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'ABSTRACT

SOME RESULTS FOR THE NEIGHTED EMPIRICAL PROCESS CONCERNING

THE LAW OF THE ITERATED LOGARITHM AND WEAK CONVERGENCE

By

Alfred Joseph Vanderzanden

In this paper we establish two main results for the weighted

empirical process. The first result is a functional law of the

iterated logarithm when the underlying random variables are i.i.d.

Uniform [0,ll. The second result is the weak convergence of the

weighted empirical process to a Gaussian process with almost sure

continuous sample paths when the underlying random variables repre-

sent an array of row independent random vectors taking values in the

k-dimensional unit cube [0,llk.
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I. SUMMARY

The weighted empirical process deserves special recognition

among stochastic processes. It serves as a fundamental tool in the

study of statistics based on ranks, as they occur in nonparametric

statistics, because of the ability to express these rank statistics

in terms of the weighted empirical process (see Koul (1970a) and

Koul and Staudte (1972)). Furthermore, some statistical procedures

have recently been proposed by Sinha and Sen (1979) and Koul (1980)

which involve the weighted empirical process directly.

In this paper we establish two main results for the weighted

empirical process. The first result is a functional law of the

iterated logarithm when the underlying random variables are i.i.d.

Uniform [0,1]. This appears in Section 2 as Theorem 2.2.1 and

extends the work of Finkelstein (1971) using some ideas feund in

James (1975) and Kuelbs (1976). The second result appears in Section

3 as Theorem 3.2.2 and establishes the weak convergence of the

weighted empirical process to a Gaussian process with almost sure

continuous sample paths when the underlying random variables repre-

sent an array of row independent random vectors taking values in the

k-dimensional unit cube [0,llk. Theorem 3.2.2 extends the work of

Koul (1970), Withers (1975), and Shorack (1980) using the fluctuation

inequalities of Bickel and Wichura (1971) which we present in

Section 4.



2. A FUNCTIONAL LAW OF THE ITERATED LOGARITHM FOR THE

WEIGHTED EMPIRICAL PROCESS

. 2.1. Introduction
 

Let Y],Y2,... be.a sequence of random variables defined on

a probability space (0,F,P) such that P(Yi 6 [0,1]) = 1 for

each i = 1,2,... . Furthermore, let c],c2,... be a sequence of

real numbers and define

N

(2.1.1) as = X c? , N = 1,2,...

In this section the weighted empirical process is defined by

(2.1.2) VN(t) =

N

1:

We also define the "normalized" weighted empirical process by

 

(2.1.3) XN(t) = VN(t)/ 2 ofi log log 03 , t e [0.13.

Functional laws of the iterated logarithm have been

established for the XN process by Finkelstein (1971) when Y],Y2,...

are i.i.d. Uniform [0,1] and c1 = l for all i; and also by

Philipp (1977) when Y],Y2,... are strictly stationary strongly

mixing Uniform [0,1] and Ci = 1 for all i. James (1975) and

Wellner (1977) have extended Finkelstein's (1971) result to

empirical processes of the form wX where w(t), t 6 [0,1] is a
N

'suitable weight function, Y1,Y2,... are i.i.d. Uniform [0,1],

2



and c1 = l for all i. In this paper we extend Finkelstein's

(1971) result in a way different from James and Wellner. We still

require Y1,Y2,... to be i.i.d. Uniform [0,1] but we allow the

weights c],c2,... to be arbitrary real numbers satisfying two

regularity conditions.

Before stating the main result we introduce some notation

adopted from Kuelbs (1976).

If (M,d) is a metric space and A ;.M we define the dis-

tance from x e M to A by d(x,A) = inf{d(x,y) : y e A}. If

{xN} is a sequence of points in M, then C({xN}) denotes the

cluster set of {xN}. That is, C({xN}) is the set of all possible

limit points of the sequence {xN}. We write {xN} ++ A if both

*2: d(xN,A) = 0 and C({xN}) = A.

If F(s,t), s,t E T c (-w,m) is a nonnegative definite real-

valued function, we define H(F) to be the reproducing kernel

Hilbert space generated by the kernel P and “'"H(r) denotes the

associated norm on H(r). For an extensive discussion of reproducing

kernel Hilbert spaces see Aronszajn (1950).

2.2. The law of the iterated logarithm for weighted empirical

processes

Let the space of real-valued functions on [0,1] which are

right continuous on [0,1] and have left limits on (0,1] be

denoted by D[0,l]. Endow the space D[0,lJ with the metric

generated by the supremum norm

(2.2.1) ”XIIco = sup{|x(t)| : t 6 [0,1]}, x E D[O,1],



and let D denote the o-field generated by the H-Hm-open balls of

D[0,l].

Theorem 2.2.1. If Y],Y2,... are i.i.d. Uniform [0,1] random vari-

ables and c],c2,... are any real numbers satisfying

 

2
2 _ 2 log log ON _

(2.2.2) lim ON - m and lim ( max c1) 2 - 0,

N—roo N-voo 1_<_1'5N ON

then with respect to (D[0,l]. D, “'“m) we have

(2.2.3) P(XN ++ B) = 1

where XN is the normalized weighted empirical process (2.1.3) and

B = {x E H(F) : flqu(r) 5.1} with F(s,t) = (s A t) - st, s,t 6 [0,1].

Theorem 2.2.1 will follow from Lemma 1.1 in Kuelbs (1976) once

we establish Lemma 2.2.1 and Lemma 2.2.2 which we now state.

Lemma 2.2.1. Suppose the assumptions of Theorem 2.2.1 are satisfied

and let T denote any finite subset of [0,1], then with respect to

(RT, “-HRT) we have

(2.2.4) P(X; ++ 3T) = 1

where RT is the space of all real-valued functions defined on T,

"x" = max |x(t)| for all x 6 RT, XT is the process (2.1.3)

RT tET N

restricted to T, BT = {x e H(FT) : ”x" 1 5_1}, and rT is the

restriction of F(s,t) = (s A t) - st ESP I x T.

Before stating Lemma 2.2.2 we introduce some additional nota-

tion adopted from Kuelbs (1976).

If T = {t0,t1,...,tm} where 0 = t0 < t1 <...< tm = 1 and

if x E D[0,l]. then we define AT(x) to be the continuous polygonal



function such that

ti-t t-tM

(2-2-5) AT(X)(t) = (t;_:_t;:;)x(ti-l) + (E;f:ff;:;)x(ti)

for t 6 [ti-1’ ti] and i l,2,...,m.

Lemma 2.2.2. Suppose the assumptions of Theorem 2.2.1 are satisfied,

T = {tO’tI’°°"t } where 0 = to < t] <...< tm = I, and
m

T

max lti ' ti"' 5?!

lgigm

(2.2.6) P(llXN - AT(XN)“m'5-¢T for all sufficiently large N) = l

 

 

_ 80(‘1 ' t1-1)
where XN is the process (2.1.3), “T - 2 max 1 _ (t1 _ t1-17 .

and p > 1.

Lemmas 2.2.1 and 2.2.2 will be proved shortly, but we first

show they imply Theorem 2.2.1. With this in mind let T M = 1,2,...M’

denote any sequence of increasing finite subsets of [0,1] such that

the points in TM satisfy

< t <...< t for M = 1,2,...

M1 M ’mM

(2.2.7) | |

and lim max t . - t . = 0.

