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ABSTRACT

SOLUTION OF A LINEAR REGULATOR PROBLEM

WITH QUADRATIC PERFORMANCE INDEX AND

STATE VARIABLE CONSTRAINTS

By

Henry Stanley Mika

A direct method has been developed to obtain the optimal

linear constant control law for the linear, time invariant

regulator problem with quadratic performance index and state

variable constraints. For a scalar control and a diagonal state

weighting matrix Q, it is Shown that the constant gain matrix

K can be obtained without solving the n(n+l)/2 matrix Riccati

equations. Instead, it is demonstrated that a simple algebraic

algorithm defines all the elements of the K matrix given the

n elements forming the bottom row which are simply and linearly

related to the n coefficients of the closed loop characteristic

equation.

A computational algorithm is develOped which consists

of two basic parts: a digital program that locates the minimum

quadratic cost as a function of n elements of the K matrix;

and an hybrid program which checks and, if necessary, adjusts

these elements to meet the state variable constraints. This

adjustment is implemented by transforming the problem into an

n-parameter Optimization problem and using sensitivity techniques.



Henry Stanley Mike

The minimum quadratic cost search yields a global

minimum and, if the corresponding K matrix yields a feedback

control such that all state variable constraints are satisfied,

then this is the desired solution. If adjustment of the K

matrix is required to meet state variable constraints, then the

hybrid program determines an upper bound for the desired solution.

Thus the desired solution is bounded by the global minimum and

a known upper bound. Further search within this restricted region

is continued until the desired solution is obtained. The final

result yields the complete feedback loop engineering design in-

formation for the optimal control.

The method is illustrated with a solution of a third

order system which represents the automatic control of longitudinal

spacing between two moving vehicles with acceleration constraints.
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CHAPTER I

INTRODUCTION

The last ten or fifteen years have produced significant

advances in the field of optimal control. However, deSpite the

current advanced status of the theory, a very limited number of

engineering applications have been made. For example, one of

the simplest and most useful optimization criteria is the quadratic

performance index which leads directly to determination of stable

closed loop systems, eliminating much of the "cut and try" effort

associated with conventional servomechanism design. In the case

of the linear system with the control u(t) unconstrained, the

general solution is well known. However, in contrast to the

general solution, if the engineering solution is defined as the

solution which yields specific design values for a stable feed-

back control and satisfies all state variable constraints, then

to the author's knowledge there exists no direct method to obtain

such a solution. In the method described in this thesis, the

general solution is used as a necessary condition to obtain the

engineering solution for a linear time-invariant system.

In general mathematical form, known as the Problem of

Bolza, the problem can be stated as follows:

Given the dynamic system

.2 = f[x(t) ,u(t) ,t]



and some performance index

tr

J = ¢(tf) +.It Lix(t).u(t),t]dt.

O

*

find the control u (t), t0 3 t S t which minimizes (or
f)

maximizes) the functional J. When the terminal "cost" m(tf)

is not a consideration, i.e., when

tr

J = It L[x(t),u(t),t]dt

0

it is known as the Problem of Lagrange.

To obtain u*(t), in general, it is necessary to solve

a two-point boundary value problem. In a few instances, it has

been possible to obtain analytical solutions; but in most cases,

particularily where constraints are imposed on the control u(t)

or on the State x(t), the only practical method of solution is

with the use of numerical techniques and a digital computer.

The choice of the form of the performance index J affects

the complexity of the solution to the two-point boundary value

problem as well as the complexity of the physical implementation

of the desired control u*(t). The choice may be obvious and

leave no room for flexibility as, for example, the engineering

specification that the system perform its function in minimum

time. However, if some flexibility of choice is permitted,

motivated perhaps by cost of physical implementation, then the

form of J is made on the basis of judgement, experience,

physical insight and mathematical tractability.

The complicated and sophisticated hardware often needed

for the implementation of an optimal controller may very well



be the reason why few actual applications of optimal controls

currently exist. One has only to consider the complicated feed-

back elements required for a minimum-time optimal control for a

third order system. The switching surface is represented by an

extremely complex mathematical function so that the control or

feedback elements may represent the major cost of implementing

the entire system.

In the case of linear systems

x = Ax + Bu,

the quadratic performance index

tf T T
J = g ft [x Qx + u Ru]dt

o

is an example of a functional which possesses many desirable

engineering features. It is mathematically convenient and leads

to a linear control law. In addition, it possesses the intuitively

appealing feature of "least-square-error" minimization used in

many areas of scientific and engineering analysis and application.

Specifically, it penalizes the system for large excursions from

some desired state trajectory while minimizing the control ”energy”.

There are other, less obvious, advantages to the use of

a quadratic performance index which mitigate against the use of

other performance criteria. For example, a smooth control u*(t)

is assured as contrasted to a "bang-bang" type, and the physical

implementation of the control u*(t) can be relatively simple

and inexpensive.



There is a large class of problems where a smooth control

is of paramount importance. For example, in the field of trans-

portation, including automobiles, aircraft, trains, etc., where

human comfort and performance are important considerations, it

is obvious that a "bang-bang" control of vehicle acceleration

would be highly undesirable.

The general solution for the optimal control of a linear

system with quadratic performance index and u(t) not constrained

is well known and is given by

* -l

u (t) = -R BTK(t)x(t).

The matrix K determines the feedback coefficients and is related

to the A, B, Q and R matrices through the nonlinear matrix

Riccati equation. Since the K matrix contains the feedback gain

information, it controls the behavior of the resulting closed

loop system. However, since this matrix depends on the weighting

matrices Q and R, it follows that the system trajectories in

state Space are a function of Q and R. Thus, when the designer

chooses a specific performance index, he also determines the

system behavior in state Space.

The relationship between the Q and R matrices and

the system trajectories is not readily apparent, and the follow-

ing trial and error design procedure is typical:

I) assume initial Q and R matrices;

2) solve the matrix Riccati equation;

3) simulate the system;

4) if the system performance is not satisfactory,

repeat the process.



This procedure is far from satisfactory because it requires

repeated solution of the matrix Riccati equation and there is

no systematic scheme for correcting Q and R.

The solution of the matrix Riccati equation may in itself

be a very difficult computational problem. It requires the solu-

tion of n(n+l)/2 simultaneous nonlinear equations, either in

the algebraic or in the differential form. In general, the matrix

Riccati is a first order differential equation which, when solved

backward in time, yields a limiting value for K which is a

constant matrix equivalent to the solution obtained for the

algebraic or steady state matrix Riccati equation. Satisfactory

computational methods for systems of moderately high order do

not appear to be available.

The recognition of the weighting matrices Q and R

as "design parameters" has led to the postulation of the inverse

problem: given K, what are Q and R? On the surface, this

seems to be a trivial engineering problem -- since knowing K

implies knowing the desired feedback gains which are the primary

engineering design results. This has been a major shortcoming

of the published results in this area: dependence on a-priori

knowledge of either K or closed loop eigenvalues. In addition,

solution of the matrix Riccati equation is necessary, sometimes

within an iterative loop. In summary, a practical engineering

solution has not been available.

In the following chapters a solution is presented to the

problem:

Given the linear, time-invariant system with scalar control



x=Ax+Bu

and a quadratic performance index

J=% [xTQx + ruzjdt ,

O
L
—
a
8

find the constant matrix K which minimizes J, defines an

optimal control u*(t) such that no state variables Xi(t)

exceed their constraints, and does not depend on the solution

of the matrix Riccati equation.

The result is in the form of a computational procedure

utilizing both a digital and a hybrid configuration, and the

discussion is divided as follows:

Chapter II reviews the existing theoretical background with

Specific emphasis on the inverse problem;

Chapter III develops the theoretical foundation for the algorithm

used to obtain the solution;

Chapter IV describes in detail the computer implementation of

the algorithm;

Chapter V shows typical results for a third order system based

on the problem of automatic longitudinal Spacing between two

vehicles;

Chapter VI summarizes the results and Suggests future extensions

to this work.

All of Chapters III and IV are devoted to a detailed dis-

cussion of the original contributions; and any material which is

not original is explicitly referenced. Specifically, I) a Minimum

Cost Algorithm is developed which locates the arbitrarily small



neighborhood of the global quadratic cost minimum under the con-

straints that the Q and K matrices be positive definite and

the control is asymptotically stable; 2) a Constraint Function

Algorithm is developed which establishes an upper bound on the

minimum quadratic cost such that all state variable constraints

are satisfied and significantly reduces the search region which

contains the K matrix corresponding to this minimum; 3) a simple

K matrix algorithm is deve10ped, an integral part of the Minimum

Cost and Constraint Function Algorithms, which eliminates the

need to solve the n(n+l)/2 Riccati equations.



CHAPTER II

REVIEW OF EXISTING CONTRIBUTIONS

BASIC TO SOLUTION OF THE PROBLEM

The optimal control solution to the linear regulator

problem with quadratic performance index has been known since

1960 when Kalman published his results. In the past seven or

eight years recognition has been given the inverse problem, i.e.,

how to find the weighting matrices in the quadratic performance

index given an optimal control law. This chapter reviews these

results and other background material pertinent to the new

results to be discussed in later chapters. Included in this

chapter are brief discussions on topics of controllability and

Observability, state and control variable constraints and

sensitivity analysis.

In general, a linear time-invariant dynamic system may

be represented by the state equation

x
.

ll

Ax + Bu (1)

and an output equation

Cx +-Du (2)

‘
< II

where x is the nXl state vector, u is the le, m s n, con-

trol vector and y is the er output vector. A, B, C and D

are constant and conformable matrices.



J
[C .

The optimal control u (t), to s t 5 t1, 18 one that

minimizes the quadratic performance index

t1

J = % Ito [XTQX +-uTRu]dt (3)

where Q is a state-variable weighting matrix which is either

positive definite or positive semidefinite; and R is the con-

trol variable weighting matrix which is positive definite.

The search for this minimum, if it exists, may be

implemented in several ways, for example, by the Maximum

Principle of Pontryagin [FUN-l] which is an efficient generaliza-

tion of the necessary conditions for a local minimum.

2.1 Constraints.

The solution of an optimal control problem inherently

involves constraints. For example, the solution of equation (3)

depends on the constraints imposed by equation (1). As in

ordinary calculus, equality constraints of the form

f[x(t),u(t),t] - x = o

are readily adjoined to J by a Lagrange multiplier or co-state

vector I, so that the problem is one of minimizing

t1 T T T -
J = 15 It {X Qx + u RU “I" )\ [Axi-Bu-x]}dt .

o

A more complex problem results when inequality constraints

are imposed on the control vector

U.(max) 2 ui(t) 2 Ui(min); i = 1,2,.....,m .
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The usual procedure is to change the inequality constraint into

an equality constraint as first suggested by Valentine [VAL-1]

to form a function

2

Vi(ui) = [ui<max> - u,(c>][ui<t> - ui(min>] - g,<t> = o

and again adjoining with the Lagrange multiplier Y so that

t m

J = % jtl {xTQx + uTRu + XT[Ax+Bu-x] - .2 Vivi(ui)}dt .

