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ABSTRACT

SOME ANALOGS OF THE PICONE IDENTITY

APPLIED TO FOURTH ORDER DIFFERENTIAL EQUATIONS

By

Coreen L. Mett

In this paper we obtain Sturmian-type theorems and lower

bounds for eigenvalues of some fourth order problems. Our

results are attained by using some generalizations of the classical

Picone identity, which are themselves derived from a generalized

technique of Picard.
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INTRODUCTION

Sturm-type comparison theorems and lower bounds for eigen-

values will be considered for various fourth order linear ordinary

differential equations. The results are derived from certain

extensions of Picone's [26] classical identity. In each case our

studies are motivated by well known results for similar problems

in connection with second order linear ordinary differential equa-

tions.

0.1 Sturmian Theorems

The classical Sturm-Picone comparison theorem (see [15],

pp. 225-226) asserts that if u is a nontrivial solution to the

boundary value problem

(a(x)u')' + c(x)u = 0 in (O,L)

U(0) = U(L) = 0

and if v is a solution of the equation

(A(x)v')' + C(x)v = O in (O,L)

where the coefficients satisfy the relationship

a2A>O,Czc in (0.!)



then v must have a zero in (0,L) unless u and v are linearly

dependent. This fact follows readily from the Picone identity

([15], p. 226)

u2v' L L 2 SAv'z' uv' 2

(0-1) (auu' ' A_—;-)IO = £[u(au')' - u v + A(u' - f;-)

, 2

+ (a - A)(u) ‘de.

For the fourth order equations

(0.2) (a(x)u")" - c(x)u = 0

(O 3) (A(x)v")" - C(x)v = O

the situation is somewhat more difficult as is evidenced by the

following theorem of Leighton and Nehari ([22], p. 327).

Theorem. If v is a solution of

(0.3) (A(x)v")" - C(x)v = 0

with A > O and C > 0, and if the values Of v, v', v", and

(Av")' are nonnegative but not all zero at x = 0, then the func-

tions v(x), v'(x), v"(x), and (A(x)v"(x))' are all positive for

x > 0.

Hence every equation of the type (0.3) has at least one

solution without zeros. Therefore, if u is a nontrivial solution

of

(au")" - cu = O in (O,L)

U(0) = U'(0) = U(L) = U'(L).



then it cannot be asserted that every solution v of (0.3) has

a zero in [0,L].

As a consequence, fourth order equations are studied either

in the context of oscillatory behavior, as was done by Leighton and

Nehari [22], or by considering classes of solutions which exclude

those of the type occurring in the theorem, as was done by Diaz

and Dunninger [5, 6], Dunninger [10], Kreith [17, 18, 20], Swanson

[31], and Wong [35]. We shall follow the latter course.

In Chapter II we obtain Sturmian-type results for the fourth

order equations (0.2) and (0.3) under the assumption that solutions

v of (0.3) are positive at a point and satisfy v" s 0 in the

interval (0,L). In fact, our results will be established for

certain systems of second order equations which contain (0.2) and

(0.3) as special cases.

Some oscillation results are also presented which compare

the oscillatory behavior of (0.2) and a related second order equation.

Aside from resolving the above complication, (namely, the

formulation of a fourth order Sturmian result) there has been dif-

ficulty in obtaining a natural analog of the second order Picone

identity (0.1) which can be used to treat fourth order equations.

One such identity was presented by Cimmino in 1930 [3], and later

by Leighton [21] and Kreith [20], another by Kreith in 1969 [18],

and a third by Dunninger in 1971 [10]. It is of interest that each

of these identities as well as some new identities, can be derived

from a more general identity which results from a technique due to

Picard [25]. We shall carry this out in Chapter I.



0.2 Lower Bounds for Eigenvalues

If u is an eigenfunction correSponding to the lowest

eigenvalue A1 of the problem

Lu 2 (a(x)u'>' + c<x>u = -xp(x)u a > 0, o > 0 i“ (M)

U(0) = U(L) = 0.

then it is an immediate consequence of Picone's identity (0.1) that

Al 2 inf %%

(0,L)

where the infimum is taken over functions v > O in [0,L].

Lower bounds, of this nature, for eigenvalues were first established

by Barta [2] and later considered by Duffin [8], Dunninger [10],

Hersch [12, 13], Hersch and Payne [14], Ogawa and Protter [23],

Protter [27], and Protter and Weinberger [30].

In Chapter III we establish analogous results for some

fourth order eigenvalue problems.

Further lower bounds are established by comparing the lowest

eigenvalue of fourth order problems with the lowest eigenvalues of

related second order problems. These results are motivated by some

recent works of Protter [28] and Hersch [13].



CHAPTER I

MAXIMUM PRINCIPLES AND BASIC IDENTITIES

I . 1 Maximum Principles

In this paper we shall make use of some well known maximum

principles (see e.g. [29], pp. 6-9) which for our purposes may be

stated as follows.

Let u be a classical solution of the differential in-

equality

(1.1) I u" + c(x)u 2 0

in a bounded interval (0,L). Let c(x) E C[O,L].

Principle I. Assume c(x) S 0 in (O,L). If u attains

a nonnegative maximum value M fit an interior point of (0,L),

then u E M.

Principle II. Assume c(x) s 0 in (0,L). If u (non-

constant) has one-sided derivatives at x = 0 and x = L and if

u $.M. in (0,L) where M 2 0, then u'(0) < 0 if u(0) =‘M,

whereas u'(L) > 0 if u(L) = M.

Principle III. Assume there exists a classical solution

g(x) of the differential inequality



g" + c(x)g s 0

in (O,L) such that g(x) > 0 in [0,L]. Then the function u/g

satisfies Principles I and II.

Remark. Analogous results hold for solutions of

u" + c(x)u S O

in (0,L), yielding an associated minimum principle. These

principles are obtained by applying the above results to the func-

tion (-u).



1.2 Identities

Various integral identities have been employed by several

authors ([3], [10], [18], [20], [21]) to obtain Sturmian-type

comparison theorems for fourth order differential equations. We

shall now indicate how these identities, as well as a new identity,

may be derived from a single integral identity.

The method we use is a generalization of a technique used

by Picard ([25], p. 151) in connection with certain problems for

second order equations. For completeness we show that Picard's

method readily yields Picone's identity

.12 V") + (u' ~ u {-Vde.
V

u L

(1.2) (uu' - u2 '37-)‘3 = £[ (uu"

where for simplicity we have let a A E 1 in (0.1).

To Green's identity

L
I 2

uu'I0 = €[uu" +-(u') ]dx

we add the following identity for an arbitrary sufficiently smooth

function P

L

Pu2]g = 3(2Puu' +'P'u2)dx

and complete squares to obtain

,24,‘,, , 2 ,22
(uu + Pu )IO = £[uu + (u + Pu) + (P - P )u ]dx .

Upon setting

which incidentally is a solution to the Riccati-type equation



we obtain the Picone identity (1.2).

