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ABSTRACT

AN APPLICATION OF OPTIMAL CONTROL THEORY TO POLICIES

FOR INTERNAL AND EXTERNAL BALANCE

BY

Nguyen Thi Bich Thuy

This thesis examines the dynamic problem of quantitative economic

policy for internal and external balance within the framework of

optimal control theory.

Three cases are considered: the one-country, the two—country

with common external balance, and the two-country with linear dependent

external balance. When applying Chow's control approach, it is found

that the optimal solution for achieving the joint balance can always

be uniquely determined whenever Tinbergen's principle on the equality

between the number of independent targets is met; however, there is no

guarantee that the solution is feasible for a given economy.

In fact, when the optimal fiscal and monetary policies for

achieving internal and external balance of the U.S. and Canada are

amalyzed for the period of 1961-1970, it is found that they are incon-

sistent and a trade-off between the attainment of joint balance and the

feasibility or consistency of policy-instruments must occur when limits

are imposed upon the instrument-magnitudes.
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Nguyen Thi Bich Thuy

It is also found that if more complicated assumptions, such as

active responses from the second country, or conflicting balance of

payments and growth targets are added, the optimal control framework

isrualonger appropriate for the analysis of internal and external

balance.

To encourage future research, a two-player multistage non zero sum

game with linear quadratic system.and perfect information is presented.

It is found that the non-cooperative (or so-called Nash) equilibrium

strategies are always inferior in the case of two controllers which

leads to the search for a non-inferior solution, in particular the

Pareto-Optimum strategy.
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INTRODUCTION

The problem of internal—external balance was first raised by

Tinbergen and Meade under the title of "Theory of Quantitative Economic

Policy" (Meade:l951, Tinbergen:1952). Along this direction Mundell (1962)

introduced the most controversial issue called "The Appropriate Use of

Monetary and Fiscal Policies for Internal and External Stability."

However, studies related to these problems are presented in a static

context with one exception of Votey's work (1969).

Parallel to the Meade-Tinbergen-Mundell formulation of the static

Problem of internal-external balance, significant advances both by engineers

in modern control theory and by econometricians in macroeconomic modeling

led to interest in the problem of the dynamic economic policy-making.

HOWever, in spite of numerous studies on the application of optimal

cOntrol theory to economics, a survey of which is found in Kendrick's

Unpublished paper (1972) as well as in Park's dissertation (1973), no

studies have considered the problem of internal-external balance.

The purpose of this study is twofold: first, to show that optimal

ciontrol theory is also applicable to internal—external models; secondly,

t0 introduce a new framework, called differential game theory, for

SOlving the problem of internal—external balance under more sophisti-

cated assumptions than those of Meade-Tinbergen—Mundell models, e.g.,

active responses from other countries, conflicting targets, and decen-

tralized decision-making . 1
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Votey's macrodynamic model will be borrowed to illustrate appli-

cations of optimal control tools. To derive optimal policies for

internal-external balance Chow's deterministic optimal control approach

(Chow:1970a, 1970b, 1972a, 1972b, 1972c) is preferred to that of

Pindyck (1972, 1973), because the former approach involves a more

straightforward application, given the structural form of Votey's

model, and requires only basic matrix manipulation to compute the

optimal solution.

Chapter I will present a survey of the literature on the theory

of economic policy for internal-external balance and on the application

of optimal control theory to problems of economic stabilization. The

main concern of the chapter will be to show a gap between these two

developments. Chapter II will deal with the application of optimal

control techniques to the one-country model. The two-country optimal

cOntrol problem will be treated in Chapter III for the case of common

eXternal balance, and in Chapter IV for the case of linear dependent

external balance. Chapter V will introduce a two-player deterministic

multistage game with a linear and quadratic system for further research

on its application to problems of internal—external balance, or more

generally to problems of conflicts in economics. Chapter VI will

Present the main conclusions of the study and suggest some

1‘ecounnendations .
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CHAPTER I

SURVEY OF LITERATURE

1.1. On the Theory of Economic Policy for

Internal-External Balance

Forty years ago, John Maynard Keynes with his "General Theory"

dealtra fatal DIOW'tO the classical notion that "internal balance",

cu'full-employment equilibrium in the domestic economy, could be

attained through an automatic adjustment mechanism with little govern-

nmnt intervention. But the notion that the "automatic" price and

income effects tend to restore "external balance" or balance-of-

Payments equilibrium persisted until the middle 1950's. Under the

cOmbined pressure of modern economic theory, and observation of the

chronic international financial difficulties that plague the real

wOrld under fixed exchange rates, economists have come to regard

"external balance" as one of the specific economic objectives of

deliberate governmental action, rather than as something that will

take care of itself (von Neumann Whitman:1970).

The pioneers in developing a formal body of analysis incorporating

these views are Meade (1951) and Tinbergen (1952). They introduced

a new approach to the problem of simultaneously achieving internal and

external balance via quantitative economic policy, that is, of finding

tile values of policy variables given some desired levels of real
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4

income and balance of payments. This approach is just the inverse of

the traditional multiplier analysis.

In addition to the criteria on the effectiveness of policy instru-

ments, Tinbergen in his work also formulated a rule on determining the

existence of a solution to attain the joint balance, called the

prhuflple of equality between the number of independent targets and

thetnmmer of independent instruments. Once Tinbergen's rule is satis-

fied, all the policy variables can be set at the necessary levels and

all targets achieved simultaneously.

Defining external balance in terms of the current account, and

assuming that fiscal and monetary policies are equivalent methods of

controlling the aggregate demand, Meade (1951) developed a theory of

economic policy to cure internal and external disequilibrium. Two of

Meade's four cases have potential conflicts (Table 1.1). This analysis

has been widely accepted for a considerable period.

Table 1.1. Cases of internal and external disequilibrium

 

  

 

Disequilibrium

Internal External

Case Deflation Inflation Deficit Surplus Cures

l x x Inflationist

policy

2 x x Deflationist

policy

3 x x Devaluation

(conflict)

4 x x Appreciation of

(conflict) exchange rate
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5

In the 1960's, the problem of using monetary and fiscal policy

to achieve internal and external stability received considerable

attention. The analysis assumes that a country chooses to keep its

exchange rate fixed and chooses to avoid the use of direct controls

over trade and capital movements. Mundell, in his classic 1962

article, proposed a new theory based on the Principle of Effective

Market Classification (PEMC) which states that "each policy instrument

should be directed towards that target on which it has relatively the

greatest impact." Unlike the old theory of Meade, Mundell defined

external balance in terms of the current account and short term

capital flows. The latter assumed to be responsive to changes in

interest rate differentials among countries. Mundell also divided

financial policy into two separate policies: monetary and fiscal.

Under these assumptions Mundell concluded that in a disequilibrium

8ituation "monetary policy ought to be aimed at external objectives

and.fiscal policy at internal objectives", on the grounds that to do

the opposite would worsen the disequilibrium situation.

The main criticisms of Mundell's theory are (Yeager:l966, Votey:l969,

Patrick:l968, Cooperzl969):

(l) Mundell's proposal and proof are set forth as a short-run

solution.

(2) The analysis deals with one, very small country.

(3) The suggested policy mix may thus temporarily palliate a

fundamental external imbalance.

(4) The proper assignment assumes full freedom in assigning

instruments to variables. Therefore, so long as nations
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6

remain independent in their actions, some targets

could not be reached.

(5) The "comparative advantage" of instruments may vary

with the environment, the level of targets, and the

distance from the targets of the variables to be

controlled.

(6) The Mundellian model prescribes a set of policy responses

that converges on equilibrium even when the policy

makers have limited knowledge of the economic system.

However, uncertainty about the analytical relationship

linking instruments and targets can also lead to inef-

ficient use of instruments.

(7) The analysis is mainly static. No account is taken of

the speed of adjustment of the system, the effect of

a proper policy assignment on growth, or cyclicity.

Attempts to remedy the shortcomings of Mundell's analysis under

fixed exchange rate have been undertaken. Cooper (1969), Patrick

(1968) and Votey (1969) extended Mundell's theory to a two-country

Case with emphasis on the interdependence of the economies.

Cooper's work (1969) is mainly concerned with the gains from

Coordinating the instruments of economic policy both within and

between nations. He found that as the economic interdependence

i‘Ilcreases, the effectiveness of decentralized policy making a la

MIundell will decrease, and the case for coordination of policy making,

f0r‘directing all the policy instruments at all the targets, becomes

“Hire compelling. The analytical framework used in his study is
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suular to that introduced by Tinbergen (1952), involving targets and

instruments of economic policy.

Patrick (1968) studied the stability of Mundell's assignment

tuoposal for a two-country model under various assumptions: common

balance-of-payments, passive responses from Country II, active responses

fumICountry II with international cooperation as well as conflicting

targets. He concluded that the explicit inclusion of the rest of the

world does not invalidate Mundell's theory; however, the other compli—

cations introduced by the assumptions of active responses from Country

II raise the possibility that Mundell's conclusions are inappropriate.

Recently, Patrick (1973) reexamined the convergence of assignment

for a decentralized system using McFadden's criteria for stability

(McFadden:1968, 1969). He discovered that for the two targets and two

instruments case the minimum information necessary to establish con-

vergent policy in a centralized system is virtually identical to that

necessary to establish a convergent decentralized system.

Votey (1969) extended Mundell's analysis in two senses: first,

Votey's model allows reactions from the rest of the world; and secondly,

it is dynamic in that it adds a production function and allows for

accumulation of the capital stock over time. Then, he studied the

effects on stability, cyclic response, and growth from applying

MMndellian policy, for the cases of a simple, open-economy, one-country

model and Of a two-country model. The main conclusions of Votey's

study are:

(1) A prolonged solution based on Mundellian policy requires

a higher degree of sensitivity of capital flows to

interest rate differentials than Stein's (1973) results
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would indicate if interest rates are to be kept

within the range of past movements.

(2) If there exists international cooperation, with

higher rather than lower growth rates as the goal

of all parties, the adoption of Mundellian policy

leads to a choice of action which may stimulate

growth.

(3) International cooperation with respect to the

establishment of interest rates can lead both to

a more favorable balance of payments and more

favorable rates of growth.

(4) Within the confines of Votey's model it appears that

cyclicity is not a problem associated with the

adoption of Mundell's solution.

In spite of the above results, Votey is not an advocate for the

adoption of Mundellian policy. He recognized that monetary policy is

a most important tool for achieving domestic goals and its abandonment

to the external problem is too large a price to pay. Furthermore, the

lags which must be accepted in the effectiveness of fiscal policy both

in initiating action and in achieving results makes it unacceptable

as the sole tool of domestic policy. To these two objections to the

adoption of Mundellian policy, we would add a third one: It is not

likely that the fluctuations in interest rates necessitated by foreign

balance can be exactly offset in the domestic economy by government

expenditure to the extent that the sectoral imbalances do not occur,

at least without some very selective countermeasures.
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Another extension of Mundell is the recent work by Krainer

(1973). He incorporated the production, investment, and financing

decisions of multinational firms into a macroeconomic model. This

puovides a better understanding of how factor endowments influence

the structure and interrelationship of trade and investment and how

due might influence the impact of monetary and fiscal policies on the

goals of full employment and equilibrium in the balance of payments

in a fixed-exchange-rate world. He concluded that monetary and fiscal

policies have different effects in resource rich and resource poor

creditor countries. However, his model is fundamentally static as

are all the previous ones with the exception of Votey's.

1.2. On the Application of Optimal Control Theory

to Macroeconomic Stabilization Policy
 

In the 1960's optimal control theory found substantial applica-

tions in economics because of increasing interest in dynamic decision-

making. This was facilitated by the development of quantitative

econometrics and of computers. Numerous applications of control theory

have been found in macroeconomics as well as in microeconomic fields,

such as growth models, planning models for sectoral allocation of

resources, short-run economic stabilization models, consumer choice

problems, dynamic models of investment and pricing by firms, portfolio

analysis models, and pollution control problems (Kendrick:197l,

Park:l973).

This section surveys studies on optimal planning for economic

Stabilization via optimal control techniques.
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In the early fifties Tustin (1953) noted that the problem of

determining macroeconomic policies is a feedback control problem. Work

along this direction was also done by Phillips (1954, 1957). He proposed

a number of stabilization policies and considered the stability proper—

ties of the system when these policies were implemented. In particular,

he showed that the application of certain types of stabilization

policies to multiplier-accelerator macroeconomic models could result in

undesired oscillations and even instability in economic activity. These

results are also found in other studies (Baumol:l961, Chow:l968,

A11en:1967). However, Phillips' analysis was purely descriptive in

the sense that while the alternative policies he considered were

Plausible, they were not derived from any optimizing behavior. Since

that time attention has shifted to more normative questions and to the

Study of optimal stabilization policies.

Van Eijk and Sandee (1959), Holt (1962, 1965), and Theil (1964)

applied a more modern analysis to macroeconomic systems without

correlating the analysis with the control system aspects of the problem.

Their works have generally related to the derivation of linear decision

rules of the type first derived by Simon (1956). These decision rules

minimize the distance between actual and desired levels of the target

variables, i.e., the social welfare function is quadratic in form. But

neither Holt (1962) nor Theil (1964) used modern control theory to

derive their decision rules.

Recent advances in control theory have led to the development of

new, more convenient techniques than the calculus of variations:

Pontryagin's maximum principle (Pontryagin et al. :1962) and Bellman's
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dynamic programming (Bellman:l957). As a result of these developments

it is now known that with the assumption of quadratic utility functional

and a linear model it is possible to obtain the optimal policy as a

linear feedback law. This is a particularly convenient form in which

to obtain the solution.

Deterministic control theory has been applied to macroeconomic

models by Buchanan (1968), Sakakibara (1969, 1970), Sengupta (1970),

Pindyck (1972, 1973), and Turnovsky (1973). They all used a quadratic

welfare function and linear deterministic model.

Buchanan (1968) showed that modern control theory is applicable

to the problem of economic policy determination for domestic stabili-

zation of macroeconomic systems. Sakakibara (1969, 1970) integrated

demand and foreign sectors to an ordinary growth model and applied

dynamic optimization to evaluate actual economic policies (unemployment

rates and investment - GNP ratio) for the United States and Japan.

He found that growth policies have been too conservative while the

movement of stabilization tools has been too erratic for 1952-1967.

For Japan the growth policy in the 1960's was quite successful while

that of the 1950's was too conservative. Both Sengupta (1970) and

Turnovsky (1973) applied optimal control techniques to the stabiliza-

tion of the deterministic Phillips' multiplier-accelerator model.

Pindyck (1972, 1973) applied the deterministic control theory to study

the optimal time path for the policy variables, using a linear econo—

metric model of the U.S. economy. His analysis provides empirical

'measures of the trade-off between unemployment and inflation.
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However, the above studies are restrictive in three senses: the

optimal control problem has been completely deterministic, the cost

function is quadratic, and the econometric models used are linear.

Recently, some attempts have been made to remedy these shortcomings.

Our knowledge of the economy is incomplete; the coefficients of

an econometric model are themselves random variables, and each equation

in the structural form of the model has an implicit error term associ-

ated with it. To cope with uncertainty, stochastic optimal control

theory has been introduced. Chow has shown that there are two gains

from the optimal stochastic control policy: the gain of the optimal

stochastic control over the optimal deterministic control and the gain

of the optimal deterministic control over the deterministic control

rule of a constant growth rate for each policy variable (Chow:l972b).

At the extreme, if the error terms are additive, uncorrelated normal

random variables, the cost functional is quadratic and the system is

linear, the principle of "certainty equivalence" (known as the "Sepa-

ration Theorem" in the control literature) allows the stochastic

control problem to be reduced to one that is essentially deterministic

(Theil:1957, WOnham:1968, 1969, Sorensonzl968). The optimal control

becomes a function of the expected value of the state vector, and if

there is no measurement noise, the solution for the optimal control is

the same as for the deterministic problem (Chow:l972b, 1972c).

Paryani (1972) has applied the tools of stochastic control to

derive an optimal control policy for the U.S. national economy. He

found that the optimal control variables differ from the actual values

of these variables during the period 1954-1963, suggesting the use of
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more flexible control policies by the decision—makers to reach the

internal balance.

Instead of additive stochastic disturbances, Turnovsky and

Henderson (1972, 1973) introduce stochastic parameters in a somewhat

specialized dynamic context.

Benjamin Friedman (1972) extends Theil's stochastic optimal con—

trol approach to economic policy to the case where the welfare function

may not be quadratic but is approximated by several quadratic segments.

It is an attempt to solve dynamic optimization problems with more

general cost functions.

Stein and Infante (1973) have sought optimal stabilization policies

which drive the quadratic cost of deviation monotonically to zero

instead of minimizing the cost.

Finally, the most serious restriction is that of a linear model.

Most econometric models are at least quasi-linear in structure, but

sometimes the more interesting aspects of their dynamic behavior arise

from non-linearities. Recently, several studies on the application of

optimal control theory to non-linear macroeconomic models have been

conducted (Livesey:1971, Holbrook:1972, Norman:1972, Shupp:1972,

Haurie and van Petersen:1973).

In spite of these efforts, further research needs to be done on

the development of stochastic, non-linear and non-quadratic optimal

control theory and its application to macroeconomic stabilization

problems.

This survey of the literature shows that:
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(1) The problem of quantitative economic policy for

internal and external balance has been basically

static with the one exception of Votey's study.

(2) Optimal control theory has been mainly applied to

the problem of domestic stabilization. No account

is taken of the regulation of balance-of-payments

targets, of the interdependence between countries

and of the repercussion effects when more than

one country is considered.

Therefore, the next three chapters will attempt to bridge this

gap (Thai Van Can:l972) by applying optimal control tools to Votey's

one- and two-country macrodynamic models to derive optimal policies

for internal and external balance.
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CHAPTER II

ONE-COUNTRY MODEL

This chapter deals with a two-target and two-instrument case.

Both fiscal and monetary authorities of Country I act to attain full

employment and balance-of-payments equilibrium while Country II is

assumed to be passive with respect to its targets of internal and

external balance. To find the optimal policies for internal-external

balance in Country I. First, Votey's one-country econometric model

will be presented (Votey:l969). Secondly, the one-country optimal

control problem will be formulated in terms of a linear-quadratic

(L.Q.) system to find the optimal control solution which minimizes

the quadratic cost function subject to the constraints of a linear

dynamic system. Pindyck's and Chow's approaches (Pindyck:1973,

Chow:l972a) will be used to put the reduced form of Votey's econometric

model into the "state-space" system. Next, Chow's formulation will

be used to derive the optimal solution both analytically and numeri-

cally with reference to the United States. Finally, the optimal solu-

tion will be appraised and amended.

2.1. Presentation of Votey's Model

The main assumptions of the one-country model are:
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(1) The export demand is given. It is assumed to grow

at the same rate as it has in the past and is

treated as an exogenous variable.

(2) The foreign interest rate is given. This assumes

the passive cooperation of Country II such that

Country I may adjust its own rate to achieve the

external balance without any foreign interference

or countermeasures.

(3) The short-term capital flows are sensitive to the

interest rate differentials between the two

countries.

The model has five equations and five unknowns which lead to a

determinant system. The variables are classified in three classes:

(1) Endogenous variables:

Blt: Balance of payments

Clt: Consumption expenditures

If£z Gross investment

Ilt: Net investment

Klt' Capital stock

Mlt: Imports

0 ° Net capital outflow

Y ' National income

(2) Controlled exogenous variables:

Glt: Government expenditures

rlt: Rate of interest



 

"H

O

‘4.

"I c‘1:

~ 2

(3) Non-cor

.ae equations are

Y = '

1t Clt+‘

3 =

1t Xlt ‘

33 K = n

it I1t ‘

I I g n

Y =: .

1t “10*:

c

1t 110'”

12'

'J M :2

1t “10% .

+5 .

12

.

3. 5 n

' I
:3

 



l7

(3) Non-controlled exogenous variables:

th: Labor force

PM : Import price

1t

Px : Export price

1t

th: Foreign interest rate

Tlt: Tax receipts

X : Exports

1t P

TTlt =- (l) : Terms of Trade

P

X It

The equations are as follows:

(1-1)

(1-2)

(1-3)

(1-4)

(E-l)

(E-Z)

(E-3)

(Is-4)

G

Ylt=Clt+llt+Glt+Xlt-M1t National income identity

B1t=X1t - M1t - 011: Balance of payments identity

n

Klt—Ilt + Klt-l Capital stock identity

IG = In + 6 K Gross investment identit

1t 1t * 1t Y

Y1t3610+611K1t+612L1t Production function

Clt=a10+all(Ylt-Tlt-5*K1t) Consumption function

W810H11(Y1tlt6*Klt)

+ 812 TT1t Import function

u

Ilt3Y10+YllYlt-l-Y12[q(6*+T)]lt-l

+713K1t-1 Investment function
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(E-S) 01t=n10+n11(r2t-r1t) Net outflows of short term

capital

All the equations are linear functions, and none are greater than

the first order of difference.

Equation (E—l) - The output is a linear function of both capital

and labor. It embodies the assumption of perfect substitutability

between the two factors of production.

Equation (E—Z) - Consumption expenditures are made a function of

disposable income, using Klein's approach in the econometric model of

the United Kingdom (Klein:l96l). Disposable income is GNP, less capital

depreciation (6*Klt where 6* is the rate of replacement) and also less

taxes (Tlt) which are determined by a linear function of the form:

Tlt '3 110 + A

11 ch'

Equation (E—3) - Imports are simply a function of disposable income

and the ratio of foreign to domestic prices.

Equation (E-4) - Net investment expenditures, that is, net addi-

tion to the capital stock, are assumed to depend on money output, the

c«'='»131ta1 stock, and the user cost of capital which prevail at the time

the investment decision is made. In Votey's formulation, the user cost

of capital has two principal components: the opportunity cost of

funds tied in the capital, plus the cost of the actual capital consumed.

This can be written in the form: q(6* + r), where q is the price of

capita1 goods, 6* is the rate of replacement of capital stock, and r

is the rate of interest, which represents the opportunity cost of

funds. To simplify the model, it is assumed that relative prices

Within the country do not change, in which case q = 1 over time.
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Equation (E—S) - The capital transfers are assumed to be sensi-

tive to interest rate differentials. Two results are available:

Stein's results (or minimum results) dealing only with short term

capital movements, and maximum results dealing with all capital trans-

fers as a direct function of the existing differentials. Stein's

results will be chosen for the analysis of short-run stabilization.

2.2. Qgtimal Control Problem Without Constraints

on Instrument-Variable Magnitudes

It is assumed that the Country I has two instruments: government

expenditures G1': and the short-run interest rate rlt' It is also

assumed that its goal is to attain simultaneously internal and external

balance, that is, a situation of full employment without inflation

combined with balance-of-payments equilibrium. The exchange rate

throughout the study is assumed to be fixed; therefore, the decision-

makers of Country I try to steer their GNP and balance of payments

close to the targets by choosing the appropriate combination of monetary

and budgetary measures (rit, Git).

The external balance is represented by the balance-of-payments

equilibrium, that 18,51t = 0 while the internal balance is determined

by the production function: Y1t = 5

which gives the potential output. It is noted that the capital stock

10 + 611 K1: + 512 L1: (2'1)

Klt Which is an endogenous variable in the reduced form of Votey's

econometric model also figures in the production function for the

determination of the potential output. To overcome this problem of

"double entry" of Klt’ the following transformation in the variables

°f ec{nation 2.1 is needed:

 



 

g

I.

‘ ‘Ifl

V .1

 



Y1: " 611 K1:: = 510 + 612 L1:

Let

{I -- Y - 6
1t 1t 11 Km:

be the output net of capital accumulation.

Y1: = 510 + 512 L11:

which determines the internal balance.
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(2.2)

(2.3)

(2.4)

To apply the optimal control

theory, the one-country econometric model has been put into the

reduced form (see Appendix A-l):

= X +
Yt yt_1 + B ut + C ut_1 D zt

where g1. means "defined as" and

d D

[er’ Blt’ Klt

yt

n
o
.

t [Cu ' rlt]

'

t [1’ TTlt’ T1t’ Xlt’ rzt]

N

I

A11 0 A13 Q11 0 T

A3 A21 0 A23 ‘ 3‘ Q21 ”11 ‘ C3

311 0 0.34 L0 0

    

0 A25

0 Y12 —

p

0 A157

 

(2.5)

F

D11 D12 D13 Q11 0

D21 D22 D23 1’Qzl n11

c.0000

 36
h.

Given the structural form (2-5) the one-country optimal control

Problem can be formulated in either Pindyck's or Chow's terminology.

Both lead to the same result. However, Chow's method will be applied

Then equation 2.2 becomes:
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to derive the optimal solution first analytically then numerically,

using the U.S. data for the period 1961-1970.

2.2.1. Formulation of the Problem

Given the reduced form of Votey's one-country model to use

Pindyck's approach the following transformation to equation 2.5. must

be made :

yt ._ B Lit—D zt = A(yt_1—B ut-l- D zt_1) + (AB + C)ut-l (2.6)

+ A D zt_1

to get Pindyck's "state-space" system (see Appendix A-2, equation A-

2.1a). In other words, the "state-space" system for the one-country

optimal control problem is given by:

P P P P P P
= A - .

xt xt_1 + B ut—l + C zt_1 (2 7)

YYlt’ BBlt’ KK1t is the (3x1) state vector;

P d d '

u = =
-l O

t ut_1 [Glt-l’ r1t_1] is the (2x1) control vector,

P g d v

2t-1 zt—l'
[l’TTlt-l’ Tlt—l’ Tlt-l’ xlt-l’ r212-1] is the (5‘1)

exogenous variable vector;
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A11 0 “‘13.l A11Q11 A15 7

Pd-d —d—— —g .
A. = A A21 0 A23 , B AB +-c - A21Q11 A25 ,

LYII 0 “34 Y11Q11 ‘le
A _ d

F A —

A11D11+A13 a36 A11D12 A111313 11Q11 0
_.d __ ._ _ ,. ,

C ‘ AD = A21D11+A23 a36 A21D12 A21D13 A21Q11 0

_Y11D11+334 a36 Y11D12 Y111313 Y11Q11 0
Id  

P

are known matrices. Since R =0 under the assumption of no constraints

on instrument-variable magnitudes, the cost functional to be minimized

is:

P N
J=l P__.P,PP__P

2 2 [(xt-l xt-l) Q (xt-l xt-li] (2'8)
t=1

where

'

_P d ~

xt_1= yt_1-But_1-th_1 = [%Ylt-l’ BBlt-l’ KKlt-l] is the nominal

or ideal state variable vector;

  

q11 0 0

P

Q = 0 q22 0 with q11 and q22 are weights attached to

LC 0 O l the respective quadratic deviations

d

~ " 2 -—- 2

(YYlt-l YYlt-l) and (BBlt-l'BBlt-l) '

Unlike Pindyck's approach, Chow's state-space system (see equation

Ar2.17) does not require any transformation to the reduced form (2.5).

