IS.

control the

Tree cases ar

THE COMMON externa

amenal balance.

in the optimal so

Eniquely determ

kneed the number

Mantee that the

In fact, whe

Eleving interna

eized for the

went and a tra

ability or co

it imposed upon

ABSTRACT

AN APPLICATION OF OPTIMAL CONTROL THEORY TO POLICIES FOR INTERNAL AND EXTERNAL BALANCE

Ву

Nguyen Thi Bich Thuy

This thesis examines the dynamic problem of quantitative economic policy for internal and external balance within the framework of optimal control theory.

Three cases are considered: the one-country, the two-country with common external balance, and the two-country with linear dependent external balance. When applying Chow's control approach, it is found that the optimal solution for achieving the joint balance can always be uniquely determined whenever Tinbergen's principle on the equality between the number of independent targets is met; however, there is no guarantee that the solution is feasible for a given economy.

In fact, when the optimal fiscal and monetary policies for achieving internal and external balance of the U.S. and Canada are analyzed for the period of 1961-1970, it is found that they are inconsistent and a trade-off between the attainment of joint balance and the feasibility or consistency of policy-instruments must occur when limits are imposed upon the instrument-magnitudes.

It is also foundable responses from the tesponses from the tesponses from the tesponses from the tesponses also the tesponses also the tesponses from the tesponses also the tesponses from the tesponses also the tesponses from the tesponses f

Ic encourage for the with linear qualities found that the integries are always to the search with optimum strains.

It is also found that if more complicated assumptions, such as active responses from the second country, or conflicting balance of payments and growth targets are added, the optimal control framework is no longer appropriate for the analysis of internal and external balance.

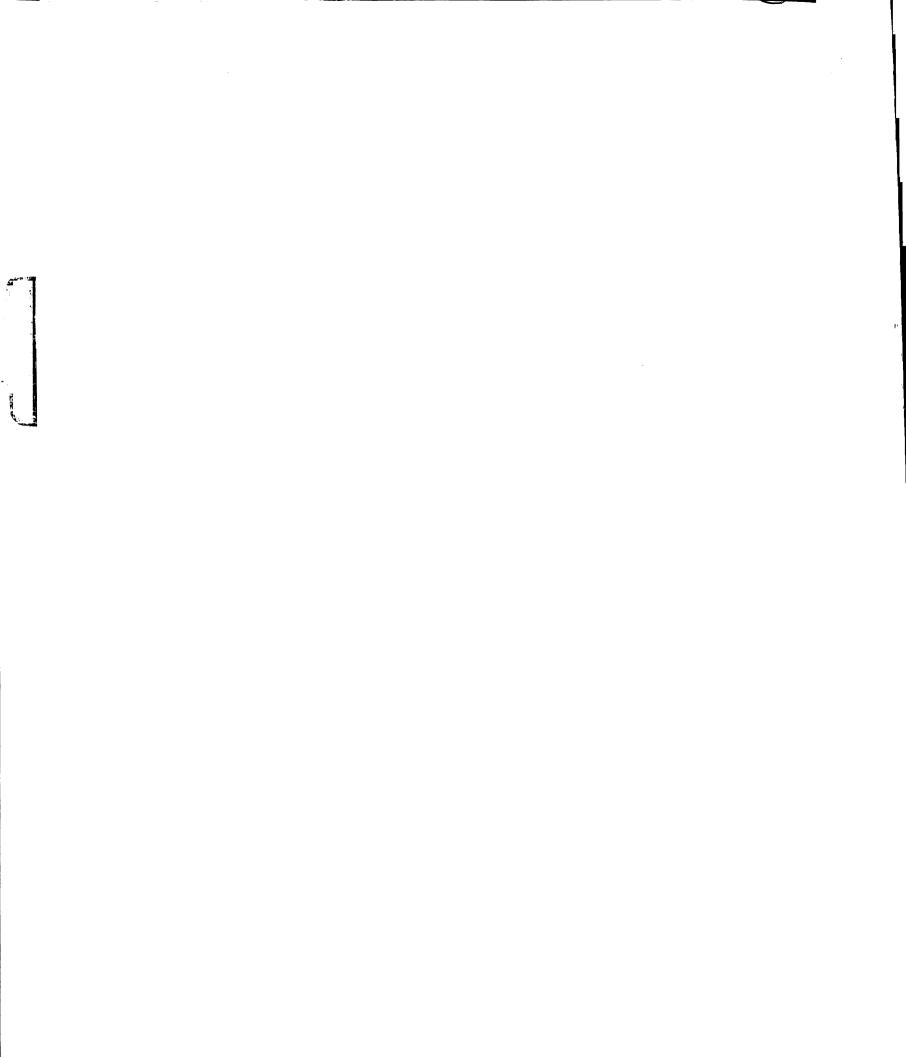
To encourage future research, a two-player multistage non zero sum game with linear quadratic system and perfect information is presented. It is found that the non-cooperative (or so-called Nash) equilibrium strategies are always inferior in the case of two controllers which leads to the search for a non-inferior solution, in particular the Pareto-Optimum strategy.

AN APPLICAT

in

AN APPLICATION OF OPTIMAL CONTROL THEORY TO POLICIES FOR INTERNAL AND EXTERNAL BALANCE

Ву


Nguyen Thi Bich Thuy

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Economics

"Con cổ chi ần cần học tập,
Mẹ ra công găng sắc lo toan,
Cha con đả mất từ lâu,
Mọi đường có Mẹ chu tòan cho con."

(T. T. Ba, 1966)

Con Nhớ Lời Mẹ Dạy Và Xin Suốt Đởi Ghi Ân.

N. T. B. T.

I wish to expra misser Anthony Y. in lee. I w

agesting the dire.

agant. Professor

reparation of this

mis greatly appr

is assistance of P

Elan of the Inte

ιε appropriate ε

j'adresse des

Ely. Bernard Ja

raide inesti

is a recherche.

int toujours pro ¥01.

SchlieElich

Mertschätzu

had Wahrend me

 $\mathbb{R}^{\mathbb{R}_{ ext{deg}}}$ ist. $\mathbb{R}_{ ext{f}}$

Reich hilfreich

ice, die mich ,

ACKNOWLEDGMENTS

I wish to express my deep gratitude and sincere appreciation to Professor Anthony Y. C. Koo, Professor Robert H. Rasche, and Professor Kwang Yun Lee. I would like to especially thank Professor Koo for suggesting the direction of the thesis and for his encouragement and support. Professor Rasche was of invaluable assistance throughout the preparation of this study. The time and attention he devoted to the work is greatly appreciated. In addition, I would like to acknowledge the assistance of Professor Lee. Special thanks are due to Dr. Thai Van Can of the International Monetary Fund for his suggestions in regard to an appropriate econometric model of this study.

J'adresse des remerciements sincères au professeur Alain Haurie et à M. Bernard Jacquet de l'Ecole des Hautes Etudes Commerciales pour l'aide inestimable qu'ils m'ont apportée en des étapes critiques de ma recherche. Je m'en voudrais de ne pas mentionner le soutien que m'ont toujours procurée Lise et Yves Lacroix. Je leur dis sincèrement merci.

Schließlich empfinde ich in nicht geringem Maße Dankbarkeit und große Wertschätzung meinem Lehrer gegenüber, der ebenfalls mein bester Freund Während meiner positivsten sowie auch negativsten Erfahrungen geworden ist. Herr Doktor V. Leroy Name ist es, dem ich für seinen überaus hilfreichen Einsatz für mich, seine Unterstutzung und Ermutigung danke, die mich dazu anspornten den wesetnlichen Wert und die Schöenheit

mürtschaftswisse edmisstudien zu e mitter gereinsam ve mit einen bleiben d der Wirtschaftswissenschaften und des Lebens während meiner Auslandsstudien zu entdecken. Erinnerung an und Verpflichtung für die schönen gemeinsam verbrachten Tage, wo immer ich auch sein werde, haben einen bleibenden Einfluß auf mein ganzes Leben.

SURVEY OF LI

1.1. On the Intern.

1.2. On the to Mac:

I ONE-COUNTRY !

2.1. Present

2.2. Optima on Ins

2.3. U.S. OBalanc Optima

Results . .

Conclusion.

II TWO-COUNTRY

CASE A: PA

3.1. Prese

3.2. Optimon Po

3.3. U.S. and E

TABLE OF CONTENTS

Chapte	r		Page
INTROD	UCTION	·	. 1
I	SURVE	Y OF LITERATURE	. 3
	1.1.	On the Theory of Economic Policy for Internal-External Balance	. 3
	1.2.	On the Application of Optimal Control Theory to Macroeconomic Stabilization Policy	. 9
II	ONE-C	OUNTRY MODEL	. 15
	2.1.	Presentation of Votey's Model	. 15
	2.2.	Optimal Control Problem Without Constraints on Instrument-Variable Magnitudes	. 19
	2.3.	U.S. Optimal Policies for Internal and External Balance: Appraisal and Amendment of the Optimal Solution	. 32
	Resul	ts	. 46
	Concl	usion	. 47
III	TWO-C	OUNTRY MODEL	. 50
	CASE	A: PASSIVE RESPONSES AND COMMON EXTERNAL BALANCE	
	3.1.	Presentation of Votey's Model	. 50
	3.2.	Optimal Control Problem without Constraints on Policy Variable Magnitudes	. 54
	3.3.	U.S. and Canada Optimal Policies for Internal and External Balance: Appraisal and Amendment of the Optimal Solution	. 65

: : المنظمة الم

TWO-COUNTRY Y

CASE B: PAS: EXTERNAL BAL

4.1. Present cation:

4.2. Optimal on Pol

4.3. U.S. at and Ex of the

T#0-COUNTRY

CASE C: CON

5.1. Formul

5.2. Determ

5.3. On the Two Pl

5.4. Deter

CONCLUSIONS

6.1. Summa

6.2. Furth

SECTION . . .

Chapt	r	Page
IV	TWO-COUNTRY MODEL	. 88
	CASE B: PASSIVE RESPONSES AND LINEAR DEPENDENT EXTERNAL BALANCE	
	4.1. Presentation of Votey's Model with Modifications on the Foreign Sector	. 89
	4.2. Optimal Control Problem Without Constraints on Policy-Variable Magnitudes	. 93
	4.3. U.S. and Canada Optimal Policies for Internal and External Balance: Appraisal and Amendment of the Optimal Solution	. 111
V	TWO-COUNTRY MODEL	. 149
	CASE C: CONFLICT OF INTERESTS AND GAME THEORETICAL APPROA	СН
	5.1. Formulation of the Problem	. 150
	5.2. Determination of a Nash Equilibrium Set $(\tilde{u}_1, \tilde{u}_2)$.	. 152
	5.3. On the Inferiority of Nash Equilibrium for a Two Player Multistage Game	. 160
	5.4. Determination of the Pareto-Optimal Set	. 163
VI	CONCLUSIONS AND RESEARCH RECOMMENDATIONS	. 170
	6.1. Summary of Conclusions	. 170
	6.2. Further Research Recommendations	. 172
BIBL	GRAPHY	. 175
APPEN	TCPC	186

Eistorical va

deviations of actinal value

Nominal value Ganada: 1961

Estorical v

No-country to the devia their nomina

Nominal value and Canada:

Eistorical Canada and

No-country to the devi Payments fi

to the dev

LIST OF TABLES

Table		Page
1.1	Cases of internal and external disequilibrium	. 4
2.1	Nominal values for state variables - U.S.: 1961-1970	35
2.2	Historical values for exogenous variables - U.S.: 1961-1970	. 36
2.3	One-country model: penalty weights attached to the deviations of state and control variables from their nominal values	. 45
3.1	Nominal values for the state variables - U.S. and Canada: 1961-1970	. 70
3.2	Historical values for the exogenous variables - U.S. and Canada: 1961-1970	. 71
3.3	Two-country model (Case A): penalty weights attached to the deviations of state and control variables from their nominal values	. 81
4.1	Nominal values for the state variables - United States and Canada: 1961-1970	. 115
4.2	Historical values for the exogenous variables - U.S., Canada and EEC: 1961-1970	. 116
4.3	Two-country model (Case B): penalty weights attached to the deviations of U.S. and Canadian balance of payments from the equilibrium	. 117
4.4	Two-country model (Case B): penalty weights attached to the deviations of control variables from their nominal values	. 125

्रिय

II U.S. Governme

I.S. interes

I.S. optimal actual and p

... I.S. balance the actual p

is interes

Wo-country the optimal

Two-country tures: the paths . . .

No-country optimal pat

No-country met of capi tial GMP.

No-country Capital sto

Two-country optimal pa

No-countr optimal pa

tures: of

LIST OF FIGURES

Figure		Page
2.1	U.S. Government expenditures: optimal paths compared with actual and nominal paths (one-country model)	38
2.2	U.S. interest rate: optimal path compared with actual and nominal paths (one-country model)	39
2.3	U.S. optimal GNP net of capital stock compared with the actual and potential GNP (one-country model)	40
2.4	U.S. balance of payments: optimal paths compared with the actual path (one-country model)	41
2.5	U.S. interest rate: optimal path compared with the nominal rate (one-country model)	42
3.1	Two-country model (Case A) - U.S. Government expenditures: the optimal path compared with actual and nominal paths	73
3.2	Two-country model (Case A) - Canadian government expenditures: the optimal path compared with actual and nominal paths	73
3.3	Two-country model (Case A) - U.S. interest rate: the optimal path compared with actual and nominal paths	74
3.4	Two-country model (Case A) - United States: optimal GNP net of capital stock compared with the actual and potential GNP	75
3.5	Two-country model (Case A) - Canada: optimal GNP net of capital stock compared with the actual and potential GNP	76
3.6	Two-country model (Case A) - U.S. balance of payments: optimal paths compared with the actual and nominal paths	77
3.7	Two-country model (Case A) - U.S. Government expenditures: optimal paths compared with nominal path	83
3.8	Two-country model (Case A) - Canadian government expenditures: optimal paths compared with nominal path	83

- No-country to optimal paths
- Two-country between the ment expendi and nominal
- I Two-country between the ment expendi and nominal
- the two exte
- We country between the ci payments:
- No-country between the balance of p actual and n
- No-country NR trajecto NP (trade-c
- Jectories country (trade-off)
- optimal pat experiment
- optimal pat experiment
- tures: op
- tures: or off experi

Figure			Page
3.9	Two-country model (Case A) - U.S. interest rate: optimal paths compared with nominal path	•	84
4.1	Two-country model (Case B) - Effects of trade-off between the two external targets on the U.S. government expenditures: optimal paths compared with actual and nominal paths	•	119
4.2	Two-country model (Case B) - Effects of trade-off between the two external targets on the Canadian government expenditures: optimal paths compared with actual and nominal paths		119
4.3	Two-country model (Case B) - Effects of trade-off between the two external targets on the U.S. interest rate: optimal paths compared with actual and nominal paths	•	120
4 - 4	Two-country model (Case B) - Effects of trade-off between the two external targets on the U.S. balance of payments: optimal paths compared with actual and nominal paths	•	121
4.5	Two-country model (Case B) - Effects of trade-off between the two external targets on the Canadian balance of payments: optimal paths compared with actual and nominal paths		121
4.6 (A)	Two-country model (Case B) - United States: optimal GNP trajectories compared with the desired and actual GNP (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$).	•	126
4.7(A)	Two-country model (Case B) - Canada: optimal GNP trajectories compared with the desired and actual GNP (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$)	•	127
4.8(A)	Two-country model (Case B) - U.S. balance of payments: optimal paths compared with the equilibrium (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$)	•	128
4.9(A)	Two-country model (Case B) - Canadian balance of payments: optimal paths compared with the equilibrium (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$)	•	128
4 - 10 (A)	Two-country model (Case B) - U.S. government expenditures: optimal paths compared with nominal path (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$)	J	130
4-11(A)	Two-country model (Case B) - Canadian government expenditures: optimal paths compared with nominal path (trade off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$)		130

4

injectories contry injectories contemperation
injectories contemperation
injectories country injectories contemperation country injectories c

optimal path experiment C

No-country : Mants: opti off experime

lwo-country tures: opti

lvo-country tures: opti off experime

Paths compa: C where q 33

trajectorie
experiment

No-country jectories c experiment

optimal pai experiment

optimal pa experiment

optimal pa experiment

Figure		Page
4.12(A)	Two-country model (Case B) - U.S. interest rate: optimal paths compared with nominal path (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$)	131
4.6(A)	Two-country model (Case B) - United States optimal GNP trajectories compared with the desired GNP (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$)	135
4.7(C)	Two-country model (Case B) - Canada: optimal GNP trajectories compared with the desired GNP (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$)	135
4.8(C)	Two-country model (Case B) - U.S. balance of payments: optimal paths compared with the equilibrium (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$)	136
4.9(C)	Two-country model (Case B) - Canadian balance of payments: optimal path compared with the equilibrium (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$)	136
4.10(C)	Two-country model (Case B) - U.S. government expenditures: optimal paths compared with nominal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$)	138
4.11(C)	Two-country model (Case B) - Canadian government expenditures: optimal paths compared with nominal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$)	138
4.12(C)	Two-country model (Case B) - U.S. interest rate: optimal paths compared with nominal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$)	139
4.6(B)	Two-country model (Case B) - United States: optimal GNP trajectories compared with the desired GNP (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$)	140
4.7(B)	Two-country model (Case B) - Canada: optimal GNP trajectories compared with the desired GNP (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$)	141
4.8(B)	Two-country model (Case B) - U.S. balance of payments: optimal paths compared with the equilibrium (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$)	142
4.9(B)	Two-country model (Case B) - Canadian balance of payments: optimal paths compared with the equilibrium (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$)	143
4.10(B)	Two-country model (Case B) - U.S. government expenditures: optimal paths compared with nominal path (trade-off experiment B where $q_{22} = 10^5$, $q_{12} = 10^5$)	145

- empenditures path (trade-
- .23) We-country is optimal path: $q_{44} = 10^5$).

Figure		Page
4.11(B)	Two-country model (Case B) - Canadian government expenditures: optimal paths compared with nominal path (trade-off experiment B where q ₃₃ = 10 ⁵ , q ₄₄ = 10 ⁵)	145
4.12(B)	Two-country model (Case B) - U.S. interest rate: optimal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^5$)	146

ON THE EQUITY
CONTROL SOLUTIONS
INSTRUMENT—V

CONTRA CONT

FI EVALUATION OF CONTROL PROB

TERDICE

(Agres:1962)

CONTROL PROI

H EVALUATION (
CONTROL PRO)

al me reduced

COMPUTATION CONTROL PRO

ELATINATION (CY

STECTED BI

LIST OF APPENDICES

Append	ix	Page
A-1	THE REDUCED FORM OF ONE-COUNTRY MODEL	186
A-2	THE DETERMINISTIC LINEAR QUADRATIC TRACKING PROBLEM: A SUMMARY OF CHOW'S AND PINDYCK'S APPROACHES	191
A-3	ON THE EQUIVALENCE OF PINDYCK'S AND CHOW'S OPTIMAL CONTROL SOLUTION WHEN THERE IS NO CONSTRAINT ON INSTRUMENT-VARIABLE MAGNITUDES	198
A-4	COMPUTATIONS OF THE OPTIMAL SOLUTION FOR THE ONE-COUNTRY CONTROL PROBLEM	206
A-5	EVALUATION OF THE WELFARE COST FOR THE ONE-COUNTRY CONTROL PROBLEM	212
A-6	THE REDUCED FORM OF THE TWO-COUNTRY MODEL (CASE A)	218
A-7	COMPUTATION OF THE INVERSE OF A SYMMETRIC MATRIX (Ayres:1962)	231
8-A	COMPUTATIONS OF OPTIMAL SOLUTION FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE A)	235
A-9	EVALUATION OF THE WELFARE COST FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE A)	246
A-10	THE REDUCED FORM OF THE TWO-COUNTRY MODEL (CASE B)	252
A-11	COMPUTATIONS OF THE OPTIMAL SOLUTION FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE B)	266
A-12	EVALUATION OF WELFARE COST FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE B)	280
A-13	SELECTED BIBLIOGRAPHY ON THE THEORY AND APPLICATION OF DIFFERENTIAL GAMES TO ECONOMICS	289

The problem of Emergen and Meade Hity" (Meade:1951 unduced the most instary and Fiscal Exerci, studies re ment with one ex Parallel to the mile of interna incern control at to interest in imprer, in spite theory to Tilished paper acces have cons The purpose theory is tatroduce a ne

g the prob

assumption

Tesponses

zed decisio

INTRODUCTION

The problem of internal-external balance was first raised by

Tinbergen and Meade under the title of "Theory of Quantitative Economic

Policy" (Meade:1951, Tinbergen:1952). Along this direction Mundell (1962)

introduced the most controversial issue called "The Appropriate Use of

Monetary and Fiscal Policies for Internal and External Stability."

However, studies related to these problems are presented in a static

context with one exception of Votey's work (1969).

Parallel to the Meade-Tinbergen-Mundell formulation of the static

problem of internal-external balance, significant advances both by engineers
in modern control theory and by econometricians in macroeconomic modeling
led to interest in the problem of the dynamic economic policy-making.

However, in spite of numerous studies on the application of optimal

control theory to economics, a survey of which is found in Kendrick's
unpublished paper (1972) as well as in Park's dissertation (1973), no

studies have considered the problem of internal-external balance.

The purpose of this study is twofold: first, to show that optimal control theory is also applicable to internal-external models; secondly, to introduce a new framework, called differential game theory, for solving the problem of internal-external balance under more sophisticated assumptions than those of Meade-Tinbergen-Mundell models, e.g., active responses from other countries, conflicting targets, and decentralized decision-making.

Michael balance, mamal balance. Mitistage game wi

zits application

setally to probl

est the main (

rentations.

Totey's macrod amons of optimal memal-external b Exil970a, 1970b, **运流 (1972, 197**) smightforward ap; rial, and requires mal solution. Chapter I will if economic policy imital control mi concern of the mainprents. Char mittel techniques unital problem wil Votey's macrodynamic model will be borrowed to illustrate applications of optimal control tools. To derive optimal policies for internal-external balance Chow's deterministic optimal control approach (Chow:1970a, 1970b, 1972a, 1972b, 1972c) is preferred to that of Pindyck (1972, 1973), because the former approach involves a more straightforward application, given the structural form of Votey's model, and requires only basic matrix manipulation to compute the optimal solution.

Chapter I will present a survey of the literature on the theory of economic policy for internal-external balance and on the application of optimal control theory to problems of economic stabilization. The main concern of the chapter will be to show a gap between these two developments. Chapter II will deal with the application of optimal control techniques to the one-country model. The two-country optimal control problem will be treated in Chapter III for the case of common external balance, and in Chapter IV for the case of linear dependent external balance. Chapter V will introduce a two-player deterministic multistage game with a linear and quadratic system for further research on its application to problems of internal-external balance, or more generally to problems of conflicts in economics. Chapter VI will present the main conclusions of the study and suggest some recommendations.

: Mi-employment

stained through an

E: intervention.

effects tend

equilibriu equilibriu miled pressure o

internation

mid mider fixed e

inemal balance"

Electe governme

tare of itself

The Pioneers

Tiews are Me

is approach to

inal balance v

Talues of poli

CHAPTER I

SURVEY OF LITERATURE

1.1. On the Theory of Economic Policy for Internal-External Balance

Forty years ago, John Maynard Keynes with his "General Theory" dealt a fatal blow to the classical notion that "internal balance", or full-employment equilibrium in the domestic economy, could be attained through an automatic adjustment mechanism with little government intervention. But the notion that the "automatic" price and income effects tend to restore "external balance" or balance-of-payments equilibrium persisted until the middle 1950's. Under the combined pressure of modern economic theory, and observation of the chronic international financial difficulties that plague the real world under fixed exchange rates, economists have come to regard "external balance" as one of the specific economic objectives of deliberate governmental action, rather than as something that will take care of itself (von Neumann Whitman:1970).

The pioneers in developing a formal body of analysis incorporating these views are Meade (1951) and Tinbergen (1952). They introduced a new approach to the problem of simultaneously achieving internal and external balance via quantitative economic policy, that is, of finding the values of policy variables given some desired levels of real

and balance iz traditional mul In addition to zis, Timbergen in mistence of a sol miniple of equal i namer of inder 麗, all the polic E targets achieve Defining exter mains that fisca milling the ag. emetic policy to Eace's four cases व भिद्य widely ac Eal.1. Cases

e Deflat

X

X

•

Elict)

income and balance of payments. This approach is just the inverse of the traditional multiplier analysis.

In addition to the criteria on the effectiveness of policy instruments, Tinbergen in his work also formulated a rule on determining the existence of a solution to attain the joint balance, called the principle of equality between the number of independent targets and the number of independent instruments. Once Tinbergen's rule is satisfied, all the policy variables can be set at the necessary levels and all targets achieved simultaneously.

Defining external balance in terms of the current account, and assuming that fiscal and monetary policies are equivalent methods of controlling the aggregate demand, Meade (1951) developed a theory of economic policy to cure internal and external disequilibrium. Two of Meade's four cases have potential conflicts (Table 1.1). This analysis has been widely accepted for a considerable period.

Table 1.1. Cases of internal and external disequilibrium

	Disequilibrium				
	Internal		External		
Case	Deflation	Inflation	Deficit	Surplus	Cures
1	х			х	Inflationist policy
2		x	x		Deflationist policy
3 (conflict)	x		x		Devaluation
(conflict)		x		x	Appreciation of exchange rate

In the 1960's.

(1) Mindell' solution

ictick:1968, Coop

(2) The anal

(3) The suga

fundamen

(4) The prop

In the 1960's, the problem of using monetary and fiscal policy to achieve internal and external stability received considerable attention. The analysis assumes that a country chooses to keep its exchange rate fixed and chooses to avoid the use of direct controls over trade and capital movements. Mundell, in his classic 1962 article, proposed a new theory based on the Principle of Effective Market Classification (PEMC) which states that "each policy instrument should be directed towards that target on which it has relatively the greatest impact." Unlike the old theory of Meade, Mundell defined external balance in terms of the current account and short term capital flows. The latter assumed to be responsive to changes in interest rate differentials among countries. Mundell also divided financial policy into two separate policies: monetary and fiscal. Under these assumptions Mundell concluded that in a disequilibrium situation "monetary policy ought to be aimed at external objectives and fiscal policy at internal objectives", on the grounds that to do the opposite would worsen the disequilibrium situation.

The main criticisms of Mundell's theory are (Yeager:1966, Votey:1969, Patrick:1968, Cooper:1969):

- (1) Mundell's proposal and proof are set forth as a short-run solution.
- (2) The analysis deals with one, very small country.
- (3) The suggested policy mix may thus temporarily palliate a fundamental external imbalance.
- (4) The proper assignment assumes full freedom in assigning instruments to variables. Therefore, so long as nations

remain in could not (5) The "com; with the

> distance controlle

(6) The Munde that con: makers ha Eowever,

linking i ficient (

(7) The analy

the speed a proper

Attempts to re exchange rate

int) and Votey (1

विश्व emphasis Cooper's work

the in

nations.

the effe

will decrea diffecting all t

elling.

- remain independent in their actions, some targets could not be reached.
- (5) The "comparative advantage" of instruments may vary with the environment, the level of targets, and the distance from the targets of the variables to be controlled.
- (6) The Mundellian model prescribes a set of policy responses that converges on equilibrium even when the policy makers have limited knowledge of the economic system. However, uncertainty about the analytical relationship linking instruments and targets can also lead to inefficient use of instruments.
- (7) The analysis is mainly static. No account is taken of the speed of adjustment of the system, the effect of a proper policy assignment on growth, or cyclicity.

Attempts to remedy the shortcomings of Mundell's analysis under fixed exchange rate have been undertaken. Cooper (1969), Patrick (1968) and Votey (1969) extended Mundell's theory to a two-country case with emphasis on the interdependence of the economies.

Cooper's work (1969) is mainly concerned with the gains from Coordinating the instruments of economic policy both within and between nations. He found that as the economic interdependence increases, the effectiveness of decentralized policy making a la Mundell will decrease, and the case for coordination of policy making, for directing all the policy instruments at all the targets, becomes more compelling. The analytical framework used in his study is

milar to that in intrinents of eco Patrick (1965 minsal for a two Mance-of-payment im Country II wi argets. He conci atlà does not in: mims introduced Traise the possi Recently, Pat im a decentralize Madden:1968, 19 Titraents case Regent policy in Missary to esta Votey (1969) ेदल's model all t is dynamic in ation of diects on stabi *Tielian polic

(1) A prol

riel and of a t

ान्य are:

intere

similar to that introduced by Tinbergen (1952), involving targets and instruments of economic policy.

Patrick (1968) studied the stability of Mundell's assignment proposal for a two-country model under various assumptions: common balance-of-payments, passive responses from Country II, active responses from Country II with international cooperation as well as conflicting targets. He concluded that the explicit inclusion of the rest of the world does not invalidate Mundell's theory; however, the other complications introduced by the assumptions of active responses from Country II raise the possibility that Mundell's conclusions are inappropriate.

Recently, Patrick (1973) reexamined the convergence of assignment for a decentralized system using McFadden's criteria for stability (McFadden:1968, 1969). He discovered that for the two targets and two instruments case the minimum information necessary to establish convergent policy in a centralized system is virtually identical to that necessary to establish a convergent decentralized system.

Votey's model allows reactions from the rest of the world; and secondly, it is dynamic in that it adds a production function and allows for accumulation of the capital stock over time. Then, he studied the effects on stability, cyclic response, and growth from applying Mundellian policy, for the cases of a simple, open-economy, one-country model and of a two-country model. The main conclusions of Votey's study are:

(1) A prolonged solution based on Mundellian policy requires a higher degree of sensitivity of capital flows to interest rate differentials than Stein's (1973) results

would i within

of all 1 leads to

(3) Internat establis

growth.

a more f

(4) Within the cyclicity

adoption

h spite of the

Tion of Mundell

itst important to

external pro

action action

scle tool of

of Mundell

that the flu

can be exac

teriture to the

est without so

- would indicate if interest rates are to be kept within the range of past movements.
- (2) If there exists international cooperation, with higher rather than lower growth rates as the goal of all parties, the adoption of Mundellian policy leads to a choice of action which may stimulate growth.
- (3) International cooperation with respect to the establishment of interest rates can lead both to a more favorable balance of payments and more favorable rates of growth.
- (4) Within the confines of Votey's model it appears that cyclicity is not a problem associated with the adoption of Mundell's solution.

In spite of the above results, Votey is not an advocate for the adoption of Mundellian policy. He recognized that monetary policy is a most important tool for achieving domestic goals and its abandonment to the external problem is too large a price to pay. Furthermore, the lags which must be accepted in the effectiveness of fiscal policy both in initiating action and in achieving results makes it unacceptable as the sole tool of domestic policy. To these two objections to the adoption of Mundellian policy, we would add a third one: It is not likely that the fluctuations in interest rates necessitated by foreign balance can be exactly offset in the domestic economy by government expenditure to the extent that the sectoral imbalances do not occur, at least without some very selective countermeasures.

Another exter [30]. He incorp existons of multi

iz structure and

mwides a better

mis might influe:

pais of full empling fixed-exchange

plities have dif:

meditor countries

reall the previo

to Macroeco

In the 1960'

in economic

This was

entetrics and

are been found

int as growth m

iscorces, short

indiens, dynami

Tisis models,

inter1973).

This section

maization v

Another extension of Mundell is the recent work by Krainer (1973). He incorporated the production, investment, and financing decisions of multinational firms into a macroeconomic model. This provides a better understanding of how factor endowments influence the structure and interrelationship of trade and investment and how this might influence the impact of monetary and fiscal policies on the goals of full employment and equilibrium in the balance of payments in a fixed-exchange-rate world. He concluded that monetary and fiscal policies have different effects in resource rich and resource poor creditor countries. However, his model is fundamentally static as are all the previous ones with the exception of Votey's.

1.2. On the Application of Optimal Control Theory to Macroeconomic Stabilization Policy

In the 1960's optimal control theory found substantial applications in economics because of increasing interest in dynamic decision-making. This was facilitated by the development of quantitative econometrics and of computers. Numerous applications of control theory have been found in macroeconomics as well as in microeconomic fields, such as growth models, planning models for sectoral allocation of resources, short-run economic stabilization models, consumer choice problems, dynamic models of investment and pricing by firms, portfolio analysis models, and pollution control problems (Kendrick:1971, Park:1973).

This section surveys studies on optimal planning for economic stabilization via optimal control techniques.

In the earl sternining mach ing this direc inmer of state us of the sys k showed that micies to mul missired oscil mults are als ≘e:1967). H the sense that desible, they im time atten ाने of optima Van Eijk a Filed a more trelating the er vorks hav ses of the t ze the d Elables, i.e Wiler Holt (Etive their d Recent ad [≥], ≥cre _{conv}

Stragin's a

In the early fifties Tustin (1953) noted that the problem of determining macroeconomic policies is a feedback control problem. Work along this direction was also done by Phillips (1954, 1957). He proposed a number of stabilization policies and considered the stability properties of the system when these policies were implemented. In particular, he showed that the application of certain types of stabilization policies to multiplier-accelerator macroeconomic models could result in undesired oscillations and even instability in economic activity. These results are also found in other studies (Baumol:1961, Chow:1968, Allen:1967). However, Phillips' analysis was purely descriptive in the sense that while the alternative policies he considered were plausible, they were not derived from any optimizing behavior. Since that time attention has shifted to more normative questions and to the study of optimal stabilization policies.

Van Eijk and Sandee (1959), Holt (1962, 1965), and Theil (1964) applied a more modern analysis to macroeconomic systems without correlating the analysis with the control system aspects of the problem. Their works have generally related to the derivation of linear decision rules of the type first derived by Simon (1956). These decision rules minimize the distance between actual and desired levels of the target variables, i.e., the social welfare function is quadratic in form. But neither Holt (1962) nor Theil (1964) used modern control theory to derive their decision rules.

Recent advances in control theory have led to the development of new, more convenient techniques than the calculus of variations:

Pontryagin's maximum principle (Pontryagin et al.:1962) and Bellman's

rric programmin it is now known to zia linear mode! Hear feedback 13 mentain the solu Deterministic reels by Buchanar hatjak (1972, 197 miliare function a Buchanan (195 the problem of atim of macroeco and foreign optimizati Hits and investme Figure that grow rement of stabil it ispan the grow ≈ of the 1950's incresky (1973) ; in of the determ (1972, 19 ् भृशंका time . Etic model of t

was of the t

dynamic programming (Bellman:1957). As a result of these developments it is now known that with the assumption of quadratic utility functional and a linear model it is possible to obtain the optimal policy as a linear feedback law. This is a particularly convenient form in which to obtain the solution.

Deterministic control theory has been applied to macroeconomic models by Buchanan (1968), Sakakibara (1969, 1970), Sengupta (1970), Pindyck (1972, 1973), and Turnovsky (1973). They all used a quadratic welfare function and linear deterministic model.

Buchanan (1968) showed that modern control theory is applicable to the problem of economic policy determination for domestic stabilization of macroeconomic systems. Sakakibara (1969, 1970) integrated demand and foreign sectors to an ordinary growth model and applied dynamic optimization to evaluate actual economic policies (unemployment rates and investment - GNP ratio) for the United States and Japan. He found that growth policies have been too conservative while the movement of stabilization tools has been too erratic for 1952-1967. For Japan the growth policy in the 1960's was quite successful while that of the 1950's was too conservative. Both Sengupta (1970) and Turnovsky (1973) applied optimal control techniques to the stabilization of the deterministic Phillips' multiplier-accelerator model. Pindyck (1972, 1973) applied the deterministic control theory to study the optimal time path for the policy variables, using a linear econometric model of the U.S. economy. His analysis provides empirical measures of the trade-off between unemployment and inflation.

However, the mimal control p inition is quadr inently, some at Our knowledg: neconometric mo i the structural and with it. To thery has been it ion the optimal : stochastic control itie optimal de it of a constant E the extreme, i Tim variables, ear, the princi Min Theorem" in == roblem to Teil:1957, Wonki * a function is no measu isage as for t Paryani (197 知 an optimal that the op

idese variable

However, the above studies are restrictive in three senses: the optimal control problem has been completely deterministic, the cost function is quadratic, and the econometric models used are linear.

Recently, some attempts have been made to remedy these shortcomings.

Our knowledge of the economy is incomplete; the coefficients of an econometric model are themselves random variables, and each equation in the structural form of the model has an implicit error term associated with it. To cope with uncertainty, stochastic optimal control theory has been introduced. Chow has shown that there are two gains from the optimal stochastic control policy: the gain of the optimal stochastic control over the optimal deterministic control and the gain of the optimal deterministic control over the deterministic control rule of a constant growth rate for each policy variable (Chow:1972b). At the extreme, if the error terms are additive, uncorrelated normal random variables, the cost functional is quadratic and the system is linear, the principle of "certainty equivalence" (known as the "Separation Theorem" in the control literature) allows the stochastic control problem to be reduced to one that is essentially deterministic (Theil:1957, Wonham:1968, 1969, Sorenson:1968). The optimal control becomes a function of the expected value of the state vector, and if there is no measurement noise, the solution for the optimal control is the same as for the deterministic problem (Chow:1972b, 1972c).

Paryani (1972) has applied the tools of stochastic control to derive an optimal control policy for the U.S. national economy. He found that the optimal control variables differ from the actual values of these variables during the period 1954-1963, suggesting the use of

me flexible

immal bala

Instead

Exierson (19

șecialized

Benjami

unl approac

ay not be o

i is an att

meteral cos:

Stein .

tid drive

istead of

Final

ist econo:

inetines :

in non-1

भाजा ८०

industed.

ictie and

In s

is develo

artest f.

क्षांहरूड.

Tais

more flexible control policies by the decision-makers to reach the internal balance.

Instead of additive stochastic disturbances, Turnovsky and Henderson (1972, 1973) introduce stochastic parameters in a somewhat specialized dynamic context.

Benjamin Friedman (1972) extends Theil's stochastic optimal control approach to economic policy to the case where the welfare function may not be quadratic but is approximated by several quadratic segments. It is an attempt to solve dynamic optimization problems with more general cost functions.

Stein and Infante (1973) have sought optimal stabilization policies which drive the quadratic cost of deviation monotonically to zero instead of minimizing the cost.

Finally, the most serious restriction is that of a linear model. Most econometric models are at least quasi-linear in structure, but sometimes the more interesting aspects of their dynamic behavior arise from non-linearities. Recently, several studies on the application of optimal control theory to non-linear macroeconomic models have been conducted (Livesey:1971, Holbrook:1972, Norman:1972, Shupp:1972, Haurie and van Petersen:1973).

In spite of these efforts, further research needs to be done on the development of stochastic, non-linear and non-quadratic optimal control theory and its application to macroeconomic stabilization problems.

This survey of the literature shows that:

(1) The prointerna

static

(2) Optimal

the pro

is take

targets

and of

one cour

Therefore, to

異 (Thai Van Can

ne and two-count

ir internal and e

- (1) The problem of quantitative economic policy for internal and external balance has been basically static with the one exception of Votey's study.
- (2) Optimal control theory has been mainly applied to the problem of domestic stabilization. No account is taken of the regulation of balance-of-payments targets, of the interdependence between countries and of the repercussion effects when more than one country is considered.

Therefore, the next three chapters will attempt to bridge this gap (Thai Van Can:1972) by applying optimal control tools to Votey's one- and two-country macrodynamic models to derive optimal policies for internal and external balance.

aployment
assized to
atternal ba
salance in
fill be pre
amirol pro
L.O.) syst
the quadrate
thanks sys
law:1972a)
tiel into
te used to

This c

Prese

ally with

ंद्र स्था ह

CHAPTER II

ONE-COUNTRY MODEL

This chapter deals with a two-target and two-instrument case. Both fiscal and monetary authorities of Country I act to attain full employment and balance-of-payments equilibrium while Country II is assumed to be passive with respect to its targets of internal and external balance. To find the optimal policies for internal-external balance in Country I. First, Votey's one-country econometric model will be presented (Votey:1969). Secondly, the one-country optimal control problem will be formulated in terms of a linear-quadratic (L.Q.) system to find the optimal control solution which minimizes the quadratic cost function subject to the constraints of a linear dynamic system. Pindyck's and Chow's approaches (Pindyck: 1973, Chow:1972a) will be used to put the reduced form of Votey's econometric model into the "state-space" system. Next, Chow's formulation will be used to derive the optimal solution both analytically and numerically with reference to the United States. Finally, the optimal solution will be appraised and amended.

2.1. Presentation of Votey's Model

The main assumptions of the one-country model are:

(2) Control

r_{lt}:

(1) The ex at the

treate

(2) The fo

the pa

Countr

extern.

or cou

(3) The sh intere

countr

The model ha mercinant syste

(1) Endoge:

 B_{lt} :

Clt:
IG:
Ilt:
Int:
Klt:

M_{lt}: 0_{1t}:

Y_{lt}:

c_{lt}:

- (1) The export demand is given. It is assumed to grow at the same rate as it has in the past and is treated as an exogenous variable.
- (2) The foreign interest rate is given. This assumes the passive cooperation of Country II such that Country I may adjust its own rate to achieve the external balance without any foreign interference or countermeasures.
- (3) The short-term capital flows are sensitive to the interest rate differentials between the two countries.

The model has five equations and five unknowns which lead to a determinant system. The variables are classified in three classes:

(1) Endogenous variables:

B₁₊: Balance of payments

 C_{1t} : Consumption expenditures

I_{1t}: Gross investment

In lit: Net investment

K₁₊: Capital stock

M_{1t}: Imports

O_{lt}: Net capital outflow

Y₁₊: National income

(2) Controlled exogenous variables:

G_{1r}: Government expenditures

r_{lt}: Rate of interest

(3) Non-cor

L_{lt:}

P_Mlt:

P_{xlt}:

r_{2t}:

T_{lt}:

X_{lt}:

TT_{lt} =

The equations are

Y_{1t}=C_{1t}+1

Blt=Xlt

It In

+₇₁₃K₁

(3) Non-controlled exogenous variables:

L_{1r}: Labor force

P_{M1+}: Import price

P : Export price

r_{2t}: Foreign interest rate

T_{1t}: Tax receipts

 X_{1t} : Exports $TT_{1t} = \begin{pmatrix} \frac{P_M}{P_X} \end{pmatrix}_{1t}$: Terms of Trade

The equations are as follows:

$$(I-1)$$
 $Y_{1t}=C_{1t}+I_{1t}^G+G_{1t}+X_{1t}-M_{1t}$ National income identity

(I-2)
$$B_{1r} = X_{1r} - M_{1r} - O_{1r}$$
 Balance of payments identity

(I-3)
$$K_{1t} = I_{1t}^n + K_{1t-1}$$
 Capital stock identity

(I-4)
$$I_{1t}^G = I_{1t}^n + \delta_* K_{1t}$$
 Gross investment identity

(E-1)
$$Y_{1t} = \delta_{10} + \delta_{11} K_{1t} + \delta_{12} L_{1t}$$
 Production function

(E-2)
$$C_{1t} = \alpha_{10} + \alpha_{11} (Y_{1t} - T_{1t} - \delta_* K_{1t})$$
 Consumption function

(E-3)
$$M_{1t} = \beta_{10} + \beta_{11} (Y_{1t} - T_{1t} - \delta_{*}K_{1t})$$

+ $\beta_{12} TT_{1t}$ Import function

(E-4)
$$I_{1t}^{n} = \gamma_{10}^{+\gamma_{11}} Y_{1t-1}^{-\gamma_{12}} [q(\delta_{*} + r)]_{1t-1}$$

 $+\gamma_{13} K_{1t-1}$ Investment function

(3-5) 0₁₁

All th

ma first (

Equat:

mi labor.

herween the

Equat:

disposable

ie United

iereciati

HES (I

= 1

Equat .

at the ra

Equat

in to th

imital st

:fcapital

izis tied

can b

Wital go

is the rat

itis. Io

the

(E-5)
$$0_{1t} = \eta_{10} + \eta_{11} (r_{2t} - r_{1t})$$
 Net outflows of short term capital

All the equations are linear functions, and none are greater than the first order of difference.

Equation (E-1) - The output is a linear function of both capital and labor. It embodies the assumption of perfect substitutability between the two factors of production.

Equation (E-2) - Consumption expenditures are made a function of disposable income, using Klein's approach in the econometric model of the United Kingdom (Klein:1961). Disposable income is GNP, less capital depreciation (δ_*K_{1t} where δ_* is the rate of replacement) and also less taxes (T_{1t}) which are determined by a linear function of the form: $T_{1t} = \lambda_{10} + \lambda_{11} Y_{1t}$.

Equation (E-3) - Imports are simply a function of disposable income and the ratio of foreign to domestic prices.

Equation (E-4) - Net investment expenditures, that is, net addition to the capital stock, are assumed to depend on money output, the capital stock, and the user cost of capital which prevail at the time the investment decision is made. In Votey's formulation, the user cost of capital has two principal components: the opportunity cost of funds tied in the capital, plus the cost of the actual capital consumed. This can be written in the form: $q(\delta_* + r)$, where q is the price of capital goods, δ_* is the rate of replacement of capital stock, and r is the rate of interest, which represents the opportunity cost of funds. To simplify the model, it is assumed that relative prices within the country do not change, in which case q = 1 over time.

Equation tive to inter Main's result apital moveme iers as a dire results will l in Optimal on Instr It is ass

> ependitures (assumed that i

> Mance, that

united with

Enghout the

wers of Coun ise to the t

러 budgetary

The exter

milibrium, t

े tae product

वित्रे gives th i which is a

entric mo

entitation .

balle entry" dequation 2.

Equation (E-5) - The capital transfers are assumed to be sensitive to interest rate differentials. Two results are available:

Stein's results (or minimum results) dealing only with short term capital movements, and maximum results dealing with all capital transfers as a direct function of the existing differentials. Stein's results will be chosen for the analysis of short-run stabilization.

2.2. Optimal Control Problem Without Constraints on Instrument-Variable Magnitudes

It is assumed that the Country I has two instruments: government expenditures G_{1t} and the short-run interest rate r_{1t} . It is also assumed that its goal is to attain simultaneously internal and external balance, that is, a situation of full employment without inflation combined with balance-of-payments equilibrium. The exchange rate throughout the study is assumed to be fixed; therefore, the decision-makers of Country I try to steer their GNP and balance of payments close to the targets by choosing the appropriate combination of monetary and budgetary measures (r_{1t}^*, G_{1t}^*) .

The external balance is represented by the balance-of-payments equilibrium, that is, $\overline{B}_{1t} = 0$ while the internal balance is determined by the production function: $Y_{1t} = \delta_{10} + \delta_{11} K_{1t} + \delta_{12} L_{1t}$ (2.1) which gives the potential output. It is noted that the capital stock K_{1t} which is an endogenous variable in the reduced form of Votey's econometric model also figures in the production function for the determination of the potential output. To overcome this problem of "double entry" of K_{1t} , the following transformation in the variables of equation 2.1 is needed:

[1 - 1]1 K1t = : :: = Y_{1t} - 5₁₁ k the output ne i₁: = i₁₀ + i₁₂ mich determines inty, the onetained form (se $\frac{y_t = \overline{A}}{2} y_{t-1} + \overline{B}$ tiate d means "d i filt, Blt, [1, II_{It}, I

Given the s

Milet can be f

White lead to the

$$Y_{1t} - \delta_{11} K_{1t} = \delta_{10} + \delta_{12} L_{1t}$$
 (2.2)

Let

$$\tilde{Y}_{1t} = Y_{1t} - \delta_{11} K_{1t}$$
 (2.3)

be the output net of capital accumulation. Then equation 2.2 becomes:

$$\tilde{Y}_{1t} = \delta_{10} + \delta_{12} L_{1t}$$
 (2.4)

which determines the internal balance. To apply the optimal control theory, the one-country econometric model has been put into the reduced form (see Appendix A-1):

$$y_{t} = \overline{A} y_{t-1} + \overline{B} u_{t} + \overline{C} u_{t-1} + \overline{D} z_{t}$$
 (2.5)

where d means "defined as" and

$$y_{t} \stackrel{d}{=} \begin{bmatrix} \tilde{Y}_{1t}, B_{1t}, K_{1t} \end{bmatrix}'$$

$$u_{t} \stackrel{d}{=} \begin{bmatrix} G_{1t}, r_{1t} \end{bmatrix}'$$

$$Z_{t} \stackrel{d}{=} \begin{bmatrix} 1, TT_{1t}, T_{1t}, X_{1t}, r_{2t} \end{bmatrix}'$$

$$= \begin{bmatrix} A_{11} & 0 & A_{13} \\ A_{21} & 0 & A_{23} \\ Y_{11} & 0 & \alpha_{34} \end{bmatrix}; E = \begin{bmatrix} Q_{11} & 0 \\ Q_{21} & \eta_{11} \\ 0 & 0 \end{bmatrix}; C = \begin{bmatrix} 0 & A_{15} \\ 0 & A_{25} \\ 0 & Y_{12} \end{bmatrix}; E = \begin{bmatrix} D_{11} & D_{12} & D_{13} & Q_{11} & 0 \\ D_{21} & D_{22} & D_{23} & 1 - Q_{21} & \eta_{11} \\ \alpha_{36} & 0 & 0 & 0 & 0 \end{bmatrix}$$

Given the structural form (2-5) the one-country optimal control problem can be formulated in either Pindyck's or Chow's terminology.

Both lead to the same result. However, Chow's method will be applied

: derive t

sing the U

..... For

Given

Piniyok's a

he made:

 $\frac{1}{2} - \overline{b} u_t - \overline{D}$

u get Pind;

ila). In c

minal cont

 $\sum_{t=1}^{p} x_{t-1}^{p}$

र्देश:

y But

्र_{हेंचे}ous var

to derive the optimal solution first analytically then numerically, using the U.S. data for the period 1961-1970.

2.2.1. Formulation of the Problem

Given the reduced form of Votey's one-country model to use Pindyck's approach the following transformation to equation 2.5. must be made:

$$y_{t} - \overline{B} u_{t} - \overline{D} z_{t} = \overline{A}(y_{t-1} - \overline{B} u_{t-1} - \overline{D} z_{t-1}) + (\overline{AB} + \overline{C})u_{t-1}$$

$$+ \overline{A} \overline{D} z_{t-1}$$
(2.6)

to get Pindyck's "state-space" system (see Appendix A-2, equation A-2.1a). In other words, the "state-space" system for the one-country optimal control problem is given by:

$$x_{t}^{P} = A^{P} x_{t-1}^{P} + B^{P} u_{t-1}^{P} + C^{P} z_{t-1}$$
 (2.7)

where:

$$x_{t}^{P} \stackrel{d}{=} y_{t}^{-\overline{B}u} t^{-\overline{D}z} t \stackrel{d}{=} \left[\widetilde{Y}Y_{1t}, BB_{1t}, KK_{1t} \right] \text{ is the (3x1) state vector;}$$

$$u_{t-1}^{P} \stackrel{d}{=} u_{t-1} \stackrel{d}{=} \left[G_{1t-1}, r_{1t-1} \right] \text{ is the (2x1) control vector;}$$

$$z_{t-1}^{P} \stackrel{d}{=} z_{t-1} \stackrel{d}{=} \left[1, TT_{1t-1}, T_{1t-1}, T_{1t-1}, X_{1t-1}, r_{2t-1} \right] \text{ is the (5x1)}$$

exogenous variable vector;

 $\begin{bmatrix} A \\ A \end{bmatrix}$ $\begin{bmatrix} A \\ A \end{bmatrix}$

are known ma

n instrune

15:

 $\hat{r} = \frac{1}{2} \quad \hat{x}$ t = 1

i e e

 $\frac{1}{2} \int_{0}^{q} 11$ 0 $\frac{1}{2} \int_{1}^{q} 11$

Unlike
Silin) do
Silact, i

$$A^{P} \stackrel{d}{=} \overline{A} \stackrel{d}{=} \begin{bmatrix} A_{11} & 0 & A_{13} \\ A_{21} & 0 & A_{23} \\ \gamma_{11} & 0 & \alpha_{34} \end{bmatrix}; \overline{B} \stackrel{d}{=} \overline{AB} + \overline{C} \stackrel{d}{=} \begin{bmatrix} A_{11}Q_{11} & A_{15} \\ A_{21}Q_{11} & A_{25} \\ \gamma_{11}Q_{11} & -\gamma_{12} \end{bmatrix};$$

$$\overline{C} \stackrel{d}{=} \overline{AD} = \begin{bmatrix} A_{11}^{D} 11^{+A} 13 & a_{36} & A_{11}^{D} 12 & A_{11}^{D} 13 & A_{11}^{Q} 11 & 0 \\ A_{21}^{D} 11^{+A} 23 & a_{36} & A_{21}^{D} 12 & A_{21}^{D} 13 & A_{21}^{Q} 11 & 0 \\ Y_{11}^{D} 11^{+a} 34 & a_{36} & Y_{11}^{D} 12 & Y_{11}^{D} 13 & Y_{11}^{Q} 11 & 0 \end{bmatrix}$$

are known matrices. Since R^P=0 under the assumption of no constraints on instrument-variable magnitudes, the cost functional to be minimized is:

$$J^{P} = \frac{1}{2} \sum_{t=1}^{N} \left[(x_{t-1}^{P} - \overline{x}_{t-1}^{P})' Q^{P} (x_{t-1}^{P} - \overline{x}_{t-1}^{P}) \right]$$
 (2.8)

where

$$\overline{x}_{t-1}^{P} \stackrel{d}{=} y_{t-1}^{-\overline{B}u} = \overline{y}_{t-1}^{-\overline{D}z} = \overline{y}_{t-1}^{YY} = \overline{y}_{t-1}^{YY}, \quad \text{is the nominal}$$

or ideal state variable vector;

$$Q^{P} = \begin{bmatrix} q_{11} & 0 & 0 \\ 0 & q_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 with q_{11} and q_{22} are weights attached to the respective quadratic deviations
$$(\tilde{Y}Y_{1t-1} - \tilde{Y}Y_{1t-1})^{2} \text{ and } (BB_{1t-1} - \overline{BB}_{1t-1})^{2}.$$

Unlike Pindyck's approach, Chow's state-space system (see equation A-2.17) does not require any transformation to the reduced form (2.5). In fact, in Chow's terminology the dynamic system of the one-country optimal control problem is given by:

 $\int_{t}^{c} A^{c} x_{t-1}^{c} + E$ $\int_{t}^{c} A^{c} x_{t-1}^{c} + E$ $\int_{t}^{c} A^{c} x_{t-1}^{c} + E$ of current endo ie (2x1) vecto is the (5x1) ve

there ar

Right matrix

Special A-2)

$$x_{t}^{c} = A^{c}x_{t-1}^{c} + B^{c}u_{t}^{c} + C^{c}z_{t}^{c}$$
 (2.9)

where $x_{t}^{c} = \begin{bmatrix} y_{t} & u_{t} \end{bmatrix}^{d} = \begin{bmatrix} y_{1t}, B_{1t}, K_{1t} & G_{1t}, r_{1t} \end{bmatrix}^{d}$ is the (5x1) vector of current endogenous and controlled variables; $u_{t}^{c} = \begin{bmatrix} u_{t} & u_{t} \end{bmatrix}^{d} = \begin{bmatrix} G_{1t}, r_{1t} \end{bmatrix}^{d}$ is the (2x1) vector of controlled variables; $z_{t}^{cd} = z_{t}^{d} = \begin{bmatrix} 1, TT_{1t}, T_{1t}, X_{1t}, r_{2t} \end{bmatrix}^{d}$ is the (5x1) vector of exogenous variables;

$$\mathbf{A}^{\mathbf{c}} = \begin{bmatrix} \overline{\mathbf{A}} & & \overline{\mathbf{C}} \\ & & & \overline{\mathbf{C}} \\ & & & & \mathbf{C} \\ & & & & & \mathbf{C} \end{bmatrix} \stackrel{\mathbf{d}}{=} \begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} & \mathbf{A}_{13} & \mathbf{0} & \mathbf{A}_{15} \\ \mathbf{A}_{21} & \mathbf{0} & \mathbf{A}_{23} & \mathbf{0} & \mathbf{A}_{25} \\ \mathbf{\gamma}_{11} & \mathbf{0} & \mathbf{a}_{34} & \mathbf{0} & -\mathbf{\gamma}_{12} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} ; \ \mathbf{B}^{\mathbf{c}} = \begin{bmatrix} \overline{\mathbf{B}} \\ - - - \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{0} \\ -\mathbf{Q}_{21} & \mathbf{\eta}_{11} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Since there are no constraints on the policy-variable magnitudes, the weight matrix in the welfare cost function (see equation A-2.18 in Appendix A-2) has the form:

instead o

tere q1 ieviatio

itteched

attached

z fisca

à.

erez, t in tor

vare-s

Prig,

اعتفات letore

₹13.00

instead of

where q_{11} and q_{22} are weights attached to the respective quadratic deviations from the internal and external balance, i.e., weights attached to $(\tilde{Y}_{1t}-\tilde{Y}_{1t})^2$ and $(B_{1t}-\bar{B}_{1t})^2$. The weights r_{11} and r_{22} are attached to the respective quadratic deviations from the limits set on fiscal and monetary variable magnitudes, i.e., weights attached to $(G_{1t}-\bar{G}_{1t})^2$ and $(r_{1t}-\bar{r}_{1t})^2$.

Appendix A-3 shows the equivalence of these two approaches. However, this study will use Chow's approach to derive the optimal policy mix for internal and external balance for two reasons. First, Chow's state-space system formulation is more straightforward and simpler to apply, given the particular structural form of Votey's model, than Pindyck's formulation, which requires a transformation of variables before applying his result (see equation A-2.16). Secondly, Chow's method just requires basic matrix manipulations even when constraints

m policy-vari requires the o

agendix A-2)

Whether

nametry optim

milen. How

mairatic for

because it as

legative as

in the real

for the adju

alms this c iis problem

tich divid

ad each po

Region are

tegions are

miterion f

ine in thi

The se

wiel, whi

ie disady

is comput

on policy-variable magnitudes are introduced, while Pindyck's method requires the determination of Riccati and tracking equations (see Appendix A-2) in the case of $R^P \neq 0$.

Whether formulated in Pindyck's or Chow's frameworks, the onecountry optimal control problem is typically a linear quadratic tracking problem. However, it is restrictive in two senses. First, the quadratic form of the welfare cost function is subject to criticism because it assumes that the deviations from either side of the targets-negative as well as positive deviations -- are of equal cost. However, in the real world there is no such symmetry in the sharing of the burden for the adjustment of the balance of payments equilibrium; for example, along this critic Friedman (1972, 1973) has made a contribution to this problem by introducing a "piece-wise quadratic criterion function" which divides the range of possible values for each endogenous variable and each policy variable into three regions: values within the middle region are assigned zero cost, but values within the two extreme regions are penalized quadratically but asymmetrically. Still, the criterion function remains quadratic, and further research needs to be done in this field.

The second criticism is of the linear form of the econometric model, which is a very crude approximation of the real world. However, the disadvantage of a linear quadratic framework is compensated for by the computational advantages (Pindyck:1973).

11.1. Optimal and Ext

Chow's opt

After subs

ecres:

2.2.2. Optimal Solution for Internal and External Balance

Chow's optimal solution is given by A-2.20 in Appendix A-2.

After substitutions and computations (see Appendix A-4), it becomes:

(2.10)

(2.11)

$$\begin{bmatrix} -\begin{bmatrix} a_{11} A_{11} & 0 & a_{11} A_{12} & 0 & a_{11} A_{13} & 0 & a_{11} A_{15} \\ \frac{1}{n_{11}} (a_{11} a_{11} + a_{21}) & 0 & \frac{1}{n_{11}} (a_{11} a_{13} + a_{23}) & 0 & \frac{1}{n_{11}} (a_{11} a_{13} + a_{25}) \end{bmatrix} \begin{bmatrix} \tilde{r}_{11}^{\epsilon} & 0 & 0 & 0 & 0 \\ \frac{1}{n_{11}} (a_{11} a_{11} + a_{21}) & 0 & \frac{1}{n_{11}} (a_{11} a_{13} + a_{23}) & \frac{1}{n_{11}} (a_{11} a_{13} + a_{25}) \end{bmatrix} \begin{bmatrix} \tilde{r}_{11}^{\epsilon} & 0 & 0 & 0 & 0 \\ \frac{1}{n_{11}} (a_{11} a_{11} + a_{21}) & 0 & \frac{1}{n_{11}} (a_{11} a_{13} + a_{23}) & \frac{1}{n_{11}} (a_{11} a_{23} + a_{25}) \end{bmatrix} \begin{bmatrix} \tilde{r}_{11}^{\epsilon} & 0 & 0 & 0 & 0 \\ \frac{1}{n_{11}} (a_{11} a_{21} + a_{21}) & 0 & \frac{1}{n_{11}} (a_{21} a_{21} + a_{23}) & 0 & \frac{1}{n_{11}} (a_{21} a_{21} + a_{25}) \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{21}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{23}) & \frac{1}{n_{11}} & 0 \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{21}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{23}) & \frac{1}{n_{11}} & 0 \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{21}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{23}) & \frac{1}{n_{11}} & 0 \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{21}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{23}) & \frac{1}{n_{11}} & 0 \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{21}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) \\ \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) & \frac{1}{n_{11}} (a_{21} a_{21} + a_{22}) &$$

or after substituting $Y_{1c} = f_0 + f_2 I_{1c}$ and $\overline{B}_{1c} = 0$ into equation 2.10:

$\begin{bmatrix} \vec{t}_{1t-1}^x \\ \vec{h}_{t-1}^t \\ \vec{t}_{t-1}^t \\ \vec{t}_{t-1}^t \\ \vec{t}_{t-1}^t \end{bmatrix} + \begin{bmatrix} -a_{11}(b_{11} - \delta_{10}) \\ -\frac{1}{n_{11}}(\beta_{11}b_{11} - \beta_{11\delta_{10}} + b_{21}) \\ \frac{G_1^t}{r_1^t t_{t-1}} \end{bmatrix}$	
$\left[\frac{-\gamma_{11}A_{13}}{\gamma_{11}}\right]$	֡֞֞֞֞֜֞֞֓֓֞֟֓֓֓֓֓֟֓֓֓֟֓֓֓֓֟֓֓֓֓֓֓֟֓֓֓֟֓֓֓
711415 -1 (8114)	
• •	^구 구
-*11413 -1 (8 11413 ¹⁴ 23)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0	12 ⁴⁰ 22)
-*11411 -1 (811411 ¹⁴ 21 ⁾	-4 μ ⁰ 12 -1 (⁶ μ ⁰
°ft	*11 ⁶ 12
- -	

it is noted

iii is inde

urgets. The

ite optimal

urgets exis

lil into th

It is noted that the optimal control solution in equations 2.10 or 2.11 is independent of the weights attached to the deviations from the targets. This means that internal as well as external balance affects the optimal policy mix equally, and no trade-off between these two targets exists. The optimal path is obtained by substituting equation 2.11 into the dynamic system (equation 2.9):

٦	Y#t-1	Bt-1	K ₁ t-1	G*t-1	r*t-1	٦ د					
_					(5;	1	Lit	\mathbf{T}_{1t}	Tıt	X _{1t}	r _{2t}
					¥,						
				10	11 A ₁₅		0	0	0	0	H
	0	0	- ₇ 12	-a ₁₁ A ₁₅	$\frac{-1}{\eta_{11}}$ (β_{11} A_{15} + A_{25})		0	0	0	7	- <u>1</u> - ₁₁
	0	0	0	0	0						23)
					$\frac{-1}{n_{11}}(\beta_{11} A_{13} + A_{23})$		0	0	0	-a ₁₁ ^D 12	$\frac{-1}{\eta_{11}} (\beta_{11}{}^{0}_{13}{}^{+0}_{23})$
	0	0	⁸ 34	-a ₁₁ A ₁₃	$\frac{-1}{\eta_{11}}^{(\beta_1)}$		6 ₁₂	0	0		8 ₁₁ 6 ₁₂
	0	0	0	0	0						1)
	0	0	^γ 11	-a ₁₁ A ₁₁	$\frac{-1}{n_{11}}^{(\beta_{11} A_{11} + A_{21})}$		- ⁵ 10	0	0	$-\mathbf{a}_{11}(^{D}_{11} - ^{\delta}_{10})$	$\frac{-1}{\eta_{11}}(^{\beta_{11}}^{0_{11}}^{0_{11}}^{-\beta_{11}}^{-\beta_{21}}^{-\beta_{21}})$
_						J	L		+		
٠,		٠,	ـــــ	ىد	٠	1					
_	¥.	- M	*	*-T	r r	1					

Next, the performance of m be done by $\int_{0}^{2\pi} = \frac{1}{2} \int_{0}^{N} \int_{0}^{2\pi} \int_{0}^{2\pi}$ Eter substitut

that $\hat{J}^{C}=0$. Several c

First, Ti

limbergen:195

inear trackin

intervenes. I b) the target

wire of the

in numerical

런 certain st

Te optimal co

Taic proble

Second, 1

interdeper

The optimal

itables are

to be con

edular st fisca

Riet ? It an

Next, the decision-makers of Country I may wish to evaluate the performance of the economic system with respect to the targets. This can be done by measuring the welfare cost function (see equation A-2.18):

$$\hat{J}^{c} = \frac{1}{2} \sum_{t=1}^{N} \left[(x_{t}^{c*} - \overline{x}_{t}^{c})' Q^{c} (x_{t}^{c*} - \overline{x}_{t}^{c}) \right]$$

After substitutions and computations (see Appendix A-5) it is found that $\hat{J}^{C}=0$.

Several conclusions can be derived from this analysis.

First, Tinbergen's problem of quantitative economic policy

(Tinbergen:1954) in the theory of economic policy is nothing but a

Linear tracking problem in the theory of optimal control when time
intervenes. In other words, given (a) the structure of an economy,

(b) the target variables and their numerical values, and (c) the
nature of the instrument variables, the problem consists in finding
the numerical values of the instruments as a function of the targets
and certain structural data such that the optimum policy is obtained.

The optimal control tools provide a systematic procedure to solve the
dynamic problem of quantitative economic policy.

Second, unlike Mundell's "division labour" proposal (Mundell:1962) the interdependency of economic policies prevails under the auspices of the optimal control approach; that is, the values of the instrument variables are dependent, generally speaking, on all target sets and cannot be considered in isolation. However, this study, because of the particular structure of Votey's one-country model, notes that the optimal fiscal policy G_{lt}^* is governed only by the full-employment target $\tilde{\tilde{Y}}_{lt}$ and, in turn, the latter target can only be obtained by

me correct fi Totey:1969). iims from the imaible since Riables in a it requires ssible f Micy-variabl ti mendilent

pobey the tw mance-of-pay has been f sense that we is assigned to ni government Patrick:1968).

Third, "T optical contro aritolled-th etrix q^c—is maiables will cours of th mique and ind

such a

the correct fiscal policy, while the optimal monetary policy r_{1t}^* has to obey the two targets together. The second target \overline{B}_{1t} , or the balance-of-payment equilibrium, depends on both instruments, but once G_{1t}^* has been fixed it can only be taken care of by r_{1t}^* . It is in this sense that we can conclude along with Mundell that the interest rate is assigned to the maintenance of balance-of-payments equilibrium, and government expenditure is assigned to full employment (Mundell:1962, Patrick:1968). This proper assignment leads to a stable system (Votey:1969).

Third, "Tinbergen's Rule" is verified within the framework of optimal control theory. If the number of independent variables to be controlled—the number of non-zero diagonal elements in the weight—matrix Q^C —is equal to the number of independent instruments, the variables will be on target exactly with \hat{J}^C =0 (Chow:1972c) and all the unknowns of the policy problem are solved. The optimal solution is unique and independent of the weights attached to the quadratic deviations from the targets. However, the optimal solution may not be feasible since a set of targets together with a choice of instrument variables in a given economy may be called inconsistent (Tinbergen:1954) if it requires values of the instrument variables which are declared inadmissible for practical consideration by certain constraints on the policy—variable magnitudes. Section 3 will deal with the appraisal and amendment of the optimal solution, if necessary, for a particular economy such as the United States.

I.3. U.S. Opt

Balance:
Optimal

Given the

n the problem

merical valu

Till be used t

1361-1970. Ha

zi practical

Derefore, lim

Timbergen:195

First, v_c

stretural cons

স্থান equatic:

2.3. U.S. Optimal Policies for Internal and External Balance: Appraisal and Amendment of the Optimal Solution

Given the analytical result for the one-country optimal solution to the problem of internal-external balance (Appendix A-4), Votey's numerical values for the structural coefficients and historical data will be used to derive the U.S. optimal policy mix for the period 1961-1970. However, the optimal solution is not feasible for technical and practical reasons, such as negative values of interest rates. Therefore, limits on policy-variable magnitudes have to be set (Tinbergen:1954), and the amendment of optimal solution is required.