In order to derive the fourth order identities, we begin

with the Green's identity

x, L (4) 2
(1.3) (uu - u'u")\O = g[uu - (11") ]dx

and add the obvious identity

2 0 2 2 0 {I _ L 2 0 0 2 0

(1.4) (Plu + P2(u) + P3uu ){0 — t[;[(P1u) + (P2(u ) )

+ (2P3uu')']dx

for arbitrary sufficiently smooth functions P1, P2, and P3. We

thus obtain

11/ 2 2 L

[uu - u'u" + Plu + P2(u') + 2P3uu']\0

(1.5) t

= £[uu(4) - (u")2 +Piu2 + 2P1uu' + P2'(u')2 + ZPZU'U"

2

+ 2P5uu' + 2P3(u') + 2P3uu"]dx .

Guided by the form of the Picone identity (1.2) for second order

equations we attempt to choose the functions P1, P2, and P3 so

that the integrand in (1.5) will be analogous in form to that of

(1.2).

A. Cimmino's identity.

Recalling that the Wronskian W(a1,az,...,an) of the n

functions a1,az,...,an is defined as



  

0’1 0’2 an

I I !

a1 02 CYr)

W(al,az,--..On) = : E , “(01) = a1,

(n-1) (n-1) (n-1)

(1’1 (1'2 . . . an

we observe that the integral in identity (1.2) can be written in

the form

L n u2 " WSv,u) 2

g {(uu - Gf'v ) + [ W(v) ] ]dx .

It is then natural to seek a fourth order identity with an integral

of the form

I 2

(1.6) I) {(uu(4) - ”— vm) - [wax
v

where u is a nontrivial solution of

(1.7) u“) - c(x)u = O in (0,1,),

and y and v are linearly independent solutions of the boundary

value problem

(1.8) v(4) - C(x)v = 0 in (O,L)

(L% \MD=V@)=WW)=WQJ=0-

Observing that

w(UTY9V) = U y V = u
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we find, upon defining

  

y V ylvl

O: ytvt 3 I”: yuvn

that

W(u,y,v) = uw - u'a"+ u"o

and

W(y,v) = a .

The integral (1.6) can thus be written

 

(4) .

Zvv )-(u"-cg,—U'+%u)2]dx.

L

(1.10) £[(uu(4) - u

By rearranging terms, the right hand side of (1.5) can be

written as

. _ 2 , 2 . 2
u P3u) + (u ) (2P3 + P2 + P2)

2 2
I I I

+ 2uu (P2P3 + P1 + P3) + u (P1 + P3)]dx,

and by comparing (1.11) with (1.10), we are led to choose

I

P -.Q_

U

and

P 4’1.

O
3

It follows (see e.g. [21]) from (1.7), (1-3). (1-9), and the

definitions of o and m that

(1.12) a" - 2w
0 in (0 .4.)
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2 2 II II .

(1.13) (1) +00 +Ou> 'wo =0 m (0.0-

In view of (1.12) we find that

2P +P'+P2-0

3 2 2“ '

Furthermore, the choice

implies that

'=

P2P3+P1+P3 O ,

and then (1.13) implies

 
 

2 (4)
2 ow" - w'o"+ w v

I _ r j- = = -

P1 +P3 - 2 -C v

0

With the above choices of P1, P2, and P3 identity (1.5) reduces

to

[2(011/1/ _ LOU.) _ fl (out! _ O'U') _ B (LOU. _ uwl)]\{1

o o o 0

(1.14)

4. (4) .
= £[(UU(4) _ U2 L.) _ (UH _ L U. + Q u)2]dx

V o O

which is the desired identity.

This identity was first introduced by Cimmino in 1930 [3],

and was recently found by Leighton [21] and Kreith [20].

B. Kreith's identity.

Upon setting P3 = O, the right hand side of (1.5) reduces

to
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L

(1.15) [[uu(4) - (u" - qu')2 + (u')2(P2' + 12:) + 29

15

Choosing

1uu' + Piu2]dx.

  

v
P2 - v'

the expression (1.15) becomes

L n III P V'

(4) n I L2 L I I 2

(1.16) £[uu - (u -u v') +v' (u +—;nr-U)

2 v' 2
I _P __/_I; o

1+ (P1 1 v )u ]dx

Hence, by the choice

_ - v_”'

Pl _ v

(1.16) becomes

L In m u 2 (4)(A) uv 2 v uv 2 u v
£[uu - (u" - v' ) +-;T'(u' - v ) - v ]dx .

With the above choices of P1 and P2 the identity (1.5) now

yields Kreith's identity [18]

e w - m -5; W - Wm:

(1.17)

 

{I (4) " III p

- (4) 2 V ‘x_ 2 2__ uv 2
- £[(uu - u v ) - (u" - u' v') +Iv' (u' - -;-) ]dx.

C. Dunninger's identity.

Upon setting P2 = 0, the right hand side of (1.5) reduces

to

L

(1.18) £[uu(4) - (u" - P3u)2 +2P3(u')2 +2(P1 + P$)uu'

2 2
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Choosing

the expression (1.18) becomes

I I IIIL II I II

gpiuc‘) - (u" - i)2 + 2 1,—-[u' + l- (P + :— - v ‘2, )u]2
 

 

v v 2v" 1 v

(1.19)

2. 111?- ..v_ E’.’ ___V'V"2
+U[PI+(V) 'ZVII(P1+V ' v2)]}dx.

Hence, by the choice

P = _ (v'v" + vvé)

l 2

v

(1.19) becomes

{1 II I (4)

(4) u __uv2 .Y— ._uv2_2V
]Euu -( v>+2 ( v) ,]d

With the above choices of P and P3, the identity (1.5) now yields

1

Dunninger's identity [10]

['3 (vum " LIV/fl) 'I' 3:: [3' (VU' - uv')] - $- (VUH _ UV")]\3

(1.20)

(I 2 (4) II II I

= g[(uu(4) - u Z ) - (u" - 2%")2 + 2 %—’(u' - u %—)2]dx.
 

D. A new identity.

If we now set P1 = P3 = 0 the identity (1.5) reduces to

L

(1.21) [uu,” - [1.11" + P2(U')2]‘3 = £[UU(4) _ (u" _ PZU')2

+ (P: + PZ') (u')2]dx .

Upon choosing



we arrive at the following new identity

11/ V'SU'ZZ L L (4) V" 2

(1.22) [uu - u'u" +' v ]\0 = £[uu + ;—'(u')

" IIZ

-(u -3%)]dx.

Remark: Although the identities, as they have been pre-

sented, can only be applied to equations of the form

u(a)
ll

0- c(x)u

v(4) - C(x)v ll

0

they may easily be extended to cover the more general equations

(1.23) (a(x)u")" + 2(b(x)u')' - c(x)u ll

0

(1.24) (A(X)V")" + 2(B(X)V')' - C(X)V

II

C

We shall illustrate this point later on.

In Chapter II we will show how Dunninger's identity (1.20)

can be extended to an identity which is valid for systems of second

order equations which contain the equations (1.23) and (1.24) as a

special case. Moreover, we shall obtain Sturmian-type comparison

theorems for such systems.

