A STUDY OF RELATIONSHIP OF CERTAIN

DEVELOPMENTAL MEASURES TO

MATURITY OF BOYS AS INDICATED BY

MEASURES OF HEIGHT

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY Gordon Emil Holmgren 1957

This is to certify that the

thesis entitled

A Study of the Relationship of Certain Developmental Measures to Maturity of Boys as Indicated by Measures of Height presented by

Gordon E. Holmgren

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Education

Major professor

Date May 3, 1957

A STUDY OF THE RELATIONSHIP OF CERTAIN DEVELOPMENTAL MEASURES TO MATURITY OF BOYS AS INDICATED BY MEASURES OF HEIGHT

bу

Gordon Emil Holmgren

AN ABSTRACT

Submitted to the School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Teacher Education

Year 1957

Approved	

The purpose of this study was to determine the validity of height measures in detecting early and late maturing boys in public schools. As some educators question the value of collecting physical growth data on public school children this study has a practical justification.

The data used were of a longitudinal nature and were taken from the data of the Third Harvard Growth Study which are now on file at Michigan State University.

The study involved 308 boys who met the following criteria:

- 1. eleven or more annual height measurements;
- 2. first measurement before the age of seven.

 From this group fifty early maturers and fifty-five late

 maturers were selected to comprise two groups, an early

 maturing and a late maturing one. These two groups were

 then compared according to height, weight, dental, skeletal,

 mental, reading, and arithmetic growth.

Steps in the classification of early and late maturers were as follows:

The third of four studies of physical and mental growth of children sponsored by the Research Center of Harvard. Reported in Society for Research In Child Development Monographs, Vol. \overline{III} , No. $\overline{1}$ (Washington, \overline{D} . C.: National Research Council, 1938).

1. straight line growth was determined from the annual serial height measures by the use of the equation: Y = mx + b

$$m = \frac{n \xi xy - \xi x \xi y}{n \xi x^2 - \xi x^2}$$

$$b = \frac{x^2 x^2 y - x x xy}{n x^2 - x^2}$$

- 2. the actual height was then compared with the computed straight line growth;
- the difference between the actual height and the computed height was termed a deviation;
- 4. an early maturer was so designated who experienced a definite break in his height growth pattern at or before 150 months of age, while a late maturer was so designated who experienced this same break at 170 months or more of age. 2

A definite break was defined as, whenever the deviations, of a minus nature, went consistently from year to year to a lesser value, within the tolerance of a plus or a minus one-tenth (.1) of an inch, there would the break be revealed.

If the actual measure was above the computed measure, the deviation was considered positive; if it was below the straight line, it was considered negative.

...

As groups, the early and late maturers were not alike. They differed to a noticeable degree on every characteristic in which they were compared. In a general way the early maturing group was taller, heavier, had greater skeletal maturation, advanced dentition, higher mental age, and greater reading and arithmetic development.

A definite cyclic pattern of growth was found in all cases. By the direction of the growth curves there was reason to believe that the differences between early and late maturers was largely in terms of time.

Late maturers had more difficulty with school work, especially in early grades, and they were the victims of more retentions. A comparison of the number of retentions on the first grade level between the early and late maturers resulted in a degree of significance on the nine per cent level. Separate tables of height norms for early and late maturers were created.

Operating on the hypothesis of the advantage of the early maturer, the method of cataloging a child as an early or late maturer is valid.

A STUDY OF THE RELATIONSHIP OF CERTAIN DEVELOPMENTAL MEASURES TO MATURITY OF BOYS AS INDICATED BY MEASURES OF HEIGHT

bу

Gordon Emil Holmgren

A THESIS

Submitted to the School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Teacher Education

1957

ACKNOWLEDGMENTS

The writer wishes to express his thanks to the members of his committee for the useful suggestions they gave in the preparation of this study. This committee was Dr. A. R. DeLong, Dr. R. M. Junge, Dr. H. W. Sundwall, and Dr. C. V. Millard, chairman. He wishes to express special gratitude to his chairman for his helpful criticisms and interest.

TABLE OF CONTENTS

																	Pa	ge
List	of Tal	oles.	•	•	•	•	•	•	•	•								V
List	of Fig	gures	•	•		•			•				•		•		, V	ii
CHAPT	TER.			•													•	
I	THE	PROBI	LEM A	AND	DE	FIN	ITI	ONS	OF	TE	RMS	US	ED	•				1
		ne Pro State Impor finit	ment	to. e d	f ti of	he : the	Sti	ud v		•	•	•	•	•	•	•	• •	1 1 1 4
II	REVI	EW OF	PRE	EVI	DUS	RE]	LATI	ED S	STUD	IES	5.						,	8
III	DATA	AND	METH	dop	•	•	•	•			,	•		•	•	,	, <i>i</i>	28
	A. B. C. D.	Sec	Sou ecti onda hod	on ry	ΟÍ.	Cas	ses em a	and		a U	sec		•	•	•		3	28 29 30 34
IV	ANAL	YSIS	OF T	HE	DAT	CA.		•			•	•			•	,	L	14
	А. В.	A N Mat The	orma urer Wei	tiv s I	re C in H	Comp leig	ari ht	son.	of	Ea •	rly •	ar •	nd I	Lat	e •	•	4	14
	С.	шац	e Ma Den	tur	'ıng	BC	уs								•		5	59
	D.	Late	e Ma	tur	ing	Gr	oup	S									6	52
	Ε.	Late	Ske Ma	tur	ing	Gr	oup	S							•		6	66
	F.	Late 1. 2.	Men Ma Gro Ind Acad	tur up ivi	ing Tes dua	Gr tin l T	oup g D est	s ata ing	Dai	ta	• •				•	•		006
		Grov Matu	vth 1	Pat	ter	ns	of 1	Ear	ly a	and	La	te •					79	9
Λ	SUMMA	.RY, (ONCI	LUS	ION	S, .	AND	IMI	PLIC	CATI	ON	S					102	2
	Sum Con	mary clusi	.ons.		•	•	•	•		•		•	•	•			102 103	3

																Page
BIBLIOGRAP	HY.	•	•		•		•	•	•	•	•	•	•	•	•	107
APPENDICES	•				•		•		•	•						114
Α.	Sta	tis	tic	al	Ana]	lys	is	of	Dat	a o	f E	arl	У			
ם	Mat Sta				· Λης:									•	•	115
ь.	Mat				Ana.	-										166
С.	Gra	phi			ysis											222
D.	Gra	phi	c A	nal	ysis	3 0	f I	ate	Ma	ture	ers					284

LIST OF TABLES

TABLE			PAGE
I.	A Description of Each of the Early Maturers in Terms of Number of Measurements and Time of the Initial Measurement		31
II.	A Description of Each of the Late Maturers in Terms of Number of Measurements and Time of the Initial Measurement	•	32
III.	Total Number of Annual Measurements on the Early Maturers with Ten Different Test Instruments	•	35
IV.	Total Number of Annual Measurements on the Late Maturers with Ten Different Test Instruments	•	36
٧.	Real and Computed Height Measures and Their Deviations, Case No. 2668		40
VI.	Real and Computed Height Measures and Their Deviations, Case No. 2528	•	41
VII.	Real and Computed Height Measures and Their Deviations, Case No. 2007		42
VIII.	A Comparison of Extremes of Early and Late Maturers as to Age at Cycle Break		45
lX.	Statistical Analysis of the Mean Height of the Early Maturing Group.	•	50
Х.	Statistical Analysis of the Mean Height of the Late Maturing Group	•	51
XI.	Height Means of Early and Late Maturers	•	55
XII.	Statistical Analysis of the Mean Weight of the Early Maturing Group	•	60
XIII.	Statistical Analysis of the Mean Weight of the Late Maturing Group		61
XIA.	Statistical Analysis of the Mean Dental Eruptions of the Early Maturing Group	•	64

TABLE	PAG	Ė.
.VX	Statistical Analysis of the Mean Dental Eruptions of the Late Maturing Group. , 6	5
XVI.	Statistical Analysis of the Mean Skeletal Ages of the Early Maturing Group 6	8
XVII.	Statistical Analysis of the Mean Skeletal Ages of the Late Maturing Group 6	9
XVIII.	Statistical Analysis of the Mean Mental Ages of the Early Maturing Group as Measured by Group Tests	3
XIX.	Statistical Analysis of the Mean Mental Ages of the Late Maturing Group as Measured by Group Tests	4
XX.	Statistical Analysis of the Mean Mental Ages of the Early Maturing Group as Measured by Stanford-Binet Individual Tests	7
XXI.	Statistical Analysis of the Mean Mental Ages of the Late Maturing Group as Measured by Stanford-Binet Individual Tests	8
XXII.	Mean Raw Score Achievement and Number of Annual Measurements on Six Different Reading Tests of Early Maturers	3
XXIII.	Mean Raw Score Achievement and Number of Annual Measurements on Six Different Reading Tests of Late Maturers	4
XXIV,	A Comparison of Early and Late Maturers as to Average Achievement on Six Reading Tests Regardless of Time	2
XXV.	Mean Raw Score Achievement and Number of Annual Measurements on Three Different Arithmetic Tests of Early Maturers	4
XXVI.	Mean Raw Score Achievement and Number of Annual Measurements on Three Different Arithmetic Tests of Late Maturers	5
XXVII.	A Comparison of Early and Late Maturers as to Average Achievement on Three Arithmetic Tests Regardless of Time	9
XXVIII.	Comparison of the Cycle Break of Six Growth Characteristics	0

LIST OF FIGURES

FIGURE		P	AGE
1.	A Graphic Comparison of Real and Straight Line Growth in Height of Case 2668	•	38
2.	A Graphic Comparison of An Early and A Late Maturer in Height Growth		47
3.	A Comparison of Two Early Maturers (Shortest and Tallest) and Two Late Maturers (Shortest and Tallest)	•	48
4.	Graphic Comparison of the Early and Late Maturing Groups in Height		52
5.	Graphic Comparison of the Early and Late Maturing Groups in Weight		63
6.	Graphic Comparison of the Early and Late Maturing Groups in Dental Eruptions		67
7.	Graphic Comparison of the Early and Late Maturing Groups in Skeletal Age		71
8.	Graphic Comparison of the Early and Late Maturing Groups in Mental Age (Group Tests)	•	75
9.	Graphic Comparison of the Early and Late Maturing Groups in Mental Age (Individual Tests)		80
10.	Graphic Comparison of the Early and Late Maturing Groups in Terms of Retention	•	81
11.	Graphic Comparison of the Early and Late Maturing Groups on the Haggerty Reading Examination	•	86
12.	Graphic Comparison of the Early and Late Maturing Groups on the Ayres Reading Scale		87
13.	Graphic Comparison of the Early and Late Maturing Groups on the Chapman-Cook Reading Tests	•	88

CHAPTER I

THE PROBLEM AND DEFINITIONS OF TERMS USED

Most public schools have as a part of their pupil evaluation programs the recording of such aspects of human growth as height scores. The motivation or purpose in accumulating such data is to get some evidence of the child's physical growth and also to assess the health status of the child. However, accumulated height scores might possibly have other values, specifically that of determining whether or not a child is an early or a late maturer.

I. THE PROBLEM

Statement of the problem. It was the purpose of this study to determine the relationship of certain developmental measures to maturity of boys as indicated by measures of height.

Importance of the study. Teachers speak so often of the "immature" or the "slow maturing" child. Almost every explanation of poor achievement is followed with "this child is maturing slowly." This study attempts to show how longitudinal data on physical growth can be put to use in a more effective way.

Further, this study attempts to show justification why the educators should be concerned with the nature and character of a child's physical development. John E. Anderson,

director of the Child Welfare Institute at the University of Minnesota. describes this thought when he says:

. . . that as soon as one works with children he becomes aware that behavior of the moment is an end product determined by many factors, some of which are clearly related to the physical make-up and physiological state of the child, . . . !

Helen Thompson, writing in the <u>Manual of Child Psychology</u>, also emphasizes the importance of knowledge of physical growth. She suggests some interesting thoughts when she says:

It may even be a fair prophecy that, in the investigation of individual physical and mental life histories, studies of social behavior and personality may find their fullest realization in the genetic analysis of physical individuality.²

The <u>Encyclopedia</u> of <u>Educational</u> <u>Research</u> in its section "Child Development V. Physical Growth," suggests three issues of physical growth studies:

Studies in physical growth are concerned, in the first place, with determining the averages, and normal deviations from the average, of various measurements of sine and body proportions in children at specific ages. Second, they are concerned with learning the relative influence of the various factors which operate in determining the course of growth. And third, they are concerned with the evaluation and prediction of the trends of growth in individual children.

¹J. E. Anderson, "The Contribution of Child Development to Psychology," <u>Journal Constt. Psychology</u>, Vol. 6, p. 129.

²Leonard Carmichael, editor, <u>Manual of Child Psychology</u> (New York: John Wiley and Sons, Inc. 1954), p. 293.

Walter S. Monroe, editor, Encyclopedia of Educational Research (New York: The Macmillan Co., 1952), p. 153.

Courtis, for many years, a student of the child development movement, has pleaded for longitudinal records on children and he punctuates his thoughts with the following comments:

knowledge of child development and study of that individual's growth curve, the teacher will not only wisely overlook discrepancies that discipline will only intensify, but also actually interpret the child to himself; and by her faith and wise stimulation launch the child successfully into the new cycle and short circuit all the stress and strain of adolescence? Wisdom, plus records and faiths, spells inspiration and power; ignorance and inadequate equipment generates conflicts, disaster, tragedy. How great are the possibilities!

Millard in his writing and lectures emphasizes the importance of adequate longitudinal physical, mental, and educational records on public school children. In his book Child Growth and Development he describes the need for data on children and then brings into focus the principles of growth and the need for their proper interpretation.

Quotations and statements give support to the idea of collection of physical data on children, and because of the importance that child development investigators have put upon the collection of longitudinal data, many public schools have developed quite adequate records.

ls. A. Courtis, "Discipline Under the Growth Conflict," Child Growth in an Era of Conflict, ed. C. V. Millard, Fifteenth Yearbook, Dept. of Elementary School Principals (Lansing, Michigan: Mich. Education Association, 1944), p. 46.

²C. V. Millard, <u>Child Growth and Development in the Elementary School</u> (Boston: D. C. Heath and Co., 1951), <u>passim</u>.

The problem of this study becomes one of application. Other than using height scores to determine a child's health condition, in a very general way, and to describe his relative position when compared to height norms, this study attempts to use height scores to determine whether or not a child is an early or a late maturer as determined by his adolescent height growth. By a comparison of two groups, an early maturing and a late maturing one, the question is raised: How do these two groups compare in six other developmental characteristics—weight, dental, skeletal, mental, reading, and arithmetic.

II. DEFINITION OF TERMS USED

The following terms are used to describe this study.

Adlosecence growth spurt. As this study deals with height, reference to the above phrase means that it is the time in an individual's growth pattern when height growth is marked by a decided and very noticeable increase from the previous pattern.

Growth versus development. Millard's concept of growth and development will be used:

Development will be used to describe general organization and organismic change, whereas growth will be considered as a phase of total development.

¹Ibid., p. 10.

Growth analysis. The consolidation of growth data in a sequence or bringing it into a longitudinal perspective so that it can be studied and analyzed.

<u>Growth curve</u>. Describes a design formed by cumulative movements.

Growth cycle. A curve of growth which is characterized by a phase of acceleration followed by deceleration.

A new cycle begins where the deviations from straight line growth depart from a decelerating to an accelerating phase.

Cyclic nature of growth. Growth is not of a straight line description but rather is better described by a series of undulating waves each having a phase of acceleration and deceleration.

<u>Maturation</u>. The process by which an individual progresses in his development.

Stages of maturity. Periods or times in the maturational process which are quite definable, i.e.: prenatal, infanthood, childhood, adolescence, adulthood.

Immaturity. A word that characterizes an individual who has not reached the stage of development that one would normally expect at a given time.

 $\underline{\text{Skeletal growth}}. \quad \text{Description of carpal maturation,}$ union of bone joints by calcification, as measured by x-ray

pictures. This growth is given in quantitative aspect by an interpretation of x-ray pictures in terms of skeletal age.

Longitudinal study. This can best be described by comparison to a status study. A status study involves single testings on a large number of cases while a longitudinal study requires many testings on fewer cases. Time is the fundamental factor in longitudinal studies.

Physical data. Quantitative measurements in height, weight, tooth eruption, and bone calcification.

Harvard Growth Study. The third of four longitudinal growth studies on children of school age carried on by Harvard University.²

<u>Developmental period</u>. That time in an individual's life in which he is growing and full maturity has not been reached.

¹C. V. Millard, <u>Child Growth and Development</u> (Boston: D. C. Heath and Company, 1951), pp. 57-60.

Walter F. Dearborn, John W. M. Rothney, Frank K. Shuttleworth, "Data on the Growth of Public School Children," Society for Research in Child Development Monographs (Washington, D. C.: National Research Council, 1938), Vol. III, No. 1, passim.

Time. Time in this study has a very significant meaning and place. Time means explicitly that period in an individual's life development when a specific measure is taken. Time and the measure then become greatly dependent on each other.

CHAPTER II

REVIEW OF PREVIOUS RELATED STUDIES

Child growth and development, child psychology, child behavior, or just child development have essentially many different meanings. The simple word growth is used to cover a great variety of diverse phenomena of complex nature. Because of the great number of sciences which are interested in this field, and because of growth's complexity, the literature on this subject is voluminous. Further, to make the whole matter more complex growth can be studied on many levels (prenatal, postnatal, adolescent, senility) and it also can be studied by different methods (cross-sectional, longitudinal, group-and individual-wise).

Kai Jensen, writing on the topic of physical growth in the Review of Educational literature described well the topic of growth in this statement:

It connotes all and any of these reproduction, changes in dimension, linear increase, gain in weight, gain in organic mass, cell multiplication, mitosis, cell migration, protein synthesis, and more.

For purposes of this study child growth and development will have a definite and specific meaning; one that relates directly with the school and education. In other

Research, Vol. 22 (Washington, D.C.: American Educational Research Association. 1952). p. 391.

words a study of the literature will include only that which is directed to educators, is related to the school and its objectives, and is appropo and practical to modern day education.

As a field of study, child development in the schools is concerned with mental and physical growth as it moves from one level of maturity to a higher, more structural level of maturity.

Olson¹, who has tried to put principles of growth and development to practice, emphasizes the importance of being familiar with the laws of growth and then using these principles as guides in curriculum planning, as guide lines for programs of evaluation, and for helps in creating the school environment.

In a publication by Millard², the principles of growth and development are brought into focus so that they play upon the educational scene pointing up many possible applications. He begins his book with the thought that educators, by borrowing knowledges and methods from the many related sciences, can now make education a more precise and exact science. He also describes the limitation of earlier studies and then suggests as an answer the organismic view.

Willard C. Olson, <u>Child Development</u> (Boston: D. C. Heath and Co., 1949), <u>passim</u>.

²Millard, <u>op</u>. <u>cit</u>., passim.

He describes this view as one which interprets all aspects of development in respect to a life pattern. He then prophecies with:

Teachers with this viewpoint recognize the child as a dynamic organism that furnishes as much data as the observer is ingenious enough to measure and record. They realize that such data are related, if different, aspects of the total organismic pattern.

Child development, as a field of research, is, then, concerned with physical and mental development. Educators are interested in the entire period from conception to maturity (adulthood) but due to the fact that they are directly involved with children in the childhood, adolescence, and young adulthood they are more interested in these periods.

Research in the field of child development can be dated as beginning at the turn of the century. Prior to this the research was sketchy, unorganized, and isolated. The first seriatim study of human growth was described by Scammon² in the American Journal of Physical Anthropology. The author begins his article by describing the two methods by which the growth of the living body is studied; the mass or cross-section method, or the individual, seriatim, or longi-section method. Of the first he says:

The mass method has been used more extensively than the individual method. Its application apparently began with the work of Roederer (1753),

¹<u>Ibid</u>., p. 4.

²R. E. Scammon, "The First Seriatim Study of Human Growth," <u>American Journal of Physical Anthropology</u>, X: 329-33c, 1927.

Dietz (1757), and Joseph Clarke (1786) on the weight and physical proportions of the new born, although it was not extended to the detailed study of later development until the early part of the 19th century. 1

Scammon then describes some of the early seriatim method research. He gives such names and dates as Wiener ('90), Gottman ('15), Camerer ('82, '93, ''01), Haehner ('80, '84), and also the more contemporary Baldwin (University of Iowa Studies) as examples of the first men who pursed such research along the longitudinal lines. However, Scammon spends considerable time describing a pioneer investigation by the individual method which took place in the eighteenth century. This is perhaps the first such kind of research. The following paragraph taken from this article describes it well:

The observations in question were made by Gueneau de Montbillard and consist of measurements on the growth in height of his son (a first child), begun at birth (April 11, 1759) and continued for nearly eighteen years (until November 11, 1776, with a final check on January 30, 1777). The measurements were made at approximately semiannual intervals, there being but two observations in the series which are separated by an interval of over six months. In the latter part of the period, when growth in stature was less noticeable, the observations were made more frequently.²

The scientist Montbillard must have been a very keen and observant student for he also discovered some principles of growth which have been thought of as quite recent discoveries. Apparently he had graphed his data, for the curve

¹Ibid., p. 329. ²Ibid., p. 330.

of growth which he describes has four phases: period of rapid growth during infancy and early childhood; a middle period of slower but constant growth from three to nearly thirteen years; from about thirteen and one-half to fifteen a marked period of prepuberal, and finally a period of slow growth. Further, he commented on the effect which the daily cycle of rest and activitity has on height. He is credited with recognition of the seasonal effect on height.

Boaz¹, writing in <u>Science</u> in 1892, made a strong plea for more studies that are longitudinal in nature and more carefully done. He completes his article by stating that:

In order to carry out such a plan, it would be necessary to organize a bureau with sufficient clerical help to carry on the work. The questions underlying physical and mental growth are of fundamental importance for hygiene and education, and we hope the time may not be far distant when a work of this character can be under taken.

A contemporary of Boaz was Bowditch³. Reporting in the <u>Eighth Annual Report</u> of the State Board of Health of Massachusetts he compared children of the same percentile rank from year to year. This, too, is an existing practice,

¹Frank Boaz, "Growth of Children," <u>Science</u>, XX:516: 351-352, 1892.

²<u>Ibid.</u>, p. 352.

³H. P. Bowditch, "Growth of Children," Eighth Annual Report, Massachusetts Board of Health (Boston: 1875), quoted in Walter S. Monroe, ed., Encyclopedia of Ed. Research (New York: The Macmillan Co., 1952), p. 139.

and many people believe as Bowditch did that the same children on the average will remain in the same percentile rank.

Behavioral records, children's logs or diaries, or anecdotal records had their beginnings in Germany. The Encyclopedia of Educational Research lists Pruyer¹ as a pioneer in the type of work which Arnold Gesell made famous. Sully², working at the University of London at the turn of the twentieth century, promoted a style or method of child study which could easily have been the vanguard for further, later work in child observation. Some excerpts from his section on "Child-psychology: Conditions of the Study" will show the reader that his orientation was quite as it is today.

ters of a child's external behavior, we may be able to approach at least the desired beginning and to supplement our introspection with a genetic psychology. Now this work of child-study is not an easy one which anybody can rashly take up. It requires, for one thing, special personal aptitudes and tastes,... But what needs to be emphasized here is that these personal gifts are not everything, that they need to be accompanied and guarded by the caution bred of scientific reflection.3

lw. Pruyer, <u>Die Siele des Kindes</u>, The Soul of the Child (Leipzig: <u>Greiben</u>, 1882), <u>424 pp.</u>, quoted in Walter S. Monroe, ed., <u>Encyclopedia of Educational Research</u> (New York: The Macmillan Co., 1952), p. 139.

James Sully, The Teacher's Handbook of Psychology (New York: D. Appleton and Company, 1914), passim.

³Ibid., p. 7.

It was also with the turn of the century that the study of mental growth received impetus. Binet was not only interested in mental measurement but he also became interested in mental and physical relationships, their integrations and correlations. He was concerned with head and face measurements, and attempted to find in them an index of mentality. His failure to find a close relationship resulted in attempts by others, Porter (1892) and Gilbert (1895, 1897) to seek some knowledge of this phenomenon. From these investigators we received such concepts as: dull children tended to be smaller for their age; bright children tended to be larger.

Apparently unforgotten was some important research carried on by Crampton² in 1902. He was challenged by the unexplained variability of boys of high school age.

There were undoubtedly reasons why one boy of fourteen years of age was small and another large; one tall and thin, another short; one weak, another strong; one brilliant, another dull. 3

He then challenged the existing "age of Puberty" concept which was the chronological age of thirteen and fourteen.

Helen Thompson, "Physical Growth," <u>Manual of Child Psychology</u> (New York: John Wiley and Sons, <u>Inc.</u>, <u>1954</u>), <u>pp. 292-334</u>.

Principle, "American Physical Education Review, XIII: 3: 111-151, 1908.

^{3&}lt;u>Ibid.</u>, p. 141.

In a redefinition of puberty he writes:

"Puberty" from "pubertas-tatis" (age of manhood) refers to that point of time when the asexual life is changed to the sexual, and the ability to procreate is established. It is not a stage or period of time, but a division line between two periods having no more duration than the division between one year and the next.

Crampton sumarizes this study by emphasizing the point that it is impossible to predicate from the mere fact of age (those usual known ages of puberty twelve to seventeen) that an individual is mature or immature.

Another study 2 of this pioneer following the one described above was the study of scholarship and pubescence. Scholarship to Crampton was defined as:

Success in school life means the ability to get marks', and satisfy the teacher in daily recitation and upon examinations that the subjects studies are relatively mastered.³

Crampton then summarizes by emphasizing that postpubescents are different from prepubescents mentally, that
the immature group is less fitted for the strain of high
school work, and that educators must recognize and understand the facts of puberal growth.

During the following decade little was done regarding the correlations and relationships between mental and physical traits or relationships between other physical measurements. The systematic collection of physical data on

libid., p. 142. [The underscoring was done by the writer of this thesis.]

²<u>Ibid.</u>, pp. 214-227. ³<u>Ibid.</u>, p. 224.

children was noticeably for improving the child's health, improving physical conditions of schools, and getting certain health facts.

Terman¹ published a book at this time that was specifically pointed toward the hygiene of the school child.

However, his first six chapters brought the results of the research up-to-date and put it into practice. An itemization of these chapters will give the reader an overview of the topics he was attempting to explore.

They are:

- 1. Introduction: The Broader Relations of Educational Hygiene
- 2. The Physical Basis of Education
- 3. The General Laws of Growth
- 4. The Factors Influencing Growth
- Some Physiological Differences Between Children and Adults
- The Educational Significance of "Physiological Age"²

His later studies such as the Genetic Studies of Genius brought into focus some interesting physical-mental correlations.

Following the First World War there was a definite upward surge of interest in securing accurate information.

Lewis M. Terman, The Hygiene of the School Child (Boston: Houghton Mifflin Co., 1914), passim.

 $^{^2}$ Ibid., Table of Contents.

³L. M. Terman, et al, "Genetic Studies of Genius," Mental and Physical Traits of a Thousand Gifted Children, Vol. I (Stanford, California: Stanford University Press, 1925), passim.

both physical and mental, about children. Bird T. Baldwin, director of the Iowa Child Welfare Research Station at the University of Iowa, was one of the first to make systematic studies of physical and mental growth of children and then to show the dependencies and interrelationships of them. Baldwin accumulated a number of anthropometric measurements. From these measurements he drew individual growth curves. These curves brought to him facts regarding the great variability in physical maturation of children. Baldwin's height-weight norms for girls and boys are featured in much of the literature. Baldwin also brought into use the method of measuring maturity by noting ossification of carpal bones as seen in x-rays.

The Harvard Growth Study came into prominence in the early 1920's. This, however, was the third of a series of four such studies of a longitudinal nature. Dearborn and Rothney² in their book <u>Predicting the Child's Development</u> give the history of these studies. In a chronological order they were: First Study under the leadership of H. P. Bowditch, Professor of Physiology in the Harvard Medical School in the year 1872; Second Study took place between the years 1910-1920 with W. T. Porter another Harvard Medical

lB. T. Baldwin, "Physical Growth of Children from Birth to Maturity," <u>University of Iowa Studies in Child Welfare</u> (Iowa City: <u>Univ. of Iowa, 1921), Vol. 1, No. 1, Passim.</u>

Walter F. Dearborn and John W. M. Rothney, <u>Predicting</u> the <u>Child's Development</u> (Cambridge, Mass.: Sci-Art <u>Publishers</u>, 1941), passim.

School physiologist as the leader; Third Study was carried on by the above authors in the Psycho-Educational Clinic of the Harvard Graduate School of Education; Fourth Study began in the early thirties by the Public School of Health with Harold C. Stuart as the director.

The Third Study because of its extent, planned structure, and accuracy and carefulness received international recognition. Many papers and further research has been done using the original data. Shuttleworth used these data for his studies.

Studies regarding the collecting of physical data now began on an international level. Most of these were abstracted in the <u>Child Development Abstracts</u> Vol. 1 to 3.²,³,⁴ Most of these studies were carried on by anthropologists or

¹F. K. Shuttleworth, "Sexual Maturation and Physical Growth of Girls Age Six to Nineteen," Monographs of the Society for Research in Child Development (Washington, D.C.: 1937) Vol. 2, No. 5, and "The Physical and Mental Growth of Girls and Boys Age Six to Nineteen in Relation to Age at Maximum Growth," (Washington, D.C.: 1939), Vol. 4, No. 3.