If the assumptions of Theorem 2.2.1 are satisfied, then Lemma 2.2.2

gives P("XN - AT (XN)”w'5-9T for all sufficiently large N) = l

M M ____

for each M = 1,2,... Hence, it follows that P(lim “XN - AT (XN)”0° <

New M

q? for each M) = 1. Using (2.2.7) we have lim YT = 0 so that

M Wha> M

2.2.8) PT'_T’_IX -A (X) =0)=1.( ($2.13,“ T”NIL,

Relation (2.2.8) shows that condition (ii.c) of Lemma 1.1 in Kuelbs

(1976) is satisfied.



Since P(s,t) = (s A t) - st is continuous on [0,1] x [0,1],

Lemma 3 in Oodaira (1972) implies that B = {x E H(r) : "x”H(P) 5_1}

is compact in (C[0,l]. "-fl») where C[0,1J is the space of all

real-valued continuous functions on [0,1] and "x“0° = sup{|x(t)| :

t 6 [0,1]} for all x E C[0,1]. Furthermore, from the Theorem on

page 351 in Aronszajn (1950) it is easy to show that

(2.2.9) {x 6 H(PT) : "x" T 5_1} = {x = yT : y e H(F) and

H(P )

IM'H(I‘)—< 1}:

where P can be any nonnegative definite function on [0,1] x [0,1]

and T any finite subset of [0,1]. Hence, Lemma 2.2.1 applied to

each TM’ M = 1,2,... shows that condition (i.) of Lemma 1.1 in

Kuelbs (1976) is satisfied. Thus, Theorem 2.2.1 now follows from

Lemma 1.1 in Kuelbs (1976).

Proof of Lemma 2.2.1.

Let T = {t],t2,...,tm} denote any finite subset of [0,1].

Let Y],Y2,. .. and c1,c2,... be as in Theorem 2.2.1 and define

Z.1 (Zi(t]), Zi(t2)""’ Zi(tm))’ i = 1,2,...

where Zi(t) cJ[I( i < t) - P(Y i < t)], t 6 [0,1], i = 1,2,...

 

N
T 2 2

Then XN = (XN(t]), XN(t2),...,XN(tm)) = i2] Zi4J/2 ON log log ON

:21: Cov(Z1.)=(I‘(ti,tj))1j-_] =PT where P(s,t) = (s A t) - st.

ON

Lemma 2.2.1 now follows immediately from the multivariate law of the

iterated logarithm, Thereom 1 in Berning (1979), applied to Zi’

1 = 1,2,... U



The proof of Lemma 2.2.2 depends on several results which we

present in the following Lemmas.

Lemma 2.2.3. If T = {t0,t],...,tm} where 0 = t0 < t1 <...< tm = l
 

and X(t), t 6 [0,1] is any stochastic process, then

(2.2.10) "x - AT(X)un.g, max [ sup |X(t) - X(ti_1)l +

151:1“ tGECT'] ,tiJ

sup |X(ti) - X(t)|]

tett1_1.til

where AT(X) is the continuous polygonal function defined in (2.2.5).

Proof. For any t 6 [0,1] there exists 1 e {l,2,...,m}

such that t1._1 5_t_g ti' Hence,

t1 ' t t ' t1_'|

|X(t) - 17mm = l—ti- t“ Wt) - mm“ + ———t.- t.
[x(t) - X<ti)]|

1-1

5 Ixm - X(t,-_])I + |X(t) — min

and (2.2.10) now follows immediately. U

Lemma 2.2.4. Let N 6 {1,2,...} be fixed. Suppose Y‘,Y2,...,YN
 

are independent real-valued random variables defined on a probability

space (Q,F,P) and c],c2,...,cN are any real numbers. Define

N

,2] [Ci/P(Y, i (a.t])][I(Yi e (a.tJ) - P(Y, e (a.t])]
1:

(2.2.11) M(t)

and

(2.2.12) R(t) I] [Ci/P(Yi z (t.b1)1[1(vi e (t.b1) - P(Y, e (t.b1)1
1:

where a and b are any two real numbers.

Then {M(t), F](t), t e T1} is a martingale and

{R(t), F2(t), t 6 T2} is a reversed martingale where T1 ; [a,w)



and T2 c (~w,b] are such that M(t) is well-defined for all t 6 T1

and R(t) is well-defined for all t 6 T2. F](t) and F2(t) are

the o-fields defined in (2.2.13) and (2.2.16), respectively.

3599:. We first show that {M(t), t 6 T1} is a martingale with

respect to the nondecreasing family of o-fields

(2.2.13) {F1(t), t 6 T1}

where F](t) is the o-field generated by the class of sets of the

form {vi 6 (a,s]} for some i 6 {l,2,...,N} and some 5 E [a,t].

Let s,t 6 T1 with s 5_t. Then it is easy to show that for

each i E {l,2,...,N}

(2.2.14) ”'1 e (a,t]|F](s)) = ”Y1 e (am)

P(Y1 e (s,tJ)

+ P(Yi f (3’57) I(Y1£ (a,s]).
 

Using (2.2.14) we obtain

(2 2.15) P(Y, £ (a.s3)[P(Yi e (a,tJlF1(S)) - P(Yi e (a.tJ)J

= P(Yi e (a.t])[I(Yi e (a.SJ) - P(Y, 6 (a.SJ)J-

From (2.2.15) and (2.2.11) it now follows that

N

X [cf/P(Y, e (a.tJ)J[P(Y1 e (a.t]1F](s)) -

i=1

Emmwsn

P(Yi e (a,t])]

N

X [Ci/P(Yi i (a.sJ)J[I(Yi e (a.s]) - P(Yi e (6.53)]

i=1

= M(s).



This shows {M(t), F1(t), t e T1} is a martingale.

Next we show {R(t), t e T2} is a reversed martingale with

respect to the nonincreasing family of o-fields

(2.2 16) {F2(t). t e 12}

where F2(t) is the o-field generated by the class of sets of the

form {Y1 e (s,b]} for some i e {l,2,...,N} and some 5 € [t,b].

Let s,t 6 T2 with 5.5 t. Then it is easy to show that for

each i E {l,2,...,N}

P(Yi E (s,tJ)

(2.2.17) mi 6 (s,b]lF2(t))= 1(1, 6 (t,b]) + F(Yi f (t,b]) 1(Yi g (t,b]). 

Using (2.2.17) we obtain

(2.2.18) P011 2 (t.b])[P(vi e (s,b]lF2(t)) - P(Yi e (5.61)]

= Pm 1! (s,bmrm e (mi) - P(Y, e (mm.

Finally, from (2.2.18) and (2.2.12) it follows that

N

.2 [ci/Pu1 2 (s,b])][P(Yi e (s,bJIF2(t)) -E(R(S)|F2(t))
i=1

- P(Y, 6 (s,bJ)]

= 12] [Ci/P(Yi f (t,b])][I(Yi e (t,b]) - P(Yi e (t,b])]

= R(t).

This shows {R(t), F2(t), t e T2} is a reversed martingale. D

Lemma 2.2.5. Let N 6 {1,2,...} be fixed. Suppose Y1,Y2,...,Y
 

N

are independent real-valued random variables defined on a probability

space (Q,F,P) and c],c2,...,c'N are any real numbers. Define
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the random variable X by

N

(2.2.19) x = Z [Ci/P(Yi f (a,b])][I(Yi 6 (a,b]) - P(Yi e (a.b])J

i=1

where a and b are any real numbers such that a 5_b and X is

well-defined. Then for any a > 0 we have

(2.2.20) E exp(aX) §_exp{a2f(aB)Var(X)}

' where

(2.2.21) 8 = max [Ic I max{1, P(Y. e (a,b])/P(Y. t (a,b])}]
ISAEN 1 1 1

and f(x), x E (~w5m) is the positive, strictly increasing, continuous

function defined by

(2.2.22) (eX - 1 - x)/x2 if x f o

f(X) =

1/2 if x = 0 .