First, Votey's numerical values are substituted for the estimated structural constants (Votey:1969) into equation A-4.6 and the dynamic system equation A-2.18. The computation results are:

$$\begin{bmatrix} G_{1t}^{\star} \\ r_{1t}^{\star} \end{bmatrix} = \begin{bmatrix} .0025 & 0 & .0014 & 0 & 434.2236 \\ 0 & 0 & .0005 & 0 & -0.2037 \end{bmatrix} \begin{bmatrix} \overline{\tilde{\gamma}}_{1t-1} \\ B_{1t-1}^{\star} \\ K_{1t-1}^{\star} \\ G_{1t-1}^{\star} \\ r_{1t-1}^{\star} \end{bmatrix} + C_{1t-1}^{\star}$$

$$\begin{bmatrix} .3810 & 0 & 0 & 0 & 0 \\ .0028 & .0216 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \overline{Y}_{1t} \\ \overline{B}_{1t} \\ \overline{K}_{1t} \\ \overline{G}_{1t} \\ \overline{r}_{1t} \end{bmatrix} + (2.13)$$

$$\begin{bmatrix} -46.2265 & -28.3500 & 0.6190 & -1 & 0 \\ 0.3043 & 0.6126 & -0.0028 & -.0216 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ TT_{1t} \\ T_{1t} \\ X_{1t} \\ r_{2t} \end{bmatrix}$$

$$\begin{bmatrix}
2.6247 & 0 \\
-0.3438 & 46.279 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
G_{1t}^{*} \\
r_{1t}^{*}
\end{bmatrix}$$
(2.14)

$$+ \begin{bmatrix} 121.4358 & 74.4102 & -1.6246 & 2.6247 & 0 \\ -29.9914 & 18.6032 & 0.3438 & 0.6562 & -46.2790 \\ 9.1299 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ TT_{1t} \\ T_{1t} \\ X_{1t} \\ T_{2t} \end{bmatrix}$$

Given these two equations, the optimal stabilization policies (G_{1t}^*, r_{1t}^*) for the United States over 10 periods from 1961 to 1970 can be derived with the initial conditions given by:

$$\tilde{Y}_1(0) = 383.37$$

$$B_1(0) = 4.17$$

$$K_1(0) = 508.69$$

$$G_1(0) = 94.9$$

$$r_1(0) = 0.0215$$

tere (0) ref

miles of the

Mile 2.1. N

Period Tear)

1,1361)

2(1962)

3/1963)

-/1964)

5/1965)

£(1966)

11367)

P1968)

3(1969)

II:970)

The Pot

T the labor

it balance-

is the non

Ex, respec

्यां 1960

initial .

where (0) refers to 1960. All these values are historical. The nominal values of the state variables are given by Table 2.1.

Table 2.1. Nominal values for state variables - U.S.: 1961-1970

Period (Year)	¥1t	B _{1t}	₹ _{1t}	^G 1t	r _{1t}
1(1961)	283.2452	0	523.9507	98.7	0.0215
2(1962)	283.8683	0	539.6692	102.65	0.0215
3(1963)	288.7687	0	555.8592	106.76	0.0215
4(1964)	293.8258	0	572.5349	111.03	0.0215
5(1965)	299.3091	0	589.7109	115.47	0.0215
6(1966)	304.5954	0	607.4022	120.09	0.0215
7(1967)	310.9349	0	625.6242	124.89	0.0215
8(1968)	316.5227	0	644.3929	129.89	0.0215
9(1969)	324.5467	0	663.7246	135.09	0.0215
10(1970)	332.5143	0	683.6363	140.49	0.0215

The potential output net of capital accumulation (\overline{Y}_{1t}) is determined by the labor force. The nominal balance of payments is assumed to be the balance-of-payments equilibrium that is \overline{B}_{1t} =0. Also, it is assumed that the nominal capital stock and the nominal government expenditures grow, respectively, at 3 percent and 4 percent per annum from their initial 1960 values, while the nominal interest rate \overline{r}_{1t} is fixed at its initial 1960 value.

Table 2.2. 1

Period (Tear)

1(1961)

1(1361)

3(1963)

4(1964)

3(1965)

5(1966)

7(1967)

F(1968)

5(1969)

IC(1970)

Tne

e obtai

(1)

(2)

Table 2.2.	Historical	values for	exogenous	variables	- U.S.:	1961-1970
------------	------------	------------	-----------	-----------	---------	-----------

Period (Year)	1	^{TT} 1t	^T lt	*1t	^r 2t
1(1961)	1	1.0000	144.63	20.99	0.0299
2(1962)	1	1.0101	157.03	21.68	0.0391
3(1963)	1	1.0000	168.76	23.28	0.0378
4(1964)	1	0.9902	174.07	26.63	0.082
5(1965)	1	1.0000	190.06	27.53	0.0454
6(1966)	1	1.0094	213.33	30.45	0.0496
7(1967)	1	1.0280	228.93	31.63	0.0595
8(1968)	1	1.0183	263.31	34.66	0.0624
9(1969)	1	1.0268	296.70	37.99	0.0781
10(1970)	1	1.0083	302.00	43.23	0.0444

The U.S. optimal stabilization policies for 10 periods (1961-1970) are obtained by the following steps:

- (1) Compute G_1^* (1) and r_1^* (1) from equation 2.13 using the initial conditions: $\left(\overline{Y}_1(0), B_1(0), K_1(0), G_1(0), r_1(0)\right)'$ and the exogenous variables of period 1 given by Table 2.2.
- (2) Compute $\begin{bmatrix} \vec{Y}_1^* & (1), B_1^* & (1), K_1^* & (1), G_1^* & (1), r_1^* & (1) \end{bmatrix}$ from equation 2.14. Now $\begin{bmatrix} \vec{Y}_1^* & (1), B_1^* & (1), K_1^* & (1), G_1^* & (1), r_1^* & (1) \end{bmatrix}$ can be used in equation 2.13 to compute $\begin{bmatrix} G_1^* & (2), r_1^* & (2) \end{bmatrix}$,

which can be used in equation 2.14 to compute

 $\begin{bmatrix} \frac{1}{2} & (2), & B_1^{\star} & (2) \end{bmatrix}$

process until

miall of t

These

tion requir

mltiplicat

If the

policy-inst

in for der

uminal pa

equation.

biat bala

initiaence

Madergen!

er of

ægets.

to 2.4) w

Pateral fo

%ext

u vill

Etruzen

isted v

. Efective

aticula:

 $\begin{bmatrix} \overline{\tilde{Y}}_1^* & (2), B_1^* & (2), K_1^* & (2), G_1^* & (2), r_1^* & (2) \end{bmatrix}$, and so on. Continue the process until all of the control vectors $\begin{bmatrix} G_1^*(t), r_1^*(t) \end{bmatrix}$, $t=1,\ldots,10$ and all of the state variable vectors $\begin{bmatrix} \overline{\tilde{Y}}_1^*(t), B_1^*(t), K_1^*(t), G_1^*(t), K_1^*(t) \end{bmatrix}$, $t=1,\ldots,9$, have been computed.

These two steps for obtaining computational optimal control solution require only basic matrix manipulations—additions, subtractions, multiplications and small inversions.

If the cost functional J^{C} (equation A-2.18) does not penalize for policy-instrument deviations from the nominal, the penalties q_{11} and q_{22} for deviations of the two endogenous variable \tilde{Y}_{1t} and B_{1t} from their nominal paths do not appear in the analytical optimal control solution (equation A-4.6). Therefore, the optimal policy mix for attaining the joint balance is unique and the trade-off between the targets does not influence the optimal policy formulation. This comes to confirm Tinbergen's proposal on the uniqueness of the solution whenever the number of independent instruments is equal to the number of independent targets. The results are presented in graphical forms (Figures 2.1 to 2.4) with time on the horizontal axis so as to easily observe the general form and characteristics of the optimal solution.

Next, the effectiveness and performance of the U.S. optimal policy mix will be appraised. In optimal control theory, the values of the instrument variables become the unknowns, dependent upon the predetermined desired values of the target variables. Therefore, the criterion of "effectiveness" of a particular policy instrument with respect to a particular target variable is different than the one used in the

(\$ billions) 355 Rigidan. Optimal Path
Actual Path
Nominal Path

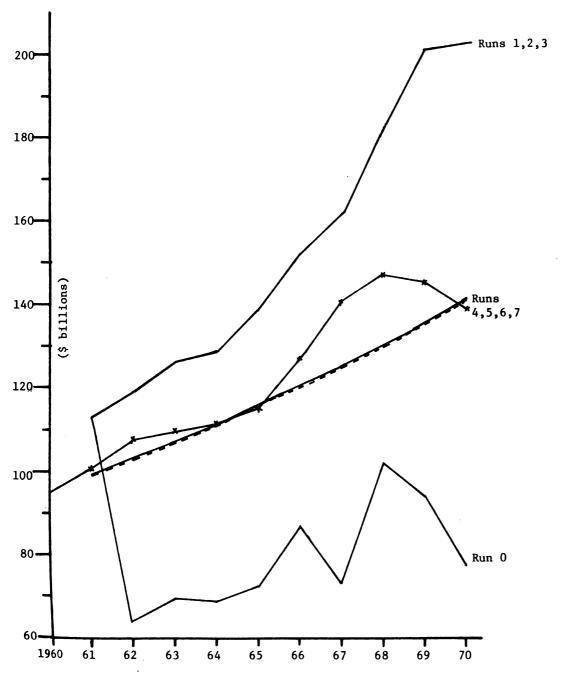


Figure 2.1. U.S. Government expenditures: optimal paths compared with actual and nominal paths (one-country model).

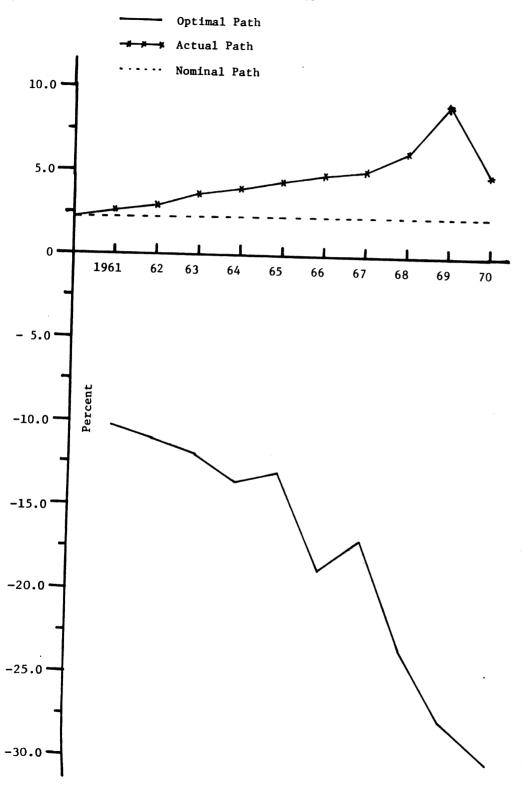


Figure 2.2. U.S. interest rate: optimal path compared with actual and nominal paths (one-country model).

Optimal Path
Actual Path
Nominal Path

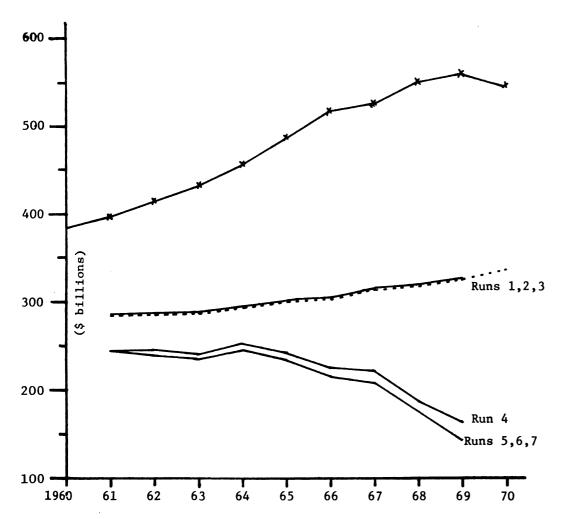


Figure 2.3. U.S. optimal GNP net of capital stock compared with the actual and potential GNP (one-country model).

1960 61

Figu the

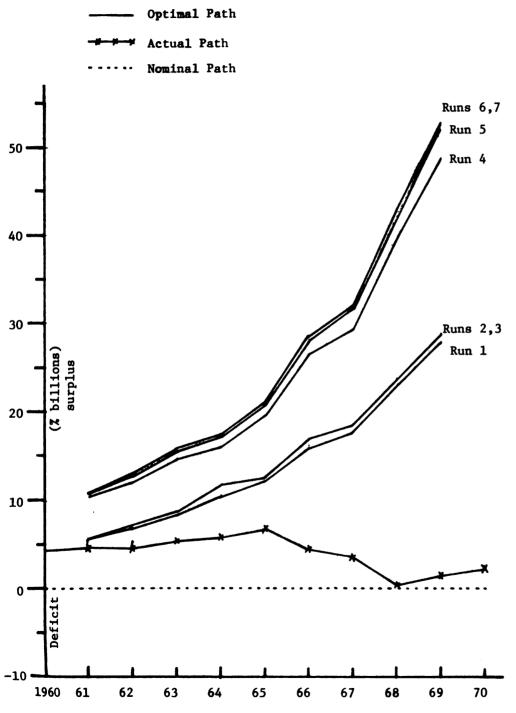


Figure 2.4. U.S. balance of payments: optimal paths compared with the actual path (one-country model).

Fig:

---- Optimal Path

Nominal Path

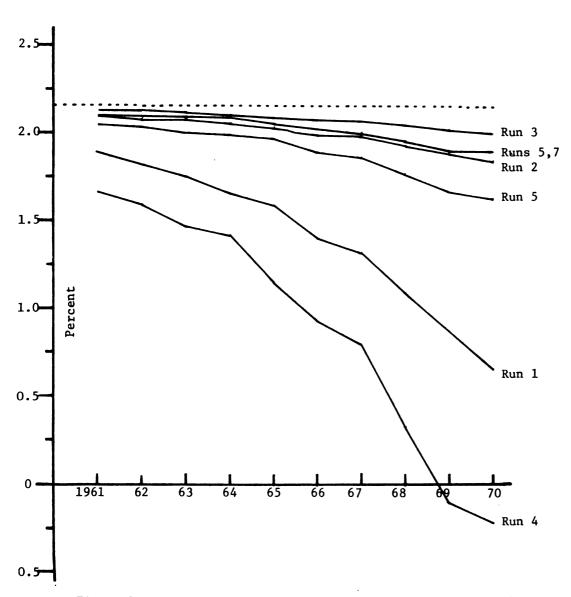


Figure 2.5. U.S. interest rate: optimal path compared with the nominal rate (one-country model).

'traditiona

a policy in

in the pol target var

smaller —

Notey's mo

Row

1

2

of equati ture is

is gover

iabor fo

te peri

is far h

Hailod : teles

Heure

ates ab

يذورنه

çır;DF

E 7.

:002

"traditional" or multiplier approach (Tinbergen:1954). In other words, a policy instrument generally is more effective the smaller the change in the policy variable required to bring about a given change in the target variable when all other targets are held constant, e.g., the

smaller $\frac{1}{\delta G_{1t}^*/\delta \tilde{Y}_{1t}}$, the more effective G_{1t}^* . Within the confines of

Votey's model, the matrix

Row
$$\overline{\tilde{Y}}_{1t}$$
 \overline{B}_{1t} 1 0.3810 0 2 0.0028 0.216

of equation 2.13 shows that the fiscal policy or government expenditure is the most effective instrument to regulate employment since it is governed only by the target $\overline{\tilde{Y}}_{1t}$ which, in turn, is determined by the labor force. The optimal path for the fiscal instrument is derived for the period 1961-1970. However, as Figure 2.1 shows, the optimal path is far below the actual or historical path. This means that during the period in question, fiscal policy was overused by the U.S. policymakers and, as a result, the target of internal balance was overshot. Figure 2.3 shows that the actual or historical path of the GNP fluctuates above the nominal path $\overline{\tilde{Y}}_{1t}$, which represents the situation of full employment without inflation. Therefore, it is not surprising that during the last decade a troublesome inflationary spiral has threatened the U.S. economy. This is because of an excess demand created by a boom in government expenditures.

Unlike t

to obey both

effectivene

is more effe

in regulation

hem set at

to a situati

of external

Equation 2.

instrument.

zi externa

tem intere

boundary co

rariable ma

iton the ag

tathricall:

Bound

te so-cal

ci quantit

ithin the

enalizing

reives, w

¥;=itude

For

יופל בַּעחַ

Unlike the fiscal policy G_{1t}^* , the optimal monetary policy r_{1t}^* has to obey both internal and external balance. But when using the "effectiveness" criterion described previously, the monetary policy is more effective in maintaining balance-of-payments equilibrium than in regulating full employment. Therefore, once the fiscal policy has been set at the optimal level, a level which brings the economy close to a situation of full employment without inflation, the maintenance of external balance can be taken care of only by the monetary policy. Equation 2.13 permits the computation of optimal path for the monetary instrument. It is found that the simultaneous achievement of internal and external balance would require high negative values in the shortterm interest rate (Figure 2.2). Therefore, a limit or a so-called boundary condition (Tinbergen: 1967) has to be set on this policyvariable magnitude to indicate that negative interest rates resulting from the application of optimal control theory to the U.S. economy are technically impossible.

Boundary conditions and their violation by the optimal policy mix, the so-called inconsistency of the optimal policy, require the problem of quantitative economic policy to be reformulated (Tinbergen:1967). Within the framework of optimal control theory it can be done by penalizing the deviations of the control variables from their nominal values, which represents the limits on acceptable instrument variable magnitudes.

For the one-country problem, the newly defined matrix $\boldsymbol{Q}^{\mathbf{C}}$ of the cost function, including the boundary conditions, is:

The nominal v

min the con

A sensi

tion does no

through the

Teasons of

jiven in Ta

Table 2.3.

Ŋ

The nominal values for the monetary and fiscal instruments to be tracked are given in Table 2.1.

A sensitivity analysis of the weighting factors on components of only the control vector is performed. Since the optimal control solution does not depend on the weights \mathbf{q}_{11} and \mathbf{q}_{22} , it is assumed that through the performance of seven experiments, both are equal to 1, for reasons of simplicity. The cost function for all the experiments is given in Table 2.3, and the results are shown in Figures 2-1 to 2.5.

Table 2.3. One-country model: penalty weights attached to the deviations of state and control variables from their nominal values

Run	^q 11	q ₂₂	^q 33	r ₁₁	r ₂₂
0	1	1	0	0	0
1	1	1	0	0	10 ⁵
2	1	1	0	0	5x10 ⁵
3	1	1	0	0	10 ⁶
4	1	1	0	10 ⁵	10 ⁵
5	1	1	0	5x10 ⁵	5 x 10 ⁵
6	1	1	0	10 ⁵	10 ⁶
7	1	1	0	5 x1 0 ⁵	10 ⁶

balance.

the simula

price paid

attained,

Tate is co

surplus i

isint int

есополу д

Policy fr

is the mo

target,

erine

Chl

Più for

יינפעדפ

ite two

:f :_{₹ee}

1=3et

. خبر§و ر

111:27

Results

Since only the optimal monetary policy is not feasible because of the negative value of interest rates, the first three experiments are assigned increasing penalty costs for deviations of the monetary instrument from the nominal value, fixed at a rate of 2.15 percent, while government spending is free to fluctuate to achieve the internal balance. Figure 2.5 shows that the higher the penalty cost, the closer the simulated optimal path for r_{1+} is to its nominal path. But the price paid is that the balance-of-payments equilibrium is no longer attained, and within the context of Votey's model, the more the interest rate is constrained to the limit of 2.15 percent, the higher the surplus in the balance of payments is (Figure 2.4). In summary, the joint internal and external balance cannot be achieved for the U.S. economy during the period 1961-1970 once the deviations of the monetary policy from the nominal path are penalized. Since the interest rate is the most effective instrument with respect to the external balance target, the latter has to be dropped.

Unlike the optimal monetary policy, which in the first three experiments gets closer and closer to its nominal value, the optimal path for the fiscal policy diverges strongly from the nominal path (Figure 2.1). This means that a feasibility trade-off exists between the two components of the control vector. However, even if the degree of freedom given to the fiscal tool allows internal balance, federal budget constraints as well as political constraints could prevent a large change in government spending which might be required for feasibility and stability in the monetary instrument.

In the

upitudes maie-off b

maditur

raise of t

percent, w

the weight

same pena

tracking

executity

external ithin ti

situatio

the mone

te init

iar awa

Tā. ues

int:ati

is not

Social

definit

Hasiy

::ete

In the last four experiments, limits on both policy-variable magnitudes are introduced. Figures 2.1 and 2.5 show the feasibility trade-off between the two instruments. The tracking of government expenditure to the nominal \overline{G}_{1+} is sensitive only to the increasing value of the penalty costs on deviations of monetary policy from 2.15 percent, while the tracking of the nominal interest rate depends on the weighting factors for both instruments. It is noted that for the same penalty costs \mathbf{r}_{22} , the effectiveness of the interest rate in tracking $\overline{\mathbf{r}}_{1+}$ diminishes with introduction of limits on government expenditure magnitudes. Furthermore, neither the internal nor the external balance target is achieved (Figures 2.3 and 2.4). In fact, within the confines of Votey's model, the U.S. economy must be in a situation of deflation combined with a balance of payments surplus for the monetary and fiscal policies to be feasible. Does this mean that the initial conditions for the one-country optimal control problem are far away from the "ideal" conditions or the arbitrary set of nominal values for monetary and fiscal policies to be tracked need to be more inflationist, or simply the policy for internal and external balance is not feasible within the optimal control framework due to political, social and ethical constraints established in any given economy? No definitive answer can be given.

Conclusion

Under the assumption of constant price, fixed exchange rate and passiveness on the part of the second country, i.e., fixed foreign interest rate, it is found for the case of one-country that:

(1) Th

ar.

th

pr

þ

ta

ir

fe

(2) Po

(3)

(4)

- (1) The solution for simultaneously attaining internal and external balance can always be determined via the optimal control techniques if Tinbergen's principle on equality between the number of independent instruments and the number of independent targets is met, and if there are no constraints on instrument-variable magnitudes. There is no guarantee that this optimal policy mix will be feasible in a given economy.
- (2) Policy inconsistency in Tinbergen's sense (Tinbergen:1967) arises in the U.S. economy; that is, the optimal monetary policies to achieve the overall balance violate the boundary conditions or limits on interest rate variable magnitudes that, for practical or political considerations, have to be set.
- (3) One of the targets has to be dropped, and within the confines of Votey's dynamic model the choice of that target rests on Mundell's "division of labor" principle. For the U.S. case, the tracking for external balance has to be dropped at the expense of the tracking for the nominal interest rate fixed at 2.15 percent.
- (4) If constraints on all policy-variable magnitudes are included in the optimal control problem, neither the internal nor the external balance is achieved

and a trade-off exists between attainment of the overall balance and feasibility of monetary and fiscal policies to be carried out toward the given targets.

CHAPTER III

TWO-COUNTRY MODEL

CASE A: PASSIVE RESPONSES AND COMMON EXTERNAL BALANCE

This chapter deals with a three-target and three-instrument problem: the fiscal authority of Country II acts to attain full employment in II while the fiscal and monetary authorities of Country I strive for both internal full employment and common external balance. To find the optimal policies for internal and external balance in both countries the procedure used in the one-country model case will be repeated. After the presentation of Votey's two-country model (Votey:1969), the two-country optimal control problem will be formulated into Pindyck's framework as well as that of Chow. Then for reasons similar to the previous case, Chow's approach will be chosen to derive the optimal solution both analytically and numerically with reference to the United States and Canada. Finally, the optimal solution will be appraised and amended.

3.1. Presentation of Votey's Model

The two-country model is obtained by adding to the one-country model a second set of behavioral equations for consumption, investment, imports, production function and identities defining capital stock and national income with Country II subscripts. Votey's

wo-count

(1)

(2)

(3)

(4)

The

two-country model is considered under the following assumptions:

- (1) The foreign rate of interest is given. This assumes

 Country II's passive cooperation such that Country I may
 adjust its own rate to achieve external balance without
 foreign interference or countermeasures.
- (2) Stein's results dealing with short term interest rates will be considered to represent the degree of sensitivity of capital flows to interest rate differentials.
- (3) Unlike the one-country model, the exports of Country I will be composed primarily of imports of Country II and will therefore be a dependent variable in the system.
- (4) The value of imports of Country I from Country II is assumed to be fixed or exogenous to the system.

The variables are: i = 1,2

B₊: Common balance of payments

 C_{it} : Consumption expenditures in Country i

Gir: Government expenditures of Country i

 I_{it}^G : Gross investment expenditures in Country i

 I_{ir}^n : Net investment expenditures in Country i

IE1.: Investment earnings of Country I from abroad

Kit: Capital stock of Country i

Lit: Labor force in Country i

M_{it}: Total imports demand of Country i

Mar: Imports of Country III from I and II

MIII: Imports of Country I from Country III

 0_{1t} : Net short-term capital outflows of Country I

:it: Rate

it Expo

죠: Capi

I_{it}: Tota

it: Natil The eq

(I-1) Y it

A C. T. COM

(I-2) K_{1t} =

(I-3) I^G =

(I-4) B_{lt} =

(:-5) Y_{2t} =

(2-6) K_{2t} =

(2-7) I^G_{2t} =

(3-1) Y_{1t} = (3-2) C_{1t} =

^[-3] M_{lt} =

1-4) In =

r_{it}: Rate of interest in Country i

 $P_{M_{it}}$: Import price of Country i

P : Export price of Country 1

T_{it}: Tax receipts of Country 1

TR₂₊: Capital transfer of Country II

X_{it}: Total exports of Country i

Y it: National income of Country i

The equations are as follows:

(I-1)
$$Y_{it} = C_{it} + I_{1t}^{G} + G_{it} + (M_{2t} + M_{3t} + IE_{1t}) - M_{1t}$$

$$(I-2)$$
 $K_{1t} = I_{1t}^{n} + K_{1t-1}$

(I-3)
$$I_{1t}^{G} = I_{1t}^{n} + \delta_{\star} K_{1t}$$

$$(I-4)$$
 $B_{1t} = (M_{2t}+M_{3t}+IE_{1t}) - M_{1t}-O_{1t}$

$$(I-5)$$
 $Y_{2t} = C_{2t} + I_{2t}^G + G_{2t} + (M_{1t} - M_{1t}^{III}) - M_{2t}$

$$(I-6)$$
 $K_{2t} = I_{2t}^{n} + K_{2t-1}$

(I-7)
$$I_{2t}^{G} = I_{2t}^{n} + \delta_{*} K_{2t}$$

(E-1)
$$Y_{1t} = \delta_{10} + \delta_{11} K_{1t} + \delta_{12} L_{1t}$$

(E-2)
$$C_{1t} = \alpha_{10} + \alpha_{11}(Y_{1t} - T_{1t} - \delta_* K_{1t})$$

(E-3)
$$M_{1t} = \beta_{10} + \beta_{11}(Y_{1t} - T_{1t} - \delta_* K_{1t}) + \beta_{12} \left(\frac{P_M}{P_K}\right)_{1t}$$

(E-4)
$$I_{1t}^{n} = \gamma_{10} + \gamma_{11} Y_{1t-1} - \gamma_{12} q(\delta_{*}+r)_{1t-1} + \gamma_{13} K_{1t-1}$$

(3-5) 0_{1t} = r

(E-6) Y_{2t} =

(3-7) C_{2t} = 3

(2-8) $M_{2t} =$

(E-9) I" =

The comments of

tepter.

Equation

with its facto

Equation is disposable

Efferent from

apital deprec

is assumed to

व्याची transf

Equation

ispend on mone

ii. The us

country I,

Identity

i wo countr

$$(E-5)$$
 $0_{1t} = \eta_{10} + \eta_{11} (r_{2t}-r_{1t})$

$$(E-6)$$
 $Y_{2t} = \delta_{20} + \delta_{21} K_{2t} + \delta_{22} L_{2t}$

$$(E-7)$$
 $C_{2t} = \alpha_{20} + \alpha_{21} (Y_{2t} - T_{2t} - TR_{2t} - \delta_* K_{2t})$

(E-8)
$$M_{2t} = \beta_{20} + \beta_{21} (Y_{2t} - T_{2t} - TR_{2t} - \delta_* K_{2t}) + \beta_{22} (\frac{P_M}{P_x}) 2t$$

(E-9)
$$I_{2t}^{n} = \gamma_{20}^{+\gamma_{21}} Y_{2t-1}^{-\gamma_{22}} q(\delta_{*}^{+r}) 2_{t-1}^{+\gamma_{23}} X_{2t-1}^{+\gamma_{23}}$$

The comments on (E-1) to (E-5) have been presented in the preceding chapter.

Equation E-6 - The output of Country II is a linear function of both its factors of production: K_{2t} , L_{2t} .

Equation E-7 - Consumption expenditures of II are a function of its disposable income. Here the disposable income definition is different from that of Country I and it is represented by GNP less capital depreciation (δ_{\star} K_{2t} where δ_{\star} is the rate of replacement and is assumed to be the same for both countries), less taxes and less capital transfers of Country II (TR_{2t} is assumed to be exogenous).

Equation E-8 - Net investment expenditures in II are assumed to depend on money supply, the capital stock and the user cost of capital in II. The user cost of capital in II has the same definition as that in Country I, with the assumption q = 1 over time.

Identity I-4 - It represents the common external balance between the two countries.

3.2. Optimal (on Policy

Ender the assive with reto seek its base are three independent in both constants equil

instruments are

Country II's in

The externation internal bases

tespective prod

tere the subs

mercome the p

it il K =

it it = Y

it = 5 +6 i0 i2

ich determin

lo apply

kan formulate

3.2. Optimal Control Problem without Constraints on Policy Variable Magnitudes

Under the assumption of common external balance, Country II is

passive with respect to its balance of payments, allowing Country I

to seek its balance-of-payments target unimpeded. Therefore, there

are three independent targets to achieve simultaneously: full employment in both countries and maintenance of Country I's balance-ofpayments equilibrium. To attain these targets, three independent
instruments are considered: government expenditures in Countries I

and II coupled with a short-term interest rate in Country I, while
Country II's interest rate is regarded as fixed or given.

The external balance, as defined previously, is $\overline{B}_{1t} = 0$ while the two internal balances for Country I and II are determined by their respective production functions: $Y_{it} = \delta_{i0}^{+} \delta_{i1} K_{it}^{+} \delta_{i2} L_{it}$ (3.1) where the subscript i stands for country i (i = 1,2). As before, to overcome the problem of "double entry" of K_{it} in the reduced form, equation 3.1 is transformed to:

$$Y_{it}^{-\delta}_{i1} = \delta_{i0}^{+\delta}_{i2} L_{it}; i = 1,2$$
 (3.2)

Let $\tilde{Y}_{it} = Y_{it}^{-\delta} \delta_{i1} K_{it}$. Then equation 3.2 becomes:

$$\tilde{\tilde{Y}}_{it} = \delta + \delta_{i2} L_{it} ; i = 1,2$$
(3.3)

which determines the internal balance for the respective country.

To apply the optimal control theory, Votey's two-country model has been formulated into the following reduced form (Appendix A-6):

 $\tilde{\chi}_{t} = \tilde{A} \tilde{y}_{t-1} + \tilde{B} u_{t} +$ $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \\ \gamma_{11} & 0 \\ 0 & \gamma_{21} \end{bmatrix}$ $\begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \\ D_{31} & D_{32} \\ a_{46} & 0 \\ a_{56} & 0 \end{bmatrix}$

imi, given the

inmulated into

Thoaches are

stered for the

₹ âSSu⊞ption ,

Then, given the structural form of equation 3.4, the two-country optimal control problem under the assumption of common external balance will be formulated into Pindyck's as well as Chow's framework. Since the two approaches are equivalent (Appendix A-3), Chow's method will be considered for the derivation of the two-country optimal solution under the assumption of no constraints on policy-variable magnitudes.

3.2.1. Formul

For the t

Hindyck's fram

$$x_t^P = A^P x_{t-1}^P +$$

where
$$x_t^P \stackrel{d}{=} y$$

state vector;

and
$$z_t^P \stackrel{d}{=} \left[1, II\right]$$

[[m]) current

Etrices:

3.2.1. Formulation of the Problem

For the two-country optimal control problem formulated into Pindyck's framework (Appendix A-2.1), the "state-space" system is:

$$x_{t}^{P} = A^{P} x_{t-1}^{P} + B^{P} u_{t-1}^{P} + C^{P} z_{t-1}^{P}$$

$$\text{where } \mathbf{x}_{t}^{P} \stackrel{d}{=} y_{t}^{-\overline{B}} u_{t}^{-\overline{D}} z_{t}^{D} \stackrel{d}{=} \left[\tilde{Y}Y_{1t}, \tilde{Y}Y_{2t}, BB_{1t}, KK_{1t}, KK_{2t} \right]' \text{ is the (5x1)}$$

$$\text{state vector; } u_{t}^{P} \stackrel{d}{=} u_{t}^{D} \stackrel{d}{=} \left[G_{1t}, G_{2t}, r_{1t} \right]' \text{ is the (3x1) control vector;}$$

$$\text{and } z_{t}^{P} \stackrel{d}{=} \left[1, IE_{1t}, M_{1t}^{III}, TT_{1t}, T_{1t}, r_{2t}, TT_{2t}, T_{2t}, TR_{2t}, M_{3t} \right]' \text{ is the (11x1) current exogenous variable vector. } A^{P}, B^{P} \text{ and } C^{P} \text{ are known}$$

$$\text{matrices:}$$

$$A^{P} = \overline{A} = \begin{bmatrix} A_{11} & A_{12} & 0 & A_{14} & A_{15} \\ A_{21} & A_{22} & 0 & A_{24} & A_{25} \\ A_{31} & A_{32} & 0 & A_{34} & A_{35} \\ Y_{11} & 0 & 0 & a_{45} & 0 \\ O & Y_{21} & 0 & 0 & a_{55} \end{bmatrix}$$

$$\mathbf{B}^{P} = \overline{\underline{AB}} \\ + \overline{\mathbf{C}} = \begin{bmatrix} \mathbf{A}_{11}^{Q} \mathbf{1}_{1}^{+A} \mathbf{1}_{2}^{Q} \mathbf{2}_{1} & \mathbf{A}_{21}^{Q} \mathbf{1}_{2}^{+A} \mathbf{1}_{2}^{Q} \mathbf{2}_{2} & \mathbf{A}_{16} \\ \mathbf{A}_{21}^{Q} \mathbf{1}_{1}^{+A} \mathbf{2}_{2}^{Q} \mathbf{2}_{1} & \mathbf{A}_{21}^{Q} \mathbf{1}_{2}^{+A} \mathbf{2}_{2}^{Q} \mathbf{2}_{2} & \mathbf{A}_{26} \\ \mathbf{A}_{31}^{Q} \mathbf{1}_{1}^{+A} \mathbf{3}_{2}^{Q} \mathbf{2}_{1} & \mathbf{A}_{31}^{Q} \mathbf{1}_{2}^{+A} \mathbf{3}_{2}^{Q} \mathbf{2}_{2} & \mathbf{A}_{36} \\ \mathbf{Y}_{11}^{Q} \mathbf{1}_{1} & \mathbf{Y}_{11}^{Q} \mathbf{1}_{2} \\ \mathbf{Y}_{21}^{Q} \mathbf{2}_{1} & \mathbf{Y}_{21}^{Q} \mathbf{2}_{2} \end{bmatrix}$$

A ₁₁ A ₁₇ +A ₁₂ A ₂₇ -A ₁₅ Y ₂₂	$^{A_{21}A_{17}}^{+A_{22}A_{27}}^{-A_{25}}^{722}$	$^{A_{31}^{A_{17}^{+A}_{32}^{A_{27}^{-A}_{35}^{Y_{22}}}}$	Y11 ^D 17	Y21A27 - 855 Y 12	
0	0	0	0	0	
A ₁₁ D ₁₅ +A ₁₂ D ₂₅	$^{A_{21}}^{D_{15}}^{+A_{22}}^{D_{25}}$	$^{A_{21}}^{D_{15}}^{+A_{22}}^{D_{25}}$	Y11A15	⁷ 21 ^D 25	
A ₁₁ D ₁₄ +A ₁₂ D ₂₄	$^{A_{21}}^{D_{14}}^{+A_{22}}^{D_{24}}$	$^{A_{21}}^{D_{14}}^{+A_{22}}^{D_{24}}$	Y11 ^D 14	721 ^D 24	
A ₁₁ D ₁₃ +A ₁₂ D ₂₃	$^{A_{21}}^{D_{13}}^{+A_{22}}^{D_{23}}$	$^{A}_{21}{}^{D}_{13}{}^{+A}_{22}{}^{D}_{23}$	γ_{11}^{D} 13	⁷ 21 ^D 23	
A11 ^D 12 ^{+A} 12 ^D 22	$^{A_{21}}^{D_{12}}^{+A_{22}}^{D_{22}}$	$^{A_{31}}^{D_{12}}^{+A_{32}}^{D_{22}}$	$^{\gamma_{11}}^{D_{12}}$	721 ^D 22	
A11 ^D 11 ^{+A} 12 ^D 21 ^{+A} 14 ^A 46 ^{+A} 15 ^A 56	A21 ^D 11 ^{+A} 22 ^D 21 ^{+A} 24 ^a 46 ^{+A} 25 ^a 56	$\overline{C} = \overline{AD} = \begin{bmatrix} A_{31}^{D} 11^{+A_{32}^{D}} 21^{+A_{34}^{a}} 46^{+A_{35}^{a}} 56 \end{bmatrix}$	Y11 ^D 11 ^{+a} 45 ^a 46	Y21 ^D 21 ⁺⁸ 55 ⁸ 56	
IA-					

and the cost functional under the assumption of $R^{\rm P}=0$ is:

 $J^{P} = \frac{1}{2} \frac{N}{t=1} (x_{t-1}^{P} - x_{t-1}^{P}) (q^{P} (x_{t-1}^{P} - x_{t-1}^{P}))$

where $\mathbf{x_{t-1}}^{-p} = \mathbf{y_{t-1}}^{-\overline{B}_0} \mathbf{x_{t-1}}^{-\overline{D}_2} \mathbf{z_{t-1}}^{-1} = \left[\overline{\mathbf{x}}_{1\mathbf{t-1}}, \overline{\mathbf{x}}_{2\mathbf{t-1}}, \overline{\mathbf{B}}_{1\mathbf{t-1}}, \overline{\mathbf{K}}_{2\mathbf{t-1}} \right]^{\prime}$ is the (5x1) nominal state variable vector to be tracked;

is the weight ion the nomin Cov's framewo

teeded, and fo following:

 $I_{t}^{c} = A^{c} X_{t-1}^{c} +$

there $x_t^c \stackrel{d}{=} \begin{bmatrix} y_t \\ y_t \end{bmatrix}$ is the (8x1) v $\int_{t}^{c} \frac{d}{dt} \begin{bmatrix} G_{1t}, G_{2t}, & \vdots \\ G_{1t}, & \vdots \end{bmatrix}$

ector of exogo

is the weight matrix attached to the respective quadratic deviations from the nominal state variables $\overline{\tilde{Y}Y}_{1t-1}$, $\overline{\tilde{Y}Y}_{2t-1}$, and $\overline{B}B_{1t-1}$. Under Chow's framework no transformation of variables for equation 3.4 is needed, and for the two-country problem the dynamic system is the following:

$$\mathbf{x}_{t}^{c} = \mathbf{A}^{c} \mathbf{x}_{t-1}^{c} + \mathbf{B}^{c} \mathbf{u}_{t}^{c} + \mathbf{C}^{c} \mathbf{z}_{t}^{c}$$

$$\mathbf{x}_{t}^{c} = \mathbf{A}^{c} \mathbf{x}_{t-1}^{c} + \mathbf{B}^{c} \mathbf{u}_{t}^{c} + \mathbf{C}^{c} \mathbf{z}_{t}^{c}$$

$$\mathbf{y}_{t} = \mathbf{X}_{t}^{c} = \mathbf{Y}_{t} \mathbf{u}_{t}^{c} + \mathbf{Y}_{t}^{c} \mathbf{z}_{t}^{c}$$

$$\mathbf{y}_{t} = \mathbf{X}_{t}^{c} \mathbf{z}_{t}^{c} \mathbf{z}_{t}^{c} + \mathbf{Z}_{t}^{c} \mathbf{z}_{t}^{c}$$

$$\mathbf{y}_{t} = \mathbf{X}_{t}^{c} \mathbf{z}_{t}^{c} \mathbf{z}_{t}^{c} \mathbf{z}_{t}^{c} \mathbf{z}_{t}^{c} \mathbf{z}_{t}^{c}$$

$$\mathbf{y}_{t} = \mathbf{z}_{t}^{c} \mathbf{$$

is the (8x1) vector of current endogenous and controlled variables;

$$u_{t}^{c} \stackrel{d}{=} \left[G_{1t}, G_{2t}, r_{1t}\right] \text{ is the (3x1) vector of controlled variables;}$$

$$z_{t}^{c} \stackrel{d}{=} \left[1, \mathbf{T}_{E_{1t}}, M_{1t}^{III}, TT_{1t}, T_{1t}, r_{2t}, r_{2t-1}, TT_{2t}, T_{2t}, TR_{2t}, M_{3t}\right] \text{ is the (11x1)}$$

vector of exogenous non-controlled variables; and A^c, B^c and C^c are known matrices:

$$B^{c} = \begin{bmatrix} & & \\ & \overline{B} & \\ &$$

$$\mathbf{C^{c_{=}}} \begin{bmatrix} \mathbf{D_{11}} & \mathbf{D_{12}} & \mathbf{D_{13}} & \mathbf{D_{14}} & \mathbf{D_{15}} & \mathbf{0} & \mathbf{A_{17}} & \mathbf{D_{16}} & \mathbf{D_{17}} & \mathbf{D_{17}} & \mathbf{D_{18}} \\ \mathbf{D_{21}} & \mathbf{D_{22}} & \mathbf{D_{23}} & \mathbf{D_{24}} & \mathbf{D_{25}} & \mathbf{0} & \mathbf{A_{27}} & \mathbf{D_{26}} & \mathbf{D_{27}} & \mathbf{D_{27}} & \mathbf{D_{28}} \\ \mathbf{D_{31}} & \mathbf{D_{32}} & \mathbf{D_{33}} & \mathbf{D_{34}} & \mathbf{D_{35}} & \mathbf{D_{11}} & \mathbf{A_{37}} & \mathbf{D_{36}} & \mathbf{D_{37}} & \mathbf{D_{37}} & \mathbf{D_{38}} \\ \mathbf{a_{46}} & \mathbf{0} \\ \mathbf{a_{56}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

md under the

the weight ma

Appendix A-2

instead of

Q P

title q₁₁, q₂
it the situ

externa

and under the assumption of no limits on instrument variable magnitudes the weight matrix Q^{C} in the welfare cost function equation A-2.18, Appendix A-2, is:

instead of

where q_{11} , q_{22} and q_{33} are weights attached to the quadratic deviations from the situation of full employment in both countries and from the common external balance, i.e., weights attached to $(\tilde{Y}_{1t}^{-\overline{Y}})^2$,

 $(\bar{x}_{2t} - \bar{x}_{2t})^2$, and

weights attach

both countries

wights attach

3.2.2. Optima and Ex

Using Cho

Appendix A-2

Appendix A-8

 $(\tilde{Y}_{2t}^{-}-\tilde{Y}_{2t}^{-})^2$, and $(B_{1t}^{-}-B_{1t}^{-})^2$, respectively, while r_{11}^{-} , r_{22}^{-} and r_{33}^{-} are weights attached to the quadratic deviations from the limits set on both countries' fiscal policies and Country I's monetary policy, i.e., weights attached to $(G_{1t}^{-}-G_{1t}^{-})^2$, $(G_{2t}^{-}-G_{2t}^{-})^2$, and $(r_{1t}^{-}-\overline{r}_{1t}^{-})^2$.

3.2.2. Optimal Solution for Internal and External Balance

Using Chow's result (equation A-2.20) for the optimal control (Appendix A-2), the optimal solution for the two-country problem is (Appendix A-8):

[2] \begin{align*}
\delta_{11} & \delta_{12} & \delta_{13} & \delta_{14} & \delta_{15} & \delta_{15}

A July

 $\begin{bmatrix} \hat{i}_{1} \\ \hat{i}_{2} \\ \hat{i}_{3} \end{bmatrix} \cdot \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$

or santisting it is

$$\begin{bmatrix} c_{t}^{e} \\ c_{gt}^{e} \\ c_{ft}^{e} \end{bmatrix} = \begin{bmatrix} -e_{11} & -e_{12} & 0 & -e_{14} & -e_{15} & 0 & 0 & -e_{16} \\ -e_{21} & -e_{22} & 0 & -e_{24} & -e_{25} & 0 & 0 & -e_{26} \\ -e_{31} & -e_{32} & 0 & -e_{34} & -e_{35} & 0 & 0 & -e_{36} \end{bmatrix} \begin{bmatrix} \tilde{Y}_{t-1}^{e} \\ \tilde{Y}_{t-1}^{e} \\ \tilde{Y}_{t-1}^{e} \\ \tilde{X}_{t-1}^{e} \\ c_{gt-1}^{e} \\ c_{gt-1}^{e} \\ c_{gt-1}^{e} \\ c_{gt-1}^{e} \\ c_{gt-1}^{e} \end{bmatrix} + \begin{bmatrix} c_{22}/Q & -c_{12}/Q & 0 & 0 & 0 & 0 & 0 & 0 \\ c_{22}/Q & -c_{12}/Q & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ c_{21}/Q & c_{21}/Q & c_{21}/Q & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q \\ c_{11}/Q & c_{11}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q \\ c_{11}/Q & c_{11}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q \\ c_{11}/Q & c_{11}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q \\ c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q & c_{21}/Q \\ c_{21}/Q \\$$

$$\begin{bmatrix} \overline{Y}_{1t} \\ \overline{Y}_{2t} \\ \overline{R}_{1t} \\ \overline{K}_{1t} \end{bmatrix} + \begin{bmatrix} -\Delta_{11} & -\Delta_{12} & -\Delta_{13} & -\Delta_{14} & -\Delta_{15} & 0 & -\Delta_{19} & -\Delta_{16} & -\Delta_{17} & -\Delta_{18} \\ -\Delta_{21} & -\Delta_{22} & -\Delta_{23} & -\Delta_{24} & -\Delta_{25} & 0 & -\Delta_{29} & -\Delta_{26} & -\Delta_{27} & -\Delta_{27} & -\Delta_{28} \\ -\Delta_{31} & -\Delta_{32} & -\Delta_{33} & -\Delta_{34} & -\Delta_{35} & 0 & -\Delta_{39} & -\Delta_{36} & -\Delta_{37} & -\Delta_{39} & -\Delta_{38} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{IE}_{1t} \\ \mathbf{W}_{1t}^{11t} \\ \mathbf{T}_{1t} \\ \mathbf{T}_{1t} \\ \mathbf{T}_{2t} \\ \mathbf{T}_{2t} \\ \mathbf{T}_{2t} \\ \mathbf{T}_{2t} \\ \mathbf{T}_{2t} \\ \mathbf{T}_{3t} \end{bmatrix}$$

After substituting $\overline{\hat{t}}_{it} = \delta_{10} + \delta_{12} L_{it}$ (i=1,2) and $\overline{B}_{1t} = 0$ into equation 3.7

$$\begin{bmatrix} c_{1t}^{\dagger} \\ c_{2t}^{\dagger} \\ c_{1t}^{\dagger} \end{bmatrix} = \begin{bmatrix} -e_{11} & -e_{12} & 0 & -e_{14} & -e_{15} & 0 & 0 & -e_{16} \\ -e_{21} & -e_{22} & 0 & -e_{24} & -e_{25} & 0 & 0 & -e_{26} \\ -e_{31} & -e_{32} & 0 & -e_{34} & -e_{35} & 0 & 0 & -e_{36} \end{bmatrix} \begin{bmatrix} r_{1t-1}^{\dagger} \\ r_{2t-1}^{\dagger} \\ r_{1t-1}^{\dagger} \\ r_{2t-1}^{\dagger} \\ c_{1t-1}^{\dagger} \\ c_{1t-1}^{\dagger} \\ c_{1t-1}^{\dagger} \end{bmatrix} + \begin{bmatrix} -a_{11} + \frac{q_{22}a_{10}-q_{12}a_{20}}{q} & \frac{q_{22}a_{12}}{q} \\ -a_{21} + \frac{q_{21}a_{10}+q_{21}a_{20}}{q} & \frac{q_{21}a_{12}}{q} \\ -a_{21} + \frac{q_{21}a_{10}+q_{21}a_{20}}{q} & \frac{q_{21}a_{12}}{q} \\ -a_{31} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right] & \frac{a_{12}}{n_{11}q}(q_{12}q_{32}-q_{22}q_{31}) \\ -a_{31} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right] & \frac{a_{12}}{n_{11}q}(q_{12}q_{32}-q_{22}q_{31}) \\ -a_{31} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right] & \frac{a_{12}}{n_{11}q}(q_{12}q_{32}-q_{22}q_{31}) \\ -a_{31} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right] \\ -a_{11} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right] \\ -a_{11} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right] \\ -a_{11} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right] \\ -a_{11} + \frac{1}{n_{11}q} \left[a_{10}(q_{21}q_{32}-q_{22}q_{31}) - a_{20}(q_{11}q_{32}-q_{12}q_{31}) \right]$$

(3.9)

	6 ₁₂	0	0	0	0	(Q ₂₂ 8 ₁₂)/Q	-(q ₂₁ 6 ₁₂)/q	$\frac{^{6}_{12}}{^{n_{11}}{}^{Q}}(q_{12}q_{32}^{-q_{22}}q_{21}^{0})$												
3.6);						9 ₁₂ 6 ₂₀)	+q ₁₁ ⁶ 20)	$-^{4_{31}}+^{\frac{1}{1_{1}}}_{\eta_{1}1}^{q} \ ^{6_{10}}(^{9_{21}}_{21})^{3_{2}}-^{6_{22}}_{0_{31}})^{-6_{20}}(^{0_{11}}_{0_{32}}-^{0_{12}}_{0_{31}})$		·		2t	it it			r. r. r.	^r 2t-1	II_2t	T _{2t}	TR2t
he optimal path is obtained by substituting equation 3.8 into the dynamic system (equation 3.6);	, 10	⁶ 20	0	a 56	99,	$-^{\Delta_{11}} + \frac{1}{9} (q_{22}^{\delta_{10}} - q_{12}^{\delta_{20}})$	$-6_{21} + \frac{1}{9}(-6_{21}^{6}_{10} + 6_{11}^{6}_{20})$	-431 ⁺¹ 11 ^q 610 ^{(q}	- 0 0	0 0	0 0	0	0	7 -417 -418	- ∆ 27	- 437	1			
the dynami	ř*	₹* 2t-1	Bit-1	K1t-1 +	K\$t-1	G* -1	G*t-1	rit-1	0	0	0 0	0	0	-4 ₁₆ -4 ₁₇		$^{-4}$ 34 $^{-4}$ 35 1 $^{-4}$ 39 $^{-4}$ 36 $^{-4}$ 37				
9 into									0	0	0	0	0	-419	- ⁴ 29	-^ ₃₉				
1.6 100 3.8	0	0	0	- ₇ 12		- ₁₆	- ₈ 26	-936	0	0	0 0	0 0	0	-4 ₁₄ -4 ₁₅ 0 -4 ₁₉	-424 -425 0	^∆35 1				
equati	0	0	0	•	0			0	0	•	0	0	0	-414	- 424 -	- ⁴ 24 -				
ting	0	0	0	0	0	0	0	0						-A ₁₃	-^23					
stitu	•	0	0	0	8 55	- ₀ 15	- ₂₅	- ₉₃₅	0	0	0	0	0	-^ ₁₁₂ -	-^222 -	- ₄₃₂ - ₄₃₃				
y sub	0	_	_	845		- ₀ 14	-924	- ₉ 4	0	0	0	0	0	-						
ned b	0	0	0	0	0	0	0	0								2931)				
obta1					۲21									ø	ŏ	32 ⁻⁶ 1;				
path is	0	0	0	γ ₁₁ 0		- ₁₁ -(- ₉₂₁ −6	-9 ₃₁ -6		δ ₂₂				$-(q_{12}^{\delta}{}_{22}^{\delta})/Q$	(Q ₁₁ 6 ₂₂)/Q	$-\frac{22}{\eta_{11}}\frac{(q_{11}q_{32}^{-\theta_{12}}q_{31}^{\theta_{31}})}{q_{11}}$				
inai	·			•					0	••	0	0	0	ř	ڪ چ] =				
he opt	ř.	7	1t	r.	K\$	jt.	G*	—¬,												

target set, o

To evaluate t

It is found t

The res

external bal from those of

concluding r

(1) Th

th

Wi

ba Рo

de

is

re

th of

Row

1

3

To evaluate the performance of the economic system with respect to the target set, compute the optimal welfare cost:

$$\hat{J}^{C} = \frac{1}{2} \sum_{t=1}^{N} (x_{t}^{*C} - \overline{x}_{t}^{C}) Q^{C} (x_{t}^{*C} - \overline{x}_{t}^{C})$$

It is found that $\hat{J}^{C} = 0$ (Appendix A-9).

The results of the two-country optimal control problem under common external balance assumption (Case A) are not fundamentally different from those obtained in the one-country problem of Chapter II. The concluding remarks which can be drawn from these results are:

(1) The economic interdependence of the two countries implies the interdependence of optimal policies. However, within the confines of Votey's model, the internal balance in both countries are reached by the fiscal policies of both countries while the overall interdependent balance—full employment without inflation is attained by monetary policy in Country I. The relative impact of these three instruments on the three targets depends on the coefficient—magnitudes of the following matrix:

Row
$$\overline{\tilde{Y}}_{1t}$$
 $\overline{\tilde{Y}}_{2t}$ $\overline{\tilde{B}}_{1t}$

1 $\frac{Q_{22}}{Q}$ $\frac{-Q_{12}}{Q}$ 0

2 $\frac{-Q_{21}}{Q}$ $\frac{Q_{11}}{Q}$ 0

$$^{3} \quad \frac{1}{\eta_{11}} \underbrace{^{(Q}_{21} {^{Q}_{32}} - {^{Q}_{22}} {^{Q}_{31}})}_{Q} \quad \frac{-1}{\eta_{11}} \underbrace{^{(Q}_{11} {^{Q}_{32}} - {^{Q}_{12}} {^{Q}_{31}})}_{Q} \quad \eta_{11}$$

This

tut

coe

(2) The

(eq

(th

equ

(Ch

(3) Giv

bal

wit

the

is

bij

the

The

du

Inter

Similar

Talues for th

This will be computed in the next section by substituting Votey's numerical values for the estimated coefficients into the two-country model.

- (2) The variables Y*\frac{1}{1t}, Y*\frac{1}{2}t and B*\frac{1}{1}t are on target exactly (equation 3.9) and the optimal cost is zero since the number of independent variables to be controlled (the number of non-zero diagonal elements in Q^C) is equal to the number of independent instruments (Chow:1972b), i.e., Tinbergen's rule is met.
- (3) Given the analytical solutions (equation 3.9), the simultaneous achievement of internal and external balance for the two-country model is possible within the framework of optimal control theory, and the optimal control vector is independent of the penalty costs assigned to deviations of Y

 (i=1,2) and B

 from their targets, and therefore is unique. However, nothing guarantees the feasibility of this optimal policy mix in a given economy. Therefore, a test of feasibility will be done in the next section for the United States and Canada during the period 1961-1970.

3.3. U.S. and Canada Optimal Policies for Internal and External Balance: Appraisal and Amendment of the Optimal Solution

Similar to the one-country model of Chapter II, Votey's numerical values for the structural coefficients and the historical data for

the United St and Canadian Canada was un the optimal s practical and magnitudes h

First,

and equation

amended.

the United States as well as Canada will be used to derive the U.S. and Canadian optimal policy mix for the period 1961-1970, during which Canada was under the regime of fixed exchange rate. It is found that the optimal solution for both countries is not feasible for technical, practical and political reasons; therefore, limits on policy-variable magnitudes have to be set (Tinbergen:1954) and the optimal solution amended.

First, using Votey's numerical values for the estimated structural constants (Votey:1969), the matrices of coefficients for equation 3.7 and equation 3.6 are computed:

						(3.10)												
																		
0	0	0					_											
0	0	0					-	2	# :	Y.	π_{1t}	\mathbf{I}_{1t}	r _{2t}	r2t-	Π_{2t}	\mathbf{T}_{2t}	${\tt TR}_{2t}$	[™] 3€
0	0	0						_										
0	0	0					•			91;	•							
0	0	0						7	0	-0.0216								
•	0	0.0216						0.0977	0.6368	0.0021								
7160	0.3632	-0.0021						2										
-0.0977	0							0.0977	0.6368	0.0021								
0.3810	-0.1315	0.0028						0	0	0								
<u></u>	+							10.7499	309.8858	0.2323								
		7 7	7	7	7	-		50.	309	ċ								
, It-1	12t-1	# F-1	K	G. It	G#t-1	11-1		0	0	-								
								185	315	028								
2240	1831	3356						0.6185	0.1315	-0.0028								
434.2240	9.4831	-0.5356																
0 434.2240	0 9.4831	0 -0.5356						-28.3566 0.6185	28.3566 0.1315	-0.6127 -0.0028								
0	0	o																
0	0	•						0 -28.3566	-1 28.3566	0 -0.6127								
-0.0039 0 0	0.0225 0 0	-0.0007 0 0						0 -28.3566	-1 28.3566	0 -0.6127								
0	0	o						-1.0000 0 -28.3566	0.0000 -1 28.3566	-0.0216 0 -0.6127								
-0.0039 0 0	0.0225 0 0	-0.0007 0 0						-1.0000 0 -28.3566	0.0000 -1 28.3566	-0.0216 0 -0.6127								
0 0.0013 -0.0039 0 0	0 -0.0218 0.0225 0 0	0 0.0012 -0.0007 0 0						0 -28.3566	-1 28.3566	0 -0.6127	•							
-0.0051 0 0.0013 -0.0039 0 0	-0.1477 0 -0.0218 0.0225 0 0	0.0012 -0.0007 0 0						-1.0000 0 -28.3566	0.0000 -1 28.3566	-0.0216 0 -0.6127	•							
-0.0051 0 0.0013 -0.0039 0 0	-0.1477 0 -0.0218 0.0225 0 0	0 0.0012 -0.0007 0 0						-33.5392 -1.0000 0 -28.3566	+ -41.9366 0.0000 -1 28.3566	0.5924 -0.0216 0 -0.6127	- II	r _{2t}	- 1r	,2t	[^r lt]			
-0.0051 0 0.0013 -0.0039 0 0	-0.1477 0 -0.0218 0.0225 0 0	-0.0001 0 0.0012 -0.0007 0 0						-33.5392 -1.0000 0 -28.3566	+ -41.9366 0.0000 -1 28.3566	0.5924 -0.0216 0 -0.6127	, It	⁷ 2t	الالا	^{22t}	[Flt]			

.

$\overline{}$	
-	
_	
•	
3	

			+																
		i,	G# 2t	ı <u>ı</u>	¬			r		Jt	MIII MIC	 ;;	<u>ب</u>	يد	t-1	zt		ے کد	H3t
								ا د	-		`X.	F	₽,	H,_	H,	F	H,,	F 	x.
0	-	46.279		0	0	0	7	ſ	33	92	19						7		
0.7782	3.0351	0.1942	0	0	•	1	0		2.8933	1.0476	0.7219	0	0	0	0	0			
2.8933	1.0476	-0.2781	0	0	-	0	0		-0.7782	-2.0351	-0.1942	0	0	0	0	0			
			+					1	-0.7782	-2.0351	-0.1942	0	0	0	0	0			
ř. It-1	Y# 72t-1	B#t-1	r; 1t-1	K* 2t-1	G* 1t-1	G* 2t-1	Į.		0	•	0	0	0	0	0	0			
									141	20	20		19						
-1263.7107	- 483.6579	143.7013	1.7						-272.2641	-951.8105	- 67.9307	0	-349.8519	0	0	0			
-126	- 48	14	- 461.7	0	0	0	0				-46.279								
0	0	0	0	0	0	0	0		0	0		0	0	0	0	0			
0	0	0	0	0	0	0	0		-1.8918	-1.0470	0.2779	0	0	0	0	0			
0.0806	0.0648 -0.0329	0.0201	0	1.1035	•	0	0		59.9756	-56.3613	14.9641								
0.0131	0.0648	-0.0524	1.0618	0	0	0	0			3.0351 -56		0	0	•	0	0			
0	0	•	•	0					0.7782	3.0	0.1942	0	0	0	0	0			
0.1298	0.4538	0.0324	0	0.1668	0	0	0		2.8933	1.0476	0.7219	0	0	0	0	0			
-0.0073	-0.0028	0.0008	-0.0027	0	0	0	0		129.6743	162.4181	-28.6009	9.1298	-18.6889	0	0	0			
	.		•														_		
								1											

Given

(Gt, Gt,

periods ru

conditions

Ϋ́₁(0 Ϋ́₂(0

B₁(0

K₁((

K₂(0

The second

G₁(G₂(

r₁(

viere (0

Tiues f ia t.s.

Table 2.

accumila

lozinal to grow

tespecti

ijen vaj

iz Iabl

ior 10 ,

tequire

litati

Given these two equations, the optimal stabilization policy mix $(G_{1t}^{\star}, G_{2t}^{\star}, r_{1t}^{\star})$ is derived for the United States and Canada over 10 periods running from 1961 to 1970, with the following initial conditions:

 $\tilde{Y}_1(0) = 383.37$

 $\tilde{Y}_{2}(0) = 20.06$

 $B_1(0) = 4.17$

 $K_1(0) = 508.69$

 $K_2(0) = 49.33$

 $G_1(0) = 94.90$

 $G_2(0) = 6.97$

 $r_1(0) = 0.0215$

where (0) refers to 1960. All these values are historical. The nominal values for state variables are given in Table 3.1. The nominal values for U.S. state variables $(\overline{\tilde{Y}}_{1t}, \overline{B}_{1t}, \overline{K}_{1t}, \overline{G}_{1t})$ are the same as those in Table 2.1. Similarly, for Canada the potential output net of capital accumulation $(\overline{\tilde{Y}}_{2t})$ is determined by the Canadian labor force. The nominal capital stock \overline{K}_{2t} and government expenditures \overline{G}_{2t} are assumed to grow at the same rate as those in the United States, that is, respectively, at 3 percent and 4 percent per annum from their initial 1960 values. The historical values for exogenous variables are given in Table 3.2. The U.S. and Canadian optimal stabilization policies for 10 periods (1961-1970) are obtained by the following steps which require only basic matrix manipulations—additions, subtractions, multiplications and small inversions:

3(1963) 2

4(1964) 2

5(1965)

6(1966)

7(1967)

\$(1968)

9(1969)

I(1970)

Table 3.1. Nominal values for the state variables - U.S. and Canada: 1961-1970

Period (Year)	$\overline{ ilde{ ilde{Y}}}$ lt	$\overline{ ilde{ ilde{Y}}}_{2 t}$	\overline{B}_{1t}	$\overline{\mathtt{K}}_{\mathtt{lt}}$	$\overline{\mathtt{K}}_{2\mathtt{t}}$	\overline{G}_{lt}	G _{2t}	
1(1961)	283.2462	2.3165	0	523.9507	50.8099	98.7	7.2488	0.0215
2(1962)	283.8683	2.3499	0	539.6692	52.3342	102.65	7.5388	0.0215
3(1963)	288.7687	2.3972	0	555.8592	53.9042	106.76	7.8404	0.0215
4(1964)	293.8258	2.4629	0	572.5349	55.5213	111.03	8.1540	0.0215
5(1965)	299.3091	2.5368	0	589.7109	57.1869	115.47	8.4802	0.0215
6(1966)	304.5954	2.6359	0	607.4022	58.9025	120.09	8.8194	0.0215
7(1967)	310.9349	2.7332	0	625.6242	60.6696	124.89	9.1722	0.0215
8(1968)	316.5227	2.8132	0	644.3929	62.4897	124.89	9.5391	0.0215
9(1969)	324.5467	2.8995	0	663.7246	64.3644	135.09	9.9207	0.0215
(1970)	332.5143	2.9748	0	683.6363	66.2953	140.49	10.3175	0.0215

1961 1961 Canada TR2t $T_2 \epsilon$ ${\rm TT}_2{\bf t}$ r2t-1 r_{2t} $T_I \epsilon$

 $^{IE}_{Ic}$ $^{M}_{Ic}$ $^{TII}_{Ic}$ $^{T}_{Ic}$ Perfod (Year)

Table 3.2. Historical values for the exogenous variables - U.S. and Canada: 1961-1970

Period (Year)	IE1t	M_{1t}^{III}	${ m TT}_{ m lt}$	$r_{ m lt}$	r _{2t}	r2t-1	${ m TT}_{2{ m t}}$	$\mathtt{T}_{\mathtt{2t}}$	TR _{2t}	M _{3t}
1(1961)	3.55	2.22	1.0000	144.63	0.0299	0.0325	1.0408	9.57	3.44	4.5431
2(1962)	4.05	2.45	1.0101	151.03	0.0391	0.0299	1.0309	10.53	3.72	4.9299
3(1963)	4.15	2.52	1,0000	168.76	0.0378	0.0391	1.0000	11.18	3.85	5.4886
4 (1964)	4.87	2.83	0.9902	174.07	0.0382	0.0378	1.0000	12.73	4.13	5.9344
5 (1965)	5.29	3.32	1.0000	190.06	0.0454	0.0382	1.0198	14.29	4.57	6.279
(1966)	5.37	4.12	1.0094	213.33	0.0496	0.0454	1.0490	16.59	5.05	9599.9
7 (1967)	5.89	4.46	1.0280	228.93	0.0595	0.0496	1.0583	18.51	6.22	6.5062
8(1968)	6.22	5.89	1.0183	263.31	0.0624	0.0595	1.0566	20.99	7.19	7.1595
6(1969)	5.97	5.80	1.0268	296.70	0.0781	0.0624	1.0648	24.44	90.9	8.1595
10(1970)	6.27	6.61	1.0083	302.00	0.0444	0.0781	1.0614	26.27	6.80	10.3021

(1)

(

(2)

; †

В

1

ŀ

The re

with time or dequation 3

.

some remarks

Pariables.

Capter II (

- (1) Compute $[G_1^*(1), G_2^*(1), r_1^*(1)]$ from equation 3.10 using the initial conditions given by the historical data for $[\tilde{Y}_1(0), \bar{\tilde{Y}}_2(0), B_1(0), K_1(0), G_1(0), G_2(0), r_1(0)]$ and the exogenous variables of period 1 given in Table 3.2.
- (2) Compute $[\tilde{Y}^*(1), \tilde{Y}_2(1), B_1^*(1), K_1^*(1), K_2^*(1), G_1^*(1), G_2^*(1), r_1^*(1)]$ from equation 3.11. Now $[\tilde{Y}^*(1), \tilde{Y}_2^*(1), B_1^*(1), K_1^*(1), K_2^*(1), G_1^*(1), G_2^*(1), r_1^*(1)]$ can be used in equation 3.10 to compute $[G_1^*(2), G_2^*(2), r_1^*(2)]$, which can be used in equation 3.11 to compute $[\tilde{Y}_1^*(2), \tilde{Y}_2^*(2), B_1^*(2), K_1^*(2), K_2^*(2), G_1^*(2), G_2^*(2), r_1^*(2)]$, and so on. Continue the process until all of the control vectors $[G_1^*(t), G_2^*(t), r_1^*(t)]$, $t = 1, \ldots, 10$, and all the state variable vectors $[\tilde{Y}_1^*(t), \tilde{Y}_2^*(t), B_1^*(t), K_1^*(t), K_2^*(t), G_2^*(t), r_1^*(t)]$, $t = 1, \ldots, 9$, have been computed.

The results are presented in graphical form (Figures 3.1 to 3.6) with time on the horizontal axis. First, based on the following matrix (equation 3.7)

Row	$\overline{ ilde{ ilde{Y}}}_{ exttt{1t}}$	$\overline{ ilde{ ilde{Y}}}_2$ t	$\overline{^{\mathtt{B}}}_{\mathtt{1t}}$
1	0.3810	-0.0977	0
2	-0.1315	0.3632	0
3	0.0028	-0.0021	0.0216

some remarks will be made on the effectiveness of policy-instrument variables. Using the same concept of effectiveness as described in Chapter II (section 2.3), it is noted that the fiscal policy of each

بمحد الم

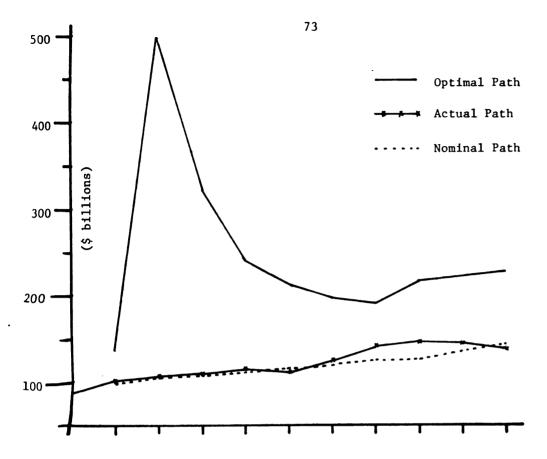
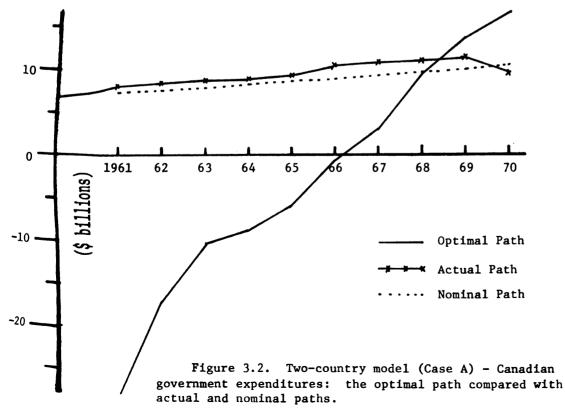



Figure 3.1. Two-country model (Case A) - U.S. Government expenditures: the optimal path compared with actual and nominal paths.