W. D. Newsdorf, "Physische Entwicklung der russischen Kinder Johre 1925 Nach den anthropometrischen Untersuchungen," (Physical Development of Russian Children in 1925), Zulsehr Konstitution-slehre, 13 (1) 60-82, 1927. (As abstracted in Child Dev. Abstracts and Bibliography, Washington, D.C.: Committee on Child Dev., 1928, Vol. IV, no. 2, p. 205.)

³Morris Steggerda, "Physical Development of Negro-White Hybrids in Jamaica, British West Indies," <u>American Jour. Phys. Anthrop.</u>, Vol. 12, No. 1, 121-138, 1929.

⁴Paul Godin, "Remarque a propis de la mesure de la 'taille assi' an cours de la corissance" (Measurement of the Sitting Height During Growth), Revue Anthrop., 36 (1/3):68-69, 1926. (As abstracted in Child Dev. Abstracts and Bibliography Washington, D.C.: Committee on Child Dev., 1928, 2:6:448.)

people in public health. Their objectives were to collect data for purposes of racial and national comparison, assessing the health of children, and evaluating the effect of war or other crises upon children. One piece of research of interest that was done along longitudinal lines, with recognition of the organismic viewpoint, and of a cyclic orientation was done in Montevideo, South America, public schools. A quotation from an abstract of this article delineates a thought provoking fact regarding the growth cycle.

The type of growth is peculiar in its uniformly ascending character, with a gradual yearly increase in the periods of greater growth, but never shows the sudden ascents that are noticed in children of other countries. $^{\rm l}$

The child development movement was now given an added impetus by the National Research Council which was able to get the Third White House Conference² to deal with the topic of growth and development. Section I--Committee A centered on this topic.³ Apparently the committee became greatly motivated for its work is recorded in two volumes.⁴ These

R. Schiaffino, "School Anthropometry," Bolivia Institute internac. Am. de Protic. Inf., April, 1929, Vol. 2, No. 4. (As abstracted in Child Dev. Abstracts and Bibliography, Washington, D. C., 1940, Vol. 4, No. 3, p. 337.)

White House Conference on Child Health and Protection, Addresses and Abstracts of Committee Reports (New York: The Century Company, 1930), passim.

³<u>Ibid.</u>, pp. 51-66.

White House Conference on Child Health and Protection, Growth and Development of the Child, Part I: General Consideration; Fart II, Anatomy and Physiology (New York: The Century Company, 1932 and 1933), pp. 377 and 629.

volumes are concerned with the more technical aspects of child growth and development but Volume I_{\star}^{l} the parts on prematurity and hyman types, are definitely helpful for the educator, and Volume II^{2} has sections devoted to growth and development of the skelton, development of the face, and dentition, and eruption of the teeth.

Somewhat prior to this work many Institutes of Child Welfare sprang up. Mention has been made of the work at Harvard and the University of Iowa. Similar institutes had also begun at the University of Minnesota, the University of California in Berkley, the University of Chicago, Columbia University, the Merrill-Palmer School in Detroit, and Yale. Some of these institutes like the institutes at Iowa and Minnesota received direct financial aid from the Laura Spelman Rockefeller Memorial. The Yale Clinic of Child Development was able to carry on much of its studies of behavior development in infants, the preschool child, and later the school child because of the generous support of funds from the Laura Spelman Rockefeller Memorial, General Education Board, and the Rockefeller Foundation. Gesell's

lbid., Vol. I, pp. 53-120.

²<u>Ibid</u>., Vol. II, pp. 26-155.

work at this clinic and his writings 1,2,3,4,5 brought child growth and development to the layman.

Gesell's work with infants and their developmental growth initiated other studies of a similar nature. McGraw carried on a study which attempted to evaluate neural maturation as exemplied in the changing reactions of the infant to a pin prick. Her study had both cross-sectional and longitudinal data. She gather group data by getting 2,008 observations on infants from birth to four years and then she supported these findings by longitudinal studies of four individual infants during the first eighteen and twenty-four months of life.

Under the leadership of John E. Anderson, Director, Institute of Child Welfare at the University of Minnesota, a

lArnold Gesell, The Mental Growth of the Preschool (New York: The Macmillan Co., 1925), passim.

²Arnold Gesell, Helen Thompson, The Psychology of Early Growth (New York: The MacMillan Co., 1938), passim.

³Arnold Gesell, Catharine S. Amatrude, Burton M. Castner and Helen Thompson, <u>Biographies of Child Development</u> (New York: Paul B. Hoeber, <u>Inc.</u>, 1939), <u>passim</u>.

⁴Arnold Gesell, and others, The First Five Years of Life (New York: Harper and Bros., 1940), passim.

⁵Arnold Gesell, <u>Infant Development</u> (New York: Harper and Bros., 1952), <u>passim</u>.

⁶Myrtle B. McGraw, "Neural Maturation as Exemplified in the Changing Reactions of the Infant to Pin Prick," Child Development, XII:31-42, March, 1941.

two year longitudinal study on twenty-five infants was effected. Mary Shirley, $^{\rm l}$ reported on this study in three volumes.

Ohio State University also attempted some work in the study of infant behavior. Pratt, Nelson, and Sun describe the experimental method, used in their work, as follows:

This method stresses the control or accurate measurement of the stimulating conditions, and a careful recording of the actual movements that are made. 2

The study was longitudinal in that the same children were "stimulated" and observed from time to time. At times fifty infants were involved.

In the early "forties" many growth studies began which emphasized the child of school age. There were also some definite "trends" among the child development researchers.

Krogman³ reported on these in a Child Development periodical.

These are significant enough to be listed as such:

lMary M. Shirley, Postural and Locomotor Development, Vol. I; Intellectual Development, Vol. II; Personality Manifestation, Vol. III (Minneapolis, Minnesota: The University of Minnesota Press, 1931, 1932, 1933), pp. 227, 513, 228.

²Karl Pratt, Amalie Kranshaar Nelson, and Kuo Hua Sun, The Behavior of the Newborn Infant (Columbus: The Ohio State University Press, 1930), p. 7.

Wilton M. Krogman, "Trend in the Study of Physical Growth in Children," Child Development, XI: III, 279-284, 1940.

The first trend is that of standardization. ...

The second trend is based upon the interpretation of anthropometry from a biological viewpoint. ...

The third trend is that of the study of hereditary transmission of physical characters. . .

A <u>fourth</u> trend in the study of physical growth is to depend somewhat less upon dimensions and a bit more upon maturation. . . .

A fifth trend, . . . , is a closer tie-up between physical growth and mental progress. . . .

I turn, finally, to a <u>sixth trend</u>, namely, the utilization of growth data as the basis of the assessment of well-being. . . . !

An example of an attempt at standardization was Todd's work on skeletal maturation. After completing his work he published an atlas of skeletal maturation which contained seventy-five roentgenograms selected as typical of the successive stages in ossification in the hand of boys and girls from three months of age until the date in adolescence when all epiphyses are united. Todd was the director of the Brush Foundation Studies at Cleveland which later was placed under the leadership of Simmons. 3

In the later years, emphasis appears to be on growth trends or curves. Further, there have been attempts to seek

¹<u>Ibid.</u>, pp. 279-284.

Part I: The Hand (St. Louis: C. V. Mosby Company, 1937), passim.

Katherine Simmons, "The Brush Foundation Study of Child Growth and Development: II Physical Growth and Development," Society for Research in Child Development Monographs (Washington, D.C.: National Research Council, 1944), Vol. IX, No. 1, passim.

relationships and common denominators that will describe and predict growth.

Courtis^{1,2,3} in his many writings holds that growth is cyclic in nature and takes the mathematical form of the Gompertz formula. Also, that all phases of growth are related, each having an incipiency, a rate, and a maximum and moving in a cyclic nature.

Courtis, in an article published in <u>Growth</u>, describes the cyclic nature of growth when he writes:

. . . Therefore, it really is appropriate to couple growth and cycles to mean a succession of periods, or pulses, or waves of growth. In growth cycles, it should be noted, the phenomena that are "recurrent" are not phases of development in the organism, but the phases in the process of growth itself."

O₁son and Hughes⁵ have attempted to discover some of the principles of growth and relate them to the total

¹Stuart A. Courtis, "Maturation Units for the Measurement of Growth," School and Society, 30: 683-690, 1929.

Stuart A. Courtis, "Maturation as a Factor in Diagnosis," The 34th Yearbook of the National Society for the Study of Education (Bloomington: Public School Pub. Co., 1935), Chap. X.

³Stuart A. Courtis, The Measurement of Growth (Ann Arbor: Brumfield and Brumfield, 1932), passim.

Stuart A. Courtis, "What is a Growth Cycle?," Growth, Vol. 1, No. 2, 1937, p. 156.

⁵W. C. Olson and B. O. Hughes, "Growth of the Child as a Whole," cited in R. G. Barker and J. S. Kounin, and H. H. Wright, Child Behavior and Development (New York: McGraw-Hill Book Co., 1943), passim.

organism, the growing child. Prescott¹ pleads for discovery of normal behavior ranges in descriptive rather than in mathematical terms.

Millard, a student of Courtis and a strong defender of the longitudinal method of collecting data, has carried on three studies² that are unique in themselves for their completeness of data and quality and kind of data collected. These studies have collected data over three periods using the same measuring instruments from one testing period to another. Further, the subjects, are average public school children. Millard's recently published book <u>School and Child</u> has the Everett Study as its source.

There have been relatively few attempts to relate longitudinal data on physical growth with longitudinal data on mental achievement. The work of Crampton 4 as was

¹D. A. Prescott, <u>Emotion</u> and <u>Educative</u> <u>Process</u> (Washington, D. C.: American Council on Education, 1938), <u>passim</u>.

In the Child Development Laboratory of Michigan State University these studies are known by the titles--The Dearborn Study, the Everett Study, and the Holt Study. (1) Dearborn--Data, longitudinal measures on approximately three hundred children, covering academic, mental, and physical measurements over a ten year period. (2) Everett Studies--Complete individual case studies including anecdotal and observation records on sixty children over a seven year span. (3) Current Studies [Holt Data] comprehensive objective and anecdotal records on three hundred children currently under observation

³c. V. Millard, School and Child, A Case History (East Lansing, Michigan: Michigan State College Press, 1954), passim.

Crampton, op. cit., passim.

previously mentioned is the only study found in the literature until the Harvard Growth Study of 1922.

Millard² and his students have made a specific and definite attempt to relate physical and mental growth by interpreting longitudinal data using the Courtis Technique.³ Studies in this area have been made by Millard⁴, Nally⁵, Kowitz⁶, and Martin.⁷

Dearborn and Rothney, op. cit., Chap. V, pp. 238-288.

²C. V. Millard, Michigan State University, East Lansing, Michigan.

³S. A. Courtis, "Maturation Units and How to Use Them," A Manual of Directions for Research Workers in Biological Scienses (Ann Arbor: Edwards Brothers, 1950), passim.

⁴C. V. Millard, "The Nature and Character of Pre-Adolescent Growth in Reading Achievement," <u>Child Development</u>, II:2:71-114, 1940.

⁵T. P. F. Nally, "The Relationship Between Achieved Growth in Height and the Beginning Growth in Reading" (unpublished Ph. D. thesis, Michigan State University, 1953).

^{60.} T. Kowitz, "An Exploration into the Relationship of Physical Growth Pattern and Classroom Behavior in Elementary School Children" (unpublished Ph. D. thesis, Michigan State University, 1954).

⁷R. E. Martin, "The Educational Implications of an Individual Longitudinal Case Inventory" (unpublished Ph. D. thesis, Michigan State University, 1956).

Dearborn and Rothney¹ studied the relationships between mental and physical growth. They used "maximum growth age" during a two year period as a criterion for selecting their early and late maturers. Their conclusions were:

No consistently significant differences in achievement were discovered in comparisons of groups of 100 cases each at the extremes of growth in height and weight during the two-year period.

Another study that attempts to categorize early and late maturing boys is that of Stolz and Stolz. They used "rate of growth" as a basis for analysis. "Rate of growth" was calculated from the gain an individual made per tenth of a year. "Early" and "late" growers were compared only in physical characteristics with no attempt at a mental or scholastic comparison.

Dearborn and Rothney, op. cit., passim.

²<u>Ibid.</u>, p. 253.

³H. R. Stolz and Lois Meek Stolz, <u>Somatic Development</u> of <u>Adolescent Boys</u> (New York: The Macmillan Co., 1951), passim.

CHAPTER III

DATA AND METHOD

A. The source of data. The data used for this study were taken from the Third Harvard Growth Study. The original data are now in the custody of Michigan State University. These records have been used by many students for papers, master's thesis, and doctorate dissertations. Two extensive monographs by Shuttleworth were written from these data. At the time of his first publication, 1937, Dr. Shuttleworth had this to say about this material:

It is the considered judgment of the writer that the materials of the Harvard Growth Study represent easily the finest collection of longitudinal records available for the study of physical growth during the adolescent period. Better data, in the sense of more cases and longer records, will probably never

l"Approximately 3500 children who were entering the first grade of three cities of the metropolitan area of Boston were examined. In addition to twelve annually repeated physical measurements, a battery of mental and scholastic tests were administered annually to these same children for as long a time as they remained in school. . . ."
W. H. Dearborn and J. W. Rothney, Predicting the Child's Development (Cambridge, Mass.: Aci-Art Publishers, 1941), p.34.

²F. K. Shuttleworth, "Sexual Maturation and the Physical Growth of Girls Age Six to Nineteen," Monographs of the for Research in Child Development (Washington, D.C.: National Research Council, 1937), Vol. II, No. 5, p. 247; F. K. Shuttleworth, "The Physical and Mental Growth of Girls and Boys Age Six to Nineteen in Relation to Age at Maximum Growth," Monographs of the Society for Research in Child Development (Washington, D. C.: National Research Council, 1939), Vol. IV, No. 3, p. 291.

be available. Better data, in the sense of half as many cases followed over as long a period together with either more measurements or more accurate measurements or more supplementary data, will not be available for analysis within a period of at least 15 years.

The original Harvard Growth Study had approximately 3500 cases. However, there were many casualities because of family movements, illnesses, and even deaths. As a result the number of cases was reduced in the Dearborn, Rothney, Shuttleworth report to 1553 school children of which 747 were boys and 806 girls. For the purposes of this study data on height for 368 boys of the 747 were examined. The cases were selected for examination on the basis of maximum number of measurements.

B. Selection of cases. A complete perusal of the data of the 747 boys in the Harvard Report revealed that a considerable number had been measured annually for eleven or twelve years. It was discovered that 70 boys had been measured annually for twelve years with the initial measurement between the ages of 5.0 to 5.99 years. From this group fourteen early maturers and ten late maturers were discovered by the criterion used.²

Shuttleworth, op. cit., Vol. II, No. 5, p. 6.

See page 39 for description of criterion.

In order to obtain a larger number of cases, the remaining cases of the original 747 were catalogued on the basis of eleven annual measurements with the initial measurement taken between the ages of 6.0 to 6.99 years. The resulting selection was 298 cases from which thirty-six early maturers and forty-five late maturers were found.

The two groups totalled fifty early maturers and fifty-five late maturers. The cases chosen are shown in Table I and Table II.

C. Secondary problem and data used. Considerable evidence is available which points out the superiority of the early maturing child over the late maturing one. The question of the validity of the method used for cataloging children on the basis of maturity will be determined by the significance of differences of means of the two groups so designated on the basis of certain other growths and achievements. Growths and achievements so selected were:

- 1. Weight
- 2. Dental Age
- 3. Skeletal Age
- 4. Mental Age²

Douglas M. Moore, "Developmental Concordance and Discordance During Puberty and Early Adolescence," Society For Research In Child Development, Vol. XVIII, No. 56, 1953, passim.

²Mental ages were averaged when two or more were recorded for a single year.

-	
*.	
٠	
**	
**	
-	
_	
\\\\\\	

TABLE I

A DESCRIPTION OF EACH OF THE EARLY MATURERS IN TERMS OF NUMBER OF MEASUREMENTS AND TIME OF THE INITIAL MEASUREMENT¹

1	2	3	1	2	3	1	2	3
41 150 380 534 606 645 762 763 894 968 1093 1127 1159 1197 1238 1270	11 13 12 12 12 12 12 12 11 12 11 12 11 12 11	71 65 74 78 75 77 70 80 76 66 77 76 81 78 74	1215 1315 1382 1616 1948 2007 2007 20051 2008 2202 2301 2376 2400 2406 2456 2539 2547	12 12 11 13 11 12 11 12 12 13 14 12 11 12 11 12 11 12 11 12 11 12 11 12 11 11	67 74 72 80 72 75 71 67 82 71 80 82 81 71 74	2668 2569 2611 2700 2738 2762 2787 2805 2831 2840 2961 3060 3160 3039 3237 3317	12 12 10 10 10 12 13 11 10 11 12 12 11 11 11 11 12 12	704 822 798 74 777 777 80 81 78 826 766 81

¹ Columns are numbered as follows:

1 = case number

2 = number of annual measurements

3 = age in months at initial measurement

			;
			-
			:

TABLE IT

A DESCRIPTION OF EACH OF THE LATE MATURERS IN TERMS OF NUMBER OF MEASUREMENTS AND TIME OF THE INITIAL MEASUREMENT

1	2	3	1	2	3	1	2	3
166 2777 328 393 428 479 488 508 616 635 648 661 702 708 739 755 804 865	12 11 12 12 12 11 12 12 10 12 13 12 13 12 11 12 13 11 12 11	79 77 72 79 74 77 74 83 73 79 83 77 82 75 78 82	893 897 1030 1045 1091 1180 1216 1224 1244 1303 1650 1686 1777 1874 2062 2149 2234	11 12 12 12 12 12 12 12 12 12 12 12 12 1	77 81 83 75 666 76 84 77 73 80 82 76 83 668	2282 2465 2472 2525 2528 2691 2723 2728 2741 2811 2868 2741 2813 2723 3279 3272 3279 3291	11 13 12 12 12 11 12 12 12 12 13 11 11 12 12 12 13 11 11 12 12 13 11 11 12 12 12 12 12 12 12 12 12 12 12	80 756 82 78 80 78 80 77 73 78 871 78 70 66

¹ Columns are numbered as follows:

^{1 =} case number

^{2 =} number of annual measurements

^{3 =} age in months of initial measurement

	_
	÷ .
	:
	5
	٠.
	• .
	- 2 - 3
	· 6.
	_

- 5. Reading Achievement 1
- 6. Arithmetic Achievement²

The mental ages were measured by many different intelligent tests. All the children received at least one individual Stanford Binet and some received as many as seven. The following group tests were given to all, and every child had a mental age measurement every year: Dearborn, Form A. and C.; Otis Primary, Form A; Otis Self-Administering Test of Mental Ability, Form A and B; Haggerty Intelligence Tests; Terman Group Test, Form A and B; Detroit Advanced Intelligence Test, Form V and W; Kuhlman-Anderson Intelligence Test; Revised Army Alpha Examination, Form V and VII.

Reading achievement was measured in the early grades by use of the Haggerty Reading Examination, Sigma 1; Ayers Measurement of Silent Reading-Scale 1, 2, 3; Chapman-Cook Speed of Reading Tests; Chapman Unspeeded Reading-Comprehension Test. To measure reading achievement in junior and senior high the Stanford Achievement Tests--Forms A, V, W; Iowa Silent Reading Test--Forms A and B; and the Shank Tests of Reading Comprehension were given.

The Progress Tests in Arithmetic--Primary, Intermediate, and for Grades Six, Seven, and Eight were given to measure longitudinal growth in arithmetic. In later years

 $^{^{\}rm l}{\rm Reading}$ and arithmetic scores were not included in the Dearborn Volume III so were taken from the original case files. $_{\rm 2Thid}$

the New Stanford Arithmetic Test--Form A and Y; New Stanford Achievement Test--Form V and W; and the Schorling-Clark-Potter Arithmetic Test was given to measure growth.

The data regarding mental development is not as complete as one would desire of longitudinal data. As was previously mentioned, group mental tests were given every year but different instruments were used. No attempt was made to standardize the scores on these tests but instead they were averaged per year with the thought that the quantity of scores used would smooth out curves and give a quite accurate measurement of mental growth.

As scores for the Stanford-Binet Individual Test, reading tests, and arithmetic tests were not collected every year, Tables III and IV summarize the number of scores which were available on these children, per every year of a thirteen year period.

<u>D. Method.</u> Growth in height appears to follow closely to a straight slant but deviating abruptly on a new rate at approximately the age of adolescence. Because of this phenomenon it was decided to compute a line of best fit for the pre-adolescent years in order to determine the age at which the data eventually departed and thereby to differentiate the cases into early and late growers.

¹Stolz and Stolz, op. cit., p. 7.

TABLE III

TOTAL NUMBER OF ANNUAL MEASUREMENTS ON THE EARLY MATURERS WITH TEN DIFFERENT TEST INSTRUMENTS

	Progress Stanford Schorling	waa⊣
Arithmetic	Stanford	108.07.0881
р	Progress	0.000 PA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Shank	m901
	Iowa	SHE
60	Stanford Iowa Shank	1 7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reading	Chapman- Cook	1 t t t t t t t t t t t t t t t t t t t
		7 5 8 5 1 A 5 8 1 A 5 8 1 A 5 8 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A
	Haggerty Ayres	& & & & & & & & & & & & & & & & & & &
Montol	Stanford	1888748881 18898748881
	Lime	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE IV

TOTAL NUMBER OF ANNUAL MEASUREMENTS ON THE LATE MATURERS WITH TEN DIFFERENT TEST INSTRUMENTS

-	Shorling	rv@xx
Arithmetic	Stanford Shorling	200 - 200 -
A	Progress	άνωννυν 94 αοωο <i>Γ</i>
	Shank	28 1 1
	Iowa	1.0 1.0 1.0 1.0 1.0
ng	anford	7 5 6 6 3 3 3 4 5 6 6 3 3 3 5 6 6 3 3 3 5 6 6 5 6 5 6 5
Reading	Chapman- Cook	
	Ayers	21 21 21
	Haggerty Ayers	21 17 17
	Mental Stanford Binet	wF470001001
	Time	866428886428 2011111111111111111111111111111111111

weg Geme

The equations used for determining the constants in the equation (commonly known as the regression equation) y = mx + b were as follows:

$$m = \frac{n \leq XY - \leq X \leq Y}{n \leq X^2 - \leq X^2}$$

$$b = \frac{\sum X^2 \leq Y - \sum X \leq X Y}{n \leq X^2 - \leq X^2}$$

The graph of this rational and integral equation of the first degree having two variables is always a straight line. 1,2

This method was efficient in that it depicted mathematically the time of an abrupt deviation in the pattern of growth.

Appendices A and B contains all the data which were used to describe the growth patterns of the 105 cases on seven different characteristics.

To describe this method reference is made to Figure 1. The solid, straight line represents Case 2668's height growth if this individual had grown .19257 of an inch every month. However, that is not his real pattern of growth.

Raymond W. Brink, A First Year of College Mathematics (New York: D. Appleton Century Co., Inc., 1937), passim.

²R. S. Burlington, A Handbook of Mathematical Tables and Formulas (Sandusky, Ohio: Handbook Publishing, Inc., 1940), passim.

		. -
		1
		<u>.</u>
		•
		÷
		<u>.</u>
		•
		%
		<u></u>
		÷ /
		_

Straight line Growth y = .19257 t + 32.22

----- Actual Measures

Age in Months
Fig. 1. A Graphic Comparison of Real and Straight Line
Growth In Height of Case 2668

-

-

~

His true growth can better be described as cuvilinear. An analysis now of Table V, column four (height deviation) will show that the deviations of the true scores from the computed scores gives the same "picture" only this is described in a number or quantity manner.

and late maturers. An early maturer was one who experienced a definite break in his height growth pattern at or before 150 months of age, while a late maturer was one who experienced this same break at 170 months or more of age.

A definite break was defined as: "whenever the deviations, of a minus nature, went consistently from year to year to a lesser value, within the tolerance of a plus or a minus one-tenth (.1) of an inch, there would the break be revealed."

This definition, for purposes of this study, was effective, practical, consistent, and efficient.

To further make this definition clear, reference is made to Table V. Table VI, and Table VII.

The height deviations in Table V start at zero or the real score is exactly comparable to the computed score. At eighty-two months the real score is two-tenths of an inch above what would be straight-line growth. Following downward into what could possibly be the puberal growth age.

¹Criteria determined by trial and error experimentation in selecting cases that were significantly different.

TABLE V

REAL AND COMPUTED HEIGHT MEASURES AND THEIR DEVIATIONS
Case No. 2668

Age	Height	Computed Height ^a	Height Deviation
70	45.7	45.7	+ .0
82	48.2	48.0	+ .2
94	50.5	50.3	+ .2
106	52.7	52.6	+ .1
119	54.7	55.1	4
.31	57.0	57.4	4
42	59.0	59.6	6 b
54	61.8	61.9	1
67	65.1	64.4	+ .7
7.9	67.8	66.7	+1.1
91	69.6	69.0	+ .6
)3	70.0	71.3	-1.3

^aStraight line equation y = .19257 + 32.22

bCycle break

		•	

TABLE VI

REAL AND COMPUTED HEIGHT MEASURES AND THEIR DEVIATIONS
Case No. 2528

Age	Height	Computed Height ^a	Height Deviation
72	42.9	43.1	2
81	45.0	44.7	+ .3
94	46.8	46.9	1
106	49.3	49.0	+ .3
118	51.1	51.1	.0
130	53.5	53.2	+ .3
142	55.4	55.3	+ .1
153	56.9	57.2	3
165	59.8	59.3	5
177	60.6	61.3	7
189	63.3	63.4	1
201	66.5	65.5	+1.0

^aStraight line equation y = .17366 + 30.61

bCycle break

TABLE VII

REAL AND COMPUTED HEIGHT MEASURES AND THEIR DEVIATIONS
Case No. 2007

Age	Height	· Computed Height ^a	Height Deviation
75	39.8	40.3	- 5
86	43.1	42.3	5 + .8
98	44.4	44.6	2
110	46.5	46.8	3
122	48.3	49.1	8
134	50.6	51.3	7
146	53.4	53.6	2
158	56.8	55.8	+1.0
70	60.0	58.1	+1.9
82	61.6	60.3	+1.3
94	62.4	62.6	2
06	62.6	64.8	-2.2

a_{Straight line equation} y = .18726 + 26.23

bCycle break

one will notice that these deviations go to a minus sixtenths of an inch. Here at 142 months is the cycle break and so by our definition, Case 2668 is an early maturer. An analysis of Table VI will show that Case 2528 is a late maturer for he experienced this cyclic break at 177 months of age.

The definition of a "definite break" also included "within the tolerance of a plus or a minus one-tenth (.1) of an inch." Table VII gives an example of this part of the definition. A minus .7 at 134 months indicates a rise in value and could describe the beginning of the adolescent cycle. However, because of the dropping of hundredths to the nearest tenth in the computations, it was the belief of the writer that this "tolerance of a plus or a minus one-tenth (.1) of an inch" would better describe the growth curves. Therefore, Case 2007 is an early maturer by the reason that he experienced a cyclic break at 134 months.

Appendices A, B, C, and D give this same data on all of the 105 cases which were studied.

	,		
ī,	((
-			
* ·			
•			
·.			
1			

			1
		(

		,	
) ,

· · · · · · · · · · · · · · · · · · ·
_
• · · · · · · · · · · · · · · · · · · ·
•

,				
•				
• 1 P • 1 • 1				
•				

			<i>i</i> ▼ ,
		ĺ	- - ·
			:
		į	5
			•
			•

		; ∀	
		(A
			•
			• • • • • • • • • • • • • • • • • • •
		i	
			1

human dev

related i

3.

maturing

predictio

their onl

are they

BIBLIOGRAPHY

	- 5 81	
		Ž
		Ì
		*
		- 1
		•
		•
	•	
		•
•		

BIBLIOGRAPHY

Books

5

>

- Barker, R. G., J. S. Kounin, and H. H. Wright. Child Behavior and Development. New York: McGraw-Hill Book Co., 1943.
- Brink, Raymond W. A First Year of College Mathematics. New York: D. Appleton Century Co., Inc., 1937.
- Burlington, R. S. Handbook of Mathematical Tables and Formulas. Sandusky, Ohio: Handbook Pub., Inc., 1940.
- Carmichael, Leonard, editor. Manual of Child Psychology. New York: John Wiley and Sons, Inc., 1954.
- Cattell, Psyche. <u>Dentition as a Measure of Maturation</u>. Cambridge: Howard University Press, 1928.
- Courtis, S. A. <u>Maturation Units and How to Use Them--A</u>

 <u>Manual of Directions for Research Workers in the Biological Sciences</u>. Ann Arbor: Edwards Brothers, 1950.
- . The Measurement of Growth. Ann Arbor: Brumfield and Brumfield, 1932.
- . Towards a Science of Education. Ann Arbor: Edwards Brothers, 1951.
- Dearborn, Walter F. and J. W. M. Rothney. <u>Predicting the Child's Development</u>. Cambridge, Massachusetts: Sci-Art Publishers, 1941.
- Garrison, Karl C. Growth and Development. New York: Long-mans, Green, Co., 1952.
- Gesell, Arnold. <u>Infant Development</u>. New York: Harper and Bros., 1952.
- York: The Mental Growth of the Preschool Child. New
- ______, Catharine S. Amatrude, Burton M. Castner, Helen Thompson. Biographies of Child Development. New York: Paul B. Hoeber, Inc., 1939.