3399:. For each i = l,2,...,N let

X, = [Ci/P(Yi t (a,bl)][I(Yi e (a,b]) - P(Yi e (a.b])1.

Then it is clear that X1,X2,...,XN are independent random variables

with EXi = 0 and |Xi| 5_B, i = l,2,...,N ‘where B is defined in

(2.2 21). With f as defined in (2.2 22) we have ex = 1 + x + x2f(x)

so that for all a > 0 and i = l,2,...,N we have

E exp(aXi) E[l + aXi + azxg

2

f(axi)]

1 + a Ex§f(axi)

1 + a2f(a8) Ex?

I
A

§_exp{a2f(a8) Var(Xi)} since 1 + x 5_ex.
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Therefore,

N

E exp(aX) = E exp(a )1 xi )
i-

N

= H E exp(aXi)

i=1

N 2
.3 H exp{d f(aB) Var(Xi)}

i=1

= exp{a2f(a8) Var(X)}. U

Lemma 2.2.6. Suppose A(N), N = 1,2,... is a nondecreasing sequence

of positive numbers and {UN(t), t e T}, N = 1,2,... is a sequence of

independent stochastic processes defined on a probability space

(0,F,P) and taking values in the space of real-valued functions de-

fined on T.: (dngn). Define {WN(t), t E T} by WN(t) = 1:] Ui(t)

and assume there is a countable subset {tj, j = 1,2,...} of T

such that sup{|WN(t)|, t 6 T} = sup{|WN(tj)|, J = 1,2,...}. Then

for any positive integers N1 5_N2 and 6.: w(N],N2) we have

( ) ( INN (t)| '“N2(t)' E A1N]))
2.2.23 P max sup < 2P(sup >-—

N1<N<N2 tET it“; t€T A(N2) 2 A(N2)

where

(2.2.24) q2(N].N2) = sup 28 [Var(WN (t)) - Var(WN (t))].

tET A (N1) 2 1

Proof. Let a > 0. Since A(N), N = 1,2,... is a nondecreas-

ing sequence of positive numbers, the event

{ IWNml
max sup

N15N5N2 tGT A)”;
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is contained in the event A where

>

11 f max sup |WN(t)| > e A(N1)}

N15N§N2 tET

(2.2.25)

{ _max sup |WN(tj)| > e A(N1)}

N15N5N2 J3]

For N e {N1,...,N2} and j 6 {1,2,...} define

(2.2.26) BN’ = { max max lwn(ti)l-5 e A(N]) and

J ngngN lgi<j

le(tj)l > e A(N])1

and

(2.2.27) ch = {IWN2(tj) - WN(tj)| §_%-e A(N])}.

It is clear that for each N E {N}....,N2} the family

{BNj’ j = 1,2,...} consists of pairwise disjoint events. Further-

more, since BNj depends only on {Ui(t), t 6 T}. i = l,2,...,N

and CNj depends only on {Ui(t), t 6 T}, i = N+l,...,N2, we have

for each N 6 {N1,...,N2} that the families {BNJ’ j = 1,2,...} and

{CNj’ j = 1,2,...} are statistically independent since the processes

U],U2,... are independent. Extending Loéve's Lemma for Events on

page 246 in Loéve (1963) to countable collections of events we obtain

N
2 00

(2.2.28) [inf{P(CNj), N1 §_N 5_N2, j 3_1}]P( u ,g BNj).g

. N-N] J']

N2 m

P(U 0 B.£ ).
N=N1 i=1 NJ NJ

N

It is easy to show A = u E uT‘ B . where A is defined

. . 2 co

1n (2.2.25). 0n the other hand, in the event UN=N] Uj=1 BNchj
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we have for some N E {N],...,N2} and some j 6 {1,2,...} that

1

|WN(tj)| > e A(N]) and |WN2(tj) - WN(tj)| 5_§-e A(N]). Therefore,

1
INN2(tj)l >-§ e A(N]) and it follows that

N2 on ("N2(t)| E MNl)

(2.2.29) 0 11 B .c .c {sup } .

N=N1 i=1 N3 N3 tGT A(N27 ”I2)

Furthermore, for each N 6 {N}....,N2} and j 6 {1,2,...} Chebysev's

inequality gives

1 - p(ch) = p(|wN2(tj) - wN(tj)| > §-A(N1))

_<_ (FA—imfiwuwnzuj) - wNujn.

Using the definition of WN and the independence of UN’ N = 1,2,...

we get Var(WN2(tj) - WN(tj)) 5_Var(WN2(tj)) - Var(WN](tj)). There-

fore,

(2.2.30) sup [1 - P(CN 51)] < sup (mm)ZL-NVBYTW2(t)) - Var(WN1(t))].

j>l

N1<N<N2

The expression on the right-hand side in (2.2.30) will be less than

or equal to 1/2 if

(2.2.31) 62 > sup 28 [Var(WN (1)) - Var(WN (t))].
2 1t€T A (N1)

Hence, if (2.2.31) is satisfied, then (2.2.25), (2.2.28),

(2.2.29), and (2.2.30) give

INN2(t)| M(N )

NA) 5. 2 ”:21;W) .2.€_(_N_1_)_)

and the lemma is proved. D
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Proof of Lemma 2.2.2.

Let 0 g_a < b g_1 such that b-a 5_%-. Recall that c1,c2,...

is a sequence of real numbers such that a: = {N__1 c2 +.m and

 

log log ON 2 2

( max c1) 2 +0 as N + w. Hence, cN/UN-l + 0 as N + m.

l<i<N o
—-- N  

Let p > 1, set A(N) fu/E a: log log ON’ and choose a positive integer

N0 such that

A(N) > 0 and cfi/o§_1 5_p - 1 for all N 3.N0.

Next choose a number n such that as 5 p". Finally, for each

0

k = 1,2,... define

(2.2.32) N(k) = min{N_>_.No : 0N pN+k}.

It is easy to show that the sequence {N(k), k = 1,2,...} has

the following properties:

(2.2.33) N(k) < N(k+1) and pNTk < afi(k) g p"+k+‘ for k = 1,2,. .

(22 34) (im .JNthll _ p - 11m x:(N(k+1)),

kem °N(k) k+w A2(N(k))

Let VN(t) = 2N=1 ci[I(Yi 5_t) - P(Yi 5_t)] be the weighted

empirical process (2.1.2) where Y],Y2,... are i.i.d. Uniform [0,1]

random variables. Furthermore, let {WN(t), t 6 [a,b]} denote either

{VN(t) - VN(a), t 6 [a,b]} or {VN(b) - VN(t), t 6 [a,b]}. We now

apply Lemma 2.2.6 to {WN(t), t 6 [a,b]}, A(N) fiV/2 ON log log 0N ,

= N(k) and N2 = N(k+1) for k = 1,2,... to Obtain
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IWN(t)|
(2 2.35) P( max sup > e)

N(k)§N§N(k+l) teta.bJ A)";

E

3.2 P(tzgg,b] INN(k+])(t)| > fi'A(N(k)))

provided

8

«-

_.t€[:,b] A2(N(k)) [var(wN(k+])
(t)) Var(WN(k)(t)

)].

