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ABSTRACT 
 

HIGH-DIMENSIONAL LEARNING FROM RANDOM PROJECTIONS OF 
DATA THROUGH REGULARIZATION AND DIVERSIFICATION  

 
By 

 
Mohammad Aghagolzadeh 

 

Random signal measurement, in the form of random projections of signal vectors, 

extends the traditional point-wise and periodic schemes for signal sampling. In particular, the 

well-known problem of sensing sparse signals from linear measurements, also known as 

Compressed Sensing (CS), has promoted the utility of random projections. Meanwhile, many 

signal processing and learning problems that involve parametric estimation do not consist of 

sparsity constraints in their original forms. With the increasing popularity of random 

measurements, it is crucial to study the generic estimation performance under the random 

measurement model. In this thesis, we consider two specific learning problems (named below) 

and present the following two generic approaches for improving the estimation accuracy: 1) by 

adding relevant constraints to the parameter vectors and 2) by diversification of the random 

measurements to achieve fast decaying tail bounds for the empirical risk function.  

The first problem we consider is Dictionary Learning (DL). Dictionaries are extensions 

of vector bases that are specifically tailored for sparse signal representation. DL has become 

increasingly popular for sparse modeling of natural images as well as sound and biological 

signals, just to name a few. Empirical studies have shown that typical DL algorithms for imaging 

applications are relatively robust with respect to missing pixels in the training data. However, DL 

from random projections of data corresponds to an ill-posed problem and is not well-studied. 

Existing efforts are limited to learning structured dictionaries or dictionaries for structured sparse 



 

 

representations to make the problem tractable. The main motivation for considering this problem 

is to generate an adaptive framework for CS of signals that are not sparse in the signal domain. 

In fact, this problem has been referred to as ‘blind CS’ since the optimal basis is subject to 

estimation during CS recovery. Our initial approach, similar to some of the existing efforts, 

involves adding structural constraints on the dictionary to incorporate sparse and autoregressive 

models. More importantly, our results and analysis reveal that DL from random projections of 

data, in its unconstrained form, can still be accurate given that measurements satisfy the diversity 

constraints defined later.  

The second problem that we consider is high-dimensional signal classification. Prior 

efforts have shown that projecting high-dimensional and redundant signal vectors onto random 

low-dimensional subspaces presents an efficient alternative to traditional feature extraction tools 

such as the principle component analysis. Hence, aside from the CS application, random 

measurements present an efficient sampling method for learning classifiers, eliminating the need 

for recording and processing high-dimensional signals while most of the recorded data is 

discarded during feature extraction. We work with the Support Vector Machine (SVM) 

classifiers that are learned in the high-dimensional ambient signal space using random 

projections of the training data. Our results indicate that the classifier accuracy can be 

significantly improved by diversification of the random measurements.  
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CHAPTER 1 

INTRODUCTION 

Cameras are being integrated into smartphones, tablet devices and the new trend of 

wearable consumer devices. This calls for low-cost low-rate image sampling methods as opposed 

to traditional full-pixel sampling. Some of the other scenarios in which the sampling efficiency 

becomes critical are in medical imaging where radiation dosage must be kept minimal for patient 

safety, in hyperspectral imaging where it is not feasible to sample every electromagnetic 

frequency at every pixel due to the slow scanning process and in wireless sensor networks where 

the sampling rate and the signal transmission rate are limited by the sensor power and 

complexity.  

Efficient sensing not only uses fewer samples, it also exploits the inherent structure of 

natural signals throughout the recovery process. For example, a property of natural images that 

distinguishes them from random vectors is that they can be closely approximated by a sparse 

vector through linear transformation. The Compressed Sensing (CS) theory [1, 2] and its 

extensions provide the bounds for the minimum number of linear measurements as well as 

tractable recovery algorithms for the perfect or near perfect recovery of sparse signals.  
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Other than signal recovery, many applications involve learning or estimating model 

parameters that are used for, for example, event detection or classification. In particular, in some 

of these applications, the parameters are constantly being adapted to the new incoming signal. In 

such tasks, efficient sampling becomes crucial since the system is usually bounded in terms of 

energy, size or the processing power. Specifically, in very low sampling rates, signal recovery 

may be infeasible or even unnecessary. In fact, with a careful design of the learning system, it is 

possible to bypass the signal recovery and directly exploit the (incomplete) measurements for 

estimation, resulting in a more efficient learner. However, it remains to analyze the performance 

and accuracy of general learning from such incomplete measurements.  

In this thesis, we consider the class of linear measurements. Specifically, we work with 

random linear measurements which have been promoted by the CS theory because they have 

smaller restricted isometry constants as defined in the CS theory [1] compared to periodic point-

wise sampling. Our goal, in addition to high quality signal recovery, is to employ these random 

measurements in later stages of learning that normally take fully sampled signals as input.  

In many cases, learning from incomplete data corresponds to an inverse problem. 

Unfortunately, learning from incomplete data poses the risk of obtaining an ill-posed inverse 

problem which would result in an infinite number of solutions for the optimal parameters. A 

conventional technique to avoid such ill-posed scenarios is through regularization, i.e. 

constraining the solution space of the problem to make it less ill-posed. These constraints are 

problem-specific and usually reflect the natural constraints of the parameter space. For example, 

sparsity is a constraint that is added to the problem of natural image recovery as in CS. 

Regularization is one of the techniques considered in this thesis for making high-dimensional 

learning from random projections of data less ill-posed. We provide analytical reasons for why 
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regularization works in a general learning framework and how to quantify the improvements that 

are due to regularization. 

In addition to regularization, which is a well-known technique, we propose a novel 

technique that we believe has yet to receive attention from the signal processing and machine 

learning communities; namely, measurement diversification. In contrast to regularization which 

modifies the learning problem in a specific fashion, diversification works with the original 

problem but requires the measurements to have diversity; that is random measurements from 

different signals must have different supports. We show that diversification reduces the ill-

posedness of the inverse problem without the need to introduce new constraints over the 

parameters. Our results are confirmed both empirically and analytically through the theories of 

the concentration of measure [3].  

To make our analysis and presentation more concrete, we work with two well-known 

learning problems: 1) dictionary learning and 2) signal classification. These two problems are 

briefly discussed in the following paragraphs. 

Dictionaries extend the notion of orthogonal signal bases that allow for sparser signal 

representation using data-driven redundant frames. For example, the method of K-SVD [4] 

extends the traditional Singular Value Decomposition (SVD) for extracting basis vectors from 

empirical data. A typical Dictionary Learning (DL) algorithm takes a set of training signal 

vectors as input and generates a dictionary that can be generalized to the testing data as well. 

However, there are other scenarios where the testing and training data are the same except that 

the training data is noisy and the goal is to approximate the testing data using sparse 

representation with respect to the learned dictionary [5]. This approach is motivated by the 
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assumption that the complex noise structure does not enter the learned dictionary and gets 

attenuated during DL.  

 In this thesis, we consider a novel application of DL. Specifically, the training data for 

our problem consists of random low-dimensional projections of signal vectors and the testing 

data is the set of original signal vectors (in the ambient signal space). In other words, the purpose 

is to learn a dictionary for a set of signal vectors while only random projections of those vectors 

are available. It is not hard to show that this learning corresponds to an ill-posed inverse 

problem. However, there is a strong motivation for this problem which is to generate an adaptive 

framework for CS-based signal recovery (from random projections of signals). Contrary to 

conventional (non-adaptive) CS, which uses a fixed basis or frame for signal representation, our 

framework employs a flexible representation that adapts to the specific signal structure.  

The other problem that we consider is high-dimensional signal classification. Similar to 

the described DL problem, we consider a novel scenario for learning a linear classifier from 

random projections of the data. Conventional classifier learning takes a set of (high-dimensional) 

training signals with labels as input and generates a classifier that generalizes to the testing data. 

It must be noted that high-dimensional training data is usually mapped to the feature space 

before training. Meanwhile, in the problem that we consider, only random projections of the 

training data (with labels) are available. The testing data is also provided in the random 

projection domain. A particular feature of our framework is that the classifier is trained in the 

high-dimensional ambient space, rather than in the low-dimensional measurement space. We 

study the application of linear signal classification for hyperspectral pixel classification where 

each pixel is composed of hundreds of spectral components.  



 

5 

RELATED WORK 

Similar problems to the described DL problem have been proposed before under the 

name of Blind compressed sensing (BCS) [6]. BCS is defined as an extension of CS where the 

optimal sparse representation basis is assumed to be unknown and subject to estimation during 

signal recovery. However, albeit the importance of such problem, existing works in BCS are 

limited. The original BCS framework focused on making the ill-posed problem tractable by 

adding constraints to the dictionary. Some of the proposed schemes were sparse dictionaries, 

block-diagonal dictionaries and a dictionaries that are variable sets of fixed bases. Their 

following work [7] utilized some of the theories from the area of low-rank matrix completion [8] 

to show that BCS with unconstrained dictionaries can still be tractable if the sparse coefficient 

matrix is group-sparse, which can be regarded as low-rank sparse matrix. Interestingly, the low-

rank matrix completion theory requires that random projections of data blocks be distinct which 

is strongly related to the diverse sampling requirement proposed in our work here. A BCS-

related work was presented in [9] which is the closest work to our proposed unconstrained DL. 

However, the mentioned work is purely empirical and does not give any sort of analysis for why 

such method works. Yet another related work is the method of best basis compressed sensing 

[10] where the representation basis is selected according to a tree structure from a highly 

overcomplete structured dictionary during the signal recovery. Best basis is defined as the basis 

that minimizes the distance between the compressive measurements and the sparse signal 

representation (similar to DL). An advantage of the best basis representation over naive signal 

representation using overcomplete frames is that the selected bases have low-coherency. 

However, best basis CS is constrained to a finite set of basis vectors for signal representation.  



 

6 

Reviewing the relevant works for the signal classification problem is clearly a more 

difficult task due to the vast amount of existing work in this area. Probably the most relevant 

work would be the framework of compressed learning [11] where the accuracy of the linear 

SVM classification has been analyzed under the scheme of having only random projections of 

data. Compressed learning states that linear classification in the low-dimensional projection 

domain, with a high probability, has an accuracy close to the accuracy of the linear classification 

in the original (high-dimensional) signal domain. However, as we demonstrate later, linear 

classification in the projection domain can be unreliable when the random projection is very low-

dimensional. Indeed the reason for the proposed diverse measurement scheme is to make linear 

classification reliable even in the presence of a single measurement per data point.   

THESIS ORGANIZATION  

This section provides a brief summary of the upcoming chapters and the main 

contributions in each chapter. However, before that, we need to specify two types of random 

measurements that we frequently refer to: repeated-block sampling and random-block sampling. 

In our data model, the data or the signal is composed of ܰ blocks. For example, for the image 

data, which is the main type of data considered in his work, blocks correspond to small 

rectangular image patches. In the repeated-block sampling scheme, each block is sampled 

according to the same pattern. For example, the traditional periodic sampling can be considered a 

special case of a repeated-block scheme. Random-block sampling uses a different sampling 

pattern for each block.  
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To give an example, assume an image were divided into patches of size 2 by 2 pixels, 

resulting in blocks of size 4. A well-known example of repeated-block sampling for color images 

would be the Bayer color filter array which is shown in Figure 1 (left). Figure 1 (right) shows a 

pseudorandom arrangement of six color filters corresponding to a random-block measurement.  

   

Figure 1. Repeated-block (left) vs. random-block (right) sampling for color imaging. These patterns 
correspond to color filter arrays that are used in consumer-level cameras for capturing a single color 

component per pixel. The color image is later reconstructed from these (incomplete) measurements. Each 
image patch is assumed to be 2 by 2 pixels in this example. 

Chapter III: Sparse Regularization for DL from Repeated-Block Measurements 

The first dictionary constraint that we employed for addressing the mentioned ill-posed 

DL problem was, what we called, the two-layered dictionary model which was adopted from the 

double-sparse representation model [12]. In this model, a dictionary can be factorized into the 

product of a fixed frame with a sparse matrix (hence the double-sparse name). Double-sparse 

dictionaries were originally proposed to reduce the amount of required memory for storing large 

dictionaries by representing each atom using only a few non-zero coefficients with respect to the 

overcomplete cosine frame. Learning two-layer dictionaries from random projections of data 

becomes a tractable inverse problem which makes it suitable for our task. 
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Chapter IV: Autoregressive Regularization for DL from Repeated-Block Measurements 

In our second approach, we utilized non-parametric regularized regression within the DL 

framework to learn smooth dictionaries. In this approach, dictionary atoms are modeled as 

autoregressive processes with known covariance matrices that are trained over natural images. 

Specifically, different atoms are modeled as independent processes and there is correlation only 

within each atom. In this approach, we employ minimum-mean-square-error estimation to update 

the dictionary using random measurements and the computed sparse coefficients. An advantage 

of this model compared to the parametric sparse model of our first approach is its lower 

computational complexity. 

Chapter V: Unconstrained DL from Random-Block Measurements 

While repeated-block sampling necessitates the use of regularization or additional 

structure in the dictionary, in random-block sampling, the typical least squares learning 

algorithm works without much trouble. This observation suggests that random-block 

measurements carry more information compared to repeated-block projections when the data is 

correlated. This observation was our first clue to the importance of measurement diversification 

for general learning which is further developed below.   
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Chapter VI: Mathematical Analysis 

Recently, it was shown that random-block projections carry nearly an equal amount of 

information about the underlying image as if the image was sensed using a dense projection 

matrix1 [13]. Following a similar procedure for computing the recovery accuracy in the theory of 

compressed sensing, we characterize the (stochastic) accuracy of the dictionary learning under 

both repeated-block and random-block measurements. The main factors to be considered other 

than the number of measurements per image block are the number of blocks in the image and the 

strength of cross-correlation between different image blocks. We will employ some of the tools 

from the area of concentration of measure [3] and its extensions in [13] to compute how accurate 

and stable is learning in the projected domain compared to learning in the original image domain. 

These mathematical derivations address both repeated-block and random-block measurements.  

Furthermore, we extend the analysis to generic learning where the empirical risk is used 

to approximate the true risk (which is unavailable to the algorithm). It desired that the learned 

parameters using the empirical risk closely approximate the parameters that minimize the true 

risk. We compute error bounds for parametric estimation given tail bounds of the distribution of 

the empirical risk and make strong connections with the well-known empirical risk minimization 

principle in learning theory.  

                                                 
1 Dense random projection matrices are not very practical but present the benchmark measurement matrices for 
compressed sensing. 
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Chapter VII: Hyperspectral Classification 

Numerous recent studies have promoted the utility of random hyperspectral measurement 

because it enables hyperspectral recovery using the low-rank or sparse recovery algorithms [33, 

36]. However, many learning algorithms are not designed to work with random measurements 

directly. Specifically, we study the problem of hyperspectral classification using random 

(incomplete) measurements without the need for missing value substitution, that is without signal 

recovery. Learning directly from the observed data is more efficient and superior to learning 

from recovered data because the recovery process introduces computational overhead and 

possible data oversimplification due to the employed recovery model.  

Diversification may initially pose as an obstacle to classification. Specifically, signal or 

feature vectors would have varying supports, making it difficult to approximate the pair-wise 

similarities of data points. We show that not only such diversity does not harm the classification 

performance, the learned classifier is more reliable and closer to the ground-truth classifier 

compared to a classifier that is learned from random-block measurements. For hyperspectral 

classification, we selected to work with the linear support vector machine. 
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CHAPTER 2 

BACKGROUND AND PROBLEM FORMULATION 

In this chapter we present the required mathematical background for the following 

chapters. We also give formal definitions for the problems of compressed sensing, dictionary 

learning, dictionary adaptation for compressed sensing, linear SVM classification and their 

associated challenges. We start by introducing our notation in this dissertation.  

NOTATION 

Upper-case letters are used for matrices and lower-case letters are used for vectors and 

scalars. For a matrix ܣ, ௝ܽ denotes its ݆th column, തܽ௜ denotes its ݅th row and ܽ௜௝ ൌ ሾܣሿ௜௝. For the 

dictionary learning problem, we reserve the letters listed in the following table (which are 

properly defined later in this chapter). 
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Table 1. List of reserved letters and notation for the DL problem. 

Letter Reserved for 

ܰ  Total number of signal blocks 

݊  Dimension of each block 

݉  Number of measurements per block 

݀  Number of columns in the dictionary 

 Iteration number  ݐ

ܦ ∈ Թ௡ൈௗ  Dictionary 

ܺ ൌ ሾݔଵ ௝ݔ	where				ேሿݔ	… ∈ Թ௡  Signal/data matrix (each column is a block) 

ܣ ൌ ሾܽଵ …ܽேሿ				where	 ௝ܽ ∈ Թௗ  The coefficient matrix 

 

The vector ℓ௣ norm is defined as: 

௣‖ݔ‖ ൌ ൭෍|ݔ௜|௣

௜

൱

ଵ
௣

 

The matrix operator ܣ⊗  represents the Kronecker product (also known as outer ܤ

product, or tensor product) which is defined as (for ܣ ∈ Թ௠ൈ௡): 

ܤ⊗ܣ ൌ ൥
ܽଵଵܤ ⋯ ܽଵ௡ܤ
⋮ ⋱ ⋮

ܽ௠ଵܤ ⋯ ܽ௠௡ܤ
൩ 

The operator ܣ⊙  represents the Hadamard product (also known as the element-wise ܤ

product) which is defined as (for ܣ, ܤ ∈ Թ௠ൈ௡):  
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ܤ⊙ܣ ൌ ൥
ܽଵଵܾଵଵ ⋯ ܽଵ௡ܾଵ௡
⋮ ⋱ ⋮

ܽ௠ଵܾ௠ଵ ⋯ ܽ௠௡ܾ௠௡

൩ 

The operator ܿ݁ݒሺܣሻ reshapes a matrix to its column-major vectorized format. That is, if 

ܣ ൌ ሾܽଵ …ܽ௡ሿ ∈ Թ௠ൈ௡, ܿ݁ݒሺܣሻ ൌ ሾܽଵ
் …ܽ௡்ሿ்.  

The vector inner product is extended to matrices as 〈ܣ, 〈ܤ ൌ  ሻܣሺݎܶ ሻ whereܤ்ܣሺݎܶ

denotes the matrix trace, i.e. the sum of ܣ’s diagonal entries.  

The Frobenius norm of ܣ ∈ Թ௠ൈ௡ is defined as: 

ி‖ܣ‖ ൌ ቌ෍หܽ௜௝ห
ଶ

௜௝

ቍ

ଵ
ଶ

 

LINEAR MEASUREMENT MODEL 

In the linear class of signal measurement operators, each measurement ݕ௜ is a linear 

function of  the signal values. The collective set of measurements can be expressed as a system 

of linear equations: 

 ൞

߶ଵଵݔଵ ൅ ߶ଵଶݔଶ ൅ ⋯൅ ߶ଵ௡ݔ௡ ൌ ଵݕ
߶ଶଵݔଵ ൅ ߶ଶଶݔଶ ൅ ⋯൅ ߶ଶ௡ݔ௡ ൌ ଶݕ

⋮
߶௠ଵݔଵ ൅ ߶௠ଶݔଶ ൅ ⋯൅ ߶௠௡ݔ௡ ൌ ௠ݕ

  

or more compactly: 

 Φݔ ൌ   ݕ

where Φ represents an ݉ ൈ ݊ sampling matrix. In under-sampling scenarios, where we have a 

smaller number of linear measurements ݉ compared to the signal ambient dimension ݊, resulting 
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in ‘short and fat’ sampling matrices. As a consequence, the solution space for ݔො such that Φݔො ൌ

 which is basically a translated copy of the null space of Φ, has an infinite cardinality. This ,ݕ

makes the inverse problem ill-posed without additional information about the underlying signal 

  .ݔ

For example, periodic point-wise sampling or point-sampling2 is a special case of linear 

measurement where there is only a single non-zero entry in each row of the sampling matrix. 