In fact, in Chow's terminology the dynamic system of the one-country

Optimal control problem is given by:
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C=AC

x

t

c cc cc

+ .xt-l + B ut C 2t (2 9)

1

C d u d r '

where xt [yt tut] [Ylt’ Blt’ Klt Glt’ rlt] is the (5x1) vector

I

of current endogenous and controlled variables; 11: g-ut= [Glt’ r1t is

the (2x1) vector of controlled variables, zt- zt- [1, TTlt’ Tlt’ xlt’

is the (5x1) vector of exogenous variables;

       

- . P "" I— D

A 1 c1 All 0 A13 0 A15 13? 1 Q11

c: 1 g o c: =

A .--1--- A21 0 A23 0 A25 ’3 ---_ 'Q21

‘

. Y11 0 8‘34 0 412 0

I

o : o o o o o o I 1

I

. o o o o o o

L ’ _ L a. - _ L

1 I’11 D12 D13 Q11 0

D D21 D22 D23 1'Q21 ‘“11

C= “" 3 a36 0 0 0 0 are known matrices.

o o o o o o

L o o o o o    
Since there are no constraints on the policy-variable magnitudes, the

weight matrix in the welfare cost function (see equation A—2.18 in

Appendix A-2) has the form:

1'21:]
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I. ‘ I-
—

T qll o o o 0

PI

Q . o o q22 o o o

I

QC: --..---‘=' o o o o o

| o o o o o

1

o .0 o o o o o

L | .. L
.-

instead of

- | - -.

' T qll o o o 0

QP Q 0 O q22 0 0 0

QC: —--:---- 3 o o o o o

o '11P o o o r o
I 11

I

L t . L0 o o o rzzd    
where q11 and q22 are weights attached to the respective quadratic

deviations from the internal and external balance, i.e., weights

7' —- 2
lt-Ylt lt-Blt) . The weights r11 and r22 are

attached to the respective quadratic deviations from the limits set

attached to (T )2 and (B

on fiscal and monetary variable magnitudes, i.e., weights attached to

..f )2

1t 1t '

Appendix A—3 shows the equivalence of these two approaches. How-

—- 2

(Glt-Glt) and (r

ever, this study will use Chow's approach to derive the optimal policy

mix for internal and external balance for two reasons. First, Chow's

state-space system formulation is more straightforward and simpler to

apply, given the particular structural form of Votey's model, than

Pindyck's formulation, which requires a transformation of variables

‘before applying his result (see equation A-2.16). Secondly, Chow's

'method just requires basic matrix manipulations even when constraints
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on policy-variable magnitudes are introduced, while Pindyck's method

requires the determination of Riccati and tracking equations (see

Appendix A-2) in the case of RP#O.

Whether formulated in Pindyck's or Chow's frameworks, the one-

country optimal control problem is typically a linear quadratic tracking

problem. However, it is restrictive in two senses. First, the

quadratic form of the welfare cost function is subject to criticism

because it assumes that the deviations from either side of the targets--

negative as well as positive deviations--are of equal cost. However,

in the real world there is no such symmetry in the sharing of the burden

for the adjustment of the balance of payments equilibrium; for example,

along this critic Friedman (1972, 1973) has made a contribution to

this problem by introducing a "piece-wise quadratic criterion function"

which divides the range of possible values for each endogenous variable

and each policy variable into three regions: values within the middle

region are assigned zero cost, but values within the two extreme

regions are penalized quadratically but asymmetrically. Still, the

criterion function remains quadratic, and further research needs to be

done in this field.

The second criticism is of the linear form of the econometric

model, which is a very crude approximation of the real world. However,

the disadvantage of a linear quadratic framework is compensated for by

the computational advantages (Pindyck:1973).
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2.2.2. Optimal Solution for Internal

and External Balance

Chow's optimal solution is given by A-2.20 in Appendix A-2.

After substitutions and computations (see Appendix A—4), it

becomes:

I.

 y
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It is noted that the optimal control solution in equations 2.10 or

2.11 is independent of the weights attached to the deviations from the

targets. This means that internal as well as external balance affects

the optimal policy mix equally, and no trade-off between these two

targets exists. The optimal path is obtained by substituting equation

2.IJ.into the dynamic system (equation 2.9):
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Next, the decision-makers of Country I may wish to evaluate the

performance of the economic system with respect to the targets. This

can be done by measuring the welfare cost function (see equation A—2.18):

3° =% 1; [(xifi:)'Qc(x:*-SE:)]

t=1

After substitutions and computations (see Appendix A—5) it is found

that 3°80.

Several conclusions can be derived from this analysis.

First, Tinbergen's problem of quantitative economic policy

(T1nbergen:l954) in the theory of economic policy is nothing but a

Linear tracking problem in the theory of optimal control when time

Lntervenes. In other words, given (a) the structure of an economy,

( b) the target variables and their numerical values, and (c) the

nature of the instrument variables, the problem consists in finding

the numerical values of the instruments as a function of the targets

and certain structural data such that the optimum policy is obtained.

The optimal control tools provide a systematic procedure to solve the

dynamic problem of quantitative economic policy.

Second, unlike Mundell's "division labour" proposal (Mundell:1962)

the interdependency of economic policies prevails under the auspices

0f the optimal control approach; that is, the values of the instrument

Variables are dependent, generally speaking, on all target sets and

Q“mot be considered in isolation. However, this study, because of the

Particular structure of Votey's one-country model, notes that the

Optimal fiscal policy G* is governed only by the full-employment
1t

tug“ Ylt and, in turn, the latter target can only be obtained by
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the correct fiscal policy, while the optimal monetary policy rlt has

to obey the two targets together. The second target Blt’ or the

balance-of-payment equilibrium, depends on both instruments, but once

Git has been fixed it can only be taken care of by rft. It is in this

sense that we can conclude along with Mundell that the interest rate

is assigned to the maintenance of balance-of-payments equilibrium,

and government expenditure is assigned to full employment (Mundell:l962,

Patrick:l968). This proper assignment leads to a stable system

(Votey:l969).

Third, "Tinbergen's Rule" is verified within the framework of

optimal control theory. If the number of independent variables to be

controlled--the number of non-zero diagonal elements in the weight-

matrix Qc--is equal to the number of independent instruments, the

variables will be on target exactly with 3c=0 (Chow:l972c) and all the

unknowns of the policy problem are solved. The optimal solution is

unique and independent of the weights attached to the quadratic devia-

tions from the targets. However, the optimal solution may not be

feasible since a set of targets together with a choice of instrument

variables in a given economy may be called inconsistent (Tinbergenzl954)

if it requires values of the instrument variables which are declared

inadmissible for practical consideration by certain constraints on the

policy-variable magnitudes. Section 3 will deal with the appraisal

and amendment of the optimal solution, if necessary, for a particular

economy such as the United States.
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2.3. U.S. Optimal Policies for Internal and External

Balance: Appraisal and Amendment of the

Optimal Solution

Given the analytical result for the one-country optimal solution

to the problem of internal-external balance (Appendix A-4), Votey's

numerical values for the structural coefficients and historical data

will be used to derive the U.S. optimal policy mix for the period

1961-1970. However, the optimal solution is not feasible for technical

and practical reasons, such as negative values of interest rates.

Therefore, limits on policy-variable magnitudes have to be set

(Tinbergen:1954), and the amendment of optimal solution is required.

First, Votey's numerical values are substituted for the estimated

structural constants (Votey:1969) into equation A-4.6 and the dynamic

system equation A—2.l8. The computation results are:
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6ft = .0025 0 .0014 0 434.2236 ‘§Et_;1

fit 0 0 .0005 0 -0.2037 Bit_1

Kit-1 +

Git-1

rlt-l

_ 1

.3810 0 o 0 o Ylt

.0028 .0216 0 0 0 i1:

'Eit + (2.13)

61:

:1:

*- ..

r .

-46.2265 -28.3500 , 0.6190 -1 0 1

0.3043 0.6126 -0.0028 -.0216 1 TTlt

T1:

x1e

r21;

- .1  
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18.6032 0.3438

0

0

0

0

-ll39.7064

158.7130

-461.7000

0

0  

2.6247 0

0.6562 -46.2790

0 0

0 0

 

*

lt-l

*

B1e-1

*

K1t-1

*

Glt-l

 
r*

lt-l

J

(2.14)

 

1

F1

TT1e

T1:

x1t

‘ L r2:: 
Given these two equations, the optimal stabilization policies

(Glt’ rit) for the United States over 10 periods from 1961 to 1970 can

be derived with the initial conditions given by:

383.37

4.17

508.69

94.9

0.0215
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where (0) refers to 1960. All these values are historical. The nominal

values of the state variables are given by Table 2.1.

Table 2.1. Nominal values for state variables — U.S.: 1961-1970

 

 

Period 7 _ _ _

(Year) Y11: K11: Glt r1t

1(1961) 283.2452 523.9507 98.7 0.0215

2(1962) 283.8683 539.6692 102.65 0.0215

3(1963) 288.7687 555.8592 106.76 0.0215

4(1964) 293.8258 572.5349 111.03 0.0215

5(1965) 299.3091 589.7109 115.47 0.0215

6(1966) 304.5954 607.4022 120.09 0.0215

7(1967) 310.9349 625.6242 124.89 0.0215

8(1968) 316.5227 644.3929 129.89 9 0.0215

9(1969) 324.5467 663.7246 135.09 0.0215

10(1970) 332.5143 683.6363 140.49 0.0215

 

The potential output net of capital accumulation (§1t) is determined

by the labor force.

the balance-of-payments equilibrium that is B

l

The nominal balance of payments is assumed to be

Also, it is assumed

that the nominal capital stock and the nominal government expenditures

grow, respectively, at 3 percent and 4 percent per annum from their

initial 1960 values, while the nominal interest rate

its initial 1960 value.

I'

l

t is fixed at
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Table 2.2. Historical values for exogenous variables - U.S.: 1961-1970

Period

(Year) TT1t T1t xlt th

1(1961) 1.0000 144.63 20.99 0.0299

2(1962) 1.0101 157.03 21.68 0.0391

3(1963) 1.0000 168.76 23.28 0.0378

4(1964) 0.9902 174.07 26.63 0.082

5(1965) 1.0000 190.06 27.53 0.0454

6(1966) 1 1.0094 213.33 30.45 0.0496

7(1967) 1 1.0280 228.93 31.63 0.0595

8(1968) 1 1.0183 263.31 34.66 0.0624

9(1969) 1 1.0268 296.70 37.99 0.0781

10(1970) 1 1.0083 302.00 43.23 0.0444

 

The U.S. optimal stabilization policies for 10 periods (1961-1970)

are obtained by the following steps:

(1)

(2)

Compute G* (l) and r* (1) from equation 2.13 using the initial

conditions: [_Y1 (0), 31(0), K1(0), G1(0), r1(0)] and

the exogenous variables of period 1 given by Table 2.2.

I

7' * _Compute[Yi (1), Bi: (1), Ki (1), Ci (1), r1 (1)] from equa

”I * * * k :1tion 2.14. Now [Y 1 (1), Bl (1), K1 (1), G1 (1), r1 (1)

I

can be used in equation 2.13 to compute [G1 (2), If (2)] ,

which can be used in equation 2.14 to compute

I

 



umuwflfifln

333an

_mmmnw

.1..

"u_Hue~fls

_uen.

.3538%.

In?



37

[YE (2), Bi (2), K1 (2), Ci (2), ri (2)] , and so on. Continue the

9

process until all of the control vectors [Gf(t), ref-(0] , t=l,...,10

and all of the state variable vectors[:Yf(t), Bf(t), Ki(t), Gi(t),

v

rf(t)] , t=l,...,9, have been computed.

These two steps for obtaining computational optimal control solu-

tion require only basic matrix manipulations--additions, subtractions,

multiplications and small inversions.

If the cost functional Jc (equation Ar2.l8) does not penalize for

policy-instrument deviations from the nominal, the penalties q11 and

q22 for deviations of the two endogenous variable Ylt and B1t from their

nominal paths do not appear in the analytical optimal control solution

(equation A-4.6). Therefore, the optimal policy mix for attaining the

joint balance is unique and the trade-off between the targets does not

influence the optimal policy formulation. This comes to confirm

Tinbergen's proposal on the uniqueness of the solution whenever the

number of independent instruments is equal to the number of independent

targets. The results are presented in graphical forms (Figures 2.1

to 2.4) with time on the horizontal axis so as to easily observe the

general form and characteristics of the optimal solution. I

Next, the effectiveness and performance of the U.S. optimal policy

mix will be appraised. In optimal control theory, the values of the

instrument variables become the unknowns, dependent upon the predetermined

desired values of the target variables. Therefore, the criterion of

"effectiveness" of a particular policy instrument with respect to a

Particular target variable is different than the one used in the
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Optimal Path

‘*‘*‘* .Actual Path

""" Nominal Path

Runs 1,2,3

Runs

4,5,6,7

Run 0

  
1960

I

61 62. 63 64 65 66 67 68 69 70

Figure 2.1. U.S. Government expenditures: optimal paths compared

wifl1aetua1 and nominal paths(0ne-country model).
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_— Optimal Path

-l-iI—-)I Actual Path

- ----- Nominal Path
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-30.0"* 
Figure 2.2.' U.S. interest rate: optimal path compared withactual and nominal paths (one-country model).
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Run 4
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Figure 2.3. U.S. optimal GNP net of capital stock compared

with the actual and potential GNP (one-country model).
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—— Optimal Path
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Figure 2.4. U.S. balance of payments: optimal paths compared

With the aCtual path (one-country model).
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 Optimal Path

 

 

 
 

 

------ Nominal Path

2.5—1

2.0-1 7__——_—“““-———- Run 3

Runs 5,7

‘ Run 2

Run 5
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.1
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Run 1
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1

0 _ l l 11_
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d
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00%

Figure 2.5. U.S. interest rate: optimal path compared with the

nominal rate (one-country model).
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"traditional" or multiplier approach (Tinbergen:l954). In other words,

a policy instrument generally is more effective the smaller the change

in the policy variable required to bring about a given change in the

target variable when all other targets are held constant, e.g., the

smaller'—-;L==-—, the more effective G* . Within the confines of

6G* IGY' 1':
1t 1t

Votey's model, the matrix

—

~ _

Row Y1t Blt

1 0.3810 0

2 0.0028 0.216

of equation 2.13 shows that the fiscal policy or government expendi-

ture is the most effective instrument to regulate employment since it

is governed only by the target Ylt

labor force. The optimal path for the fiscal instrument is derived for

which, in turn, is determined by the

the period 1961-1970. However, as Figure 2.1 shows, the optimal path

is far below the actual or historical path. This means that during the

period in question, fiscal policy was overused by the U.S. policy-

makers and, as a result, the target of internal balance was overshot.

Figure 2.3 shows that the actual or historical path of the GNP fluctu-

ates above the nominal path Y1

employment without inflation. Therefore, it is not surprising that

t’ which represents the situation of full

during the last decade a troublesome inflationary spiral has threatened

the U.S. economy. This is because of an excess demand created by a

boom in government expenditures.
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Unlike the fiscal policy Glt’ the optimal monetary policy rit has

to obey both internal and external balance. But when using the

"effectiveness" criterion described previously, the monetary policy

is more effective in maintaining balance-of-payments equilibrium than

in regulating full employment. Therefore, once the fiscal policy has

been set at the optimal level, a level which brings the economy close

to a situation of full employment without inflation, the maintenance

of external balance can be taken care of only by the monetary policy.

Equation 2.13 permits the computation of optimal path for the monetary

instrument. It is found that the simultaneous achievement of internal

and external balance would require high negative values in the short-

term interest rate (Figure 2.2). Therefore, a limit or a so-called

boundary condition (Tinbergen:1967) has to be set on this policy-

variable magnitude to indicate that negative interest rates resulting

from the application of optimal control theory to the U.S. economy are

technically impossible.

Boundary conditions and their violation by the optimal policy mix,

the so-called inconsistency of the optimal policy, require the problem

of quantitative economic policy to be reformulated (Tinbergen:l967).

Within the framework of optimal control theory it can be done by

penalizing the deviations of the control variables from their nominal

values, which represents the limits on acceptable instrument variable

magnitudes.

For the one-country problem, the newly defined matrix Qc of the

cost function, including the boundary conditions, is:
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r ' - '
1 P . W
Q ’ 0 q11 0 0 0 0

c _._- -- -.. =
Q = ' 0 q22 0 0 0

Lo I RP o o o o o

' a

O O 0 r11 0

0 0 0 0 r22

L .1  
The nominal values for the monetary and fiscal instruments to be

tracked are given in Table 2.1.

A sensitivity analysis of the weighting factors on components of

only the control vector is performed. Since the optimal control solu-

tion does not depend on the weights q11 and q22, it is assumed that

through the performance of seven experiments, both are equal to l, for

reasons of simplicity. The cost function for all the experiments is

given in Table 2.3, and the results are shown in Figures 2-1 to 2.5.

Table 2.3. One-country model: penalty weights attached to the

deviations of state and control variables from their

nominal values

 

 

Rn“ q11 q22 q33 r11 r22

0 1 1 o o o

1 1 1 o 0 1o5

2 1 1 o 0 5x105

3 1 1 o 0 106,

4 1 1 o 105 1o5

5 1 1 0 5x105 5x105

6 1 1 o 105 1o6

7 1 1 0 5x105 106
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Results

Since only the optimal monetary policy is not feasible because of

the negative value of interest rates, the first three experiments are

assigned increasing penalty costs for deviations of the monetary

instrument from the nominal value, fixed at a rate of 2.15 percent,

while government spending is free to fluctuate to achieve the internal

balance. Figure 2.5 shows that the higher the penalty cost, the closer

the simulated optimal path for r is to its nominal path. But the

It

price paid is that the balance-of-payments equilibrium is no longer

attained, and within the context of Votey's model, the more the interest

rate is constrained to the limit of 2.15 percent, the higher the

surplus in the balance of payments is (Figure 2.4). In summary, the

joint internal and external balance cannot be achieved for the U.S.

economy during the period 1961-1970 once the deviations of the monetary

policy from the nominal path are penalized. Since the interest rate

is the most effective instrument with respect to the external balance

target, the latter has to be dropped.

Unlike the optimal monetary policy, which in the first three

experiments gets closer and closer to its nominal value, the optimal

path for the fiscal policy diverges strongly from the nominal path

(Figure 2.1). This means that a feasibility trade-off exists between

the two components of the control vector. However, even if the degree

of freedom given to the fiscal tool allows internal balance, federal

budget constraints as well as political constraints could prevent a

large change in government spending which might be required for feasi—

bility and stability in the monetary instrument.
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In the last four experiments, limits on both policy—variable

magnitudes are introduced. Figures 2.1 and 2.5 show the feasibility

trade-off between the two instruments. The tracking of government

expenditure to the nominal G1t is sensitive only to the increasing

value of the penalty costs on deviations of monetary policy from 2.15

percent, while the tracking of the nominal interest rate depends on

the weighting factors for both instruments. It is noted that for the

same penalty costs r22, the effectiveness of the interest rate in

tracking'r'lt diminishes with introduction of limits on government

expenditure magnitudes. Furthermore, neither the internal nor the

external balance target is achieved (Figures 2.3 and 2.4). In fact,

within the confines of Votey's model, the U.S. economy must be in a

situation of deflation combined with a balance of payments surplus for

the monetary and fiscal policies to be feasible. Does this mean that

the initial conditions for the one-country optimal control problem are

far away from.the "ideal" conditions or the arbitrary set of nominal

values for monetary and fiscal policies to be tracked need to be more

inflationist, or simply the policy for internal and external balance

is not feasible within the optimal control framework due to political,

social and ethical constraints established in any given economy? No

definitive answer can be given.

Conclusion

Under the assumption of constant price, fixed exchange rate and

passiveness on the part of the second country, i.e., fixed foreign

interest rate, it is found for the case of one-country that:

 Fw a-
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The solution for simultaneously attaining internal

and external balance can always be determined via

the optimal control techniques if Tinbergen's

principle on equality between the number of inde-

pendent instruments and the number of independent

targets is met, and if there are no constraints on

instrument-variable magnitudes. There is no

guarantee that this optimal policy mix will be

feasible in a given economy.

Policy inconsistency in Tinbergen's sense

(Tinbergen:l967) arises in the U.S. economy;

that is, the optimal monetary policies to

achieve the overall balance violate the boundary

conditions or limits on interest rate variable

magnitudes that, for practical or political con-

siderations, have to be set.

One of the targets has to be dropped, and within

the confines of Votey's dynamic model the choice

of that target rests on Mundell's "division of

labor" principle. For the U.S. case, the tracking

for external balance has to be dropped at the

expense of the tracking for the nominal interest

rate fixed at 2.15 percent.

If constraints on all policy-variable magnitudes are

included in the optimal control problem, neither

the internal nor the external balance is achieved
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and a trade-off exists between attainment of the

overall balance and feasibility of monetary and

fiscal policies to be carried out toward the

given targets.

‘1-

[
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CHAPTER III

TWO-COUNTRY MODEL

CASE A: PASSIVE RESPONSES AND COMMON EXTERNAL BALANCE

This chapter deals with a three-target and three-instrument

problem: the fiscal authority of Country II acts to attain full

employment in II while the fiscal and monetary authorities of

Country I strive for both internal full employment and common

external balance. To find the optimal policies for internal and

external balance in both countries the procedure used in the one-

country model case will be repeated. After the presentation of

Votey's two-country model (Votey:1969), the two-country optimal con-

trol problem will be formulated into Pindyck's framework as well as

that of Chow. Then for reasons similar to the previous case, Chow's

approach will be chosen to derive the optimal solution both analy-

tically and numerically with reference to the United States and

Canada. Finally, the optimal solution will be appraised and amended.

3.1. Presentation of Votey's Model

The two-country model is obtained by adding to the one-country

model a second set of behavioral equations for consumption, invest-

ment, imports, production function and identities defining capital

stock and national income with Country II subscripts. Votey's

50
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two-country model is considered under the following assumptions:

III ,

(1)

(2)

(3)

(4)

The foreign rate of interest is given. This assumes

Country II's passive cooperation such that Country I may

adjust its own rate to achieve external balance without

foreign interference or countermeasures.

Stein's results dealing with short term interest rates

will be considered to represent the degree of sensi-

tivity of capital flows to interest rate differentials.

Unlike the one-country model, the exports of Country I

will be composed primarily of imports of Country II and

will therefore be a dependent variable in the system.

The value of imports of Country I from Country II is

assumed to be fixed or exogenous to the system.

The variables are: i = 1,2

Common balance of payments

Consumption expenditures in Country 1

Government expenditures of Country 1

Gross investment expenditures in Country 1

Net investment expenditures in Country 1

Investment earnings of Country I from abroad

Capital stock of Country 1

Labor force in Country 1

Total imports demand of Country 1

Imports of Country III from I and II

Imports of Country I from Country III

Net short-term capital outflows of Country I
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rit: Rate of interest in Country 1

P : Import price of Country i

M

it

P : Export price of Country 1

Kit

T : Tax receipts of Country 1

TR ' Capital transfer of Country II

xit' Total exports of Country 1

Yit: National income of Country 1

The equations are as follows:

C

(1‘1) Yit Cit + I1t + Git + (M2t+M3t+IElt)—Mlt

n

(1‘2) K1: ' 11: + Klt—l

G n

(I-3) I1t = I1t + 6* Klt

(1‘4) B1t: = (M2t+M3t+IElt) ' Mir-Git

(1’5) Y2: = CZt+12t + G2t+(Mlt-MI:I) ' ”2:

(1'6) K2t = Igt + K2t-1

(1-7) Igt = Igt + 6* K2t

(E’l) Y1: = 610 + 611 K1: + 612 L1:

(E‘Z) Clt a 0‘10 + “11(Y1c‘T1t ' 6* Klt)

P

_ = - _ _ll

(E 3) Mlt 810 + 811(Y1t T1: 5* Klt) + 812(Px)lt

(E—a) In =
1t Y10 + Y11 Ylt-l-le q(6*+r)lt-1+Y13 Klt-l

. O’. .—_...—___.—r—.
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(E's) O11: _ n10 + r‘11 (th'rlt)

(3‘6) th = 520+521 K213522 L2::

“‘3'” C2t ' o‘20”‘21 (th’th'Tth'5* KZt)

P

_ _ .. _ .24.(E43) M2: .. 320+321 (Y2t T2t TRth 5* RR) + 822 (Px)2t

n

03-9) Izt = Y20+Y21 YZt-l-YZZ (“5*”) 2t-1+Y23 KZt-l

The comments on (E—l) to (E-S) have been presented in the preceding

chapter.

Equation E-6 - The output of Country II is a linear function of

both its factors of production: KZt’ L2t'

Equation E—7 - Consumption expenditures of II are a function of

its disposable income. Here the disposable income definition is

different from that of Country I and it is represented by GNP less

caPital depreciation (6* K where 6* is the rate of replacement and

2t

is assumed to be the same for both countries), less taxes and less

capital transfers of Country II (TRZt is assumed to be exogenous).