The identity (1.22) (actually a slight generalization of it)

will be used subsequently in connection with various oscillation

problems (Chapter II) and eigenvalue problems (Chapter III).



CHAPTER II

COMPARISON AND OSCILLAIION

II.1 Sturm-type Comparison Theorems

In this section and the succeeding sections all solutions

are assumed to be classical, and any coefficients appearing are

assumed sufficiently differentiable. No further mention of these

facts will be made.

Consider the fourth order equations

(2.1) (a(x)u")" + 2(b(x)u')' - E(x)u = o in (0,2)

(2.2) (A(x)v")" + 2(B(x)v')' - C(x)v = o in (0,2).

Upon setting

e = i f =‘%

b = g- d = %

c=-(E+%'2'+b") h=-(C+%2-+B"),

Whyburn showed in 1930 [33] that (2.1) and (2.2) were equivalent

to the following systems

u" +'bu = ew

(2.3) in (0.L)

w" + bw = -cu

15
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v" + dv fz

(2.4) in (0.4.) .

-hvz" + dz

respectively, when a and A, and hence e and f, never vanish

in (O,L).

In what follows we shall consider the systems (2.3) and

(2.4) under somewhat less restrictive hypotheses. Namely, we do

not require e and f to have fixed signs. Consequently, the

systems (2.3) and (2.4) will be more general than the equations

(2.1) and (2.2)

To compare solutions of (2.3) and (2.4) we derive an identity

which is closely related to Dunninger's identity (1.20). We could

again use Picard's technique. However, proceeding more directly,

and being motivated by the form of the left hand side of (1.20)

we consider the following expression

{5-(vw' - uz') + f [$‘(vu' - uv')] - §—-(vw - uz)]\3

(2.5)

= 2_ u - I E, g_ t _ c _ 2;, _ u
£{v (vw uz ) + v [v (vu uv )3 v (vw uz)} dx.

Upon performing the differentiation under the integral, rearranging

terms, and making use of (2.3) and (2.4) the right hand side of

(2.5) becomes

L I II II

t£[uw" - u"w + ‘2-5 (u' - u 2")2 - u2 E—+ 2uu" _z_ - u2 u]dx
v v v v v2

=L[(h-)2+2-z-(u'-u!;)2+2(d-b)2-z-- w2+2 B-S c u v v u v e an v

u222

- f 2 ]dx.
 

V
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Then completing squares on the last three terms and substituting

back into (2.5) we obtain the following formal identity for solu-

tion pairs (u,w) and (v,z) of (2.3) and (2.4), respectively

[3 (vw' - uz') + f; [5 (vu' - W'H ' 5" (W ' uznfi;

(2.6) L

= g{(h-c)u2 - e(w - $592 +22
V

|
N

(u' - ”—jl’if + 2(d-b)u2

+ (e-f) (:—§)2]dx.

Theorem 2.1. Suppose there exists a function w such that

u is a nontrivial solution of (2.3), and suppose there exists a

function 2 such that v satisfies system (2.4) and v > 0 at

some point in (0,L). If

(1) f 2 e 2 0, d 2 b in (O,L),

and either

L 2

(2) £(C-h)u dx 2 0

(3) Z‘< 0 in (0:L)

(4) u é kv, k a constant

or

4' 2
(5) J; (c-h)u dx > o

(6) 250 in (0,2,)

then, under any boundary conditions on u, v, w, and 2 such that

the left hand side of identity (2.6) is nonnegative, v must have

a zero at some point in [0,L].
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Egggf. Suppose to the contrary that v has no zero in

[0,L]. Since v > 0 at some point in (0,L), we have v > O in

[0,L], and the identity (2.6) is valid. In view of the hypotheses

(l), (2), and (3) and the fact that the left side of (2.6) is non-

negative, we readily find that

L .
_z_ ._uv 2

(2.7) osgvm --v)dx.

On the other hand hypothesis (3) and the fact that v > 0 in

[0.1.] imply

L .

(2.8) gfim' -u—::-)2dxs0.

Inequalities (2.7) and (2.8) together imply that

52-...1. v-2"_'=(v) V(u v) 0

which contradicts hypothesis (4).

In a shmilar manner hypotheses (5) and (6) lead to the

contradiction

" 2
o s £(h-C)u dx < o .

Hence, in either case, v must vanish at some point in [0,L].

Remark. Theorem 2.1 holds for a variety of general

boundary conditions. 0f importance, from a physical point of view,

we cite the following boundary conditions

(I) U(0) = U'(0) = ML) " U'(L) 0

(II) u(0) 3 "(0) = 0(0 = WU.) " 0
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which correspond to clamped ends and supported ends respectively

in the boundary value problem for the vibrating rod (see [4], pp.

295-296).

Remark. Under boundary conditions (I) or (II) the con-

clusion of Theorem 2.1 is valid without hypothesis (4). Indeed,

if v has no zero in [0,;3, then v > 0 in [0,L]. But

u(0) = u(L) = 0, and hence u and v must be linearly independent.

Our next results show that under some additional hypotheses,

namely that the coefficient d is nonpositive, when the boundary

conditions (I) or (II) hold, the conclusion of Theorem 2.1 can be

sharpened to assert that v must have a zero in the open interval

(0.L)o

Theorem 2.2. Suppose there exists a function w such that

u is a nontrivial solution of (2.3), and suppose there exists a

function 2 such that v satisfies system (2.4) and v > 0 at

some point in (0,L). If

(1) f2e20,02d2b in (0,1,)

and either

L 2
(2) £(c-h)u dx 2 o

(3) 2<0 in (0.0

01'

L 2
(4) £(c-h)u dx > o

(5) z 5 0 in (09‘):

and if u satisfies boundary condition



(I) U(0) = U'(0) = U(L) = U'(L) = 0.

then v must vanish in (0,L).

Proof. Suppose v does not vanish in (0,L). Then v > 0

in (0,L), and by continuity v 2 O in [0,L].

Consequently the identity (2.6) is valid on the interval

(0.8) where 0 < a < B < L.

[u:l_ (W. _ uz!) + 3 [% (VU' - uv')] " :17" (W ' 112)]‘2

(2.9)

B 2 22 Z a UV'Z

TENN)" -e<w-u;> +23“ 'T’

+ 2(d-b)u2 3+ (e-f)(:—z—)2}dx.

To establish that (2.6) is valid in [0,L] we consider the

various possible cases depending on the behavior of v at the

boundary points.

Case I. v(0) # 0 and v(L) # 0.

In this case identity (2.6) is obviously valid in [0,L],

and moreover the boundary term is zero. Hence the conclusion

follows from Theorem 2.1.

Case II. v(0) = 0 or v(L) = 0.

Suppose v(0) = 0 and v(L) # 0. From the first equation

of system (2.4) and the hypotheses (l) and (3), or (1) and (5), it

follows that

v" + dv = fz S 0 .
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Since d s 0, Principle II implies v'(0) > 0. Hence an applica-

tion of L'Hopital's rule yields

 

I

F 11m+3=11m+37=0

x~0 v x~0 v

and consequently

lim L1-(W' -u2')=0
(2.10)$ x—.o+"

z u u u

lfin '— C— (vu' - uv')] = lim -" lim (zu' -'- zv') = 0

X-°0+v V
X“O+v 3040+ V

u' __ l U n

lim+--(vw-uz)—1im+(uw--uz)=0.