0 1=l

The minus sign precedes the last term because Vi(ui) is

negative when constraints are violated and this must reflect

an added cost.

In the case of state variable inequality constraints,

augmentation of the state vector is implied. Several approaches

[REL-1], [BER—l] of which the following [McG-l] is representative

have been successfully applied.

L

. - _ = 2
Define xn+1 — fn+1 i=1[hi(x,t)] H(hi)

2

where [hi(x,t)] = [xi(max) — Xi(t)][xi(t) - xi(min)]

{0 if hi(x,t) 20

11011) =

IKi if hi(x,t) < O

K.

L s n is the set defining the constrained state variables

I

O

Xn+l(to) -

Xn+l(tl) =

Using again the method of Lagrange multipliers results in
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t m

J = g I 1 {xTQx+uTRu + xT(Ax+Bu-x) - Z Y,v,(u )

t ._ 1 1 1

o 1—1

- . d o

+ xn+l(fn+l Xn+l)} t (4)

Thus, it is possible to formulate a minimization problem

with constraints, and computer techniques using the gradient

method have been deve10ped that converge to a solution [SAG-l],

[WAN-l]. It will be shown in the development of this investiga-

tion that in the case of the quadratic performance index, an

optimal solution with control and state variable constraints is

obtained without the need to solve the complex two-point boundary

value problem implied by equation (4).

2.2 Controllability and Observability.

The concepts of controllability and Observability were

first introduced by Kalman [KAL-l] who showed that they appear

as necessary and sometimes sufficient conditions for existence

of solutions in control problems, particularily those involving

multiple inputs and multiple outputs. One of the best "state of

the art" papers is that of Kreindler and Sarachik [KRE-l] and is

the source for the following definitions. Discussion will be

limited to linear time invariant systems defined by equations

(1) and (2).

Definition 1: A plant is said to be completely state-controllable

if for any tO each initial state x(to) can be transferred to

any final state x(tf) in a finite time tf 2 t.

It can be shown that a linear time-invariant plant is

completely state-controllable if and only if the nan matrix
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2 n-l

BE=[BIABIABI -------IA 3
I I I I

satisfies the relation

rank E = n .

One important application of complete State-controlla-

bility is that it can be shown [WON-l] that if the system (1)

is completely controllable, then there exists a nonsingular

matrix H such that

  

  

X = O O

. 1

Lial -a2 -a3 .......... -an d

r n

0

_ O

B = .

l

. J

y = Ay + Bu .

That is, the system (1) can always be transferred into the phase

variable canonical form.

Definition 2: An unforced plant is said to be completely observable

on [to’tf] if for given t0 and tf, every state x(to) in X

can be determined from the knowledge of y(t) on [t0,tf]. If

the above is true for every t0 and some finite tf > tO then

the plant is said simply to be completely observable. If the

above is true for every t0 and every tf 2 to, the plant is said
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to be totally observable.

As in the case of controllability, there exists a

necessary and sufficient condition for total Observability.

A linear time-invariant plant is totally observable if and only

if the anm matrix

. . T -1
F = [GTE ATCT: ------- ' (A )n CT

satisfies the relation

rank F

ll

:
1

In the Specific problem to be discussed hereafter, it will

be assumed that C is the unit matrix, and, therefore (1) - (2)

is a totally observable system.

2.3 Analytic Solution for Regulator Problem.

Let x = Ax + Bu (1)

represent the state equation for a regulator, i.e., a control

u(t) is desired such that the state vector x(t) is returned

to zero.

T T

Let J = % [x Qx + u Rujdt . (5)

0
9
1
8

If all the matrices are constant, Q and R positive definite,

u(t) unconstrained, and the system completely controllable,

then it is well known [ATH-l] that a unique optimal control

* I o I

u (t) eXists and IS given by

u*(t) = -R-1BTKx(t). (6)

The constant positive definite Symmetric matrix K satisfies
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the algebraic matrix Riccati equation

KA+ATK-KBR-LBTK+Q=O. (7)

Since equation (7) is a system of quadratic algebraic

equations, it does not, in general, have a unique solution.

Kalman [KAL-2], however, has shown that if there exists a matrix

H such that

then total Observability of the pair [A,H] aSSures the existence

of a unique positive definite solution. In addition, this condition

relaxes the requirement on Q in that it need be only positive

semidefinite.

The solution of the matrix Riccati equation may be a

formidable task since it requires the solution of a system of

n(n+1)/2 simultaneous nonlinear equations. Computational

stability and computer capacity [BLA-l] set an upper bound on

the order of the system which can be handled. A recent technique

[KLE-l] indicates that the algebraic matrix Riccati solution can

be obtained for n = 10. However, it may be more efficient

computationally to solve the matrix Riccati equation in dif-

ferential form by using established Runge-Kutta [ATH-Z] pro-

cedures. This follows from the fact that the algebraic Riccati

equation represents the steady state solution of

R(t) = -K(t)A - ATK(t) + K(t)BR-1BTK(t) - Q (8)

with
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lim K(tO) = K.

t -~-co

0

An algorithm developed in Chapter III for a scalar con-

trol u(t) eliminates the need to solve the matrix Riccati

equation (7) or (8) to obtain the K matrix, and the computa-

tional limitation on the order of the system is relaxed.

2.4 The Inverse Problem.

It has been recognized for sometime that the Q and R

weighting matrices in the quadratic performance index are really

engineering design parameters. Since no generality is sacrificed

by aSSuming R as the unit matrix, the design problem is reduced

to finding an acceptable Q matrix. This is the so-called inverse

problem.

The general inverse problem was first posed by Kalman

[KAL-Z] in the following fashion:

t1
Let J = lim f0 L[x(t,to),u(t)]dt

tldm

then, given a completely-controllable constant linear plant and

constant control law, determine all loss functions L of the

quadratic form such that the control law minimizes J.

Kalman then proceeded to derive the necessary and suf-

ficient conditions for the solution of this problem in terms of

a frequenCy domain characterization. Let

T . . . .

Q = H H be a non-negative definite matrix

K be a symmetric positive definite matrix satisfying

the steady state Riccati equation
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-KA - ATK = HTH - KBBTK

R = [l], i.e, a scalar control

(SI - A).1n(S)

Y(S) IsI - AI

6 = A - BBTK

YG(S) = IsI - GI .

Theorem (Kalman):

Consider a completely controllable plant and the associated

variational problem with a quadratic performance index such that

the pair [A,H] is totally observable. Let KB be a fixed

control law. Then a necessary and sufficient condition for KB

to be an optimal control law is that KB be a stable control

law and that the condition

I1 + BTKm(im)BI2 = l + HHm(iw)BH2 (9)

hold for all real (1).

This is an important fundamental result which establishes

a relationship between the time domain of the state variable

approach and the frequency domain of conventional feedback theory.

In fact, the term 1 + BTKm(im)B represents the return difference

in feedback theory.

Theorem (Kalman):

A control law KB is optimal if and only if

a) IsI - GI satisfies the Routh-Hurwitz conditions;

b) m?) = IwcumIz - New?

This theorem implies that it is possible to characterize

optimality in terms of closed loop and open loop characteristic



l7

equations. Unfortunately, the condition b) is not known in

general form for application to any nth order system.

These results are fundamental but are not easily applied.

Equation (9) implies that an H matrix, if it exists, can be

found if K is known. Kalman proposes a solution using spectral

factorization, but this implies the non-uniqueness of H and,

therefore, non-uniqueness of Q. Furthermore, the actual engineer-

ing design solution is the K matrix which determines the feed-

back coefficients for an optimal control system; and, thus, to

obtain H it is pre-supposed that the design information is

already known. For these reasons there appears to be little or

no evidence that these results have been applied to engineering

problems.

Three years after the publication of these results,

' procedureAthans, et. a1. [ATH-3] were proposing a "cut and try'

based on the work of Bryson and Ho to obtain acceptable Q and

R matrices. Initial values were chosen on the basis of

-l _ 2
qii — max xii(t)

rTI = max u?.<t>
JJ JJ

that is, the diagonal entries of the Q and R matrices were

an inverse function of the maximum magnitude of the variable to

be weighted. Again, an a-priori knowledge of system behavior

is implied. If the initial "guess" was not satisfactory then

adjustments were made in a "cut and try" fashion. Of course,

each time Q or R is adjusted a new K matrix must be

determined from the matrix Riccati equation. An essentially
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"cut and try" procedure similar to the above is still common

practice in engineering work.

Rekasius and Hsia [REK-l] attempted a more formal

approach which was motivated by the Problem of Letov [LET-1].

In this problem the control u(t) is assumed a scalar with the

constraint Iu(t)I S 1 and

(xTQx + ru2)dt .(
4 II

N
Y
"

O
L
‘
1

8

It was found that under the condition, a < O,

QBTK = BTKEA - (BBTK)/r] (10)

the control

u*(x) = ~(BTKx)/r ; IuI s 1

u(x) = 7'c

Sgn u (x) ; IuI 2 l

is optimal.

ASSuming a phase variable canonical form for the A

and B matrices, they defined

F 1
kl/kn

kZ/kn

-(KB)/r = kn . (11)

  
Substituting A, B and (11) into equation (10) results in

(n-l) equations
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5
‘

w w

 

  

 
  

1 n-l l _

k k ' an R + a1 ” 0
n n n

k k
2 n-1 n-1 _

kn kn an kn + a2 ’ O

kn-l 2 . kn-l _ kn-2 + a = 0

kn ’ an kn kn n-l

For an optimal solution to exist, these equations must be

independent and have at least one set of real solutions such that

u(x) is a stable control law. Once the ratios ki/k = vi,

n

i = l,2,.....,n-l, are known, substitution in equation (ll)'yields

r

  L. A

where krm is the bottom-row, last column element of the K

matrix, and once known the Optimal control law follows as well

as the kni’ i = l,2,...,n-l, elements of the K matrix. AS in

Kalman's work, Rekasius and Hsia assumed a kn as well as the

rest of the elements that determine the entire K matrix. They

then solved for the control law as well as the Q matrix by

substitution in the steady state Riccati equation.

Tyler and Tuteur [TYL-l] approached the inverse problem

by assuming Q to be a diagonal matrix, R the unit matrix and
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obtaining a relationship in the frequency domain which was a

function of Q. The procedure involves trial and error adjust-

ments of the Q elements until satisfactory reSponse is achieved.

Once Q is established in this fashion, the K matrix is obtained

by solving the matrix Riccati equation.