Equation E-8 - Net investment expenditures in II are assumed to

depend on money supply, the capital stock and the user cost of capital

in II. The user cost of capital in II has the same definition as that

in Country I, with the assumption q = 1 over time.

Identity I-4 - It represents the common external balance between

the two countries .
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3.2. Optimal Control Problem without Constraints

on Policy Variable Magnitudes

Under the assumption of common external balance, Country II is

passive with respect to its balance of payments, allowing Country I

to seek its balance-of-payments target unimpeded. Therefore, there

are three independent targets to achieve simultaneously: full employ-

ment in both countries and maintenance of Country I's balance-of-

payments equilibrium. To attain these targets, three independent

instruments are considered: government expenditures in Countries I

and II coupled with a short-term interest rate in Country I, while

Country II's interest rate is regarded as fixed or given.

The external balance, as defined previously, is Elt = 0 while the

two internal balances for Country I and II are determined by their

respective production functions: Yit = 610+6fl Kit-+612 Lit (3.1)

where the subscript 1 stands for country i (i = 1,2). As before, to

overcome the problem of "double entry" of K in the reduced form,
it

ecluation 3.1 is transformed to:

Yit-611 Kit = 610+612 Lit ; i = 1,2 (3.2)

Let I“: = Yit-6il Kit' Then equation 3.2 becomes:

it = 6 +612 Lit ; 1 = 1,2 (3.3)

10

Which determines the internal balance for the respective country.

To aPply the optimal control theory, Votey's two-country model has

been formulated into the following reduced form (Appendix A-6):
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The“: given the structural form of equation 3.4, the two-country optimal

Control problem under the assumption of common external balance will be

formulated into Pindyck's as well as Chow's framework. Since the two

approaches are equivalent (Appendix A-3), Chow's method will be con-

Sidered for the derivation of the two-country optimal solution under

th

e assumption of no constraints on policy-variable magnitudes.
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3.2.1. Formulation of the Problem

For the two-country optimal control problem formulated into

Pindyck's framework (Appendix A—2.l), the "state-space" system is:

PPP PP PP

zt_x = A xt_l + B ut_1 + c (3.5)
l

V

Pd — — d ~ ~

where xt = yt-But-th [YYlt’ YYZt’ BBlt’ KKlt’ KKZt] is the (5x1)

P c_l g . .
state vector, ut - ut - [Glt’ G2t’ rlt] is the (3x1) control vector,

I

P IIId
and zt — [l’IElt’Mlt , TTlt’ Tlt’ r2t, TTZt’ TZt’ TRZt’ M3t] is the

(11x1) current exogenous variable vector. AP, BP and CP are known

matrices :

  

 

r- n
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A 3": A31 A32 0 A34 A35

Yll 0 0 a45 0

O '72]. O 0 a55

_ -

‘FA11Q11H‘12Q21 A21Q12+A12Q22 A16 q

;BP=E A21"11‘”A22Qz1 A21Q12+A22Q22 A26

+c= A31‘211J'A32Qzl A31"124‘A32sz A313
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r o o o o 7
‘111

O q22 0 O O

P
Q = O O q33 0 0

0 O O O O

O 0 0 O O

_ J  
is the weight matrix attached to the respective quadratic deviations

from the nominal state variables YYlt—l’ YYZt-l’ and BBlt-l' Under

Chow's framework no transformation of variables for equation 3.4 is

needed, and for the two-country problem the dynamic system is the

following:

c _ c c c c c c

xt - A xt_l + B ut + c zt (3.6)

I 1

h c : é " "
w ere xt [yt : ut] [Ylt’YZt’ Blt’Klt’KZt Glt’GZt’rlt]

is the (8x1) vector of current endogenous and controlled variables;

c d

“t " [Git ’GZt’rlt] is the (3x1) vector of controlled variables;

C d III2 = 1
t [.IEltmlt ,TTlt,Tlt,r2t,r2t_1,TT2t,T2t,TR2t,M3t] is the (llxl)

c
vector of exogenous non-controlled variables; and Ac, BC and C are

km“ Ina~t‘.r:ices:
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and under the assumption of no limits on instrument variable magnitudes

the weight matrix QC in the welfare cost function equation A-2.18,

Appendix A-2 , is:

I — 1- I!

i— . qll o o o o o o o

I

. o q22 o o o o o o

P l

Q . o o o q33 o o o o o

I

Q°= -----.----. = o o o o o o o o

o o o o o o o o

o o o o o o o o o o

 

    

O O O O O O O O

I.

instead of

    

l ' ~11

F qullooooooo

I1 0q22000000

P

Q .o 00q23ooooo

c_ I

Q-_ P =-oooooooo

' 00000000

I

P
0 1R 00000rlloo

1

, 000000r220

I

L . 00000001-33

I .1- J

whereq
11, q22 and q33 are weights attached to the quadratic deviations

fr°m the situation of full employment in both countries and from the

— 2
common external balance, i.e., weights attached to (§1t-§lt) ’
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{Appendix H)

{Appendix A-8j
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- :- 2 _

(YZt-YZt) ’ and (Blt'Blt

weights attached to the quadratic deviations from the limits set on

2

) , respectively, while r11, r22 and r33 are

both countries' fiscal policies and Country I's monetary policy, i.e.,

— 2 - 2 _ 2

weights attached to (Glt-Glt) , (GZt-GZt) , and (rlt-rlt) .

3.2.2. Optimal Solution for Internal

and External Balance

Using Chow's result (equation A—2.20) for the optimal control

(Appendix A-Z), the optimal solution for the two—country problem is

(Appendix A-8) :
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To evaluate the performance of the economic system with respect to the

target set, compute the optimal welfare cost:

..c N

Z

l c c c c _c

J 2 (xt 'xt) Q (x xt)

t=l

It is found that 3c = 0 (Appendix A—9).

The results of the two-country optimal control problem under common

external balance assumption (Case A) are not fundamentally different

fron: those obtained in the one-country problem of Chapter II. The

concluding remarks which can be drawn from these results are:

(1) The economic interdependence of the two countries implies

the interdependence of optimal policies. However,

within the confines of Votey's model, the internal

balance in both countries are reached by the fiscal

policies of both countries while the overall inter-

dependent balance--full employment without inflation--

is attained by monetary policy in Country I. The

relative impact of these three instruments on the

three targets depends on the coefficient-magnitudes

of the following matrix:

*
4

r
<

Row

  

1t 2t 1t

1 ffig; ‘Q12 0

Q Q

“Q21 Q11

3-1-(Q- )1- - )
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11 Q 11 Q
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This will be computed in the next section by substi-

tuting Votey's numerical values for the estimated

coefficients into the two-country model.

The variables §It’ §2t and Bit are on target exactly

(equation 3.9) and the optimal cost is zero since the

number of independent variables to be controlled

(the number of non-zero diagonal elements in QC) is

equal to the number of independent instruments

(Chow:l972b), i.e., Tinbergen's rule is met.

Given the analytical solutions (equation 3.9), the

simultaneous achievement of internal and external

balance for the two-country model is possible

within the framework of optimal control theory,

and the optimal control vector is independent of

the penalty costs assigned to deviations of I

it

(i=1,2) and B from their targets, and therefore
lt

is unique. However, nothing guarantees the feasi-

bility of this optimal policy mix in a given economy.

Therefore, a test of feasibility will be done in

the next section for the United States and Canada

during the period 1961-1970.

U.S. and Canada Optimal Policies for

Internal and External Balance:

Appraisal and Amendment of the
 

Optimal Solution

Similar to the one-country model of Chapter II, Votey's numerical

Values for the structural coefficients and the historical data for
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the United States as well as Canada will be used to derive the U.S.

and Canadian optimal policy mix for the period 1961-1970, during which

Canada was under the regime of fixed exchange rate. It is found that

the optimal solution for both countries is not feasible for technical,

practical and political reasons; therefore, limits on policy-variable

magnitudes have to be set (Tinbergen:l954) and the optimal solution

amended .

First, using Votey's numerical values for the estimated structural

constants (Votey:1969), the matrices of coefficients for equation 3.7

and equation 3.6 are computed:
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Given these two equations, the optimal stabilization policy mix

(Git, th, rft) is derived for the United States and Canada over 10

periods running from 1961 to 1970, with the following initial

conditions:

§1(0) - 383.37

§2(0) - 20.06

31(0) = 4.17

K1(0) I 508.69

K2(0) = 49.33

61(0) = 94.90

62(0) = 6.97

r1(0) 0.0215

where (0) refers to 1960. All these values are historical. The nominal

values for state variables are given in Table 3.1. The nominal values

for U.S. state variables (Ylt’ Blt’ Klt’

Table 2.1. Similarly, for Canada the potential output net of capital

‘Elt) are the same as those in

accumulation (IZt) is determined by the Canadian labor force. The

nominal capital stock K2t and government expenditures G2

to grow at the same rate as those in the United States, that is,

t are assumed

respectively, at 3 percent and 4 percent per annum from their initial

1960 values. The historical values for exogenous variables are given

in Table 3.2. The U.S. and Canadian optimal stabilization policies

for 10 periods (1961-1970) are obtained by the following steps which

require only basic matrix manipulations-~additions, subtractions, multi-

plications and small inversions:
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Table 3.1. Nominal values for the state variables - U.S. and Canada:

1961-1970

Period 7 7 _ . _ _ _ _

(Year) Y1:: Y2t: 1t 1t K2t Glt G2t ?11:

1(1961) 283 . 2462 2 . 3165 O 523. 9507 50. 8099 98. 7 7 . 2488 0. 0215

2(1962) 283.8683 2.3499 0 539.6692 52.3342 102.65 7.5388 0.0215

3(1963) 288.7687 2.3972 0 555.8592 53.9042 106.76 7.8404 0.0215

4(1964) 293.8258 2.4629 0 572.5349 55.5213 111.03 8.1540 0.0215

5(1965) 299.3091 2.5368 0 589.7109 57.1869 115.47 8.4802 0.0215

6(1966) 304.5954 2.6359 0 607.4022 58.9025 120.09 8.8194 0.0215

7(1967) 310.9349 2.7332 0 625.6242 60.6696 124.89 9.1722 0.0215

8(1968) 316.5227 2.8132 0 644.3929 62.4897 124.89 9.5391 0.0215

9(1969) 324.5467 2.8995 0 663.7246 64.3644 135.09 9.9207 0.0215

10(1970) 332.5143 2.9748 0 683.6363 66.2953 140.49 10.3175 0.0215
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. I

(1) Compute [Gi(l), 63(1), ri(l)] from equation 3.10

using the initial conditions given by the historical

data for t!1(0),‘Y2(0), 31(0), K1(O), G1(0), 02(0), t1(oy]

and the exogenous variables of period 1 given in

Table 3.2.

(2) Compute [?*<1). ?2(1). Bf(l). Kf(l). K§(1). 93(1). 93(1).

I ... ~

rf(1i] from equation 3.11. NOW'[Y*(1), Y§(1), Bi(l),

I

* * * * * _K1(1), K2(l), 61(1), 62(1), rl(1)] can be used in equa

I

tion 3.10 to compute [Gf(2), G30), rf(2)] , which can

 

be used in equation 3.11 to compute [§1(2), 13(2),

I

Bi(2), KIQ)’ K§(2), Gi(2), G3(2), rf(2)] , and so on.

Continue the process until all of the control vectors

I

[Cf(t), c§(t), ri(ti] , t = 1,..., 10, and a11 the

state variable vectors [§f(t), §§(t), Bf(t), Ki(t),

I

K§(t), Gf(t), G§(t), ri(t)] , t = 1,..., 9, have been

computed.

flChe results are presented in graphical form (Figures 3.1 to 3.6)

With tzime on the horizontal axis. First, based on the following matrix

(equation 3. 7)

— .—

~ ~ _-

R°w Y1t th Blt

1 0.3810 -0.0977 0

2 -o.1315 0.3632 0

3 0.0028“ -0.0021 0.0216

some remarks will be made on the effectiveness of policy-instrument

v

ariables. Using the same concept of effectiveness as described in

Ch

apter II (section 2.3), it is noted that the fiscal policy of each
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Figure 3.1. Two-country model (Case A) - U.S. Government

expenditures: the optimal path compared with actual and nominal paths.
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Figure 3.2. Two-country model (Case A) - Canadian

government expenditures: the optimal path compared with

actual and nominal paths.
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Figure 3.3. Two—country model (Case A) - U.S. interest rate:

the Optimal path compared with actual and nominal paths.
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country is not only more effective in achieving its own internal balance

than that of the other country, but also that a negative change in its

own fiscal policy is required to bring about a given change in the

other country's internal target variable. This means that the economic

interdependence of the two countries lowers the effectiveness of each

country's fiscal instrument in reaching its own internal balance.

Country I's monetary policy depends on all three targets, but with

“varying degree. It is more effective in achieving the common external

balance than the internal balances which have already been taken care

of by the fiscal policies. Furthermore, its overall effectiveness is

reduced due to the existence of Country II's internal target. In

short, the effectiveness of each country's policy making will decline

as economic interdependence increases.

Next, an appraisal of the results obtained by the techniques of

<5ptima1 control will be conducted to see if they are feasible in the

[1.8. and Canadian economies. Figure 3.1 shows that the optimal fiscal

publicy in the United States diverges from both its actual and nominal

liath, and that the economic interdependence prevailing in the two-

CNDuntry model requires much higher U.S. government expenditures to

I13ach the situation of full employment than in the one-country case.

F'urthermore, the GNP resulting from using the optimal fiscal policy

iii exactly on the internal balance path (Figure 3.5). Again it is

noted that the actual path for the GNP diverges upward from the full

employment situation. In other words, for the last decade U.S.

ecOnomy dealt with inflation created by an excess-demand.
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For Canada, which is a small country compared with the United

States, the attainment of its own internal balance, when impeded by

the U.S. pursuit of domestic stabilization, required a tightening of

fiscal policy with a high accumulation of government savings during the

first half of the planning period, then a steady increase of govern-

ment expenditures starting at 1967 (Figure 3.2). The optimal path also

diverges from the nominal and actual paths, the growth of which is

more stable. Figure 3.5 shows excess demand of an amount equal to the

deviation of the actual GNP from the situation of internal balance;

therefore, inflation occurs in Canada too.

Once the U.S. government expenditures are set at the level for

attaining the internal balance, the common external balance is carried

out by the U.S. monetary policy, defined as the U.S. shortsterm

interest rate. Unlike the one-country case in which the value is

negative, the optimal interest rate starts with a very high and even

unrealistic level around 82 percent, then decreases over time with

negative values for the three last periods.

In short, the actual situation in the United States and Canada,

compared with the given targets, is as follows: both countries are

facing inflation combined with a surplus in the U.S. balance of pay-

ments, which is termed as a situation of potential conflict in policy

goals (Johnson:l966). To change this conflict situation to an overall

balance by using traditional policies rather than appreciation of the

exchange rate would require, within the context of optimal control

theory, high government expenditures and a negative interest rate in

the United States, while government savings would be forced in Canada.

‘

 



‘
‘
9 v.

,

.‘
"
g
m
-
N
H

 

All tore

for eith

boundary

been vio

theory t

nenalty

that is,

 
Similar t

“fighting

'e': Whe

lie C031: :

we r‘3Sull



80

All three of these optimal policies are declared to be inadmissible

for either social, political, or practical reasons. Therefore, the

boundary conditions or limits on policy-variable magnitudes which have

been violated are to become active. Within the framework of control

theory this can be done by introducing into the cost function the

penalty costs for deviations of the policy variables from their limits,

that is, by changing the diagonal elements of the matrix QC as follows:

  

— I '-
1 7

: I qll o o 0 o 0 0 o

, o q22 0 o o o o 0

P I

Q ‘ o o o q33 o o o o 0

0°= "--_.--” = o 0 o 0 0 o 0 o

’ 0 o o 0 0 o 0 o

' P
o . R o o o o 0 r11 0 o

, 0 o o 0 o 0 r22 0

I

L | L0 o 0 o o o o r33

I - do  
Similar to the one-country case, only a sensitivity analysis of the

weighting factors on the components of the control vector is performed,

1'8 . , when the weights for the endogenous variables remain unchanged.

The cost function for all the experiments is given in Table 3.3 and

the results are shown in Figures 3.7, 3.8 and 3.9.
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Table 3.3. '

Runs

East 1 1

Test 2 4
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Tables 3.3. Two-country model (Case A): penalty weights attached to

the deviations of state and control variables from their

nominal values

Runs q11 q22 q33 r11 r22 r33

Test. 1. 1 1 1 1 o 0 1o5 5

2 1 1 1 o 0 5x10

3 1 1 1 o o 106

5 5
Test. 2. 4 1 1 1 o 10 5 105

1 1 1 0 5x10 10 5

5 1 1 1 0 5x10 5x10

1 1 1 0 105 5 5x10

6 1 1 1 0 5x10 102

1 1 1 o 105 106

1 1 1 o 5 106 105

7 1 1 1 10 5 o 105

1 1 1 5x10 0 105

1 1 1 10% o 10 5

8 1 1 1 1o 5 0 5x10

1 1 1 5x10 0 5x10

1 1 1 log 0 5x10

9 1 1 1 10 o 103

1 1 1 5x105 0 106

1 1 1 106 o 10

TeSt 3 10 1 1 1 1o5 5 105 5 10;

1 1 1 5x10 5x10 105

1 1 1 105 5 5x10 105

1 1 1 5x10 10; 10 5

11 1 1 1 105 5 105 5x105

1 l 1 5x10 10 5 5x105

1 1 1 105 5 5x105 5x105

1 1 1 5x10 5x10 5x10

12 1 1 1 105 5 102 10g

1 1 1 5x10 10 5 106

1 1 1 105 5 5x105 106

l 1 1 5x10 5x10 106

1 1 1 106 106 10
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Figure 3.7. Two-country model (Case A) - U.S. Government expendi-

7“? tures: optimal paths compared with nominal path.

 

Figure 3.8. Two-country model (Case A) - Canadian government

expenditures: optimal paths compared with nominal path.
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Three tests of sensitivity are performed with penalty weights

assigned first to one instrument, then to two instruments, and finally

to all the three instruments.

For the first test (runs 1,2,3) in which only Country I's monetary

instrument is constrained to the limit fixed at 2.15 percent, it is

observed that the more weight given to the interest rate rlt the

closer it gets to the nominal path, while the two other unconstrained

instruments Glt and G2t diverge strongly from their boundary conditions

upward and downward, respectively. Therefore, they are declared

inadmissible for practical and political reasons. Furthermore, there

is a tracking trade-off between endogenous variables and instruments.

In fact, because a division of labor in achieving the joint balance

Prevails in Votey's model when rlt is constrained within limits, a

large deficit occurs in the U.S. balance of payments, while the GNP

in both the United States and Canada keeps tracking the full-employment

situation at the expense of non-feasibility of fiscal policies Glt

and G

2t'

The second test concerns penalty weights given to two of the

instI‘uments--Country I's interest rate and government spending of

either country. It is found that:

(1) If both Country I's instruments are constrained by

the boundary conditions, then its interest rate will

track the nominal path more closely than if limits

are set on either Country I's interest rate alone or

on the pair of Country II's fiscal instrument and

Country I‘s interest rate. In short, limits set on
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G reinforce the feasibility of Country I's
1t

monetary policy, while limits on G t do the

2

opposite.

Since two boundary conditions are active, it is

expected that at least two endogenous variables

would not be on target exactly because a track-

ing trade-off between targets and instruments

occurs. Because of the particular structural

form of Votey's model, the choice of targets to

be dropped is based on Mundell's "division of

labor" principle. That is, the target on which

the constraint policy instrument is the most

effective has to be changed numerically or given

up, at the expense of instruments tracking for

limits.

IFinally, the third test in which weights are assigned to all the

three instruments is performed. It is found that:

(l)

(2)

Each of the three instruments is tracking its

limits. However, giving increasing weight to

r11 leads to a closer tracking of Country I's

monetary policy on its limit, while the tracking

for nominal government expenditures in both

countries remains the same, whatever the weight

number assigned to them.

Compared to the second test (runs 7,8,9), the

tracking for the fixed interest rate is less

"
'
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effective. This is due to the additional boun-

dary condition set on Country II's government

expenditures.

Similar to the first two tests, the tracking of

a11 endogenous variables I and B t is lost.

1t’Y2t 1

The deviations from their respective targets

are larger than those obtained in tests 1 and 2.

It can be concluded that:

(1)

(2)

(3)

As economic interdependence increases, the effect-

iveness and impact of each country's policy on

its own target will decline.

If Tinbergen's principle on equality between the

number of targets and the number of instruments

is met, it is always possible to steer the endogen-

ous variables to be controlled exactly to targets

by using the quadratic welfare function (equation

A-2.16) and assigning positive weights only to

the deviations of the variables selected.

However, nothing guarantees the feasibility of

optimal policies to achieve the internal and

external balance. When the boundary conditions

become active, a tracking trade-off between

endogenous variables and instruments occurs.
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CHAPTER IV

TWO-COUNTRY MODEL

CASE B: PASSIVE RESPONSES AND LINEAR DEPENDENT EXTERNAL BALANCE

Unlike the preceding chapter, this one deals with a four-target

and three-instrument case: the fiscal authority in each country will

act to attain its own internal balance while the monetary authority

in Country I strives not only for its own external balance but also

for that of Country II under the assumptions of passive responses

from Country II and non—common but non-conflicting balance-of—payments

tiargets. Since the number of targets is greater than the number of

inStruments, Tinbergen's rule is no longer satisfied. Therefore, it

is exPected that the optimal results for internal and external balance

Will differ from those obtained in the two preceding cases. To show

this. the same analysis procedure will be repeated. First, Votey's

two“country model with modifications on the foreign sector will be pre-

sented. Second, the optimal control problem will be formulated to

derive the optimal solution analytically and numerically with reference

to the United States and Canada. Finally, the economic evaluation of

t

he optimal policy mix will be made as well as its amendment when

I)

oundary conditions become active.
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44:1. Presentation of Votey's Model with

Modifications on the Foreign Sector

Votey's two-country model presented in Chapter III will be modi-

fieni by redefining all the variables in the foreign sector and by

adding an identity for the determination of Country II's balance of

payments. This is done because Votey ignores the trade of Countries

I zar1d.II with the rest of the world by assuming the total exports of

I (3E1) equal the total imports of II (I) and by using a single equation--

Ccniritry I's balance of payments--as the common external balance of both

countries. Now consider the "modified" two-country model under the

following assumptions:

(1) Country II's interest rate is given, that is,

Country II is assumed to be in the position of

passive cooperation with Country I for dealing

with the external balance.

(2) Stein's results for short-term interest rates

represent the degree of sensitivity of capital

flows to interest rate differentials.

(3) Unlike Case A, the total exports and imports of

Countries I and II will include the trade with

the third country which represents the rest of

the world.

:FIJe variables of Votey's econometric model with modifications on

the foreign sector are:

f°r 1 == 1,2

33

it,“ Balance of payments in Country 1

C a

iut Consumption expenditures of Country 1

 



IEIII

1:1]: _
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Gross investment expenditures of Country 1

Net investment expenditures of Country 1

Investment earnings of Country I from abroad

Capital stock of Country 1

Labor force of Country 1

Total imports demand of Country i

Imports of Country 1 from Country III

Net short term capital outflows of Country 1

Rate of interest in Country 1

Export price in Country 1

Import price in Country i

Tax receipts of Country 1

Transfer payments of Country II

P

P

(_yqit = Terms of trade of Country 1

x

Total exports of Country 1

Exports of Country 1 to Country III

National income of Country 1

The equations are as follows:

(I—l)

(1-2)

(1—3)

(1—4)

(:[~{5)

Y1t a C1t + lit + Glt + x1t ’ M1t

Bit = x1:: ' M1t ' Olt

K1t - II11:; + K1t-1

lit a lit + 6* K1t

x1t = XIII + (MZt _ M261) + IElt

 



(1‘6) Y2t = Czt + Igt + GZt + x2t _ M2t

(1'7) 321: = X2t - M2t + Olt

(1‘8) KZt a Itzlt + K2t-1

(1-9) lit = Igt + 6*K2t

(mt—10> X2. = XI? + (M1. - MRI)

“3"” Ylt = 510 + 511 K1t + 512 L1t

(ES-'2) C11; = 0'10 + 0‘11 (Ylt - T1:: - 6*K1t)

(E‘3) Mlt = 810 + 811 (Ylt " T1t ' 5*K1t) + B12TT1t

(E40 lit a 7’10 + YllYlt-l ’ I12 “520‘” 1t-l + Y131(1t-1

(E—S) Olt = n10 + n11 (tZt - rlt)

03"” th g 520 + 621K2t + 22th

(E—7) C2t = 0120 + 0:21 (Y2t - T2t - TR2t - 6*K2t)

(IE-8) M2t = 820 + 821 (YZt - TZt - TRZt - 6*K2t) + BzzTTZt

(E79) Igt = Yzo + Y21Y2t-1 ' Y22 (5* + r) 2t-1 + Y23KZt--1

The comments

chap ter II.

on equations (E-l) to (E-S) have been presented in

Equation E-6 - The output of Country II is a linear function of

bot}, its factors of production: capital stock (K2t) and labor force

(th).
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Equation E—7 - Consumption expenditures are made a function of

disposable income. But the disposable income definition for Country

II is slightly different from that of Country I (Votey:1969), and it

is represented by GNP less capital depreciation (6*K2t where 6* is the

rate of replacement and is assumed to be the same for both countries)

assumedless taxes and also less transfer payments of Country II (TRZt

to be exogenous).

Equation E—8 - Import demand of II is simply a function of

disposable income and ratio of foreign to domestic prices in Country

II (TTZt)°

Equation E-9 - Net investment expenditures in Country II are

assumed to depend on money output, the capital stock and the user

cost of capital in Country II. The user cost of capital in Country

II has the same definition as that of Country I with assumption

q = 1 over time.

Identity I-2 - The identity for the determination of the balance

of payments in Country I is different from that of Votey. The same

def inition as that of the one-country model is used, but Xlt and Mlt

redefined to take into account the trade between Countries I and II

and the rest of the world (called Country III).