Another scheme is when the signal is convolved with a low-pass filter (anti-aliasing filter) before 

the point-wise sampling. Generally speaking, such periodic measurement operations result to 

structured circulant sampling matrices. Meanwhile, recent advances in signal sensing and 

recovery suggest that randomly generated sampling matrices are very efficient for sensing sparse 

signals. Perhaps a more accurate term for these randomly generated sampling matrices is 

pseudorandom matrices. However, for simplicity and similar to most other works, we use the 

term ‘random sampling matrices’. Random sampling matrices are proven to be superior (in terms 

of the sensing efficiency) to conventional point-sampling matrices when no prior knowledge is 

assumed about the underlying sparse signal. Random sampling matrices are usually assumed to 

be generated using a random (independent and identically distributed) Gaussian distribution 

while many other distributions, including Rademacher and centered and bounded distributions, 

have proven to perform similarly as well [14].  

                                                 
2 In point-wise sampling the signal value is captured once in every few samples, using periodically.  
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COMPRESSED SENSING 

Compressed Sensing (CS) in its simplest form is an inverse problem in which we are 

given a set of underdetermined linear measurements of ݔ in the form Φݔ ൌ  and we are asked ݕ

to find the sparsest solution ݔො∗ that adheres to the measurements. However, instead of searching 

the solution space of Φݔො ൌ  ො with the minimum number of non-zeros whichݔ for the solution ݕ

turns out to be an NP-hard problem, CS suggests minimizing a relaxed function to replace the 

non-convex sparsity objective [1]. The convex objective is simply the sum of absolute values of 

the signal or the ℓଵ-norm of the signal: 

ො‖ଵݔ‖  ൌ ∑ |ො௜ݔ|
௡
௜ୀଵ   

It is conventional to say that the ℓଵ-norm relaxes the ℓ଴-(pseudo)norm which is defined 

as the number of non-zero signal values. The proposed relaxation, however, is only valid when 

the sampling matrix Φ satisfies a condition known as the Restricted Isometry Property or RIP [1, 

15] described below.  

 

Definition 2.1 [15] For each integer ݏ ൌ 1,2, …, define the restricted isometry constant 

 to be the smallest number such that ߔ ௦ of a matrixߜ

 ሺ1 െ ଶ‖ݔ‖௦ሻߜ
ଶ ൑ ଶ‖ݔߔ‖

ଶ ൑ ሺ1 ൅ ଶ‖ݔ‖௦ሻߜ
ଶ (2.1) 

holds for all ݏ-sparse vectors ݔ. A vector is said to be ݏ-sparse if it has at most ݏ non-zero 

entries. The matrix ߔ is said to satisfy the ݏ-restricted isometry property with restricted isometry 

constant  ߜ௦. 
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Note that ߜଵ ൑ ଶߜ ൑ ଷߜ ൑ ⋯ for any Φ, meaning that the isometry constant becomes 

worst as the signal becomes denser. For example, ߜଶ௦ ൏ 1 guarantees that the ℓ଴-minimization 

problem has a unique solution for ݏ-sparse vectors but does not give acceptable recovery 

guarantees for the ℓଵ-minimization problem. A tighter bound ߜଶ௦ ൏ √2 െ 1 guarantees that the 

solution to the ℓଵ-minimization problem is exactly the same as the solution to the ℓ଴-

minimization problem [15]. Moreover, the ℓଵ-based recovery can be proven to be very stable 

with respect to noise3. 

Define the noisy CS problem as: 

∗ොݔ  ൌ argmin
௫ො
ݕ‖     ො‖ଵ      subject toݔ‖ െ Φݔො‖ଶ ൏ ߳ (2.2) 

which can also be written as the LASSO optimization problem [16]: 

∗ොݔ  ൌ argmin
௫ො

ଵ

ଶ
ݕ‖ െ Φݔො‖ଶ

ଶ ൅  ො‖ଵ (2.3)ݔ‖ߣ

for a proper choice of ߣ which is described in [17]. Candès, in his short and elegant notes [15], 

has reformulated the following theorem about the stability of the CS recovery under additive 

noisy measurements ݕ ൌ Φݔ ൅  :ݖ

Theorem 2.1 [15] Assume that ߜଶ௦ ൏ √2 െ 1 and ‖ݖ‖ଶ ൏ ߳. Then the noisy CS solution 

(2.2) obeys: 

∗ොݔ‖  െ ଶ‖ݔ ൑ ݏ଴ܥ
ିభ
మ‖ݔ െ ௦‖ଵݔ ൅  ଵ߳  (2.4)ܥ

with small constants ܥ଴ and ܥଵ that are explicitly given in [15] and ݔ௦ denoting the best ݏ-sparse 

approximation of ݔ by keeping the largest ݏ entries of ݔ.  

                                                 
3 In this context, usually, noise refers to the small non-zero entries in the signal. A noisy sparse signal ݔ can be 
written as the sum of a ݏ-sparse noiseless signal ݔ௦ and a low-energy noise with ‖ݔ െ ௦‖ଶݔ ൏ ߳. 
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The original theories of CS have been extended significantly over the past decade for 

different types of measurement noise, non-sparsity noise, structured sparsity models which make 

CS more robust in real-world scenarios. However, reviewing these works is beyond the scope of 

this dissertation or any single work.  

DICTIONARY LEARNING 

Standard formulation 

Let ݔ ൌ ݔ denote the representation of signal ܽܦ ∈ Թ௡ with respect to the dictionary ܦ ∈

Թ௡ൈௗ (here ݀ represents the number of columns or atoms in the dictionary) with the coefficient 

vector ܽ ∈ Թௗ. Specifically when ݀ ൐ ݊, the dictionary is called overcomplete (or sometimes 

called redundant), as opposed to orthogonal bases which are called complete. This naming 

convention is due to the fact that overcomplete dictionaries, not only span the whole signal 

space, allow for various representations of the same signal and eventually sparser representations 

of signals can be obtained using convex optimization algorithms.  

As an alternative to model-based and mathematically induced dictionaries such as 

wavelets, Dictionary Learning (DL) [18] is a data-driven and algorithmic approach to build 

sparse representations for natural signals. Let ܺ ൌ ሾݔଵ, ,ଶݔ … , ேሿݔ ∈ Թ௡ൈே denote the data matrix 

which consists of ܰ ݊-dimensional (training) signals and let ݔ௝ ൌ ܦ ௝ܽ denote the representation 

of block ݆. Expressed in a matrix form, ܺ ൌ ܣ with ܣܦ ൌ ሾܽଵ, ܽଶ, … ܽேሿ ∈ Թௗൈே. In a DL 



 

18 

problem, we are given the training data matrix ܺ and are asked to find a dictionary that 

minimizes the sum of squared errors for the sparse representation: 

ሺܦ∗, ܽଵ
∗, ܽଶ

∗, … , ܽே
∗ ሻ ൌ arg min

஽,௔భ,௔మ,…,௔ಿ
∑ ଵ

ଶ
ฮݔ௝ െ ܦ ௝ܽฮଶ

ଶே
௝ୀଵ 	subject	to	∀݆:	ฮ ௝ܽฮ଴ ൑ ݇ (2.5) 

To make the problem more tractable, the ℓ଴ norm may be replaced by the ℓଵ norm and 

combined with the objective function using the Lagrangian method: 

 ሺܦ∗, ܽଵ
∗, ܽଶ

∗, … , ܽே
∗ ሻ ൌ arg min

஽,௔భ,௔మ,…,௔ಿ
∑ ଵ

ଶ
ฮݔ௝ െ ܦ ௝ܽฮଶ

ଶ
൅ ∑ߣ ฮ ௝ܽฮଵ

ே
௝ୀଵ

ே
௝ୀଵ  (2.6) 

The matrix ܦ is typically assumed to have unit-norm columns as in orthonormal bases 

and preventing unbounded solutions for ܦ. This formulation of DL, along with the matrix 

factorization formulation presented below, correspond to very high-dimensional non-convex 

optimization problems. Therefore, it is extremely difficult to solve the DL problem in this form. 

The following sections describe bilevel formulation of DL which can be efficiently solved using 

convex optimization.  

Matrix factorization formulation 

Essentially, DL for exact signal representation is a matrix factorization problem where 

the data matrix ܺ is represented as the product of the matrix ܦ and a sparse matrix ܣ. In 

mathematical terms: 

 ܺ ൌ ሻ‖଴ܣሺܿ݁ݒ‖ subject to ܣܦ ൏  (2.7) ܭ
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where ܿ݁ݒሺܣሻ ൌ ሾܽଵ
், ܽଶ

், … , ܽே
் ሿ் represents the column-major vectorized format of the matrix 

 consists of a few large entries (in terms of their magnitudes) and ܣ ,In read-world applications .ܣ

many (relatively) small entries. To address this noisy scenario and the issue of the non-convexity 

of the ℓ଴ norm, the above DL formulation is typically relaxed by replacing the ℓ଴ norm with the 

convex ℓଵ norm and using the Lagrangian method: 

 ሺܦ∗, ሻ∗ܣ ൌ argmin
஽,஺

ଵ

ଶ
‖ܺ െ ி‖ܣܦ

ଶ ൅ ி‖ܦ‖ ሻ‖ଵ subject toܣሺܿ݁ݒ‖ߣ ൑ √݊ (2.8) 

The constraint ‖ܦ‖ி ൑ √݊ (bound on the dictionary norm) prevents the trivial solution of 

ܦ → ∞ௗൈ௡ and ܣ → 0௡ൈே. Similar to the previous formulation, the above problem represents a 

non-convex optimization with respect to the ሺܦ,  .ሻ tuple [19]ܣ

Although equivalent to the standard DL formulation presented in the previous section, the 

matrix factorization formulation presents a more concise formulation and is sometimes preferred. 

For the remaining of this dissertation we use them interchangeably depending on the context. 

Bilevel formulation and optimization  

A typical remedy to the non-convexity of the DL problem (for example see [20]) is to 

write the DL problem as a bilevel optimization problem where both its lower-level and upper-

level problems are convex:   

ቐ				
lower	level:					ܣ∗ ൌ argmin

஺

ଵ

ଶ
‖ܺ െ ி‖ܣ∗ܦ

ଶ ൅ 																				ሻ‖ଵܣሺܿ݁ݒ‖ߣ

upper	level:					ܦ∗ ൌ argmin
஽

ଵ

ଶ
‖ܺ െ ி‖∗ܣܦ

ଶ ி‖ܦ‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ		 ൑ √݊		
 (2.9) 
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Numerically, the bilevel DL problem is solved by alternating between the lower-level and 

upper-level problems: 

൞				
ሺ௧ାଵሻܣ ൌ argmin

஺

ଵ

ଶ
ฮܺ െ ฮܣሺ௧ሻܦ

ி

ଶ
൅ 																						ሻ‖ଵܣሺܿ݁ݒ‖ߣ

ሺ௧ାଵሻܦ ൌ argmin
஽

ଵ

ଶ
ฮܺ െ ሺ௧ାଵሻฮܣܦ

ி

ଶ
ி‖ܦ‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ	 ൑ √݊	

 (2.10) 

This can be accomplished by alternating between the two steps:  

1) Sparse coding (lower-level): by fixing ܦሺ௧ሻ and optimizting with respect to ܣሺ௡ାଵሻ. 

This represents a Lasso optimization problem which can be solved efficiently, for 

example, using the least angle regression algorithm [16].   

2) Dictionary update (upper-level): by fixing ܣሺ௡ାଵሻ and optimizing with respect to 

 ሺ௧ାଵሻ. This represents a constrained quadratic optimization problem which can beܦ

solved efficiently, for example, using gradient descent algorithms. 

Note that, although individual optimization problems for individual variables have 

convex objective functions, the combined DL objective is not convex and the global optimum 

cannot be reached using greedy algorithms. Still, in most cases, even a local optimum represents 

a favorable solution compared to the starting point.  

DL FROM RANDOM PROJECTIONS OF DATA 

Recall that, in repeated-block measurement, all columns (or blocks) of the data matrix ܺ 

are measured using the same measurement matrix. Given these measurements, expressed in the 

matrix form ܻ ൌ Φܺ, the DL problem must be modified as follows: 
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 ൫ܦ෡∗, መ∗൯ܣ ൌ argmin
஽,஺

ଵ

ଶ
‖Y െ Φܣܦ‖ி

ଶ ൅ ி‖ܦ‖ ሻ‖ଵ subject toܣሺܿ݁ݒ‖ߣ ൑ √݊ (2.11) 

The bilevel form of the above problem follows:  

൞				
lower	level:					ܣመ∗ ൌ argmin

஺

ଵ

ଶ
ฮܻ െ Φܦ෡∗ܣฮ

ி

ଶ
൅ 																				ሻ‖ଵܣሺܿ݁ݒ‖ߣ

upper	level:				ܦ෡∗ ൌ argmin
஽

ଵ

ଶ
ฮܻ െ Φܣܦመ∗ฮ

ி

ଶ
ி‖ܦ‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ		 ൑ √݊		

 (2.12) 

Note that the lower-level problem correspond to a noisy CS problem in the form of 

LASSO [16]. Therefore, in this thesis, we focus on the upper-level (dictionary update) problem 

since the lower-level problem is a relatively well-studied problem. 

When considering the random-block measurements, it is more convenient to write the DL 

problem in a block-wise format: 

 ሺܦ∗, ሻ∗ܣ ൌ argmin
஽,஺

∑ ଵ

ଶ
ฮݔ௝ െ ܦ ௝ܽฮ

ி

ଶ
൅ ฮߣ ௝ܽฮଵ

ே
௝ୀଵ  (2.13) 

This way, DL with general (random or repeated) block measurements becomes: 

 ൫ܦ෡∗, መ∗൯ܣ ൌ argmin
஽,஺

∑ ଵ

ଶ
ฮݕ௝ െ Φ௝ܦ ௝ܽฮ

ி

ଶ
൅ ฮߣ ௝ܽฮଵ

ே
௝ୀଵ  (2.14) 

subject to ‖ܦ‖ி ൑ √݊.  

Finally, note that block measurements ∀݆:	ݕ௝ ൌ Φ௝ݔ௝ could be expressed as: 

ሺܻሻ	ܿ݁ݒ ൌ ቎
Φଵ

⋱
Φே

቏  ሺܺሻܿ݁ݒ

where the overall measurement matrix is block-diagonal.  
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SUPPORT VECTOR MACHINE CLASSIFICATION 

Classification is task of assigning categorical labels to the input signals based on some 

decision rule. Most classifiers are inherently composed of binary decision rules. Specifically, in 

multi-categorical classification, multiple binary classifiers are trained according to either One-

Against-All (OAA) or One-Against-One (OAO) schemes and voting techniques are employed to 

combine the results [21]. For example, in a OAA linear Support Vector Machine (SVM) 

classification problem, an affine decision hyperplane is computed between each class and the rest 

of the training data, while in a OAO scheme, a hyperplane is learned between each pair of 

classes. As a consequence, most studies focus on the canonical binary classification. Similarly in 

here, our analysis is presented for the binary classification problem which can be extended to 

multi-categorical classification. 

In the linear SVM classification problem [22, 23], we are given a set of training data 

points (each corresponding to a hyperspectral pixel) ݔ௝ ∈ Թௗ for ݆ ∈ ሼ1,2, … ,ܰሽ and the 

associated labels  ݖ௝ ∈ ሼെ1,൅1ሽ. The inferred class label for ݔ௝ is ݊݃݅ݏ൫ݔ௝
்߱ െ ܾ൯ that depends 

on the classifier ߱ ∈ Թௗ and the bias term ܾ ∈ Թ. The classifier ߱ is the normal vector to the 

affine hyperplane that divides the training data in accordance with their labels. The mapping 

௝ݔ → ௝ݔ൫݊݃݅ݏ
்߱ െ ܾ൯ can be regarded as dividing the feature space into two partitions using the 

hyperplane ்߱ݔ ൌ ܾ and making a binary decision about ݔ௝ by observing which side of the 

learned hyperplane it lies on. The maximum-margin SVM classifier can be expressed as the 

following optimization problem: 

ሺ߱∗, ܾ∗ሻ ൌ argmin
ఠ,௕

‖߱‖ଶ 
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Subject to  

 ∀݆ ∈ ሼ1,2, … ,ܰሽ:								ݖ௝൫ݔ௝
்߱ െ ܾ൯ ൒ 1 (2.15) 

Note that minimizing ‖߱‖ଶ is effectively equivalent to maximizing the margin which is 

defined as the distance between the learned hyperplane and the closest ݔ௝. 

Unfortunately, it is not always possible to find an affine hyperplane that perfectly divides 

the training data in accordance with their labels which makes the above hard-margin SVM 

problem infeasible for some data. When the training classes are inseparable by an affine 

hyperplane, maximum-margin soft-margin SVM is used which relies on a loss function to 

penalize the amount of misfit. For example, a widely used loss function is ℓሺݎሻ ൌ ሺmaxሼ0,1 െ

ݎ ሽሻ௣ withݎ ൌ ௝ݔ௝൫ݖ
்߱ െ ܾ൯. For ݌ ൌ 1, this loss function is known as the hinge loss, and for ݌ ൌ

2, it is called the squared hinge loss or simply the quadratic loss. The optimization problem for 

soft-margin SVM becomes 

 ሺ߱∗, ܾ∗ሻ ൌ argmin
ఠ,௕

ଵ

௡
∑ ℓ ቀݖ௝൫ݔ௝

்߱ െ ܾ൯ቁ௡
௝ୀଵ ൅ ఒ

ଶ
‖߱‖ଶ

ଶ (2.16) 

Similar results can be obtained using the dual form [24]. Recent works have shown that 

advantages of the dual form can be obtained in the primal as well [24] where it is noted that the 

primal form convergences faster to the optimal parameters ሺ߱∗, ܾ∗ሻ than the dual form. For the 

purposes of our work, it is more convenient to work with the primal form of SVM although the 

analysis can be properly extended to the dual form. 

