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ABSTRACT

A THEORY FOR CONFORMATIONS IN ISOTACTIC POLYMERS;

A MARKOV PROCESS

by Victor E. Meyer

Body of Abstract

An equation has been derived which.re1ates the mean square end-to-end

length of an isotactic vinylic hydrocarbonrtype chain to the detailed

geometry of the chain. The equation is restricted to long linear chains

with regular head-to-tail structure which can be represented by a diamond

lattice nodel. The chain bonds are all considered to have constant and

equal length, and are connected at the tetrahedral valence angle. The

rotational angle, as defined by any three consecutive bonds, is

restricted to the EEEEE and two gauche conformations. Furthermore, the

bonds are considered to be statistically independent, Which allows the

problem to be solved by Markov chain statistics. The mean square length

is expressed as a function of the probabilities of finding the bonds in

their respective trans and gauche conformations.

The mean square end-to-end length of a polymethylene-type chain

has also been calculated by the methods indicated above. The equations

obtained are discussed relative to pertinent eXperimental data. It is

concluded that "crystalline“ polymers tend to retain their crystalline

state "conformations" in their "unperturbed" states.
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I. INTRODUCTION

A. General

The Nobel prizewinner (1953)H. Staudinger was the first to recognize

the dependence of physical properties of macromolecules on their

structural detail. Staudinger proposed that amorphous (glassy) polymers

could not be crystallized because of non-symmetrical arrangement along

the polymer chain. Staudinger1 suggested that the lack of crystallinity

in polymers such as polystyrene might result from the formation of a

great number of stereoisomers during polymerization. He advanced the

hypothesis that polymers which crystallize require repetitious and

symmetrical order to achieve the rigorous demands of chain packing for

the crystalline state.

Later M; L. Huggins2 suggested that the observed changes in the

solution properties of poly-CX-olefins (viz., polystyrene) polymerized at

different temperatures, resulted from the change in stereosequence of the

polymers. Specifically, he suggested that as the temperature of polymer-

ization of polystyrene is increased, the distribution of (d) and (1) con-

figurations becomes more random. That is, at lower temperatures of poly—

merization it is probable that a certain arrangement of asymmetric centers

along the backbone of the chain would be more favored. For example, in

polystyrene the alternate (d) and (l) configurations are most probable,

since this results in the maximum distance of separation of the bulky

pendant phenyl groups. As the temperature of polymerization increases,

the distribution of asymmetric centers may be expected to become more

random relative to this ”favored" arrangement of asymmetric centers. This

interpretation was proposed for the experimental results of T. Alfrey,

A. Bartovics, and H. Mark3. The recent nuclear magnetic resonance studies



h’5 on poly(methyl methacrylate) gives some veryof F. A. Bovey et.a1.

direct evidence in support of Huggins' suggestion. J. W. L. Fordham

et al.6 also show a relationship between polymerization temperature and

the degree of crystallinity in poly(vinyl chloride). The degree of

crystallinity increased with decreasing temperature, indicating an increase

in configurational order as the temperature of polymerization is decreased.

The successful search for catalytic processes which would produce

vinyl polymers with extremely regular configurational order was first

reported by C. E. Schildknecht7’8 et al., who in 19h? prepared isotactic

poly(vinyl isobutyl ether), using a boron fluoride etherate catalyst.

However, it was not until 1955 that the significance of stereospecific

polymerization caught the imagination and attention of the polymer

chemists when G. Natta9, reported the successful preparationIJf

crystalline, isotactic polypropylene and polystyrene of high molecular

weight using a Ziegler-type catalyst (usually a mixture of triethyl

aluminum and titanium tetrachloride in an inert solvent). The discovery

of stereoregular polymerization has been actively explored and at the

present time poly-O(-olefins and vinyl polymers with the.following

configurations have been reported and classified.

1. Isotactic macromolecules. The asymmetric carbon atoms of any

given.molecule have either all (d) or all(1) configurations.

H’ H H H H H H H

l I I I I I l I

- C - C*- C - 0*- C "' 6*- c " 6*- e e e

I I I I I I I I

H R H R H R H R

The asterisk indicates the pseudo-asymmetric centers.



2. Atactic macromolecules. The asymetric carbon atoms of am

given molecule have random (d) or (1) configurations.
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3. Syndiotactic macromolecules.1 0’11 The asymetric carbon atoms

of am given molecule have alternate (d) and (l) configuartions.

III???
-c-c*-c-c*-c-c*-...

I I I I I I

H a H H H a

Chains of the type (CHE; -CHR3)x have recently been polymerized

stereospecificallyw to yield stereoregular polymers of the form: .'

h. Diisotactic macromolecules. The asymmetric carbon atoms of

any given molecule have either all (d) or all (1) configurations.

'" H. , “d

5. Disyndiotactic macromolecules. The asymmetric carbon atoms

have alternate (d) and (l) configurations.

II1 “I T”? ’I‘“ -* * i * i I-

..c- -c-c-c- -,,,

I ‘f I I I 1
R111 R111 R111



B. Introduction to Theory

The mathematical analysis of the properties and structure of high

polymer molecules has developed through a statistical approach. To

begin, the chain must be denoted by various symbols which represent

important characteristics of the chemical structure.12 Referring to

Figure 1, the covalent chemical bonds joining the atoms of the "backbone"

are regarded as jointed vectors (vector-bonds) ”lo, l1, l2, ..., ln-i ,

numbered according to their position along the chain from the first to

the last atom. The angle formed by the two bonds connecting any three

consecutive atoms is called the valence bond angle ('6') . The rotational

angle ([6) is defined as the angle made by bond .l-i-m from the plane

formed through bonds 3.1.1 and I1.

 
Figure 1. Se ent of a schematic chain showing bond length

(l , valence angle (6') , and the rotational angle

(I5).

Because high molecular weight polymers consist of a large number

of chain bonds or monomer units, the theoretical treatment, considering

now the entire chain, is limited to a statistical approach. One of the

important descriptive parameters is the mean square end-to-end length,

a quantity which is by definition, statistical. The magnitude of this

parameter is found to be dependent on the number of links in the chain,



the state of the system, the temperature, and the internal structure of

the polymer chain. Another related quantity, the mean square radius

of gyration, is defined as the average of the squares of the distances

from the center of gravity to each segment of the chain. Many physical

properties of polymer molecules depend on the mean square radius of

gyration and, for linear polymer chains whose mean square lengths have

a Gaussian-type distribution, the mean square radius of gyration is

equal to one-sixth.the mean square end-to-end length. Because of this

simple relationship between the two parameters the mean square end-to-

-end length has become the parameter most frequently used in conjunction

‘with physical properties.

Phenomena ihich follow Gaussian-type distribution curves normally

have certain random properties. W. Kuhn13 showed that the mean square

end-to-end lengths of real linear polymer chains obey Gaussian—type

distributions despite the fact that the directions of the connected

links(bonds) are severely limited by the valence angleée), and the

restricted angle of rotation (95) . Kuhn has demonstrated that a long

linear chain of n bonds may be considered as composed of (n/m)

segments , where m is selected such that because of the more or less

free rotations ebout the bonds, the (n/m) segments are directed

randomly relative to one another. Thus, unless real linear polymer

chains are small or unusually rigid, their mean square end-to-end

lengths can be expected to have Gaussian-type distributions, and the

simple relationship between.the mean.equare length and the mean square

radius of gyration will be valid. In.addition, experimental evidence1h

exists which demonstrates that within experimental error the mean square

end-to-end length is proportional to the molecular weight as should be

true for an I'ideal" Gaussian-type linear macromolecule.



C. Root Mean Square End-tannd Length.

The first theoretical treatment of the mean square end-to-end

length.was the “freely jointed“ chain, where each bond is considered

statistically independent and all angles of 69) occur with equal

probability. The model was obviously a vast oversimplification for

real macromolecules, however, with appropriate corrections real

polymer molecules do conform to certain distribution functions (viz.,

G‘fl'gi‘nPtyp. distributions) derived from this model.

subsequent authors introduced a.more realistic model with fixed

bond angles15, but with free rotations. This model can be treated

by Harkovian statistical methods and has been termed the ”freely

rotating chain”.

In recent years considerable attention has been focused on the

problem of taking into account the effects of hindered rotations on the

mean square end-to-end dimensions. One approach to this problem is to

treat the chain.with restricted rotations through averages of the

rotational angle (¢). However, more refined analysis shows that the

chain.bonds are most likely to fix themselves at specific rotational

angles depending on the nature of the near neighbor interactions. That

is, because of the near neighbor interactions along the backbone of the

chain, not all conformations are energetically equivalent, and indeed

some conformations are practically excluded.

The stereoregular polymers possess structural regularity;

therefore the problem of relating the mean square end-to-end lengths

to the detailed geometry of the chain is much simpler than the older

prdblem of atactic(random) structures.

Two different mathematical techniques have been developed to relate



the detailed geometry of the chain to the mean square end-to-end length.

‘The first of these, which is presently receiving much attention, was

originated by H. Eyring.15

In 1932, Eyring proposed a.method of solving for the mean square

end-to-end length of linear macromolecules. The principal features of

the method are as follows:

1. Assign to each bond a suitibly defined coordinate system.

2. By means of rotational matrices relate all vector-bonds to

a single coordinate system, usually the one associated with the first

bond of the chain.

3. Take the dot product of the end-to-end length, and consider

the averages of the rotational matrices as they occur in the dot

product.

The method.of rotational matrices is presently the subject of

investigation of a large number of workers.16-22 Several of these

workers have extended the method to consider the case of isotactic

and/or syndiotactic macromolecules. The results obtained by these

workers are frequently cumbersome, occasionally not obtainable in

closed form and are difficult to compare.

Tobolsky23 has suggested an alternative approach to this problem.

The principal features of his method are:

1. Describe the chain in.terms of a.diamond latticez’4 and a

matrix of transition probabilities which:relates to a “walk“ on a

diamond lattice. (This applies to all chains which take predominantly

staggered conformations).

2. Mathematically relate the mean square end-to-end length to

the “walk’I as described by the matrix of transition probabilities.



Specifically, Tobolsky considered the case of a polymethylene

chain with hindered rotations. The two gauche positions are considered

to be energetically equivalent, and different from.the trans positions.

The mean square end-to-end length is then expressed as a function of

the tendency for any three bonds to be found in the trans position.

Recently R. P. Smith25 demonstrated the equivalency of the

rotational matrix and the diamond lattice approach for the polymethylene

chain. However, his method relies heavily on the rotational matrix

technique and it is therefore not immediately obvious whether the

method.may be extended to treat structurally more complicated chains.

In the calculation.presented in this thesis, the diamond lattice

model has been utilized. However, it is not possible to deal with the

matrix of transition probabilities in the manner suggested 141the

treatment of the polymethylene chain by Tobolsky. It was therefore

necessary to develop a differentlnathematical technique in evaluating

the mean square end-to-end dimensions from the matrix of transition

probabilities.