Identity I-5 - The total exports of Country I are equal to the

exports of Country I to Country III, plus exports of Country I to

Country II (Xi: = MZt - Mg?) plus investment earnings of Country I

f

r0111 abroad.

Similarly, total imports of Country I are equal to imports of

C
olitxtry I from Country III (FIJI-:1) plus imports of Country I from

Co 11 III
untry II (M1t X2t - x2t ).

h‘
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Identity I-7 - Added to Votey's model is the Country 11 balance-

«sf-payments identity. It is equal to total exports of Country II

()(Zt) less total imports of Country II (MZt) less net short-term

ceapital outflows of Country II (O2t = -01t), which is equivalent to

ziezt short-term capital inflow from Country I.

Identity I-lO — Total exports of Country II are equal to exports

()1? Country II to Country III (xgil) plus exports of Country II to

(anuntry I (x;t = M1t - Miil). Similarly, total imports of Country II

III

zarre equal to imports of Country II from Country III (M2t ) plus

I III

imports of Country II from Country I (M2t xlt - X1t ).

Then substituting th and M2t into th - X2t - M2t + O1t results in:

III III III III
13 = - - -

2t X2t + M1t Mlt th X1t + Xlt + 01t

_ III III III, III _ _ _

- (x11: +x2t) (Mlt +M2t) (xlt M1t Ole)

(31' clefining X : total exports of Country III = MIII + MIII

3t 1t 2t

, = 111 III
M3t° total imports of Country III X1t + X2t

results in:

BZt a -x3t + M3t - Blt

Therefore, is linearly dependent on Blt'th

4-

:2 ~ Optimal Control Problem Without Con-

straints on Policy-Variable Magnitudes

Unlike Case A in Chapter III, the assumption of common balance of

fiants is no longer held when the third country block is introduced

.JIII-._.  
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to represent the rest of the world. Therefore, there are four targets

to achieve simultaneously, but only three are independent. Internal

balance in both countries and Country I's balance—of-payments equili-

brium are independent, while Country II's balance of payments is a

linear function of that of Country I instead of being equal to

Country I's balance of payments with the opposite sign. As for the

instruments, they are in the number of three as in Case A, i.e.,

government expenditures in both countries and Country I's short-term

interest rate are used to achieve the joint balance, while the short-

term interest rate of Country II is considered as fixed or given under

the assumption of passive responses from Country II.

The definition of external and internal balance is similar to

that used in Case A (section 3.2) and the reduced form of Votey's

modified two-country model given by Appendix A-lO:

yt = A yt-l + But + Cut_l + th (4.1)

where

d '

y =

t [Ylt’ th’ Blt’ th’ Klt’ K2t’ Glt’ G2t’ rlt]

'

(1
L1 =

'5 [Glt’ G2t’ r11:]

:1 III III
2 :

t [1’ IElt’ x1: ’ Mn; ’ TTlt’ Tlt’ r2:9 r2t-1’ Tth’ th

I

III III

TRZt’ x2t ’ MZt]
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Next, the optimal control problem for the "modified" two-country model

will be formulated into Pindyck's and Chow's framework but only the

latter will be used to derive the optimal solution.

4.2.1. Formulation of the Problem

Expressed in Pindyck's terminology, the "state-space" for the

"modified" two-country optimal control problem is:

P = AP X? + BP up + CP zP

xt t-l t-l (4'2)

1

P d —- - d ~ ~
where xt — yt-But - th -[YY1t, YYZt’ BBlt’ BBZt’ KKlt’ KK2;]

d

-1 “t—I [Flt—1’ G2t—I’ rlt-I]n
'
1
1

"
Q
:

is the (6x1) state vector; u

III III
1t , M , TT

1t

P d

is the (3x1) control vector, zt [l, IElt’ X 1t’ Tlt’ r2t,

TR X M2t , 2t is the (12x1) vector of current exogenous
2t’

'

III III

Tth’ th’ J

variable; zP_ is the (12x1) vector of lagged exogenous variable; and

t l

P P

A , B and CP are known matrices.

Matrix AP = X

Row IY YY BB BB KK KK
1t 2t 1t 2t 1t 2t

1 A11 A12 0 0 A13 A14

2 A21 A22 0 0 A23 A24

3 A31 ‘A32 0 0 A33 "A34

4 'A31 A32 0 0 "A33 A34

5 yll o o o ass 0

6 0 0 0 O a

66

  



Row

Glt—l

A11Q11+A12Q21

A21Q11~+A22Q21

A31Q11'A32Q21

”A31Q11+A32Q21

YIIQII

Y21Q21
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P _ _

Matrix B = AB + C

G2t-1

A11Q12+A12Q22

A21Q12+A22Q22

A31Q12‘A32Q22

"A31Q12+A32Q22

Y11le

Y21Q22

r1t-1

15

25

35

35

'le
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and the cost function under the assumption of RP = 0 is:

N
P 1 P P ' P P ...P

J =5 F12 (xt-l-xt-l) Q (Kt-1 xt-l)

where

'

IPQ- -B-D-zg§Y in BB BB Ex @
t-l yt--1 “t-1 t-l lt-l’ 2t-1’ 1t-1’ 2t-l’ lt-l’ 2t-l

is the (6x1) nominal state variable vector to be tracked; and

 

 

"‘ 'H

QP = qll 0 O 0 0 O is the weight matrix

0 q22 O 0 O O

O O q33 0 0 O

0 0 O q44 0 O

0 0 O 0 0 0

0 O 0 0 0 O

L .. 
attached to the respective quadratic deviations from the nominal state

1t-1’ YYZtél’ BB1t-1’ BBZt—l’ 2t-l'

Unlike that of Pindyck, Chow's framework is very simple to apply

variables in 'IiKlt_1. and ER

t0 the one—country reduced form (equation 4.1). There is no transforma-

tion of variables to be done and the dynamic system is of the following:

g Acxc_ + Bcu: + Ccz: (4'3)

Xe g- : ' d ~ ~ I

t [yq ut] = Y1t’ Y2t’ B1t’ BZt’ Klt’ K2t:’ Glt’ GZt’ 1-11:]

is t

he (9x1) vector of current endogenous and controlled variables;

Llc g d l

t ut =[G1t’ GZt’ rlt] is the (3x1) vector of controlled variables;
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III III TTd

2t [1’ IElt’ X1t ’ Mlt ’ TTlt’ Tlt’ r2t’ th-l’ TR

(=1
c T

2t 2t’ 2t’ 2t’

!

X21, Miil] is the (13x1) vector of exogenous noncontrolled variables;

and AC, Bc and C6 are known matrices:
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Under the assumption of no limits on instrument-variable magnitudes,

the weight matrix QC in the welfare cost function (equation A—2.18,

Appendix A—2) is:

 

 

V : 1 Q11 0 o o 0 0 0 O O

z 0 qzz o o o o o o o

QP , 0 o o q33 o o o o o o

z o o o q44 o o o o o

Qc= ..... 1...---- = 0 0 0 O O 0 O 0 0

s o o o o o 0 o o o

0 z o o o o o o o o o o

: o o o o o o o o o

t o o o o o o o 0 0

L ' .L L
‘
   

instead of:

r

1

. q11 o o o o o o o o

: o q22 o o o o o o o

QP I o o o q33 o o o o o o

. o o o q44 o o o o 0

U

<2°é= -----,----- = o o o o o o o o o

' o o o o o o o o o

I

p
|

o | R o o o o o o r11 0 o

. o o o o o o o r22 0

: o o o o o o o o r33

. ‘ b    
where qll’ q22, q33 and q44 are weights attached to the quadratic devia-

tiL<>tls from the internal and external balance in both countries, i.e.,

weights attached to (§1t-?lt)2’ 2t-§2t)2’

2

) 3 and (th-th)9
(I (B

ltIBlt



 

 

~
—
\

(
4
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r
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¢
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f
x
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respectively, while r11, r22 and r33 are weights attached to the

quadratic deviations from the limits set on both fiscal policies and

Country I's monetary policy, i.e., weights attached to (GltIEIt)2’

2 2

)
(G 1t_r1t) °
Zt-G2t and (r

4.2.2. Optimal Solution for Internal

and External Balance

Using Chow's result (equation Ar2.20) for the optimal control

(Appendix A-2), the optimal solution for the "modified" two-country

problem is computed (Appendix A-ll):
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The optimal path is obtained by aubatituting equation 4.4 into the dynamic ayaten (equation 4.3):
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Next, the optimal welfare cost is computed:

And it is found that (Appendix A—12):

.c 1qq>N 2
J (u*) = 3% 33 44 2 (M3 -X3 ) (4.8)

+q t=1 t t

q33 44

The results for the two-country optimal control problem under the

assumption of linear dependent balance of payments differ from those

obtained in Case A of Chapter III. From equation 4.4 it is noted that

only the variables 2* (i = 1,2) are on the targets exactly, while the

it

variables BIt (i = 1,2) deviate from their equilibrium. How much

Country I's balance of payments BIt deviates from its equilibrium

depends on the welfare weight q33 assigned to it, and Country III's

balance of trade. Similarly, the deviation of Country II's balance of

payments depends on the weight q44 assigned to it and on Country III's

balance of trade. Unlike Case A, the optimal welfare cost is no longer

(equal to zero, but it depends on the penalty costs that each country

aissigns to the deviation of its balance of payments from the equili-

t>rium as well as Country III's trade balance.

In summary, the concluding remarks for Case B are:

(1) Similar to Case A, the economic interdependence

between countries is reflected in the policy inter-

dependence; that is, no policy can be considered

in isolation. Again within the confines of

Votey's model, there is one peculiarity to be

noted. Both fiscal policies GIt and Cat affect
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the full-employment situation in both countries,

while Country I's monetary policy is directed at  
all four targets (internal and external balance

in both countries) and the relative effectiveness

of these three instruments is measured by the

 

   

matrix:

Row Y1t Y2t 1t B2t

1 "Q22 31; o 0

Q Q

2 32; "Q11 0 0

Q Q

3 Q22‘231J'QzIQ32 '(Q12Q31+Q11Q32) q33 "Q44

”11" nIIQ ”11(q33+q44) "11(q33+q44)

which will be evaluated in the next section by sub-

stituting Votey's numerical values for the estimated

coefficients into the two-country model.

(2) Along with Chow (1972c), it is concluded here that if

the number of variables to be controlled is larger

than the number of instruments, the variables will

not reach the targets exactly, and their deviations

from the targets will depend on the welfare weights

in QC assigned to them. However, due to this

study's formulation of the optimal control problem

and the particular structural form of Votey's model

which has been constructed to investigate the

effects of Mundellian policy assignment on the

 



(3)

(4)
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stability of the system, the conclusion holds only

for the external situation where there is only one

instrument, i.e., Country I's interest rate to deal

with two external targets or balance-of-payments

equilibrium in both countries. As for the internal

situation of both countries where the number of

variables to be controlled (the GNP of both coun-

tries fiit (i = 1,2) is equal to the number of

instruments (the fiscal policies of both countries

Git [i = l,2]), Tinbergen's rule is met and the

former variables are exactly on target.

Unlike Case A in Chapter III, the optimal policies

are no longer unique in attaining the joint

balance in both countries. In Case B there is

a family of optimal policies, depending on the

welfare weights assigned to the deviations of

both balance of payments from the equilibrium,

because there are not enough instruments to attain

the targets fixed by policy-makers.

Similar to Case A, nothing guarantees the feasi-

bility of the optimal policy mix in a given

economy. Therefore, in addition to a trade-off

between the two external targets due to an insuf-

ficient orchestration of instruments to secure

the simultaneous attainment of external balance

in both countries, there may exist another trade-off
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between attainment of targets and consistency of

policies.

4.3. U.S. and Canada thimal Policies for

Internal and External Balance: Appraisal

and Amendment of the thimal Solution

Similar to Case A in Chapter III, Votey's numerical values for the

structural coefficients and the historical data for the United States,

Canada and the European Economic Community (EEC), which represents the

third country in our "modified" two-country model, will be used to

derive the U.S. and Canadian optimal policy mix for the 1960's. Since

there is a trade-off between the U.S. and Canadian balance-of-payments

targets, a sensitivity analysis of the weighting factors on the

components of the target vector will be performed.v Then the result

of each run of the test will be appraised to determine if the policies

(flotained by the techniques of optimal control are feasible. In other

anrds, if the optimal policy is in accordance with the boundary condi-

tix:n.that the instrument variable cannot surpass certain numerical

values for practical or political reasons, the boundary condition does not

interfere. However, if the values found for the unknown instruments

Vixalate the boundary condition, the optimal solution has to be perfected

and the boundary condition becomes active by redefining the weight

maltlfiix Qc to include the penalty cost assigned to deviations of instru-

ments from their limits.

IFirst, using Votey's numerical values for the estimated structural

constants (Votey:1969), the matrices of coefficients for equation 4.4

anej t11e dynamic system of equation 4.3 are computed:
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Given these two equations, the optimal policy mixes (GIt’ th, rit)

for the United States and Canada over 10 periods running from 1961

to 1970 can be derived with the following initial conditions:

383.3721(0)

§2<o>

81(0) = 4.17

20.06

32(0) = 1.24

K1(0) = 508.69

K2(0) = 49.33

G1(0) = 94.90

G2(0) 8 6.97

0.0215rl(0)

where (0) refers to 1960. All these values are historical.

The nominal values for state variables are given in Table 4.1.

The nominal value for state variables is similar to that in Table 3.1,

to which is added the value zero for Country II's balance-of-payments

equilibrium. The historical values for exogenous variables are given

in Table 4.2.

The U.S.-Canadian optimal policies for internal and external

balance are obtained by the following steps, which require only some

basic matrix manipulations:

(1) Compute [Gf(l), G§(l), r1(l)]' from equation 4.9

using the initial conditions: [21(0), 22(0),

31(0), 32(0). 21(0), K2<o>. 01(0). 02(0). r1(oi]'

and the exogenous variables of period 1 given by

Table 4.2.
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~ ~ I

* * * * * * *(2) Compute [Y1<1). Y2<1>. K10). K20). 01(1). G20). 5(1)]

from equation 4.10. Now [§i(1), 13(1), 31(1), 33(1), Kf(1), K3(1),

!

Gi(1), G§(l), ri(li] can be used in equation 4.9 to compute

' ~ ~

[Gi(2), G§(2), ri(2)] which can be used to compute [Yf(2), Y§(2),

I

* * * * * * *B1(2), B2(2), K1(2), K2(2), 61(2), 62(2), r1(2i] and so on. Continue

I

the process until all the control vectors [Gi(t), G§(t), ri(t)] ,

t = l,..., 10 and all the state variable vectors Yi(t), Y§(t),

|

BI(t)’ B§(t), KI(t)’ K§(t), G1(t)’ G§(t), ri(t)] , t = 1,..., 9, have

been computed.

Unlike the first two cases, the optimal control solution for

achieving the overall balance is no longer unique, but is a function

of the weights q33 and q44 attached to the deviations of the U.S. and

Canadian balances—of—payments from their equilibriums. To study the

effects of the trade-off between the two external targets on the

optimal policy mix, three experiments will be performed.

Table 4.3. Two-country model (Case B): penalty weights attached to

the deviations of U.S. and Canadian balance of payments

from the equilibrium

 

 

 

Trade-Off Experiment q33 944

A 10'“ 10"5

B 105 105

5 -4
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First, observations will be made on the relative effectiveness of

the impact of three instruments on the internal and external targets.

Based on the following matrix (equation 4.9)

— —

~ ~ — —

Row Ylt Y21: 31: B2t

1 0.3810 -0.0977 0 0

2 -0.1315 0.3632 0 0

q q
3 0.0028 -0.0021 0.0216(—§§;7——) -0.0216(-éfi:a—-)

q33 q44 q33 44

it is noted that the policy interdependency prevails, but in a strict

sense within the confines of Votey's model. That is, both fiscal

policies affect the internal balance in both countries, but with a

positive impact on its own target and a negative impact on the other

country's target, while the U.S. monetary policy affects the overall

balance positively with respect to the U.S. internal and external

targets and negatively with respect to Canada's joint balance. Further-

more, the impact of the U.S. monetary policy is greater on the U.S.

external target than on the U.S. internal target. Therefore, due to

the particular structural form of Votey's model, Mundellian policy

assignment to internal and external balance is inherent in the two-

country model. It is also noted that the effectiveness of the impact

of U.S. monetary policy on the U.S. and Canadian balance of payments

depends on the welfare weights q33 and q44: the greater the weights,

the greater the impact.

Next is an appraisal of optimal policies for internal and external

balance in the United States and Canada. The results are presented in

graphical form (Figures 4.1 to 4.5) with time on the horizontal axis.
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Figure 4.1. Two-country model (Case B) - Effects of trade-off

between the two external targets on the U.S. government expenditures:

optimal paths compared with actual and nominal paths.
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between the two external targets on the Canadian government expendi-

tures: optimal paths compared with actual and nominal paths.
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. Figure 4.3. Two-country model (Case B) — Effects of trade-off

between the two external targets on the U.S. interest rate: optimal

paths compared with actual and nominal paths.
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The following remarks on the performance of optimal policies can be

made:

(1) All three optimal policies are sensitive to the

trade-off between the two balance-of—payments tar—

gets. This trade-off is shown by Figures 4.4 and

4.5. The more the deviation of the balance of

payments from its equilibrium is penalized, the

closer the external balance. In fact, in experi-

ment A where the U.S. balance of payments diverges

 

strongly from equilibrium, the Canadian balance of

payments is exactly on the target, and vice versa

in experiment C. However, if equal penalty costs

are assigned to both deviations (experiment B),

both balance of payments diverge equally from the

equilibrium. Therefore, the external balances

in both countries can never be attained simul-

taneously. A trade-off exists between them.

(2) The actual paths of fiscal and monetary policies

deviate from their optimal ones. This implies that

the joint balance is neither attained in the United

States nor in Canada during the 1960's. In fact,

the United States was faced with inflation and

balance-of—payments surplus as was Canada, with

the exception of 1965 when Canada had a deficit.

(3) When using the optimal fiscal policies, the U.S.

and Canadian economies are found to be on the
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targets exactly no matter what the trade—off

between the balance of payment targets. On the

contrary, the U.S. optimal monetary policy by

itself cannot bring the U.S. as well as the

Canadian balance of payments to the equilibrium.

This requires additional constraints: heavy

penalty costs have to be assigned to deviations

from the external balance.

(4) It is found that the optimal policies for internal

and external balance are inconsistent, i.e.,

inadmissible for political, social, and technical

reasons. In other words, they violate the boun-

dary conditions which have been set up to limit

the instrument-magnitudes. Therefore, these

additional constraints become active by reformulat-

ing the cost functional Jc (equation A—2.18) in the

two-country optimal control problem (Case B) with

the assumption RP 4 0.

Next, the amendment of optimal solution generated by the intro-

duction of boundary conditions will be examined. The newly defined

weight matrix Qc under the assumption RP # O is:



124

 

Row Ylt Y2t Blt B2t K1t K21: G1t 62:; r1::

1 q11 0 0 0 0 0 0 0 0

2 0 c122 0 0 0 0 0 0 0

3 0 0 q33 0 0 0 0 0 0

4 0 0 0 q44 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 ILjr

6 0 0 0 0 0 0 0 0 0 H

7 0 0 0 0 0 O r11 0 0

8 0 0 0 0 0 0 0 r22 0 r—‘

9 0 0 0 0 0 0 0 0 r

33

A sensitivity analysis of the weighting factor on components of

the control vector is performed. Unlike Case A in Chapter III because

of a trade-off between the two countries' external targets, the sensi—

tivity analysis will be done for each trade-off experiment with the cost

functional given in Table 4.4.

Three sensitivity tests will be performed for each trade—off

experiment: in test 1, only the deviations of U.S. monetary policy

from its constant limit set at 2.15 percent are penalized; in test 2,

the deviations of two out of three instruments policies--the U.S.

monetary policy coupled with the fiscal policy in either country--from

their nominal values are penalized; and in test 3, all three instruments

are tracked to their limits.

 



125

Table 4.4. Two-country model (Case B): penalty weights attached to

the deviations of control variables from their nominal

 

 

 

values

Runs r11 r22 r33

Test 1 1 0 0 1 5

2 0 0 10 5

3 o 0 5x10

4 0 0 106

Test 2 5 0 l 5 102

6 0 10 5 106

0 5x10 106

0 106 106

7 l 5 0 106

8 10 5 0 106

5x10 0 106

106 0 10

Test 3 9 l 1 l

10 105 5 105 5 105 5

11 5x10 5x10 5x 0

12 106 106 105

13 1 1 106

14 1 1 5 105

15 1 6 10 105

16 10 5 1 5 105

17 5x10 10 5 105

105 5x10 10

18 1 6 106 102

19 105 - 1 6 106

20 106 105 106

‘ 10 10 10
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Figure 4.6(A). Two-country model (Case B) - United States:

.optimal GNP trajectories compared with the desired and actual GNP

(trade-off experiment A where q33 = 10"4 = 5
, q44 10 ).



127

 

 

 

   
 

80 “J

Run 5

60 Run 7

Run '1

film 3

u: Run 8‘!

40 ‘-

q

— R 13

20 , 0:: z

‘ Pan 9

-31".- E . .

o 4:” l

.2 69 70
—

F4

'9 B

U)-

-20 -‘

_40 __ Rim 6

- Run 15'

Optimal Path

-60 “

* i ’ Actual Path

_ """ Nominal Path

Run it

-80 ‘— 
Figure 4.7(A). Two—country model (Case B) — Canada: optimal GNP

trajectories compared with the desired and actual GNP (trade-off

experiment A where q33 = 10'4, q44 = 10 ).



128

 

Optimal Path

'-‘ ------ Nominal Path

’8

8
-H -H

F4

F4

-H

.o

d

1’3 Run 1,...,20

_r ----------------- o ................................

I I r l I I F I II T 
1961 62 63 64 65 66 67 68 69 70

Figure 4.8(A). Two-country model (Case B) - U.S. balance of

payments: optimal paths com ared with the equilibrium (trade-off

experiment A where q33 = 10' , q44 = 105).
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payments: optimal paths compared with the equilibrium (trade-off
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Figure 4.10(A). Two-country model (Case B) - U.S. government

expenditures: optimal paths com ared with nominal path (trade-

off experiment A where q33 = 10' , q44 = 105).

 

Figure 4.11(A). Two-country model (Case B) - Canadian govern-

ment expenditures: optimal paths compared with nominal path (trade—

off experiment A where q33 = 10'4, q44 = 105).
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(i) Trade-off experiment A [Figures 4.6(A) to 4.12(A)]

In test 1 (runs 1 to 4) it is observed that the tracking for

the U.S. nominal interest rate gets closer the greater the value given

to the welfare weights r Because of the policy interdependency

33'

(equation 4.8) the U.S. and Canadian fiscal instruments are also track-

ing their nominal paths. However, the tracking for U.S. nominal

government expenditures is positively correlated with that of the U.S.

nominal interest rate, while there is a negative correlation between

the latter tracking and that of the Canadian nominal government

 

spending. Furthermore, it is found that the optimal path of U.S.

balance of payments on which the U.S. monetary policy has the greatest

impact remains insensitive to the tracking for the U.S. nominal

interest rate; and only for the three other endogenous variables,

~

Ylt’ §2t’ and B2t is there a trade-off between attainment of targets

and feasibility of the U.S. monetary policy.

In test 2 (runs 5 to 8) it is found that the additional boundary

condition reinforces the tracking for both the nominal U.S. interest

rate and Canadian government expenditures, but only if a very low weight

is attached to deviations of U.S. government spending from their nominal

path (r22) compared to that of U.S. monetary policy (r44). Otherwise,

there would be deviations from both nominal paths and the amended

rlt’ GZt

optimal control solution could be explosive. Similar to test 1, it

generates a trade-off between attainment of three other targets,

U.S. internal balance and Canada's overall balance, and the tracking

for the nominal values of two instruments--U.S. fiscal and monetary

policies or on Canada's fiscal policy and U.S. monetary policy.
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The results of test 2 are also found in test 3 in which the limits

are set upon all three instruments.

(ii) Trade-off experiment C [Figures 4.6(C) to 4.12(C)]

This is the opposite case of trade-off experiment A, in

which a high penalty cost is assigned to deviations of U.S. balance of

payments from its equilibrium. The same results are obtained, with one

exception. Since the external balance trade-off between the United

States and Canada has been reversed (the United States attach more

importance in welfare weights to the performance of its external

balance than Canada does), it is found that the tracking for limits

on policy-magnitude leaves the optimal path of Canada's balance of

payments unchanged [Figure 4.9(C)]. However, the tracking affects the

attainment of external balance in the United States by using the

inconsistent or nonfeasible optimal policies. Furthermore, trade-off

experiment A assigned heavy penalty costs to deviations of Canada's

balance of payments from its external balance, resulting in a surplus

of Canada's balance of payments at the expense of tracking for limits

on policy-magnitudes. Unlike experiment A, it is found in the trade-

off experiment C that the tracking for the nominal policies brings a

deficit in the U.S. balance of payments.

(iii) Trade-off experiment B [Figures 4.6(B) to 4.12(B)]

When both countries give equal importance to the achievement

of their external balance, a trade-off occurs between attainment of the

four targets--internal and external balance in the United States and

Canada--and the feasibility of all three policies. In other words, to
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Figure 4.6(C). Two—country model (Case B) - United States optimal

GNP trajectories compared with the desired GNP (trade-off experiment C

where q33 = 105, q44 = 10'4).

Figure 4.7(C). Two-country model (Case B) - Canada: optimal GNP

trajectories compared with the desired GNP (trade-off experiment C

where q33 = 105, q44 = 10'4).
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Figure 4.10(C). Two-country model (Case B) — U.S. government

expenditures: optimal paths compared with nominal path (trade-off

experiment C where q33 = 105, q44 = 10‘“).