- Gesell, Arnold, and Others. The First Five Years of Life. New York: Harper and Bros., 1940.
- growth. New York: The Macmillan Co., 1938.
- Hurlock, Elizabeth B. Child Development. New York: McGraw-Hill Book Company, 1950.
- Martin, William E. and Celia Barns Stendler. Child Development. New York: Harcourt, Brace and Co., 1953.
- Millard, C. V. Child Growth and Development in the Elementary School, Boston: D. C. Heath and Company, 1951.
- . School and Child, A Case History. East Lansing, Michigan: Michigan State College Press, 1954.
- Monroe, Walter S., editor. Encyclopedia of Educational Research. New York: The Macmillan Co., 1952.
- Olson, Willard C. Child Development. Boston: D. C. Heath and Company, 1949.
- Pratt, Karl, Amalie Kranshaar Nelson, and Kuo Hua Sun. The Behavior of the Newborn Infant. Columbus: The Onio State University Press, 1930.
- Prescott, D. A. Emotion and the Educative Process Washington, D. C.: American Council on Education, 1938.
- Pryer, W. <u>Die Siele des Kindes</u>, <u>The Soul of the Child</u>. Leipzig: <u>Greiben</u>, 1882.

ļ

- Stoltz, H. R. and L. M. Stoltz. The Somatic Development of Adolescent Boys. New York: The Macmillan Company, 1951.
- Sully, James. The Teacher's Handbook of Psychology. New York: D. Appleton and Company, 1914.
- Terman, Lewis M. The <u>Hygiene of the School Child</u>. Boston: Houghton-Mifflin Company, 1914.
- Todd, T. W., et al. An Atlas of Skeletal Maturation, Part I: The Hand. St. Louis: C. V. Mosby Company, 1937.
- Watson, E. H. and G. H. Lowrey. <u>Growth and Development of Children</u>. Chicago: The Year Book Publishers, Inc., 1951.

Periodicals

- Anderson, J. E. "The Contribution of Child Development to Psychology," <u>Journal of Consulting Psychology</u>, 6: 128-134, May-June, 1942.
- Courtis, Stuart A. "Maturation Units for the Measurement of Growth," School and Society, 20: 683-690, 1929.
- . "What is a Growth Cycle?," Growth, 1:2, 155-174,
- Cowden, Dudley J. "Simplified Methods of Fitting Certain Types of Growth Curves," <u>Journal of American Statistical Association</u>, 42, 1947.
- Crampton, C. Ward. "Physiological Age--A Fundamental Principle," American Physical Education Review, 13:3:111-151, 1908.
- Jones, Harold E. "Skeletal Maturity as Related to Strength," Child Development, 17, 1946.
- Krogman, Wilton M. "Trend in the Study of Physical Growth in Children," Child Development, 11:3, 279-284, 1940.
- McGraw, Myrtle B. "Neural Maturation as Exemplified in the Changing Reactions of the Infant to Pin Prick," Child Development, 12: 31-42, March, 1941.
- Millard, C. V. "The Nature and Character of Pre-Adolescent Growth in Reading Achievement," Child Development, 2: 2, 71-114, 1940.
- Scammon, R. E. "The First Seriation Study of Human Growth,"

 American Journal of Physical Anthropology, 10:329-36,
 1927.
- Steggerda, Morris. "Physical Development of Negro-White Hybrids in Jamacia, British West Indies," American Journal Physical Anthropology, 12: 1:121-138,1928.

Publications of Learned Organizations

- Baldwin, B. T. "Physical Growth of Children from Birth to Maturity," <u>University of Iowa Studies in Child Walfare</u>. Iowa City: <u>University of Iowa, 1921</u>.
- Bowditch, H. P. "Growth of Children," Eighth Annual Report, Massachusetts Board of Health. Boston: 1875.

- Cattell, P. "Dentition as a Measure of Maturity," <u>Harvard Monographs in Education</u>, No. 9. Cambridge: Harvard University Press, 1928.
- Child Development Abstracts and Bibliography. Vol. I through Vol. 23. Washington, D. C.: Committee on Child Development, 1927 until 1949.
- Courtis, S. A. "Discipline Under the Growth Conflict,"

 Child Growth in an Era of Conflict, ed. C. V. Millard,

 Fifteenth Yearbook, Department of Elementary School

 Principals. Lansing Michigan: Michigan Education

 Association, 1944.
- . "Maturation as a Factor in Diagnosis," The 34th Yearbook of the National Society for the Study of Education. Bloomington: Public School Publishing Company, 1935.
- Haldone, J. B. S. "A Discussion on the Measurement of Growth and Form: The Accuracy of Growth Curves," Proceedings of the Royal Society of London, Vol. 137. Great Britain: Cambridge University Press, 1950.
- Jensen, Kai. "Physical Growth," Review of Educational Research, Vol. 22. Washington, D. C.: American Educational Research Association, 1952.
- More, Douglas M. "Developmental Concordance and Discordance During Puberty and Early Adolescence," Monographs of the Society For Research In Child Development, Inc., Vol. XVIII, Serial No. 56, No. 1, 1953.
- Shirley, Mary M. Postural and Locomotor Development, Vol. 1;

 Intellectual Development, Vol. 2; Personality Manifestations, Vol. 3. Minneapolis, Minnesota: The University of Minnesota Press, 1931, 1932, 1933.
- Shuttleworth, F. K. "Sexual Maturation and Physical Growth of Girls Age Six to Nineteen," Monographs of the Society For Research inChild Development, Vol. 2, No. 5. Washington, D.C.: 1937.
- . "Sexual Maturation and the Skeletal Growth of Girls Age Six to Nineteen," Monographs of the Society For Research in Child Development, Vol. 3, No. 5. Washington, D.C.: 1938.
- , et al, "Harvard Growth Study Data," Monographs
 of Society For Research in Child Development, Vol. 3,
 No. 1. Washington, D.C.: 1938.

- -

- Shuttleworth, F. K. "The Physical and Mental Growth of Girls and Boys Age Six to Nineteen in Relation to Age at Maximum Growth," Monographs of the Society for Research in Child Development, Vol. 4, No. 3. Washington, D. C., 1939.
- . "The Cumulative Influences on Intelligence of Socio-Economic Differentials Operating on the Same Children over a Period of Ten Years," Thirty-Ninth Yearbook, National Society for the Study of Education, Part II. Bloomington, Illinois: Public School Pub. Co., 1940.
- Monographs of the Society for Research in Child Development, Vol. 14, No. 2. Washington, D.C., 1949.
- Simmons, Katharine. "The Brush Foundation Study of Child Growth and Development: II Physical Growth and Development," Society for Research in Child Development, Monographs, Vol. II, No. 1. Washington, D.C.: National Research Council, 1944.
- Stuart, Harold C. and Robert Reed. "Certain Technical Aspects of Longitudinal Studies of Child Health and Development,"

 American Journal of Public Health and the Nation's Health, Vol. 41, Part 2. New York: American Public Association, Inc., 1951.
- Terman, L. M., et al. "Genetic Studies of Genius," Mental and Physical Traits of a Thousand Gifted Children, Vol. I. Stanford, California: Stanford University Press, 1925.
- White House Conference on Child Health and Protection.

 Addresses and Abstracts of Committee Reports. New
 York: The Century Company, 1930.
- White House Conference on Child Health and Protection.

 Part I: General Consideration; Part II, Anatomy and Physiology. New York: The Century Company, 1932-1933.

Unpublished Materials

Kowitz, O. T. "An Exploration into the Relationship of Physical Growth Pattern and Classroom Behavior in Elementary School Children." Unpublished Ph.D. thesis Michigan State University, East Lansing, Michigan, 1954.

- Martin, R. E. "The Educational Implications of an Individual Longitudinal Case Inventory." Unpublished Ph. D. thesis, Michigan State University, East Lansing, Michigan, 1956.
- Nally, T. P. F. "The Relationship Between Achieved Growth in Height and the Beginning Growth in Reading."
 Unpublished Ph. D. thesis, Michigan State University, East Lansing, Michigan, 1956.
- Rusch, R. R. "The Cyclic Pattern of Height Growth from Birth to Maturity." Unpublished Ph. D. thesis, Michigan State University, East Lansing, Michigan, 1956.
- . "The Relationship Between Growth in Height and Growth in Weight." Unpublished Master's thesis, Michigan State University, East Lansing, Michigan, 1954.
- Udoh, Ekanem (Benson) Akpan. "Relationship of Menarche to Achieved Growth in Height." Unpublished Ph. D thesis, Michigan State University, East Lansing, Michigan, 1955.

..PPENDICES

APPENDIX A

STATISTICAL ANALYSIS OF DATA OF EARLY MATURERS

Index: The following symbols explain the tests that were
 used in the study:

Haggerty Intelligence Tests	Н
Ayers Measurement of Silent Reading 1, 2, 3.	Α
• •	Ch-C
Chapman Unspeeded Reading-Comprehension Test	Ch
	S
	Iowa
Shank Tests of Reading Comprehension	Shank
Schorling-Clark-Potter Arithmetic Test	Sch
Progress	P

M; 10/23/1917/ NE; B; III

of tests at beginning of Appendix. These will be used on all following a Cycle break

b Refer to index of tests at beginning of Appetables.

Additional Data:

1. Stanford Binet-- 10.38 - 122; 11.20 - 134
2. Regression equation-- y = .18846t + 32.52

7 + 58.46 LT	.161 . y =.18783t	net ll:41- equation	Stanford Bine Regression eq	ata:	Additional D	Addi	ex	le break er to index	aCycle ^b Refer
		1	227		122.6	- 4.2	68.9	2.49	210
S 16-10	Shan ks 66	2071 2071	226		119.1	- 1.5	6.59	65.0	197
	TOWA LOL	\mathcal{L}	216	28 - 0	117.7	+	64.2	7.49	185
S -17-8	\$ 17-4	\mathcal{O}	202	28 - 0	112.2	+ 2.1	62.0	64.1	173
\$ 16-9	\$ 16-5	m	180	28 - 0	101.4	+ 3.2	59.7	65.9	161
• H C	\$ 15-3	11-1	166	28 - 0	91.3	+ 2.7	4.73	60.1	149
S 149	S 14-0	rwu	144	17 - 0	75.2	+ 1.3	55.2	56.5	137
P 40/40.5	cn.9/11) - 7 - 5	124	12 - 0	66.2	1	52.9	52.8	125
• 🗂	Ch-C		107	17 - 1	55.3	2	50.7	50.0	113
P 6/8.3=	A 4	$\mathbf{r}(\alpha)$ (06	10 - 0	49.4	77.	48.4	0.84	101
P 8/7=15	н 9/12	(Y).=	77	6 - 1	45.9	ا ئ	46.2	45.7	89
P $\frac{3}{4}$.3=	Н 3/5	74a		0 - 7	39.5	∞.	43.9	43.1	27
		61a	58		35.7	- 1.3	41.7	4.04	65
ment ^b Arith.	Achievement ^b Read. Ari	Mental Age	Skeleton Age	No. of Perm. Erupted Teeth	Weight	Height Deviation	Computed Height	Height	Age

M; 3/12/17; It; R; IV

		10 mon	H CP		No. of Prem.	2/20 10 + 00	∑ 0 7 0 1 0 1	Achievement ^b	nent ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
74	43.6	45.1	- 1.5	51.2	0 - 2	09	82a		P 4/4.5
98						71	93a	Н 3/5	Р 6/6
86	48.5	49.2	<u></u>	4.99		82		Н 15/8	P 10/9.5
110	50.5	51.2		70.1	11 - 2	93	1740 1140 7001	A -8	P 8/10.5
122	52.6	53.2	9.	79.4	12 - 4	108	\cap α \circ	Ch.11/11	P 12/11.8
134	55.0	55.3	ر. ن.	79.2	17 - 4	136	こちっ	Cin 15/10	P 4.4/55.3
146	58.7	57.3	+ 1.4	107.8	56 - 0	154	$ u \propto u$	S 13-2	S 12-10
158	62.2	59.3	+ 2.9	127.0	28 - 0	167	$\supset \sim \alpha$	S 14-8	\$ 13-10
170	64.2	61.4	+ 2.8	142.0	28 - 0	180	1 CO C	s 15-9	S 17-4
182	65.2	63.4	+ 1.8	153.0	28 - 0	200	-oα	s 15-11	S 15-11
194	65.6	65.4	۲.	159.2	28 - 0	216	$\supset \vdash \subset$	Lowa	s 16 -8
506	65.8	4.79	- 1.6	164.5	28 - 0	218	$\supset \neg \subset$	JOZ Shan k Gl	
219	0.99	9.69	- 3.6	168.7		526)	10	
aCycle ^b Refer	aCycle break ^b Refer to index	×	Adài	Additional d	ata:	Stanford Bine Regression equ	inet12. equation-	04 - 173 y = .16904t)4t + 32.62

M; 7/29/1916; M; M; III

		Computed			No. of Prem.	ور ماري ماري	א מ ק נ	Achievement ^b	nent ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
78	7.44	7.17	0.	48.7	2 - 0	92	77A		
88	46.3	46.3	0.	52.5	3 - 3	88	92a		P 5/4.8
100	48.6	9.87	0.	61.3	8 - 3	104	80 5	6/91 н	P 10/8
112	50.5	50.9	†.	70.1	12 - 0	116		A-10	P 12/8.8
124	52.3	53.1	ω.	80.5	12 - 4	130	$\lambda \circ \iota$	ch 11/9	P 15/10.8
136	54.3	55.4	- 1.1	91.9	22 - 0	141	- Ωα - Ωα	ch 15/14	P 40/38.8
148	57.0	57.7	2	102.3	54 - 0	156	0.45 0.00 0.00	A-12 S 14-10	s 13-3
160	62.2	59.9	+ 2.3	121.7	28 - 0	170	747	S 14-9	s 13-6
171	6.49	62.0	+ 2.9	135.4	28 - 0	182	2 W L	S 15-7	s 15-6
184	9.59	64.5	+ 1.1	141.6	28 - 0	198	\mathcal{L}	Lowa	
196	66.2	8.99	٠.	148.8	28 - 0	506	$\mu = 0$	ч О г	
208	66.4	0.69	- 2.6	151.9		223	1901 2191 232h	113 Shank 84	S 15-8
aCycle bRefer	le break er to index	×	Additional	data:	Stanford B Regression	Binet7.24 n equation-	- 82; 1	2.61-159; 8914t + 29	68

-	· · ·	

M; 2/26/1917; It; R; IV

Age	Height	Computed He1ght	Height Deviation	+ c[€	No. of Prem. Erupted	Skeleton	Mental	Achiev	Achievement ^b
נ				E110	דבב רנו	Age	Age	Read.	Arith.
5	7.94	47.2	ا ان	46.3	7 - 0		7.39		
86	49.1	49.3	5.	53.4	7 - 7		x 627	c/ L n	
98	50.9	51.5	9.	55.6	12 - 0		ರ (- ೧ - ೦		ù i
110	53.5	53.8	٠. س.	61.3	12 - 0		93b 93b	0/1 u	7/5/2
122	55.2	56.1	6.	67.5	12 - 7		2 / V		(
134	58.0	58.4	7	72.8	. 56 - 0		1010	٦ ١	2/2.5
146	61.6	9.09	+ 1.0	89.1	28 - 0		115 000 000 000 000 000 000 000 000 000	پرښر	0/1
158	65.5	65.9	+ 2.6	110.7	28 - 0		J (, , ,	2 ~	S 10-2
170	67.5	65.2	+ 2.3	124.8	1			0 5	
182	68.4	67.5	÷	127.2	1		13/13	1 L L	7
194	68.8	2.69	٠	143.3	ı		1170 1481 1830 1830	ک	11,
206	68.9	72.0	- 3.1	142.4			1561 1261 1201	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
							- 4E2	27	
^a Cycle ^b Refer	aCycle break ^b Refer to index		Additional	data: S R	Stanford Bir Regression	Binet12.15 n equation	- 120 y = .189	53t + 32	96.

M; 12/20/1916; J; R; III

		rea + tramo	li •-		No. of Prem.	מחשום שוף	M ov f or t	Achievement ^b	nent ^b
Age	Height	Vompace Height	Deviation	Weight	Tee.	Age	Age	Read.	Arith.
77	0.44	74.2	2.	45.4	0 1 0	77	91a		P 6/5
88	9.94	46.3	۴.	50.1	3 - 8	89	102a	H 14/10	P 7/6.8
101	48.8	48.8	0.	24.7	8 - 3	102	126a 4art	Н 19/20	P 10/8.3
113	50.7	51.0	٠.	59.1	12 - 2	114	1640 1640	A - 11	P 12/9.5
125	52.7	53.3	9.	65.7	13 - 8	127	1000 1000 1000	ch 17/16	P 14/14.3
137	54.7	55.6	6.	73.4	24 - 0		212c	Ch 22/22	P 46/42.8
149	57.2	57.9		83.8	25 - 0	151	21 5 6	S 16-0	s 15-6
160	61.1	0.09	+ 1.1	99.5	56 - 0	168	N	s 16-9	S 15-2
172	4.49	62.2	+ 2.2	115.1	27 - 0	180	000 000 000 000 000	s 19-2	S 15-0
184	4.99	64.5	+ 1.9	117.5	28 - 0	194	000 000 000 000 000 000	Iowa	
196	9.99	8.99	٥.	121.1	28 - 0	509	247g	IOWA 10 wa	
509	7.99	69.3	- 2.6	124.8	ı	222	2341 257h	1	S 16-10

^aCycle break ^bRefer to index

- 172; 12.42 - 189 - y = .18969t + 29.61 Stanford Binet 9.27 - Regression equation--Additional data:

Stanford Binet--10.31-131; 11.12-144;12.13-146 Regression equation-- y = .18364t + 28.69

bRefer to index

III M, 11/20/1917; NE; B;

		to the state of	4 9 % O H		No. of Prem.	Skalaton	M + αΘ - α+ αΘ	Achievement ^b	nentb
Age	Height	Height		Weight	ב, ע נו. נ	Age	Age	Read.	Arith.
70	42.2	41.5	J. +	38.1					
83	44.3	43.9	7.	42.1	7 - 9		87a	Н 3/1	P 5/3.3
95	46.2	46.1	+	46.7	7 - 9		000 113a 4/11	9/8 н	P 6/7
107	48.1	48.3	٥.	51.6	10 - 2		1 2 2 5 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2	A -5	P 7/4.5
119	50.2	50.5	<u>«</u> .	56.9	17 - 0		146c 146c	ch 3/7	P 10/10.3
132	51.9	52.9	- 1.0	63.1	21 - 0		158c	Ch 13/7	P 14/46.8
143	53.8	55.0	- 1.2	0.69	25 - 0		1780 1780	S 10 - 11	S 12 - 8
155	56.5	57.2		9.62	28 - 0		1506 156f	12 -3	11 - 10
167	60.3	59.4	6.	6.66	28 - 0		1446 160f 1755	X-	13 - 0
179	63.4	61.6	+ 1.8	114.9	28 - 0		186g		Sch.58
191	9.49	63.8	∞. +	124.4			1 20 c	Shank	
203	2.49	0.99	1.3	125.0			2041 2041 2245	00	15 - 6
acyo	aCycle break		Additional	al data:	Stanford	d Binet10.31-131	0.31-131;	11.12-144;12.	12.13-146

*

					No. of				
Age	Height	Computed Height	Height Deviation	140 to M	Frem. Erupted	Skeleton	Mental	Achievement ^b	ment ^b
0	7 7 =		3 1	WCIB110	Teetn	Age	Age	Read.	Arith.
0	46.6	48.2	- 1.6	51.2	7 - 2		7.8		0,000
90	0.64	6.64	6.	56.7	7 - 7		- α		
103	51.2	52.2	1.0				ر م		P 6/5.8
114	53.7	0 1/4		· · · · · · · · · · · · · · · · · · ·	ı			Н 10/10	P 7/6.8
,	-))	۸۰۲۷		(0.3	11 - 3		124c	A - 6	P 10/9.5
126	55.9	56.3	7.	81.8	14 - 3		126b 128c	Cin 9/7	
137	59.3	58.2	+ 1.1	95.0	26 - 0		13d		
150	63.9	60.5	4 3,4		α		43a	Ch 10/1.1 A8	P 12/24.3
162	66.0	4 69) (•	ı		/2c	S 11-3	S 12-0
•	1.00	7.50	+ 3.5	140.5	28 - 0		<u>166f</u>	S 15 - 2	S 13-10
174	6.99	8.49	+ 2.1	150.8	28 - 0		158e 178f	۱ ۲	H ,
186	0.79	6.99	+	151.7	1		188h 1704	2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T	13
198	67.1	0.69	- 1.9	0	ı		9 K 9 C E	i F	s 12-3
210	67.3	71.1	- 3.8	•			1000 000 1000 1000 1000	10Wa 70 100	•
							ı. 1h	Shank 38	s 13-9
aCycle	1		Additional	ر م 1 م	Q+ 20 4 20 4 20	11 •			
^o Refer	r to index			は お が	Regression	Binet7.38 on equation-	- 94;	12.80 - 1.	54

123

Regression equation -- y = .17679t + 34.02

M; 12/10/1917/ It; B;

					No. of Prem				
Age	Height	Computed Height	Height Deviation	Weight	Erupted Teeth	ton	Mental	A	ement ^b
70	44.1	11 11 11	ı		110004	ע שני	нgе	Read.	Arith.
• - (1 • -	† † †	٠.	7.5	0 0		60a		P 2/1
82	46.5	46.5	0.	52.9	1 2		67a	0/0 H	
76	8.84	48.7	+	58.4	e - 9		/~		1/1
106	50.8	50.9		65.7	10 - 0		93b 84c		F 1/3.5
118	52.9	53.0		73.0	12 - 0		108c	Ch 7/7	
130	55.0	55.5	٥.	83.3	13 - 0		93d 106c	$\frac{1}{2}$	
142	57.0	57.4	77.	88.9	19 - 0		123d 1183d 1186	ν Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α	7 (
154	59.5	9.69	1	 102.5	21 - 0		125e 125e) -	-
166	63.2	61.7	+ 1.5	121.1	27 - 0		144e 144e 1374	⊣ ′	12-1
178	65.4	63.9	+ 1.5	135.6	1	, ,	163h 1713	Ų (T - T
190	0.99	66.1	٦.	138.3	1		1811 1811 193		s 12-10
202	7.99	68.2	- 1.8	145.1			1711 1711 1741	ıowa Di Shank	ν.
						I	, Oin	28	H
aCycle ^b Refer	e break r to index		Additiona	ıl data:	Stanford Regressic	Binet7.28 on equation	3-76; 10.8 y= .18089	.83-110 89t + 31.7	

M; 9/16/1916; NE; M; III

		Computed	H ₽ †dø†		No. of Prem.	Ske leton	ν Δ Δ Δ	Achievement ^b	entb
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
92	45.6	46.4	ω.	8.64	3 - 0	78	72a		P 3/1.8
86	47.4	48.3	ō.	56.0		06	92a		P 6/5.3
110	52.2	52.9	· -	0.69	11 - 1	108	102c	\ <	
122	54.2	55.5	1.0	77.2	11 - 3	126	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A -6 Ch 9/10	P 13/11.8
135	57.4	57.7	ا ج ج	93.1	17 - 0	147	156c	16	P 70/52.3
146	62.3	59.8	+ 2.5	110.3	54 - 0	176	1040 1040 0000	S 16-0	S 14-5
158	9.59	62.1	+ 3.7	123.7	27 - 0	191	196f	s 16-6	s 16 -8
170	8.99	64.4	+ 2.4	130.5	28 - 0	198	202f	S 17-11	
182	67.3	2.99	9.	140.2	29 - 0	223	2138		
194	9.79	0.69	- 1.4	156.1	58 - 0	526	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Iowa	Sch 77
506	2.79	71.3	- 3.6	146.4		227	2281 2281 225h	Shank 92	s 18-5
a Cycle bRefer	Cycle break efer to Index	×e	Additional	al data:	Stanfo Regres	Binet-	-7.06-88; tiony=.18	12.45-162; 8938t + 31.	50

M; 11/15/1917; It; R; IV

		Computed	Helght		No. of Prem. Enunted	Skeleton	Mental	Achievement ^b	ment ^b
Age	He1ght	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
99	40.7	41.2		29.3	0 - 0	99	65a		
27	42.5	43.1	9.	44.3	7 - 7		76a		P 2/1.5
90	45.1	45.3	٥.	50.3	0 - 9	89	78a 803	0/6 н	P 5/6
114	48.9	49.3	7.	4.09	11 - 0	112	000 94c	ch 7/2	P 8/5.3
126	50.9	51.3	7	65.5	14 - 0	125	\circ	ch 11/1	P 0.20.5
138	52.9	53.3	7	74.1	18 - 0	139	ν_{∞} -	S. 10-1	s. 9-11
149	56.3	55.2	+ 1.1	88.6	25 - 0	156	コナに	s 10-8	S 10-5
162	59.8	57.4	+ 2.4	106.9	27 - 0	168	u m c	s 10 - 8	S 10-1
174	61.7	59.4	+ 2.3	121.1	28 - 0	192	∩ <v =<="" td=""><td>S 11-1</td><td>S 10-11</td></v>	S 11-1	S 10-11
186	62.1	61.4	· +	130.3	28 - 0	202	ן ער ה	Shank50	S 11-4
198	62.6	63.4	∞.	135.2		216	1701 1771 1701	O- 1 1 2	S 11-11
211	62.5	9.59	- 3.1	137.6		227)		
acycle l bRefer	le break er to Index	lex	Additional	nal data:	Stanford Regressic	Binet-	-11.52-106 tion y =.	.16837t +	30.11

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 7 1 1		No. of Prem.	97010+0n	ر + س الا	Achievement ^b	entb
Age	Height	Height Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
77	50.0	51.3	- 1.3	62.0	3 - 0	89	113a		P 9/7.8
87	52.6	53.2	9.	67.3	7 - 7	101	135a		P 9/10
100	55.4	55.6	. 2	78.3	7 - 9	113	152	Н 20/20 .	
111	57.8	57.7	+	87.3	12 - 0	124	<u></u>	A 15	
123	0.09	59.9	۲.	101.2	12 - 8	136	100	ch 19/20	P 16/15.3
135	62.1	62.2	٦.	103.4	26 - 0	149	\supset \vdash \vdash	ch 24/21	P 84/63.8
147	9.59	4.49	+ 1.2	126.8	28 - 0	161		A -15 S 16-10	S 10-10
159	4.89	2.99	+ 1.7	140.0	28 - 0	174	223 223 203 203 203 203 203 203 203 203	s 18-7	s 18-0
171	71.1	68.9	+ 2.2	159.6	28 - 0	184	M (1)		
183	72.2	71.2	+ 1.0	163.4	28 - 0	199	N LC U		
195	72.6	73.5	6.	169.3	28 - 0	221	ひんのニ	Towa ./Or	
208	72.7	75.9	- 3.2	174.4		227	1	ナ ハ	
aCycle bRefer	ole break Fer to Index	lex	Aàditional	al data:	Stanford	Binet-	.58-152;	.56-177; 12.42-240	3-20
					Kegress	sion equati	uo	5 + 100/	12

127

M; 1/15/1917; J; R; Iv

		Computed	Helght		No. of Prem. Erupted	Skeleton	Mental	Achlevement ^b	ent ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
92	46.6	46.8	z	47.2	0 - 2	71	97a		P 4/5.3
87	49.1	0.64	+	52.0	4 - 2		101a	Н 18/17	P 6/8.8
100	51.8	51.6	٠.	59.8	9 - 5	76	133a	H 18/14	P 13/11
112	53.7	54.0	٠. ج	67.3	13 - 0	107	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		P 11/12
124	55.9	56.4	ا تر.	78.9	13 - 1	120	168c 168c	A-11 Ch. 17/17	P 14/14
148	2.09	61.2	ا ت	92.4	25 - 0	145	178c	s 16-6	s 15 -7
159	65.3	63.5	+ 1.8	120.0	27 - 0	172	19/6 209f	s 16-5	s 16-3
172	68.5	66.1	+ 2.4	135.6	28 - 0	184	199f	s 16-9	s 17-6
184	69.5	68.5	+ 1.0	143.5	28 - 0	198	0.000 0.000 0.000	Lowa	Sch 74
196	0.07	6.07	6.	143.5	28 - 0	211	2000 2000 2000 3000 3000	L A O L A O L A C L A C	
208	70.2	73.3	. 3.1	149.9		524	2281 239h 239h	144 Shank 70	s 16-2
acycle ^b Refer	le break er to Index	×e	Additional	nal data:	Stanford B1 Regression	net-	-12.32-197 tion y =	.20127t + 3	31.46