\X-‘O V x-oo V

Another application of L'Hopital's rule (if necessary)

readily verifies that the integrand in (2.9) may be extended to

a continuous function in the interval [0,L]. Therefore, it now

follows that (2.9) is valid in [0,L], and moreover the boundary

term is zero. Since u(L) = 0 but v(L) * 0, u and v are

linearly independent. Proceeding as in Theorem 2.1 we infer that

v must have a zero in (0,L). A similar argument is valid in the

case v(0) # 0 and v(L) = 0.

Case III. v(0) = v(L) = 0.

By Principle II, v'(0) # 0 and v'(L) f 0. Since

u'(0) = u'(L) = 0, u and v are linearly independent. The rest

of the proof follows as in Case II.

Corollary. Suppose there exists a function w such that

u is a nontrivial solution of system (2.3), and suppose there

exists a function 2 such that v satisfies system (2.4) and

v > 0 at some point in (0,4). If



22

(1) f2e20,02d2b in (0,2,)

L 2
(2) £(c-h)u dx 2 o

(3') z < 0 at some point in (0,4,),

and if u satisfies boundary condition

(I) U(0) = u'(0) = U(L) = u'(L) = 0.

then either v or 2 must vanish at some point in (0,L).

Proof. If 2 does not vanish in (0,L), then by (3')

z < 0 in (0,L), and the result now follows from Theorem 2.2.

Remark. In Theorem 2.2 the hypothesis d s 0 was only

used, in conjunction with Principle II,to obtain that v' is non-

zero at an endpoint where v vanishes. However, this condition

on the coefficient d can be removed if we assume the existence

of a positive function Q satisfying the hypotheses of Principle

III. That is, we assume there exists a function g > 0 in [0,L]

such that

g"'+ dg s O in (0,2).

The following analysis shows that under this new hypothesis we can

again conclude that v' is nonzero at endpoints where v is zero.

Since 2 s 0, we have from the first equation in system

(2.4) that

v" + dv = £2 5 0.

Then if, for example, v(0) = 0, by Principle III
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(E)'\O > 0.

Hence

0 < L(0)V'(0) - V(0)C.'(0) = V'LO)

2 (0)
g (0) Q

Consequently v'(0) > 0, and we can proceed to prove Theorem 2.2

as before.

Theorem 2.3. Suppose there exists a function w such that

u is a nontrivial solution of (2.3), and suppose there exists a

function 2 such that v satisfies system (2.4) and v > 0 at

some point in (O,L). If

(1) f2e20,02d2b in (0,1,)

(2) 2(0) = 2(4.) = 0

and either

(3) hs0,haé0 in (0.4,)

L 2
(4) £(c-h)u dx 2 0

01'

(5) 1130 in (0,4,)

’v 2
(6) £(c-h)u dx > 0,

and if u and w satisfy the boundary condition

(11) u(0) = w(0) = ML) = WU.) = 0

then v must have a zero in (0,L).
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Proof. Suppose v does not vanish in (0,L). Then v > O

in (0,L), and v 2 0 in [0,L]. From the second equation in

system (2.4) together with hypothesis (3)

z" +'dz = -hv 2 0, i 0 in (0,L).

Then hypothesis (2) and Principle I imply z < 0 in (0,L).

Similarly under hypothesis (5)

z" + dz = -hv 2 0 in (0,L),

and hypothesis (2) and Principle I imply z S 0 in (0,L). The

remainder of the proof consists of showing that (2.9) is valid in

[0,4] from which the conclusion follows. The details are similar

to those shown in (2.10), and hence are omitted. Note that here

we only know that

lim 2 " lim 2';-
+ ' +

an v x~0 v

exists and is finite. Hypothesis (2) is used to show that the

boundary term vanishes.

Remark. In the special case when the coefficients c,b,

and e in (2.3) are identically equal to h,d, and f, respectively,

in (2.4), the above theorems are separation theorems for the system

(2.3). That is, under the given hypotheses, the zeros of linearly

independent solutions of (2.3) separate each other.

Remark. In the case f,e > 0 the systems (2.3) and (2.4)

can be transformed back to the fourth order equations (2.1) and

(2.2) by the substitutions indicated on page 15. Consequently,

our results contain some recent results of Dunninger [10].
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Remark. Theorem 2.1 is also valid for the systems of dif-

ferential inequalities

u" + bu = ew

in (0.!)

uw" + buw 5 -Cu

and

II 2

zv + dvz 2 £2

in (0%.)

vz" +-dvz 2 -hv

Furthermore, if z < O in Theorem 2.2, and if h i 0 in Theorem

2.3, these theorems also hold for the above systems of inequalities.

Remark. We can treat in the same manner nonlinear dif-

ferential inequalities by allowing coefficients c(x,u,w), b(x,u,w),

e(x,u,w), d(x,v,z), f(x,v,z), and h(x,v,z) as long as the co-

efficients are continuous in x for all values of the other vari-

ables.
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11.2 Oscillation Results

Under consideration now is the boundary value problem

(2.11) (a(x)u")" - c(x)u = 0 in (O,L)

(2-12) U(0) '-' U'(0) = ML) - U'OL) = 0

and the second order equation

(2.13) (A(x)v') ' + C(x)v '3 O in (0,1,) .

The identity (1.22)

L II

l”_ln _Y__'_ IZ‘L: (4) V__ l2
[uu u u + v (u ) ]‘0 £[uu + v (u )

I

- (u" - u' 5—)21dx

is readily generalized to the following identity.

In I _ t u _A_‘_’_'_ 02 L
[u(au ) au u +' v (u ) 1‘0

(2.14)

vI

[u(au")" + Sé%;1l(u')2 - A(u" - u' ;-)2 + (A-a)(u")2]dx.

0
5
—
1
6

In fact, in Picard's technique, identity (2.14) is derived merely

by adding the Green's identity

I." 2
[u(au ) - au'u"]‘0 = £[u(au")" - a(u") ]dx

to the identity

'ZL L '2' L 1'2 2P 'ndP201) ‘08£[P2(U ) ] dx-£[P2(u) + zoux

to obtain
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[u(au")' - au'u" + P2(u')2]\g

(2.15) 2

L 1P2 2 2 P2 2
= &[u(au")" - A(u" - K-'u') + (A-a)(u") + (Pi +-2r)(u') ]dx .

Identity (2.14) follows upon setting

Provided identity (2.14) is valid, the following observa-

tion can be made.

Remark. If u is a solution of (2.11), (2.12) and v

is a solution of (2.13) with A.) 0, and if

L 2
t[;(€=i'-t‘\)(tl") dx 2 0.

then identity (2.14) reduces to the inequality

5 2 2
(2.16) 0 5 gm. - C(u') ]dx .