II. CALCULATION OF THE MEAN SQUARE END-TO-END LENGTH OF A POLYMETHYLENE

CHAIN.

A. Introduction.

A Because the polymethylene chain contains only a single type of

chain bond, it is both concepflnlally and mathematically much simpler

than the isotactic chain. For this reason the polymethylene chain

calculation is presented first in its entirety, although it may be

treated alternatively as a special case of the isotactic chain. Because

the polymethylene Chain is simpler, this approach allows a more orderly

and clearer presentation of the salient mathematical and conceptual

aspects of the calculation, and then, when the isotactic case is

considered, particular attention and emphasis may be given to those

aspects of the calculation which are peculiar to the isotactic chain.

In keeping with this objective, the detailed mathematical evaluations

have been placed in appendixes which are collected at the end of this

m0813e

B. The Diamond Lattice Model.

It is desired to compute the mean square length of a polymetbylene-

type chain of n+1 carbon atoms connected by n vector-bonds of constant

length (10), with constant tetrahedral valence angle (99. Recently,

W. J. Taylor26 showed that the error involved in neglecting the variation

in bond lengths and bond angles due to vibrations,in the calculation of

the mean square end-to-end length,is of fine order of magnitude of a

few tenths of one percent at normal temperatures, and thus need not be

considered here.
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The bonds are numbered consecutively as indicated in Figure 1.

Each bond has vector components (X(i), Y(i), 2(1)), i = O,1,2,..., n-1.

For simplicity of calculation, the magnitude of each component is taken

to be unity. If (10) is the actual bond length, then the calculated

mean square length must, in the last step of the calculation, be scaled

by the factor 13/3.

Each vector—bond is thus represented by one of the eight combinations

(:1, 11, t1) and successive bonds differ only in the change of exactly

gag algebraic sign. This representation of hydrocarbon molecules is

commonly referred to as the diamond lattice model.

First, it is desired to demonstrate how the components of each

bond.may be represented by 11. Since each vector-bond may have

components only as given.by one of the eight combinations (:1, 1'1, 31);

each vector-bond is thereby restricted to lie along one of the principal

diagonals of the eight quadrants of the cartesian coordinate system.

Thus, regardless of the quadrant in which a vector-bond lies, one obtains

for the dot product of the vector-bond into itself

  

;1.;i a 1: a (X(i) + Y(i) + 2(1))°(X(i) + Y(i) + 2(1)) (1)

'z

zw-‘

’ H . Yo)

: f 9'
x(i,) . l/

a, ------- 4'

Figure 2. Vector-bond l1 in the first quadrant of a cartesian

coordinate system.
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From Figure 2 it may be shown by simple trigonometry that for the

case of a vector lying along the principal diagonal of a cartesian

coordinate system,all of the components along the coordinate axes

are equal, i.e.,

 

 
X(i) Y(i)| g ‘Z(1)\

 (3)

Equation (2) may therefore be written as,

13 , 3(x(i))2 g 3(Y(i))2 , 3(z(i))2 (h)

or

“uhz,uu52,mu52,gfi (9

From which

(Km) 3 i 1 (6)

(13/3)1;2

For vectors which are restricted to lie along the principal

diagonals of a cartesian coordinate system it is permissible to replace

the components of the vectors by :1. Since in the final equation for

a polymethylene chain only the squares of the components occur, the

final equation must be multiplied by 13/3.

Next it is desired to demonstrate how the change in exactly one

algebraic sign is consistent with a hydrocarbon chain of constant

tetrahedral valence angle 6'. From Figure 1 it is seen that the cosine of the

angle between two consecutive vector-bonds e.g., l

by

1.;1 is given
1’ ~

cos(w --e) = 1/3 . (7)

Now, if according to the diamond lattice model},i is represented
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by the set (-1,1,1)th an l1” according to the change cf any one algebraic

sign,is represented by the set (-1,1,-1). Then since the dot product

of two vectors is defined as the product of the magnitudes of the

two vectors multiplied by the cosine of the angle between them,

‘ti ° $1+1 ' Ilil‘li+1‘ 003(li: li+1) (8)

From.which

°°3(;i . li+1) , l1 . l1+1 (-1,1,1).(-1,1,-1)
  

|$i||l1+1| ' 31/2 31/2 -1/3 (9)

The result (1/3) is obtained for any of the possible combinations

of (*1, *1, *1) which may be considered, with the requirement that the

two successive bonds differ only in the change of exactly 223 algebraic

sign. Thus, the diamond lattice model preserves the property of

hydrocarbon chains that the bonds be connected at the tetrahedral

valence angle 69).

The diamond lattice model imposes another restriction on the

hydrocarbon chain. That is, due to the requirement that.successive

bonds may have only one sign change, the rotational angle (¢) is

therefore restricted to the trans (¢ . 0°) and two gauche (¢ - i120°)

conformationst.

*"Conformation" has two different meanings as used in this thesis. It

‘will sometimes be used in reference to "trans" or "gauche" conformation,

and alternatively to indicate the orientation of the total chain. The

meaning will be clear from the context.
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0. Mean Square End-to-End Length.

The end-to-end dimension of a polymethylene chain is the sum of

the bond vectors

n-1

3'}.0+l'1+32+ ... +}n_1-i§0;i (10)

where

,1 , “(1), Y(i)’ 2(1)). (11)

The expected square length is given by

n-1 n-1 n-1 n-1

E? a 2 2'. If? - z E{x(i)((3)+r(i)x(3)+ 265(3)} (12)

i=0 3-0 3 i=0 3:0

where E {X(1)X(j)+ Y(i)Y(j)+ Z(i)Z(j)} is the eXpected value of the

quantity enclosed in the curly brackets. Written in the convenient

form of an array, the double sum (12) becomes:

 

   

~01 '..o + $021.1 +3-o°}2 " " 1031,14

11°10 " $1311 * $1512 + +2=1“5°Lr1-1

”£
1

(13)

12-1 $0 +in-1 .11 + ~n-1.12 + "’ + ~n-11.1'n-1   
 

If end effects are neglected i.e., lo °~]-'o - 3,1 32,1 - eee , and

£041 - 1717;; - ... , and $012-$113 ... , etc.; and also since

the dot product conunutes i.e., 3,003.1 - 3.1-3.0; then because of the

symmetry about the principal diagonal of the array (13) may be

simplified to:



1h

(11:)

  
B 2 _ 0 _ o .

n10 + 2(n1)_1.0;L“1 + 2(n 2)}032 + + 23o $1-1 (15)

When (11.1) is written in terms of its rectangular coordinates it becomes

57 = 3n + 2 n22 r1214 Eix(°)x(k) + Y(°)Y(k) + z(°)z(k)E(16)

i=0 k=1

Put

Lk . r{x<°>x<k> + r<0>r<k) + 505(k)) (11)

then (16) becomes

n-2 n-1-i

iii-n+2: 2 Lk, (18)

180 k=1

and analogous to (15), this may be further simplified to give

n-1

57 - 3n + 2 Z -k 1k1(n)1~k (9)

D. Probability Matrix.

The mquence of pairs (303:1) , (1.13%), ... , (2.114%!) is now considered.

Each pair is a state in the Markov sense with the matrix of transition

probabilities given in Figure 11. The coordinates may be chosen such that

lo - (1,1,1), and 11 - (1,1,-1). Now} may have the possible sets
2

(1,-1,-1), (-1,1,-1), and (1,1,1) with probabilities b, b, and a,



1S

CZ C1 C;

F’ F! (4 (1+3 (1+3 *4

f4 f4 f4 f4 F1 f4

Cii<3

b b

Figure 3. Newman projections of the trans (a) conformation

(¢ - 0), and the two equivalent gauche (b)

conformations (¢ - 3 120°).
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respectively, corresponding to their respective conformations, with

b + b + a - 1. In.Figure h it is seen.that these sets correspond to

transitions from state (32!) 1 to states (columns) h, 5, and 6,

respectively. Each of these events is treated as though it has occurred,

and the subsequent possibilities are considered. For example, if

12 - (1,-1,-1) has occurred, corresponding to the transition from

state (32!) 1 to state (column) b, with probability (b) (Figure h), as

just discussed, then, the next transition originates from state (32!) h,

and may proceed to states (columns) 13, 1b, and 15, with probabilities

(conformations) b, a, and b, respectively. The next transitions then

originate from states (£232) 13, 1h, and 15, depending on the outcomes

of the preceeding trials. Nomi};1 may also have the sets (1,-1,1),

and (-1,1,1) as well as the set (1,1,-1), given.above. Therefore,

these possibilities and all possible subsequent events must also be

considered. This procedure is then continued until the matrix of

transition probabilities, Figure h has been obtained. It is then

discovered that all subsequent bond pairs return to some previously

considered state of Figure h.

Since the coordinate system has been chosen such that}:O has unity

for its components, it is seen that Lk (17) simplifies to

Lk - ngm + rm + 20:); . (20)

The definition is now made

uk - xo‘) + rm + 2“" . ' (21)

Next, it is desired to consider the sequence of pairs (UoU1)’ (U1U2),

e e e , (UH-11111).
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Figure h. The complete matrix of transition.probabilities (Pz4x24)

for a polymethylene chain. The meaning of the column and

row headings are explained in Table I.
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Table I

The twenty four states of the polymethylene chain.

 

 

 

State Magnitude of Components* oi) State Magnitude of Components of

U3 Uj+1 Uj U3+1 U3 U3+1 Uj U3+1

1 3 1 3 13 13 -1 1 -11 12

2 3 1 3 13 1h -1 1 -41 13

3 3 1 3 11 15 -1 -3 -11 -3

h 1 -1 13 ~11 16 -1 1 -13 11

5 1 -1 13 -13 17 -1 1 -12 13

6 1 3 13 3 18 -1 -3 -12 -3

7 1 -1 13 -13 19 -1 1 -13 12

8 1 -1 13 -11 20 -1 1 ~13 11

9 1 3 12 3 21 -1 -3 ~13 -3

10 1 -1 11 -13 22 -3 -1 -3 -12

11 1 -1 11 --12 23 -3 -1 -3 —13

12 h 1 3 11 3 2h -3 -1 -3 —11       
 

1}

(1,1,1) I 3; (1,1,-1) 8 13; (1,-1,1) I 12; (-1,1,1) I 11; (-1,-1,-1) I -3;

(-1,-1,1) a -13; (-1,1,-1) 3 -12; (1,-1,-1) I ~11.