Using the fact that Y],Y2,... are i.i.d. Uniform [0,1], it is easy

to see that the right-hand side of (2.2.36) is less than or equal to

8Lo§(k+1) - o§(k)3(b-a)/x2(u(k)). Hence, (2.2.35) will hold if

2 2 2 2

Using Lemma 2.2.4 we obtain that

VN(t) - VN(a)

MN(t) = 1 _ (t-a) , t E [a,b] is a martingale and 

VN(b) “ VN(t) ' . .
RN(t) = 1 _ (b-t)’ , t 6 [a,b] 15 a reversed martingale. 

In the case "N(t) = VN(t) - VN(a) we have for all a > 0 and

6 > 0

P( sup IWN(t)| > 6).: P( sup IMN(t)| > a)

t€[a.b] tE[a,b]

5.P( sup MN(t) > a) + P( sup (-MN(t)) > a)

t6[a.b] t6[a,b]

(2.2.38) P( sup exp(aMN(t)) > exp(a6))

tELa,b]

+ P( sup exp(-aMN(t)) > exp(a6))

teta.b]

_g exp(-a6)[E exp(aMN(b)) + E exp(-aMN(b))].
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Inequality (2.2.38) follows from Theorem 3.2, page 353 in

DOob (1953) since exp(aMN(t)) is a submartingale for all a E (-w,w).

Applying Lemma 2.2.5 with x = MN(b) and x = -MN(b) (2.2.33)

can be continued to yield

(2.2.39) P( sup INN(t)|:>6) g 2 exp{-a6 + a2f(aBN)Var(MN(b))}

tEEa.b]

where

(2.2.40) 8 = max c.

N lgjgN I "

and

Var(MN(b)) = a§(b-a)/ri - (b-a)].

Hence, (2.2.35), (2.2.37) and (2.2.39) give

P( INN(t)l )
, max sup -—1-7—-> e

N(k)5N5N(k+l)t€[a.bJ A N

(2.2.41)

- aeA(N(k)) 2 2 b-a
5-4 exP{ 2 + “ f(aBN(k+l))°N(k+l) T’i—TETET}

for k = 1 2 a > o and 82 > 8(h-a)Lo2 - 02 J/A2(N(k))’ "°" ’ —- N(k+1) N(k)

where NN(t) = VN(t) - VN(a). In the same way, (2.2.41) can be shown

to hold if NN(t) = VN(b) - VN(a).

Now set

(2.2.42) a = Aéflifiilll 5 ‘ g_§b‘a) in (2.2.41)

ON(k+1) 2’5

 

and define

B A(N(k+1)) - -

(2°2'43) Yk = {Eh(é¥i))l ' f‘ N(kgl) SJ— 1 b-§b aJ)‘
“N(k+1) p
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Then the right-hand expression in (2.2.41) can be written as

2 2

(2.2.44) 4 exp{- A2(N(k+l)) fisL-Bjé-fllvk} .

ON(k+1)

The assumptions imposed on the sequence c1,c2,... and (2.2.34)

. a l_ 2 _ 2 2 =

if 52 > $E§9i§%37, then for all sufficiently large k we have

e2 > 8(b-a)[o§(k+]) - e§(k)J/Az(u(k)) and (2.2.44) is less than or

equal to

(2.2.45) 4 exp{-A2(N(k+l))/Ufi(k+1)} = 4[log o§(k+])]-2

§_4[log p”+k+‘i'2 = 4[(n+k+l)log pJ'z .

Since the series [i=1 4[(n+k+l)log 03-2 < m, the Borel-

Cantelli lemma, (2.2.41), (2.2.44) and (2.2.45) give

INN(t)I
(2.2.46) 0 -_X(N)—'> e for infinitely many k)P( max sup

N(k)5N§N(k+l) t€[a,b]

IWN(t)|

P( sup -——1—7—-> e for infinitely many N).

tEEa.b] A N

Therefore, for each p > 1, 0 5_a < b 5_l, b-a 5_%- and

2 8 b-a
e > 1 _ b-a we have

(2 2 47) P( lw"(t)l f 11 ff' i t1 1 N) l. . sup 5,8 or a su 1c en y arge =

t6[a.bl A)",

where HN(t) is either VN(t) - VN(a) or VN(b) - VN(t). Lemma 2.2.2

now follows from (2.2.47) and Lemma 2.2.3. D



3. WEAK CONVERGENCE OF THE WEIGHTED EMPIRICAL PROCESS WITH

MULTIDIMENSIONAL PARAMETER

3.1. (Introduction
 

For each N = 1,2,... let CNi’ i = l,2,...,N be any real

numbers and let YNi = (YNil’YNi2""’YNik)’ i = l,2,...,N be k-

variate (k.: 1) random vectors taking values in the k-dimensional

unit cube [0,llk. In this section we define the weighted empirical

process by

N
- k

(3.1.1) VN(t) - igl cNi[I(YNi 5_t) - P(YNi 5.t)], t E [0.1]

where, as usual, if x = (x],x2,...,xk) and y = (y],y2,...,yk),

then we write x j'y if and only if xi 3y1 for all i = l,2,...,k.

We also define the "normalized" weighted empirical process by

(3.1.2) ZN(t) = VN(t)/0N , t e [0,13"

where

' N
2 _ -2

(301-3) ON - .2 CN'I o

l 1

Our goal is to establish sufficient conditions for the ZN

process (3.1.2) to converge weakly in the generalized Skorohod metric

space (Dk,d) as defined in Bickel and Wichura (1971). To be sure,

weak convergence of the ZN process has been studied by many authors

under a variety of conditions. Therefore, so that our result can be

18
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put in perspective with other established results, we shall briefly

indicate what has already been done.

To begin with, when k = l, (lTIEN cfii)/o§ + 0, and for each

N = 1,2,..., YNi’ i = l,2,...,N are EtEtistically independent, Koul

(1969), Koul (1970b), Withers (1975), and Shorack (1980) each prove

that ZN converges weakly in (Dk,d). Conditions imposed by these

authors on the distribution funtions of the YNi vary, but the least

restrictive condition is stated in Withers (1975) and Shorack (1980),

namely

N

(3.1.4) lim Tim' sup 17- ) cfii P(YNi E (t,t+6]) = 0.

6+0 N+w t€[0.1—6]oN i=1

Shorack (1973) also proves ZN converges weakly, but is limited to

the case cNi = l and an assumption much stronger than (3.1.4) is

imposed.

Several authors have studied the weak convergence of 2N when

YNi’ i = l,2,...,N are not independent but satisfy specific "mixing"

conditions. For example, when k = 1 see Billingsley (1968), Sen

(1971), Dec (1973), Yokoyama (1973), Yoshihara (1974), Withers (1975),

Mehra and Rao (l975), and Koul (1977). The first five authors only

consider the case cNi = l and assume YNi’ i = 1,2,... are

identically distributed with a continuous distribution function or

with a Uniform [0,l] distribution. Withers (1975) and Koul (1977)

both assume

(3.1.5) sup N( max cfiiwofi < e.
N3] 1§J§N

Furthermore, Withers (1975) assumes (3.1.4) holds along with some other

b
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regularity conditions. Koul (1977) assumes the average of the dis-

tributions P(YNi-i t), i = l,2,...,N is Uniform [0,1]. Mehra and

Rao (l975) assume each YNi is Uniform [0,1] and either

( max C§°)/°§ + 0 or sup N5( max cfii)/o§ < m for some 6 > 0

igign ‘ N_>_l 1_<_i_<_N

depending on the kind of "mixing" condition assumed.