M; 5/8/1916; NE; M; III

					No. of				
		Computed	Height		Prem. Erupted	Skeleton	Mental	Achivementb	$nt^{\mathbf{b}}$
Age	He ight	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
81	48.3	49.7	- 1.4	58.2	1 - 0	98	76a		P 4/1.8
90	50.5	51.3	∞.	7.49	5 - 4	110	87a		P 5/4.3
103	53.2	53.5	٠. ن	72.5	8 - 2	121	\circ	9/8 н	P 7/3.8
114	55.3	55.4	. 1	83.3	11 - 1	133	108b	Н 17/10	
127	57.6	57.6	0.	91.7	12 - 0	146	CUL	Ch 0/1	P 9/9.8
138	59.4	59.5	. 1	103.6	15 - 0	158	117 (ch. 2/1	P 0/17.8
150	63.0	61.5	+ 1.5	119.3	26 - 0	170	$\supset u \cap v$	A -2 S 10-3	S 11-11
162	66.5	63.5	+ 3.0	143.3	26 - 0	182	in nu	S 11-2	S 11-1
174	68.1	9.59	+ 2.5	162.7	28 - 0	196	Y)-7 :	11 - 8	11 - 7
186	68.1	9.79	+	169.6		509	オオノ	\$ 12-3	s 13-0
199	9.89	6.69	- 1.3	184.6	30 - 0	227	$0 \sim 1$	Iowa	Sch. 33
212	68.6	72.1	3.5	189.9		227	1711 1591 164h	99	S 14-4
aCycle bRefer	le break er to index	lex	Additional	ıal data:	Stanfor Regress	Stanford Binet 7. Regression equation	40 -	86; 12.50 -] 17036 + 35.	128 ; .95

t.b				4/0,		16/16.	ر٥٪	א נ	13-0			15 -4		54-	30 8
Achievementb	nead.	, L	c	16/13		A -9 (17 (1)	_				α ≥ □	Shank S	67	145;	20066t + 31.
Mental .	20.				100 100 100 100 100 100 100 100 100 100	000 000 000 000 000	24g 34g	33e			. 7. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1861 2011		03-100; 63	. = %
Skeleton														₩-	on equation
No. of Prem. Erutped Teeth		ı	1	7 - 9	13 - 0	16 - 0	21 - 0	27 - 0	28 - 0	28 - 0	28 - 0			Stanford	UOTSSAIBAIT
Weight	777		•		0.79	76.1	80.9	91.5	111.1	123.3	125.7	136.5		ul data:	
Height Deviation	+	•	۲.	۲.	٠.	2.	- 1.0	9.	· +	+ 1.5	9.	6.		Additiona	
Computed Height	44.7	7.74	8.64	52.0	54.6	57.0	59.4	61.8	64.2	9.99	0.69	71.2			
Helght	45.2	47.6	7.64	52.1	54.3	56.3	58.4	61.2	64.9	68.1	9.69	70.3		^a Cycle break ^b Refer to index	
Age	29	80	92	103	116	128	140	152	164	176	188	199		aCycle ^b Refer	

M; 11/5/1916; It; R; III

		Computed	∥ •⊣		No. of Prem. Erupted		Mental	Achlevement ^b	entb
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
78	43.6	44.3	۲	40.4	0 1 0		80a		P 4/2.5
8	46.2	9.94	7.	45.6	0 - 9		89a	1 5/2	P 4/6.3
102	48.5	48.9	7.	52.9	7 - 7		100a	6/6 н	P 9/11.3
114	51.1	51.1	0.	58.4	11 - 4		10.7 b	A - 7	P 10/8
126	53.0	53.4	7.	8.99	15 - 2		1156 106c	ch 8/6	P 10/10.8
138	55.3	55.7	7.	74.3	23 - 0		98d 126c	ch 15/5	P 18/23
150	58.5	58.0	+	91.9	27 - 0		1200 1460	A 10 S 106	S 11-1
162	62.5	60.3	+ 2.2	110.5	28 - 0		141e 152f	s 11-6	S11 -4
174	65.0	62.5	+ 3.5	122.6	28 - 0		160e 153f	s 13 - 0	12 -6
186	6.59	8.49	+ 1.1	135.4	28 - 0		157h 172g	S 12-4	S 11-8
198	66.1	67.1	- 1.0	142.2	28 - 0		1859 1850 1861 1861	Iowa 59	
210	66. 4	4.69	3.0	142.9			1861 1921 184h	Shan k 52	s 12-3
^a Cycle ^b Refer	aCycle break bRefer to index	×	Additional	al data:	Stanford Bi Regression	net1 equati	2.39-117 on y =	.19022t + 2	29.45

M; 12/15/1916; NE; M

					No. of				
A 0	H d	Computed	₩		Prem. Erupted	Skeleton	Mental	Achievement ^b	entb
	TIGTERIC	านสิรอน	at	Weight	Teeth	Age	Age	Read.	Arith.
7 /	45.7	46.5	ω.	45.4	0 - 0	72	72a		P 3/5,5
83	47.8	78.5	7.	0.64	1 - 4	88	120a		
96	50.2	9.09	7.	54.2	7 - 9	102	165a	H 20/19	
107	52.6	52.7	1	63.9	10 - 2	119	129b		
120	54.6	55.2	9.	69.2	14 - 3	136	182c	Ch 17/16	P 14/13
131	56.9	57.3	7	a 77.2	19 - 0	150	168 d 216c		-
143	60.5	59.5	+ 1.0	91.5	22 - 0	165	181d 212c	A 15/2	
155	9.49	61.8	+ 2.8	111.6	28 - 0	179	220e 217f		α
167	2.99	64.1	+ 2.6	125.5	28 - 0	194	233e 216f		ı
191	9.79	68.6	- 1.0	136.9	28 - 0	216	227h 264g	163 Iowa	
203	68.1	70.9	- 2.8	138.5		227	250 250 250 250 250 250 250 250 250 250	165 Shank	s 18-5
							110 13	τ 1	
aCycle ^b Refer	aCycle break ^b Refer to index	×e	Additional	al data:	Stanford	Binet6	.~ {	3.4-131; 11	.29-188;
					Regression	equat1	- I	.18915t +32.48	. 48

M; 3/12/1918; NE; B; IV

17	0; 10.76-121 18548t + 33.	6.99 - 80 on y = .1	rd Binet 6.	Stanford Regressic	ıal data:	Additional	×ə	aCycle break ^b Refer to index	^a Cycle ^b Refer
s 15-6	Shank 31				155.0	- 2.1	4.07	68.3	199
	Iowa 42	1618 1834		29 - 0	154.4	4	68.1	68.3	187
s 13 -3	s 13 - 7	17 1		28 - 0	152.3	+ 1.5	62.9	7.79	175
s 15-8	s 13-0	100 W		28 - 0	128.3	+ 1.8	63.7	65.5	163
S 13-10	S 11-10	1 1 T		28 - 0	108.3	٠,	61.4	61.6	151
s 10-5	s 11-3	$+ \pi \iota \iota \iota$		27 - 0	96.4	2	59.2	58.5	139
P 6/21	ch 9/8	300 300 11		54 - 0	86.7	7	57.0	9.99	127
P 3/8	Ch 4/8	a ca c		16 - 0	74.3	5.	54.8	54.3	115
P 6/6.8	17	\circ		10 - 5	67.5	0.	52.6	52.6	103
P 5/4.8	Н 10/5	₁∞ c		6 - 3	9.09	0.	50.3	50.3	91
P 2/2.3	Н 1/0	0 -		7 - 5	6.45	∼+	48.1	48.3	4
P 3/1		68a		0 - 7	48.1	2.	45.9	45.7	29
ant ^b Arith.	Achievement ^b Read. Ar	Mental Age	Skeleton Age	Frem. Erupted Teeth	Weight	Height Deviation	Computed Height	Height	Age

M; 11/26/1916; NE; M; IV

					No. of Prem.				١.
Age	Height	Computed Height	Height Deviation	Welght	Erupted Teeth	Skeleton	Mental	0 10	ent ^D
77	116.5	0 91				29.,	nge	nead.	Arith.
t -		4 0.0	o.	53.4	0 1 7		65a		P 3/1.5
78	48.5	48.7	S.	58.2	4 - 3		85a		P 7/4.3
96	50.8	50.8	0.	63.7	9 - 1			C/01 H	
108	52.6	53.0	7.	4.89	11 - i				
132	56.2	57.3	- 1.1	82.2				A 10 Ch 14/14	
144	58.6	59.4	&	87.5	26 - 0			A -8 S 14-10	0-0
155	62.8	61.4	+ 1.4	108.0	28 - 0			ر ا	
168	4.99	63.7	+ 2.7	124.4	58 - 0			1	 - -
182	68.2	66.2	+ 2.0	138.0					
192	6.89	0.89	÷	144.9	28 - 0				
204	4.69	70.1	7	148.2			1831 2071	Shank	נובטן מ
219	69.5	72.8	- 3.3	155.2				73 Shan k 92	1 1 4
^a Cycle ^b Refer	^a Cycle break ^b Refer to index		Additional	al data:	Stanford B Regression	Binet 6.87-80 on equation	7-80; 12. n y = .	53-154 17828t +	33.73

M; 10/8/1917; NE; B; II

		Computed	Helght		No. of Prem. Erupted	Skeleton	Mental	Achlev	Achievement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
72	7.74	47.74	0.	49.2	5 - 3		82a		P 2/2.3
84	7.64	8.64	. 1	54.5	8		100a 111b	H 5/6 H 15/7	P 5/4.3
96							α		
108	54.4	24.7	e.	0.70	19 - 2		152b	A - 5	P 7/6.8
120	56.8	67.1	.3	76.3	54 - 0		148c	ch 6/8	P 11/12.5
132	59.1	59.5	7	2.48	56 - 0		172c	$\frac{A - 6}{2}$	P 36/33.3
144	61.5	61.9	7.	95.7	28 - 0		146a 176c	1	
156	8.49	64.3	+	a 108.0	28 - 0		156e 167f	s 12-1 s 13-6	s 13-10 s 13-1
168	68.6	66.8	+ 1.8	128.8	28 - 0		180 e 173f	S 14-7	S 13-4
181	70.7	4.69	+ 1.3	143.0	28 - 0		181n 202g	Iowa 68	
192	71.3	71.6	٤.	149.5			2005 2005 2006 2006 2006	Iowa 94	
204	72.2	74.0	1.8	155.5			2191 218h	Shan k 65	s 16-10
acyc ^b Ref	^a Cycle break ^b Refer to index	lex	Additional	nal data:	Stanford Regressic	"	Binet7.41-109; n equation y =	11.15156 .20181t +	13.86

M; 5/31/16; SE; M; IV

		ر بر در بر بر بر در بر	+ .(£ , C);		No. of Prem.	20+01018	∑ 7	Ach1evement ^b	entb
Age	Height	Vomputed Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
80	1.64	50.8	- 1.1	69.2	0 - 9	100	67a		P 1/1
89	51.1	52.1	- 1.0	4.77	10 - 2	111	70a		P 2/2
102	53.7	54.1	7.	7.68	12 - 1	120	<u>~</u> [8/6 н	P 3/4.8
114	55.5	55.9	7.	98.8	13 - 4	130	~ W r	· · · · · · · · · · · · · · · · · · ·	Р 6/8
126	57.6	57.6	0.	117.3	23 - 1	143	1146 1160	A -3 Ch 13/8	P 8/4.3
138	59.8	59.4	7.	136.5	28 - 0	155	$O \mathcal{U} C$	ch 11/13	P 0/20
150	62.0	61.2	∞. +	149.3	28 - 0	1.08	A OO F	A-5 S 13-2	s 11-6
162	64.8	63.0	+ 1.8	160.5	28 - 0	180	クサム	s 13-3	S 11-4
173	67.2	2.49	+ 2.5	152.4	28 - 0	192	0 -7 -	S 14-11	s 12-3
186	68.1	9.99	+ 1.5	165.2	28 - 0	201	1 いん	S 14-8	s 12-6
198	68.8	4.89	₹	168.7	28 - 0	209	1 W Q	Iowa 76	Sch 46
210	69.1	70.2	1.1	171.5	28 - 0	225	~ ωα	Shank	s 13-7
225	69.1	72.4	- 3.3	183.2		227	O	.	S 13-5
aCycle bRefer	le break er to index	dex	Additiona	nal data:	Stanford Regression	Binet on equati	8.65-97; ony=	10.76-117; .14941t +	13.03-154; 38.82

₽ -c**=**

M; 2/6/1917; NE; M; I

		Complifed			No. of	Skeleton	Mental	Achievement ^b	entb
Age	Height	Height	Deviation	Weight	Erupted Teeth	Age	Age	Read.	Arith.
72	9.94	9.74	- 1.0	49.8	0 - 7	78	90a		Р 3/4
81	7.67	49.4	٥.	54.5	0 - 7	89) () -		P 6/5.5
76	52.1	51.9	٠.	6.09	0 - 9	102	\dashv α	н 18/12	P 9/8.5
105	54.4	0.45	7. +	0.79	8	113	シモレ		P 11/10.5
118	56.7	56.5	· .	71.7	10 - 2	126	170°C	ch 16/15	
130	58.8	58.9	٠.	78.9	12 - 0	138	റനാറ	Ci 21/18	P 36/44.5
141	61.1	61.0	+	88.6	13 - 0	149	$ u$ \circ L	A-15 S 15-10	S 12-8
153	63.4	63.3	+	9.96	23 - 0	160	\neg	S 17-5	S 16-11
165	8.99	9.59	+ 1.2	114.0	28 - 0	171	$+ \circ \cdot$	s. 18-8	S 17-5
201	73.4	72.6	+	146.9		204	ソたト	Shanks	S 17-2
216	73.8	75.5	- 1.7	150.4		219	ノゴ	ν Ο	
aCycle bRefer	acycle break brefer to index	lex	Additiona	nal data:		Bine t	6.06-98; 9.09-138	6.97-10	11 0
					Regress	ion equati	on y	.19373t + 3	3.67

		Computed	Height		No. of Prem Erupted	Skeleton	Mental	, Achievement ^b	mentb
Age	Height	Height	at.	Weight	Teeth	Age	Age	Read.	Arith.
75	39.8	40.3	. 5.	37.7	4 2	29	67a		P 3/2.5
98	43.1	42.3	∞. +	43.0	0 1	. 78	79a	9/8 н	P 6/7.8
98	44.4	9.44	٥.	47.4	12 - 0	06	\circ	н 13/12	P 7/7.3
110	46.5	46.8	٠. ج.	50.3	12 - 0	101	ンーに	A -4	P 10/11.8
122	48.3	49.1	∞.	56.9	12 - 5	111	${\sf U}$, ${\sf U}$ (ch 10/6	P 14/13.8
134	50.6	51.3	2	63.5	23 - 0	165	ノロニ	ch 12/9	P 84/66.3
146	53.4	53.6	٥.	73.2	27 - 0	145	1 W t	s 12-8	S 12-1
158	56.8	55.8	+ 1.0	88.0	28 - 0	164	~	S 14-2	S 16-9
170	0.09	58.1	+ 1.9	101.9	28 - 0	178	$0 \sim 0$	S 14-8	S 17-1
182	61.6	60.3	+ 1.3	109.8	28 - 0	191	$\nu \circ \epsilon$	Iowa 98	
194	62.4	62.6	٥.	112.5	28 - 0	508	$\sim 10^{\circ}$	Lowa	
206	62.6	64.8	- 2.2	118.8		222	2191 2191 24811	Shank 31	S 17-4
aCycle ^b Refer	ole break fer to index	iex	Additional	nal data:	Stanford Regressio	Binet on equa	11.99-1	42 . 18726t +	138

M; 11/14/1917; NE; B; III

	•	Computed	•~-	gnt		No. of Prem. Erupted	Skeleton	Mental	Achievement ^b	ment ^b
Age	Height	Height	Deviat	tion	Weight	Teeth	Age	Age	Read.	Arith.
71	44.9	74.6	+	ς.	43.0			63a		P 2/.8
83	47.4	0.74	+	7.	46.5	5 - 0		771,	H 0/1	P 1/2.3
95	49.8	46.4	+	7.	52.3	8		σ	H 10/5	P 4/2.8
107					57.6	10 - 0		() ()		P 4/6.8
119	54.1	54.2		۲.	61.5	14 - 0		(U~J	A - 4 Ch 9/9	P 10/11.5
131	55.9	9.99	ı	.7	8.99	16 - 0		((1)	A - 9 Ch 15/11	P 20/36.5
143	58.1	0.65	1	0.	75.6	21 - 0			17	~
155	60.7	61.4	ı	.7	-a 84.5	25 - 0		1 (\T	S 14-7	S 13-9
167	63.7	63.8	i	۲.	93.9	26 - 0		\sim	S 15-4	1 +
179	67.1	66.2	+	o.	112.9	27 - 0		α	Iowa	
161	4.69	9.89	+	ω <u>.</u>	127.2	27 - 0		\sim α	105 Iowa	
203	71.0	71.1	ı	۲.	135.8			2011 2191	129 Shan k 80	s 16-6
									V C	
^a Cycle h ^b Refer	le break er to index	×e	Addi	itiona	al data:	Stanford Regression	Binet on equat	7.34-93; 1	0.33-134; 1 .20036t + 3	.0.94-133 30.38

II M; 2/3 1917; NE; R;

					No. of Prem.			Achievement ^b	nentb
Age	Height	computed Height	Helght Deviation	Weight	Erupted Teeth	skeleton Age	Mental Age	Read.	Arith.
92	44.8	45.6	8.	47.2	7 - 2		85a		P 6/3.8
87	47.2	47.5	e.	56.2	0 - 9		97a	H 14/8	P 8/6.5
66	48.8	9.67	ω.	69.5	10 - 1		124a 1035	Н 15/18	P 5/9.3
111	51.9	51.6	+	81.8	12 - 0		1400 7400 700	_	P 11/10.8
123	53.6	53.6	0.	87.5	12 - 1		1450 1960 1973	A -13 Ch 14/17	P 12/11.3
135	55.7	55.7	0.	103.4	18 - 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24,	P 50/47
147	57.9	57.7	+	119.7	25 - 0		222c	1 —	S 12-8
159	61.8	59.8	+ 2.0	137.3	28 - 0		ZZZE ZJJf	S 16-10	s 13-8
171	64.3	61.8	+ 2.5	145.8	28 - 0		200 c	s 17-6	s 15-8
183	64.8	63.9	6.	152.1	28 - 0		204b	Lowa	
195	64.8	6.59	- 1.1	153.0	28 - 0		200 200 200 200 200	L49 Lowa	
207	65.1	6.79	۰ 8	155.2			2431 2581 2681	100 Shan k 44	s 15-9
aCycle bRefer	le break er to index	iex	Additiona	nal data:	Stanford Bi Regression	net1 equati	2.14-172 on y =	.17023t + 3	32.71

M; 3/17/1918; NE; B; III

		Computed	Heisht		No. of Prem. Erupted Ske	Skeleton Menta		Achievement ^b	entb
Age	Height	Height	1 00	Weight	r ar coa Teeth		Re	ad.	Arith.
29	6.04	40.7	۲.	39.2	0 - 1	65a			P 1/1
4	43.3	43.0	+	43.4	0	900 800 800	н	4/6	P 3/.3
91	45.2	45.4		47.4	7 - 6	1000	H	9/10	P 7/4.8
103	47.4	7.74	.3	52.0	12 - 0	000 000 000 000		C	P 6/7
115	2.64	50.1	7	58.2	13 - 0	100	Ch	5/6°	P 7.7.5
127	51.5	52.4	6.	4.49	14 - 0	114.	A O &	25/9	P 6/22
139	54.2	54.8	9.	a 73.0	23 - 0	107 107 107	K W	11-7	s 10-2
151	57.5	57.1	7.	83.3	28 - 0	2011 145 167	n et a	11-6	S 11-1
163	61.1	59.4	· +	93.9	28 - 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ω 1) ⁽ +1 ∄	12-5	s 11-3
175	63.3	61.8	+ 1.5	109.4	28 - 0	171 171	വ വ	12-10	
187	64.3	64.1	+	116.4	28 - 0			8 (Sch 22
199	9.49	6.59	о́. I	121.9		1091 2041 187n		103 Shan k 71	S 11-7
aCycle bRefer	le break er to index	lex	Additiona	nal data:	Stanford Bi	Binet 7.01 n equation	-84; 9.9 y = .19	8-114; 551t +	10.81-118

M; 3/26/1916/ NE; M; III

computed Height Erupted Skeleton Mental Actilevamen 49.4 50.8 - 1.4 56.0 8 - 0 83 76a Read. 51.1 52.4 - 1.4 56.0 8 - 0 83 76a Read. 51.1 52.4 - 1.3 61.3 8 - 3 94 87a H 5/6 53.8 54.3 5 68.1 10 - 3 106 102a H 5/6 55.9 56.2 3 73.0 12 - 1 119 100c 50.0 60.0 59.9 +1 91.1 27 - 0 144 6.2 5.0 60.0 59.9 +1 91.1 27 - 0 144 6.0 5.0 60.1 60.2 + 2.8 123.0 28 - 0 158 16c 5.10-1 60.3 + 2.7 134.1 28 - 0 198 134 5.1 69.4 69.3 + .1 143.3 28 - 0	il					No. of				ع,
50.8 -1.4 56.0 8 - 0 83 76a 52.4 -1.3 61.3 8 - 3 94 87a 54.3 5 68.1 10 - 3 106 113b 100c 56.2 3 73.0 12 - 1 119 100c cn 0/1 58.0 1 80.9 15 - 7 131 130c cn 0/1 6 59.9 + .1 91.1 27 - 0 144 144c cn 2/6 8 63.5 + 2.1 91.1 27 - 0 144 144c cn 2/6 8 63.5 + 2.8 123.0 28 - 0 158 166c 8 10-1 9 65.6 + 2.7 134.1 28 - 0 198 137f 8 11-4 9 + 1.7 136.7 28 - 0 226 164g 8 11-7 7 71.2 + 1.7 134.1 28 - 0 226 164g 8 11-7 7 71.2 - 1.5 147.1 227 1591 27 1591 7 73	Heigh	Ţ	Computed Height	Height Deviation	Weignt	Erupted Teeth	Skeleton Age	Mental Age	Achlever Read.	Arith.
52.4 - 1.3 61.3 8 - 3 94 87a 54.35 68.1 10 - 3 106 102a H 5/6 56.23 73.0 12 - 1 119 1000 58.01 80.9 15 - 7 131 130c Cn 0/1 59.9 + .1 91.1 27 - 0 144 144c Cn 2/6 61.8 + 1.6 105.2 28 - 0 158 166c S 10-0 65.6 + 2.7 134.1 28 - 0 198 137i S 11-3 65.6 + 2.7 134.1 28 - 0 198 137i S 11-7 71.2 - 1.5 147.1 28 - 0 227 154g S 11-7 73.5 - 3.8 150.2 227 1541 Sinnk Akk Additional data: Stanford Binet7.61-96; 12.57-158 Index Regression equation y = .15643t + 38	49.	+	50.8	۲.	9	,	83			P 5/4
54.3 5 68.1 10 - 3 106 113b H 5/6 56.2 3 73.0 12 - 1 119 100cc Cn 0/1 58.0 1 80.9 15 - 7 131 130c Cn 0/1 59.9 + .1 91.1 27 - 0 144 144c Cn 2/6 61.8 + 1.6 105.2 28 - 0 158 165c 8 10-0 61.8 + 1.6 105.2 28 - 0 177 134c 8 10-11 65.6 + 2.7 134.1 28 - 0 198 137f 8 11-4 67.4 + 1.7 136.7 28 - 0 226 144g 8 11-4 69.3 + 1.1 143.3 28 - 0 227 164g 8 11-7 71.2 - 1.5 147.1 227 190n 8 ank 73.5 - 3.8 150.2 227 190n 8 ank 32 - 3.8 150.2 227 190n 8 ank 32 - 3.8 150.2 227 190n 8 ank <	51.	, -1	52.4	H	•	ı	76	1-		P 6/5.5
56.23 73.0 12 -1 119 100c 58.01 80.9 15 -7 131 130c	53.	ω		•		I 0	106	\circ		P 6/6.3
58.01 80.9 15 - 7 131 130c Cn 0/1 59.9 + .1 91.1 27 - 0 144 144c Cn 2/6 61.8 + 1.6 105.2 28 - 0 158 166c S 10-0 63.5 + 2.8 123.0 28 - 0 177 134r S 10-11 65.6 + 2.7 134.1 28 - 0 198 137r S 11-3 67.4 + 1.7 136.7 28 - 0 227 164g S 11-7 71.2 - 1.5 147.1 227 190n Shank 71.2 - 1.5 147.1 227 190n Shank 144 Additional data: Stanford Binet7.61-96; 12.57-158 146 Additional data: Stanford Binet7.61-96; 12.57-158 150.2 Regression equation y = .15643t + 38	55	0	56.2	•	•	ا د		⊣ ○ ೧		P 6/5
59.9 + .1 91.1 27 - 0 144 144c Ch 2/6 61.8 + 1.6 105.2 28 - 0 158 166c 8 10-0 63.5 + 2.8 123.0 28 - 0 177 134F 8 10-11 65.6 + 2.7 134.1 28 - 0 198 137f 8 11-3 67.4 + 1.7 136.7 28 - 0 216 144g 8 11-4 69.3 + .1 143.3 28 - 0 227 164g 8 11-7 71.2 - 1.5 147.1 227 1591 8	57	9	58.0	1	-	ر ا	\sim	J W (P 12/9.3
61.8 + 1.6 105.2 28 - 0 158 166c	9	0.	59.9	•	•	1	144	ンサく	20	P 0/28.3
63.5 + 2.8 123.0 28 - 0 177 134.6 S 10-11 65.6 + 2.7 134.1 28 - 0 198 137r S 11-3 67.4 + 1.7 136.7 28 - 0 216 144g S 11-4 69.3 + .1 143.3 28 - 0 227 164g S 11-7 71.2 - 1.5 147.1 227 1591 Shank 73.5 - 3.8 150.2 227 190n Shank Additional data: Stanford Binet7.61-96; 12.57-158 ndex Regression equation y = .15643t + 38	63	⊅.	61.8	-i	05.	ı		$\supset \mathcal{W} \subset$	10-	S 11-3
65.6 + 2.7 134.1 28 - 0 198 137f S 11-3 136n 136n S 11-4 117 136.7 28 - 0 216 144g S 11-4 169.3 1 143.3 28 - 0 227 164g S 11-7 1591 S 11-7 1591 S 11-7 185h 27 190n S 150.2 S 150.2	99	$\tilde{\omega}$	63.5	ď	23.	1	177	7 W-	10-1	S 11-4
67.4 + 1.7 136.7 28 - 0 216 144g S 11-4 69.3 + .1 143.3 28 - 0 227 164g S 11-7 71.2 - 1.5 147.1 227 190n Shank 73.5 - 3.8 150.2 227 190n Shank 32 32 34 38 350ndex 350ndex 3643t + 38 868ression equation - y = .15643t + 38	68	ς.	9.59		34.	1	198	1ω	11-	S 11-5
69.3 + .1 143.3 28 - 0 227 164g S 11-7 1591 Shank 71.2 - 1.5 147.1 227 174i Shank 73.5 - 3.8 150.2 227 190n Shank 32 k Additional data: Stanford Binet7.61-96; 12.57-158 ndex Regression equation y = .15643t + 38	69	۲.	4.79	+ 1.7	36.	ι ∞	216	クコン	11-	S 13-1
71.2 - 1.5 147.1 227 1741 Shank 27 185h 27 227 190n Shank 32 32	69	7.	69.3	+	43.	ι ∞	227	$O \wedge O \sqcap$	11-	s 12-8
73.5 - 3.8 150.2 227 190n Shank 32 k Additional data: Stanford Binet7.61-96; 12.57-158 ndex Regression equation y = .15643t + 38	69	.7	71.2	÷	47.		227	$\cap \cap \alpha$	Shank	s 15-6
Additional data: Stanford Binet7.61-96; 12.57-158 dex Regression equation $y = .15643t + 38$	69		73.5	$\overset{\smile}{\omega}$	50.		227) Q	Shank 32	
	aCycle br bRefer to	eak in	dex	₩ Gi	l data	Stanf Regre	Binet	.61-96; on y =	2.57-158 .15643t	38.02

			H		No. of Prem.			d + noment of the A	q+som
Age	Height	Computed Height	Height Deviation	Weight	Erupte d Teeth	Skeleton Age	Mental Age	Read.	Arith.
71	6.44	7.44	+	45.2	0 - 0	ı	73a		P 3/2.5
84	7.74	47.1	9 +	52.9	1 . 3	1	92a	Н 1/0	P 6/3.5
96	49.2	9.67	7	54.9	7 - 9	ı	20 H	H 11/12	
107	51.5	51.9	7	56.2	10 - 2	ı	112b 10gc	A-6	7
120	53.7	9.45	6.	0.69	16 - 0	ı	77	ch 7/9	
131	56.4	56.9		79.2	18 - 0	ı	25	A-5 Ch 13/12	P 13/10.8
143	58.9	59.4	١.	90.6	22 - 0	ı	50 FO	_	139
155	62.2	61.9	۳. +	104.3	28 - 0	ı	64 43	13-9 S 157	<i>ا</i> , 0
168	66.1	64.7	+ 1.4	126.1	28 - 0	ı	36	1 .	1-5
179	9.89	67.0	+ 1.6	149.5	28 - 0	ı	98) 	12.9 Sch
191	8.69	. 69.5	۴.	159.2	28 - 0	ı	25 25 25 25	H	44 Sch
203	70.1	72.0	- 1.9	168.2		ı	98	92 Sha nk 63	52 S 16-5
							91	Iowa 89	
aCycle	le break		Additional	lal data:	Stanford	Binet8.	42-118:	10.35-145	721-80 21
^b Refer	er to index	ne x			Regression	equa) ;; 	20861 t	7.63-1 9.61