4),) = 19

the $_{\text{opti}}^{\text{Fig}}$

Optimal Path
Actual Path
Nominal Path

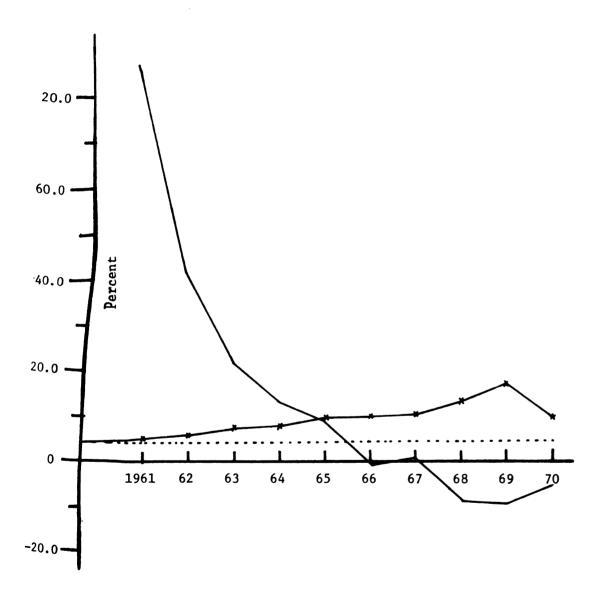
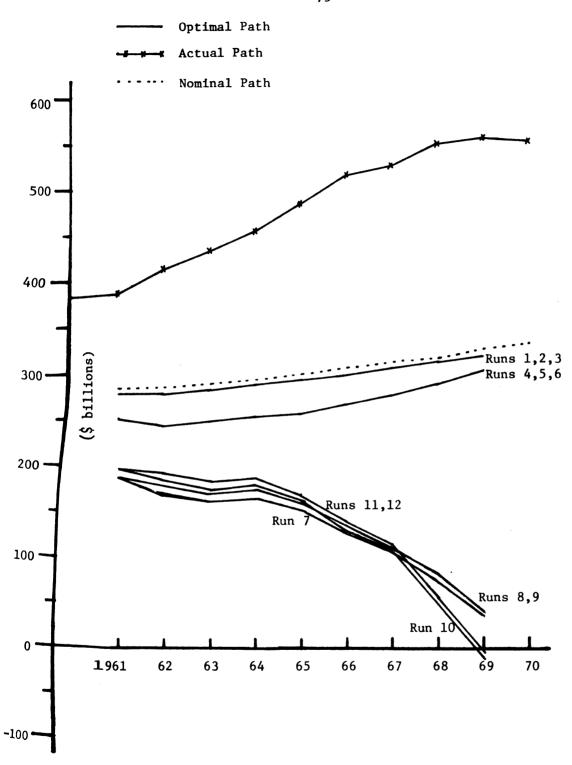
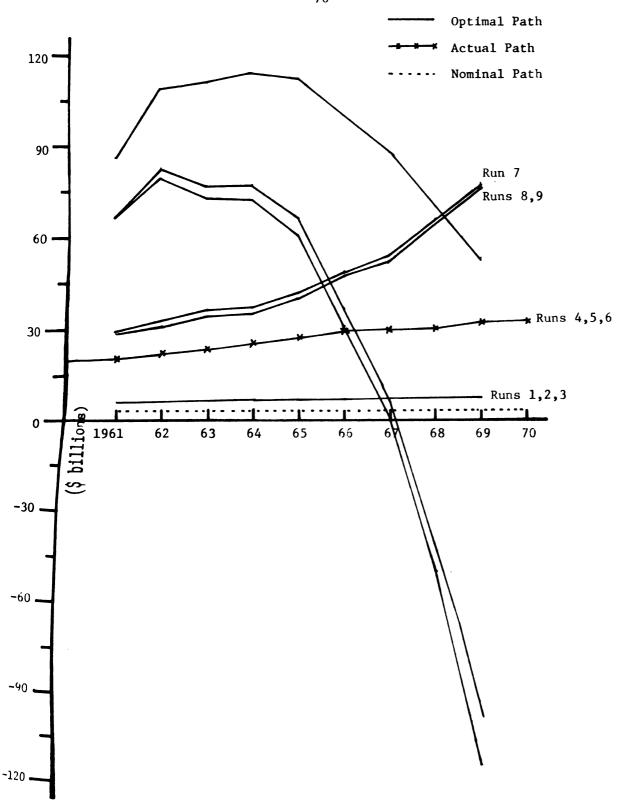




Figure 3.3. Two-country model (Case A) - U.S. interest rate: optimal path compared with actual and nominal paths.

 $^{
m Figure~3.4.}$ Two-country model (Case A) - United States: optimal net of capital stock compared with the actual and potential GNP.

jj **–**

GNP $^{\mathbf{Figure 3.5.}}$ Two-country model (Case A) - Canada: optimal net of capital stock compared with the actual and potential GNP.

Fi Payment

Same of the same o

Optimal Path
Actual Path
Nominal Path

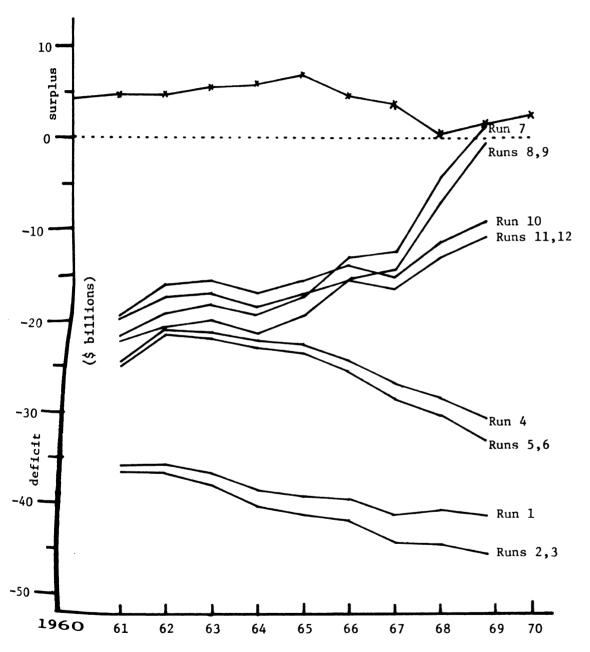


Figure 3.6. Two-country model (Case A) - U.S. balance of Payments: optimal paths compared with the actual and nominal paths.

than that

own fisca.

other cour

interdepe:

country's

Country I

varying do

balance the

of by the

reduced do

short, the

as economic

C.S. and contry mo

optimal co

reach the

is exactly

noted that

exployment economy de country is not only more effective in achieving its own internal balance than that of the other country, but also that a negative change in its own fiscal policy is required to bring about a given change in the other country's internal target variable. This means that the economic interdependence of the two countries lowers the effectiveness of each country's fiscal instrument in reaching its own internal balance.

Country I's monetary policy depends on all three targets, but with varying degree. It is more effective in achieving the common external balance than the internal balances which have already been taken care of by the fiscal policies. Furthermore, its overall effectiveness is reduced due to the existence of Country II's internal target. In short, the effectiveness of each country's policy making will decline as economic interdependence increases.

Next, an appraisal of the results obtained by the techniques of optimal control will be conducted to see if they are feasible in the U.S. and Canadian economies. Figure 3.1 shows that the optimal fiscal policy in the United States diverges from both its actual and nominal path, and that the economic interdependence prevailing in the two-country model requires much higher U.S. government expenditures to reach the situation of full employment than in the one-country case. Furthermore, the GNP resulting from using the optimal fiscal policy is exactly on the internal balance path (Figure 3.5). Again it is noted that the actual path for the GNP diverges upward from the full employment situation. In other words, for the last decade U.S.

For (

the C.S.

fiscal po

first hal

ment exper

diverges f

we stabl

deviation

therefore,

Once

attaining

out by the

interest ;

œŝātive,

Mrealis

:e3a:1v

II

::Dat

:acing

æsts,

grai's

bal ancı

tijange

tery, h

the Inited

For Canada, which is a small country compared with the United States, the attainment of its own internal balance, when impeded by the U.S. pursuit of domestic stabilization, required a tightening of fiscal policy with a high accumulation of government savings during the first half of the planning period, then a steady increase of government expenditures starting at 1967 (Figure 3.2). The optimal path also diverges from the nominal and actual paths, the growth of which is more stable. Figure 3.5 shows excess demand of an amount equal to the deviation of the actual GNP from the situation of internal balance; therefore, inflation occurs in Canada too.

Once the U.S. government expenditures are set at the level for attaining the internal balance, the common external balance is carried out by the U.S. monetary policy, defined as the U.S. short-term interest rate. Unlike the one-country case in which the value is negative, the optimal interest rate starts with a very high and even unrealistic level around 82 percent, then decreases over time with negative values for the three last periods.

In short, the actual situation in the United States and Canada, compared with the given targets, is as follows: both countries are facing inflation combined with a surplus in the U.S. balance of payments, which is termed as a situation of potential conflict in policy goals (Johnson:1966). To change this conflict situation to an overall balance by using traditional policies rather than appreciation of the exchange rate would require, within the context of optimal control theory, high government expenditures and a negative interest rate in the United States, while government savings would be forced in Canada.

been vio

All thre

for eith

boundary

Similar t Weighting

i.e., whe

The cost :

All three of these optimal policies are declared to be inadmissible for either social, political, or practical reasons. Therefore, the boundary conditions or limits on policy-variable magnitudes which have been violated are to become active. Within the framework of control theory this can be done by introducing into the cost function the penalty costs for deviations of the policy variables from their limits, that is, by changing the diagonal elements of the matrix Q^{C} as follows:

Similar to the one-country case, only a sensitivity analysis of the weighting factors on the components of the control vector is performed, i.e., when the weights for the endogenous variables remain unchanged.

The cost function for all the experiments is given in Table 3.3 and the results are shown in Figures 3.7, 3.8 and 3.9.

Test 3 1

Table 3.3. Two-country model (Case A): penalty weights attached to the deviations of state and control variables from their nominal values

		Runs	^q 11	9 ₂₂	^q 33	r ₁₁	r ₂₂	r ₃₃
Test	1	1 2 3	1 1 1	1 1 1	1 1 1	0 0 0	0 0 0	10 ⁵ 5×10 ⁵ 106
Test	2	4	1 1	1 1	1 1	0 0	10 ⁵ 5x10 ⁵	
		5 6	1 1 1	1 1 1	1 1 1	0 0 0	5x10 ⁵ 5x10 ⁵ 10 ⁵ 5x10 ⁵	105 105 5×105 5×105 106 106 105 105 105 105 5×105
			1 1	1 1	1 1	0	5×10 ⁵ 10 ⁵ 10 ⁶	106 106 105
		7	1 1 1	1 1 1	1 1 1	10 ⁵ 5x10 ⁵	0 0 0	105 105 105
		8	1 1	1 1	1 1 1	10 ⁵ 5x10 ⁵	0 0	5x10 ⁻
		9	1 1 1	1 1 1	1 1 1	0 0 5x10 ⁵ 10 ⁶ 10 ⁵ 5x10 ⁵ 10 ⁶ 10 ⁵ 5x10 ⁵ 10 ⁶	0 0 0 0	5x10 ⁵ 106 106 106
Test	3	10	1 1	1 1	1 1			
		11	1 1 1	1 1 1	1 1 1	10 ⁵ 5x10 ⁵	5x10 ⁵ 10 ⁵	105 105 105
		11	1 1	1 1	1 1	5x10 ⁵ 10 ⁵ 5	10 ⁵ 10 ⁵ 5x10 ⁵	5x10 ₅ 5x10 ₅ 5x10 ₅
		12	1 1 1	1 1 1	1 1 1	10 ⁵ 5x10 ⁵	10 ⁵ 5×10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 5×10 ⁵ 5×10 ⁵ 10 ⁵ 10 ⁵ 5×10 ⁵ 5×10 ⁵ 5×10 ⁵	105 105 105 105 5x105 5x105 5x105 5x106 106 106 106
			1 1 1	1 1 1	1 1 1	10 ⁵ 5x10 ⁵ 10 ⁶	5x10 ⁵ 5x10 ⁵ 10 ⁶	106 106 106

Figure 3.7. Two-country model (Case A) - U.S. Government expenditures: optimal paths compared with nominal path.

Figure 3.8. Two-country model (Case A) - Canadian government expenditures: optimal paths compared with nominal path.

100 —

_

ر

20

·20

,(i) **,**

· west

Optimal Path

Nominal Path

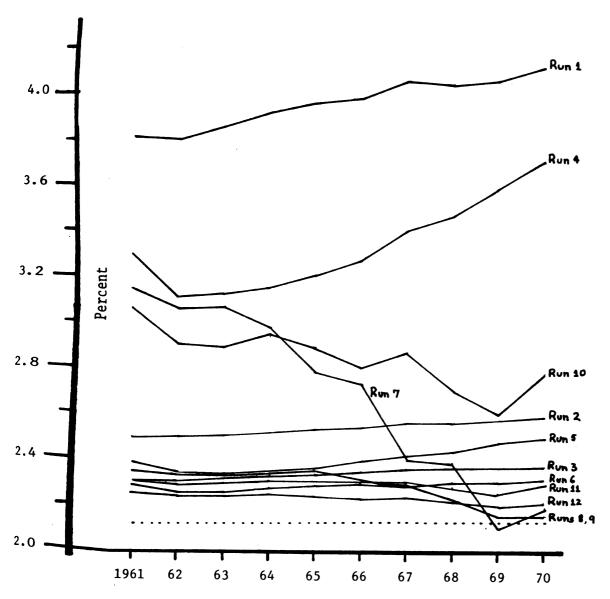


Figure 3.9. Two-country model (Case A) - U.S. interest rate: optimal paths compared with nominal path.

assigned f to all the

Three

instrument

For t

observed

closer it

instrumen

upward an

inadmissi

is a trac

In fact,

prevails

large de

in both

situatio

and G_{2t}.

The

instrume

either c

(1)

Three tests of sensitivity are performed with penalty weights assigned first to one instrument, then to two instruments, and finally to all the three instruments.

For the first test (runs 1,2,3) in which only Country I's monetary instrument is constrained to the limit fixed at 2.15 percent, it is observed that the more weight given to the interest rate r_{1t} the closer it gets to the nominal path, while the two other unconstrained instruments G_{1t} and G_{2t} diverge strongly from their boundary conditions upward and downward, respectively. Therefore, they are declared inadmissible for practical and political reasons. Furthermore, there is a tracking trade-off between endogenous variables and instruments. In fact, because a division of labor in achieving the joint balance prevails in Votey's model when r_{1t} is constrained within limits, a large deficit occurs in the U.S. balance of payments, while the GNP in both the United States and Canada keeps tracking the full-employment situation at the expense of non-feasibility of fiscal policies G_{1t} and G_{2t} .

The second test concerns penalty weights given to two of the instruments--Country I's interest rate and government spending of either country. It is found that:

(1) If both Country I's instruments are constrained by the boundary conditions, then its interest rate will track the nominal path more closely than if limits are set on either Country I's interest rate alone or on the pair of Country II's fiscal instrument and Country I's interest rate. In short, limits set on

(2)

Fi three i

(1

(2

- \mathbf{G}_{1t} reinforce the feasibility of Country I's monetary policy, while limits on \mathbf{G}_{2t} do the opposite.
- (2) Since two boundary conditions are active, it is expected that at least two endogenous variables would not be on target exactly because a tracking trade-off between targets and instruments occurs. Because of the particular structural form of Votey's model, the choice of targets to be dropped is based on Mundell's "division of labor" principle. That is, the target on which the constraint policy instrument is the most effective has to be changed numerically or given up, at the expense of instruments tracking for limits.

Finally, the third test in which weights are assigned to all the three instruments is performed. It is found that:

- (1) Each of the three instruments is tracking its limits. However, giving increasing weight to r₁₁ leads to a closer tracking of Country I's monetary policy on its limit, while the tracking for nominal government expenditures in both countries remains the same, whatever the weight number assigned to them.
- (2) Compared to the second test (runs 7,8,9), the tracking for the fixed interest rate is less

(3)

It

(1)

(2)

(3

- effective. This is due to the additional boundary condition set on Country II's government expenditures.
- (3) Similar to the first two tests, the tracking of all endogenous variables \tilde{Y}_{1t} , \tilde{Y}_{2t} and B_{1t} is lost. The deviations from their respective targets are larger than those obtained in tests 1 and 2.

It can be concluded that:

- (1) As economic interdependence increases, the effectiveness and impact of each country's policy on its own target will decline.
- (2) If Tinbergen's principle on equality between the number of targets and the number of instruments is met, it is always possible to steer the endogenous variables to be controlled exactly to targets by using the quadratic welfare function (equation A-2.16) and assigning positive weights only to the deviations of the variables selected.
- (3) However, nothing guarantees the feasibility of optimal policies to achieve the internal and external balance. When the boundary conditions become active, a tracking trade-off between endogenous variables and instruments occurs.

A STAN

^{derive}

to the the opt

. Doundar

CHAPTER IV

TWO-COUNTRY MODEL

CASE B: PASSIVE RESPONSES AND LINEAR DEPENDENT EXTERNAL BALANCE

Unlike the preceding chapter, this one deals with a four-target and three-instrument case: the fiscal authority in each country will act to attain its own internal balance while the monetary authority in Country I strives not only for its own external balance but also for that of Country II under the assumptions of passive responses from Country II and non-common but non-conflicting balance-of-payments targets. Since the number of targets is greater than the number of instruments, Tinbergen's rule is no longer satisfied. Therefore, it is expected that the optimal results for internal and external balance will differ from those obtained in the two preceding cases. To show this, the same analysis procedure will be repeated. First, Votey's two-country model with modifications on the foreign sector will be presented. Second, the optimal control problem will be formulated to $\textbf{derive} \hspace{0.2cm} \textbf{the optimal solution analytically and numerically with reference}$ to the United States and Canada. Finally, the economic evaluation of the Optimal policy mix will be made as well as its amendment when boundary conditions become active.

4.1. <u>Pres</u>

fied by r

Vote

adding an

payments.

I and II

I (II) eq

Country]

countries

following

(1)

(2)

(3)

Th the for

i_{0r} i =

it"

cut

4.1. Presentation of Votey's Model with Modifications on the Foreign Sector

Votey's two-country model presented in Chapter III will be modified by redefining all the variables in the foreign sector and by adding an identity for the determination of Country II's balance of payments. This is done because Votey ignores the trade of Countries I and II with the rest of the world by assuming the total exports of I (II) equal the total imports of II (I) and by using a single equation—Country I's balance of payments—as the common external balance of both countries. Now consider the "modified" two-country model under the following assumptions:

- (1) Country II's interest rate is given, that is, Country II is assumed to be in the position of passive cooperation with Country I for dealing with the external balance.
- (2) Stein's results for short-term interest rates represent the degree of sensitivity of capital flows to interest rate differentials.
- (3) Unlike Case A, the total exports and imports of Countries I and II will include the trade with the third country which represents the rest of the world.

The variables of Votey's econometric model with modifications on the foreign sector are:

for i = 1,2

 $\mathbf{L}_{\mathbf{t}}^{\mathbf{B}}$ Balance of payments in Country i

C_it = Consumption expenditures of Country i

 I_{4+}^{G} = Gross investment expenditures of Country i

 I_{it}^n = Net investment expenditures of Country i

IE_{1 t} = Investment earnings of Country I from abroad

K_{i+} = Capital stock of Country i

L_{i+} = Labor force of Country i

M, = Total imports demand of Country i

MIII = Imports of Country i from Country III

 0_{it} = Net short term capital outflows of Country i

 r_{i+} = Rate of interest in Country I

 $P_{\mathbf{x_{f}}}$ = Export price in Country i

PM = Import price in Country i

 $T_{it} = Tax receipts of Country i$

TR₂₊ = Transfer payments of Country II

 $TT_{it} = \left(\frac{P_M}{P_x}\right)_{it} = Terms \text{ of trade of Country i}$

X = Total exports of Country i

X_{1t} = Exports of Country i to Country III

Y = National income of Country i

The equations are as follows:

(1-1)
$$Y_{1t} = C_{1t} + I_{1t}^{G} + G_{1t} + X_{1t} - M_{1t}$$

(1-2)
$$B_{1t} = X_{1t} - M_{1t} - 0_{1t}$$

(1-3)
$$K_{1t} = I_{1t}^{n} + K_{1t-1}$$

(1-4)
$$I_{1t}^{G} = I_{1t}^{n} + \delta_{\star} K_{1t}$$

(1-5)
$$X_{1t} = X_{1t}^{III} + (M_{2t} - M_{2t}^{III}) + IE_{1t}$$

$$(I-6)$$
 $Y_{2t} = C_{2t} + I_{2t}^G + G_{2t} + X_{2t} - M_{2t}$

$$(I-7)$$
 $B_{2t} = X_{2t} - M_{2t} + 0_{1t}$

$$(I-8)$$
 $K_{2t} = I_{2t}^n + K_{2t-1}$

$$(I-9)$$
 $I_{2t}^G = I_{2t}^n + \delta_* K_{2t}$

$$(I-10)$$
 $X_{2t} = X_{2t}^{III} + (M_{1t} - M_{1t}^{III})$

$$(E-1)$$
 $Y_{1t} = \delta_{10} + \delta_{11} K_{1t} + \delta_{12} L_{1t}$

(E-2)
$$C_{1t} = \alpha_{10} + \alpha_{11} (Y_{1t} - T_{1t} - \delta_* K_{1t})$$

(E-3)
$$M_{1t} = \beta_{10} + \beta_{11} (Y_{1t} - T_{1t} - \delta_* K_{1t}) + \beta_{12} TT_{1t}$$

(E-4)
$$I_{1t}^{n} = \gamma_{10} + \gamma_{11}Y_{1t-1} - \gamma_{12} \quad q(\delta_{*}+r) \quad t-1 + \gamma_{13}K_{1t-1}$$

(E-5)
$$0_{1t} = \eta_{10} + \eta_{11} (r_{2t} - r_{1t})$$

(E-6)
$$Y_{2t} = \delta_{20} + \delta_{21}K_{2t} + \delta_{22}L_{2t}$$

(E-7)
$$C_{2t} = \alpha_{20} + \alpha_{21} (Y_{2t} - T_{2t} - TR_{2t} - \delta_* K_{2t})$$

(E-8)
$$M_{2t} = \beta_{20} + \beta_{21} (Y_{2t} - T_{2t} - TR_{2t} - \delta_* K_{2t}) + \beta_{22} TT_{2t}$$

(E-9)
$$I_{2t}^{n} = \gamma_{20} + \gamma_{21} \gamma_{2t-1} - \gamma_{22} (\delta_{*} + r)_{2t-1} + \gamma_{23} \gamma_{2t-1}$$

The comments on equations (E-1) to (E-5) have been presented in ${}^{\hbox{\scriptsize Chap}}{}_{\hbox{\scriptsize ter II.}}$

Equation E-6 - The output of Country II is a linear function of both its factors of production: capital stock (K_{2t}) and labor force (L_{2t}) .

disposab

II is sl
is repre
rate of
less tax
to be ex
Eq
disposa

Equ

Eq assumed

II (TT₂

II has

cost of

q = 1 (

of pay:

defini

redefi and th

I export

Countr

from a

Count;

Count

Equation E-7 - Consumption expenditures are made a function of disposable income. But the disposable income definition for Country II is slightly different from that of Country I (Votey:1969), and it is represented by GNP less capital depreciation ($\delta_* K_{2t}$ where δ_* is the rate of replacement and is assumed to be the same for both countries) less taxes and also less transfer payments of Country II (TR_{2t} assumed to be exogenous).

Equation E-8 - Import demand of II is simply a function of disposable income and ratio of foreign to domestic prices in Country II (TT_{2+}) .

Equation E-9 - Net investment expenditures in Country II are assumed to depend on money output, the capital stock and the user cost of capital in Country II. The user cost of capital in Country II has the same definition as that of Country I with assumption q = 1 over time.

of Payments in Country I is different from that of Votey. The same definition as that of the one-country model is used, but X_{1t} and M_{1t} redefined to take into account the trade between Countries I and II and the rest of the world (called Country III).

Identity I-5 - The total exports of Country I are equal to the exports of Country I to Country III, plus exports of Country I to Country II ($X_{1t}^{II} = M_{2t} - M_{2t}^{III}$) plus investment earnings of Country I from abroad.

Similarly, total imports of Country I are equal to imports of Country I from Country III (M_{1t}^{III}) plus imports of Country I from Country II ($M_{1t}^{II} = X_{2t} - X_{2t}^{III}$).

of-payme

Ide

(X_{2t}) le capital

net shor

Ide

Country

are equa

imports

The

 $B_{2t} = X$

=

Or defi

results

herefo

B

4.2. (

Ŭ1

Payzeni

Identity I-7 - Added to Votey's model is the Country II balanceof-payments identity. It is equal to total exports of Country II (X_{2t}) less total imports of Country II (M_{2t}) less net short-term
capital outflows of Country II $(0_{2t} = -0_{1t})$, which is equivalent to
net short-term capital inflow from Country I.

Identity I-10 - Total exports of Country II are equal to exports of Country II to Country III (X_{2t}^{III}) plus exports of Country II to Country I $(X_{2t}^{I} = M_{1t}^{I} - M_{1t}^{III})$. Similarly, total imports of Country II are equal to imports of Country II from Country III (M_{2t}^{III}) plus imports of Country II from Country I $(M_{2t}^{I} = X_{1t}^{III})$.

Then substituting X_{2t} and M_{2t} into $B_{2t} = X_{2t} - M_{2t} + 0_{1t}$ results in:

$$B_{2t} = x_{2t}^{III} + M_{1t} - M_{1t}^{III} - x_{2t}^{III} - X_{1t} + X_{1t}^{III} + 0_{1t}$$
$$= (X_{1t}^{III} + X_{2t}^{III}) - (M_{1t}^{III} + M_{2t}^{III}) - (X_{1t} - M_{1t} - 0_{1t})$$

Or defining X_{3t} : total exports of Country III = $M_{1t}^{III} + M_{2t}^{III}$

 M_{3t} : total imports of Country III = $X_{1t}^{III} + X_{2t}^{III}$

$$B_{1t}: X_{1t} - M_{1t} - 0_{1t}$$

results in:

$$B_{2t} = -X_{3t} + M_{3t} - B_{1t}$$

Therefore, B_{2t} is linearly dependent on B_{1t}.

Optimal Control Problem Without Constraints on Policy-Variable Magnitudes

Unlike Case A in Chapter III, the assumption of common balance of Personal is no longer held when the third country block is introduced

to rep to ach

balanc

brium

linear

Countr

Ser.

instru

governi

interes

term ir

the ass

that us

Th

™difie

y_t

tere

t q Y

0] * بائ **م** ا

TR

to represent the rest of the world. Therefore, there are four targets to achieve simultaneously, but only three are independent. Internal balance in both countries and Country I's balance-of-payments equilibrium are independent, while Country II's balance of payments is a linear function of that of Country I instead of being equal to Country I's balance of payments with the opposite sign. As for the instruments, they are in the number of three as in Case A, i.e., government expenditures in both countries and Country I's short-term interest rate are used to achieve the joint balance, while the short-term interest rate of Country II is considered as fixed or given under the assumption of passive responses from Country II.

The definition of external and internal balance is similar to that used in Case A (section 3.2) and the reduced form of Votey's modified two-country model given by Appendix A-10:

$$y_{t} = \overline{A} y_{t-1} + \overline{B}u_{t} + \overline{C}u_{t-1} + \overline{D}z_{t}$$
 (4.1)

where

$$y_{t} \triangleq \begin{bmatrix} Y_{1t}, Y_{2t}, B_{1t}, B_{2t}, K_{1t}, K_{2t}, G_{1t}, G_{2t}, r_{1t} \end{bmatrix}$$

$$u_{t} \triangleq \begin{bmatrix} G_{1t}, G_{2t}, r_{1t} \end{bmatrix}$$

$$z_{t} \triangleq \begin{bmatrix} 1, IE_{1t}, X_{1t}^{III}, M_{1t}^{III}, TT_{1t}, T_{1t}, r_{2t}, r_{2t-1}, TT_{2t}, T_{2t} \end{bmatrix}$$

$$TR_{2t}, X_{2t}^{III}, M_{2t}^{III} \end{bmatrix}$$

--ī THE LOW OF THE PARTY OF THE PAR 0 214 114

							Г							
			- 				7	-411	$^{-0}_{21}$	$(1+Q_{31})$	q_{31}	0	0	'
	A ₁₅	A ₂₅	-A ₃₅	A35	$^{-\gamma}_{12}$	0				-432 -		0	0	
	0	0	0	0	0	0				- _{D35} -			0	
	0	0	<u> </u>	<u> </u>	<u> </u>	0	١			- _{D35} -			0	
			Ö							-D ₃₄ -1			0	
ļ_	0	0	η 11	-n ₁₁	0	0	7			A ₃₆ –			- ₇₂₂ (
	912	922		932		0		0	0		η ₁₁ -		0	
	911	921	931	-631	0	0	_			D ₃₃ -			0	
			I							-D ₃₂			0	
	A ₁ 4	A ₂ 4	A34	A34	0	a ⁶⁶	٦			ر 32 -	$\overline{}$	0		
	A ₁₃		A ₃₃		a ₅₅	0					1		0	
	0	0	0	0	0	0		911	$^{Q}_{21}$	1+031	$-^{Q_{31}}$	0	0	
	0 2	0 23	A ₃₂ 0	0 21	0	21 0		911	q_{21}	$^{1+Q}_{31}$	$(1+0^{31})$	0	0	
			A_{31} A_3				•	D ₁₁			•		a ₆₇	
L			A	1			_1				= Q;			_

Next vill

latt

4.2.

"mod

is th

where

is th

T_{2t},

Varia

·, B

Row

1

2

3

5

6

Next, the optimal control problem for the "modified" two-country model will be formulated into Pindyck's and Chow's framework but only the latter will be used to derive the optimal solution.

4.2.1. Formulation of the Problem

Expressed in Pindyck's terminology, the "state-space" for the "modified" two-country optimal control problem is:

$$\mathbf{x}_{t}^{P} = \mathbf{A}^{P} \ \mathbf{x}_{t-1}^{P} + \mathbf{B}^{P} \ \mathbf{u}_{t-1}^{P} + \mathbf{C}^{P} \ \mathbf{z}_{t-1}^{P} \qquad (4.2)$$
 where
$$\mathbf{x}_{t}^{P} \stackrel{d}{=} \mathbf{y}_{t}^{-\overline{B}\mathbf{u}_{t}} - \overline{\mathbf{D}}\mathbf{z}_{t} \stackrel{d}{=} \left[\mathbf{\tilde{Y}}\mathbf{Y}_{1t}, \ \mathbf{\tilde{Y}}\mathbf{Y}_{2t}, \ \mathbf{B}\mathbf{B}_{1t}, \ \mathbf{B}\mathbf{B}_{2t}, \ \mathbf{K}\mathbf{K}_{1t}, \ \mathbf{K}\mathbf{K}_{2t} \right]'$$
 is the (6x1) state vector;
$$\mathbf{u}_{t-1}^{P} \stackrel{d}{=} \mathbf{u}_{t-1} \stackrel{d}{=} \left[\mathbf{G}_{1t-1}, \ \mathbf{G}_{2t-1}, \ \mathbf{r}_{1t-1} \right]'$$
 is the (3x1) control vector;
$$\mathbf{z}_{t}^{P} \stackrel{d}{=} \left[\mathbf{1}, \ \mathbf{IE}_{1t}, \ \mathbf{X}_{1t}^{III}, \ \mathbf{M}_{1t}^{III}, \ \mathbf{TT}_{1t}, \ \mathbf{T}_{1t}, \ \mathbf{T}_{2t}, \ \mathbf{TT}_{2t}, \ \mathbf{T}_{2t}, \ \mathbf{T}_{2t}, \ \mathbf{X}_{2t}^{III}, \ \mathbf{M}_{2t}^{III} \right]'$$
 is the (12x1) vector of current exogenous variable;
$$\mathbf{z}_{t-1}^{P} \text{ is the (12x1) vector of lagged exogenous variable; and}$$

$$\mathbf{A}^{P}, \ \mathbf{B}^{P} \text{ and } \mathbf{C}^{P} \text{ are known matrices.}$$

			Matrix A	$A^P = \overline{A}$		
Row	$ ilde{ ilde{Y}}_{ extsf{1t}}$	ŶY _{2t}	BB _{1t}	BB _{2t}	KK _{1t}	KK _{2t}
1	A ₁₁	A ₁₂	0	0	A ₁₃	A ₁₄
2	A ₂₁	A ₂₂	0	0	A ₂₃	A ₂₄
3	A ₃₁	-A ₃₂	0	0	A ₃₃	-A ₃₄
4	-A ₃₁	A ₃₂	0	0	-A ₃₃	A ₃₄
5	Υ ₁₁	0	0	0	^a 55	0
6	0	Υ ₂₁	0	0	0	^a 66

 $Matrix B^{P} = \overline{AB} + \overline{C}$

Row	G _{1t-1}	G _{2t-1}	^r 1t-1
1	$^{A}11^{Q}11^{+A}12^{Q}21$	$^{A}_{11}^{Q}_{12}^{+A}_{12}^{Q}_{22}$	A ₁₅
2	$^{A}21^{Q}11^{+A}22^{Q}21$	$^{A}21^{Q}12^{+A}22^{Q}22$	A ₂₅
3	$^{A}31^{Q}11^{-A}32^{Q}21$	$^{A}31^{Q}12^{-A}32^{Q}22$	-A ₃₅
4	$^{-A}31^{Q}11^{+A}32^{Q}21$	$^{-A}31^{Q}12^{+A}32^{Q}22$	A ₃₅
5	^Y 11 ^Q 11	$^{\gamma}$ 11 Q 12	-γ ₁₂
6	$^{\gamma}21}^{Q}21}$	$^{Y}_{21}{^{Q}_{22}}$	0

Matrix $C^P = \overline{A} \overline{D}$

Tlt-1	A ₁₁ D ₁₃ +A ₁₂ D ₂₃	$^{A_{21}}_{D_{13}} + ^{A_{22}}_{D_{23}}$	$^{A_{31}^{D_{13}}-^{A_{32}^{D}_{23}}}$	$^{-4_{31}}^{0_{13}}^{+4_{32}}^{+3_{23}}$	γ_{11}^{D} 13	⁷ 21 ^D 23	Ė	M2t-1	$-(A_{11}Q_{11}^{+}A_{12}Q_{21}^{-})$	$-(A_{21}Q_{11}^{+A_{22}Q_{21}})$	$^{-(A_{31}Q_{11}^{-A}_{32}Q_{21}^{Q})}$	$^{-(A_{31}Q_{11}^{+A}_{32}Q_{21}^{Q_{11}})}$	- ₇₁₁ ⁰ 11	$^{-\gamma_{21}^{Q}}_{21}$
TI _{1t-1}	A11 ^D 12 ^{+A} 12 ^D 22	$^{A_{21}}^{D_{12}}^{+A_{22}}^{D_{22}}$	$^{A_{31}}^{D_{12}}^{-A_{32}}^{D_{22}}$	$-A_{31}^{D_{12}}+A_{32}^{D_{22}}$	Y11 ^D 12	721 ^D 22			A ₁₁ Q ₁₂ +A ₁₂ Q ₂₂ -(A ₁₁)	A ₂₁ Q ₁₂ +A ₂₂ Q ₂₂ -(A ₂₁ ⁽				
M ^{III} lt-1	$-(A_{11}Q_{12}^{+}A_{12}Q_{22}^{})$	$-(A_{21}Q_{12}^{+}A_{22}Q_{22}^{-})$	$-(A_{31}Q_{12}^{+}A_{32}Q_{22})$	$-(-A_{31}Q_{12}^{+}A_{32}Q_{22}^{-})$	- ⁷ 11 ⁹ 12	⁻⁷ 21 ^Q 22		TR _{2t-1} Xiii	A ₁₁ D ₁₅ +A ₁₂ D ₂₅ A ₁₁ Q ₁₂ +	$^{\text{A}_{21}}^{\text{D}_{15}}^{\text{+A}_{22}}^{\text{D}_{25}}$ $^{\text{A}_{21}}^{\text{Q}_{12}}^{\text{+}}$	$^{A_{31}}{}^{D_{15}}$ $^{-A_{32}}{}^{D_{25}}$ $^{A_{31}}{}^{Q_{12}}$ $^{-A_{32}}{}^{Q_{22}}$	$-4_{31}^{0}_{15}+4_{32}^{0}_{25}$ $-4_{31}^{0}_{12}+4_{32}^{0}_{22}$	711 ^D 15 711 ^Q 12	⁷ 21 ^D 25 ⁷ 21 ^Q 22
x ^{III} 1t-1	A11Q11+A12Q21	A21911+A22921	A31911-A32921	$^{-4}_{31}^{0}_{11}^{+4}_{32}^{0}_{21}$	Y11 ^Q 11	Y21 ^Q 21		T2t-1 TR,	A ₁₁ D ₁₅ +A ₁₂ D ₂₅ A ₁₁ D ₁	A ₂₁ D ₁₅ +A ₂₂ D ₂₅ A ₂₁ D ₁	A ₃₁ D ₁₅ -A ₃₂ D ₂₅ A ₃₁ D ₁	$-A_{31}^{D}_{15}+A_{32}^{D}_{25}$ $-A_{31}^{D}_{15}$	γ ₁₁ ^D 15	⁷ 21 ^D 25 ⁷ 2:
IE _{lt-1}	A11Q11+A12Q21	A21911+A22921	A31911-A32921	-A ₃₁ Q ₁₁ +A ₃₂ Q ₂₁	711 ⁹ 11	721 ^Q 21		TT _{2t-1} 1	A ₁₁ D ₁₄ +A ₁₂ D ₂₄ A ₁₁ I	A ₂₁ D ₁₄ +A ₂₂ D ₂₄ A ₂₁ I	A ₃₁ D ₁₄ -A ₃₂ D ₂₄ A ₃₁ I	$-A_{31}{}^{D}_{14}+A_{32}{}^{D}_{24}$ $-A_{31}{}^{I}$	711 ^D 14	γ ₂₁ ^D 24
г	A ₁₁ D ₁₁ +A ₁₂ D ₂₁ +A ₁₃ a ₅₇ +A ₁₄ a ₆₇	A21 ^D 11 ^{+A} 22 ^D 21 ^{+A} 23 ^a 57 ^{+A} 24 ^a 67	A ₃₁ D ₁₁ -A ₃₂ D ₂₁ +A ₃₃ a ₅₇ -A ₃₄ a ₆₇	$^{-4}31^{D}11^{+4}32^{D}21^{-4}33^{8}57^{+4}34^{8}67$	$^{\gamma_{11}}^{D_{11}}^{+a_{55}}^{+a_{57}}$	$^{\gamma_{21}}^{D_{21}}^{+a_{66}}^{+a_{67}}$		$^{r}_{2t-1}$	A11A16+A12A26-A14Y22 A	A21A16+A22A26-A24Y22 A,	A31A16-832A26+A34Y22 A	-A31A16+A32A26-A34Y22 -A	Y11A16	⁷ 21 ^A 26 ^{-a} 66 ⁷ 22
Row	1	7		4	2	9		Row	-	7	Э	4	2	9

and t

where

-P x t-1

is th

QP =

5 X X X V 7

attaci Varial

to the

ihere

X

I d

is the

and the cost function under the assumption of $R^{P} = 0$ is:

$$J^{P} = \frac{1}{2} \sum_{t=1}^{N} (x_{t-1}^{P} - \bar{x}_{t-1}^{P})' Q^{P} (x_{t-1}^{P} - \bar{x}_{t-1}^{P})$$

where

$$\bar{x}_{t-1}^{P} \stackrel{\underline{d}}{=} \bar{y}_{t-1} - \bar{B}u_{t-1} - \bar{D}z_{t-1} \stackrel{\underline{d}}{=} \left[\tilde{y}_{1t-1}, \tilde{y}_{2t-1}, \bar{B}B_{1t-1}, \bar{B}B_{2t-1}, \bar{K}K_{1t-1}, \bar{K}K_{2t-1} \right]$$

is the (6x1) nominal state variable vector to be tracked; and

$$\mathbf{Q^P} = \begin{bmatrix} \mathbf{q_{11}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{q_{22}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{q_{33}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{q_{44}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$
 is the weight matrix

attached to the respective quadratic deviations from the nominal state variables $\tilde{Y}Y_{1t-1}$, $\tilde{Y}Y_{2t-1}$, $\tilde{B}B_{1t-1}$, $\tilde{B}B_{2t-1}$, $\tilde{K}K_{1t-1}$, and $\tilde{K}K_{2t-1}$.

Unlike that of Pindyck, Chow's framework is very simple to apply

to the one-country reduced form (equation 4.1). There is no transforma
tion of variables to be done and the dynamic system is of the following:

$$x_{t}^{c} \stackrel{d}{=} A^{c} x_{t-1}^{c} + B^{c} u_{t}^{c} + C^{c} z_{t}^{c}$$
 (4.3)

Where

$$\mathbf{x}_{t}^{\mathbf{c}} \triangleq \left[\mathbf{y}_{t} \middle| \mathbf{u}_{t}\right]^{'} \triangleq \left[\tilde{\mathbf{y}}_{1t}, \, \tilde{\mathbf{y}}_{2t}, \, \mathbf{B}_{1t}, \, \mathbf{B}_{2t}, \, \mathbf{K}_{1t}, \, \mathbf{K}_{2t}, \, \mathbf{G}_{1t}, \, \mathbf{G}_{2t}, \, \mathbf{r}_{1t}\right]^{'}$$

the (9x1) vector of current endogenous and controlled variables;

ut description of current endogenous and controlled variables;

ut description of current endogenous and controlled variables;

 $z_{t}^{c} \stackrel{d}{=} z_{t} \stackrel{d}{=} \begin{bmatrix} 1, & \text{IE}_{1t}, & \text{X}_{1t}^{\text{III}}, & \text{M}_{1t}^{\text{III}}, & \text{T}_{1t}, & \text{T}_{2t}, & \text{T}_{2t}, & \text{T}_{2t}, & \text{TR}_{2t}, & \text{TR}$

911 912 0

The state of the s

, 0 11 ¹ 0 0	0 0 1	-4_{11} -4_{21} $-(1+4_{31})$ 0 0 0 0
Q_{12} Q_{22} Q_{23} Q_{32}	0 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$^{Q}_{11}$ $^{Q}_{21}$ $^{Q}_{31}$ $^{Q}_{31}$	1 0 0	${}^{Q}_{12}$ ${}^{Q}_{22}$ ${}^{1+Q}_{32}$ 0 0
II		
		D 15 D 25 -D 35 O 0 O 0
læ ;	H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		A ₁₆ A ₂₆ A ₃₆ A ₃₆ O O O O
A ₁₅ A ₂₅ -A ₃₅ A ₃₅ -7 ₁₂	0 0	0 0 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 0 0 0		
A ₁₄ A ₂₄ -A ₃₄ 0	0	$\begin{array}{ccc} & D_{12} \\ & D_{22} \\ & -D_{32} \\ & 0 $
A ₁₃ A ₂₃ A ₃₃ A ₃₃ A ₅₅	0 0	-0.12 0.0 0.0 0.0
0 0 0 0 0	0 0	
0 0 0 0 0	0 0	${}^{Q}_{11}$ ${}^{Q}_{21}$ ${}^{1+Q}_{31}$ 0 0 0 0
A ₁₂ A ₂₂ -A ₃₂ A ₃₂ 0	'21 0 0	_
A ₂₁ A ₃₁ -A ₃₁	0 0	Q_{11} Q_{21}
, H		$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$
lo	0	
I ⋖	0	IA O
A. B. C.		ບູ່

Unde the 1 Apper iaste mere tions Weight.

Under the assumption of no limits on instrument-variable magnitudes, the weight matrix Q^{C} in the welfare cost function (equation A-2.18, Appendix A-2) is:

	• 1	7		• 9 ₁₁	0	0	0	0	0	0	0	0
	1			0	9 ₂₂	0	0	0	0	0	0	0
	Q ^P	0		0	0	^q 33	0	0	0	0	0	0
	1			0	0	0	q ₄₄	0	0	0	0	0
Q ^c =	!		=	0	0	0	0	0	0	0	0	0
				0	0	0	0	0	0	0	0	0
	0	0		0	0	0	0	0	0	0	0	0
) 		0	0	0	0	0	0	0	0	0
))		0	0	0	0	0	0	0	0	0
) , ,		0	0	0	0	0	0	0	0	0

instead of:

	- 1	_		q ₁₁	0	0	0	0	0	0	0	0
) }			0	q ₂₂	0	0	0	0	0	0	0
	Q ^P	0		0	0	^q 33	0	0	0	0	0	0
	i			0	0	0	q ₄₄	0	0	0	0	0
Q ^c =		<u></u>	=	0	0	0	0	0	0	0	0	0
))		0	0	0	0	0	0	0	0	0
	0	R ^P		0	0	0	0	0	0	r ₁₁	0	0
		1		0	0	0	0	0	0	0	r ₂₂	0
				0	0	0	0	0	0	0	0	r ₃₃

where q_{11} , q_{22} , q_{33} and q_{44} are weights attached to the quadratic deviations from the internal and external balance in both countries, i.e., we shall attached to $(\tilde{Y}_{1t} - \overline{\tilde{Y}}_{1t})^2$, $(\tilde{Y}_{2t} - \overline{\tilde{Y}}_{2t})^2$, $(B_{1t} - \overline{B}_{1t})^2$, and $(B_{2t} - \overline{B}_{2t})$,

çua

Cour

(G₂

4.2

(Ap;

The same

respectively, while r_{11} , r_{22} and r_{33} are weights attached to the quadratic deviations from the limits set on both fiscal policies and Country I's monetary policy, i.e., weights attached to $(G_{1t}-\overline{G}_{1t})^2$, $(G_{2t}-\overline{G}_{2t})^2$ and $(r_{1t}-\overline{r}_{1t})^2$.

4.2.2. Optimal Solution for Internal and External Balance

Using Chow's result (equation A-2.20) for the optimal control (Appendix A-2), the optimal solution for the "modified" two-country problem is computed (Appendix A-11):

	אין ^{די} אין	, , , , , , , , , , , , , , , , , , ,	, ra 101 101 141 14	
	•	•	•	
	•	•	•	
	0	•	•	-6 ₁₉
	0	0	0	- 6 18 - 6 28 - 6 38
	0	•	•	-6 ₁₇
			-944 111(933 ⁴⁹ 44)	-4 ₁₇
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•	•	-4 ⁴ 4	-6 ₁₆ -6 ₃₆
9 15 J			\(\frac{4}{4}\)	-615 -625 -635
			⁹ 33 ¹ 11 ⁽⁹ 33 ⁴⁹ 44)	0 0 7
0 0 0	•	0		-0 ₁₄ -0 ₂₄ -0 ₃₄
9- 9- 7- 7- 1- 9- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-			-(0 <u>12</u> 9 <u>31*0₁₁932)</u>	-6 ₁₃
-9 ₁₃	21	리	12031+	-6 ₁₂
0 0 0	ਨ ੁ ಎ	or or		-4 ₁₁
-6 -12 ($\frac{q_{21}q_{32}}{1^{Q}}$	- ⁶ 11 -621 -631
- 11 - 21 - 31 31	0 22	0 40	922931 4921932 1119	-410 -230 -430
		+		+
E				

	•
	•

	C	
	$-a_{10} + \frac{1}{q} (Q_{22}^{6}_{10} - Q_{12}^{6}_{20})$ $-a_{20} + \frac{1}{q} (-q_{21}^{6}_{10} + Q_{11}^{6}_{20})$ $-a_{30} + \frac{1}{n_{11}} \overline{q} \left[(Q_{21}^{6}_{23} + Q_{22}^{6}_{31})^{6}_{10} - a_{20}^{6} (Q_{11}^{6}_{32} + Q_{12}^{6}_{31}) \right]$	1
	11 ⁰ 32 ⁴	S S S
	, 20 (2 20 (2	.8 -4.9 .8 -4.39 .8 -4.39
) 31 ^{) 6} 10	7 -418 7 -428 7 -638
	12 ⁶ 20 ⁾ ⁰ 11 ⁶ 20 2 +022 ⁰	7 -417 7 -427 7 -437
	2 ⁶ 10 ^{-Q} 21 ⁶ 10 ⁴ (Q ₂₁ Q ₃)	6 - 41 6 - 42 6 - 43
	1 (02) 1 (-0, 04) 1 1 1 0 (10)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ts fn:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
resul	I	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
on 4.4	+	-4 ₁₃
†	7, 1-1 1, 1-1	-4 ₁₂ -4 ₂₂ -4 ₃₂
Into		- ⁴ 11 - ⁴ 21
- 1,2)	-815 -625 -835	-4 ₁₁ -4 ₂₁ -6 ₃₁
1) 0 -	0 0 0	331)
, H	• • •	912 ⁶ 22 9 4011 ⁶ 22 Q -622 (911932 ⁴ 9 ₁₂ 9 ₃₁)
9 8 ($rac{q_{12}^{6}z_{22}}{q}$ $rac{q}{q}$ $rac{q_{11}^{6}z_{22}}{q}$ $rac{q_{11}^{6}z_{22}}{q}$ q_{11}^{6}
1,2	- 6 13 - 6 33 33 33 33 33 33 33 33 33 33 33 33 3	$\frac{q_{12}^{6}}{q} \\ \frac{q}{q} \\ \frac{-q_{11}^{6}}{q} \\ \frac{-c_{22}}{q} \\ q$
L _{1t} (1	• • •	2 ⁹ 31)
_	-6 12 0 -6 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9,32 ⁺⁰ 22 ^{9,31})
1 0		$\frac{^{+0}_{22}{}^{6}_{12}}{q}$ $-^{0}_{21}{}^{6}_{12}$ q $-^{0}_{21}{}^{6}_{12}$ $\eta_{11}{}^{0}$ $(0_{21}{}^{0}_{3}$
onosciencing I _{se} = 6 ₁₀	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
בזכמנד	· · · · · · · · · · · · · · · · · · ·	
	5 5 5	

The optimal path is obtained by substituting equation 4.4 into the dynamic system (equation 4.3):

ſ <u>.</u> .]	1		_	_	_	_	_	_	_	. 7	ra. 1
Y ic		0	0	0	0	0	0	0	0	۰ ا	Ŷŧ Ît-1
Ŷģt		0	0	0	0	0	0	0	0	0	Ŷ å 2t−1
Båt		0	0	0	0	0	0	0	0	0	Bit-1
B#2t		0	0	0	0	0	0	0	0	0	B 2 t-1
Kit	-	٧11	0	0	0	a 55	0	0	0	-۲ ₁₂	Ka it-1
K ₂ t		٥	Y ₂₁	0	0	0	a 66	0	0	0	Kė Žt-1
Gåt		-0 ₁₁	-0 ₂₂	0	0	-0 ₁₃		0	0	-0 ₁₅	Git-1
G ₂ t	1	-0 ₂₁	-0 ₂₂	0	0	-8 ₂₃	-0 ₂₄	0	0	-0 ₂₅	G ģ 2€-1
rit		-0 ₃₁	-0 ₃₂	0	0	-0 ₃₃	-0 ₃₄	0	0	-0 ₃₅	rit-1
-	•	_									

(4.6)

the state of the s

Substituting $\overline{\hat{t}}_{it} = \delta_{10} + \delta_{12} L_{it}$ and $\overline{B}_{it} = 0$ into equation 4.6:

.

%ex

And

ass:

only var:

Cour

bala

Payı bala

equa

assi

briu

Next, the optimal welfare cost is computed:

$$\hat{J}^{c} = \frac{1}{2} \sum_{t=1}^{N} (x_{t}^{c*} - \overline{x}_{t}^{c*})' Q^{c} (x_{t}^{c*} - \overline{x}_{t}^{c})$$

And it is found that (Appendix A-12):

$$\hat{J}^{c}(u^{*}) = \frac{1}{2} \left(\frac{q_{33}q_{44}}{q_{33}+q_{44}} \right)^{N} \sum_{t=1}^{N} (M_{3t}-X_{3t})^{2}$$
(4.8)

The results for the two-country optimal control problem under the assumption of linear dependent balance of payments differ from those obtained in Case A of Chapter III. From equation 4.4 it is noted that only the variables \tilde{Y}^*_{it} (i = 1,2) are on the targets exactly, while the variables B^*_{it} (i = 1,2) deviate from their equilibrium. How much Country I's balance of payments B^*_{it} deviates from its equilibrium depends on the welfare weight q_{33} assigned to it, and Country III's balance of trade. Similarly, the deviation of Country III's balance of payments depends on the weight q_{44} assigned to it and on Country III's balance of trade. Unlike Case A, the optimal welfare cost is no longer equal to zero, but it depends on the penalty costs that each country assigns to the deviation of its balance of payments from the equilibrium as well as Country III's trade balance.

In summary, the concluding remarks for Case B are:

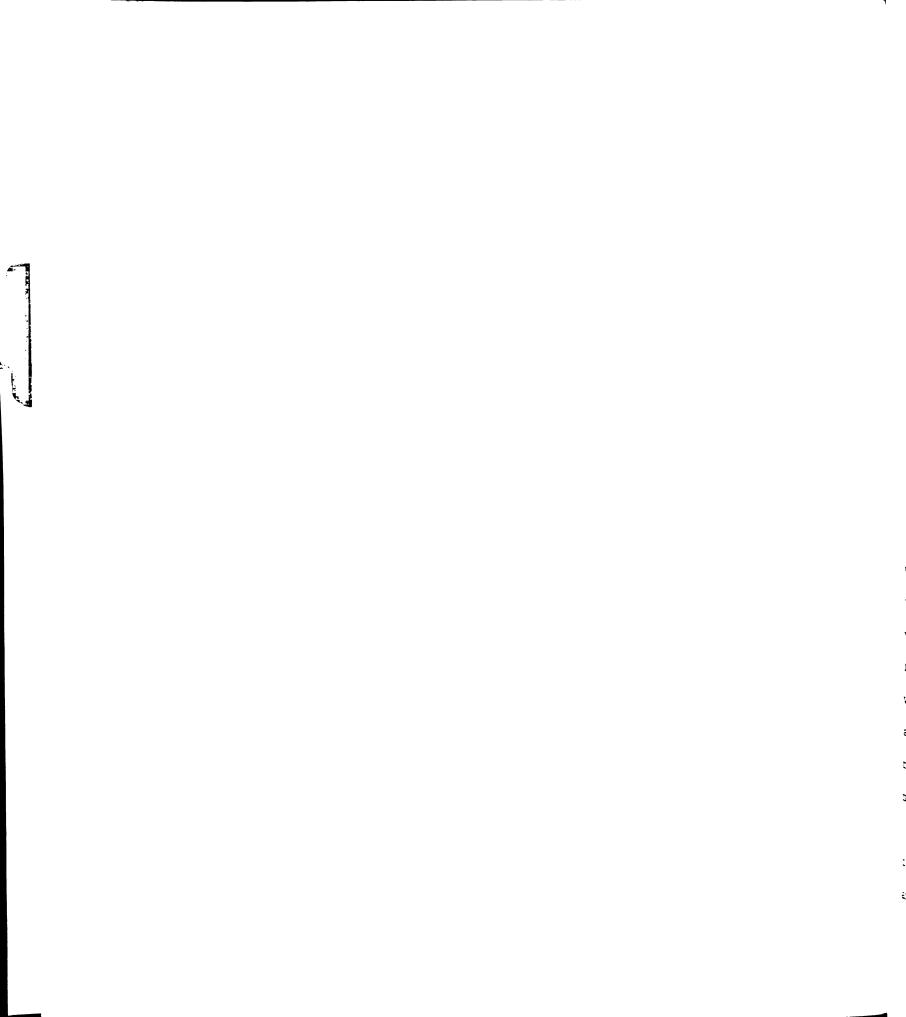
(1) Similar to Case A, the economic interdependence between countries is reflected in the policy interdependence; that is, no policy can be considered in isolation. Again within the confines of Votey's model, there is one peculiarity to be noted. Both fiscal policies G* and G* affect

the full-employment situation in both countries, while Country I's monetary policy is directed at all four targets (internal and external balance in both countries) and the relative effectiveness of these three instruments is measured by the matrix:

Row
$$\tilde{Y}_{1t}$$
 \tilde{Y}_{2t} \overline{B}_{1t} \overline{B}_{2t}

1 $\frac{-Q_{22}}{Q}$ $\frac{Q_{12}}{Q}$ 0 0

2 $\frac{Q_{21}}{Q}$ $\frac{-Q_{11}}{Q}$ 0 0


3 $\frac{Q_{22}Q_{31}+Q_{21}Q_{32}}{\eta_{11}Q} \frac{-(Q_{12}Q_{31}+Q_{11}Q_{32})}{\eta_{11}Q} \frac{q_{33}}{\eta_{11}(q_{33}+q_{44})} \frac{-q_{44}}{\eta_{11}(q_{33}+q_{44})}$

which will be evaluated in the next section by substituting Votey's numerical values for the estimated coefficients into the two-country model.

(2) Along with Chow (1972c), it is concluded here that if the number of variables to be controlled is larger than the number of instruments, the variables will not reach the targets exactly, and their deviations from the targets will depend on the welfare weights in Q^C assigned to them. However, due to this study's formulation of the optimal control problem and the particular structural form of Votey's model which has been constructed to investigate the effects of Mundellian policy assignment on the

stability of the system, the conclusion holds only for the external situation where there is only one instrument, i.e., Country I's interest rate to deal with two external targets or balance-of-payments equilibrium in both countries. As for the internal situation of both countries where the number of variables to be controlled (the GNP of both countries \overline{Y}_{it} (i = 1,2) is equal to the number of instruments (the fiscal policies of both countries G_{it} [i = 1,2]), Tinbergen's rule is met and the former variables are exactly on target.

- (3) Unlike Case A in Chapter III, the optimal policies are no longer unique in attaining the joint balance in both countries. In Case B there is a family of optimal policies, depending on the welfare weights assigned to the deviations of both balance of payments from the equilibrium, because there are not enough instruments to attain the targets fixed by policy-makers.
- (4) Similar to Case A, nothing guarantees the feasibility of the optimal policy mix in a given economy. Therefore, in addition to a trade-off between the two external targets due to an insufficient orchestration of instruments to secure the simultaneous attainment of external balance in both countries, there may exist another trade-off

between attainment of targets and consistency of policies.

4.3. U.S. and Canada Optimal Policies for Internal and External Balance: Appraisal and Amendment of the Optimal Solution

Similar to Case A in Chapter III, Votey's numerical values for the structural coefficients and the historical data for the United States, Canada and the European Economic Community (EEC), which represents the third country in our "modified" two-country model, will be used to derive the U.S. and Canadian optimal policy mix for the 1960's. Since there is a trade-off between the U.S. and Canadian balance-of-payments targets, a sensitivity analysis of the weighting factors on the components of the target vector will be performed. Then the result of each run of the test will be appraised to determine if the policies obtained by the techniques of optimal control are feasible. In other words, if the optimal policy is in accordance with the boundary condition that the instrument variable cannot surpass certain numerical values for practical or political reasons, the boundary condition does not interfere. However, if the values found for the unknown instruments violate the boundary condition, the optimal solution has to be perfected and the boundary condition becomes active by redefining the weight matrix Q^c to include the penalty cost assigned to deviations of instruments from their limits.

First, using Votey's numerical values for the estimated structural constants (Votey:1969), the matrices of coefficients for equation 4.4 and the dynamic system of equation 4.3 are computed:

	(4.9)	0.0977 0.0977 0.0000 1.0000 0.6368 0.6368 -1.0000 0.0000 0.0000 0.0000 0.0001 0.0021 0.0216 $\frac{q_{44}}{q_{33}^{44}q_{44}}$ 0.0216 $\frac{q_{33}}{q_{33}^{44}q_{44}}$
		• • •
		10.7500 309.8857 0.2324
		0 0 -1
		0.6185 0.1115 -0.0028
9. 4818 -0. 2051		6. 6
434.2278 9.4418 -0.2051	o o o	28.3566
• • •	• • •	• •
-0.0339 0 0.0225 0 -0.0007 0	0 0 -0.0216 (944 33 ³⁹ 444)	0.0000 1.0000 -0.0216 (444 -0.0316 (43) 444
-0.0013 0.0003	_ ;	3,44 4,44 1,44 1,44 1,44 1,44 1,44 1,44
	0.0216 (13) (4.13) (4.14)	-1.0000 0.0000 -0.0216 (43) (43) ⁴ 44
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1.0000 0.0000 -0.0216(
	632	-1. 0000 0. 0000 -0. 0216
-0.0051 -0.1477 -0.0001	-0.0977 0.3632 -0.0021	
0.0001	0.3810	
<u>ੱ</u> ಕੱ ਦੱ		

_	٠
c	3
-	4
	٠
4	٠

									_													
									` 	IE,	Ϋ́ΞΙ,	Į,	11,t	Tıt	r _{2t}	r2t-1	π_{2t}	T _{2t}	TR _{2t}	X _{2t}	M2t	
		-	٠,	G*	.41)		_									_				
<u></u>			<u>ਹੋ</u>	- T	<u> </u>				-2.8932	-1.0475	-0.7215	-0.2785	0	0	0	0	0	7				
0	0	46.279	-46.279	0	0	0	0	н	0.7783 -2.8932	3.0351	0.1942	0.8058	0	0	0	0	0					
0.7782	3.0351	0.1942	-0.1942	0	0	0	-	0	-0.7782		-0.1942	0.1942	0	0	0	0	0					
2.8932	1.04755	-0.2785	0.2785	0	0	1	•	<u> </u>	-0.7782			0.1942	0	0	0	0	0					
				+								0	0	_	_	_	_					
													O	0	٥		0					
	¥* 2t-1	Bt-1	B2t-1	자	K*2t-1	G# 1-1	G*	rit-1	-272.2641	-951.8105	- 67.9307	67.9307	0	-349.8519	0	0	0					
									ï	ĭ		_		γ								
-1263.7107	- 483.6539	128.5835	- 128.5835	- 461.7				•	0	•	-46.279	46.279	0	0	0	0	0					
0 -12	7 - 0	0	0 - 1	0	0	0	0	0	-1.8918	-56.3610 -1.0470	0.2782	-0.2782	0	0	0	0	0					
0	0	0	0	0	0	0	0	0		. 9	35											
0.0806	-0.0329	0.0201	-0.0201		1.1033				59.9751	-56.36	14.9535	-14.9535	0	0	0	0	0					
0.0131 0	0.0648 -0	-0.0172 0	0.0172 -0	1.0618 0	П	0	0	0	2.8932 -0.7783	-3.0351	-0.1942	-0.8055	0	0	0	0	0					
•	9	9	•	-	0	0	0	0	. 2	ن												
0	0	0	0	•	0	0	•	0	2.893	1.0475	0.7215	0.2785	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	32	75	15	15										
0.1298	0.4538	0.0324	-0.0324	0	0.1668	0	0	0	2.8932		0.7215	-0.7215	0	0	0	0	0					
-0.0073	-0.0028	0.0075	-0.0075 -	-0.0027	0	0	0	0	129.6688	162.4172	-28.3120	28.3120	9.1299	18.6889	0	0	0					

Given these two equations, the optimal policy mixes $(G_{1t}^*, G_{2t}^*, r_{1t}^*)$ for the United States and Canada over 10 periods running from 1961 to 1970 can be derived with the following initial conditions:

$$\tilde{Y}_1(0) = 383.37$$

$$\tilde{Y}_{2}(0) = 20.06$$

$$B_1(0) = 4.17$$

$$B_2(0) = 1.24$$

$$K_1(0) = 508.69$$

$$K_2(0) = 49.33$$

$$G_1(0) = 94.90$$

$$G_2(0) = 6.97$$

$$r_1(0) = 0.0215$$

where (0) refers to 1960. All these values are historical.

The nominal values for state variables are given in Table 4.1.

The nominal value for state variables is similar to that in Table 3.1, to which is added the value zero for Country II's balance-of-payments equilibrium. The historical values for exogenous variables are given in Table 4.2.

The U.S.-Canadian optimal policies for internal and external balance are obtained by the following steps, which require only some basic matrix manipulations:

(1) Compute $\begin{bmatrix} G_1^*(1), G_2^*(1), r_1(1) \end{bmatrix}$ from equation 4.9 using the initial conditions: $\begin{bmatrix} \tilde{Y}_1(0), \tilde{Y}_2(0), \\ B_1(0), B_2(0), K_1(0), K_2(0), G_1(0), G_2(0), r_1(0) \end{bmatrix}$ and the exogenous variables of period 1 given by Table 4.2.

Table 4.1. Nominal values for the state variables - United States and Canada: 1961-1970

Period (Year)	· · Y	$ ilde{ ilde{r}}_{2t}$	$\frac{\overline{B}}{1t}$ $\frac{\overline{B}}{2t}$	$\frac{\overline{B}}{2t}$	$\overline{\kappa}_{1t}$	$\overline{\mathrm{K}}_{2t}$	$\overline{G}_{\mathbf{1t}}$	Ğ₂t	\overline{r}_{1t}
1(1961)	283.2462	2.3165	0	0	523.9507	50.8099	98.7	7.2488	0.0215
2(1962)	283.8683	2.3499	0	0	539.6692	52.3342	102.65	7.5388	0.0215
3(1963)	288.7687	2.3972	0	0	555.8592	53.9042	106.76	7.8404	0.0215
4(1964)	293.8258	2.4629	0	0	572.5349	55.5213	111.03	8.1540	0.0215
5 (1965)	299.3091	2.5368	0	0	589.7109	57.1869	115.47	8.4802	0.0215
(1966)	304.5954	2.6359	0	0	607.4022	58.9025	120.09	8.8194	0.0215
7 (1967)	310.9349	2.7332	0	0	625.6242	9699.09	124.89	9.1722	0.0215
8(1968)	316.5227	2.8132	0	0	644.3929	62.4897	129.89	9.5391	0.0215
9(1969)	324.5467	2.8995	0	0	663.7246	64.3644	135.09	9.9207	0.0215
10(1970)	332.5143	2.9748	0	0	683.6363	66.2953	140.49	10.3175	0.0215

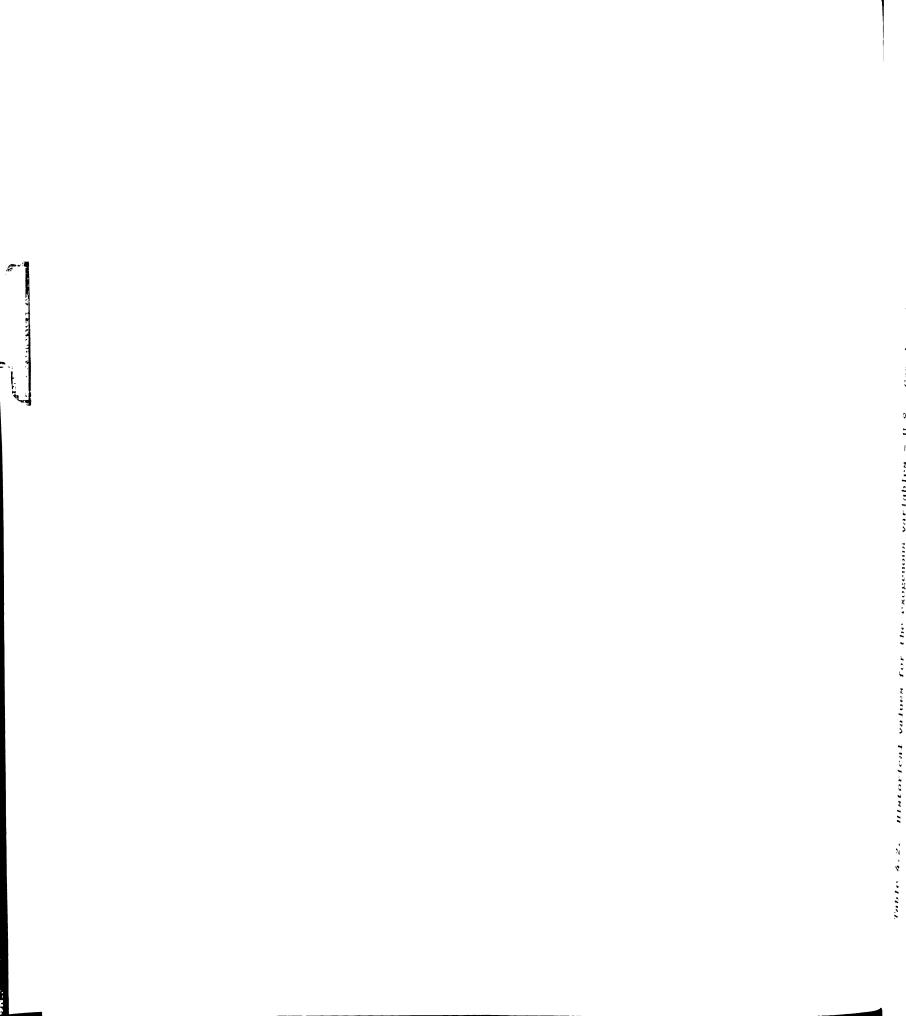


Table 4.2. Historical values for the exogenous variables - U.S., Canada and EEC: 1961-1970

Period (Year)	н	IElt	$\mathbf{x_{lt}^{III}}$ $\mathbf{M_{lt}^{III}}$	MIII	$^{ m TT}_{ m 1t}$	$^{\mathrm{I}_{\mathrm{lt}}}$	r _{2t}	r _{2t-1}	${ m TT}_2{ m t}$	$^{\mathtt{T}_{\mathtt{2t}}}$	T _{2t} TR _{2t} X _{2t} M _{2t}	$\mathbf{x_{2t}^{III}}$	$\mathtt{M}_{2t}^{\mathrm{III}}$
1(1961)	1	3,55	3.57	2.22	1.0000	144.63	0.0299	0.0325	1.0408	9.57	3.44 0.49	0.49	0.32
2 (1962)	.	4.05	4.56	2.45	1.0101	157.03	0.0391	0.0299	1.0309	10.53	3.72	0.43	0.31
3(1963)	Н	4.15	4.92	2.52	1.0000	168.76	0.0378	0.0391	1.0000	11.18	3.85	0.45	0.32
4(1964)	1	4.87	5.29	2.83	0.9903	174.07	0.0382	0.0378	1.0000	12.73	4.13	0.52	0.37
5 (1965)	П	5.29	5.26	3.32	1.0000	190.06	0.0454	0.0382	1.0198	14.29	5.57	0.59	0.47
(1966)	-	5.37	5.54	4.12	1.0094	213.33	0.0496	0.0454	1.0490	16.59	5.05	09.0	0.51
7 (1967)	1	5.89	5.67	4.46	1.0280	228.93	0.0595	0.0496	1.0583	18.51	6.22	0.64	0.58
8(1968)	1	6.22	6.14	5.89	1.0183	263.31	0.0624	0.0595	1.0566	20.99	7.19	0.71	0.61
9(1969)	-	5.97	6.98	5.80	1.0268	296.70	0.0781	0.0624	1.0648	24.44	90.9	0.79	0.73
10(1970)	П	6.27	8.42	6.61	1.0083	302.00	302.00 0.0444	0.0781	1.0614	26.27	6.80	1.15	0.77

(2) Compute $\tilde{Y}_{1}^{*}(1)$, $\tilde{Y}_{2}^{*}(1)$, $K_{1}^{*}(1)$, $K_{2}^{*}(1)$, $G_{1}^{*}(1)$, $G_{2}^{*}(1)$, $r_{1}^{*}(1)$ from equation 4.10. Now $\tilde{Y}_{1}^{*}(1)$, $\tilde{Y}_{2}^{*}(1)$, $B_{1}^{*}(1)$, $B_{2}^{*}(1)$, $K_{1}^{*}(1)$, $K_{2}^{*}(1)$, $G_{1}^{*}(1)$, $G_{2}^{*}(1)$, $r_{1}^{*}(1)$ can be used in equation 4.9 to compute $\tilde{G}_{1}^{*}(2)$, $G_{2}^{*}(2)$, $r_{1}^{*}(2)$ which can be used to compute $\tilde{Y}_{1}^{*}(2)$, $\tilde{Y}_{2}^{*}(2)$, $\tilde{Y}_{2}^$

Unlike the first two cases, the optimal control solution for achieving the overall balance is no longer unique, but is a function of the weights \mathbf{q}_{33} and \mathbf{q}_{44} attached to the deviations of the U.S. and Canadian balances-of-payments from their equilibriums. To study the effects of the trade-off between the two external targets on the optimal policy mix, three experiments will be performed.