Since only the magnitude of U is needed for the calculation,

.1

the 211 x 214 matrix of transition probabilities (Figure 14) is more

elaborate than need be, and the twenty-four states can be combined to

give only eight states of the desired Markovian character. This

”collapsing" process involves combining states of the same value of

Uj , and of the same transition probability, with the exception of those
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states of the 8 x 8 matrix of transition.probabilities (22) which have

unity as their transition probability. The unities result from.the

fact that a bond may differ by only one algebraic sign from the components

of an adjacent bond. Thus, if Uj I 3, then 03;, I 1, and U3+1

necessity, and a (1,3)-state has probability of unity of going to a

I 1, of

(3,1)-etate, and the states with unity as transition probability

result from combining a + b + b I 1. By this ”collapsing” technique

Figure h. reduces to the matrix P of transition probabilities (22).

3 1 -1 1 -1 1 -1-3 -3-1 1-1 1-1 1 3
 

1 3 1 0 b b a

2 -1 1 ' O b a b

3 -1 1 O a b b

h ~1-3 1 O 0 O O S

P,- __. (22)
 

S (3

8 1 3 1 O O 0    
The relation of the relabeled states to the original states are

given in Table II. The matrices of transitions prdbabilities ch x 2h

and (22) both have the prOperty that the sum of the elements of any

row or column.add to unity. This property is preserved in the higher

powers of ch x 2h and (22) and in probability theory the matrices are

referred to as'doubly stochastic" (see reference 27, p. 358). This

property has a very simple physical interpretation. If one proceeds
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down a hydrocarbon Chain in a diamond lattice, then after each “step",

the appropriate bond has a total probability of unity of being found

in one of its possible positions (conformations). This condition

results in a simple stochastic matrix (only the rows add to unity).

However, if the probability of proceeding in a forward direction is the

same as proceeding in a reverse direction, then, this condition results

:1n a doubly stochastic matrix of transition probabilities. In the

example just discussed, if the transition‘UoU1 I'U1U2 corresponding

to (1,1,1), (1,1,-1), (1,1,1) has probability (a), and if the probability

is also (a) for the transition U2U1 I»U1Uo corresponding to (1,1,1),

(1,1,-1), (1,1,1), (this being true in general for all transitions),

then, the resultant matrix of transition probabilities will be doubly

stochastic.

Table II

Relation of the relabeled states to the original states

for the polymethylene chain.

 

 

(Relabeled State Original State Value

Number Number Relabeled State

1 1, 2, 3, 3 1

2 13, 17, 20 -1 1

3 1h, 16, 19 -1 1

h 15, 18, 21 -1-3

5 22, 23, 2h -3-1

6 h, 7, 11 1-1

7 S, 8, 10 1-1

8 6, 9, 12 1 3     
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The power and utility of the matrix of transition prdbabilities

approach to statistical problems may be demonstrated by the following

considerations. Let the problem be posed, “What is the probability

of ending up in state two (-1 1) after two steps, if the starting point

is state one (3 1) of Equation (22). Otherwise worded, ”If four

consecutive bonds are considered with the first two bonds in state one

(3 1), what is the probability that the last two bonds will be in

state two (-1 1)?” From (22), it is seen that there are two possible

paths by which state two may be reached; path one: state one-+ state

six 9 state two, with probability of b2, and path two: state one +

state seven-+ state two, with probability be. The transition from

state one to state six, and from state six to state two are independent

events 28 and therefore the probability is b“, and by the same reason

the probability of path two is be. Now,"the probability that some one

or other of the set of mutually exclusive events will happen in a

single trial is the sum of their separate probabilities of happeningJ'

therefore the total probability of going from state one to state two

in two steps is b2 + ab.

Now, if the p::) element of P2 is calculated, the result,p§§) I

b2 + be is obtained, and indeed, it is found that the elements p§§) of

P1‘ automatically give the desired probability of transition from.state

(i) to state (3) in (k) steps. For example, it would be an almost

impossible task to calculate the probability of going from state one

to state two in twenty steps by the method of considering all different

paths. However, to find pggo) of P20 by matrix methods can be done in

a relatively Short period of time and, indeed, the method gives all

of the transition probabilities from any state one through eight to
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any other state one through eight. Thus by the use of a matrix of

transition probabilities, a great deal of information is expressed

in.a very simple and useful manner. Naturally, some of the ”information"

has been lost by collapsing from the twenty-four by twenty-four matrix

of transition probabilities, however, the above approach does demon-

strate some of the useful features of this formulation of the problem.

From the above discussion it is seen.that.all states are assumed

to be statistically independent. If strong near neighbor interactions

are present, then the assumption of statistical independence represents

an approximation to the actual physical situation, since the state of

any given bond depends on the states of its near neighbor bondszz.

E. Calculation of the Mean Square Length from.the Probability Matrix.

The coordinate system has been chosen such that U(O) I(1+1 +1) I 3

therefore, L0 becomes simply

Lo . 3 (20a)

and (19) may be written as

n-1

it I -3n + 2 Z (n-k) L
k-O K (19a)

Let the matrix of transition probabilities (22) appropriate for

01+ k transition in the sequence (U0 U1), (U1 U2), ... , (Uk-1 Uk)’

be denoted by Pk. If the first row of PR has elements p§$), p12)’ ... ,

(k

P18), the probability that U(k) I 3, -3, 1, -1 equals, respectively

p11), at), it) +1011) with p12) wt” + p113,
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k k k k) (k) (k) (k) (k)
Lk - 3(pg1) - 13%)) + (13:6) ” 12$? ” P18 "‘ p12 'p13 ' P11. )

(23)

.. -3 pg) + (p93) + pg) + 13105)) for 1: odd, and (2h)

. 3 pg?) ..(p$§) + pg?) + p$§)) for k even. (25)

From.the stochastic property,

(1:) (1:) (k) ,_ _ 00
p12 + p13 + p1h 1 p11 for k even, and (26)

pig) + pg?) + pgg) - 1 -p$§) for k add. (27)

it follows that (23) becomes simply:

(k) k

Lk - (L. s" -1)(-1) (28)

where es?) stands for the 1,1-element of the S -submatrix.

Therefore Equation(19a) becomes:

n-1 k (R)

1‘17- -3n + 2 z (n-k)(-1) (14s11 -1) , (29)

k-O

11-1 k 11-1 I)“ k (k)

B7 - -3n-2n z (-1) + 2 z (-1)k'k + 8 z (-1) (n-k)s11 (3o)
ksO klo k'O .

Evaluation of the first two summations of (30) yields

-bn n-1

a: . + a z (-1)k(n-k)s§’f) (31)
-hn-1 k-O

where the upper term.in the curly brackets is for n even and the lower

term is for n odd. The summation term of (31) is, exclusive of the

factor 8

n-1 k k

5- z (-1) (n-k) s11 (32)

k-O



2h

where Sk stands for the 1,1-element of the matrix Sk.
11

The expansion of (32) gives

n-1 n-1

. n z (-1)ks‘1‘1 - z (-1)kk sf, (33)

k-O k-O

- n(1 - s + 52 ..53 + ...) + (1 - 28 + 332 - us3 + ...) s

t (1 -2s + 352 - LS3 + ...) S“+1 (3h)

where again the upper sign is for n even and the lower sign is for n

odd, and the series of (3h) are infinite series. Now (1 + S)w

(1 -s + s2 - s3 + ...) s 1, and 1f (1+s)'1 exists, then

1-3 + 52 - 33 + ... - (1 + s)-1 (35)

Similarly (1+s)3(1-2s + 333 — us3 + ...) = 1, and 1t [(1 + s)=‘]'1 exists,

then

(1 - 23 + 352 - us3 + ...) - [(1 + s)2] -1 (36)

With these assumptions (31) becomes:

-hn - n+1
a? - + 8n(1+s)-1 + 8[(1+S)2]’1 S + 88 [(1+S)2]'1 <37)

-hn-1

and the 1,1—elements of the above matrix expressions are desired.

The detailed calculation of the above matrix expressions is given in

APPENDIX A, B, C, respectively. The results of these calculations are

8n(1 + S)’1 . 2n.%%—£}%3~

8‘“ * W‘s ' “(31:25? '1)

and

8 Sn+1[(1 + S)2]’1 - 1/2 for large n.
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Substitution of these quantities into (37) and rearranging, yields

— 2n(1+3a) (3+z1)(5at-1)+1/2

ha . (1 - a) - (1 - a)a <38)

 

This result must be multiplied by 13,/3 to give the ”desired” mean

square length

-— 13 2n (1+3a) (3+a)(Sa-1)
h2 . 3 (1 - a.) _ (1 - 832! +1/2 (39)
   



26

III. CALCULATION OF THE MEAN SQUARE END-TO-END LENGTH

OF A VINYLIC ISOTACTIC CHAIN.

A. Introduction

The vinylic isotactic chain (Figure 5) is more complicated than

the polymethylene chain in two respects:

1. The asymmetric carbon atoms of a given chain.may be either

of all (d)- or of all (1)-configuration. However, since both types

of molecule can be expected to have the same mean square end-to-end

lengths (if they have the same degree of polymerization), this

consideration is of no further concern in this particular calculation.

2. The second difficulty encountered is that a given chain

possesses two different types of bond. In the manner of S. Lifson18,

the distinction is made between the clockwise sequence of bonds

(attached groups) about the asymmetric carbon atoms.

If the asymmetric carbon atom C1 is viewed from.the<iirection

of,§i_1, the clockwise sequence of attached groups is: H, C R.
i+1’

Now, if the same asymmetric carbon atom is viewed.from the direction

of §5, the clockwise sequence of attached atoms is : H, R, Ci-1’ or

the counterclockwise sequence is: H, Ci-1’ R. Thus, although each

bond is between a methylene carbon atom and an asymmetric carbon atom,

because of the diffebences in the relative orientations of the bonds

to their asymmetric carbon atom, the isotactic chain is composed of

two alternating types of bond as is indicated in Figure 5.

It is desired to consider a vinylic isotactic,chain containing
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Figure 5. Planar zigzag illustration of a segment of an

isotactic macromolecule.
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P H H (2+3 (2+3 R

H H H H H H

Ci+3 R H

A B C

Figure 6. Newman projections of‘fii -Mi+1 EEi+2 bond sequences

in the trans and two gauche conformations.

Ci“ C241 C£+1

H H Q+4 H H Ci+4~

H R H R H F?

(1.. H H

a b C

Figure 7. Newman projections of‘lflii‘P1 tBi+2 7yi+3 bond

se uences in the trans and two auche conformations.
__ 5——



29

n+1 backbone carbon atoms connected by n vector-bonds of constant

length (10), at the constant tetrahedral valence angle to). Each

(new), if“), 2(1)),vector—bond has rectangular vector components

9
, 1: ~-: ..., “"1- S 111‘: H20 r‘>(.).'lj.r'nu;:'l,h{Mme (3115*.i.r1,f'()r' f-t1i211'g‘:].j(t'l’(,y

1

C.

(
.
7
:

i =

of calculatior,the magnitude of each component is taken to be unity.

