = -6,

then XN(t) = 0 since Y],...,YN take values in [0,l]k.
Therefore, XN(t) =0 for all t € 2(T) so that Lemma 4.1 in

Section 4 can be applied to give |
(3.2.24) sup |Xy(t)] < [Xy(b)| + k max ME(X,) 1
teT N N 1<ick 3 N

where b = (b],...,bk), bj = x + 6, and bi =1+6 for i#3.
Since Y],YZ,..;,YN take values in [0,1]k, it is easy to see from

(3.2.23) that

(3.2.25)  sup |X,(t)] = sup{[Xy(t)] : t € T i [0,17%)
teT

and

(3.2.26) XN(b)

N
121 ci[I(Yij € (x, x + 681) - P(Yij € (x, x + 811

ZNj ((x, x + 81) .

k

Furthermore, if t = (t],...,tk) is a point in T N [0,1]1", then
(3.2.23) gives

N
(3.2.27) XN(t) = ZN(A) = izl ci[I(Yi €A) - P(Yi € A)]

where A = [O,t]] XeooX [0,tj-]:l X (x,tj] X [O,tj+]] XeooX EO,tk].
Combining (3.2.25) and (3.2.27) yields

(3.2.28) :gg [Xy(t)] = sup{|Zy(A)| : A € A(J,8,x)}
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If B=(s,tJNT 1is a block in T (see (4.3) in Section 4)
then by Lemma 4.2, Section 4 the increment (see (4.7) in Section 4)
of ZN(t), teT around B is ZN(B) = igl Ci[I(Yi € B) - P(Yi € B)1.
Furthermore, the increment of ZN(tx), teT around B is zero.
Hence, the increment of XN(t), t€T around B is
N
(3.2.29)  Xy(B) = Z\(B) = izl c;CI(Y; € B) - P(Y; € B)]

and Lemma 3.2.2 gives
(3.2.30) P(min{|X\(A)|,|X(B)[} > A) = P(min{|Zy(A)],|Zy(B)|} > })
<Lpeig@ P ®? <3p e ue)

for all X > 0 and every pair A, B of disjoint neighboring blocks
N

in T where uN(A) ) c? P(Yi € A). Theorem 4.1 in Section 4 can
i=1

now be applied to yield

3kck(2,4) 2

— 7 uy(T\ 2(T))

(3.2.31) P(max Mi(Xy) > 1) < :

1<i<k
for all A > 0 where Ck(2’4) is a constant defined in (4.13) in
Section 4.
Since Y]’YZ""’YN take values in [0,1]k, it is easy to see

that
N oo
(3.2.32) uN(T \ &(T)) = iZ] c; P(Yij € (x, x + 8]) = “Nj((x’ x + 68]).

Finally, Lemma 3.2.3 fo]loﬁs from (3.2.24), (3.2.26), (3.2.28),
(3.2.31), and (3.2.32). 0

Lemma 3.2.4. Suppose the assumptions of Lemma 3.2.3 hold. Then for
each € >0, § € (0,1), and j =1,2,...,k
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(3.2.33) P(sup{|Zy(A)| : A€ A(j,8)} > €) <

1 4 2. N 2
KR IR {0 xx 83+ 6 <1< c']izl “
where dk is a constant depending only on k.
Proof. Let ¢ >0, 5§ € (0,1), and j € {1,2,...,k}. Further-
more, define m(§) = min{m € {1,2,...} : 1 < mé}. For each

k

t= (t],...,tk) in R~ define

N
Zy(t) = izl c;[I(Y; < t) - P(Y; < t)]
and

t, = (t],...,tj_],x,t -t ) for xe€R.

j+],oo

If A(j,8) is the class of sets defined in (3.2.8) and
A € A(5,6), then A c[0,13¥ and has the form
A= [0,t;] x...x [O,tj_]] x (x,y] x [O,tj+]J x..0x [0,t,] where
0 < y-x < 8. Clearly, x € [ms, (m] +1)8] and y € [my8, (m2 + 1)6]
for some integers my,m, € {0,1,...,m(8) - 1} satisfying either

m =m, or m,=m, + 1. Hence,

(3.2.34) |Z,(A)] = |zN(ty) - Zy(t )]

IA

IZN(ty) = ZN(thG)l + IZN(tIIIZG) = ZN(tm](S)l
+ 'Zn(tm,a) - 7y (t,)]

<3 max sup{IZN(B)I : Be A(j,5,i8)}
0<i<m(§)

where A(j,8,x) 1is the class of sets defined in Lemma 3.2.3.

Therefore, (3.2.34) and Lemma 3.2.3 give
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P(sup{|Zy(R)] : A € A(§,8)} > ¢€) <

P( max sup{IZN(B)l B € A(j,6,i8)} > %- €) <
O<i<m(8)

m(é%-] 1
1 P(sup{|Zy(B)] : B € A(3,6,18)} >3 €) <

i=0
(3.2.35)
‘iZO [P(|ZNj((15s(1+])5])l 2% €) + WUN ((is,(i+1)681)1.