A well-known constrained formulation for the soft-margin SVM problem, which is closer 

to the its original formulation, is obtained by adding a set of ܰ slack variables ߦ௝ and solving the 

following constrained optimization problem 
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 ሺ߱∗, ܾ∗ሻ ൌ arg min
ఠ,௕,క

‖߱‖ଶ
ଶ ൅ ܥ ∑ ௝ߦ

௣ே
௝ୀଵ   

Subject to 

 ∀݆ ∈ ሼ1,2, … ,ܰሽ:							ݖ௝൫ݔ௝
்߱ െ ܾ൯ ൒ 1 െ ௝ߦ					,௝ߦ ൒ 0 (2.17) 

The advantage of this formulation is that it represents a quadratic program that can be 

solved efficiently using off-the-shelf software packages.  
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CHAPTER 3 

SPARSE REGULARIZATION FOR DL FROM REPEATED-BLOCK 

MEASUREMENTS 

The ultimate goal of this chapter is to improve the sparse image reconstruction from 

repeated-block measurements through real-time optimization of the dictionary. We first 

introduce the two-layer dictionary structure as it appeared in [12] for the first time. Next, we 

describe an efficient dictionary learning approach customized to the specific structure of the 

dictionary. Finally, we evaluate the performance of the proposed dictionary learning algorithm as 

a function of the number of acquired measurements. This chapter is based on our work [25]. 

 

THE TWO-LAYER DICTIONARY MODEL 

A two-layer dictionary is the product of a fixed frame Ψ, called the base dictionary, with 

a sparse parameter matrix Θ: 
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ܦ  ൌ ΨΘ  

 Examples of the base dictionary include the overcomplete cosine frame, the real Fourier 

frame and undecimated wavelet frames all of which can be efficiently used for signal 

representation. A layer of adaptivity is added to the signal representation by multiplying the base 

dictionary with a tunable matrix Θ. This matrix, which makes up the outer layer of the 

dictionary, is constrained to be sparse to reduce the amount of memory that is required for 

storing the dictionary and also reduce the computational burden of subsequent matrix 

multiplications [12]. It is usually assumed that Θ is a ݀ ൈ ݀ square matrix and Ψ is a ݊ ൈ ݀ 

frame. For complete frames ݊ ൌ ݀. 

OPTIMIZATION OF TWO-LAYER DICTIONARIES 

Optimization of the two-layer dictionaries is achieved by minimizing the total 

representation error for a specific level of sparsity in the parameter matrix Θ. Formally, the 

original problem of two-layer dictionary learning problem [12] was described as: 

 min
஀,஺

ଵ

ଶ
∑ ฮݔ௝ െ ΨΘ ௝ܽฮଶ

ଶே
௝ୀଵ        subject to     ቊ

∀݅ ∈ ሼ1,2, … , ݀ሽ:	‖ߠ௜‖଴ ൑ ݐ
∀݆ ∈ ሼ1,2… ,ܰሽ:	ฮ ௝ܽฮ଴ ൑ ݇ (3.1) 

However, we are interested in a relaxed and more tractable form of this problem by 

replacing the non-convex sparsity constraints with convex ℓଵ-norm constraints. Using the 

Lagrangian method for constrained optimization with fixed ߛ and ߣ: 

 min
஀,஺

ଵ

ଶ
∑ ฮݔ௝ െ ΨΘܽ୨ฮଶ

ଶ
൅ ߛ ∑ ௜‖ଵߠ‖

ௗ
௜ୀଵ

ே
௝ୀଵ ൅ ∑ߣ ฮ ௝ܽฮଵ

ே
௝ୀଵ  (3.2) 

The bilevel formulation for this problem becomes: 
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 ቐ
lower	level:										ܣ∗ ൌ argmin

஺

ଵ

ଶ
∑ ฮݔ௝ െ ΨΘ∗ ௝ܽฮଶ

ଶே
௝ୀଵ ൅ ฮߣ ௝ܽฮଵ								

upper	level:										Θ∗ ൌ argmin
஀

ଵ

ଶ
∑ ฮݔ௝ െ ΨΘ ௝ܽ

∗ฮ
ଶ

ଶே
௝ୀଵ ൅ ߛ ∑ ௜‖ଵߠ‖

ௗ
௜ୀଵ

 (3.3) 

Hence, after computing the coefficient matrix in iteration ݐ of the DL algorithm (using 

LASSO), we can again use the LASSO optimization to update the dictionary parameters. 

However, one can see with a close inspection that the dictionary update problem is still not in the 

typical LASSO form and needs to be rearranged. The rearrangement is explained in the 

following section. 

OBTAINING THE LASSO FORM FOR THE UPPER LEVEL 

Assume that the columns of the parameter matrix Θ are sequentially updated. To update 

 :௜ (column ݅ of the parameter matrix), we must solve the following optimization problemߠ

 min
ఏ೔

ଵ

ଶ
∑ ฮ ௝݁

௜ െ Ψߠ௜ܽ௜௝ฮଶ
ଶ
൅ ௜‖ଵߠ‖ߛ

ே
௝  (3.4) 

where ௝݁
௜ is defined as the error associated with the atom number ݅ of the dictionary for signal 

number ݆ and is computed as: ௝݁
௜ ൌ ௝ݔ െ ∑ Ψߠℓܽℓ௝

ௗ
ℓஷ௜ . Also define ܧ௜ as the matrix of error 

vectors for atom number ݅ with columns ௝݁
௜. Using [12, Lemma 1] we can show that the 

optimization problem of (3.2) can be reduced to: 

 min
ఏ೔

ଵ

ଶ
ฮܧ௜ തܽ௜

் െ Ψߠ௜ฮଶ
ଶ
൅  ௜‖ଵ (3.5)ߠ‖ߛ

which has the typical LASSO form.  

We should note that we update each ߠ௜ independently of the rest of columns of Θ which 

means the coefficient matrix ܣ is assumed fixed during the dictionary update. Unlike the direct 
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least squares approach of dictionary learning reviewed in Section 2.4, the optimization problem 

(3.5) represents an inverse problem of finding the parameters that characterize the dictionary.  

DL FROM REPEATED-BLOCK MEASUREMENTS 

The bilevel formulation for DL from repeated-block measurements becomes: 

 ቐ
lower	level:										ܣመ∗ ൌ argmin

஺

ଵ

ଶ
∑ ฮݔ௝ െ ΦΨΘ෡∗ ௝ܽฮଶ

ଶே
௝ୀଵ ൅ ฮߣ ௝ܽฮଵ				

upper	level:										Θ෡∗ ൌ argmin
஀

ଵ

ଶ
∑ ቛܧ෠∗

௜
ොܽത௜
∗் െ ΦΨߠ௜ቛ

ଶ

ଶ
ௗ
௜ୀଵ ൅ ௜‖ଵߠ‖ߛ

 (3.6) 

where ܧ෠∗
௜
ൌ ൣ݁̂ଵ

∗௜, ݁̂ଶ
∗௜, … , ݁̂ே

∗ ௜൧ with ݁̂௝
∗௜ ൌ ௝ݕ െ ∑ ΦΨߠ෠ℓ

∗ ොܽℓ௝
∗ௗ

ℓஷ௜ .  

As we mentioned before, unconstrained DL from repeated-block measurements 

corresponds to an ill-posed problem. Our motivation for regularization of DL through a 

parametric dictionary model was to reduce the amount of information required for characterizing 

the dictionary. Given that the parameter matrix Θ is sparse (or decays fast if sorted), we are 

imposing some prior information upon the dictionary which resembles a Bayesian framework. In 

fact, it is not difficult to show that the optimization problem (20) corresponds to a MAP 

estimator with a double exponential distribution for Θ. In a Bayesian framework, measurements 

represent observations and are deployed in a MAP estimation to infer the system parameters. 

Clearly, acquiring more observations results in a more accurate estimation. With no 

observations, Θ ൌ   .ௗ and the dictionary would be equal to the base dictionary Ψܫ
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ALGORITHM 

We present the algorithm for adapting two-layer dictionaries in Algorithm 1. 

Algorithm 1. The algorithm for adapting the two-layer dictionary from measurements. 

Input: Base frame Ψ௡ൈௗ, measurements ௠ܻൈே, the sampling matrix Φ୫ൈ୬, LASSO regularization 

parameters ߛ ,ߣ, number of iterations ܶ 

Outputs: learned dictionary ܦ෡∗, Estimated patches ෠ܺ∗ 

Initialization: Θሺ଴ሻ ൌ  ௗൈௗܫ

Do for ݐ from 0 to ܶ െ 1: 

Compute ௝ܽ
ሺ௧ሻ for ݆ ൌ 1,2, … , ܰ using LASSO: 

௝ܽ
ሺ௧ሻ ൌ argmin

௔ೕ

1
2
ฮݕ௝ െ Φܦሺ௧ሻ

௝ܽฮଶ
ଶ
൅ ฮߣ ௝ܽฮଵ 

Update ߠ௜
ሺ௧ାଵሻ for ݅ ൌ 1,2, . . , ݀ using LASSO: 

௜ߠ
ሺ௧ାଵሻ ൌ argmin

ఏ೔

1
2
ቛ൫ܧ௜ തܽ௜

்൯
ሺ௧ሻ
െ Ψߠ௜ቛ

ଶ

ଶ
൅  ௜‖ଵߠ‖ߛ

End 

Return the dictionary ܦ෡∗ ൌ :ሺ்ሻ and the estimated patchesܦ ෠ܺ∗ ൌ  ሺ்ሻܣሺ்ሻܦ

 

SIMULATION RESULTS 

Performance analysis using the learning curve 

To better understand the effectiveness and the convergence of the learning algorithm, we 

analyze a performance curve that we refer to by the learning curve. Learning curve shows the 
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quality of the image recovery as a function of the iteration number ݐ or equivalently as a function 

of time4. We use the well-known Peak-Signal-to-Noise-Ratio (PSNR) to measure the recovery 

performance: 

 PSNR ൌ 20 ൈ logଵ଴
୫ୟ୶
ౠ౟

௫ೕ೔

ටభ
ಿ
∑ ฮ௫ೕି௫෤ೕฮమ

మಿ
ೕ 	

  (3.7) 

where ݔ௝ is the underlying image block ݆ and ݔ෤௝ ൌ  .෤௝ is its recoveryߙ෩ܦ

Normally, the learning curve must converge to a local or global optimum of the objective 

function which is, in our case, directly related to the PSNR. However, when only partial 

information is known about the underlying image, which is captured in a set of linear 

measurements, the algorithm does not always converge to an optimal PSNR and when it does, 

the convergence is slower for smaller number of measurements. An example of the learning 

curve is shown in Figure 2 for illustration. The red dashed line in this figure shows the PSNR for 

nonadaptive recovery using the fixed dictionary which is also the starting point for the learning 

algorithm.  

                                                 
4 Assuming a fixed number of operations is performed in each iteration of the learning algorithm. 
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Figure 2. An example of a learning curve for the image ‘Barbara’ with  sampling rate 
௠

௡
ൌ

ଵ

ଶ
. PSNR is in 

dBs. 

Selection of the base dictionary  

Instead of using a discrete cosine basis for the base dictionary as in [13], we use a real 

Fourier basis that consists of real basis vectors for 2D signals. We derived the real Fourier by 

exploiting the complex conjugate property of real signals in the Fourier domain. In Figure 3, the 

real Fourier basis is plotted against the discrete cosine basis. Intuitively, and as can be seen in the 

figure, the Fourier basis vectors have directional constructions that are more suitable for 

representing image structures like edges and texture. On the contrary, the cosine basis vectors are 

designed to uncorrelated the signal and capture as most energy in the first few coefficients that 

capture the low-frequency end of the signal spectrum. Unlike traditional recovery tasks where it 

was preferable to recover the lower end of the spectrum, in the problem of compressed sensing, it 
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is preferable to use both high-frequency and low-frequency constructions to sparsify and recover 

the signal. Also, through a series of empirical tests, we found that the Fourier basis is more 

suitable choice as the base frame for the construction of adaptive two-layer dictionaries. 

     

Figure 3. Left: discrete cosine basis. Right: real discrete Fourier basis. 

Results 

The set of image that were used for testing is displayed in Figure 45. These images that 

are 512 ൈ 512 are down-scaled for illustration.  

                                                 
5 There is a fine texture in the images house and matches that may not be visible in the downscaled versions of these 
images. 
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Figure 4. The set of images used for performance evaluations (down-scaled). From left to right and top to 
bottom: Barbara, Lena, house, rocket, boat, fingerprint, matches and the man. 

For demonstration purposes, we test with two sampling rates corresponding to very low 

rate at 20% (1 in every 5 samples) and an average rate at 50% (1 in every 2 samples). For 1-in-

5 sampling we use ߣ ൌ 0.05 and for 1-in-2 sampling we use ߣ ൌ 0.01 while ߛ ൌ 0.05 for both 

cases. Generally speaking, with more measurements, we can relax the ℓଵ penalty which is why 

we use smaller ߣ for higher sampling rates. The sampling matrix Φ is sampled from a random 

independent identically distributed (i.i.d.) Gaussian distribution with normalized (unit norm) 

rows. In our experiments, we divide each image into 9 ൈ 9 blocks for sampling and recovery.  

For the average performance, we must recover each image several times, each time with a 

different (randomly generated) sampling matrix. However, before that, we study a few runs of 

the same experiment with different sampling matrices to check the variance of the learning 

process. Figure 5 shows the results for the 1-in-5 sampling for the image Lena under 10 different 

constructions of the sampling matrix. As can be seen, the learning curve can behave differently 
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with each sampling matrix. Consequently, there is not much point in studying the average of the 

learning curve.   

 

 

Figure 5. Multiple runs of the same experiment with different sampling matrices. (Experiment: Recovery from 1-in-
5 sampling for the test image Lena.) 

 

The average results for 1-in-5 sampling are presented in Table 2. The PSNR results are 

averaged over 10 trials, each with 50 iterations of the algorithm. 

Table 2. Average PSNR results for the 1-in-5 sampling (adaptive two-layer dictionary). PSNRs are in 
dBs. 

Image Nonadaptive PSNR Adaptive PSNR Improvement 

Barbara 21.62 21.90 0.28 

Lena 23.56 23.86 0.30 

house 22.70 23.04 0.34 

rocket 25.37 25.58 0.21 

boat 22.36 22.69 0.33 

fingerprint 16.91 17.33 0.42 

matches 20.52 20.86 0.33 

the man 23.00 23.39 0.40 
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Table 3 contains the results for the case of 1-in-2 sampling. Similarly, each result is the 

average of 10 trials with 50 iterations each. 

Table 3. Average PSNR results for the 1-in-2 sampling (adaptive two-layer dictionary). PSNRs are in 
dBs. 

Image Nonadaptive PSNR Adaptive PSNR Improvement 

Barbara 26.59 27.13 0.54 

Lena 29.16 29.88 0.72 

house 28.02 28.25 0.23 

rocket 32.88 34.59 1.71 

boat 27.35 27.64 0.29 

fingerprint 22.45 22.50 0.05 

matches 25.76 25.84 0.08 

the man 27.54 27.93 0.39 

 

For instance, consider a single run for the image Lena. The learning curve is plotted in 

Figure 6 below. 
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Figure 6. Learning curve for 1-in-2 sampling for Lena (two-layer dictionary). 

The algorithm initially seems to be degrading the recovery throughout the optimization 

process6 while after about 30 iterations it reaches a point that lies in the way of a potential 

optimum. Because of the inverse nature of the problem and the random construction of sampling 

matrices, it is hard to predict the algorithm behavior even after hundreds of iterations. Note that 

even in the traditional dictionary learning problem, which is based on complete knowledge of the 

signal, the optimization cost is a function with lots of local minima (even though each 

optimization layer has a convex objective function).  

                                                 
6 The measurement-based cost function does not reflect the true recovery cost and only provides an estimate. This is 
the reason why decreasing the cost can sometimes result in loss of PSNR.  
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Concluding remarks 

Concluding from the empirical results, the slow convergence rate of the algorithm is its 

main drawback even though the improvements after several iterations are consistent. On top of 

that, the complexity of solving for two-layer dictionaries can be overwhelming for image 

recovery tasks. The two-layer constrained dictionary model represents our first successful 

attempt to tackle the problem of dictionary learning when only partial information is accessible 

about the underlying data. Continuing the same line of work, we have been developing an 

efficient dictionary model (the autoregressive dictionary model) that is a more viable option for 

image recovery. Meanwhile, later in this work, we study random-block sampling that is superior 

to repeated-block sampling and results in a more reliable DL and signal recovery. 
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CHAPTER 4 

AUTOREGRESSIVE REGULARIZATION FOR DL FROM REPEATED-

BLOCK MEASUREMENTS 

Similar to the previous chapter, our goal in this chapter is to improve the sparse image 

recovery from repeated-block measurements through real-time adaptation of the dictionary. This 

time, we utilize a non-parametric Bayesian approach to tackle the ill-posed nature of the 

problem. In this approach, each dictionary atom is modeled (a-priori) as a correlated process 

while different atoms are assumed to be independent. We employ a Maximum-a-Posteriori 

(MAP) estimation to update the dictionary using an empirical covariance matrix that is derived 

offline from a dataset of real-world images.  

 

THE AR DICTIONARY MODEL 

In the proposed autoregressive (AR) dictionary model, each atom is modeled as a 2D 

stationary process with a known covariance matrix ܥௗ while different atoms are assumed to be 

independent. In this model, the same covariance matrix is used for all atoms. An instance of the 
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empirical covariance matrix is shown in Figure 7 where each block shows the pair-wise 

covariance of each pixel with every other pixel. As expected for natural signals, the covariance 

function monotonically decreases with distance.  

 

Figure 7. The empirical covariance matrix for AR dictionary. 

Employing an empirical covariance matrix for the estimation process imposes a degree of 

smoothness onto the learned dictionary atoms.7 In fact, Bayesian estimation with autoregressive 

priors can be viewed as non-parametric Gaussian regression [26] where the objective is to 

interpolate the sampled data using a smooth curve. In such interpolation applications, the 

smoothness prior prevents overfitting when samples are not sufficiently dense or the signal to 

noise ratio is small. However, for our task, the smoothness prior prevents the learned dictionary 

to get ‘trapped’ in the low-dimensional space of measurements. More details are provided below. 

                                                 
7 The degree of smoothness is tuned to natural images. Care must be taken in that the dataset of images used for 
computing the empirical covariance matrix must not include the image under recovery. 
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LEARNING AR DICTIONARIES FROM REPEATED-BLOCK MEASUREMENTS 

The original dictionary update objective from repeated-block measurements is: 

 
ଵ

ଶ
∑ ฮݕ௝ െ Φܦ ௝ܽฮଶ

ଶே
௝ୀଵ   

where ݕ௝ ൌ Φݔ௝. As discussed before, decreasing this objective function (by updating the 

dictionary ܦ) does not necessarily result in a decrease in the true objective function 
ଵ

ଶ
∑ ฮݔ௝ െ
ே
௝ୀଵ

ܦ ௝ܽฮଶ
ଶ
. Therefore, without additional information, overfitting is inevitable.  