 

Figure 4.11(C). Two-country model (Case B) - Canadian

government expenditures: optimal paths com ared with nominal

path (trade-off experiment C where q33 = 10 , q44 - 10'4).
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track the two nominal fiscal policies (4 percent growth per annum)

and the nominal U.S. interest rate (2.15 percent), both the United

States and Canada must give up their targets of internal and external

balance--def1ation coupled with balance-of-payments deficit in the

 
United States and inflation paired with balance-of-payments surplus

in Canada.

Under the assumptions of fixed exchange rate, passive responses

from the second country and linear dependent balance of payments,

it is concluded:

 

(1) Within the optimal control framework, if the number

of variables to be controlled is larger than the

number of instruments, the variables will not reach

the targets exactly, and their deviations from the

targets will depend on the welfare weights in Qc

assigned to them (Chow:l972c). As a result, the

solution for simultaneously achieving internal and

external balance in both countries is no longer

uniquely determined. Within the confines of

Votey's model where an inherent Mundellian policy

assignment prevails for internal and external

balance, only the variables of balance of payments

(B BZt) are not on target exactly since there
lt’

is only one instrument, Country I's interest rate,

to hit both external balances. Therefore, the

solution obtained by the optimal control techniques

is found to be a function of trade-off between the

 



(2)

(3)
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two countries‘ balance of payments or, more

specifically, a function of welfare weights q33

and q44 assigned to their deviations from

equilibrium. Furthermore, unlike the two preced-

ing cases in which the optimal cost 3c is

zero, the trade balance of the third country

with Countries I and II as well as the welfare

weights q33 and q44 determine the optimal cost

3c (equation 4.8).

The larger the welfare weight q33 (q44), the

closer the variables B1 (BZt) reach the equili-
t

brium targets. A trade-off exists between the

two external targets. For one country to hit its

external balance the other one must consent to

attach only a small importance to its own external

balance. Otherwise, if both attach equal importance

to the attainment of their own external balances,

neither will reach the targets and both will face

a balance-of—payments disequilibrium.

When boundary conditions become active, a second

trade-off occurs between attainment of targets and

feasibility or consistency of policy-instruments,

in addition to the trade-off between the external

targets.

 

  



CHAPTER V

TWO-COUNTRY MODEL

CASE C: CONFLICT OF INTERESTS AND GAME THEORETICAL APPROACH

This chapter introduces a new framework for analyzing the problem

of internal and external balance under the following assumptions:

(1) Economic interdependence between two countries,

(2) Active responses from the second country,

(3) Conflicting internal as well as external targets

pursued by both countries but with the possibility

of international cooperation.

The case of conflict of interests can be resolved by presenting a

systematic and concise introduction to a two-player or controller

multistage non-zero-sum game with linear quadratic system and perfect

information will be presented. Its application to policy mix for

internal and external balance will be left to future research, because

more realistic assumptions will imply a more complicated model than

that of Votey.

According to Y. C. Ho (Ho:l970), Differential Games (DG) is

nothing but an extension of optimal control theory within the context

of "Generalized Control Theory" (GCT) which incorporates all optimi-

zation problems possessing the three main ingredients: the criterion

149
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function, the controller (or player), and the information set available

to the controller.

As in the optimal control problem, the differential game problems

consist of finding strategies which minimize the Performance criterion

subject to the constraints described by the state system, with the

difference that there is more than one controller.

Furthermore, in the non—zero-sum (NZS) game the players' interests

are not in direct conflict. Therefore, contrary to the zero sum (ZS)

game it is no longer possible to have a unique definition of optimality

(Starr and Ho:l963a, 1963b). In this chapter, the noncooperative

(or so-called Nash) equilibrium strategies will be determined first,

then the inferiority of Nash equilibrium strategies will be proved,

which leads to the search for a noninferior solution in particular the

so-called Pareto Optimum Strategy.

5.1. Formulation of the Problem

The two-player NZS game is defined by:

(1) A linear, time-invariant, dynamic system, so-called

"kinematic" equation (Isaacs:l965):

x = Axt + B u +’B u v+1Cz (5.1a)
t+1 1 1t 2 2t t

x - xt = Fxt +'B u + B u + C2 (5.1b)
1 1t 2 2t t

1,.

t+1

where ern is the state variable, ulerl is

player (Country) I's control variable, uzeErZ

is player (Country) II's control variable,

zeES is the exogenous noncontrolled variable,

r—‘u.
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A = I+F is a nxn matrix, B1 is a nxr matrix,

1

B2 is a nxr2 matrix, C is a nxs matrix, and all

the matrices are assumed to be time-invariant

and known.

(2) Quadratic performance criteria:

 

 

1 N T _. T

J1 = 5':=0{[xt4it] Qllxt-xt] + u11; Rllult

T (5.2a)

+ u2t R12u2t}

J2 g % §=o {[xt‘iilTQ2[xt‘i£] + ultTR21ult

T (5.2b)

+ “2: R22“2t}

where J1 and J are players (Countries) I and
2

II's performance criteria to be minimized; Q1

Q2, R11, R12, R21 and R22 are assumed to be

symmetric; and R are positive definite
R11 22

matrices; and Q1 and Q2 are non-singular matrices.

Therefore, the problem consists of finding a pair of strategies

(61,62), called Nash equilibrium or non-cooperative equilibrium

strategies such that:
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5.2. Determination of a Nash Equilibrium Set (filial;

5.2.1. Definition

Following Starr and Ho (1963a), the strategy set a = {u1,..., uk}

is called a Nash equilibrium strategy set if for i = 1,2,...k:

~ ~ ~ < ~ ~ ~

Ji(ul,...,u1,...,uk) Ji(u1""’ui"°"uk)

for all admissible u that is, for controls which belong to a Euclidian
1,

space.

5.2.2. Necessary Conditions for a Nash Equilibrium Solution

Starr and Ho (1963a, 1963b) derive the necessary conditions for a

Nash equilibrium in the continuous case while Haurie's work (1970, 1971)

is in connection with the discrete case.

Applying Haurie's results, a Nash equilibrium strategy pair for

the linear quadratic NZS game problem is obtained by solving the

following equations:

 

 

531131 .. _5n . xt _ 0
(5.3a)

11: ..

“it

538 1
5 2t+l i = O

(5.3b)

u2t t

l‘21:

agelt+1 5m2t+l

it+l " i1: = “S'— = T“: Fxt+Blfilt+BZfi2t (5'4)
lt+1 21+1

T

A _ I = _ 6%1t+l+ 63Et+l(S6u22t (5.5a)

1c+1 1t Ts—x
6x

t t

 



 

 

12t+1 - AZt = - 2t+l + 6§t+1 6x1t (5.5b)

xt lt

with the boundary conditions:

x(0) = RC (5.6)

1101) = Q1[2(N) - 201)] (5.7a)

51201) = Q2[i'c(N) - 5201)] (5.71:) 2

where 3'81:+1 and 3'6 2 t+1 are the respective hamiltonians for the two

players.

5.2.3. Determination of the Solution

Along the optimal path, the Hamiltonians for the two players are

defined as follows (Starr and Ho:l963a, Haurie:l970, 1971):

__1_[ __ T .. __ .. T ..

g£1t+1 _ 2 (it Kt) Q1(xt xt) + u11: Rllult+fi2t

(5.8a)

R12‘121]+ A11:+1 Fxc + Blult+B2fi2t+Czt]

38 =-1-(i-i)TQ(ii-i)+fi TRfi-h‘i
21:+12 tt 2:: ltletZt

(5.8b)

~T ~ ~ ~

R22fi2t] + A2t+1 [Fxt + B1“11;"‘Bz"21:+ct]

where I are co-state variables.

lt+l’ A2t+1
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Then, solving equations 5.4a and 5.4b yields

~ _ -1 T ~

“1t ‘ R11 Bl A1t+1 (5°98)

~ _ _ -1 T ~

“2: " R22 B2 A2c+1 (5'9b)

Therefore 341t+1 and 2t+l are at their minimum with respect to u1 and

u2 since R11 and R22 are positive definite. Since the performance

criteria are assumed to be quadratic, the closed-loop Nash equilibrium

strategies of the form fi = S (it) + s can be derived (Starr and Ho:

it :1 J

1963a). Similar to the linear quadratic optimal control problem, it is

known that (Lee et aZ.:l972, Athans and Falb:l966):

A1t+1 = Klt+l it+1 + klt+1 (5°103)

k (5.10b)
Azc+1 K2t+l itt+1 + 2t+l

Substituting equations 5.10a and 5.10b into equations 5.9a and 5.9b:

r _ —1 T ~ -1 T

“1t ’ R11 Bl K1c+1 xt+l R11 Bl klt+l

(5.1la)

d ~

' D1t+l xt+1+ d1t+l

~ _ _ -1 T r _ -1 T

“2: ‘ R22 B2 K2t+1 xt+1 R22 B2 k2t+l

(5.11b)

d

D2t+l xt+1 + d2t+l

Again, substituting equations 5.11s and 5.11b into the "kinematic"

equation 5.1b:
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i = Fit + B D

t+1-x: 1 n+1 itt+1 + B21’21;+1 5tt+1 + Bldlt+l

 (5.12)

+ B2d2t+1 + Czt

l d .
Since [Gt+J- = [I-B1D1t+1-B2D2t+l] exists for all t, t {0,...,N-l},

then:

.. -1 .. 1 -l

xt+1 [CHI] Ax: + (Gt-i- B1‘111:+1 + (Gab

-1 g

B2‘121:+1 +(Gt+1) CZt ’ A-

-1 ~ -1 Q1

”(GtH) Axt + gt+1 + Gt+l CZ:

I + F (5.13)

Substituting equation 5.13 into equations 5.1la and 5.11b:

C
I l

-1

1t " H11:+1 it + hlt+l + D1t+l (Gag CZ: (5’1“)

C
I ll

.. -1
2t H2t+l xt + thH + D2t+1(Gt+9 Czt (5.141))

where

“
0
1

-1

H11;+1 D11;+1 (Gm) A

"
D
:

1c+1 Dlt+l gt+l + dlt+l

I
l
O
-
n

-1

H21;+1 I’21:+1 (6H1) A

[
I
D
-

2t+l D2c+1 gt+1 + Cl21;+1

Solving the canonical equations 5.5a and 5.5b, and rearranging the

terms:

 



156

= [Q +11T R H 1]}? +A [G- 1 +11T R h
1t 1 21+1 12 2t+ t t+1 lt+1 2t+l 12 21+1

T 1 (5.15a)

+ H2t+lR12D2 t+1Gt+lCzt-Q1xt

>
J
2

>
»
1

l

x +AT[G-11]T~ T Tt+ 2. +H

21: ' [Q2+Hlt+lR21H11+1]1; 21+1 11+1+H11+1R21D11+1

(5.15b)

G'lc t—xQ
t+1CZ 2x1:

Substituting equations 5.10a and 5.10b into equations 5.15a and 5.15b:

K 3t+k

T

11 1: 11: =T[(2142121:+1R12Hz1:+1+A (G1:-lTKl)lt-lGt+1A]

111$ K +11 + HT R (5.16s)
i1zT+A (G lt+lgt+l 11+1 21+1 12

h +AT (G

HT

21+1+H[21;+1 R121321:+1 1+1) Kn+1]

_1 _

Gt+l CZ1: - Q1 xt

T TK

Ktht'Ath ' [Q2+H1t+1R21H1t+1+AT(Gt-1)K2t+1Gt-1A]

~ T -1 T T

x1+A (Gt-l) K2t+lgt+l+k2t+l + Hlt+l (5'16”

-1 T _

Rh2111;+1+[H1T1:+1R21Dt+1+TA (Gnu)KK21:+1]G1t+1 C21: Q2 x1;

Then equating the coefficient yields:

-1 T -l_ T

K11: ‘ Q1+H21+1 R12H2t+l+A (Gt+l) K11:+1G«c+1 A (5'173)

= T -1 T -1

K21: Q2+H1t+l R21H11:+1+AT (Gt+1) K21:+1G1:+1 A (5'1”)
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T -l T

 

klt = A (Gt+1ATEFlt+lgt+l+klt+l] + H21+1 R12 h21+1

(5.18a)

+ [H2131 R12D2t+1+AT(G;-l-1)TK11;+1J G31 CZ1: _ Q1 it

k2: = AT(G111)T[K21+1gt+1+k21+1] + H21+1 R21 h11+1 ( )

5.18b

+[H11+1 R21 D11+1+ATK21+1J G31 C21: ‘ Q2 it

And

K1N = Q1
(5.19a)

K2N = Q2
(5.19b)

k1N = Q1 *1
(5.20a)

kZN = Q2 ifi (5.20b)

Summary of the solution

The Nash equilibrium strategy pair (31, OZ) is found by the follow-

ing steps:

(1) Solve the Riccati equations 5.17a and 5.17b with their

boundary conditions 5.19s and 5.19b backwards in time

to get values for Kt’ t = 1,...,N.

(2) Solve the tracking equations 5.18a and 5.18b with

their boundary conditions 5.20s and 5.20b backwards

in time to get values for kt’ t = 1,...,N.

(3) Compute the Nash equilibrium strategy set u(O) =

{fi1(0), fi2(0)} from equations 5.14s, 5.14b:

 



[
I
O
-

D

"
O
-

D

"
D
-

D

1
1
1
:
.

D

n
o
.

n
o
.

"
9
1

n
o
.

-1 g

(Gt+]) "

d

= H21:+1 x1:

-R B
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.. _-1

' H11:+1 x1: + [h11+1+D11:+1G1:+1 ‘Cztj (5.14a)

~ + [h (5.14b)
-1

21:+1+D21:+1G1;+1 C21]

—1

lt+l (Gm) A

-1

21+1(Gt+1) A

lt+1 gt+1 + d11;+1

21+1 gt+1 + d21:+1

T

11 1 K11:+1

K21;+1

-R B k

11 l 1t+l

k
-l T

2 2t+1

[I‘Binltfl ' 132132131]-l

_ -1

81+1 {Gab [Bldlt+l + BZdZt-l-l]

using 1(0) = i Then compute x(1) from equation 5.4. Now x(1) can0.

be used in equation 5.14a and 5.14b to compute u(2) é {fi1(2), fi2(2)}

which can

process until all of the u g {u

the it, t =

be used in equation 5.4 to compute 1(2), etc. Continue this

t It, fiZt}’ t a 0’ 1,000,N-1 and all Of

1,...,N, have been computed.

r4
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~ ~

(4) The costs J1, J2 can be computed from equations 5.2a

and 5.2b.

5.2.4. Principle of Optimality in the NZS Game

The strategy set u is optimal in the Nash sense; that is, the

equilibrium solution is secured against any attempt by one player

unilaterally to alter his strategy. If every player is using his

Nash control, and if a given player plays non-Nash optimally, he will

do no better.

The conditions of Section 5.2.2 are necessary for the Nash

equilibrium strategy set to exist, but these solutions are not pro-

tected against cheating and thus are unstable in a noncooperative

sense. In other words, it is possible for the "prisoner's dilemma"

to occur and the optimality is non-unique in the NZS differential

game (Starr and Ho:l963a, 1963b). Therefore, there are solutions other

than Nash's, such as noninferior. solutions and minimax solutions.

This study is concerned with the noninferior solutions, and in

particular with the Pareto optimal strategy set. The noninferior

solution has the property that it is not dominated by any other solu-

tion point in its neighborhood. In other words, any deviation from

the noninferior solution cannot result in simultaneous improvement of

all Ji's (i = 1,...,k).

First, the sufficient conditions for the Nash equilibrium to be

inferior are derived to check if Nash strategies are inferior. If they

are, the Pareto optimal solution, which is noninferior and therefore

superior to the Nash solution, will be determined.
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5.3. On the Inferiority of Nash Equilibrium

for a Two Player Multistage Game

5.3.1. The Basic Sufficient Condition for Inferiority

EEri, rConsider k players with respective controls 111 1 given

integer and respective criteria:

J1: Er+R 1 = 1,...,k.

where r = r1 + r2 + ... + rk.

Definition 5.3.1:

The control u£Er is inferior if there exists ueEr such that:

Ji(u) s 11(6) for all 1 {1,...,k}

Jj(u) < Jj(fi) for some j {1,...,k}

Lemma 5.3.1: (Rekasius & Schmitendorf:197l)

If each functional is C1 in a neighborhood of u., then a suf-

ficient condition for u to be inferior is that there exists a vector

k

h E such that:

h < 0 (5.21)

and

r[A] = r113 h] (5.22)

where A is the following er matrix:

 

1

~“(S

:11

d o

A = 3

6

3ek ~

.55 u
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and “1’ . . . ’mk are the Hamiltonians:

11:11i (x,ui, Ai’ t) i = 1,...,k.

5.3.2. Application to Two-Player L.Q. Multistage Game

Consider the linear system:

xt+l = Axt + Blult + B2u2t + Czt

and the quadratic criteria

1 N T T

J1 = 2 t=0 [Ac-x1] Q1363] + “11: R11‘111:

T

+ “21 R12 “21

__1 J. T _ T T

J2 - 2 =0 [xt xt] Q2 [xt x1: + u11: R21‘111; + u2t R22 u21: '

Construct the matrix A:

 
where

1

“1131 = 2 [xt

Alt+

13?
l

6u1

a}?

6u

 

2
 

1

all?

6u2

6392

Gu

1
 

 

2

 

Ti+uQ1t 11R11M1121TRu12“21]

1_[Fit + 131 1 +Bzfi2t + Czt]
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_1 * T

2:;TEXszt + “1:: R21 “1: “1 TR“22‘11:] + 2t+1
‘38
2t+1=

[Fxt + Blu1t+B2u2t + Czt]2

Since G 3 (El, fiz) are a Nash equilibrium, the following conditions are

necessarily satisfied:

 
 

 

1r 1

 

 

  

2

ul 0

L 1

where:

6gPlt+l ‘ fiT R + BT i

6n 2t 12 2 -1t+l
2t

———6382t+1 == fiT R + 13T i
Gult 1t 21 1 2t+1

According to the previous results (Section 5.2.3), a Nash equilibrium

is given by:

.. _ -1 T ~

“1c‘ ‘R11 B1 A1:;+1

.. _ _ -1 T ~

“2: ' R22 32 "2c+1
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therefore, it is rather unlikely that

52'? 5'38
1 2

6u2 6u1

  

Thus A is non-singular and has a rank 2. And rankI:AE h] = rank A = 2

for h < 0. By Lemma 5.3.1, fl is inferior; that is, the Nash solution

of a two-player NZS game will usually be inferior.

5.4. Determination of the Pareto-Optimal Set

Nash equilibrium strategy set (fil, fiz) has been shown to be

inferior and it is assumed that the two players agree to cooperate.

Therefore, the two-player multistage NZS game is reduced to a vector-

valued criterion optimal control problem in which the decision maker

is a team of two players, and several optimality criteria are relevant

to the players, although their relative importance is not obvious.

Different approaches to the vector-valued criterion optimization

problem.have been developed. Basile and Vincent (1970a); Vincent and

Leitman (1970b); Leitman, Rocklin and Vincent (1972); and Stalford

(1972) used a geometric approach based on the concepts of convex cost

cones to derive the Pareto optimal set for both static and continuous

games. Schmitendorf et a2. (1971, 1972, 1973) also derived the neces-

sary conditions for Pareto optimal solutions for static and continuous

games. This approach does not require any local convexity assumptions

like the method of Vincent et aZ., but is based instead on the rank

conditions of the cost matrix. Above all, the most popular technique

is the scalarization technique, where the vector performance index

problem is converted into a family of scalar index problems by forming

an auxiliary scalar index as a function of the vector index and a

 

r‘é-
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vector of weighting parameters (Zadeh:1963, Klinger:l964, Da Cunha and

Polak:1967, Starr and Ho:l963a, 1963b, Reid and Citron:l97l, Haurie:

1970, 1971, 1973).

Haurie's approach and results (1970) will be applied to the

two-player multistage NZS game with LQ system, perfect information

and complete cooperation.

5.4.1. Definition

A set of control functions u g (0 62,...,fik) is said to be
1’

Pareto optimal if for each set of control functions u g (ul, u2,...,uk)

there exists:

either Ji(u) = Ji(fi) for all i {1,...,k}

or at least for one i {1,...,k}: Ji(u) > J1(u)

5.4.2. Scalarization Procedure

The Pareto optimal set 6 could be obtained by minimizing the

following scalar performance criterion

J = 111.11 + 11sz

“1 + “2 = 1

ul>0.u2>0

provided that the set of cost vectors (J J2) generated by all the
1’

admissible controls is convex (Starr and Ho:l963a). Therefore, the

problem consists of finding a set of controls u(u , x,t) g u = (fil, 62)

3

such that:
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”1‘11 (6) + 11sz (G) < “1J1 (u) + 11sz (11).

5.4.3. Determination of the Solution

The problem of finding the Pareto optimal set a is formulated as

follows: minimize the performance criterion

d 1 N T T
J = “1.11 + 11sz = 2 i=0 {[xt-xt] Q[xt-Xt] + ut Rut} (5.23)

given the dynamic system

  

 

xt+1 - xt = Fxt + But + Czt (5.24)

where

"1Q1 0

Q:

L 0 u2Q2 J

F '7

u1R11+“2R12 0

R:

O “1R21+“2R22 

D
.

B = [31, 32]

u 3 [ul, uz]

To get the necessary conditions for the Pareto optimal solution, the

Hamiltonian is constructed:
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_ 1_ —- T 4. T “T .
Mal - 2 {[xt-xt] Q[xt xt'] + ut Rut} + At+1.[Fxt _+ But + Czt] (5.25)

Similar to the linear quadratic optimal control problem, it is known

that (Lee et aZ.:l972, Athans and Falb:l966):

A gK

At+1 t+1 xt+1 + kt-.+1

Then the minimization of the Hamiltonian is written as follows:

53.9
t+l_ . T. =

Sut — Rut + B At+1 0

and the canonical equations are:

619
t+1

_ = __——_—-= +
xt+1 xt 52 Fxt + But Czt

t+1

i —i =.6_¥£:11=_Qfi_f _FTX

t+1 t dxt t t t+1

with the split boundary conditions:

x(0) = x0

AN = QbLN-KN)

From equation 5.27:

_ -1 T"

“c"R B At+1

Substituting equation 5.26 into equation 5.32:

A _ _ _.1 T _ -1 T

xt: - R B Kt+1 itt+1 R B kt+1

Substituting equation 5.33 into equation 5.28:

A A _ A _lT

xt+l xt - Fxt BR B K

A '1 T

t+1 "t+1"BR B kt+1 + CZ:

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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Rearranging the terms, equation 5.34 yields:

A _ -1 A -1 -l T _1

xt+1 — W Axt - W BR B kt+1 + W Czt (5.35)

where: A = I + F

g -l T

W - I + BR B Kt+1

-1 g -1 T -l

W - I + BR B Kt+1

Substituting equation 5.35 into equation 5.33:

1 T 1 1. - -1 . - — T -l -l T
ut - -R B Kt+1 [w Axt-W BR B kt+1 + w Czt] -R B kt+1 (5.36)

Now re-examine W-l. Using the matrix identity (Pindyck:1973),

W— becomes:

-1 _ T -1 T
w - I—B[R+B Kt+1BJ B Kt+1 (5.37)

Substituting equation 5.37 into equation 5.36:

A _ -1 T T -1 T . -1 T
ut - -R B Kt+1[I B(R+B Kt+lB) B Kt+IJAxt + R B Kt+1

(5.38)

T -1 T -1 T -1 T T -1
[I-B(R+B Kt+lB) B Kt+1] BR B kt+l-R B Kt+1 [I—B(R+B Kt+lB)

T -1 T
B Kt+1]Czt-R B kt+1

And after rearranging:

t R {1 B Kt+1BLR+B Kt+lBJ } B Kt+1Axt + R {I-B Kt+lB

(5.39)
T —1 T -1 T -1 T —1 T

[R+B Kt+1BJ } B Kt+lBR B kt+1 - R B kt+1-R { I—B Kt+lB

T -l T

[R+B Kt+1BJ } B Kt+1 Czt.
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Now, using the identity:

I-x (T+X)'l = Y(Y+X)-l (5.40)

Letting X = BTKt+ B and Y = R, simplify equation 5.39 to:

l

’1 BTK Ait + [R+BTKt+lB]
1

t+lBJ t+1
'1 BTK BR-

. _ T T

ut [n+3 K t+1 B kt+1

1 T T -1 T
B kt+l - [R+B Kt+1BJ B K Cz

- R t+1 t

Next, solve the second canonical equation 5.29:

A

Substituting equation 5.26 into equation 5.42:

A A _ A T

= _ T

Ktxt+kt Q[xt xt] + A Kt+1xt+l+A kt+1

After rearranging the terms:

T A

A Kt+1xt+1

Substituting equation 5.35 into equation 5.44:

T {-

A Kt+1 W

A A T

Czt} + th - Ktxt — -A kt+l

1 l -l T -1
BR B kt+ + W

Axt-w 1

(5.45)

+ kt + Qit.

Rearranging the terms:

(5.41)

 
A T A A T A

A = -_ A = ——t Q[,xt xt] + (I+F) t+1 Q[xt xt] + A At+l (5.42)

(5.43)

. A _ _ T
+ th-Ktxt - A kt+l + kt + Qii. (5.44)

(5.46)
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Equating the coefficients of the left-hand side and the right—hand side

yields:

Kt = Q + ATRt+lw'1A (5.47)

kt = -.4T1<t+1w"1BR'IBTRH1 + ATkt+l - Qii + ATRt+lw'1c2t (5.48)

with the boundary conditions:

KN = Q (5.49)

kN = 'Qifi
(5.50)

In conclusion, equation 5.41 determines the family of Pareto optimal

strategies in terms of the present optimal state it and the solutions

to the Riccati equation 5.47 and the "tracking" equation 5.48. It is

noted that the determination of the Pareto optimal strategies is

similar to that of the optimal control except that instead of having

a unique optimal solution, there is a family of optimal solutions,

functions of the parameters ul and ”2' In fact,

“1Q1 0 u1R11 + u2R12 O

Q = and R =

0 “2Q2 0 u1R21+“2R22

   

 

if.