ASSuming x Ax +-Bu

y Cx

m

J = % I (xTCTQCx +-uTu)dt

o

and using the canonical equations

r .I r- Wr‘ fi P‘ ‘N

8 A -BBT x X

0000 = 00000000000000. 000 —F ...

i -CTQ 0 -AT I A

L J L J L. 4 L .J

.the characteristic equation of the optimal system is defined by

        

n

IsI - A + BBTKI = O = H (s - a ) . (12)

However, it is well known that the 2n eigenvalues of the

FC matrix consist of the n eigenvalues equivalent to the

roots in equation (12) plus n eigenvalues which are the mirror

image about the imaginary axis of the s-plane. Therefore,

IsI - FCI = . (S - oi) (5 + (xi)

"
:
3
5

H

Pre-multiplying FC yields the following
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(SI - A)”1 o (51 - A) BBT

-(CTQC)(SI - A).1 I CTQC (ST + AT)

I (SI - A)- BBT

0 -CTQC(sI - A)-1BBT + (SI + AT)

and

IsI - FCI = IsI - AI I(sI +-AT) - CtQC(sI - A)-1BBTI = 0 .

By further manipulation

2(n-l)

I31 - AI I31 + ATI + (-1)n z kiNi(s)Ni(-s) = 0

i=1

where Ni(s) is a polynomial in 8, each ki consists either of

a qii element or a product of qii elements.

This rather formidable relationship of (2n)th degree

containing 2n terms must be satisfied by adjusting the qii

elements via root locus techniques until the desired system

response is obtained. This leads to a solution for the entire

Q matrix which is then used in the matrix Riccati equation to

obtain the K matrix. The difficulty of using root locus

techniques with a high order system is alone a challenging task.

A technique proposed by Chen and Shen [CHE-l] appears

to overcome some of the difficulties associated with the Tyler

and Tuteur method. Given a quadratic performance index and

specified closed loop eigenvalues, a sensitivity relationship

between the eigenvalues and the Q matrix is used to solve

iteratively for the desired Q matrix.
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Letting G = A - BB K

it follows that

where *1 and ui are the distinct eigenvalues and eigenvectors,

respectively. This leads to the Jacobi sensitivity formula

[Van-l]

dAi = <vi,dcui> (13)

where V1 is the reciprocal basis of ui, i.e., [MGR-l] if

_ I I I

U [Ul:u2:ooooo.:un]

_ T '1 _ I l I

then V [U ] [VIIVZ ....1 vn] .

Since KA +'ATK - KBBTK = -CTQC

then dKA + ATdK - dKBBTK - KBBTdK = -CTdQC

T T

or dKG +'G dK + C dQC = 0 (14)

and d6 = -BBTdK (15)

By combining equations (13), (14) and (15) it can be shown that

T

dxi = -tr(uiviBB dK)

(16)

«Ire + GTdK = -CTdQC

Assuming Q is diagonal and given a set of desired eigen-

values, equation (16) and the steady state matrix Riccati equation

are used within an iterative loop to obtain a Q matrix.

It is clear that this method suffers from two disadvantages:

1) a desired set of eigenvalues is not always available to the
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designer; and 2) an iterative scheme that involves solving the

nfltrix Riccati equation, particularily when the order of the

system is moderately large, will be either extremely time-con-

suming or computationally unstable.

In summary, although the classic inverse problem can be

solved, the engineering designer requires a much better tool to

do his job.

2.5 Sensitivity Analysis.

In the proposed procedure to obtain a solution to the

linear regulator problem with a quadratic performance index and

constrained state variables, the problem is essentially reduced

to optimizing a n-parameter system using partial derivatives of

ax,

the form -——£ . It is common practice [TOM-1], [PER-l] to define

BP-
J

this type of derivative as the sensitivity of state variable

xi to the parameter pj.

Following the usual method of development, let V be

the an matrix whose elements are

axis)

Vij(t) = SST——

Differentiating with reSpect to time

ax.(t)

to.) = —-d ———l
1] dt apj

where x. = f,(§,t).
1 1

Before further expansion it is first necessary to show that

matters are considerably simplified if the following assumptions

are made:
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Since

and

Since

and
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2

a xi(t)
1) -—-—-—- is continuous

BtBPj

2) the system is time invariant, i.e., p is not an

explicit function of time.

2 2 2

~ axi(t) _ a xi(t) a x(t) a a x(t)
  

 

   

  

  

:2 -— + ~ .—-t . t . . t tBPJ . 8 BPJ BPBPJ a BPj

. . 2

dxi(t) = a_— axi(t) +Iaxifll) SE = a Xi(t)

aP. dt ap. at 53 dt ap.at

J J J

2

a xi(t)

——————- is continuous, then

BtBP-
J

2 2

a Xi(t) a Xi(t)

t . = , t
5 SP] BPJB

Q (t) = d__ dxi(t) = axi(t)

ij , dt .BPJ BPJ

x = Gx

ii(t) = gi(i.5.t)

= a__
V1] (t) apj [81(Xspst)]

axl<t> apj 5x2 an axn (t) av:

n

n

r2

 

Isa: ‘Jax (t) 581

z + -—-

r=1 ax (t) apj apj

 

[as: W‘] ( ) + 531
t _

_1 OX (t) r3 an

. th

In matrlx form for an n order system

88.

+ISPL

j

(17)
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r a r' Ag 53 n r' 1

6 v v -——l-—— ‘-l—-— v v v

11 12 ... 1n ax1(t) ... an(t) 11 12 °°° 1n

. . 58 as

v v ... v -—Jl——- -Jl—-— 'v v ... v
L 111 n2 nnJ L ax1(t) an(t)J L'nl n2 nnJ

r- n
881 581

apl 0000 apn

+ . . (18)

58“ Bgn

Since the matrix C can always be transformed into the phase

variable form

g1(t) = X2(t)

g2(t) = x3(t)

gn_1(t> = xn<t>

gn(t) = -p1x1(t) - P2X2(t) - ........ - pnxn(t) (19)

substituting into equation (18) and then decomposing into

   

j = l,2,...,n first order differential equations yields

r . -n r a r ‘1 1
vljno o 1 0 ..“H..... o vljno Io

v2j(t) . 0 1 ...... .... 0 v2j(t) .

0 0 0 0 1 000000 0 0 0

. = - . . 0 . . - . (20)

O Q 1 0 0

     
or V. = GV. + Bx.(t)

J J J
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where Vj is the jth column of the an matrix V, and

  
Since Vj(to) = O for normal physical systems, [ROE-1]

Gt t

i 1 -GT

= d 22
Vj(ti) € Ito e ij(T) T ( )

Equation (22) will be basic to some of the development

in Chapter III.



CHAPTER III

DEVELOPMENT OF A SOLUTION

In this chapter the new developments pertinent to the solution

of the linear regulator problem with state variable constraints

are presented. A simple algebraic algorithm is developed for a

large class of problems to obtain the gain matrix K, associated

with the matrix Riccati equation, from an n-parameter optimization

solution. Thus it is not necessary to solve the usual n(n+l)/2

simultaneous nonlinear equations. The parameter optimization

solution is based on a quadratic cost minimization algorithm

that follows from the K matrix algorithm and a special constraint

function developed for this purpose. Both of these algorithms

are described in detail.

3.1 Canonical Transformation.

Given the linear dynamic system

x=Ax+Bu (1)

where x is the nXl state vector, u is the mxl control

vector, m s n, A is a constant an matrix and B is a constant

nXm matrix, then for a physically meaningful problem an originally

unstable System can always be stabilized by a properly chosen

controller [KAL-Z]. For the optimal control designed to minimize

the quadratic performance index

27
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to

J = gflxTQX + uTRu‘Idt (2)

o

where the constant an matrix Q and the constant me

matrix R are positive definite, it has been shown [ATH-l] that

the unique optimal control exists and is defined by

u* = -R-]'BTKX (3)

where K is a unique positive definite symmetric nxn matrix

satisfying

T -T

KA+AK-KBRlBK+Q=O (4)

Lemma 1: If the symmetric matrix K is unique then the an

matrix Q is unique.

Proof: Q = -KA - ATK + KBR-lBTK

Since for a given system and performance index A, B, R are

unique, it follows that Q is unique.

Q.E.D.

It is known that [KAL-Z] any completely controllable

system with a scalar control u(t)

y = Fy + Hu

can always be transformed into the phase variable canonical form

  

F" P' S P 1

21? 0 l O ...... .. O 21 O

22 O O l O 22

0 0 0 O 0 O 0

. = . . . . . + . u (5)

z -a -a -a ... -a z 1

n o 1 2 n-l n

L 4 k .d L A    
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Quite often the phase variable form follows directly

from the original differential equation for the system

(H) (n-l) (1) (0)

x +an_1x +.........+a1x + aox =bu (6)

By suitable scaling of the state vector 2, i.e.,

z. = x,/b
1 1

the form in (5) can be transformed into the more convenient form

")c ‘ F0 1 0 ... 0 x ‘ r()1

      

l 1

x2 . O 1 x2 .

. O . . .

= . . . + . u (7)

. l .

I.XnJ L-ao -a1 ...... "an- an LI)J

which will be used throughout the sequel. In matrix form (7)

becomes

x = Ax + Bu

3.2 Gain Matrix.

One of the major objectives of this research was to

eliminate the need for the usual iterative procedure [ATH-2],

IKLE-l] to solve the n(n+l)/2 equations represented by the

algebraic matrix Riccati equation (4) in order to obtain the gain

matrix K. It will be shown that this can be done for the system

(7), assuming a quadratic performance index structure.

First, it will be assumed that R is the unit matrix.

This is commonly done and does not affect the generality of the
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results. In effect, the matrix Q is redefined to be the matrix

Q1 such that it "absorbs" the difference between any other R

and R = I. From (4)

T -1 T

Q = -KA - A K + KBR B K

and it follows [KAL-Z] that, for a completely controllable system

and Q positive definite,

J(t ) = a
O

F
T
C
—
‘
3
8

IXTQx + uTRujdt = % XT<to)KX(to) (8)

0

where K is a unique solution. Since A, B and K are unique,

by Lemma 1 it is possible to generate a unique matrix Q1 with

R = I Such that

Q1 = -KA - ATK + KBBTK (9)

J(t0) = ,1, I [XTle + uTu'Idt = 1g XT(tO)KX(tO) (8a)

0

Since K is the same in both cases, the quadratic performance

index in (8a) is equivalent to the one in (8).

The second aSSumption is that the Q matrix be diagonal.

In practice this represents the largest class of problems Since

it is quite often very difficult to ascribe weighting coefficients

to state variable cross products.