143

M; 5/14/1916; N.E.; M; IV

			کے ع		No. of Prem.			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ع
Age	Height	Height Height	neignt Deviation	Weight	Erupted Teeth	Skeleton Age	Mental Age	Read. Arit	Arith
80	47.3	48.1	8	52.3	1 - 0	84	69		•
90	7.67	6.64	2	58.0	5 - 1	96	94 94a		$\hat{\alpha}$
103	51.6	52.1	ا ان	65.5	8 - 9			H 13/10	, α , α
114	54.1	24.0	+	20.8	10 - 1	120)	
127	55.8	56.3	ا ت	80.7	13 - 2			A - 6 Ch 3/6	4 F
138	57.9	58.2	J	90.2	17 - 0		1 6d 4 6c	i o	10/16.
150	9.09	60.3	۴.	7.66	21 - 0	157	16d 54c	`_	.00/01
163	8.49	62.5	+ 2.3	118.0	26 - 0		51e 55f	11-2 S	13-8
174	67.8	64.5	+ 3.3	133.4	2 8 - 0	1	786 745 945	11-9	15-9
199	8.69	8.89	+ 1.0	149.9	28 - 0	210	175h 195g	13-3 10wa	16-4
212	70.0	71.0	- 1.0	158.8	ı) - - - - - - - - - - - - - - - - - - -	41 10wa	
225	70.2	73.3	- 3.1	159.9	I	227		86	
aCycle ^b Refer	^a Cycle break ^b Refer to index	e X	Additional	al data:	Stanford B Regression	Binet7.0 n equation)3-94; 12 1 y =.1	.73-161 7347 t +	34.27

M; 3/31/1916; N; M/ III

					No. of Prem.			0 0 0	d + romorro
Age	He1ght	Computed Height	Height Deviation	Weight	Erupted Teeth	Skeleton Age	Mental Age	Read.	Arith.
82	50.7	51.3	9	9.09	2 - 5	83	72		P 2/8
92	52.8	53.3	·	68.8	8 - 2	96	05a 79a	A – 4	P 4/1.5
105	55.6	56.0	7.	77.6	10 - 1	109	80 25 2	7/7 H	P 5/3.3
116	57.8	58.3	.5	84.5	12 - 0	126	ひ ひ ひ ひ ひ び び び び ひ び ひ び ひ び ひ び び び び		P 5/5
128	6.09	8.09	+	7.66	17 - 3	144	980 980	ch 4/3	Р 8/8
140	8.49	63.3	+ 1.5	114.2	20 - 0	162	000 000 1000 1000	ch 7/3	P 0/7.3
152	68.0	65.8	+ 2.2	131.0	54 - 0	180	ال 100 100 د د	N N C	ω ·
164	8.69	68.3	+ 1.5	141.6	26 - 0	198	トレン リンケド クロ	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
175	70.2	9.02	7.	144.4	26 - 0	509	9) 1 1	∀ - -	V - 01
188	70.4	73.3	- 2.9	145.1	ı	221	136н		
aCycle ^b Refer	aCycle break ^b Refer to index	dex	Additional	nal data:	Stanford B' Regression	Binet7.20-72 on equation	· • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	12.82-117 0734t + 34.	27

M; 8/6/1916; NE; R

					No. of				
Age	Height	Computed Helght	Height Deviation	Weight	Prem, Erupted Teeth	Skeleton Age	Mental Age	Achievement Pead Ari	ement ^D Arith.
81	46.1	47.0	1 .	45.9	3 - 3	71		l l	1
105	50.8	51.2	7.	4.09	ı	76	102a	0/01 н	P 6/7
117	52.6	53.3	۲	63.9	13 - 0	106	95b 104c		P 10/10.3
129	54.5	55.4	6.	75.6	14 - 2	118	1216 134c	A = 0 Ch $1/9$	P 11/11.5
141	57.1	57.5	7.	91.9	23 - 0	134	グゴ・		P -54/25.3
153	61.7	9.69	+ 2.1	100.1	28 - 0	172	ユサィ	1	,
165	8.49	61.7	+ 3.1	111.8	28 - 0	183	コオニ	1	
177	65.8	63.8	+ 2.0	123.9	0 - 87	198	149e 143f	11-3 8 - 1	9
189	66.4	62.9	+	133.4	28 - 0	210	σ	1	
201	67.1	68.1	- 1.0	138.5	1	1	$1 \infty \Omega$	1	υ (ι '
213	67.0	70.2	- 3.2	140.2	ı	227	_	13-0	13-11
^a Cycle ^b Refer	bre	ak Index	Additional	da	ta:Stanford B Regression	Binet12.7 n equation	2 - 127 y = .	17555 t + 3	32.77

147	.24 .9854 t + 30.97	45 - 1	Binet11.	Stanford B Regression	ıl data:	Additional	Хə	^a Cycle break ^b Refer to Index	acyc bRef
S 15-11	8han k 60	1921 210h		ı	117.5	3.5	72.1	68.9	207
- C	L4-t Iowa Ω1	σ		28 - 0	127.9	0.	7.69	68.8	195
1	0 T I	$\nu \infty c$		28 - 0	114.4	+ 1.3	67.3	9.89	183
† (0	$\nu \omega c$		28 - 0	109.4	+ 2.7	6.49	9.79	171
1 V =	0 C	$\nu \alpha c$		28 - 0	9.96	+ 5.6	62.5	65.1	159
C	. α	vor		28 - 0	7.08	+	60.2	60.5	147
P36/28.8	ch 13/9	ソのし		. 0 - 98	66.8	١.	57.8	57.1	135
P 10/9.5	ch 5/6	\cup \cup \cup		19 - 0	61.3	∞.	55.4	9.45	123
P 6/4.8	A 3	104c		12 - 1	54.0	7	53.0	52.3	111
P 5/2.3	0/ ₇ H	ν ω c	ı	10 - 2	0.64	٠. د	9.09	50.4	66
P 3/2.8	н 1/0	85a	i	8	9.54	١.	48.2	48.1	87
P 3/1.3		70a	ı	2 - 3	8.04	e	45.9	45.6	75
Achlevement ^b ad Arith.	Achiev	Mental Age	Skeleton Age	No. of Prem. Erupted Teeth	Weight	Height Deviation	Computed Height	Height	Age

71-01 11 0	021 - 75 01	36 - 101.		Stanfond Binet	ر از در ا	- C		actions brook	a
	152	2401 2401		0 1 63	3.001) 	0.4	·)	176
	S	232h			((į) ((
	0	238g		0 - 63	150.2	+	69.5	70.0	180
		209f 218h		5 8 - 0	139.4	+ 1.4	6.99	68.3	168
17 - 0	17 - 1	222e						,	
1	1	196f		28 - 0	117.1	9.	7.49	65.0	156
S 17-0	S 16-1	204c		0 - 88	a 95.5	·	61.9	61.2	144
•		216d		ı					
P 84/68.8		150a 200c		28 - 0	87.5	7	59.4	58.7	132
P 14/13.8	ch 17/13	168c		25 - 0	80.3	١. ،	56.8	56.7	120
P 8/12		136c		19 - 1	71.9	٠.	54.1	54.3	107
	4	116b		1		•)	(. + (0
7/ X d	טו/או ד	10/0 10/0		4 - 61	2 69	-	מ	כ	90
P 7/5.8	Н 15/9	103a		10 - 1	56.4	٠.	767	49.4	84
P 2/1.8		89a	ı	7 - 7	52.3	۶	46.5	46.3	71
Arith.	Read	Age	Age	Teeth	Weight	Deviation	Height	Height	Age
entb	Achievementb	ן רפ+מס רפ+	Skeleton	No. of Prem.		H → ぐら	Complited		

Additional data: Stanford Binet--7.36 - 104; 10.37 - 159; 11.19-175; Regression equation-- y = .21062t + 31.55 148 ^aCycle break ^bRefer to Index

M; 3/31/1917; J; R; III

		Computed	Height		No. of Prem. Erunted	Skeleton note	Μ α τ α τ	Achievement ^b	ment ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
47	6.64	51.3	- 1.4	61.7	S - 0	95			p 4/3.3
85	52.4	53.5	1.1	70.8	7 - 9	107		Н 12/9	P 8/6
26	55.5	55.8	٠. ج.	4.67	12 - 0	120	чОг	н 11/13	P 8/12.3
109	58.0	58.2	۲.	86.9	12 - 0	132	\dashv \dashv \vdash		P 11/10.3
121	4.09	9.09	٥.	100.0	13 - 3	146	ન (/) ⊦	$\frac{A}{ch} = \frac{5}{8/7}$	P 15/13
133	63.1	65.9	\ \ +	_116.2	20 - 0	160	⊣ M-	ch 13/13	
145	67.5	65.3	+ 2.2	126.1	25 - 0	175	1 ℃ (_
157	71.0	67.7	+ 3.3	150.6	28 - 0	190	Υ) [∼ Γ	ρ	$\overline{\mathbf{Q}}$
169	72.3	70.0	+ 2.3	162.9	28 - 0	202	$\mathcal{N} \mathcal{N} \mathcal{C}$	1	
181	73.1	72.4	+	169.3	28 - 0	216	0 (I4 - II Iowa 10 -	15 - 6
193	73.0	74.8	- 1.8	171.8	28 - 0	227	\mathcal{V} ' '	105 Iowa	
205	73.4	77.1	- 3.7	176.8	ı	227	2251 227h 227h	(y Shank 56	S 16/10
acyc bRef	aCycle break ^b Refer to Index	lex	Additional	al data:	Stanford Binet Regression equa	ati	12.19 - 1(5)	62 17t + 36.71	

		Computed	H TP		No. of Prem.	Ske 1 e 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1	Μ τ τ α	Achievement ^b	nent ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
7.4	43.1	43.3	2	42.3	0 - 0	ı	69a		P 2/.8
86	45.5	45.4	+	41.0	0 3	ı	$^{\prime}\Omega$	Н 2/1	P 3/2
98	47.4	47.5	١.	51.2	7 - 7	1	n a l	L/7 H	P 5/5
110	49.3	9.67	۳.	58.0	7 - 2		200 200 200		P 5/7.8
122	51.2	51.7	١.	62.8	13 - 0		1 t t (ch 3/8	P 7/10.3
134	53.0	53.9	6.	65.5	16 - 0		2 7 4 0	ch 8/8	P 8/20
146	55.9	56.0	1	a 76.7	21 - 0		200	 	ഗ
158	59.8	58.1	+ 1.7	97.5	26 - 0		250	1	11 - 1 S
170	62.4	60.2	+ 2.2	112.5	28 - 0		$\frac{1}{2}$	ı	- -
182	63.5	62.3	+ 1.2	116.9	58 - 0		70	12 - 10 Iowa	14 - 5
194	63.7	7.49	١.	121.3	28 - 0		0 0 1 0 0 0 0	44 Iowa 7 :	Sch
206	64.1	66.5	- 2.4	127.4	I		1951 1921 192h	74 Shank 55	S S S S S S S S S S S S S S S S S S S
^a Cycle ^b Refer	^a Cycle break ^b Refer to Index	lex	Additiona	al data:	Stanford Regress10	Binet 1 on equation	.33-134	31t + 30.36	150

M; 7/16/16; IT; R; IV

		() () ()	E		No. of Prem.	10 to	Μ σ τ σ τ σ	Achievement ^b	ment ^b
Age	He1ght	Compared Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
82	45.2	45.3	1	9.74	0 - 9	ı	72a		P 2/1
93	6.74	47.3	· +	59.8	6 - 4	ı	83a		P 1/2.8
106	9.67	7.64	١.	63.3	12 - 0	ı	88 88 4	0/9 н	P 6/5.5
118	51.5	51.8	e. د.	68.8	14 - 5		ע 20 1700 - ב 1700 - ב		P 6/9.3
130	53.3	54.0	2	78.7	21 - 1		104c	CH 5/8	P 7/7.3
141	55.0	56.0	- 1.0	88.2	56 - 0		99a 112c	ch 4/2	P 8/23.8
153	58.7	58.1	9.	104.3	28 - 0		91	Α Ω <u>.</u> Ο	
165	62.0	60.3	+ 1.7	118.8	28 - 0		30,4	11 -)
177	63.0	62.5	+	131.0	28 - 0		いなん	(<u>۔</u>
190	63.6	64.8	- 1.2	146.0	58 - 0		101n 173g 163h	S 1 0 10 11 0 11 11 0 11 11 11 11 11 11 1	14 - C S - 13 - 3
acyc bRe f	^a Cycle break ^b Refer to Index	jex	Additional	al data:	Stanford B: Regression	Binet on equati	12.86-102 on y =	18069t +	30.50

Achievement ^b	Read Arith.	P 2/1.3	5/3	H 13/10 P 5/4.8	д	- 9 9/8 P 8	-13 18/12 P 24	- 12 S	٦	14 - 1 12 - 4 S S	- 7 sa	113 Iowa	124 Shan k S 66	6 19257t + 32.22
M ס ד ל	Age		ι-w	$-\omega$	7	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	- (1)	~1 \\\\\	\sim	\sim	$\sim \alpha$	\sim \sim	1951 2041 196h	` []
Skeleton	Age		ı	1										Binet 8.35-112; n equation
No. of Prem. Erupted	Teeth	0 - 0	0	1 - 5	8 - 2	12 - 0	18 - 0	20 - 0	25 - 0	28 - 0	28 - 0	28 - 0		Stanford B 7.27-96; 8 Regression
	Weight	48.7	56.4	7.09	65.7	75.4	87.8	99.5	_a_110.9	129.7	142.9	148.6	154.8	l data:
Height	ar l	0.	÷.	÷.	+	7.	7.	9.	1	<u>-</u> -	+ 1.1	9.	- 1.3	Additiona
Computed	Height	45.7	48.0	50.3	52.6	55.1	57.4	9.69	61.9	4.49	2.99	0.69	71.3	
	Height	45.7	48.2	50.5	52.7	24.7	57.0	0.65	61.8	65.1	67.8	9.69	70.0	^a Cycle Break ^b Refer to Index
	Age	20	82	76	106	119	131	142	154	167	179	191	203	acycl

M; 10/24/16; It; R;

					No. of Prem				2
Age	Hejøht	Computed Height	Height	1.[- 4 -]. 1	Erupted	Skeleton	Mental	Achievement ^D	nent ^D
20	31.04 511	116 18111	חפידאבער	weignt	Teeth	Age	Age	Read	Arith.
42	41.3	40.6	· · ·	41.7	1 - 0	ı	82a		P 5/1.8
90	43.1	42.5	9.	46.3	4 - 1	ı	89a	Н 2/0	P 4/4
102	6.44	9.44	۳. +	50.9	6 - 2			H 13/12	
114	46.5	7.94	5.	52.9	8		\cup		
126	48.1	8.84	· -	57.3	11 - 0		122b 134c	A -3 Ch 4/3	
138	49.7	50.9	- 1.2	61.7	14 - 0		O(1)	Ch 5/3	
150	51.4	53.0	- 1.6	69.5	17 - 0		\neg	A - 10	. (7 / 1
162	55.3	55.1	- z· +	-a -86.4	210		\ (*) ([\]	12 - 1 S	11-6
174	58.4	57.2	+ 1.2	95.9	56 - 0		m	12 - 1	01 0 0 0
186	0.09	59.3	··	106.9	27 - 0		175h 165g	12 - 7	12 - 3 - 3
							(()	12 - 6	11-10
acycle b bRefer t	le break er to Index	×	Additional	data:	Stanford Bi Regression	Binet 12 on equation	2.58-135 117440t	Ot + 26.83	

M; 7/1/16; It; M; II

		Computed	Height		No. of Prem.	Skeleton	∑ } ;	Achiev	Achievement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
28	44.8	45.4	9.	49.8	0 - 7		71a		P 3/1
88	0.74	7.5	۲.	54.5	0 - 9	ı	91a		5/4 P 5/4
100	49.4	7.67	0.	58.2	8	ı	102a	H 10/7	
113	51.2	51.8	9.	2.79	15 - 0		\circ		
125	53.4	54.0	9.	75.4	16 - 3		116b 100c	A -3	
136	55.6	56.0	7	_a 84.5	28 - 0				
149	58.9	58.4	+	95.3	28 - 0			5	
160	62.7	60.5	+ 2.2	119.5	28 - 0			11 - 8 S	11 - 11
172	65.2	62.7	+ 2.5	134.9	28 - 0			12 - 1 S	13 - 6
185	65.7	65.1	9.	143.3	30 - 0			13 - 1 10wa	14 - 2
197	66.5	67.3	8.	152.1	30 - 0			45 10 wa	
509	8.99	- 2.7	152.1				168 <u>1</u> 1981	63 Shank	W
								53	15-2
^a Cycle ^b Refer	^a Cycle break ^b Refer to Index	×	Additional	l data:	Stanford B Regression	Binet6.95. n equation	5-78;	12.66-141 8424T + 30.98	154

155	27 143T + 31.74	88 - 1	Binet11.	Stanford B Regression	al data:	Additional	lex	cle break fer to Index	aCycle bRefer
5		\mathcal{U}	225	ı	140.2	- 3.1	71.3	68.2	218
ى م		∞ c	524	ı	136.5	7	68.9	68.2	205
I ~	r R R) (~α	212	28 - 0	138.3	- 1.3	8.99	65.5	193
	I	$\nu \omega c$	201	28 - 0	133.0	+ 2.4	9.49	0.79	181
ı	ı	$\nu \leftarrow$ 1	189	28 - 0	123.5	+ 3.0	62.4	65.4	169
i t u	ı	トオニ	178	28 - 0	102.1	+ 1.5	60.2	61.7	157
ى د د	α γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ) 4 7	165	56 - 0	6.48	+ 1.9	58.0	6.65	145
	9/6 us	1-J C	152	15 - 0	75.6	ω.	55.9	55.1	133
P 10/10.5	ch 6/8	100 100 100 100 100	137	12 - 0	4.99	9.	53.7	53.1	121
P 11/9.3) W -	125	11 - 1	9.09	7.	51.5	51.1	109
P 7/6.5	0/5 н	∞	114	10 - 0	55.8	7	49.3	48.9	26
P 4/1.5	9/8 н	82a	101	7 - 5	9.67	7	47.2	46.5	85
P 3/8		74a	88	0 - 0	43.9	ω.	45.2	7.44	7.4
ement ^b Arith.	Achievement Read Ar	Mental Age	Skeleton Age	No. of Prem. Erupted Teeth	Weight	Height Deviation	Computed Height	Height	Age

M; 12/9/16; NE; R; III

					No. of Prem.			Achievement ^b	nent ^b
Age	Height	Computed Height	Height Deviation	Weight	Eruptea Teeth	Skeleton Age	Mental Age	Read	Arith.
77	46.9	46.3	9.	51.8	10 - 0	1	73a		P 3/3.5
89	49.5	6.84	9.	60.2	10 - 2	ı	89a	Н 6/3	P 6/6.8
101	51.7	51.5	+	8.99	12 - 0		102a	н 8/10	P 4/6.3
113	53.4	54.1	L	71.4	14 - 3		o Or		P 7/7.8
125	56.0	56.7	7	80.5	20 - 1		-1 (V) r	A -6 CH 9/7	P -10/10.3
137	58.3	59.3	- 1.0	88.4	25 - 0		-1 (V) -	ch 11/7	
149	8.09	61.9	- 1.1	104.5	28 - 0		4 <i>4</i> -	αω; n	က ်
161	8.49	7.49	7.	119.3	28 - 0		4 rU r		 (
173	4.89	0.79	+ 1.4	a 140.5	0 - 82		σ	1	
185	70.7	9.69	+ 1.1	151.3	28 - 0		$\infty \omega$, 	. S. I.
197	71.4	72.2	ω.	162.7	- 88		181h 174g 172i	12 - 11 Iowa 58	13 - 7 Sch 48
aCycle ^b Refer	bre	ak Index	Additional	al data:	Stanford Regressic	d Binet 12 ion equation	.17 - 1	25 589T + 29.69	65

M; 12/13/16; It; R; III

		4 - K	11 25 4		No. of Prem.	21010	ا د د د	Achie	Achievement ^b
Age	Height	Height Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
77	42.1	41.4	L· +	41.5	0 - 0	99	77a		P 4/3.8
88	77 77	43.6	8.	48.7	0 - 7	78	86a	Н 3/3	P 6/4.5
101	46.5	46.2	<u>~</u> +	52.9	0 - 9	91	100a	H 11/4	P 9/6.5
113	48.2	78.6	7	56.7	8 - 5	107	100 c	· ·	P 6/7.3
125	8.64	51.0	- 1.2	65.3	13 - 4	118	1440 1440	Ch 4/6	P -12/9
137	52.0	53.4	- 1. ⁴	76.7	20 - 0	131	1 40 c	ch 8/10	P 36/21.5
148	7.45	55.6	- 1.2	86.0	23 - 0	146	164c	4 ω - ι υ α	ر
161	59.3	58.2	+ 1.1	_107.0	28 - 0	172	ן רן ר מיס: מיס:	0 - 1 () 1 -	
173	61.9	9.09	+ 1.3	129.9	28 - 0	188	150 t	1 0 c)
184	62.8	62.8	0.	133.2	28 - 0	199	1838 1838 180h	15 -4 S 13 - 11	S S 13 - 7

- 149 .19928 T + 26.09 Stanford Binet-- 12.36 Regression equation --Additional data: ^aCycle break ^bRefer to Index

M; 9/22/16; J; R; II

		() () () () () () () () () ()	1 1 1 1		No. of Prem.	21,010,10	∑ 7 7 	Achievement ^b	ment ^b
Age	Height	computed Height	neight Deviation	Weight	Teeth	Age	Age	Read	Arith.
80	46.1	4.94	e	57.3	0 - 2	89	82a		P 2/4.5
16	48.5	48.4	+	63.5	10 - 1	102	93a	9/9 н	P 8/8.3
103	50.9	50.6	۴.	70.1	12 - 0	115	90a	н 6/11	P 9/9.3
115	52.5	52.8	۳. ۳.	0.77	16 - 0	126	7/0 1240 17:	· ·	P 13/10.3
128	54.5	55.1	9.	87.1	19 - 4	133	1440 1440	ch 11/13	P -15/13.3
139	56.7	57.1	7.	- 99.2	25 - 0	143	∩VD ⊔	ch 14/15	P 36/58
163	61.7	61.5	+	128.3	26 - 0	161	$1 \infty $	ر ا ا	ľ
175	65.2	63.7	+ 1.5	146.0	28 - 0	174	$-\infty$ (t r	1
187	67.3	62.9	+ 1.4	147.7	28 - 0	191	\sim	15 - 11 Iowa oo	15 - 4
199	68.1	68.1	0.	146.6	28 - 0	509	$ \begin{array}{c} \mathcal{L} \\ \mathcal{L} \\ \mathcal{L} \end{array} $	os nowa	
212	68.5	70.4	- 1.9	153.5	1	222	1901 2221 225h	oy Shank 58	S 17 - 11
acyc	aCycle break		Additional	al data:	Stanford	Binet	9.51-131;	12.63-171	

Regression equation -- .18221 t + Lycie Dream

DRefer to Index

					No. of				
		Computed	Height		rem upt	Skeleton	Mental	Ach1evement ^b	nent ^b
Age	Height	He1ght	Deviation	Weight	Teeth	Age	Age	Read	Arith.
81	6.94	6.74	- 1.0	52.5	3 - 1	78	90a	0/0 н	
91	48.8	9.67	∞.	59.1	7 - 9	92	101a		P 6/5.8
104	51.1	51.7	9.	0.79	10 - 1	110	$\vec{\Box}$	H 14/12	P 10/8.3
115	53.2	53.5	٠.	78.5	12 - 0	124	36		P 10/9.3
127	55.4	55.4	١.	_a 93.3	12 - 1	138	W 4	A 11 Ch 16/12	P - 11/12
139	57.6	57.5	+ :	107.4	19 - 0	154	200	h 17	P 36/28.3
151	61.8	59.5	+ 2.3	121.1	24 - 0	168	$\frac{1}{2}$	- 12	
163	63.9	61.4	+ 2.5	129.2	27 - 0	182	77	14 - 9 S	14 - 7 S
174	65.2	63.2	+ 2.0	137.2	28 - 0	202	9 7 7 7	16 - 6 S 207	15 - 8 S
187	65.7	65.4	∵	144.0	ı	211	$\omega \omega$	ω	16 - 0
199	6.59	67.4	- 1.5	159.2	28 - 0	224	19	103 Iowa	
211	66.4	69.3	- 2.9	144.2	ı	227	204 1 21 61 227h	108 Shank 73	s 16-3
^a Cycle ^b Refer	^a Cycle break ^b Refer to Index	ex	Additional	l data:	Stanford B Regression	Binet 7	7.41-90;	8.81-106; 6-197;,14.	15.11- 08-207
)	, s , s , s , s , s , s , s , s , s , s	† O T •	01 + 04.0	

M; 11/1/16; It; R; III

2961

Case No.

		Computed	He to t		No. of Prem.) 	M ()	Achievement	ement ^b
Age	He1ght	Height	Deviation	Weight	Teeth.	Age	Age	Read	Arith.
78	6.44	44.8	+	46.7	1 - 1	87	80a		P 4/2.3
96	46.7	46.9	∾.	52.0	2 .	98	94a	Н 10/0	P 2/6
102	48.7	0.64	۳.	58.9	0 . 9	111	07	Н 12/8	P 7/8.5
114	50.9	51.0	2.	62.8	8 - 4	124	\dashv		P 7/8.5
126	52.8	53.1	5	4.99	12 - 1	136	122b 136c	A -7 Ch 13/9	P -12/9.8
138	24.7	55.2	.5	75.6	16 - 0	144	<u></u> Ч ГО.	ch 15/11	P 38/20.3
150	56.7	57.3	9.	81.8	19 - 0	157	4 0	ν ν Θ'	
162	7.09	59.4	+ 1.0	104.5	54 - 0	168	$\omega_{\mathcal{A}}$	14 - 11 S	14 - 3 S
174	63.6	61.5	+ 2.1	126.6	28 - 0	182	$\infty \infty$	15-5 S	12-8 S
186	8.49	63.5	+ 1.3	134.4	28 - 0	198	7	15 - 11 Iowa	13 - 2
198	65.4	65.6	ر. د	138.9	28 - 0	219	\sim	20 Iowa	
210	65.5	2.79	2.5	140.5	ı	227	1981 2041 805	81 Shank	S - C
							J	}	ו ר
acycle brose	acycle break		Additional	ıl data:	Stanford B	Binet: 12	.45-172	E -	

DRefer to Index

Regression equation-- .17364T + 31.25

M; 4/10/16; NE; M; I

23; 9.92- 67-210.	; 8.79 - 1 8-197; 12. 6T + 30.18	.54 - 98 .58; 11.9	rd Binet 7 1 sionequation	Stanford Regressic	ıl data:	Additional	×	^a Cycle break ^b Refer to Index	aCycle ^b Refer
	Shank 95	$^{\prime\prime}$ 0 \pm 1	227	58 - 0	121.0	3.0	70.4	4.79	199
	157 108a 108	210h 1918 360	222	28 - 0	123.7	- 1.3	68.2	6.99	188
16 - 7	15 - 10 Iowa	$\mathcal{D}_{\mathcal{U}}^{\mathcal{U}}$	210	28 - 0	113.1	6·	65.5	7.99	175
4-1	7 -	7 T	194	28 - 0	109.6	+ 2.5	63.1	65.6	163
တ		7 T	180	27 - 0	100.3	+ 2.7	6.09	63.6	152
P 52/53	14	4 () ל על י	161	26 - 0	93.3	+ 1.5	58.3	59.8	139
P -15/15	A - 11 Ch $14/14$	v = 0	143	14 - 8	82.9	<u></u>	56.0	55.6	128
P 12/12	,	となって	123	13 - 1	a 73.4	9.	53.4	52.5	115
P 12/10	н 16/20	970	105	12 - 1	62.0	ω.	51.2	50.4	104
P 6/6		98	87	8 - 4	52.0	<u>.</u> ن	48.6	48.3	91
P 7/4.8			65	6 - 1	9.74	8.	46.7	45.9	82
Arith.	Read	Age	Age	r ap ce Teeth	Weight	Deviation	Height	Height	Age
ment ^b	Achievement ^b	11	العال م ا م ا م	No. of Prem.		4	Computed		

M; 6/13/17; NE; B; III

11.58-172.	10.73-153; 1641T + 28.77	3-113; 19	Binet7 on equati	Stanford Regressic	al data:	Additional	×e	le break er to Index	acycle k ^b Refer t
Sch 51	Iowa 123	\sim \sim		58 - 0	131.0	1.0	67.3	66.3	196
	IOwa 100	1000 1000 1000 1000 1000 1000 1000 100		28 - 0	125.9	9.	6.49	65.5	184
)		9-		28 - 0	115.1	+ 1.6	62.6	64.2	172
	ı	∞		19 - 0	95.7	+	60.2	2.09	160
S - 7-	1	$\circ \circ -$		13 - 0	a 79.6	- 1.1	57.8	56.7	148
P 36/43.5	$\frac{1}{2}$ Ch $\frac{15}{13}$	1 00 CC		12 - 0	71.0	∞.	55.5	24.7	136
P -13/13.4	,	$\neg Q \vdash$		12 - 0	66.2	7.	53.1	52.7	124
P 12/18.8		しけっ		10 - 2	59.5	1	50.8	50.7	112
P 10/7.3	н 17/13	0.00	1	7 - 9	52.9	0.	7.87	48.4	100
P 8/4.3	г/т н	\circ	1	В В	49.4	+	46.1	46.4	88
P 2/1.5		75a	ı	0	44.8	+	43.7	0.44	92
ent and the second seco	Achievement Read Ari	Mental Age	Skeleton Age	Perm. Erupted Teeth	Weight	Height Deviation	Computed Height	Height	Age
				No. of					

M; 2/5/17; NE; R; III

		ر م ا زرهن ک	н 4		No. of Prem.	מס+סרסאף	M τ σ Γ σ	Achievement	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age.	Age	Read	Arith.
92	45.9	45.6	۴.	43.2	5 - 1	89	82a		P 6/4
87	48.4	6.74	+	50.1	6 - 2	79	97a	H 11/4	P 9/6.5
66	50.4	50.5	٠.	55.1	10 - 3	93	H	9/2 н	P 6/8.3
111	52.9	53.1		58.4	12 - 4	106	$r \sim 10^{\circ}$	٢	P 11/7.8
123	55.2	55.6	7.	87.8	20 - 3	118	ω ω -	CH 6/8	P - 9/11.5
135	57.4	58.2	ω.	74.1	28 - 0	131	$+ \infty$		P 24/29.5
147	59.8	8.09	- 1.0	a79.8	28 - 0	144	ロモレ	ı	ຜູ
159	63.9	63.4	+	7.76	28 - 0	157	ントレバ	! ⊣ (ı ⊣ (
171	67.3	0.99	+ 1.3	113.3	28 - 0	171	J / L	י ו ע	N I V (
183	69.3	68.5	∞ +	118.8	28 - 0	190	- OU L		1 N =
195	70.2	71.1	6.	130.1	28 - 0	199	1,0n 1998 1921	14 - 4 Iowa 49	14 - 4 Sch 43
^a Cycle ^b Refer	bre	ak Inde x	Additional	al data:	Stanford Regressic	Binet on equati	12.21- 14 on214	5 76T + 29.2	3

M; 12/20/16; NE; B; III

		Computed	He isot		No. of Prem. Erupted	Skeleton	Menta ∫enta	Ach1evement ^b	ment ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
81	45.8	45.7	+	50.7	7 - 0		83a		P 3/1.5
76	0.84	48.1	١.	56.4	7 - 9		66	Н 2/1	P 5/4.3
106	50.1	50.2	۲.	62.4	O I &		100		P 3/4.5
118	51.8	52.4	9.	6.79			102c		P 4/7
130	53.7	54.6	6.	76.3	18 - 0		1 (Λ) (C		P -10/9.3
142	55.8	56.7	6.	82.7	23 - 0		\mathcal{N} \mathcal{N} \mathcal{N} \mathcal{N}	ıΩ	P 6/28
154	58.9	58.9	0.	4.96	25 - 0		4 00 c	1	_
166	63.1	61.1	+ 2.0	115.3	28 - 0) † C	1	ı ⊣ ,
178	65.7	63.2	+ 2.5	126.8	27 - 0		\mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U}		 -
190	66.3	65.4	6.	137.6	28 - 0		77	-	⊣ (
202	67.1	67.5	7.	143.8	28 - 0		\mathcal{D}	t	i N L
214	67.2	7.69	- 2.5	148.0	1		1091 201 1 197h	Shank 47	000 100 100 100
^a Cycle ^b Refer	^a Cycle break ^b Refer to Index	lex	Additional	al data:	Stanford Regress10	Binet-ll on equati	.24-114; on180 ²	11.96-127; 49T + 31.09	13.20-149;

APPENDIX B .

