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ABSTRACT

END EFFECT IN A TRUNCATED SEMI-INFINITE

WEDGE AND CONE

by Tommie R. Thompson

The purpose of this research is to deve10p the stress

distribution in a two-dimensional truncated semi-infinite

wedge and in a three-dimensional truncated semi-infinite cone.

Using a complex valued eigenfunction expansion for

an Airy stress function formulation of the wedge problem, the

stress distribution within the St. Venant boundary region is

determined for several "typical" loadings.

The solution for the cone problem is formulated in

terms of Papkovich-Neuber functions and the resulting stress

distribution in the cone is also determined.

Eigenvalues for both problems are presented for sev-

eral wedge and cone angles.
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I. INTRODUCTION AND HISTORICAL

DEVELOPMENT

In 1853, Barre de Saint-Venant published his

"Memoire sur la Torsion des Prismes" [l] in which he solved

the problem of torsion in long prismatic bars of various

shapes of cross section. In a footnote he states that the

influence of forces in equilibrium acting on a small por—

tion of the surface of a body extends very little beyond

the parts upon which they act. This has been the basis for

the more familiar form of St. Venant's principle, the es-

sence of which can be stated as follows: If a system of

forces acting on a small portion of the surface of an elas-

tic body is replaced by another statically equivalent system

of forces acting on the same portion of the surface, the

same stress distribution and deformation are produced inside

the body except in the immediate neighborhood of the region

where the surface forces are applied. "Statically equiva-

lent systems" are those which have the same resultant force

and moment.

This principle is of great practical importance.

Often the exact distribution of boundary stresses is unknown

but the statically equivalent loading can be easily deter-

mined. For these cases, the problem may be solved with the

l



statically equivalent system of boundary stresses and from

St. Venant's principle, the solution can be taken as ac-

curate except in the vicinity of the loading.

On the other hand, if the boundary conditions are

specified according to the exact distribution of the

stresses, the problem may become too complicated to solve

mathematically. Frequently, by modifying the boundary con—

ditions slightly, the solution becomes possible and gives

essentially the same stress distribution in a large part

of the body as does the actual loading. By means of St.

Venant's principle, the solution of the problem may be sim-

plified by altering the boundary conditions as long as the

systems of applied forces are statically equivalent.

The principle agrees very well with reality as can

be illustrated by simple examples but its formal mathemat-

ical proof is rather difficult in the general case.

Early applications of St. Venant's principle to

justify approximations of boundary conditions include prob-

lems investigated by Thomson and Tait [2], Levy [3], Bous-

sinesq [4,5], and Clebsch [6].

For the elastic half space, bounds have been es-

tablished on the decay rates for stresses (rates at which

the stresses approach zero) by Boussinesq [5] and von Mises

[7]. Both investigations show that the stresses decay, as

they must, but that the decay rate is a function of the

type of loading applied on the surface of the body. von Mises



introduced the concept of astatic equilibrium which requires

surface forces to remain in equilibrium even when turned

through an arbitrary angle and prOposed a modification to

the principle. For a more detailed discussion of astatic

equilibrium, see Section 2.2. He concluded that static equi-

librium was not enough to insure the maximum decay rate since

astatic equilibrium may generate decay rates much faster than

simple static equilibrium. In 1954, E. Sternberg [8] pre-

sented a mathematical proof for the bounds on the decay rates

for the modified principle.

Recent research in this area generally follows one

of the two methods:

(a) that which attempts to establish bounds on the

width of the St. Venant boundary region (as done by von Mises),

(b) that which attempts to establish "exact" solutions

within this boundary region for limited classes of geometry.

The geometries investigated thus far include the semi—infinite

strip [9,10] and the semi-infinite circular cylinder [11-14].

The purpose of this research is to further the classes

of geometry for which the "exact" solution is known by deter-

mining the stress distribution in a semi—infinite two-dimen-

sional wedge and in a semi-infinite three-dimensional cone.

The cone solution should then approach that of the cylinder

as the cone angle approaches zero and should approach that of

the half space as the cone angle approaches n/2.



For the wedge, the solution was formulated using an

Airy stress function expressed in terms of a complex valued

eigenfunction expansion. All boundary conditions were taken

in terms of stresses applied on the surfaces.

For the cone, the solution was formulated in terms

of the Papkovich-Neuber functions with boundary conditions

again being taken in terms of stresses alone.

Previous investigations of various wedge and cone

problems are presented in [18] to [32].

The transcendental equations which will be developed

for the wedgelEqs. (2.23) and (2.24] agree with those developed

by Williams [41] in his investigation of stress singularities

resulting from extension of angular plates with free edges.

However, Williams presents only the real part of the minimum

root of these equations. Williams is interested in the be-

havior of the solution near r = 0 and is concerned with

bounded displacements at the origin, whereas the problem

outlined in Chapter II does not contain the point r = 0 but

is concerned with solutions which are bounded as r + w.



II. THE WEDGE PROBLEM

2.1. Formulation of the Wedge Problem

Consider the wedge shown in Fig. 2.1. Formulating

the problem in terms of an Airy stress function, w, the

stresses in polar coordinates can be expressed as:

_ 1 1

0rr - ? w,r + ;2 w,68 (2'1)

088 = w,rr (2'2)

_ 1 _ 1

Tre ‘ :7 w,e E w,r8 (2'3)

where w r denotes the partial derivative of U with respect

I

to r. Assuming plane stress conditions, the equilibrium

equations of elasticity are satisfied and the defining equa-

tion for w becomes

V V w = 0 (2.4)

where

2 32 2

1 1 a
V = +——+ .

8r r 3r :7 382

O
)

The boundary conditions to be satisfied are:

Solution + 0 as r + w (2.5)

066(r' i B) = 0 (2.6)



Fig.

 

2.1.

 

Truncated semi-infinite two-dimensional wedge.



Tre(r, _ B) = 0 (2.7)

o (r e) = 0° (6) (2 8)
rr 0' rr °

r (r e) = 1° (6) (2 9)
r0 0' r6 '

0
where ogr(6) and Tre(9) are the specified loading functions.

Assume the solution for w in Eq. (2.4) to be of the

form:

a

w = Z r nfn(8) + Cre sin 0 + Dre cos 6 (2.10)

n

where the last two terms are included in order to incorporate

that portion of the solution corresponding to an = 1. The

necessity of these terms will be more apparent after the next

few steps. Substituting the assumed expression for w into

the biharmonic equation yields the defining equation for

fn(9) as:

f:V(0) + [oi + (an - 2)2]f;'(0) + a§(an - 2)2 fn(6) = o

(2.11)

where the primes denote differentiation with respect to 6.