 

 



CHAPTER.VI

CONCLUSIONS AND RESEARCH RECOMMENDATIONS

6.1. Summary of Conclusions
 

This study has applied Chow's deterministic optimal control

approach to Votey's macrodynamic one- and two-country models. Summar-

 

izing the main conclusions:

(1) Optimal policies for internal and external balance

can be determined by optimal control techniques.

(2) Chow's propositions concerning optimal control are

verified in this study, i.e., if the number of

variables to be controlled (the number of non-zero

diagonal elements in QC) is equal to the number of

instruments, that is, if Tinbergen's rule is satis-

fied, the variables will be on target exactly and

the optimal cost is minimal. If the number of

variables to be controlled is larger than the

number of instruments or if Tinbergen's rule is

violated, the variables will not reach their targets

exactly. Their deviations from the targets will

depend on the welfare weights in Qc assigned to them

and, therefore, the optimal cost is no longer

minimal (Chow:l972b).

170



(3)

(4)

(5)

171

Optimal policies for internal—external balance may

be viewed as inadmissible for a given economy because

they violate the limits set upon policy variable-

magnitudes for political, social or technical

reasons. Whenever these boundary conditions become

active, a trade-off occurs between attainment of the

joint balance and feasibility or consistency of

policy-instruments.

If Tinbergen's rule is not satisfied, an additional

trade-off occurs among the targets and optimal

policies for internal-external balance are no

longer uniquely determined, but a function of the

trade-off. Analysis of a range of penalty func-

tions reveals changes in optimal control policies

with welfare weights q33 and q44.

Optimal control theory provides the appropriate

framework for structuring and investigating the

problem of internal-external balance under the

assumption of the existence of only one policy-

maker or of a centralization of powers. However,

this assumption certainly does not hold as the inter-

dependence between countries with different goals

increases. In this study, the optimal control tools

have failed to take the case of decentralized

economic policy, the conflicts in targets and the

reactions from other countries to our own optimal
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policies into account. Therefore, the suggested

picture of the mechanism of economic policy derived

from recognition of the existence of more than one

controller is one of a game between various control-

lers. Only the theoretical presentation of a two—

player deterministic multistage game has been

introduced. Its applications are left to further

researches.

6.2. Further Research Recommendations
 

(1)

(2)

When the system under consideration is a macro-

economic model the assumptions of a linear model and

a quadratic cost function are made for their con—

venient analytical properties rather than for their

relationship to economic reality. For example, the

potential output of the economy, §it’ it was taken to

be a linear function of the labor force and capital

stock. This was an approximation to the nonlinear

Cobb-Douglas production function which is generally

held by economists to be the proper form. This

approximation was made to more easily fit the problem

into control system format. Thus, the effects of

nonlinearities on the performance of a control system

should be done in this case.

In this study, along with Pindyck (1972, 1973),

deterministic control theory has been applied to the

one- and two-country models since for the class of

 



(3)

(4)
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linear and quadratic optimal control problems use

can be made of the "Separation Theorem" or certainty-

equivalence principle to treat stochastic addition

disturbances in a neat way. The stochastic optimal

solution is the same as obtained under the determin-

istic control problem. However, recently Chow has

shown and measured the welfare gains of stochastic

optimal control over deterministic optimal control

(Chow:1972c). It would be very useful to build a

"noise" model and to recommend further research on

the nongaussian, nonlinear and nonquadratic aspects

of optimal control theory and differential games.

The sensitivity analysis of the weighting factors on

the components of target as well as of control vector

reveals significant changes in "amended" optimal

control policies. However, in addition to its quad-

ratic property, the penalty function is restrictive

in two senses. First, all of the off-diagonal elements

are zero, meaning that no interaction exists between

targets and between instruments. Secondly, the

welfare weights are chosen arbitrarily to perform

the sensitivity analysis. Therefore, quantitative

research by economists is recommended to establish the

magnitude and shape of a more general penalty function.

To be able to apply differential games theory, more

complex and detailed models than that of Votey's using
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quarterly data are required to incorporate the

assumptions of decentralization in decision-making,

of active responses from Country II, of conflicting

targets and of policy interdependence.

Many other areas of research related to differential

games areas and its application to economics are

interesting and appear to be fruitful. A selected

bibliography on this particular topic is presented

in Appendix A-13.
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APPENDIX A-1

THE REDUCED FORM OF ONE-COUNTRY MODEL

The Votey's model is composed of:

5 functional equations:

(E'l) Ylt = 610+511 K1t+612 th

(E‘z) C1t = “10+“11 Ylt ‘ 0‘11 T1: ’ “11 5* Klt

(E_3) Mlt = 310+311 Ylt - 811 T1t - 811 5* K1t+812 TTlt; TT1t = (§§)1t

(E'4) lit = (Y1o ’ Y12 5*) +"‘11 Ylt-l + Y13 Klt-l ' Y12 r1t—1

(E-S) 0
1t n10 + n11 r2: ‘ n11 r1:

4 identities:

(1'1) Y1:: a C1:: + lit + Git + x1:: ' Mlt

(1'2) Blt = X1: ’ Mlt ' 01:

(1-3) Kit = lit + K1t-1

(1-4) Kit = Iit + 6* K1t

Substituting (I—4), (E-2), (E-3), (E—4) into (I-l); (E-3), (E-5) into

(I-2); and (E-4) into (I-3):
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(I-la) (1-—a +8

11 11) Y1t

_ *—

+ (“10+Y1o Y12 5

(I-2a) B Y +8 —8 6*

11 1t 1t 11

n11 r2t

(1'3a) Klt = Y11 Ylt-l

187

+ 6*(a-1)K

11811 1t = Y11Y1t—1+Yl3 K1t-1”Y12r1t-1+G1t

- 8 TT
810) (a“11B+X11)T1t1t 12 1t

K1: = n11r1t (810+“10) + B11T1t+ X16812 TTlt

.. — *

+ (1 + Y13) K1t-1 Y12 r1t-1 + (YlO Y12 5 )

Let us make the following transformation:

= Y + 611

(I'sa) Y1t 1t

r
d
:

Y

(1‘63) lt-l lt-l

where Ylt

Substituting (I-5a) and

+ 6

Klt

11 ch-1

is the potential output net of capital depreciation.

(I-6a) into (I-la), (I-2a) and (I-3a):

(I'lb) a11 §lt + 812 K1t = Y11 §1t-1 + 814 K1t-1 "'Y12 r1t-1 + Glt

+ a16 - 817 T1:: + x1t - B12 TTlt

(I’Zb) B11 §1t + Blt + a22 Klt = n11 r1t ” a26 + 811 T1: + Xlt

' B12 TTlt ’ n11 r2:

(I'3b) ch = Y11 §1t-l + 334 K1t-1 ’ Y12 rlt-l + 836

where:

311 = l_all + 811 a22 = 811 (511 ’ 5*)

a12 = a11 (511 ‘ 5*) 826 = 810 + n10
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“14 = Y13 + Y11 “11

“16 = “10 + Y1o ’ Y12 “* ‘ B10 “34 = 1 + Y13‘+ Y11 “11

“17 = “11 ’ B11 “35 = Ylo ‘ le “*-  

In matrix notation, the above set of difference equations becomes:

 

 

P II... I- I... 1 I— ‘1

“11 0 “12 1 1t1 1 11 0 “14.1 Ylt-l 1 0

1 o ’(; W 1
B11 “22 “1: = 0 0 Blt-l + 0 n11 1t

[P 0 1 J LKlt LY11 0 “34 . LKlt—l ‘ L“ L11:

- o y 1 -a. —B -a 1 o ’1 -
12 16 12 17

. TT
| _ _ 1:

+ 0 0 Glt-I1 “26 B12 B11 1 n11 T

+
11:

0 Y12 [lt-l “36 0 0 0 0 “1:

h i d b r

2t
L. ‘-

Multiplying both sides of the matrix-equation by:

n
1 r

II _1

Q11 0 ““13 “11 0 “12

Q21 1 Q23 7 11 1 “22

L o o 1 o o 1
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we get the reduced form for the one-country econometric model:

     

   

“1: “11 0 A13

Blt = A21 0 “23

“1: 11 0 “34

L. . L .L

Glt-l D11 D12

+ D21 D22

rlt-l “36 0

L ..

where:

Q11 ' 1/“11

Q13 = “12/“11

Q21 = B11/“11

Q = 811 “12 _ a

23 all 22

“11 = (“11 ' Q13) Y11

“13 = Q11 “14 ’ Q13 “34

“15 = "Y12 (Q11 ' Q13)

  

 

-11-

11

  

 

G

 

q

It

I

 

Q11 “16 ' Q13 “36

Q23 “36 ’ Q21 “16 ‘

1c-1 Q11

lt-l +‘ Q21

1:-1 L“

D13 Q11 0

D23 1'“21 ‘“11

o o 0

D11 3

D12 = 'Q11 “12

D13 = ““11 “17

D21 =

D22 3 B12 (“21 '

D23 = Q21 “17 +

1)

811

a

 

26

15

25

’Y12
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>

I

21 ‘ ('Q21 + Q23) Y11

“23 = ““21 “14 + Q23 “34

“25 = ‘("Q21 + “23) Y12

In matrix notation, the structural form of the one-country econometric

model is:

B u + C u + D z

(A-l'l) yt = A yt-l + t t-1 t

And using Votey's estimated structural constants:

alO = 52.27 810 = 14.59 Y10 = 31.707 610 = 0 n10 = -0.6915

all = 0.75 811 = 0.131 Yll = -0.0027 511 = .2051 n11 = 46.279

a12 = N.S. 812 = —28.35 le = 461.7 612 = 4.02

Y13 = 0.0624 6* = .0489

We compute the numerical values for the matrices K, B, C, D:

I- ‘ F q p

-.0067 0 -.00364 2.6247 0 -1139.7064

I; .0092 0 -.02129 ; B; -.3438 46.279 . E’== 158.7518

-.0027 0 1.0618 0 0 0 —46l.7

L d L - —
     

1' T

121.4358 74.4102 -l.6246 2.6247 0

;D= -29.9921 18.6032 0.3438 0.6562 -46.279

9.1299 0 0 O 0

  L

 

 

 



APPENDIX A-2

THE DETERMINISTIC LINEAR QUADRATIC TRACKING PROBLEM:

A SUMMARY OF CHOW'S AND PINDYCK'S APPROACHES

A-2.1. Pindyck's Approach

R. S. Pindyck in his recent book (Pindyck:1973) studies the appli-

cation of optimal control theory to the problem of short-term economic

stabilization policy. He formulates the above problem as a linear

quadratic tracking problem; that is, given the standard "state-space"

system:

P P P P P P P
.. . = + .

(A 2 1a) xt+1 A xt + B ut C zt

or

P P P P P P P P P d P

- . - = + + =(A 2 1b) xt 1 xt F xt B ut C zt with A I + F and the

initial condition:

(A-2.2) x(0) = x0

The problem consists of minimizing the social welfare cost function

N P P P

P 1 P __ ' P P —. P _. 1 P

(A-2.3) J 2 i=1 {[xt - xt] Q [xt - xt] + [ut - ut] R

P

P ._

[ut - utl}

where:
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P n P r

x (E is the state variable vector, uEE is the control variable

P P

fector, EEEn and 'fi' éEr are the nominal state and control vectors to be

tracked, zPe E8 is the exogenous noncontrolled variable vector,

AP 3 I + FP is an n x n matrix, BP is an n x r matrix, CP is an n x 8

matrix; the elements of AP, BP and CP are assumed to be known and time

invariant; QP is an n x n positive semi-definite matrix, RP is an r x r

positive semi-definite matrix.

Using the minimum principle method, Pindyck solves the discrete

linear quadratic tracking problem. In other words, for u: to be

minimal the following necessary conditions must be satisfied:

(A-2.4)
 

6 P xP*

ut t

with the canonical equations:

 

 

:38
P* P* t P P* P P* P P

_ .— = * =
(A 2.5) xt+1 xt 5AP x: F xt + B ut +C zt

t+1

a}?
P* P* t P P* _P* P' P*

— - 3 * = — - —

(A 2’6) “t+1 “t P xP Q Ext xt] F xt+1
dxt t

and the boundary conditions:

(A-2.2) x(0) = x

P

9‘2”) B: 1%axuxxfi'iul Q [KN ”NH”
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where«ge is the Hamiltonian and is given by:

(A—z 8) Sitar? P uP1=-1-[xP-‘P] QP [xP- SEPJ+1[uP-fi'
' t’ xt+1’ t 2 t t 2 t t]

P
P P _. P' P P PP

REut-ut]+xt+l[Fxt +BuZ+CPzi

The procedure to solve equation A-2.5 through equation A-2.8 has been

exposed in details in Pindyck's book. Here, a summary of the different

*

steps to obtain the optimal control u: is presented:

(1) Solve the Riccati equation given by:

P _ P P' P P P P
(A-2.9) Kt-Q +A {Kt+l-Kt+1B [R +B

P'KP+1BPPJA}

with the boundary condition:

(A-2.10) K: = QP

backwards in time to get values for Kt; t = 1,...,N.

Store the resulting matrices.

(ii) Solve the tracking equation given by:

P_P'P PPPP'PP-lP'P
(A-2.ll) kt--A {Rt+1 Kt+1BER +B K+:18] Bt+1Kt+l}

P P -lP'P P' P P' P P P P
B (R) B k1;+1 +A kt+1+A {Kt+1-Kt+:B[R +

-1B'PKP P_P+

+1P'BJ RUMBLE 0112.] Q

with the boundary condition:

(A-2.12) k: = -QP§fi

 

1“- '1

 

 



194

backwards in time to get values for kt; t = 1,...,N. Store the result-

ing vectors.

(iii) Compute the optimal control u*(0) from the following equation:

P P' P -1 P' P P P* P
- * -(A 2.13) ut [R + B Kt+1B1| B Kt+1A xt +[R

P'P P-lP'P P P-lP'P
+B Kt+1BJ B Kt+1B'(R) B kt+

1

P-lP'P P P'P P-lP'
-(R) B kt+l-[R +B Kt+1BJ B

P P_P PP _P
t+1 [B ut + c zt]+utK

using x(0) = x0. Then compute x*(l) from the "state-space" equation

(A-2.1a). Now x*(l) can be used in equation A-2.l3 to compute u*(2),

which can be used in equation A-2.la to compute x*(2) and so on. Con-

tinue the process until all of the u:, t = 1,...,N-1 and all of the

x?, t = 1,...,N have been computed.

(iv) The optimal cost JP can be computed from equation A-2-3. It is

noted that when there is no limit on the instrument variable magnitudes

that is when RP = 0, the Ricatti and tracking equations are reduced

to (Park:l973):

(A-2.14) -I<t = Q Vt {0,...,N}

(A-2-15) kt = -Q x Vt {0,...,N}

and Pindyck's result or equation A—2.13 becomes:

* I _ I * 1 _ I

(A—2.16) 111; = -(BP QPBP) 1 BP QPAPx: + (BP QPBP) 1 BP Qpiifl

: _ v
_ (BP QPBP) 1 BP QPCPZE.

 

 



-
"
N
u
n
l
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A-2.2. Chow's Approach

G. Chow, in a series of papers (Chow:l970a, 1970b, 1972a, 1972b,

1972c), has formulated the linear quadratic (L.Q.) optimal tracking

problem in a different way from the standard one, as follows: minimize

the welfare cost function

(A—2.17) Jc =%— {[x: —"c]T Cxt Q

"
M
2

=1

given the dynamic system

c c c c c c c
- o = + +(A 2 18) xt Atxt-l Btut Ctzt

where:

x: = a vector of current of lagged dependent variables as well as

current and lagged control variables.

_c c
xt = a target vector which has the same dimension as xt.

u: = a vector of controlled variables.

2: = a vector including the exogenous and noncontrolled variables and

the constant term. It is assumed to be given constant.

Q: = a known symmetric, diagonal and positive semi-definite matrix.

c c c d

At’ Bt’ Ct = given constant matrices.

Then using either Lagrange multiplier method (Chow:l972b) or Bellman's

dynamic programming (Chow:1972c) he arrives at the following results:
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for the last period t = N(i)

...
C
N+ B

= [Ag + BR“; 1x§:1 + C

c*

KN

cT

where:

 

B
A
Na: 3:11 .N

 

 

C C

N-l -1

C

' hN-l]

+1 _ B

C

C

N-l “N-

N-l zN-1

C

. C
+

2 CK.,.

c*

T c c

N-l -1 AN-l

T c

N-l [HN-l C

C

C

KN-l]

§-1]-1 B

N-IJ-l B

N-l

c

CC

=I:AN_1 +’B

c T c

N-l HN-l B

c T c

N-l HN-l B

1 a KR-1 xN—l + “§-1

for the period t = N-l

c*

3..

xN-1

(iii) and so on until the period t = t1.

(11)

where:

K§-1 = "[1

kN-l = ’E“
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It is interesting to note that for the time-invariant optimal control

 

problem, that is, a problem in which A: = Ac, B: = BC, G: = Cc, and

Q: = Q, Chow's results are reduced to:

c* c c* c

- o = +(A 2 19) ut K xt-l kt

where:

v _ :
Kc = _(Bc HCBC) 1 Bc HcAc

' -

1

k: = -(BC HCBC) 1 [HCCCZE — h: I ‘...

HC Qc + (Ac + BCKC)T Q(AC + B°K°) + [(Ac + BCKC)T]2 Q“(Ac + BCQC)2 +...

h: = 0°32: + (AC + B°K°)T [65.131 — 11%“szlLl .

Substituting KC = -(BC'HCBC)-l BC'HCAC, the expressions HC and h: are

reduced to:

Hc = Qc

h: = Qci't

Therefore, equation A-2.l9 becomes:

(A-2.20) u:* = -(Bc'QCBC)-1 BC'QCAcxifl + (BC'QCBc)—1 Bc'Qc§:

c' c c -l c' c c c

(B QB) B QCzt.



APPENDIX A-3

ON THE EQUIVALENCE OF PINDYCK'S AND CHOW'S OPTIMAL

CONTROL SOLUTION WHEN THERE IS NO CONSTRAINT

ON INSTRUMENT-VARIABLE MAGNITUDES

Generally speaking, the optimal control problem consists of

minimizing a social welfare cost function subject to a given dynamic

"state-space" system. The main difference between Pindyck's and

Chow's optimal control frameworks rests upon the definition of the

"state-space" system. It will be shown that, when there is no con-

straint on instrument-variable magnitudes, that is, when the weights

attached to the deviations from the instrument limits are zero, i.e.,

RP = 0, both formulations lead to the same optimal result in terms of

endogenous and exogenous variables of the econometric model.

Let the reduced form of a linear econometric model be of the

following form:

(A-3.1) yt = Aiy _ + B u + C u + D z

where ywe En is the endogenous variable, u E Er is the exogenous con-

trolled variable, A'is a n x n matrix, B and C are n x r matrices, D

is a n x 3 matrix.

First, the optimal control problem is formulated into Pindyck's

terminology and then into Chow's terminology. According to Pindyck,
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the above macroeconometric model must be arranged into the following

state-space system:

(A-3.2) x: = A x + B u + C 2

r
'
f

where x g [yt - B ut - D 2t] e En is the state variable vector after

"
D
-

(
DP d n P

= E n Vtransformation, ut_1 ut-l.e' is the co trol ector, zt_1

"
D
-

is the exogenous variable vector, AP g A. is n x 11 matrix, BP A B + C

is n x r matrix, CP g A:D is n x 3 matrix. Given this "state-space"

*

system (A-3.2) the optimal control problem consists of finding u:

which minimizes the following cost functional:

_1 P _—P , .P P __P

(“‘3'“) J " 2 [(xt-l xt-l) Q (“t—1 xt-l)

_P d [ n

where xt_1 Yt-l B ut_1 D Zt-l] e,E is the nominal state vector,

t-l = ut-l“€ Er is the nominal control vector, QP is (n x n) symmetric,

positive definite matrix, RP is (r x r) symmetric, positive definite

matrix. Under the assumption of RP = 0, Pindyck's optimal solution is

(Park:l973):

* I i 1 0

(A-3.4) ui-l: -(BP QPBP)--1 BP QPAPXZ*1 + (BP QPBP)_1BP QP—E

I_ (BP 'QPBP)--1 BP QPCPzP

t--l
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Now in Chow's terminology [Chow:l972(a,b)] the deterministic optimal

*

control problem is to find u: which minimizes the following welfare

cost function

(A-3.5) J“ r:-

given the dynamic system

c c c c c c c
—- . =

(A 3 6) xt A xt_1 + B ut + C zt

+

where x: 3[ yt ut]' 6. En r is the vector of current endogenous and

r

ut e E is the control vector, 2: g zt e E8controlled variable, u:

is the vector of exogenous noncontrolled variables, 2: g [yt E fi;]' 5 En+r

is the vector of nominal endogenous and controlled variables;

  

where

K 1 E

c d 1

A = nxn ' nxr is (n+r) x (n+r) matrix

....... .-- ----.

0 1 0

L rxn 1 mxr

r 1
B

c d

B = nxr is (n+r) x r matrix

I

rxr

L 1  
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“E

c d

C =7 nxs is (n+r) x 3 matrix

0

rxs

'- . 1.

P a

Q . 0

U

.

Qc g nxr . nxr is (n+r) x (n+r) symmetric and positive

--.-----

fl- 1 definite matrix

0 1 0

I

I

ern : rxr

I  
Under the assumption of time invariant coefficient matrices, Chow's

optimal solution is:

* — * ..

(A-3.7) u: = -(B“'Q“B“) 1 BC'QCAC'J'E:_1 + (B“'Q“B“) 1 Bc'ch':

_ (Bc'Qch)—l BF'QcCcz:

And now it is shown that under the assumption of no constraints on

instrument-variable magnitudes, i.e., RP = 0, Pindyck's approach leads

to the same optimal solution as Chow's approach.

First expressing Chow's optimal control solution in terms of yt,

Ut. zt, A, B, C, D and QP, equation A-3.7 becomes:
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or

(A-3.10) 6* = -(‘B"Q B) B'QPK y*

- (B'QPB)'1 B'Q c u§_l - (BQP'B)’1 B'QPD zt

Th btitti 13* = * -B* -T)' and'JTP=_-Bu*-Dzen su s u ng xt-l yt-l ut-l zt_1 t Y: t t

into equation A-3.10, it becomes:

P P P -1 P P— '— '—

(A 3.11) 6H (B Q B ) B Q A [37,?l B “t-1 D 2,4]  
+ (BP,QPBP)-l BP,QP[.it _ B u: _ B 21:]- (BP,QPBP)-l

P, P7P

B Q C zt_1

Substituting CP = A:D into equation A-3.ll and rearranging the terms:

P P -l P_(BP,QB) B ,QPXy:_ P PP-l P
+(B'QB) B'QPXBu(A—3.12) u*

t-l 1 t-l

PPP-1P, P_ PPP-1
+ (B 'Q B > B Q yt - (B 'Q B ) BP'QP3' *

ut:

(BP,QPBP)-l 31>,st “t

Then u: is given by:

“4.13) [(BP,QPBP)-l BP.QP§]u: a _(BP.QPBP)-1 3?.pr YZ-l

+ [(BP'QPBP)'1 BP'QPX B - I] u§_1 + (BP'QPBP)-1 BP'QPy't

P P P -1 BP

- (B 'Q B ) P

' ._

Q D zt.
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(A_3.14) u: a: [(BP'QPBP)-l BP'QP'B'J-l { ”(BP'QPBPy-l BPIQPX y:_1

+ [(BP'QPBP)'1 BP'QPB B - I] 112—1 + (BP'QPBP)_1 BP'QP'y't

P P P -l

- (B 'Q B) BP'QPD zt} .

Let us examine the following expression:

 
(A—3.15> (BP'QPBPY'1 BP'QPB E (BP'QPBP)-l BP'QP(QP>"1 (B'>’1 (B' QPB)

And the inverse of expression A-3.15 is:

(A—3.16) [(BP'QPBPf1 BP'Q“B']‘1 = (B'QPBY'1 B'QP(QP)‘1(BP'>'1 (BP'QPBP)

Substituting A-3.l6 into equation A—3.14:

P P -1 P -1 P

(A-3.l7) u: = -(§'QP§)‘1 pQ (Q ) (B ) (B .QPBP) (BP p p -1

'QB)

 
BP'QPK yg_1 + (B'QPBY1 B'QP(QP>"1 (BP')'1 (BP'QPBP)

(BP'QPBPf1 BP'QPK B up1 - (B'QPB>'1 B'QP(Q1’>‘1

(BP')'1 (BP'QPBP) “221 + (B'QPB)"1 B'QP(QP)'1 (BP'>'1

P PP-l P,P
(BP'QPBP) (B 'Q B ) B Q 7. - (B'QPB)'1 B'QP

(QP)-1 (BP')-l (BP'QPBP) (BP'QPBP)-l BP'QPD zt

Rearranging the terms, equation A-3.l7 becomes:

(A-3.l8) u: = -(B'QPB)‘1 B'QPB y§_1 + (B'QPBY'1 B'QP(X B - BP) u§_1

+ (B'QPBY'1 B'QP 7. - (B'QPB)'1 B'QPB 2.
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Substituting BP = A:B + G into equation A-3.l8:

_ _ _ _ p... _ .. _

(A-3.19) u: = -(B'QPB) 1 B'Q A y§_1 - (B'QPB) 1 B'QPE u§_1

P yt - (B'QPB) B'QPB zt Q.E.D.+ (B'QPB)'1 B'Q

Therefore, Pindyck's optimal solution expressed in terms of the endogenous,

exogenous-controll
ed

and noncontrolled-vari
ables

is equivalent to that

of Chow (equation A-3.10) even if the formulation of the state-space

system is different. This equivalence verifies the property of unique-

ness of the optimal control; that is, different formulations or

approaches always lead to the same unique solution.