A typical solution to the overfitting issue is the assumption of smoothing priors that are 

usually derived from an empirical analysis of a training dataset. Specifically, the regularized 

objective function can be written as the sum of the original objective with an additional term: 

 
ଵ

ଶ
∑ ฮݕ௝ െ Φܦ ௝ܽฮଶ

ଶே
௝ୀଵ ൅ ଵ

ଶ
∑ ‖Γ݀௜‖ଶ

ଶௗ
௜ୀଵ  (4.1) 

where the matrix Γ is usually called the Tikhonov regularization matrix [27]. If vectors ݀௜ were 

modeled as zero-mean multivariate Gaussian variables, Γ்Γ ൌ ௗܥ
ିଵ which is a direct result of 

writing the posterior probability in a Bayesian framework. To simplify the rest of equations, we 

can write the dictionary objective as: 

 
ଵ

ଶ
Tr൫ሺܻ െ Φܣܦሻ்ሺܻ െ Φܣܦሻ൯ ൅ ଵ

ଶ
Trሺܥ்ܦௗ

ିଵܦሻ (4.2) 

The next step is to derive the gradient of the objective with respect to the dictionary ܦ at 

the current iteration of the algorithm ܦሺ௧ሻ: 

ܦ஽݂൫׏ 
ሺ௧ሻ൯ ൌ Φ்൫Φܦሺ௧ሻܣሺ௧ሻ െ ܻ൯ܣሺ௧ሻ

்
൅ ௗܥ

ିଵܦሺ௧ሻ (4.3) 
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Taking a step in the negative gradient direction results in the maximum rate of reduction 

of the cost function. However, to find the optimum step size, we need to solve a 1D line search 

problem. Since ܦሺ௧ାଵሻ ൌ ሺ௧ሻܦ ൅ ܦ஽݂൫׏ሺ௧ሻߤ
ሺ௧ሻ൯, we must take the derivative of (24) with ܦ ൌ

ሺ௧ሻܦ ൅ ܦ஽݂൫׏ሺ௧ሻߤ
ሺ௧ሻ൯ with respect to ߤሺ௧ሻ and set it equal to zero to find the optimum step size 

 :ሺ௧ሻ. The final solution isߤ

ሺ௧ሻߤ 
∗
ൌ

்௥൫஻೅ா൯ି்௥൫୼೅஼೏
షభ஽ሺ೟ሻ൯

்௥ሺ஻೅஻ሻା்௥൫୼೅஼೏
షభ୼൯

 (4.4) 

where we have defined Δ ൌ ܦ஽݂൫׏
ሺ௧ሻ൯, ܤ ൌ ΦΔܣሺ௧ሻ and ܧ ൌ Φܦሺ௧ሻܣሺ௧ሻ.  

To summarize, we use a steepest descent approach to update the dictionary (by taking a 

single step in the descent direction) for the dictionary update stage. The step size is also 

optimized in our framework. By iterating between the sparse coding stage and the dictionary 

update stage, the dictionary is adapted to the underlying image, merely using the linear 

measurements, resulting in an image recovery that is superior to the non-adaptive (fixed 

dictionary) case.   

ALGORITHM 

Here, we present our algorithm for adapting AR dictionaries. 

Algorithm 2. The algorithm for adapting AR dictionaries from measurements. 
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Input: Starting frame Ψ, Measurements ௠ܻൈே, the sampling matrix Φ୫ൈ୬, the dictionary covariance ܥௗ, 

LASSO regularization parameter ߣ, number of iterations ܶ 

Outputs: learned dictionary ܦ෡∗, Estimated patches ෠ܺ∗ 

Initialization: ܦሺ଴ሻ ൌ Ψ 

Do for ݐ from 0 to ܶ െ 1: 

Compute ௝ܽ
ሺ௧ሻ for ݆ ൌ 1,2, … , ܰ using LASSO: 

௝ܽ
ሺ௧ሻ ൌ argmin

௔ೕ

1
2
ฮݕ௝ െ Φܦሺ௧ሻ

௝ܽฮଶ
ଶ
൅ ฮߣ ௝ܽฮଵ 

Update ܦሺ௧ାଵሻ by taking a step in the steepest descent direction: 

ሺ௧ାଵሻܦ ൌ ሺ௧ሻܦ ൅ ܦ஽݂൫׏ሺ௧ሻߤ
ሺ௧ሻ൯ 

where ׏஽݂൫ܦ
ሺ௧ሻ൯ and ߤሺ௧ሻ are given in (25) and (26). 

End 

Return the dictionary ܦ෡∗ ൌ :ሺ்ሻ and the estimated patchesܦ ෠ܺ∗ ൌ  ሺ்ሻܣሺ்ሻܦ

 

SIMULATION RESULTS 

The set of test images that we use in this work are shown in Figure 4 from the previous 

chapter. Similar to the previous chapter, we consider 1-in-5 sampling (as many as 
௡

ହ
 random 

measurements) and 1-in-2 sampling with repeated-block sampling matrices and the blocks are 

9 ൈ 9. Furthermore, we utilize the same definition of the learning curve for analyzing the 

performance and the efficiency of the algorithm. To reiterate, the empirical covariance matric 

needed for the dictionary model cannot be computed from a dataset that contains the test image. 
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A simple strategy would be to use cross-validation, i.e. removing the test image from the dataset 

and computing the covariance matrix for the remaining images for the adaptive dictionary. 

Results 

The average results for 1-in-5 sampling are presented in Table 4. The PSNR results are 

averaged over 10 trials, each with 50 iterations of the algorithm. 

Table 4 Average PSNR results for the 1-in-5 sampling (adaptive AR dictionary). PSNRs are in dBs. 

Image Nonadaptive PSNR Adaptive PSNR Improvement (dB) 

Barbara 21.49 22.97 1.48 

Lena 23.35 27.82 4.46 

house 22.62 26.24 3.62 

rocket 25.04 29.21 4.18 

boat 22.01 25.90 3.89 

fingerprint 17.00 20.08 3.08 

matches 20.42 23.30 2.89 

the man 22.86 26.86 4.00 

 

Table 5 contains the results for the case of 1-in-2 sampling. Similarly, each result is the 

average of 10 trials with 50 iterations each. 
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Table 5. Average PSNR results for the 1-in-2 sampling (adaptive AR dictionary). PSNRs are in dBs. 

Image Nonadaptive PSNR Adaptive PSNR Improvement (dB) 

Barbara 26.77 26.23 -0.53 

Lena 29.21 32.21 3.00 

house 27.97 30.73 2.76 

rocket 33.29 34.90 1.61 

boat 27.25 29.59 2.33 

fingerprint 22.53 23.08 0.55 

matches 25.92 26.36 0.45 

the man 27.48 30.41 2.93 

 

Furthermore, the learning curve for a 1-in-2 sampling for the image Lena is shown in 

Figure 8 below.  

 

Figure 8. the learning curve for 1-in-2 sampling (Lena) for the adaptive AR dictionary. 
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The recovered images are shown in Figure 9 below, where clearly, the adaptive recovery 

presents a more visually pleasing image. Finally, the adapted dictionary is displayed in Figure 

10. As expected, the learned AR dictionary appears smooth. The degree of smoothness, however, 

can be controlled through the dictionary covariance matrix. In fact, the covariance matrix used in 

this experiment is exponentially scaled so that the pixel correlation falls more drastically with 

distance, resulting in sharper atomic structures. 

 

Figure 9. Recovered images (Lena) for 1-in-2 sampling using nonadaptive (left image) and adaptive AR 
dictionary (right image). 
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Figure 10. the starting dictionary (left image) versus the adapted dictionary (right image) for Lena based 
on 1-in-2 sampling after 50 iterations of the algorithm. 
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CHAPTER 5 

UNCONSTRAINED DL FROM RANDOM-BLOCK MEASUREMENTS 

The main contribution of this work lies in the study of the relationships between sensing 

matrices and the dictionary optimization process. Most of the existing imaging systems employ 

the same sampling matrix throughout the scene and do not consider the more general, arguably 

more efficient, random designs of the sensing operators. We argue that random-block 

measurements can be exploited directly within the dictionary learning algorithm without 

significantly increasing its computational complexity. Given that natural images contain self-

similarities [28], the information contents of a set of similar patches, each projected onto a 

different low-dimensional space, is collectively more significant compared to the case where all 

patches are projected onto the same subspace. The information coming from different patches is 

merged at the decoder during the dictionary optimization as we explain in detail in the following 

sections. 
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RANDOM-BLOCK VS. REPEATED-BLOCK SAMPLING 

We consider two sampling scenarios for images: repeated-block sampling and random-

block sampling. In repeated-block sampling the (randomly generated) sampling matrix is fixed 

across the image. In mathematical terms, the measurements are expressed as ݕ௝ ൌ Φݔ௝ where Φ 

is an ݉ ൈ ݊ matrix (usually with ݉ ≪ ݊) and ݔ௝ is the block number ݆ reshaped into a vector. In 

random-block sampling, an independently generated random matrix is used to sample each 

image block, i.e. ݕ௝ ൌ Φ௝ݔ௝ where Φ௝’s are independently generated for ݆ ൌ 1,2, … , ܰ. Clearly, it 

makes no difference to use the repeated-block sampling or the random-block sampling if the 

image recovery is to be performed locally (block-by-block) as in normal CS. However, our goal 

is to learn the representation dictionary which involves combining the information from non-

local measurements during the minimization of the total error sum of squares. Therefore, it is 

essential to study the impact of the sampling mode on the feasibility of the dictionary adaptation 

process. In particular, during the dictionary update stage using the random measurements, the 

objective function takes the form: 

 ∑ ଵ

ଶ
ฮݕ௝ െ Φ௝ܦ ௝ܽฮଶ

ଶே
௝ୀଵ ൌ ∑ ଵ

ଶ
൫ݔ௝ െ ܦ ௝ܽ൯

்
Φ௝
்Φ௝ሺݔ௝ െ ܦ ௝ܽሻ

ே
௝ୀଵ  (5.1) 

which we refer to by the Projected Residual Error Sum of Squares or PRESS. 

We would like to know the relationship between the surrogate objective function and the 

True Residual Error Sum of Squares (TRESS): 

 ∑ ଵ

ଶ
ฮݔ௝ െ ܦ ௝ܽฮଶ

ଶே
௝ୀଵ ൌ ∑ ଵ

ଶ
൫ݔ௝ െ ܦ ௝ܽ൯

்
ሺݔ௝ െ ܦ ௝ܽሻ

ே
௝ୀଵ  (5.2) 

under each sampling scenario. 
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Both objectives represent the sum of energies of the residual vectors. However, PRESS 

only captures part of the residual energy that is within the row space of the sampling matrices. In 

other words, PRESS represents the observable part of TRESS. Meanwhile, TRESS can have 

components in the null space of the sampling matrices that are hidden from the learner and may 

not be incorporated in the learned dictionary.  

Our goal here is to study the ratio between the energy that is captured in the 

measurements, that is part of the residual energy that can be observed and minimized, to the true 

residual energy. This translates into the degree to which the measured objective function is 

concentrated around the true objective function value for different values of residual vectors. 

Unfortunately, however, residuals depend on the specific choice of the dictionary which makes 

the analysis case-dependent and less generic. Therefore, instead of working with residual vectors 

Φ௝൫ݔ௝ െ ܦ ௝ܽ൯ and ݔ௝ െ ܦ ௝ܽ, we directly work with the measurement and signal vectors Φ௝ݔ௝ and 

 ௝ in the manner that is described below. Note that, generally speaking, residual vectors areݔ

(measurable) parts of signal vectors that are subject to sparse representation by updating the 

current dictionary. Therefore, using Φ௝ݔ௝ and ݔ௝ in place of Φ௝൫ݔ௝ െ ܦ ௝ܽ൯ and ݔ௝ െ ܦ ௝ܽ 

corresponds to assuming ௝ܽ ൌ 0 (which is the sparsest representation of ݔ௝ with respect to any ܦ 

with a large residual).  

The total energy of an image with ܰ blocks is ∑ ฮݔ௝ฮଶ
ଶே

௝  8. In an experiment, we divide the 

sample image ‘Barbara’ into non-overlapping 8 by 8 blocks and sample each block using 1) a 

fixed sampling matrix Φ and 2) a distinct sampling matrix Φ௝. Specifically, Φ and each of Φ௝’s 

are generated according to a random i.i.d. Gaussian process and normalized so that each row has 

                                                 
8 Without loss of generality, we assume the signal is zero-mean (we subtract the dc value from the image blocks) 
and we normalize each block to have unit norm. 
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unit norm. For each sampling scenario (repeated versus random-block), we run the experiment 

for 1000 times and compute the empirical distribution of the energy captured in the 

measurements ∑ ฮΦ௝ݔ௝ฮଶ
ଶே

௝ . We are interested in the following ratio: 

 
ቀ೙
೘
ቁ∑ ฮ஍ೕ௫ೕฮమ

మಿ
ೕ

∑ ฮ௫ೕฮమ
మಿ

ೕ

 (5.3) 

which represents the concentration around the true signal energy. A concentration ratio of one 

implies that the measurements capture (preserve) the signal energy while ratios of larger or 

smaller magnitude imply deviations from the true signal energy and less accurate sensing. We 

have plotted the concentration ratio for the two sampling scenarios in Figure 11 and Figure 12. 

 

Figure 11. The empirical distribution for the concentration ratio for repeated-block sampling. The test 
signal comprises of the nonoverlapping 8 by 8 blocks of the ‘Barbara’ image. The empirical distribution 

is computed over 1000 trials. 
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Figure 12. The empirical distribution for the concentration ratio for random-block sampling. Similar to 
Figure 11, the test signal comprises of the nonoverlapping 8 by 8 blocks of the ‘Barbara’ image and the 

distribution is computed over 1000 trials. 

Looking at the above results, it can be clearly seen that the random-block measurements 

are more concentrated around the true signal energy and present a more stable approximation of 

the underlying signal. On the other hand, the repeated-block measurements are distributed almost 

like a Gaussian function with a relatively large variance around the true signal value.  

Note that, during the dictionary learning, it is crucial to have a stable estimate of TRESS 

since the dictionary is optimized to minimize the total residual energy which makes it the driving 

force for the DL algorithm. According to the empirical study above, we can get a more stable 

estimate of this energy using random-block sampling. In fact, as we show in the following 

section, the dictionary can be directly fitted over the measurements without imposing artificial 

structural constraints over the dictionary.  
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DIRECT LEARNING FROM RANDOM-BLOCK MEASUREMENTS 

The sparse coding stage is the same as before:  

 ௝ܽ
ሺ௧ାଵሻ ൌ argmin

௔ೕ
ฮݕ௝ െ ሺ௧ሻܦ

௝ܽฮଶ
ଶ
൅ ฮߣ ௝ܽฮଵ (5.4) 

However, the dictionary update stage is going to be different from the approaches 

described in previous chapters. The gradient of the empirical objective is computed at each 

iteration and an update step is taken along the opposite gradient direction. The step size is 

calculated by searching for the point on the negative gradient direction that yields the least 

function value9. The gradient of the surrogate objective (5.1) is: 

஽׏  ∑
ଵ

ଶ
൫ݔ௝ െ ܦ ௝ܽ൯

்
Φ௝
்Φ௝ሺݔ௝ െ ܦ ௝ܽሻ

ே
௝ୀଵ ൌ ∑ Φ௝

்Φ௝൫ܦ ௝ܽ െ ௝൯ݔ ௝ܽ
்ே

௝ୀଵ  (5.5) 

Therefore, the dictionary is updated as ܦሺ௧ାଵሻ ൌ ሺ௧ሻܦ ൅ ܦ஽݂ሺ׏ሺ௧ሻߤ
ሺ௧ሻሻ where ߤሺ௧ሻ is 

optimized as in the steepest descent algorithm [29]. 

 As before, we present an empirical study to showcase the performance of the dictionary 

learning using random linear and incomplete measurements. The formal algorithm description 

and more simulation results are presented in the following sections. For our experiments, we 

work with the Barbara’s image due to its texture patterns that makes it difficult to represent 

compactly using ordinary image dictionaries.  

In this experiment, non-overlapping 8 ൈ 8 patches from the Barbara’s image are sampled 

at half rate (݉ ൌ ቔ௡
ଶ
ቕ ൌ 32). Specifically, we are interested in studying the learning curve of the 

iterative DL algorithm which plots the true PSNR (which is unknown to the algorithm) over the 

                                                 
9 A simple line search yields the optimum step size. 
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course of iterations. For the random-block sampling case, sampling matrices are generated 

randomly for each patch according to independent and identically distributed Gaussian 

distribution. Furthermore, we orthogonalize and normalize rows of each generated sampling 

matrix so that measurements are weighted equally in the projected error sum of squares cost 

function. The employed dictionary for this experiment is the redundant offline-learned dictionary 

presented in [5] which serves as the benchmark among redundant dictionaries for natural images. 

Although this experiment is carried out for a specific sampling ratio, complete tests presented in 

the simulations section show the results are consistent within all ranges of sampling ratios. 

Figure 13 shows the learning curve for both cases of repeated-block and random-block sampling 

matrices as well as the recovery result using the fixed dictionary. 

Some crucial observations can be made from the learning curve in Figure 13. Although a 

slight improvement is achieved after the first few iterations of the learning algorithm with the 

repeated-block sampling matrix, the PSNR is decreased subsequently due to overfitting. More 

specifically, using a fixed sampling matrix creates a ‘global’ null space (a null-space that exists 

in all blocks) that prevents the dictionary to improve in the dimensions masked by the sampling 

matrix. As can be seen in Figure 13, the overfitting associated with the repeated-block sampling 

significantly damages its performance to the point that its recovery results drop below the non-

adaptive recovery.  

Clearly, the adaptive recovery results using random-block measurements shown in Figure 

13 significantly outperform the non-adaptive recovery just after few iterations. As mentioned 

before, this is due to the fact random-block sampling is more reliable in preserving the residual 

sum of squares. It must be mentioned that, however, adaptation using random-block 

measurements is not completely immune from overfitting. In images with significant 
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irregularities or randomness where the improvements due to dictionary adaptation is less 

significant, we have observed degradations in PSNR after a large number of iterations. This 

shows that the concentration of objective function is signal dependent and a rather complicated 

phenomenon. To combat such issues, the algorithm must be terminated before overfitting starts 

which itself very difficult to detect.  

Another type of analysis would be to visually inspect the dictionaries before and after 

adaptation. These dictionaries are shown in Figure 14. The top dictionary in Figure 14 shows the 

offline-learned dictionary that was computed in [5] and has ݀ ൌ 256 atoms (columns) of size 

݊ ൌ 64. The adapted dictionary for the Barbara’s image (using ݉ ൌ 32) is shown at the bottom 

of the Figure 14. Although a visual inspection of the dictionaries does not explain the 

complexities associated with sparse coding, the results are coherent with the expectation that 

input image’s texture patterns must be captured in the adapted dictionary for an accurate sparse 

recovery. These texture patterns could not be sparsely represented using the initial dictionary 

which is why the dictionary must adapt to capture such structures. The suboptimality of the 

initial dictionary in sparse representation of the textures result in visible artifacts after CS as 

shown in Figure 15. The adaptive CS recovery result is shown in Figure 16 for comparison. Note 

the improvements in the cloth texture in the recovered image compared to the initial CS recovery 

using the universal offline-learned dictionary. 
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Figure 13. Learning curve for unconstrained learning from random-block sampling versus repeated-block 
sampling, compared to the nonadaptive recovery. 
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Figure 14. Images of the dictionaries. Top: offline-learned dictionary (the starting point of the learning 
algorithm). Bottom: the learned dictionary for the image Barbara. 

 

Figure 15. Recovery result using non-adaptive CS with offline-learned dictionary (Barbara). 



 

57 

 

Figure 16. Recovery result using CS with adaptive dictionary based on random-block sampling (Barbara). 

ALGORITHM 

We have presented our algorithm below. 
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Algorithm 3. The algorithm for learning dictionaries from random-block measurements. 