Taking the solution for fn(6) in the form

the characteristic equation for allowable values of m is:

4 [2 _ 2]2 2 _ 2_
m + an + (an 2) m + an(an 2) — 0 (2.12)

[m2 + 01:][m2 + (an - 2)2] = 0



Thus,

m = iia (2.13)

n

m = ii(an - 2) . (2.14)

Thus, the general solution for fn(0) can be written as:

I I I

fn(6) = An srn one + Bn cos anB + Cn s1n (an - 2)0

I

+ Dn cos (an - 2)0 . (2.15)

If an = l in Eq. (2.12) above, then repeated roots exist and

the solution corresponding to these roots satisfies all the

boundary conditions. These are the terms included in w as

Cr0 sin 0 and Dre cos 0.

In terms of the stress function assumed initially,

the non-zero stresses are:

OLn.-2 " 2 2 .
Orr = g r [onfn(0) + fn (8% + E'C cos 0 - f D s1n 0

(2.16)

an-Z

089 = g r [anmn - 1)fn(e)] (2.17)

an-Z ,

Ire =—g r [(dn - 1)fn(e)] . (2.18)

For stress free boundary conditions at 8 = :8:

“66' _ = 0 => £413) = o

0 — :8

I

Trel =0 => f,‘(:B)=0 .

6 = i8



Thus, the boundary conditions at 6 = :8 reduce to

specifying:

f(iB) = 0 (2.19)
n

fn(:B) = o . (2.20)

However, since any linear elasticity problem can be

solved by the method of superposition, separate fn(6) into

its even and odd parts in 6. This will facilitate the solu—

tion for the eigenvalues, an, and in general will make the

problem more tractable. From Eq. (2.15),

féo)(0) = A; sin ago)0 + c; sin‘aéo) - 2)0 (2.21)

fée)(e) = Bn cos aée)0 + D; cos (use) - 2)0 . (2.22)

Reference to an even problem implies one in which

the stress function, 0, and the Orr and 008 stresses are

even functions of 0 and reference to an odd problem implies

one in which these are odd functions of 6. The even problem

will be indicated with a superscript (e); the odd problem

will be indicated with a superscript (o).

The boundary conditions at 6:: B can then be ex-

pressed as:

fé°) (e) = o fée) (B) = o

for an odd for an even

, problem , problem

féO) (e) = o fée) (B) = o
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Applying the above boundary conditions to the odd

problem yields the following transcendental equation for the

odd eigenvalues:

age) sin 28 - 2 sin (4:8) cosl}aéo) - 2)8] = 0 . (2.23)

For the even problem, the corresponding transcen-

dental equation for the even eigenvalues is:

aée) sin 28 + 2 cos (aée)8) sin [(aée) - 2)8] = 0 .

 

(2.24)

The eigenfunctions can then be expressed as:

. . (o) )
Sln — 2 8

féo) = An sin (an(o) - 2’0 - ‘% (0) sin a;0)0

sin on B

(2.25)

(e)
cos -2 B

f(e) = Cn cos {an(e) - 2)9 - (an (e) ) cos crime .

cos an 8

 

(2.26)

Thus, for the odd problem, the stress expressions

become:

“(0)” () () ()"] 1_ n o o o _ — .

orr - g AnY [an fn + fn 2BY Sln e (2.27)

(o)

_ o‘n '2 (0) am) (0)]
096 _ g A Y [an - 1)fn (2.28)

a -2 '

Tre =‘E AnY n {(930) - 1)fé°)'] (2.29)
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where y = r/r0 and féo) is the bracketed portion of Eq.

(2.25).

For the even problem, the stress expressions become:

“(e)’2[() () ()"J 1_ n e e e -
Orr — E Cny an fn + fn + 20v cos 6

(2.30)

(e) . ‘
a -2

_ n (e) (e) __ (e)
Gee — :21 cm)! [on (an 1)::n ] (2.31)

(e)
a -2 '

__ n (e) _ (e)
Ire — r21cm) [‘an 1):?n I (2.32)

where, again Y = r/r0 and fée) is the bracketed portion of

Eq. (2.26).

The transcendental equations, Eqs. (2.23) and (2.24),

were solved on the CDC 3600 digital computer using a Newton-

Raphson iteration technique in the complex plane since the

eigenvalues will be complex numbers. However, the Newton-

Raphson technique is quite sensitive to the initial guess

for the root of the equation. Care must be taken so that

the initial guess is in the neighborhood of the particular

root being sought or roots may be skipped; i.e., the method

may converge to a root other than the one being sought. To

avoid this skipping of roots, asymptotic expressions for the

roots were developed and these asymptotic values were used

as the initial guess for each eigenvalue. For a detailed

discussion of the development of these asymptotic values,

see Appendix A.
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For this specific wedge problem, only those eigen-

values which have negative real parts will be used to insure

the solution goes to zero for large r.

For a number b = c + id which is a solution to the

transcendental equation, note that its complex conjugate

B = c - id is also a solution. This is the condition which

must exist if the stresses, which are, of course, real quan—

tities, are to be expressed in terms of complex eigenfunction

expansions.

Having now satisfied the boundary conditions at in-

finity and at the wedge angle, 8, the remaining boundary

conditions at r = r0 will be satisfied.

Using a generalized approach to orthogonality as

outlined by P. F. Papkovich [l7], orthogonality conditions

were established for the eigenfunctions. For details of

the method as applied to this particular problem, see Appen-

dix B. The orthogonality condition for the eigenfunctions

is:

8 II II II

j:8|:am(am - 2)an(an - 2)fmfn + 4fmfn - fm fn ]d6 = O .

(m # n) . (2.33)

However, it was not possible to interpret this condition

physically in terms of stress, displacement, or mixed

boundary conditions on the end of the wedge.

Therefore, the last boundary conditions, those at

r = r0, were satisfied numerically by truncating the series
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expressions and determining the constants in a least squares

sense.

On the end boundary, for the even problem, consider

0 O
the expansion of the real functions Orr and Tre in terms of

the complex eigenfunctions. Take

"

oo = Z A e + Z A e + 20 cos a (2.34)
rr nn nn

n n

o '—
rre — Z Anwn + Z Anwn (2.35)

n n

where

II

¢ = a f + f
n nn n

I

Wn — -(an - 1)fn

(e)
and where an refers to an and fn refers to fée). The two

conditions, Eqs. (2.34) and (2.35), are then sufficient to

' —

imply An = An. Thus, the boundary stresses can be written

as

crr = Z Anon + Z Anon + 20 cos 9 (2.36)

n n

T0 = Z A w + X X‘F (2 37)
r6 n n n n n n '

Satisfying both the specified stresses in a least

squares sense by using:

N N

00 + 110 = Z A (e + 1w ) + 2 A'($ + 1? ) + 2D cos 9
rr r0 n n n n n n n n

(2.38)
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leads to minimizing the integral:

0 N N -| — — -o
r g - Z An(<1>n + iwn) - Z An(<1>n + iwn) - 20 cos 6 g

n n

N _’ _ _ N

- 2 A (e - 1w ) - 2 A (e - iv ) - 20 cos 6 dr = minimum
n n n n n n n n

(2.39)

where g0 = 00 + 1T0 Note that the integrand is the
rr re'

modulus squared of the error in the series approximations.