If (10), is the actual bond lenqth, the calculated mean scuare length

must therefore, as the last step of the calculation, be scaled by

the factor 12/3. :ach vector-bond is again represented by one of the

eight combinations (11, *1, *1) and successive bonds differ only in

the change of one algebraic sign.

If an’fii-bond is in position (1,1,1) and the succeeding fli+1

bond is in position (1,1-1), then the probability of occurrence of

the following Bi+2-bond in the(1,1,1) position is taken to be A; in

the (-1,1,-1) position is taken to be B; and in the (1,-1,-1)

position is taken to be C. These correspond to the trans and two

gauche conformations (Figure 6) respectively, with, A + B + C = 1.

The conformations and positions of B and C will be reversed depending

on whether one is dealing with a macromolecule of (d)- or (1)-

configuration. Therefore care must be taken to consider the molecule

as depicted in Figure 5, and in particular the number sequence

of the subscripts on the backbone carbon atoms must be rigorously

observed. To be definite, the molecule is selected such that when

the above mentioned three bonds are in the trans conformation, the

pendant R group of carbon atom Ci+ lies in the (1,-1,-1) position.
2

If the above three bonds are in the trans conformation, then the
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‘Mi+3-bond has probabilities a, b, and c of being found in positions

(1,1,-1), (-1,1,1) and (1,-1,1) respectively. The probabilities

a, b, and c correspond to the trans and the two gauche conformations

(Figure 7) in that order; and a + b + c - 1. It should be carefully

noted that these conformations are uniquely determined by the last

three bonds which have been added to the chain. From this it is

seen that A, B, and C refer to E,- M - E,three-bond-combinations;

and a, b, and c refer to M.- E,- M three-bond-combinations.

B. Mean Square hnd-to—tnd Length.

If a chain commences with an fi-bond the end-to-end length is the

magnitude of

DR 'cBo + $1 + 32 + ”3 + .00 + Mn-1 (hO)

and if the chain commences with an.M-bond the end-to-end length is

the magnitude of

QM=%*E1+M2+B3*°°°*Bn-1 (in)

The a 23323} probabilities of occurence of these two situations

is assumed to be one-half for each of the two cases, since polymers

are formed by pairs of chain atoms. Alternatively, one may only

consider a molecule such as is given by (LO)° The mean square distance

is then given by the array,



 

B1'43'0 + 1:11 "7‘4

 
Or, if a molecule represented by (h1) is selected, the mean square

distance is then given by

T.

hM

Moog-30 +

...

 
From either (h2) or (h3)

term of (37), i.e. [(1+S)-1] is Obtained.

Bn-1°w0

i
n
»

130% +

k1-g1 +

Mn--1 130 ” Nn-1 5‘31 " Lin-1 33/2 + + yin-1 «Mn-1

31

sir—sew

“ W

* I311'3’2 + " M1 ”31:14 *

“am"

*1 I32 + +B1Bn-1+

+ ”n4 £91 + En-1 :32 + + Bn-1 Bn-1

 

 
However, if either (h2)

(L12)

(L13)

the leading term corresponding to the leading

or (h3) is expanded separately, it will be discovered that the non-leading

terms are extremely irregular, and can not be easily eXpressed as simple

series as obtained in the polymethylene case.

may be rearranged to give

However, (b2) and (h3)
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hams " 91‘1'21‘1 ' (1‘2) B043‘s * 30% + l30°32 + + 3044M + .3

(1‘3) 315% + ~‘-1°“1 * 51% + * 842,14

gkht)

(1‘2) B2°50 + 1231 * B2932 + + E2 n-1 i

' 3
.

I;

1.

._______ ._______ ...—.... _______. (

(hB) Bn-VgO + I«in-1.51 + I"in-4.932 + "' + Bn-VBn-1-

“3) 1@0930 + 130% + 1' “132 + + 1363114 I:
1

(1‘2) 31’30 ” iii-1'31 * 31% " " ”1'Mn-1 )1

. 1?

+ . ’1 KhS)

' 1

(112) tin-1'3; +m_1° + _1- + + 4-,,

  
where the origins of each row are indicated by the numbers in parentheses

along the left-hand side of the arrays. As a consequence of "mixing"

(h2) and (hB) in this manner it is now possible to write general

eXpressions for the resulting series which are obtained. The use of

two molecules i.e., (hO) and (h1) may be further justified on the basis

that one may, when selecting a molecule "grab" one end one-half of the

time or the other end one-half of the time. However, both approaches

lead to the same approximate expression and the advantage of simila

taneously considering (to) and (h1) is that considerable symmetry is

introduced into the intermediate steps. Returning to (hO) and (h1) the

over-all mean square length for both situations will be h: (where the bar
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indicates average quantities), and

‘7 - 1/2 ha"mi 4- 1/2 EM’DM (1.6)

If end effects are neglected, 31°31, ~1+k51+3 +1: , vi1,11+3

31+k°Ei+j +1: 3 then (1.16) can be arranged in the form corresponding to

(1111) and (115)

n-1n-1

-1/2[3n + 2 Z (n-3)RoN ] +1/2[3n +n21 (n--k)'§'im-u-o0N3] (147)

3‘1 k"

where N, - 3,3 for j even, 1&3. = Ij‘lvj for 3 odd; Nk - 3k for k odd and

NR - 35k for k even.

Let L3 be defined as the expected value of the scalar product term

occurring in (117), i.e.,

E {gown ,, Yoko) , gaze)? , (1,8)

then,

n-1 n-'1

. 1/2 [3,, + 22 (11-3) L3 ]R + 1/2 [3n + 2k; (n-k) Lkln (119)

(o o) o)
where in this expression L pertains to terms for which (X ), Y( , Z( )

j ( )
is an 5-bend, and Lk pertains to terms for which (1: ° , Y(°), z(°)) is an

Iii-bond. The coordinate system is now chosen such that (X(°), Y(°), 2(0)) =

(1,1,1), in which case

L3 , E (In) ,Yo) , 2(3)) (50)

and clearly Lo - 3. However, (X(°), Yb), 2(0)) - (1,1,1) may still be

an «lg-bond or an §;bond.

C . Probability matrix.

Again as in the polymethylene chain, the sequence of bond-pairs
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Figure 8. The submatrix of transition probabilities PR. The

column and row headings (state) are explained in

Table III e
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25 26 27 2829 3031 32 33311 35 36373839110 111112 133111-1115 116117118
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A

 
Figure 9. The submatrix of transition probabilities PM' The

column and row headings are explained in Table III.



36

(565,), @5132), ... , (§n_1hh) is considered. (Stick and ball models

will be found helpful in the following considerations.) The coordinates

“R4 may then have

the sets of components (1,-1,-1), (-1,1,-1), and (1,1,1), with probabilities

may be chosen such that 50 . (1,1,1), £11 - (1,1,-1).

0, B, and A, corresponding to their respective conformations. In Figure 8

it is seen that these sets correspond to transitions from state(r_o_w) 1 to

states (columns) 11, 5, and 6, respectively. Now, each of these events

is treated as though it had occurred, and the subsequent possibilities

are considered. For example, if It, 8 (1,-1,-1) has occurred, corres-

ponding to the transition state (£9!) 1 to state (columnH-t with

probability C (Figure 8), as just discussed, then, the next transition

originates from state (32!) h, and may proceed to states (columns) 13,

1h, and 15, with probabilities (conformations) b, a, and 0, respectively.

The next transitions then originate from states (39313) 13, 1b, and 15,

depending on the outcomes of proceeding trials. Now, 4!} may also have

1

the sets (1,-1,1), (~1,1,1) as well as the set (1,1,-1), given above.

Therefore, these possibilities and all possible subsequent events must

also be considered. This procedure is then continued until the submatrix

of transition probabilities P Figure 8, has been obtained. It is thenR’

discovered that all subsequent bond pairs return to some previously

considered state of Figure 8.

Now, the bond with coordinates (1,1 ,1) may also be any-bond.

By methods analogous to those given above, the case where No - (1,1,1)

leads to the submatrix PM given in Figure 9. The two submatrices are

then combined to give (51), which describes all possible transitions.

13118th ' (S1)
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The matrix of transition probabilities P.Figure 10.
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The submatrices P and P are given in Figures 8, and 9, respectively.
B M

Table III. The forty-eight states of the isotactic vinylic chain

 

 

State U3 U3 +1 State U3 U3 +1

1 £3 ll 13 13 3.11 g; 12

2 £3 33 12 ”1 £41 5 1a

3 g3 g5 11 15 3-11 )5-3

11 1113 3-11 16 3-12 5 11

5 1413 5-12 17 5-12 :1 1a

6 M13 B, 3 18 3-12 g-B

7 £112 3-13 19 3-13 1:1 1a

8 M12 3-11 20 lit-13 £1 11

9 9112 B 3 21 3-13 5-3

10 £11 3-»13 22 g-B 3-13.

11 £1, an; 23 21-3 £43

12 3111 B, 3 2h u-B 11-11        
 

The remaining twenty-four states are numbered from twenty-five to

forty-eight in the order above and with 3‘; and g interchanged.

However, for the purpose of calculating the mean square length,

), x(a) ,, Y<a + 2(3),
the bond components are not needed. Since [1(3)

only the sum of the components is neededo Therefore, the 118 x 118

matrix of transition probabilities (S1), is more elaborate than need

be, and by a collapsing process similar to that used in the polymethylene

chain, (51) may be collapsed to Figure 10, corresponding to the sequence

of pairs (U001), (U1U2), (0203), , (U ). Again each memberU
n-1 n

of this sequence is a state in the sense of the Markov formalism and
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and the sequence of pairs forms a Markov chain with matrix of transition

probabilities given in Figure 10. Thesiates are relabeled from one to

sixteen, and the relationship of the original to the relabeled states is

given in Table IV.

Table IV. Relation of the relabeled states to the original

states for the isotactic vinylic chain.

 

 

 

 

Relabeled State Numbers Original State Number

Number Relabeled State

1 3 1 1, 2, 3 ‘

2 -1 1 13, 17, 20

3 -1 1 1h, 16, 19

h -1 -3 15, 18, 21

S -3 -1 22, 23, 2h

6 1 -1 h, 7, 11

7 1.1 5, 8,10

8 13 6, 9, 12    
The.remaining eight states (states nine through sixteen) are

obtained from the original states twenty five through forty-

eight by a similar scheme in analogous order.

The matrix of transition probabilities P in terms of the relabeled

sixteen states is given in Figure 10. The states one through eight

and nine through sixteen constitute "closed sets"27. That is, from any

of the states one through eight it is not possible, regardless of the

number of "steps" taken, to end up in any of the states nine through

sixteen and vice versa.
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D. Calculation of Mean Square End-to-End Length from the Probability

Matrix.