Input: Starting frame Ψ, Measurements ௠ܻൈே, the sampling matrices Φ୨ for ݆ ൌ 1,2, … , ܰ, 

LASSO regularization parameter ߣ, number of iterations ܶ 

Outputs: learned dictionary ܦ෡∗ ൌ  ∗ሺ்ሻ, Estimated patches ෠ܺܦ

Initialization: ܦሺ଴ሻ ൌ Ψ 

Do for ݐ from 1 to ܶ: 

Compute ௝ܽ
ሺ௧ሻ for ݆ ൌ 1,2, … , ܰ using LASSO: 

௝ܽ
ሺ௧ሻ ൌ argmin

௔ೕ

1
2
ฮݕ௝ െ Φ௝ܦ

ሺ௧ሻ
௝ܽฮଶ

ଶ
൅ ฮߣ ௝ܽฮଵ 

Update ܦሺ௧ାଵሻ by taking a step in the steepest descent direction: 

ሺ௧ାଵሻܦ ൌ ሺ௧ሻܦ ൅ ܦ஽݂൫׏ሺ௧ሻߤ
ሺ௧ሻ൯ 

where ׏஽݂൫ܦ
ሺ௧ሻ൯ is given in (30) and ߤሺ௧ሻ is computed using: 

ሺ௧ሻߤ ൌ
୘୰ቀ୼ሺ౪ሻ

೅
୼ሺ౪ሻ	ቁ

୘୰ቀ୼ሺ౪ሻ
೅
ொሺ೟ሻቁ

 with Δሺ୲ሻ ൌ ݂ܦ׏ ቀܦ
ሺݐሻቁ and ܳሺ௧ሻ ൌ ∑ Φ௝

்Φ௝Δ
ሺtሻ

௝ܽ
ሺ௧ሻ

௝ܽ
ሺ௧ሻ்ே

௝  

End 

Return the dictionary ܦ෡∗ ൌ :ሺ்ሻ and the estimated patchesܦ ෠ܺ∗ ൌ  ሺ்ሻܣሺ்ሻܦ

CONNECTIONS WITH GROUP SPARSITY 

Unlike the learning approaches that force the dictionary atoms to have a unit ℓଶ-norm or 

lie inside the unit sphere [4, 30, 31], we do not impose such constraints on the atom norms. The 

steepest descent algorithm for dictionary update naturally reaches a point (close to the local 

minimum) where the representation error becomes insignificant and the dictionary stops 

changing significantly. At this point, each atom has a different norm which results in some atoms 
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having more priority than others. Intuitively, atom norms increase at a rate proportional to their 

share in reducing the total error sum of squares. If ܦሺ௧ሻ is factorized as ܷሺ௧ሻܸሺ௧ሻ, where ܸሺ௧ሻ is the 

diagonal matrix of atom norms and ܷሺ௧ሻ is the normalized dictionary, the Lasso problem in (5.4) 

can be written as:  

 ௝ܾ
ሺ௧ሻ ൌ argmin

௕ೕ

ଵ

ଶ
ฮݕ௝ െ Φܷሺ௧ሻ

௝ܾฮଶ
ଶ
൅ ฮܸሺ௧ሻߣ

షభ
௝ܾฮଵ (5.6) 

where we would use ௝ܽ
ሺ௧ሻ ൌ ܸሺ௧ሻ

ିଵ
௝ܾ
ሺ௧ሻ to compute the original coefficients. The objective 

function based on ௝ܾ (and ܷሺ௧ሻ as the dictionary) corresponds to a weighted Lasso regression 

where the weights are inversely proportional to the corresponding atom norms. Coefficients with 

smaller weights have less uncertainty and are encouraged to take non-zero values, meaning that 

the corresponding atoms have more priority in the representation. Note that the same structure of 

uncertainty is used for all patches in the image. This kind of unbalanced uncertainty that 

‘harmonizes’ the sparse coefficients resembles the multiple measurement vector framework in 

[32] where different blocks are forced to take the same sparsity pattern. The difference is that in 

our framework this harmony emerges naturally and without enforcing group-sparsity constraints.  

SIMULATION RESULTS 

To test the algorithm discussed in the previous section, we select the dictionary that 

produces the best recovery to start from. Through trial and error we found that the redundant 

offline-learned dictionary of [5], shown in Figure 14 (top row), provides the best recovery results 

for 8 ൈ 8 patches. Down-scaled versions of the test images are shown in Figure 4. 
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Selecting the LASSO parameter ࣅ 

The first challenge in testing and comparing different dictionaries is the dependence of 

the optimal ߣ in (5.4) on the choice of the dictionary and the test images. When a dictionary 

perfectly fits an image, it is best to use ߣ ൌ 0. However, since this is almost never the case, ߣ is 

often selected to be a small positive number close to zero accounting for a small amount of 

tolerable error. The optimal ߣ for a specific dictionary also depends on the choice of the test 

image. Due to its data-dependent nature, in most works, a typical value of ߣ is selected 

empirically to work well using cross-validation [31]. 

Another challenge in comparing the recovery using non-normalized dictionaries with the 

recovery based on normalized dictionaries is again the choice of ߣ. In the weighted LASSO in 

(5.6), the multiplier for each coefficient ௝ܾ
ሺ௧ሻ is 

௝ߣ
ሺ௧ሻ ൌ ߣ ቀቛ ௝݀

ሺ௧ሻቛ
ଶ
ቁ
ିଵ

 

For the corresponding unweighted Lasso, we can compute ߣሜሺ௧ሻ based on either of the 

three different strategies listed below: 

 ߣሜሺ௧ሻ ൌ min
௝
ߣ ቀቛ ௝݀

ሺ௧ሻቛ
ଶ
ቁ
ିଵ

: This value of ߣሜሺ௧ሻ which is less than the other two 

values below, implies maximum uncertainty for the coefficients. We utilized this value as 

a lower bound for ߣሜሺ௧ሻ.  

 ߣሜሺ௧ሻ ൌ ߣ ൬
ଵ

௞
∑ ቀቛ ௝݀

ሺ௧ሻቛ
ଶ
ቁ
ିଵ

௝ ൰: In this case, ߣሜሺ௧ሻ is the mean of weights for all 

coefficients. In other words, the sum of uncertainties for each case of weighted and 

unweighted Lasso will be the same if this quantity is used.  
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 ߣሜሺ௧ሻ ൌ ඨଵߣ

௞
∑ ൬ቛ ௝݀

ሺ௧ሻቛ
ଶ

ଶ
൰
ିଵ

௝ : This value represents the root mean square of 

weights. Therefore, in this case, the total energy of weights is the same for the two cases 

of weighted and unweighted Lasso problems. 

We performed Lasso based on all three values and found the  

ሜሺ௧ሻߣ ൌ ߣ ቆ
1
݇
෍ ቀቛ ௝݀

ሺ௧ሻቛ
ଶ
ቁ
ିଵ

௝
ቇ	 

to produce the best PSNR values for most images and sampling rates. The third method of 

selecting ߣሜሺ௧ሻ produced very similar results. As a result, we report the results only for this 

selection of ߣሜሺ௧ሻ. We selected ߣ ൌ .01 which represents the upper bound on weight of 

coefficients given that atom norms are larger than unity. 

Results 

We have summarized the PSNR results in Table 6. Although the application of algorithm 

generally improves the recovery results, forcing the total sum of squares to very small values can 

lead to overfitting depending on the image and the initial dictionary. Upper bounds on how much 

the results can be improved without introducing overfitting is subject of our ongoing work. For 

this simulation, we set ܶ ൌ 10 (the maximum number of iterations of the algorithm).  
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Table 6 Average PSNR results for adaptive recovery for different sampling rates (random-block 
sampling). PSNRs are in dBs. 

 Nonadaptive recovery Adaptive recovery 

Sampling rate 
10% 15% 20% 30% 50% 10% 15% 20% 30% 50% 

Image 

Barbara 21.81 22.61 23.31 24.76 27.43 21.93 22.84 23.65 25.49 29.20

Lena 25.34 26.87 28.40 31.48 35.17 26.11 27.58 29.01 31.74 35.30

house 24.29 25.66 27.08 30.22 34.87 24.60 26.69 28.99 32.46 36.22

rocket 26.86 29.19 31.25 35.93 41.28 28.56 30.97 32.60 36.76 41.73

boat 23.32 24.62 25.90 28.52 32.22 23.46 24.93 26.18 28.74 32.49

fingerprint 18.53 20.39 22.41 25.71 30.36 20.41 23.20 25.58 29.21 34.17

matches 21.84 23.58 25.15 27.74 31.14 22.51 24.53 25.84 28.03 31.35

the man 24.13 25.48 26.63 29.01 32.45 24.31 25.76 26.91 29.09 32.48
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CHAPTER 6 

MATHEMATICAL ANALYSIS 

In this chapter we intend to establish a systematic mathematical understanding of the 

previous empirical results. In a nutshell, theories of Concentration of Measure (CM) [3] assert 

that increasing the number of independent random variables of a smooth function reduces its 

variance and makes it more concentrated around its expected value. This, in turn, implies that 

using independent measurement matrices for different signal blocks would result in a more 

accurate approximation of the objective function and arguably a more accurate estimation of the 

dictionary. Throughout the following sections, we formalize these notions under different 

measurement scenarios.  

The outline of this chapter is as follows. In Section 6.1, we compute and compare tail 

bounds of the dictionary update objective under repeated-block and random-block sampling 

schemes which becomes crucial for further assessment of DL under random projections of data. 

Section 6.2 presents a generic framework for bounding the error in parametric estimation when 

tail bounds of the empirical risk are available. Finally, the estimation accuracy of dictionary 

adaptation is studied in Section 6.3. 
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STOCHASTIC CM ANALYSIS FOR DICTIONARY UPDATE 

This section draws important connections between a typical engineering problem, 

dictionary update in this case, and analytical tools from the area of the Concentration of Measure 

(CM) [3] theory and serves as a gateway to the rest of this chapter. 

Motivations and overview 

In the previous chapter we argued that having a reliable approximation of the true 

residual sum of squares from random projections of data enhances the accuracy of dictionary 

learning and eventually the quality of the reconstructed image. However, these conclusions were 

intuitive and empirical as opposed to being analytical and generalizable to other learning 

problems. Several decades of CM research, specifically in area of probability theory, has resulted 

in useful analytical tools and countless theorems for bounding stochastic tails of functions of 

random variables in the form of scalars, vectors or matrices. Over the time, however, these 

theorems have become very difficult to track and less intuitive for engineers. Our goal in this 

section is to utilize some of the fundamental CM inequalities, such as the scalar Chernoff 

inequality [50], to derive tail bounds of the residual sum of squares under both settings of having 

repeated-block and random-block measurements. Later on, we report some of the relevant (but 

more general) tail bounds that have been developed by researchers in the area of CS.  

Recall the Projected Residual Error Sum of Squares (PRESS): 
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෍ฮݕ௝ െ Φ௝ܦ ௝ܽฮଶ
ଶ

ே

௝ୀଵ

ൌ෍ฮΦ௝൫ݔ௝ െ ܦ ௝ܽ൯ฮଶ
ଶ

ே

௝ୀଵ

 

and the True Residual Error Sum of Squares (TRESS): 

෍ฮݔ௝ െ ܦ ௝ܽฮଶ
ଶ

ே

௝ୀଵ

 

It must be clear that ܧሼPRESSሽ ൌ TRESS. In other words, PRESS is an unbiased 

estimator of TRESS. However, there is no guarantee that |PRESS െ TRESS| is small for different 

values of the residual vectors. In fact, we are interested in the tail bound of the distribution of the 

random variable PRESS or formally: 

Prሼ|PRESS െ TRESS| ൒ ߳TRESSሽ 

or (with some abuse of notation) 

Prሼሺ1 െ ߳ሻTRESS ൒ PRESS ൒ ሺ1 ൅ ߳ሻTRESSሽ 

As discussed earlier, a drawback of working with the residual vectors is that they depend 

on the specific choice of the dictionary and the sparse coefficients. Thus, we proposed before 

that instead of comparing the projected and the true residual vectors Φ௝൫ݔ௝ െ ܦ ௝ܽ൯ and ݔ௝ െ ܦ ௝ܽ, 

we directly compare the measurement and the signal vectors Φ௝ݔ௝ and ݔ௝. This makes the 

following analysis more general and independent of the particular choice of the dictionary and 

the sparse coefficients. Specifically, residual vectors are expected to have similar stochastic 

characteristics as signal vectors when they are not dominated by noise.  
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In what follows, we review some of the basic CM tools that will be used in the rest of this 

chapter. We start by reviewing the Chernoff bounding method which results from the basic 

Markov’s inequality Prሼܺ ൒ ሽݐ ൑  .ሼܺሽ for nonnegative ܺ [50]ܧଵିݐ

Theorem  6.1 (Chernoff bounding method). [50] For any random variable ܺ and ݐ ൐ 0, the 

following inequalities hold: 

ሼܺݎܲ  ൒ ሽݐ ൑ ݉݅݊
௦வ଴

ா൛௘ೞ೉ൟ

௘ೞ೟
 (6.1) 

and 

ሼܺݎܲ  ൑ ሽݐ ൑ ݉݅݊
௦வ଴	

ா൛௘షೞ೉ൟ

௘షೞ೟
 (6.2) 

conditioned on the fact that the right hand side exists. 

 In the following, we overview some relevant examples where the Chernoff inequality 

becomes useful.  

Tail bound for random vector norm (uncorrelated Gaussian)  

Suppose ܺ ∈ Թ௡ is distributed according to a Gaussian distribution with zero-mean and 

covariance matrix ߪଶܫ, i.e. ܺ~ܰሺ0, ሼ‖ܺ‖ଶܧ ,ሻ. Thenܫଶߪ
ଶሽ ൌ  ଶ and the Chernoff bound can beߪ݊

computed as: 

Pr൛‖ܺ‖ଶ
ଶ ൒ ሺ1 ൅ ߳ሻܧሼ‖ܺ‖ଶ

ଶሽൟ ൑ min
௦வ଴

൛݁௦‖௑‖మܧ
మ
ൟ

݁௦ሺଵାఢሻ௡ఙమ
ൌ min

௦வ଴

ሺ1 െ ଶሻିߪݏ2
௡
ଶ

݁ି௦ሺଵାఢሻ௡ఙమ
 

where we used ܧ൛݁௦‖௑‖మ
మ
ൟ ൌ ሺ1 െ ଶሻିߪݏ2

೙
మ for ܺ~ܰሺ0,  .ሻ [50]ܫଶߪ
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The tightest bound can be computed by taking the derivative of the right hand side with 

respect to ݏ and setting it equal to zero which results in ݏ∗ ൌ ఢ

ଶሺଵାఢሻఙమ
. After some basic calculus, 

it can be shown that for 0 ൏ ߳ ൏ ଵ

ଶ
 [50]: 

Pr൛‖ܺ‖ଶ
ଶ ൒ ሺ1 ൅ ߳ሻܧሼ‖ܺ‖ଶ

ଶሽൟ ൑ ݁ି
௡ఢమ
଺  

and 

Pr൛‖ܺ‖ଶ
ଶ ൑ ሺ1 െ ߳ሻܧሼ‖ܺ‖ଶ

ଶሽൟ ൑ ݁ି
௡ఢమ
ସ  

Therefore, using the union bound principle, 

 Pr൛ሺ1 െ ߳ሻܧሼ‖ܺ‖ଶ
ଶሽ ൒ ‖ܺ‖ଶ

ଶ ൒ ሺ1 ൅ ߳ሻܧሼ‖ܺ‖ଶ
ଶሽൟ ൑2݁ି

೙ചమ

ల  (6.3) 

A simple consequence of this inequality is that a random Gaussian (uncorrelated) ℓଶ 

vector norm approaches its expected value as the ambient dimension ݊ approaches infinity. 

However, the above inequality, and generally any CM inequality, offers more than just an 

asymptotic interpretation. The non-asymptotic implication of the Chernoff inequality is that, at a 

fixed probability, ߳ ൌ ܱሺ݊ି
భ
మ) which implies the rate at which ߳ decays as the dimension of ܺ is 

increased.  

 



 

68 

Tail bound for linear measurement vector norm  

Consider the linear measurement vector ܻ ൌ Φݔ where ݔ ∈ Թ௡ is a fixed vector and entries of 

the random matrix Φ ∈ Թ௠ൈ௡ are distributed independently according to a Gaussian distribution 

with zero mean and variance ݉ିଵ. For the expected value, we have 

ሼ‖ܻ‖ଶܧ
ଶሽ ൌ ሽݔΦ்Φ்ݔሼܧ ൌ ݔሼΦ்Φሽܧ்ݔ ൌ ଶ‖ݔ‖

ଶ 

Using the fact that ܻ ∈ Թ௠ is an uncorrelated Gaussian vector with a zero mean and 

entry-wise variance ߪଶ ൌ ݉ିଵ‖ݔ‖ଶ
ଶ, we can use a similar analysis as before and derive the 

following tail bound for the distribution of the random variable ‖ܻ‖ଶ
ଶ ൌ ‖Φݔ‖ଶ

ଶ: 

 Prሼሺ1 െ ߳ሻ‖ݔ‖ଶ
ଶ ൒ ‖Φݔ‖ଶ

ଶ ൒ ሺ1 ൅ ߳ሻ‖ݔ‖ଶ
ଶሽ ൑ 2݁ି

೘ചమ

ల  (6.4) 

for 0 ൏ ߳ ൏ ଵ

ଶ
. This is an intermediate result of the well-known Johnson-Lindenstrauss 

lemma (after which a union bound over ቀܰ
2
ቁ vectors is carried to derive the J-L bound for ܰ 

points) [13]. 

Computing tail bounds of sum of squares for random-block measurements  

As the first step, we specify the random-block measurement model. It must be noted that 

these specifications are mainly for simplicity of the analysis and can be usually extended to 

include more general scenarios without much trouble.    