After minimizing the integral with respect to the

jth constant, the following equations were developed:

8 N 5 N

e ‘; “ ‘1‘ ' “1:8 E An( j n + w w ) + g An(¢J¢n + ijn)

_ B _ _

+2D<I>. cosede=%f [(90+g—0)<I>. -i(go-§O)‘¥-de

3 '8 J J

(j = 1,2,...,N) (2.40)

B n n n j n j n

1 B O —0 O —O
+ 2D¢. COS 6 d6 = — (g + g )T. - i(g — g )W. d6

3 2 _B J J

(j = 1,2,...,N) (2.41)

8 . N N _

2 cos 6 Z A 0 + 2 cos 6 Z A 5
-8 n n n n n n

B

+ 4D cos2 9 d6 = I? (go + 3°) cos 6 d6 . (2.42)

The last equation is determined by minimizing Eq. (2.39)

with respect to D.
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In matrix form these equations generate a Hermitian

matrix; i.e., Aji = Kij‘ The maximum number of terms, N, was

chosen so that the series representations for the specified

boundary stresses converged within some e error term. For

all loading cases which were used, N = 15 yielded a < 0.5%.

For all loading cases, the integrals were evaluated

analytically.

The same method is applicable to the odd problem.

2.2. Results and Conclusions

(Wedge Problem)
 

The roots of the transcendental equations, Eqs.

(2.23) and (2.24), were determined by the Newton-Raphson

method as discussed briefly in the previous section. The

results are shown for several wedge angles in Tables (2.1)-

(2.3) .

The system of equations generated by Eqs. (2.40)-

(2.42) was solved for the following loading cases:

 

00 T0 Principal Decay

rr r0 for Stresses

a -2

(a) A + B02 0 r 1

n0 3 2 0‘1"2
(b) 0 A sin '—8— + 3(9 — B 6) r

(c) A 3(93 4 826) r-1

(d) 1.0 0 r"1

{8) since these are even problems.where a1 refers to 0

Loading cases (a) and (c) are shown in Figs. (2.2) and (2.3),
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respectively. The constants A and B were chosen so the load-

ing system itself would be in static equilibrium where the

required conditions for static equilibrium are

if

W? X F") = 0 ; (2.44)

II o (2.43)

i.e., the resultant force and the resultant moment must be

zero.

In 1945, von Mises [7] introduced a stronger condi-

tion of equilibrium denoted as astatic equilibrium and de-

fined by the expressions

ZF = o (2.45)

[If = o . (2.46)

Note that astatic equilibrium implies static equilibrium but

that the converse is not true.

Extending the above definition to include the distri-

buted forces on the end boundary used for this particular

wedge problem, the conditions for astatic equilibrium become:

  

B70 0 _
{F = 0: j, Lorr cos - r sin 0 d6 = 0 (2.47)

-B

B—

Jls Logr sin cos 0 d8 (2.48)

__ Bo

ZrF‘= 0:f-B Orr d0 = (2.49)

8o
J. T d6 = (2.50)

-8 r0
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B
0 O . _

j;8[orr cos 0 - Tre Sln 0] cos 0 d8 — 0 (2.51)

B o o
0 cos 0 - T sin 0 sin 0 d6 = 0 . (2.52)

-8 rr r8

von Mises shows that for the half plane, loadings in astatic

equilibrium may generate faster decay rates for stresses

than those loadings which are in simple static equilibrium.

However, the conditions of astatic equilibrium can-

not be used to justify the faster decay rates in cases (a)

and (b) since neither satisfies the required conditions. As

was expected, case (a) did yield a faster decay rate than

case (d) since (a) is in static equilibrium. The interac-

tion of Ogr and T39 for case (c) results in a slower decay

rate than for cases (a) or (b).

Case (c) presents another particularly interesting

result. Within the range r0 < r < 1.4r0,

of stress at 0 = 8 increases to a value approximately 500%

the orr component

its corresponding value on the boundary before it begins to

decay. This can be seen in Fig. (2.5). Physically, this is

fairly easy to justify since the large shear stress on the

boundary near 0 = 8 results in large radial stresses in the

vicinity of the corner at 0 = 8. For all the loading func-

tions used, 8 was taken as 30°.

Tables (2.4) and (2.5) show how well the truncated

series represent the specified loading functions for different
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values of N where N represents the number of pairs of eigen-

values used in the truncation.

Decay properties of the stresses are shown in

Figures (2.4) and (2.5).

The solutions of Equations (2.23) and (2.24) which

lie in the right half plane can be obtained from the left

half solutions by the relations:

(even-right) = -a (even—left)
+ 2

n n

(odd-right) = -a (odd-left)
+ 2

n n

For the stresses to be bounded at infinity, the

real part of on < 2. Therefore, no eigenvalues in the

right half plane enter into the series summations.



Table 2.1--Roots of transcendental Eqs.

(roots in left half plane).

19

(2.23) and (2.24)

 

 

 

 

 

n age) ago)

8 = 10°

1 - 11.0795 -i 6.3844 - 20.4864 -i 7.8711

2 29.6943 8.8302 38.8245 9.5441

3 47.9149 10.1141 56.9819 10.5889

4 66.0338 10.9959 75.0753 11.3522

5 84.1094 11.6690 93.1380 11.9542

6 102.1623 12.2135 111.1832 12.4514

7 120.2015 12.6710 129.2176 12.8750

8 138.2319 13.0654 147.2447 13.2439

9 156.2562 13.4120 165.2667 13.5708

10 174.2762 13.7212 183.2849 13.8642

8 - 20°

1 - 5.0578 -i 3.0954 - 9.7541 -i 3.8431

2 14.3550 4.3241 18.9184 4.6817

3 23.4625 4.9670 27.9952 5.2047

4 32.5206 5.4083 37.0410 5.5865

5 41.5577 5.7450 46.0717 5.8877

6 50.5836 6.0174 55.0939 6.1364

7 59.6028 6.2462 64.1107 6.3482

8 68.6178 6.4434 73.1241 6.5327

9 77.6297 6.6168 82.1349 6.6962

10 86.6395 6.7714 91.1438 6.8429

Asymptotic expressions are given by Eqs. (A.18), (A.19),

(A.22), (A.23).



Table 2.2—-Roots of transcendental Eqs.

(roots in left half plane).