K Matrix Algorithm:

Given the completely controllable system (7), R the unit matrix

and Q a diagonal (with unknown entries) matrix, then the complete

symmetric K matrix may be obtained from the n entries in the

th .

n row of the K matrix.
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Proof is by expansion of

T T

Q = -KA - A K + KBB K

Taking advantage of the fact that kij = kji’ it can be readily

established that

qu = Zackn’l + bzki’l (10)

_ 2 2
qii — -Zki-l,i + 281-1 n,1 + b kn,i , 1 = 2,3, .,n (11)

2

qij = -kl,j-l + aokn,j + aj-lkn,l + b kn,1kn,j

j = 2,3,.....,n (12)

q1j - -ki,j-1 i-l,j i-lkn,j j-l n,1 b2kn,1 n,j

1 = 2,3, ..... ,n

j = 1,2, ..... ,n (13)

Since Q is diagonal, all qij = 0 when 1 ¢ j. Then,

beginning with equation (12)

k a k k= + a k + b

l,j-1 o n,j j-l n,1 kn,ln,j

j = 2,3, ..... ,n (14)

showing that all first row entries in the K matrix can be

obtained if the k , entries are known, 1 = 1,2, ..... ,n.

n,1

Continuing with equation (13), Since all the ki 1 j

' s

are known from the previous row computation, a relation for

. . is obtained

13.]-

= -k + a k + a +

i,j-l i-l,j i-l n,j j-lkn,i b kn,1 n,j

i = 2,3,....,n

(15)L
_
.
I II

H

v

N

u

o o

u

:
3



32

The originally unknown qii elements are then computed

directly from the knowledge of the K matrix obtained via equa-

tions (10) and (11).

For example, with n = 3

_ 2

k11 _ aok32 + a1k31 + b k311‘32

2

R12 ‘ a01‘33 + a2k31 + b k311‘33

_ 2

k22 ‘ 'k31 + a11‘33 I a2k32 + b k321‘33

, th

Together W1th the three elements of the n row of the K matrix,

these define the complete matrix since K is symmetric. And

2

C111 2‘301‘31 + b k31

= -2k + 2a k + bzkz
q22 12 1 32 32

— 2k + 2 k + bzkz
q33 " ' 32 a2 33 33

It is obvious that if kn i’ i = l,2,...,n, are available,

3

the entire K matrix is readily determined with Simple algebra;

and solution of the n(n+l)/2 simultaneous nonlinear equations

becomes unnecessary. The method of obtaining the kn 1 forms

,

the bulk of this research effort.

3.3 Autonomous Form.

A -

Since u = -R 1BTKX

for R = l, i.e., a scalar control,

3%

U — "b(knlxl + knzxz + 0.000. + knnxn)

*

Thus, it is clear that the optimal control u is a function
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t

of only the n h row K matrix elements. Substituting in (1)

  

  

x = (A - BBTK)x = Gx (16)

where

I.
1

O l 0 O

O l

O .

G= . . . . (17)

l

2 2 2

- +b - +b ......... - +b

(a0 knl) (a1 kn2) (an-1 knn)

L-

d

L t r a + bzk

8 pi i-l n1

rho 1 0 0 0 -I

. O 1 0

. O l

G = . . O (18)

0 0 1

-p 'P -p oooooooooooooo "p

L 1 2 3 “J

The problem can now be posed as, given the autonomous

system

x = Gx

find the parameters p, so that the quadratic performance index

1

cost

_ T
J(to) - t X (tO)KX(tO)

is minimized. In this sense the problem becomes one of parameter

optimization; and since the parameters are simply and linearly
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related to the kni elements, once the optimum parameters pi

have been found, the entire K matrix is known by use of the K

matrix algorithm.

Constraints on State variables often exist and preclude

a simple choice of K which minimizes the cost J. The follow-

ing theorem is new proof that the cost J is a Lyapunov function

and leads to a general cost minimization criterion which can be

used to minimize the cost in any subinterval of [to,m].

Lemma 2: Given the completely controllable linear time invariant

system

x=Ax+Bu

and the cost functional

J = 15 IEXTQX 'l' UTRU:Idt

0

where u is not constrained and K is a symmetric positive

definite matrix satisfying

T -l T

-KA - A K + KBR B K - Q = O

Q positive semi-definite and R positive definite, then the

matrix KB(R-1)TBTK is positive definite.

Proof:

uTRu is positive definite by hypothesis

u* = -R-1BTKX is the optimal control

Substituting,

u*TRu* = -xTKB(R-1)TR - R—lBTKX

T

xT KB(R-1)TB K x
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-l T T

which implies that the matrix KB(R ) B K is positive definite.

Q.E.D.

Corollary: If R = l, and K is the an matrix and

  
then the matrix

r
"
)

B

L
.
.
l

II

[R k.]
ij in nj

is positive definite.

Proof is by direct substitution of R and B into the result

of Lemma 2.

Theorem I:

Given the completely controllable linear time invariant system

Ax + Bu)
4
.

II

“1 T

-R B KXand u

Q and R positive definite and K the Symmetric positive

definite matrix satisfying the steady state Riccati equation

-1T
KA+ATK-KBR BK+Q=O,

then xTKx defines a Lyapunov function.

Proof:

T . . . . . .
x Kx IS pos1t1ve def1n1te by hypothes1s

xTKx = 0 if and only if x = O

x = Ax - BR-LBTKX = A - BR-LBTKX x = Gx
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T T T T

—E XTKX = XTKX +-x KX = (GX) KX + X KGX = X B K + KG X

Substituting in the Riccati equation, and since

A = G + BR-lBTK

K G + BR-IBTK + c + BR—lBTK TK - KBR-IBTK + Q = 0

KC + GTK + KB(R-1)TBTK + Q = 0

then KG + GTK = -Q - KB(R-1)TBTK

Since Q is positive definite by hypothesis and KB(R-1)TBTK

is positive definite by Lemma 2, then KG + GTK is negative

T T T
definite. Since gg'x Kx = x KG + G K x then it follows that

d

EE'XTKX is negative definite. Since the System is asymptotically

stable by hypothesis, then xTKx is a Lyapunov function.

Q.E.D.

It follows that given the constant matrix K and t1,

t s t s m, the cost J1 for the time interval [t ,t1] is

0

J1 = %[xT(tO)KX(tO) - xT(tl)Kx(t1)]

3.4 Minimum Cost Algorithm.

The objective is to find the minimum value of the performance

index J Subject to the following restrictions:

1) the system x = Gx is asymptotically stable

2) the weighting matrices Q and R are positive

definite

3) the gain matrix K is positive definite

4) the constraints on the state variables are satisfied.
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It is convenient to let t = m, then

1

J = ‘5 Jo me)
O O

For convenience of notation the argument of the state vector

will be dropped,so that

J=1§XKX (19)

It can be readily shown that by expanding (19)

2 2 2

= L + 0000 + 0.0 +J ZIkllxl + k22x2 knnxn + 2(k + + k x x
12X1X2 ln 1 n

k23x2x3 + ....... + kn-1,an-lxn)]

where the kij are the elements of the K matrix.

In more compact form

n n

J = g 121 jil kijxixj (20)

It has been shown earlier that given the completely con-

trollable system

X = Ax + Bu

u a scalar control, J a quadratic cost functional with Q

diagonal and positive definite and R = [1], then the positive

definite gain matrix which defines the Optimal control can be

determined from equations (14) and (15). That is, all elements

of the K matrix are uniquely determined once the bottom row

elements are known. Therefore, J can be found if the vector
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r kn1q

n2

KN = . (21)

  g nn J

is known.

. 2 .
Since p, = a, + b k , ; 1 = 1,2,.....,n

1 1-1 n1

a region in p-space of the system x = Gx can be readily

established which assures asymptotic stability by the use of

the Routh Criterion, i.e., forming the array from the char-

acteristic equation

n n-l

+ + ....... + =1 put + p21 pl 0

1 pn_1 pn_3 .... .....

pn pn_2 pn_4 .........

 

Since a zero entry in the first column is not permitted,

there will be, in general, n constraints that must be satisfied

such that each element in the first column, starting with the

second row, must be positive.

The Routh Criterion is used to set bounds on the minimum

values of k ,, i = 1,2,....,n. For example, assuming a third

n1

order system
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3 2

A +P3A +P2A+P1=O

 

1 p2

p3 p1

p p -p
2 3 1 0

p3

p1

the - a + bzk > O

“ p3 2 33

2
k33 > —aZ/b

= a - bzk > 0

pl 0 31

2

k31 > ‘ao/b

p2P3 > p1

+ bzk )(a + bzk + bzk
(a1 32 2 33) > (a0 31)

2
a + b k

k > 1/b2I- O 31 - a

32 + bzk 1

I82 33

The strict inequalities define open sets so that one must in

practice adjust the relationships by choosing €i > O, arbitrarily

close to zero, such that

, _ 2

m1n k31 aO/b + 31

2

 

+ b k a2 a

min k = 1/b ° 31 - —l-+ e

32 + bzk b2 2
32 32

' k = a /b2 +
ml“ 33 2 63

This is defined as the e-minimal constraint set and may lead to

an e-optimal solution, i.e., there exists a neighborhood, however

small, so that if 5(a) is the e-Optimal parameter solution,
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then there exists a 6 = HE - 5(a)“ > 0 such that

J(5) < J(5(€))-

Quite often the designer must obtain the minimum cost

optimal solution within a given range of eigenvalues as determined

by the desired reSponse of the closed loop system. In this case,

the maximum and minimum values of the kni can be found by the

following procedure. Given the eigenvalues *1 for an

asymptotically stable system then [TUR-l]

pH = -()\1 + A2 + ...... + In)

= +... + ... ...Pn_1 (AIAZ Alhn A2A3 + + AZAn +

+ I‘n-lxn)

_ n

p1 - (-1) (ilkz ...... In)

2

and k . = (p. - )/ba

n1 1 i-l

Criteria for the positive definiteness of the Q matrix

are readily established in terms of the KN vector, since

q..>0g ; i=1,2,.....,n

q. =0 ; i,j=1,2,.....,n

then equations (10), (ll), (12) and (13) yield a set of equations

(22) which is defined as the Qii Criterion.
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2 2

= 2a + k + b >

q11 0 n1 kn1 O

‘ 2k + 2 k + bzk2 > 0
C122 ‘ 12 a1 n2 n2

2 2
= -2 + 2 + b ‘ O

qn-l,n-l n-2,n-l an-2kn,n-l kn,n-l /

_ 2 2
q — -2k + 2a k + b k > O (22)

nn n-l,n n-l n,n n,n

The Qii Criterion has the effect of a filter which

passes only the K matrices that satisfy the constraint that

the Q matrix be positive definite. However, it is used in

the Minimum Cost Algorithm as a means of generating a succession

of KN vectors in a systematic fashion so that the arbitrarily

small neighborhood of the absolute minimum of J is located.

Computationally, it is convenient to start with the last equa-

tion in (22), i.e., start with an initial kn n and find a

3

satisfactory kn Having obtained k the relationship
. ’

,n-l n,n-l

f is used to solve for a satisfactor k .

or qn-1,n-1 y n-2,n-l

But k is in general a function of the vector K , there-

n-2,n-l N

fore, kn n-2 is adjusted until qfi_1’n_1 > O is satisfied.