 

69 

Specification of random-block measurements  

In random-block measurements, each block sampling matrix Φ௝ ∈ Թ௠ൈ௡ is generated 

independently. Entries of the Φ௝ are distributed according to a joint but uncorrelated Gaussian 

distribution with zero-mean and variance ݉ିଵ (for each entry). Clearly, under such distribution:  

൛Φ௜ܧ 
்Φ௝ൟ ൌ ൜

݅	when						ܫ ൌ ݆
0					when	݅ ് ݆ (6.5) 

Chernoff bound for the sum of squares (random-block measurement) 

Consider the sum of squares ∑ ฮ ௝ܻฮଶ
ଶே

௝ୀଵ ൌ ∑ ฮΦ௝ݔ௝ฮଶ
ଶே

௝ୀଵ  where, as before, each Φ௝ ∈ Թ௠ൈ௡ is 

independently generated and consists of uncorrelated Gaussian entries with zero mean and 

variance ݉ିଵ. Similarly, each ௝ܻ is an uncorrelated Gaussian vector with entry-wise variance 

௝ߪ
ଶ ൌ ݉ିଵฮݔ௝ฮଶ

ଶ
. For the expected value, we have 

ܧ ቐ෍ฮΦ௝ݔ௝ฮଶ
ଶ

ே

௝ୀଵ

ቑ ൌ෍ฮݔ௝ฮଶ
ଶ

ே

௝ୀଵ

ൌ ݉෍ߪ௝
ଶ

ே

௝ୀଵ

	 

Therefore, the Chernoff bound would be 

 Pr ቄ∑ ฮΦ௝ݔ௝ฮଶ
ଶே

௝ୀଵ ൒ ሺ1 ൅ ߳ሻ∑ ฮݔ௝ฮଶ
ଶே

௝ୀଵ ቅ ൑ min
௦வ଴

ா൝௘
ೞ∑ ቛಅೕೣೕቛమ

మಿ
ೕసభ ൡ

௘
ೞሺభశചሻ೘∑ ഑ೕ

మಿ
ೕసభ

 (6.6) 

Given that each summand is independent of the other summands, we can expand the 

expect value term in the numerator of the right hand side: 
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ܧ ൜݁௦∑ ฮ஍ೕ௫ೕฮమ
మಿ

ೕసభ ൠ ൌ ܧ ቐෑ݁௦ฮ஍ೕ௫ೕฮమ
మ

ே

௝ୀଵ

ቑ ൌෑܧ ൜݁௦ฮ஍ೕ௫ೕฮమ
మ

ൠ

ே

௝ୀଵ

 

Therefore, the right hand side can be written as: 

 min
௦வ଴

∏ ா൝௘
ೞቛಅೕೣೕቛమ

మ

ൡಿ
ೕసభ

∏ ௘
ೞሺభశചሻ೘഑ೕ

మ
ಿ
ೕసభ

ൌ min
௦வ଴

∏ ൫1 െ ௝ߪݏ2
ଶ൯

ି೘
మே

௝ୀଵ ݁ି௦ሺଵାఢሻ௠ఙೕ
మ
 (6.7) 

Taking the derivative with respect to ݏ and setting it equal to zero results in the following 

equation: 

 ∑
ఙೕ
మ

ଵିଶ௦∗ఙೕ
మ

ே
௝ୀଵ ൌ ሺ1 ൅ ߳ሻ∑ ௝ߪ

ଶே
௝ୀଵ  (6.8) 

For the special case of having ߪ ൌ ଵߪ ൌ ଶߪ ൌ ⋯ ൌ ∗ݏ ே, we arrive atߪ ൌ ఢ

ଶሺଵାఢሻఙమ
 

(similar to before) and the Chernoff bound becomes: 

 Pr ቄሺ1 െ ߳ሻ∑ ฮݔ௝ฮଶ
ଶே

௝ୀଵ ൒ ∑ ฮΦ௝ݔ௝ฮଶ
ଶே

௝ୀଵ ൒ ሺ1 ൅ ߳ሻ∑ ฮݔ௝ฮଶ
ଶே

௝ୀଵ ቅ ൑2݁ି
೘ಿചమ

ల  (6.9) 

Note, here, ߳ ൌ ܱ ቀሺ݉ܰሻି
భ
మቁ while in the single measurement case ߳ ൌ ܱ ቀ݉ିభ

మቁ. In 

simple words, having access to ܰ independent measurements compensates for the low-

dimensionality of the measurement space.  

It turns out that having equal signal energies, i.e. ߪଵ ൌ ଶߪ ൌ ⋯ ൌ  ே, corresponds to theߪ

best-case scenario and generally the Chernoff bound may not be as small [13]. This best-case 

scenario corresponds to the case of having a constant ݉ିଵฮݔ௝ฮଶ
ଶ
, i.e. blocks having equal 

energies. If we were allowed to allocate different numbers of measurements to different blocks, 

then the optimal way to distribute ௝݉ would be to select ௝݉ such that ௝݉
ିଵฮݔ௝ฮଶ

ଶ
 would stay 
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(approximately) constant. More precisely, the number of measurements per block must scale 

linearly with the block-wise energies. 

Unfortunately, it is not possible to compute a closed-form solution for ݏ∗ for the general 

case. However, later in this section, we report some of the other works that have computed upper 

bounds for this Chernoff bound. 

Computing tail bounds of sum of squares for repeated-block measurements 

This subsection has roughly the same structure as the previous subsection only for the 

case of having repeated-block measurements. At the end, we will show that repeated-block 

measurements have heavier sum of squares tail bounds compared to random-block 

measurements when the data is strongly correlated. 

Specification of repeated-block measurements 

In the repeated-block scheme, every block is sampled using the same sampling matrix Φ which 

is distributed similarly to the random-block scheme for a single Φ௝. That is entries of Φ are 

independent and each of them is a Gaussian random variable with zero mean and variance ݉ିଵ.  

Chernoff bound for the sum of squares (repeated-block measurement) 

Consider the sum of squares function: 
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෍ฮ ௝ܻฮଶ
ଶ

ே

௝ୀଵ

ൌ෍ฮΦݔ௝ฮଶ
ଶ

ே

௝ୀଵ

 

As before, for the expected value, we have 

ܧ ቐ෍ฮΦݔ௝ฮଶ
ଶ

ே

௝ୀଵ

ቑ ൌ෍ฮݔ௝ฮଶ
ଶ

ே

௝ୀଵ

ൌ ݉෍ߪ௝
ଶ

ே

௝ୀଵ

	 

Therefore, the Chernoff bound would be 

 Pr ቄ∑ ฮΦݔ௝ฮଶ
ଶே

௝ୀଵ ൒ ሺ1 ൅ ߳ሻ∑ ฮݔ௝ฮଶ
ଶே

௝ୀଵ ቅ ൑ min
௦வ଴

ா൝௘
ೞ∑ ቛಅೣೕቛమ

మಿ
ೕసభ ൡ

௘
ೞሺభశചሻ೘∑ ഑ೕ

మಿ
ೕసభ

 (6.10) 

However, this time, we cannot expand the numerator of the right hand side since the 

vectors Φݔ௝ are dependent –in fact, linearly correlated Gaussian vectors. To tackle this problem, 

we will need to write the sum of squares as a sum of uncorrelated parts.  

 ∑ ฮΦݔ௝ฮଶ
ଶே

௝ୀଵ ൌ ‖ΦX‖ி
ଶ ൌ ሺ்ܺΦ்Φܺሻݎܶ ൌ  ሺΦ்ܺܺΦ்ሻ (6.11)ݎܶ

Consider the spectral decomposition of the correlation matrix ்ܺܺ ൌ ܷΛ்ܷ (or the 

sample covariance matrix under the assumption of zero-mean signal vectors) where	ܷ ൌ

ሾݑଵ, ,ଶݑ … , ௡ሿ and Λݑ ൌ ݀݅ܽ݃ሺߣଵ, ,ଶߣ … ଵߣ ௡ሻ and thatߣ ൒ ଶߣ ൒ ⋯ ൒  ௡. Note that the matrixߣ

product Φܷ consists of independent Gaussian column vectors because ܧሼሺΦܷሻ்ሺΦܷሻሽ ൌ

ሼΦ்Φሽܷܧ்ܷ ൌ ்ܷܷ ൌ  Therefore, the sum .ܫ

ሺΦ்ܺܺΦ்ሻݎܶ  ൌ ൫ሺΦUሻΛሺΦܷሻ்൯ݎܶ ൌ ∑ሺݎܶ λ୧ሺΦݑ௜ሻሺΦݑ௜ሻ்
௡
௜ୀଵ ሻ ൌ

∑ ௜ሻ்൯ݑ௜ሻሺΦݑ൫ሺΦݎ௜ܶߣ
௡
௜ୀଵ ൌ ∑ ௜ሻ൯ݑ௜ሻ்ሺΦݑ൫ሺΦݎ௜ܶߣ

௡
௜ୀଵ ൌ ∑ ௜‖ଶݑ௜‖Φߣ

ଶ௡
௜ୀଵ  (6.12) 

represents a weighted sum of stochastically independent variables ‖Φݑ௜‖ଶ
ଶ.  
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Now, the numerator on the right hand side of the Chernoff inequality can be written as: 

ܧ ൜݁௦∑ ฮ஍௫ೕฮమ
మಿ

ೕసభ ൠ ൌ ܧ ൝ෑ݁௦ఒ೔ฮ஍௨ೕฮమ
మ

ே

௜ୀଵ

ൡ ൌෑܧ ൜݁௦ఒ೔ฮ஍௨ೕฮమ
మ

ൠ

ே

௜ୀଵ

 

Also, we use the equality ݉∑ ௝ߪ
ଶே

௝ୀଵ ൌ ሺ்ܺܺሻݎܶ ൌ ∑ ௜ߣ
௡
௜ୀଵ  in the denominator, resulting 

in 

 min
௦வ଴

∏ ா൝௘
ೞഊ೔ቛಅೠೕቛమ

మ

ൡಿ
೔సభ

∏ ௘ೞሺభశചሻഊ೔ಿ
೔సభ

ൌ min
௦வ଴

∏ ሺ1 െ ௜ሻߣଵି݉ݏ2
ି೘
మே

௜ୀଵ ݁ି௦ሺଵାఢሻఒ೔ (6.13) 

Taking the derivative with respect to ݏ and setting it equal to zero results in the following 

familiar equation: 

 ∑ ఒ೔
ଵିଶ௦∗௠షభఒ೔

ே
௜ୀଵ ൌ ሺ1 ൅ ߳ሻ∑ ௜ߣ

ே
௜ୀଵ  (6.14) 

This must be compared with (6.8) which we have rewritten below 

 ∑
ఙೕ
మ

ଵିଶ௦∗ఙೕ
మ

ே
௝ୀଵ ൌ ሺ1 ൅ ߳ሻ∑ ௝ߪ

ଶே
௝ୀଵ    

Therefore, similar to the random-block case, the Chernoff bound is the smallest when 

்ܺܺ has a uniform spectrum, that is when ߣଵ ൌ ଶߣ ൌ ⋯ ൌ  ௡. However, unlike block-wiseߣ

energies, eigenvalues of the data matrix are expected to decay when the data is correlated. For 

most natural images and general natural signals, eigenvalues of ்ܺܺ decay exponentially leading 

to heavy tail bounds for the sum of squares when repeated-block measurements are used. 
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Closed-form tail bounds for the sum of squares  

Fortunately, it is possible to obtain closed-form and interpretable tail bounds for the cases 

of random-block and repeated-block measurements. Specifically, consider a modified version of 

the problem, given below, which was used in [34].  

Assume that we are measuring a signal vector ݔ ∈ Թே௡ which is composed of ܰ blocks, 

each of size ݊. The sampling matrix Φ is block-diagonal where each block on the main diagonal 

is Φ௝ ∈ Թ
௠ೕൈ௡ (distribution of each Φ௝ is specified later in theorems): 

Φ ൌ ቌ
Φଵ

⋱
Φே

ቍ 

 Similarly, the measurement vector ݕ ൌ Φݔ ∈ Թ∑ ௠ೕ
ಿ
ೕసభ  consists of ܰ blocks, each of size 

௝݉ for ݆ ∈ ሼ1,2, … , ܰሽ. Define the matrix ܯ ൌ diagሺ݉ଵ,… ,݉ேሻ ∈ Թேൈே. 

It must be clear that the new formulation is equivalent to our previous formulation when 

݉ଵ ൌ ݉ଶ ൌ ⋯ ൌ ݉ே ൌ ݉ and ݔ ൌ  ሺܺሻ. Given the current problem definition, we have theܿ݁ݒ

following theorems about the concentration of ‖ݕ‖ଶ
ଶ around its expected value ‖ݔ‖ଶ

ଶ. 

Specifically, the tail bound for random-block measurements is computed for the general class of 

subgaussian distributions for the measurement matrix but can be easily customized for Gaussian 

measurements.  

Theorem 6.2 (CM for random-block measurement). ([34], Theorem III.1) Let ߶ denote 

a subgaussian random variable with zero mean and unit variance and subgaussian norm ‖߶‖టమ. 
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Let ൛ߔ௝ൟ௝ୀଵ
ே

 be random matrices drawn independently, where each ߔ௝ is populated with i.i.d. 

realizations of the renormalized random variable 
థ

ඥ௠ೕ
. Then, 

ଶ‖ݕ‖ሼݎܲ
ଶ െ ଶ‖ݔ‖

ଶ ൐ ଶ‖ݔ‖߳
ଶሽ ൑ 2 ݌ݔ݁ ቊെܥଵ ݉݅݊ ቆ

஼మ
మఢమ

‖థ‖ഗమ
ర ,ሻܯ,ݔଶሺ߁

஼మఢ

‖థ‖ഗమ
మ ሻቇቋܯ,ݔஶሺ߁

 (6.15) 

where ܥଵ and ܥଶ are absolute constants. ߁ଶሺܯ,ݔሻ and ߁ஶሺܯ,ݔሻ are defined below. 

ሻܯ,ݔଶሺ߁  ൌ
‖ఊ‖భ

మ

ብெష
భ
మఊብ

మ

మ ൌ
ቀ∑ ฮ௫ೕฮ

ಿ
ೕ మ

మ
ቁ
మ

∑
ቛೣೕቛమ

ర

೘ೕ
ಿ
ೕ

 (6.16) 

ሻܯ,ݔஶሺ߁  ൌ
‖ఊ‖భ

‖ெషభఊ‖ಮ
ൌ

∑ ฮ௫ೕฮ
ಿ
ೕ మ

మ

௠௔௫
ೕ

ቛೣೕቛమ

మ

೘ೕ

 (6.17) 

where ߛ ൌ ሾ‖ݔଵ‖ଶ
ଶ, ଶ‖ଶݔ‖

ଶ, … , ே‖ଶݔ‖
ଶሿ் ∈ Թே represents the vector of block-wise energies. 

 Similarly, for repeated block measurements with a Gaussian distribution, the following 

theorem is provided. 

Theorem 6.3 (CM for repeated-block measurement). ([34], Theorem III.2) Let Φ෩  be a 

random ݉ ൈ ݊ matrix populated with i.i.d. Gaussian entries having variance ߪଶ ൌ ݉ିଵ, and let 

Φ be an ݉ܰ ൈ ݊ܰ block-diagonal matrix as defined above and Φ௝ ൌ Φ෩  for all ݆. Then, for ݕ ൌ

Φݔ,  

ଶ‖ݕ‖ሼݎܲ 
ଶ െ ଶ‖ݔ‖

ଶ ൐ ଶ‖ݔ‖߳
ଶሽ ൑ 2 ଵܥ൛െ݌ݔ݁ ݉݅݊൫ܥଷ

ଶ߳ଶΛଶሺݔ,݉ሻ,  ሻ൯ൟ(6.18)݉,ݔଷ߳Λஶሺܥ

where ܥଵ and ܥଷ are absolute constants. Λଶሺݔ,݉ሻ and Λஶሺݔ,݉ሻ are defined below. 

 Λଶሺݔ,݉ሻ ൌ
௠‖ఒ‖భ

మ

‖ఒ‖మ
మ  (6.19) 
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 Λஶሺܯ,ݔሻ ൌ
௠‖ఒ‖భ
‖ఒ‖ಮ

 (6.20) 

where ߣ ൌ ሾߣଵ, ,ଶߣ … , ௡ሿ்ߣ ∈ Թ௡ represents the vector of eigenvalues of ்ܺܺwhen ܺ ൌ

ሾݔଵ, … ,   .ேሿݔ

Importantly, the following inequality was derived [34] which implies that random-block 

measurements result in shorter tail bounds than repeated-block measurements: 

 Λଶሺݔ,݉ሻ ൌ
௠‖ఒ‖భ

మ

‖ఒ‖మ
మ ൌ ௠‖ఊ‖భ

మ

‖ఊ‖మ
మାଶ∑ 〈௫೔,௫ೕ〉మ೔ಭೕ

൑ ௠‖ఊ‖భ
మ

‖ఊ‖మ
మ ൌ Γଶሺܯ,ݔሻ (6.21) 

when ܯ ൌ   .ேܫ݉

Therefore, the presence of cross-correlation between blocks 〈ݔ௜,  ௝〉 increases the gapݔ

between random-block and repeated-block tail bounds.  

ESTIMATION ACCURACY FOR GENERAL CONVEX PROBLEMS 

In this section, we present our general learning results. Generally speaking, our goal is to 

show that optimizing the parameters (in a learning problem) based on random projections of data 

would still be close to the case if they were optimized over the complete data. 

Problem definition  

Most learning tasks involve minimizing the expected value of a loss function (with 

respect to some parameters) over the data distribution. However, when the data distribution is not 
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known, learning must be carried over a set of training data that is randomly sampled from the 

(hypothetical) data distribution. The (sample) average of the loss function over the training data 

is sometimes called the empirical risk and data-driven learning algorithms work by minimizing 

the empirical risk function.  

In our problem, training data consists of random measurements of data and each unit of 

training data consists of the collection of inner products between every block of data ݔ௝ ∈ Թ௡ 

and an outcome of a random sampling operator ߶௝ ∈ Թ௡. Therefore, the collection of block 

measurements Φ௝ݔ௝, each of size ݉, corresponds to ݉ training units and minimizing the average 

loss function over this training data may be referred to as empirical risk minimization.   

 

We denote the empirical risk function as ܴௌሺߠሻ:	Թ௣ → 	Թ where ߠ ∈ Թ௣ is the parameter 

vector to be estimated and ܵ represents the random sampling operator for generating the training 

data which depends on the set of measurement matrices Φଵ,Φଶ, … ,Φே. Put simply, ܴௌሺߠሻ is the 

loss over the training data. For example,  

 ܴௌሺߠሻ ൌ ∑ ℓ൫Φ௝ݔ௝, ൯ߠ
ே
௝  (6.22) 

The true risk is denoted by ܴሺߠሻ which relies on the complete data matrix ܺ (which is 

assumed to be fixed and is not shown as a variable). Note that, we require that the empirical risk 

be an unbiased estimator of the true risk. Expressed formally, 

ሻሽߠௌሼܴௌሺܧ  ൌ ܴሺߠሻ (6.23) 

Without additional constraints about the parameter vector, estimating ߠ involves 

minimizing the empirical risk function: 

∗෠ߠ  ൌ min
ఏ∈Թ೛

ܴௌሺߠሻ (6.24) 
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The hat notation over the estimated parameter vector emphasizes the fact that the 

estimation is based on the training data, rather than the complete data. In other words, ߠ෠∗ is an 

approximation of the optimal parameter vector ߠ∗ which is defined as: 

∗ߠ  ൌ min
ఏ∈Թ೛

ܴሺߠሻ (6.25) 

We refer to ߠ∗ as the true optimum parameter vector and to ߠ෠∗ as its estimation.  

Naming convention: In some of the more recent works, ܴௌሺߠሻ is sometimes called the sketch of 

ܴሺߠሻ using the sketching ܵ [35]. Similarly, ߠ෠∗ could be called the sketch of ߠ∗.  

Specification of the training data  

In the linear measurement model, each data vector (or signal block) ݔ௝ is projected onto a 

linear subspace, usually of lower dimension than the ambient signal space. By definition, a linear 

projection does not change the dimensionality of the signal vector. It must be noted that it is 

more common to work with the vector of linear measurements ݕ ൌ Φݔ ∈ Թ௠ (݉ ൏ ݊). 