20

(2.23) and (2.24)

 

 

 

 

 

n aée) ago)

8 - 30°

1 - 3.0593 —i 1.9520 - 6.1820 -i 2.4557

2 9.2457 2.7780 12.2860 3.0171

3 15.3142 3.2078 18.3351 3.3665

4 21.3514 3.5024 24.3644 3.6213

5 27.3752 3.7271 30.3842 3.8222

6 33.3919 3.9088 36.3985 3.9881

7 39.4043 4.0614 42.4094 4.1294

8 45.4139 4.1929 48.4180 4.2525

9 51.4217 4.3085 54.4250 4.3615

10 57.4280 4.4116 60.4308 4.4593

8 - 45°

1 - 1.7396 -i 1.1190 - 3.8083 —i 1.4639

2 5.8451 1.6816 7.8688 1.8424

3 9.8856 1.9702 11.8981 2.0764

4 13.9079 2.1673 15.9158 2.2468

5 17.9223 2.3175 19.9278 2.3810

6 21.9325 2.4388 23.9365 2.4918

7 25.9401 2.5407 27.9432 2.5861

8 29.9460 2.6284 31.9485 2.6682

9 33.9508 2.7056 35.9528 2.7409

10 37.9547 2.7743 39.9564 2.8061

Asymptotic expressions are given by Eqs. (A.18), (A.19),

(A.22), (A.23).
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Table 2.3—-Roots of transcendental Eqs. (2.23) and (2.24)

(roots in left half plane).

 

 

(e) (o)

 

 

 

(A.22) , (A.23).

n n n

B - 60°

1 - 1.0941 -i 0.6046 - 2.6307 -i 0.8812

2 4.1517 1.0493 5.6657 1.1720

3 7.1758 1.2690 8.6834 1.3493

4 10.1895 1.4179 11.6944 1.4779

5 13.1985 1.5311 14.7020 1.5789

6 16.2050 1.6223 17.7076 1.6622

7 19.2099 1.6989 20.7119 1.7330

8 22.2137 1.7649 23.7154 1.7947

9 25.2168 1.8228 26.7182 1.8493

10 28.2194 1.8744 29.7205 1.8983

8 - 75°

1 - 0.9130 -i 0.0000 - 1.9367 -i 0.3637

2 3.1455 0.5232 4.3518 0.6299

3 5.5567 0.7117 6.7605 0.7783

4 7.9636 0.8347 9.1662 0.8836

5 10.3684 0.9268 11.5703 0.9656

6 12.7720 1.0008 13.9735 1.0329

7 15.1748 1.0626 16.3759 1.0901

8 17.5770 1.1157 18.7779 1.1397

9 19.9788 1.1623 21.1796 1.1836

10 22.3803 1.2037 23.5809 1.2229

Asymptotic expressions are given by Eqs. (A.18), (A.19),
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Table 2.4--Convergence of eigenfunction expansions (loading

case (a)).

 

 

 

 

 

 

 

 

 

8 = 30°

Specified Function No. of Paired Eigenvalues

0 _ 2

e Orr ' A + Be N = 6 N = 10 N = 15

0° 1.0000 0.9994 1.0006 1.0000

5° 0.9134 0.9143 0.9136 0.9133

10° 0.6537 0.6522 0.6534 0.6538

15° 0.2208 0.2230 0.2209 0.2209

20° -0.3853 -0.3876 -0.3846 -0.3854

25° -1.1646 -1.1646 -1.1652 —l.l647

30° -2.1170 -2.1341 -2.1215 -2.1170

Specified Function No. of Paired Eigenvalues

0 _

9 Tre ' 0 N = 6 N = 10 N = 15

0° 0.0000 0 0 0

5° -2><10‘4 2x10‘4 1><10‘4

10° 6x10"5 —3><10’4 -4><10‘5

15° 7><10'4 -8><10"4 5x10”5

20° -3><10‘3 -7><10‘5 -3><10"4

25° 5x10'3 6><10'5 -2><10’4

30° 0 0 0

B = _ A sin 8

28 cos 8 + (82 - 2) sin 8

1.0W ll
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Table 2.5--Convergence of eigenfunction expansions (loading

case (c)).

 

 

 

 

 

 

 

8 = 30°

Specified Function No. of Paired Eigenvalues

0 Ogr = A N = 6 N = 10 N = 15

0° 1.0000 0.9845 0.9938 0.9982

5° 1.0107 0.9993 1.0009

10° 1.0035 1.0072 0.9995

15° 0.9732 1.0033 0.9986

20° 1.0549 0.9925 1.0043

25° 0.9483 1.0076 1.0017

30° 1.0646 0.9733 0.9582

Specified Function No. of Paired Eigenvalues

0 Tie = 3‘93 ' 829’ N = 6 N = 10 N = 15

0° 0 0 0 0

5° 2.2603 2.2745 2.2551 2.2588

10° 4.1332 4.1093 4.1336 4.1355

15° 5.2310 5.2552 5.2408 5.2308

20° 5.1665 5.1685 5.1690 5.1693

25° 3.5519 3.4850 3.5407 3.5529

30° 0 0 0 0

B = A sin 8

2(82 - 3) sin 8 + 68 cos 8 ’

A = 1.0
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Figure 2.2. Wedge loading case (a).
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a II) 0 at 30°
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Fig. 2.4. Decay properties of Orr at 0 = 30° and

Gee at 0 = 0° for loading case (a).
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III. THE CONE PROBLEM

3.1. Formulation of the

Cone Problem

Consider the cone shown in Fig. 3.1. The boundary

conditions to be specified are:

Solution + 0 as R + w (3.1)

o¢¢(R,B) = 0 (3.2)

TR¢(R,B) - 0 (3.3)

0RR(R0,¢) = ogR(¢) (3.4)

TR¢(RO,¢) = rg¢(¢) (3.5)

where 03R(¢) and Tg¢(¢) are the specified loading functions.

The problem will be solved using Papkovich-Neuber

functions. The displacement field may be expressed in the

form [15]

H = E + Vx (3.6)

where E is a vector function to be determined and x is a

scalar function to also be determined. Substituting Eq.

(3.6) into Navier's equation, it can be shown that

1 _

x=‘4(1- 0) (R°B+B (3.7)
 O)

28
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Fig. 3.1. Truncated semi-infinite three-dimensional cone.
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where E and B0 are harmonic functions. R is the position

vector .

Thus, the displacement equation becomes

_ 1

4(1- v1
V(RB + B

 

u = E (3.8)0)

where

2— 2

V B = 0 and V B0 = 0 .

Formulating the problem for the cone in terms of the

spherical coordinates R, 0, 0 it is necessary to determine

the functions E and B0 so that

v B = 0 (3.9)

and

V B = 0 (3.10)

where, for an axisymmetric problem; i.e., no 0 dependence,

 

V2 = :§-§%(R2fi3 1+ —7——————§$(sin ¢ §¢) (3.11)

s1n

E = eR8R(R 6) + e¢B¢(R,¢) (3.12)

B0 = B0(R,¢) (3.13)

F = Rafi . (3.14)

The non-zero displacement components for the cone

become

_ _ 1 8

uR - BR 471—3—3) Ffi (Bo + RBR) (3'15)



u =B — .142—

¢ ¢ 3(1 - v) R 80

It should be noted that neither BR

function. However, it is possible

ponents of E such that

2 _
V (Bz) - 0

and

V2(Bpeie) = 0

where Bp and B2 are the components

ordinates. See Appendix C for the

equations. Then the components of

(80 + RBR) . (3.16)

nor B is a harmonic

¢

[15] to find the com-

(3.17)

(3.18)

of E’in cylindrical co-

solution of these

E in spherical coordi-

nates can be determined by using the transformation equations:

BR Bp s1n ¢ + B2

B4»
Bp cos 0 - Bz

cos 0 (3.19)

sin 0 . (3.20)

For a solution which approaches zero as R + w Eqs.