The process is continued with qn 2 n 2, etc. This procedure is
- , -

flow-charted in Figure 3-1.

3.5 Search Procedure.

The solution for an absolute minimum or e-minimum of J

is achieved by the adjustments on the KN vector, as shown in

Figure 3-1, within the region defined by the restrictions and
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constraints.

One iterative scheme would be a gradient search using

r . r . a
kn1(1+1)I kn1(1)

kn2(i+1) kn2(i)

. = - 471- (23>

HV JH

    Lknn(i+1)J L knn(i)J

where the constant B determines the step size and

hi__

5knl

Bi...

9kn2

(24)VJ

ai__

Laknn   

II

D
J

For example, assuming n

J = 1/2[k x2 +-k x2 - k X2 + 2(k )<)( 4-k. x x +~k x x )1

11 l 22 2 33 3 11 1 2 13 l 3 23 2 3

Using equations (14) and (15)

- 1/2[ k + k + bzk k 2 + k + k + k +
J ' (a0 32 a1 31 31 32>x1 (‘ 31 a1 33 a2 32

2 2 2
b + + k + k +

k32k33)X2 + k33x3 I 2k31X1x3 2k23X2X3 2("Io 33 a2 31

2

b k31k33)"1x2]

53 _ 2 2 _ 2 2
Ok31 - 1/2I_(a1 + b k32)x1 x2] +-x1x3 + (a2 + b k33)x1x2



x(to)

unique vector KN.
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It is useful to know that there are initial conditions

such that if the gradient VJ = O

(20)

2

VJ = b MKN - F

2 2
r- 2 -x1 2x1X2 (X1X3 x2) .....

2

0 X2 2X2x3 0000000

2 2

2x1x2 x2 C) x3 .........

I

b 0000000000 00 00000000000000 0 00

that is, M is a symmetric an

the diagonal.

 

Ffleia) 1

2

f (ai,x)
~

 

exists, it defines a

Using equations (10) through (15) in equation

(25)

2("1"n-1'X2Xn-2) I

2(XZXn--1.x3Xn-2)

2(X3xn-l-X4Xn-2)

2(
Xn-3Xn-1-Xn-2Xn-2)

 
matrix with zero entries on
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If VJ = 0, then equation (25) becomes

and if M is nonsingular then the vector K.N can be uniquely

obtained for a given system from the initial conditions. Under

these conditions if KN is not in the region of interest then

there exist no extrema in the region of search and the minimum

of J should be on the boundary of the search region.

Unfortunately, if KN lies within the region of interest

nothing can be said in general about this extremal, if it exists,

since sufficiency conditions for a minimum or a maximum cannot

be satisfied. To Show this

 

  

6% a—J—R— oooooooooo a—‘l—T

aknl 9kn1a n2 6knla nn

2

a_J

2 2

ii—___ .....OOOOOOOOOOOQ
OOOOO. LL

2

O nnaknl 8k 3

‘
nn

Since the m11 element of the M matrix is always zero, it is

clear that M can never be positive or negative definite; and,

therefore, the sufficiency condition for a maximum or a minimum

cannot be satisfied. In fact, it is possible for KN to be a

saddle point.
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One disadvantage with the gradient method is that the

computer program becomes quite involved for the general case

which includes the possibility of M being Singular. On the

other hand, because of the Simplicity of the function to be

minimized and because the region of search is easily defined,

it has been possible to prepare a simple digital computer program

based on the exhaustive search technique that is extremely fast

and very satisfactory. For example, the neighborhood of the

absolute minimum of a third order system was obtained with

sufficient accuracy in about one minute on an IBM 1800 computer,

most of the time being consumed by the printer. Adequate resolu-

tion was obtained after four successive contractions of the search

region.

The procedure is summarized as follows:

1. Determine the maximum and minimum kni’ i = l,2,...,n, and

use as input to the computer program;

2. Choose 01’ 0 < 01 < l, to increment k i’ i.e.,

n

Ak . = a.[max k , - min k ,1

n1 1 n1 n1

It has been found that a. = 0.1 gives satisfactory reSults and

1

has been incorporated in the Computer program;

max k3. Starting with the n-tuple [max kn n2""°’ max k

l’ nn:I

use the scheme in Figure 3-1 until the whole region is scanned;

4. Determine the minimum J obtained from Step 3 and form a

neighborhood about the correSponding KN in KN-space that in-

cludes the absolute minimum of J. This contracted region now

defines new maxima and minima for the kni;

5. Repeat Steps 3 and 4 until the desired accuracy in locating
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the minimum of J is achieved;

6. If the value obtained in Step 5 is such that all state

variable constraints are satisfied, then this is the desired

solution to the minimization problem.

In general, the above procedure does not yield a solution

where the state variable constraints are satisfied. To implement

the search for this solution a special constraint function has been

developed which forms the basis of a hybrid computer program that

complements the Minimum Cost Algorithm program.

3.6 Constraint Function.

Any type of constraint function is acceptable providing

it can be formulated in mathematical terms and at the same time

reflects a measure of "goodness" with reSpect to a physically

meaningful criterion. For example, Kalman [KAL-3] discusses

the Lyapunov function of a stable system as useful in evaluating

transient reSponse. Thus, given a constraint in terms of

"Lyapunov distance" from the origin in State space as a function

of time, an upper bound can be found and invoked as criterion

of goodness.

If V(x,t) is some Lyapunov function, then

_ V(x,t)
V(x,t) — V(x,t) V(x,t) s cV(x,t)

where c is a Suitably chosen constant. Then by a well-known

Lemma [BEL-l]

V(x,t) g epr-c(t - t0)] V(x0,to)

It has been shown that the matrices P and H exist for a
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time invariant system such that P and H are symmetric and

positive definite and

T

x PXV(x)

T

-x HXV(X)

Kalman continues, showing that if xmin is the minimum eigen-

value of the matrix HP-1, then

C = xmin

Thus, the Lyapunov distance is bounded by a function of the

longest time constant. Such a bound is not new in the field

of differential equations ICES-1].

It is well known that the characteristic equation for

the G matrix in equation (16) is

n n

..... .00 + = Oi + pnx + + p21 P1

As shown previously,

= - + + ....... + =pn (11 12 In) 0

= + 000 + 000000

I’n-1 (I1A2 HA3 + + >‘1)‘n + "2I3 + kn-lxn)

= (~1)“( 1 1 >pl )(1 2 ..... n

and, therefore, there exists a direct relationship between the

eigenvalues of G and the parameters pi. However, it is quite

possible for a reasonable change in pi to have a relatively small

effect on the minimum eigenvalue; and there could be regions in

p-5pace such that the criterion based on xmin may be too
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conservative, i.e., relatively insensitive.

In contrast to the minimum eigenvalue type of constraint,

a constraint based on maximum allowable State variable excursion

is usually a well-known value. The designer is well aware of the

limitations such as maximum acceleration, stress, etc. It is

this type of constraint that has been chosen:

xi(max) 2 Xi(t) 2 xi(min); all t (26)

The constraint region defined by equation (26) is still

not in a completely satisfactory form since it only provides

upper and lower bounds on the constrained state variables. While

it reduces the region of search, it still represents an uncountable

number of solutions. The search for the best solution within

the constraint region is made possible by changing equation (26)

from an inequality constraint to an equality constraint. To

implement this need, a constraint function C is defined which

serves as a test function that senses the deviation and the

direction of the deviation from the constraint bounds. In its

structure the function is similar to the penalty functions used

in adjoining to the performance index J in conventional Optimal

control design involving constraints.

Define

hi = [xi(max) - xi(ti)]Ixi(ti) - xi(min)]

(27)
I:i a Ixi(ti)I 2 xi(t) ; ti,t 6 [1:03]

Then it is clear that
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h, 2 0 if x (max) 2 x,(t,) 2 x,(min)

1 1 1 1 1

h,<0 if x,(t,)>x_(max) or x,(t,)<x,(min)

1 1 1 1 1 1 1

Let H be a function of hi SUCh that

H(h.) = (28)
1

if at least one state variable exceeds its bounds

Let H be function of hi such that

H(hi)=1;i€LSn (29)

if all the state variables lie at or inside their reSpective

constraints and L defines a subspace of En which contains

the constrained state variables.

A constraint function G is formed such that

C = X [x,(max) - x.(t.)][x.(t.) - x.(min)] H(h.) (30)

16L 1 1 1 1 1 1 1

which is used to test the solution obtained with the Minimum

Cost Algorithm for constraint violation; and if the constraints

are violated, it is used to obtain a new estimate for the KN

vector such that all constraints are satisfied.

3.6.1 Geometric Interpretation.

Assume that x1 and x, are two constrained state

J

variables. Expanding equation (27),

:
3
"

II -Xi(ti) + [xi(max) + xi(min)]xi(ti) - xi(max)xi(min)

2
hj -Xj(tj) + [Xj(max) + xj(min)]xj(tj) - xj(max)xj(min)
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Each of the h-functions represents a parabola as shown in Figure

3-2 with its maximum value occurring at

xi(max) +-xi(min)

xiep = 2 (31) 

Since the C-Function represents the sum of two parabolas

in x. X x. X R space, it can be readily visualized as shown

in Figure 3-3. The shaded region represents the surface of

allowable solutions, C 2 0. This surface meets the plane C = O

at exactly four points a,b,c and d which define the four minima.

Below the plane C = O, the surface C < 0 is a paraboloid trun-

cated at the top by the circle a,b,c,d in the plane C = O.

hi‘I

hi<max> - — —

 +xi(ti) [X 1 (min) \X i (max)

Figure 3-2

h, Function

1
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Figure 3-3

C-Function in Two-Space

> Xi(ti)
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Theorem II:

Given the constraint function

G = iELEXimaX) ' Xi(ti.)][xi(ti) ' Xi(min)]H(hi)

xi(max) 2 xi(ti) 2 xi(min)

where L is the number of constrained state variables, L < n,

 dQ—-——— and a C , i,j E L, exist and are continuous,

9Xi(ti) axj(tj>axi(ti)

then C has at most 2% minima, all of which occur at C = 0.

Proof:

Clearly, if xi(max) 2 Xi(ti) 2 xi(min) then

hi = [xi(max) - Xi(ti)][xi(ti) - xi(min)] 2 0

but h1 = 0 if and only if either xi(ti) = xi(max) or

Xi(ti) = xi(m1n). If Xi(ti) > xi(max) or xi(ti) < xi(m1n)

then hi < O and these Xi(ti) are not allowable.

Since all H(hi) = l, i E L,

C = 2 h.

iCL 1

then C = 0 if either each h1 = 0 or some hi < 0-

But hi < 0 implies xi(max) 2 Xi(ti) 2 xi(min) does not hold.