Weak convergence of ZN with respect to metrics stronger than

the usual Skorohod metric d has been studied in the case k = l by

Pyke and Shorack (1968), O'Reilly (1974), Mehra and Rao (1975),

Withers (1976), and Shorack (1980). These authors require cNi = l

or (3.1.5) except when YNi’ i = l,2,...,N are either i.i.d.

Uniform [0,1] or identically distributed as Uniform [0,1] and

satisfy a certain kind of "mixing" condition in which case

( max cfii)/o§ + 0 suffices.

lgjgN

Among those authors who have studied the weak convergence of

2N when k 3_2 we have Bickel and Wichura (1971), Neuhaus (1971),

Sen (l974), RUschendorf (l974), Neuhaus (1975), Yoshihara (1975/76),

and RUschendorf (1976). The first six authors each limited their

study to the case CNi = l. Bickel and Wichura (1971) also assumed

YNi’ i = 1,2,... were i.i.d. with a continuous distribution function

while Neuhaus (1971) assumed YNi’ i = 1,2,... were i.i.d. with a

distribution function satisfying a Lipschitz condition. Sen (1974)

and RUschendorf (1974) both assumed YNi’ i = 1,2,... satisfied a

certain "mixing" condition. Sen (1974) also assumed YNi’ i = 1,2,...

were identically distributed and had Uniform [0,1] marginal dis-

tributions while RUschendorf (1974) assumed
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sup sup P(YNi E A) 5_u(A)

N31 lgigN

k
for some measure u on [0,1] with continuous marginals.

. = l, assumedNeuhaus (1975), in addition to assuming cN1

YNi’ i = 1,2,... were independent and the average of the distribu-

tion functions of YNi’ i = l,...,N had Uniform [0,1] marginals.

Yoshihara (1975/76) assumed YNi’ i = 1,2,... satisfied a certain

"mixing" condition and were stationary in addition to assuming

cNi

Rilschendorf (1976) is the only author that has studied the weak

convergence of the multiparameter weighted empirical process with

general weights cNi' Most of the results obtained by Rfischendorf

(1976) depend on his Lemma 2.1 appearing on page 913 in the same

article. From RUschendorf's description of the proof of Lemma 2.1

it appears to this writer that the proof is incorrect. Hence, at

this time no further comment will be made concerning the results in

RUschendorf (1976).

In this paper we extend the results of Koul (1970b), Withers

(1975), and Shorack (1980) to the multidimensional parameter weighted

empirical process in the case where YNi’ i = l,2,...,N are

statistically independent (see Theorems 3.2.1 and 3.2.2).

3.2. Weak Convergence of the Weighted Empirical Process
 

For k = 1,2,... let (Dk’d) denote the (separable) metric

space of real-valued functions defined on [0,1]k which are "con-

tinuous from above, with limits from below" as defined in Bickel and

Wichura (1971). Furthermore, let Ck denote the set of all continuous
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real-valued functions defined on [0,1]k

k

. If t = (t],t2,...,tk)

is a point in R we define the norm of t by “t" =

max{ltjl : j = l,2,...,k}. Also, if 6 > 0 and x e Dk’ then we

define w6(x) to be the usual modulus of continuity, namely

k
(3.2.1) w5(x) = sup{|x(s) - x(t)| : s,t e [0.1] and us - tfllg a}.

The main results of this section concern the "normalized"

weighted empirical process (3.1.2) and are stated as Theorem 3.2.1

and Theorem 3.2.2 .

k denote the process in (3.1.2)
 

Theorem 3.2.1. Let ZN(t), t 6 [0,1]

and assume

(3.2.2) YNl’YN2"°°’YNN are statistically independent for each

N = 1,2,...,

. 2 2 _

(3.2.3) 11m ( max cNi)/°N - 0 ,

N+w lgjgN

and for each j = l,2,...,k

-——— 1 N 2
(3.2.4) lim lim sup -§- cNi P(x < YNi' 5_x + 6) = 0 .

6+0 N-mo x€[0,l] 0N i=1 3

Then for all e > 0

(3.2.5) 1im'Tfim P(w6(zN).3 e) = o .

6+0 N+m

Theorem 3.2.2. If in addition to the assumptions of Theorem 3.2.1
 

we also have

(3.2.6) lim Cov(ZN(s), ZN(t)) = F(s,t)

N+w

for all s,t e [0,1]“, then



23

ZN converges weakly in (Dk,d) to a zero mean Gaussian

process Z having covariance F and P(Z E Ck) = l.

The proof of Theorem 3.2.1 is quite similar to the proof of

Theorem 2.2 in Koul (1970b). The main tools used in proving Theorem

3.2.1 are the fluctuation inequalities of Bickel and Wichura (1971)

[see Lemma 4.1 and Theorem 4.1 in Section 4 of this paper] while

Koul (1970b) uses the fluctuation inequalities in Billingsley (1968).

Theorem 3.2.1 will be proved after first establishing four

lemmas. The first lemma, Lemma 3.2.1, provides a necessary and

sufficient condition for (3.2.5) to hold. This condition (3.2.9)

is more convenient to work with than (3.2.5) when applying Bickel

and Wichura's (1971) fluctuation inequalities. The second lemma,

Lemma 3.2.2, provides sufficient moment inequalities to justify the

use of the fluctuation inequalities in Bickel and Wichura (1971).

Finally, the third and fourth lemmas, Lemma 3.2.3 and Lemma 3.2.4,

provide inequalities from which Theorem 3.2.1 will follow easily.

Theorem 3.2.2 will then follow from Theorem 3.2.1 and an easy

application of the multivariate version of the Lindeberg-Feller

Central Limit Theorem.

Keeping the preceding remarks in mind let us for each Borel

k
set A in R define

N

-1.
(3.2.7) ZN(A) - ON iél cNi[I(YNi e A) - P(YNi e A)].

Furthermore, for each 6 > 0 and j = l,2,...,k let A(j,6) denote

the class of all subsets A : [0,1]k having the following form
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(3.2.8) A = [0,t]] X...x [0,tj_1] x (x,y] x [O’tj+l] x...x [0,tk]

where 0 5_y-x g 6.

k
Lemma 3.2.1. Let ZN(t), t 6 [0,1] denote the process in (3.1.2).
 

Then

(3.2.5) lim 1—11TI P(w6(ZN) 3 e) = 0 for all e: > 0

6+0 N+00

if and only if

(3.2.9) liml—im P(wé‘j)(ZN) 3 c) = 0 for all e > 0 and j= l,2,...,k

6+0 N*”

where

(3.2.10) w§5)(zN) = sup{|2N(A)| : A e A(J.6)},

ZN(A) is defined in (3.2.7) and A(j,6) is the class of sets of

the form (3.2.8).

Proof. First observe that if s = (51’52""’5k) and

k with “s - t“.$ 6t = (t],t2,...,tk) are any two points in [0,1]

and u = (5] v t],...,sk v tk), then s 5_u, t §.u, "s - u" 5_6,

and “t — u" 5_6. Hence, by the triangle inequality we have

|ZN(s) - ZN(t)| 5_|ZN(s) - ZN(u)| + |ZN(t) - ZN(u)|

and it follows that

(3.2.11) wé(ZN) g "6(ZN) 5_2 wé(ZN)

where

(3.2.12) 143a") = sup{|ZN(s) - ZN(t)| : s,t e [0,13". s 5 t,

H5 - t“ 5.6}.
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It is now clear that (3.2.5) will hold if and only if

(3.2.13) lim Tim P(wé(ZN) 3 e) = 0 for all e > 0.