STATISTICAL ANALYSIS OF DATA OF LATE MATURERS

167	0 .1747T + 30.97	5-16	Binet 12.3 n equation	Stanford Bi Regression	ul data:	Additiona	æx	le break er to Index	^a Cycle ^b Refer
13 -5	Shank 42	2311 218h	198	I	146.9	+	67.8	68.5	211
S C D	155 IOWa 160	2700 2178	182	28 - 0	144.9	+ 1.1	65.7	8.99	199
2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	I 4 L L C V C C C C C C C C C C C C C C C C	–∞ c	169	26 - 0	121.1	1.	63.6	63.5	187
ι V (ı	$-\infty$	155	25 - 0	108.9	- 1.0	61.5	60.5	175
. → (ı	~ 1	142	25 - 0	7.56	ω.	59.4	58.6	163
	ا س	\sim $_{ m L}$	129	23 - 0	85.8	ı īČ	57.4	56.9	151
P 28/29.3	ch 17/12	したて	118	17 - 0	74.7	۳. ۱	55.3	55.0	139
P - 8/8.3	ch 17/8	トヤト	107	15 - 0	68.1	. 1	53.2	53.1	127
P 7/8		0 / 0 10 / c 10 / c	ı	11 - 3	62.0	+	51.1	51.2	115
P 9/8	Н 17/9	\circ	84	8 - 1	54.7	† +	0.64	4.64	103
P 5/6.3	Н 12/5	100a	72	7 - 7	50.3	+	46.9	47.2	91
			58	0 - 2	45.9	+	8.44	6.44	42
Arith.	Read	Menta Age	Age		Weight	ığı ati	Height	Height	Age
ment ^b	Achievement ^b	l,	7/50 to 10	No. of Prem.		He₁øh+	Complited		

M; 8/18/16; NE; M; III

		Complifed	H 4 7 7 7		No. of Prem.	3keleton	Σ Ω τ	Achiev	Achievement ^b
Age	Height	He1ght	a t	Weight	Teeth	Age	Age	Read	Arith.
77	41.2	41.8	9	9.04	0 - 0	ı	57a		P 4/2.5
100	44.8	2.44	+	9.74	6 - 2		86a	н 6/11	P 6/6.5
111	46.5	46.1	7.	53.1	10 - 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
123	0.84	7.74	٠.	56.2	14 - 2		108c	$\frac{A}{Ch} - \frac{4}{4}$	P 3/8.3
135	49.5	49.2	+	55.8	18 - 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P 26/12.8
147	51.1	50.8	۳. +	65.0	21 - 0		136c	0	ω ,
159	52.3	52.3	0.	68.8	25 - 0		130e 140f	ı	
171	53.4	53.8	7	73.6	ı		160 e 142h	ı	1
183	54.9	55.4	.5	a 82.2	ı		100	S S S S S S S S S S S S S S S S S S S	9
195	56.6	56.9	٠	- 89.1	27 - 0		1 60 a	12 + 4	11 0
208	0.65	58.6	77.	0.66			1831 172h	Shan k 50	S 11-11
aCycle bRefer	le break er to Index	3ex	Additional	al data:	Stanford Regressic	d Binet 8.	43-92; 128	9.57-106. 04T + 31.9	3.

1	6
-	\sim

		Computed	Height		No. of Prem. Erupted	Skeleton	Mental	Achievement ^b	ment ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
72	47.7	48.0	e	8.44	0 - 0		72a		P 3/.8
84	50.3	50.1	٠.	9.67	0	ſ	$-\alpha$	9/8 н	P 4/3.8
96	52.5	52.3	٠.	55.6	4 - 2	I	0/0	н 18/12	P 8/6
108	54.8	54.4	††• †	6.09	9 - 2		ラス		P 9/8.8
120	56.7	56.6	+	9.99	13 - 0		37 44 44	10,	P - 9/11
132	59.1	58.7	₹	73.0	14 - 0		300	. ┌	P 24/46.3
144	2.09	6.09	٠	82.5	14 - 0		ン ク 7	13	
156	62.8	63.0	α.	89.1	21 - 0		00 00/	1	12 - 5 S
168	64.3	65.2	ا ن	100.5	24 - 0		100	11 - 6	13 - 6
180	4.99	67.3	6.	118.6	27 - 0		$\omega \alpha'$	Iowa	
192	9.69	69.5	+	132.7	27 - 0		300	129 Iowa	
205	73.0	71.8	+ 1.2	138.7			2281 2461 244h	1 <i>62</i> Shank 89	s 16 - 8
aCycle ^b Refer	le break er to Index	lex	Additional	nal data:	Stanford Regressic	Binet 1	0.41-142 n179	; 11.20-160 17T + 35.08	169

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# C & # O H		No. of Perm.	ļ	کر د د د	Achievement ^b	ment ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
19	43.3	42.7	9.	39.7	0 - 0		76a		P 3/1.8
89	44.8	7.44	ℸ .	43.4	7 - 0		86a		P 3/2.3
102	46.9	46.7	۲.	48.1	ı		_ O) ⊦		P 7/7.3
113	48.5	9.84	١.	50.1	13 - 0		\dashv \bigcirc \vdash		P 11/8.8
125	50.7	50.6	+	56.7	13 - 0		$\dashv (V) \in$	A - 0 Ch 11/8	P -11/8
137	52.2	52.7	1	62.6	17 - 0		コオロ	ch 13/10	P 8/26.8
149	53.7	54.7	- 1.0	65.0	22 - 0		$1 \odot C$	0 I	r
161	55.9	56.8	6.	70.8	24 - 0		~ W ^		ı
173	57.9	58.8	6.	a 77.0	27 - 0		\sim \sim \sim	I	ı V (
185	61.3	6.09	† † † † † † † † † † † † † † † † † † †	7.06	I		$\nu \sim 0$	ı	1 N =
197	64.3	65.9	+ 1.4	114.2	28 - 0		$\supset \vdash \vdash \cap \cap$	V • C1	7 † T
209	65.3	65.0	۳. +	127.4	1		1951 212h	Shank 65	
aCycle bRefer	le break er to Index	e x	Additional	al data:	Stanford B Regression	Binet 7.29 12.9 on equation	- 88; 8 6-157. 1712,	.62-113; /T +29.2	9.72-123;

		Computed	H P TCP		No. of Perm.	Skeleton	Mente €	Achiev	Achievementb
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
72	46.1	46.4	۳.	49.4					P 2/2.5
86	48.5	48.3	+	50.9	4 - 2		90b		
98	50.6	50.2	77.	59.1	7 - 9		~ \psi (Н 11/8	P 8/4.5
110	52.6	52.2	77.	7. 49	8 - 7		\supset \vdash \vdash		P 7/5.5
122	54.4	54.1	+		16 - 0		-1 ($\sqrt{1}$	† ~	P - 12/9.5
134	56.3	56.1	÷	75.0	18 - 0		ンオニ	Ch 12/11	P 6/23.8
146	57.8	58.0	5.	78.7	54 - 0		1 rU∹	o '	
158	59.3	59.9	9.	86.7	56 - 0		4 M/	O	•
170	61.0	61.9	6.	91.7	25 0		\mathcal{O}/\mathcal{O} .	ı Ou	1 (1
182	62.6	63.8	- 1.2	7.79	56 - 0		000	13 - 7 Iowa	12 - 3
194	62.9	2:59	٠. +	115.5	28 - 0		\sim \sim \sim	U V V W W W	Sch
206	69.3	67.7	+ 1.6	131.2	1		1921 1921 167h	o4 Shank 50	8 8 13 - 5
^a Cycle ^b Refer	le break er to Index	e ×	Additional	al data:	Stanford Regressi	d Binet	7.57-92 on16	; 11.31-132 142 T + 34.	. #

		(m)	H 0 + 0 H		No. of Prem.	Skeleton	M F e + c	Achlevement	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
77	43.6	43.9	٠.	43.2	1 - 0	99	74a		P 4/.8
87	45.7	45.6	+	48.1	0 9	78	80a		P 3/2
66	8.74	47.5	۴.	52.9	10 - 0	06	$-\infty$	0/1/ Н	P 2/1.5
111	8.67	4.64	7. +	56.7	10 - 1	103	900 900 117h	A 0	P 3/3.5
123	51.9	51.3	9.	60.2	12 - 3	115		Ch 1/1	P 5/4.5
135	53.2	53.3	١.	68.1	15 - 0	127	102c	Ch 4/2	P 6/10.3
147	54.8	55.2	7.	71.7	19 - 0	139	32	ე ი ! ⊀თ(
159	56.2	57.1	6.	78.9	54 - 0	150	139F) () () 	ນທ (
170	58.1	58.9	8.	a85.1	56 - 0		7 7 7 7 7	- 	ı
183	2.09	61.0	ا س	95.7	28 - 0		$\frac{3}{2}$		
195	64.3	62.9	+ 1.4	114.2	- 0	182	1761. 1498 1351		
aCycle bRefer	le break er to Index	×e	Additional	al data:	Stanford Regressio	rd Binet 7. sion equation	17-70; 160	9.54-96; 1 75 T + 31.	2.39-125. 57

		Computed	Helent		No. of Prem.	Skeleton	Μ σ α	Achlevement	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	∆ge 	Age	Read	Arith.
7/2	42.7	43.6	6.	39.9	1 - 0	29	74a		P 6/2.5
83	9.44	44.8	2.	45.0	3 - 0	78	103a		P 7/4.5
96	46.8	76.6	+	0.64	6 - 3	89	91,	Н 16/18	P 9/6.8
107	48.5	48.1	7.	56.7	9 - 1	86	10 10 10 10	A 11	P 11/10
120	50.4	6.64	+	61.5	10 - 2	104	$\mathcal{V}_{\mathcal{O}}^{\mathcal{O}}$	ch 18/11	P -11/11.5
132	51.9	51.5	7. +	68.8	13 - 0	108	500 100 1		P 24/39.3
143	53.4	53.0	7. +	72.5	15 - 0	116	1 1 1 1 1 1 1 1	1	(
155	55.0	54.7	+	77.8	21 - 0	125	300	1	ι Υ ι
167	56.1	56.3	2.	82.2	26 - 0	135	1 1 1 1		ı
179	57.5	58.0	٠.	91.1	27 - 0	148	- IU (11 10 10 10 10	10 1
191	59.0	59.6	9.	a 95.3	28 - 0	161) (Λ () (Σ (α	oc Iowa oc	
203	61.6	61.3	۳. +	111.6		175	1901 2071 212h	shank 65	S 16-10
aCycle bRefer	le break er to Index	X	Additional	al data:	Stanfor Regress	rd Binet sion equati	8.17-98; on13	11.46-133; 738T + 33.4	12.15-141.

					No. of				
,		Computed	Height		Prem. Erupted	Skeleton	Mental	Achievementb	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
83	7. 77	44.3	+	46.7	8 - 2		76a		P 4/1.8
96	46.5	46.5	0	51.6	10 - 4		88a	H 4/3	P 4/4.8
108	49.1	48.6	+	6.09	15 - 3		90° 85° 90°	Н 9/10	P 5/5.3
120	50.7	50.7	0.	65.5	19 - 2		\circ	A - 2	P 3/6.8
132	53.1	52.8	۳. +	9.07	54 - 0		$\cup \cdots$		P -10/10.8
777	54.9	53.9	0.	77.2	27 - 0		$\mathcal{O}^{(r)}$	π ώω	P 20/26.3
156	56.6	57.0	77.	87.1	28 - 0		-1	N N O	
168	58.5	59.1	9.	95.6	28 - 0		マ ロ	11 - 2 S	13 - 5 S
180	60.2	61.2	- 1.0	100.3	28 - 0		\sim	11 - 11 S	13 - 1 S
192	63.1	63.3	2.	_a113.6	28 - 0		$\sim \omega$	13 - O Iowa	15 - 9
204	66.3	65.4	+	129.9	28 - 0		α α	76 Iowa	Sch
216	6.79	67.5	77.	138.5	I		1891 2011 183h	71 Shank 55	62 S 16 - 10
aCycle bRefer	e break r to Index		Additional	1 data:	Stanford Regressi	d Binet 9 ion equation	.54-10 50;	11.96-11 428T + 29	174 13.36-1

-		Computed	Height		No. of Prem. Erupted	Skeleton	Mental	Achievement	ent ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read	Arith.
73	43.8	43.9	۲.	7.67	7 - 0		73a		P 3/2
85	46.1	45.8	. ۴	54.7	7 - 6		77a	Н 10/0	P 4/3.8
26	47.8	47.7	+	0.09	8 - 5		92a		P 8/6.3
109	49.8	9.64	۲.	65.5	14 - 3		906 906	A - 7	P 10/8.3
121	51.9	51.6	∴+	72.3	22 - 0		96c	ch 14/9	P -11/12.3
133	53.5	53.5	0.	75.9	26 - 0		000 000 1000 1000	ch 18/18	P 14/47.3
145	55.0	55.4	7.	82.9	27 - 0		128c) 	(
157	26.7	57.3	9.	8.06	28 - 0		\dashv	ı	ι Υ -
169	58.5	59.2	7	97.5	28 - 0		113h	i	4 / I
181	9.09	61.2	9.	106.3	28 - 0		34 24	Iowa Iowa	0 N N N N N N N N N N N N N N N N N N N
193	63.9	63.1	+	124.4	59 - 0		$\frac{1}{2}$	Iowa nowa nar	1 Л
205	65.7	65.0	≻·	134.0	ı		1201 153h	Shank 78	s 16 - 6
aCycle bRefer	bre	ak Inde x	Additional	al data:	Stanfor Regress	rd Binet 7. sion equation	7.52-92; on160	11.06-140; 029 T + 32.	12.49-162.

		Computed	Hei	He1ght		No. of Perm. Erupted	Skeleton	Mental	Achievement ^b	ment ^b
Age	Height	Height	Devi	Deviation	Weight	Teeth	Age	Age	Read	Arith.
29								67a		P 2/1
79	46.1	0.94	+	٠,	7.84	0 - 1		89	Н 4/3	P 5/1.5
91	48.5	78.0	+	ŗ.	52.9	0 - 7		1022 952 9.00	Н 10/11	P 7/4.8
103	50.2	50.1	+	۲.	58.0	10 - 0		\sim		
115					62.2	12 - 0		118c	~	P 14/14.3
127	54.3	54.3		0.	6.79	12 - 0		1319 160c	A - 10 Ch 16/13	P -40/59
139	56.1	56.3	1	۲.	75.2	19 - 0		1468 1920	,i 1	
151	57.9	58.4	1	5.	81.8	21 - 0		201e 195f	16 - 6 S	15 - 9
163	59.8	60.5	ı	2.	88.2	25 - 0		239e 208f	16 - 1	16 - 3
175	61.9	62.6	1	2.	95.7	27 - 0		196h 2198	Iowa	
188	65.3	8.49	+	5	114.9	í		206h 236g	130 Iowa	Sch
199	9.79	2.99	+	o.	131.4	ı		2131 2311 255h	157 Shank 84	65 S 18-8
aCycle ^b Refer	le break er to Index		Add	Additional	l data:	Stanford B Regression	d Binet 7.01 10.8 ion equation	7.01-100; 10.84-164 on172	8.08-129; 69T + 32.3	9.99-156;

		Computed	Helsht		No. of Perm. Erupted	Skeleton	Mental	Achievement ^b	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
83	0.94	9.97	9.	9.74	0 - 9	2.2	100		P 5/6.8
63	6.74	48.1	. 2	9.67	7 - 9	87	90a 120a		P 10/10.3
106	50.2	50.0	∼+	54.5	11 - 3	101	ンた	Н 17/19	P 12/11.5
117	52.0	51.7	۴	58.2	15 - 3	113	$\gamma \odot \gamma$	A - 17	
129	54.0	53.4	÷	62.2	18 - 4	125	$^{\circ}$	ch 22/13	P - 14/14.3
141	55.6	55.2	7.	6.59	25 - 0	131) <u>-</u> + -	ch 28/16	P 66/69.3
153	57.4	57.0	7. +	68.8	27 - 0	139	$t \circ c$	⊣	V
165	58.3	58.8	·	73.2	58 - 0	150) [=	∪ Ω . U Γ. I ∪	N N N
177	60.1	9.09	i	79.2	28 - 0	156	ナルト	۲.۰	I _
189	61.9	62,4	ا ت	87.8	I	166	~ W =	Lowa	
201	64.2	64.2	0.	0.76	28 - 0	179	t ma	$\nu \circ \iota$	
213	66.5	0.99	+	102.3	ı	187	2521 2521 230h	104 Shank 91	s 17 - 8
acycle ^b Refer	cle break fer to Index	le x	Additional	al data:	Stanford Regressic	Binet on equatio	.28-100	; 12.97-202 60 T + 34.1	177

		,	+ 3 7 7 1		No. of Prem.	201010	ک ر ۲	Achievement	ement ^b
Age	Height	Height Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith,
77	45.9	46.3	7	46.1	0 - 0	78	64a		P 5/2.5
87	6.74	47.9	0.	48.5	7 - 0	89	87a		P 6/3.3
100	50.1	50.0	+	54.2	4 - 2	102	5 5	Н 11/10	P 7/4.3
111	52.0	51.7	۳. +	57.6	8	114	コヤクラウ		P 8/6.8
124	54.0	53,8	÷	62.8	10 - 2	125	ノクト	ch 6/7	P -10/9
135	55.7	55.6	+	68.8	14 - 0	132	1 77 C	ch 10/8	P 26/23.3
147	57.7	57.5	+	71.9	18 - 0	145	ンケって	ສ ໙ ະ າ 1	(
159	9.69	59.5	+	76.5	26 - 0	156	0 O/O 1 OJ O	1	ı
171	61.0	61.4	7.	83.3	27 - 0	161	000	S I S	N
183	62.6	63.3	<u> </u>	88.2	28 - 0	168	$\frac{1}{2}$	15 l	1 (V
195	65.1	65.3	2.	105.0	28 - 0	171	000	15 - 11 Iowa	13 - 1 Sch
207	68.2	67.2	+ 1.0	114.9	ı	180	1 けん	Shank	0 =
222	69.3	9.69	e.		ı	207	2191 240h	40 Shank 60	i i
aCycle bRefer	cle break fer to Index	lex	Additional	al data:	Stanfor Regress	d Binet ion equat	6,32-80; 7 1on160	.49-83; 1 92 T + 33	2.49-165.

•

ì

M; 3/25/16; NE; M; IV

		Сомонтед	Height			Skeleton	Mental	Achlevement	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
82	46.5	47.1	9	46.5	0 - 7		79a		P 3/1.8
92	48.5	48.8	۳. د.	51.6	7 - 7		89a		P 6/5.5
104	51.3	51.0	÷	56.4	8 - 2		\circ	H 11/11	P 8/7.3
116	53.6	53.1	+	62.6	8 - 5			A - 4	P 10/7.8
128	55.4	55.3	+	68.1	12 - 7		ィピィ	ch 10/13	P -10/103
140	57.6	57.4	· 5	75.9	23 - 0		⊣ rV ∹	h 1	P-8/37.3
152	0.09	59.5	+	8.62	27 - 0		$1 \odot 1$	י ע	r
164	61.8	61.7	+	7.48	28 - 0		$-\omega$ \circ	1 N (ı
176	63.2	63.8	9.	93.3	28 - 0		$1 \infty 0$	ι Υ ι	ι Υ (
188	65.7	6.59	2.	a	28 - 0		\sim ∞ 0	IO wa 10 wa	Z - Z -
200	68.6	68.1	+	121.3	28 - 0		000	lowa Owa	
212	8.69	70.2	7	132.3			1981 205h	D)	
aCycle ^b Refer	Bre to	ak Index	Additional	al data:	Stanford Bi Regression	Binet 7.	58-86; 17	12.96-163. 812T + 32.4	17

		Computed	Helght		No. of Prem. Erupted	Skeleton	Σ σ τ τ α	Achievement ^b	ment ^b
Age	Height	Height	Deviation	n Weight	Teeth	Age	Age	Read.	Arith.
22	45.0	9.44	7.	42.1	1 - 0	61	74a		P 3/1.8
86	46.7	46.5	+	45.4	7 - 2	72	81a	0/0 н	P 4/1.5
98	48.6	78.6	0.	50.7	8	83	103a	H 2/4	P 5/4.3
110	50.8	50.7	+	57.6	ı	06	107b 98c	A - 2	P 7/5.5
122	52.9	52.7	÷	61.7	15 - 1	26	116b 104c	Ch 1/1	P -7/8.8
134	9.45	54.8	. 2	68.6	10 - 0	107	92d 120c	ch 5/3	P 0/10.3
146	56.7	56.9	α.	72.8	18 - 0	119	989 1360	٦ ا	ഗ
158	58.4	59.0	9.	81.4	23 - 0	127	0	1	10 · S
170	60.5	61.0	ا ت	86.9	27 - 0	141	32	ഗ വ 1 ത	11 - 2 S
182	62.4	63.1	7	92.6	28 - 0	152	53	10 - 1	ı N
194	65.0	65.2	2.	103.2	28 - 0	165	145'n 167g	(r) 	12 - 6 S
506	68.1	67.2	6.	119.1	ı	178	24 24 24 24 24 24 24 24 24 24 24 24 24 2	12 – 10 Shank	a
219	70.1	69.5	9.	130.3	I	191	αI	75	13-3
aCycle bRefer	aCycle break ^b Refer to Index	e ×	Addition	nal data:	Stanford Regress	rd Binet12. sion equation	14-115	266T + 31.0	180

M; 4/5/17; NE; B;

		Computed	Helght		No. of Prem. Erupted	Skeleton	Mental	Achievement ^b	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
78	42.8	42.8	0.	36.6	0 1		73a		P 2/1.5
90	45.0	77.7	~· +	39.9	0 -2		$\frac{1}{2}$	Н 2/0	P 7/2.5
102	47.1	46.8	<u>~</u> +	44.3	8		$\frac{1}{2}$	0/6 н	P 6/5
114	49.2	48.8	7.	47.8	8 . 2		400	(P 9/6.3
126	50.9	50.8	+	54.0	16 - 0		$\frac{1}{2}$	ch 3/3	P -7/7
138	53.0	52.9	+	56.2	50 - 0) η η Ο α	$\frac{A}{ch} = \frac{0}{7/10}$	P 22/17.8
150	54.4	54.9	ı v	63.1	22 - 0		$\frac{1}{2}$	† 	r
162	56.1	56.9	ω.	7.79	25 - 0		$\mathcal{O}_{\mathbf{U}}$	1	ı → ,
174	57.7	58.9	- 1.2	a 73.6	27 - 0		$\sum_{i} O_{i}^{i}$	1	S .
186	60.7	6.09	2.	7.48	26 - 0		$\frac{\infty}{100}$	Iowa Iowa	
198	63.7	65.9	∞. +	99.5	27 - 0			OO Ho∝a r	N C
210	65.6	6.49	· +	115.3	ı		1907 1904 195h	55 Shan k 51	S 15 -4
aCycle bRefer	Bre to	ak Index	Additional	al data:	Stanford Regression	Binet on equati	7.93-84;]	11.69-125. 18 T + 29.7	181

18	1. 5054T + 31.0	12.4-15 on1	d Binet ion equati	Stanford Regressic	al data:	Additional dat	lex	^a Cycle break ^b Refer to Index	acyc bRe1
s 14 - 6	Shank 36	99	178	ı	116.4	+ 1.7	62.7	4.49	210
Sch 50	Iowa 60	ころの	165	28 - 0	101.4	- 1	6.09	60.8	198
L	1	$\frac{1}{2}$	156	28 - 0	a 90.8	- 1.1	59.1	58.0	186
1	1	968	148	28 - 0	2.48	- 1.0	57.2	56.2	174
ا ر	ı	1 m/c	143	28 - 0	78.3	۲.	55.4	55.1	162
د ا ا		ンサク	135	54 - 0	9.07	۲.	53.6	53.5	150
P 36/46	Ch 15/8	1450 1450 13450							138
P -13/11.8	- (-) (1) (2 ,	111	13 - 2	9.09	۳. +	50.0	50.3	126
P 11/9.8	2 - 0	とりて	101	12 - 2	53.8	cu .	48.2	78.4	114
P 11/10	H 14/12	96	87	8 - 4	48.3	+	46.4	46.7	102
P 8/2.3	H 10/2	97a	77	7 - 5	7.94	+	9.44	44.7	06
P 5/3		83a	61	2 - 0	42.1	0.	42.8	42.8	78
Arith.	Read.	Age	Age		Weight	Deviation	Computed Height	Height	Age
ent ^b	Achievement	ν Σ 1 2 4 1 2	2/2 4/2 4/2	No. of Prem.		H 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ر ما درسون ما		

187	38T + 29.	10.97-125 on177	Binet on equati	Stanford Regress10	ıl data:	Additional	×	le break er to Index	aCycle bRefer
S 15 - 2	Shank 69	204i 205h		ı	120.0	+ 1.0	65.9	6.99	205
14 - 10	L S L S S S S S S S S S S S S S S S S S	2000 2004 2004 2004		28 - 0	105.8	9.	63.6	64.2	192
) 		100/ 1980 1980		28 - 0	89.5	1.1	61.4	60.3	180
। ପ	13 8 	158f		26 - 0	81.1	- 1.1	59.3	58.2	168
1	S .	16/e 145f		54 - 0	76.5	ή	57.2	56.8	156
,		1,480 0,000 1,480		23 - 0	70.1	α.	55.0	54.8	144
P 0/21.3	$\frac{A - 12}{Ch - 26/?}$	1500 1500		I	63.7	∞. +	52.4	53.2	129
P-8/6.3	$\frac{A}{ch} = \frac{6}{17/3}$	124c		14 - 0	58.7	0.	51.0	51.0	121
P 7/6.8		$\supset OU_{\epsilon}$		12 - 0	52.3	+	48.7	6.84	108
P 3/1.8	н 7/4	OOO		9 - 1	9.74	₹	46.5	46.7	96
P 5/2.3	г∕о н	78a		2 - 3	43.7	↔+	7.77	9.44	84
P 3/1		61a			39.2	٠	42.3	42.0	72
Arith.	Read.	Age	Age	Teeth	Weight	Deviation	Height	Height	Age
nent ^b	Achievement ^b	į.	Skeleton	No. of Prem. Erupted		Height	Computed		

M; 10/19/17; NE; B; III

Case NO. (U)