 

 



APPENDIX A-4

COMPUTATIONS OF THE OPTIMAL SOLUTION FOR

THE ONE-COUNTRY CONTROL PROBLEM

Chow's optimal solution is given by equation A—2.20 (Appendix A-2):

(”Z-2°) “’E = -<B°'Q“B“>'1 B“'Q°A°X§fl + <B°'Q°B°)'1 BC'QCB:

_ (Bc'Qch)-l Bc'QcCczE.

where

d
x=

~ '

i: * i: * *

[Ylt’ B1t’ Klt’ G1t’ r1t]

u“* g 9* r* '

t lt’ 1t

1

[1’ TTlt’ Tlt’ Xlt’ rzt]

~
— _ _ __ __ '

[Ylt’ B1t’ K1t’ G1t’ 1.11:]

C

t

H
O n
o
.

n
“
L

l
l
D
a

n
o
. __ _ _ !

[610+“12L1t’ 0’ Klt’ G1t’ rIt]

-
1 — q

“11 0 “13 0 “15 Q11 0

“21 0 “23 0 “25 "“21 n11

C C

A Yll 0 a34 0 -y12 ,B - 0 0

o o o o o 1 o

o oL. o 0 o . 1.11 1 '    
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11 12 D13 Q11

23 1‘“21

 

;C = a36 0 0 0

0 0 o o

0 0 0 0

Computing

C c Q11 Q21 0 1

B 'Q =

0 n O 0

_ 11

“11“11 ' '“22Q21

0 q
b 22 11 
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c c c “11“11 '“22“21
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2 2

“11 “11 + “22 “21

‘“22”11 “21

 

1
(BC , Qch)-l = Q2

“11 11

“21
 

2

“11"11“11w

 L
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APPENDIX A-S

EVALUATION OF THE WELFARE COST FOR THE

ONE-COUNTRY CONTROL PROBLEM

 

The welfare cost function is given by:

(1*

X

(t

"C IN c c*_c

(A—5.1) J =52 -i‘°)'Q (x —x)
Fl 1: t t

 

First substituting the optimal solution

* — *

(A-S.2) u: = -(BC'QCBC) 1 BC'QCAC x:_1 C'QCE‘;
+ (BC'Qch)-l B

_ (Bc'Qch)-l Bc'QcCcz:

into the dynamic system

* * a:

(A-S. 3) x: Ac xc + Bc uc + Caz:

we get :

(A—S. c* cc* c_c,cc—1c,ccc* c.cc-1c,c_c
4) xt Axt_1+B [(13 QB) B QAxt_1+(B QB) B th

(Bc'Qch)-1 BC'QCCcz:J + Ccz:

c*[I-B (Bc'Qch)-1 Bc.Qc] Acxt_1 + BC(Bc.Qch)-l BC'QC x:

_._ [I_BC (Bc'Qch)-1 BC'QC J Ccz:

212



213

And

* — * _

(A—5.5) x: - i: = [I-B°(B°'Q°B°) 1ne'cf] Acx:_l + [BC(BC'QCBC) 1 Bc'Qc-ICJ'f:

c c -l

+ [1-3 (BC'Q BC) Bc'Qc] Ccz:

Let us compute

 
 

  

  
 

 

Q11 0 " 1

BC(BC'QCBC)-l BC'QC = a 0 O O 0

Q21 n11 11

o o Q21 1 o o o

n11Q11 n11
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L .1

1'. q

1 o o o o

o 1 o o o

= o o o o o
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Q11
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Lf‘l1Q11 n11

‘  

 



 

214

 

 (
I
Z

 

 

I
I

I
I

V
-
a
n
—
Q
-
F
—
E

I
v
-

I

I
I
b
/
I
I
V
_

T
I
Loo

:
1

o
o

I
-

I
o

o

o
I

o

o
o

o

I
I

I

 

S
I

 

 
 

9
8

{
Z

m
y

I
I
1
k

“
v  

 

 
 

 

 

'
3
'
[
a
b
‘
a
a

_
(
a
fl
a
b
.
3
3
)
3
8
-
I
J

 

-
a
b
.
a
a
I
_
(
a
a
a
b
.
o
a
)
a
a
-
I

 



[
I
-
B

(
B
'
Q
B
)
-
l
B
'
Q
J
C
C
-

0
0

1
O

0
a

0
0

O
O

 
 

 
 

|

J

“I

_._1

215

3
6

1
1

1
2

1
3

Q
1
1

Q
1
1

Q
1
1

1
D
1
1

1
D
1
2

1
-
1

1
3

—
-
n

)
—

-
n

)
—
-
—
Q

-
n

>
—

2
1

2
1

1
1
1
1
Q
1
1

2
1

2
1

Q
2
1

2
3

 
n
1
1

Q
1
1

n
1
1

1
1

n
1
1

 

 
 



 

2El€i

 
  

I
-

I
-

 

 

 

  

I
-
I
;
J

“
’
1
9

I
4
}
x

1
‘
3
3
:

"
‘
I
z

  

 

I
I
I
;
;

(
E
Z
G
_
I
Z
U

o
I
-

o
o

o
o

o
0

$
3
n
g
A
;:
1
9

C
I
V
_

Z
I
*
_o

L
o

 

 

0
1
:
2

I
I
b
I
I
u

I
I
2
0

I
-

o
o

o
o

o

o
o

o 

I
I

I
I

)
I

(
2
:

I
Z
O
Z
I
O

a
-

a
-

i
nCI0o0

I
I

(
E
I
t
?

1
:
0

U

z
'
F
)

I
U
V
-

:
1£1v
_

v
s
,0o

F
"

I
o

o
o

o

o
I

o
o

o

o
I

o
o

o
o

I
o

o
o

o
I

 

n
1
1
1

U
(
I
l
a
_
I
Z
O
)
%_
’
—
1

"
_
b

"
b

I
I
a
_

9
c
,  

In

3
'
!

U

3
1

I

M

3
1

3
!

nu

 .
'
3
I
1 

L
.

3
:
1

3

I
s

-
”
I
,

“
I
:

 
 

W
.

(
9
'
S
-
V
)

:
I
a
I
Q
t
I
J
U
A

0
.
x
a
a
o
A

;
o
u
o
I
J
n
a
t
n
s
q
n
s

1
3
1
;
:

a
a
n
o
a
a
q

g
°
9
—
v
n
o
t
a
v
n
b
a

u
a
q
;

 
 

o
o

o
11“I

0
0

O
0

0
0

O
0

0
0

O
I

0
O

O
0

 I
I
O
I
I
u 

-
1
3
0
.
3
9
1
}
a
9
3
b
.
3
a
)
3
a

 



217

   

Since

q11 O O 0 O

0 q22 0 O O

c

Q = 0 0 0 O O

0 0 0 O 0

0 0 O 0 O

h d

Then

_ c*;_c . c c*;_c =
(A 5.7) (xt: xt) Q (xt Xt) 0

a

Therefore

“ _ 1_ c*;_c , c c*__c =
J — 2 (xt xt) Q (xt xt) 0 Q.E.D.

I
'
I
'
M
Z

=1

 

 



APPENDIX Ar6

THE REDUCED FORM OF THE TWO-COUNTRY MODEL (CASE A)

Under the assumption of common external balance, the variables of

Votey's econometric model are classified as follows:

(1) Endogenous variables: Bit’ Cit’ lit’ Igt’ Kit’ Mit’ Olt’ Yit’ i = 1,2.

(2) Controlled Exogenous Variables: Glt’ GZt’ r1t°

(3) Noncontrolled Exogenous Variables: IElt’ Lit’ PMit’ Pxit’ th, Tit’

TRZt’ xit’ M3t’ MEI’ 1 a 1’2

And the structural model is constituted of: 9 equations:

(E‘l) Y1: = 510 + 511 Klt + 612 L1:

(E’Z) Clt = “10 + “11 Y1: ' “11 Tlt ' “11 5* K1:: + TTlt

(E'3) M1: = 810 + 811 Y1: ' B11 Tlt " B11 5* Klt + 812 TTlt + 3

mu 1}};
P It

(E‘4) 11: g Y1o + Y11 Ylt-l " Y12 5* ‘712 r1t-1 + Y13 Klt-l

(E'S) 01: = n1o + n11 r2t ' n11 r1:
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(“’6’ th = “20 + “21 KZt + “22 L2:

(“‘7) C2t = “20 + “21 Y2: + “21 th “21 Tth ' “21 “* ch

(“'8) M2t = “20 + “21 th ’ “21 th;" “21 Tth " “21 5* “2:

+ 8 TI - TT =(3!) '

22 2t ’ 2t Px 2t

(“‘9) Igt = Y20 + Y21 YZt-l Y22 “* “ Y22 r2t-1 + Y23 KZt-l

7 Identities:

(1‘1) Ylt = Clt + lit + Glt + (M2t + M3t + IElt) - Mlt

(1'2) K1t = I1: + K1t-1

(1—3) lit = lit + 6* Klt

(1‘4) B1t = (M2t + M3t + IElt) ' Mlt - Olt

(1’5) th = C2t + Igt + G2t + (Mlt M1:1) ' 2t

(1'6) K2t = Igt + K2t-1

(1-7) Igt = Igt + 5* K2t

Substituting {(I-3), (E-Z), (E—3), (E-4)} into (I-l); {(1-7), (E-7),

(E—3), (E-8), (E—9)} into (1-5); {E-8, E—3, E—S} into (1-4); (E-4) into

(I-2);(E-9) into (1-6) and regrouping the terms, we get the following

system of equations:
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_ — — - * *

(I 1“) (1 “11 + 811)Ylt “21 Yzc “ (1+“11 + “11) “1: + “21 “ K2:

3 Y11 Y1t-1 + Y13 Klt-l + Glt ’ Y12 r1t-1

B + B + y(“10 — 10 20 5*) + IE - 8 TT
10 ' Y12 1t 12 1t

+ (“11 ‘ “11) T1: + “22 Tth ‘ “21 th + “21 T“2t + M3t

.. .- — * —* _

(I 5“) “11 Y1: + (1 “21 + “21) Y2: + “11 “ Klt “ (1 “21 + “21) K2t

= Y21 Y2t-1 + Y23 KZt-l + “2t ' Y22 r2t-1

+(o +3 —8 +y —y 5*)-Mm+e IT
20 10 20 20 22 1t 12 1t

‘ “11 Tlt ' “22 Tth + (“21 ' “21) T2: + (“21 ' “21) TRZt

- _ — * *

(I 4“) “11 Y1: “21 Yzc + Blt “11 “ K1: +'“21 “ K2t

3 n11 r1t ‘ n11 r2c + (“20 ' “10 ' "10) + IE1: ‘ “12 TTlt

11 T1: + “22 Tth ‘ “21 th ' “21 Tth + “3:

_ = — —- *

(I 2“) K Y11 Y1c-1 + (1 + Y13) K1t-1 Y12 r1t-1 + (YIO Y12 “ )

(I-6a) K Y _ _ *

2t Y21 2t-1 + (1 + Y23) K2t-1 Y22 th-l + (720 Y22 “ )

Then doing the same transformation of variables as for the case of

the one-country model:

 

 

 



221

Y1t = “10 + “11 K1t + “12 Lit i = 1’2

“r (1'7“) Y1t ' “11 “1: = “10 + “12 Lit

let (I-7b) Yit = Yit - 511 Kit = 610 + 612 Lit

then (1-8) Y = I t + 5
it 1 11 Kit

(1'9) Y1t-1 = Y1t-1 + “11 Kit-l

substituting (I-8) and (I-9) into the above system of equations:

~
~

_ _ — _ _ *—

(I 1“) (1 “ 11) Ylt “21 Y2: (1 “11 + “11) (“ “11) “1:
11 + B

+ B (5* - 6

21 21) “2: = Y11 Ylt-l + (Y11 “11 + Y13) Klt-l

.. ._ _ * +-

+ Glt Y12 r1t-1 + (“10 “10 + “20 + Y1o Y12 “ ) IE1

- 8 TT t + (B12 1 ) T1t + 8 TT - B
11 ' “11 22 2t 21 T2: 21

~

(I-Sb) -Bll Y1t _ ~ * _

+ (1 “21 + “21) Y2: + “11(“ “11) K1:

- (1-a2 + 321) (5* - 5 5
1 21) K2t = Y21 Y2t—1 + (Y21 +

B _ 8 II
_ _ * ...

+ G2t Y22 r2t-1 + (“20 + 10 20 + Y20 Y22 “ ) Mlt

+ “12 TT11: ' “

~ ~

(I—4b) 811 Y1t - B
21 th + Blt ‘ “ 11

= n11 r1: ‘ n11 r2t + (“20 ‘ “1o ' ”10) + IE1: ' “12 TTlt

+ 8 TT TR + M

11 Tlt + “22 2t ' “21 T2: " “21 2t 3t

- 8 TR

21 + Y23) K

11 Tlt ' “22 Tth + (“21 ‘ “21) T2: + (“21 +

*_ *—

11 (6 6 ) K1t + 821 (6 621“ K

 

 

 

1:

2t +'M3t

Zt-l

I

“21) TR2c

2t
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(I‘Zb) Klt = Y11 “1t—1 + (1 + Y13 + Y11 “11) K1t-1 ' Y12 r1t—1

+ (710 ' Y12 5*)

(I-6b) K2t = y21 §2t_1 + (1 + Y23 + Y21 621) K211“1 - Y22 r2t_1

+ (Yzo ' Y22 “*)

And in matrix notation, the above system becomes:
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where

“11 = 1 ' “11 + “11 “22 = 1 ' “21 + “21

“13 = "(1 ‘ “11 + “11)(“11’“*) “23 = “11 (“* ' “11)

“14 = “21 (“* ' “21) “24 = (1 ‘ “21 + “21)(“*‘“21)

“15 = Y11 “11 + Y13 “25 = Y21 “21 + Y23

“16 = “10'“1o+“2o + Y1o ‘ Y12“* “26 = “10+“1o'720+720‘ 22““ 11%

“17 = “11 ‘ “11 “27 3 “21 ' “21

“33 = “11 (“* ' “11) “45 = 1 + Y13 + Y11 “11

“34 = “21 (“* ’ “21) “46 a Y1o ' Y12 “*

“36 = “20 ‘ “1o n10 “55 = 1 + Y23 +'Y21 “11

“56 I Y20 "722 “*

Then multiplying both sides of the matrix equation by:

_ _ -1 .q

“11 '“21 “ “13 “14 ““11 “12 “ “14 “15

’“11 “22 “ “23 ‘“24 “21 “22 “ “24 “25

“11 "“21 l ‘“33 “34 = “31 “32 1 “34 “35

o o o 1 o o o o 1 o

o o o o 1 o o o o 1

L 4 _ A
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where

IQI = “11“22 ‘ “11“21

Q = 822 Q g -(813“22-+-“23 “21)

11, Iifl' 14 lQl

= 811 Q = ’(“11“23+ “13“11)

“21 Tifl' 24 lQI

B (B - a )
_ 11 21 22 g 1__ _

“31 ‘ IQI “34 Q[“11(“23“21 “22“33’.

' “11“21(“33 " 23) “13“11

(“21 ‘ “22“]

= 821 Q a “24“21 “14“22

“12 W 15 M

Q = 811 Q = “11“24 ' “14“11

22 W 25 M

B (a -B )
32 _ 21 11 11 = 1 _ _

Q _ MI “35 Wt “11(“22“34 “24“21)

’ “11“21(“24“34)“14“11

(“21 ' “22“]

We get:

 



(_1_

r--

l

L...—

f'

‘<

c:

5'
l

l

u»

1

A
1
2

1
4

“
1
5

2
c

2
c
-
1

.
1
c

l
t
-
l

1
c

1
t
-
1

:
“
1
1

“
1
2

1
6

r-..

u

U

r.

u

L-

>«

m

1
:

B
1
c
-
1

Q
Q

?
2
t
}

G
2
c
-
1

3
1

3
2

3
4

3
5

3
1

3
2

n
1
1

i 2
K
1
1
:

K
1
1
:
-
1

,
1
'
1
1
:

2
c

Y
1
1

3
6

r
1
c
-
1

 
 

 
 

K
4
5

Z
t
-
l

J
  

 
 

 
 

Y
2
1

 

O

O

O

 
1
1

1
2

l
3

1
4

1
5

l
7

1
6

1
7

1
7

1
8

226

n:
H

2
1

2
2

2
3

2
4

2
5

2
7

2
6

2
7

2
7

2
3

f
“

1
t

3
1

3
2

3
3

3
4

3
5

“
Y
1
1

3
7

3
6

3
7

3
7

3
8

 
 

 

.“G-‘flwmo ..

1. , I

 

 
 



227

11 Y11(“11 + “14) 3 A14 “15“11 + “45“14 3 16 'Y12(“11+“14)

21 Y11(“21 + “24) 3 “24 “15“21 + “45“24 3 “26 = '712(“21+“24)

o A = o A

31 Y11(“31 + “34) ’ 34 “15“31 + “45“34 ’ 36 'Y12(“31+“34)

12 Y21(“12 + “15) 3 “15 “25“12 + “55“15 3 “17 ‘Y22(“12+“15)

22 Y21(“22 + “25) 3 “25 a25“22 + “55“25 3 “27 ‘Y22(“22+“25>

32 Y31(“32 + “35) 3 A35 = “25“32 + “55“35 3 “37 = "Y22(“32+“35)  
11 “16“11 + “26“12 + “46“14 + “56“15 3 “12 = “11 3 13 = “12

 

“21 = “16“21 + “26“22 + “46“24 + “56“25 3 “22 = “21 3 “23 ' “22

“31 = “16“31 + “26“32 + “36 + “46“34 + “56“35 3 “32 ' 1 + “31

“33 7 “32

“14 = ’“12(“11 ‘ “12) “15 = “17“11 ' “11“12

“24 = "“12(“21 ’ “22) “25 = “17“21 ' “11“22

“34 = '“12(“31 ‘ “32‘1“ “35 = “17“31 ' “11(“32 " 1)

“16 = “22(“11 ‘ “12) “17 = ’“21“11 + “27“12

“26 = “22(“21 ‘ “22) “27 = '“21“21 + “27“22

36 B22(“31 ' “32 + 1) “37 = "“21(1 + “31) + “27“32
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“18 = “11

“28 = “21

“38 = 1 + “31

Therefore, the structural form of the two—country econometric model

is:

(A—6.3) yt_1 = Kyt_l +1811t + Eut_l + 5“at

And using Votey's estimated structural coefficients:

alO = 52.57 810 = 14.5131 YlO = 31.707 610 = 0

all = 0.75 811 = 0.131499 Yll = -0.0027 611 = 0.2051

a12 = N.S 812 = -28.3566 le = 461.7 612 = 4.02

aZO = 31.26 820 = -12.53 713 = 0.0624 6* = 0.0489

a21 = 0.7345 821 = 0.09769 720 = 1.5812 620 = 0

822 = N.S. 721 = 0.1668 621 = .36345

n10 = -0.6915 722 = 349.8519 522 = .35525

n11 = 46.279 723 = 0.04291

we compute the numerical values for the matrices X; E. E and B}

 

 

  



Row

Row

Row

Y1t-1

-0.0073

-0.0028

0.0008

-0.0027

0

Glt

2.8933

1.0476

-0.2781

0

0

1t-1

~

YZt-l

0.1298

0.4538

0.0324

0

0.1668

G2t

0.7782

3.0351

0.1942

0

0

Zt-l
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Matrix X

B K

lt-l lt-l

0 0.0131

0 0.0648

0 -0.0524

0 1.0618

0 0

Matrix3§

1t

Matrix3E

rlt-l

-1263.7107

- 483.6579

143.7013

- 461.7

0

KZt-l

0.0806

-0.0329

0.0201

0

1.1035  
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APPENDIX A-7

COMPUTATION OF THE INVERSE OF

A SYMMETRIC MATRIX (Ayreszl962)

 
Let us compute the inverse of the following matrix by partitioning:

(BC'QCBC) 3

 B
First, partition (BC'QCBC) into:

D

 

b b b31

11 21

“21 “22 “

“31 “32 “

32

 33J

 

c, c g

(B “c“ ) “11 “21 “31

“21 “22 “32

Lb31 “32 “33

where

r11 = “11 “21 3 F12 g

“21 “22

g

 

31

32
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31‘21 g [“31’ “32] 3 1"22 = [“33]



 

.
1
9
.
.
1
1
1
5
!

.
1
.
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Now

1 “22 '“21

“11.1 = b b -b2 3
11 22 21 -b21 611

p 1 . 1D c- F

r -1P = 1 “22 "“21 “31 = '“22 “31 ' “21 “32

11 12 2 2
b b -b b b - b
11 22 21 —b21 611 J b32 11 22 21

1b - u

'“21 “31 + “11 “32

2

“11 “22 ’ “21

1 l-b b b b -1
g = r22 — 121 “11 r12, =l:b33] — [631, 63%] 22 31 21 22

“11“22 ' “21

‘“21“31 + “11“32

2

“11“22 ' “21

' 4

= b _ 3“31 (“22“31 ' “21“32) + “32 (’“21“31 + “11“32)

33 2

“11 “22 ' “21

b b2 - 2b b b + b b2
_ b _ 22 31 21 31 32 11 32

33 2

“11“22 ' “31

b b b - b2 b - b b2 - b b2 + 2b b b
= 11 22 33 31 33 11 32 22 31 21 31 32

2

“11“22 ' “21

2

-1 “11“22 ‘ “21
and E = 2 2 2

(“11“22 ' “21) “33 ' “11“32 ‘ “22“31 + 2“21“31“32
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APPENDIX A-8

COMPUTATIONS OF OPTIMAL SOLUTION FOR THE

TWO-COUNTRY CONTROL PROBLEM (CASE A)

The optimal solution is given by equation A-2.20 (Appendix Ar2):

* — * —

(A—2.20) u: = -(B“'Q°B“) 1 BC'QcAcx:_l + (BC'QCBC) 1 Bc'ch:

_ (Bc,Qch)-1 Bc,QcCczc

c* ~ ~ '
= * * it * * * *

xt [flt’ Y2t’ Blt’ K2t’ G1t’ “2t’ 1.11:]

i“ = I I 3' ET 67 E’ E’ ' g 5 + 5 L 5
t 1t’ 2t’ 1t’ 1t’ 1t’ 2t’ 1t 10 12 1t’ 20

— _ _ _ '

+ “22 LZt’ 0’ Klt’ Glt’ GZt’ r1t]

C* - 3* c* -w 1

“t I [ 1t’ 2t’ r1t]

c III

2t [i’ IElt’ Mlt ’ TTlt’ Tlt’ r2t’ th-l’ TTZt’ T2t’ TRZt’ M31:]
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Substituting the bij's and bii's (i = 1,2,3; 3 = 1,2,3) by their

corresponding values, we get:

2 2 2 g _ 2

(“11“22‘“21) “33'“11“32‘“22“31+2“21“31“32 ' q11“22“33“11 (“11“22 “12“21)

2 g 2 2 2 2

“22“33 ' “32 ” q11q33”11 “12 + q22“33”11 “22

2 g 2 2 2 2

“11“33 ‘ “31 ‘ q11“33“11“11 1 q22“33”11“21

b b - b2 3 (Q Q -Q Q >2 (Q Q -Q Q )2
11 22 21 q11‘122 11 22 12 21 +q11“33 11 32 12 31

+qq<QQ-QQ)2
22 33 21 32 22 31

bb-bbg— 2( QQ+qQQ>
31 32 21 33 q33“11 q11 11 12 22 21 22

d

“22“31’“21“32 g q11“33”11“12(“12“31'“11“32)+“22“33"11“22(“22“31"“21“32)

g

“11“32‘“21“31 ‘ q11q33“11“11(“11“32 “12“31)+“22“33“11“21(“21“32 “22“31)
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APPENDIX A-9

EVALUATION OF THE WELFARE COST FOR THE

TWO-COUNTRY CONTROL PROBLEM (CASE A)

The welfare cost is determined by:

,. T

C )3

* *' * *

(A-5.l) J =%- (xC -‘£) c C ‘3x Q (x - x )
t=l t t t t

where

(A-5.4) x: = [I-B°(B°'Q°8°)'1B°'Q°]A° 11:14- EBC(BC'QCBc)-ch'Qc]§:

+ [I-BC (Bc,Qch)-1Bc ,Qc] Ccz:

(A-5.5) x:*- i: = [I-BC(Bc'Qch)-1BC'QC]Acx::1+[Bc(Bc'Qch)-ch'Qc-I]E:

+ [I-BC (3° ' QCBC)_1Bc ' QC]Ccz: .

Let us compute for the two-country control problem the following

matrices:
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Since

F q11 o o o o o o o-1

o q22 o o o o o o

o o q33 o o o o o

o o o o o o o o

Q°= o o o o o o o o

o 0 o o o o o o

o o o o o o o o

o o o o o o o o

-
..