6+0 N+0°

We now show (3.2.13) is equivalent to (3.2.9).

Let s = (s1....,sk) and t = (t1....,tk) be any points in

[0,1]k with 5.: t and “s - tfl_g 6. Then (3.1.2) and (3.2.7)

give

(3.2.14) ZN(t) - ZN(s) = ZN([0,tJ \ [0,5]).

It is also clear from (3.2.7) that if A and B are disjoint Borel

k
sets in R , then ZN(A u 8) = ZN(A) + ZN(B). Hence, if we define

Aj, j = l,2,...,k by

(3.2.15) Aj = [0,5]] x...x [0,sj_]] x (sj,tjl x [0,tj+]] x...x [0,tk],

then A],A2,...,Ak is a partition of the set [0,t] \ [0,53 and

it follows from (3.2.14) that

k

(3.2.16) ZN(t) - ZN(s) = 321 ZN(Aj) .

Since Aj 6 A(j,6), j = l,2,...,k (3.2.16) gives

- . " (3)
(3.2.17) w5(ZN) 5_j§1 w6 (ZN).

0n the other hand if A 6 A(j,6), then A has the form

A = [0,u]] X...x [0,uj_]] x (x,y] x [0,uj+]] x...x [0,uk]

where 0.5_y-x 5_6.
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If s = (51’52""’Sk) and t = (t].t2,...,tk) are defined by

’ ' = = ° ° k
sj - x, tj - y and 5i ”i ti for 1 # J, then s,t 6 [0,1] 9

s 5_t, "s - tug: 6, and

A = [0,t] \ [0,5].

Hence, ZN(A) = ZN([0,tJ \ [0,5]) = ZN(t) - ZN(s) and it follows that

(3.2.18) wéj)(ZN) 5,wé(zN) for a11 j = l,2,...,k .

Lemma 3.2.1 now follows from (3.2.13), (3.2.17), and (3.2.18). D

 

Lemma 3.2.2. Let Y],Y2,...,YN be statistically independent k-

variate random vectors taking values in Rk, let c],c2,...,cN be

any real numbers, and for each Borel set A in Rk define

N

ZN(A) = 1;] ci[I(Yi 6 A) - P(Yi E A)]

and

N 2
uN(A) = .z Ci P(Yi E A) .

1-l

Then

(3.2.19) E|ZN(A)|2|ZN(B)|2_5 3 n§(A u B) if A and B are disjoint;

and

(3.2.20) E|ZN(A)|4 5_3 h§(A) + ( max c§)aN(A).

lgjgN

2599:. For each Borel set A in Rk and i = l,2,...,N

define

X(Ai) = I(Yi E A) - P(Yi E A)

and

P(Ai) = P(Yi e A) .
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Now let A and 8 denote any two Borel sets in Rk. Since Y1,Y2,...,

are independent and E X(A1) = 0 for all i = l,2,...,N and all

Borel sets A, we have

EIZ (Allzll (B)!2 N N N N ELX(A )X(A )X(B )X(B )]= C.jCCC . .

N N 1_1 j-_1 k- 1 £_1 1 k z 1 j k t

N

(3 2.21) = Z c? EX2(A1)X2(B1) + N N c12c2[EX2(A1)][EX2(B.)]

i=1 i=-1 j=—1 c3 J

#3

+2 N 2c2 A111N1 321 c1c1LE X( )X(B1)J[E X(Aj)X(Bj)].

#3

Since |X(A1)| g 1 and E x2(A1) §_P(A1), (3.2.21) gives the

following result when A = B.

N N

N cge x4(A1) + 3 N N cfcztezx (A1)J[E x2 (A. )1

i=1 i=1 i=1 J

123

EIZN(A)I4

5_( max c1) N c“P(A + 3[ N c.“P(A )]2

l<i<N i=1 i=1

This proves (3.2.20).

If A and B are disjoint, then E X(A1)X(81) = -P(A1)P(Bi)

and E x2(A1)x2(B1) g P(A1)P(B1) so that

12 c‘1-‘P(A1.)P(B1.) +3 N N c2c§1-P(A )PB( )
i 1 i=-1 i=-1 3

#3

i 3[ N c.“P(A )3[ N1 c“P(8 )J
1-

I
I
M
Z

EIZN(A)|2|ZN(B) <

Hence, (3.2.19) follows. E

Lemma 3.2.3. Let Y1,Y2,...,YN be statistically independent k-
 

variate random vectors taking values in [0,1Jk; let c1,c2,...,cN

YN
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k
be any real numbers; for each Borel set A in R define ZN(A) =

N

Z c1[I(Y1 6 A) - P(Y1 E A)]; for each j = l,2,...,k and each

i=1 N

Borel set 8 in R define ZN“(3) Z c1[I(Y11

i=-l

and 111111(B)=1Z1c1P(Y111 e B) where Y1: (Y11,Y12,...,Y1k) for

E B) - P(Y E 3)]
ii

i = l,2,.. N, and for each j= l, 2, wk 6 > 0, and x 6 [0,1]

let A(j,6,x) denote the class of all subsets A of the form

A = [0,t1] x...x [0,t1_1] x (x,t1] x [0,t1+1] X...x [0,tk] where

t. 6 Ex, x+6] and t1 6 [0,l] for i f j. Then for each s > 0,

J

6 > 0, j = l,2,...,k, and x 6 [0,l]

(3.2.22) P(sun{|ZN(A)l: A 6 AU6,x)} > e) < P(IZN11- (,(x x+<S])I__> E)
2

3ka(2, 4)

+"Y———"Zf'UNj((X:X+5])

where Ck(2,4) is a constant depending only on k.

Proof. Let a > 0, 6 > 0, j 6 {l,2,...,k}, and x e [0,l].

For each t = (t1,...,tk) in Rk define

N

ZN(t) = 1211c1[I(Y1< t) - P(Y1t)]J,

tx = (t1,. ,t1__1,x, t1+1,.. . ,tk),

and

(3.2.23) XN(t)= ZN(t)- ZN(tx) .

Let us first observe that the fluctuation inequalities in Bickel and

Wichura (197l) (see Section 4, Lemma 4.1 and Theorem 4.l in this

paper) can be applied to the stochastic process XN(t), t e T where

T = T] x T2 X...x Tk,
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T.J Ex, x+6J , and Ti = [-6, l + 6] for i f j.

If t = (t1....,tk) is a point in the lower boundary of T,

2(T) (see Section 4 (4.2)). then either tj = x or ti = -6 for

some i f j. If tj = x, then t = tx and XN(t) = 0. If ti = -6,

then XN(t) = 0 since v,,...,vN take values in [0,13k.

Therefore, XN(t) = 0 for all t E 2(T) so that Lemma 4.l in

Section 4 can be applied to give

(3 2 24) :2? IXN(t)|.: IXN(b)| + k Iggfik M3(XN) ‘

where b = (b1....,bk), bj = x + 6, and bi = l + 6 for i f j.

Since Y],Y2,...,YN take values in [O,l]k, it is easy to see from

(3.2.23) that

(3.2.25) sup |XH(t)| = sup{IXN(t)| : t e T n [0.13k}

tET ' ’

and

I
I

I
I
M
Z

(3-2-26) XN(b) cl[I(Yij E (X, X + 5]) ‘ P(Ylj 6 (X9 X + 53)]

i l

ZNj ((x, x + 6]) .