		Computed	+ \. \. \. \. \. \. \. \. \. \. \. \. \.		No. of Prem.		r	Achiev	Ach1evement ^b
Age	Height	Height	Deviation	Weight	rupled Teeth	okeleton Age	Mental Age	Read.	Arith.
75	39.8	39.6	+ -	41.0	0 - 7		57a		P 1/.3
87	41.9	41.5	7.	44.5	η - η		77a	Н 3/3	P 3/2.3
66	43.9	43.4	+	47.2	7 - 9		\sim	0/5 н	P 5/1.8
111	45.6	45.4	+	53.4	10 - 1		348 841		P 4/2.8
123	47.1	47.3	₹1	56.0	10 - 5		\sim 0	A - 3 Ch 0/3	P -5/2.8
135	6.84	767	۳. ۱	61.3	19 - 0		\sim		
147	50.4	51.1	7	65.5	25 - 0		02	ഗ	ω
159	52.2	53.0	∞.	71.0	28 - 0		100e 112e	0 0 1 0	10 - 1 S
171	54.0	54.9	6.	78.7	28 - 0		118f	10-4 S	10-2 S
183	56.7	56.9	\ \ \ ?	87.3	28 - 0		124h 131g	10 s	10 s
195	59.8	58.8	+ 1.0	96.6	28 - 0		135h 126g	10 - 6 S	10 - 11
207	61.5	60.7	ø. +	120.6			1441	11 - 4	10 - 10
^a Cycle ^b Refer	le break er to Index	ex	Additional	ıl data:	Stanford B Regression	Binet Bon equation	2.29-1 1	12 5973T + 27	27.63

		Computed	Height		No. of Prem. Erupted S	keleton	Mental	Achievement ^b	ementb
Age	Height	Height	Deviation	Weight		Age	Age	Read.	Arith.
82	41.9	45.6	2	44.3	0 - 0		77a		P 1/2.8
76	44.5	44.5	0.	48.1	0 - 1		83a	Н 3/4	P 4/5.3
106	46.2	46.3	. 1	52.3	0 1 9		98a		P 7/9
118	48.3	48.2	+	58.4	ı		010	Н 8/5	P 9/8.3
130	50.5	50.1	→	8.49	13 - 1		\neg	A - 4 Ch 4/8	P -10/10.5
142	52.4	52.0	77.	9.62	20 - 0		\neg		P 20/29.5
154	54.6	53.8	∞. +	86.4	21 - 0		∇	A 8 - 0	
166	56.0	55.7	∵	7.68	26 - 0		1000	12 - 1 S	11 - 9 S
178	57.4	57.6	∾.	0.79	28 - 0		ω 10	12 - 5 S	14 - 1 S
190	58.8	59.5	7	107.4	28 - 0		$\omega \sim$	12 - 5 Iowa	13 - 4
202	61.1	61.3	Z	116.0	58 - 0		184h 192g 192i	54 Iowa 69	
aCycle bRefer	le break er to Index	×e	Additional	.1 data:	Stanford Regressio	Binet 12 on equation	12.94 - 1 on15	50. 628 T +	29.78

M; 6/30/16; It; R; V

case No. dos

(~)	
)	

M; 5/19/17; SE; B; IV

		Computed	He i ⊕bt		No. of Prem.	Skeleton	M tra fe	Achievement ^b	nent ^b
න ඉ	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
77	41.5	41.6	- 1	46.1	0 - 2		83a		P 5/2
89	43.7	43.4	٠. +	42.1	0 - 9		- (i)	H 14/19	P 5/4.3
101	45.7	45.3	₹ +	45.4	7 - 9		2 Q C	Н 17/14	P 7/7.3
13	4.74	47.1	<u>.</u> +	50.3	10 - 1.		0.00	0	P 7/10.8
.25	8.87	48.9	٦.	55.6	14 - 0		$\frac{1}{2}$	ch 12/7	P -10/13
137	50.6	50.7	1	59.1	54 - 0		クロン	A-13 Ch 14/5	P 24/43
617	52.3	52.5	. 2	4.49	26 - 0		000 $^{\circ}$	າ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ c c c c c c c c	Ć
161	53.7	77.7	<u> </u>	69.2	28 - 0		777	 I	-
173	55.2	56.2	- 1.0	a76.7	28 - 0		1 Cα 2 C3 t	IOWA IOWA Pir	TT - 2T
185	57.6	58.0	77.	87.8	28 - 0		1 th	IOWA Cor	Sch
197	61.5	59.8	+ 1.7	106.1	28 - 0		19(1) 2228 2041	163	1 V

Stanford Binet-- 7.80-101; 10.82-133; 12.03-164. Regression equation-- .15167T + 29.95 Additional data: aCycle break ^bRefer to Index

		Computed	Height		rrem. Erupted	Skeleton	Mental	Achievement ^b	ement ^D
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
81	45.8	45.9	٠.	46.5	2 - 0	78			p 2/2.8
06	7.74	9.74	+	49.4	0 - 9	89	88		P 9/4.5
103	50.3	50.0	+	53.4	8 - 3	102	108a 06r	Н 10/0	
115	52.6	52.2	7. +	59.8	11 - 1	114	114c	A - 8	P 10/8
126	54.4	54.2	· .	63.9	14 - 1	125	1340 1340	ch 11/5	P 12/10.
138	56.4	799	0.	68.4	17 - 0	137	146c		P 26/39.3
150	58.2	58.5	.3	73.2	54 - 0	ı	146c	ı	r
162	9.69	7.09	- 1.1	80.9	27 - 0	145	141e 157f	1	ı
174	61.9	65.9	- 1.0	87.8	28 - 0	156	106 e 174f	1	ı ⊣
186	9.59	65.1	+ .5	102.5	28 - 0	169	161h 1748 1605	14 - 5 Iowa 10	12 - 8
198	68.1	67.3	∞. +	115.8	28 - 0	180	177g	50 Пома 07	Sch
210	8.69	69.5	٠. +		ı	193	1961 1891 172h	0	8 8 13 -5

case No. 1030

	•	70+114m0	1 4 7 5		No. of Prem.	27010100	MoM Lo+αoM	Achie	Achievement ^b
Age	Height	compared Height	Deviation	Weight	Teeth	ט נו <i>ר</i> ונו	Age	Read.	Arith.
83	42.0	41.6	7. +	38.8	5 - 2	61	89a		P 5/5
76	0.44	43.4	9.	43.4	7 - 9	72	122a	н 12/10	Р 8/9
107	46.1	45.7	77. +	48.7	15 - 2	84	\O -	Н 10/16	P 10/10.5
119	0.84	7.7	۴.	53.4	18 - 2	95	$\dashv \alpha \alpha \alpha$	_	P 13/12.5
131	7.64	8.64	١.	57.3	20 - 3	107	ノナト	A-10 Ch 9/7	P +2/11.8
142	51.1	51.6	ا ان	61.7	27 - 0	120	~ (U 1^	Ch 15/9	Р 36/49
154	52.4	53.7	- 1.3	66.2	I	132	- (N 1	ر ا ا ا ا	(
166	54.5	55.8	- 1.3	72.5	28 - 0	145	\sim ∞ 1	ν γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	_
178	9.99	57.8	- 1.2	83.1	28 - 0	157	000	N 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	_ (
190	60.3	59.9	77.	101.9	28 - 0	173	$\mathcal{A} \cup \mathcal{A} \subset \mathcal{A}$	17-3 10wa	V-01
202	63.6	61.9	+ 1.7	120.8	28 - 0	186	$1 \omega \nu$	אן טאַנ מאַנ	
215	2.49	64.1	9.	130.1	I	197	23(1 240i 246h	ıíı Shank 73	S 17 - 11
acyc	aCycle break		Additional	al data:	Stanfor	d Binet1	2.88-189	E () r	

		Computed	Helght		Frupted	Skeleton	Mental.	Achievement ^b	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
75	45.8	7.94	6.	4.74	0 - 0		64a		P 2/.5
88	78.6	48.8	. 2	52.0	0 - 5		ω 72	H11/8	P 5/3.8
100	51.1	50.8	<u>«</u> +	58.2	8 - 2		1005 112a	н 16/13	P 5/7.3
112	53.5	52.8	· +	8.99	12 - 0		$\frac{1}{2}$	-	P 10/8.3
124	55.6	54.8	*	72.5	13 - 0		ンけていると	A-4 Ch 5/10	P -6/11.5
136	57.3	56.8	+ .5	78.9	16 - 0		5 6 7 6 7 7	ch 18/13	P 14/35.3
148	59.0	58.8	۲.	84.0	19 - 0		1 0 1 1	1	ı
160	9.09	8.09		91.7	54 - 0		69	ı N	ι α
172	62.0	62.8	∞.	101.0	26 - 0		80	13 S - 5	13 8 1
184	63.8	8.49	- 1.0	107.8	27 - 0		170h 193g	14 - 11 Iowa	15 - 0 Sch
196	66.3	8.99	.5.	126.3	27 - 0		α	73 Iowa	30 Sch
208	6.69	8.8	+ 1.1	146.9			α	86 Shank	ر 0
							9	22	

		Computed	H F	Ho t ⊕h+		No. of Prem.	Skeleton	M ↑ a +	Achievement ^b	ement ^b
Age	Height	Height	Devi	iation	Weight	Teeth	Age	Age	Read.	Arith.
69	41.9	42.0	1	.1	40.4	0 - 0		69a		P 0/.8
82	44.1	44.1		0.	46.5	4 - 1		86a 80a 7	н 1/0	P 2,7.5
93	45.9	45.8	+	۲.	51.6	6 - 3		102a 102a	h/8 н	P 7/6
105	6.74	7.74	+	α.	56.7	9 - 1		1000	(P 9/9.3
118	50.1	8.64	+	٣.	63.5	10 - 0		118c	A-2 Ch_0/5	P -10/11
129	51.9	51.6	+	ς.	70.1	12 - 0		7 0 C	A-2 Ch 11/8	P 40/46.8
141	53.5	53.5		0.	73.6	16 - 0		100c	ν ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	L
153	54.9	55.4	ı	·	78.3	28 - 0		1736 1535) 	υ (
166	56.7	57.4	I	7.	87.5	28 - 0		140e 162f	10 - 11 S	1
177	58.6	59.5	ı		103.2	28 - 0		176g 176g	11 - 11 Iowa 13	15 · 8
189	61.5	61.1	+	7.	113.3	28 - 0		2007 2007 2007 2008	4/ Iowa 27	
201	63.5	63.0	+	ŗ.	131.2	ı		1000 1000 1000 1000 1000 1000 1000 100	st Shank 39	S 18 - 11

۵	Arith.	5/3.5	8.9/2	7/9.3	9/6.5	12/11.3	66/52.5		ا ا	<u> </u>	†		
ement	Ar	다	Ъ 7	Ъ 7	д 6	P	Д	Ω۲	٦Ω,	⊣ () ∟			
Achievement ^b	Read.		6/11 Н	H 20/16	A - 9	Ch 15/11	ch 19/18	N L) 	1	Iowa Sowa	αλ Ιοwa Γο'	171 Shank
Mental	Age	75a	98 8 7 7	ן 100 - 50 מין		1300 1300 1300	1400 1400	1575 1575 1500	170f	1000 1000 1000	220g	1001 1081	1901
Skeleton	Age	1	I										
No. of Prem.	Teeth	2 - 2	4 - 5	10 - 0	10 - 2	12 - 1	20 - 0	23 - 0	28 - 0	28 - 0	28 - 0	28 - 0	
	Weight	41.5	45.4	51.2	57.1	6.09	4.99	73.6	78.7	a 85.1	104.5	123.3	138.7
He 1gh +	Deviation	7. +	+	+	+	۲.	۲	∞.	6.	- 1.6	2.	+ 1.6	+ 1.0
Computed	Height	42.6	44.8	0.74	7.67	51.4	53.5	55.7	57.9	60.1	62.3	64.5	9.99
	Height	43.0	45.3	47.5	76.67	51.5	52.8	6.49	57.0	58.5	62.1	66.1	9.79
	Age	92	88	100	112	124	136	148	160	172	184	196	208

Height Deviation Weight 47.21 56.0 49.0 .0 ,58.9 51.1 + .2 64.4 53.0 + .4 79.9 55.1 + .1 74.7 58.93 89.1 60.85 88.4 62.86 105.8 65.04 116.6 65.04 116.6			, α + 1. α m ο ς	- d ::	۶ ۲		No. of Prem.	Skeleton	Mental	Achie	Achievement ^b
47.1 47.2 1 56.0 49.0 .0 .0 58.9 51.3 51.1 + .2 64.4 53.4 53.0 + .4 79.9 55.2 55.1 + .4 79.9 57.0 56.9 + .1 74.7 58.6 58.9 3 89.1 60.3 60.8 5 88.4 62.2 62.8 5 88.4 64.6 65.0 4 116.6 67.7 66.9 + .8 138.9 69.2 68.9 + .3 150.8	Age	Height		Devia	tion	Weight	Teeth	Age	Age	Read.	Arith.
49.0 .0 58.9 51.3 51.1 + .2 64.4 53.4 53.0 + .4 79.9 55.2 55.1 + .4 77.0 57.0 56.9 + .1 74.7 58.6 58.9 3 89.1 60.3 60.8 5 88.4 62.2 62.8 5 88.4 64.6 65.0 4 116.6 67.7 66.9 + .3 150.8 69.2 68.9 + .3 150.8	84	47.1	47.2	1	1	56.0	0 - 8	82	77a		P 3/1.8
51.3 51.11 + .2 64.4 53.4 53.0 + .4 79.9 55.2 55.1 + .1 77.0 57.0 56.9 + .1 74.7 58.6 58.9 3 89.1 60.3 60.8 5 88.4 62.2 62.8 6 105.8 64.6 65.0 4 116.6 67.7 66.9 + .3 150.8	95	0.67	0.64	•	- O	58.9	10 - 4	06	76a	Н 3/5	P 2/.8
53.4 53.0 + .4 79.9 55.2 55.1 + .1 77.0 57.0 56.9 + .1 74.7 58.6 58.9 3 89.1 60.3 60.8 5 88.4 62.2 62.8 5 88.4 64.6 65.0 4 116.6 67.7 66.9 + .8 138.9 69.2 68.9 + .3 150.8	108	51.3		+	$lpha_{\cdot}$	7.49	15 - 3	100	83a		P 4/8
55.2 55.1 + .1 77.0 57.0 56.9 + .1 74.7 58.6 + .1 74.7 58.6 3 89.1 60.3 60.8 5 88.4 62.2 62.8 6 105.8 64.6 65.0 4 116.6 67.7 66.9 + .8 138.9 69.2 68.9 + .3 150.8	119	53.4	53.0	+	7	79.9	20 - 3	108	ン () ハ () ロ () ヾ		P 8/8.5
57.0 56.9 + .1 74.7 58.6 58.9 3 89.1 60.3 60.8 5 88.4 62.2 62.8 6 105.8 64.6 65.0 4 116.6 67.7 66.9 + .8 138.9 69.2 68.9 + .3 150.8	132	55.2	55.1	+	т,	77.0	23 - 0	120	1200 1200 1001	ch 4/6	P 8/11.5
58.6 58.9 3 89.1 60.3 60.8 5 88.4 62.2 62.8 6 105.8 64.6 65.0 4 116.6 67.7 66.9 + .8 138.9 69.2 68.9 + .3 150.8	143	57.0	56.9	+	۲.	7.47	28 - 0	129	1 T C C C C C C C C C C C C C C C C C C	9/6 už	P 26/46.5
60.3 60.8 5 88.4 62.2 62.8 6 105.8 64.6 65.0 4 116.6 67.7 66.9 + .8 138.9 69.2 68.9 + .3 150.8	155	58.6	58.9	ı	·.	89.1	28 - 0	140	136c 136c	A - 1 S 11-10	S 14-0
62.2 62.8 6 105.8 64.6 65.0 4 116.6 67.7 66.9 + .8 138.9 69.2 68.9 + .3 150.8	167	60.3		ı	i.	88.4	28 - 0	151	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	(
64.6 65.04 116.6 67.7 66.9 + .8 138.9 . 69.2 68.9 + .3 150.8	179	62.2	62.8	ı	9.	105.8	28 - 0	162	168e 153f	ı ⊣	ι Υ
67.7 66.9 + .8 138.9 . 69.2 68.9 + .3 150.8	192	9.49		ı	4.	9	58 - 0	172	154h 178g	12 - 11 ¹ Iowa	ا در
69.2 68.9 + .3 150.	204	7.79	6.99	+	∞.	138.9	. 28 - 0	182	102n 176g	o2 Iowa	4 S C C C C C C C C C C C C C C C C C C
	216	69.2	68.9	+	ω.	•	ı	193	1 000 000 000 000 000 000 000 000 000 00	51 Shank 47	٠ ٥ ٦ ١

					~	.5							
entb	Arith.	P 4/1.5	P 5/3.8	P 7/7.5	P 10/7.3	P 13/11	P 14/23	· (0 1 0 c	1	13 - 0		S 15 - 4
Ach1evement ^b	Read.		0/6 н	Н 12/6	,	A-6 Ch 12/4	A-0 Ch 15/10	κω; Ο τ) - T - C - C - C - C - C - C - C - C - C	0 L	14 - 14 - 10 - 10 - 10 - 10 - 10 - 10 -	OO IOWa D	o4 Shank 63
Mental	Age	76a	91a	116a 116a	1100	148c	1500 1500 1500	182c	1000 140f	109a	1 (0h 2158 001	2005 2008 2010	2131 234h 234h
Skeleton	Age					·							
No. of Perm. Erupted	Teeth	4 - 1	9 - 5	13 - 1	13 - 2	24 - 0	28 - 0	28 - 0	28 - 0	28 - 0	28 - 0	30 - 0	I
	Weight	6.05	57.8	53.6	6.69	77.2	85.3	9.46	98.1	a111.4	131.4	152.6	163.4
Height	Deviation	0.	۳. +	77. +	+	0.	٠. ،	2	6.	- 1.5	+	+ 1.3	+
Computed	Height	45.9	0.84	50.1	52.3	54.4	56.5	58.7	8.09	65.9	65.0	67.2	69.3
	Height	45.9	48.3	50.5	52.8	7.49	56.4	58.0	59.9	61.4	65.1	68.5	8.69
	Age	4	91	103	115	127	139	151	163	175	187	199	211

entb	Arith.		P 2/2.8	P 5/5	P 5/5,5		P 0/6		1	T 7 7 1		Sch Sch	s 10 - 7
Achievement ^b	Read.		Н 3/3	H 10/5		- -	ch 12/12	- α ς Ι	י ו ט י	TT - 2T	-	IOWA L	53 Shank 51
M ()	Mentai Age	ı	78a	8 8 8 8 8 8	3 0 0 0 0 0 0 0	a	130c	000	1 4 7 7	と こ り	0.00	2 で に	1031 1711 165h
))))	Age	65	72	83	88	120	114	126	137	150	160	173	184
No. of Prem.		0 - 0	0 - 7	2 .	8 - 3	12 - 0	13 - 0	21 - 0	28 - 0	27 - 0	28 - 0	28 - 0	I
	Weight	50.5	57.8	64.2	72.5	73.2	I	89.5	103.4	106.9	120.0	133.2	154.4
+ 4 & + 0 D	Deviation	٠,	<u>.</u> د.	9.	+	÷	1	1	ا ر	6.	- 1.0	+ .2	+ 1.5
	Height	46.4	48.4	50.7	52.8	54.9	57.1	59.5	61.4	63.5	65.6	67.8	6.69
	He1ght	46.3	48.1	51.3	53.3	55.2	57.0	59.1	6.09	62.4	9.49	0.89	71.4
	Age	75	98	66	111	123	135	147	159	171	183	195	207

\mathcal{O}	Computed	He	Height		No. of Prem. Erupted	Skeleton	Mental	Achievement	ment ^b
He1ght	t t	Devis	lation	Weight	Teeth		Age	Read,	Arith.
46.0		1	Φ	8.44	2 - 7	09	64a		F 0/.3
48	0	I	7.	50.3	6 - 3	72	74a	H 1/1	P 1/2.3
50.	0	+	~	55.8	11 - 2	88	83a		P 2/2.8
52.0	0	+	ŗ.	7.49	12 - 3	101	0 Ω Ω Ω γ	A -5	Р 9/6.8
54.		+	ŗ.	71.9	19 - 3	114))))))	ch 3/4	P -4/8.8
56.	Ч.	+	9.	85.1	24 - 0	137	16	ch 15/13	P 14/28.5
58	۲.	+	ς.	82.7	27 - 0	ı	0.01	τω. 	(
59.9	0	+	9.	7.56	28 - 0	146	128f	0 	~
62.1	~	1	.	92.2	27 - 0	155	0.00	ı	 -
79		1	٠.	105.0	28 - 0	162	$\begin{array}{ccc} & & C \\ & & \end{array}$) 	- (
99	6.2		0.	120.2	28 - 0	175	1548 1548		I V o
68	α.	i	۲.	128.3	1	189	O O C	Shank) [

	Height 44.4 46.5 48.4 50.3	Devi	11.0 T 011		Frinted.	N. マローローロー ローフロー	Mortul		
			lation	Weight	Teeth	Age	Age	Read.	Arith.
			9.	39.5	0 - 9				
	48.4	ı	α.	45.9	8 - 1		86a	Н 9/3	P 4/2.5
	50.3	ı	7.	55.6	12 - 1		946 133a 133a	Н 12/8	P 7/5.8
		+		65.3	13 - 1		1735 1100	(P 8/6.8
	52.2	+	9.	69.5	22 - 0		1735 1189	A-10 Ch 8/10	P -11/8.3
54.8	54.1	+	2.	81.8	56 - 0		1000 1400	A-(Ch 12/12	,P 0/28.8
	56.0	+	5.	7.68	28 - 0		1700 1440	N S I	
	57.9	ı	۲.	96.6	28 - 0		140e 158f	12 - S	11 - 7 S
	59.8	ı	9.	106.9	28 - 0		165e 166f	13 - 0 S	13 - 4
8.09	61.7	1	٠.	109.1	28 - 0		178h 191g	12 - 9 Iowa	14 - 4 Sch
63.9	63.6	+	ا	133.2	28 - 0		190n 2018	of Iowa	59
7.59	65.5	+	α.	133.2	I		2001 2071 3010	yy Shank E 6	ω - α

	12.81-13	1951	å Binet -	Stanford	al data:	Additional		aCycle break	acyc
		217g 195i	183	58 - 0	103.9	∞. +	62.2	63.0	500
		1878 1878	172	28 - 0	91.1	+ 1.0	60.1	61.1	187
.	ı ^	168f	160	28 - 0	a 75.6	- 1.1	58.2	57.1	175
	С С С С С С С С С С С С С С С С С С С	168f 1856	148	28 - 0	6.79	∞.	56.4	55.6	164
S - C L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	154c	138	27 - 0	63.9	.5	54.3	53.8	151
	ch 15/10	164c	125	25 - 0	8.09	. 2	52.5	52.3	140
P 9/7.5	η α «	128c	113	14 - 9	53.4	٥.	9.05	50.4	128
		104c	102	12 - 4	48.7	٠.	48.7	0.64	116
9/9 а	H 10/17	92a 058	89	8 - 4	46.3	††·	46.8	47.2	104
P 5/2.3		81a	77	7 - 9	42.1				16
P 1/.8		179		0 - 9	39.5	۴.	43.2	43.5	82
Arith.	Read.	Mental Age	Skeleton Age	Erupted Teeth	Weight	Height Deviation	Computed Height	Height	Age
Achtevémentb	4 C C			No. of Prem.					I

						\propto	∞.								
ک.	ment ^D	Arith.	P 2/.8	P 2/2.5	P 6/6	P 11/11.	P 36/46.		2	ω 1 τ 2 γ	14 - 9 S	16-3	\mathcal{C}_{i}	17-6	s 18 - 5
	Achievement ^D	Read.			Н 12/10	ch 8/10	ch 14/19	A-11 S	16-3 S	ഗ	17 - 2 S	18-5 10wa	161 Shank	86 ,	Shank 85
	Mental _	Age	58a-70	82a	115a	ν γ	1007 1107 1107	19/a 1920-181	204e 183f	210e 212f	199h 223g	218h 245g	2161 2161	いなない	2431 255h
	Skeleton	Age	92		98	126	136	144	149	155	160	167		<u> </u>	179
No. of	Frem. Erupted	Teeth			8 - 4	i	17 - 0	22 - 0	56 - 0	27 - 0	28 - 0	0 1 80	1	l	l
		Weight		44.1	7.67	57.8	59.5	63.3	67.0	70.1	73.2	9.67	ه د مر د در	1.00	7.66
	Height	Deviation	9	١.	+	+	7.	+	7. +	0.	9.	١	•	•	· +
	Computed	Height	42.6	43.8	45.5	48.7	50.3	51.9	53.3	55.0	56.6	n w) () 1 ()	0.60	61.8
		Height	42.0	43.7	45.6	7.67	50.7	52.1	53.7	55.0	56.0	57.6			62.5
		Age	92	85	86	122	134	146	157	170	182	194		7	221

90.2 109.4	0.10	55.5 - 1.0 57.49 59.4 - 1.4 61.4 + .2
		3.3 + 1.2 5.3 + .8

.22-115. Bine Stanford data Additional

aCycle break

(L

						\sim	∞						
ent ^b	Arith.	P 4/3.3	P 8/7.5	P 8/8.3	P 7/11.3	P 10/11.3	P 36/35.	ω <u>.</u>	14 O				s 15 - 2
Ach ie vement ^b	Read.		н 8/4.	h 8/4		ch 10/6	ch 16/9		17 - 21				Shank 27
Mental	Age	85a	100a	110a	128c-144	148c	154c	182c-168	151e 170f	162f 162f 1805	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	205 205 405 405	2041 2041 205h
Skeleton	Age												
No. of Prem. Erupted	Teeth	0 - 9	8 - 4	12 - 0	12 - 0	13 - 2	28 - 0	28 - 0	28 - 0	58 - 0	28 - 0	28 - 0	i
	Weight	50.3	24.7	59.1	65.3	2.69	75.4	82.5	8.06	a101.0	118.2	136.0	142.2
Height	Deviation	2. +	+	7.	+	+	2		- 1.0	6.	7.	+ 1.1	۳. +
Computed	Height	9.94	48.7	50.7	52.7	54.7	56.8	58.8	8.09	62.8	6.49	6.99	68.9
	Height	46.8	48.8	51.1	53.2	54.8	56.1	58.3	59.8	61.9	65.3	0.89	69.2
	Age	83	95	107	119	131	143	155	167	179	191	203	215

						7	\sim						
ıent ^b	Arith.	P 2/1	P 4/2.8	P 4/8.3	P 10/9	P 8/11.9	P 30/26.	r	1	I (13 - 3	Sch	S 14 - 10
Achievement ^b	Read.		h/8 H	Н 14/8	L			A-LO	λ ν ι 	ر د ر ا	15 - 9 Iowa 00	OO Iowa O7	y, Shank 68
Mental	Age	ó8a	83a	ر 2000 1000 1000	122c	130c-141	148c-177	160c	10/e 176f	172f	175h 2098	204g	2071 223h
Skeleton	Age												
No. of Prem.	Teeth		0 	2 - 3	0 - 2	12 - 0	16 - 0	20 - 0	22 - 0	26 - 0	28 - 0	28 - 0	ı
	Weight	39.5	44.1	47.4	9.67	6.45	61.1	7.99	71.4	77.2	a86.0	98.6	115.3
Height	Deviation	۲.	+	٠.	7. +	+	₹.	2.	ا ان	- 1.3	- 1.2	ر +	+ 2.1
Computed	Height	41.8	0.44	46.0	6.74	50.1	52.1	54.1	56.1	58.2	60.2	62.2	64.2
	Height	42.0	44.3	46.2	48.3	50.2	51.9	53.9	55.6	56.9	59.0	62.4	66.3
	Age	99	79	91	102	115	127	139	151	163	175	187	199

		Computed	He foht		Frunted	Skeleton	Mental	Achievement ^D	ment ^v
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
89	43.4	43.2	۲.	40.8	0 - 0		65a		P 0/1.3
80	45.7	45.2	+	45.6	1 - 3		VQV	н 3/0	P 2/2.5
95	7.74	47.2	۲.	48.7	8 - 1		- 00 C	Н 2/0	P 4/4
104	49.3	76.5	+	54.5	11 - 1		000	L)	P 7/8
116	51.1	51.1	0.	57.3	ı		してて	ch 8/8	P 11/9.5
128	53.1	53.1	0.	64.8	12 - 0		7 t t (ch 13/9	P 14/21.3
140	54.7	55.1	7	69.2	15 - 0		200	K W	
152	56.5	57.1	9.	74.5	21 - 0		32	11 - 2 S	1
164	57.8	59.1	- 1.2	79.8	56 - 0	,	53e 53f	12 - S	12 - S
176	0.09	61.1	- 1.1	4.88.4	28 - 0		59h 69g	11 - 4 Iowa	12 - 11
188	63.6	63.1	+	103.6	28 - 0		80h 94g	51 Iowa or	
200	0.79	65.1	+ 1.9	123.3			2011 1861 171h	85 Shank 66	S 12 - 10

		Computed	He leht		No. of Prem.	Skeleton	Mental	Achievement ^b	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
80	48.9	49.2	3	75.4	2 - 3			н 9/10	P 5/7
92	51.1	51.3	٥.	58.9	10 - 0		η 1	н 19/11	P 3/9.3
104	53.7	53.3	7.	7.49	8 - 4		100		P 10/8
116	55.9	55.4	7. +	70.8	12 - 2		ンサっ	A - 6 Ch 11/9	P 10/11.5
128	57.7	57.5	+	75.0	20 - 0		50 50 50 50	ch 15/9	P 26/33.5
140	59.8	9.69	+	85.1	23 - 0		$\frac{1}{3}$	K W '	(
152	61.7	61.6	+	0.06	25 - 0		$\sim 10^{\circ}$	i	! N 1
164	63.0	63.7	7	3.66	27 - 0		9 67 67	1	ر ا
176	9.49	65.8	- 1.2	107.4	28 - 0		0 0 0 0 0 0	15 - 5 10wa	15 - Sch
188	6.79	6.79	0.	126.1	28 - 0		$\frac{1}{2}$	U O O	N O
201	71.1	70.1	+ 1.0	145.5	I		2071 2221 231h	ע ע	s 15 - 2
aCyc bRef	aCycle break ^b Refer to Index	[ex	Additional	al data:	Stanfor Regress	d Binet ion equati	.78-15	3. 294 T + 35.	.35