Moreover, equality in (2.16) implies, from (2.14), that

{a II

0=£A(u"-uv 2 
v ) dx

Then since A > 0, we conclude that

I

u v

u"

V

 

'=v(‘"7'-> a o,

' kv for some constant k.and hence u

We shall use inequality (2.16) to relate conjugate points

of solutions to the second order equation (2.13) and solutions to

the fourth order equation (2.11).
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Definition. (cf. [34], p. 17). For the second order equa-

tion (2.13), the first coniugate point n1(x0) of x = x0 is the

smallest x1 > x0 such that there exists a nontrivial solution

v of (2.13) with

v(x(9 = v(x1) = 0 .

Definition. (cf. [34], p. 82). For the fourth order equa-

tion (2.11), the first conjugate point fi1(xo) of x = x0 is the

smallest 21 >xO such that there exists a nontrivial solution u

of (2.11) with

 

u(x0) = u'(x0) = u(§

Theorem 2.5. Let u be a nontrivial solution of (2.11)

such that h1(0) exists. Let v be a nontrivial solution of (2.13)

such that “1(0) exists. If

(1) A>0 in (0, ‘1‘)1(0))

01(0)

(2) (a-A)(u")2dx 2 0

01(0) 01(0)
2 2

(3) I cu dx 5 g C(u') dx

0

then

01(0) 2 01(0)-

Eroof. Suppose h1(0) < no. Then v does not vanish in

(0, h1(0)]. Although v(0) - 0, v'(0) # 0 since nontrivial solu-

tions of second order linear equations have simple zeros. Hence,
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+

as before, an application of L'HBpital's rule as x a 0 establishes

the validity of identity (2.14)-

Consequently hypotheses (l) and (2) together with

W) = u'(o> = umlw» = u'fixlmn = 0

imply inequality (2.16) holds for L = fi1(0). In view of hypothesis

I

(3) we have equality in (2.16), and hence u a kv. Therefore

v(0) = V(Ih(0)) = 0, which contradicts the assumption that

01(0) < n1(0). Hence fi1(0) 2 “1(0).

Inequality (2.16) can also be used to obtain a disconjugary

result.

Definition. (cf. [34], p. 17). The second order equation

(2.13) is said to be disconjugate in [0,L), 0 < L s m, if n1(0)

does not exist in [0,L).

Definition-(cf. [1]). The fourth order equation (2.11) is

said to be disconjugate in [0,L), 0 <.L s m, if fi1(0) does not

exist in [0,4).

Theorem 2.6. Suppose that

(l) A > 0 in (0,4,)

5 2
(2) £(a-A)(u") dx 2 0

2 5 2
(3) 3 cu dx 5 & C(u') dx

for all g E (0,L), where u is any solution of (2.11) in (0,L).

If (2.13) is disconjugate in [0,L), then (2.11) is also discon-

jugate in [0,L).
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Proof. Suppose, to the contrary, that (2.11) is not dis-

conjugate in [0,L). Then there exists a solution u of (2.11)

such that for some fi1(0) E (0,L)

(2.17) u<o> = u'<0> = u<01<0>> = u'<fil<0>) = 0.

Since any v which satisfies (2.13) is disconjugate in

[0,L), v does not vanish in (0, h1(0)]. Again, by an application

of L'Hfipital's rule at x = 0, identity (2.14) is valid in

[0, fi1(0)]. The boundary condition (2.17) and hypotheses (l) and

(2) imply inequality (2.16) holds in (0, fi1(0)). Moreover, in

view of hypothesis (3) for g = fi1(0) we have equality in (2.16),

and hence u' E kv. But then by (2.17)

vw)=wmwn=o

which contradicts the fact that v is disconjugate in [0,L).

Therefore (2.11) must be disconjugate in [0,L).



CHAPTER III

EIGENVALUE PROBLEMS

III.1 Barta-type Lower Bounds

In this section we shall be concerned with obtaining Barta-

type [2] lower bounds for the smallest eigenvalues of the follow-

ing prob lems

£1 - nu E (a(x)u")" - c(x)u - flu ' 0 in (0.1.)

(I)

U(0) = U'(0) ' U(L) = U'(t) = 0

in - Au 5 (a(x)u")" - C(X)u - Au - 0 in (0.L)

(II)

u(0) - n"(0) - U(L) ' U"(t) ' 0

(a(x)U")" + VU" ' 0 in (0.4)

(III)

MD) .. u'(0) um - u'((.) = 0.

Problem (I):

Let u be an eigenfunction which corresponds to the lowest

eigenvalue “1 of problem (I). If in addition u is positive in

(0,.L) , then the following Darts-type inequality is valid [9]

(3.1) a 2 inf ‘1.

1 (0.4.) "

31
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Here v is any positive function which satisfies the boundary

condition in (I).

The proof of (3.1) is quite simple. Indeed, from (I)

L

£1100: - 01106:: = 0.

and hence an integration by parts yields

L

l[u(£v - 01v)dx = 0.

But u > 0 in (0,L), and so (3.1) follows.

It is of interest to note that in general it is not known

whether the eigenfunction corresponding to “1 has a fixed sign

in (O,L) (see [9]). Hence, using a suitable modification of

Dunninger's identity (1.20), we will construct similar bounds with-

out this assumption.

If the Operator L is defined as

Lv E (A(x)v")" - C(x)v,

then we obtain the following formal identity which is a generaliza-

tion of (1.20) (see [10]).

{'3 [v(au") ' - u(Av") '] 4- 552 [3- (vu' - uv')]

1 L

(3.2) + 3— (Auv" - avu")}‘: - {[(A-a) (u")2 + (c-C)u2]dx

L II I II {a

+ t([2 51,!- (u' - 9%”)z - A(u" - 33-)23dx + g $- (vnm - uLv)dx .

Theorem 3.1. Suppose there exists a function v satisfying

(1) V > 0 I.“ (0 rt)
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(2) v"_<.0 in (0,4,).

If u is an eigenfunction corresponding to the lowest eigenvalue

“1 of (I), and if A 2 0 in (0,4,) and

L 2 2
(3) v[u] .=. t(Luv-mm") + (C-c)u ]dx 2 0,

then

Lv

(3.3) 0 2 inf - .

1 (0.1.) "

Proof. We first note that from hypotheses (l) and (2) and
 

Principle II, it follows that if v(0) - 0, then v'(0) * 0.

Similarly if v({,) 3 0, then v'(L) * 0. Consequently the validity

of identity (3.2) can be established following the procedure in

Theorem 2.2. In view of the above hypotheses (3.2) reduces to

L L II I II

1.2 2 . AL ._ 1.2 .. 2.2
gm, v)urdx V[u] [EU v (u “v) -A(u -uv)]dx20.

Hence,

Lv

sup (0 - —) 2 0

(0.1.) 1 V

from which inequality (3.3) follows.

Remark. The above theorem is a slight improvement of a

recent result of Dunninger [10]. Namely, we have eliminated the

hypothesis that v is positive at the boundary points.