Furthermore, if t = (t1....,tk) is a point in T n [0,ljk, then

(3.2.23) gives

N

(3.2.27) XN(t) = ZN(A) = .2] ci[I(Yi e A) - P(Y1 e A)]

1:

where A = [0,t13 x...x [O’tj-l] x (x,tj] x [0,tj+]] X...x [0,tk].

Combining (3.2.25) and (3.2.27) yields

(3.2.28) :2? |XN(t)| = sup{|ZN(A)| : A 6 A(j.6,x)}
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If B = (s,tJ n T is a block in T (see (4.3) in Section 4)

then by Lemma 4.2, Section 4 the increment (see (4.7) in Section 4)

N

of ZN(t), t e T around 8 is ZN(B) = ’Xl ci[I(Yi e B) - P(Yi E B)].

1:

Furthermore, the increment of ZN(tx), t e T around 8 is zero.

Hence, the increment of XN(t), t E T around 8 is

N

(3.2.29) XN(B) = ZN(B) = z ci[I(Yi e B) - P(Y1 e 3)]

1 l

and Lemma 3.2.2 gives

(3.2.30) P(min{|XN(A)|,|XN(B)|} 3_x) = P(min{|ZN(A)|,|ZN(B)|}.3 x)

23;; EIZN(A)|2|ZN(B)IZ 53—4 ufim u a)

for all A > 0 and every pair A, B of disjoint neighboring blocks

N

in T where uN(A) = .2] c?

1:

now be applied to yield

P(Yi e A). Theorem 4.l in Section 4 can

3ka(2,4) 2

(3.2.3l) P( max M%(XN) z-A)-5'_—__7T__'HN(T \ 2(T))

1:353 J A

for all A > 0 where Ck(2,4) is a constant defined in (4.l3) in

Section 4.

Since Y],Y2,...,YN take values in [0,l3k, it is easy to see

that

I
I
M
Z

(3.2.32) pN(T \ 2(T)) = c? P(Yij e (x, x + 6]) = uNJ((x, x + 5]).

i l

Finally, Lemma 3.2.3 follows from (3.2.24), (3.2.26), (3.2.28),

(3.2.31), and (3.2.32). D

Lemma 3.2.4. Suppose the assumptions of Lemma 3.2.3 hold. Then for

each s > O, 6 e (0,l), and j = l,2,...,k
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(3.2.33) P(sup{|ZN(A)| : A 6 A(j.6)}_: 5).:

2

i

N

.((x, x + 6]) + 64 max C?) X c
l
--[d sup n
4 k NJ ljigfl 1 i=l

c x€[0,l]

where dk is a constant depending only on k.

“3592:. Let c > 0, 5 e (0,l), and j E {l,2,...,k}. Further-

more, define m(6) = min{m E {l,2,...} : l 5_m6}. For each

k
t = (t1....,tk) in R define

I
I
M
Z

ZN(t) = c-[I(Yi §_t) - P(Yi_g t)]

and

t = (t1....,tj_],x,t.x ..,tk) for x e R.

If A(j,6) is the class of sets defined in (3.2.8) and

A 6 A(j.6), then A : [0,l]k and has the form

A = [0,t]] X...X [0,tj_]] X (x,y] X [0,tj+]] X...X [0,tk] where

0 5_y-x §_6. Clearly, x 6 [m]6, (m1 + l)6] and y 6 [m25, (m2 + l)6]

for some integers m],m2 6 {0,l,...,m(6) - l} satisfying either

m] = m2 or m2 = m1 + 1. Hence,

(3.2.34) |ZN(A)| IZN(ty) - ZN(tx)l

I
A

IZN(ty) - ZN(tm25)l + IZN(tm25) - zN(tm]5)l

+ IZN(tm]6) - ZN(tx)I

5_3 max sup{|ZN(B)| : B e A(j,6,i6)}

Qgi<m(5)

where A(j,6,x) is the class of sets defined in Lemma 3.2.3.

Therefore, (3.2.34) and Lemma 3.2.3 give
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P(sup{|ZN(A)| : A 6 A(j.6)} 3_e).g

P( max sup{|ZN(B)| : B e A(j,5,15)}>_%-e) <

Qgi<m(6)

m(6%-l 1

. P(sup{|ZN(B)| : B E A(j.6,i6)}.3-§ 5).:

1:

(3.2.35)

m( )-1 3ka(2,4) 2 (6

E0 [P(IZN.((1'6(1'+1)61)| 3%2) + “N,- (i5,(i+l)6])].

(e/ek)4

Applying Chebysev's inequality and Lemma 3.2.2 to ZNj gives the

following upper bound for the first term inside the brackets in

(3.2.35)

(3.2.36)[l/(c/6)4][3 p2.((i6,(i+l)63) + ( max ci2)p ((i6,(i+l)6])].

NJ lfjfifl NJ

Hence, the expression (3.2.35) is bounded above by

d 64
k . .

(3.2.37) -——14 ((0.11 max u .((16,(1+l)6]) + --( max Ci2)u ((0, ll)

54 NJ )Qgi<m(6) N3 64 lgigN NJ

4 4 N 2
Where d = 3kC (2,4)(6k) + 3-6 and u .((0,l]) 5 Z c.. Lemma

k k N0 i=1 1

3.2.4 now follows from (3.2.35) and (3.2.37). D

Proof of Theorem 3.2.l.
 

For each N = l,2,... apply Lenma 3.2.4 with Y . in place of

 

N1

vi and ch/ON in place of c, to get 4 2

6 ( max CNi)

P(w(j)(ZN ) > e).:-lz Edk sup “NJ((X’X+53) + ‘S‘SNZ J

XEEO, l] 0N

for each N = 1,2,..., j = l,2,...,k, 6 E (0,l), c > 0 where wéj)(ZN)

is defined by (3.2.10) in Lemma 3.2.l, dk is a constant depending

only on k, ofi = if] cfii, and uNj((x,x+6]) =-—§ 1.Zlcwziflx < YNij 5_x+6).

= 0' =

N
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Theorem 3.2.l now follows from (3.2.3), (3.2.4), and Lemma

3.2.1. B

Proof of Theorem 3.2.2.
 

By Theorem 2, page 683 in Wichura (1969), the result in Theorem

3.2.2 will follow if each of the following two conditions hold:

(i) for each finite subset T of [0,13k, the distribution of

ZN(t), t E T converges weakly to a multivariate Normal dis-

tribution,

and

(ii) for each s > 0, lim Tia P(w (z ) > c) = o.
6 N -—

5+0 N+w

Condition (ii) holds as a result of Theorem 3.2.1 while con-

dition (i) follows from (3.2.6), (3.2.3) and an easy application of

the multivariate version of the Lindeberg-Feller Central Limit

Theorem. D



4. APPENDIX

The paper by Bickel and Wichura (l97l) provides the key tool

for proving the weak convergence of the weighted empirical process.

In this appendix we present some notation, terminology, and results

that can be found in Bickel and Wichura (1971); although we

occasionally make statements in a slightly more general form than

Bickel and Wichura.

To begin with, let k denote a positive integer and

T = T1 x T2 X...x Tk where for each 5 = l,2,...,k, Tj is either

a finite subset of (-w,m) or a closed bounded interval in (-m,m).

Furthermore, let

(4.l) aj = 1nf Ti and bi = sup Tj for J = l,2,...,k.

The lower boundary of T is defined to be the set
 

(4.2) R(T) = {t = (t],...,tk) e T : tj a‘j for some j = l,2,...,k}.