Height 46.7 48.6 51.1 53.2 56.4 58.3 59.5 61.7 63.7 63.7			Computed	H	ا 14		Prem.	Skeleton	Mental	Achiev	Achievement ^b
46.7 47.1 4 49.6 48.6 48.5 + .1 57.3 51.1 50.7 + .4 64.2 53.2 52.6 + .4 64.2 55.0 54.6 + .4 75.9 56.4 56.6 2 83.7 59.5 60.3 2 90.0 61.7 62.5 8 104. 63.7 64.4 7 a118. 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	Φ	Height)	Dev	iation	Weight	Teeth	Age	Age	Read.	Arith.
48.5 + .1 57.3 50.7 + .4 64.1 52.6 + .4 77.9 54.6 2 83.5 58.5 2 90.0 60.3 2 90.0 62.5 2 90.0 62.5 2 31.18.0 64.4 + .8 139. 68.4 + .9 156.	5	46.7	47.1	I	7.	9.67	ı	99	70a		p 3/1.5
51.1 50.7 + .4 64.1 53.2 52.6 + .4 70.6 55.0 54.6 + .4 75.9 56.4 56.6 2 83.5 58.3 58.5 2 90.6 59.5 60.3 2 90.6 61.7 62.5 8 104.7 63.7 64.4 7 118.6 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	77.	9.84	48.5	+	۲.	57.3	4 - 3	77	85a-96	~.	P 4/2.5
53.2 52.6 + .6 70.6 55.0 54.6 + .4 75.9 56.4 56.6 2 83.7 59.5 60.3 2 90.6 61.7 62.5 8 104. 63.7 64.4 7 a118.6 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	1	51.1	50.7	+	7.	7.49	7 - 9	06	105a 105a	Н 16/7	P 6/5.3
55.0 54.6 + .4 75.9 56.4 56.6 2 83.3 58.3 58.5 2 90.6 59.5 60.3 8 92.8 61.7 62.5 8 104. 63.7 64.4 7 a118.6 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	6(53.2	52.6	+	9.	9.02	11 - 1	102	112c		P 10/8.3
56.4 56.6 2 83.5 58.3 58.5 2 90.6 59.5 60.3 8 92.8 61.7 62.5 8 104. 63.7 64.4 7 a118.6 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	51	55.0	9.45	+	7.	75.9	12 - 0	113	1 T C C C C C C C C C C C C C C C C C C	A - 3 Ch 10/16	P 10/12
58.3 58.5 2 90.0 59.5 60.3 8 92.8 61.7 62.5 8 104. 63.7 64.4 7 a118.0 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	33	56.4		ı	٥.	83.3	18 - 0	125	140c	ch 11/12	P 14/32.8
59.5 60.3 8 92.8 61.7 62.5 8 104. 63.7 64.4 7 a118.0 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	1 5	58.3	58.5	t	α.	•	23 - 0	138	186c-177	8	
61.7 62.58 104. 63.7 64.47 a118.6 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	56	59.5	60.3	ı	∞.	92.8	27 - 0	149	191f	ı) N S
63.7 64.47 a118.0 67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	69	61.7	62.5	1	∞.	104.3	28 - 0	157	204f		
67.2 66.4 + .8 139. 69.3 68.4 + .9 156.	81	63.7		1	2.	118.	28 - 0	165	1	0	
69.3 68.4 + .9 156.	93	67.2	7.99	+	ω.	•	28 - 0	179	220g		
	05	69.3	4.89	+	6.	56.	ı	188	2401		
220 70.7 70.81 166.5	20	70.7	•	ı	۲.	166.5	ı	201	2501 2501 233	Shank ol	S - 7[

\cap	0	1

		Compiltod.	+ \delta + \delta H		No. of Prem.	Ske leton	Σ σ τ α	Achievement ^b	nent ^b
Age	He1ght	Height Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
92	42.8	43.2		39.9	0 - 7		60a		P 3/1.8
89	45.1	45.1	0.	44.3	7 - 5		81a-98	z/ħ H	P 3/1.8
101	0.74	46.9	+	8.64	9 - 9		$^{\circ}$	9/01 H	P 10/6
113	0.64	48.7	÷	÷64.0	12 - 1		α	11 15/0	P 10/9.3
125	51.1	50.5	9.	58.7	16 - 0		$) \cap \neg$	ch 0/6	P _{11/12.8}
137	52.6	52.2	7.	4.59	25 - 0		とけて	$\frac{1}{2}$ Ch $\frac{7}{13}$	P 26/46
149	24.0	54.0	0.	7.89	28 - 0		$\mathcal{N} \mathcal{O}$ U	ر ا ا	ري د د
161	55.7	55.8	١.	75.2	28 - 0		$\nu \omega r$	l	!
173	56.9	57.6	۲.	80.5	28 - 0		$\cup \cap \cap$		N 0
185	58.3	59.3	- 1.0	a 86.2	28 - 0		- [[א ש))
197	60.7	61.1	7.	98.1	58 - 0		-00	IOWA 74	
509	64.2	62.9	+ 1.3	110.7	I		1971 194h	Shank 46	s 17 - 6
aCycle bRefer	cle break fer to Index	lex	Additional	al data:	Stanford Regressi	Binet on equati	7.83-98; on148	11.54-127 03 T + 31	207 96

		ر م 1:رمهري 1-رمهري	н ф		No. of Prem.	Ske leton	Mente ferte	Achievement	nt b
Age	Helght	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
82	43.4	42.9	+	42.6	0 - 1	89	86a		P 3/3.5
93	45.2	44.8	↑.	48.1	8	79	96a	ћ∕5 н	P 4/5.3
106	47.3	47.1	٠.	51.6	10 - 2	91	32	Н 18/18	P 10/9
118	49.4	49.2	+	56.0	10 - 3	106	126c 128c 128x		P 12/9
130	51.3	51.4	١.	61.3	ı	119	O I	ch 7/9	P 14/12.8
141	52.8	53.3	ا ت	2.69	14 - 0	133	48		P 78/55.3
154	55.1	55.6	ا تن	75.0	19 - 0	147	1 O V 1 O V	۸ کا د ا	
165	56.8	57.6	∞.	84.2	230	I	-00	1	_ -
177	58.7	59.7	- 1.0	91.7	27 - 0	158	900 C	ı	ט ו ו ני נ
189	61.4	61.8	7.	4.66	28 - 0	171	U	10 8 0 10 10 10 10 10 10 10 10 10 10 10 10 1	12 - 10
202	65.1	64.1	+ 1.0	118.8	28 - 0	184	$\rho = 0$	Iowa Iowa	
214	4.79	66.3	+ 1.1	127.2	I	195	1681 199h	95 Shank 19	S 14-10
^a Cycle ^b Refer	le break fer to Index	lex	Additional	al data:	Stanford Regressi	rd Binet sion equati	12.75-1 on	69. 17724 T + 2	208

		Complited	He to	+		No. of Prem.	Skeleton	Mental	Achievement ^b	ment ^b
Age	Height	Height	Deviation		Weight	Teeth	Age		Read.	Arith.
72	42.9	43.1	2		38.6	2 - 0	55	83a-98		
81	45.0	7.44	+		41.2	2 - 4	71	87a-100		P 2/3
76	46.8	6.94	1		46.3	7 - 9	82	117a-108 H	12/12	P 8/7.3
106	49.3	0.64	+		49.8	10 - 2	76) 		
118	51.1	51.1	0.		24.7	12 - 2	107		ch 8/10	P 11/9.8
130	53.5	53.2	+	-0	59.8	19 - 0	120	-142		P 14/3.8
142	55.4	55.3	+		9.99	54 - 0	134	-151	ı	
153	56.9	57.2		20	71.2	28 - 0	143		ı	-
165	58.8	59.3	ا ر	.0	9.77	28 - 0	156		ı) !
177	9.09	61.3	2	ď	84.2	28 - 0	165		1	TT - 2T
189	63.3	63.4	۱		0.76	28 - 0	174	-195	os Iowa	
201	66.5	65.5	+		115.5	1	185	2071 Sh 2071 Sh 202h 63	loz hank 53	
a CS	Cycle break Refer to Indes	ges	Addit	Additional	data:	Stanford	Binet	• \	0-100	.96-108; 11.99-1
						מ של של של של של	חקממי		. T. + 30.	09

		ر م 1 درسور ک	Ho⁴oth		No. of Prem.	27.00	M t c	Achiev	Achievement ^b
Age	Height	Compared Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
78	43.5	43.9	7.	8.64	0 - 7		66a		P 5/1.5
88	45.4	45.4	0.	54.2	10 - 0		95a-76		P 2/1.8
100	7.74	47.3	77.	61.7	12 - 0		σ	Н 7/1	P 6/5.3
113	49.4	49.3	+	67.3			o	A - 1	P 5/5.3
124							104c	ch 2/3	P 10/10
137	53.3	53.1	+	89.1	26 - 0		1100 1100 1100	ch 6/8	P 0/21.3
148	6.45	54.8	+	95.0	28 - 0		ω ω	n 1	
160	56.5	56.6		103.9	28 - 0		クサー	ა ;	(
172	58.1	58.5	7.	115.8	28 - 0		4ω	⊣ (
184	0.09	4.09	7	123.0	28 - 0		シサに	I N (
196	65.9	62.3	9.	124.1	28 - 0		ひに	ן כ	.⊣ (
208	0.49	64.1	١.	131.9	ı		1501 162 i 159h	11 - 9 Shank 11	
aCycle bRefer	bre	ak Tndex	Additional	ıal data:	Stanford Bi Regression	d Binet 7.	21-76;	12.92-136 583 T + 31	21
,)	¥) x							0

		Computed	Helght		No. of Prem. Erupted	Skeleton	Mental	Achievement ^b	nent ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
80	43.6	43.5	+	44.8	1 - 3		62a		P 2/.5
95	46.1	9.54	+	49.2	0 - 9		80a	н 1/2	P 3/4
104	0.84	47.8	cy .	54.5	10 - 1		700 C 200 C 2 d 4	ħ/L H	
116	50.2	6.64	+	0.09	10 - 3		100c	-	P 4/6.8
128	52.1	52.0	+	6.59	17 - 0		1040 1040	Ch 3/1	P 9/10.5
140	0.45	54.2	₹.	69.5	17 - 0		122c-108		P 14/37.5
152	55.9	56.3	7.	76.7	54 - 0		1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	၁ ် ၊	(
164	57.6	58.5	6.	85.8	27 - 0		1556 165f	1	
176	59.5	9.09	- 1.4	a 90.4	28 - 0		155f	ı	ı
188	62.2	62.7	,	109.1	28 - 0		10(n 166g 1707	IOWA IOWA	Sch Och
200	65.8	6.49	6· +	123.0	28 - 0		uo)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	V
212	68.3	0.79	+ 1.3	138.0	ı		195i 187h	46 Shank 13	O
aCycle bRefer	le break er to Index	jex	Additional	al data:	Stanford Regressi	Binet on equati	11.64-108 on178	3. 7824 T + 29.	211

0	٦	
~	- 1	

			+ \. \. \. \. \. \. \. \. \. \. \. \. \.			10 to 10 to 20	M v → c o →	Achievement ^b	lent ^b
Age	Height	computed Height	neigne Deviation	Weight	3	Age	Age	Read.	Arith.
78	46.1	45.9	۲.	42.6	0 - 0		61a		P 1/.5
96	48.3	47.8	+	46.5	5 - 1		89a 764	Н 2/0	P2/1.8
102	50.2	7.64	+	50.3	8		- 00 00 6 6 6	H 14/7	P 6/5
114	51.8	51.7	+	53.6	10 - 2		900 000 471	C -	P 6/6.5
126	53.3	53.6	٠. ج	56.2	12 - 0		1080		P 3/4.3
138	55.4	55.5	١.	61.5	17 - 0		152c-183	Ch Ch	P 26/17.8
150	56.7	4.75	2	65.3	22 - 0		162c	πω [S - C -
162	58.3	59.3	- 1.0	73.4	27 - 0		1405 1405 1906	3	, , , , , , , , , , , , , , , , , , ,
174	60.1	61.2	- 1.1	a 79.4	27 - 0		1 T C 7 T C 7 T C 7 T C	ı	.
187	63.5	63.3	ر. +	91.9	28 - 0		167g	ı	1 2 C
198	66.1	0.59	+ 1.1	7.66	28 - 0		1 L L - 10,7 14 t 18 t	wa 1	100 200
210	67.5	6.99	9.	110.0	ı		1681 176h	Shank / 48	13 13 13
acyc	acycle break ^b Refer to Index	dex	Aââitional	al data:	Stanförd Regressic	Binet on equat	11.66-133; ion158	891 T + 33.	212

		רישה אינית שרים לינית ש	н д н д		No. of Prem.	מה זם [פגן 2	Menter	Achiev	Achievement ^b
Age	Height	compared Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
83	41.7	41.9	٥.	40.6	1 - 4		69a		P 1/3
96	43.9	43.7	. 5	45.2	7 - 9		91		
108	45.7	45.4	۴.	46,5	10 - 1		87a	Н 3/0	P 5/3.3
120	47.5	0.74	+	51.2	11 - 1		y @ 0 4 @ 0 5 Ω ή		P 3/3.5
132	6.84	18.7	~ +	55.6	18 - 0		000 000 000 000	A - 1 Ch 3/1	P 3/3
144	50.4	50.4	0	59.5	20 - 0		ω	7	P 14/21.8
156	51.8	52.0	2.	9.99	22 - 0		06a 12c-11		က ်
168	53.2	53.7	i rů	69.2	27 - 0		$\dashv m$	1	I ⊣ (
180	54.5	55.3	∞.	77.4	27 - 0		\mathcal{M}	ンの(
192	55.9	57.0	1,1	82.9	27 - 0		120 g	⊣	0 0 c 1 0 c
204	58.8	58.6	+	93.7	28 - 0		$\mathcal{U} \hookrightarrow \mathcal{U}$	ı) I
216	61.8	60.3	+ 1.5	108.9	1		4	0 - 01	- 01
acycle	le break		Additional	al data:	Stanford	Binet	8.42-91;	13.01	.=
^ò Refer	t0	Index			Kegress	ion equati	on	2 T + 3	7.
									1

		5	4 5 5 6 11		7	Skeleton	M م م	Achlevement ^b	ent ^b
Age	Height	computed Height	neignt Deviation	Weight	3	Age	Age	Read.	Arith.
77	44.3	7.44	- ,1	42.3	7 - 2		73a		P 2/0
89	46.6	46.4	٠. ۲.	7.74	7 - 9		ת עו	Н 5/1	P 3/1
101	48.8	48.3	+	51.8	12 - 0		$\lambda \omega c$	1 10/7	P 7/4.8
113	50.5	50.2	۴.	56.2	14 - 1		722	۷ ۱	P 7/8.5
125	52.4	52.1	۴.	62.8	22 - 0		14	0,	P 10/9.5
137	53.9	0.45	-	65.0	28 - 0) 1 0	C A	P 10/27
149	55.5	56.0	ا ر	6.69	28 - 0		ころに	I	s 11 - 8
161	57.1	57.9	ω.	76.7	27 - 0		/ひで /する) (1
173	58.7	59.8	- 1.1	84,5	28 - 0		$\frac{1}{2}$	\ - -	, ,
185	61.3	61.7	7	94.6	58 - 0		100 R	owa 1	Sch 41
197	7.49	63.6	8.	108.7	28 - 0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Iowa 100	
209	66.5	65.5	+ 1.0	122.2	ı		1981 170h	Shank 61	s 14 - 6
aCycle br 6	e break		Additional	ıl data:	Stanford Regressi	Binet on equati	11.57-13 on15	4. 984 T + 32	211
Refer	r to Index	×							4

			4 2 8 9		No. of Prem.	Skalaton	M F a t t a b	Achievement ^b	ement ^b
Age	Height	computed Height	neight Deviation	Weight	Teeth	Age	Age	Read.	Arith.
73	44.8	45.6	8.	45.0	1 - 0	1 79	72a		P 2/3
83	46.9	47.4	ا ر	50.1	ı	78	86a		P 5/3.8
95	9.67	49.5	+	54.5	0 8	06	97a 4701	Н 7/3	P 8/6.8
107	52.1	51.7	††• +	61.3	13 - 2	102) W-	0 - 0	P 10/7.5
119	54.6	53.8	∞.	9.99	17 - 1	120	1 ~ C	ch 5/5	P 8/5
131	9.99	56.0	9.	72.3	22 - 0	128	$\sigma \omega \alpha$	ch 8/10	P 6/33
143	58.7	58.1	9.	76.7	27 - 0	136	1 /W W		ω - - -
155	9.09	60.2	7.	82.9	28 - 0	144	コヤこ	3 8 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 0 - 0
167	62.0	62.4	7.	91.7	28 - 0	156	ノいし	2	י מו ו ו
179	63.4	64.5	- 1.1	125.2	28 - 0	166	1 ⊱ -α	S 1 7 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	, t
191	0.99	9.99	9.	109.8	28 - 0	174	\circ \circ	Lowa SO	Sch 41
203	69.3	8.89	+	130.8	ı	187	o o	Shank 40	S 13 - 7
218	71.4	71.4	0.	145.1	ı	198	2001 2101 193h	Shank 54	1
acycle bRefer	e break r to Index		Additional	l data:	Stanford Regress10	Binet on equat	12.46-143 10n1	3. 17796 T + 32	32.64

M; 3/21/17; NE; B;

		5	4 (1 t		No. of Prem.	Skalaton . Mantal	Achievement	ement ^b
Age	Height	computed Height	neigni Deviation	Weight	_	Age Age	Read.	Arith.
78	45.6	45.2	7. +	45.2	0 - 2			
91	47.8	47.1	<i>L</i> · +	53.6	7 - 7	88a-100 88b	Н 2/0	P 3/3.5
115	9.09	50.8	٥.	6.09	10 - 2	∞ o		P 6/5.3
127	52.6	52.6	0.	68.6	15 - 0	100c-108	α	Р 9/8
139	54.5	54.5	٣.	73.9	13 - 0	77	\subseteq	P 6/10.8
151	55.9	56.3	7.	80.0	19 - 0	26	1	S 101
163	57.2	58.1	6.	86.0	28 - 0) 1 4 6	ا ر	.
175	59.1	6.65	ω.	a 92.8	28 - 0) (((((((((((((((((((1	ı
187	61.3	61.8	ا تن	101.9	28 - 0	$\sum_{i} m_{i}$.	, , , ,
199	9.49	63.6	+ 1.0	119.7	28 - 0	33 73 73	J W W	Sch 17
211	7.99	7.59	+ 1.0	133.6	ı	1711 169h	Shank 30	
acycle bRefer	Le break er to Index	*	Additional	.1 data:	Stanford B Regression	Binet 7.99-100; 131; 12.79 on equation15	10.98-108 -136. 225T + 33.3	3; 12.19-
)

		7000	+ ₹₽ ₩		No. of Prem.	270	M 0 1 1 1 1	Achievement ^b	ment ^b
Age	Height	Height Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
82	45.3	45.2	1	46.1	0 - 17	63	80a		P 4/5.8
92	7.74	47.1	+ ~	8.64	0 - 9	7.2	110a		Р 9/9
104	49.3	49.1	÷.	6.45	10 - 1	88	\mathcal{O}	н 15/18	P 12/11.8
116	51.4	51.1	+ ~	60.2	13 - 2	101	u cu c		P 13/11.5
128	53.4	53.1	÷	65.3	14 - 3	114	וועוניי	A - 11 Ch 12/14	P 15/12.8
140	55.1	55.1	0.	70.8	22 - 0	126	ו נשוו	Н	P 62/50.3
152	56.4	57.1	2.	76.3	27 - 0	137	<i>~</i> ωα	<u> </u>	S .
163	58.0	59.0	1.0	82.9	28 - 0	148	$\cos \alpha$, , ,	ı
176	60.2	61.1	6.	91.3	28 - 0	161	$\mathcal{L} \cup \mathcal{L}$	IS - II Iowa I'c'	T -).T
188	63.3	63.2	+ .1	107.4	28 - 0	172	ν $^{-1}$	II4 IOWa	
20.0	9.99	65.2	+ 1.4	121.3	58 - 0	183	2378 2341	1 40 0	
aCycle	e break		Additional	l data:	Stanford	Binet1	51-19		
^b Refer	r to Index	X			Kegress	on equati	/91no	6/47 T + 31.	/0

M; 11/11/17; NE; B; V

		# C C C C C C C C C C C C C C C C C C C	1 C F C T		No. of Prem.	3 to 1 o 1 o 1 o 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Achievement ^b	nent ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age A	Read.	Arith.
71	43.6	43.9	e	38.6	0 - 0		61a		P 2/1
83	45.8	45.8	0.	54.2	0 - 1		W r	7/7 H	P 3/2.5
95	6.74	8.74	+	48.3	2 - 5		7 010	н 9/14	P 8/7
107	50.2	8.64	7.	51.2	8 - 4		$\mathcal{I} \cup \mathcal{I}$		P 9/7.8
119	52.2	51.8	7. +	56.0	12 - 0		-1 (U -	A - 6 Ch 18/9	P 12/11
131	24.0	53.8	۲.	59.5	13 - 0		コシリ(A - Ch 2	P 52/49
143	55.6	55.8	8.	7.49	18 - 0		1 1 W 1		ے۔
155	9.73	57.8	2.	69.2	ı		~α) r	ı	ı
167	59.3	59.8	ا ت	80.0	54 - 0		$\neg \alpha$	1 - 51	ν 1 4 1
179	6.09	61.7	ω.	a 79.2	27 - 0		\sim \circ		
191	63.6	63.7	1	92.4	28 - 0		ω ω L	Iowa	Sch
203	66.7	65.7	+ 1.0	105.4	ı		2131 2191 193h	130 Shank 80	
acycle	e break		Additional	l data:	Stanford	Binet	7.35-90;	10.97-146.	
bRefer	r to Index				Regressio	sion equation	165	68 T +	60

M; 6/8/16; NE; M; III

Case No. 3279

		Complifed	H T L D		No. of Prem.	Skeleton	M o c c	Achievement ^b	ement ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
78	6.44	45.2	3	44.1	5 - 0	50	62a		
89	46.9	47.0	١.	47.2	0 - 9	79	86a-82		P 3/4
101	49.3	48.9	↑.	9.67	6 - 5	77	<u></u>	18/2 н	P 8/4.5
114	51.2	51.0	+	57.8	. 11 - 3	89	900 100 100 100 100	-	P 7/8.8
125	53.1	52.8	+	63.5	14 - 1	102	t (ch 6/8	P 10/8.8
137	55.3	24.7	9.	67.3	22 - 0	111	$\frac{1}{2}$		P 20/35.3
149	56.7	56.6	+	71.0	28 - 0	120	$1 \Omega \Omega$	κ ໙ ږ ι υ	(
161	58.0	58.6	9.	76.5	28 - 0	133	~ 0 (1	ı
173	0.09	60.5	.5	82.2	28 - 0	144	$\frac{200}{100}$	ı))
186	61.5	62.6	- 1.1	8.06	28 - 0	156	200 700 700 700 700 700 700 700 700 700	IOW B	13.
197	64.1	4.49	.3	a _ 101.9	28 - 0	168	ってっ	CS IONA 01	Sch
209	7.79	66.3	+ 1.4	125.5	ı	181	2011 2011 219h	o <i>l</i> Shank 52	s 13 - 9
acycle ^b Refer	bre to	ak Index	Additiona	al data:	Stanfor Regress	rd Binet sion equati	- 7.00-82; lon160	12.66 - 92 T + 32	138.

M; 12/1/17; NE; B;

Case No. 3291

		Computed	Helght		No. of Perm. Frupted	Skeleton	Mental	Achievement ^b	ment ^b
Age	Height	Height	Deviation	Weight	Teeth	Age	Age	Read.	Arith.
70	43.7	43.7	0.	40.8	0 - 1		64a		P 2/1.5
76	48.5	48.1	7.	50.1	7 - 6		93a 4.01	5/2 н	P 6/2.8
106	50.4	50.2	٠.	56.2	10 - 3		7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		P 11/7.8
119	52.8	52.6	۲.	61.5	19 - 0		42c115	6/6 HO	P 12/7.3
130	54.5	54.6	1	9.09	54 - 0		15a 40c-132	A - Ch 1	P 20/23.3
142	56.7	56.8	1	75.6	28 - 0		20101 24 0 0 0 1	. S. C.	လ ,
154	58.4	58.9	ı Z	82.7	28 - 0		600 600 700 700 700 700 700 700 700 700	ı	۲۲ - ۲۲
167	60.5	61.3	∞.	4.06	28 - 0		171f 171f 1675		
179	62.6	63.5	6.	a 99.4	28 - 0		1878 1878 2.50		Ω r
190	66.1	65.5	9.	116	28 - 0		202 203 805 805	5 - 01	ι Ω
203	8.8	67.8	+ 1.0	131.9			2161 206h		
aCycle bRefer	bre	ak Index	Additional	al data:	Stanford B Regression	Binet on equati	10.41-115 on181	; 10.91-13 39 T + 31.	2. 01

M; 3/28/1918; It; B;

Case No. 3332

1

		Complited	He tobt		No. of Prem.	Skeleton Mental	Achievement ^b	ment ^b
Аве	Height	Height	Deviation	Weight	Teeth		Read.	Arith.
99	41.4	41.5	1	39.5	0 - 0	61a		P 0/.3
78	43.2	43.1	+	45.6	0 - 5	α	Н 2/0	P 3/1.5
91	44.8	6.44	- 1	57.3	0 - 2	t M	н 6/2	P 5/2
102	9.94	46.5	+	50.7	8 - 2	$0 \Rightarrow 0$		P 1/3.5
115	48.5	48.3	+	55.8	12 - 0	000		P 6/9.5
127	50.0	6.64	+	58.9	12 - 0	22c 22c	A Ch e	P 6/24.5
139	51.7	51.6	+	63.9	15 - 0	7 7 7 7	4ω; ι ν	(
151	53.2	53.3	1	66.2	21 - 0	100 101 101	S (i
163	9.45	54,9	<u>«</u>	73.0	27 - 0	7 67	ı	ر ا
175	56.4	9.99	٠. د	78.5	28 - 0	260	N .	7 .
187	57.6	58.3	7	84.9	28 - 0	000	14 - 6 Iowa	14 - 1
199	8.09	59.9	6.	103.6	I	1001 1891 184h	o4 Shank 27	S 14 - 4
aCycle bRefer	cle break Fer to Index	lex	Additiona	al data:	Stanford Regressic	rd Binet10.60-120	; 3883 T +	32.30

APPENDIX C GRAPHIC ANALYSIS OF EARLY MATURERS

y = .16904 t + 32.62Case - 380 Straight line Growth Actual Measures Height in Inches 120 140 Age in Months

Tree Treeses 111-11-11

٠.

Trial Triality 111.11.11.11

120 140 Age in Months

Case - 2007

y = .18726 t + 26.23

Case - 2202

y = .19551 t + 27.58

Case - 2723 y = .17824 t + 29.23Straight line Growth Actual Measures 72 70 68 66 64-62 60-Height in Inches 50 48-46-44-42-40-38-160 180 200 100 60 80 120 Age in Months

y = .18143 t + 31.74

265

Case - 2868 y = .17796 t + 32.64Straight line Growth Actual Measures Height in Inches 50-44-

Age in Months

38-

Case - 3237

y = .17901 t + 30.32

180

160

140

100

80

60

120

Age in Months

200

38-

Straight line Growth Actual Measures 74 -. 72-70-68-66-64-Height in Inches 52 50-48-46 44 42-40

y = .13883 t + 32.30Case - 3332 Straight line Growth Actual Measures Height in Inches 5 9 9 6 9 8 9 9

Age in Months

APPENDIX D

GRAPHIC ANALYSIS OF LATE MATUPERS

--11.11.11

Case - 277

y = .12804 t + 31.93

y = .17121 t + 29.21Case - 393 288 Straight line Growth 74 Actual Measures 72 70 68-66 64 62 60-Height in Inches 58-56-52-50-48-46-44_ 42 40-

180

160

140

120

Age in Months

100

80

60

200

38-

Case - 488 y = .13738 t + 34.474-Straight line Growth Actual Measures 72-70-68_ 66-64_ 62_ 60_ Height in Inches 58-56-54-52 50_ 48_ 46-44-42_ 40-38_ 200 180 160 140 100 120 80 60 Age in Months

200

180

160

140

T20

Age in Months

100

80

60

•		

Age in Months

		٠
		· ·
		į
		;
		ì
		: : : :
		:

y = .18265 t + 31.15305 Case - 897 Straight line Growth Actual Measures 74-72-70-68 66 64-62 60 Height in Inches 48-46 44-42 40-38-200 180 160 140 120 80 100 60 Age in Months

...

Case - 1030

y = .17103 t + 27.36

308

_____ Straight line Growth

309 Straight line Growth Actual Measures 74_ 72-70 68-66 64 62 60-58 Height in Inches 56 54 52 50-48-46-44_ 42 40-38-200 180 160 140 120 100 80 60

Age in Months

- - -

Case - 2465

y = .16401 t + 34.75

Date Due

Dave Due			
JAN 2.4"	9 01 ∓		
	-		
	*		
	-		
	<u> </u>		

Demco-293