Nonetheless, the input to the estimation problem of this chapter is the actual linear projection 

of	ݔ (for reasons that become clear later in the chapter): 

ොݔ  ൌ ஍ܲሺݔሻ ൌ ሾΦ்ሺΦΦ୘ሻିଵΦሿ(6.26) ݔ 

Clearly, ݔො contains the same amount of information about the underlying signal as ݕ does 

in	ݕ ൌ Φݔ for a known measurement matrix	Φ and ݕ can always be calculated from	ݔො by	ݕ ൌ

Φݔො. Let ܵ ൌ Φ்ሺΦΦ୘ሻିଵΦ ∈ Թ௡ൈ௡ denote the projection operator. For simplicity, without loss 

of generality, assume that ΦΦ୘ ൌ  resulting (which is a typical assumption in most CS works) ܫ
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in	ܵ ൌ Φ்Φ. Requiring ΦΦ் ൌ  is equivalent to requiring that rows of Φ are orthonormal, in ܫ

addition to being independent10.  

Bounding the MSE risk for unconstrained strongly convex problems 

Well-posed learning problems involve minimization of a convex risk function. 

Furthermore, in the class of convex functions, there are different degrees of convexity. Strong 

convexity at ߠ ൌ -ଵ presents a form of convexity that requires the objective function to be lowerߠ

bounded by a quadratic function with a constant concavity that is tangent to the objective 

function at ߠ ൌ  .ଵ. The formal definition of strong convexity is given belowߠ

Definition 6.1 (strong convexity). ݂ሺߠሻ:Թ௣ → Թ is a strongly convex function with 

constant ߙ or equivalently an ߙ-strongly convex function if  

 ݂ሺߠଶሻ െ ݂ሺߠଵሻ ൒ ଶߠଵሻ்ሺߠ஘݂ሺ׏ െ ଵሻߠ ൅
ఈ

ଶ
ଶߠ‖ െ ଵ‖ଶߠ

ଶ (6.27) 

for all ߠଵ and ߠଶ in its domain. 

 Strong convexity can be specialized for smooth functions that are at least twice 

differentiable, leading to an intuitive and useful understanding of strong convexity for smooth 

functions.  

Corollary 6.1 (strong convexity for smooth functions). If ݂ሺߠሻ is twice continuously 

differentiable with respect to ߠ, then ݂ሺߠሻ is strongly convex with parameter ߙ if and only if 

ఏ׏
ଶ݂ሺߠሻ ≽  .in its domain ߠ for any ܫߙ

                                                 
10 Note that we always assume Φ is full-rank for sensing efficiency; that is rows of Φ are independent. 
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Similar to the conventional estimation frameworks where the estimation error is 

presented in terms of the Mean Squared Error (MSE), we express the accuracy of estimation 

from random projections of data in terms of MSE. However, there are fundamental differences 

between the traditional notion of MSE and the MSE that is used here. Traditionally, MSE is the 

expected value of squared error with regard to the randomness in ݔ, i.e. when ݔ is withdrawn 

from a random distribution, and signifies the risk associated with optimizing the parameter 

vector over the limited outcome(s) of ݔ. Meanwhile, in our framework, ݔ is assumed to be fixed 

and randomness is with regard to the projection matrix ܵ. Therefore, we are interested in the 

MSE ܧௌ ቄฮߠ෠∗ െ ฮ∗ߠ
ଶ

ଶ
ቅ over the distribution of ܵ.  

Clearly, evaluating ܧௌ ቄฮߠ෠∗ െ ฮ∗ߠ
ଶ

ଶ
ቅ can be very difficult given that ߠ෠∗ may not have a 

closed-form expression as a function of ܵ. Even with such closed-form solution for ߠ෠∗, it is 

usually extremely difficult to analytically integrate the error ฮߠ෠∗ െ ฮ∗ߠ
ଶ

ଶ
 over the distribution of 

ܵ. However, in many applications, one might be only interested in an analytical upper bound for 

the MSE which can be computed with a few simplifying assumptions. 

Theorem 6.4. Given that: 

1) ܴሺߠሻ is an ߙ-strongly convex function of ߠ 

2) For any outcome of ܵ, we have |ܴௌሺߠሻ െ ܴሺߠሻ| ൑ ܴ߳ሺߠሻ with ߳ ൏ 1 

the squared error is bounded as: 

 ฮߠ∗ െ ෠∗ฮߠ
ଶ

ଶ
൑ ସఢ

ሺଵିఢሻఈ
݉݅݊
ఏ

ܴሺߠሻ (6.28) 

Proof. We use the result of the (upcoming) Theorem 6.5 which states that, when 

|ܴௌሺߠሻ െ ܴሺߠሻ| ൑ ܴ߳ሺߠሻ for ߠ ∈ Թ௣, we have ܴ൫ߠ෠∗൯ െ ܴሺߠ∗ሻ ൑ ଶఢ

ଵିఢ
ܴሺߠ∗ሻ (see (6.32)). Also, 
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note that for a strongly convex risk, we have 
ఈ

ଶ
ฮߠ෠∗ െ ฮ∗ߠ

ଶ

ଶ
൑ ܴ൫ߠ෠∗൯ െ ܴሺߠ∗ሻ since according to 

the optimality condition ׏ఏܴሺߠ∗ሻ்ሺߠ െ ሻ∗ߠ ൒ 0 for any ߠ (moving in any feasible direction 

away from ߠ∗ would increase the value of true risk function ܴሺߠሻ).  ∎ 

In simple words, this theorem implies that the estimation error is small given that the 

objective function is convex and does not depend significantly on the specific choice of ܵ.  

Unfortunately, the assumption |ܴௌሺߠሻ െ ܴሺߠሻ| ൑ ܴ߳ሺߠሻ may not hold for every choice of 

ܵ. However, for certain distributions of ܵ, this assumption holds with a high probability. More 

formally, instead of the deterministic inequality of (6.28), we would have the following 

stochastic inequality: 

Pr ൜ฮߠ∗ െ ෠∗ฮߠ
ଶ

ଶ
൐

4߳
ሺ1 െ ߳ሻߙ

݉݅݊
ఏ

ܴሺߠሻൠ ൑ ݁ି௙ሺఢሻ 

Clearly, the function ݂ሺ߳ሻ above or generally the empirical risk tail bound  

Prሼ|ܴௌሺߠሻ െ ܴሺߠሻ| ൐ ܴ߳ሺߠሻሽ ൑ ݁ି௙ሺఢሻ 

depends on the specific choice of the loss function. In the following section, we consider the 

dictionary update loss function based on the compressive training data. 

Bounding the regret, the general case 

Define the regret as ܴ൫ߠ෠∗൯ െ min
ఏ
ܴሺߠሻ ൌ ܴ൫ߠ෠∗൯ െ ܴሺߠ∗ሻ. Regret is an important 

concept in online learning theory. However, in here, we use a similar definition to assess the 

quality of the learned parameters using empirical risk minimization. For example, in the 
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dictionary update problem, regret would represent the difference in the sparse representation 

error between the case of having only random projections of data and the case of having the 

complete data matrix.  

Furthermore, consider the general constrained optimization problems: 

∗෠ߠ  ൌ argmin
ఏ∈஼

ܴௌሺߠሻ (6.29) 

and 

∗ߠ  ൌ argmin
ఏ∈஼

ܴሺߠሻ (6.30) 

Where ܥ ⊂ Թ௣ represents an arbitrary constraint set for the parameters. The following 

theorem results in a bound on the regret function which combined with the tail bound of the 

empirical risk function can be used to evaluate the quality of learning from random projection of 

data. 

Theorem 6.5. Suppose |ܴௌሺߠሻ െ ܴሺߠሻ| ൑ ܴ߳ሺߠሻ for every ߠ ∈ ߳ and ܥ ൏ 1. Assume that 

  ,Then .ܥ ሻ overߠሻ and ܴሺߠare minimizers of ܴௌሺ ∗ߠ ෠∗ andߠ

 ܴ൫ߠ෠∗൯ ൑ ቀଵାఢ
ଵିఢ

ቁܴሺߠ∗ሻ (6.31) 

Proof.  

ܴ൫ߠ෠∗൯ െ ܴሺߠ∗ሻ	

ൌ ܴ൫ߠ෠∗൯ െ ܴௌሺߠ∗ሻ ൅ ܴௌሺߠ∗ሻ െ ܴሺߠ∗ሻ	

൑ ܴ൫ߠ෠∗൯ െ ܴௌ൫ߠ෠∗൯ ൅ ܴௌሺߠ∗ሻ െ ܴሺߠ∗ሻ	

൑ ܴ߳൫ߠ෠∗൯ ൅ ܴ߳ሺߠ∗ሻ 

Therefore 
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 ሺ1 െ ߳ሻܴ൫ߠ෠∗൯ ൑ ሺ1 ൅ ߳ሻܴሺߠ∗ሻ ∎ 

Therefore, an upper bound for the regret, when |ܴௌሺߠሻ െ ܴሺߠሻ| ൑ ܴ߳ሺߠሻ, is: 

 ܴ൫ߠ෠∗൯ െ ܴሺߠ∗ሻ ൑ ଶఢ

ଵିఢ
ܴሺߠ∗ሻ (6.32) 

Note that requiring |ܴௌሺߠሻ െ ܴሺߠሻ| ൑ ܴ߳ሺߠሻ over ߠ ∈  is a weaker condition than ܥ

requiring |ܴௌሺߠሻ െ ܴሺߠሻ| ൑ ܴ߳ሺߠሻ over every ߠ ∈ Թ௣. For example, for any vector ݔ ∈ Թ௡, the 

squared norm of its random projection ‖Φݔ‖ଶ
ଶ is concentrated around ‖ݔ‖ଶ

ଶ and according to 

(6.4) 

Prሼ|‖Φݔ‖ଶ
ଶ െ ଶ‖ݔ‖

ଶ| ൐ ଶ‖ݔ‖߳
ଶሽ ൑2݁ି

௠ఢమ
଺  

This probability of error may not be acceptable for recovery applications where ݔ must be 

recovered from Φݔ. However, as discovered in CS, it is possible to perfectly recover a sparse ݔ 

from random measurements of the form Φ. What happens is that the value of Prሼ|‖Φݔ‖ଶ
ଶ െ

ଶ‖ݔ‖
ଶ| ൒ ଶ‖ݔ‖߳

ଶሽ becomes smaller when ݔ is restricted to the ݇ sparse vectors. In fact, ߳ here is 

precisely the definition of the Restricted Isometry Constant [1] for ݇ sparse vectors which is the 

cornerstone of CS.   

This theorem has significant values and summarizes the intuition behind our research. 

Specifically, both regularization and diversification attempt to make ߳ smaller. Regularization 

works for constraining the feasible set ܥ and diversification works by reducing the tail bound 

Prሼ|ܴௌሺߠሻ െ ܴሺߠሻ| ൐ ܴ߳ሺߠሻ	ሽ.  
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MSE BOUND FOR DICTIONARY UPDATE FROM RANDOM PROJECTIONS  

In this section, we compute stochastic bounds for the MSE risk of the dictionary update 

step assuming the sparse coefficient are given as part of the training data.  

As the first step, the dictionary update loss function must be expressed in the vectorized 

format. Let ࢊ ∈ Թ௡ௗ denote the vectorized dictionary, i.e. ࢊ ൌ  ሻ. For a single block, weܦሺܿ݁ݒ

can write: 

ฮݕ௝ െ Φ௝ܦ ௝ܽฮଶ
ଶ
ൌ ൫ݕ௝ െ Φ௝ܦ ௝ܽ൯

்
൫ݕ௝ െ Φ௝ܦ ௝ܽ൯ ൌ ௝ݕ

௝ݕ் െ ௝ݕ2
்Φ௝ܦ ௝ܽ ൅ ௝ܽ

Φ௝்ܦ்
்Φ௝ܦ ௝ܽ 

We can further write; 

௝ݕ
்Φ௝ܦ ௝ܽ ൌ ൫Φ௝ܿ݁ݒ

௝ݕ் ௝ܽ
்൯ࢊ	 

and 

௝ܽ
Φ௝்ܦ்

்Φ௝ܦ ௝ܽ ൌ ൫்ࢊ ௝ܽ ௝ܽ
் ⊗ Φ௝

்Φ௝൯ࢊ	 

Therefore the dictionary update problem can be written in the standard quadratic form as 

follows11: 

∗෡ࢊ  ൌ argmin
ࢊ

ଵ

ଶ
ࢊ்ܳࢊ ൅ ࢊ்݂ ൅ ܿ (6.33) 

Where 

 ܳ ൌ ∑ ௝ܽ ௝ܽ
் ⊗ Φ௝Φ௝

்ே
௝ୀଵ  (6.34) 

 ݂ ൌ ∑൫െܿ݁ݒ Φ௝
௝ݕ் ௝ܽ

்ே
௝ୀଵ ൯ (6.35) 

                                                 
11 Of course, this quadratic problem is subject to the constraint ‖ࢊ‖ଶ ൑ √݊. This constraint is typically handled 
individually by a projection onto the constraint set in the last step of the dictionary update stage.  
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 ܿ ൌ ଵ

ଶ
∑ ௝ݕ

௝ݕ்
ே
௝ୀଵ  (6.36) 

Correspondingly, the original dictionary update problem (in the presence of complete 

measurements) can be expressed as: 

∗ࢊ  ൌ argmin
ࢊ

ଵ

ଶ
்ࢊ തܳࢊ ൅ ࢊ்݂̅ ൅ ܿ̅ (6.37) 

Where 

 തܳ ൌ ∑ ௝ܽ ௝ܽ
் ⊗ ௡ܫ

ே
௝ୀଵ  (6.38) 

 ݂̅ ൌ ∑൫െܿ݁ݒ ௝ݔ ௝ܽ
்ே

௝ୀଵ ൯ (6.39) 

 ܿ̅ ൌ ଵ

ଶ
∑ ௝ݔ

௝ݔ்
ே
௝ୀଵ  (6.40) 

Below, the stochastic construction of the block measurement matrices is specified. For a 

single block measurement matrix, each entry is sampled from a random i.i.d. Gaussian 

distribution with zero mean and variance 
ଵ

௠
. The 

ଵ

௠
 variance assures that 

൛Φ௝ܧ
்Φ௝ൟ ൌ  ௡ܫ

and therefore, empirical risk becomes an unbiased estimator of the true risk as desired. 

Although the presented analysis focuses on Gaussian measurements, it is straightforward 

to extend it to the larger class of sub-Gaussian measurements which includes the Rademacher as 

well as the general class of (centered) bounded random variables [14].  

Define ℓௌሺ݀ሻ ൌ
ଵ

ଶ
்݀ܳ݀ ൅ ்݂݀ ൅ ܿ and ℓሺ݀ሻ ൌ ଵ

ଶ
்݀ തܳ݀ ൅ ்݂̅݀ ൅ ܿ̅. For the case having 

a uniform distribution over the residual vectors for random-block measurements, in Section 

6.1.2, we computed the tail bound for ℓௌሺ݀ሻ, i.e. the upper bound for the stochastic measure: 
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 Prሼሺ1 െ ߳ሻℓሺ݀ሻ ൒ ℓௌሺ݀ሻ ൒ ሺ1 ൅ ߳ሻℓሺ݀ሻሽ ൑2݁ି
೘ಿചమ

ల  (6.41) 

Therefore, we are able to find upper bounds for the MSE ܧௌ ቄฮ መ݀∗ െ ݀∗ฮ
ଶ

ଶ
ቅ using the 

results of Section 6.2.3. In particular, 

Theorem 6.6. Assuming ฮݔ௝ െ ܦ ௝ܽฮଶ is the same for all ݆ ∈ ሼ1,2, … ,ܰሽ, with probability 

1 െ 2݁ି
೘ಿചమ

ల  for 0 ൏ ߳ ൏ ଵ

ଶ
, 

 ฮ መ݀∗ െ ݀∗ฮ
ଶ

ଶ
൑ ସఢ

ሺଵିఢሻఓ
ℓሺ݀∗ሻ (6.42) 

where ߤ ൌ ௠௜௡ሺߣ തܳሻ ൌ  .ሻ்ܣܣ௠௜௡ሺߣ

Note that the upper bound on the right hand side of the above inequality is deterministic. 

The above result can be easily generalized to the case of unbalanced residual energies using the 

close-form bounds described in Section 6.1.4. 
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CHAPTER 7 

HYPERSPECTRAL REMOTE SENSING AND CLASSIFICATION BASED 

ON RANDOM PROJECTIONS 

Hyperspectral images are extensions of monochrome images that correspond to tensors 

widely known as hyperspectral cubes. In spite of their high dimensionality, hyperspectral cubes 

are highly redundant and compressible data structures. As a result, there have been numerous 

proposals for compressive architectures for hyperspectral imaging among which are whisk-

broom and push-broom scanners [37], reviewed later in this chapter, that represent practical 

designs.  

In this chapter, we study the problem of hyperspectral pixel classification based on the 

recently proposed architectures for compressive whisk-broom imagers [37] without the need to 

reconstruct the hyperspectral cube and by directly estimating the classifier from the random 

measurements. A clear advantage of classification based on compressively sensed data is its 

suitability for real-time on-site processing of the sensed data. Moreover, it is assumed that the 

learning process also takes place in the compressed domain, completely isolating the 

classification unit from the recovery unit at the ground station. We show that, using distinct 
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measurement matrices for different pixels results in better accuracy of the learned classifier and 

gives consistent classification performance, supporting the role of information diversity. At the 

same time, we show that classification based on using a fixed (but random) measurement matrix 

is less reliable in general. 

INTRODUCTION 

A hyperspectral cube (HSC) consists of numerous layers of monochrome images where 

each layer corresponds to a specific electromagnetic frequency or what is known as a spectral 

band. An example of an HSC is shown in Figure 17. 

 

Figure 17. The hyperspectral cube or HSC of an earth patch and the spectral reflectances of two pixels 
corresponding to vegetation and soil. COଶ absorption bands are omitted.  
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Figure 18. Conceptual diagrams of different types of MSI and HSI sensors, including whisk-broom (e) 
and push-broom (f) HSI designs. (Photo credit: J. R. Jenson 2007, “Remote Sensing of the Environment: 
An Earth Resource Perspective,” Prentice Hall). 
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A close family of hyperspectral imaging (HSI) sensors are multispectral imaging (MSI) 

sensors that consist of coarser spectral resolutions. Specifically, while a typical HSI bandwidth is 

in the order of 10݊݉ (nano-meters), MSI bandwidths are in the order of 100݊݉. Figure 18 

shows diagrams of the well-known types of MSI and HSI sensors. 

Existing challenges in classification of hyperspectral signatures 

In remote sensing applications, each spectral signature or endmember is associated with a 

specific type of material. However, due to the variability of imaging conditions such as the 

direction of light, variable sizes of objects and atmospheric noise, measured endmembers are 

subject to variations. This problem, which is widely known as the endmember variability 

problem, makes it difficult to identify objects based on spectral libraries that are usually 

produced in controlled laboratory conditions [38, 39]. Consequently, classifications algorithms 

such as the Support Vector Machine (SVM) must be trained for each scenario, possibly for each 

particular HSC. This necessitates that the training be robust with respect to the noise or missing 

values. In this chapter, we focus on the latter case, that is when the measurements are not 

complete and are in the form of linear projections of data vectors onto random low-dimensional 

subspaces.  
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Compressive architectures for hyperspectral imaging and their impacts on hyperspectral 

classification 

Recently, there has been a great deal of interest over compressive architectures for 

hyperspectral imaging and remote sensing. This is mainly due to the increasing amount of 

hyperspectral data that is being collected by high-resolution airborne imagers such as NASA’s 

AVIRIS (http://aviris.jpl.nasa.gov) and the fact that a large portion of data is discarded during 

compression or during feature mining prior to learning.  