Remark. In comparing inequalities (3.3) and (3.1) we note

that we have not only succeeded in removing the fixed sign condi-

tion, but we have also removed the condition that v must satisfy
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the boundary conditions in (I). However, we must pay for this by

adding the requirement that v" s 0, and consequently, it is easily

seen that the eigenfunction u is not an admissible function in

the inequality (3.3).

Remark. Although we are not able to obtain a complementary

upper bound, it should be pointed out that upper bounds are usually

much more readily found. For example, the Rayleigh quotient char-

acterization (see [11], p. 393) of the eigenvalue

L

{[Md'fi - «92de

fl = min ,

1 L

g (pde

 

where the mininunlis taken over all functions m satisfying the

boundary conditions in (I), readily yields good upper bounds for

01-

Problem (II):

Proceeding exactly as in Theorem 3.1 we can readily

establish an analogous result for the eigenvalue problem (II).

Theorem 3.2. Suppose there exists a function v satisfying

(1) v > 0 in (0,L)

(2) v"$0 in (0,4,),

and suppose A 2 0 in (0,L). If u is an eigenfunction correspond-

ing to the lowest eigenvalue A1 of problem (II), and if

(3) vtu] 2 o,
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then

(3.4) A1 2 inf 1:1.

(0.0

In the special case that c E 0 we can obtain the following

complementary upper bound.

IDQQEEE 3.3. Suppose there exists a function v satisfying

(1) v > 0 in (O,L)

(2) V(0) = V"(0) - m.) = V"(L) - 0

(3) V[v] S 0 .

If u is an eigenfunction corresponding to the lowest eigenvalue

A of problem (II) with c a 0 and a > 0, then

1

(3.5) A1 s sup :43.

(0.4.)

Proof. Interchanging the roles of u and v, a and A,

and c and C in identity (3.2) we obtain the identity

{‘3' [u(Av") ' - v(au") '] + a a: [if (uv' - vu')]

1'.

(3.6) “

4.

+ ‘3' (uLv - mock.

O
—
w
fi

We first must establish that (3.6) is valid. To this end it suffices

to show that u >'0 in (0,L). For then it readily follows from
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(II), Principle I, and the fact that A is positive that

1

u" s 0 in (0,L). Hence the validity of (3.6) is established in

the same way that (3.2) was established.

To obtain the positivity of u we first note that problem

(II) can be expressed as the composition of the two problems

u" '- w/a

(3.7) .

“(0) ‘ U(L) ' 0

w" .3 A10

(3.8)

w(0) - w(.{,) = 0.

Let G(x,§) denote the Green's function associated with the boundary

value problem

y" " f(X)

(3.9)

v(O) - v(t) = 0.

Then from (3.7) we have

L

. - 1%).(3.10) u(x> c<x.;) a(;) as.

and from (3.8) we have

L

(3.11) VG!) ' 1; AIG(x.§)U(§)d§ -

Inserting (3.11) into (3.10) we obtain

4 L A

M!) ‘10:!) 8:5) C(x.§)~G(§oTDd§]"('fl)d“ -
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Since G(x,§) > 0, it follows from Jentzsch's Theorem [16] that

u 2 0 in (0,L). By applying Principle I to (3.8) and then to

(3.7), it is easily seen that u >’0 in (0,L).

Returning to identity (3.6), in view of the hypotheses,

we obtain

L
Lv 2

0 S £(v - A1)V dx

from which (3.5) follows.

Remark. Since u > 0 in (0,L), it follows that u is

an admissible function in (3.5). Hence upon setting A a > 0,

C E c - 0 in (3.5), equality holds and therefore

A1 = inf { sup €23

(0.L)

where the infimum is taken over the class of functions v satisfy-

ing v > 0 in (0,L) and the boundary conditions

V(0) = V"(0) = V(L) = V"(L) = 0-

Moreover, since u" s 0 in (0,L), it follows that u

is also an admissible function in (3.4). Hence upon setting

A a a > 0, C E c ' 0 in (3.4), equality holds, and therefore

A1 = 3“? { inf fl}

(0.L)

where the supremum is taken over the class of functions v satisfy-

ing v > 0, v" s 0 in (0,L).

Problem (III):

For eigenvalue problem (III) we obtain the following result

from the identity (2.14) which is repeated here
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I c 2 L I I

[u(au")' _ au'u" + A v-i—Lvu1“: a. £[U(au")" + $13.)... (u')2

 

(3.13)

I I 2

- A(u" - 9+)?! + (A-a) (u") ]dx.

Theoremg3.4. Suppose there exists a function v satisfy-

ing

(1) v>0 in (0,4,)

(2) v has at most simple zeros at 0 and L,

and suppose A > 0 in (0,L). If u is an eigenfunction corre-

Sponding to the lowest eigenvalue Y1 of problem (III), and if

L 2
(3) £(a-A)(u") dx 2 0,

then

I I

(3.14) v1 2 inf - 9%1—

(0 .4.)

Proof. From identity (3.13), whose validity is established

in the usual fashion, it follows that

L (M) 2 4 (Av')' 2
0 s £[U(au")" 4' v (u') ]dx - {EL-yluu'flx + v (u') ]dx.

Applying Green's first identity (integration by parts) to the first

term on the right we have

L (Av')' , 2
0 S &[y1‘+ v ](u ) dx.

Hence

2 inf [- $51,794]Y

1 (o .1.)
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with equality only if u' 2 RV, as was shown in the remark on page

27. But since v > 0 in (0,L), u' a kv implies u' has a fixed

sign in (0,L) which contradicts the boundary conditions

u(0) ' u(L) = 0. Consequently the inequality is strict and (3.14)

is established.
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111.2 Comparison Theorems for Eigenvalues

It is the purpose of this section to establish comparison

theorems for the lowest eigenvalue “1 of the problem

(a(x)0")" - fl p(x)u ' 0. :30!) > 0 in (0.1,)

(3.15)

M0) = U'(0) ' nu.) ' U'Q.) = 0

and the lowest eigenvalues )‘1 and “,1, which are known to be

positive (see [4], pp. 292-295) , of the second order problems

(A(x)v')' + )‘v - 0, A > 0 in (0,1,)

(3.16)

V(0) ' v0.) ' 0

and

z" + “.2 - 0 in (0,4,)

(3.17)

2(0) ' 2(L) - 0 .

In the case a =-.: 1 problem (3.15) governs the vibration of a non-

homogeneous rod with linear density p(x), and (3.17) governs the

vibration of a homogeneous string.

Theorem 3.5. Let 1.1 be the lowest eigenvalue of problem

(3.16), and let v be a corresponding eigenfunction. Let “.1 be

the lowest eigenvalue of the problem (3.17). If u is an eigen-

function corresponding to the lowest eigenvalue “1 of problem

(3.15) and

" 2
£(a-A) (u") dx 2 0,
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then

where p0 = [:a:] p.

Proof. It is well known (see [4], p. 452) that v > 0

in (0,4,), and moreover (cf. Theorem 2.5) v'(0) 2‘ 0 and v'(4,) I‘ 0.