From the selection of U(o) as (1+1+1) viz., 3, and from (50) it

follows that if the k-th power of P is denoted by Pk and its matrix

(R)
elements by pij , then

(k) (k) (k) (k) (k) (k) (k) (k)

Lk ' 399,9 ' (99,10 + p9,11 + p9,12)'3P9,13 + (P9,1h + p9,15+ p9,16)

(52)

and

L, . 312$?) - (p33) + pg) + p353) sag.) + egg) + p33) + :13): )
53

For convenience, the complete matrix of transition probabilities

may be denoted by

  

o s o 6”

P _ T o o o (Sh)

o o o v

_p 0 U 9,

PR 0'7

s
(55)

o P

L. M.  

Since PR and PM constitute closed sets, they may be considered separately

(see reference 27, p. 3h9). Only the leading term will be calculated

for the isotactic case (this is an excellent approximation for large n).

A straightforward application of the method of calculation used in the

polymethylene case generates matrix inverses of the form (1-ST)’1. These

inverses, however, do not exist, since det (1-ST) a O, and the calculation
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gives a leading element of the form 0/0.

To avoid this difficulty it is necessary to set

0 K O S'

P - + (56)

K O T' O

whereflK is the four by four matrix all of whose elements are 1/11 (see

Appendix 0), and s' - s - x, and T' - T - K. Observing that Kn - K

for all n; that the sum of the elements of any row or column of S' or T'

is equal to zero; and that this null property is preserved for any

product matrix from T' and 5'; it is found that

K O S'T' O

P; e PRPR - + (57)

O K O T'S'

1— ‘ r. "‘

0 K O S'T'S'

pa . PEP; - +
(58)

K 0 T'S'T' 0
L. _ L.

    

and so on. P; is, of course, the unit matrix of order eight

As before, L is given by (53). The K matrix gives 23 contribution to

3

L3. Therefore, for purposes of computing ER one may'write

O S' S'T' 0

Pfi-‘l’ Pi. , Pfi- , 000 (59)

T' 0 O S'T'

and, in general

0 Q(3)1

Pg - for 3 odd, (60)
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and

,
Qm 0

Pg - for 3 even,

0 Ql(j)

 he

and the meaning of Q(j), and Q'(j) is clear from the context. For

(61)

1

all positive 3, Q(i (and Q'(j)) has the property that each of its rows

and columns sums to zero. Denoting the elements of Q(j)

becomes

L. - w [as - «as us +11%:

Since

( ) ( ) ( ) (')

Q13 ”11% ”1113 '“qfi-J

it follows that

Lj-(-1)3hq$~;‘) , “£0 ,and Lo=3

Therefore

n-1 ( )

- - 3n + 2 Z n-j LE. 3.. j

n-1 ,

- 3n + 21 {-1)3(n-j) q§¥)

j:

The leading term of the summation in (66) is

n-1 .

m' - z (-1)3nq1($)

3'1

which is the element in row one and column one of the matrix sum

n-1

)[ml . n z (_1)j q(j

3-1

by qég), (53)

(62)

(63)

(6h)

(65)

(66)

(67)

(68)
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01'

M' - n(-S' + S'T' - S'T'S' + ...) (69)

where the convergent finite series (68) has been replaced by an

infinite series (69). Now,

1

3M'-s'+9r-sww'+u. um

and upon solving for M' , one secures

H' I n(1-S'T')'1(S'T'-S‘) (72)

The needed inverse now does exist. The construction of n1'1 is a

straightforward but laborious task (APPENDIX D). After m1'1 is found

ER follows readily.* One obtains

E - (n/D) [8(AB+AC+BC)(ab+ac+bc) + h(Ab+Ac+Bc)(Ab+Ac+Cb) + A] (73)

where

D - (ab+ac+bc)(B3+BC+Cz) + (Ab+Ac+Bc)(b3+bc+cz) (7h)

1: A better approximation to ER can be found in principle by adding to

the ER given by (h?) the element of row one and column one of

16 S'T'[(1-S'T')3]’1 (S'-1) + 8(1-S?T')‘15' (this corresponds to the

second term of Equation 27, because of the null property of (S')°°

there is no third term). The resulting ER in that case would be of

the order of approximation that corresponds to the one for the special

case of polymethylene.



A - 2 (A3+BZ+02)(a3+b=+o2) - 2(Aa+Bb+Cc)2

+ (Ab-Ba)(Bb+Cb-3Bc)

+ (Ac-Ca)(Bc+Cc-30b) (75)

+ (Be-ob)(Bb-Ce+2Be-2Cb)

+ 2(BCa3 - Aabc)

If A-a, B-C-b-c-1/2(1-a), then A-0, and the remaining terms of (75)

reduce readily to the leading term of (38).

Comparison of PM with PR shows that EH can be obtained from ER

by making the following interchanges in ER; A with a, B with c, and

c with b. With EM and ER known, E” follows from (h9), and one obtains

h" _ 1m (1- oz)(1-2'.3) + 20322-2( 014 + A4 . 1.94 3.3..

(1- 03)(B2 + BC + ca) + (1-22)(b3 + be + a?) 3

where

0.2 . 8.2 ... b2 4. c2

22 . A2 ... Ba ... cz

ox“ - (la-Bc)(a‘-bc)

p‘ - (anACXba-ac)

8“ - (Ca-ABXcz-ab)

and within the curly brackets, the mean square length is scaled by the

factor 12/3.
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IV. CONCLUSIONS AND DISCUSSIONS

A. General.

Applications of equations (39) and (7o) are restricted to polymer

molecules whose conformations are undisturbed by interactions with

solvent molecules. Thus the equations are useful for polymers only in

the ”unperturbed" state or in bu1k(no solvent). Solvent interactions

with the polymer molecules cause conformational changes which result

in eXpansion of the polymer coil. In addition, excluded volume of a

polymer becomes appreciable with resulting changes in the mean square

dimensions.

However, in analogy with the Boyle point of a gas, real polymer

molecules can be investigated in an "ideal solution” where the solvent—

polymer interactions, which cause eXpansion, are precisely counterbalanced

by the intramolecular interactions which favor contraction of the chain.

Under these conditions, called the "unperturbed” state, the polymer

coils in a ”random flight" manner, the excluded volume is gero, and the

chain dimensions are minimal. The exact temperature at which the

unperturbed state Obtains is designated as the Flory 699-temperature.

According to Flory this condition also obtains in the ”melt" state of

polymer molecules.

The crystallization of polymer molecules involves the minimization

of the potential energy due to rotational barriers in.the chain backbone.

Calculations by P. J. Florth indicate that near neighbor intramolecular

forces are of paramount importance in determining crystal structure.

If this is true, then the preferred conformation for a polymer molecule
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in its unperturbed state should also tend towards the crystalline state

conformation. The recent infrared spectral studies of M. Takeda and

coworkers35 on isotactic polystyrene indicates that the helical

crystalline state structure of isotactic polystyrene is partially

retained in solution.

Polymer molecules, however, are unable to crystallize in the

continuous and orderly manner of small molecules. Since the molecules

are so large it becomes extremely difficult for long segments of

different polymer molecules to become extensively ordered (within

experimentally feasible time limits) such that perfect crystals are

obtained. Crystalline polymers, as normally obtained, contain

extensive amorphous regions of imperfect order intermixed with crystallites

of high order. This L'picture" of polymer crystallization has recently

come under attack, and the alternate ”picture“ of considering the

amorphous character as resulting from exaggerated lattice defects is

favored by some authors36. However, at the=Ortemperature the polymer

molecules are in the liquid state and.the difficulty of aligning many

macromolecules disappears. Thus, all bonds of a particular macromolecule

are free to tend towards their equilibrium positions as are indicated by

their crystalline state conformations.

The fbllowing restrictions apply to the equations derived in (II)

and (III);

1. The polymer chains must be long (large n), linear macromolecules

of regular head-to-tail structure.

2. The valence angle has been restricted to the tetrahedral valence

angle.

3. The "excluded volume" effect has not been taken into account
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(see reference 12, chap. 12). That is, the chain is allowed to return

to positions in space which it has already occupied, and more seriously,

also to positions which are excluded because of intramolecular repulsions.

However, this difficulty essentially disappears at the Flory-Oatemp-

erature.

h. The bonds are assumed to be statistically independent. This

means that the conformation of any given bond is got influenced by the

conformations of neighboring bonds.

5. Any three successive bonds are restricted to the trans or

one of the two gauche conformations.

B. Polymethylene

It is desired to investigate the behavior of Equation (39) when

only the leading term is considered. To be specific, the calculation

will be performed for the case corresponding to free rotation, a - 1/3.

Equation (39) .ecomes

52'. (2n - 3/2) 13 (77)

In Table V, the magnitude of the error involved in considering

only the leading term of (77) is indicated in column three. It is

seen that the error becomes very small with increasing n. Since even

low molecular weight polymers normally have n many times greater than

one hundred, it is seen that the leading term eXpression is an excellent

approximation.



118

TABLE V. Magnitude of error in the leading term approximation.

 

 

 

    
 

..2

n 52/1: 2n;;5(: [18) x 100

h /.Lo

5 8.5 17.5

10 18.5 8.1

20 38.5 3.9 L

50 98.5 1.5 “

100 198.5 .7

In Figure 11, the leading term (large n) of (76) is plotted LT- 
against increasing values of (a). For the case of free rotation a a 1/3

and (BE/n13) - 2.00. At a - .8, (hi/n12) - 1o.o, which is the experimen-

tally determined value of (FE/n13) for polymethylene chains in their

"unperturbed”states. The value (hi/n13) - 10.6 was calculated from

second virial coefficient data by'w. R. Krigbaum29 from the experimental

results of Q. A. Trementozzih2.

For linear macromolecules the conformational potential energy is

given by:

V(¢o. ¢1, .... ¢n_1). (78)

That is, the conformational potential energy is a simultaneous

function of all the rotational angles. If the bonds are statisti-

cally independent, the potential energy may be eXpressed as the sum ofthe

individual potential energies:

n-1

W.» 1251, 15.4) - 130 mi). (79)



\
”
;
J

10.6

2
n1o

.67
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Figure 11.. Plot of hz/nl: versus (a).
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‘With this simplification, the probability (a) of occurrence of

the trans position is given‘by:23’ 30

a - [1 + 2e "NJ/RT)“1 (80)

where AE is the energy difference between.the trans and gauche

conformations. For a - .8, R - 2 cal. mole'ldeg:1, and T - 363°K,

the-Obtemperature for polymethylene, the energy difference between the

trans and gauche conformation is calculated to be: AE - 1.51 kcal. mole-1.

This value is of the correct order of magnitude since from small

30 to be approximately .8 kcal. mole'1.

29

molecules, AE has been estimated

Since the value of (hi/n13) - 10.6 reported by Krigbaum was calculated

from measurements made in a good solvent, the results obtained are only

approximate. However, the result a - .8 does indicate considerable

retention<3f crystalline state structure in the unperturbed state for

the case of polymethylene. For statistically independent bonds this

implies that eight out of every ten bonds are in the trans conformation

corresponding to the planar zigzag crystalline structure.