Table 4.3. Two-country model (Case B): penalty weights attached to the deviations of U.S. and Canadian balance of payments from the equilibrium

^q 33	^q 44
10 ⁻⁴	10 ⁻⁵
10 ⁵	10 ⁵
10 ⁵	10 ⁻⁴
	10 ⁻⁴

First, observations will be made on the relative effectiveness of the impact of three instruments on the internal and external targets. Based on the following matrix (equation 4.9)

Row	$\overline{ ilde{ ilde{Y}}}$ lt	$\overline{ ilde{ ilde{Y}}}_{2 t}$ 2t	B _{lt}	$\overline{\mathtt{B}}_{2\mathtt{t}}$
1	0.3810	-0.0977	0	0
2	-0.1315	0.3632	0	0
3	0.0028	-0.0021	$0.0216(\frac{q_{33}}{q_{33}+q_{44}})$	$-0.0216\left(\frac{q_{44}}{q_{33}+q_{44}}\right)$

it is noted that the policy interdependency prevails, but in a strict sense within the confines of Votey's model. That is, both fiscal policies affect the internal balance in both countries, but with a positive impact on its own target and a negative impact on the other country's target, while the U.S. monetary policy affects the overall balance positively with respect to the U.S. internal and external targets and negatively with respect to Canada's joint balance. Furthermore, the impact of the U.S. monetary policy is greater on the U.S. external target than on the U.S. internal target. Therefore, due to the particular structural form of Votey's model, Mundellian policy assignment to internal and external balance is inherent in the two-country model. It is also noted that the effectiveness of the impact of U.S. monetary policy on the U.S. and Canadian balance of payments depends on the welfare weights q₃₃ and q₄₄: the greater the weights, the greater the impact.

Next is an appraisal of optimal policies for internal and external balance in the United States and Canada. The results are presented in graphical form (Figures 4.1 to 4.5) with time on the horizontal axis.

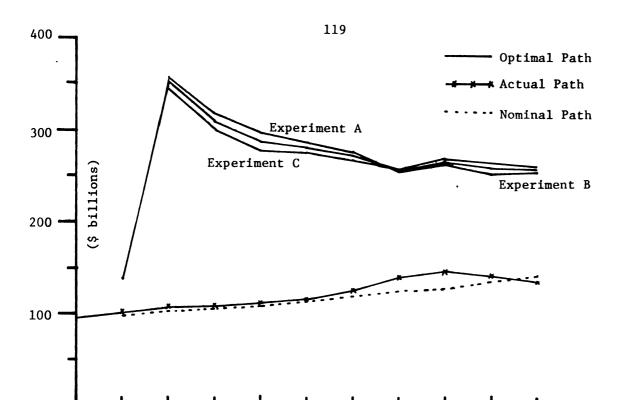


Figure 4.1. Two-country model (Case B) - Effects of trade-off between the two external targets on the U.S. government expenditures: optimal paths compared with actual and nominal paths.

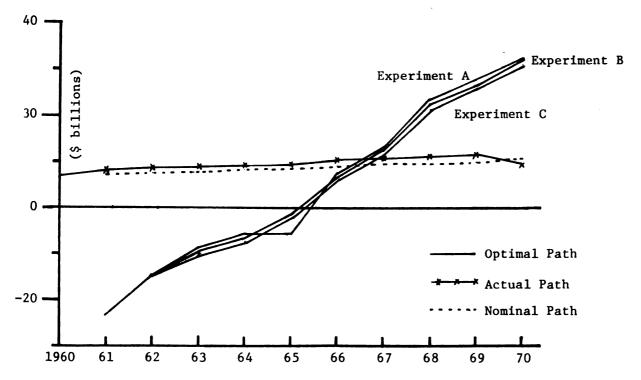


Figure 4.2. Two-country model (Case B) - Effects of trade-off between the two external targets on the Canadian government expenditures: optimal paths compared with actual and nominal paths.

Optimal Path
Actual Path
One Nominal Path

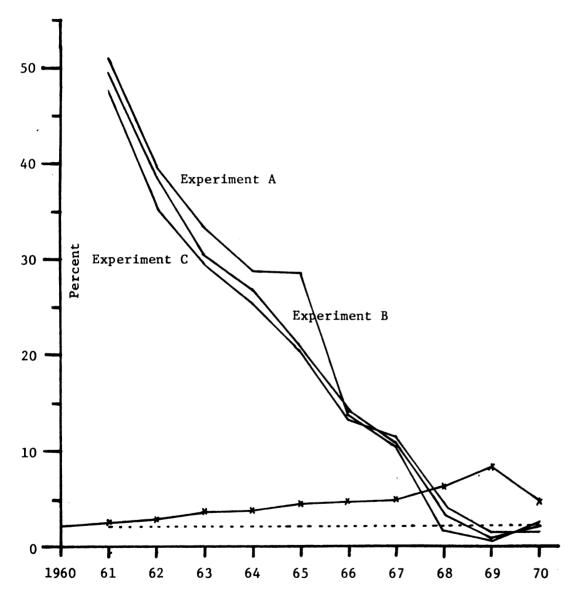
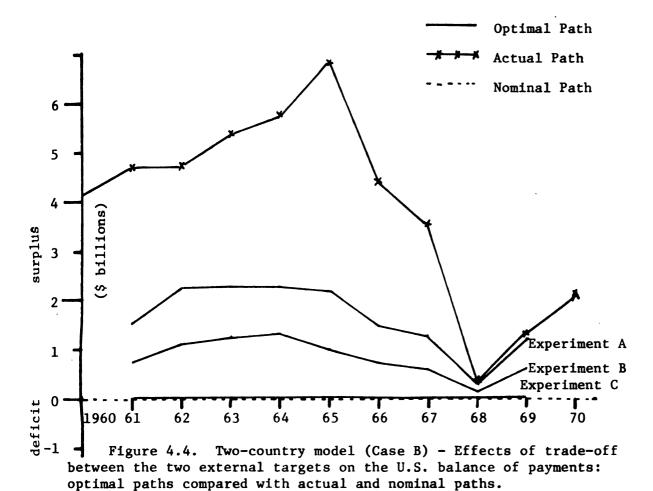



Figure 4.3. Two-country model (Case B) - Effects of trade-off between the two external targets on the U.S. interest rate: optimal paths compared with actual and nominal paths.

the marks 11.01 1.011

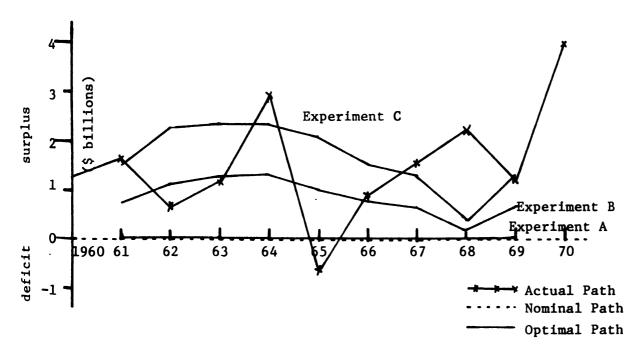


Figure 4.5. Two-country model (Case B) - Effects of trade-off between the two external targets on the Canadian balance of payments: optimal paths compared with actual and nominal paths.

The following remarks on the performance of optimal policies can be made:

- (1) All three optimal policies are sensitive to the trade-off between the two balance-of-payments targets. This trade-off is shown by Figures 4.4 and 4.5. The more the deviation of the balance of payments from its equilibrium is penalized, the closer the external balance. In fact, in experiment A where the U.S. balance of payments diverges strongly from equilibrium, the Canadian balance of payments is exactly on the target, and vice versa in experiment C. However, if equal penalty costs are assigned to both deviations (experiment B), both balance of payments diverge equally from the equilibrium. Therefore, the external balances in both countries can never be attained simultaneously. A trade-off exists between them.
- (2) The actual paths of fiscal and monetary policies deviate from their optimal ones. This implies that the joint balance is neither attained in the United States nor in Canada during the 1960's. In fact, the United States was faced with inflation and balance-of-payments surplus as was Canada, with the exception of 1965 when Canada had a deficit.
- (3) When using the optimal fiscal policies, the U.S. and Canadian economies are found to be on the

targets exactly no matter what the trade-off
between the balance of payment targets. On the
contrary, the U.S. optimal monetary policy by
itself cannot bring the U.S. as well as the
Canadian balance of payments to the equilibrium.
This requires additional constraints: heavy
penalty costs have to be assigned to deviations
from the external balance.

(4) It is found that the optimal policies for internal and external balance are inconsistent, i.e., inadmissible for political, social, and technical reasons. In other words, they violate the boundary conditions which have been set up to limit the instrument-magnitudes. Therefore, these additional constraints become active by reformulating the cost functional J_C (equation A-2.18) in the two-country optimal control problem (Case B) with the assumption R^P ≠ 0.

Next, the amendment of optimal solution generated by the introduction of boundary conditions will be examined. The newly defined weight matrix Q_c under the assumption $R^P \neq 0$ is:

Row	Ť _{1t}	$\overline{ ilde{ ilde{Y}}}_{2 t}$	$\overline{\mathtt{B}}_{\mathtt{1t}}$	$\overline{\mathtt{B}}_{2\mathtt{t}}$	$\overline{\mathtt{K}}_{\mathtt{lt}}$	$\overline{\mathtt{K}}_{2\mathtt{t}}$	$\overline{\mathtt{G}}_{\mathtt{lt}}$	$\overline{\mathtt{G}}_{2\mathtt{t}}$	\overline{r}_{1t}
1	^q 11	0	0	0	0	0	0	0	0
2	0	^q 22	0	0	0	0	0	0	0
3	0	0	^q 33	0	0	0	0	0	0
4	0	0	0	9 ₄₄	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	r ₁₁	0	0
8	0	0	0	0	0	0	0	r ₂₂	. 0
9	0	0	0	0	0	0	0	0	r ₃₃

A sensitivity analysis of the weighting factor on components of the control vector is performed. Unlike Case A in Chapter III because of a trade-off between the two countries' external targets, the sensitivity analysis will be done for each trade-off experiment with the cost functional given in Table 4.4.

Three sensitivity tests will be performed for each trade-off experiment: in test 1, only the deviations of U.S. monetary policy from its constant limit set at 2.15 percent are penalized; in test 2, the deviations of two out of three instruments policies—the U.S. monetary policy coupled with the fiscal policy in either country—from their nominal values are penalized; and in test 3, all three instruments are tracked to their limits.

Table 4.4. Two-country model (Case B): penalty weights attached to the deviations of control variables from their nominal values

	Runs	r ₁₁	r ₂₂	r ₃₃
Test l	1	0	0	1 _
	1 2 3 4	0	0	10 ⁵ -
	3	0	0	5x10 ⁵
	4	0	0	1 10 ⁵ 5×10 ⁵ 10 ⁶
Test 2	5	0	1 10 ⁵ 5×10 ⁵ 10 ⁶	10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶
	5 6	0	10 ⁵ -	106
		0	5x10 ⁵	106
		0	106	106
	7 8	1 5	0	106
	8	10,5	0 0 0	106
		5x10 ³	0	106
		0 0 1 10 ⁵ 5×10 ⁵ 10 ⁶	0	100
Test 3	9	1 5	1 5	1 5
	10	105 5	10 ³ 5	10 ³ 5
	11	5x10 ³	5x10°	5x10 ⁻⁵
	12	10 ⁶	10 ⁶	105
	13	1	1	106
	11 12 13 14 15 16	1	1 5	105
	15	1 6	10	105
	16	10 5	1	105
	17	10 ⁵ 5×10 ⁵ 10 ⁶ 1 1 1 10 ⁶ 5×10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁶ 10 ⁶ 10 ⁶	1 10 ⁵ 5×10 ⁵ 10 ⁶ 1 10 ⁵ 10 ⁵ 5×10 ⁵	1 10 ⁵ 5×10 ⁵ 10 ⁶ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶
	18	1	106	106
	19	$\frac{1}{10}^{6}$	1 -	106
	19 20	105	$106 \\ 105$	106
		106	105	106

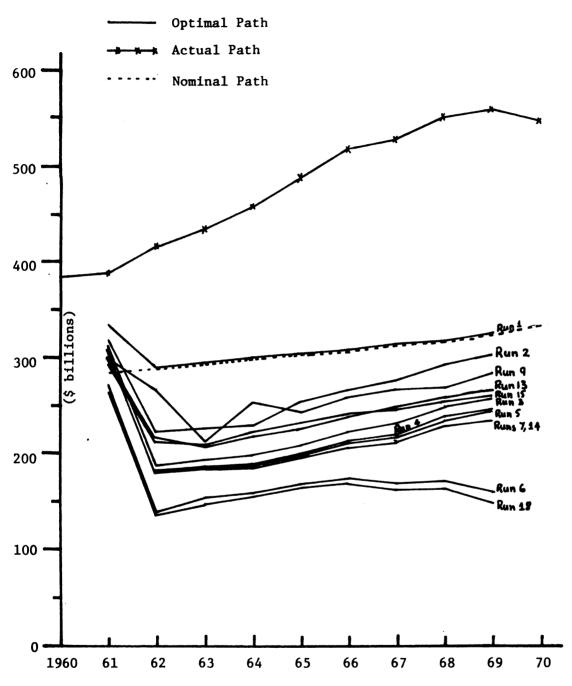


Figure 4.6(A). Two-country model (Case B) - United States: optimal GNP trajectories compared with the desired and actual GNP (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$).

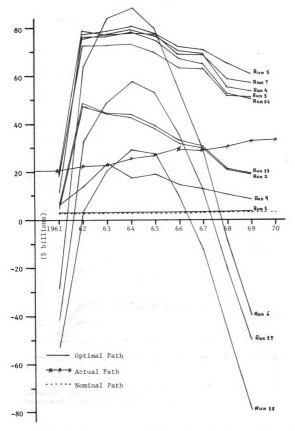


Figure 4.7(A). Two-country model (Case B) - Canada: optimal GNP trajectories compared with the desired and actual GNP (trade-off experiment A where $\rm q_{33}=10^{-4},~q_{44}=10^5)$.

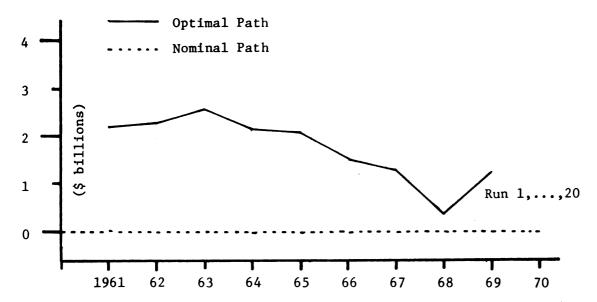


Figure 4.8(A). Two-country model (Case B) - U.S. balance of payments: optimal paths compared with the equilibrium (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$).

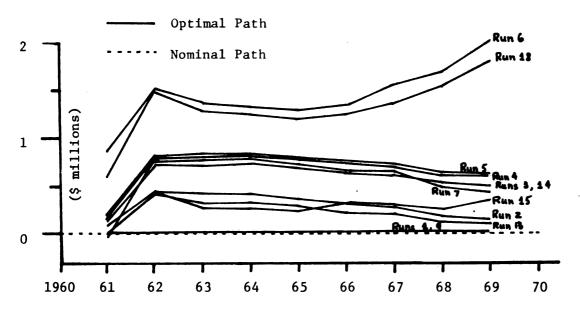


Figure 4.9(A). Two-country model (Case B) - Canadian balance of payments: optimal paths compared with the equilibrium (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$).

Figure 4.10(A). Two-country model (Case B) - U.S. government expenditures: optimal paths compared with nominal path (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$).

Figure 4.11(A). Two-country model (Case B) - Canadian government expenditures: optimal paths compared with nominal path (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^5$).

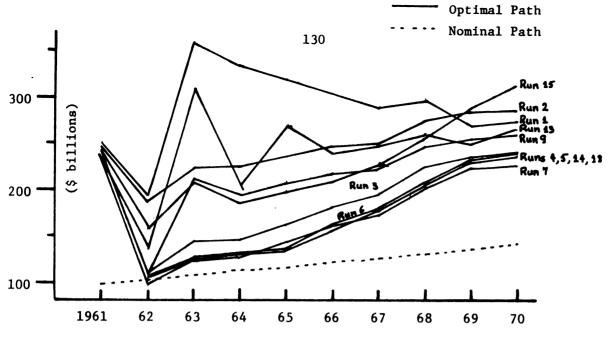


Figure 4.10(A)

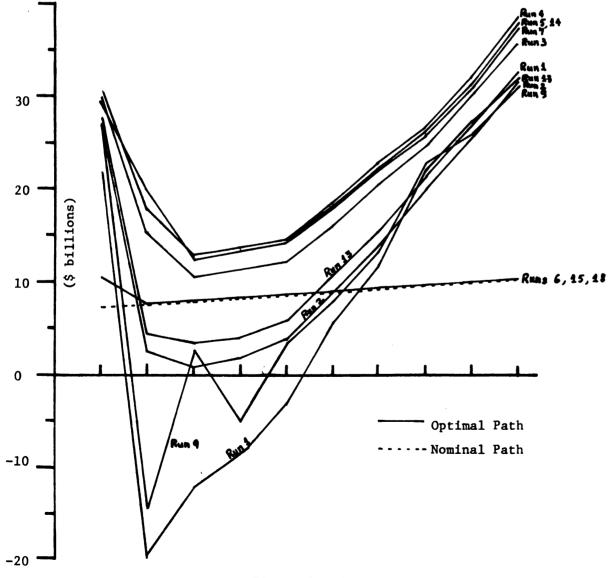


Figure 4.11(A)

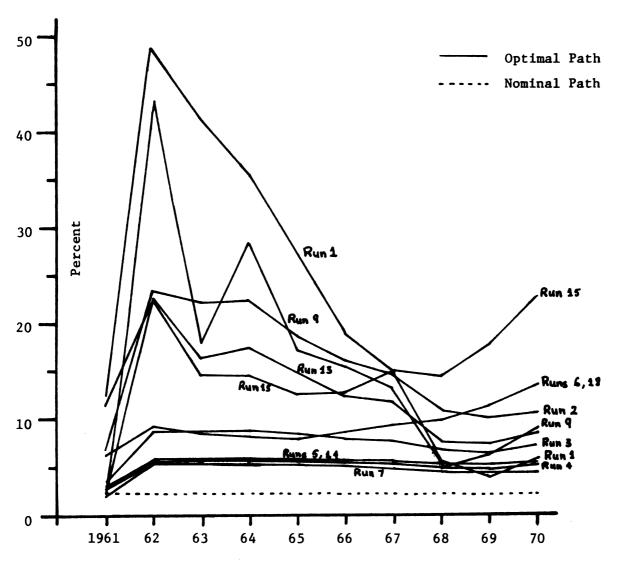


Figure 4.12(A). Two-country model (Case B) - U.S. interest rate: optimal paths compared with nominal path (trade-off experiment A where $q_{33} = 10^{-4}$, $q_{44} = 10^{5}$).

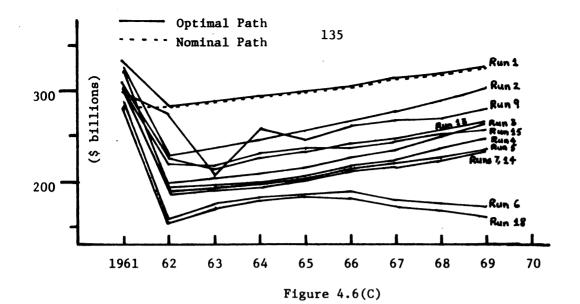
(i) Trade-off experiment A [Figures 4.6(A) to 4.12(A)]

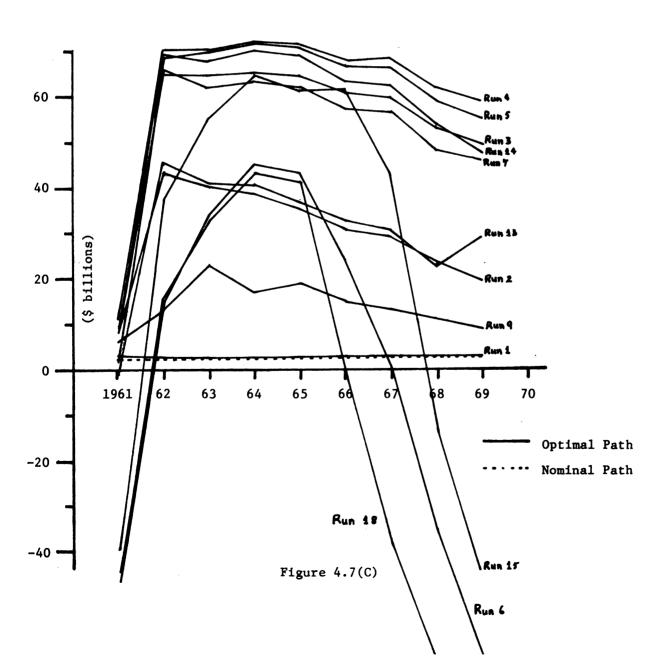
In test 1 (runs 1 to 4) it is observed that the tracking for the U.S. nominal interest rate gets closer the greater the value given to the welfare weights r_{33} . Because of the policy interdependency (equation 4.8) the U.S. and Canadian fiscal instruments are also tracking their nominal paths. However, the tracking for U.S. nominal government expenditures is positively correlated with that of the U.S. nominal interest rate, while there is a negative correlation between the latter tracking and that of the Canadian nominal government spending. Furthermore, it is found that the optimal path of U.S. balance of payments on which the U.S. monetary policy has the greatest impact remains insensitive to the tracking for the U.S. nominal interest rate; and only for the three other endogenous variables, \tilde{Y}_{1t} , \tilde{Y}_{2t} , and B_{2t} is there a trade-off between attainment of targets and feasibility of the U.S. monetary policy.

In test 2 (runs 5 to 8) it is found that the additional boundary condition reinforces the tracking for both the nominal U.S. interest rate and Canadian government expenditures, but only if a very low weight is attached to deviations of U.S. government spending from their nominal path (r_{22}) compared to that of U.S. monetary policy (r_{44}) . Otherwise, there would be deviations from both nominal paths \overline{r}_{1t} , \overline{c}_{2t} and the amended optimal control solution could be explosive. Similar to test 1, it generates a trade-off between attainment of three other targets, U.S. internal balance and Canada's overall balance, and the tracking for the nominal values of two instruments—U.S. fiscal and monetary policies or on Canada's fiscal policy and U.S. monetary policy.

The results of test 2 are also found in test 3 in which the limits are set upon all three instruments.

(ii) Trade-off experiment C [Figures 4.6(C) to 4.12(C)]


This is the opposite case of trade-off experiment A, in which a high penalty cost is assigned to deviations of U.S. balance of payments from its equilibrium. The same results are obtained, with one exception. Since the external balance trade-off between the United States and Canada has been reversed (the United States attach more importance in welfare weights to the performance of its external balance than Canada does), it is found that the tracking for limits on policy-magnitude leaves the optimal path of Canada's balance of payments unchanged [Figure 4.9(C)]. However, the tracking affects the attainment of external balance in the United States by using the inconsistent or nonfeasible optimal policies. Furthermore, trade-off experiment A assigned heavy penalty costs to deviations of Canada's balance of payments from its external balance, resulting in a surplus of Canada's balance of payments at the expense of tracking for limits on policy-magnitudes. Unlike experiment A, it is found in the tradeoff experiment C that the tracking for the nominal policies brings a deficit in the U.S. balance of payments.


(iii) Trade-off experiment B [Figures 4.6(B) to 4.12(B)]

When both countries give equal importance to the achievement of their external balance, a trade-off occurs between attainment of the four targets--internal and external balance in the United States and Canada--and the feasibility of all three policies. In other words, to

Figure 4.6(C). Two-country model (Case B) - United States optimal GNP trajectories compared with the desired GNP (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$).

Figure 4.7(C). Two-country model (Case B) - Canada: optimal GNP trajectories compared with the desired GNP (trade-off experiment C where q_{33} = 10^5 , q_{44} = 10^{-4}).

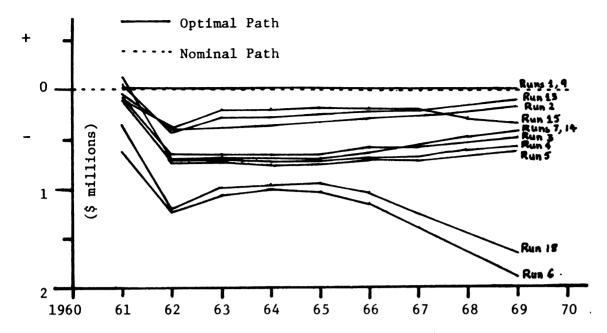


Figure 4.8(C). Two-country model (Case B) - U.S. balance of payments: optimal paths compared with the equilibrium (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$).

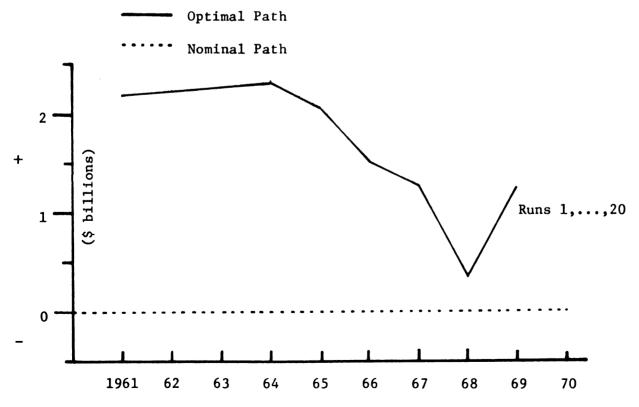
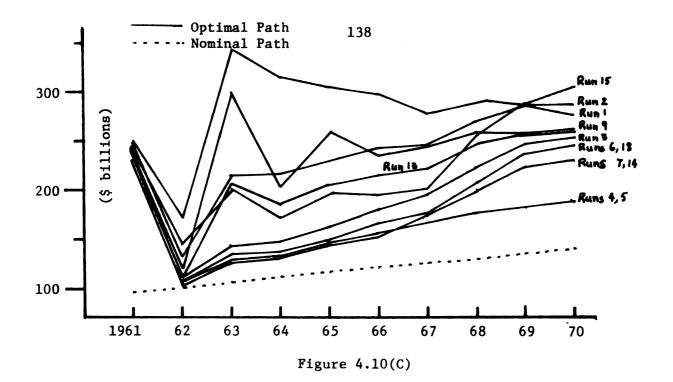
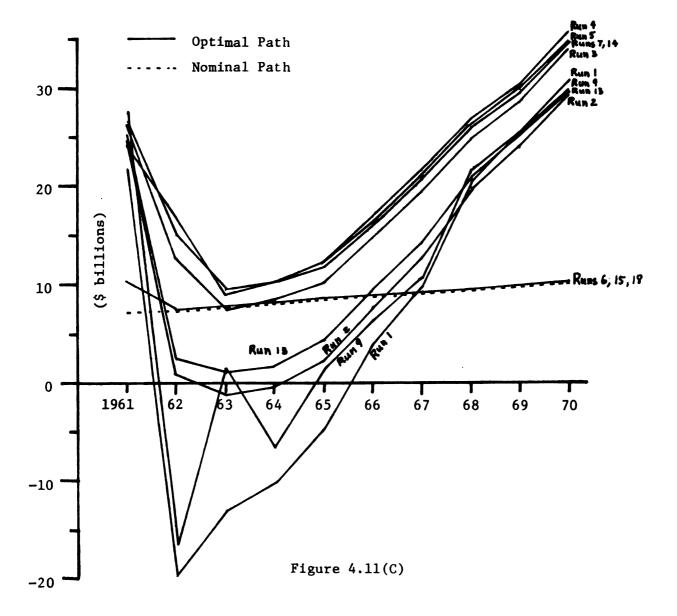




Figure 4.9(C). Two-country model (Case B) - Canadian balance of payments: optimal path compared with the equilibrium (trade-off experiment C where q_{33} = 10^5 , q_{44} = 10^{-4}).

Figure 4.10(C). Two-country model (Case B) - U.S. government expenditures: optimal paths compared with nominal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$).

Figure 4.11(C). Two-country model (Case B) - Canadian government expenditures: optimal paths compared with nominal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$).

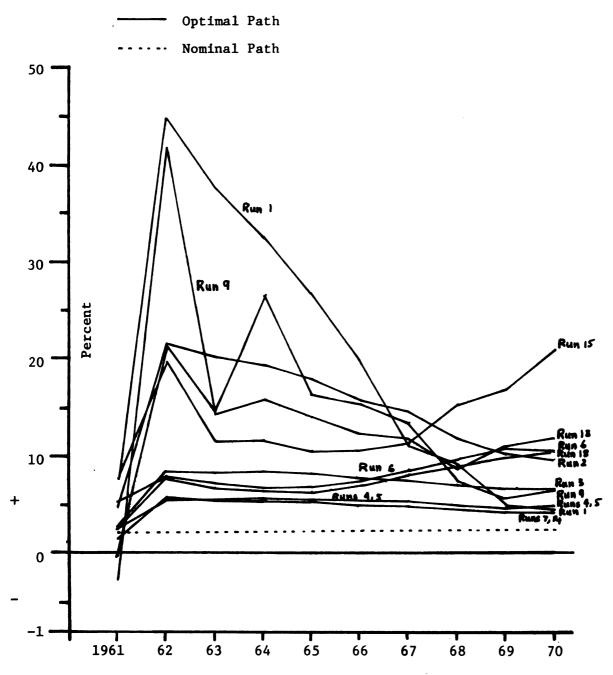


Figure 4.12(C). Two-country model (Case B) - U.S. interest rate: optimal paths compared with nominal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^{-4}$).

Optimal Path
Nominal Path

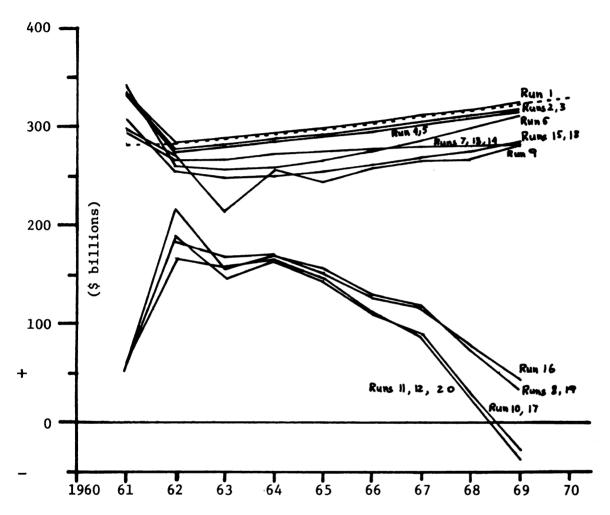


Figure 4.6(B). Two-country model (Case B) - United States: optimal GNP trajectories compared with the desired GNP (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$).

Optimal Path
Nominal Path

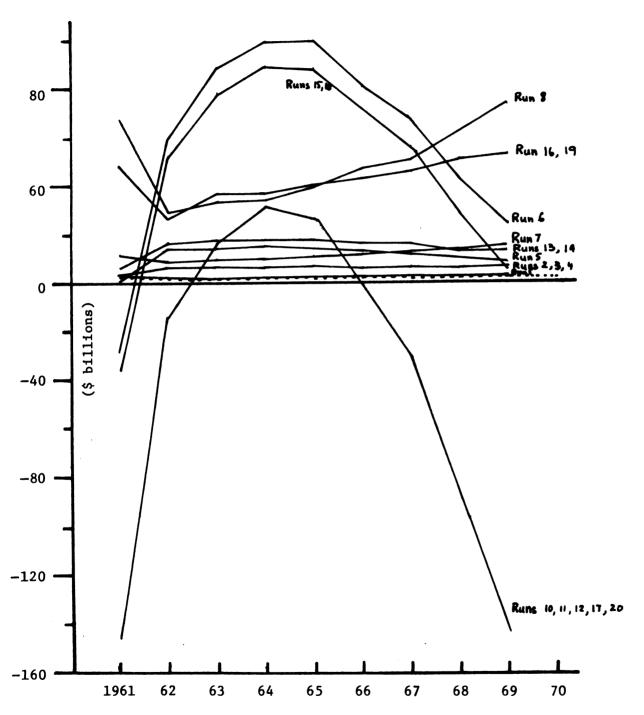


Figure 4.7(B). Two-country model (Case B) - Canada: optimal GNP trajectories compared with the desired GNP (trade-off experiment B where q_{33} = 10^5 , q_{44} = 10^5).

Optimal Path

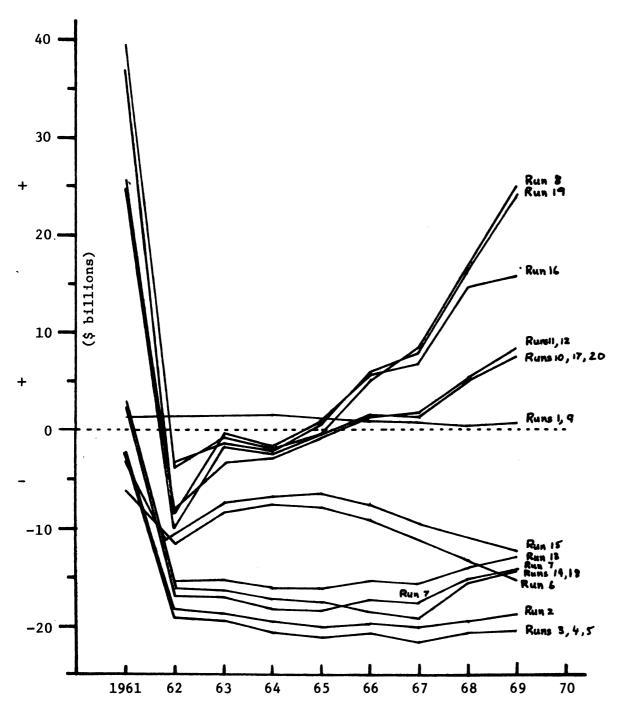


Figure 4.8(B). Two-country model (Case B) - U.S. balance of payments: optimal paths compared with the equilibrium (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$).

Optimal Path
---- Nominal Path

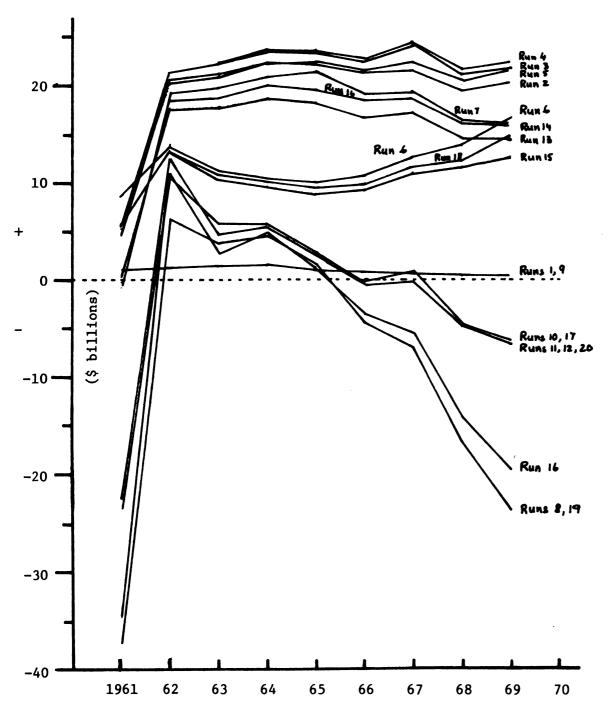
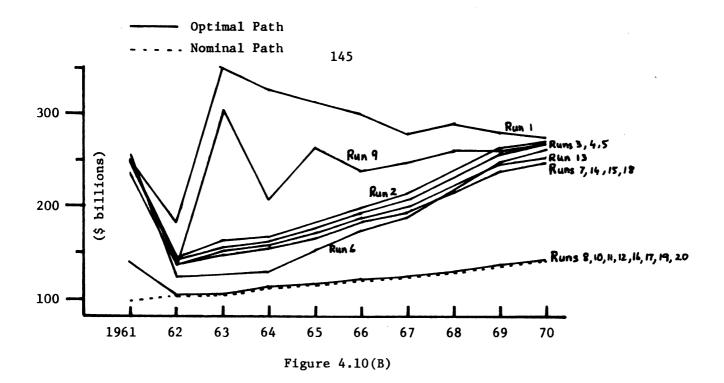
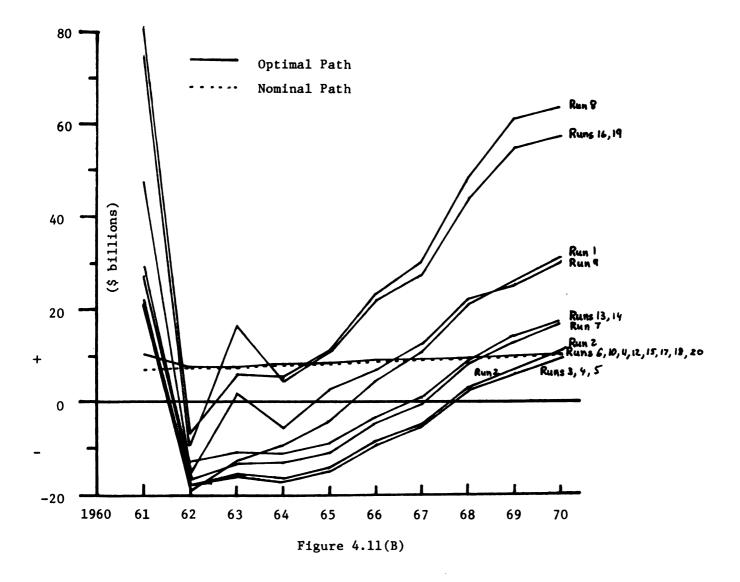




Figure 4.9(B). Two-country model (Case B) - Canadian balance of payments: optimal paths compared with the equilibrium (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$).

Figure 4.10(B). Two-country model (Case B) - U.S. government expenditures: optimal paths compared with nominal path (trade-off experiment B where q_{33} = 10^5 , q_{44} = 10^5).

Figure 4.11(B). Two-country model (Case B) - Canadian government expenditures: optimal paths compared with nominal path (trade-off experiment B where $q_{33} = 10^5$, $q_{44} = 10^5$).

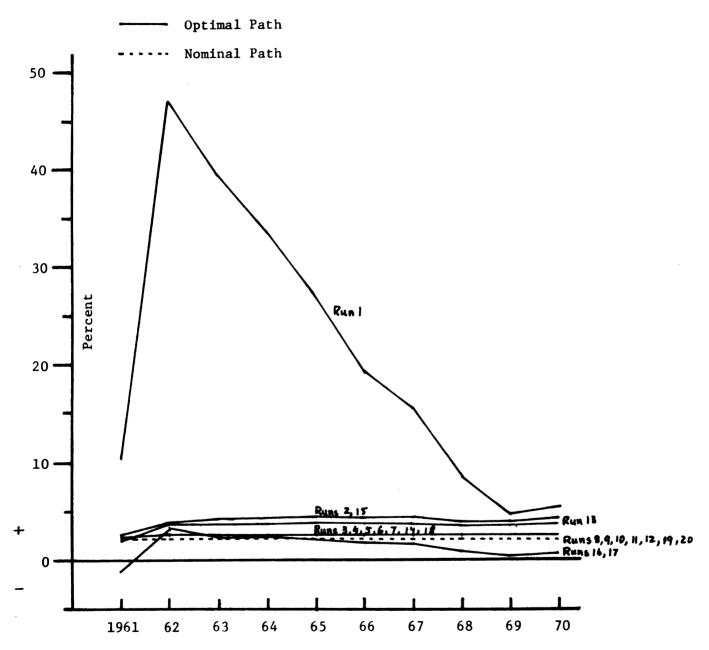


Figure 4.12(B). Two-country model (Case B) - U.S. interest rate: optimal path compared with nominal path (trade-off experiment C where $q_{33} = 10^5$, $q_{44} = 10^5$).

track the two nominal fiscal policies (4 percent growth per annum) and the nominal U.S. interest rate (2.15 percent), both the United States and Canada must give up their targets of internal and external balance—deflation coupled with balance—of—payments deficit in the United States and inflation paired with balance—of—payments surplus in Canada.

Under the assumptions of fixed exchange rate, passive responses from the second country and linear dependent balance of payments, it is concluded:

(1) Within the optimal control framework, if the number of variables to be controlled is larger than the number of instruments, the variables will not reach the targets exactly, and their deviations from the targets will depend on the welfare weights in $Q^{\mathbf{C}}$ assigned to them (Chow:1972c). As a result, the solution for simultaneously achieving internal and external balance in both countries is no longer uniquely determined. Within the confines of Votey's model where an inherent Mundellian policy assignment prevails for internal and external balance, only the variables of balance of payments $(\mathbf{B}_{1t}, \ \mathbf{B}_{2t})$ are not on target exactly since there is only one instrument, Country I's interest rate, to hit both external balances. Therefore, the solution obtained by the optimal control techniques is found to be a function of trade-off between the

two countries' balance of payments or, more specifically, a function of welfare weights \mathbf{q}_{33} and \mathbf{q}_{44} assigned to their deviations from equilibrium. Furthermore, unlike the two preceding cases in which the optimal cost $\hat{\mathbf{J}}_c$ is zero, the trade balance of the third country with Countries I and II as well as the welfare weights \mathbf{q}_{33} and \mathbf{q}_{44} determine the optimal cost $\hat{\mathbf{J}}_c$ (equation 4.8).

- (2) The larger the welfare weight q₃₃ (q₄₄), the closer the variables B_{1t} (B_{2t}) reach the equilibrium targets. A trade-off exists between the two external targets. For one country to hit its external balance the other one must consent to attach only a small importance to its own external balance. Otherwise, if both attach equal importance to the attainment of their own external balances, neither will reach the targets and both will face a balance-of-payments disequilibrium.
- (3) When boundary conditions become active, a second trade-off occurs between attainment of targets and feasibility or consistency of policy-instruments, in addition to the trade-off between the external targets.

CHAPTER V

TWO-COUNTRY MODEL

CASE C: CONFLICT OF INTERESTS AND GAME THEORETICAL APPROACH

This chapter introduces a new framework for analyzing the problem of internal and external balance under the following assumptions:

- (1) Economic interdependence between two countries,
- (2) Active responses from the second country,
- (3) Conflicting internal as well as external targets
 pursued by both countries but with the possibility
 of international cooperation.

The case of conflict of interests can be resolved by presenting a systematic and concise introduction to a two-player or controller multistage non-zero-sum game with linear quadratic system and perfect information will be presented. Its application to policy mix for internal and external balance will be left to future research, because more realistic assumptions will imply a more complicated model than that of Votey.

According to Y. C. Ho (Ho:1970), Differential Games (DG) is nothing but an extension of optimal control theory within the context of "Generalized Control Theory" (GCT) which incorporates all optimization problems possessing the three main ingredients: the criterion

function, the controller (or player), and the information set available to the controller.

As in the optimal control problem, the differential game problems consist of finding strategies which minimize the performance criterion subject to the constraints described by the state system, with the difference that there is more than one controller.

Furthermore, in the non-zero-sum (NZS) game the players' interests are not in direct conflict. Therefore, contrary to the zero sum (ZS) game it is no longer possible to have a unique definition of optimality (Starr and Ho:1963a, 1963b). In this chapter, the noncooperative (or so-called Nash) equilibrium strategies will be determined first, then the inferiority of Nash equilibrium strategies will be proved, which leads to the search for a noninferior solution in particular the so-called Pareto Optimum Strategy.

5.1. Formulation of the Problem

The two-player NZS game is defined by:

(1) A linear, time-invariant, dynamic system, so-called
 "kinematic" equation (Isaacs:1965):

$$x_{t+1} = Ax_t + B_1u_{1t} + B_2u_{2t} + Cz_t$$
 (5.1a)

$$x_{t+1} - x_t = Fx_t + B_1u_{1t} + B_2u_{2t} + Cz_t$$
 (5.1b)

where $x \in E^n$ is the state variable, $u_1 \in E^1$ is player (Country) I's control variable, $u_2 \in E^2$ is player (Country) II's control variable, $z \in E^8$ is the exogenous noncontrolled variable,

A = I+F is a nxn matrix, B_1 is a nxr₁ matrix, B_2 is a nxr₂ matrix, C is a nxs matrix, and all the matrices are assumed to be time-invariant and known.

(2) Quadratic performance criteria:

$$J_{1} = \frac{1}{2} \sum_{t=0}^{N} \{ [x_{t} - \overline{x}_{t}]^{T} Q_{1} [x_{t} - \overline{x}_{t}] + u_{1t}^{T} R_{11} u_{1t} + u_{2t}^{T} R_{12} u_{2t} \}$$
(5.2a)

$$J_{2} = \frac{1}{2} \sum_{t=0}^{N} \{ [x_{t} - \overline{x}_{t}]^{T} Q_{2} [x_{t} - \overline{x}_{t}] + u_{1t}^{T} R_{21} u_{1t} + u_{2t}^{T} R_{22} u_{2t} \}$$
(5.2b)

where J_1 and J_2 are players (Countries) I and II's performance criteria to be minimized; Q_1 Q_2 , R_{11} , R_{12} , R_{21} and R_{22} are assumed to be symmetric; R_{11} and R_{22} are positive definite matrices; and Q_1 and Q_2 are non-singular matrices.

Therefore, the problem consists of finding a pair of strategies $(\tilde{u}_1,\tilde{u}_2)$, called Nash equilibrium or non-cooperative equilibrium strategies such that:

$$J_1(\tilde{u}_1, \tilde{u}_2) \leq J_1(\tilde{u}_1, \tilde{u}_2)$$

$$J_2(\tilde{u}_1, \tilde{u}_2) \leq J_2(\tilde{u}_1, \tilde{u}_2)$$

5.2. Determination of a Nash Equilibrium Set $(\tilde{u}_1, \tilde{u}_2)$

5.2.1. Definition

Following Starr and Ho (1963a), the strategy set $\tilde{\mathbf{u}} = {\tilde{\mathbf{u}}_1, \dots, \tilde{\mathbf{u}}_k}$ is called a Nash equilibrium strategy set if for i = 1,2,...k:

$$J_{\mathbf{i}}(\tilde{\mathbf{u}}_{1},\ldots,\tilde{\mathbf{u}}_{1},\ldots,\tilde{\mathbf{u}}_{k}) \leq J_{\mathbf{i}}(\tilde{\mathbf{u}}_{1},\ldots,\tilde{\mathbf{u}}_{\mathbf{i}},\ldots,\tilde{\mathbf{u}}_{k})$$

for all admissible $\tilde{\textbf{u}}_{\textbf{j}}$, that is, for controls which belong to a Euclidian space.

Necessary Conditions for a Nash Equilibrium Solution

Starr and Ho (1963a, 1963b) derive the necessary conditions for a Nash equilibrium in the continuous case while Haurie's work (1970, 1971) is in connection with the discrete case.

Applying Haurie's results, a Nash equilibrium strategy pair for the linear quadratic NZS game problem is obtained by solving the following equations:

$$\frac{\delta \mathcal{X}_{1t+1}}{\delta u_{1t}} \begin{vmatrix} \tilde{x}_t &= 0 \\ \tilde{u}_{1t} \end{vmatrix}$$
 (5.3a)

$$\frac{\delta d^{2}_{0}2t+1}{\delta u_{2t}} \begin{vmatrix} \tilde{x}_{t} &= 0 \\ \tilde{u}_{2t} \\ \tilde{x}_{t+1} - \tilde{x}_{t} &= \frac{\delta d^{2}_{1t+1}}{\delta_{1t+1}} = \frac{\delta d^{2}_{2t+1}}{\delta_{2t+1}} = F\tilde{x}_{t} + B_{1}\tilde{u}_{1t} + B_{2}\tilde{u}_{2t} \tag{5.4}$$

$$\tilde{x}_{t+1} - \tilde{x}_{t} = \frac{\delta \mathcal{H}_{1t+1}}{\delta_{1t+1}} = \frac{\delta \mathcal{H}_{2t+1}}{\delta_{2t+1}} = F\tilde{x}_{t} + B_{1}\tilde{u}_{1t} + B_{2}\tilde{u}_{2t}$$
 (5.4)

$$\tilde{\lambda}_{1t+1} - \tilde{\lambda}_{1t} = - \left[\frac{\delta \tilde{\lambda}_{1t+1}}{\delta_{x_{t}}} + \frac{\delta \tilde{\lambda}_{1t+1}}{\delta u_{2t}} - \frac{\delta \tilde{u}_{2t}}{\delta_{x_{t}}} \right]^{T}$$
 (5.5a)

$$\tilde{\lambda}_{2t+1} - \tilde{\lambda}_{2t} = - \left[\frac{\delta \tilde{\lambda}_{2t+1}}{x_t} + \frac{\delta \tilde{\lambda}_{2t+1}}{\delta u_{1t}} \frac{\delta \tilde{u}_{1t}}{\delta x_t} \right]^T$$
 (5.5b)

with the boundary conditions:

$$\tilde{\mathbf{x}}(0) = \tilde{\mathbf{x}}_0 \tag{5.6}$$

$$\tilde{\lambda}_1(N) = Q_1 \left[\tilde{x}(N) - \tilde{x}(N) \right]$$
 (5.7a)

$$\tilde{\lambda}_2(N) = Q_2 \left[\tilde{x}(N) - \tilde{x}(N) \right]$$
 (5.7b)

where \mathcal{T}_{1t+1} and \mathcal{T}_{2t+1} are the respective hamiltonians for the two players.

5.2.3. Determination of the Solution

Along the optimal path, the Hamiltonians for the two players are defined as follows (Starr and Ho:1963a, Haurie:1970, 1971):

$$\mathcal{H}_{1t+1} = \frac{1}{2} \left[(\tilde{x}_{t} - \overline{x}_{t})^{T} Q_{1} (\tilde{x}_{t} - \overline{x}_{t}) + \tilde{u}_{1t}^{T} R_{11} \tilde{u}_{1t} + \tilde{u}_{2t} \right]$$

$$R_{12} \tilde{u}_{2t} + \tilde{\lambda}_{1t+1}^{T} \left[F\tilde{x}_{t} + B_{1} \tilde{u}_{1t} + B_{2} \tilde{u}_{2t} + Cz_{t} \right]$$
(5.8a)

$$\mathcal{H}_{2t+1} = \frac{1}{2} \left[(\tilde{x}_{t}^{-} - \bar{x}_{t}^{-})^{T} Q_{2} (\tilde{x}_{t}^{-} - \bar{x}_{t}^{-}) + \tilde{u}_{1t}^{T} R_{21} \tilde{u}_{1t}^{+} \tilde{u}_{2t} \right]$$

$$(5.8b)$$

$$R_{22} \tilde{u}_{2t} + \tilde{\lambda}_{2t+1}^{T} \left[F \tilde{x}_{t}^{-} + B_{1} \tilde{u}_{1t}^{+} + B_{2} \tilde{u}_{2t}^{+} C_{-t} \right]$$

where $\tilde{\lambda}_{1t+1}$, $\tilde{\lambda}_{2t+1}$ are co-state variables.

Then, solving equations 5.4a and 5.4b yields

$$\tilde{\mathbf{u}}_{1t} = -\mathbf{R}_{11}^{-1} \quad \mathbf{B}_{1}^{T} \quad \tilde{\lambda}_{1t+1} \tag{5.9a}$$

$$\tilde{u}_{2t} = -R_{22}^{-1} \quad B_2^{T} \quad \tilde{\lambda}_{2t+1}$$
 (5.9b)

Therefore \mathcal{H}_{1t+1} and \mathcal{H}_{2t+1} are at their minimum with respect to u_1 and u_2 since R_{11} and R_{22} are positive definite. Since the performance criteria are assumed to be quadratic, the closed-loop Nash equilibrium strategies of the form $\tilde{u}_{jt} = \tilde{S}_{j}(\tilde{x}_{t}) + s_{j}$ can be derived (Starr and Ho: 1963a). Similar to the linear quadratic optimal control problem, it is known that (Lee et al.:1972, Athans and Falb:1966):

$$\tilde{\lambda}_{1t+1} = K_{1t+1} \tilde{x}_{t+1} + k_{1t+1}$$
 (5.10a)

$$\tilde{\lambda}_{2t+1} = K_{2t+1} *_{t+1} + k_{2t+1}$$
 (5.10b)

Substituting equations 5.10a and 5.10b into equations 5.9a and 5.9b:

$$\tilde{u}_{1t} = -R_{11}^{-1} B_{1}^{T} K_{1t+1} \tilde{x}_{t+1} - R_{11}^{-1} B_{1}^{T} k_{1t+1}$$

$$\stackrel{d}{=} D_{1t+1} \tilde{x}_{t+1}^{+} d_{1t+1}$$
(5.11a)

$$\tilde{u}_{2t} = -R_{22}^{-1} B_{2}^{T} K_{2t+1} \tilde{x}_{t+1} - R_{22}^{-1} B_{2}^{T} k_{2t+1}$$

$$\stackrel{d}{=} D_{2t+1} \tilde{x}_{t+1} + d_{2t+1}$$
(5.11b)

Again, substituting equations 5.11a and 5.11b into the "kinematic" equation 5.1b:

$$\tilde{x}_{t+1}^{-x}t^{-x}t^{-x}t^{+B_1D_1t+1}\tilde{x}_{t+1}^{+B_2D_2t+1}\tilde{x}_{t+1}^{+B_1d_1t+1}$$

$$+ B_2d_2t+1^{+Cz}t$$
(5.12)

Since $[G_{t+1}]^{-1} \stackrel{d}{=} [I-B_1D_{1t+1}-B_2D_{2t+1}]^{-1}$ exists for all t, t $\{0,\ldots,N-1\}$,

$$\tilde{x}_{t+1} = \left(G_{t+1}\right)^{-1} A \tilde{x}_{t} + \left(G_{t+1}\right)^{-1} B_{1} d_{1t+1} + \left(G_{t+1}\right)^{-1}
B_{2} d_{2t+1} + \left(G_{t+1}\right)^{-1} C z_{t} ; A \stackrel{d}{=} I + F$$

$$= \left(G_{t+1}\right)^{-1} A \tilde{x}_{t} + g_{t+1} + G_{t+1}^{-1} C z_{t}$$
(5.13)

Substituting equation 5.13 into equations 5.11a and 5.11b:

$$\tilde{u}_{1t} = H_{1t+1} \tilde{x}_t + h_{1t+1} + D_{1t+1} (G_{t+1})^{-1} Cz_t$$
 (5.14a)

$$\tilde{u}_{2t} = H_{2t+1} \tilde{x}_t + h_{2t+1} + D_{2t+1} (G_{t+1})^{-1} Cz_t$$
 (5.14b)

where

$$H_{1t+1} \stackrel{\underline{d}}{=} D_{1t+1} \left(G_{t+1}\right)^{-1} A$$

$$h_{1t+1} \stackrel{d}{=} D_{1t+1} g_{t+1} + d_{1t+1}$$

$$H_{2t+1} \stackrel{d}{=} D_{2t+1} \left(G_{t+1}\right)^{-1} A$$

$$h_{2t+1} \stackrel{d}{=} D_{2t+1} g_{t+1} + d_{2t+1}$$

Solving the canonical equations 5.5a and 5.5b, and rearranging the terms:

$$\tilde{\lambda}_{1t} = \left[Q_1 + H_{2t+1}^T R_{12} H_{2t+1}\right] \tilde{x}_t + A^T \left[G_{t+1}^{-1}\right]^T \tilde{\lambda}_{1t+1} + H_{2t+1}^T R_{12} h_{2t+1} + H_{2t+1}^T R_{12} h_{2t+1} + H_{2t+1}^T R_{12} h_{2t+1} G_{t+1}^{-1} G_{t+$$

$$\tilde{\lambda}_{2t} = \left[Q_2 + H_{1t+1}^T R_{21} H_{1t+1} \right] \tilde{x}_t + A^T \left[G_{t+1}^{-1} \right]^T \tilde{\lambda}_{2t+1} + H_{1t+1}^T + H_{1t+1}^T R_{21} D_{1t+1}$$

$$G_{t+1}^{-1} C_{z_t} - Q_2 \overline{x}_t$$
(5.15b)

Substituting equations 5.10a and 5.10b into equations 5.15a and 5.15b:

$$K_{1t} \tilde{x}_{t}^{+k}_{1t} = \left[Q_{1}^{+H_{2t+1}^{T}} R_{12}^{H}_{2t+1}^{H}_{12}^{H}_{2t+1}^{H}_{1}^{T} (G_{t-1}^{-1})^{T} K_{1t-1}^{-1} G_{t+1}^{-1}^{A} \right]$$

$$\tilde{x}_{t}^{+A} (G_{t+1}^{-1})^{T} K_{1t+1}^{H}_{2t+1}^{H}_{1t+1}^{H}_{1t+1}^{H}_{1t+1}^{H}_{2t+1}^{H}_{12}$$

$$h_{2t+1}^{+} (H_{2t+1}^{T} R_{12}^{D}_{2t+1}^{H}_{4}^{T} (G_{t+1}^{-1})^{T} K_{1t+1}^{H}_{1}$$

$$G_{t+1}^{-1} Cz_{t}^{-1} Q_{1} \overline{x}_{t}$$

$$(5.16a)$$

$$\begin{split} \mathbf{K}_{2t} \tilde{\mathbf{x}}_{t}^{+k} \mathbf{k}_{2t} &= \left[\mathbf{Q}_{2}^{+\mathbf{H}_{1t+1}^{T} \mathbf{R}_{21} \mathbf{H}_{1t+1}^{} + \mathbf{A}^{T} (\mathbf{G}_{t-1}^{-1})^{T} \mathbf{K}_{2t+1}^{} \mathbf{G}_{t-1}^{-1} \mathbf{A} \right] \\ &\tilde{\mathbf{x}}_{t}^{+\mathbf{A}^{T} (\mathbf{G}_{t-1}^{-1})^{T} \mathbf{K}_{2t+1}^{} \mathbf{g}_{t+1}^{} + \mathbf{k}_{2t+1}^{} + \mathbf{H}_{1t+1}^{T} \\ &\mathbf{R}_{21}^{\mathbf{h}_{1t+1}^{} + \left[\mathbf{H}_{1t+1}^{T} \mathbf{R}_{21}^{} \mathbf{D}_{t+1}^{} + \mathbf{A}^{T} (\mathbf{G}_{t+1}^{-1})^{T} \mathbf{K}_{2t+1}^{} \right] \mathbf{G}_{t+1}^{-1} \mathbf{Cz}_{t}^{} - \mathbf{Q}_{2}^{} \mathbf{x}_{t}^{} \end{split}$$

Then equating the coefficient yields:

$$K_{1t} = Q_1 + H_{2t+1}^T R_{12} + H_{2t+1}^T + A^T (G_{t+1}^{-1})^T K_{1t+1} G_{t+1}^{-1} A$$
 (5.17a)

$$K_{2t} = Q_2 + H_{1t+1}^T R_{21} H_{1t+1} + A^T (G_{t+1}^{-1})^T K_{2t+1} G_{t+1}^{-1} A$$
 (5.17b)

$$k_{1t} = A^{T} (G_{t+1}^{-1})^{T} [K_{1t+1} g_{t+1}^{+} + k_{1t+1}] + H_{2t+1}^{T} R_{12} h_{2t+1}$$

$$+ [H_{2t+1}^{T} R_{12} D_{2t+1}^{-} + A^{T} (G_{t+1}^{-1})^{T} K_{1t+1}] G_{t+1}^{-1} Cz_{t} - Q_{1} \overline{x}_{t}$$
(5.18a)

$$k_{2t} = A^{T} (G_{t+1}^{-1})^{T} [K_{2t+1} g_{t+1}^{T} + k_{2t+1}] + H_{2t+1}^{T} R_{21} h_{1t+1}$$

$$+ [H_{1t+1}^{T} R_{21} D_{1t+1}^{T} + A^{T} K_{2t+1}] G_{t+1}^{-1} Cz_{t} - Q_{2} \overline{x}_{t}$$
(5.18b)

And

$$K_{1N} = Q_1 \tag{5.19a}$$

$$K_{2N} = Q_2 \tag{5.19b}$$

$$k_{1N} = Q_1 \overline{k}_N \tag{5.20a}$$

$$k_{2N} = Q_2 \overline{x}_N \tag{5.20b}$$

Summary of the solution

The Nash equilibrium strategy pair $(\tilde{u}_1, \tilde{u}_2)$ is found by the following steps:

- (1) Solve the Riccati equations 5.17a and 5.17b with their boundary conditions 5.19a and 5.19b backwards in time to get values for K_+ , t = 1, ..., N.
- (2) Solve the tracking equations 5.18a and 5.18b with their boundary conditions 5.20a and 5.20b backwards in time to get values for k_t , t = 1,...,N.
- (3) Compute the Nash equilibrium strategy set $u(0) = \{\tilde{u}_1(0), \tilde{u}_2(0)\}$ from equations 5.14a, 5.14b:

$$\tilde{u}_{1t} = H_{1t+1} \tilde{x}_t + \left[h_{1t+1} + D_{1t+1} G_{t+1} - Cz_t \right]$$
 (5.14a)

$$\tilde{u}_{2t} = H_{2t+1} \tilde{x}_t + \left[h_{2t+1} + D_{2t+1} G_{t+1}^{-1} C z_t \right]$$
 (5.14b)

where:

$$H_{lt+1} \stackrel{\underline{d}}{=} D_{lt+1} (G_{t+1})^{-1} A$$

$$H_{2t+1} \stackrel{\underline{d}}{=} D_{2t+1} \left(G_{t+1}\right)^{-1} A$$

$$h_{1t+1} \stackrel{d}{=} D_{1t+1} g_{t+1} + d_{1t+1}$$

$$h_{2t+1} \stackrel{d}{=} D_{2t+1} g_{t+1} + d_{2t+1}$$

$$D_{1t+1} \stackrel{d}{=} -R_{11}^{-1} B_{1}^{T} K_{1t+1}$$

$$D_{2t+1} \stackrel{d}{=} -R_{22}^{-1} B_2^T K_{2t+1}$$

$$d_{1t+1} \stackrel{\underline{d}}{=} -R_{11}^{-1} B_1^T k_{1t+1}$$

$$d_{2t+1} \stackrel{\underline{d}}{=} -R_{22}^{-1} B_2^T k_{2t+1}$$

$$(G_{t+1})^{-1} \stackrel{d}{=} [I-B_1D_{1t+1} - B_2D_{2t+1}]^{-1}$$

$$g_{t+1} \stackrel{\underline{d}}{=} (G_{t+1})^{-1} [B_1 d_{1t+1} + B_2 d_{2t+1}]$$

using $\tilde{\mathbf{x}}(0) = \tilde{\mathbf{x}}_0$. Then compute $\mathbf{x}(1)$ from equation 5.4. Now $\tilde{\mathbf{x}}(1)$ can be used in equation 5.14a and 5.14b to compute $\mathbf{u}(2) \stackrel{d}{=} \{\tilde{\mathbf{u}}_1(2), \, \tilde{\mathbf{u}}_2(2)\}$ which can be used in equation 5.4 to compute $\tilde{\mathbf{x}}(2)$, etc. Continue this process until all of the $\mathbf{u}_t \stackrel{d}{=} \{\tilde{\mathbf{u}}_{1t}, \, \tilde{\mathbf{u}}_{2t}\}$, $t = 0, 1, \ldots, N-1$ and all of the $\tilde{\mathbf{x}}_t$, $t = 1, \ldots, N$, have been computed.

(4) The costs \tilde{J}_1 , \tilde{J}_2 can be computed from equations 5.2a and 5.2b.

5.2.4. Principle of Optimality in the NZS Game

The strategy set u is optimal in the Nash sense; that is, the equilibrium solution is secured against any attempt by one player unilaterally to alter his strategy. If every player is using his Nash control, and if a given player plays non-Nash optimally, he will do no better.

The conditions of Section 5.2.2 are necessary for the Nash equilibrium strategy set to exist, but these solutions are not protected against cheating and thus are unstable in a noncooperative sense. In other words, it is possible for the "prisoner's dilemma" to occur and the optimality is non-unique in the NZS differential game (Starr and Ho:1963a, 1963b). Therefore, there are solutions other than Nash's, such as noninferior solutions and minimax solutions.

This study is concerned with the noninferior solutions, and in particular with the Pareto optimal strategy set. The noninferior solution has the property that it is not dominated by any other solution point in its neighborhood. In other words, any deviation from the noninferior solution cannot result in simultaneous improvement of all J_i 's (i = 1,...,k).

First, the sufficient conditions for the Nash equilibrium to be inferior are derived to check if Nash strategies are inferior. If they are, the Pareto optimal solution, which is noninferior and therefore superior to the Nash solution, will be determined.

5.3. On the Inferiority of Nash Equilibrium for a Two Player Multistage Game

5.3.1. The Basic Sufficient Condition for Inferiority

Consider k players with respective controls $u_i \in E^r$ i, r_i given integer and respective criteria:

$$J_i: E^r \rightarrow R$$
 $i = 1, ..., k$

where $r = r_1 + r_2 + ... + r_k$.

Definition 5.3.1:

The control $u \in E^r$ is inferior if there exists $u \in E^r$ such that:

$$J_{i}(u) \leq J_{i}(\tilde{u})$$
 for all i $\{1,...,k\}$

$$J_{j}(u) \leq J_{j}(\tilde{u})$$
 for some $j \{1,...,k\}$

Lemma 5.3.1: (Rekasius & Schmitendorf:1971)

If each functional is ${\tt C}^1$ in a neighborhood of ${\tt U}$, then a sufficient condition for u to be inferior is that there exists a vector h ${\tt E}^k$ such that:

$$h < 0$$
 (5.21)

and

$$r[\Lambda] = r[\Lambda : h]$$
 (5.22)

where Λ is the following kxr matrix:

$$\Lambda \stackrel{\underline{d}}{=} \begin{bmatrix}
\delta \mathcal{J}_{1} \\
\frac{1}{\delta u} \\
\delta \mathcal{J}_{k} \\
\frac{1}{\delta u}
\end{bmatrix} \tilde{u}$$

and $\mathcal{H}_1, \dots, \mathcal{H}_k$ are the Hamiltonians:

$$\mathcal{L}_{i} = \mathcal{L}_{i}(x,u_{i}, \lambda_{i}, t) \qquad i = 1,...,k.$$

5.3.2. Application to Two-Player L.Q. Multistage Game Consider the linear system:

$$x_{t+1} = Ax_t + B_1u_{1t} + B_2u_{2t} + Cz_t$$

and the quadratic criteria

$$J_{1} = \frac{1}{2} \sum_{t=0}^{N} \left[x_{t} - \overline{x}_{t} \right]^{T} Q_{1} \left[x_{t} - \overline{x}_{t} \right] + u_{1t}^{T} R_{11} u_{1t}$$
$$+ u_{2t}^{T} R_{12} u_{2t}$$

$$J_{2} = \frac{1}{2} \sum_{t=0}^{N} \left[x_{t} - \overline{x}_{t} \right]^{T} Q_{2} \left[x_{t} - \overline{x}_{t} \right] + u_{1t}^{T} R_{21} u_{1t} + u_{2t}^{T} R_{22} u_{2t} .$$

Construct the matrix Λ :

$$\Lambda = \begin{bmatrix} \frac{\delta \mathcal{U}_1}{\delta u_1} & \frac{\delta \mathcal{U}_1}{\delta u_2} \\ \frac{\delta \mathcal{U}_2}{\delta u_1} & \frac{\delta \mathcal{U}_2}{\delta u_2} \end{bmatrix}$$

where

$$\mathcal{H}_{1t+1} = \frac{1}{2} \left[\tilde{x}_{t}^{T} Q_{1} \tilde{x}_{t}^{+} \tilde{u}_{1t}^{T} R_{11} \tilde{u}_{1t}^{+} \tilde{u}_{2t}^{T} R_{12} \tilde{u}_{2t} \right]$$
$$+ \tilde{\Lambda}_{1t+1}^{T} \left[F \tilde{x}_{t}^{T} + B_{1} \tilde{u}_{1t}^{T} + B_{2} \tilde{u}_{2t}^{T} + C z_{t}^{T} \right]$$

$$\mathcal{H}_{2t+1} = \frac{1}{2} \left[\mathbf{x}_{t}^{T} \mathbf{Q}_{2} \mathbf{x}_{t}^{T} + \mathbf{u}_{1t}^{T} \mathbf{R}_{21} \mathbf{u}_{1t}^{T} + \mathbf{u}_{2t}^{T} \mathbf{R}_{22} \mathbf{u}_{1t}^{T} \right] + \lambda_{2t+1}^{T}$$

$$\left[\mathbf{F} \mathbf{x}_{t}^{T} + \mathbf{B}_{1} \mathbf{u}_{1t}^{T} + \mathbf{B}_{2} \mathbf{u}_{2t}^{T} + \mathbf{C} \mathbf{z}_{t}^{T} \right]$$

Since $\tilde{u} \stackrel{d}{=} (\tilde{u}_1, \tilde{u}_2)$ are a Nash equilibrium, the following conditions are necessarily satisfied:

$$\frac{\delta \mathcal{U}_1}{\delta u_1} \mid_{\tilde{u}_1} = \frac{\delta \mathcal{U}_2}{\delta u_2} \mid_{\tilde{u}_2} = 0$$

Thus the matrix Λ has the following form:

$$\Lambda = \begin{bmatrix} 0 & \frac{\delta \mathcal{H}_1}{u_2} \\ \frac{\delta \mathcal{H}_2}{u_1} & 0 \end{bmatrix}$$

where:

$$\frac{\delta \mathcal{X}_{1t+1}}{\delta u_{2t}} = \tilde{u}_{2t}^{T} R_{12} + B_{2}^{T} \tilde{\lambda}_{1t+1}$$

$$\frac{\delta \mathcal{Z}_{2t+1}}{\delta \mathbf{u}_{1t}} = \tilde{\mathbf{u}}_{1t}^{\mathrm{T}} \mathbf{R}_{21} + \mathbf{B}_{1}^{\mathrm{T}} \tilde{\lambda}_{2t+1}$$

According to the previous results (Section 5.2.3), a Nash equilibrium is given by:

$$\tilde{u}_{1t} = -R_{11}^{-1} B_1^T \tilde{\lambda}_{1t+1}$$

$$\tilde{u}_{2t} = -R_{22}^{-1} B_2^T \tilde{\lambda}_{2t+1}$$

therefore, it is rather unlikely that

$$\frac{\delta \mathcal{H}_1}{\delta \mathbf{u}_2} = \frac{\delta \mathcal{H}_2}{\delta \mathbf{u}_1} = 0.$$

Thus Λ is non-singular and has a rank 2. And rank $\left[\Lambda \mid h\right]$ = rank Λ = 2 for h < 0. By Lemma 5.3.1, \tilde{u} is inferior; that is, the Nash solution of a two-player NZS game will usually be inferior.