(3.17) and (3.18) yield

-Ol.n-1 dpan (u)

130 = E AnR ——a$——— (3.21)

. -an-l

32 = g AnR Pan(u) (3.22)

where

u = cos 0 (3.23)



32

 

(-a ) (a + l) k

p (u) = n k “I k (1 g“) (3.24)

0‘n k=0 (k!)

(y)k = Y(Y + 1)(y + 2)...(Y + k - l) , k 2 l (3.25)

(7)0 = 1 . (3.26)

Equation (3.24) is one of the possible hypergeometric series

representations for Legendre functions [16] and is conver-

gent for

ll - pl < 2 . (3.27)

For the cone problem, the range of u will be 0 < u s 1.

Equations (3.19) and (3.20) give the components of

E in spherical coordinates as:

-a -1

— n 2 ' ' 3 28BR — g R An(u - 1)Pa + Anupafi ( . )
n

X -an-l ¢[ ' ' ] (3 29)B =- R sin A uP + A P .
0 n n an n on

where

It is now desired to findB0 so that

v B = 0 (3.30)

and so that E and B0 both contribute the same power of R

to the displacements. This will then allow the boundary con-

ditions at 0 = 8 to be satisfied in a tractable manner.
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If B is of the form

0

’0.

_ n

BO — Z BnR Pa _1(u) , (3.31)

n n

these conditions are satisfied.

Thus, the displacement expressions for the cone

become

—dn-l ,

uR = Z R Anon + An)(l + kdn)uPa

n n

_ gn[(1 + kan)An - an]Pdn-l} (3.32)

11¢ = E R [(1 + kan)An - an - k(Anan + An)T

I

”(Anan + An)[1 - k(0(n + 1)]Pan s1n 0}) (3.33)

where k = 4(Ier5) . However, without any loss of gen-

erality, the two equations above can be expressed in terms

of the two arbitrary complex constants CA and D; as

-d. '1 I I

— n -

uR - Z R <Cn(l + kan)uPan anDnPan-L} (3.34)

dP
~an-l , , an-l

11¢ = R {[Dn'- kCn:\ T

- Cg[1 - k(0(n + 1)]P0‘n sin 0} (3.35)
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where

C = A a + A

n n

D

II (1 + ka )A - kB
n n n

As will be shown later, this is not the complete solution

for the displacements.

Applying the strain-disPlacement relations and the

constitutive equations, the non-zero stresses can be shown

to be:

-a -2
_ n _ 2 _ ]

ORR - Xv [ [on + San + 2(2 0) uPa + ZvanPan_l]kCn

n n

-2 _ 2(2 - v)
+ an(dn + 1)Pan_1Dn} + COY [l + COS B W COS¢:|

(3.36)

2 -dn-2 [

0 = Y (1 - 2v)(l + 20 )uP + 20a P _
00 n n on n on 1

I I

+ pP _ kC - [a P _ + pP _ ]D

an 1] n n an 1 an 1 n

 

-2 cos 0 - cos B _
+ Coy [ 1 + cos ¢ + cos ¢ 1] (3.37)

-an-2 2

o¢¢ = E3, “on — an + (1 - 20)]upan + 2(1 - v)onpan_l

I 2 I

- uP _ kC .- [a P _ - uP _ ]D
an 1] n n an 1 an 1 n}

 

-2 cos ¢ - cos 8

+ C0Y [ 1 + cos 6 ] (3'38)
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n

—0Ln-2 2
TR¢ = g y sin 0 -[[(0n + l) - 2(1 - 0)]Pa

+ [(Otn + 1) + 2(1 - 0)] Pan_l]kCn + (an + 1)Pan-1Dn}

 

-2 . cos 0 - cos B
+ Coy s1n ¢[ 1 + cos ¢ ] (3.39)

where Y = R/RO. The C0 term is included in order to in-

corporate that portion of the solution corresponding to

on = 0. That portion of the solution was determined in-

dependently using the Navier equations. The necessity of

this term will be apparent after the next few steps.

The boundary conditions at 0 = 8 are:

0 = 0

.1)“.

T = 0

R¢|¢= 8

for all R 2 R0; i.e., for y 3 1. Applying these conditions

to Eqs. (3.38) and (3.39) results in the transcendental

equation for the determination of allowable an. After much

simplification, the transcendental equation can be written

as:
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2
an uo[2k(ug - l)d§ + 2k(u3 - l)dn + pg]P:n(uo)

+ pop2k(ug - l)a: + 2k(ug - 1)on + 1]p§n_l(uo)

D

- 2kL2ug(ug - 1’0:

 
2 2

+ (“0 - 1)(3u0 - l)an

+ [U4 + 2(1 - 2V)H2 + l] P (n )P (u ) = 0 (3 40)

0 0 a 0 a -1 0 °
n n

where “0 = cos 8. Thus, it is obvious thatcx.n = 0 is a

solution to this equation and must be included for a com-

plete solution. For an # 0, the transcendental equation is

u. [463 - 183+ 463 - m. + shim

+

Ll0 n 
“)3F2k(ug - 1)ai + 2k(ug - l)a a _l(uo)

. n

 - 244303,- 1).; + (.3 - 1168 4a.

+ [u3 + 2(1 - 2V)“; + 1]]Pa (00)P (u)=0 .
n 0dn-l

_(3.41)

The above equation was solved on the CDC 3600 digital

computer by calculating the value of the equation at points

of a grid system in the complex plane and plotting curves

along which either the real or imaginary part of the equa-

tion was zero. The intersection points of the curves then

correspond to the roots of the equation. Using this inter-

section point of the kth set of curves as an initial guess
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for the kth eigenvalue, the modulus of the equation was

determined at that point and at the four neighboring points

H
-

a h

n

H
-

a ih

n

where h is the spacing of a new grid. The smallest modulus

of the five calculated was then taken as the improved solu-

tion and the process repeated until the center point rep-

resented the smallest modulus. Then h was reduced by a

factor of ten and the process repeated until the modulus

was less than 81. In all the numerical work, 81 = 10_5.

As in the wedge problem, for a number b = c + id

which is a solution to the transcendental equation, its

complex conjugate 3’: c - id is also a solution.

Having satisfied the boundary conditions at 0 = B,

the non-zero stresses can be expressed as:

 

-a —2

_ n 2
ORR — X CnY {c [on + San + 2(2 - vflkuPa + ZkvanPa -1

n n n

—2 _ 2(2 - v)

+ wndnmn + l)PC1n-l + COY [l + C03 8 W C05 (1)]

(3.42)

-dn-2 .