Applying Chebysev's inequality and Lemma 3.2.2 to ZNJ' gives the
following upper bound for the first term inside the brackets in
(3.2.35)

(3.2.36)01/(e/6)4103 12, ((i6,(i+1)61) + ( max c2)uy. ((i6,(i+1)51)1.
N <ish VN

Hence, the expression (3.2.35) is bounded above by

d 6
k 2
(3.2.37) uy((0,11) max ((i8,(i+1)681) + & ( max c; Juy: ((0,11)
4 Nj ) 0<i<m($ "N et 1<i<N Ny
4 4 N2
where d, = 3kC, (2,4)(6k)” + 3+6° and n,.((0,11) < § c$. Lemma
k k Nj i1
3.2.4 now follows from (3.2.35) and (3.2.37). a

Proof of Theorem 3.2.1.

For each N =1,2,... apply Lemma 3.2.4 with Y, . in place of

N1
Yi and cNi/ON in place of c; to get )
( max CN1)
P(w(j)(z ) >¢€) < —4 [dy sup pys ((x,x+81) + ]<‘<N2 1
€ x€L0, 1] Q'N

for each N =1,2,..., j =1,2,...,k, § € (0,1), € > 0 where wéj)(ZN)

is defined by (3.2.10) in Lemma 3.2.1, dk is a constant depending

only on k, oﬁ =y cﬁi, and “Na((x x+8]) =
i=1

Q |=
<= N

121 CN1P(X < YN j < x+8).
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Theorem 3.2.1 now follows from (3.2.3), (3.2.4), and Lemma
3.2.1. O
Proof of Theorem 3.2.2.

By Theorem 2, page 683 in Wichura (1969), the result in Theorem
3.2.2 will follow if each of the following two conditions hold:
(i) for each finite subset T of [0,1]k, the distribution of
ZN(t), t € T converges weakly to a multivariate Normal dis-
tribution,
and
(ii) for each € > 0, lim Tim P(w(Zy) > €) = 0.
§+0 Noeo
Condition (ii) holds as a result of Theorem 3.2.1 while con-
dition (i) follows from (3.2.6), (3.2.3) and an easy application of

the multivariate version of the Lindeberg-Feller Central Limit

Theorem. ]



4. APPENDIX

The paper by Bickel and Wichura (1971) provides the key tool
for proving the weak convergence of the weighted empirical process.
In this appendix we present some notation, terminology, and results
that can be found in Bickel and Wichura (1971); although we
occasionally make statements in a slightly more general form than
Bickel and Wichura.

To begin with, let k denote a positive integer and
T=T, xTy xeox T where for each j = 1,2,...,k, Tj is either
a finite subset of (-»,») or a closed bounded interval in (-«,»).

Furthermore, let

(4.1) a = inf Tj and bj = sup Tj for j=1,2,...,k.

The lower boundary of T is defined to be the set

(4.2) &(T) = {t = (t],...,tk) €T : tj a; for some j =1,2,...,k}.

A block in T is a set B of the form
(4.3) B=(s,t1]NT where s,t €T, sc<t,

and (s,t] = (s],t]] X...X (sk.tk]. We say two disjoint blocks

A=(s,t1NnT and B = (u,vl N T are neighbors if s agrees with

th

u and t agrees with v except in the j~ coordinate (for some

j =1,2,...,k) where either SjStj=ujSvyoor Uy <vy =<ty

34
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We next introduce a stochastic process X(t), t € T whose
state space F 1is a normed linear space having norm |+|. For
J=1,2,...,k and te Tj we define the stochastic process XéJ)

having parameter set T(J) =Ty x..x Tj_] x Tj+] X...x T, by
(3)(ey =
(4.4) Xt (s) X(s],...,sj_],t,sj+],...,sk)

- (3)
where s = (s],...,sj_],sj+],...,sk) € T/,

For j =1,2,...,k and s,t,u € Tj with s <t <u we define

(4.5) my(s,t,u)(x) = mingIx{3) - x{)y )yl
and

(4.6) M;(X) = sup{mj(s,t,u)(x) : s,t,u € Tj and s <t < u}.

Finally, we define the increment of X around the block B = (s,t1 NT

by

k'(6~l+. . .+6k)

(4.7)  X(8B) = s Yo (1) X(s + 8(t-s))

€{0,1}
where & = (6],62,...,6k) and

s + §(t-s) = (s] + Gl(tl - s]),...,sk + dk(tk - sk)).

We now state two results from Bickel and Wichura (1971) which
will be used to prove Theorem (3.2.1).