5.4. Determination of the Pareto-Optimal Set

Nash equilibrium strategy set $(\tilde{u}_1, \tilde{u}_2)$ has been shown to be inferior and it is assumed that the two players agree to cooperate. Therefore, the two-player multistage NZS game is reduced to a vector-valued criterion optimal control problem in which the decision maker is a team of two players, and several optimality criteria are relevant to the players, although their relative importance is not obvious.

Different approaches to the vector-valued criterion optimization problem have been developed. Basile and Vincent (1970a); Vincent and Leitman (1970b); Leitman, Rocklin and Vincent (1972); and Stalford (1972) used a geometric approach based on the concepts of convex cost cones to derive the Pareto optimal set for both static and continuous games. Schmitendorf $et\ al$. (1971, 1972, 1973) also derived the necessary conditions for Pareto optimal solutions for static and continuous games. This approach does not require any local convexity assumptions like the method of Vincent $et\ al$., but is based instead on the rank conditions of the cost matrix. Above all, the most popular technique is the scalarization technique, where the vector performance index problem is converted into a family of scalar index problems by forming an auxiliary scalar index as a function of the vector index and a

vector of weighting parameters (Zadeh:1963, Klinger:1964, Da Cunha and Polak:1967, Starr and Ho:1963a, 1963b, Reid and Citron:1971, Haurie: 1970, 1971, 1973).

Haurie's approach and results (1970) will be applied to the two-player multistage NZS game with LQ system, perfect information and complete cooperation.

5.4.1. Definition

A set of control functions $u \stackrel{\underline{d}}{=} (\hat{u}_1, \hat{u}_2, \dots, \hat{u}_k)$ is said to be Pareto optimal if for each set of control functions $u \stackrel{\underline{d}}{=} (u_1, u_2, \dots, u_k)$ there exists:

either
$$J_{\mathbf{i}}(\mathbf{u}) = J_{\mathbf{i}}(\hat{\mathbf{u}})$$
 for all $\mathbf{i} \{1,...,k\}$

or at least for one i $\{1,...,k\}$: $J_{i}(u) > J_{i}(u)$

5.4.2. Scalarization Procedure

The Pareto optimal set û could be obtained by minimizing the following scalar performance criterion

$$J = \mu_1 J_1 + \mu_2 J_2$$

$$\mu_1 + \mu_2 = 1$$

$$\mu_1 > 0, \mu_2 > 0$$

provided that the set of cost vectors (J_1, J_2) generated by all the admissible controls is convex (Starr and Ho:1963a). Therefore, the problem consists of finding a set of controls $\hat{u}(\mu_j, x, t) \stackrel{d}{=} \hat{u} = (\hat{u}_1, \hat{u}_2)$ such that:

$$\mu_1 J_1$$
 (â) + $\mu_2 J_2$ (â) < $\mu_1 J_1$ (u) + $\mu_2 J_2$ (u).

5.4.3. Determination of the Solution

The problem of finding the Pareto optimal set \hat{u} is formulated as follows: minimize the performance criterion

$$J \stackrel{d}{=} \mu_{1} J_{1} + \mu_{2} J_{2} = \frac{1}{2} \sum_{t=0}^{N} \{ [x_{t} - \overline{x}_{t}]^{T} Q [x_{t} - \overline{x}_{t}] + u_{t}^{T} R u_{t} \}$$
 (5.23)

given the dynamic system

$$x_{t+1} - x_t = F_{x_t} + Bu_t + Cz_t$$
 (5.24)

where

$$Q = \begin{bmatrix} \mu_1 Q_1 & 0 & \\ 0 & \mu_2 Q_2 \end{bmatrix}$$

$$R = \begin{bmatrix} \mu_1 R_{11} + \mu_2 R_{12} & 0 \\ 0 & \mu_1 R_{21} + \mu_2 R_{22} \end{bmatrix}$$

$$\mathbf{u} \stackrel{\underline{\mathbf{d}}}{=} \left[\mathbf{u}_1, \mathbf{u}_2\right]$$

To get the necessary conditions for the Pareto optimal solution, the Hamiltonian is constructed:

$$\mathcal{L}_{t+1} = \frac{1}{2} \left\{ \left[\mathbf{x}_{t} - \overline{\mathbf{x}}_{t} \right]^{T} Q \left[\mathbf{x}_{t} - \overline{\mathbf{x}}_{t} \right] + \mathbf{u}_{t}^{T} \mathbf{R} \mathbf{u}_{t} \right\} + \hat{\lambda}_{t+1}^{T} \left[\mathbf{F} \mathbf{x}_{t} + \mathbf{B} \mathbf{u}_{t} + \mathbf{C} \mathbf{z}_{t} \right]$$
(5.25)

Similar to the linear quadratic optimal control problem, it is known that (Lee $et\ al.:1972$, Athans and Falb:1966):

$$\hat{\lambda}_{t+1} \stackrel{d}{=} K_{t+1} \times_{t+1} + k_{t+1}$$
 (5.26)

Then the minimization of the Hamiltonian is written as follows:

$$\frac{\delta \mathcal{H}_{t+1}}{\delta u_t} = R\hat{u}_t + B^T \hat{\lambda}_{t+1} = 0$$
 (5.27)

and the canonical equations are:

$$x_{t+1} - x_t = \frac{\delta \mathcal{X}_{t+1}}{\delta \hat{\lambda}_{t+1}} = Fx_t + Bu_t + Cz_t$$
 (5.28)

$$\hat{\lambda}_{t+1} - \hat{\lambda}_{t} = \frac{\delta \mathcal{W}_{t+1}}{\delta x_{t}} = -Q \hat{x}_{t} - \overline{x}_{t} - F^{T} \hat{\lambda}_{t+1}$$
 (5.29)

with the split boundary conditions:

$$\mathbf{x}(0) = \mathbf{x}_0 \tag{5.30}$$

$$\hat{\lambda}_{N} = Q(\hat{x}_{N} - \bar{x}_{N}) \tag{5.31}$$

From equation 5.27:

$$a_{t} = -R^{-1} B^{T} \hat{\lambda}_{t+1}$$
 (5.32)

Substituting equation 5.26 into equation 5.32:

$$\hat{\mathbf{x}}_{t} = -\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \hat{\mathbf{x}}_{t+1} - \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{k}_{t+1}$$
 (5.33)

Substituting equation 5.33 into equation 5.28:

$$\hat{x}_{t+1} - \hat{x}_{t} = F\hat{x}_{t} - BR^{-1}B^{T}K_{t+1} \hat{x}_{t+1} - BR^{-1}B^{T}K_{t+1} + Cz_{t}$$
 (5.34)

Rearranging the terms, equation 5.34 yields:

$$\hat{x}_{t+1} = W^{-1}A\hat{x}_t - W^{-1}BR^{-1}B^Tk_{t+1} + W^{-1}Cz_t$$
 (5.35)

where: $A \stackrel{d}{=} I + F$

$$W \stackrel{d}{=} I + BR^{-1} B^{T} K_{++1}$$

$$W^{-1} \stackrel{d}{=} I + BR^{-1} B^{T} K_{t+1}^{-1}$$

Substituting equation 5.35 into equation 5.33:

$$\hat{\mathbf{u}}_{t} = -\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \left[\mathbf{W}^{-1} \mathbf{A} \hat{\mathbf{x}}_{t} - \mathbf{W}^{-1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} + \mathbf{W}^{-1} \mathbf{C} \mathbf{z}_{t} \right] - \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1}$$
(5.36)

Now re-examine W^{-1} . Using the matrix identity (Pindyck:1973), W^{-1} becomes:

$$W^{-1} = I - B \left[R + B^{T} K_{t+1} B \right]^{-1} B^{T} K_{t+1}$$
 (5.37)

Substituting equation 5.37 into equation 5.36:

$$\hat{\mathbf{u}}_{t} = -\mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{K}_{t+1} \left[\mathbf{I} - \mathbf{B} (\mathbf{R} + \mathbf{B}^{T}\mathbf{K}_{t+1}^{B})^{-1}\mathbf{B}^{T}\mathbf{K}_{t+1} \right] \mathbf{A}\hat{\mathbf{x}}_{t} + \mathbf{R}^{-1} \mathbf{B}^{T}\mathbf{K}_{t+1}$$

$$\left[\mathbf{I} - \mathbf{B} (\mathbf{R} + \mathbf{B}^{T}\mathbf{K}_{t+1}^{B})^{-1} \mathbf{B}^{T}\mathbf{K}_{t+1} \right] \mathbf{B} \mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{K}_{t+1} - \mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{K}_{t+1} \left[\mathbf{I} - \mathbf{B} (\mathbf{R} + \mathbf{B}^{T}\mathbf{K}_{t+1}^{B})^{-1} \mathbf{B}^{T}\mathbf{K}_{t+1} \right] \mathbf{C}\mathbf{z}_{t} - \mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{K}_{t+1}$$

$$\mathbf{B}^{T}\mathbf{K}_{t+1} \mathbf{C}\mathbf{z}_{t} - \mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{K}_{t+1}$$

$$(5.38)$$

And after rearranging:

$$\hat{\mathbf{u}}_{t} = -\mathbf{R}^{-1} \{\mathbf{I} - \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B} [\mathbf{R} + \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}]^{-1} \} \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{A} \hat{\mathbf{x}}_{t} + \mathbf{R}^{-1} \{\mathbf{I} - \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}$$

$$[\mathbf{R} + \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}]^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} - \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} - \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}$$

$$[\mathbf{R} + \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}]^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{C} \mathbf{z}_{t}.$$
(5.39)

Now, using the identity:

$$I-X (Y+X)^{-1} = Y(Y+X)^{-1}$$
 (5.40)

Letting $X = B^{T}K_{t+1}B$ and Y = R, simplify equation 5.39 to:

$$\hat{\mathbf{u}}_{t} = -\left[\mathbf{R} + \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}\right]^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{A} \hat{\mathbf{x}}_{t} + \left[\mathbf{R} + \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}\right]^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{k}_{t+1}$$

$$- \mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{k}_{t+1} - \left[\mathbf{R} + \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{B}\right]^{-1} \mathbf{B}^{T} \mathbf{K}_{t+1} \mathbf{C} \mathbf{z}_{t}$$
(5.41)

Next, solve the second canonical equation 5.29:

$$\hat{\lambda}_{t} = Q[\hat{x}_{t} - \overline{x}_{t}] + (I+F)^{T} \hat{\lambda}_{t+1} = Q[\hat{x}_{t} - \overline{x}_{t}] + A^{T} \hat{\lambda}_{t+1}$$
 (5.42)

Substituting equation 5.26 into equation 5.42:

$$K_t \hat{x}_t + k_t = Q[\hat{x}_t - \overline{x}_t] + A^T K_{t+1} \hat{x}_{t+1} + A^T k_{t+1}$$
 (5.43)

After rearranging the terms:

$$A^{T}K_{t+1}\hat{x}_{t+1} + Q\hat{x}_{t} - K_{t}\hat{x}_{t} = -A^{T}k_{t+1} + k_{t} + Q\overline{x}_{t}.$$
 (5.44)

Substituting equation 5.35 into equation 5.44:

$$A^{T}K_{t+1} \{ w^{-1}A\hat{x}_{t} - w^{-1}BR^{-1}B^{T}k_{t+1} + w^{-1}Cz_{t} \} + Q\hat{x}_{t} - K_{t}\hat{x}_{t} = -A^{T}k_{t+1}$$

$$+ k_{t} + Q\overline{x}_{t}.$$
(5.45)

Rearranging the terms:

$$[Q + A^{T}K_{t+1}W^{-1}A]\hat{x}_{t} - A^{T}K_{t+1}W^{-1}BR^{-1}B^{T}K_{t+1} + A^{T}K_{t+1} - Q\overline{x}_{t} + A^{T}K_{t+1}W^{-1}Cz_{t} = K_{t}\hat{x}_{t} + K_{t}$$
(5.46)

Equating the coefficients of the left-hand side and the right-hand side yields:

$$K_{t} = Q + A^{T} K_{t+1} W^{-1} A$$
 (5.47)

$$k_{t} = -A^{T}K_{t+1}W^{-1}BR^{-1}B^{T}k_{t+1} + A^{T}k_{t+1} - Q\overline{x}_{t} + A^{T}K_{t+1}W^{-1}Cz_{t}$$
 (5.48)

with the boundary conditions:

$$K_{N} = Q \tag{5.49}$$

$$k_{N} = -Q\overline{x}_{N} \tag{5.50}$$

In conclusion, equation 5.41 determines the family of Pareto optimal strategies in terms of the present optimal state $\hat{\mathbf{x}}_t$ and the solutions to the Riccati equation 5.47 and the "tracking" equation 5.48. It is noted that the determination of the Pareto optimal strategies is similar to that of the optimal control except that instead of having a unique optimal solution, there is a family of optimal solutions, functions of the parameters μ_1 and μ_2 . In fact,

$$Q = \begin{bmatrix} \mu_1 Q_1 & 0 \\ 0 & \mu_2 Q_2 \end{bmatrix} \text{ and } R = \begin{bmatrix} \mu_1 R_{11} + \mu_2 R_{12} & 0 \\ 0 & \mu_1 R_{21} + \mu_2 R_{22} \end{bmatrix}$$

CHAPTER VI

CONCLUSIONS AND RESEARCH RECOMMENDATIONS

6.1. Summary of Conclusions

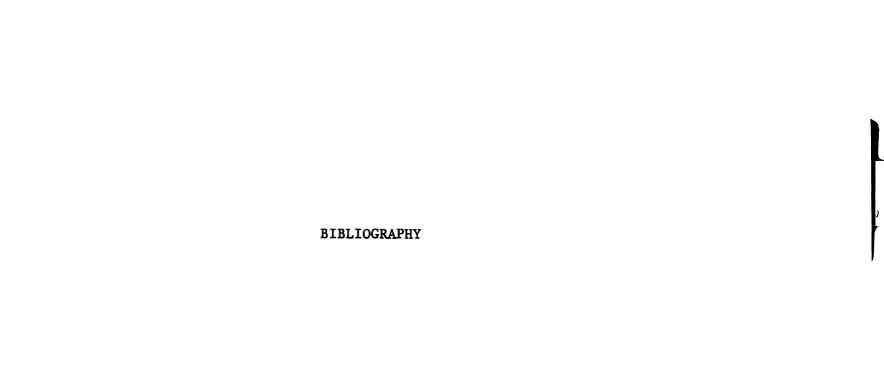
This study has applied Chow's deterministic optimal control approach to Votey's macrodynamic one- and two-country models. Summarizing the main conclusions:

- (1) Optimal policies for internal and external balance can be determined by optimal control techniques.
- (2) Chow's propositions concerning optimal control are verified in this study, i.e., if the number of variables to be controlled (the number of non-zero diagonal elements in Q^C) is equal to the number of instruments, that is, if Tinbergen's rule is satisfied, the variables will be on target exactly and the optimal cost is minimal. If the number of variables to be controlled is larger than the number of instruments or if Tinbergen's rule is violated, the variables will not reach their targets exactly. Their deviations from the targets will depend on the welfare weights in Q^C assigned to them and, therefore, the optimal cost is no longer minimal (Chow:1972b).

- (3) Optimal policies for internal-external balance may be viewed as inadmissible for a given economy because they violate the limits set upon policy variable—magnitudes for political, social or technical reasons. Whenever these boundary conditions become active, a trade-off occurs between attainment of the joint balance and feasibility or consistency of policy-instruments.
- (4) If Tinbergen's rule is not satisfied, an additional trade-off occurs among the targets and optimal policies for internal-external balance are no longer uniquely determined, but a function of the trade-off. Analysis of a range of penalty functions reveals changes in optimal control policies with welfare weights q₃₃ and q₄₄.
- (5) Optimal control theory provides the appropriate framework for structuring and investigating the problem of internal-external balance under the assumption of the existence of only one policymaker or of a centralization of powers. However, this assumption certainly does not hold as the interdependence between countries with different goals increases. In this study, the optimal control tools have failed to take the case of decentralized economic policy, the conflicts in targets and the reactions from other countries to our own optimal

policies into account. Therefore, the suggested picture of the mechanism of economic policy derived from recognition of the existence of more than one controller is one of a game between various controllers. Only the theoretical presentation of a two-player deterministic multistage game has been introduced. Its applications are left to further researches.

6.2. Further Research Recommendations


- economic model the assumptions of a linear model and a quadratic cost function are made for their convenient analytical properties rather than for their relationship to economic reality. For example, the potential output of the economy, $\overline{\tilde{Y}}_{it}$, it was taken to be a linear function of the labor force and capital stock. This was an approximation to the nonlinear Cobb-Douglas production function which is generally held by economists to be the proper form. This approximation was made to more easily fit the problem into control system format. Thus, the effects of nonlinearities on the performance of a control system should be done in this case.
- (2) In this study, along with Pindyck (1972, 1973), deterministic control theory has been applied to the one- and two-country models since for the class of

linear and quadratic optimal control problems use can be made of the "Separation Theorem" or certainty-equivalence principle to treat stochastic addition disturbances in a neat way. The stochastic optimal solution is the same as obtained under the deterministic control problem. However, recently Chow has shown and measured the welfare gains of stochastic optimal control over deterministic optimal control (Chow:1972c). It would be very useful to build a "noise" model and to recommend further research on the nongaussian, nonlinear and nonquadratic aspects of optimal control theory and differential games.

- (3) The sensitivity analysis of the weighting factors on the components of target as well as of control vector reveals significant changes in "amended" optimal control policies. However, in addition to its quadratic property, the penalty function is restrictive in two senses. First, all of the off-diagonal elements are zero, meaning that no interaction exists between targets and between instruments. Secondly, the welfare weights are chosen arbitrarily to perform the sensitivity analysis. Therefore, quantitative research by economists is recommended to establish the magnitude and shape of a more general penalty function.
- (4) To be able to apply differential games theory, more complex and detailed models than that of Votey's using

quarterly data are required to incorporate the assumptions of decentralization in decision-making, of active responses from Country II, of conflicting targets and of policy interdependence.

(5) Many other areas of research related to differential games areas and its application to economics are interesting and appear to be fruitful. A selected bibliography on this particular topic is presented in Appendix A-13.

BIBLIOGRAPHY

- Albouy, M. and A. Breton (1968), "Interpretation Economique du Principe du Maximum," Revue Française d'Informatique et de R. O., Novembre, pp. 37-68.
- Aghveli, B. B. and G. H. Borts (1973), "The Stability and Equilibrium of the Balance of Payments under a Fixed Exchange Rage,"

 Journal of International Economics, Vol. 3, No. 1, February, pp. 1-20.
- Allen, R. G. D. (1968), Macroeconomics, Macmillan, New York.
- Argy, V. (1971), "Monetary Policy and Internal and External Balance,"

 IMF Staff Papers, Vol. XVIII, November, pp. 508-27.
- Arndt, S. W. (1972), "Macroeconomic Planning in an Open Economy,"

 Stabilization Policies in Interdependent Economies, (eds.) E.

 Classen and P. Salin, North-Holland, Amsterdam.
- Athans, M. and G. Chow (1972), "Introduction to Stochastic Control Theory and Economic Systems," Annals of Economic and Social Measurement, Vol. 1, No. 4, October, pp. 375-84.
- Athans, M. (1972), "The Discrete Time Linear Quadratic Gaussian Stochastic Control Problem," Annals of Economic and Social Measurement, Vol. 1, No. 4, October, pp. 449-92.
- Baggott, N. and M. J. Flanders (1969), "Economic Policy in an Open Economy: A Reader's Guide," *Economia Internazionale*, Vol. XXII, November, pp. 1-15.
- Brainard, W. (1967), "Uncertainty and the Effectiveness of Policy," American Economic Review, Vol. 57, May.
- Brito, D. L. (1970), "On the Limits of Economic Control," Unpublished Ph.D. Dissertation, Department of Economics, Rice University, Houston, Texas.
- Baumol, W. J. (1961), "Pitfalls in Contracyclical Policies: Some Tools and Results," The Review of Economics and Statistics, February.

- Buchanan, L. F. (1968), "Optimal Control of Macroeconomic Systems," Unpublished Ph.D. Dissertation, Los Angeles, University of California.
- . (1969), "Problems in Optimal Control of Macroeconomic Systems,"

 Computing Methods in Optimization Problems, (eds.) M. Beckmann
 and H. P. Kunzi, Springer-Verlag, Berlin, Heidelberg, New York,
 pp. 30-42.
- Buchanan, L. F., and F. E. Norton (1971), "Optimal Control Applications in Economic Systems," Advances in Control Systems, (ed.) C. T. Leondes, Vol. 8, Academic Press, New York.
- Caves, R. E. and G. L. Reuber (1971), "International Capital Markets and Canadian Economic Policy under Flexible and Fixed Exchange Rates, 1952-69," Paper Presented at a Conference on U.S.-Canadian Economic Relations Convened by the Federal Reserve Bank of Boston at Melvin Village, New Haven, September.
- Caves, R. and R. Jones (1972), World Trade and Payments, Macmillan, New York.
- Chang, S. S. L. and T. K. C. Peng (1971), "Dynamic Model and Control of Mixed Economy," Paper No. T5-2, Proc. of 1971 IEEE Conference on Decision and Control, University of Florida.
- Cheng, D. C. and S. Wan (1972), "Time Optimal Control of Inflation," (Mimeo) Georgia Institute of Technology, October.
- Chow, G. C. (1967), "Multiplier, Accelerator, and Liquidity Preference in the Determination of National Income in the United States,"

 The Review of Economics and Statistics, Vol. XLIX, February,
 No. 1, pp. 1-15.
- _____. (1970), "Optimal Stochastic Control of Linear Economic Systems,"

 Journal of Money, Credit and Banking, August, No. 3, pp. 291-302.
- _____. (1972a), "Optimal Control of Linear Econometric Systems with Finite Time Horizon," International Economic Review, February, 13, pp. 16-25.
- . (1972b), "How Much Could Be Gained by Optimal Stochastic Control Policies," *Econometric Research Program*, Research Memorandum No. 138, Princeton University, April.
- . (1972c), "Problems of Economic Policy from the Viewpoint of Optimal Control," Econometric Research Program, Research Memorandum No. 139, Princeton University, May.
- Colm, G. (1969), "Economic Stabilization Policy," Economics and the Policy Maker: Brookings Lectures, 1958-1959, The Brookings Institution, Washington, D.C., pp. 27-44.

- Cooper, R. N. (1969), "Macroeconomic Policy Adjustment in Interdependent Economies," Quarterly Journal of Economics, Vol. LXXXIII, No. 1, February, pp. 1-24.
- Cooper, J. P. and S. Fischer (1972), "Stabilization Policy and Lags: Summary and Extension," Annals of Economic and Social Measurement, Vol. 1, No. 4, October, pp. 407-18.
- Corden, W. M. (1961), "The Geometric Representation of Policies to Attain Internal and External Balance," Review of Economic Studies, Vol. 28, October, pp. 1-22.
- Culbertson, J. H. (1968), Macroeconomic Theory and Stabilization Policy, McGraw Hill, New York.
- _____. (1970), "A Program of Stabilization Policy," Paper Presented at Western Economic Association, 45th Annual Conference, August, University of California, Davis.
- Dobell, A. R. (1967), "Some Characteristic Features of Optimal Control Problems in Economic Theory," *IEEE Trans. on Automat. Control*, Vol. AC-14, No. 1, February, pp. 39-48.
- Dorfman, R. (1969), "An Economic Interpretation of Optimal Control Theory," American Economic Review, Vol. LIX, December, pp. 817-31.
- Erickson, D. L. (1968), "Sensitivity Constrained Optimal Control Policies for a Dynamic Model of the U.S. National Economy," Unpublished Ph.D. Dissertation, Los Angeles, UCLA.
- Erickson, D. L., C. T. Leondes and F. E. Norton (1970), "Optimal Decision and Control Policies in the National Economy," Proc. 1970 IEEE Symposium on Adaptive Processes, Decision, and Control, University of Texas, Austin.
- Erickson, D. L. and F. E. Norton (1973), "Application of Sensitivity Constrained Optimal Control to National Economic Policy Formulation," Control and Dynamic System: Advances in Theory and Application, (ed.) C. T. Leondes, Vol. 9, Academic Press, New York.
- Fan, L. T. and C. S. Wang (1964), The Discrete Maximum Principle: A Study of Multistage Systems Optimization, Wiley, New York.
- Fischer, S. and J. P. Cooper (1971), "Stabilization Policy and Lags in a Closed Economy," (Mimeo) Department of Economics, University of Chicago, Chicago, August.
- Fleming, M. (1968), "Targets and Instruments," *IMF Staff Papers*, Vol. XV, November, pp. 387-402.

- Fox, K. A. and E. Thorbecke (1965), "Specification of Structures and Data Requirements in Economic Policy Models," *Quantitative Planning of Economic Policy*, (ed.) B. G. Hickmann, Washington, D.C., The Brookings Institution, pp. 43-85.
- Fox, K., J. Sengupta and E. Thorbecke (1966), The Theory of Quantitative Economic Policy, North-Holland, Amsterdam.
- Friedlaender, F. (1973), "Macro Policy Goals in the Postwar Period:

 A Study in Revealed Preference," Quarterly Journal of Economics,
 February.
- Friedman, B. M. (1972), "Optimal Economic Stabilization Policy: An Extended Framework," *Journal of Political Economy*, Vol. 80, No. 5, Sept./Oct., pp. 1002-22.
- _____. (1973), Methods in Optimization for Economic Stabilization Policy, North-Holland, Amsterdam.
- Gramlich, E. M. (1971), "The Usefulness of Monetary and Fiscal Policy as Discretionary Stabilization Tools," Journal of Money, Credit and Banking, May 3, pp. 506-32.
- Hadjimichalakis, M. G. (1972), "Stabilization Policies in Dynamic Models," Paper Presented at the 1972 A. E. A. Convention in Toronto.
- Halkin, H. (1964), "Optimal Control for Systems Described by Difference Equations," Advances in Control Systems: Theory and Applications, (ed.) C. T. Leondes, Vol. 1, Academic Press, New York, pp. 173-96.
- Haurie, A., B. Jacquet and A. van Petersen (1973), "Optimal Control of a Non Linear Econometric Model of Canada Using the Method of Multipliers," (Mimeo) Ecole des Hautes Etudes Commerciales, Montreal, November.
- Hay, G. A. and C. C. Holt (1973), "A General Solution for Linear Decision Rules: An Optimal Dynamic Strategy Applicable Under Uncertainty," (Mimeo).
- Helliwell, J. (1969), "Monetary and Fiscal Policies for an Open Economy," Oxford Economic Papers, March.
- Henderson, D. W. and S. J. Turnovsky (1972), "Optimal Macroeconomic Policy Adjustment under Conditions of Risk," *Journal of Economic Theory*, February.
- Hickmann, B. G. (ed.) (1965), Quantitative Planning of Economic Policy, The Brookings Institution, Washington, D.C.

- Holbrook, R. S. (1972a), "Optimal Policy Choice under a Non Linear Constraint," (Mimeo), University of Michigan, Ann Arbor, March.
- _____. (1972b), "Optimal Economic Policy and the Problem of Instrument Instability," American Economic Review, March, 62, pp. 57-65.
- Holt, C. C. (1962), "Linear Decision Rules for Economic Stabilization and Growth," Quarterly Journal of Economics, Vol. LXXVI, February, pp. 20-45.
- _____. (1965), "Quantitative Decision Analysis and National Policy:

 How Can We Bridge the Gap?" Quantitative Planning of Economic Policy, (ed.) B. G. Hickmann, The Brookings Institution,
 Washington, D.C.
- Howrey, P. E. (1967), "Stabilization Policy in Linear Stochastic Systems," The Review of Economics and Statistics, Vol. XLIX, No. 3, August.
- Intrilligator, M. D. (1971), Mathematical Optimization and Economic Theory, Prentice-Hall, New Jersey: Englewood Cliffs.
- Johnson, H. (1966), "The Objectives of Economic Policy and the Mix of Fiscal and Monetary Policy under Fixed Exchange Rates," Maintaining and Restoring Balance in International Payments, (eds.) W. Fellner, F. Machlup, R. Triffin et al., Princeton University Press, Princetion, New Jersey.
- Jones, R. (1968), "Monetary and Fiscal Policy for an Economy with Fixed Exchange Rates," *Journal of Political Economy*, Vol. 76, No. 4, Part II, July/August, pp. 921-43.
- Kaldor, N. (1971), "Conflicts in National Economic Objectives," Economic Journal, March.
- Kalman, R. E. (1964), "When is a Linear Control System Optimal?" Trans. of ASME Journal of Basic Engineering, Vol. 86, Series D, March, pp. 51-60.
- Kamien, M. I. and N. L. Schwartz (1971), "Sufficient Conditions in Optimal Control Theory," *Journal of Economic Theory*, Vol. 3, June, pp. 207-14.
- Kendrick, D. A. and L. Taylor (1970), "Numerical Solution of Non Linear Planning Models," *Econometrica*, Vol. 38, No. 3, May, pp. 453-67.
- Kendrick, D. A. (1971), "Control Theory in Economic Models: Survey,"
 Paper No. W7-1, Proc. of 1971 IEEE Conference on Decision and
 Control, University of Florida, pp. 80-84.

- _____. (1973), "Optimal Control and Cocoa Market," (Mimeo) University of Texas, Austin, Texas.
- Kirschen, E. S. and L. Morissens (1965), "The Objectives and Instruments of Economic Policy," Quantitative Planning of Economic Policy, (ed.) B. G. Hickmann, The Brookings Institution, Washington, D.C., pp. 111-25.
- Klein, L. R., R. J. Ball, A. Hazelwood and P. Vandome (1961), An Econometric Model of the United Kingdom, Basil Blackwell, Oxford.
- Krainer, R. E. (1973), "Economic Structure and the Assignment Problem: A Contribution to the Theory of Macroeconomic Policy for Net Creditor Countries," Canadian Journal of Economics, Vol. VI, May, pp. 239-47.
- Krishna, K. T. (1969), "The Existence of an Optimal Economic Policy," Econometrica, Vol. 37, October, pp. 600-10.
- Krueger, A. (1969), "Balance of Payments Theory," Journal of Economic Literature, Vol. VII, No. 1, March.
- Lamfalussy, A. (1966), "Limitations of Monetary and Fiscal Policy,"

 Maintaining and Restoring Balance in International Payments,

 (eds.) W. Fellner, F. Machlup, R. Triffin et al., Princeton
 University Press, Princeton, New Jersey.
- Leland, H. E. (1972), "On the Existence of Optimal Policies under Uncertainty," Journal of Economic Theory, Vol. 4, February, pp. 35-44.
- Livesey, D. A. (1970a), "The Modeling and Control of U. K. Economy,"

 Paper Presented at the Second World Congress of the Econometric Society, Cambridge, England, September.
- _____. (1970b), "Application of Control to an Elementary Econometric Model," (Mimeo) GPP 337, University of Cambridge, Cambridge, England, October.
- _____. (1971), "Optimizing Short Term Economic Policy," Economic Journal, September.
- _____. (1973), "Can Macro Economic Planning Problems Be Treated as a Quadratic Regulator Problem?" (Mimeo) University of Cambridge, Cambridge, England, July.
- Magill, M. J. P. (1970), "On a General Economic Theory of Motion,"

 Lecture Notes in Operations Research and Mathematical Systems,

 (eds.) M. Beckmann and H. P. Kunzi, Springer-Verlag, Berlin,

 Heidelberg, New York.

- Karkus, L. (1969), "Dynamic Keynesian Economic Systems: Control and Identification," Mathematical Systems Theory and Economics I, (eds.) H. W. Kuhn and G. P. Szego, Springer-Verlag, Heidelberg, New York.
- McFadden, D. (1969), "On the Controllability of Decentralized Macro-economic Systems: The Assignment Problem," Mathematical Systems Theory and Economics I, (eds.) H. W. Kuhn and G. P. Szego, Springer-Verlag, Heidelberg, New York.
- Meade, J. E. (1951), The Theory of International Economic Policy, Vol. I: The Balance of Payments, Oxford University Press, London.
- . (1972), The Controlled Economy, State University of New York Press, Albany.
- Mundell, R. A. (1960), "The Monetary Dynamics of International Adjustment under Fixed and Flexible Exchange Rates," Quarterly Journal of Economics, May.
- _____. (1962), "The Appropriate Use of Monetary and Fiscal Policy for Internal and External Stability," IMF Staff Papers, Vol. IX, March, pp. 70-9.
- . (1965), "A Fallacy in the Interpretation of Macroeconomic Equilibrium," Journal of Political Economy, Vol. LXX, No. 1, pp. 61-7.
- _____. (1968), International Economics, Macmillan, New York.
- von Neumann Whitman, M. (1970), "Policies for Internal and External Balance," Special Papers in International Economics, No. 9, Princeton University, Princeton, December.
- Niehans, J. (1968), "Monetary and Fiscal Policies in Open Economies under Fixed Exchange Rates: An Optimizing Approach," Journal of Political Economy, Vol. LXXVI, Part II, July/August, pp. 893-920.
- Norman, A. L. (1971), "Optimal Economic Policy and Econometric Models," Paper No. W7-2, Proc. of 1971 IEEE Conference on Decision and Control, University of Florida, pp. 85-95.
- Ott, D. N. and A. F. Ott (1968), "Monetary and Fiscal Policy: Goals and the Choice of Instruments," Quarterly Journal of Economics, Vol. 82, May.
- Packer, A. H. (1972), Models of Economic Systems, The MIT Press, Cambridge, Massachusetts.

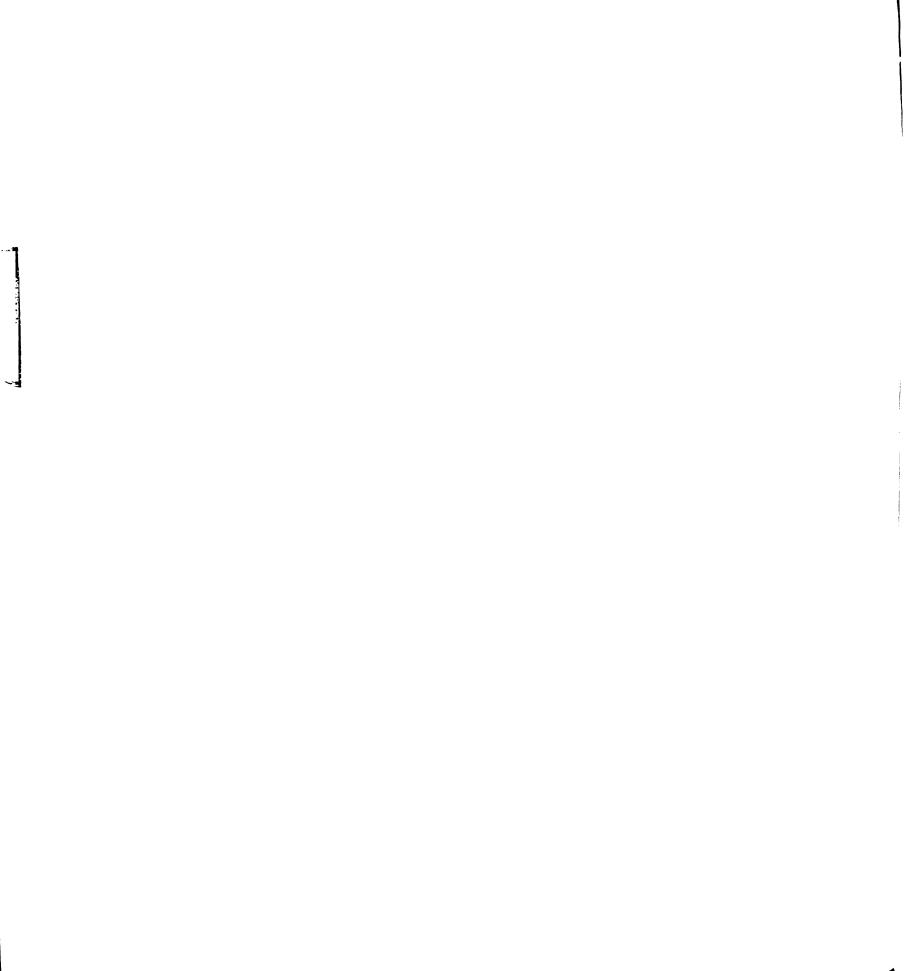
- Park, J. G. (1973), "Choice of Performance Index for the Optimal Control of Macroeconomic Systems," Unpublished Ph.D. Dissertation, Department of Economics, Michigan State University, East Lansing.
- Park, J. G. and K. Y. Lee (1974), "An Inverse Optimal Control Problem and Its Application to the Choice of Performance Index for Economic Stabilization Policy," (Mimeo) Department of Electrical Engineering and Systems Science, Michigan State University, East Lansing.
- Parks, P. G. and G. Pyatt (1969), "Controlling the Economy: An Exercise in Collaboration," *Electronics and Power*, August, pp. 270-74.
- Paryani, K. (1972), "Optimal Control of Linear Discrete Macroeconomic Systems," Unpublished Ph.D. Dissertation, Department of Electrical Engineering and Systems Science, Michigan State University, East Lansing.
- Patrick, J. (1968), "The Optimum Policy Mix: Convergence and Consistency," Essays on International Trade and Finance, (eds.) P.B. Kenen and R. Lawrence, Columbia University Press, New York, pp. 263-88.
- _____. (1973), "Establishing Convergent Decentralized Policy Assignment," Journal of International Economics, Vol. 3, No. 1, February, pp. 37-52.
- Phillips, A. W. (1954), "Stabilization Policy in a Closed Economy," Economic Journal, Vol. 64, June, pp. 290-323.
- . (1957), "Stabilization Policy and Time Form of the Lagged Responses," Economic Journal, Vol. 67, June, pp. 265-77.
- _____. (1968), "Models for the Control of Economic Fluctuations,"

 Mathematical Model Building in Economics and Industry, Charles
 Griffin and Company Limited, New York.
- Pindyck, R. S. (1972a), "An Application of the Linear Quadratic Tracking Problem to Economic Stabilization Policy," *IEEE Trans. Automat. Control*, Vol. AC-17, June, pp. 287-300.
- _____. (1972b), "The Discrete Time Tracking Problem with a Time

 Delay in the Control," IEEE Trans. Automat. Control, Vol. AC-17,

 June, pp. 397-98.
- . (1972c), "Optimal Stabilization Policies via Deterministic Control," Annals of Economic and Social Measurement, Vol. 1, No. 4, October, pp. 385-90.

- . (1973), Optimal Planning for Economic Stabilization, North-Holland, Amsterdam.
- Polak, J. J. (1962), "International Coordination of Economic Policy," *IMF Staff Papers*, Vol. IX, June, pp. 149-81.
- Quirk, J. and A. Zarley (1968), Papers in Quantitative Economics, (eds.) J. Quirk and A. Zarley, The University Press of Kansas, Lawrence, pp. 433-62.
- Reston, M. H. (1972), "The Correlation Between Targets and Instruments," Economica, Vol. XXXIX, No. 156, November.
- Sakakibara, E. (1969), "Optimal Growth and Stabilization Policies," Unpublished Ph.D. Dissertation, University of Michigan, Ann Arbor.
- _____. (1970), "Dynamic Optimization and Economic Policy," American Economic Review, Vol. LX, No. 5, December, pp. 826-36.
- Salin, P. (1972), "Macroeconomic Policy in an Open Economy," Stabilization Policies in Interdependent Economies, (eds.) E. Classen and P. Salin, North-Holland, Amsterdam.
- Saving, T. R. (1967), "Monetary Policy Targets and Indicators,"


 Journal of Political Economy, Vol. LXXV, Supplement, Part II,
 August, pp. 446-56.
- Sengupta, J. K., G. Tintner and B. Morrison (1963), "Stochastic Linear Programming with Applications to Economic Models," *Economica*, Vol. 30, August, pp. 262-76.
- Sengupta, J. K. (1970), "Optimal Stabilization Policy with a Quadratic Criterion Function," The Review of Economic Studies, Vol. XXXVII (1), No. 109, January, pp. 127-46.
- Shell, K. (1969), "Application of Pontryagin's Maximum Principle to Economics," Mathematical Systems Theory and Economics I, (eds.) H. W. Kuhn and G. P. Szego, Springer-Verlag, Heidelberg, Berlin, New York.
- Shupp, F. R. (1972), "Uncertainty and Stabilization Policies for a Non Linear Macroeconomic Model," Quarterly Journal of Economics, Vol. LXXXVI, February, pp. 94-110.
- Simon, H. A. (1956), "Dynamic Programming under Uncertainty with a Quadratic Criterion Function," *Econometrica*, Vol. 24, January, pp. 74-81.
- Stein, J. L. and E. F. Infante (1973), "Optimal Stabilization Paths," Journal of Money, Credit and Banking, Vol. V, No. 1, February.

- Stern, R. M. (1973), The Balance of Payments, Aldine Publishing Company, Chicago.
- Swoboda, A. K. (1972), "On Limited Information and the Assignment Problem," Stabilization Policies in Interdependent Economies, (eds.) E. Classen and P. Salin, North-Holland, Amsterdam.
- Sworder, D. (1966), "Optimal Control of Discrete Time Stochastic Systems,"

 Journal of Mathematical Analysis and Application, Vol. XV.
- Takayama, A. (1972), International Trade: An Approach to the Theory, Macmillan, New York.
- Thai Van Can (1972), "Capital Flow and International Adjustment," Unpublished Ph.D. Dissertation, Michigan State University, East Lansing.
- Theil, H. (1957), "A Note on Certainty Equivalence in Dynamic Planning," Econometrica, Vol. 25, April, pp. 346-49.
- _____. (1958), Economic Forecasts and Policy, North-Holland, Amsterdam.
- _____. (1964), Optimal Decision Rules for Government and Industry, North-Holland, Amsterdam.
- _____. (1965), "Linear Decision Rules for Macrodynamic Policy Problems,"

 Quantitative Planning of Economic Policy, (ed.) B. G. Hickman,
 Chap. 2, pp. 18-42, The Brookings Institution, Washington, D.C.
- Tinbergen, J. (1952), On the Theory of Economic Policy, First Edition, North-Holland, Amsterdam.
- _____. (1954), Centralization and Decentralization in Economic Policy, North-Holland, Amsterdam.
- . (1955), On the Theory of Economic Policy, Second Edition,
 North-Holland, Amsterdam.
- _____. (1964), Central Planning, Yale University Press, New Haven, Connecticut.
- _____. (1967), Economic Policy: Principles and Design, North-Holland, Amsterdam.
- Turnovsky, S. J. (1971), "Optimal Government Stabilization in a Simple Multiplier-Accelerator Economy," Proc. of 1971 IEEE Conference on Decision and Control, pp. 109-13.
- _____. (1973), "Optimal Stabilization Policies for Deterministic and Stochastic Linear Economic Systems," Review of Economic Studies, January, 40, pp. 79-95.

- . (1974), "The Stability Properties of Optimal Economic Policies," American Economic Review, Vol. LXIV, No. 1, March, pp. 136-48.
- Tustin, A. (1953), The Mechanism of Economic Systems, Harvard University Press, Cambridge.
- Van den Bogaard, P. J. M. and H. Theil (1959), "Macrodynamic Policy Making: An Application of Strategy and Certainty Equivalence to the Economy of the U.S.: 1933-36," *Metroeconomica*, Vol. XI, pp. 149-67.
- Van de Panne, C. (1965), "Optimal Strategy for Dynamic Linear Decision Rules in Feedback Form," *Econometrica*, Vol. 33, April, pp. 307-20.
- Van Eijk, C. J. and J. Sandee (1959), "Quantitative Determination of an Optimal Economic Policy," *Econometrica*, 27, pp. 1-13.
- Votey, H. L. (1968), "A One and a Two-Country Dynamic Model to Consider the Simultaneous Achievement of Internal and External Balance," Unpublished Ph.D. Dissertation, University of California, Berkeley.
- Whittle, P. (1969), "A View of Stochastic Control Theory," Journal of Royal Statistical Society, Series A, pp. 320-24.
- Wishart, D. M. G. (1972), "A Survey of Control Theory," Journal of Royal Statistical Society, Series A, June, pp. 293-319.
- Wonham, W. M. (1968), "On the Separation Theorem of Stochastic Control," SIAM Journal of Control, 6, pp. 312-26.
- _____. (1969), "Optimal Stochastic Control," Automatica, 5, pp. 113-18.
- Wrightsman, W. (1970), "IS, LM and External Equilibrium," American Economic Review, Vol. LX, No. 1, March, pp. 203-08.
- Yeager, L. (1966), International Relations, Harper and Row, New York.

APPENDICES

APPENDIX A-1

THE REDUCED FORM OF ONE-COUNTRY MODEL

The Votey's model is composed of:

5 functional equations:

(E-1)
$$Y_{1t} = \delta_{10} + \delta_{11} K_{1t} + \delta_{12} L_{1t}$$

(E-2)
$$C_{1t} = \alpha_{10}^{+} + \alpha_{11} Y_{1t} - \alpha_{11} T_{1t} - \alpha_{11} \delta * K_{1t}$$

(E-3)
$$M_{1t} = \beta_{10} + \beta_{11} Y_{1t} - \beta_{11} T_{1t} - \beta_{11} \delta * K_{1t} + \beta_{12} TT_{1t}; TT_{1t} = (Px) + (PM)_{1t}$$

(E-4)
$$I_{1t}^{n} = (\gamma_{10} - \gamma_{12} \delta^*) + \gamma_{11} Y_{1t-1} + \gamma_{13} K_{1t-1} - \gamma_{12} Y_{1t-1}$$

(E-5)
$$0_{1t} = \eta_{10} + \eta_{11} r_{2t} - \eta_{11} r_{1t}$$

4 identities:

$$(I-1)$$
 $Y_{1t} = C_{1t} + I_{1t}^G + G_{1t} + X_{1t} - M_{1t}$

$$(I-2)$$
 $B_{1t} = X_{1t} - M_{1t} - O_{1t}$

$$(I-3)$$
 $K_{1t} = 1_{1t}^{n} + K_{1t-1}$

$$(I-4)$$
 $K_{1t}^{G} = I_{1t}^{n} + \delta * K_{1t}$

Substituting (I-4), (E-2), (E-3), (E-4) into (I-1); (E-3), (E-5) into (I-2); and (E-4) into (I-3):

$$\begin{array}{lll} \text{(I-la)} & \text{(1-α}_{11}$^{+$\beta$}_{11}$) & \text{Y}_{1t} & \text{+ } \delta * (\alpha_{11}$^{-$\beta$}_{11}$^{-1}) \text{K}_{1t} & \text{= } \gamma_{11}$^{Y}_{1t-1}$^{+γ}_{13} & \text{K}_{1t-1}$^{-$\gamma$}_{12}$^{t}_{1t-1}$^{+$G$}_{1t} \\ & & \text{+ } (\alpha_{10}$^{+$\gamma$}_{10}$^{-γ}_{12} & \delta * - \beta_{10})$^{-}(\alpha_{11}$^{-β}_{11})$^{T}_{1t}$^{+X}_{1t} & \text{- } \beta_{12} & \text{TT}_{1t} \\ & & \text{+ } (\alpha_{10}$^{+$\gamma$}_{10}$^{-γ}_{12} & \delta * - \beta_{10})$^{-}(\alpha_{11}$^{-β}_{11})$^{T}_{1t}$^{+X}_{1t} & \text{- } \beta_{12} & \text{TT}_{1t} \\ & & \text{+ } (\alpha_{10}$^{+$\gamma$}_{10}$^{-γ}_{12} & \delta * - \beta_{10})$^{-}(\alpha_{11}$^{-β}_{11})$^{T}_{1t}$^{+X}_{1t} & \text{- } \beta_{12} & \text{TT}_{1t} \\ & & \text{+ } (\alpha_{10}$^{+$\gamma$}_{10}$^{-γ}_{12} & \delta * - \beta_{10})$^{-}(\alpha_{11}$^{-β}_{11})$^{T}_{1t}$^{+X}_{1t} & \text{- } \beta_{12} & \text{TT}_{1t} \\ & & \text{+ } (\alpha_{10}$^{+$\gamma$}_{10}$^{-γ}_{12} & \delta * - \beta_{10})$^{-}(\alpha_{11}$^{-β}_{11})$^{T}_{1t}$^{+X}_{1t} & \text{- } \beta_{12} & \text{TT}_{1t} \\ & & \text{+ } (\alpha_{10}$^{+$\gamma$}_{10}$^{-γ}_{12} & \delta * - \beta_{10})$^{-}(\alpha_{11}$^{-β}_{11})$^{T}_{1t}$^{+X}_{1t} & \text{- } \beta_{12} & \text{TT}_{1t} \\ & & \text{+ } (\alpha_{10}$^{+$\gamma$}_{10}$^{-γ}_{12})$^{-}(\alpha_{11}$^{-γ}_{11})$^{-}(\alpha_{11}$^{-γ}_{11})$^{-}(\alpha_{11}$^{-γ}_{12})$^{-}(\alpha_{11}$^{-γ}_{11})$^{-}(\alpha_{11}$^{-γ}_{12})$^{-}(\alpha_{11}$^{-γ}_{12})$^{-}(\alpha_{11}$^{-γ}_{12})$^{-}(\alpha_{11}$^{-}(\alpha_{11})$^{-}(\alpha_{11}$$

(I-2a)
$$\beta_{11}^{Y}_{1t}^{+\beta_{1t}^{-\beta_{11}}} \delta^{*}_{1t} = \eta_{11}^{r}_{1t}^{-(\beta_{10}^{+\eta_{10}})} + \beta_{11}^{T}_{1t}^{T}_{1t} + X_{1t}^{-\beta_{12}}^{TT}_{1t}$$

$$- \eta_{11}^{r}_{2t}$$

(I-3a)
$$K_{1t} = Y_{11} Y_{1t-1} + (1 + Y_{13}) K_{1t-1} - Y_{12} Y_{1t-1} + (Y_{10} - Y_{12}) \delta *$$

Let us make the following transformation:

$$(I-5a)$$
 $Y_{1t} = \tilde{Y}_{1t} + \delta_{11} K_{1t}$

$$(I-6a)$$
 $Y_{1t-1} = \tilde{Y}_{1t-1} + \delta_{11} K_{1t-1}$

where \tilde{Y}_{1t} is the potential output net of capital depreciation. Substituting (I-5a) and (I-6a) into (I-1a), (I-2a) and (I-3a):

(I-1b)
$$a_{11} \tilde{Y}_{1t} + a_{12} K_{1t} = \gamma_{11} \tilde{Y}_{1t-1} + a_{14} K_{1t-1} - \gamma_{12} r_{1t-1} + G_{1t}$$

+ $a_{16} - a_{17} T_{1t} + X_{1t} - \beta_{12} TT_{1t}$

(I-2b)
$$\beta_{11} \tilde{Y}_{1t} + B_{1t} + a_{22} K_{1t} = n_{11} r_{1t} - a_{26} + \beta_{11} T_{1t} + X_{1t}$$

$$- \beta_{12} TT_{1t} - n_{11} r_{2t}$$

(I-3b)
$$K_{1t} = \gamma_{11} \tilde{Y}_{1t-1} + a_{34} K_{1t-1} - \gamma_{12} r_{1t-1} + a_{36}$$

where:

$$a_{11} = 1 - \alpha_{11} + \beta_{11}$$
 $a_{22} = \beta_{11} (\delta_{11} - \delta^*)$
 $a_{12} = a_{11} (\delta_{11} - \delta^*)$ $a_{26} = \beta_{10} + \beta_{10}$

$$a_{14} = \gamma_{13} + \gamma_{11} \delta_{11}$$

$$a_{16} = \alpha_{10} + \gamma_{10} - \gamma_{12} \delta^* - \beta_{10}$$

$$a_{34} = 1 + \gamma_{13} + \gamma_{11} \delta_{11}$$

$$a_{17} = \alpha_{11} - \beta_{11}$$

$$a_{36} = \gamma_{10} - \gamma_{12} \delta^*.$$

In matrix notation, the above set of difference equations becomes:

$$\begin{bmatrix} a_{11} & 0 & a_{12} \\ \beta_{11} & 1 & a_{22} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{Y}_{1t} \\ \beta_{1t} \\ K_{1t} \end{bmatrix} = \begin{bmatrix} 11 & 0 & a_{14} \\ 0 & 0 & 0 \\ \gamma_{11} & 0 & a_{34} \end{bmatrix} \begin{bmatrix} \tilde{Y}_{1t-1} \\ \beta_{1t-1} \\ K_{1t-1} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & \eta_{11} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} G_{1t} \\ \Gamma_{1t} \end{bmatrix}$$

$$+ \begin{bmatrix} 0 & -\gamma_{12} \\ 0 & 0 \\ 0 & -\gamma_{12} \end{bmatrix} \begin{bmatrix} a_{16} & -\beta_{12} & -a_{17} & 1 & 0 \\ a_{26} & -\beta_{12} & \beta_{11} & 1 & -\eta_{11} \\ a_{36} & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ TT_{1t} \\ T_{1t} \\ X_{1t} \\ r_{2t} \end{bmatrix}$$

Multiplying both sides of the matrix-equation by:

$$\begin{bmatrix} Q_{11} & 0 & -Q_{13} \\ -Q_{21} & 1 & Q_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & a_{12} \\ & & & & \\ & & & \\ & & & & \\ & &$$

we get the reduced form for the one-country econometric model:

$$\begin{bmatrix} \mathbf{Y}_{1t} \\ \mathbf{B}_{1t} \\ \mathbf{K}_{1t} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & 0 & \mathbf{A}_{13} \\ \mathbf{A}_{21} & 0 & \mathbf{A}_{23} \\ \mathbf{11} & 0 & \mathbf{a}_{34} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{Y}}_{1t-1} \\ \mathbf{B}_{1t-1} \\ \mathbf{K}_{1t-1} \end{bmatrix} + \begin{bmatrix} \mathbf{Q}_{11} & 0 \\ -\mathbf{Q}_{21} & \eta_{11} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{G}_{1t} \\ \mathbf{r}_{1t} \end{bmatrix} + \begin{bmatrix} 0 & \mathbf{A}_{15} \\ 0 & \mathbf{A}_{25} \\ 0 & -\gamma_{12} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{G}_{1t-1} \\ \mathbf{G}_{1t-1} \\ \mathbf{G}_{21} & \mathbf{D}_{12} & \mathbf{D}_{13} & \mathbf{Q}_{11} & 0 \\ \mathbf{D}_{21} & \mathbf{D}_{22} & \mathbf{D}_{23} & \mathbf{1} - \mathbf{Q}_{21} & -\eta_{11} \\ \mathbf{A}_{36} & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{TT}_{1t} \\ \mathbf{T}_{1t} \\ \mathbf{X}_{1t} \\ \mathbf{T}_{2t} \end{bmatrix}$$

where:

$$Q_{11} = 1/a_{11}$$

$$Q_{13} = a_{12}/a_{11}$$

$$Q_{21} = \beta_{11}/a_{11}$$

$$Q_{21} = \beta_{11}/a_{11}$$

$$Q_{23} = \frac{\beta_{11} a_{12}}{a_{11}} - a_{22}$$

$$D_{11} = Q_{11} a_{16} - Q_{13} a_{36}$$

$$D_{12} = -Q_{11} \beta_{12}$$

$$D_{13} = -Q_{11} a_{17}$$

$$D_{21} = Q_{23} a_{36} - Q_{21} a_{16} - a_{26}$$

$$A_{11} = (Q_{11} - Q_{13}) \gamma_{11} \qquad D_{22} = \beta_{12} (Q_{21} - 1)$$

$$A_{13} = Q_{11} a_{14} - Q_{13} a_{34} \qquad D_{23} = Q_{21} a_{17} + \beta_{11}$$

$$A_{15} = -\gamma_{12} (Q_{11} - Q_{13})$$

$$A_{21} = (-Q_{21} + Q_{23}) \gamma_{11}$$

$$A_{23} = -Q_{21} a_{14} + Q_{23} a_{34}$$

$$A_{25} = -(-Q_{21} + Q_{23}) \gamma_{12}$$

In matrix notation, the structural form of the one-country econometric model is:

(A-1.1)
$$y_t = \overline{A} y_{t-1} + \overline{B} u_t + \overline{C} u_{t-1} + \overline{D} z_t$$

And using Votey's estimated structural constants:

$$\alpha_{10} = 52.27$$
 $\beta_{10} = 14.59$ $\gamma_{10} = 31.707$ $\delta_{10} = 0$ $\eta_{10} = -0.6915$
 $\alpha_{11} = 0.75$ $\beta_{11} = 0.131$ $\gamma_{11} = -0.0027$ $\delta_{11} = .2051$ $\eta_{11} = 46.279$
 $\alpha_{12} = N.S.$ $\beta_{12} = -28.35$ $\gamma_{12} = 461.7$ $\delta_{12} = 4.02$
 $\gamma_{13} = 0.0624$ $\delta * = .0489$

We compute the numerical values for the matrices \overline{A} , \overline{B} , \overline{C} , \overline{D} :

$$\overline{A} = \begin{bmatrix} -.0067 & 0 & -.00364 \\ .0092 & 0 & -.02129 \\ -.0027 & 0 & 1.0618 \end{bmatrix}; \overline{B} = \begin{bmatrix} 2.6247 & 0 \\ -.3438 & 46.279 \\ 0 & 0 \end{bmatrix}; \overline{C} = \begin{bmatrix} 0 & -1139.7064 \\ 0 & 158.7518 \\ 0 & 0 \end{bmatrix}$$

$$\overline{D} = \begin{bmatrix} 121.4358 & 74.4102 & -1.6246 & 2.6247 & 0 \\ -29.9921 & 18.6032 & 0.3438 & 0.6562 & -46.279 \\ 9.1299 & 0 & 0 & 0 & 0 \end{bmatrix}$$

APPENDIX A-2

THE DETERMINISTIC LINEAR QUADRATIC TRACKING PROBLEM: A SUMMARY OF CHOW'S AND PINDYCK'S APPROACHES

A-2.1. Pindyck's Approach

R. S. Pindyck in his recent book (Pindyck:1973) studies the application of optimal control theory to the problem of short-term economic stabilization policy. He formulates the above problem as a linear quadratic tracking problem; that is, given the standard "state-space" system:

(A-2.1a)
$$x_{t+1}^{P} = A^{P}x_{t}^{P} + B^{P}u_{t}^{P} + C^{P}z_{t}^{P}$$
.

or

(A-2.1b)
$$x_{t+1}^P - x_t^P = F^P x_t^P + B^P u_t^P + C^P z_t^P$$
 with $A^P \stackrel{d}{=} I + F^P$ and the

initial condition:

$$(A-2.2) x(0) = x_0$$

The problem consists of minimizing the social welfare cost function

(A-2.3)
$$J^{P} = \frac{1}{2} \sum_{t=1}^{N} \{ [x_{t}^{P} - \overline{x}_{t}^{P}]' Q^{P} [x_{t}^{P} - \overline{x}_{t}^{P}] + [u_{t}^{P} - \overline{u}_{t}^{P}]' R^{P}$$

$$[u_{t}^{P} - \overline{u}_{t}^{P}] \}$$

where:

 $\mathbf{x}^P \in \mathbf{E}^n$ is the state variable vector, $\mathbf{u}^P \in \mathbf{E}^r$ is the control variable \mathbf{p} fector, $\overline{\mathbf{x}} \in \mathbf{E}^n$ and $\overline{\mathbf{u}} \in \mathbf{E}^r$ are the nominal state and control vectors to be tracked, $\mathbf{z}^P \in \mathbf{E}^s$ is the exogenous noncontrolled variable vector, $\mathbf{A}^P \stackrel{d}{=} \mathbf{I} + \mathbf{F}^P$ is an n x n matrix, \mathbf{B}^P is an n x r matrix, \mathbf{C}^P is an n x s matrix; the elements of \mathbf{A}^P , \mathbf{B}^P and \mathbf{C}^P are assumed to be known and time invariant; \mathbf{Q}^P is an n x n positive semi-definite matrix, \mathbf{R}^P is an r x r positive semi-definite matrix.

Using the minimum principle method, Pindyck solves the discrete linear quadratic tracking problem. In other words, for $u_{\mathsf{t}}^{\mathsf{P}}$ to be minimal the following necessary conditions must be satisfied:

$$(A-2.4) \quad \frac{\delta \mathcal{U}_{t}}{\delta u_{t}^{P}} \quad |_{\mathbf{x}_{t}} = 0$$

with the canonical equations:

(A-2.5)
$$x_{t+1}^{P*} - x_{t}^{P*} = \frac{\delta \mathcal{U}_{t}}{\delta \lambda_{t+1}^{P}}$$
 $x_{t}^{P*} = F^{P}x_{t}^{P*} + B^{P}u_{t}^{P*} + C^{P}z_{t}^{P}$

(A-2.6)
$$\lambda_{t+1}^{P*} - \lambda_{t}^{P*} = \frac{\delta \mathcal{H}_{t}}{\delta x_{t}^{P}} \quad |_{x_{t}^{P*}} = -Q^{P} [x_{t}^{P*} - \overline{x}_{t}^{P*}] - F^{P'} x_{t+1}^{P*}$$

and the boundary conditions:

$$(A-2.2) x(0) = x_0$$

(A-2.7)
$$x_N^{P*} = \frac{1}{2} \frac{\delta}{\delta x} \{ [x_N^{P*} - \overline{x}_N^P]' Q^P [x_N^{P*} - \overline{x}_N^P] \} = Q^P [x_N^{P*} - \overline{x}_N^P] \}$$

where dis the Hamiltonian and is given by:

$$(A-2.8) \quad \begin{cases} \left[\mathbf{x}_{t}^{P}, \ \mathbf{x}_{t+1}^{P}, \ \mathbf{u}_{t}^{P} \right] = \frac{1}{2} \left[\mathbf{x}_{t}^{P} - \overline{\mathbf{x}}_{t}^{P} \right]' \quad Q^{P} \left[\mathbf{x}_{t}^{P} - \overline{\mathbf{x}}_{t}^{P} \right] + \frac{1}{2} \left[\mathbf{u}_{t}^{P} - \overline{\mathbf{u}}_{t}^{P} \right]' \\ \\ R^{P} \left[\mathbf{u}_{t}^{P} - \overline{\mathbf{u}}_{t}^{P} \right] + \mathbf{x}_{t+1}^{P'} \left[F^{P} \mathbf{x}_{t}^{P} + B^{P} \mathbf{u}_{t}^{P} + C^{P} \mathbf{z}_{t}^{P} \right]$$

The procedure to solve equation A-2.5 through equation A-2.8 has been exposed in details in Pindyck's book. Here, a summary of the different steps to obtain the optimal control u_t^{p*} is presented:

(i) Solve the Riccati equation given by:

$$(A-2.9) K_{t}^{P} = Q^{P} + A^{P'} \{K_{t+1}^{P} - K_{t+1}^{P} B^{P} C R^{P} + B^{P'} K_{t+1}^{P} B^{P} J A^{P}\}$$

with the boundary condition:

$$(A-2.10) \quad K_N^P = Q^P$$

backwards in time to get values for K_t ; t = 1,...,N. Store the resulting matrices.

(ii) Solve the tracking equation given by:

$$(A-2.11) \quad k_{t}^{P} = -A^{P'} \{K_{t+1}^{P} - K_{t+1}^{P} B^{P} C R^{P} + B^{P'} K_{t+1}^{P} B^{P} C^{-1} B^{P'} K_{t+1}^{P} \}$$

$$B^{P} (R^{P})^{-1} B^{P'} K_{t+1}^{P} + A^{P'} K_{t+1}^{P} + A^{P'} \{K_{t+1}^{P} - K_{t+1}^{P} B^{P} C R^{P} + B^{P'} K_{t+1}^{P} B^{P} C^{-1} B^{P'} K_{t+1}^{P} \} [B^{P} C^{P} C$$

with the boundary condition:

$$(A-2.12) k_N^P = -Q^P \overline{x}_N$$

backwards in time to get values for k_t ; t = 1,...,N. Store the resulting vectors.

(iii) Compute the optimal control u*(0) from the following equation:

$$(A-2.13) \quad u_{t}^{*} = -\left[R^{P} + B^{P'}K_{t+1}^{P}B^{P}\right]^{-1} B^{P'}K_{t+1}^{P}A^{P}x_{t}^{P*} + \left[R^{P}\right]^{-1} B^{P'}K_{t+1}^{P}B^{P}(R^{P})^{-1}B^{P'}k_{t+1}^{P}$$

$$+ B^{P'}K_{t+1}^{P}B^{P}\right]^{-1}B^{P'}K_{t+1}^{P}B^{P}(R^{P})^{-1}B^{P'}k_{t+1}^{P}$$

$$- (R^{P})^{-1}B^{P'}k_{t+1}^{P} - \left[R^{P} + B^{P'}K_{t+1}^{P}B^{P}\right]^{-1}B^{P'}$$

$$K_{t+1}^{P}\left[B^{P}\overline{u}_{t}^{P} + C^{P}z_{t}^{P}\right] + \overline{u}_{t}^{P}$$

using $x(0) = x_0$. Then compute x*(1) from the "state-space" equation (A-2.1a). Now x*(1) can be used in equation A-2.13 to compute u*(2), which can be used in equation A-2.1a to compute x*(2) and so on. Continue the process until all of the u_t^* , $t = 1, \ldots, N-1$ and all of the x_t^* , $t = 1, \ldots, N$ have been computed.

(iv) The optimal cost \hat{J}^P can be computed from equation A-2-3. It is noted that when there is no limit on the instrument variable magnitudes that is when $R^P = 0$, the Ricatti and tracking equations are reduced to (Park:1973):

$$(A-2.14) -K_{+} = Q^{P}$$
 \forall t \{0,...,N}

(A-2.15)
$$k_t = -Q^P \bar{x}_t^P$$
 $\forall t \{0,...,N\}$

and Pindyck's result or equation A-2.13 becomes:

$$(A-2.16) \quad u_{t}^{P*} = -(B^{P'}Q^{P}B^{P})^{-1} B^{P'} Q^{P}A^{P}x_{t}^{P*} + (B^{P'} Q^{P}B^{P})^{-1} B^{P'}Q^{P}\overline{x}_{t+1}^{P}$$

$$- (B^{P'} Q^{P}B^{P})^{-1} B^{P'} Q^{P}C^{P}z_{t}^{P}.$$

A-2.2. Chow's Approach

G. Chow, in a series of papers (Chow:1970a, 1970b, 1972a, 1972b, 1972c), has formulated the linear quadratic (L.Q.) optimal tracking problem in a different way from the standard one, as follows: minimize the welfare cost function

(A-2.17)
$$J^{c} = \frac{1}{2} \sum_{t=1}^{N} \{ [x_{t}^{c} - \overline{x}_{t}^{c}]^{T} Q_{t}^{c} [x_{t}^{c} - \overline{x}_{t}^{c}] \}$$

given the dynamic system

$$(A-2.18)$$
 $x_t^c = A_t^c x_{t-1}^c + B_t^c u_t^c + C_t^c z_t^c$

where:

 $x_t^c \stackrel{d}{=} a$ vector of current of lagged dependent variables as well as current and lagged control variables.

 $\frac{c}{x_t} \stackrel{d}{=} a$ target vector which has the same dimension as x_t^c .