066 = Z Cny (l - 20)(1 + 20n)kuPa + 2kvanPa -1+ kuPa _1

n n n n

' -2 cos ¢ - cos 8

wn OLnPOLn-l + uPan-1) + C0Y [ l + cos ¢ + COS¢ l

 

(3.43)
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-a -2

o¢¢ — X Cny [an - on + (1 Zvflikupa +-2k(1 v)anPa -1

n np n

' 2 ' -2 cos 0 — cos B
- kuP _ - w (a P _ - uP _ ) + C Y [ 1

an 1 n n an 1 an 1 O 1 + cos 0

(3.44)

-dn—2 2 ]

TR¢ = X CnY Sln ¢ - [(an + l) - 2(1 - V) kPa

n n

I I

- [0%14-1J + 2(1 - vikPa -1 + wn(an + 1)Pa -1

n n

-2 . cos 0 — cos B]
+ COY 51n ¢ [ 1 + cos ¢ (3.45)

where

__[0%{+1)2-2(1-v)]kPan(u0)-+[(an+'l)+-2(l-»v)]kP;n_l(po)
w-

n

 

(an + 1)Pan_l(uo)

and ak is the kth root of Eq. (3.41). The C0

sent the portion of the stress field contributed by on = 0.

terms repre-

0The displacement components corresponding to on

which must be added to Eqs. (3.34) and (3.35) for the com-

plete displacement field are:

 

c .
_0(l—2\)) _4(1-v)

11R - E—[W (l + C05 8) W C08 (1)] (3.46)

_ C0 _ (1 - 20) (1 + 8) sin 9 + . ¢

“0 ' fi‘ - v C05 1 + cos 6 51“ (3.47)

The last boundary conditions, those at R = R0, will

now be satisfied. These conditions had to be satisfied
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numerically as was the case for the wedge problem. The

method of least squares was again used to determine the

constants for the truncated series.

Using a similar argument as in the wedge problem,

the stresses on the end of the cone can be expressed as

 

 

ORR = Z cnen + cn n + con (3.48)

n n

0 _ _ _

TR¢ — Z cnwn + Z ann + cox (3.49)

n n

where

2

0n — -[0n + San + 2(2 - 0)]kuPa + 2kvanPa -1

n n

+ wnan(an + 1)Pa -1

n

’ 2
‘1’ =- (0!. +1) -2(1-\)):|kP sind)

n n a

L n

I

- gun + 1) + 2(1 - 0)]kPan_l s1n 0

I

+ wn(an + 1)Pa -1 s1n ¢

n

_ _2(2-v)
n - l + cos 8 1 _ 20) cos 0

A = sin ¢(cos 0 - cos 8)

(l + cos 0) °

Following the same procedure as outlined in Section

2.1 for the wedge problem, the following equations were

develoPed for the determination of the constants:
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- 1 B 0 —0 — 0 ‘
+ W.1) sin 0 d¢ = --J[ (g + g )9.- i(g - g )V. sin¢>d¢

J 2 0 J J ,

(j = 1,2,...,N) (3.50)

0 E cn(<1>j<1>n + ijn) + E on (ej Eh + ijn) + c0(¢jn

B

+ 113.1) sin (1) do = 1'- f [(90 + EOHDj - i(go - EOHIj] sincb dcb

0

N

(j = 1,2,...,N) (3.51)

B N N - - 2 2

.Ih 2 Cn(n¢n + an) + g Cn(n¢n+-1Vh) + C0(n + A ) sin ¢ d¢

n

B 0 0 0 0

=%J’ [(9 + 9 )n ‘ i(g - E )A] sin ¢ d¢ (3.52)

0

where

0 _ 0 0

In matrix form, these equations also generate a Her-

mitian matrix. Again, as for the wedge, N was chosen so

that the series representations for the Specified loading

functions converged within some 82 error term. For the

loading cases which were used, N = 5 yielded 5 < 16% where
2

the maximum error occurred only in the neighborhood of

¢ = B. The integration required for each matrix element

was performed numerically using the Newton-Cotes method.
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Because of the lengthy computer time required for

N > 5, the solution was not determined for larger values

of N. Therefore, the convergence near 0 = 8 for the cone

as shown in Tables (3.2) and (3.3) is not quite as accu-

rate as one may desire. However, over 70% of the boundary,

the agreement was within 5%.

3.2 Results and Conclusions

(Cone Problem)

The roots of the transcendental equation, Eq. (3.41),

were determined by the method as outlined in the previous

section. The results for several cone angles are shown in

Table 3.1.

The system of equations generated by Eqs. (3.50)-

(3.52) was solved for the following loading cases:

 

00 T0 Principal Decay

RR R9 for Stresses

-a -2

(a) 1.0 + A62 + B93 0 R 1

-d -2

(b) A B(¢3 - 82¢) R 1

(c) 1.0 0 R"2

Loading cases (a) and (b) are shown in Figs. (3.2) and (3.3),

respectively. The constants A and B were chosen so the load-

ing system would be in static equilibrium.

For this axisymmetric cone, the conditions for astatic

equilibrium become
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B

2F = 0 : Jr [pchos ¢ - 13¢ sin 0] sin 0 do = 0 (3.53)

0

8

25:0: f ogRsin¢d¢=0

0

8

.j; [ORR cos 0 - 13¢ sin 0] sin 0 cos 0 d¢== 0 .

(3.54)

Similar to the results of the wedge problem, loading

case (a) did yield a faster decay rate than case (c) since

(a) is in static equilibrium. However, for the cone, case

(b) yields a faster decay than for the similar loading

function on the wedge. None of the loading cases is in

astatic equilibrium.

Similar to the decay in the wedge, loading case (b)

for the cone results in an increase of the ORR component of

stress within a small region before it begins to decay.

Again, the interpretation of this result is quite similar

to that of the wedge.

Tables (3.2) and (3.3) show how well the truncated

series represent the specified loading functions.

Decay properties of the stresses are shown in Figs.

(3.4) and (3.5).
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Table 3.1--Roots of transcendental Eq. (3.41)(roots in

right half plane).

 

 

 

n (1n n (In

B = 15°: 8 = 30°:

1 9.9170 + i 5.0850 1 4.7409 + 1 2.3589

2 22.6618 6.1604 2 11.1025 2.9327

3 34.9063 6.8925 3 17.2181 3.3041

4 47.0343 7.4239 4 23.2783 3.5723

5 29.3163 3.7814

8 = 45°: 8 = 60°:

1 3.0371 + 1 1.3520 1 2.2189 + 1 0.7425

2 7.2610 1.7771 2 5.3518 1.1135

3 11.3298 2.0309 3 8.3933 1.3111

4 15.3657 : 2.2118 4 11.4151 1.4493

5 19.3883 2.3525 5 14.4289 1.5560

8 = 75°:

1 1.7530 + 1 0.0460

2 4.2211 0.5707

3 6.6413 0.7429

4 9.0523 0.8582

5 11.4593 0.9457
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Table 3.2—-Convergence of eigenfunction expansions

(loading case (a)).