Lemma 4.1. If X(t)

0 for t € 2(T), then

IA

|X(b)| + k max ME(X)

1<3<k

(4.8) sup |X(t)]
teT

where b = (b],...,bk) and bj = sup Tj, J= 1,00,k

Proof. See (1) on page 1657 in Bickel and Wichura (1971). O
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Theorem 4.1 (see Theorem 1, page 1658 in Bickel and Wichura (1971)).
Assume X(t) =0 for t € 2(T) and

(4.9)  P(min{|X(A)], [X(B)|} > A) < uP(A u B)/AY

for some numbers vy > 0, B > 1, and some nonnegative finite measure
u on T, and all A > 0 and every pair A,B of disjoint neighbor-

ing blocks in T. Then for all X > 0 we have

Ce(Bs2) 4
(4.10) P(M:]!(X) >A) < W(T A &(T))s J=1,2,...5k
kck(BaY) B
(4.11)  P( max M(X) > A) < ——— u"(T \ &(T))
1<j<k 9 Ay

where

-1
(8.12)  cy(8,y) = 2°700 - (-;-)%\7]‘(‘”)
and

(.13)  C(By) = ¢80T + (k-1 T (8,1)IMY, K = 2,3,

Proof. With one minor change (see remark (2) below) Theorem

4.1 follows from the proof of Theorem 1 in Bickel and Wichura

(1971). O

Remarks concerning Theorem 4.1:

(1) The inequalities in Theorem 1 (Bickel and Wichura (1971)) which
are analogous to (4.10) and (4.11) in Theorem 4.1 have u(T)
appearing instead of u(T \ 2(T)). Furthermore, Bickel and
Wichura assume u(2(T)) = 0. However, with one minor change

in the definition of F 1in Step 3 of Bickel and Wichura's proof
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of Theorem 1, it is seen that the assumption u(2(T)) = 0 is
superfluous and also that the inequalities hold with
u(T \ 2(T)) 1in place of u(T). This gives a slightly sharper
inequality with one less assumption imposed on .

(2) The change referred to in the above remark is to define F in
Step 3, page 1660 in Bickel and Wichura as follows:

Let F be linear over [tj_],tj], j=1,2,...,m with

F(to) =0, F(ty) = u({t]}), and F(tj) - F(tj_]) = u({tj_]}) +
u({tj}) for j =2,...,m.

(3) The constants Ck(B,Y) appearing in Theorem 4.1 are the same
as Kq(s,y) in Bickel and Wichura with q = k.

Finally, in Lemma 4.2 below we determine a more convenient
form for the increment (see (4.7)) of the weighted empirical process
around a block B.

Lemma 4.2. Let Y],Y?_,...,YN be k-variate random vectors taking
values in Rk, let C3CpsenasCy be any real numbers, and for each
te Rk define

N
(4.18) Z,(t) = 121 ¢;LI(Y; < t) - P(Y, < t)1.

Then for any block B = (s,t] in Rk, the increment of ZN around

the block B is

N
(4.15) ZN(B) = .Z] ci[I(Yi € B) - P(Yi € B)1.
i=

Proof. For i =1,2,...,N define the stochastic processes

k

X;(t), t € R by Xi(t) = I(Y; < t).
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If B = (s,t] is any block in RK, then by (4.7) the incre-

ment of Xi around the block B is

k-(84+. .. 48, )

(4.16)  X(B) = § (1) VT Kx(s+ s(t-s)).

6€{0,1}

We shall prove by induction on k that

(4.17) X;(B) = I(Y; € B) .

When k = 1, the right-hand side of (4.16) is
Xi(t) - Xi(s) = I(Yi.i t) - I(Yi <s)= I(Yi € (s,t1)

so that (4.17) is established for k = 1. Suppose that (4.17) holds

for some k € {1,2,...}. We now show (4.17) also holds for k + 1.
If § = (6],62,...,6k+]), S = (51'52""’Sk+1)’

t = (t]’tZ"'°’tk+])’ and Yi = (Yi]’YiZ""’Yi,k+1)’ then define

60 = (6],62,...,6k), sg = (51’52"‘°’Sk)’ ty = (t]’tZ""’tk)’ and

Yio = (Yil’YiZ""’Yik)‘ Hence, (4.16) gives

k+1-(6]+...+6k+])

X:(B) = ] (-1) I(Y; <s + §(t-s))
i 5€10,13%* i
k-(8,+...45,)
- (-1) K, <
aoego.l}k i0="0
+ 8gltg = sohIY4 haq < tyy)
k-(8.+...+8,)
- (-1) KLY, n < s
60650,1}'( 10="70
* Sglt = oYy a1 < Sia)

= 1Y ka1 € (St D150 € (5g024])

I(Yi € (s,tl).
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Hence, (4.17) holds for all k = 1,2,...
k

Finally, if we define the process X(t), t € R~ by
N N
X(t) = i§1 c; X;(t) = igl c;1(Y; < t),
then
(4.18) Zy(t) = X(t) - E(X(t)), t e RE.

If B = (s,t] 1is a block in Rk and W(B) denotes the increment
of E(X(t)) around B, then

(4.19) 2y(B) = X(B) - W(B) .
Since E Zy(t) = 0 for all te RK we have

E ZN(B) =

so that (4.19) gives E X(B) = W(B) and
(4.20) ZN(B) = X(B) - E X(B).

The lemma now follows from (4.20) and (4 17) after observing
X(B) = Z cy X; (B) 0
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