Therefore, C = 0 if and only if each h1 = 0.

Then the number of ways that C can be zero is the number of

ways that 2 bi = 0 holds.

iEL

Since each hi can be zero in two ways, then 2 hi can be zero

iEL

in at most 2 ways.

Since C < O is not allowable, then the zeros of C correSpond



to the minima of C when all X'(ti)’ i E L, attain one of their

1

respective bounds. Therefore, C can have at most 2% minima

when xi(ti) — xi(max) or Xi(ti) xi(m1n).

To show no other minima of C exist inside the constraint region:

the necessary condition for an extremum is that

 

ag—TE—T = O: i E If,

5X1 1

A ah,
Q— : ______ = -2 + + '

ax.(t.) AX.(C.) xi(ti) in(max) xi(m1n)]

1 1 1 1

X (max) + X (min)
. ,

1
-

implies Xi(ti) = 2 at extremum, 1 e., each

x,(t ) corresponding to an extremum is unique since x,(max)

1 1 1

and x (min) are unique. These extrema then correspond to a

1

  

 

 

unique maximum for C since

2

ag— = -2 < 0
axi(tg)

32C 52C
= = 0, i #1

axi(ti)oxj(tj) 5xj(tj)axi(ti)

i.e., the {XL matrix

r- 1 r-

2 2

B—9-— ........ 57C 2
2

x (ti) Xi(ti)xj(tj)

2 0

0 = - 2

. O 2

2 2

a C a C

><.(t.)X.(t.) ' 2
j j 1 1 x-(t.)

J J

L 
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is negative definite. Therefore, all the minima of C occur

at C = 0 when constraints are invoked.

3.6.2 C-Function Iterative Procedure.

In the event that the parameter solution Obtained by the

Minimum Cost Algorithm is such that at least one of the state

variable constraints is violated, then it is necessary to adjust

the 5 vector; and the C-Function provides a satisfactory means.

Given C < O, the objective is to develop a convergent iterative

procedure so that successive estimates of the parameter vector 5

yield a solution for C = 0. Clearly, this solution yields a cost

Jc which is an upper bound for the desired solution.

Since the iteration is on p, it is necessary to transform

the C-Function into p-space. The gradient of C in x-Space is

defined by the LX]. vector

VG: . aisje'f/ (32)

_ac__

ij(tj)
L J  

while in p-space it is defined as the nxl vector
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r2211

891

v c = . (33)

a9.

L apn J  
Slnce Xi(ti) = fi[p1,p2,.....,pn,xi(to)] 1f the part1al

    

derivatives '—S————— exist, then

i

V' a

8P1 Cpl 3Xi(ti)

I

V C =

P

2.1.1:). 2*: “1) 50
tLapn apn ‘4 L ij( J.)_J

= SVXC (34)

In the computation Scheme it was assumed that these

partial derivatives exist and successive estimates of B were

obtained using equation (34). However, in the event that these

derivatives do not exist -- and this can happen, it will be

shown -- special measures have been incorporated in the program

to allow the iteration to continue to a solution. A more detailed

discussion is presented in the following section of this chapter.

It is common practice to define the partial derivative

Axi(ti)

8P as the sensitivity of state variable xi

m

to the parameter
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pm at t = ti' Thus, the S matrix in equation (34) may be

defined as the sensitivity matrix of the system. Following the

development on sensitivity analysis in Chapter II,

I" 9X1(ti) 7

39m

ax2(ti)

5P
m

Gt, t.

= -e 1I l e-GTBXm(‘T)d‘T
(3S)

3x3(ti)  L Opm .4

In the hybrid computer implementation of the parameter

search, equation (35) is solved repeatedly on the analog computer

at the various times ti’ tj, etc. until the entire S matrix is

determined.

An iterative algorithm for the C-Function search must in

the least indicate the direction in which the p vector must be

changed for a closer estimate to the solution. The gradient

VPC obviously has this characteristic. This leads to the steepest

ascent or descent scheme [PER-l], [REL-l], [BEK-l]

V C(i)

'13(i+1) = 13(1) + 01 . (maximization) (36)

‘R—Invpcun

V C(i)

§(i+l) = 3(1) - a “V C(i) (minimization) (37)

p

where NV C(i)” is the Euclidean norm of the gradient vector
p .
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at the ith iteration and a is a constant that determines the step

size and is usually obtained empirically. The determination of

q is usually a part of a "cut and try" loop within the iterative

procedure since it depends on the dynamics of the particular

system, i.e., the rate at which the gradient may be changing.

It is obvious that an iterative procedure that not only

senses the direction but also provides an estimate of the required

step size is highly desirable. This indeed is the basic appeal

of the Newton-Raphson [PER-l], [BEK-l] method.

C(i)v C(i)

fi<i+1) = 3(1) - P (38)

vacumz

 

It has further advantage of quadratic convergence. However,

care must be exercised in case vpC(i) a 0.

Both the gradient and a modified version of the Newton-

Raphson methods are used in the C-Function algorithm to take

advantage of both procedures. The Newton-Raphson method in

equation (38) is modified to include a Step size constant v

C(i)vpC(i)

vac<i>u2

 

5(i+1) = 5(1) - Y (39)

which has been found to be very helpful in

1) stabilizing any effects due to discontinuities induced by ti;

2) overcoming the inherent accuracy limitations, particularily

near C = 0, of an analog computer when measuring the S

matrix elements.

In summary, the entire computational procedure is outlined

in Figure 3-4. The initial region defined by max KN and min KN
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is searched for the global quadratic cost minimum, JG, by the

Minimum Cost Algorithm. The K matrix corresponding to an

arbitrarily close estimate of JG is checked for state variable

constraint violations. If all constraints are satisfied, then

this is the desired solution and the search is ended. If one

or more state variable constraints are violated then the C-Function

Algorithm is used to Obtain the C = 0 solution, thus defining

a K matrix such that all constraints are satisfied and a

correSponding quadratic cost JC which is clearly an upper

bound for the desired solution. Using the same search region,

increment KN in the fashion described in Section 3.5, comparing

the cost J(i) at each point with J If J(i) is greaterC'

than JC then continue search; but if J(i) is less than J ,

check state variable constraints. If constraints are violated

continue search; but if constraints are satisfied then J(i)

becomes the new (lower) upper bound. After the entire region

is scanned, the entire process may be repeated for a closer

estimate to the desired solution by choosing the smaller region

obtained from the results Of the previous search.

The detailed computational description of the Minimum

Cost and C-Function Algorithms is covered in Chapter IV.

3.6.3 Discontinuity in p-Space.

The parameter search is based on measurements made at

ti’ 1 E L, tO a ti S T, when xi(t) attains its maximum

magnitude as shown in Figure 3-5. If Xi(ti) exceeds the con-

straint an adjustment is made in B. It is not uncommon that in
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adjusting B to decrease the amplitude of peak 1, peak 2 may

become the dominant one as shown in Figure 3—6, resulting in a

sudden jump in the value of ti and a discontinuity in V C-

Safeguards are incorporated in the computer program so that

in this case:

1) possible oscillation of the Solution between peak 1 and peak

2 is quickly ”damped” out by the step size constant y in

equation (39). The programming details will be described in

Chapter IV, and an example of an actual case will be shown in

Chapter V.

2) the peak closest to its constraint is chosen automatically

as the solution after a finite number of iterations.
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CHAPTER IV

COMPUTER IMPLEMENTATION

The application of the concepts presented in the pre-

vious chapter generated a digital computer program for the

Minimum Cost Algorithm and an hybrid program for the C-Function

Algorithm. The computational details as well as the various

procedures are described in this chapter.

4.1 Minimum Cost Algorithm Program.

This digital computer program locates the arbitrarily

small neighborhood of the absolute minimum of

J = 1/2 xT(tO)KX(tO)

by adjusting the KN vector within the constraints imposed by

the Routh and the Qii Criteria. Basically, an exhaustive search

procedure is used, but the program has been written so that a

gradient search can be readily implemented if desired. As men-

tioned in Chapter III, the exhaustive search approach is practic-

able because of the simplicity of the function to be minimized

and because the region of search can usually be identified readily.

In reSpect to region identification, the initial search

region is the hypercube in n-Space, each ”side" of which is equal

to

[max kni - min kni] ; i = 1,2,.....,n

63
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This defines a vector

max KN = [max kn , max k ,........., max knn]

1 n2

which is chosen such that if the vector

corresponds to the absolute minimum of J, then

7‘:

k . Smax k . ; i = 1,2,......,n
1'11 n1

A starting value for max KN can be readily obtained by either

invoking the relationships between the eigenvalues and the kni

in the case a range of acceptable eigenvalues is available to

the designer, or using the C-Function Algorithm and a "large

enough” KN guess.

The method of choosing a min KN vector

min KN = [min knl’ min kn ,......, min k n]

n2

was discussed in Chapter III.

One of the advantages to the exhaustive search procedure

is that successive contractions of the search region can be

readily identified and easily implemented within the computer

program.

In the interest of clarity, a computer program for a third

order system will be described. Extension to any nth order system

follows directly and presents no computational difficulties. The

flow chart for this program is shown in Figures 4-l(a), (b), (c),

(d), (e) and (f), and the listing is contained in Appendix A.
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4.1.1 Incrementation.

The exhaustive search procedure requires incrementing

each element k i of the KN vector. In this program incrementa-

n

tion proceeds on the basis of

Akni = aiEmax kni - m1n kni]

Although ai may be any value Such that 0 < 01 < l, satisfactory

results are obtained by setting ai = 0.1. Since the Qii Criterion

defines an open set, not all the values in the hypercube defined

by max KN and min KN will be attained; but it is of interest

to note that a lower bound is automatically obtained from

k . > k . .. - . max k , - min k .

n1 n1(Q11) 0/1[ n1 n1]

where k '«2'i) is the minimum value of k , which satisfies

n1 1 n1

the Qii and Routh Criteria.

4.1.2 Computation.

The computation is initiated by starting with the n-tuple

[max knl’ max kn2,......, max knn]. A slight modification has

been incorporated in this program which expedites the search:

the search is begun with the (n-1)-tuple [max k32, max k33]

 

and an initial value‘for max k31 based on the Routh Criterion

(a + bzk )(a + b2k ) - a

_ 1 32 2 33 0

max k - - 0.0001
31 2

b

where = 0.0001 is used to assure a strict inequality in the

61

Routh Criterion.
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An initial K matrix is computed using the algorithm

described in Chapter III and used to determine an initial cost

J. The Qii Criterion is then invoked

q11 = 2a0k31 + b k31 > 0

= -2k + 2a k + b2k2 > o
q33 32 2 33 33

= 2k + 2a k + bzkz > o
q22 12 1 32 32

— 2 k + k + bzk k ) + 2a k + bzkz > o
‘ ‘ (a0 33 a2 31 31 33 1 32 32

incrementing k and k in that order until the
k33’ 32’ 31

criterion is satisfied. Next, the Routh Criterion is used to

check for stability and the kni adjusted as necessary.