 $u_{t}^{c} \stackrel{d}{=} a$ vector of controlled variables.

 $z_t^c \stackrel{d}{=}$ a vector including the exogenous and noncontrolled variables and the constant term. It is assumed to be given constant.

 $Q_t^c \stackrel{d}{=} a$ known symmetric, diagonal and positive semi-definite matrix.

 A_t^c , B_t^c , $C_t^c \stackrel{d}{=}$ given constant matrices.

Then using either Lagrange multiplier method (Chow:1972b) or Bellman's dynamic programming (Chow:1972c) he arrives at the following results:

(i) for the last period t = N

$$u_{N}^{c*} = K_{N}^{c} x_{N}^{c*} + k_{N}^{c}$$

$$x_{N}^{c*} = [A_{N}^{c} + B_{N}^{c} K_{N}^{c}] x_{N-1}^{c*} + C_{N}^{c} z_{N}^{c} + B_{N}^{c} k_{N}^{c}$$

where:

$$K_{N}^{c} = -\left[B_{N}^{cT} \quad H_{B}^{c} \quad B_{N}^{c}\right]^{-1} \quad B_{N}^{cT} \quad H_{N}^{c} \quad A_{N}^{c}$$

$$k_{N}^{c} = -\left[B_{N}^{cT} \quad H_{N}^{c} \quad B_{N}^{c}\right]^{-1} \quad B_{N}^{cT} \quad \left[H_{N}^{c} \quad C_{N}^{c} \quad z_{N}^{c} - h_{N}^{c}\right]$$

$$H_{N}^{c} = Q_{N}^{c}$$

$$h_{N}^{c} = Q_{N}^{c} \quad \overline{x}_{N}^{c}$$

(ii) for the period t = N-1

$$u_{N-1}^{c*} = K_{N-1}^{c} \times_{N-1}^{c*} + k_{N-1}^{c}$$

$$x_{N-1}^{c*} = \left[A_{N-1}^{c} + B_{N-1}^{c} K_{N-1}^{c} \right] \times_{N-2}^{c*} + C_{N-1}^{c} \times_{N-1}^{c} + B_{N-1}^{c} \times_{N-1}^{c}$$

where:

$$\begin{split} & K_{N-1}^{c} = - \left[B_{N-1}^{c}^{T} \ H_{N-1}^{c} \ B_{N-1}^{c} \right]^{-1} \ B_{N-1}^{c}^{T} \ H_{N-1}^{c} \ A_{N-1}^{c} \\ & k_{N-1}^{c} = - \left[B_{N-1}^{c}^{T} \ H_{N-1}^{c} \ B_{N-1}^{c} \right]^{-1} \ B_{N-1}^{c}^{T} \left[H_{N-1}^{c} \ C_{N-1}^{c} \ z_{N-1}^{c} - h_{N-1}^{c} \right] \\ & H_{N-1}^{c} = Q_{N-1}^{c} + A_{N}^{cT} \ H_{N}^{c} \left[A_{N}^{c} + C_{N}^{c} \ K_{N}^{c} \right] \\ & h_{N-1}^{c} = Q_{N-1}^{c} \ \overline{x}_{N-1}^{c} - A_{N-1}^{c}^{T} \ H_{N}^{c} \left[C_{N}^{c} \ z_{N}^{c} + B_{N}^{c} \ k_{N}^{c} \right] + A_{N}^{cT} \ h_{N}^{c} \end{split}$$

(iii) and so on until the period $t = t_1$.

It is interesting to note that for the time-invariant optimal control problem, that is, a problem in which $A_t^c = A^c$, $B_t^c = B^c$, $C_t^c = C^c$, and $Q_t^c = Q$, Chow's results are reduced to:

$$(A-2.19)$$
 $u_t^{c*} = K^c x_{t-1}^{c*} + k_t^c$

where:

$$K^{c} = -(B^{c'}H^{c}B^{c})^{-1}B^{c'}H^{c}A^{c}$$

$$k_{t}^{c} = -(B^{c'}H^{c}B^{c})^{-1} [H^{c}C^{c}z_{t}^{c} - h_{t}^{c}]$$

$$H^{c} = Q^{c} + (A^{c} + B^{c}K^{c})^{T} Q(A^{c} + B^{c}K^{c}) + [(A^{c} + B^{c}K^{c})^{T}]^{2} Q^{c}(A^{c} + B^{c}Q^{c})^{2} + ...$$

$$h_{t}^{c} = Q^{c} \overline{x}_{t}^{c} + (A^{c} + B^{c} K^{c})^{T} [Q^{c} \overline{x}_{t+1}^{c} - H^{c} C^{c} z_{t+1}^{c}].$$

Substituting $K^c = -(B^c'H^cB^c)^{-1}B^c'H^cA^c$, the expressions H^c and h_t^c are reduced to:

$$H^{C} = Q^{C}$$

$$h_t^c = Q^c \overline{x}_t$$

Therefore, equation A-2.19 becomes:

$$(A-2.20) \quad u_{t}^{c*} = -(B^{c'}Q^{c}B^{c})^{-1} B^{c'}Q^{c}A^{c}x_{t-1}^{c*} + (B^{c'}Q^{c}B^{c})^{-1} B^{c'}Q^{c}\overline{x}_{t}^{c}$$

$$- (B^{c'}Q^{c}B^{c})^{-1} B^{c'}Q^{c}C^{c}z_{t}^{c}.$$

APPENDIX A-3

ON THE EQUIVALENCE OF PINDYCK'S AND CHOW'S OPTIMAL CONTROL SOLUTION WHEN THERE IS NO CONSTRAINT ON INSTRUMENT-VARIABLE MAGNITUDES

Generally speaking, the optimal control problem consists of minimizing a social welfare cost function subject to a given dynamic "state-space" system. The main difference between Pindyck's and Chow's optimal control frameworks rests upon the definition of the "state-space" system. It will be shown that, when there is no constraint on instrument-variable magnitudes, that is, when the weights attached to the deviations from the instrument limits are zero, i.e., $R^P = 0$, both formulations lead to the same optimal result in terms of endogenous and exogenous variables of the econometric model.

Let the reduced form of a linear econometric model be of the following form:

(A-3.1)
$$y_t = \overline{A} y_{t-1} + \overline{B} u_t + \overline{C} u_{t-1} + \overline{D} z_t$$

where $y \in E^n$ is the endogenous variable, $u \in E^r$ is the exogenous controlled variable, \overline{A} is a n x n matrix, \overline{B} and \overline{C} are n x r matrices, \overline{D} is a n x s matrix.

First, the optimal control problem is formulated into Pindyck's terminology and then into Chow's terminology. According to Pindyck,

the above macroeconometric model must be arranged into the following state-space system:

(A-3.2)
$$x_t^P = A^P x_{t-1}^P + B^P u_{t-1}^P + C^P z_{t-1}^P$$

where $x_t^P \stackrel{d}{=} \left[y_t - \overline{B} \ u_t - \overline{D} \ z_t \right] \in E^n$ is the state variable vector after transformation, $u_{t-1}^P \stackrel{d}{=} u_{t-1} \in E^n$ is the control vector, $z_{t-1}^P \stackrel{d}{=} z_{t-1} \in E^s$ is the exogenous variable vector, $A^P \stackrel{d}{=} \overline{A}$ is n x n matrix, $B^P \stackrel{d}{=} \overline{A} \overline{B} + \overline{C}$ is n x r matrix, $C^P \stackrel{d}{=} \overline{A} \overline{D}$ is n x s matrix. Given this "state-space" system (A-3.2) the optimal control problem consists of finding u_t^{P*} which minimizes the following cost functional:

(A-3.3)
$$J^{P} = \frac{1}{2} \sum_{t=1}^{N} \left[(x_{t-1}^{P} - \overline{x}_{t-1}^{P})' \ Q^{P} \ (x_{t-1}^{P} - \overline{x}_{t-1}^{P}) + (u_{t-1}^{P} - \overline{u}_{t-1}^{P})' \ R^{P} \ (u_{t-1}^{P} - \overline{u}_{t-1}^{P})' \right]$$

where $\overline{x}_{t-1}^P \stackrel{d}{=} \left[\overline{Y}_{t-1} - \overline{B} \ u_{t-1} - \overline{D} \ z_{t-1} \right] \in E^n$ is the nominal state vector, $\overline{u}_{t-1}^P \stackrel{d}{=} \overline{u}_{t-1} \in E^r$ is the nominal control vector, \overline{Q}^P is $(n \times n)$ symmetric, positive definite matrix, \overline{R}^P is $(r \times r)$ symmetric, positive definite matrix. Under the assumption of $\overline{R}^P = 0$, Pindyck's optimal solution is (Park:1973):

$$(A-3.4) \quad u_{t-1}^{P*} = -(B^{P'}Q^{P}B^{P})^{-1} B^{P'}Q^{P}A^{P}x_{t-1}^{P*} + (B^{P'}Q^{P}B^{P})^{-1} B^{P'}Q^{P}\overline{x}_{t}^{P}$$

$$- (B^{P'}Q^{P}B^{P})^{-1} B^{P'}Q^{P}C^{P}z_{t-1}^{P}$$

Now in Chow's terminology [Chow:1972(a,b)] the deterministic optimal control problem is to find $u_{\mathsf{t}}^{\mathsf{c*}}$ which minimizes the following welfare cost function

(A-3.5)
$$J^{c} = \frac{1}{z} \int_{t=1}^{N} (x^{c} - \overline{x}_{t}^{c})! Q^{c} (x^{c} - \overline{x}_{t}^{c})$$

given the dynamic system

$$(A-3.6)$$
 $x_{t}^{c} = A^{c} x_{t-1}^{c} + B^{c} u_{t}^{c} + C^{c} z_{t}^{c}$

where $x_t^c \stackrel{d}{=} [y_t \ | \ u_t]' \in E^{n+r}$ is the vector of current endogenous and controlled variable, $u_t^c \stackrel{d}{=} u_t \in E^r$ is the control vector, $z_t^c \stackrel{d}{=} z_t \in E^s$ is the vector of exogenous noncontrolled variables, $\overline{x}_t^c \stackrel{d}{=} [y_t \ | \overline{u}_t]' \in E^{n+r}$ is the vector of nominal endogenous and controlled variables; where

$$A^{c} \stackrel{d}{=} \begin{bmatrix} \overline{A} & \overline{C} \\ nxn & nxr \\ 0 & 0 \\ rxn & mxr \end{bmatrix}$$
 is $(n+r) \times (n+r)$ matrix

$$C^{c} \stackrel{d}{=} \begin{bmatrix} \overline{D} \\ nxs \\ 0 \\ rxs \end{bmatrix}$$
is $(n+r)$ x s matrix
$$Q^{c} \stackrel{d}{=} \begin{bmatrix} Q^{P} & 0 \\ nxr & nxr \\ 0 & 0 \\ rxn & rxr \end{bmatrix}$$
is $(n+r)$ x $(n+r)$ symmetric and positive definite matrix

Under the assumption of time invariant coefficient matrices, Chow's optimal solution is:

$$(A-3.7) \quad u_{t}^{c*} = -(B^{c} Q^{c} B^{c})^{-1} B^{c} Q^{c} A^{c} x_{t-1}^{c*} + (B^{c} Q^{c} B^{c})^{-1} B^{c} Q^{c} x_{t}^{c*}$$

$$- (B^{c} Q^{c} B^{c})^{-1} B^{c} Q^{c} C^{c} z_{t}^{c*}$$

And now it is shown that under the assumption of no constraints on instrument-variable magnitudes, i.e., $R^P = 0$, Pindyck's approach leads to the same optimal solution as Chow's approach.

First expressing Chow's optimal control solution in terms of y_t , u_t , z_t , \overline{A} , \overline{B} , \overline{C} , \overline{D} and Q^P , equation A-3.7 becomes:

$$\mathbf{u}_{t}^{\star} = - \left[\begin{array}{ccc} (\overline{\mathbf{B}}^{\dagger} & \mathbf{I}) & \begin{pmatrix} \mathbf{Q}^{\mathbf{P}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} & \begin{pmatrix} \overline{\mathbf{B}} \\ \mathbf{I} \end{pmatrix} \right]^{-1} \quad (\overline{\mathbf{B}}^{\dagger} \mid \mathbf{I}) \quad \left[\begin{array}{ccc} \mathbf{Q}^{\mathbf{P}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right]$$

$$\begin{bmatrix} \overline{A} & \overline{C} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y_{t-1}^* \\ u_{t-1}^* \end{bmatrix} + \begin{bmatrix} \overline{B}' & 1 \end{pmatrix} \begin{pmatrix} Q^P & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \overline{B} \\ 1 \end{pmatrix}^{-1}$$

$$(\overline{B}' \mid I) \quad \begin{bmatrix} Q^P \mid 0 \\ \hline 0 \mid 0 \end{bmatrix} \quad \begin{bmatrix} \overline{y}_t \\ \hline \overline{u}_t \end{bmatrix} \quad (\overline{B}' \mid I) \quad \begin{pmatrix} Q^P \mid 0 \\ \hline 0 \mid 0 \end{pmatrix} \begin{bmatrix} \overline{B} \\ \hline I \end{bmatrix}^{-1}$$

$$\begin{bmatrix} (\overline{B}' \mid I) & \begin{pmatrix} Q^P & I & 0 \\ - & - & - & - \\ 0 & | & 0 \end{pmatrix} & \begin{pmatrix} \overline{D} \\ - & 0 \end{pmatrix} \end{bmatrix} z_{E}$$

$$(A-3.9) \quad u^*_{t} = -\left[(\overline{B}^{t} Q^{P} \overline{B})^{-1} \ \overline{B}^{t} Q^{P} \overline{A} \ | \ (\overline{B}^{t} Q^{P} \overline{B})^{-1} \ \overline{B}^{t} Q^{P} \overline{C} \ \right] \begin{bmatrix} y^*_{t-1} \\ t-1 \\ u^*_{t-1} \end{bmatrix}$$

$$+ \left[(\overline{B}'Q^{P}\overline{B})^{-1} \overline{B}'Q^{P} \right] 0 \left[\overline{y}_{t} \right] - (\overline{B}'Q^{P}B)^{-1} \overline{B}'Q^{P}\overline{D} z_{t}$$

or

$$(A-3.10) \quad \mathbf{u}_{\mathsf{t}}^{\star} = -(\overline{\mathtt{B}}' \mathbf{Q}^{P} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}' \mathbf{Q}^{P} \overline{\mathtt{A}} \ \mathbf{y}_{\mathsf{t}-1}^{\star} + (\overline{\mathtt{B}}' \mathbf{Q}^{P} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}' \mathbf{Q}^{P} \ \overline{\mathbf{y}}_{\mathsf{t}}$$

$$- (\overline{\mathtt{B}}' \mathbf{Q}^{P} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}' \mathbf{Q}^{P} \overline{\mathtt{C}} \ \mathbf{u}_{\mathsf{t}-1}^{\star} - (\overline{\mathtt{B}} \mathbf{Q}^{P} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}' \mathbf{Q}^{P} \overline{\mathtt{D}} \ \mathbf{z}_{\mathsf{t}}$$

Then substituting $x_{t-1}^{P*} = y_{t-1}^* - \overline{B} u_{t-1}^* - \overline{D} z_{t-1}$ and $\overline{x}_t^P = \overline{y}_t - \overline{B} u_t^* - \overline{D} z_t$

into equation A-3.10, it becomes:

$$(A-3.11) \quad u_{t-1}^{*} = -(B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{A} \left[y_{t-1}^{*} - \overline{B} u_{t-1}^{*} - \overline{D} z_{t-1} \right]$$

$$+ (B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \left[\overline{y}_{t} - \overline{B} u_{t}^{*} - \overline{D} z_{t} \right] - (B^{P} \cdot Q^{P} B^{P})^{-1}$$

$$+ (B^{P} \cdot Q^{P} C^{P} z_{t-1})$$

Substituting $C^{P} = \overline{A} \overline{D}$ into equation A-3.11 and rearranging the terms:

$$(A-3.12) \quad u_{t-1}^{*} = -(B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{A} \quad y_{t-1}^{*} + (B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{A} \quad \overline{B} \quad u_{t-1}^{*}$$

$$+ (B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{y}_{t} - (B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{B} \quad u_{t}^{*}$$

$$- (B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{D} \quad z_{t}$$

Then u* is given by:

$$(A-3.13) \quad \left[(B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{B} \right] u_{t}^{*} = -(B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{A} \quad y_{t-1}^{*}$$

$$+ \left[(B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{A} \quad \overline{B} - I \right] u_{t-1}^{*} + (B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{y}_{t}$$

$$- (B^{P} \cdot Q^{P} B^{P})^{-1} \quad B^{P} \cdot Q^{P} \overline{D} \quad z_{t}.$$

$$(A-3.14) \quad u_{t}^{*} = \left[(B^{P} \cdot Q^{P} B^{P})^{-1} B^{P} \cdot Q^{P} \overline{B} \right]^{-1} \left\{ -(B^{P} \cdot Q^{P} B^{P})^{-1} B^{P} \cdot Q^{P} \overline{A} y_{t-1}^{*} \right.$$

$$+ \left[(B^{P} \cdot Q^{P} B^{P})^{-1} B^{P} \cdot Q^{P} \overline{A} \overline{B} - I \right] u_{t-1}^{*} + (B^{P} \cdot Q^{P} B^{P})^{-1} B^{P} \cdot Q^{P} \overline{y}_{t}$$

$$- (B^{P} \cdot Q^{P} B^{P})^{-1} B^{P} \cdot Q^{P} \overline{D} z_{t}^{*} \right\} .$$

Let us examine the following expression:

$$(A-3.15) \quad (B^P,Q^PB^P)^{-1} \quad B^P,Q^PB = (B^P,Q^PB^P)^{-1} \quad B^P,Q^P(Q^P)^{-1} \quad (\overline{B}')^{-1} \quad (\overline{B}',Q^PB)^{-1} \quad (\overline{B}',$$

And the inverse of expression A-3.15 is:

$$(A-3.16) \quad \left[(B^P,Q^PB^P)^{-1} \quad B^P,Q^P\overline{B} \right]^{-1} = (\overline{B},Q^P\overline{B})^{-1} \quad \overline{B},Q^P(Q^P)^{-1}(B^P,Q^P)^{-1} \quad (B^P,Q^PB^P)^{-1} \quad (B^P,Q^PB^$$

Substituting A-3.16 into equation A-3.14:

$$(A-3.17) \quad u_{t}^{\star} = -(\overline{B}^{\dagger}Q^{P}\overline{B})^{-1} \; \overline{B}^{\dagger}Q^{P}(Q^{P})^{-1}(B^{P})^{-1} \; (B^{P}^{\dagger}Q^{P}B^{P}) \; (B^{P}^{\dagger}Q^{P}B^{P})^{-1}$$

$$B^{P}^{\dagger}Q^{P}\overline{A} \; y_{t-1}^{\star} + (\overline{B}^{\dagger}Q^{P}\overline{B})^{-1} \; \overline{B}^{\dagger}Q^{P}(Q^{P})^{-1} \; (B^{P}^{\dagger})^{-1} \; (B^{P}^{\dagger}Q^{P}B^{P})$$

$$(B^{P}^{\dagger}Q^{P}B^{P})^{-1} \; B^{P}^{\dagger}Q^{P}\overline{A} \; \overline{B} \; u_{t-1}^{\star} - (\overline{B}^{\dagger}Q^{P}\overline{B})^{-1} \; \overline{B}^{\dagger}Q^{P}(Q^{P})^{-1}$$

$$(B^{P}^{\dagger})^{-1} \; (B^{P}^{\dagger}Q^{P}B^{P}) \; u_{t-1}^{\star} + (\overline{B}^{\dagger}Q^{P}\overline{B})^{-1} \; \overline{B}^{\dagger}Q^{P}(Q^{P})^{-1} \; (B^{P}^{\dagger})^{-1}$$

$$(B^{P}^{\dagger}Q^{P}B^{P}) \; (B^{P}^{\dagger}Q^{P}B^{P})^{-1} \; B^{P}^{\dagger}Q^{P} \; \overline{y}_{t} - (\overline{B}^{\dagger}Q^{P}\overline{B})^{-1} \; \overline{B}^{\dagger}Q^{P}$$

$$(Q^{P})^{-1} \; (B^{P}^{\dagger})^{-1} \; (B^{P}^{\dagger}Q^{P}B^{P}) \; (B^{P}^{\dagger}Q^{P}B^{P})^{-1} \; B^{P}^{\dagger}Q^{P}\overline{D} \; z_{t}$$

Rearranging the terms, equation A-3.17 becomes:

$$(A-3.18) \quad \mathbf{u}_{\mathsf{t}}^{\star} = -(\overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} \overline{\mathtt{A}} \ \mathbf{y}_{\mathsf{t}-1}^{\star} + (\overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} (\overline{\mathtt{A}} \ \overline{\mathtt{B}} - \mathtt{B}^{\mathsf{P}}) \ \mathbf{u}_{\mathsf{t}-1}^{\star}$$

$$+ (\overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} \ \overline{\mathtt{y}}_{\mathsf{t}} - (\overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} \overline{\mathtt{B}})^{-1} \ \overline{\mathtt{B}}^{\mathsf{!}} \mathbf{Q}^{\mathsf{P}} \overline{\mathtt{D}} \ \mathbf{z}_{\mathsf{t}}$$

Substituting $B^P = \overline{A} \overline{B} + \overline{C}$ into equation A-3.18:

$$(A-3.19) \quad \mathbf{u}_{\mathsf{t}}^{\star} = -(\overline{\mathtt{B}}'\mathsf{Q}^{P}\overline{\mathtt{B}})^{-1} \; \overline{\mathtt{B}}'\mathsf{Q}^{P}\overline{\mathtt{A}} \; \mathbf{y}_{\mathsf{t}-1}^{\star} - (\overline{\mathtt{B}}'\mathsf{Q}^{P}\overline{\mathtt{B}})^{-1} \; \overline{\mathtt{B}}'\mathsf{Q}^{P}\overline{\mathtt{C}} \; \mathbf{u}_{\mathsf{t}-1}^{\star}$$

$$+ (\overline{\mathtt{B}}'\mathsf{Q}^{P}\overline{\mathtt{B}})^{-1} \; \overline{\mathtt{B}}'\mathsf{Q}^{P} \; \overline{\mathtt{y}}_{\mathsf{t}} - (\overline{\mathtt{B}}'\mathsf{Q}^{P}\overline{\mathtt{B}}) \; \overline{\mathtt{B}}'\mathsf{Q}^{P}\overline{\mathtt{D}} \; \mathbf{z}_{\mathsf{t}} \qquad \text{Q.E.D.}$$

Therefore, Pindyck's optimal solution expressed in terms of the endogenous, exogenous-controlled and noncontrolled-variables is equivalent to that of Chow (equation A-3.10) even if the formulation of the state-space system is different. This equivalence verifies the property of uniqueness of the optimal control; that is, different formulations or approaches always lead to the same unique solution.

APPENDIX A-4

COMPUTATIONS OF THE OPTIMAL SOLUTION FOR THE ONE-COUNTRY CONTROL PROBLEM

Chow's optimal solution is given by equation A-2.20 (Appendix A-2):

$$(A-2.20) \quad u_{t}^{*} = -(B^{c},Q^{c}B^{c})^{-1} \quad B^{c},Q^{c}A^{c}x_{t-1}^{c} + (B^{c},Q^{c}B^{c})^{-1} \quad B^{c},Q^{c}\overline{x}_{t}^{c}$$

$$- (B^{c},Q^{c}B^{c})^{-1} \quad B^{c},Q^{c}C^{c}z_{t}^{c}.$$

where

$$x_{t}^{c} \stackrel{d}{=} \begin{bmatrix} \tilde{Y}_{1t}^{*}, B_{1t}^{*}, K_{1t}^{*}, G_{1t}^{*}, r_{1t}^{*} \end{bmatrix}'$$

$$u_{t}^{c} \stackrel{d}{=} \begin{bmatrix} G_{1t}^{*}, r_{1t}^{*} \end{bmatrix}'$$

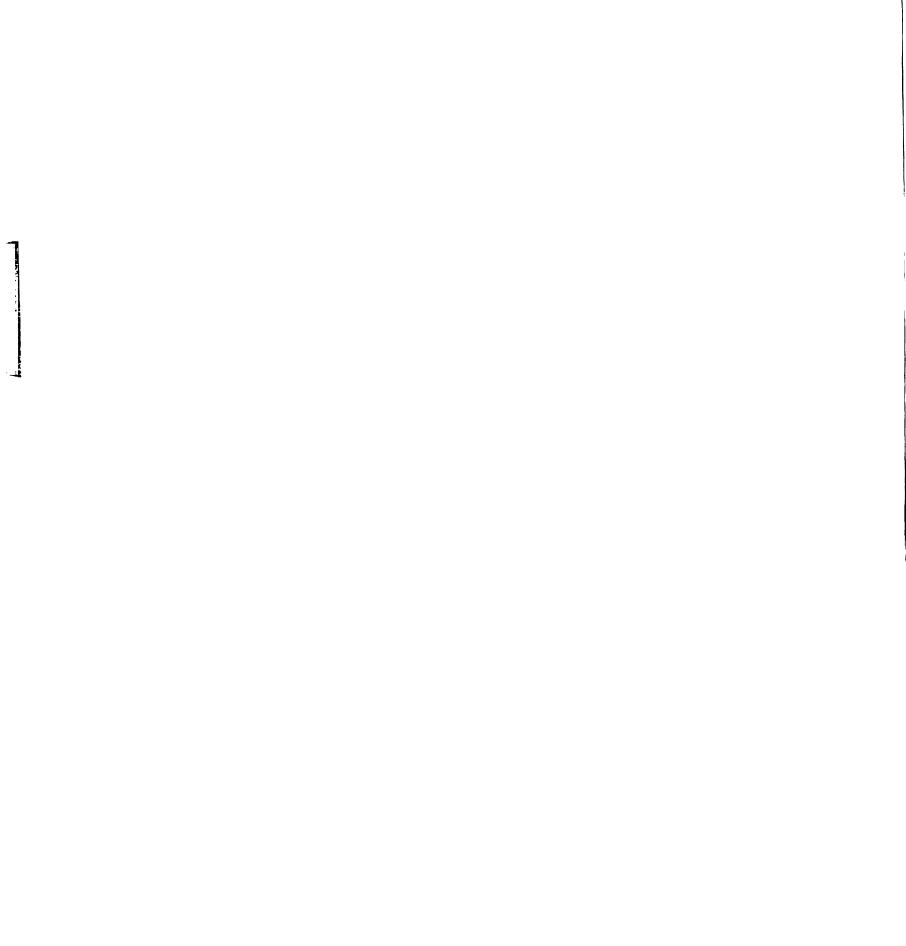
$$z_{t}^{c} \stackrel{d}{=} \begin{bmatrix} 1, TT_{1t}, T_{1t}, X_{1t}, r_{2t} \end{bmatrix}'$$

$$\overline{X}_{t}^{c} \stackrel{d}{=} \begin{bmatrix} \tilde{Y}_{1t}, \overline{B}_{1t}, \overline{K}_{1t}, \overline{G}_{1t}, \overline{r}_{1t} \end{bmatrix}' \stackrel{d}{=} \begin{bmatrix} \delta_{10} + \delta_{12}L_{1t}, 0, \overline{K}_{1t}, \overline{G}_{1t}, \overline{r}_{1t} \end{bmatrix}'$$

$$A^{c} = \begin{bmatrix} A_{11} & 0 & A_{13} & 0 & A_{15} \\ A_{21} & 0 & A_{23} & 0 & A_{25} \\ Y_{11} & 0 & a_{34} & 0 & -Y_{12} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}; B^{c} = \begin{bmatrix} Q_{11} & 0 \\ -Q_{21} & \eta_{11} \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$; \mathbf{c^c} = \begin{bmatrix} \mathbf{p_{11}} & \mathbf{p_{12}} & \mathbf{p_{13}} & \mathbf{q_{11}} & \mathbf{0} \\ \mathbf{p_{21}} & \mathbf{p_{22}} & \mathbf{p_{23}} & \mathbf{1} - \mathbf{q_{21}} & - \mathbf{q_{11}} \\ \mathbf{a_{36}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \quad ; \mathbf{q^c} = \begin{bmatrix} \mathbf{q_{11}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{q_{22}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Computing


$$\begin{bmatrix} q_{11}Q_{11} & -q_{22}Q_{21} & 0 & 0 & 0 \\ 0 & q_{22} & 11 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{B}^{\mathbf{c}} \cdot \mathbf{Q}^{\mathbf{c}} \mathbf{B}^{\mathbf{c}} = \begin{bmatrix} \mathbf{q}_{11} \mathbf{Q}_{11} & -\mathbf{q}_{22} \mathbf{Q}_{21} & 0 & 0 & 0 \\ 0 & \mathbf{q}_{22} \mathbf{11} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{11} & 0 \\ -\mathbf{Q}_{21} & \mathbf{\eta}_{11} \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} q_{11} & q_{11}^2 + q_{22} & q_{21}^2 & -q_{22} & \eta_{11} & q_{21} \\ & -q_{22} & \eta_{11} & q_{21} & & q_{22} & \eta_{11} \end{bmatrix}$$

$$(B^{c},Q^{c}B^{c})^{-1} = \begin{bmatrix} \frac{1}{q_{11}} & \frac{Q_{21}}{q_{11}} & \frac{Q_{21}}{q_{11}} & \frac{Q_{21}}{q_{11}} \\ \frac{Q_{21}}{q_{11}q_{11}} & \frac{1}{q_{22}q_{11}} + \frac{Q_{21}}{q_{11}q_{11}} \end{bmatrix}$$

Now

		• -
	- 415 (1142)	0 7
	₹ ′	
	21,	$\frac{1}{11}$
	र्श व	A HIL
	- تن ب	
	높 다	Ę
	4 10 HIE	P Ì
		, ₂ , ₂ ,
		្នាំដ
	• •	
	~	$\frac{\frac{n_{13}}{q_{11}}}{\frac{1}{n_{11}} \frac{\frac{n_{13}}{q_{11}} q_{21} + n_{23}}{n_{11}}$
• • •	$\frac{^{4}_{13}}{^{9}_{11}}$ $\frac{^{4}_{13}}{^{1}_{11}}$ $\frac{^{4}_{13}}{^{6}_{11}}$ 23 4 23	
-	⁷ 3	$\frac{\frac{p_{12}}{q_{11}}}{\frac{1}{\eta_{11}} \left(\frac{p_{12}}{q_{11}} q_{21}^{+p_{22}}\right)}$
• •	ವು	<u>루_</u>
	4 .∫∞	. 9 ⁷ i.
0 0	A13 111 111	$\frac{\sigma_{11}^{0}}{\sigma_{11}}$
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0 11 11 11 11 11 11 11 11 11 11 11 11 11		وام ااد
o -16	0 0	•
le	_	21
21 21 11 4 11 4	[1Z	Ŧ
	₹ .	2,1
	1,1,2,1,4,2,1)	a jor
•	41,2	$rac{b_{11}}{q_{11}}$ $rac{a_{11}}{a_{11}}$ $rac{b_{11}}{q_{11}}$ q_{21} $+b_{21}$
		a lo Hie
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>
		•
o o	•	F
	, , , , , , , , , , , , , , , , , , ,	0 0
0 0	, 21 ^2 52 52 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
	'	911 1-921 0
-922 ⁹ 21 922 ⁿ 11	。 。 。 。	$^{Q}_{11}$
⁴ 22		
ī	0 8 4 13	D ₁₃ D ₂₃ 0
_		
911 ⁹ 111		D ₁₂ 0 0
, ₁₁ , 0		
	, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	D ₂₁ D ₂₁
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A A 0 0
, la ,		
[64]	• •	
172	0 0	
~\tau -2\rac{1}{2} \\ \frac{1}{2} \\ \frac{1} \\ \	0 0	0 0
j#		
$\frac{q_{21}}{q_{11}^{n}l_{11}q_{11}^{2}} + \frac{q_{21}^{2}}{q_{21}^{2}} + \frac{q_{21}^{2}}{q_{21}}$	• •	0 0
$\frac{q_{21}}{q_{11}^{n_1}}$		
.,, -	0 111	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l ₂ 1	$\frac{1}{q_{11}}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2}$
l e l	$\frac{1}{2}$	اع عاص
$\frac{1}{q_{11}q_{11}^2}$ $\frac{q_{21}}{q_{11}^n q_{11}^2}$	$\frac{1}{11}$ $\frac{6}{21}$	11 ₂ 21 11 ₄
1 2 2 1 T		
	1	្ស ប
	es es	7
••	o _V c	ر ک
ي.	۰, ₀ ۰,	30
, p	B°1Q ^C A ^C	1 B°, Q°,
-1 sc.o.) ⁻¹ B ^c 1 Q ^C A ^c) -1 B ^C 1Q ^C
8 ^C)- ¹ B ^C , Q ^c	c _B c,- ¹ B ^c tq ^c A ^c	c _B c)-1 _B cι φ ^c
'q ^c B') ⁻¹ B ^c 'q'	c, q ^c B ^c , ⁻¹ B ^{c, q^cA^c}	د، و ه ^د) ^{- 1} ه د، و د
(B°, q°, B°, q°	(B ^{c,} Q ^c B ^c) ⁻¹ B ^{c,} Q ^c A ^c	(8 ^{c,} q ^c g ^{c)-1} 8 ^{c,} q ^c c
.) (B ^{c,} Q ^c B ^c) ⁻¹ B ^{c,} Q ^c	;) (8°, q°, 8°, -1 , 8°, q°, A°) (8 ^C 1Q ^C B ^C) ⁻¹ B ^C 1Q ^C C
4.1) (B ^c ·Q ^c B ^c) ⁻¹ B ^c ·Q ^c	4.2) (5°10°5°) ⁻¹ 5°10°A°	4.3) (8 ^c 10 ^c 8 ^{c)-1} 8 ^{c1} 0 ^c 6
(A-4.1) (B ^c ·Q ^c B ^c) ⁻¹ B ^c ·Q ^c	(A-4.2) (B ^c ¹ Q ^c B ^c) ⁻¹ B ^c ¹ Q ^c A ^c	(A-4.3) (B ^C 1Q ^C B ^C) ⁻¹ B ^C 1Q ^C C
(A-4.1) (B ^c 'q ^c B ^c) ⁻¹ B ^c 'q ^c =	(A-4.2) (B ^c ,Q ^c B ^c) ⁻¹ B ^c ,Q ^c A ^c =	(A-4.3) (B ^c 1Q ^c B ^c) ⁻¹ B ^c 1Q ^c C ^c =

Substituting $Q_{11} = \frac{1}{a_{11}}$; $Q_{21} = \frac{\beta_{11}}{a_{11}}$ (Appendix A-1) into $(B^{c_1}Q^cB^c)^{-1}$ $B^{c_1}Q^c$, $(B^{c_1}Q^cB^c)^{-1}$ $B^{c_1}Q^cA^c$ and $(B^{c_1}Q^cB^c)^{-1}$ $B^{c_1}Q^cC^c$ we get:	11 (Appendix A-1) 11	into $(B^c,Q^cB^c)^{-1}$	Β ^{c,} Q ^c , (Β ^{c,} Q ^c Β ^c)¯	' B ^c 'Q ^c A ^c and (i	^{, C} 'Q ^C B ^C) ⁻¹ B ^C 'Q ^C C ^C we get:
$(A-4.4) (B^{C_1}Q^{C_1}B^{C_1})^{-1} B^{C_1}Q^{C_2}$, a ₁₁ 0 0	0			
	$\frac{\beta_{11}}{\eta_{11}} = \frac{1}{\eta_{11}} = 0$	0			
$(A-4.5) (B^{c_1}Q^{c_3}B^{c_1})^{-1} B^{c_1}Q^{c_4}B^{c_4}$		0 a ₁₁ A ₁₃	0 81	a ₁₁ A ₁₅	
	$\begin{bmatrix} \frac{1}{n_{11}} (\beta_{11} A_{11}^{+} A_{21}) \end{bmatrix}$	0	$\frac{1}{\eta_{11}} (\theta_{11} A_{13} A_{23}) 0 \frac{1}{\eta_{1}}$	$\frac{1}{n_{11}}(\beta_{11}A_{15}A_{25})$	
(A-4.6) (B'QB) ⁻¹ B'QC =	_11 ^D 11	a ₁₁ D ₁₂	a ₁₁ D ₁₃	0	
	$\frac{1}{\eta_{11}} (\beta_{11}{}^{0}_{11}{}^{+0}_{21})$	$\frac{1}{\eta_{11}}$ (β_{11}) $^{+0}$ 22)	$\frac{1}{\eta_{11}}(\beta_{11}{}^{D}{}_{11}{}^{+D}{}_{21})$ $\frac{1}{\eta_{11}}(\beta_{11}{}^{D}{}_{12}{}^{+D}{}_{22})$ $\frac{1}{\eta_{11}}(\beta_{11}{}^{D}{}_{13}{}^{+D}{}_{23})$	$\frac{1}{\eta_{11}}$ -1	

Ť	, Jt	ī	15	124			
0	•	,					
0	0						
•	0						
0	4	Ħ					
g#	ᆌ	# 					
<u>ٿ</u> +							
The Table 1	B# 1t-1	r it-1	Gt-1	Tt-1	1 1 1 1 1 1	בָּ בָּ	r _{2t}
·		_				7	
	$\frac{1}{n} = (B_{11}A_{13} + A_{23})$ 0 $\frac{1}{n} = (B_{11}A_{15} + A_{25})$				0	, 1 d	
51	8 ₁₁ 1				-		
*11 ^A 15	۔ آ۔	‡				, p ₂₃)	
•	0				ដ	811 ^D 12	
	23)				*11 ^D 13	1,1	
	^\ ₁₃ +					22)	
6 11 ^A 13	(8)	=				1 ^D 12 [#]	
•					•11 ^D 12	11 (8	
•	•				•	-11 <i>-</i>	
	$\frac{1}{n} (\beta_{11}^{A_{11}} + A_{21}^{A_{21}}) = 0$	¦				$\frac{1}{\eta_{11}}(\theta_{11} h_{11} + \theta_{21}) - \frac{1}{\eta_{11}}(\theta_{11} h_{12} + \theta_{22}) - \frac{1}{\eta_{11}}(\theta_{11} h_{13} h_{23}) - \frac{1}{\eta_{11}}$	
Į,	β ₁₁ Α ₁	! !			D11	(8 ₁₁ D	
4 7	٦ -	≓ —•			11 ₀ 11,		
1					1		
(A-4.6) G_{1t}^* = - $\begin{bmatrix} ^4_{11}A_{11} \\ & - \end{bmatrix}$	뱹	_					
<u>.</u>	<u> </u>	-					
A -4.							

Substituting $Y_{1t} = \delta_{10} + \delta_{12} L_{1t}$ and $\overline{B}_{1t} = 0$ into the optimal solution and rearranging the terms: $\frac{(A-4.7) \left[G_{1t}^{\phi} \right]}{G_{1t}^{\phi}} = \frac{-a_{11}A_{13}}{a_{11}} \qquad 0 \qquad -a_{11}A_{13} \qquad 0 \qquad \overline{Y}_{1t-1}^{\phi}$

		'o 4
Ĭ.	# 1t-1 ft-1 ft-1	· 네큐 (
-411 ^A 15	-1 (8 ₁₁ 4 ₁₅ 44 ₂₅)	$-\frac{a_{11}b_{12}}{\frac{1}{n_{11}}} -\frac{a_{11}b_{13}}{\frac{1}{n_{11}}} -\frac{-1}{n_{11}}$
11 ^A 13 0	-1 (8 ₁₁ 4 ₁₃ 44 ₂₃) 0 -	
•	ᆌᄙ	1
-411 ^A 11 0	$\frac{1}{\eta_{11}} (\theta_{11} h_{11}^{+} h_{21})$ 0	$\left[\begin{array}{ccc} -a_{11}^{}(^{D}_{11}^{}-b_{10}^{}) & a_{11}^{}b_{12}^{}\\ & & & \\ \frac{1}{^{n}_{11}}(^{B}_{11}^{})_{11}^{}-^{B}_{11}^{}b_{10}^{}+^{D}_{2}^{}_{2}) & \frac{^{B}_{11}b_{12}^{}}{^{n}_{11}} \end{array}\right]$
* 	구() E 	, HE
	ı	+
[3,7]	받	

Then the optimal solution is:

APPENDIX A-5

EVALUATION OF THE WELFARE COST FOR THE ONE-COUNTRY CONTROL PROBLEM

The welfare cost function is given by:

(A-5.1)
$$\hat{J}^{c} = \frac{1}{2} \sum_{t=1}^{N} (x_{t}^{c*} - \overline{x}_{t}^{c})^{\dagger} Q^{c} (x_{t}^{c*} - \overline{x}_{t}^{c})$$

First substituting the optimal solution

$$(A-5.2) \quad u_{t}^{c*} = -(B^{c},Q^{c}B^{c})^{-1} \quad B^{c},Q^{c}A^{c} \quad x_{t-1}^{c*} + (B^{c},Q^{c}B^{c})^{-1} \quad B^{c},Q^{c}\overline{x}_{t}^{c}$$

$$- (B^{c},Q^{c}B^{c})^{-1} \quad B^{c},Q^{c}C^{c}z_{t}^{c}$$

into the dynamic system

(A-5.3)
$$x_t^{c*} = A^c x_{t-1}^{c*} + B^c u_t^{c*} + C^c z_t^c$$

we get:

$$(A-5.4) \quad x_{t}^{c*} = A^{c}x_{t-1}^{c*} + B^{c} \left[-(B^{c}Q^{c}B^{c})^{-1}B^{c}Q^{c}A^{c}x_{t-1}^{c*} + (B^{c}Q^{c}B^{c})^{-1}B^{c}Q^{c}x_{t}^{c*} \right]$$

$$- (B^{c}Q^{c}B^{c})^{-1}B^{c}Q^{c}C^{c}z_{t}^{c} + C^{c}z_{t}^{c}$$

$$= \left[I-B \left(B^{c}Q^{c}B^{c} \right)^{-1}B^{c}Q^{c} \right] A^{c}x_{t-1}^{c*} + B^{c}(B^{c}Q^{c}B^{c})^{-1}B^{c}Q^{c}x_{t}^{c}$$

$$+ \left[I-B^{c}(B^{c}Q^{c}B^{c})^{-1}B^{c}Q^{c} \right] C^{c}z_{t}^{c}$$

And

$$(A-5.5) \quad x_{t}^{c*} - \overline{x_{t}^{c}} = \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] A^{c} x_{t-1}^{c*} + \left[B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} - I^{c} \right] \overline{x_{t}^{c}}$$

$$+ \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] c^{c} z_{t}^{c}$$

Let us compute

$$B^{c}(B^{c},Q^{c}B^{c})^{-1}B^{c}Q^{c} = \begin{bmatrix} Q_{11} & 0 \\ -Q_{21} & \eta_{11} \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{Q_{11}} & 0 & 0 & 0 & 0 \\ \frac{Q_{21}}{\eta_{11}Q_{11}} & \frac{1}{\eta_{11}} & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{1}{Q_{11}} & 0 & 0 & 0 & 0 \\ \frac{Q_{21}}{\eta_{11}Q_{11}} & \frac{1}{\eta_{11}} & 0 & 0 & 0 \end{bmatrix}$$

					_					
					ľ	0	0	- ₁₁₂	-4 ₁₅	$\frac{1}{n_{11}} \left(\frac{415}{q_{11}} q_{21} - 425 \right)$
						0	0	0	0	3) 0
						0	0	3 4	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	$\frac{1}{\eta_{11}} \frac{A_{13}}{q_{11}} q_{21}^{-A_{23}}$
			·			•	0	0	0	0
7	0	0	0	• '						<u>~.</u>
-	0	0	-	•						- - -7
-	•	-	0	0					-	되 고
-	0	0	0	- <u>-</u> 11	(0	0	γ ₁₁	-4 11/911	$\begin{bmatrix} \frac{1}{\eta_{11}} (\frac{-A_{11}}{q_{11}} q_{21}^{-A_{21}}) \\ \frac{1}{\eta_{11}} (\frac{-A_{11}}{q_{11}} q_{21}^{-A_{21}}) \end{bmatrix}$
								•		
<u> </u>	•	•	1-10-	-021 -11911	I	^A ₁₅	A ₂₅	-م۲	•	•
		•				0	0	0	0	0
<u> </u>	•	•		•		^ 13	A ₂₃	3,		
0	0	0	•	0		•	٠	•	0	•
0	0	0	0				√ 21	, TI		-
				1 =	1	77	۷.	<u>, , , , , , , , , , , , , , , , , , , </u>	•	
0	-	0	•	111	•	•	•	•	•	
\	0	0	1 6	^Q 21 ⁿ 11 ^Q 11		0	0	0	-	0
		1				0	0	-	0	•
6	•	•	•	-		_	_	_	_	11. 11.
0	•	0		0		0	0	•	0	
0	0	=	0	0		_	0	0	-1- 011	-0 ₂₁
0	-	•	0	0	ι	•			710	Ψ 12·
<u> </u>	•	•	0					• •		
		٥						[, ₀ ,		
		-1 _B c,) ⁻¹ B		
		(⁻⁸⁻)						,6 _{,0} ,		
		I-BC(BC,QCBC)-IBC,QC -						[I-BC(BC'QCBC)-1BC'QC]AC-		
		Ĭ.						1-1		

						o	0	0	0	
0	- ₇₁₁	0	0	0	١	0	0	0	1.	- <u>1</u> - ⁿ 11
911	1-921	0	0	0						$-(\frac{^{13}}{q_{11}}q_{21}^{-p_{23}})$
D ₁₃	D ₂₃	0	0	0						$\frac{^{D_{13}}}{^{Q_{11}}}^{2}$
D ₁₂	D ₂₂	0	0	0		0	0	0	$\frac{-b_{13}}{q_{11}}$	11,
D11	D21	a ₃₆	0	0	j					21)
					'n					21-E
٥.	0	0	0	H	•				au	$-(\frac{0.12}{Q_{11}}Q_{21}-0.21)$
0	0	0	-	0		0	0	0	$\frac{-0}{212}$	111
0	0	н	0	0						21)
0	0	0	0	-1 -11						$\frac{^{0}11}{^{0}11}$ $^{0}21$ $^{-0}21$ 0
0	0	0	$\frac{1}{q_{11}}$	-0 ₂₁ ⁿ 11 ⁰ 11	•	°	0	a ₃₆	-0 ₁₁	1 11 11 11
		ر ا		Parado de Caración de Lacido de Lacido de Caración de	•			n		
		6								
)-1								
		S B								
		(B)								
		[-в (в о в)-1 в о] с								

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	0 0 0 1	
	0 0 0 7 0	
	0 0 7 0 0	
	0 0 0 0 111	
	. 1	
	11 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
00001	+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1		
0 0 7 0 0	Si .	0 0 0 0 1
0 0 0 1111	1 21 − Å	0 0 0 1- 11 11 11 11 11 11 11 11 11 11 11 11 11
$\frac{0}{0}$	$\begin{array}{c} 0 \\ 0 \\ -\frac{\Lambda_{12}}{12} \\ \frac{1}{\eta_{11}} \left(\frac{-\Lambda_{15}}{\eta_{11}^2 2_1 - \Lambda_{25}} \right) \\ \end{array}$	
•		0 0 $\frac{-\frac{-1}{13}}{\frac{1}{11}} \frac{\frac{-\frac{-1}{2}}{q_{11}^{2_{11}}-b_{2_{3}}}}$
0000 H	0 0 0 0	(-113)
0 0 0 0	-423	
0 0 1 0 0		D ₂₂)
	0 0 $\frac{4}{13}$ $\frac{4}{911}$ $\frac{-4}{911}$ $\frac{-4}{911}$ $\frac{-4}{911}$ $\frac{-4}{911}$ $\frac{-4}{911}$ $\frac{-4}{911}$ $\frac{-4}{911}$	0 0 0 $\frac{-b_{12}}{q_{11}}$ $\frac{-b_{12}}{q_{11}}$ $\frac{1}{q_{11}} \left(\frac{-b_{12}}{q_{11}}q_{21}^{-b_{22}}\right)$
1		0 0 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		0 0 0 11 (11
	$\begin{matrix} & & & & & & & & & & & & & & & & & & &$	$\begin{matrix} 0 \\ & & & & & & & & & & & & & & & & & &$
0 0 0 0	1 00 1	
$\mathbf{B}^{\mathbf{c}}(\mathbf{B}^{\mathbf{c}},\mathbf{Q}^{\mathbf{c}}\mathbf{B}^{\mathbf{c}})^{-1}\mathbf{B}^{\mathbf{c}},\mathbf{Q}^{\mathbf{c}}-\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{q_{11}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$		
$\begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
• I- ₀	1	
-1 _B C.		
o (B C)		
B ^c (B ^c 'q ^c B ^c) ⁻¹ B ^{c'} q ^c -I =	(A-5.6)	

Since

Then

(A-5.7)
$$(x_t^{c*} - \overline{x}_t^c)' Q^c (x_t^{c*} - \overline{x}_t^c) = 0$$

Therefore

$$\hat{J} = \frac{1}{2} \sum_{t=1}^{N} (x_t^{c*} - \overline{x}_t^c), Q^c(x_t^{c*} - \overline{x}_t^c) = 0$$
 Q.E.D.

APPENDIX A-6

THE REDUCED FORM OF THE TWO-COUNTRY MODEL (CASE A)

Under the assumption of common external balance, the variables of Votey's econometric model are classified as follows:

(1) Endogenous variables: B_{it} , C_{it} , I_{it}^{G} , I_{it}^{n} , K_{it} , M_{it} , O_{1t} , Y_{it} , i = 1, 2.

(2) Controlled Exogenous Variables: G_{1t} , G_{2t} , r_{1t} .

(3) Noncontrolled Exogenous Variables: IE_{1t}, L_{it}, P_{Mit}, P_{xit}, r_{2t}, T_{it},

TR_{2t}, X_{it}, M_{3t}, M^{III}, i = 1,2

And the structural model is constituted of: 9 equations:

(E-1)
$$Y_{1t} = \delta_{10} + \delta_{11} K_{1t} + \delta_{12} L_{1t}$$

(E-2)
$$C_{1t} = \alpha_{10} + \alpha_{11} Y_{1t} - \alpha_{11} T_{1t} - \alpha_{11} \delta * K_{1t} + TT_{1t}$$

(E-3)
$$M_{1t} = \beta_{10} + \beta_{11} Y_{1t} - \beta_{11} T_{1t} - \beta_{11} \delta^* K_{1t} + \beta_{12} TT_{1t} +$$
;

$$TT_{1t} = \left(\frac{P_{M}}{P_{x}}\right)_{1t}$$

(E-4)
$$I_{1t}^{n} = \gamma_{10} + \gamma_{11} Y_{1t-1} - \gamma_{12} \delta^* - \gamma_{12} Y_{1t-1} + \gamma_{13} X_{1t-1}$$

(E-5)
$$0_{1t} = \eta_{10} + \eta_{11} r_{2t} - \eta_{11} r_{1t}$$

(E-6)
$$Y_{2t} = \delta_{20} + \delta_{21} K_{2t} + \delta_{22} L_{2t}$$

(E-7)
$$C_{2t} = \alpha_{20} + \alpha_{21} Y_{2t} + \alpha_{21} T_{2t} - \alpha_{21} TR_{2t} - \alpha_{21} \delta \times K_{2t}$$

(E-8)
$$M_{2t} = \beta_{20} + \beta_{21} Y_{2t} - \beta_{21} T_{2t} - \beta_{21} TR_{2t} - \beta_{21} \delta * K_{2t} + \beta_{22} TT_{2t}$$
; $TT_{2t} = \left(\frac{P_{M}}{P_{X}}\right) 2t$

(E-9)
$$I_{2t}^{n} = \gamma_{20} + \gamma_{21} Y_{2t-1} - \gamma_{22} \delta * - \gamma_{22} r_{2t-1} + \gamma_{23} K_{2t-1}$$

7 Identities:

$$(I-1)$$
 $Y_{1t} = C_{1t} + I_{1t}^{G} + G_{1t} + (M_{2t} + M_{3t} + IE_{1t}) - M_{1t}$

$$(I-2)$$
 $K_{1t} = I_{1t}^{n} + K_{1t-1}$

$$(I-3)$$
 $I_{1t}^{G} = I_{1t}^{n} + \delta * K_{1t}$

$$(I-4)$$
 $B_{1t} = (M_{2t} + M_{3t} + IE_{1t}) - M_{1t} - 0_{1t}$

(I-5)
$$Y_{2t} = C_{2t} + I_{2t}^G + G_{2t} + (M_{1t} - M_{1t}^{III}) - M_{2t}$$

$$(I-6)$$
 $K_{2t} = I_{2t}^n + K_{2t-1}$

$$(I-7)$$
 $I_{2t}^{G} = I_{2t}^{n} + \delta * K_{2t}$

Substituting {(I-3), (E-2), (E-3), (E-4)} into (I-1); {(I-7), (E-7), (E-3), (E-8), (E-9)} into (I-5); {E-8, E-3, E-5} into (I-4); (E-4) into (I-2); (E-9) into (I-6) and regrouping the terms, we get the following system of equations:

$$\begin{aligned} & (\mathbf{I} - \mathbf{Ia}) & & (\mathbf{I} - \alpha_{11} + \beta_{11}) \mathbf{Y}_{1t} - \beta_{21} \ \mathbf{Y}_{2t} - \delta^* (\mathbf{I} + \alpha_{11} + \beta_{11}) \ \mathbf{X}_{1t} + \beta_{21} \ \delta^* \ \mathbf{X}_{2t} \\ & = \ \mathbf{Y}_{11} \ \mathbf{Y}_{1t-1} + \mathbf{Y}_{13} \ \mathbf{X}_{1t-1} + \mathbf{G}_{1t} - \mathbf{Y}_{12} \ \mathbf{r}_{1t-1} \\ & & + \ (\alpha_{10} - \beta_{10} + \beta_{20} + \mathbf{Y}_{10} - \mathbf{Y}_{12} \ \delta^*) + \mathbf{IE}_{1t} - \beta_{12} \ \mathbf{TT}_{1t} \\ & & + \ (\beta_{11} - \alpha_{11}) \ \mathbf{T}_{1t} + \beta_{22} \ \mathbf{TT}_{2t} - \beta_{21} \ \mathbf{T}_{2t} + \beta_{21} \ \mathbf{TR}_{2t} + \mathbf{M}_{3t} \end{aligned}$$

$$\begin{aligned} & (\mathbf{I} - \mathbf{5a}) & - \beta_{11} \ \mathbf{Y}_{1t} + \ (\mathbf{1} - \alpha_{21} + \beta_{21}) \ \mathbf{Y}_{2t} + \beta_{11} \ \delta^* \ \mathbf{K}_{1t} - \delta^* \ (\mathbf{1} - \alpha_{21} + \beta_{21}) \ \mathbf{K}_{2t} \\ & = \ \mathbf{Y}_{21} \ \mathbf{Y}_{2t-1} + \mathbf{Y}_{23} \ \mathbf{K}_{2t-1} + \mathbf{G}_{2t} - \mathbf{Y}_{22} \ \mathbf{r}_{2t-1} \\ & + \ (\alpha_{20} + \beta_{10} - \beta_{20} + \mathbf{Y}_{20} - \mathbf{Y}_{22} \ \delta^*) - \mathbf{M}_{1t}^{\mathbf{III}} + \beta_{12} \ \mathbf{TT}_{1t} \\ & - \beta_{11} \ \mathbf{T}_{1t} - \beta_{22} \ \mathbf{TT}_{2t} + \ (\beta_{21} - \alpha_{21}) \ \mathbf{T}_{2t} + \ (\beta_{21} - \alpha_{21}) \ \mathbf{TR}_{2t} \end{aligned}$$

$$\begin{aligned} & (\mathbf{I} - \mathbf{4a}) \ \beta_{11} \ \mathbf{Y}_{1t} - \beta_{21} \ \mathbf{Y}_{2t} + \mathbf{B}_{1t} - \beta_{11} \ \delta^* \ \mathbf{K}_{1t} + \beta_{21} \ \delta^* \ \mathbf{K}_{2t} \\ & = \ \mathbf{\eta}_{11} \ \mathbf{r}_{1t} - \ \mathbf{\eta}_{11} \ \mathbf{r}_{2t} + \ (\beta_{20} - \beta_{10} - \mathbf{\eta}_{10}) + \mathbf{IE}_{1t} - \beta_{12} \ \mathbf{TT}_{1t} \\ & + \beta_{11} \ \mathbf{T}_{1t} + \beta_{22} \ \mathbf{TT}_{2t} - \beta_{21} \ \mathbf{T}_{2t} - \beta_{21} \ \mathbf{TR}_{2t} + \mathbf{M}_{3t} \end{aligned}$$

$$\begin{aligned} & (\mathbf{I} - \mathbf{2a}) \ \mathbf{K}_{1t} = \ \mathbf{Y}_{11} \ \mathbf{Y}_{1t-1} + \ (\mathbf{1} + \mathbf{Y}_{13}) \ \mathbf{K}_{1t-1} - \ \mathbf{Y}_{12} \ \mathbf{r}_{1t-1} + \ (\mathbf{Y}_{10} - \mathbf{Y}_{12} \ \delta^*) \end{aligned}$$

Then doing the same transformation of variables as for the case of the one-country model:

$$Y_{it} = \delta_{i0} + \delta_{i1} K_{it} + \delta_{i2} L_{it}$$
 i = 1,2

or (I-7a)
$$Y_{it} - \delta_{i1} K_{it} = \delta_{i0} + \delta_{i2} L_{it}$$

let (I-7b)
$$\tilde{Y}_{it} = Y_{it} - \delta_{i1} K_{it} = \delta_{i0} + \delta_{i2} L_{it}$$

then (I-8)
$$Y_{it} = \tilde{Y}_{it} + \delta_{i1} K_{it}$$

(I-9)
$$Y_{it-1} = \tilde{Y}_{it-1} + \delta_{i1} K_{it-1}$$

substituting (I-8) and (I-9) into the above system of equations:

$$\begin{aligned} &(\mathrm{I}-\mathrm{Ib}) \quad (1-\alpha_{11}+\beta_{11}) \quad \tilde{Y}_{1t}-\beta_{21} \quad \tilde{Y}_{2t}-(1-\alpha_{11}+\beta_{11}) \quad (\delta^*-\delta_{11}) \quad K_{1t} \\ &+\beta_{21} \quad (\delta^*-\delta_{21}) \quad K_{2t}=\gamma_{11} \quad \tilde{Y}_{1t-1}+(\gamma_{11}-\delta_{11}+\gamma_{13}) \quad K_{1t-1} \\ &+G_{1t}-\gamma_{12} \quad r_{1t-1}+(\alpha_{10}-\beta_{10}+\beta_{20}+\gamma_{10}-\gamma_{12}-\delta^*)+\mathrm{IE}_{1t} \\ &-\beta_{12} \quad \mathrm{TT}_{1t}+(\beta_{11}-\alpha_{11}) \quad T_{1t}+\beta_{22} \quad \mathrm{TT}_{2t}-\beta_{21} \quad T_{2t}-\beta_{21} \quad \mathrm{TR}_{2t}+M_{3t} \\ &(\mathrm{I}-\mathrm{5b}) \quad -\beta_{11} \quad \tilde{Y}_{1t}+(1-\alpha_{21}+\beta_{21}) \quad \tilde{Y}_{2t}+\beta_{11}(\delta^*-\delta_{11}) \quad K_{1t} \\ &-(1-\alpha_{21}+\beta_{21}) \quad (\delta^*-\delta_{21}) \quad K_{2t}=\gamma_{21} \quad \tilde{Y}_{2t-1}+(\gamma_{21}+\delta_{21}+\gamma_{23}) \quad K_{2t-1} \\ &+G_{2t}-\gamma_{22} \quad r_{2t-1}+(\alpha_{20}+\beta_{10}-\beta_{20}+\gamma_{20}-\gamma_{22}-\delta^*)-M_{1t}^{\mathrm{III}} \\ &+\beta_{12} \quad \mathrm{TT}_{1t}-\beta_{11} \quad T_{1t}-\beta_{22} \quad \mathrm{TT}_{2t}+(\beta_{21}-\alpha_{21}) \quad T_{2t}+(\beta_{21}+\alpha_{21}) \quad \mathrm{TR}_{2t} \\ &(\mathrm{I}-\mathrm{4b}) \quad \beta_{11} \quad \tilde{Y}_{1t}-\beta_{21} \quad \tilde{Y}_{2t}+\beta_{1t}-\beta_{11} \quad (\delta^*-\delta_{11}) \quad K_{1t}+\beta_{21} \quad (\delta^*-\delta_{21}) \quad K_{2t} \\ &=\eta_{11} \quad r_{1t}-\eta_{11} \quad r_{2t}+(\beta_{20}-\beta_{10}-\eta_{10})+\mathrm{IE}_{1t}-\beta_{12} \quad \mathrm{TT}_{1t} \\ &+\beta_{11} \quad T_{1t}+\beta_{22} \quad \mathrm{TT}_{2t}-\beta_{21} \quad T_{2t}-\beta_{21} \quad \mathrm{TR}_{2t}+M_{3t} \end{aligned}$$

(I-2b)
$$K_{1t} = \gamma_{11} \tilde{Y}_{1t-1} + (1 + \gamma_{13} + \gamma_{11} \delta_{11}) K_{1t-1} - \gamma_{12} r_{1t-1} + (\gamma_{10} - \gamma_{12} \delta^*)$$

(I-6b)
$$K_{2t} = \gamma_{21} \tilde{Y}_{2t-1} + (1 + \gamma_{23} + \gamma_{21} \delta_{21}) K_{2t-1} - \gamma_{22} r_{2t-1} + (\gamma_{20} - \gamma_{22} \delta^*)$$

And in matrix notation, the above system becomes:

Grt Lit		ij,	Tr tr	r _{2t}	^F 2t-1 TT _{2t}	T _{2t}	TR2t	H H
		0	-г		•			
0 0 0	Y ₂₁	a ₂₇	- ⁸ 21	0	0			
0 1 0 0 0	⁸ 21	a ₂₇	-8 ₂₁	0	0			
+	β ₂₂	-8 ₂₂	B ₂₂	0	0			
, Tit-1 , Zt-1 Bit-1 Kit-1 K2t-1	0	-Y ₂₂	0	0	-Y ₂₂			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	- ₁₁	0	0			
a 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a 17	- ⁸ 11	β ₁₁	0	0			
a ₁₅ 0 0 0 0 0 0 0 0 0 0	- ₈₁₂	β ₁₂	-8 ₁₂	0	0			
0 0 0 0	0	7	0	0	0			
0 0 0 7 ₂₁	-	0	1	0	0			
, , , , , , , , , , , , , , , , , , ,	16	a 26	a ₃₆	978	a ₅₆			
T, Y, T,	+							
-a 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15								
a 13 - a 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
0 0 1 0 0								
$^{-\beta}_{21}$ $^{2}_{22}$ $^{-\beta}_{21}$ 0								
- ⁸ 11 0 0 0								
(A-6.1)								

where

$$a_{11} = 1 - \alpha_{11} + \beta_{11}$$

$$a_{22} = 1 - \alpha_{21} + \beta_{21}$$

$$a_{13} = -(1 - \alpha_{11} + \beta_{11})(\delta_{11} - \delta^*)$$

$$a_{23} = \beta_{11} (\delta^* - \delta_{11})$$

$$a_{14} = \beta_{21} (\delta^* - \delta_{21})$$

$$a_{24} = (1 - \alpha_{21} + \beta_{21})(\delta^* - \delta_{21})$$

$$a_{15} = \gamma_{11} \delta_{11} + \gamma_{13}$$

$$a_{25} = \gamma_{21} \delta_{21} + \gamma_{23}$$

$$a_{16} = \alpha_{10} - \beta_{10} + \beta_{20} + \gamma_{10} - \gamma_{12} \delta^*$$

$$a_{26} = \alpha_{10} + \beta_{10} - \gamma_{20} + \gamma_{20} - 22 \delta^*$$

$$a_{17} = \beta_{11} - \alpha_{11}$$

$$a_{27} = \beta_{21} - \alpha_{21}$$

$$a_{33} = \beta_{11} (\delta^* - \delta_{11})$$

$$a_{45} = 1 + \gamma_{13} + \gamma_{11} \delta_{11}$$

$$a_{34} = \beta_{21} (\delta^* - \delta_{21})$$

$$a_{46} = \gamma_{10} - \gamma_{12} \delta^*$$

$$a_{56} = \gamma_{20} - \gamma_{22} \delta^*$$

Then multiplying both sides of the matrix equation by:

$$\begin{bmatrix} a_{11} & -\beta_{21} & 0 & a_{13} & a_{14} \\ -\beta_{11} & a_{22} & 0 & a_{23} & -a_{24} \\ \beta_{11} & -\beta_{21} & 1 & -a_{33} & a_{34} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 & Q_{14} & Q_{15} \\ Q_{21} & Q_{22} & 0 & Q_{24} & Q_{25} \\ Q_{31} & Q_{32} & 1 & Q_{34} & Q_{35} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

where

$$\begin{aligned} |\mathbf{Q}| &= \mathbf{a}_{11} \mathbf{a}_{22} - \beta_{11} \beta_{21} \\ \mathbf{Q}_{11} &= \frac{\mathbf{a}_{22}}{|\mathbf{Q}|} \\ \mathbf{Q}_{21} &= \frac{\beta_{11}}{|\mathbf{Q}|} \\ \mathbf{Q}_{21} &= \frac{\beta_{11}}{|\mathbf{Q}|} \\ \mathbf{Q}_{31} &= \frac{\beta_{11}(\beta_{21} - \mathbf{a}_{22})}{|\mathbf{Q}|} \\ \mathbf{Q}_{31} &= \frac{\beta_{11}(\beta_{21} - \mathbf{a}_{22})}{|\mathbf{Q}|} \\ \mathbf{Q}_{34} &= \frac{1}{\mathbf{Q}} \left[-\mathbf{a}_{11}(\mathbf{a}_{23}\beta_{21} - \mathbf{a}_{22}\mathbf{a}_{33}) - \beta_{11}\beta_{21}(\mathbf{a}_{33} - \mathbf{a}_{23}) - \mathbf{a}_{13}\beta_{11} \right] \\ \mathbf{Q}_{12} &= \frac{\beta_{21}}{|\mathbf{Q}|} \\ \mathbf{Q}_{22} &= \frac{\mathbf{a}_{11}}{|\mathbf{Q}|} \\ \mathbf{Q}_{23} &= \frac{\mathbf{a}_{11}^{2}\mathbf{a}_{11} - \beta_{11}}{|\mathbf{Q}|} \\ \mathbf{Q}_{35} &= \frac{\mathbf{a}_{11}^{2}\mathbf{a}_{24} - \mathbf{a}_{14}\beta_{11}}{|\mathbf{Q}|} \\ \mathbf{Q}_{35} &= \frac{\mathbf{a}_{11}^{2}\mathbf{a}_{24} - \mathbf{a}_{14}\beta_{11}}{|\mathbf{Q}|} \\ &= \beta_{11}\beta_{21}(\mathbf{a}_{24} - \mathbf{a}_{34}) - \mathbf{a}_{14}\beta_{11} \\ &= \beta_{11}\beta_{21}(\mathbf{a}_{24} - \mathbf{a}_{34}) - \mathbf{a}_{14}\beta_{11} \\ &= \beta_{11}\beta_{21}(\mathbf{a}_{24} - \mathbf{a}_{34}) - \mathbf{a}_{14}\beta_{11} \end{aligned}$$

We get:

Gt-1 G2t-1 T1t-1	
A ₁₆ A ₂₆ A ₃₆ -7 ₁₂ 0	l
0 0 0 0	
0 0 0 0	
+	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0	
Q_{12} Q_{22} Q_{32} Q_{32}	D D 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{bmatrix} q_{11} & q_{11} \\ q_{21} & q_{31} \\ 0 & 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \tilde{Y}_{1t-1} \\ \tilde{Y}_{2t-1} \\ \\ R_{1t-1} \\ \\ K_{2t-1} \end{bmatrix}$	D_{16} D_{26} D_{36} D_{36}
, , , , , , , , , , , , , , , , , , ,	A ₁₇ A ₃₇ 0
رة كا كا كا ا	0 0 1. -7 ₂₂ -
4 A15 4 A25 4 A35 5 0 5 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A ₁₄ A ₂₄ A ₃₄ A ₃₄ 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A ₁₂ A ₂₂ A ₃₂ 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A ₂₁ A ₃₁ O O	D ₂₁ D ₃₁ D ₃₁ D ₃ D ₃
-	+
Y, Y	

where

$$D_{18} = Q_{11}$$

$$D_{28} = Q_{21}$$

$$D_{38} = 1 + Q_{31}$$

Therefore, the structural form of the two-country econometric model is:

$$(A-6.3) \quad y_{t-1} = \overline{A}y_{t-1} + \overline{B}u_t + \overline{C}u_{t-1} + \overline{D}z_t$$

And using Votey's estimated structural coefficients:

$$\alpha_{10} = 52.57$$
 $\beta_{10} = 14.5131$ $\gamma_{10} = 31.707$ $\delta_{10} = 0$
 $\alpha_{11} = 0.75$ $\beta_{11} = 0.131499$ $\gamma_{11} = -0.0027$ $\delta_{11} = 0.2051$
 $\alpha_{12} = N.S.$ $\beta_{12} = -28.3566$ $\gamma_{12} = 461.7$ $\delta_{12} = 4.02$
 $\alpha_{20} = 31.26$ $\beta_{20} = -12.53$ $\gamma_{13} = 0.0624$ $\delta * = 0.0489$
 $\alpha_{21} = 0.7345$ $\beta_{21} = 0.09769$ $\gamma_{20} = 1.5812$ $\delta_{20} = 0$
 $\beta_{22} = N.S.$ $\gamma_{21} = 0.1668$ $\delta_{21} = .36345$
 $\gamma_{10} = -0.6915$ $\gamma_{22} = 349.8519$ $\delta_{22} = .35525$
 $\gamma_{11} = 46.279$ $\gamma_{23} = 0.04291$