Hence identity (3.13), whose validity is established in the usual

fashion, yields

4 2 f 2
(3.18) o s t[(119 u dx - plow) dx .

From Rayleigh's principle (see [11], p. 393) it follows that

(3.19)

for sufficiently smooth functions (9 vanishing on the boundary.

In particular, since u is an admissible function in

(3.19) we have

L 2 L 2

£(u') dx 2 “13 u dx

which combined with (3.18) yields

4 2

0 ‘ 3 U (“19 " 41151)“:

and thus

2. u

(3.20) “1 2 .14.

p0
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If equality holds in (3.20), then equality must hold in (3.18).

Consequently, by the remark on page 27, u' a kv. But then the

positivity of v in (0,4) again contradicts the boundary con-

ditions u(0) - u(4) - 0. Therefore we have

u

n >_1_1,

1 p0

Remark. If 0 < p s 1, then (3.20) reduces to

and if A a 1 in (3.16), then ‘1 - pl, and we have the well known

result (see [24])

2

01 > “,1 .

We wish to obtain similar lower bounds for {11 for various

classes of density functions p. To this end, we return to the

derivation of identity (2.14) on page 26. Instead of making the

choice

in identity (2.15), we leave the function P2 unspecified and

consider the identity

[0(w") I - a“In" + P2(u I)2] ‘3

(3.21) 2

P PI.

. gnaw)" - A(u" - :3- u')2 + (:2- + P2')(u')2 + (A-a)(u")2]dx.



43

If u is an eigenfunction corresponding to the lowest

eigenvalue “1 of problem (3.15), if

L 2
gun-Ann") dx 2 o,

and if identity (3.21) is valid and the boundary term vanishes,

then we have

4. 2 4. 2

(3.22) o sgnlp u dx - £Q(x)(u') dx

where

Pi
‘Q-r+%

If (Q >>0 and if a1 is the lowest (positive) eigenvalue for

the problem

(QZ')' +on '0 in (0.4.)

(3.23)

2(0) = 2(L) ' 0.

then by Rayleigh's principle

4 2

(')dx

S£Q¢
 

“1
4 2

(M
where m is any function vanishing on the boundary. In particular,

since u is an admissible function, we have

g-Qm') «smingudx ,

and inequality (3.22) becomes

’* 2
055a (019 'aIQNX .
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Hence we obtain the formal inequality

alQ

(3.24) {11 2 inf —- .

(0.2,) "

Motivated by some recent works of Protter [28] and Hersch

[13] in which a similar problem for second order equations was

considered, we let

T AV. 1

-_0__ .41.(3.25) P2 1' v + 2T ,

where v is an eigenfunction corresponding to the lowest eigenvalue

)1 in problem (3.16), T is an arbitrary smooth positive function

in (0,4,), and

1' a min 1'.

o [0.4,]

A simple computation yields

Pi
' Q ' r + 1’5

1'" AT T I 12 1.

(3.26) - - —9--1=+—-Q (;9 - lug—)2 - ALB—+33%)-
41'

T ‘1'

2 101.1 _ 91152.3 1 M);
T 4 2r ’

T

which implies

Q >10

if we impose the further condition that

(AT')' 5 0 in (0,4,).

Therefore, by the choice for P2 given in (3.25), and

for 'r > 0, (A1")' 5 0 in (0,4,) inequality (3.24) becomes the
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formal bound

0 T x A I 2 A I I

(3.27) ()1 2 inf —1-[-9-T—1+—(1-%— - Lil-1.

(02L) p 4T

For choices of T motivated by Protter [28], we obtain

the following lower bounds for n1.

Theorem 3.6. Let 01 be the lowest eigenvalue and let

u be the corresponding eigenfunction for problem (3.15), and let

v be an eigenfunction corresponding to the lowest eigenvalue

II > 0 of problem (3.16) with

L 2
£(a-A)(u") dx 2 o .

If

T = l'> 0

p

and if

(3.28) [Afim'so in (0.4.),

then we have the inequality

or).

(3.29) n >-1—1-+a
1 p0 1N1 + O'1N2

where “I > 0 is the lowest eigenvalue of problem (3.23)

po 5 max p > 0

[0.1]

l 1 2
N1 5 4. min Ap[(;)'] 2 0

[0.1,]

N 2- -% max [A(-1-)']' 20.

[0.1.] p
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Proof. Since v > 0 in (0,4), it follows (cf. Theorem

2.5) that v'(0) # 0 and v'(4) # 0. Therefore, with the choice

of P as given by (3.25), the validity of (3.21) follows as before,
2

and moreover, the boundary term vanishes. Hence the formal bound

 

(3.27) is now valid. For T = l- we note that To = min T =.__

p [0.4] po

and (3.27) becomes

“141
(3.30) 01 2 p0 + alNl 'I' aZNZ .

Equality holds in (3.30) only if we have equality in (3.26) and in

(3.22). Equality in (3.26) implies T = To, a constant, while

equality in (3.22) taken together with (3.21) yields

P2

(3.31) u" - X"“' 2 o in (0.2)-

Since T a To, from (3.25) we have simply that P = 5%- , and

2

hence (3.31) yields u' a kv for some constant k. But then the

positivity of v in (0,4) contradicts the boundary conditions

on u. Therefore the inequality in (3.30) is strict.

Remark. For p a l, (3.26) shows that Q =‘11: and thus

problem (3.23) is equivalent to problem (3.17). As a result,

01 ' HI, and (3.29) simplifies to the previous bound of Theorem 3.5

01 > A1411.

Remark. 1n the case A a 1, condition (3.28) becomes

(%)" s 0 which implies p" 2 0 in (0,4). In other words, the

vibrating rod with governing equation (3.15) is assumed less dense

near the center, but may be of large density near the ends.
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By choosing T = log (i) we are led in a similar manner

to the following result.

Theorem 3.6. Let n be the lowest eigenvalue and let

1

u be a corresponding eigenfunction for problem (3.15), and let v

be an eigenfunction corresponding to the lowest eigenvalue x1 > 0

of problem (3.16) with

L 2
IE0141) (u") dx 2 o .

If

1

T = log (-) > 0 where 0 < p < 1

p

and if

[A(1°g p) '1 2 O in (0 94;):

then

0’1"1"0 “1N4 N5

01 > N + 2 ' + “1 1?-
3 N3 3

where a1 > 0 is the lowest eigenvalue of problem (3.23)

T = min (-1og p) > 0

[0.4.]

N3 5 max (-p 103 p) > 0

[0.4.]

2

N4 5'}; min 559.1. 2 0

[0.4.] p

N a-él‘ min [A(log p)']' 2 o.

[0.1.]
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In a similar manner the lowest eigenvalue 0 of problem
1

(3.15) can be compared to the lowest eigenvalue XI of the more

general second order problem

(A(x)v')'-+ xa(x)v = o, A > o, o > o in (0,4)

(3.32)

0 .II

V(0) = V“)

Choosing P2 as given by (3.25), and thus replacing Ll

by Ala, (3.26) becomes

-Q,_blfi-eggfi,ew_£
T 4T2 2T ’

and the formal inequality (3.27) becomes

0' TKO 12 11

012 inf _1.[_0..1_'_+_ALT_2)_.-.LA.'L)._] .