Equation (39) may also be expressed in terms of average rotational

angles by the following considerations. The average of the cosine of

the rotational angle (¢), where (¢) is measured from the trans position

(see Figure 3), is

cos y - a cos (0°) + b cos (120°) + b cos (2h0°), and (81)

Era—F'- a sin (0°) + b sin (120°) + b sin (2L10°) - 0. (82)

Since b - (1/2)(1-a), Equation (81) becomes

cos - 2353—1 , or (83)
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a - 2 0°83¢ + 1 (8’4)

Substitute (8h) into (39). The leading term eXpression then becomes:

 

 

32.2.12 “6°”? (85)

1+-cos¢

Utilizing a rotational matrix approach, H. Benoit;31 and 0.B.

Ptitsyn and M. V. Volkenstein32 obtained the eXpression

fig . n12 1 + cos(nd6) 1 + cos Z (86)
 

0 1 - cos(wd09 1 _ Egg—a

When'6-- 109.3°, i.e., the tetrahedral valence angle, (86) becomes the

same as (85). Comparison of (86), (85), and the leading term of (39),

shows that the expression for 57' corrected for any angle of (09, and

expressed as a function of the probability (a) becomes:

h: : n13 1 + cos («~69 1 + 3a (87)

3 1 - cos (nae) 1 - a

Since polymethylene in the crystalline state has a valence angle (09

of 111°, a better approximation of (a) and AE can be obtained by (87).

In this case a - .77, and AE - 1.38 kcal. mole‘l. (The number of

”significant" figures retained do not imply degree of accuracy, but are

only useful for comparative purposes.)

In a recent publication (publiShed after the completion of this

calculation) R. P. Smith25 has shown the rotational matrix method and

the method of transition probabilities ileads to identical equations

for the simple polymethylene-type chain. By expressing cos a and sin 6

in a manner analogous to (81) and (82) he obtained by a.rotational matrix
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approach, the expression

 

2

h? - “3° (2 + 6“) -3/2 " —————8(3° ’1) 12 (88)

3 (1 - a) 3 (1 - a)2 °

which by appropriate rearrangement is found to be exactly_the same as

(39).

C. Isotactic Macromolecules.

As previously state , isotactic polymers are more complex in that

two types of bond constitute the repeating mer of the chain. This type

of molecule has periodicity two and requires four independent parameters

to describe the chain.

Both isotactic polystyrene and isotactic polypr0pylene crystallize

in a 31 helical structure37; a Chain where trans (a) and gauche (B)

conformations alternate. If there is a strong tendency to retain flnis

structure in the unperturbed state, then the assumption may be made

B . a, and A - C - b - c. The calculated.values of (h?/ n13) using

Equation (76) for various assumed values of the probabilities are given

in column four of Table VI. This case will be discussed later relative

to pertinent experimental data.

An additional regular conformational chain of interest is one

consisting of rotations of each bond in the same direction into alternate

gauche positions. In this case, the assumption is made C - b, and

all other probabilities are assumed equal. This type of conformation

generates a bl helix and results in a tightly packed polymer chain.

Polyoxymethylene has been shown to possess a structure of this type.

Although the unperturbed dimensions of this polymer have not been

measured it is possible that its dimensions could be less than that
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calculated for the free rotation case, i.e., less than 2nlg. The values

calculated according to Equation (76) for a chain of this nature is

given in column five of Table VI. It may be noted that the chain

dimensions eXpand as more trans conformations are introduced or if

high retention of the gauche conformations obtains the chain

dimensions pass through a minimum which is less than 2n12.

Column six of Table VI summarizes increasing values of (fig/n13)

for increasing values B - b. The extreme case B - b - 1, corresponds

to a chain which follows a path as described by the "chair" form of

cyclohexane. Since real polymer chains can not occupy any position

more than once, this situation is obviously unrealistic in terms of any

physical model. However, it does serve as a useful check on the behavior

of the derived equation. Since, the equation, if properly derived (does

not contain computational errors), must predict (FE/n13) 4’0, as B -

b‘+'1.

For macromolecules which tend to crystallize in a planar zigzag

conformation (21 helix37), the perfect crystalline state may be

characterized by'A - a - 1, corresponding to an all trans sequence of

bonds. If there is a strong tendency to retain this structure in the

unperturbed state, then the assumption.may be made A - a, and B - C -

b - c. The calculated values of (ha/n13) using Equation (76) for

various assumed values of the probabilities are given in column three

of Table VI. The polymethylene chain is an example of a polymer

chain which rigorously corresponds to the above mentioned assumptions.

This chain was discussed in the preceding section.

Ball and stick models of the structures corresponding to A - a - 1,

all trans; B - a - 1, gauche-trans, and, C - b = 1, gauche-gauche,
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clearly demonstrate that the mean square end-to-end length Should, for

. the same number of bonds, and for the same value of the respective

parameters, decrease in the same order as is indicated in Table VI.

Comparison of columns three, four, and five shows that the mean

square lengths as calculated by the derived equation, i.e., (76), does

predict this relative behavior.

Table VI. Variation of:mean.square length with change in

magnitude of probabilities.

 

 

 

 

 
  

 

 

 

 

 

 

 

(Hz/n13)

2.. A.. Baa Cdb B-b

Jr’r’ 47'——' Bac-b-c A-Ceb-c AsB-a-c A-C-a-c

0.0 0.5 .67+ 1.99* 8.33*:] 8.67

0.2 0.8 1.38 1.96 2.73 2.29

1/3* 1/3 2.00 2.00 2.00 2.00

0.8 0.3 2.85 2.12 1.88 1.78

0.6 0.2 7.18 2.96 1.81 1.08

0.8 0.1 11.8 5.96 3.10 0.87

0.88 .08 18.8 7.55 8.61 0.38

0.9 .05 28.7 12.88 6.19 0.23       
ifCorresponds to a tetrahedral macromolecule with free rotations.

37
+Indicative of macromolecules which tend to form 21 helices .

1Indicative of macromolecules which tend to form 31 helices37.

i 37
Indicative of macromolecules which tend to form h1 helices .
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There are only a few measured unperturbed dimensions reported

for isotactic polymers,

for the atactic configuration.

since most of the data in the literature is

In Table VII the experimental data

of J. B. Kinsinger and R. A.Vbssling are summarized for atactic and

isotactic polypropylene.

Table VII. Polypropylene at the Flory thetaCGQtemperatures.
39.80.83

 

 

 

1

Config- Ghsolvent are) 1"19:10“ 11:11 (figflflyz 613/11},2 (EV/PWé 83/111?

uration X 1011 x 1011

atactic 1-chloro- 78 18.2 0.50 875 868 2.02 8.15

naphtha-

lene

atactic cyclo- 92 17.2 0.50 875 820 1.96 7.67

hexanone

atactic phenyl- 153.8 12.0 0.50 875 571 1.75 6.12

ether

isotactic phenyl- 185.2 16.2 0.50 875 778 1.93 7.88

. ether          
15 is taken as 2.1 x 1021

'0'

+ [7‘] - 101‘

As a measure of "stiffness” of the polymer chain the unperturbed

polymer dimensions (HE) are frequently compared with the free rotation

dimensions (5%). The square root of the ratio of unperturbed to freely

rotating dimensions are given in column eight;

order of increasing temperature.

in column nine in

It is seen that the unperturbed

dimensions of the atactic polymer decrease with increasing temperature.

This is consistent with an exponential dependence of the probabilities

as is indicated in the discussion of the polymethylene chain.



The retention of crystalline state structure for isotactic

polypropylene may be estimated from the experimentally determined

unperturbed dimensions given in Table VII. Since isotactic polypropylene

has a 31 helical structure corresponding to a trans (a)-gauche (B)

sequence of bond conformations, from column four of Table VI, one has

B - a - .88, and

A - C = b a c - .08

This implies approximately 80% retention of crystalline state conformation

in the unperturbed state. From the data of W. R. Krigbaumy1 et al. for

isotactic polystyrene, the quantities

B = a - .91

A e C u b I c - .OhS

are obtained, indicating an even greater degree of retention of crystal-

line state structure in the unperturbed state.

It is desired to investigate the error involved in assuming

A - c - b - c. For this purpose, (HY/n13) is calculated for B - a - .88

but for C - c - O, and A - b - .16. This represents a maximum is

deviation from the equality A - C - b - c. For these values of the

parameters the result is obtained (fig/n13) ' 7.07, in contrast to the

value (Egynlg) ' 7.88 for the case where A - C a b - c.

Another source of error is the assumption ofthe tetrahedral valence

33 is
angle. Actually the valence angle for isotactic polypropylene

69-- 118'), and for isotactic polystyrene CS - 116‘) as measured by

X-ray diffraction in the crystalline state. An indication of how these

deviations from the tetrahedral valence angle effect the calculation

can be obtained by observing the behavior of the polymethylene chain
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as-e-increases. This may be accomplished.by utilizing Equation (87)

which applies to polymethylene chains with constant bond length, but

arbitrary bond angle. For-9-- 11h°, Equation (87) becomes

(HZ/n13) - 2:32“ :33) (89)
) - a

Comparison of (89) with the equation for the tetrahedral valence angle

viz.,

 (EV/n13) - 2 (1 * 3a) , (9o)

3(1 - 8)

indicates that the ”retention of crystallinity" as calculated with the

assumption of tetrahedral valence angle, is probably too large. From

these considerations it is seen that the calculation of "retention of

crystallinity” is approximate in nature.

If the rotational angle (¢) is defined such that 0 - 0, for the

trans conformations, and (0) is measured counterclockwise (see figures

6 and 7), then the mean square length may be expressed in terms of

average angles as follows

cos ¢MRM - a cos (0°) + b cos (280°) + c cos (120°) . a - 1/2 (b + c)

(91)

sin pMRM I a sin 0° + b sin (2h0°) + 0 sin (120°) .‘i;: (c - b),

(92)

and further

EBE‘ZhMR - A - 1/2 (B + c) , (93)

and

mm J; (B - C) (98)
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By means of (91), (92), (93), and (98), and the stochastic relationships

A + B + C - a + b + c - 1, the mean square length (78), may also be

expressed as a function of average angles. With this modification,

the mean square length’equation (76), then applies to isotactic vinylic

chains with constant tetrahedral valence angle (0) and statistically

independent bonds, but with arbitrary (0). That is, the chain is no

longer restricted to staggered conformations.

D. Additional Structural Problems.

The other important configurational chain of regular asymmetric

order is the syndiotactic-type vinyl polymer chain. As previously

stated, this chain is composed of two mer units (four chain bonds) with

the two pseudo asymmetric centers in alternate d and 1 configuration.