 

 

 

 

 

 

 

8 = 60°

77 3 No. of Paired

Specified Function Eigenvalues

¢ Og¢=l.0+A¢2+B¢3 N=5

0° 1.0000 0.9033

10° 0.8418 0.7914

20° 0.4716 0.4597

30° 0.0458 0.0681

40° -0.2791 -0.2654

50° -0.3465 -0.3412

60° 0 -2x10'2

No. of Paired

Specified Function Eigenvalues

¢ 13¢ = 0 N = 5

0° 0 0

10° 4><10‘2

20° 5X10"2

30° 2><10‘2

40° -1x10"3

50° -1><10’2

60° 0

 

483 - 3(282 - 1) sin 28 - 68 cos 28

284 sin 28 + 483 cos 28 - 382 sin 28 + 283

B _ 282 - 28 sin 28 + l - cos 28

-84 sin 28 - 283 cos 28 + 1.582 sin 28 - 83
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Table 3.3--Convergence of eigenfunction expansions

(loading case (b))

 

 

 

 

 

 

 

 

8=60°

No. of Paired

Specified Function Eigenvalues

4’ °g¢=A N=5

0° 1.0000 1.1230

10° 1.1033

20° 1.0478

30° 0.9415

40° 0.9686

50° 0.9953

60° 1.1621

No. of Paired

Specified Function Eigenvalues

9 13¢ = 8(43 - 82¢) N = 5

0° 0 0

10° 0.7627 0.7125

20° 1.3947 1.2788

30° 1.7652 1.6995

40° 1.7434 1.7588

50° 1.1986 1.2062

60° 0 0

B = - 8A sin 28
 

(284 + 282 + 3) - 68 sin 28 + (482 - 3) cos 28

A = 1.0
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10° 20° 3 ° 40°

-0.50

0 2 3
O =RR 1.0 + A9 + B¢>

0
-1. 1b =

0 TR¢ 0 
Fig. 3.2. Cone loading case (a).
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Fig. 3.3. Cone loading case (b).
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APPENDICES



APPENDIX A

DEVELOPMENT OF THE ASYMPTOTIC EIGENVALUES

OF THE WEDGE PROBLEM

Consider the transcendental equation for the even

eigenvalues, Eq. (2.24), in the form:

anB Sln (28) + 28 cos (anB) s1n [(dn'2)8]= o (A.l)

For an complex, seek solutions in the first quadrant

of the complex plane in the form:

an = xn + iyn (A.2)

Substituting this expression foran into Eq. (A.l)

 

yields:

(xn + iyn)B sin (28) + 28 cos [(xn + iyn)8] sin [ (xn - 2)

+ iyn)8]= O (A.3)

Making use of the elementary trigonometric relations:

sin (a i b) = sin a cos b t cos a sin b

cos (a i b) = cos a cos b 1 sin a sin b

sin (iy) = i sinh y

cos (iY) = cosh y

yields the following coupled algebraic equations for the

real and imaginary parts of an:
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xn8 sin (28) + 28<cos (xn8) sin [(xn - 2)8]cosh2 (ynB)

. . 2 _
+ Sin (xn8) cos [(xn - 2)8] Sinh (yn8)} — 0 (A.4)

and,

ynB Sln (28) + 28 cos[2(xn - 1)B] Slnh (ynB) cosh (ynB) = 0

(A.5)

It is desired to develop asymptotic solutions for

these equations: i.e., solutions which will be accurate for

the higher eigenvalues. Substituting the exponential ex-

pressions for the hyperbolic functions and neglecting higher

order terms, Eqs. (A.4) and (A.5) reduce to:

¢

$1 sin 28 + Be 2 sin ¢l = 0 (A.6)

and

C"2
$2 sin 28 + Be cos ¢1 = 0 (A.7)

where

$2 = 2yn8 .

These, then are the equations which hold forlarge ¢1 and ¢2.

Since solutions are being sought in the first quad-

rant, xn and yn are restricted to be positive numbers.

However, for Eqs. (A.6) and (A.7) to be satisfied, sin $1

and cos ¢1 must be negative.

For Eq. (A.7) to be satisfied, cos $1 must be a

¢

small negative number since e 2 >> ¢2. Thus, take

¢l = (4n - l) g - En , n = 1,2,3,... (A.8)
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where an is a small correction term to be determined shortly.

From Eq. (A.6)

 

- ¢
_ _ Sln 28 1

¢2 - ’6” [ 8 Sin cpl] o (A.9)

But from Eq. (A.8), sin $12 —1 and for an approximation of

¢2, use only the first term of ¢1 in Eq. (A.8); i.e., take

<b2 = £n[s—in7§§ (4n - 1) g] , n = 1,2,3,... (21.10)

Thus, ¢l and $2 become:

(bl = (4n - 1) 121- en (A.11)

(b — in Si“ 28 (4n - 1) 1’1 (A 12)
2 ‘ —E— 2 °

for n = 1,2,3,...

Now substitute Eqs. (A.11) and (A.12) into Eqs. (A.6)

and (A.7) to solve for en. Equation (A.6) is satisfied ap-

proximately and Eq. (A.7) yields, for small En

. sin 28 n n _

Sln 28<fn [———§—— (4n - 1) 7] - (4n - 1) 5 an} — 0 .

(A.13)

Thus, for sin 28 75 0,

' 28 N

in iiEg—— (4n - l) -]

E = [
2 I n = 1,2,3,...

(A014)

 

n n
(4n - 1)?

Therefore, the asymptotic eigenvalues in the right

half plane for the even problem are:
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Kn sin 28 (4n _ l) 1

Xn = 12’1- (4n - 1) 721+ 28 - [ 1T 2] (A.15)

(4n - l) -2'

_ 1 sin 28 n

Yn ‘ jg £n[-_—E—— (4n - l) E] (A.16)

where age) = xn + iyn (even solution in right half plane).

A similar development for the decaying solution re-

quires seeking solutions to Eq. (2.24) in the left half

plane. Taking the solution for an in the form

an = -un - ivn , (A.17)

the asymptotic values in the left half plane for the even

problem can be determined in a manner very consistent with

the previous deve10pment as:

1 fl Kn [sin 28 (4n _ 1) %

 u =‘—— (4n - l) - - 28 - (A.18)

n 23 2 (4n - 1) 321

_ 1 sin 28 _ n
Vn - IB- £77. [T (4n 1) 7] (A.19)

where use) = -un — ivn . (even solution in left half plane)

For the odd problem, working with the odd transcen-

dental equation, Eq. (2.23), the asymptotic values become:

in sin 28 (4n _ 3) n

@n - 3) 11+ 28 - [ E 7 (A.20)

2 (4n - 3)

 

'
o u

M
P

m

a
n
:

qn = %g fin [$32—8- (4n - 3) 2’1] (A.21)
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(o)
where an = pn + iqn (odd solution in right half plane).