A block in T is a set B of the form

(4.3) B = (s,t] n T where s,t e T, s 5_t,

and (s,tJ = (5],t13 X...x (sk,tk]. We say two disjoint blocks

A = (s,tJ n T and B = (u,v] n T are neighbors if s agrees with

th
u and t agrees with v except in the j coordinate (for some

' = l,2,...,k where eithe . . = . . . . = . ..J ) rngtJ u‘15vJ or ujng sJ_<_tJ

34 --
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We next introduce a stochastic process X(t), t E T whose

For
  

state space F is a normed linear space having norm

(.1’)
j = l,2,...,k and t e Tj we define the stochastic process Xt

having Parameter set T(J) = T1 X...x TJ._1 x Tj+1 X...x Tk by

(.i) =
(4.4) Xt (s) X(s],...,sj_],t,sj+],...,sk)

- (3')
Where 5 - (S‘I’ooo’Sj_]’5j+-lgooogsk) E T o

For j = l,2,...,k and s,t,u E Tj with s 5_t 5_u we define

(4.5) mj(s,t,u)(X) = min{uxgj) - x£5)lL, HX£j) - xéj)nm}

and

(4.6) M3(X) = sup{mj(s,t,u)(X) : s,t,u e Tj and s 5_t 5_u}.

Finally, we define the increment of X around the block B = (s,tJ n T

by

k-(a +...+5 )

(4.7) X(B)= X (4) ‘ "k X(s + 6(t-s))

6€{0.1}

where 6 = (61,62,...,6k) and

s + 6(t-s) = (51 + 61(t] - 51),...,sk + 6k(tk - Sk))'

We now state two results from Bickel and Wichura (1971) which

will be used to prove Theorem (3.2.1).

Lemma 4.l. If X(t) 0 for t 6 R(T), then

I
A |X(b)| + k max M3(X)

lipsk

(4 8) sup |X(t)l

teT

where b = (b],...,bk) and bi = sup Tj, j = l,...,k.

Egggf. See (l) on page 1657 in Bickel and Wichura (197l). U
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Theorem 4.1 (see Theorem 1, page 1658 in Bickel and wichura (1971)).

Assume X(t) = 0 for t e £(T) and

(4.9) P(minilxmu. wam z A) 5. 118(1) 0 MN

for some numbers v > 0, B > 1, and some nonnegative finite measure

u on T, and all A > 0 and every pair A,B of disjoint neighbor-

ing blocks in T. Then for all A > 0 we have

Ck(B.A)

(4.10) P(M3(X) _>_ A) _<_——— uB(T \ 2(1)). 3 =1.2.....k
AY

kck(BsY)

(4.11) P( max mgm :1) _<_ 118(T \ mm)
isisk

where

-1

(4.12) CH8“) = 28%) - (%)%;J-U+Y)

and

(4.13) Ck(B.v) = c,(e.y)ti + (k-1)CL{}+Y(B,Y)J‘*Y. k = 2.3....

Proof. With one minor change (see remark (2) below) Theorem

4.1 follows from the proof of Theorem 1 in Bickel and Wichura

(l97l). U

Remarks concerning Theorem 4.1:

(l) The inequalities in Theorem 1 (Bicke1 and Wichura (1971)) which

are analogous to (4.10) and (4.ll) in Theorem 4.1 have u(T)

appearing instead of u(T \ £(T)). Furthermore, Bickel and

Hichura assume u(£(T)) = 0. However, with one minor change

in the definition of F in Step 3 of Bickel and Wichura's proof
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of Theorem 1, it is seen that the assumption u(t(T)) = 0 is

superfluous and also that the inequalities hold with

p(T \ £(T)) in place of u(T). This gives a slightly sharper

inequality with one less assumption imposed on u.

(2) The change referred to in the above remark is to define F in

Step 3, page 1660 in Bickel and Wichura as follows:

Let F be linear over [tj_],tj], j = l,2,...,m with

P(to) = o. F<t1) = u({t]})s and F<tj1 - F(tj_1) = w({tj_]}) +

u({tj}) for j = 2,...,m.

(3) The constants Ck(B,y) appearing in Theorem 4.1 are the same

as Kq(B,v) in Bickel and Hichura with q = k.

Finally, in Lemma 4.2 below we determine a more convenient

form for the increment (see (4.7)) of the weighted empirical process

around a block 8.

Lemma 4.2. Let Y],Y2,...,YN be k-variate random vectors taking

values in Rk, let c],c2,...,cN be any real numbers, and for each

. t.s Rk define

I
I
M
Z

(4.14) ZN(t) = ci[1(vi g t) - P(Yi_g t)].

i 1

Then for any block 8 = (s,tJ in Rk, the increment of ZN around

the block 8 is

I
I
M
Z

(4.15) IZN(B) = ci[I(Yi e 3) - P(Yi e 3)].
i 1

Proof. For i = l,2,...,N define the stochastic processes

k
Xi(t), t E R by Xi(t) = I(Yi 5_t).
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If B = (s,tJ is any block in Rk, then by (4.7) the incre-

ment of X1. around the block 8 is

k-(6‘+...+6

(4.16) x.(B)= z k(~1)
6€{0.l}

k)Xi(s + 6(t-s)).

We shall prove by induction on k that

(4.17) Xi(B) = I(Yi E B) .

When k = 1, the right-hand side of (4.16) is

Xi(t) - Xi(s) = I(Yi §_t) - I(Yi §_s) = I(Yi 6 (s,tl)

so that (4.17) is established for k = 1. Suppose that (4.17) holds

for some k 6 {1,2,...}. We now show (4.17) also holds for k + 1.

If 6 = (61,62,...,6k+]), s = (5],s2,...,sk+]),

t = (t],t2,...,tk+]), and Y1 = (Yil’yi2""’Yi k+l)’ then define

60 = (61,62....,6k), so = (51’52""’Sk)’ t0 = (t1,t2,...,tk), and

Y1.0 = (Yil’Yi2""’Yik)' Hence, (4.16) gives

k+l-(6]+...+6k+])

X (B) = X (-1) I(Y- < s + 6(t-S))

‘ aeio,1}"+1 "‘

k-(a +. +6 )

= (-1) 1 k 1(v. < s

606%0.1}k ‘0'" 0

* 50(to ‘ 50))I(Yi,k+1-i tk+l)

k-(6 +...+6 )

- (-1) 1 k 1(v. < s

506(0.l}k ‘0 " 0

I
A

+ 60(t0 ‘ 50))I(Yi,k+l Sk+l)

= I(Vi,k+1 5 (Sk+1’tk+l])I(Yi0 6 (SO’tOJ)

1(Yi E (s,tJ).
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Hence, (4.17) holds for all k = 1,2,...

k
Finally, if we define the process X(t), t e R by

N N

X(t) = 1;] c1 Xi(t) = 1;] CiI(Yi 5_t),

then

(4.18) ZN(t) = X(t) - E(X(t)), t e Rk.

If B = (s,tJ is a block in Rk and N(B) denotes the increment

of E(X(t)) around 8, then

(4.19) ZN(B) = X(B) - N(B) .

Since E ZN(t) = 0 for all t E Rk we have

E ZN(B) = 0

so that (4.19) gives E X(B) = N(B) and

(4.20) ZN(B) = X(B) - E X(B).

The lemma now follows from (4.20) and (4.17) after observing

N

X(B) = .2] Ci Xi(B). D

1:
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