If both criteria are satisfied, vJ and “VJ“ are

computed. At this point the new estimate for KN may be

computed using either the gradient or the exhaustive search methods.

In this program the choice was made to use a modified exhaustive

search procedure where k32 and k33 are incremented with

Ak32 and Ak33, respectively, but R31 is incremented using

BL

. . Bk31
k31(1+1) = k31(1) - B “63W

This procedure further expedites the search; and for the example

used, ”VJ“ # O in the region of interest.

The new cost J(i+l) is compared to J(i), and if the

former is smaller, KN(i+l) and J(i+l) are stored, k32 in-

< min k . This iscremented and the process repeated until k 32
32

followed by incrementing k33, etc., until the whole region is

scanned.
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If J(i+l) is greater than or equal to J(i), then the

step size 3 is decreased

B<i+1) = 1/2 3(1)

until a lower cost is achieved or until a fixed number (20) of

adjustments in B are exceeded.

After the entire region is scanned, a new contracted

region containing within it the minimum J is identified, and

the whole program repeated until the desired resolution in

identifying minimum J is obtained.

4.2 C-Function Algorithm Program.

The hybrid computer program configuration consists of

an IBM 1800 digital computer and an Applied Dynamics AD 4 analog

computer. The IBM 1800 is used primarily to control the logic

and for algebraic computations while the AD 4 is used for analog

signal sensing and solving the differential equations. It is

clear that numerical techniques, Such as the Runge-Kutta, could

be substituted with a resulting all-digital configuration,

sacrificing computation speed for accuracy. The Fortran program

is written for a general nth order system with L state variable

constraints. The flow charts in Figures 4-2(a), (b) and (c) show

the hybrid system and the program listing is contained in Appendix

B.

4.2.1 Criteria Checks.

Every new estimate of the 5 vector is checked to aSSure

that the system x = Gx is asymptotically stable and the resulting
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Figure 4-2(a)

C-Function Program
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K matrix is positive definite. The program determines the Routh

array and checks each entry in the first column whether it is

positive. The Hayes [HAY-l] algorithm is incorporated within

the program to check the positive definiteness of the K matrix.

Since violations of either criterion will be due usually to some

pathological condition, the program stops in case of a violation

and prints the violation.

4.2.2 Analog Computation

The analog computation, shown by the dashed-line box in

Figure 4-2(a), has three basic operations requiring 2n+1 integrators:

n integrators forthe solution of x = Gx; n integrators for the

sensitivity analysis; and one integrator for signal timing. The

analog connection diagram is shown for a third order system with

a single state variable constraint in Figures 4-3(a), (b) and (c).

It can, of course, be readily generalized to any nth order system

with L state variable constraints.

The system solution operation is shown in Figure 4~3(a).

The primary function is to solve the differential equation

X = Gx ; x(to) = x0

1, P2 and P3 are set with eachThe servo-set potentiometers P

successive iteration of the 5 vector so that the final parameter

solution is represented by these potentiometer settings. The

x and x are transferred toanalog signals representing x1, 2 3

the digital computer via analog trunk lines TA 16, TA 15 and

TA 10, reSpectively.
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Sensitivity Analysis

   

   

5X3

AP].

TA 14

6X2

P.

a J

TA 13

1’“ —-i_31
8P

3
,
-
—

 

 



80

 

 
 

  

 

 

 
 

  
 

 

 

 

 

 

.
.
.
.
2
-
-
—
~
-
-
-
'

-
-

J

 

   

TD 10:

1

 

~~~---- TD 20 2

 

 

b

 

 

 

   

 

 

 

 
 

 

    

11

SJ

Figure 4-3(c)

 

   

 

  

Analog Logic Control

 

 

 
 

 

 

 

 

 

 

TD 25 I



81

The sensitivity analysis required to obtain the 8 matrix,

equation (34) in Chapter III, is performed by the three integrators

in Figure 4-3(b). This configuration is essentially a duplicate

of the system solution configuration with the exception that the

system is forced, i.e.,

  

  

  

r 6X1 1

BPJ

° Gt, t, GT

. =-e lIle BX.(“F)dT
t J

. o

3’31
LapJ

r0 7 r 5x (t ) 1
l o

. 5p.

B = . ; J

0 =6

L11 -

axn(to)

_ 591 J

Ax1 ax2 ax3
The analog signals corresponding to -——— , _—— and -———

BPj BPj BPj

are transferred to the digital computer via analog trunk lines

TS 12, TA 13, and TA 14, reSpectively. An additional amplifier

was found useful when small signal levels were encountered,

particularily for the constrained variable x3. Compensation for

this "scaling" was made in the digital program.

The signal sensing and timing functions were performed

by comparators C1, C2 and C3, an OR gate and an integrator shown

in Figure 4-3(c). The basic function is to determine the maximum
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amplitude of each constrained state variable in the time interval

[tO,T] and the corresponding time ti. The final time T is pre-

selected to be greater than the largest time constant in the system.

The first three peaks of each constrained state variable

are observed by sensing the derivative of the variable as it goes

through zero. In Figure 4-3(c), this function is performed by

comparator CI for x3. The procedure is as follows: switch 8

is set so that with the given initial conditions the first peak

of x3 is sensed and its value transferred to the digital computer

via analog trunk line TA 10; simultaneously, the time at which

this occurs is observed by monitoring analog trunk line TA 11;

these values are stored and switch S is changed to the opposite

polarity signal and the procedure repeated twice, each time storing

x3 and ti. The digital computer program then evaluates these

signals and chooses the pair [x3,ti] corresponding to the largest

magnitude of x3 which is then used in computing the C-Function

and in the sensitivity analysis. Ordinarily, switching of switch

8 would be under the control of the digital program, but equip-

ment limitations necessitated manual control.

Comparator C2 controls the total integrator running time

which is pre-selected by potentiometer T. Both Cl and C2 are

enabled simultaneously by a logic signal transferred from the

digital computer via digital trunk line TD 21.

Potentiometer ti is servo-set and comparator C3 then

controls the integration interval of the sensitivity circuit.

All three comparators and a logic signal from the digital computer

via digital trunk line TD 27 feed into an OR gate so that any one
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of these signals places all integrators into the ”Hold" mode.

Simultaneously, the digital program is signalled of a "Hold"

condition by digital trunk line TD 10. Comparator C3 is enabled

by digital trunk line TD 20 from the digital computer. All three

comparators have a common initialization, E-CMPK, controlled by

digital trunk line TD 22.

Digital trunk lines TD 23, TD 24, and TD 25 switch the

forcing inputs required for the sensitivity analysis. Digital

trunk line TD 26 controls the ”operate" mode of all integrators,

and a logic ”0" on both TD 26 and TD 27 is used for the "IC" mode.

Summarizing, for each iteration on p the system x = Gx,

Figure 4-3(a), is run once for each of the L constrained variables

to obtain the maximum amplitudes and the corresponding ti's.

Then for each t1 the sensitivity computation, Figure 4-3(b),

is run n times. This correSponds to L(l+n) total analog runs.

In the case of the third order system with a single constrained

state variable, a total of four analog runs are required for each

iteration.

4.2.3 C Computation.

This digital computation is straightforward, using

C = '2 [Xi(max) - Xi(ti)][xi(ti) - xi(min)]H(hi) .

161

4.2.4 5 Estimation.

Both the Newton-Raphson and the gradient iteration schemes

are incorporated in the digital program. Initially, the search

for a parameter solution utilizes the modified Newton-Raphson
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algorithm

V C(i)

sum = 5(1) - v 2

iivpC<i>H

The step size coefficient y was found very useful in preventing

oscillation, particularily near C = 0 because of the accuracy

limitations imposed by the analog computer. In the program,

C(i+l) is compared to C(i) and if it is smaller, the Newton-

Raphson scheme with v = l is continued; but if C(i+l) is

larger, the smaller C(i) is stored while v is adjusted by

successive halving until either C(i+l) becomes smaller than

C(i) or v < 0.004. The latter limit was determined by experi-

ment to be consistent with the accuracy limitations of the analog

computer. At all times the smallest value of C and the correspond-

ing 5 vector are stored.

To insure safeguards in the event VPC « 0, the search

automatically switches into the gradient procedure

v C(i)

i5(i+1) = 13(1) 1 a 11vp0<i>i

every time v becomes less than 0.004. The step size coefficient

a is determined by successive halving as in the case of v.

When 0 becomes less than 0.004, the K matrix is computed for

parameter vector 3 corresponding to the solution closest to

C = 0. The vector KN obtained from the bottom row of the K

matrix yields the desired feedback coefficients.

In the event that VPC a 0 faster than C a 0, then it

is possible that the procedure will not continue to the solution
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at C = 0. In this case, after a finite number of iterations,

the program automatically switches to the gradient method; and

the extremum is located in terms of the pe vector. The user

can then choose a new starting 5 vector sufficiently far away

from Be and in the direction of C = 0 and continue with a

new search using the C-Function Algorithm.



CHAPTER V

EXAMPLES

A problem of current interest is that of automatic spacing

of vehicles in a single lane, i.e., longitudinal control of a

vehicle [ATE-3], [PEN-l], [MIK-l]. Assuming a given desired

spacing between two vehicles, the objective is to design an

optimal control that would accelerate or decelerate the follow-

ing vehicle to maintain the desired headway distance and velocity

relative to the lead vehicle. The vehicles chosen for this example

are assumed to be conventional automobiles.

Blackwell [BLA-l] has shown that the longitudional dynamics

of a typical automobile may be quite accurately approximated by

a simple transfer function of the form

V(s} _ k/T

e(s) — s + a (1)

where s is the uSual Laplace complex variable

V is the vehicle velocity

e is the throttle position

1

k = __—--k‘

2 3

k1 is the ratio of rear wheel traction force to throttle

position

k2 is the ratio of rear wheel traction force to vehicle

Speed

86
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k3 is the ratio of road load to vehicle Speed

M

. e
T = time constant 3 k +——-

2 3

a = l/T

Me = effective mass of the vehicle

Actually, equation (1) represents the small-signal transfer

function since k k k and Me are not constants over the

1’ 2’ 3

whole Operating range of the vehicle. For example, at 40 mph k

may have a value of 240 sec.1 and at 60 mph k may be reduced to

-1 . .
165 sec . For this example nominal values were chosen

  
 

 

 

 

 
    

k = 200 sec-1

T = 20 sec

10
d = —-—————— 2

an V(S) s + 0.05 ( )

I

... H i
I-r D -—-——~h1~t___ I. ——q’!

: yl ' yz :31

y2
y1

y2 y1

y2 y1

Figure 5-1

Vehicle Longitudinol Spacing Problem

Figure 5-1 is a schematic representation of the problem

where y, y, and y are the position, velocity and acceleration,
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reSpectively, of each vehicle. The distance HD iS the desired

Spacing between the two vehicles. There is justification based

on traffic studies [TRE-l] that drivers tend to choose a headway

corresponding to the relation

HD = C0 + 2Ty1 (3)

where cO is a constant and 1 is the reaction time of the

driver. The actual choice of HD for an automatic system would

maximize traffic flow consistent with the driver ”psychological"

comfort.

Assuming that the lead vehicle is moving at a constant

velocity, equation (2) is transformed into the regulator form

in state Space by defining the state variables

x1 = y1"y2 ‘11)- L

      

° =- =- -be
X3 y2 ax3

'1 'fi r

H .1 F0 1 0 r3: 0 1
1 1

:22 = 0 0 1 x2 + 0 <3 (4)

x 0 0 -0.05 x ~10

L. 34 L- JL34 L- J  

Equation (4) is in the form compatible with the algorithms described

in Chapters III and IV such that constraints on the vehicle accelera—

tion can be invoked:

10.0 = x3(max) 2 x3(t3) 2 x3(min) = -10.0
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The autonomous form of equation (4) becomes

      

”.1 ' a r ‘1
X1 0 1 0 x1

x2 = 0 0 1 x2

X3 I'Pl 'P2 “P3 x3
L a 4L 4

where p1 = 100k

31

p2 = 100k32

p3 = 0.05 + 100k33

5.1 Example 1.

Assuming initial conditions

    

r- ‘1

x (t ) F450 1

1 o

x2(t0) = -60

x3(t0) 0

L A L J

minimum values of k3l’ k32, and k33 determined by the Routh

Criterion

0.0001min k

31

min k 0.0006
32

min k33 = -0.0004

and maximum values based on a preliminary exploration using the

Minimum Cost Algorithm and the C-Function Algorithm

max k31 = 0.0226

max k32 = 0.0715

max k33 = 0.0488
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Table I summarizes the results of the search for an absolute

minimum of J using the Minimum Cost Algorithm. It is to be

noted that after the fourth contraction of the search region,

the neighborhood of the absolute minimum was located, with the

following lower bounds:

k 2 0.0001

 

31

k32 > 0.0029 - 0.1(0.0029 - 0.0006) = 0.00267

k33 > 0.0083 - 0.1(0.0083 + 0.0004) = 0.00743

and parameter values

p1 = 0.01

= 7p2 0.-9

p3 = 0.88

TABLE I

Search for Absolute Minimum

Step k31 R32 k33 J

Initial 0.0226 0.0715 0.0488 13,956.9

1 0.0001 0.0170 0.0192 72.1

2 0.0001 0.0088 0.0133 26.9

3 0.0001 0.0046 0.0105 10.6

4 0.0001 0.0029 0.0083 5.2

5 0.0001 0.0029 0.0083 5.2

The parameter values were then used as the input to the

C-Function program to check for constraint violations. Since
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max Ix3(t3)I = 10.75

as determined by the analog run, the constraint on acceleration

was violated and the search with the C-Function Algorithm pro-

vided new parameter solutions as shown in Figure 5-2 and Table

II. Accuracy limitations of the analog computer resulted in the

closest Solution

max Ix3(t3)I = 9.75

  

E__82££E£

r'
‘w

0.000039976 0.00012159 0.00013827

0.00012159 0.0037216 0.0028910

0.00013827 0.0028910 0.0082936 J

L, .

J = 7.46

9 Matrix

r 1

0.0000019 0 0

0 0.00059 0

L 0 0 0.0019 J  
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(t3)

15

 

10~_:N_.______.__

 

-10 .—— —_— .__ “a. ... ... ... .__ .__. ___ ... ... ... __ __

-15  
ITERATION

Figure 5-2
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TABLE II

Results of C-Function Search

Iteration

 

1 2 3

p 0.01 0.0136 0.0138

1 39

62 0.29 0.2891 0.2891 I I

p3 0.88 0.8794 0.8794 I

1 . 5 1 .25 . 5 Ix3(t3) 0 7 0 9 7 1

1

t3 2.81 2.40 2.41 i I

is?

c -0.156 -0.051 0.049

AX3

-4.75 -4.03 -4.83

591

5X3

——— 1.08 0.78 0.23

892

8x3

——- 8.03 -0.08 -0.08

0p3

49— 9.84 8.25 9.41

8P1

;§_ -2.31 -1.59 -0 44

AP,

59— -1.73 0.0154 -0.0146

5P3

The actual Steps required within the C-Function Algorithm

to obtain the results in Figure 5-2 are graphed in Figure 5-3.

The circled points represent the successive acceptable estimates

while the rest of the points demonstrate adjustments required in

the y and a step size coefficients to obtain rapid damping
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of the oscillation as C a 0.

Since a solution at C = 0 does not necessarily imply

the final solution, a neighborhood was chosen about the point

k31 = 0.00013827

k32 = 0.0028910

k33 = 0.0082936

such that

I!max K [0.00013827, 0.0147, 0.0192]

[0.0001, 0.0006, -0.004]min KN

With this input to the Minimum Cost Algorithm 3 new minimum was

located at

k31 = 0.0001

k32 = 0.0020

k33 = 0.0133

J = 2.5

This KN vector yielded the following parameter values:

p1 = 0.01

= 0.20

p2

p3 = 1.38

where were used as input to the C-Function Algorithm to check

constraints. The results were as follows:
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2

max Ix3(t3)I = 5.25 ft/sec

  

t3 = 3.38 sec

K Matrix

r- ‘

0.00002 0.000138 0.0001

0.000138 0.002622 0.0020

I-0.0001 0.0020 0.0133 J

9.. 1131.213
1

0.000001 0 0

0 0.000124 0

O 0 0.01512j

L  

Since the constraints are satisfied, this is the desired solu-

tion within the limits of resolution in the search region.

5.2 Example 2.

The possibility of discontinuity in p-Space was dis-

cussed in Chapter III. This example is typical of the results

obtained when the largest amplitude of x3(t) Shifted from the

first peak to the second. Figure 5-4 demonstrates the behavior

of the C-Function and x3(t3) under the following conditions:

5.0 2 x3(t) a -5.0

    

r " r fl

x1(to) 450

x2(to) = -60

x3(t0) 0

J L .

r p1(0) r- 9.996

[32(0) = 18.26

 L p3(0) 12.68
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1

x3(max)
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1. ... (I)

x3(min) r

1.. -- - — — -— -- — — -— —- -— —- — — — “‘1 ‘J

A. , -1O

’ ’0". V‘— "V 1

p “-15

C

p .1-20

» . -25

1

L. -1-30

1' .1 -35

$ ITERATION

1 a J 1 L L

0 1 2 3 4 5 6

Figure 5-4

Solution Stability under Peak Switching - Example 2
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for the system shown in equation (4). The initial values and the

first iteration values were extremely large and are not shown in

the figure. There was no oscillation of the C-Function as the

dominant peaks changed at the fifth iteration, and final convergence,

within the limits of analog accuracy, was obtained on the sixth

iteration. Table III Summarizes the values at each step in the

Computation.

TABLE III

C-Function Behavior Under Peak Switching

Iteration

 

2 3 4 5 6

p1 3.577 2.997 2.713 2.5913 2.2616

p2 17.60 17.663 17.694 17.708 17.805

p3 12.18 12.218 12.23 12.229 12.235

x3(t3) -35.75 -18.25 -9.75 6.75 5.75

t3 0.18 0.17 0.16 2.56 1.83

c -11.25 -3.08 -0.70 -0.21 -0.08

,‘jX

-—-§ -2.97 -2.93 -2.93 0.43 0.18

891

dX3

0.32 0.32 0.32 -0.13 -0.13

151132

7}}(3

.——— 1.97 0.92 0.48 -0.08 -0.08

5p3

;g_ -21.27 -10.68 -5.70 -0.57 -0.20
1“ p 1

99- 2.32 1.19 0.63 0.17 0.14

3P2

LE— 1.41 0.34 0.09 0.01 0.009



r

0.051148

0.35153

0.022616

 L

r

0.051148

0

L O 

99

t__me2£££

0.25153

2.82691

0.17805

J = 23,241.5

91.889525

0

2.46712

0

1

0.022616

0.17805

 
0.12185 .1

 1.14083 .J



CHAPTER VI

SUMMARY AND CONCLUSIONS

An algorithm has been developed resulting in a computa—

tional procedure which determines the optimal scalar control for

a linear, time-invariant regulator with state variable constraints

and a quadratic performance index. The basic contribution which

makes possible a practicable engineering solution to this problem

is the development of a simple algebraic algorithm for the deter-

mination of the gain matrix K. It has been shown that the K-

matrix can be obtained from an n-parameter Optimization of the

closed loop system. The need to solve the matrix Riccati equation

is eliminated, and, therefore, there are no computational stability

difficulties which impose a practical limit on the order of the

System.

The K-matrix algorithm also provides a criterion for the

positive definiteness of a diagonal Q weighting matrix which is

used as part of the search procedure to obtain a minimum cost

solution. An efficient digital computer program allows only the

positive definite constant K matrices which represent stable

control laws and define positive definite Q matrices to be con-

sidered in the minimization of the quadratic performance index

J = l/2xT(t0)Kx(tO).

100
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The result of this minimization is then evaluated for

state variable constraint violations with the aid of a constraint

function specifically developed for this purpose. This constraint

function is an integral part of an iterative procedure that locates

the K matrix nearest the minimum cost solution and which also

satisfies the constraints. The new value of K is then the basis

for the next estimate in the cost minimization program. Successive

iterations produce the desired K matrix.

An example of the application of this algorithm to a third

order system is presented, showing the results obtained in defining

the optimal feedback coefficients for vehicle Spacing control with

acceleration constraints.

Since the K matrix contains all the necessary engineering

design information, the procedure described in this thesis should

have greater application than any of the currently available methods.

There are obvious extensions to this work which should be

considered. It would be desirable to investigate the possibility

of developing a correSponding K matrix algorithm for the general

case of a vector control u(t). Additional research needs to be

done on the sensitivity of the cost function J to state variable

initial conditions. For example, it would be desirable to obtain

a solution for minimum J such that J has minimum sensitivity

to the initial conditions. Another possible extension of these

results is to the work of Kleinman, Fortmann, Athans [KLE-Z]

where a time varying matrix K(t), representing a finite time

cost interval, is approximated by a series of piecewise-constant

K matrices. Finally, it would be of practical interest to
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investigate the computational limits imposed by the errors inherent

in an analog computer. For example, in the course of this re-

search it was found that potentiometer setting tolerances imposed

a limit on the accuracy with which the constraint function could

be obtained in the vicinity of C = 0. Results of such work would

show the conditions under which it would be advisable to consider

an all-digital configuration.
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