  
Then it follows that:

c*_ _c , c* _ _c =
(xt xt) Q (xt xt) 0

Therefore

“_l(A-9.2) J — 2

 



APPENDIX A-lO

THE REDUCED FORM OF THE TWO-COUNTRY MODEL (CASE B)

Under the assumption of linear dependent external balance, the

variables of Votey's modified econometric model are classified as

 

 

follows:

(1) endogenous variables:

B 0 1G In K M 0 Y 1=12
it’ it’ it’ it’ iy’ it’ lt’ it ’

(2) controlled exogenous variables:

Glt’ G2t’ r1t

(3) noncontrolled exogenous variables:

III III

IElt’ Lit’ TTit’ r2t’ Tit’ TRZt’ xit ’ Mit i - 1’2

And the structural model is constituted of:

9 equations:

(E-l) Y 6 0 + 6

1t 1 611 K1: + 12 L1:

(E-Z) C a
_ _ *

1: 10 + 0‘11 Y1: “‘11 Tlt 0‘11 5 K1:
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.. = .. .. * o

(E 3) Mlt “10 + “11 Y1: “11 Tlt B11 “ Klt + “12 TTlt’

.25

TTlt PM lt

_ n = _ * _

(E 4) Ilt Y1o + Y11 Ylt-l Y12 “ Y12 r1t-1 + Y13 Klt-l

(E-S) O = n + n r -

1t 10 11 2c n11 r1:

 

(“”6) th ” “20 + “21 “1: + “22 L1:

_ = - - - 5*

(E 7) C2t O‘20 +f“21 Y2: “21 th “21 Tth “21 K2t

_ = — — — *

(E 8) M2: “20 + “21 th “21 T2: “21 Tth “21 “ “2:

P

P 2t
M.

n

_ = — * _

(E 9) 12: Y20 + Y21 YZt-l Y22 “ Y22 r2t-1 + Y23 KZt-l

10 identities:

(I-l) Y ll

0 + H + C
3

+ N

I

:
1

1t 1t 1t 1t 1t 1t

(1”2) Blt ” X1: ” M1: ” 01c

n

(1-3) K1t ' I1t + Klt-l

G n
._ = *(I 4) I1t I1t + 6 K1t

_ III III

(I's) xlt - x1t + (M2t MZt ) + IElt

(I—6) Y = c . + 1G + c + x - M
2t 2t 2t 2t 2t 2t

(I-7) B = X - M + O
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(1”“) K2t ” I2t + K2t-1

G n
._ = 9:(I 9) I2t I2t + 6 K2t

_ III _ III

(“‘10) X2t ’ x2t + (Mlt Mlt )

Substituting (I-5) and (I-10) into (I-l), (I-2), (I-6) and (I-7):

C III III

 
(I-la) Ylt = c1t + I1t + “1t + x1t + M2t - M2t + IElt - M1t

(“”2“) B1t ” xiil + M2t ” “2:1 + IE1t ” M1t + 01t

(1”““) th = C2t + Igt + G2t +'x2:I + (Mlt Miil) M2t

(1”73) “2t = “2:1 +'Mlt ” MIEI ” M2t + O1t

= 931+ xi?) - 6:33 + 6:5 -
Substituting {(1-4), (E-Z), (E-3), (E-4)} into (I-la); {(1-9), (E-7),

(E-8), (E-9)} into (I-6a); {(E-3), (E-S)} into (I-2a); {(E—8, (E-5)}

into (I-7a); (E-4) into (I-3) and (E—9) into (I-8) and regrouping the  
terms, we get the following reduced form system:

(“”1“) (1”“11 + “11) Y1t ” “21 th ” “*(1” “11 + “11) K1t + “21 “* K2t

” Y11 Y1t-1 + Y13 K1t-1 + G1t ” Y12 r1t-1

+ (“10 ” “10 + “20 + Y10 ” Y12 “*) ” “12 TTlt + I“1t

+ (“11 ” “11) T1: + XIEI + “22 Tth ” “21 th ” “21 Tth ” “2:1
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_ _ - -- * — *

(I 6“) “11 Y1t + (1 “21 + “21) th “ (1 “21 + “21) K2t + “11 “ K1t

= Y21 Y2t-1 + Y23 K2t-1 + G2t ” Y22 r2t—1

+(9 +8 -B 3“! -“y 6*)+8 TT -8 T -141“
20 20 20 . 20 22 12 1t 11 1t: lt

‘ 111

” “22 Tth +'(“21 ” “21) th + (“21 ” “21) Tth + X2t

_ — — * * = _

(I 2“) “11 Ylt ,“21 th + B1t “11 “ Kit + “21 “ K2t n11 r1t n11 r2t

+ (B - B - n > - 8 TT + B T + IE + XIII
20 10 1o 12 1t 11 1t 1t 1t

III

+ “22 Tth ” “21 T2t ” “21 TRZt ” M2t

_ 111 _ 111 111 _ 111

(“”7“) “1t + “2t ” xlt M1t + th M2t

_ = -- * —

(I 3“) K1t Y11 Y1t-1 + (“+713) K1t-1 + (Ylo Y12 “ ) Y12 r1t-1

_ = — * —

(I 8“) K2t Y21 Y2t-1 + (1 + 723) K2t—1 + (Yzo Y22 “ ) Y22 r2t-1

To get rid of the problem of double-counting of K t’ we make the follow-

1

ing transformation of variables:

H
: II(I—ll) Yit = Yit + 6 = 6 6 1,2

11 Kit i0 + 12 Lit

1(1-12) Y = Y + 8 8 +'6
it-l it-l 11 Kit-l = 10 12 Lit-l 1’2

Substituting (I-11) and (I—12) for i = 1,2 into the above reduced form:

~ ~

(“”1“) “11 Y1t ” “21 th + “13 K1t + “14 K2t = Y11 Ylt-l + “15 Klt‘l

TT + IE T + XIII

+ G1t ” Y12 r1t-1 + “17 ” “12 1t 1t + “18 1t 1t

_ 3 TR _ MIII

+ “ TT ” “ 21 2t 2t22 2t 21 th



(I-6c)

(I-2c)

(I—7c)

(I-3c)

(I-8c)

where:

ll

13

a
) I

14

m

I

15 ”

C
D I

17 ”

18 ”

— 1-a + B a

” “21(“* ” “
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~

11 Y1t + “22 “”“ 2t + “23 “1: + “24 K2t ” Y21 Y2t-1 + “26 K2t-1

+ 8 TT - B T - MIII - 8 TT

+ G 12 1t 11 1t 1t 22 2t2t ” Y22 r2t-1 + “27

111

+ “28 th + “28 TR2t + th

~

11 Y1t ” “21 Y2t +
B B

1t + “33 K1t + “34 K2t n11 r1t ” n11 r2t

III
+

IE X + 822 TT

+ “ ” “12 TTlt + “11 T1t + 1t 1t37 ” “2t 21 T2:

111

” “21 Tth ” M2t

111 111 111 111
= -— + ..

B1t + B2t x1t M1t th “2:

~

1t ” Y11 Y1t-1 + “55 K1t-1 ” Y12 r1t-1 + “57

2t ” Y21 Y2t-1 + 866 K2t-1 ” Y22 r2t-1 + “67

l-a + B

11 ll 22 21 21

(l-a 6*) a B (6* - 6
11 + “11)(“11 ” 23 11 11)

(a-a 5*)

21) “24 21 + “21)(“21 ”

6 6

(Y13 + Y11 11) 26 ” Y23 + Y21 21

- — *

(“10 “10 + “20 + Y10 Y12 “ )

5*

D
) II

27 “20 ” “20 + Y20 ” Y22

11 11 28 ”
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= — * =

“33 “11(“11 “ ) a55 1 + Y13 + Y11 “11

= *_ = — *

“34 “21 (5 “21) “57 Y1o Y12 “

“37 ” “20 ” “1o ” n10 “66 = 1 +’*23 + Y21 “21

6*

“67 ” Y20 ” Y22

And in matrix notation it becomes:
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-
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-
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I
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I
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Multiplying both sides of the matrix-equation A-10.1 by:

P

311

 

'1 -1 '

  

 

= ’1 (

'TET

 

“11“24 + “14“11)

”“21 0 0 “13 “14 Q11 Q12 0 0 Q15

“22 0 0 “23 “24 Q21 Q22 0 0 Q25

”“21 1 0 “33 “34 = Q31 Q32 1 0 Q35

0 1 1 o o Q31 Q32 -1 1 Q35

0 o o 1 o o o o o 1

o o o o 1 o o o o o

‘ -

“11 “22 ” “11 “21

“22 Q = “21

TET' 12 1F31

“11 Q a “11

“F31 22 1151

= “11(“21 ” “22) Q = “21(“11 ” “11)

[9| 32 IQT

1

”TQT(“13“22+ “23“21)

1 < + s )
”'FST “11“23 “13 11

1 [a e > - s s (a + a > + a a (s -
”Tifl' 11(“2233+ “23 21 11 21 23 33 13 11 21

1 (a B a )
”TQT 24 21+ “14 22

 

“22)1

 

 



260

_ 1

Q36 ” TQT [“11(“22“34 + “24“21) ” “11“21 (“34 + “24) + “14“11 (“21 ” “22”

Then the reduced form is:
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2
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(
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(
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O

O

 
 

-‘U'  1
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1
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3
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1
1
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6
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“
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6

 1
4

2
4

3
4

”
“
3
4

1
1

1
1

  

1
t

2
t

1
t
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:
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12

22

32

13

23

33

14

24

34

15

25

35

Y11(“11 + “15)

Y11(“21 + “25)

Y11(“31 ” “35)

Y21(“12 + Q16)

Y21(“22 + Q26)

Y21(“32 + Q36)

“15“11 + “55“15

+ a55“25“15“21

a15“31 ” “55“35

“26“12 “66“16

“26“22 “66“26

“26“32 “66“36

”Y12(“11 + “15)

”Y12(“21 + “25)

Y12(“31 ” “35)
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ll

21

31

12

22

32

13

23

33

14

24

34

15

25

35

'“17“11 + “27“12 + a57“15 + “67“16

“17“21 + “27“22 + “57“25 + “67“26

“17“31 ” “27“32 + “37 ” “57“35

a67“36

”“12(“11 ” “12)

”“12(“21 ” “22)

“12(1 + “31 + “32)

“18“11 ” “11“12

“18“21 ” “11“22

“18“31 + “11(1 + “32)

“22(“11 ” “12)

“22(“21 ” “22)

“22(1 + “31 + “32)

a28“12 ” “21“11

“28“22 ” “21“21

“38“32 + “21(1 + “31)
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“16 ” ”Y22(“12 + Q16)

“26 ” ”122(“22 + Q26)

“36 ” Y22(“32 + Q36)

In matrix notation, the structural form of the two-country econometric

model under the assumption of linear dependent balance of payments is:

Bu +Cu +Dz

(“_10'3) yt: = A yt-l + t t-l t

And Votey's estimated structural coefficients:

610 = 52.57 810 = 14.5131 710 = 31.707 610 = 0

all = -0.75 811 = 0.1315 Y11 = -0.0027 811 a 0.2051

612 = N.S. 812 = 12.53 le = 461.7 812 = 4.020

620 = 31.26 821 - 0.098 y13 = 0.0624 6* - 0.0489

621 = 0.7345 822 = N.S. yzo = 1.5812 820 a 0

y21 = 0.1668 821 - 0.3634

v22 = 349.8519 622 = 0.3552

Y23 = 0.0429

010 = -0.6915

n11 = 46.279

have been used to compute the numerical values for the matrices

A; E; C and D:

 

 



 

 

-0.0073

-0.0028

0.0007

-0.0007

-0.0027

2.8932

1.0475

-0.2785

0.2785

0

L 0

0.1298

0.4538

+0.0324

-0.0324

0.1668

0.7782

3.0351

0.1942

—O.l942

0 O

0 0

O O

0 0

O O

O 0

0

0

46.279

-46.279

0

0
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0.0131

0.0648

-0.0172

+0.0172

1.0618

0

 

0.0806

-0.0329

0.0201

-0.0201

1.1033  1
-1263.7107

483.6539

+ 128.5835

128.5835

- 461.7

0
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APPENDIX A-ll

COMPUTATIONS OF THE OPTIMAL SOLUTION FOR THE

TWO-COUNTRY CONTROL PROBLEM (CASE B)
 

The optimal result is given by equation 2-8

CCCC

(2-8) u: = -(B“'Q“B“)”1 B Q A xtfl + (BC'Q“B“)”1 Bc'chc
t

 

_ (BC'QCBC)_1 Bc'QcCcz:

X M1t ’ TTlt’ Tlt’ r2t’ r2t-1’ TTZt’ T2t’ TR X M

III III III III '

1t’ 1t ’ 2t’ 2t ’ 2t

1 - __ __ _. _. _. _. _. t d

t [Ylt’ th’ Blt’ “2t’ Klt’ “21;: “1t’ “2t’ 111;] E10 + “12 th’

__ _ __ _ I

“20 + “22 L2t’ 0’ 0’ Klt’ K2t’ Glt’ G2t’ r1t]
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Let us compute

c, c

  

B “ = “12 “22 ”“32 “32 “ “ “ 1 0

0 0 n11 -“11 0 O 0 0 1

u ..

qll 0 0 0 0 0 0 0 0

0 q22 0 0 0 0 0 0 0

0 0 q33 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 

  
q11“11 q22“21 q33“31 ”“44“31 “ 0 “ “ O

q11“12 q22“22 ”“33“32 q44“32 “ 0 “ “ “

0 0 0 0 0 0 0
q331111 ”“44"11   
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where

I
D
-

2 2 2

b11 ” “11“11 1 “22“21 1 (“33 1 “44)“31

I
O
:

2 2 2

“22 ” “11“12 1 “22“22 1 (“33 1 “44)“32

g 2

“33‘ (“33 1 “44)n 11

d

“21' q11“11“12 1 “22“21“22 ” (“33 1 “44)“31“32

£1

“31 1 (“33 1 “44)“11“31

9.

“32 ' (“33 1 “44)“11“32

Substituting the b 's and b1 (i = 1,2,3; 3 = 1,2,3) by their
I

11 j 8

corresponding values, we get:

2 2 2 g

(“11“22 ‘ “21) “33 ” b11“32 ' “22“31 1 2“21“31“32 ” “11“22 (“33 1 “44)

2 2

n11 (“12“21 ” “11“22)

2 g 2 2 2 2

“22“33 ” “32 ‘ “11 (“33 1 “44) n11 “12 1 q22(“33 1 “44)“11“22

o
n
!

0
"

0
" I

d 2 2 2 2

11 33 ” 31 ‘ “11(“33 1 “44)"11“11 1 “22(“33 1 “44) n11 “21

_ _ g _ 2 2

11 22 21 “11“22 (“12“21 “11“22) 1 “11(“33 1 “44)(“12“31 1 “11“32)

+

2

“22(“33 1 “44)(“22Q31 1 “21“32)

g _ 2

“31“32 ” “21“33 1 (“33 1 “44) n11 <“11“11“12 1 “22“21“22)
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“22“31 ' b21“32 “11(“33 1 “44) n11“12(“12“31 1 “11“32)

q22 (“33 1 “44) n11“22 (“22“31 1 “21“32)

 

 



22712

 

 

 
 

 
 

 

 
 

 

 
 

 

 

z
(
z
z
0
1
1
0
-
1
‘
0
Z
1
0
)
1
§
0
1
1
b

z
(
z
z
b
t
t
b
_
t
z
D
Z
I
b
)
t
;
u
z
z
b

I
;
u
(
9
9
5
+
£
£
b
)

z
(
z
z
b
u
b
_
t
z
b
z
t
m
u
u
z
z
b
u
h

z
(
z
z
b
n
b

g
u
n
a
m
n
u
z
z
b
u
b

“

(
“
‘
0
t
z
b
+
1
‘
0
z
“
0
)
1

z
(
Z
£
b
T
I
b
+
I
£
O
Z
I
b
)

1
t

(
Z
E
D
I
Z
D
+
I
£
D
Z
Z
O
)
I
Z
O
Z
Z
b

(
Z
C
O
I
I
D
+
I
C
O
Z
T
°
)
I
I
O
I
I
b
_

(
Z
C
D
I
Z
O
+
I
C
O
Z
Z
D
)
z
z
b
z
z
b
+
(
2
€
b
t
t
b
+
t
£
b
Z
I
b
)
t
h
t
t
b

z
(
z
z
b
t
t
o
.
‘
z
o
Z
T
b
)
t
t
u
z
t
h
T
t

z
(
z
z
b
t
t
b
j
z
b
z
t
m
z
z
b
n
b

“
Z
(
Z
Z
O
I
T
D
_
I
Z
O
Z
I
b
)
Z
Z
b
I
I
b

(
t
h
t
z
b
+
t
t
b
z
z
b
)
I
Z
O
Z
2
5
_
(
Z
C
O
I
T
O
+
I
C
D
Z
T
O
)
I
t
b
t
t
b
_

1
5
0
1
2
.
+

1
:
0
1
1
,

(
z
z
b
t
z
b
z
z
b
+
2
1
b
t
t
b
t
t
b
)
_

_
I
—
(
O
‘
D
O
“
D
.
)

z
(
z
z
b
t
‘
o
_
s
z
z
‘
o
)
1
1
4
3
3
6
1
1
6

z
(
z
z
b
t
t
b
_
I
Z
b
Z
I
b
)
z
z
b
t
t
b

z
(
z
z
b
t
t
b
_
I
Z
b
Z
I
b
)
z
z
t
h
b

(
z
‘
o
‘
z
b
+
“
o
z
z
o
)
z
z
o
z
z
t
+
(
z
‘
b
t
t
o
+
“
o
z
‘
b
)
z
‘
b
t
‘
b

(
Z
Z
b
‘
s
z
Z
t
+
Z
‘
b
I
I
b
t
t
b
)
-

n
g
z
z
b
+

“
g
o
t
t
b

J

p
u
s

Z
C
b
I
Z
b
+
“
5
0
2
2
»

I
Z
b
I
I
u

(
'
7
5
+

“
5
5
)

Z
2
5
+

(
Z
C
D
I
I
D
+

I
C
b
Z
I
O
)
I
I
b
I
I
u

(
9
9
5
+

C
C
b
)
I
I
b

5
Z
C
Q
I
Z
q

_
I
C
q
Z
Z
q



N
o
w

(
A
-
l
l
.
1
)

F

Q
Q

0
0

0
0

0
0

0
c
,

c
c

-
1

c
,

c
=

_
2
2
_

1
2

(
3
Q
B
)

B
Q

Q
Q

Q
2
1

-
Q
1
1

0
0

0
0

0
0

0
T

T

“
2
2
“
3
1
1
“
2
1
“
3
2

”
(
“
1
2
“
3
1
1
“
1
1
“
3
2
)

“
3
3

”
“
4
4

n
1
1
“

"
1
1
“

"
1
1
(
“
3
3
1
“
4
4
)

"
1
1
(
“
3
3
1
“
4
4
)

J

 

 

 
 273

w
h
e
r
e

9.

“
‘

“
1
2
“
2
1

”
“
1
1
“
2
2

1
1

1
2

1
3

1
4

1
5

_
c
,

c
c
-
1

c
,

c
c

=
(
A

1
1
.
2
)

(
B

Q
B

)
B

Q
A

6
2
1

6
2
2

0
0

6
2
3

6
2
4

0
O

6
2
5

3
3

3
4

3
5

 
  

 



274

 

 

 

 

ll
 

where

Fl 1 $1 _

“11 ' Q1A21Q12 ” “11“22] “21 Q [“11“21 “21“111

9.1. _ 8.1. _

“12 ’ Q [ “22“12 “12“22] “22 Q [“12“21 “22“11]

$1.1 _ 9.1 _

“13 ” Q 1“23“12 “13“22] “23 Q [“13“21 “23“11]

9.1. _ 3.1; -

“14 ‘ Q1A24Q12 “14“22] “24 Q1A14Q21 “24“11]

ill _ El -

“15 ” Q1A25Q12 “15“221 “25 Q1A15Q21 “25“111

e “1— A < )-A < >
31 ‘ n11 311 “11 “22“311“21“32 21 “12“311“11“32 :‘

Q

egl—A+A<QQ+QQ)-A(QQ+QQ)
32 mm 32 12 22 31 21 32 22 12 31 11 32]

Q

“33g-1—-A(QQ+QQ)-A(QQ+QQ)
n11 “133 “13 22 31 2132 23 12 31 1132]

Q

“3431—A+A<QQ+QQ)-A<QQ+QQ)
n 34 14 22 31 21 32 24 12 31 11 32]

Q

9 9 1_ ..
-

35 ” 011 I: “35 1 “15 (“22“311“21“32) “25(Q12Q31+Q11Q32)1

Q J

 



(
A
-
1
1
.
3
)

A

(
B
c
,
Q
c
h
)
-
c
h
,
Q
c
C
c

=
A

 

“
1
0
1
‘
6

(
”
“
1
1
“
2
2
+
“
2
1
“
1
2
)

'on

(
”
“
1
1
“
2
2
1

“
1
2
“
2
1
)

"Ull

r-IIO’ HIO HIO HIO’ HIO’ v-IIO’

m

H

(
“
1
2
“
2
2

”
“
1
2
“
2
2
)

"UII

(
”
“
1
2
“
2
2
1

“
2
2
“
1
2
)

'Ull

(
”
“
1
3
“
2
2
1

“
2
3
“
1
2
)

"Ull

(
”
“
1
6
“
2
2
1

A
2
6
Q
1
2
)

'Ull

(
”
“
1
4
“
2
2
1

“
2
4
“
1
2
)

1
0

2
0

3
0

l
l

2
1

3
1

l
l

2
1

4
1

1
2

2
2

3
2

1
3

2
3

3
3

1
4

2
4

3
4

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Fucr Fucr Fucr Fucr Fucr Fflcr FHC7

'on van '0" ’6" “all "Ull “U"

(
D

1
5

2
5

3
5

1
6

2
6

3
6

1
7

2
7

3
7

1
1
“
2
1

”
“
2
1
“
1
1
)

(
“
1
1
“
2
1

”
“
1
1
“
2
1
)

(
”
“
1
2
“
2
1
1

“
1
1
“
2
2
)

(
D

(
D

(
A

(
D

1
2
“
2
1

1
3
“
2
1

1
6
“
2
1

1
4
“
2
1

 

“
2
2
“
1
1
)

“
2
3
“
1
1
)

A
2
6
Q
1
1
)

“
2
4
“
1
1
)

1
7

2
7

3
7

1
8

2
8

3
8

1
9

2
9

3
9

 

275

 



276

 

 

 

 
 

 

 

£1. 1 _ .1. _

A17 ' Q ( D15Q22 1 D25Q12) A27 Q (D15Q21 D25Q11)

£1 .1. _ g .1. _

A18 ’ Q ( Q12sz 1 Q12Q22) A28 Q (Q12Q21 Q11Q22)

Q .1 _ g .1. _

A19 ‘ Q (Q11Q22 Q12Q21) A29 Q ( Q11Q21 1 Q11Q21)

A 513-1—— D ( >-n < > + 33—1-30 nllQ [ 11 Q22Q311Qz1Q32 21 Q121231101932] n11

A g—1 < >- < 5' + M31
31 nllQ [Q11 Q22Q311Qle32 Q21 Q12Q311Q11Q32‘ n11

- Q q
d 1 31 33

A =__Q (QQ'1'QQ )‘Q (QQ+QQ ) +_+
41 n11Q[ll 22 31 21 32 21 12 31 11 32_ n11 (q33+q44)

Q q
d 1 32 44

A=——"Q(QQ'1'QQ)"'Q(QQ'1'QQ)+'—-+32 “11Q[ 12 22 31 21 32 22 12 31 11 32] "11 (q33+q44)

d 1 1’32

A33 1 nllQ [D12(Q22Q311Q21Q32)‘D22(Q12Q311Q11Q32)] ' n11

d 1 1’33

A34 1 nllQ [1’13(Q22Q311Q21Q32)'D23(Q12Q311Q11Q32)] 1 n11

A
d 1 36

A =‘-“—A(QQ+QQ)"A (QQ+QQ)+—
35 an I 16 22 31 21 32 26 12 31 11 32] n11

D
d 1 34

A36 1' nllQ [1’14(Q22Q311Q21Q32)’D24(Q12Q311Q11Q3zfl 1 n11

d 1 D35

A37 1 nllQ E315(Q22Q311Q21Q32)'D25(Q12Q311Q11Q32-fl ' "11

Q q
d 1 32 44

A =——'Q (QQ+QQ )‘Q (QQ+QQ ) -_"
38 nllQ [12 22 31 21 32 22 12 31 11 32] r111 (q334-q44)

Q q
d 1 31 33

A =——-Q(QQ+QQ)+Q(QQ+QQfl-—-39 "11Q [ 11 22 31 21 32 21 12 31 11 32 n11 (q33+q44)

Then the optimal control is:



(
A
-
l
l

.
4
)

G
.

‘
-
0

-
0

0
O

-
0

-
0

0
0

-
O

H

I

U

.I-fi

:>-

 
 

r
-

-
Q
2
2
/
Q

+
0
1
2
/
Q

o
o

o
o

o
o

o
z

+
Q
z
l
l
q

-
Q
1
1
I
Q

o
o

o
o

o
o

o

u-o

[0» [OF

N

t

H

u

Q
2
2
°
3
1
1
°
2
1
°
3
2

'
(
°
1
2
°
3
1
1
°
1
1
°
3
2
)

q
3
3

'
q
6
6

n
1
1
Q

"
1
1
°

"
1
1
(
‘
3
3
1
‘
A
A
)

"
1
1
“
3
3
1
‘
6
6
)

t
 

U

N

Q

U

2277}?

I-r‘I-Jg u}: n;‘

C

III

 
 

'
0

0
-
A

"
1
6

"
1
0

1
3

1
1
1

1
:

I
I
I

3
9

"
1
: 1
t

2
0

'
A

-
A

-
A

2
3

2
6

“
3
3

"
3
4

1
‘
A
s
s

1
t

r
2
c
-
1

2
:

2
t

1
‘
2
:

I
I
I

 
I
I
I

1

"
2
c   

 
 

 



278

— _

~

Since the targets 1 Y2t’ Blt’ B2t are defined as follows

lt’

1n 1 51o 1 512 L11:

1!2t 1 620 1 522 L21:

11: = o

12:; = o  
after substitution and rearrangement of terms, equation A-11.4 becomes:
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APPENDIX Ar12

EVALUATION OF WELFARE COST FOR THE

TWO-COUNTRY CONTROL PROBLEM (CASE B)

Under the assumption that the Certainty Equivalence Principle holds

the welfare cost is determined by:

"C

1 N

(A-6.1) J = 5'2

3': i:

(x: - aim (x: - 2:)
t=1

where

_ c* _ —c = _ c c. c c -1 c, c c c* c c. c c -1
(A6.2) xt xt [11303 QB) B qu xt_1+[B(B QB)

Bc'Qc-éli: + [I-Bc(Bc'Qch)-1BC'Q1]Ccz:

Let us compute for the two-country problem with the assumption of linear

dependent external balance the following matrices:
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Then substituting the shove utrices into equation A-5.2 we get
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