We compute the numerical values for the matrices \overline{A} , \overline{B} \overline{C} and \overline{D} :

Matrix \overline{A}

Row	Ŷ1t-1	\tilde{Y}_{2t-1}	^B 1t-1	K _{1t-1}	^K 2t-1
1	-0.0073	0.1298	0	0.0131	0.0806
2	-0.0028	0.4538	0	0.0648	-0.0329
3	0.0008	0.0324	0	-0.0524	0.0201
4	-0.0027	0	0	1.0618	0
5	0	0.1668	0	0	1.1035

Matrix $\overline{\mathtt{B}}$

Row	G _{lt}	G _{2t}	^r 1t
1	2.8933	0.7782	0
2	1.0476	3.0351	0
3	-0.2781	0.1942	46.279
4	0	0	0
5	0	0	0

Matrix \overline{C}

Row	G _{lt-1}	G _{2t-1}	r _{lt-1}
1	0	0	-1263.7107
2	0	0	- 483.6579
3	0	0	143.7013
4	0	0	- 461.7
5	0	0	0

I	_	
	5	
	÷	į
	+	
	Z	1

M _{3t}	2.8933	1.0476	0.7219	0	0
TR _{2t} M _{3t}	-0.7782	-2.0351	-0.1942	0	0
$^{\mathrm{T}_{2t}}$	-0.7782	-2.0351	N.S0.1942 -0.1942 0.7219	0	0
$^{\mathrm{TT}}_{2\mathtt{t}}$ $^{\mathrm{T}}_{2\mathtt{t}}$	N.S.	N.S.	N.S.	0	0
r _{2t-1}	-272.2641 N.S0.7782 -0.7782 2.8933	-951.8105 N.S2.0351 -2.0351 1.0476	-67.9307	0	0
r _{2t}	0	0	14.9641 0.2779 -46.279 -67.9307	0	-349.8519 0
Tlt ^r 2t	-1.8918	-1.0470	0.2779	0	0
$^{ m II}_{ m It}$	59.9756 -1.8918 0	-56.3613 -1.0470 0	14.9641	0	0
M_{1t}^{III}	0.7782	3.0351	0.1942	0	0
IElt	2.8933	1.0476	0.7219	0	0
1	129.6743 2.8933	162.4181 1.0476 3.0351	-28.6009 0.7219 0.1942	9.1298 0	-18,6889 0
Row	н	7	က	4	2

APPENDIX A-7

COMPUTATION OF THE INVERSE OF A SYMMETRIC MATRIX (Ayres:1962)

Let us compute the inverse of the following matrix by partitioning:

$$\begin{bmatrix} b_{11} & b_{21} & b_{31} \\ b_{21} & b_{22} & b_{32} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

First, partition (B^c,Q^cB^c) into:

$$\begin{bmatrix}
b_{11} & b_{21} & b_{31} \\
b_{21} & b_{22} & b_{32} \\
b_{31} & b_{32} & b_{33}
\end{bmatrix}
\xrightarrow{\underline{d}}
\begin{bmatrix}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{bmatrix}$$

$$\Gamma_{11} = \begin{bmatrix} b_{11} & b_{21} \\ b_{21} & b_{22} \end{bmatrix}$$
; $\Gamma_{12} = \begin{bmatrix} b_{31} \\ b_{32} \end{bmatrix}$; $\Gamma_{21} = \begin{bmatrix} b_{31}, b_{32} \end{bmatrix}$; $\Gamma_{22} = \begin{bmatrix} b_{33} \end{bmatrix}$

$$\Gamma_{11}^{-1} = \frac{1}{b_{11}b_{22}-b_{21}^{2}} \begin{bmatrix} b_{22} & -b_{21} \\ -b_{21} & b_{11} \end{bmatrix} ;$$

$$\Gamma_{11}^{-1}\Gamma_{12} = \frac{1}{b_{11}b_{22}-b_{21}^{2}} \begin{bmatrix} b_{22} & -b_{21} \\ -b_{21} & b_{11} \end{bmatrix} \begin{bmatrix} b_{31} \\ b_{32} \end{bmatrix} = \begin{bmatrix} \frac{-b_{22}b_{31}-b_{21}b_{32}}{b_{11}b_{22}-b_{21}^{2}} \\ \frac{-b_{21}b_{31}+b_{11}b_{32}}{b_{11}b_{22}-b_{21}^{2}} \end{bmatrix}$$

$$\xi = \Gamma_{22} - \Gamma_{21} \quad \Gamma_{11}^{-1} \quad \Gamma_{12}) = \begin{bmatrix} b_{33} \end{bmatrix} - \begin{bmatrix} b_{31}, b_{32} \end{bmatrix} \begin{bmatrix} \frac{b_{22}b_{31} - b_{21}b_{32}}{b_{11}b_{22} - b_{21}^2} \\ -\frac{b_{21}b_{31} + b_{11}b_{32}}{b_{11}b_{22} - b_{21}^2} \end{bmatrix}$$

$$= b_{33} - \frac{b_{31} (b_{22}b_{31} - b_{21}b_{32}) + b_{32} (-b_{21}b_{31} + b_{11}b_{32})}{b_{11} b_{22} - b_{21}^{2}}$$

$$= b_{33} - \frac{b_{22}b_{31}^2 - 2b_{21}b_{31}b_{32} + b_{11}b_{32}^2}{b_{11}b_{22} - b_{31}^2}$$

$$= \frac{b_{11}b_{22}b_{33} - b_{31}^2b_{33} - b_{11}b_{32}^2 - b_{22}b_{31}^2 + 2b_{21}b_{31}b_{32}}{b_{11}b_{22} - b_{21}^2}$$

and
$$\xi^{-1} = \frac{b_{11}b_{22} - b_{21}^2}{(b_{11}b_{22} - b_{21}^2) b_{33} - b_{11}b_{32}^2 - b_{22}b_{31}^2 + 2b_{21}b_{31}b_{32}}$$

$\frac{b_{22}b_{31}-b_{21}b_{32}}{b_{11}b_{22}-b_{21}^{2}}, \frac{-b_{21}b_{31}+b_{11}b_{32}}{b_{11}b_{22}-b_{21}^{2}}$	$(b_{22}b_{31} - b_{21}b_{32}) (b_{11}b_{32} - b_{21}b_{31})$ $(b_{11}b_{32} - b_{21}b_{31})^{2}$	
$(b_{11}b_{22} - b_{21}^{2}) \ b_{33} - b_{11}b_{32}^{2} - b_{22}b_{31}^{2} + 2b_{21}b_{31}b_{32}$	$\frac{\left[^{(b_{22}b_{31}-b_{32})^{2}}}{^{(b_{21}b_{31}b_{32})}}\right]^{(b_{22}b_{31}-b_{21}b_{32})} (^{(b_{11}b_{32}-b_{21}b_{31})}$	$\begin{bmatrix} b_{21}b_{33} \\ b_{31} \end{bmatrix}$
$\begin{bmatrix} 2 & -b_{21} \\ -b_{22} \end{bmatrix} + \begin{bmatrix} \frac{b_{22}b_{31} - b_{21}b_{32}}{b_{11}b_{22} - b_{21}} \\ -b_{21}b_{31} \\ -b_{21}b_{31} + b_{11}b_{32} \end{bmatrix}$	$\frac{1}{b_{11}b_{22} - b_{21}^2}$, $\frac{1}{b_{33} - b_{11}b_{32}^2 - b_{22}b_{31}^2 + 2}$	$\begin{bmatrix} b_{22}b_{33} - b_{32}^2 & b_{31}b_{32} - b_{21}b_{33} \\ b_{31}b_{32} - b_{21}b_{33} & b_{11}b_{33} - b_{31} \end{bmatrix}$
hen	$ \frac{11}{^{5}11^{5}22} - \frac{1}{^{5}21} \left[\begin{array}{c} ^{5}22 - ^{5}21 \\ - ^{5}21 \end{array} \right] + \frac{1}{^{(b_{11}^{5}22} - ^{b}2_{1}^{2})} / \left[^{(b_{11}^{5}22} - ^{b}2_{1}^{2}) \cdot ^{5}33 - ^{b_{11}^{5}2} - ^{b_{22}^{2}} \right] + ^{2}21^{b_{31}^{5}33} } \left[\frac{(^{b_{22}^{5}}^{5}31 + ^{2}^{5}1^{b_{31}^{5}3})^{2}}{(^{b_{22}^{5}}^{5}31 - ^{b_{21}^{5}32}) \cdot ^{(b_{11}^{5}32} - ^{b_{21}^{2}}^{5}31)} \right] $	$ \begin{array}{c} 1 \\ (b_{11}b_{22} - b_{21}^2) \ b_{33} - b_{11}b_{32}^2 - b_{22}b_{31} + 2b_{21}b_{31}b_{32} \end{array} $

$$A_{12} = -(\Gamma_{11}^{-1} \Gamma_{12}) \xi^{-1} = -\frac{1}{(b_{11}b_{22} - b_{21}^2) b_{33} - b_{11}b_{32}^2 - b_{22}b_{31}^2 + 2b_{21}b_{31}b_{32}} \begin{bmatrix} b_{22}b_{31} - b_{21}b_{32} \\ b_{11}b_{32} - b_{21}b_{31} \end{bmatrix}$$

$$A_{22} = \xi^{-1} = \frac{1}{(b_{11}b_{22} - b_{21}^2) b_{33} - b_{11}b_{32}^2 - b_{22}b_{31}^2 + 2b_{21}b_{31}b_{32}}$$
 $\left[b_{11}b_{22} - b_{21}^2 \right]$

And
$$(B^{C}, Q^{C}B^{C})^{-1} = \begin{bmatrix} A_{11} & A_{12} & \frac{1}{4} & \frac{1}{|\Lambda|} & \frac{b_{22}b_{33} - b_{32}^{2}}{|\Lambda|} & \frac{b_{31}b_{32} - b_{21}b_{33}} & \frac{b_{31}b_{32} - b_{21}b_{33}}{|\Lambda|} & \frac{b_{11}b_{33} - b_{21}b_{31}} & \frac{b_{11}b_{32} - b_{21}b_{31}}{|\Lambda|} & \frac{b_{22}b_{31} - b_{21}b_{32}} & \frac{b_{11}b_{32} - b_{21}b_{31}}{|\Lambda|} & \frac{b_{22}b_{31} - b_{21}b_{32}} & \frac{b_{11}b_{32} - b_{21}b_{31}}{|\Lambda|} & \frac{b_{22}b_{31} - b_{21}b_{32}}{|\Lambda|} & \frac{b_{11}b_{32} - b_{21}b_{31}}{|\Lambda|} & \frac{b_{11}b_{22} - b_{21}b_{21}}{|\Lambda|} & \frac{b_{11}b_{22} -$$

 $b_{22}b_{31} - b_{21}b_{32}$

 $^{b_{11}b_{32}} - ^{b_{21}b_{31}}$

$$|\Lambda| \stackrel{d}{=} (b_{11}b_{22} - b_{21}^2) b_{33} - b_{11}b_{32}^2 - b_{22}b_{31}^2 + 2b_{21}b_{31}b_{32}$$

APPENDIX A-8

COMPUTATIONS OF OPTIMAL SOLUTION FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE A)

The optimal solution is given by equation A-2.20 (Appendix A-2):

$$(A-2.20) \quad u_{t}^{c*} = -(B^{c},Q^{c}B^{c})^{-1} B^{c},Q^{c}A^{c}x_{t-1}^{c*} + (B^{c},Q^{c}B^{c})^{-1} B^{c},Q^{c}x_{t}^{c*}$$

$$- (B^{c},Q^{c}B^{c})^{-1} B^{c},Q^{c}C^{c}z_{t}^{c}$$

$$\begin{aligned} \mathbf{x}_{t}^{c*} &= \begin{bmatrix} \tilde{\mathbf{Y}}_{1t}^{*}, \ \tilde{\mathbf{Y}}_{2t}^{*}, \ \mathbf{B}_{1t}^{*}, \ \mathbf{K}_{2t}^{*}, \ \mathbf{G}_{1t}^{*}, \ \mathbf{G}_{2t}^{*}, \ \mathbf{r}_{1t}^{*} \end{bmatrix}' \\ &= \begin{bmatrix} \tilde{\mathbf{Y}}_{1t}, \ \tilde{\mathbf{Y}}_{2t}, \ \overline{\mathbf{B}}_{1t}, \ \overline{\mathbf{K}}_{1t}, \ \overline{\mathbf{G}}_{1t}, \ \overline{\mathbf{G}}_{2t}, \ \overline{\mathbf{r}}_{1t} \end{bmatrix}' \\ &= \begin{bmatrix} \delta_{10} + \delta_{12} \ \mathbf{L}_{1t}, \ \delta_{20} \\ &+ \delta_{22} \ \mathbf{L}_{2t}, \ 0, \ \overline{\mathbf{K}}_{1t}, \ \overline{\mathbf{G}}_{1t}, \ \overline{\mathbf{G}}_{2t}, \ \overline{\mathbf{r}}_{1t} \end{bmatrix}' \\ &\mathbf{u}_{t}^{c*} &= \begin{bmatrix} \mathbf{G}_{1t}^{*}, \ \mathbf{G}_{2t}^{*}, \ \overline{\mathbf{r}}_{1t}^{*} \end{bmatrix}' \\ &\mathbf{z}_{t}^{c} &= \begin{bmatrix} \mathbf{I}, \ \mathbf{IE}_{1t}, \ \mathbf{M}_{1t}^{\mathbf{III}}, \ \mathbf{TT}_{1t}, \ \mathbf{T}_{1t}, \ \mathbf{r}_{2t}, \ \mathbf{r}_{2t-1}, \ \mathbf{TT}_{2t}, \ \mathbf{T}_{2t}, \ \mathbf{TR}_{2t}, \ \mathbf{M}_{3t} \end{bmatrix}' \end{aligned}$$

	A ₁₁	A ₁₂	0	A ₁₄	A ₁₅	0	0	A ₁₆		Q ₁₁	Q ₁₂	0
	A ₂₁	A ₂₂	0	A ₂₄	A ₂₅	0	0	A ₂₆		Q ₂₁	Q ₂₂	0
	A ₃₁	A ₃₂	0	A ₃₄	A ₃₅	0	0	A ₃₆		Q ₃₁	Q ₃₂	η ₁₁
A ^C =	Y ₁₁	0	0	a ₄₅	0	0	0	Υ ₁₂	;B ^c =	0	0	0
	0	^Y 21	0	0	a ₅₅	0	0	0		0	0	0
	0	0	0	0	0	0	0	0		1	0	0
	0	0	0	0	0	0	0	0		0	1	0
	0	0	0	0	0	0	0	0		0	0	1

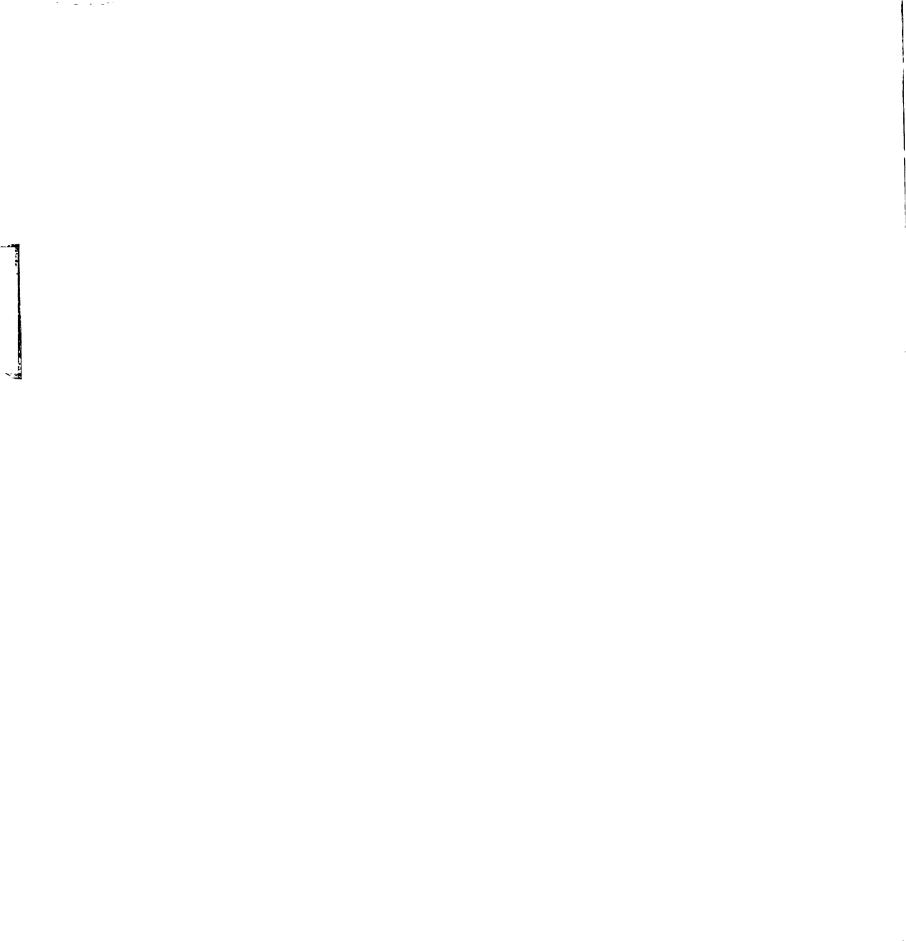
Computing:	::																							
	⁶ 11	⁶ 11 ⁶ 21 ⁶ 31	31 0	0	1	0	6	- 1	0 1	0	0	0	0	0	0	, -	\int 4 11 9 11	411 ^Q 11 422 ^Q 21	413931	0	0	0	0	•
B° 10°=	912	922	9 ₃₂ 0	0	0	-	•	•	⁴ 22	0	0	0	0	0	0	<u>.</u>	411412	422422	433432	0	0	0	0	0
	0	0	^م 111 0	0	0	0	-	•	0	433	0	0	0	0	0		•	0	⁴ 33 ¹ 11	0	0	0	0	0
•							1	•	0	0	0	0	0	0	0		ı							7
								•	0	0	0	0	0	0	0									
								•	0	0	0	0	0	0	0									
								•	0	0	0	0	0	0	0									
								•	0	0	0	0	0	0	0									
								•	0	0	0	0	0	0	0	•								
								}																
= (3 ⁸ 0',3 ⁸)		$\lceil q_{11}q_{1} \rceil$, 4	411911 422 ⁰ 21	433431	1 0	0	0	0	•	_	°11,0	Q ₁₂ 0	_										
	1	411 ⁰ 1	2 4,	911 ^Q 12 922 ^Q 22	433432	2 0	0	0	0	0	<u>.</u>		Q ₂₂ 0											
		ئــــــــــــــــــــــــــــــــــــــ	0		433711	1 0	0	0	0	•	<u> </u>	0 ₃₁ 0	0 ₃₂ 111	- -										
)									<u> </u>	0	0											
											<u> </u>	0	•											
											_	0	•											
											•	1	•											
											ٿ	0	-											
		$\left[q_{11}q_{1}^{2}\right]$	+ +	22 ^{Q2} 21	$q_{11}q_{11}^2 + q_{22}q_{21}^2 + q_{33}q_{31}^2$	-			411	$q_{11}q_{12}$	+ 42	29219	411 ^Q 11 ^Q 12 + 4 ₂₂ ^Q 21 ^Q 22 + 4 ₃₃ ^Q 31 ^Q 32	33931	932	-	433 ⁿ 11 ^Q 31							
		41141	1 ⁰ 12 ¹	+ 42242	$q_{11}q_{11}q_{12} + q_{22}q_{21}q_{22} + q_{33}q_{31}q_{32}$	4339	31932		411	4 ² 7 77 +	422 ^Q 2	$q_{11}q_{12}^2 + q_{22}q_{22}^2 + q_{33}q_{32}^2$	33 ^Q 32			-	433 ¹ 111 ⁰ 32							
			4 _{33ⁿj}	433 ¹ 11 ⁰ 31					-	433 ¹ 111 ⁰ 32	1932					-	433 ¹ 11							
		J															•	•						

We note that $(B^{C_1}Q^CB^C)$ is a symmetric matrix and the inverse of $(B^{C_1}Q^CB^C)$ is obtained by the method of partitioning (Ayres:1962) instead of computing the adjoint (B^{C1}Q^BG). Appendix A-7 gives the steps of computing (B^{C1}Q^BB^{C)-1} which lead to the following result:

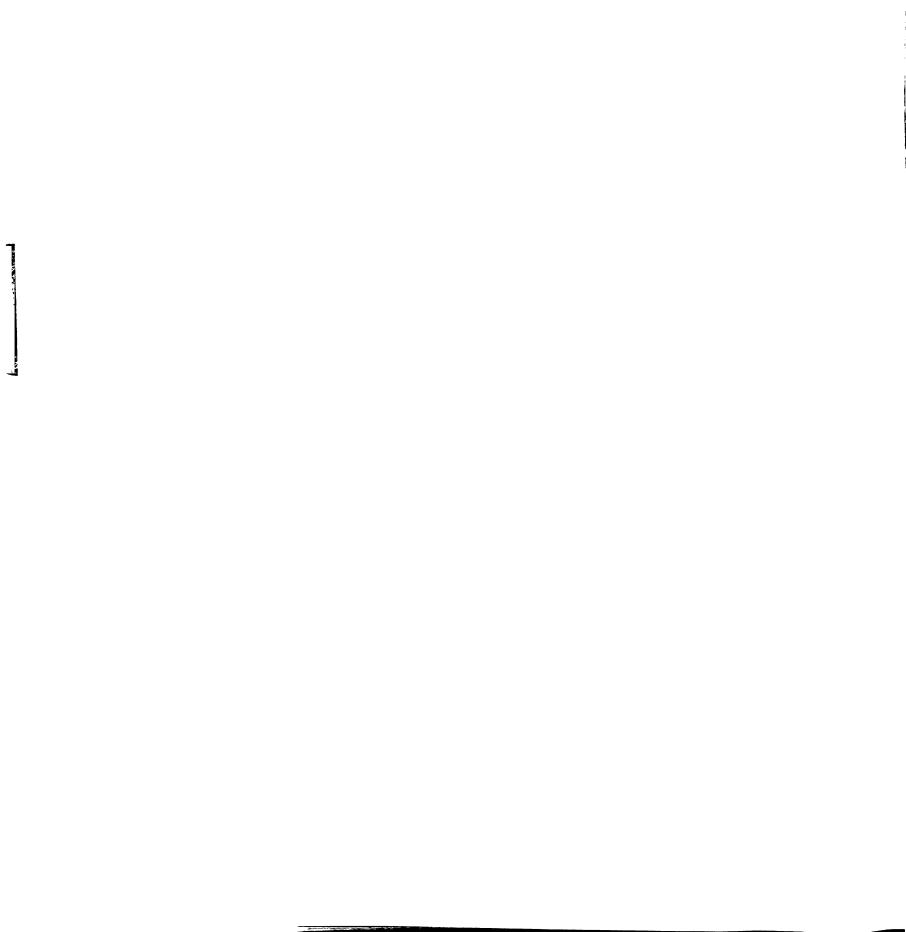
b22 ^b 31 ^{-b} 21 ^b 32	b ₁₁ b ₃₂ -b ₂₁ b ₃₁	$b_{11}^{b_{22}^{-b_{21}^{2}}}$	
b31b32-b21b33	$^{b_{11}b_{33}-b_{31}^2}$	⁶ 22 ⁸ 31 ⁻⁸ 21 ⁸ 32 ⁸ 11 ⁸ 32 ⁻⁸ 21 ⁸ 31	
^b 22 ^b 33 ^{-b} 32	b31b32-b21b33	^b 22 ^b 31 ^{-b} 21 ^b 32	l
(B ^c 10 B) ⁻¹ = 1	$(b_{11}b_{22} - b_{21}^{2}) b_{33} - b_{11}b_{32}^{2} - b_{22}b_{31}^{2} + 2b_{21}b_{31}b_{32}$		

$$b_{11} \stackrel{d}{=} q_{11} q_{11}^2 + q_{22} q_{21}^2 + q_{33} q_{31}^2$$

$$b_{21} \stackrel{d}{=} q_{11} q_{12}^{1} + q_{22} q_{21}^2 + q_{33} q_{31}^2$$


$$b_{22} \stackrel{d}{=} q_{11} q_{12}^2 + q_{22} q_{22}^2 + q_{33} q_{32}^2$$

$$b_{31} \stackrel{d}{=} q_{33} n_{11} q_{31}$$


Substituting the bij's and bii's (i = 1,2,3; j = 1,2,3) by their corresponding values, we get:

 $b_{11}b_{32}-b_{21}b_{31} \stackrel{\underline{d}}{=} q_{11}q_{33}q_{11}Q_{11}(Q_{11}Q_{32}-Q_{12}Q_{31})+q_{22}q_{33}q_{11}Q_{21}(Q_{21}Q_{32}-Q_{22}Q_{31})$

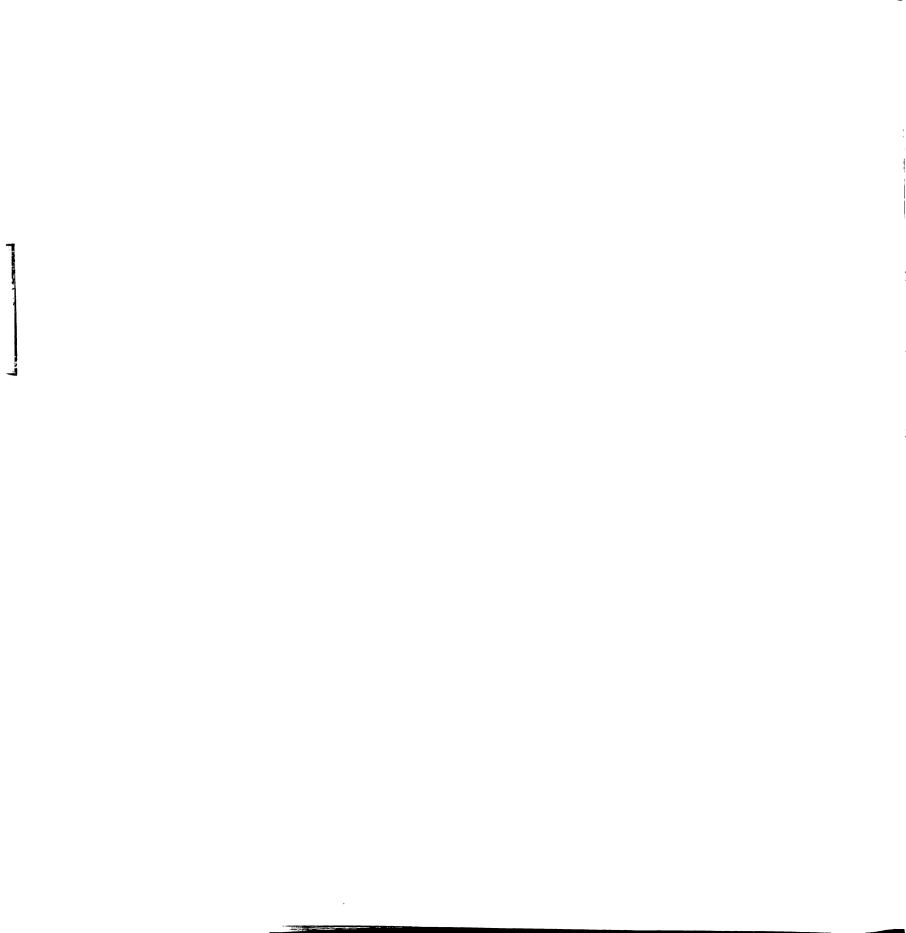
$\frac{q_{11}q_{12}(q_{12}q_{31}-q_{11}q_{32})^{+q_{22}q_{22}(q_{22}q_{31}-q_{21}q_{32})}}{q_{11}q_{12}^{2}n_{11}(q_{11}q_{22}^{2}-q_{12}q_{21})^{2}}$ $\frac{q_{11}q_{11}q_{11}(q_{11}q_{32}-q_{12}q_{31})^{+q_{22}q_{21}(q_{21}q_{32}-q_{21}q_{32})}}{q_{11}q_{22}^{n_{11}}(q_{11}q_{22}^{2}-q_{12}q_{31})^{2}}$ $\frac{1}{q_{13}q_{22}^{n_{11}}(q_{11}q_{22}^{2}-q_{12}q_{31})^{2}} + \frac{(Q_{21}q_{32}^{2}-q_{22}q_{31})^{2}}{q_{11}n_{11}^{2}(q_{11}q_{22}^{2}-q_{12}q_{21})^{2}}$ $\frac{1}{q_{33}n_{11}} + \frac{(Q_{21}q_{32}^{2}-q_{12}q_{31})^{2}}{q_{22}n_{11}^{2}(q_{11}q_{22}^{2}-q_{12}q_{21})^{2}} + \frac{(Q_{21}q_{32}^{2}-q_{22}q_{31})^{2}}{q_{11}n_{11}^{2}(q_{11}q_{22}^{2}-q_{12}q_{21})^{2}}$		
$ \begin{pmatrix} \frac{q_{11}}{q_{11}q_{12}^2 + q_{22}} q_{22}^2 \\ \frac{q_{11}q_{22}(q_{11}q_{22} - q_{12}q_{21})^2}{q_{11}q_{22}(q_{11}q_{22} - q_{12}q_{21})^2} \\ \frac{-(q_{11}q_{11}q_{12} - q_{12}q_{21})^2}{q_{11}q_{22}(q_{11}q_{22} - q_{12}q_{21})^2} \\ \frac{-(q_{11}q_{11}q_{12} - q_{12}q_{21})^2}{q_{11}q_{22}(q_{21}q_{22} - q_{12}q_{21})^2} \\ \frac{q_{11}q_{12}(q_{21}q_{22} - q_{12}q_{21})^2}{q_{11}q_{22}(q_{11}q_{22} - q_{12}q_{21})^2} \\ \frac{q_{11}q_{12}(q_{12}q_{22} - q_{12}q_{21})^2}{q_{11}q_{22}(q_{11}q_{22} - q_{12}q_{21})^2} \\ \frac{q_{11}q_{12}(q_{11}q_{22} - q_{12}q_{21})^2}{q_{11}q_{12}(q_{11}q_{22} - q_{12}q_{21})^2} \\ \frac{q_{11}q_{12}(q_{11}q_{22} - q$	$ (A-8.1) (B^{Q}_{0}c^{B}_{0})^{-1}B^{c}_{1}q^{c}_{0} = \begin{bmatrix} \frac{q_{22}}{q_{11}q_{22}} & \frac{-q_{12}}{q_{11}q_{22}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	$\frac{4}{q} \begin{bmatrix} \frac{q_{22}}{Q} & -\frac{q_{12}}{Q} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $

$$(A-8.2) \quad (B^{c}Q^{c}B^{c})^{-1}B^{c}Q^{c}A^{c} = \begin{bmatrix} \theta_{11} & \theta_{12} & 0 & \theta_{14} & \theta_{15} & 0 & 0 & \theta_{16} \\ \theta_{21} & \theta_{22} & 0 & \theta_{24} & \theta_{25} & 0 & 0 & \theta_{26} \\ \theta_{31} & \theta_{32} & 0 & \theta_{34} & \theta_{35} & 0 & 0 & \theta_{36} \end{bmatrix}$$

$$\theta_{36} \stackrel{\underline{d}}{=} \frac{1}{\eta_{11}} \left[A_{36} + \frac{A_{16}(Q_{21}Q_{32} - Q_{22}Q_{31})}{A_{26}(Q_{11}Q_{32} - Q_{12}Q_{31})} - \frac{A_{26}(Q_{11}Q_{32} - Q_{12}Q_{31})}{A_{26}(Q_{11}Q_{32} - Q_{12}Q_{31})} \right]$$

$$\begin{pmatrix} (A-8.3) \\ (B^{c},Q^{c}B^{c})^{-1}B^{c},Q^{c}C^{c} \end{pmatrix} = \begin{bmatrix} \Delta_{11} & \Delta_{12} & \Delta_{13} & \Delta_{14} & \Delta_{15} & 0 & \Delta_{19} & \Delta_{16} & \Delta_{17} & \Delta_{18} \\ \Delta_{21} & \Delta_{22} & \Delta_{23} & \Delta_{24} & \Delta_{25} & 0 & \Delta_{29} & \Delta_{26} & \Delta_{27} & \Delta_{27} & \Delta_{28} \\ \Delta_{31} & \Delta_{32} & \Delta_{33} & \Delta_{34} & \Delta_{35} & -1 & \Delta_{39} & \Delta_{36} & \Delta_{37} & \Delta_{38} \end{bmatrix}$$

$$\begin{array}{c} \Delta_{33} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{13}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{23}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{33}}{\eta_{11}} \\ \Delta_{34} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{14}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{24}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{34}}{\eta_{11}} \\ \Delta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{15}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{25}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{35}}{\eta_{11}} \\ \Delta_{36} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{16}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{26}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{36}}{\eta_{11}} \\ \Delta_{37} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{17}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{27}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{37}}{\eta_{11}} \\ \Delta_{38} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{18}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{38}}{\eta_{11}} \\ \Delta_{39} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{18}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{A_{37}}{\eta_{11}} \\ \Delta_{39} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{18}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{A_{37}}{\eta_{11}} \\ \Delta_{39} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{18}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{A_{37}}{\eta_{11}} \\ D_{39} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{19}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{A_{37}}{\eta_{11}} \\ D_{39} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{19}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{A_{37}}{\eta_{11}} \\ D_{39} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{19}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{A_{37}}{\eta_{11}} \\ D_{19} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{19}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{28}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{19}}{\eta_{11}} \\ D_{19} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{19}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{29}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{19}}{\eta_{11}} \\ D_{19} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{19}(Q_{21}Q_{31} - Q_{22}Q_{31}) - D_{29}(Q_{11}Q_{32} - Q_{12}Q_{31}) \right] + \frac{D_{19}}{\eta_{11}} \\ D_{19} \stackrel{d}{=} \frac{1}{\eta_{11}Q} \left[D_{19}(Q_{11}Q_{31} - Q_{12}Q_{31}) - D_{$$


Then the optimal control is:

41 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0 0 0	
0 0	
0 0	
• • •	
• • •	
0 411 4 11 11 11 11 11 11 11 11 11 11 11	
$-\frac{q_{12}}{q}$ $\frac{q_{11}}{q}$ $-\frac{q_{11}q_{32}-q_{12}q_{31}}{q}$	
$ \begin{pmatrix} G_1^{\pm} \\ G_2^{\pm} \\ \Gamma_1^{\pm} \end{pmatrix} = \begin{pmatrix} -\theta_{11} & -\theta_{12} & 0 & -\theta_{14} & -\theta_{15} & 0 & 0 & -\theta_{16} \\ -\theta_{21} & -\theta_{22} & 0 & -\theta_{24} & -\theta_{25} & 0 & 0 & -\theta_{26} \\ -\theta_{31} & -\theta_{32} & 0 & -\theta_{34} & -\theta_{35} & 0 & 0 & -\theta_{36} \\ \end{pmatrix} \begin{pmatrix} \tilde{Y}_{1}^{\pm}_{1-1} \\ \tilde{Y}_{2}^{\pm}_{2-1} \\ \tilde{Y}_{1}^{\pm}_{1-1} \end{pmatrix} + \begin{pmatrix} \theta_{22} \\ \tilde{Y}_{2}^{\pm}_{2-1} \\ \tilde{Y}_{11}^{\pm}_{1-1} \\ \tilde{Y}_{11}^{\pm}_{1-1} \end{pmatrix} \begin{pmatrix} \theta_{22} \\ \tilde{Y}_{2}^{\pm}_{2-1} \\ \tilde{Y}_{11}^{\pm}_{1-1} \end{pmatrix} + \begin{pmatrix} \theta_{22} \\ \tilde{Y}_{2}^{\pm}_{2-1} \\ \tilde{Y}_{2}^{\pm}_{2-1} \end{pmatrix} + \begin{pmatrix} \theta_{22} \\ \tilde{Y}_{2}^$	$\begin{bmatrix} -a_{11} & -a_{12} & -a_{13} & -a_{14} & -a_{15} & 0 & -a_{19} & -a_{16} & -a_{17} & -a_{17} & -a_{18} \\ -a_{21} & -a_{22} & -a_{23} & -a_{24} & -a_{25} & 0 & -a_{29} & -a_{26} & -a_{27} & -a_{27} & -a_{28} \\ -a_{31} & -a_{32} & -a_{33} & -a_{34} & -a_{35} & 1 & -a_{39} & -a_{36} & -a_{37} & -a_{37} & -a_{38} \\ \end{bmatrix} \begin{bmatrix} 1 & 11 & 111 & 111 & 111 \\ 11 & 111 & 111 & 111 \\ 11 & 111 & 111 \\ 11 & 111 & 111 \\ 11 & 111 & 111 \\ 11 & 111 & 111 \\ 11$

Since the targets $\overline{\overline{\chi}}_L$, $\overline{\overline{\chi}}_{2L}$ and $\overline{\overline{b}}_{L}$ are defined as follows:

 $\frac{\bar{T}}{\bar{T}}_{1c} = {}^{6}_{10} + {}^{6}_{12} \, {}^{L}_{1c}$ $\frac{\bar{T}}{\bar{T}}_{2c} = {}^{6}_{20} + {}^{6}_{22} \, {}^{L}_{2c}$ $\bar{B}_{1c} = 0$

${\frac{{{0_{22}}^{\delta _{12}}}}{{{0_{21}}^{\delta _{12}}}}} \\ {\frac{{{0_{21}}^{\delta _{12}}}}{{{0_{11}}^{\delta _{32}}}} \\ {\frac{{{4_{2}}}}{{{0_{11}}^{\delta _{32}}}}} \\ {\frac{{{4_{2}}}}{{{0_{11}}^{\delta _{32}}}}} \\ {\frac{{{4_{2}}}}{{{0_{11}}^{\delta _{32}}}}} \\ {\frac{{{4_{2}}}}{{{0_{11}}^{\delta _{32}}}}} \\ {\frac{{{4_{2}}}}{{{0_{21}}^{\delta _{32}}}}} \\ {\frac{{{4_{2}}}}}{{{0_{21}}^{\delta _{32}}}}} \\ {\frac{{{4_{2}}}}{{{0_{21}}^{\delta _{32}}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} -a_{14} - 4_{5} & 0 - a_{19} - a_{16} - a_{17} & -a_{18} \\ -a_{24} - 4_{5} & 0 - a_{29} - a_{26} - a_{27} & -a_{27} \\ -a_{24} - 4_{5} & 0 - a_{29} - a_{26} - a_{27} & -a_{28} \\ -a_{34} - 4_{35} & 0 - a_{39} - a_{36} - a_{37} - a_{37} & -a_{38} \end{bmatrix} $ $ \begin{bmatrix} I_{11} \\ I_{11} \\ I_{11} \\ I_{11} \\ I_{12} \\ I_{13} \\ I_{14} \\ I_{15} \\ I_{15} \\ I_{16} \\ I_{16} \\ I_{16} \\ I_{16} \\ I_{16} \\ I_{16} \\ I_{17} \\ I_{17} \\ I_{18} $
A-8.4 becomes: 0 -9.16 0 -9.26 0 -9.36	$\frac{q_{12}^{6}}{q_{11}^{6}} = \frac{-a_{12} - a_{13} - a_{14} - a_{15} - a_{19} - a_{16} - a_{17} - a_{17}}{q_{11}^{6}} = \frac{q_{11}^{6}}{q_{22}} = \frac{-a_{22} - a_{23} - a_{24} - a_{25} - a_{29} - a_{26} - a_{27} - a_{27}}{a_{11}^{6}} = \frac{a_{12} - a_{13} - a_{14} - a_{15} - a_{15} - a_{17} - a_{17}}{a_{11}^{6}} = \frac{a_{12} - a_{13} - a_{14} - a_{15} - a_{15} - a_{15} - a_{17}}{a_{11}^{6}} = \frac{a_{12} - a_{13} - a_{15} - a_{15} - a_{17}}{a_{11}^{6}} = \frac{a_{15} - a_{15} - a_{15}}{a_{11}^{6}} = \frac{a_{15} - a_{15} - a_{15}}{a_{11}^{6}} = \frac{a_{15} - a_{15}}{a_{11}^{6}} $
After substitution and rearrangement of terms equation (A-8.5) $\begin{bmatrix} G_1^* \\ I_1 \end{bmatrix} = \begin{bmatrix} -\theta_{11} & -\theta_{12} & 0 & -\theta_{14} & -\theta_{15} & 0 \\ -\theta_{21} & -\theta_{22} & 0 & -\theta_{24} & -\theta_{25} & 0 \\ I_1 \end{bmatrix}$ $\begin{bmatrix} r^* \\ I_1 \end{bmatrix} = \begin{bmatrix} -\theta_{31} & -\theta_{32} & 0 & -\theta_{34} & -\theta_{35} & 0 \\ -\theta_{31} & -\theta_{32} & 0 & -\theta_{34} & -\theta_{35} & 0 \end{bmatrix}$	$\frac{-0_{12}^{6} 22}{q}$ $\frac{0_{11}^{6} 22}{q}$ $\frac{0_{11}^{6} 22}{q}$ 0_{11}^{0}

APPENDIX A-9

EVALUATION OF THE WELFARE COST FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE A)

The welfare cost is determined by:

(A-5.1)
$$\hat{J}^{c} = \frac{1}{2} \sum_{t=1}^{T} (x_{t}^{c*} - \overline{x}_{t}^{c*})' Q^{c} (x_{t}^{c*} - \overline{x}_{t}^{c*})$$

where

$$(A-5.4) \quad x_{t}^{\star} = \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] A^{c} \quad x_{t-1}^{c\star} + \left[B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] \overline{x}_{t}^{c}$$

$$+ \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] C^{c} z_{t}^{c}$$

$$(A-5.5) \quad x_{t}^{c\star} - \overline{x}_{t}^{c} = \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] A^{c} x_{t-1}^{c\star} + \left[B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} - I \right] \overline{x}_{t}^{c}$$

$$+ \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] C^{c} z_{t}^{c} .$$

Let us compute for the two-country control problem the following matrices:

			_									
0	0	0	7									
0	0	0										
0	0	0		۲			-				···	
0	0	0			0	0	0	0	0	0	0	0
0	0	0			0	0	0	0	0	0	0	0
0	0	1 111			0	0	0	0	0	0	0	0
		11)			0	0	0	0	0	0	0	0
		-0 ₁₂ 0 ₃			0	0	0	0	0	0	0	0
		$^{-\frac{1}{n_{11}Q}(Q_{11}Q_{32}^{-}Q_{12}Q_{31}^{})}$			0	0	н	0	0	0	0	1 711
-0 ₁₂		$\frac{1}{\eta_{11}} \overline{Q}^{(Q_{21}Q_{32} - Q_{22}Q_{31})} - \frac{1}{\eta_{111}} \overline{Q}^{(Q_{21}Q_{32} - Q_{22}Q_{31})}$			0	-	0	0	0	$\frac{-Q_{12}}{Q}$	$\frac{Q_{11}}{Q}$	$\frac{1}{\eta_{11}Q}(q_{11}q_{32}-q_{12}q_{31})$
$\begin{pmatrix} q_{11} & q_{12} & 0 \\ q_{21} & q_{22} & 0 \\ q_{31} & q_{32} & \eta_{11} \end{pmatrix}$	0 0		4 0	Ĺ	-	0	0	0	0	$\frac{Q_{22}}{Q}$	$\frac{-0}{21}$	$\frac{1}{n_{11}Q}(q_{21}q_{32}-q_{22}q_{31})$
	$_{B^{c}(B^{c},Q^{c}B^{c})^{-1}B^{c},Q^{c}}$								•			

			$[1-B^{c}(B^{c},Q^{c}B^{c})^{-1}B^{c},Q^{c}]C^{c}$										$[B^{c}(B^{c},Q^{c}B^{c})^{-1}B^{c},Q^{c}-1] =$				
。 	0	0	9 [†] 8	a ₅₆	- ⁴ 11	_ [∆] 21	-^ ₃₁		ů	0	0	0	0	Q ₂₂	-0 ₂₁	$\left \frac{1}{n_{11}^{0}} (q_{21}^{0}q_{32}^{-0}q_{22}^{0}q_{31}^{0} \right $	 -
0	0	0	0	0	- 412	$^{-\Delta}_{22}$										1,432-4	
0	0	0	0	0	- 413	^{-∆} 23	- [∆] 33									22 ^Q 31)	
0	0	0	0	0	- [∆] 14	- [∆] 24	- √34		0	0	0	0	0	4 ₁₂	^o ilo	ᆈᇎ	
0	0	0	0	0	- 415	- A ₂₅	- ^Δ 35							Q.I	– 41	$\frac{1}{1_{11}}$ $(q_{11}q_{32} - q_{12}q_{31})$	
0	0	0	0	0	0	0	н									¹ 32 ⁻⁰	
0	0	0	0	- ₇ 22	₄ 0−	- ^Δ 29	- ∆39									12931	
0	0	0	0	0	₋ 4 ₁₆	^{-∆} 26	- _{∆36}		0	0	0	0	0	0	0	1 111	
0	0	0	0	0	- [∆] 17	- [∆] 27	- [∆] 37		0	0	0	7	0	0	0	0	
0	0	0	0	0	- 417	-∆ ₂ 7	- [∆] 37		0	0	0	0	7	0	0	0	
0	0	0	0	•	-∆ ₁₈	-428	-Δ ₃₈		0	0	0	0	0	7	0	0	
									0	0	0	0	0	0	7	0	
									•	0	0	0	0	0	0	7	•

4	Ť1t	ŤŽt	Jr It	ř,	Ĭ,	GIE	G ₂ t	r ₁ r													
•	0	0	0	0	0	•	•	•	7												
	0	0	0	0	0	0	•	7	0												
	0	•	•	0	0	7	•	0	0												
	0	0	•	•	7	0	,	9	•												
	0	0	0	7	•	•	•	9	0												
	•	0	•	0	•	•	•	0	1119	•											
	0	0	0		0	-0 0	, o ₁₁	lo.	$\frac{1}{\eta_{11}^{0}}$ $(q_{11}^{0}q_{32}^{-q_{22}^{0}q_{32}^{0}})$	I											
									$\frac{1}{n_{11}q}(q_{21}q_{32}^{-}q_{22}q_{31}^{-})$,	IE IE	ij,	TI,t	T,	r _{2t}	F2t-1	т _{2с}	T _{2t}	H2t	,ř
	ů	•	•	•	•	²⁷ 0	' &	0	11,11	! 				-				-4 ₂₈	88	7	
			+									•	•	•	•	•					
	[]	t-1	Ī	<u>.</u>		Gt-1	Z-1	1	,			0	•	0	0	•		1 -427			
		F	<u>a</u>	<u>a</u> .	<u>a</u> .	<u> </u>	5	<u>E.</u>	_			•	0	•	•	•		- 427			
	0	•	0	•	0	9- 10-	- ₀ 26	ا پر				•	0	•	•	•	- 4 16	-426	-₽ 36		
	0	0	•	•	•	0	0	0				•	0	0	•	722	- Δ19	- ν29	-γ ₃₉		
Set:	0	0	0	0	•	•	•	0				0	•	•	0	•	0	•	•		
3	0	0	0	0	\$5	e SI	- ₂₅	- ₃₅				•	0	0	0	0	- 415	-425	-435		
A-5.5	0	•	0	4.5	•	91 14	-624	°,¥				•	•	•	•	•	- 41 4	42 √			
ation						•	•	•				•	0	0		0		-423			
to equ	•			_	•	ដូ	- ₀ 22					•	•	0	•	•		- [∆] 22 -			
es to						, 11°	- ₂₁ -(-631 -							9	×.	- ₁₁ -		- ₄₃₁ -,		
mtric	ů				_	<u> </u>	<u> </u>	<u> </u>	1			ٿ		-	-		7	7	<u></u>	ب.	
9400									-,						+						
the al	* -	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	ie,	7,	r.	ائوا	C ₂ t	<u>, , , , , , , , , , , , , , , , , , , </u>	_												
ting																					
et itu	14.	Y. 22.	*	ž	Z.	5 "	25 24	#	بــ												
Then substituting the shows matrices into equation A-	(A-9.1)																				

Since

Then it follows that:

$$(x_t^{c*} - \overline{x}_t^c)'Q (x_t^{c*} - \overline{x}_t^c) = 0$$

Therefore

(A-9.2)
$$\hat{J} = \frac{1}{2} \sum_{t=1}^{N} (x_t^{c*} - \overline{x}_t^c)' Q^c (x^{c*} - \overline{x}_t^c) = 0$$

APPENDIX A-10

THE REDUCED FORM OF THE TWO-COUNTRY MODEL (CASE B)

Under the assumption of linear dependent external balance, the variables of Votey's modified econometric model are classified as follows:

(1) endogenous variables:

$$B_{it}$$
, C_{it} , I_{it}^{G} , I_{it}^{n} , K_{iv} , M_{it} , O_{1t} , Y_{it} $i = 1,2$

(2) controlled exogenous variables:

(3) noncontrolled exogenous variables:

$$IE_{1t}$$
, L_{it} , TT_{it} , r_{2t} , T_{it} , TR_{2t} , X_{it}^{III} , M_{it}^{III} $i = 1,2$

And the structural model is constituted of:

9 equations:

(E-1)
$$Y_{1t} = \delta_{10} + \delta_{11} K_{1t} + \delta_{12} L_{1t}$$

(E-2)
$$C_{1t} = \alpha_{10} + \alpha_{11} Y_{1t} - \alpha_{11} T_{1t} - \alpha_{11} \delta * K_{1t}$$

(E-3)
$$M_{1t} = \beta_{10} + \beta_{11} Y_{1t} - \beta_{11} T_{1t} - \beta_{11} \delta * K_{1t} + \beta_{12} TT_{1t};$$

$$TT_{1t} = \left(\frac{P_x}{P_M}\right) 1t$$

(E-4)
$$I_{1t}^{n} = \gamma_{10} + \gamma_{11} Y_{1t-1} - \gamma_{12} \delta^* - \gamma_{12} Y_{1t-1} + \gamma_{13} X_{1t-1}$$

(E-5)
$$0_{1t} = \eta_{10} + \eta_{11} r_{2t} - \eta_{11} r_{1t}$$

(E-6)
$$Y_{2t} = \delta_{20} + \delta_{21} K_{1t} + \delta_{22} L_{1t}$$

(E-7)
$$C_{2t} = \alpha_{20} + \alpha_{21} Y_{2t} - \alpha_{21} T_{2t} - \alpha_{21} TR_{2t} - \alpha_{21} \delta * K_{2t}$$

(E-8)
$$M_{2t} = \beta_{20} + \beta_{21} Y_{2t} - \beta_{21} T_{2t} - \beta_{21} TR_{2t} - \beta_{21} \delta * K_{2t} + \beta_{22} TT_{2t}$$
; $TT_{2t} = \frac{P_{x}}{P_{y}} 2t$

(E-9)
$$I_{2t}^{n} = \gamma_{20} + \gamma_{21} Y_{2t-1} - \gamma_{22} \delta * - \gamma_{22} r_{2t-1} + \gamma_{23} K_{2t-1}$$

10 identities:

$$(I-1) Y_{1t} = C_{1t} + I_{1t}^G + G_{1t} + X_{1t} - M_{1t}$$

$$(I-2)$$
 $B_{1t} = X_{1t} - M_{1t} - 0_{1t}$

$$(I-3)$$
 $K_{1t} = I_{1t}^{n} + K_{1t-1}$

$$(I-4)$$
 $I_{1t}^{G} = I_{1t}^{n} + \delta * K_{1t}$

(I-5)
$$X_{1t} = X_{1t}^{III} + (M_{2t} - M_{2t}^{III}) + IE_{1t}$$

$$(I-6)$$
 $Y_{2t} = C_{2t} + I_{2t}^G + G_{2t} + X_{2t} - M_{2t}$

$$(I-7)$$
 $B_{2t} = X_{2t} - M_{2t} + 0_{1t}$

$$(I-8)$$
 $K_{2t} - I_{2t}^{n} + K_{2t-1}$

$$(I-9)$$
 $I_{2t}^G = I_{2t}^n + \delta * K_{2t}$

$$(I-10)$$
 $X_{2t} = X_{2t}^{III} + (M_{1t} - M_{1t}^{III})$

Substituting (I-5) and (I-10) into (I-1), (I-2), (I-6) and (I-7):

(I-la)
$$Y_{1t} = C_{1t} + I_{1t}^G + G_{1t} + X_{1t}^{III} + M_{2t} - M_{2t}^{III} + IE_{1t} - M_{1t}$$

$$(I-2a)$$
 $B_{1t} = X_{1t}^{III} + M_{2t} - M_{2t}^{III} + IE_{1t} - M_{1t} + O_{1t}$

$$(I-6a)$$
 $Y_{2t} = C_{2t} + I_{2t}^G + C_{2t} + X_{2t}^{III} + (M_{1t} - M_{1t}^{III}) - M_{2t}$

(I-7a)
$$B_{2t} = X_{2t}^{III} + M_{1t} - M_{1t}^{III} - M_{2t} + 0_{1t}$$

= $(X_{1t}^{III} + X_{2t}^{III}) - (M_{1t}^{III} + M_{2t}^{III}) - B_{1t}$

Substituting {(I-4), (E-2), (E-3), (E-4)} into (I-1a); {(I-9), (E-7), (E-8), (E-9)} into (I-6a); {(E-3), (E-5)} into (I-2a); {(E-8, (E-5))} into (I-7a); (E-4) into (I-3) and (E-9) into (I-8) and regrouping the terms, we get the following reduced form system:

(I-6b)
$$-\beta_{11} \quad Y_{1t} + (1-\alpha_{21} + \beta_{21}) \quad Y_{2t} - \delta^* \quad (1-\alpha_{21} + \beta_{21}) \quad K_{2t} + \beta_{11} \quad \delta^* \quad K_{1t}$$

$$= \gamma_{21} \quad Y_{2t-1} + \gamma_{23} \quad K_{2t-1} + G_{2t} - \gamma_{22} \quad r_{2t-1}$$

$$+ (\alpha_{20} + \beta_{20} - \beta_{20} + \gamma_{20} - \gamma_{22} \quad \delta^*) + \beta_{12} \quad TT_{1t} - \beta_{11} \quad T_{1t} - M_{1t}^{III}$$

$$- \beta_{22} \quad TT_{2t} + (\beta_{21} - \alpha_{21}) \quad T_{2t} + (\beta_{21} - \alpha_{21}) \quad TR_{2t} + X_{2t}^{III}$$

(I-2b)
$$\beta_{11} Y_{1t} - \beta_{21} Y_{2t} + B_{1t} - \beta_{11} \delta * K_{1t} + \beta_{21} \delta * K_{2t} = \eta_{11} r_{1t} - \eta_{11} r_{2t}$$

$$+ (\beta_{20} - \beta_{10} - \eta_{10}) - \beta_{12} T_{1t} + \beta_{11} T_{1t} + IE_{1t} + X_{1t}^{III}$$

$$+ \beta_{22} T_{2t} - \beta_{21} T_{2t} - \beta_{21} TR_{2t} - M_{2t}^{III}$$

(I-7b)
$$B_{1t} + B_{2t} = X_{1t}^{III} - M_{1t}^{III} + X_{2t}^{III} - M_{2t}^{III}$$

(I-3b)
$$K_{1t} = \gamma_{11} Y_{1t-1} + (1+\gamma_{13}) K_{1t-1} + (\gamma_{10} - \gamma_{12} \delta^*) - \gamma_{12} Y_{1t-1}$$

(I-8b)
$$K_{2t} = Y_{21} Y_{2t-1} + (1 + Y_{23}) K_{2t-1} + (Y_{20} - Y_{22} \delta^*) - Y_{22} Y_{2t-1}$$

To get rid of the problem of double-counting of K_{1t} , we make the following transformation of variables:

(I-11)
$$Y_{it} = \tilde{Y}_{it} + \delta_{i1} K_{it} = \delta_{i0} + \delta_{i2} L_{it}$$
 $i = 1,2$

(I-12)
$$Y_{i,t-1} = \tilde{Y}_{i,t-1} + \delta_{i,1} K_{i,t-1} = \delta_{i,0} + \delta_{i,2} L_{i,t-1} i = 1,2$$

Substituting (I-11) and (I-12) for i = 1,2 into the above reduced form:

(I-1c)
$$a_{11}^{\tilde{Y}}_{1t} - \beta_{21}^{\tilde{Y}}_{2t} + a_{13}^{\tilde{K}}_{1t} + a_{14}^{\tilde{K}}_{2t} = \gamma_{11}^{\tilde{Y}}_{1t-1}^{\tilde{Y}}_{1t-1} + a_{15}^{\tilde{K}}_{1t-1}$$

$$+ G_{1t} - \gamma_{12}^{\tilde{Y}}_{1t-1} + a_{17}^{\tilde{Y}}_{1t} + IE_{1t}^{\tilde{Y}}_{1t} + IE_{1t}^{\tilde{Y}}_{1t} + A_{1t}^{\tilde{Y}}_{1t}$$

$$+ \beta_{22}^{\tilde{Y}}_{2t} - \beta_{21}^{\tilde{Y}}_{2t} - \beta_{21}^{\tilde{Y}}_{2t} - \beta_{21}^{\tilde{Y}}_{2t}^{\tilde{Y}}_{2t}$$

(I-6c)
$$-\beta_{11} \tilde{Y}_{1t} + a_{22} \tilde{Y}_{2t} + a_{23} K_{1t} + a_{24} K_{2t} = \gamma_{21} \tilde{Y}_{2t-1} + a_{26} K_{2t-1}$$

 $+ G_{2t} - \gamma_{22} r_{2t-1} + a_{27} + \beta_{12} TT_{1t} - \beta_{11} T_{1t} - M_{1t}^{III} - \beta_{22} TT_{2t}$
 $+ a_{28} T_{2t} + a_{28} TR_{2t} + X_{2t}^{III}$

(I-2c)
$$\beta_{11} \tilde{Y}_{1t} - \beta_{21} \tilde{Y}_{2t} + B_{1t} + a_{33} K_{1t} + a_{34} K_{2t} = \eta_{11} r_{1t} - \eta_{11} r_{2t}$$

$$+ a_{37} - \beta_{12} TT_{1t} + \beta_{11} T_{1t} + T_{1t} + X_{1t}^{III} + \beta_{22} TT_{2t} - \beta_{21} T_{2t}$$

$$- \beta_{21} TR_{2t} - M_{2t}^{III}$$

(I-7c)
$$B_{1t} + B_{2t} = X_{1t}^{III} - M_{1t}^{III} + X_{2t}^{III} - M_{2t}^{III}$$

(I-3c)
$$K_{1t} = \gamma_{11} \tilde{Y}_{1t-1} + a_{55} K_{1t-1} - \gamma_{12} r_{1t-1} + a_{57}$$

(I-8c)
$$K_{2t} = \gamma_{21} \tilde{Y}_{2t-1} + a_{66} K_{2t-1} - \gamma_{22} r_{2t-1} + a_{67}$$

$$a_{11} = 1 - \alpha_{11} + \beta_{11}$$
 $a_{22} = 1 - \alpha_{21} + \beta_{21}$

$$a_{13} = (1 - \alpha_{11} + \beta_{11})(\delta_{11} - \delta^*)$$
 $a_{23} = \beta_{11}(\delta^* - \delta_{11})$

$$a_{14} = \beta_{21}(\delta^* - \delta_{21})$$
 $a_{24} = (a - \alpha_{21} + \beta_{21})(\delta_{21} - \delta^*)$

$$a_{15} = (\gamma_{13} + \gamma_{11} \delta_{11})$$
 $a_{26} = \gamma_{23} + \gamma_{21} \delta_{21}$

$$a_{17} = (\alpha_{10} - \beta_{10} + \beta_{20} + \gamma_{10} - \gamma_{12} \delta^*)$$

$$a_{27} = \alpha_{20} + \beta_{10} - \beta_{20} + \gamma_{20} - \gamma_{22} \delta^*$$

$$a_{18} = \beta_{11} - \alpha_{11}$$
 $a_{28} = \beta_{21} - \alpha_{21}$

$$a_{33} = \beta_{11}(\delta_{11} - \delta^*)$$

$$a_{55} = 1 + \gamma_{13} + \gamma_{11} \delta_{11}$$

$$a_{34} = \beta_{21} (\delta^* - \delta_{21})$$

$$a_{57} = \gamma_{10} - \gamma_{12} \delta^*$$

$$a_{37} = \beta_{20} - \beta_{10} - \eta_{10}$$

$$a_{66} = 1 + \gamma_{23} + \gamma_{21} \delta_{21}$$

$$a_{67} = \gamma_{20} - \gamma_{22} \delta^*$$

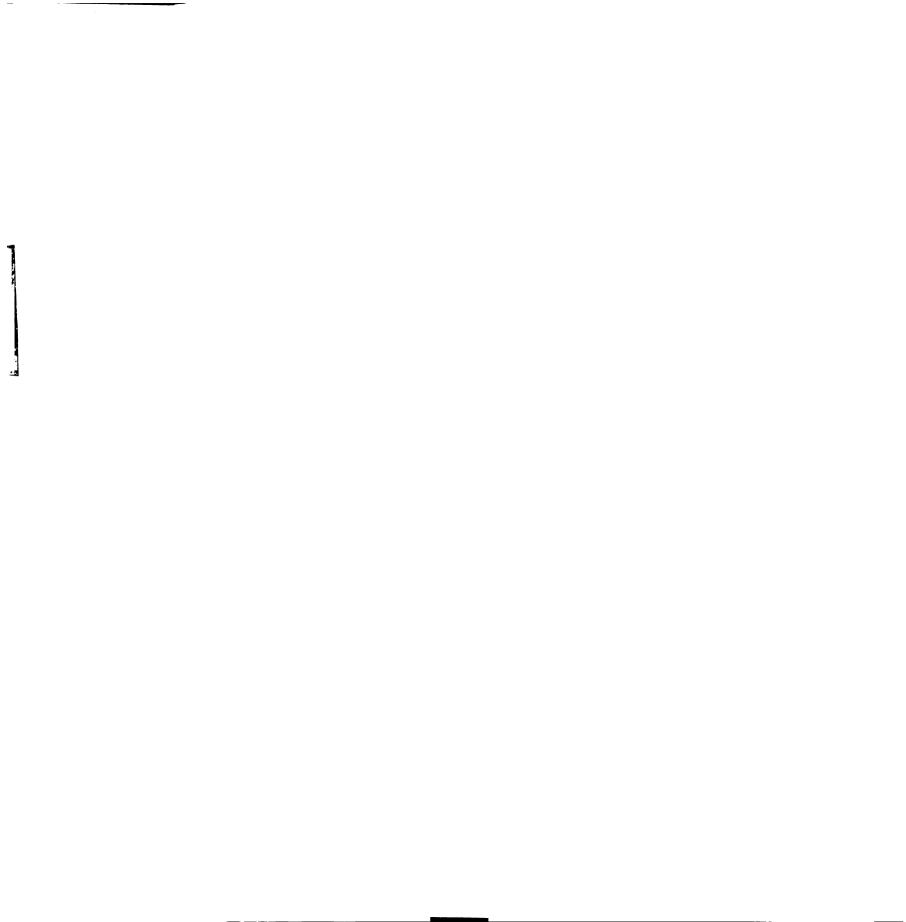
And in matrix notation it becomes:

		_ = =			Tr -	^r 2t - 1		riting.
1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	7	7		-	
·					' -		0	
0 4 0 0 0 0			28 1	0 12				
- 0 0 0 0		1 -621		1 -621	0	0	•	
+		6 ₂₁	5 2	6 ₂₁	•	0	•	
r, r		A22	-Y ₂₂ -6 ₂₂	B ₂₂	•	0	0 8	
		0	7	0 1	0	•	722	
		•	0	1111	0	0	0	
*15 0 0 0 0 0 0		2 18	n ₉₋ n ₉	2 ⁶ 11	•	•	0	
	[1-1] [2r-1] [1-1]	-6 ₁₂	2 1	-6 12	0	0	0	
		0	7	0	7	•	0	
0 0 0 7 ₂₁	21,000,71	-	•	1	-	0	•	
		, 1	, 0	1 1	•	0 4	0 /	
, , , , , , , , , , , , , , , , , , ,	• • • •	,7a	•27	•37	•	.53	.5 	
•	+			+				
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1								
1 0 0 34 46								
* * * * * * * * * * * * * * * * * * *								
0 0 0 0 0								
0 0 1 1 0 0								
-6 ₂₁ -6 ₂₁ -6 ₂₁ 0								
-8 ₁₁								
(4-10.1)								

4.4.