T 4T 2T

The validity of identity (3.21) is established in the

usual fashion, and we obtain the following bound.

Theorem 3.7. Let ()1 be the lowest eigenvalue and let

u be a corresponding eigenfunction of prdblem (3.15), and let v

be an eigenfunction corresponding to the lowest eigenvalue )1 > 0

of problem (3.32) with

L 2
g (a-A)(u") dx 2 o .

If

T=§>0 in (0.4.).

and

[Mgrj'so in (0.1.).

then
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01 > C"1"0’11 + 0’1N6 + “1N7

where 011 > 0 is the lowest eigenvalue of (3.23)

To ‘5 min g>0

[0.1.]9

2

pAUQ)‘

N6 521; min —2-2-2- 2 0

[0.4] o

[A(Q)']'

N7 2 - - max 2 0 .

[0.4] °



CHAPTER IV

REMARKS ON PARTIAL DIFFERENTIAL EQUATIONS

In this chapter we shall comment on the extension of the

preceeding results to the case of elliptic partial differential

equations. We consider the following analogs of equations (2.1)

through (2 .4) , namely ,

(4.1) A(a(x)Au) + 2 div(b(x) grad u) - c(x)u = 0 in G

ax1+ax2 axn

(4.2) A(A(x)Av) + 2 div(B(x) grad v) - C(x)v - 0 in G

and the corresponding systems

All + b(x)u = e(x)w

(4.3) in G

Aw + b(x)w = -c(x)u

and

AV 4' d(x)v f(x)z

(4.4) in G

A2 + d(x)z - -h(x)v.

We assume all solutions are classical and all coefficients are suf-

ficiently differentiable in a bounded domain G with piecewise

smooth boundary I“ in n-dimens ional Euclidean space E“.

50.
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Although the analogs of the identities used in Chapters 11

and 111 can be derived by Picard's technique, this method is rather

cumbersome. In fact, in only two dimensions, Picard's method would

involve the introduction of twelve arbitrary (sufficiently smooth)

functions via the obvious identity

2 2 2 a);

l[[(Pllu + P2111x + Pzzuy + P23uxuy + 2P31uux + 2P32uuy) 3“

353cm
2

u +P uu +2P 3l‘uuy)a

2 2

+ (Plzu + P ux 4- P25 y 26 x y 33qu + 2P
24

2 2 2
a ({IHPIIU + P21ux + P22uy + P23uxuy + 2(P31uux + P32uuy) ]x

2 2 2

+[P12u +P24ux+P u +P
25y

26uxuy + 2033qu + P34uuy)]y]dxdy .

A more natural and enlightening derivation of the identities

for partial differential equations involves making use of the

known one dimensional identities. For example, if we write equa-

tion (3.2) in differential form rather than in integral form and

rearrange terms in the boundary, we obtain

N 11 1 1 11

[U(aU")' - au'u" + 2Auu'-:-’,— - (3(9):?)— ... 52%.”.

V

'- u(au")" - u2 Liz-'3: + 2 5%".- (u' - 9-3;)2 - A(u" - 23:)2 + (A-a) (u")2.

2

. a_ . L__ .2
Letting D1 5x1 and D1.1 331331, (i,j 1,...,n), we readily

find that

D V D (AD V) AD VD v

.11.. 2 11 .._1 11
Dj[uDj(aDiiu) - aDjuDuu + 2AuDju v -u (-L-‘-'-—+ v2 )]

2 D v D v

. - 9... .11. - _.1._2
uDjj(aDnu) v D 1(ADuv) 4- 2A v (Dju u v)

.1

Dv Dva

u-zun u%'+u2 -i—:——-u—)+(A-a)D- uD
“”11 11 11 v

iiuDjju'
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Summing over i and j and using the divergence theorem, we

easily obtain Dunninger's identity [10]

C{igliva'LzLL nam1+A$3[;(va:- 3%)]

(4.5)

<
l
1
-
I

+%-'(AuAv - avAu)}dS

-= g i‘; [mum - uA(AAV)]dx

radv 2
.+ £[2A‘ezjgrad u - u L] A(AU ' U $2921dx’

where 53' denotes the exterior normal derivative on the boundary F.

The same technique applied to the differential form of

identity (2.6) yields the following identity for systems (4.3) and

        

(4.4)

41%“ng“§)+'[’(Van‘"an)3

+ 5-3; (uz - vw)}dS

u222 U2

(4.6) =2g{(h-c)u - e(w - u _z_)Z + (e -b)—v—

+ 2 3'- ‘grad u - u m\:}dx
v v

Similarly, from the differential form of identity (1.22) we obtain

the following analog of the new identity

2 2
[u EA2.- l_ag'§!grad u} + ‘grad u] 32168

an 2 an v anan

n

a £[uA20'+ $21‘grad “‘2 - 8 (Di

D v

u - D u-J—)z]dx.

1.1.1 j i v
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On the basis of (4.6) the following comparison theorem

analogous to Theorem 2.1 is valid.

Theorem 4.1, Suppose there exists a function w such

that u is a nontrivial solution of (4.3), and suppose there

exists a function 2 such that v satisfies system (4.4) and

v > 0 at some point in G. If

(1) f2e20,d2b in G,

and either

(2) £(c-h)u2dx 2 o

(3) z<0 in G

(4) u i kv, k a constant

or

(5) £(c-h)u2dx > o

(6) 2‘0 in G

then, under any boundary conditions on u,v,w, and 2 such that the

left hand side of identity (4.6) is nonnegative, v must have a zero

at some point in E - c u 1‘.

Proof. Suppose v has no zero in El Then v > 0 in G,
 

and identity (4.6) is valid. In view of hypotheses (l), (2), and

(3) and the fact that the left hand side of (4.6) is nonnegative,

we readily find that

(4.7) 1 0 s g '3 \grad u - u 8rTar-EI—‘ledx .
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On the other hand hypothesis (3) and the fact that v > O in G

imply

(4.8) éi-‘grad u - u 3231\2dx S 0.

Inequalities (4.7) and (4.8) together imply that

<
I
1
-
I

grad (:17) = (grad u - u 85.3.37!) 5 O

which contradicts hypothesis (4).

In a similar manner hypotheses (5) and (6) lead to the con-

tradiction

2

O 5 £(h-c)u dx < 0 .

Consequently, in either case v must vanish at some point in El

The extensions of the other results of Chapters 11 and 111

do not follow quite so easily. The primary difficulty stems from

a need for an analog of L'prital's rule for functions of several

variables in order to establish the validity of the identities in

the case v = 0 at a boundary point. Some recent results along this

line have been obtained by Kreith [l9], Swanson [32], Diaz and

McLaughlin [7], and Dunninger [10]. However, it is not yet apparent

that these techniques apply to the problems at hand, although the

Diaz and McLaughlin result appears most promising. We hope to be

able to discuss this problem at a future date.
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