‘With these structural restrictions this type chain has periodicity four

and thus requires a separate solution.

The matrix of transition probabilities has been derived for this

type chain but the solution has not been completed. The process of

solution should be identical to that for the isotactic chain, but

more laborious to perform.

In the case of syndiotactic macromolecules the four different

d,

matrix of transition probabilities for a Mbrkov chain composed of the

types of'bond may be denoted by R' Md’ R1, M1. The "collapsed”

above indicated sequence units is:
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Ad

C1

I)1

Ba

P ' D (95)
1

Bo

C1

A8

where

.- T )- q

C B A o c b a

B A C o b a c

A- B.

doacs’d. b.

(1000) L1 0_

'0 B c A" '0 b c a7 (96)

Cl'OCAB D1.0cab

OABC Oabc

1000‘ L1000     

The states of (95) are numbered 1 through 32, and are classified in

Tab10,VIII.



Table VIII.
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Classification of states of the "collapsed"

matrix of transition probabilities for a

syndiotactic chain.

 

 

     

State Uj Uj+1 State Uj Uj+1

1 Rde 3 1 17 Mle 3 1

2 Rdul -1 1 18 Mlad -1 1

3 11de -1 1 19 Mlnd -1 1

8 11de -1-3 20 M112d -1-3

5 1“!de -3-1 21 Rde -3-1

6 Mde 1-1 22 Rde 1-1

7 ‘Mde 1-1 23 Rde 1-1

8 MdR1 1 3 28 1%de 1 3

9 . as 31 25 Ma. 31

. 10 RlMl -1 1 26 Mdal -1 1

11 R1M1 -1 1 27 1“!de -1 1

12 R1111 -1-3 28 14de -1-3

13 11le -3-1 29 R1711 -3-1

1h Mle 1-1 30 RlMl 1-1

15 Mle 1-1 31 RIMl 1-1

16 Mle 1 3 32 RlMl 1 3

  
Again, the limiting value matrix K must be subtracted from each of the

four by four matrices in order to avoid obtaining inverses of an

indeterminate form. The solution then follows in a manner analogous

to that given for isotactic macromolecules.
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EVALUATION OF

. Determinant of (1+3)

One has that

det (1+5) -

Adding rows two, three and four

det (1+3) .

 

 

O

O

1

2

O

O

1
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THE 1,1-ELEMENT 0F (1+3)‘1L

b b

1+b a

a 1+b

0 0

2 _2

1+b a

a 1+b

0 0

 
to row one,

2

b

b

1  
Adding column two and three to column four,

det (1+3) 3

Multiplying thefburth row

one, and exPanding by the method of pivotal elements yields

det (1+5) -

det (1+3) - 3(1-a)2

 

 

0

0

0.

1

2 - 2

1+b a

a 1+b

0 0

2 2'

1+b a

a 1+b

0 0

6

2

2

1  

(i)

(ii)

(iii)

by 2 and subtracting from row

8

’2

2

 

--8

 

1 “1 1

1+b a 1

a 1+b 1

 

(iV)

(V)



Adjoint of (1+s)1,1

One has that

adj (1+5) - adj

65

 

~1 b b

0 1+b a

0 a 1+b

1 0 0

1
a

b

b

1

 d
The 1,1-element of the above adjoint matrix is

adj (1+S)1’1 .

 

1+b a b

(-1)2 a 1+b b

O O 1

=(3/h)(3+a)(1-a)

Combining (v) and (viii), one obtains

-1

(1+S)1,1 -

31/14

8n (1+3);i -

adj (1+5)1,1
 

det (1+s)'

(3+a)

(1-a)

 

2n (3+3)
 

(1-a)

and

 

- (1+b)2-a2

(v1)

(vii)

(viii)

(ix)

(x)

(xi)
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APPENDIX B

EVALUATION OF THE 1,1-ELEMENT 0F [(1+s)2]'ls

Let [(1+s)2]-1s - v - TS, where

T = [WSW]:1 (1)

Since the 1,1-element is desired, then by matrix multiplication:

W11 ' tll 311 + t12 321 + t13 331 + tl4 341

(ii)

- 0 + 0 + 0 + t1,

Thus one needs to obtain only the (1,8)-element of [(1+S)2]’1.

Now, det (1+5)2 - det (1+8) det (1+3) - [det(1+s)]2. But det (1+s)

has already been evaluated, hence

det (1+8)2 = [3(1-a)2]2. (iii)

Also,

(1+b)2-a2 ab-b(1+b) ab-b(1+b) 2+5a2-7a-sb2

b(1+b)-ab (1+b)+b2-a(1+b) aa-a-bz ab-b(1+6)

adj(1+S)-

b(1+b)-ab -a-b2+a2 (1+b)+b2-a(1+b) ab-b(1+6)

L:-.(1+h)3+az b(1+b)-ab -ab+b(1+b) (1+b)2-a2   
The 1,8-element of [adj(1+S)]2 is

1:14 - [(1+b)2-a2]2 + [ab-b(1+b)]2 + [ab-8(1+b)]2 + [(1+b)2-a2][1+5a2-7a-5b2]

= [(1+b)2-a3][(1+b)2-a2+2+5a2-7a-5b2] + 2[ab-b(1+b‘-]2 (iv)

- 2(3/8)2[(1-a)‘-(3+a)(Ea-1)]. (V)
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From (iii) and (v) one obtains

8[(1+s)2]'~ls . gig—3.}:— - 1; (”‘18:“) , (vi)
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I

APPENDIX 0

EVALUATION 01‘ ms 1,1-mr 0F 5“"1 [(1+s)3]"1

Since Sn+1 is not easily obtained for arbitrary n, the approximation

33% s"+1 - 3(a) - K (i)

is made, where K is a four by feur matrix all of whose elements are

equal to 1/8.

The isotactic chain has periodicity two. Markovian.processes of

periodicity two have as their limiting value (see reference 27, page

361)

1/8 if in s

(n2) ,

.1138 3k 0 (11)

otherwise.

Thus one immediately obtains

(a9 0 1/8 0 K

p . .. for n odd, and (iii)

1/8 0 K 0

1/8 0 K 0

a a for n even. (17)

0 1/8 0 K

Therefore

9,“ Sn+1 - K for all n. (v)

The.1,1-element of s(°°) [(1+s)"1‘]"1 - [1/8][(1+S)3]"1, is then 1/8

times the sum of the first column of [(1+s)=]"1.

Since

[1/h][(1+S)‘]‘1 - (1/81 ‘d “*S” . (vi)
et +
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the problem reduces to securing the first column of adj (1+s)2.

If the elements of adj (1+3) are denoted by 313, then the sum of

the first column of adj (1+5)2 is

‘dJ (1+S)3" ' 311 + 312 321 + 313 331 + 314 341 +

321 311 + 322 321 + 323 331 * 324 341 *

(vii)

331 311 * 332 321 * 333 331 * 334 341 +

341 311 + 342 321 + 343 331 + 344 341

' 311 (311 + 321 + 331 + 341) +

321 (312 + 322 + 332 + 342) +

331 (313 + 323 + 333 * 343) +

341 (314 + 324 + 334 + 344)

(viii)

' 311 31 + 321 32 + 331 33 * 341 34 (ix)

When the indicated summations are performed, one obtains

31 T 32 ' 33 ' 34 ' 6b2 (1)

Therefore (ix) becomes

‘d3 (1+5)? ' 6b2 (311 + 321 + 331 + 341) (Xi)

and when this sum.is evaluated, one obtains

adj (1+5): - 683-682 - 6284 - 9/8 (1-a)‘ (xii)

The det(1+S) has already been calculated (A-v), and therefore

det (1+5)a - [3(1-a)3]2 - 9(1-a)4 (xiii)

Substitution of (xii) and (xiii) gives then

s(°°)[(1+s)2]-1l - 1/16 , (xiv)
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and finally

8 511+].

[(1+S ")2] 1 4’ 1/2 (IV)
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APPENDIX D

EVALUATION OF THE 1,1-ELENENT 0F (1-s'T')-1(s'T'-s')

Needed are:

(a) First row of (1-S'T')‘1

(b) First column of (S'T'-S')

Now

where A' - A -1/8, etc.

SIT...

Further,

(1-51r1)'-

 

 

   

 

:1/8 C' B' A') —-1/8 c' b' an

-1/8 8' A' C' -1/8 b' a' c'

S'T' - -1/8 A' 0' B' x -1/8 a' c' b' (i)

L3/8 -1/8 -1/8 -1/8 J L 3/8 -1/8 -1/8 -1/8 J

Matrix multiplication.yields:

PA -1/8 Cb + Ba -1/8 Ca + Bo -1/8 Cc + Bb -1/8-)

C -1/8 Bb + Aa,-1/8 Ba + Ac -1/8 Bc + Ab -1/8 .

B -1/8 Ab + Ca -1/8 Aa + Co -1/8 Ac + Cb -1/8 (11)

L.-1/8 c -1/8 b -1/8 a -1/8 ‘7

The first column of S'T'-S' is therefore:

A -1/8 + 1/8 - A

C -1/8 + 1/8 - C

B -1/8 + 1/8 - B (iii)

-1/8 - 3/8 - -1

-1-(Ae1/8) -(Cb + 3. -1/8) -(Ca + Bc -1/8) +(0c~+ 3b -1/8)1

-(C-1/8)‘ 1-(Bb + Aa -1/8) -(Ba + Ac -1/8) -(Bc + Ab -1/8)

-(B-1/8) —(Ab + Ca -1/8) 1-(Aa + Co -1/8) -(Ac + Cb -1/8)

L + 1/8 -(c -1/8) -(b -1/8) 1-(a -1/8) 1  
fiv) I
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To obtain the determinant of (1-S'T'), in order,one may:

1. Add columns one, two and three to column four.

2. Add rows two, three, and four to row one.

3. subtract row one from row four.