Multiplying both sides of the matrix-equation A-10.1 by:

$$\begin{bmatrix} a_{11} & -\beta_{21} & 0 & 0 & a_{13} & a_{14} \\ -\beta_{11} & a_{22} & 0 & 0 & a_{23} & a_{24} \\ \beta_{11} & -\beta_{21} & 1 & 0 & a_{33} & a_{34} \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 & 0 & Q_{15} & Q_{16} \\ Q_{21} & Q_{22} & 0 & 0 & Q_{25} & Q_{26} \\ Q_{31} & -Q_{32} & 1 & 0 & -Q_{35} & -Q_{36} \\ -Q_{31} & Q_{32} & -1 & 1 & Q_{35} & Q_{36} \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$


$$\begin{aligned} |Q| &= a_{11} \ a_{22} - \beta_{11} \ \beta_{21} \\ Q_{11} &= \frac{a_{22}}{|Q|} \\ Q_{21} &= \frac{\beta_{11}}{|Q|} \\ Q_{31} &= \frac{\beta_{11}(\beta_{21} - a_{22})}{|Q|} \\ Q_{31} &= \frac{\beta_{11}(\beta_{21} - a_{22})}{|Q|} \\ Q_{32} &= \frac{\beta_{21}(\beta_{11} - a_{11})}{|Q|} \\ Q_{15} &= \frac{1}{|Q|} \ (a_{13}a_{22} + a_{23}\beta_{21}) \\ Q_{25} &= \frac{1}{|Q|} \ (a_{11}a_{23} + a_{13}\beta_{11}) \\ Q_{35} &= \frac{1}{|Q|} \ [a_{11}(a_{22}a_{33} + a_{23}\beta_{21}) - \beta_{11} \ \beta_{21} \ (a_{23} + a_{33}) + a_{13}\beta_{11} \ (\beta_{21} - a_{22})] \\ Q_{16} &= \frac{1}{|Q|} \ (a_{24}\beta_{21} + a_{14}a_{22}) \\ Q_{26} &= \frac{-1}{|Q|} \ (a_{11}a_{24} + a_{14}\beta_{11}) \end{aligned}$$

$$Q_{36} = \frac{1}{|Q|} \left[a_{11} (a_{22} a_{34} + a_{24} \beta_{21}) - \beta_{11} \beta_{21} (a_{34} + a_{24}) + a_{14} \beta_{11} (\beta_{21} - a_{22}) \right]$$

Then the reduced form is:

[G1t-1] [C2t-1] [T1t-1]												
A ₁₅	-A ₃₅	A ₃₅	- ₇₁₂	0								
0 0	0	0	0	0	FI.		Y E	 ; _;;	r2t r2e_1	TT2t	Tage	H
0 0	0	0					X H	н	н н	H 1	1	
[,	G _{2t} +	1			, 11	⁻⁰ 21	-(1+931)	931	0	0	•	
·				 -	912	^Q 22	⁻⁰ 32	1+932	0	0		
0 0			0	0	D ₁₅	D ₂₅	-D ₃₅	D ₃₅ 1	0	0		
⁰ 12 0,2	•	932	0	0	D ₁₅	D ₂₅	- _{D35}	D ₃₅	0	0		
Q ₁₁	⁹ 31	-6 ₃₁	0	<u> </u>	D ₁₄	D ₂ 4	D34	-b ₃₄	0			
	+				4 ₁₆	4 26	A ₃₆	- 4 36	0	- ⁷ 22		
Y _{1t-1} Ŷ	B _{1t-1}	K1t-1	1		0	0	ال 11	111	0	0		
4	. 4	4		99	D ₁₃	D ₂₃	D ₃₃	-D ₃₃	0	0		
A ₁₃ A ₁₄	•	13 A34	0 5	•	D ₁₂	D ₂₂	-D ₃₂	D ₃₂	0	0		
0 A ₁₃	' ∛	0 -A ₃₃	0 455	0	-0 ₁₂	-922	^Q 32	$-b_{31}^{-(1+q_{31})-q_{31}} - (1+q_{32})$	0	0		
0 0	0	0	0	. •	$^{0}_{11}$	Q ₂₁	1+931	0 ₃₁ -	0	0		
A ₁₂	- 4 32	A ₃₂	0	21	⁰ 11	Q ₂₁	1+931 1+931	14931)	0	0		
A ₂₁ ,		- A 31	11	0	D ₁₁	D ₂₁	D ₃₁	-D ₃₁ -(8 ₅₇	a ₆₇		
	•	~~~ <u>~</u>		d	<u> </u>			+				

(A-10.2)

$$A_{16} = -\gamma_{22}(Q_{12} + Q_{16})$$

$$A_{26} = -Y_{22}(Q_{22} + Q_{26})$$

$$A_{36} = \gamma_{22}(Q_{32} + Q_{36})$$

In matrix notation, the structural form of the two-country econometric model under the assumption of linear dependent balance of payments is:

(A-10.3)
$$y_t = \overline{A} y_{t-1} + \overline{B} u_t + \overline{C} u_{t-1} + \overline{D} z_t$$

And Votey's estimated structural coefficients:

$$\alpha_{10} = 52.57$$
 $\beta_{10} = 14.5131$ $\gamma_{10} = 31.707$ $\delta_{10} = 0$
 $\alpha_{11} = -0.75$ $\beta_{11} = 0.1315$ $\gamma_{11} = -0.0027$ $\delta_{11} = 0.2051$
 $\alpha_{12} = N.S.$ $\beta_{12} = 12.53$ $\gamma_{12} = 461.7$ $\delta_{12} = 4.020$
 $\alpha_{20} = 31.26$ $\beta_{21} = 0.098$ $\gamma_{13} = 0.0624$ $\delta * = 0.0489$
 $\alpha_{21} = 0.7345$ $\beta_{22} = N.S.$ $\gamma_{20} = 1.5812$ $\delta_{20} = 0$
 $\gamma_{21} = 0.1668$ $\delta_{21} = 0.3634$
 $\gamma_{22} = 349.8519$ $\delta_{22} = 0.3552$
 $\gamma_{23} = 0.0429$

$$\eta_{10} = -0.6915$$

$$\eta_{11} = 46.279$$

have been used to compute the numerical values for the matrices \overline{A} , \overline{B} , \overline{C} and \overline{D} :

-0.0073	0.1298	0	0	0.0131	0.0806
-0.0028	0.4538	0	0	0.0648	-0.0329
 0.0007	+0.0324	0	0	-0.0172	0.0201
-0.0007	-0.0324	0	0	+0.0172	-0.0201
-0.0027	0	0	0	1.0618	0
0	0.1668	0	0	0	1.1033
L					

	_		-	•	_			
	2.8932	0.7782	0		0	0	-1263.7107	
	1.0475	3.0351	0		0	0	- 483.6539	
; B=	-0.2785	0.1942	46.279	; C =	0	0	+ 128.5835	
	0.2785	-0.1942	-46.279		0	0	- 128.5835	
	0	0	0		0	0	- 461.7	
	0	0	0		0	0	0	
	L							

129.6688 2.8932 2.8932 -0.7782	2.8932	2.8932	-0.7782	59.9751 -1.8918 0	-1.8918	0	-272.2641 NS -0.7782 -0.7782 0.7782 -2.8932	NS	-0.7782	-0.7782	0.7782	-2.8932
162.4172 1.0475 1.0475 -3.0351	1.0475	1.0475		-56.3610 -1.0470 0	-1.0470	0	-951.8105 NS -2.0351 -2.0351 3.0351 -1.0475	NS	-2.0351 -	-2.0351	3.0351	-1.0475
-28.3120 0.7215 0.7215 -0.1942	0.7215	0.7215	-0.1942	14.9535	0.2782	-46.279	14.9535 0.2782 -46.279 - 67.9307 NS -0.1942 -0.1942 0.1942 -0.7215	NS	-0.1942 -	-0.1942	0.1942	-0.7215
28.3120	28.3120 -0.7215 0.2785 -0.8058	0.2785	-0.8058	-14.9535	-0.2782	46.279	-14.9535 -0.2782 46.279 67.9307 NS 0.1942 0.1942 0.80583 -0.2785	NS	0.1942	0.1942	0.80583	-0.2785
9.1299 0	0	0	0	0	0	0	0	0	0	0	0	0
18.6889 0	0	0	0	0	0	0	-349.8519 0 0	0	0	0	0	0

APPENDIX A-11

COMPUTATIONS OF THE OPTIMAL SOLUTION FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE B)

The optimal result is given by equation 2-8

$$(2-8) \quad u_{t}^{*} = -(B^{c} Q^{c} B^{c})^{-1} B^{c} Q^{c} A^{c} x_{t-1}^{c*} + (B^{c} Q^{c} B^{c})^{-1} B^{c} Q^{c} x_{t}^{c*}$$
$$- (B^{c} Q^{c} B^{c})^{-1} B^{c} Q^{c} C^{c} z_{t}^{c}$$

where

$$\begin{aligned} \mathbf{x}_{t}^{c*} &= \begin{bmatrix} \tilde{\mathbf{Y}}_{1t}^{*} &, \, \tilde{\mathbf{Y}}_{2t}^{*} &, \, \mathbf{B}_{1t}^{*} &, \, \mathbf{B}_{2t}^{*} &, \, \mathbf{K}_{1t}^{*} &, \, \mathbf{K}_{2t}^{*} &, \, \mathbf{G}_{1t}^{*} &, \, \mathbf{G}_{2t}^{*} &, \, \mathbf{T}_{1t}^{*} \end{bmatrix}' \\ \mathbf{u}_{t}^{c*} &= \begin{bmatrix} \mathbf{G}_{1t}^{*} &, \, \mathbf{G}_{25}^{*} &, \, \mathbf{T}_{1t}^{*} \end{bmatrix}' \\ \mathbf{z}_{t}^{c} &= \begin{bmatrix} \mathbf{I} &, \, \mathbf{IE}_{1t} &, \, \mathbf{X}_{1t}^{III} &, \, \mathbf{M}_{1t}^{III} &, \, \mathbf{T}_{1t} &, \, \mathbf{T}_{2t} &, \, \mathbf{X}_{2t}^{III} &, \, \mathbf{M}_{2t}^{III} \end{bmatrix}' \\ \mathbf{x}_{t}^{c} &= \begin{bmatrix} \tilde{\mathbf{Y}}_{1t} &, \, \tilde{\mathbf{Y}}_{2t} &, \, \overline{\mathbf{B}}_{1t} &, \, \overline{\mathbf{B}}_{2t} &, \, \overline{\mathbf{K}}_{1t} &, \, \overline{\mathbf{K}}_{2t} &, \, \overline{\mathbf{G}}_{1t} &, \, \overline{\mathbf{G}}_{2t} &, \, \overline{\mathbf{T}}_{1t} \end{bmatrix}' &= \begin{bmatrix} \delta_{10} + \delta_{12} \,\, \mathbf{L}_{1t} &, \, \delta_{20} + \delta_{22} \,\, \mathbf{L}_{2t} &, \, 0, \, 0, \, \overline{\mathbf{K}}_{1t} &, \, \overline{\mathbf{K}}_{2t} &, \, \overline{\mathbf{G}}_{1t} &, \, \overline{\mathbf{G}}_{2t} &, \, \overline{\mathbf{T}}_{1t} \end{bmatrix}' &= \begin{bmatrix} \delta_{10} + \delta_{12} \,\, \mathbf{L}_{1t} &, \, \delta_{20} + \delta_{22} \,\, \mathbf{L}_{2t} &, \, 0, \, 0, \, \overline{\mathbf{K}}_{1t} &, \, \overline{\mathbf{K}}_{2t} &, \, \overline{\mathbf{G}}_{1t} &, \, \overline{\mathbf{G}}_{2t} &, \, \overline{\mathbf{T}}_{1t} \end{bmatrix}' &= \begin{bmatrix} \delta_{10} + \delta_{12} \,\, \mathbf{L}_{1t} &, \, \delta_{20} + \delta_{22} \,\, \mathbf{L}_{2t} &, \, 0, \, 0, \, \overline{\mathbf{K}}_{1t} &, \, \overline{\mathbf{K}}_{2t} &, \, \overline{\mathbf{G}}_{1t} &, \, \overline{\mathbf{G}}_{2t} &, \, \overline{\mathbf{T}}_{1t} \end{bmatrix}' &= \begin{bmatrix} \delta_{10} + \delta_{12} \,\, \mathbf{L}_{1t} &, \, \delta_{20} &, \, \delta_{20$$

	_									
	A ₁₁	A ₁₂	0	0	A ₁₃	A ₁₄	0	0	A ₁₅]`
	A ₂₁	A ₂₂	0	0	A ₂₃	A ₂₄	0	0	A ₂₅	
	A ₃₁	-A ₃₂	0	0	A ₃₃	-A ₃₄	0	0	-A ₃₅	
A ^c =	-A ₃₁	A ₃₂	0	0	-A ₃₃	A ₃₄	0	0	A ₃₅	
	Y ₁₁	0	0	0	a 55	0	0	0	-γ ₁₂	
	0	Υ ₂₁	0	0	0	a 66	0	0	0	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	

$$;B^{C} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ Q_{31} & -Q_{32} & \eta_{11} \\ -Q_{31} & Q_{32} & -\eta_{11} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$q_{11}$$
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

-4 ₁₁	$-^{Q}_{21}$	$-(1+Q_{31})$	931	0	0	0	0	0
		-0 ₃₂					0	
D ₁₅	D ₂₅	- _D 35	D ₃₅	0	0	0	0	0
D ₁₅	D ₂₅	-D ₃₅	D ₃₅	0	0	0	0	0
		D34			0	0	0	0
	_	A ₃₆	_		$^{-\gamma}_{22}$	0	0	0
0	0	- ₁₁	η ₁₁	0	0	0	0	0
D ₁₃	D ₂₃	D ₃₃	-D ₃₃	0	0	0	0	0
D ₁₂	D_{22}	-D ₃₂	D ₃₂	0	0	0	0	0
		932			0	0	0	0
911	Q ₂₁	$^{1+Q}_{31}$	-431	0	0	0	0	0
Q ₁₁								
	D ₂₁	D ₃₁	-D ₃₁	a ₅₇	a ₆₇	0	0	。

Let us compute

$$B^{c_{\dagger}Q^{c}} = \begin{bmatrix} Q_{11} & Q_{21} & Q_{31} & -Q_{31} & 0 & 0 & 1 & 0 & 0 \\ Q_{12} & Q_{22} & -Q_{32} & Q_{32} & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & \eta_{11} & -\eta_{11} & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} q_{11}Q_{11} & q_{22}Q_{21} & q_{33}Q_{31} & -q_{44}Q_{31} & 0 & 0 & 0 & 0 & 0 \\ q_{11}Q_{12} & q_{22}Q_{22} & -q_{33}Q_{32} & q_{44}Q_{32} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & q_{33}q_{11} & -q_{44}q_{11} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{pmatrix} q_{11}q_{11}^2 + q_{22}q_{21}^2 + (q_{33} + q_{44})q_{31}^2 \\ q_{11}q_{11}q_{12} + q_{22}q_{21}^2 + (q_{33} + q_{44})q_{31}^2 \end{pmatrix}$$

$$q_{11}q_{11}q_{12} + q_{22}q_{21}q_{22} - (q_{33} + q_{44})q_{31}q_{32}$$

$$q_{11}q_{12} + q_{22}q_{22} + (q_{33} + q_{44})q_{32}^2 + (q_{33} + q_{44})q_{32}^2$$

$$q_{11}q_{11}q_{31} + q_{44})^{\eta_{11}q_{31}}$$

$$q_{11}q_{12} + q_{22}q_{22} + (q_{33} + q_{44})q_{32}^2 + (q_{33} + q_{44})q_{32}$$

$$q_{11}q_{12} + q_{22}q_{22} + (q_{33} + q_{44})q_{32}$$

$$q_{11}q_{12} + q_{12}q_{22} + (q_{33} + q_{44})q_{32}$$

$$q_{11}q_{12} + q_{12}q_{22} + (q_{33} + q_{44})q_{32}$$

$$q_{11}q_{12} + q_{12}q_{22} + (q_{33} + q_{44})q_{32}$$

As before, since (B^{c1}Q^CB^c) is symmetric, the inverse of (B^{c1}Q^CB^c) is obtained by the method of partitioning (Appendixes A-7 and A-8), which leads to:

$$\frac{^{2b}_{21}b_{31}b_{32}}{^{2b}_{21}b_{31}a_{32}} = \frac{^{b}_{22}b_{33} - ^{b}_{22}}{^{b}_{31}b_{32} - ^{b}_{21}b_{33}} = \frac{^{b}_{22}b_{31} - ^{b}_{21}b_{32}}{^{b}_{31}b_{32} - ^{b}_{21}b_{33}} = \frac{^{b}_{22}b_{31} - ^{b}_{21}b_{32}}{^{b}_{11}b_{32} - ^{b}_{21}b_{31}} = \frac{^{b}_{11}b_{32} - ^{b}_{21}b_{31}}{^{b}_{11}b_{22} - ^{b}_{21}b_{31}}$$

where

$$b_{11} \stackrel{d}{=} q_{11}Q_{11}^{2} + q_{22}Q_{21}^{2} + (q_{33} + q_{44})Q_{31}^{2}$$

$$b_{22} \stackrel{d}{=} q_{11}Q_{12}^{2} + q_{22}Q_{22}^{2} + (q_{33} + q_{44})Q_{32}^{2}$$

$$b_{33} \stackrel{d}{=} (q_{33} + q_{44})^{\eta} {}_{11}^{2}$$

$$b_{21} \stackrel{d}{=} q_{11}Q_{11}Q_{12} + q_{22}Q_{21}Q_{22} - (q_{33} + q_{44})Q_{31}Q_{32}$$

$$b_{31} \stackrel{d}{=} (q_{33} + q_{44})^{\eta} {}_{11}Q_{31}$$

 $b_{32} \stackrel{d}{=} -(q_{33} + q_{44}) \eta_{11} Q_{32}$

Substituting the b_{ii} 's and b_{ij} 's (i = 1,2,3; j = 1,2,3) by their corresponding values, we get:

$q_{11}q_{12}(q_{12}q_{31}+q_{11}q_{32})+q_{22}q_{22}(q_{22}q_{31}+q_{21}q_{32})}{q_{11}q_{22}n_{11},(q_{12}q_{21}-q_{12}q_{21})^{2}}$	$-4_{11}q_{11}(q_{12}q_{31}+q_{11}q_{32})$ $-q_{22}q_{21}(q_{22}q_{31}+q_{21}q_{32})$ $-q_{11}q_{21}q_{32})$	$\frac{(q_{32})}{(q_{33}+q_{44})^{n_{11}^{2}}} + \frac{(q_{12}q_{31}+q_{11}q_{32})^{2}}{q_{22}^{n_{11}}(q_{12}q_{21}-q_{11}q_{22})^{2}} + \frac{((q_{22}q_{31}+q_{21}q_{32})}{q_{11}^{n_{11}}(q_{12}q_{21}-q_{11}q_{22})^{2}}$
-(q11Q11Q12 ^{+q} 22Q21Q22) q1,q2,(q1,Q2,-Q1,Q2), ²	$\frac{1}{9_{11}q_{11}^2+9_{22}q_{21}^2}$ $\frac{9_{11}q_{11}^2+9_{22}q_{21}^2}{9_{11}q_{22}^2(q_{12}q_{21}^{-q_{11}}q_{22})^2}$	-411911 (9 ₁₂ 9 ₃₁ +9 ₁₁ 9 ₃₂) 9 ₂₂ 9 ₂₁ (9 ₂₂ 9 ₃₁ +9 ₂₁ 9 ₃₂) 9 ₁₁ 9 ₂₂ ⁿ 11 (9 ₁₂ 9 ₂₁ -9 ₁₁ 9 ₂₂) ²
$\begin{bmatrix} q_{11}q_{12}^2 + q_{22}q_{22}^2 \\ q_{11}q_{12} + q_{21}q_{22}^2 \end{bmatrix}$	$\frac{-(q_{11}q_{11}q_{12}+q_{22}q_{21}q_{22})}{q_{11}q_{22}(q_{12}q_{21}-q_{11}q_{22})^2}$	911912 (0,12931+0,11932)+922022 (0,22931+0,21932) 911922 ¹ 11 (0,12 ⁹ 21 ⁻ 0,11 ⁹ 22) ²
	(B ^C , Q ^C B ^C) ⁻¹ =	

 $^{b_{22}b_{31}}-^{b_{21}b_{32}}-^{d}q_{11}(q_{33}+q_{44})^{n_{11}q_{11}}(q_{12}q_{31}+q_{11}q_{32})+q_{22}(q_{33}+q_{44})^{n_{11}q_{21}}(q_{22}q_{31}+q_{21}q_{32})$

		273	
0			
	0		
0	0		
0	0		
0	0		
0	$\frac{-q_{44}}{n_{11}(q_{33}+q_{44})}$		θ_{15}
0	933 n11 (933 +944)		$\theta_{14} 0 0$ $\theta_{24} 0 0$
$\frac{-0}{411}$			$\begin{bmatrix} \theta_{11} & \theta_{12} & 0 & 0 & \theta_{13} \\ \theta_{21} & \theta_{22} & 0 & 0 & \theta_{23} \\ \theta_{21} & \theta_{22} & 0 & 0 & \theta_{23} \end{bmatrix}$
$\frac{Q_{21}}{Q}$	^{Q22Q31+Q}	where $ \hat{\mathbf{d}} ^2 = \mathbf{d}_{11} ^2 = \mathbf{d}_$	$(A-11.2) (B^{C_1}Q^{C_B}C)^{-1}B^{C_1}Q^{C_A}C =$
	$0 0 0 0 \frac{0}{\sqrt{Q}}$	$\frac{-q_{11}}{q}$ $\frac{-q_{11}}{q}$ $\frac{-(q_{12}q_{31}+q_{11}q_{32})}{\eta_{11}q}$ $\frac{q_{33}}{\eta_{11}(q_{33}+q_{44})}$ $\frac{-q_{44}}{\eta_{11}(q_{33}+q_{44})}$ $0 0 0 0 0$	$\frac{-q_{11}}{q}$ $-(q_{12}q_{31}+q_{11}q_{32}) \over n_{11}q} \qquad q_{33}$ $\frac{-q_{44}}{n_{11}(q_{33}+q_{44})} \qquad \frac{-q_{44}}{n_{11}(q_{33}+q_{44})} \qquad 0 0 0 0 0$

Š

where

$$\begin{array}{lll} \theta_{11} \stackrel{d}{=} \frac{1}{Q} \left[A_{21}Q_{12} - A_{11}Q_{22} \right] & \theta_{21} \stackrel{d}{=} \frac{1}{Q} \left[A_{11}Q_{21} - A_{21}Q_{11} \right] \\ \theta_{12} \stackrel{d}{=} \frac{1}{Q} \left[A_{22}Q_{12} - A_{12}Q_{22} \right] & \theta_{22} \stackrel{d}{=} \frac{1}{Q} \left[A_{12}Q_{21} - A_{22}Q_{11} \right] \\ \theta_{13} \stackrel{d}{=} \frac{1}{Q} \left[A_{23}Q_{12} - A_{13}Q_{22} \right] & \theta_{23} \stackrel{d}{=} \frac{1}{Q} \left[A_{13}Q_{21} - A_{23}Q_{11} \right] \\ \theta_{14} \stackrel{d}{=} \frac{1}{Q} \left[A_{24}Q_{12} - A_{14}Q_{22} \right] & \theta_{24} \stackrel{d}{=} \frac{1}{Q} \left[A_{14}Q_{21} - A_{24}Q_{11} \right] \\ \theta_{15} \stackrel{d}{=} \frac{1}{Q} \left[A_{25}Q_{12} - A_{15}Q_{22} \right] & \theta_{25} \stackrel{d}{=} \frac{1}{Q} \left[A_{15}Q_{21} - A_{25}Q_{11} \right] \\ \theta_{31} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{31} + \frac{A_{11}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{21}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{32} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{32} + \frac{A_{12}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{22}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{33} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{33} + \frac{A_{13}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{23}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{34} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{34} + \frac{A_{14}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{24}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{34} + \frac{A_{14}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{24}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{35} + \frac{A_{15}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{25}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{36} + \frac{A_{14}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{25}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{36} + \frac{A_{15}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{25}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{36} + \frac{A_{15}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{25}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{36} + \frac{A_{15}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{25}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right] \\ \theta_{35} \stackrel{d}{=} \frac{1}{\eta_{11}} \left[A_{36} + \frac{A_{15}(Q_{22}Q_{31} + Q_{21}Q_{32}) - A_{25}(Q_{12}Q_{31} + Q_{11}Q_{32})}{Q} \right]$$

$$(B^{-11.3})$$

$$(B^{-1}Q^{c}B^{c})^{-1}B^{c}Q^{c}C^{c} = \begin{bmatrix} ^{\Delta}_{10} & ^{\Delta}_{11} & ^{\Delta}_{11} & ^{\Delta}_{12} & ^{\Delta}_{13} & ^{\Delta}_{14} & ^{0} & ^{\Delta}_{15} & ^{\Delta}_{16} & ^{\Delta}_{17} & ^{\Delta}_{17} & ^{\Delta}_{18} & ^{\Delta}_{19} \\ ^{\Delta}_{20} & ^{\Delta}_{21} & ^{\Delta}_{21} & ^{\Delta}_{22} & ^{\Delta}_{23} & ^{\Delta}_{24} & ^{0} & ^{\Delta}_{25} & ^{\Delta}_{26} & ^{\Delta}_{27} & ^{\Delta}_{27} & ^{\Delta}_{28} & ^{\Delta}_{29} \\ ^{\Delta}_{30} & ^{\Delta}_{31} & ^{\Delta}_{41} & ^{\Delta}_{32} & ^{\Delta}_{33} & ^{\Delta}_{34} & ^{1} & ^{\Delta}_{35} & ^{\Delta}_{36} & ^{\Delta}_{37} & ^{\Delta}_{37} & ^{\Delta}_{38} & ^{\Delta}_{39} \end{bmatrix}$$

$$\Delta_{10} \stackrel{\text{d}}{=} \frac{1}{Q} (-b_{11}Q_{22} + b_{21}Q_{12})$$

$$\Delta_{11} \stackrel{\text{d}}{=} \frac{1}{Q} (-q_{11}Q_{22} + q_{12}Q_{21})$$

$$^{\Delta}_{12} \stackrel{d}{=} \frac{1}{Q} (Q_{12}Q_{22} - Q_{12}Q_{22})$$

$$^{\Delta_{13}} \stackrel{d}{=} \frac{1}{Q} (-^{D_{12}Q_{22}} + ^{D_{22}Q_{12}})$$

$$^{\Delta_{14}} \stackrel{\underline{d}}{=} \frac{1}{Q} \; (^{-D}_{13} Q_{22} \; + \; ^{D}_{23} Q_{12})$$

$$^{\Delta}_{15} \stackrel{d}{=} \frac{1}{Q} (-A_{16}Q_{22} + A_{26}Q_{12})$$

$$^{\Delta_{16}} \stackrel{\underline{d}}{=} \frac{1}{Q} (^{-D_{14}Q_{22}} + ^{D_{24}Q_{12}})$$

$$^{\Delta_{20}} \stackrel{d}{=} \frac{1}{Q} \; (^{D_{11}Q_{21}} - ^{D_{21}Q_{11}})$$

$$^{\Delta_{21}} \stackrel{\text{d}}{=} \frac{1}{0} (Q_{11}Q_{21} - Q_{11}Q_{21})$$

$$^{\Delta_{22}} \stackrel{\text{d}}{=} \frac{1}{0} (-Q_{12}Q_{21} + Q_{11}Q_{22})$$

$$^{\Delta_{23}} \stackrel{d}{=} \frac{1}{Q} (^{D_{12}Q_{21}} - ^{D_{22}Q_{11}})$$

$$\Delta_{24} \stackrel{d}{=} \frac{1}{Q} (D_{13}Q_{21} - D_{23}Q_{11})$$

$$^{\Delta_{25}} \stackrel{d}{=} \frac{1}{0} (^{A_{16}Q_{21}} - ^{A_{26}Q_{11}})$$

$$\Delta_{26} \stackrel{\underline{d}}{=} \frac{1}{Q} (D_{14}Q_{21} - D_{24}Q_{11})$$

$$\begin{array}{c} \Delta_{17} \stackrel{d}{=} \frac{1}{Q} \left(-D_{15}Q_{22} + D_{25}Q_{12} \right) & \Delta_{27} \stackrel{d}{=} \frac{1}{Q} \left(D_{15}Q_{21} - D_{25}Q_{11} \right) \\ \Delta_{18} \stackrel{d}{=} \frac{1}{Q} \left(-Q_{12}Q_{22} + Q_{12}Q_{22} \right) & \Delta_{28} \stackrel{d}{=} \frac{1}{Q} \left(Q_{12}Q_{21} - Q_{11}Q_{22} \right) \\ \Delta_{19} \stackrel{d}{=} \frac{1}{Q} \left(Q_{11}Q_{22} - Q_{12}Q_{21} \right) & \Delta_{29} \stackrel{d}{=} \frac{1}{Q} \left(-Q_{11}Q_{21} + Q_{11}Q_{21} \right) \\ \Delta_{30} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[D_{11} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{21} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{D_{31}}{n_{11}} \\ \Delta_{31} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[Q_{11} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - Q_{21} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{Q_{31}}{n_{11}} + \frac{q_{33}}{q_{33} + q_{44}} \\ \Delta_{41} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[Q_{11} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - Q_{21} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{Q_{32}}{n_{11}} + \frac{q_{44}}{q_{33} + q_{44}} \\ \Delta_{32} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[Q_{12} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{22} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{P_{32}}{n_{11}} \\ \Delta_{33} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[D_{12} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{22} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{D_{33}}{n_{11}} \\ \Delta_{34} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[D_{13} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{23} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{D_{34}}{n_{11}} \\ \Delta_{35} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[D_{14} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{24} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{D_{34}}{n_{11}} \\ \Delta_{36} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[D_{14} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{25} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] + \frac{D_{34}}{n_{11}} \\ \Delta_{37} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[D_{15} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{25} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] - \frac{D_{35}}{n_{11}} \\ \Delta_{38} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[Q_{12} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - D_{25} \left(Q_{12}Q_{31} + Q_{11}Q_{32} \right) \right] - \frac{Q_{32}}{n_{11}} - \frac{q_{34}}{q_{32}} \\ \Delta_{39} \stackrel{d}{=} \frac{1}{n_{11}Q} \left[Q_{12} \left(Q_{22}Q_{31} + Q_{21}Q_{32} \right) - Q_{22} \left(Q_{12}Q_{31} + Q_{21}Q_{32} \right) - \frac{Q_{31}}{n_{11}} - \frac{q_{32}}{n_{11}} - \frac{q_{33}}{n_{11}} \right] - \frac{q_{33}}{q_{$$

Then the optimal control is:

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	• • •	
	0 0 0	
	0 0 0	419 429 439
		-618 -628 -638
7. 11-1 7. 11-1 7. 11-1 8. 11-1 8. 11-1 7. 11-1 7. 11-1	0 0 n ₁₁ (q ₃₃ *q ₄₄)	-6 ₁₇
	11 (4 ₃	-417 -627 -637
-9 15 3 5		Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-Δ-
	1	-4, 15
• • •	0 0 ^q 33 ⁿ 11 ^{(q} 33 ⁴⁴ 4,)	
• • •	0 0 F E	• • •
-8 14 -8 24 -8 34	33,	-614 -624 -634
- 6 13	+9 ₁₂ /q -9 ₁₁ /q -(9 ₁₂ 9 ₃₁ +9 ₁₁ 9 ₃₂) -11 ¹⁰	-4 ₁₃
	-012/9 -112-012-012-012-012-012-012-012-012-012	-4 12 -4 23 -4 24 -4 -4 24 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4
° 0 0	के के है। 	
• • •	3 ₀	
-6 ₁₂ -6 ₂₂ -6 ₃₂	\$ 71	- ⁴ 21 - ⁴ 31
- 931	-0 ₂₂ /q 9 ₂₁ 011011111111111111111111111111111111	- 410 - 430
•	+	+
G# C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
?		
(A-11.4)		

Since the targets $\bar{\bar{Y}}_{1t}$, $\bar{\bar{Y}}_{2t}$, $\bar{\bar{B}}_{1t}$, $\bar{\bar{B}}_{2t}$ are defined as follows

$$\overline{\tilde{Y}}_{1t} = \delta_{10} + \delta_{12} L_{1t}$$

$$\overline{\tilde{Y}}_{2t} = \delta_{20} + \delta_{22} L_{2t}$$

$$\overline{B}_{1t} = 0$$

$$\overline{B}_{2t} = 0$$

after substitution and rearrangement of terms, equation A-11.4 becomes:

$\frac{q_{22}^{6_{12}}}{q}$ $-\frac{q_{21}^{6_{12}}}{q}$ $\frac{12}{q}^{(q_{21}^{0}_{32}+q_{22}^{0}_{31})}$	
$\begin{bmatrix} -a_{10} + \frac{1}{4}(q_{22}^{6}i_{0} - q_{12}^{6}i_{20}) \\ -a_{20} + \frac{1}{4}(-q_{21}^{6}i_{10} + q_{11}^{6}i_{20}) \\ -a_{30} + \frac{1}{n_{11}}(q_{21}^{6}q_{32}^{4}q_{22}^{2}q_{31}^{6})^{6}i_{0}^{-6}i_{0}^{6}(q_{11}^{6}q_{32}^{-q_{12}^{6}q_{31}}) \\ -a_{30} + \frac{1}{n_{11}}(q_{21}^{6}q_{32}^{6}q_{32}^{6}q_{31}^{6})^{6}i_{0}^{6} - a_{12}^{6}q_{31}^{6}) \end{bmatrix}$	1
-015	$-a_{12} - a_{13} - a_{14} 0 -a_{15} - a_{16} -a_{17} -a_{17} -a_{18} -a_{19}$ $-a_{22} - a_{23} - a_{24} 0 -a_{25} -a_{26} -a_{27} -a_{27} -a_{28} -a_{29}$ $-a_{32} - a_{33} -a_{34} 1 -a_{35} -a_{36} -a_{37} -a_{37} -a_{38} -a_{39}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{^{12}^{6}22}{^{9}}$ $-^{4}_{11} -^{4}_{11} -^{4}_{12} -^{4}_{13} -^{4}_{14} ^{0} -^{4}_{15} -^{4}_{16} -^{4}_{17} -^{4}_{17} -^{4}_{19} -^{4}_{19}$ $\frac{^{11}^{6}}{^{2}}$ $-^{2}_{21} -^{2}_{21} -^{2}_{23} -^{2}_{24} ^{0} -^{2}_{25} -^{2}_{26} -^{2}_{27} -^{2}_{27} -^{2}_{28} -^{2}_{29}$ $\frac{^{6}_{22}}{^{1}}$ $-^{6}_{21} -^{2}_{21} -^{2}_{22} -^{2}_{23} -^{2}_{24} ^{1} -^{4}_{25} -^{2}_{26} -^{2}_{27} -^{2}_{27} -^{2}_{28} -^{2}_{29}$ $-^{1}_{11} -^{2}_{11} -^{2}_{11} -^{2}_{11} -^{2}_{21} -^{2}_{21} -^{2}_{21} -^{2}_{21} -^{2}_{21} -^{2}_{21} -^{2}_{21} -^{2}_{22} -^{2}_{23} -^{2}_{24} ^{1} -^{2}_{25} -^{2}_{26} -^{2}_{25} -^{2}_{26} -^{2}_{27} -^{2}_{27} -^{2}_{27} -^{2}_{28} -^{2}_{29$
$ \frac{(A-11.5)}{G_{1}^{2}t} \begin{bmatrix} G_{1}^{*}t \\ -\theta_{11} & -\theta_{12} \\ G_{2}^{*}t \end{bmatrix} = \begin{bmatrix} -\theta_{11} & -\theta_{12} \\ -\theta_{21} & -\theta_{22} \\ -\theta_{31} & -\theta_{32} \end{bmatrix} $	$\frac{-q_{12}^{6} z_{22}}{q}$ $\frac{q_{11}^{6} z_{22}}{q}$ $\frac{-6_{22}^{2}}{n_{11}^{0}} q_{11}$

APPENDIX A-12

EVALUATION OF WELFARE COST FOR THE TWO-COUNTRY CONTROL PROBLEM (CASE B)

Under the assumption that the Certainty Equivalence Principle holds the welfare cost is determined by:

(A-6.1)
$$\hat{J}^{c} = \frac{1}{2} \sum_{t=1}^{N} (x_{t}^{c*} - \overline{x}_{t}^{c})'Q (x_{t}^{c*} - \overline{x}_{t}^{c})$$

where

$$(A-6.2) \quad x_{t}^{c*} - \overline{x}_{t}^{c} = \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] A^{c} \quad x_{t-1}^{c*} + \left[B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} B^{c} \right]^{-1} B^{c} \cdot Q^{c} B^{c}$$

$$B^{c} \cdot Q^{c} - I \overline{y}_{t}^{c} + \left[I - B^{c} (B^{c} \cdot Q^{c} B^{c})^{-1} B^{c} \cdot Q^{c} \right] C^{c} z_{t}^{c}$$

Let us compute for the two-country problem with the assumption of linear dependent external balance the following matrices:

			_														
0	0	0	1														
0	0	0															
0	0	0															
0	0	0						_		0	0	0	0		 O	0	
0	0	0						c	>	0	0	0	0	0	0	0	0
			3					_	_				_	_	_	_	
		1944 n (92, +9, ,)	£					c	,	0	0	0	0	0	0	0	0
0	0	•						•	>	0	0	0	0	0	0	0	0
		() ()	4					c	>	0	0	0	0	0	0	0	0
0	0	933 n (9,,+9,,)	££ 11.								444)	444)					3+44)
								c	>	0	-4 ⁴⁴ (4 ³³ +4 ⁴⁴)	944 (933+944)	0	0	0	0	-q44 n11(q33 ^{+q} 44
		40119	• .														(74
3,,/4	22 211/9	$\frac{q_{22}q_{31}+q_{21}q_{32}}{q_{11}q_{31}} - (\frac{q_{12}q_{31}+q_{11}q_{32}}{q_{11}q_{32}})$	‡								933 (933 ⁴ 944)	-q ₃₃ (q ₃₃ +q ₄₄)					133 111 (933 ⁴⁹ 44)
J	Ť)- [c	>	0	(4 ₃ 3	(433)	0	0	0	0	⁴ 33
		1+0 ₂₁ 0	, 														32)
9/,0	9 ₂₁ /9	02203	Ą													ŕ	$-\frac{(q_{12}q_{31}+q_{11}q_{32})}{\eta_{11}q}$
Ľ			اـــــا					_				_	_	0	9,2/9	-411/4	(Q ₁₂ Q ₃
0 0	1 F	1 0	•	•	•		7				J	J	0	J	J	Υ	
⁰ 12 ⁰ 22 ⁰ 23	•																922931+921932 n119
•			0	0	-	. 0									-922/9	9/12	²² (31 ⁺
⁰ 21 021 031			•		-	•	ب		-	<u> </u>	0	<u> </u>	•	•	۴`	<u>۵٬</u>	٥١
	B ^C (B ^C 'Q ^C B ^C) ⁻¹ B ^C 'Q ^C =											•					
) ⁻¹ Bc																
	,0°B																
	3° (B°																

										_										
0	0	0	0	0	0	0	0		-	•										
0	0	0	0	0	0	0	-	,	0											
0	0	0	0	0	0	-	0	•	0											
0	0	0	0	0	7	0	0	•	0											
0	0	0	0		0	0	0	•	0											
0	0	4 ⁴ 6 ₄ 79	933 (933 ⁴⁴ 44)	0	0	0	0	44P	n11 (433+444)		,	0	0	0	_ ₇₁₂	0	-9 ₁₅	- ₉₂₅	-935	-7
		10-	I <u>۰</u> .						444		0	0	0	0	0	0	0	0	0	
		33 ⁺⁴ 44	(4 ₃₃ +4 ₄)					~	11(433+444)		0	0	0	0	0	0	0	0	0	
0	0	4 b	£ 5	0	0	0	0	₹ 1	۱ د		0	•	_	_	_	.99	-914	24	34	
								1932			J	J	0	0						
						~	~	31+01	911ر		0	0	0	0	8 55	0	P	9	93	
0	0	0	0	0	0	-012/6	9,11	9120	٩11،		0	0	0	0	0	0	0	0	0	
								²			0	0	0	0	0	0	•	0	0	
								2143	~-		0	0	0	0	0	۲21	- ⁶ 12	- ₉ 22	- ₉ 32	
0	0	0	0	0	0	9/22	-0,12	-(922931	٩11,0		•	0	0	•	711		-611			J
L		$\left[\mathbf{I}^{-\mathbf{B}^{C}(\mathbf{B}^{C},\mathbf{Q}^{C}\mathbf{B}^{C})^{-1}\mathbf{B}^{C},\mathbf{Q}^{C}\right]_{\bullet}$	Para diagnatian		· · · · · ·					_1					I-BC(BC,QCBC)-IBC,QCAC =	•				

.

	· ·	0 0	0 0	• •	• •	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
	0	ু	944 (9 ₃₃ +944)	-944 (933+944)	0	0 .	0	0	•	0	0	4 ⁴ 4 ⁶ (4 ³³ +4 ⁴ 4)	-q44 (q33+q44)	
	0	် မျှော	(4 ₃₃ +4 ₄₄)	$\frac{-q_{33}}{(q_{33}+q_{44})}$	0	0	0	0	0	0	0	4 ₃₃ +4 ₄₄)	-4 ₃₃ +4 ₄₄)	
$\left[1-B^{c}(B^{c},Q^{c}B^{c})^{-1}B^{c},Q^{c}\right]_{c} =$	8 57	0	0	0	0	0	0	0	0	0	0	0	0	
	292	0		0	0	0	0	-Y ₂₂	0			0	0	
	Δ <u>1</u> 0	-4 ₁₁	-4 ₁₁	^{-∆} 12	-4 ₁₃	- ₁₄	0	-4 ₁₅	- ₀ 16	. 11 ₀₋	- ₁₇	-∆ ₁₈	61∿-	
	. ₀₂ ν-	- ⁴ 21	- [∆] 21	-Δ ₂₂	-^23	- [∆] 24	0	-425	- ₂ 6		- ⁶ 27	-∆ ₂₈	-∆29	
	. οε _ν	-^31	- ^41	- [∆] 32	-4 ₃₃	- 434	1				-437	- 438	-439	
	ì													
L	۰۰		0	0		J	_		0	0	0	0		
	0		0	0		J	_		0	0	0	0		
	0			۳۱۳	(44 (4 ₃₃ +4 ₄₄)		-q44 (q ₃₃ +q ₄₄)	4	0	0	0	0		
	0		0	F C	(4 ₃₃ +4 ₄)		(q ₃₃ +q ₄₄)	- _4	0	0	0	0		
	0		0	0	_		_		7	0	0	•		
	0		0	0		J	_		0	7	0	0		
<u> </u>	-422/4		9/2/0	0			_		0	0	7	0		
	9,12		-0,11/9	0		J	•		0	0	0	-1 0		
	9229314921932 n119	Q21Q32	$\frac{(q_{12}q_{31}+q_{11}q_{32})}{\eta_{11}q}$		933 n11(933 ⁺⁹ 44)		933 n11(933+944)	444	0	0	0	0 -1		
J												•	1	

.

Then substituting the above matrices into equation A-5.2 we get

-0	0	0	0	0	0	0	0	0	0	0	0	، ۱
0	0	0	0	0	0	0	0	0	0	0	0	•
0	0	$\frac{q_{44}}{q_{33}+q_{44}}$	-q ₄₄ q ₃₃ +q ₄₄	0	0	0	0	0	0	0	$\frac{q_{44}}{q_{33}+q_{44}}$	-q ₄₄
0	0	$\frac{q_{33}}{q_{33}+q_{44}}$	-q ₃₃ q ₃₃ +q ₄₄	0	0	0	0	0	0	0	$\frac{q_{33}}{q_{33}+q_{44}}$	-q ₃₃ q ₃₃ +q ₄₄
457	0	0	0	0	0	0	0	0	0	0	0	. •
a 67	0	0	0	0	0	0	-Y ₂₂	0	0	0	0	0
-A ₁₀	-a ₁₁	-4 ₁₁	-6 ₁₂	-6 ₁₃	-6 ₁₄	0	-4 ₁₅	-4 ₁₆	-4 ₁₇	-A ₁₇	-A ₁₈	-A ₁₉
-∆ ₂₀	-A ₂₁	-A ₂₁	-A ₂₂	-∆ ₂₃	-A ₂₄	0	-∆ ₂₅	-∆ ₂₆	-∆ ₂₇	-∆ ₂₇	-∆ ₂₈	-6 ₂₉
-∆30	-A ₃₁	-41	-∆ ₃₂	-∆ ₃₃	-۵ ₃₄	1	-∆ ₃₅	-∆ ₃₆	-∆ ₃₇	-∆ 37	-∆ ₃₈	-A ₃₉

Substituting $\overline{\tilde{Y}}_{1t}$ = δ_{10} + δ_{12} L_{1t} , $\overline{\tilde{Y}}_{2t}$ = δ_{20} - δ_{22} L_{2t} , \overline{B}_{1t} = 0, \overline{B}_{2t} = 0 into equation A-12.1 and rearranging terms:

								_	r 1
0	0	0	0	0	0	0	0	0	L _{lt}
0	0	0	0	0	0	0	0	0	L _{2t}
0	0	0	0	0	0	0	$\frac{q_{44}}{q_{33}+q_{44}}$	-q ₄₄ q ₃₃ +q ₄₄	IE _{1t} XIII It HIII
0	0	0	0	0	0	0	$\frac{q_{33}}{q_{33}+q_{44}}$	-q ₃₃ q ₃₃ +q ₄₄	H _{lt} TT _{lt}
0	0	0	0	0	0	0	0	0	Tlt
0	0	0	-Y ₂₂	0	0	0	0	0	r _{2t}
-∆ ₁₃	-A ₁₄	0	-A ₁₅	-∆ ₁₆	-∆ ₁₇	-A ₁₇	-A ₁₈	-∆ ₁₉	r _{2t-1}
-A ₂₃	-∆ ₂₄	0	-∆ ₂₅	-∆ ₂₆	-∆ ₂₇	-a ₂₇	-∆ ₂₈	- ⁶ 29	T _{2t}
-∆ ₃₃	-∆ ₃₄		^{-∆} 35	^{-∆} 36	-∆ ₃₇	-∆ ₃₇	-∆ ₃₈	^{-∆} 39	TR _{2t} x _{2t} x _{2t} H ₁₁₁
									- :

Lit	r,	IB _{1t}	1 1	T _{1t}	r _{2t}	r2t-1	TT_2t	T ₂ t	XII X
0	0	933444	93344	•	•	0	0	0	
0	0	933944	933944 933 ⁴⁹ 44	0	0	0	0	0	
0	0	0	•	0	0	0	0	0	
0	0	0	0	•	0	0	0	0	
0	0	•	•	0	0	0	•	0	
0	0	0	•	0	0	0	0	0	
0	0	•	•	0	0	0	0	0	
0	0	•	•	0	0	0	0	0	
0	0	0	•	0	0	0	0	0	
0	0	933444	93344	0	•	•	0	0	
0	0	933944	933444	0	0	•	•	o ′	
0	0	° ,	•	0	0	0	0	•	
0	0	•	•	0	0	0	ø	•	
0	0	•	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	۰ ,	
(A-12.3)	$\Phi^{C}(\mathbf{x}_{c}^{C^{A}} - \overline{\mathbf{x}_{c}^{C}}) =$								

	•		•	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	44	0	0	0	0	0
	0	0	433	0	0	•	0	0	0
Multiplying	0	4 22	0	0	•	0	0	0	0
Multi	411	•	•	•	•	•	0	0	•
					- - - -				

uation A-12.2, we ge

	-(q ₃₃ q ₄₄ +q ₄ q ₃₃) (q ₃₃ +q ₄₄) (q ₃₃ +q ₄₄) (q ₃₃ +q ₄₄) (q ₃₃ q ₄₄ +q ₄₄ q ₃₃) (q ₃₃ q ₄₄ +q ₄₄ q ₃₃) (q ₃₃ q ₄₄ +q ₄₄ q ₃₃)	(433"444)
	93344 +94433 (933444) ² -(93344 +944933) (93344) ² 933944 -9444933 (933+944) ² (933+944) ² (933+944) ² (933+944) ²	793. 184v
	-(q ₃₃ q ₄₄ ² +q ₄₆ q ₃₃ ²) (q ₃₃ +q ₄₄) ² (q ₃₃ q ₄₄ ² +q ₄₄ q ₃₃ ²) (q ₃₃ q ₄₄ ² +q ₄₄ q ₃₃ ²) (q ₃₃ q ₄₄ ² +q ₄₄ q ₃₃ ²) (q ₃₃ q ₄₄ ² +q ₄₄ q ₃₃ ²)	. 39 FE.
-933 ⁴ 44 XIII 111	\[\begin{align*} & q_{33}q_{64}^2 + q_{46}q_{33}^2 \\ & (q_{33}+q_{64})^2 \\ & -(q_{33}q_{64}^2 + q_{46}q_{33}^2) \\ & (q_{33}+q_{64})^2 \\ & q_{33}q_{64}^2 + q_{66}q_{33}^2 \\ & (q_{33}+q_{64})^2 \\ & (q_{33}q_{64}^2 + q_{66}q_{33}^2) \\ & (q_{33}+q_{64})^2 \\ & (q_{33}+q_{64})^2 \\ & (q_{33}+q_{64})^2 \\ & (q_{33}+q_{64})^2 \\ & (q_{33}+q_{64})^2 \\ & (q_{33}+q_{64})^2 \\ & (q_{33}+q_{64})^2 \\ & (q_{34}+q_{64})^2 \\ & (q_{34}+q_{64})^2 \\ & (q_{34}+q_{64})^2 \\ & (q_{34}+q_{64})^2 \\ & (q_{34}+q_{64})^2 \\ & (q_{34}+q_{64})^2 \	.
933 ⁴ 44 933 ⁴ 44 933 ⁴ 44	. x2t , h2t	
-933944 44 933 ⁴ 44 4 933 ⁴ 44		
$Q^{C}(x_{L}^{c^{*}} - \overline{x}_{L}^{C}) = \begin{bmatrix} q_{33}q_{44} \\ q_{33}^{*}q_{44} \end{bmatrix}$	And $(x_t^{c^k} - \overline{x}_t^c)^{i} ((x_t^{c^k} - \overline{x}_t^c) - \left[x_{1t}^{III}, \mu_{1t}^{III}, x_{2t}^{III}\right]$	
Q ^c (xc.*	And (XC)	

$$(A-12.4b) \quad (x_{t}^{c*} - \overline{x}_{t}^{c})'Q^{c}(x_{t}^{c*} - \overline{x}_{t}^{c}) = \frac{q_{33}q_{44}^{2} + q_{44}q_{33}^{2}}{(q_{33} + q_{44})^{2}} \left[(x_{1t}^{III} - M_{1t}^{III}) + (x_{2t}^{III} - M_{2t}^{III}) \right]^{2}$$

$$(A-12.4c) \quad (x_t^{c*} - \overline{x}_t^c)'Q^c(x_t^{c*} - \overline{x}_t^c) = \frac{(q_{33}q_{44})}{q_{33}+q_{44}} \left[(X_{1t}^{III} - M_{1t}^{III}) + (X_{2t}^{III} - M_{2t}^{III}) \right]^2$$

Defining:
$$X_{1t}^{III}+X_{2t}^{III}=M_{3t}$$

$$M_{1t}^{III}+M_{2t}^{III} = X_{3t}$$

then equation A-12.4c becomes:

$$(A-12.5) \quad (x_t^{c*} - \bar{x}_t^c)'Q^c(x_t^{c*} - \bar{x}_t^c) = \frac{(q_{33}q_{44})}{q_{33}+q_{44}} (M_{3t}-X_{3t})^2$$

Therefore

(A-12.6)
$$\hat{J}^{c}(u^{*}) = \frac{1}{2} \frac{(q_{33}q_{44})}{q_{33}+q_{44}} \sum_{t=1}^{N} (M_{3t} - X_{3t})^{2}$$

APPENDIX A-13

SELECTED BIBLIOGRAPHY ON THE THEORY AND APPLICATION OF DIFFERENTIAL GAMES TO ECONOMICS

- Aubin, J. P. (1971), "A Pareto Minimum Principle," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegö,
 Amsterdam, North-Holland Publishing Company, pp. 147-176.
- Balch, M. (1971), "Oligopolies, Advertising, and Non-Cooperative Games," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegő, North-Holland Publishing Company, Amsterdam, pp. 301-312.
- Basar, T. and Y. C. Ho (1973), "Notes on Informational Properties of Games," Technical Report No. 640, Massachusetts, Cambridge, Harvard University, January.
- Beckmann, M. J. (1971), "Some Aspects of Economic Diffusion Process," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegő, North-Holland Publishing Company, Amsterdam, pp. 313-324.
- Behn, R. D. and Y. C. Ho (1968), "On a Class of Linear Stochastic Differential Games," *IEEE Trans. on Autom. Control*, AC-13, No. 3, June, pp. 227-239.
- Berkovitz, L. D. and M. Dresher (1960), "A Multimove Infinite Game with Linear Payoff," Pacific J. Math., Vol. 10, pp. 743-765.
- Berkovitz, L. D. (1971), "Lectures on Differential Games," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegö, North-Holland Publishing Company, Amsterdam, pp. 3-46.
- Berge, C. (1957), Théorie Générale des Jeux à n Personnes, Gauthier-Villars, Paris.
- Bishop, R. L. (1963), "Game Theoretic Analysis of Bargaining," Quarterly Journal of Economics, November, pp. 559-602.
- Blackwell, D. and M. A. Girshick (1954), Theory of Games and Statistical Decisions, Wiley, New York.

- Blaquiere, A. and F. Gerard (1968), "On the Geometry of Optimal Strategies in Two-Person Games of Kind," Journal of Computer and System Science, Vol. 2, No. 3, pp. 288-304.
- Blaquiere, A. and G. Leitmann (1969a), "Multi-Stage Quantitative Games,"

 Proc. of Second International Colloquium on Methods of Optimization at Noorsibirsk, 1968, Springer Verlag.
- _____. (1969b), Jeux Quantitatifs, Gauthier-Villars.
- Blaquiere, A., F. Gerard and G. Leitmann (1969c), Quantitative and Qualitative Games, Academic Press.
- Blaquiere, A. (1971), "An Introduction to Differential Games," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegö, North-Holland Publishing Company, Amsterdam, pp. 47-82.
- Bley, K. B. and E. B. Starr (1971), "Discrete Stochastic Differential Games," Advances in Control Systems: Theory and Applications, (ed.) C. T. Leondes, Academic Press, New York.
- Case, J. H. (1967), "Equilibrium Points of N_ Person Differential Games," University of Michigan, Dept. of Indust. Engineer. Tech. Report, 1967-1.
- _____. (1969a), "A Differential Game in International Trade," MRC Technical Summary Report #988, Madison, University of Wisconsin.
- _____. (1969b), "A Problem in International Trade," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.
- _____. (1970), "A Game in Economics," Research Memorandum No. III,
 Princeton, Princeton University, February.
- _____. (1971a), "Applications of the Theory of Differential Games to Economic Problems," Differential Games and Related Topics, (ed.)
 H. W. Kuhn and G. P. Szegő, North-Holland Publishing Company,
 Amsterdam, pp. 345-372.
- _____. (1971b), "On Ricardo's Problem," Journal of Economic Theory, Vol. 3, No. 2, June.
- Chattopadhyay, R. (1967), "On Differential Games," Intern. Journal Control, Vol. 6, No. 3, pp. 287-295.
- Chen, C. I. and J. B. Cruz, Jr. (1972), "Stackelberg Solution for Two-Person Games with Biased Information Patterns," *IEEE Trans. on Autom. Control*, Vol. AC-17, No. 6, December.

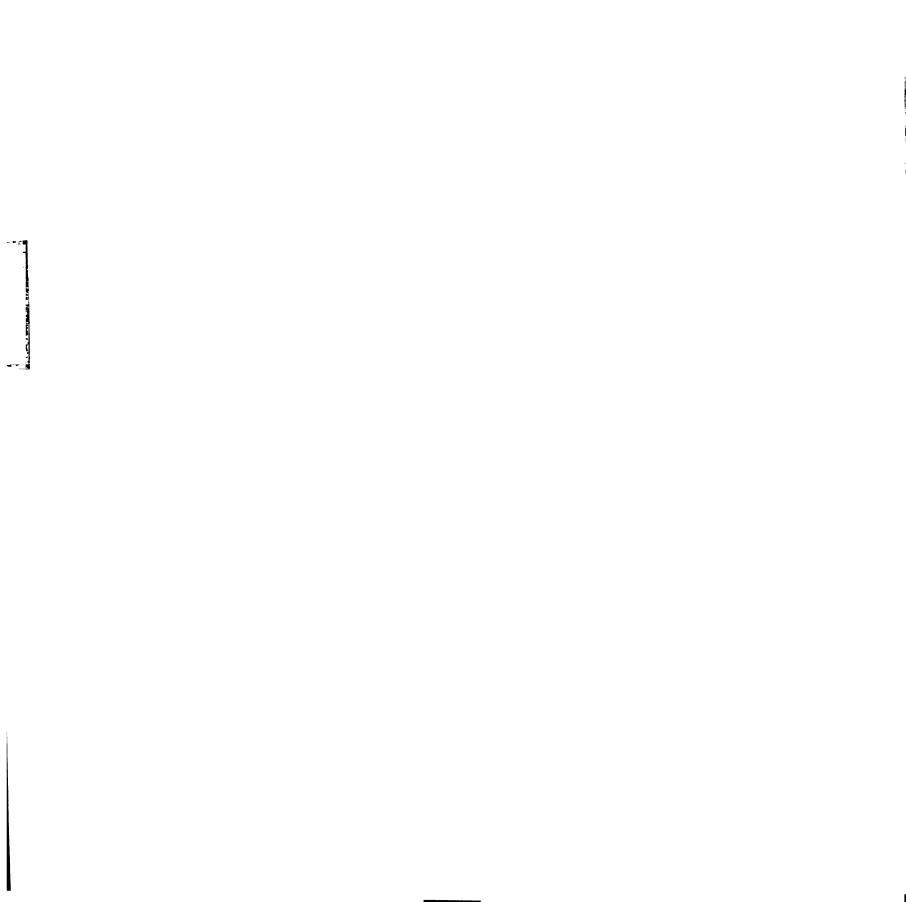
- Chu, K. C. and Y. C. Ho (1971), "On the Generalized Linear-Quadratic-Gaussian Problem," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegő, North-Holland Publishing Company, Amsterdam.
- Ciletti, M. D. (1969), "Composition Problem for Differential Games,"

 Journal of Optimization Theory and Application, Vol. 3, No. 2,

 pp. 107-114.
- Ciletti, M. D. and A. W. Starr (1970), "Differential Games: A Critical View," Differential Games: Theory and Applications, A Symposium of the A.A.C.C., 1970, J.A.C.C. Atlanta, Georgia, Institute of Technology, June 26, pp. 1-18.
- Ciletti, M. D. (1971), "Open-Loop Nash Equilibrium Strategic for an N-Person, Non Zero-Sum Differential Game with Information Time Lag," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegö, North-Holland Publishing Company, Amsterdam.
- Clemhout, S., G. Leitmann and H. Y. Wan, Jr. (1969), "A Differential Game Model of Duopoly," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.
- Cruz, J. B., Jr., and C. I. Chen (1971), "Series Nash Solution of Two-Person, Non-Zero-Sum, Linear Quadratic Differential Games,"

 Journal of Optimization Theory and Application, Vol. 7, pp. 240-257.
- da Cunha, N. O. and E. Polak (1966a), "Constrained Minimization Under Vector-Valued Criteria in Finite-Dimensional Spaces," Memorandum ERL-M188, Berkeley, University of California, October.
- . (1966b), "Constrained Minimization Under Vector-Valued Criteria in Linear Topological Spaces," Memorandum ERL-M191, Berkeley, University of California, November.
- Danskin, J. M. (1967), The Theory of Max-Min, Springer Verlag, New York.
- Dresher, M. (1961), Games of Strategy, Prentice-Hall.
- Gaenne, J. R. and R. L. Sisson (1969), Dynamic Management and Decision Games, Wiley, New York.
- Harsanyi, John C. (1966), "A Theory of Rational Behavior in Game Situations," *Econometrica*, V ol. 34, No. 3, July, pp. 613-634.
- Haurie, A. (1970a), "Jeux Quantitatifs Multi-Etages à M joueurs: Equilibres de Nash, Pareto-Optimalité, C-Optimalité," Revue du Cethedec, 9e Annee, le Trimestre, No. 30.

- Haurie, A. and A. M. Dussaix (1972), "Un Modèle Dynamique de Négociation Sous Forme d'un Jeu Semi-Différentiel," Revue Française d'Automatique, Informatique et Recherches Operationnelles, 6e Annee, No. V-1.
- Haurie, A. (1973a), "On Pareto Optimal Decisions for a Coalition of a Subset of Players," *IEEE Trans. on Autom. Control*, Vol. AC-18, No. 2, April.
- Haurie, A. and J. L. Goffin (1973b), "Necessary and Sufficient Conditions for Pareto-Optimality in a Multicriterion Perturbed System," Paper Presented at Proceedings 5th IFIP Conference on Optimization Techniques, Rome, May.
- Haurie, A. (1973c), "Optimalité dans un Système Multicritère et Perturbé avec Application à des Systèmes de Commande Lineáire à Couts Quadratiques," Revue Française d'Automatique, Informatique et Recherches Operationnelles, Automne.
- Ho, Y. C., A. E. Bryson and S. Baron (1965), "Differential Games and Optimal Pursuit Evasion Strategies," *IEEE Trans. on Autom. Control*, Vol. AC-10, No. 4, pp. 385-389.
- Ho, Y. C. (1966), "Optimal Terminal Maneuver and Evasion Strategy," Journal SIAM Control, Vol. 4, No. 3, pp. 421-428.
- _____. (1970a), "A Note on Linear-Quadratic Pursuit-Evasion Differential Games," Journal of Optimization Theory and Applications, Vol. 5, No. 6, June.
- _____. (1970b), "Survey Paper: Differential Games, Dynamic Optimization, and Generalized Control Theory," Journal of Optimization Theory and Applications, Vol. 6, No. 3, September.
- _____. (1970c), "On Deterministic and Stochastic Differential Games,"


 Studies in Optimization I, Society for Industrial and Applied

 Mathematics, Philadelphia, Pennsylvania, pp. 28-30.
- Ho, Y. C. and K. C. Chu (1972), "Team Decision Theory and Information Structures in Optimal Control Problems Part I," *IEEE Trans. on Autom. Control*, Vol. AC-17, No. 1, February.
- _____. (1973), "Information Structure in Dynamic Multi-Person Control Problem," Technical Report No. 642, Massachusetts, Cambridge, Harvard University, May.
- Isaacs, R. (1965), Differential Games, John Wiley.
- _____. (1969), "Differential Games: Their Scope, Nature and Future,"

 Journal of Optimization Theory and Applications, Vol. 3, pp.
 283-95.

- Jaskold-Gabszewics, J. and J. H. Dreze (1971), "Syndicates of Traders in an Exchange Economy," Differential Games and Related Topics, (ed.), H. W. Kuhn and S. G. Szegő, North-Holland Publishing Company, Amsterdam, pp. 399-414.
- Jentzsch, G. (1964), "Some Thoughts on the Theory of Cooperative Games," Advances in Game Theory, Princeton University Press, pp. 407-442.
- Karlin, S. (1959), Mathematical Methods and Theory in Games, Programming, and Economics, Addison-Wesley.
- Karvovskiy, G. S. and A. D. Kuznetsor (1966), "The Maximum Principle in Differential Games for N. Players," Engineering Cybernetics, Vol. 4, No. 3, pp. 10-13.
- Kaufmann, A. (1967), Graphs, Dynamic Programming, and Finite Games, Academic Press, New York.
- Kaufmann, A., R. Faure and A. LeGarff (1960), Les Jeux d'Entreprises, Presses Universitaires de France.
- Klinger, A. (1964), "Vector-Valued Performance Criteria," *IEEE Trans.* on Autom. Control, Vol. AC-9, No. 1, February.
- Kriebel, C. H. (1968), "Quadratic Teams, Information Economics, and Aggregate Planning Decisions," *Econometrica*, Vol. 36, No. 3-4, July-October, pp. 530-543.
- Koivo, A. J. and D. W. Repperger (1973), "On a Game Problem Involving Systems with Time Delay," *IEEE Trans. on Autom. Control*, Vol. AC-18, No. 2, April.
- Krikelis, N. J. and Z. V. Rekasius (1971), "On the Solution of the Optimal Linear Control Problems under Conflict of Interest," *IEEE Trans. on Autom. Control*, Vol. AC-16, No. 2, April.
- Kuo, M. C. Y. and H. M. Burbank (1969), "Sufficient Conditions for a Class of Differential Games," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.
- Lawser, J. J. and R. A. Volz (1969), "Some Aspects of Non Zero Sum Differential Games," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.
- Leitmann, G. and G. Mon (1968), "On a Class of Differential Games,"

 Proc. of Colloquium on Advanced Problems and Methods for Space
 Flight Optimization at Liege, 1967, Pergamon Press, pp. 25-46.

- Leitmann, G. (1970), "Differential Games," Differential Games: Theory and Applications, A Symposium of the A.A.C.C., 1970, J.A.C.C., Atlanta, Georgia Institute of Technology, June 26, pp. 19-78.
- Leitmann, G. and H. Stalford (1971), "Sufficiency for Optimal Strategies in Nash Equilibrium Games," Paper Presented at the Fourth IFIP Colloquium on Optimization Techniques, Los Angeles.
- Leitmann, G., S. Rocklin and T. L. Vincent (1972), "A Note on Control Space Properties of Cooperative Games," *Unpublished Paper*, University of California, Berkeley.
- Levitan, R. E. and M. Shubik (1971), "Noncooperation Equilibrium and Strategy Spaces in an Oligopolistic Market," *Differential Games and Related Topics*, (ed.) H. W. Kuhn and G. P. Szegő, North-Holland Publishing Company, Amsterdam, pp. 429-448.
- Liu, P. T. (1973), "Non Zero Sum Differential Games with Bargaining Solutions," Journal of Optimization Theory and Applications, Vol. 11, No. 3.
- Lucas, W. F. (1965), "Solution for Four-Person Games in Partition Function Form," Journal SIAM, Vol. 13, pp. 118-128.
- . (1971/72), "An Overview of the Mathematical Theory of Games,"

 Management Science, Vol. 18, pp. 3-19.
- Luce, R. D. and H. Raiffa (1957), Games and Decisions, Wiley, New York.
- Luh, J. Y. S. and M. Maguiraga (1969), "Differential Games with State-Dependent and Control-Dependent Noises," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.
- Marschak, J. (1971), "Economics of Information Systems," J.A.S.A., Vol. 66, No. 3, March.
- Matsumoto, T. and E. Shimemura (1968a), "The Kuhn-Tucker Conditions and Multistage Games," J. Math. Analysis and Appl., Vol. 23, pp. 269-283.
- _____. (1968b), "Duality in Multistage Games," J. Math. Analysis and Appl., Vol. 23, pp. 531-539.
- Mesarovic, M. K., D. Macko, Y. TakaHara (1970), Theory of Hierarchical Multilevel Systems, Academic Press, New York.
- Mon, G. R. (1968), "On a Class of Finite Stochastic Games, Part I: Theory," Dunham Lab. Tech. Report CT-19, Yale University, February.

- Nash, J. (1951), "Non-Cooperative Games," *Annals of Math.*, Vol. 54, pp. 286-295.
- _____. (1953), "Two-Person Cooperative Games," Econometrica, Vol. 21, January, pp. 128-54.
- von Neumann, J. and O. Morgenstern (1944), The Theory of Games and Economic Behavior, Princeton University Press.
- Ponstein, J. (1965), "An Extension of the Min-Max Theorem," SIAM Rev., Vol. 7, pp. 181-188.
- Pontryagin, L. S. (1965), "On Some Differential Games," Journal SIAM on Control, Vol. 3, No. 1, pp. 49-52.
- _____. (1966), "On the Theory of Differential Games," Uspekhi Mat.
 Nauk, Vol. 21, No. 4, pp. 219-274.
- . (1967), "Linear Differential Games," Math. Theory of Control, (ed.) Baldkrishnan and Neustadt, Academic Press, pp. 330-334.
- Propoy, A. (1969), "On Multistage Games," Proc. of Second International Colloquium on Methods of Optimization at Noovsibirsk, 1968, Springer Verlag.
- Pshenichniy, B. N. (1967), "Linear Differential Games," Math Theory of Control, (ed.) Balakrishnan and Neustadt, Academic Press, pp. 335-341.
- Radner, R. (1962), "Team Decision Problems," Annals of Math. Stat., Vol. 33, No. 3, September.
- Rapoport, A. (1966), Two-Person Game Theory: The Essential Ideas, Univ. of Michigan, Ann Arbor.
- Reid, R. W. and S. J. Citron (1971), "On Noninferior Performance Index Vectors," Journal of Optimization Theory and Applications, Vol. 7, No. 1, January.
- Rekasius, Z. V. and W. E. Schmitendorf (1971), "On the Non-inferiority of Nash Equilibrium Solutions," *IEEE Trans. on Autom. Control*, Vol. AC-16, No. 2, April.
- Rhodes, I. B. (1968), "Optimal Control of a Dynamic System by Two Controllers with Conflict of Interest," Unpublished Ph.D. Dissertation, Stanford University.
- _____. (1969), "On Nonzero-Sum Differential Games with Quadratic Cost Functionals," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.

- Rhodes, I. B. and D. G. Luenberger (1969), "Differential Games with Imperfect State Information," *IEEE Trans. on Autom. Control*, Vol. AC-14, No. 1, February.
- _____. (1969), "Non-Deterministic Differential Games with Constrained State Estimators," *IEEE Trans. on Autom. Control*, Vol. AC-14, No. 5, October.
- Rosenfeld, J. L. (1964), "Adaptive Competitive Decision," Advances in Game Theory, pp. 69-83, Princeton University Press, Princeton, New Jersey.
- Roxin, E. and C. P. Tsokos (1969), "On the Definition of a Stochastic Differential Game," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.
- Roxin, E. O. (1970), "On Differential Games Without Value," Differential Games: Theory and Applications, 1970, J.A.C.C., Georgia Institute of Technology, Atlanta, Georgia, June 26.
- Ruff, L. E. (1969), "Optimal Growth and Technological Progress in a Cournot Economy," *Tech. Report 11*, Inst. for Mathematical Studies in the Social Sciences, Stanford University, February.
- Sakawa, Y. (1967), "On Linear Differential Games," Math. Theory of Control, (ed.) Balakrishnan and Neustadt, Academic Press, pp. 373-383.
- Sakaguchi, M. (1956), "Stochastic Games of Survival," Rep. Univ. Electro-Commun. Phys. Sci. Engineering, No. 8, pp. 55-59.
- _____. (1959), "On a Certain Multi-Stage Game," Rep. Stat. Appl. Res. Un. Jap. Sci. Engrs., Vol. 6, pp. 1-4.
- Scarf, H. E. and L. S. Shapley (1957), "Games with Partial Information", Contributions to the Theory of Games, Vol. 3, pp. 213-229;
 Annals of Math. Studies, No. 39, Princeton University Press, Princeton, New Jersey.
- Schmitendorf, W. E. (1969), "Open-Loop Control in a Differential Game,"
 Paper Presented at the International Conference on the Theory
 and Application of Differential Games, Amherst, Massachusetts.
- _____. (1973a), "Cooperative Games and Vector-Valued Criteria Problems," IEEE Trans. on Autom. Control, Vol. AC-18, No. 2, April.
- Schmitendorf, W. E. and J. A. Walker (1973b), "On the Equivalence of Some Necessary Conditions for Vector-Valued Criteria Problems," *IEEE Trans. on Autom. Control*, Vol. AC-18, No. 4, December.

- Shapley, L. S. (1953), "Stochastic Games," Proc. Nat. Acad. Sci., U.S.A., Vol. 39, pp. 327-332.
- . (1964), "Some Topics in Two-Person Games," Advances in Game Theory, Princeton University Press, pp. 1-28.
- Shea, P. D. and B. C. Kuo (1969), "Linear Difference Games with Incomplete Information," Paper Presented at the International Conference on the Theory and Application of Differential Games, Amherst, Massachusetts.
- Shell, K. (1971), "On Competitive Dynamical Systems," Differential Games and Related Topics, (ed.) H. W. Kuhn and G. P. Szegő, North-Holland Publishing Company, Amsterdam, pp. 439-447.
- Shubik, M. (1971/72), "A Theory of Monetary and Financial Institutions: Fiat Money and Noncooperative Equilibrium in a Closed Economy," International Journal of Game Theory, Vol. 1, Issue 4.
- Simakova, E. N. (1966), "Surveys: Differential Games," Automation and Remote Control, 27, November.
- Speyer, J. L. (1967), "A Stochastic Differential Game with Controllable Statistical Parameters," *IEEE Transactions Stys. Sci. and Cyb.*, SSC-3, No. 1, June, pp. 17-20.
- Starr, A. W. (1969), "Non Zero-Sum Differential Games: Concepts and Models," *Tech. Report 590*, *Div. of Eng. and Appl. Phys.*, Harvard University, Cambridge, May.
- Starr, A. W. and Y. C. Ho (1969a), "Nonzero-Sum Differential Games,"

 Journal of Optimization Theory and Applications, Vol. 3, No. 3,

 March.
- . (1969b), "Further Properties of Non Zero-Sum Differential Games," Journal of Optimization Theory and Applications, Vol. 3, No. 4, April.
- Weddepohl, H. N. (1973), "An Application of Game Theory to a Problem of Choice Between Private and Public Transport," Research

 Memorandum, Tilburg Institute of Economics, August.
- Willman, W. W. (1969a), "Multistage Games with Measurement Uncertainty,"
 Paper Presented at the International Conference on the Theory
 and Application of Differential Games, Amherst, Massachusetts.
- _____. (1969b), "Formal Solutions for a Class of Stochastic Pursuit-Evasion Games," *IEEE Trans. on Autom. Control*, Vol. AC-14, No. 5, October.

- . (1970), "Conflict and Decentralization in Stochastic Differential Games," Differential Games: Theory and Applications, 1970, S.A.C.C., Georgia Institute of Technology, Atlanta, Georgia, June 26, pp. 79-94.
- Witsenhausen, H. S. (1971), "On Information Structures Feedback and Causality," SIAM Journal Control, Vol. 9, No. 2, May.
- Zadeh, L. (1963), "Optimality and Non-Scalar-Valued Performance Criteria," *IEEE Trans. on Autom. Control*, Vol. AC-8, No. 1, January, pp. 59-60.
- Zakel, E. (19670, "A Dynamic Model for Competition," International Economic Review, Vol. 8, No. 2.