The decaying solution is:

in [§£E_Z§.(4n - 3) %]

 

l n B
r = —— (4n - 3) - 28 - .- (A.22)

n 8 7 (4n-”12‘-

_ 1 sin 28 n
sn - IE in [———§—— (4n - 3) 2] (A.23)

where ago) = -rn - isn (odd solution in left half plane).

These values represent the approximate solutions to

the appropriate transcendental equations for the higher

eigenvalues; however, they are also quite accurate for the

lower eigenvalues as may be observed using Tables (2.1)-

(2.3).

 



APPENDIX B

ORTHOGONALITY CONDITIONS FOR THE EIGEN-

FUNCTIONS OF THE WEDGE PROBLEM

Using the method of generalized orthogonality by

P. F. Papkovich [17], the defining equation for the mth

eigenfunction of the wedge problem is the fourth order

differential equation:

2 ' 2 2 . _

m (8) + am(am - 2) fm(0) - 0 .

2
+ (am - 2) ]f

IV

fm (8) + [on m

(3.1)

th
Similarly, the n eigenfunction is given by:

2

£37m) + [1131+ (an - 2)2]f;1'(e) + 0131mm - 2) fnm) = o .

(B.2)

Multiply Eq. (B.l) by an(an - 2)fn' Eq. (B.2) by

am(am - 2)fm, subtracting the equations, and integrating

over the boundary yields:

8 (1(OL - 2)f fIV - 01(01 - 2)f fIV + 01(0) - 2) a2
-B m m m n n n n m m m n

2 " 2 2 IL“

+ (an — 2) ]fmfn — an(an - 246m + (am — 2) ]fnfm

+ [dm(dm - 2)a:(an - 2)2 - dn(dn - 2)ai(dm - 2)2]fmfn d6 = 0 .

(B.3)
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The boundary conditions for the particular wedge

problem formulated in the earlier chapters require fm(i8),

fg(18), fn(i8), f;(18) to vanish. Applying these condi-

tions after integrating by parts twice for the first two

terms and once for the next two, Eq. (B.3) reduces to

8 II II 2

J; |§m<am - 2) - dn(an - 2)]fm fn + -am(dm - 2) an

8

2 2 2 ' '
+ (an 2) )+ dn(an - 2)(am + (am - 2) )]fmfn

- dm(am-2)an(dn-2)[am(dm - 2) - dn(an - 2)]fmfn d6 = 0

(3.4)

II

Expanding and simplifying the coefficient of fmfn

and factoring out[a (a - 2) - a (a - 2)] from each term
. m m n n

yields:

8

[dm(am - 2) - dn(dn - 2)]J:B[hm(dm - 2)ocn(o:n - 2)fmfn

I :4 II II ’

+ 4 fmfn - fm fn d9 = 0 . (B.5)

Thus, the orthogonality condition is:

B U U I | I

.jLB [am(am - 2)an(an - 2)fmfn + 4 fmfn - fm fn ] d6 = 0,

(m # n) . (B.6)



APPENDIX C

DEVELOPMENT OF THE LEGENDRE FUNCTIONS USED

IN THE CONE PROBLEM

Solving the cone problem by the method outlined in

Chapter III requires solving the equations

V2(Bz) = o (c.1)

V2(Bpele) = o (c.2)

where B2 = Bz(R,¢) and BD = Bp(R,¢).

Assume a solution of the form

-an-l

13.2 = R fn(¢) (C.3)

and substitute into Eq. (c.1). Then

2 .0Ln-l
V R fn(¢) = 0 (C.4)

where V2 is the Laplace operator in spherical coordinates.

This leads to the following equation for fn:

2 I l l

(1 - x )fn (x) - 2x fn(x) + an(dn + 1)fn(x) - 0 (C.5)

where x = cos ¢. This is Legendre's equation.

Change variables [16] by letting t = %(1 - x). Eq.

(C.5) becomes

62

 



63

t(l - t)f;'(t) + (1 - 2t)f;(t) + an(an + 1)fn(t) = o

(C.6)

which has a solution

 f = (f ) = F -d , a + 1:1; 1 - x (C.7)
n n 1 n n 2

where F(a,8;y;z) is the hypergeometric series defined by

(a)k(8)k 2k

F(G,B;Y;z) = (C.8)

kEO Elmk

(A)k 1(1 + l)(l + 2)...(l + k — 1) , k 2 l (C.9)

(A) = l . (C.10)

A second independent solution is generated [16] by

letting t = x-2 in Eq. (C.5). This leads to an equation

whose solution is

 

/? P(a + l) a a

f = (f ) = 3 n a +1 F‘EE + 1' 22 + 2‘“ + 27;?
n 1“2 T‘an+§)(2x) n n x

(c.11)

The solutions to Eq. (C.5) are called the Legendre

functions of degree an of the first and second kind, denoted

by Pa (x) and Qa (x), respectively; i.e.,

 

 

n n

pa (x) = F -an,an + 1;1;l—§—§ , Ix - 1| < 2 (c.12)

n

/F F(a + ]J a a

_ n n 1. 2.1_
Qan(X) ' 3 an+l F‘E‘ + 1' 2"+ 2'an + 2'x2 '

r(an + 7)(2x)

le > 1 . (c.13)
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The general solution for Eq. (C.5) can then be written as

fn = APa (x) + 30a (x) . (C.14)

n n

The cone problem outlined in Chapter III requires

B = 0 for a finite solution along the cone axis. The a1-

1owab1e solution for fn becomes

fn = APan(x) . (C.15)

Thus, take

B = AR n P (x) . (C.16)

Similarly, for the solution of Bp, assume

-an-l

Bp = R gn(¢) (C.17)

and substitute into Eq. (c.2). This leads to the follow-

ing equation for gn:

l

l _ x2] n
(1 - X2)g;'(x) 2xgg<x) + [an(an + 1) -

where x = cos ¢. This is Legendre's associated equation

which has as its solution

gn(x) = C P:n(x) + D Q;n(X) (C.19)

where
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a (a + l) _

P1 (x) = - n “2 <1 - X2)F('a + 1.a + 2:2;l X .
an n n 2

ll - x] < 2 (c.20)

1
Q1 (x) = -/?P(dn + 2) (x2 _ 1)? F an + 3 an

a a +1 _ a +2 2' 2'2—

n 2 n I‘(d + 2)x n

n 2

3 l
+ 1;an + §;-7 , lxl > 1 . (c.21)

x

I

Thus for the cone problem, D = 0 and the allowable

solution for gn become

' 1
9n = C Pa (x) (C.22)

n

which can be written as

dP

oLn

9n = C d¢ (C.23)

since

%_dPa (x)

l _ _ 2 n

Pan — (l X ) "'- 3X (C024)

Thus,vtake

-an-1 den

B0 = CR -—d$—- . ((2.25)

The components of B can now be determined in spheri-

cal coordinates using the transformation equations.