In this manner one obtains

‘ -8 -1 -1 -1. \

80-1 (Bb + Aa -1)-1/8 Ba + Ac -1/8 -21

88-1 Ab + Ca -1/8 (Aa + Cc-1)-1/8 -1

-8 8c -1 8b -1 -8

(v)

8. Subtract column four from column one, and multiply row four

det (1-S'T') - 1/16

  

by 1/8 and column one by 1/8 and obtain

1 0 -1 -1 -8

C (Bb + Aa -1)-1/8 Ba + Ac —1/8 -1

det (1-S‘T') -

B Ab + Ca -1/8 (Aa + Cc -1)-1/8 -1

  )0 c b 0

(vi)

5. Expand (vi) by minors of the.first row

6. Let 1 - (A + B + C)(a + b + c) in the expression obtained

from (vi)

7. Rearrange and Obtain

det (1-S'T') . 2[(1-0‘2)(Bz + BC + 02) + (1-112)(b2 + be + 62)]

(vii)

where:

02-a3+b2+c2
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The adjoint numerators standing in the first row of Adj (1-S‘T') are:

(Bb + Aa -1)-1/8 Ba + \c -1/8 Bc + Ab -1/8‘

[1,1] - (-1) Ab + Ba .1/8 (Aa + Cc -1)-1/8 Ac + Cb -1/8

  c -1/8 b -1/8 (a-1) -1/8

(viii)

Cb + Ba -1/8 Ca + Bo -1/8 Co + Bb -1/8‘

[1,2] ' (+1) Ab + Ca -1/8 (Aa + Ca -1) -1/8 Ac + Cb -1/8

  c -1/8 b -1/8 (a-1) -1/8.‘

(ix)

Cb + Ba -1/8 Ca + Bo -1/8 Co + Bb -1/8‘

[1,3] I (-1) (Bb + As -1) -1/8 Ba + Ac -1/8 Bc + Ab -1/8

  
c -1/8 b -1/8 (a-1) -1/8

(I)

Cb + Ba -1/8 Ca + Bo -1/8 Co + Bb -1/8-

[1,8] - (+1) (Bb + Aa -1) -1/8 Ba + Ac -1/8 Bc + Ab -1/8

Ab + Ca -1/8 (Aa + Co -1) -1/8 Ac + Cb -1/8  J
(xi)

Adding columns one and two to columns three in each of the above, one

obtains:

(Bb + Aa -1) -1/8 Ba + Ac -1/8 -c -3/8‘

[1,1] . (-1) Ab + Ba -1/8 (Aa + Ce -1) -1/8 -B -3/8

c -1/8 b -1/8 ’3/8   
'7 (xii)



[1:2] ' (+1)

[1.3] ' (-1)

[1,8] - (+1)
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’ Cb + Ba -1/8

Ab + Ca -1/8

c -1/8

Cb + Ba -1/8

(n+Aan)4m

c -1/8

Cb + Ba -1/8

(Bb + As -1) -1/8

 Ab + Ca -1/8

Ca + Bo ~1/8

(Aa + Co -1) -1/8

b -1/8

Ca + Bo -1/8

Ba + Ac -1/8

b -1/8

Ca + Bo -1/8

Ba + Ac -1/8

(Aa + Co -1) -1/8

1-AaA‘

-B -3/8

-3/8  
(xiii)

.1- A -3/8

- c -3/8

-3/8  
(xiv)

1 - A -3/8

- C -3/8

- B -3/8 4

(XV)

 

Now, multiplication of the first row of adj (1-S'T') into the first

column of (S'T'-S') gives:

A[1,1] + C[1,2] + B[1,3] - [1,8] I (A[1,1] - [1,8]) +-(C[1,2] + B[1,3]).

In detail:

A[1.1] ' (-1)

'[19h] ‘ (’1)

 1

 

(Bb + Aa -1) -1/8

Ab + Ca -1/8

Ac -(1/8)A

Cb + Ba -1/8

(Bb + As -1) -1/8

Ab + Ca -1/8

Ba + Ac -1/8

(Aa + Cc -1) -1/8

Ab -(1/8)A

Ca + Bc -1/8

Ba + Ac -1/8

(Aa + Co ~1) -1/8

-0 -3/8'"

-B ;3/h

-(3/8)A.‘ 
(xvi)

1-A3N

- c -3/L

- B we 
(xvii)



C[1,2] - (+1) C(Ab + Ca -1/8) [(Aa + Co -1) -1/8]C C(-B -3/8)

75

A Cb + Ba -1/8 Ca + Bo -1/8 1 -A -3/8

  

  

c -1/8 b -1/8 -3/8

(xviii)

Cb + Ba -1/8 Ca + Bo -1/8 1 -A -3/8

B[1,3] - (-1) B[(Bb + As -1) -1/8] 3(3. + Ac -1/8) B(-C -3/8)

c -1/8 b ~1/8 -3/8

(xix)

Combining (xvi) 4- (xvii) and (xviii) + (xix) one obtains

(-1)

(+1)

  

  

(Bb + Aa -1) -1/8 Ba + Ac -1/8 -c -3/8

Ab + 02. -1/8 (Aa + Co -1) -1/8 .13 -3/8 +

Ac + Cb + Ba -(1/8)A -1/8 Ab + Ca + Bc -Q/8)A -1/8 1-(7/8)A -3/8

(xx)

Cb + Ba -1/8 Ca + Bo -1/8 1-A-3/8

C(Ab+Ca)‘-B(Bb+Aa)+B+(1/L)(E C) C(Aa+Cc)-B(Ba->Ac)-C-(1/8)(B-C) (3/8)(B-C)

c -1/8 I b -1/8 -3/8

(xxi)

Expression (xx) will be evaluated first. The procedure is as

follows :

1.

2.

3.

8.

Multiply column three by (-1).

Add rows one and two to row three.

Multiply column one and colunn two by 3.

Add column three to column one, and add column three to

column two. This gives:
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3(Bb + As -1) +0 " 3(Ba + Ac) + C C + 3/8

(xx) I 1/9 3(Ab + Ca) + B 3(Aa + CO -1) + B B + 3/8

 
 

  

  

 
 

  

-3. (31+ 0) -3b(B + C) (3/8)A ‘+ 9k

(xxii)

3(Bb + As -1) + C 3(Ba + Ac) + C 80 + 3

I 1/12 3(Ab + Ca) + B 3(Aa + Co -1) + B 88 + 3

-c (B + C) -b (B + C) A + 3

(xxiii)

Equation (xxiii) man be split into:

3(Bb + As -1) + C 3(Ba + Ac) + C 80

- 1/12 3(Ab + Ca) + B 3(Aa + Ce -1) + B 8B -+

-c(B + C) 4b(B + C) A

(xxiv)

3(Bb + Aa -1) + C 3(Ba + Ac) + C 3

+ 1/12 3(Ab + Ca) + B 3(Aa + Co -1) + B 3

-c(B + C) -b(B + C) 3

(m)

3(Bb + Aa -1) + C 3(Ba + Ac) + C C

I 1/12 3(Ab + Ca) + B 3(Aa + Co —1) + B B

-h(B + B)c -8(B + C)b A

(mi)

3(Bb + Aa -1) + c + c(B +10) 3(Ba + Ac) + c + b(B + c) ‘ 0

+ 1/12 3(Ab + Ca) + B + c(B + c) 3(Aa + Co -1) + B + b(B + 0) 0

 -c(B + C) -b(B + C) 3

(xxvii)
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Equation (xxvi) is obtained by factoring out a 8 from column three of

(xxiv) and multiplying row three by 8. Equation (xxvii) is obtained‘

from (xxv) by subtracting row three from.row one and from row two.

The two determinants (xxvi) and (xxvii) are now evaluated in a

straightforward manner. As a consequence of the modifications performed

on them it is found.that a number of terms will cancel when (xxi) is

treated in a similar manner. The evaluation of (xxi) proceeds as

follows:

1. Multiply column one and column two by 3.

2. Subtract column three from columns one and two, and substitute

(1-A) '(3 + C) to obtain:

3(Cb + Ba) -(B + c) 3(Ca + Bo) -(B + C) (B + c)-3/8

(xxi) - 1/9 3C(Ab+Ca)-3B(Bb+Aa)+3B 3C(Aa+0c)-3B(Ba+Ac)3c (3/8)(B-C)

3c 3b -3/h

(xxiX)

 

Factor out a 3 from the third row, 1/8 from the third column:

3(Cb+Ba)-(B+C) 3(Ca+Bc)-(B+C) 8(B+C)-3

1/12 30(Ab+0a)—38(Bb+Aa)+38 3C(Aa+Cc)-3B(Ba+Ac)-3C 3(B-C)

c b -1   
(xxx)

Split (xxx) into two determinants as follows:

3(Cb + Ba) - (B + c) 3(Ca + Bc) - (B + c) 8(B + c) -3

0/130 3 (Ab + Ca) 3 (Aa + Co -1) -3

c b -1  
(xxxi)

 

 



(IMF

 

7B

 

3(Cb + Ba) -(B + c) 3(Ca + Bo) - (B + c) 8(B + c) -3

-3(Bb + As -1) -3(Ba + Ac) 3

c b -1

(xxxii)

From row two of (xxxi) subtract 3 times row three, and to row two of

(xxxii) add 3 times row three to obtain

(V12)3

(V133

3(Cb + Ba) - (B + C)

 

 

3(Ca + Bc) - (B + C) 8(B + C) -3

 

 

,3(Ab + Ca) -3c 3(aa + Co -1) -3b 0

'c b -1

(xxxiii)

3(Cb + Ba) - (B + C) 3(Ca + Bo) - (B + c) 8(B + c) -3

3(Bb + As -1)) + 3c -3(Ba + Ac) + 3b 0

c b -1

(xxxiV)

Determinants (xxxiii) and (xxxiv) are now evaluated in a straightforward

manner. ‘When determinants (xxvi),(xxvii), (xxxiii) and (xxxiv) are-

evaluated

1/8

and combined, one obtains for their sum

3(a2 - bc)(A2 + B3 + 02 - AB - AC - Bc)

+3 C (Cb + Ba) + 3 B (Ca + Bo) - 3 A (Cc + Bb + 2Aa) + 3 A

+ 9 [(A2 - Bc)(a2- be) - (Cc + Bb + 2Aa) + 1]

+ 9 [82(b2 - ac) - AB (c2 -ab) -Bb]

+ 9 [c2(.2 -ab) - Ac(b2 -ac) - Cc]

+ 8 [-AC(b -a) + 03(c - a) + B2(b - a) — AB(C - a) a'(B + 0)]

(XXXV)
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In order to obtain (xxxv) it is necessary to use the relationship.

A3 + 33 + 03 - 3ABC I A2 + B2 + C2 - AB - AC I BC (xxxvi)

By the use of (xxxvi) it is possible to obtain an expression whose

highest power terms are of the fourth power in the parameters. Further

simplifications are possible by writing E terms of this expression as

fourth power terms. This can be done by multiplying third power terms

by a + b + c I A + B + C I 1, second power terms by (a + b + c)21-

(A + B + C)(a + b + c) I 1, or (A + B + C)2 I 1, etc. The advantage

of this form is that the expression is then algebraically unique,

whereas if lower power terms occur, there are many different possible

ways to write the same expression.

When all terms are raised to the fourth power as explained above,

one obtains for the sum of (xxvi), (xxvii), (xxxiii), and (xxxiv):

3 A3(b2 + c2 + be) + cz(aa + 2b2 - 2ac — be) + B3(a2 + 2c2 -»2ab - bc)

+ AC(-c3 + b2 + 2ab + 8ac + 3bc) + AB(c2 - b2 + 8ac + 2ab + 8bc)

+ Bc(na - 2ba - 2c2 + 2ab + 2ac - bc).
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