It has been noted in [37] that many of the proposed compressive architectures are based 

on the spatial mixture of pixels across each frame and correspond to physically costly or 

impractical operations while most existing airborne hyperspectral imagers employ scanning 

methods to acquire a pixel or a line of pixels at a time. To address this issue, practical designs of 

compressive whisk-broom and push-broom cameras were suggested in [37]. These designs are 

illustrated in Figure 19 and Figure 20. 
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Figure 19. The conceptual compressive whisk-broom camera of [37]. 

 

Figure 20. The conceptual compressive push-broom camera of [37]. 

In this chapter, we study the problem of hyperspectral pixel classification based on 

compressive whisk-broom sensors; i.e. each pixel is measured at a time using an individual 

random measurement matrix. Meanwhile, the presented analysis would also apply to 

compressive push-broom cameras. There have been other efforts focused on the problem of 

classification from compressive hyperspectral data [40]. To set this work apart from those 
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efforts, such as [40], we must mention two issues with their typical indirect approach of applying 

the classification algorithms to the recovered data:  

a) The sensed data cannot be decoded at the sender’s side (airborne device) due to the 

heavy computational cost of compressive recovery, making on-site classification 

infeasible. 

b) The number of measurements (per pixel) may not be sufficient for a reliable signal 

recovery. 

It has been established that classification in the compressed domain would succeed with 

far less number of random measurements than it is required for a full data recovery [11]. 

However, the compressive framework of [11] corresponds to using a fixed projection matrix for 

all pixels which limits the measurement diversity that has been promoted by several recent 

studies for data recovery and learning [41, 42]. Rather than devising new classification 

algorithms, this work is focused on studying the relationship between the camera’s sensing 

mechanism, namely the employed random measurement matrix, and the common Support Vector 

Machine (SVM) classifier. It must be emphasized that the general problem of classification 

based on compressive measurements has been addressed for the case where a fixed measurement 

matrix is used [11]. However, our aim is to study the impact of measurement diversity on the 

learned classifier. 
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REPEATED-BLOCK AND RANDOM-BLOCK ARCHITECTURES FOR 

COMPRESSIVE HSI 

We investigate two different sensing mechanisms that were introduced in [37]: 

1) FCA-based sensor: A Fixed Coded Aperture (FCA) is used to modulate the dispersed 

light before it is collected at the linear sensor array. This case corresponds to using a 

fixed measurement matrix for each pixel and a low-cost alternative to the DMD 

system below. 

2) DMD-based sensor: A Digital Micro-mirror Device (DMD) is used to modulate the 

incoming light according to an arbitrary pattern that is changed for each 

measurement. Unlike the previous case, DMD adds the option of sensing each pixel 

using a different measurement matrix.  

These two cases are illustrated in Figure 21. 

   

Complete data FCA-sensed data DMD-sensed data 

Figure 21. FCA-based versus DMD-based sensing. Rows represent pixels and columns represent spectral 
bands. 
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SVM CLASSIFICATION PROBLEM FORMULATION 

Support vector machine or SVM has been shown to be a suitable classifier for 

hyperspectral data. Specifically, we employ an efficient linear SVM classifier with the 

exponential loss function that gives a smooth approximation to the hinge-loss. To train the 

classifier in the compressed domain, we must sketch the SVM loss function using the acquired 

measurements for which we employ some of the techniques developed in [43]. Furthermore, 

given that the sketched loss function gives a close approximation to the true loss function and 

that the learning objective function is smooth, it is expected that the learned classifier is close to 

the ground-truth classifier based on the complete hyperspectral data (which is unknown). As it 

has been discussed in [44], recovery of the classifier is of independent importance in some 

applications. 

Overview of SVM for spectral pixel classification 

In a supervised hyperspectral classification task, a subset of pixels are labeled by a 

specialist who may have access to the side information about the imaged field such as being 

physically present at the field for measurement. The task of learning is then to employ the 

labeled samples for tuning the parameters of the classification machine to predict the pixel labels 

for a field with similar material compositions. For subpixel targets, an extra stage of spectral 

unmixing is required to separate different signal sources involved in generating a pixel’s 

spectrum [45]. For simplicity, we assume that the pixels are homogeneous (consist of single 

objects).  
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Recall that most classifiers are inherently composed of binary decision rules. 

Specifically, in multi-categorical classification, multiple binary classifiers are trained according 

to either One-Against-All (OAA) or One-Against-One (OAO) schemes and voting techniques 

are employed to combine the results [21]. In a OAA-SVM classification problem, a decision 

hyperplane is computed between each class and the rest of the training data, while in a OAO 

scheme, a hyperplane is learned between each pair of classes. As a consequence, most studies 

focus on the canonical binary classification. Similarly in here, our analysis is presented for the 

binary classification problem which can be extended to multi-categorical classification. 

In the linear SVM classification problem, we are given a set of training data points 

(corresponding to hyperspectral pixels) ݔ௝ ∈ Թௗ for ݆ ∈ ሼ1,2, … ,ܰሽ and the associated labels  

௝ݖ ∈ ሼെ1,൅1ሽ. The inferred class label for ݔ௝ is ݊݃݅ݏ൫ݔ௝
்߱ െ ܾ൯ that depends on the classifier 

߱ ∈ Թௗ and the bias term ܾ ∈ Թ. The classifier ߱ is the normal vector to the affine hyperplane 

that divides the training data in accordance with their labels. When the training classes are 

inseparable by an affine hyperplane, maximum-margin soft-margin SVM is used which relies on 

a loss function to penalize the amount of misfit. For example, a widely used loss function is 

ℓሺݎሻ ൌ ሺmaxሼ0,1 െ ݎ ሽሻ௣ withݎ ൌ ௝ݔ௝൫ݖ
்߱ െ ܾ൯. For ݌ ൌ 1, this loss function is known as the 

hinge loss, and for ݌ ൌ 2, it is called the squared hinge loss or simply the quadratic loss. The 

optimization problem for soft-margin SVM becomes12 

 ሺ߱∗, ܾ∗ሻ ൌ argmin
ன,ୠ

ଵ

௡
∑ ℓ ቀݖ௝൫ݔ௝

்߱ െ ܾ൯ቁ௡
௝ୀଵ ൅ ఒ

ଶ
‖߱‖ଶ

ଶ (7.1) 

                                                 
12 Discussion: Similar results can be obtained using the dual form. Recent works have shown that advantages of the 
dual form can be obtained in the primal as well [24]. As noted in [24], the primal form convergences faster to the 
optimal parameters ሺ߱∗, ܾ∗ሻ than the dual form. For the purposes of this work, it is more convenient to work with 
the primal form of SVM although the analysis can be properly extended to the dual form. 
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In this paper, we use the smooth exponential loss function, which can be used to 

approximate the hinge loss while retaining its margin-maximization properties [46]:  

 ℓሺݎሻ ൌ ݁ିఊ௥ (7.2) 

where ߛ controls the smoothness. We use ߛ ൌ 1. 

SVM in the compressed domain 

Let ݕ௝ ൌ Φ௝ݔ௝ ∈ Թௗᇲ denote the low-dimensional measurement vector for pixel ݆ where 

݀ᇱ ൑ ݀ is size of the photosensor array in the compressive whisk-broom camera [37]. As 

explained in [47], a DMD architecture can be used to produce a Φ௝ with random entries in the 

range ሾ0,1ሿ or random േ1 entries, resulting in a sub-Gaussian measurement matrix that satisfies 

the isometry conditions with a high probability [14]. Recall that the measurement matrix Φ௝ is 

fixed in a FCA-based architecture while it can be distinct for each pixel in a DMD-based 

architecture.  

As noted in [43], the orthogonal projection onto the row space of Φ௝ can be computed as 

௝ܲ ൌ Φ௝
்൫Φ௝Φ௝

்൯
ିଵ
Φ௝. Consequently, an (unbiased) estimator for the inner product ݔ௝

்߱ 

(assuming a fixed ݔ௝ and ߱) based on the compressive measurements would be 

௝ݕ
்൫Φ௝Φ௝

்൯
ିଵ
Φ௝߱. As a result, the soft-margin SVM based on the compressive measurements 

can be expressed as: 

 ෝ߱∗ ൌ argmin
ன

ଵ

௡
∑ ℓ ቀݖ௝ݕ௝

்൫Φ௝Φ௝
்൯

ିଵ
Φ௝߱ቁ

௡
௝ ൅ ఒ

ଶ
‖߱‖ଶ

ଶ (7.3) 
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We have omitted the bias term b for simplicity for now. 

It must be noted that the formulation in (7.3) is different from what was suggested in [11] 

for a fixed measurement matrix. In particular, we solve for ෝ߱∗ in the ݀-dimensional space. 

Meanwhile, the methodology in [11] would result in the following optimization problem: 

 ෥߱∗ ൌ argmin
ன

ଵ

௡
∑ ℓ൫ݖ௝ݕ௝

்߱൯௡
௝ ൅ ఒ

ଶ
‖߱‖ଶ

ଶ (7.4) 

which solves for ෥߱∗ in the low-dimensional column-space of Φ. Also note that, in the case of 

fixed measurement matrices, (7.3) and (7.4) correspond to the same problem with the 

relationship ෝ߱∗ ൌ Φ்ሺΦΦ்ሻିଵ ෥߱∗ (because of the ℓଶ regularization term which zeros the 

components of ෝ߱∗ which lie in the null-space of Φ). In other words, (7.3) represents a 

generalization of (7.4) for the case when the measurement matrices are not necessarily the same. 

This allows us to compare the two cases of a) having a fixed measurement matrix and b) having 

a distinct measurement matrix for each pixel, which is the subject of this paper. For simplicity, 

assume that each Φ௝ consists of a subset of ݀ᇱ rows from a random orthonormal matrix, or 

equivalently Φ௝Φ௝
் ൌ ௗᇲ; thus, ௝ܲܫ ൌ Φ௝

்Φ௝. Also assume that, in the case of DMD-based 

sensing, each Φ௝ is generated independently of the other measurement matrices.  

Following the recent line of work in the area of randomized optimization, for example 

[35], we refer to the new loss ℓ ቀݖ௝ݔ௝
்Φ௝

்൫Φ௝Φ௝
்൯

ିଵ
Φ௝߱ቁ as the sketch of the loss, or simply the 

sketched loss to distinguish it from the true loss ℓ൫ݖ௝ݔ௝
்߱൯. Similarly, we refer to ෝ߱∗ as the 

sketched classifier as opposed to the ground-truth classifier ߱∗. 
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Figure 22. Linear SVM classification depicted for ݀ ൌ 2 and ݀ᇱ ൌ 1. Each arrow attached to a data point 
represents the direction of the random projection for that point.  

Figure 22 depicts the two cases of using a fixed measurement matrix (FCA-sensed data) 

and distinct measurement matrices (DMD-sensed data) for training a linear classifier. It is helpful 

to imagine that, in the sketched problem, each ݔ௝ is multiplied with ௝ܲ߱ (the projection of ߱ onto 

the column-space of Φ௝) since ݕ௝
்Φ௝߱ ൌ ൫ ௝ܲݔ௝൯

்
߱ ൌ ௝ݔ

்൫ ௝ܲ߱൯. As shown in Figure 22 (left) 

with ௝ܲ ൌ ܲ for all ݆, there is a possibility that ߱∗ would nearly align with the null-space of the 

random low-rank matrix ܲ ൌ Φ்Φ. For such ܲ, any vector ܲ߱ may not well discriminate 

between the two classes and ultimately result in the classification failure. Figure 22 (right) 

depicts the case when a distinct measurement is used for each point. When Φ௝ is symmetrically 

distributed in the space and ݊ is large, there is always a bunch of Φ௝’s that nearly align with ߱∗ 

whereas other Φ௝’s can be nearly orthogonal to ߱∗ or somewhere between the two extremes. 

This intuitive example hints about how measurement diversity pays off by making the 

optimization process more stable with respect to the variations in the random measurements and 

the separating hyperplane. 
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Below, we present a simulation to quantify these remarks. Specifically, we look at the 

distributions of the sketched loss at ߱∗ for the two sampling cases. Clearly, for a fixed training 

data and some ߱, the sketched loss is a random variable that is a function of the measurement 

operator. For the optimization to be stable, the sketched loss must not depend significantly on the 

specific outcome of this measurement operator. 

In this (preliminary) simulation we use the Indian Pines dataset [48]. In Figure 23, we 

have plotted the distributions of sketched loss for the FCA-based sampling (representing 

measurement without diversity) and DMD-based sampling (measurement with diversity) for a 

pair of classes with ݀ ൌ 200, ݀ᇱ ൌ 100 and ݊ ൌ 200. Although only evaluated at ߱∗ in this 

case, we observe that the pixel-varying measurement results in a more stable (concentrated) 

sketch of the loss and arguably a closer approximation of the ground-truth classifier. 

  

Figure 23. Distributions of the sketched loss for the FCA-based sampling and DMD-based sampling for a 
pair of classes with ݀ ൌ 200, ݀ᇱ ൌ 100 and ݊ ൌ 200. 
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THE CLASSIFICATION ALGORITHM 

In this section, we provide the details of the optimization algorithm for the smooth soft-

margin SVM. However, before that, we need to address the issue of bias variability in the diverse 

projection scheme.  

Handling the bias term 

It is not difficult to see that employing a distinct Φ௝ for each data vector ݔ௝ necessitates 

having distinct values of bias ௝ܾ (for each Φ௝). Note that in the case of fixed measurement matrix, 

i.e. when Φ௝ ൌ Φ for all ݆, bias terms would be all the same and linear SVM works normally as 

noted in [11]. However, using a customized bias term for each point would clearly result in 

overfitting and the learned ෝ߱∗ would be of no practical value. Furthermore, the classifier cannot 

be used for prediction since the bias is unknown for the new input samples. In the following, we 

address these issues.  

First, let ܵ denote a set of ݇ distinct measurement matrices, that is 

 ܵ ൌ ൛Φሺଵሻ, Φሺଶሻ, … ,Φሺ௞ሻൟ (7.5) 

Instead of using an arbitrary measurement matrix for each pixel, we draw an entry from ܵ 

for each pixel. Given that ݊ ≫ ݇, each element of ܵ is expected be utilized for more than once. 

This allows us to learn the bias for each outcome of measurement matrix (without the overfitting 

issue). Note that ݇ signifies the degree of measurement diversity: ݇ ൌ 1 refers to the least 
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diversity, i.e. using a fixed measurement matrix, and measurement diversity is increased with ݇. 

The new optimization problem becomes: 

 ሺ ෝ߱∗, ܾଵ
∗, … , ܾ௞

∗ሻ ൌ arg min
ன,ୠభ,…,ୠౡ

ఒ

ଶ
‖߱‖ଶ

ଶ ൅ ଵ

௡
∑ ℓ ቀݖ௝ݕ௝

்Φ൫௧ೕ൯߱ ൅ ܾ௧ೕቁ
௡
௝  (7.6) 

where ݐ௝ randomly (uniformly) maps each ݆ ∈ ሼ1,2, … , ݊ሽ to an element of ሼ1,2, … , ݇ሽ. 

The overfitting issue can now be restrained by tuning ݇; reducing ݇ results in less overfitting. In 

our simulations, we use ݇ ൒ ቒௗ
ௗᇲ
ቓ to ensure that ܵ spans Թௗ with a probability close to one.  

For prediction, the corresponding bias term is selected from the set ሼܾଵ
∗, ܾଶ

∗, … , ܾ௞
∗ሽ. 

Implementation of gradient descent for SVM 

Here, we describe the details of the Newton’s method for optimizing the linear SVM 

classification problem (with the exponential loss) for the unbiased case. The biased version is 

quite similar and follows the same path with the additional bias variable(s).  

The objective function for the linear SVM classification problem is: 

 ෝ߱∗ ൌ argmin
ఠ

ଵ

௡
∑ exp൫െݖ௝ݕ௝

்Φ௝߱	൯
௡
௝ୀଵ ൅ ఒ

ଶ
்߱߱ (7.7) 

For Newton’s method, we need to compute the gradient vector and the Hessian matrix at 

each intermediate solution ߱ሺ௧ሻ. Let ׏ఠ݂൫߱
ሺ௧ሻ൯ denote the gradient at step ݐ and let ܪఠ൫߱

ሺ௧ሻ൯ 

denote the Hessian matrix at step ݐ. Using basic vector calculus,  

ఠ݂൫߱׏ 
ሺ௧ሻ൯ ൌ െ ଵ

௡
∑ ௝Φ௝ݖ

௝ݕ் exp൫െݖ௝ݕ௝
்Φ௝߱

ሺ௧ሻ൯௡
௝ ൅  ሺ௧ሻ (7.8)߱ߣ
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and  

ఠ൫߱ܪ 
ሺ௧ሻ൯ ൌ ଵ

௡
∑ Φ௝

௝ݕ௝ݕ்
்Φ௝ exp൫െݖ௝ݕ௝

்Φ௝߱
ሺ௧ሻ൯௡

௝ ൅  (7.9) ܫߣ

According to the update rule of the Newton’s method, 

 ߱ሺ௧ାଵሻ ൌ ߱ሺ௧ሻ െ ఠିଵ൫߱ܪ
ሺ௧ሻ൯׏ఠ݂൫߱

ሺ௧ሻ൯ (7.10) 

Note that ߣ௠௜௡ሺܪఠሻ ൒  guarantees the numerical stability of the algorithm. The ߣ

algorithm is stopped when the desired numerical precision is achieved for ߱ሺ௧ሻ. 

SIMULATION RESULTS 

The dataset used in this section is the well-known Pavia University dataset [49] which is 

available with the ground-truth labels13 14. For each experiment, we perform a 2-fold cross-

validation with 1000 training and 1000 testing samples. As discussed earlier, multi-categorical 

SVM classification algorithms typically rely on pair-wise or One-Against-One (OAO) 

classification results. Hence, we evaluate the sketched classifier on a OAO basis by reporting the 

pair-wise performances in a table. Finally, since the measurement operator is random and subject 

to variation in each experiment, we repeat each experiment for 1000 times and perform a worst-

case analysis of the results. 

Consider the case where a single measurement is made from each pixel, i.e. ݀ᇱ ൌ 1 and 

Φ௝ ∈ Թଵൈௗ is a random vector in the ݀-dimensional spectral space. Clearly, this case represents 

                                                 
13 http://www.ehu.eus/ccwintco/ 
14 The Indian Pines dataset was not included due to the small size of the image which is not sufficient for a large-
scale cross-validation study. 
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an extreme scenario where the signal recovery would not be reliable and classification in the 

compressed domain becomes crucial, even at the receiver’s side where the computational cost is 

not of greatest concern. For performance evaluation, we are interested in two aspects: (a) the 

prediction accuracy over the test dataset, (b) the recovery accuracy of the classifier (with respect 

to the ground-truth classifier) –whose importance has been discussed in [44]. 

 

Figure 24. Distributions of the classification accuracy (Asphalt vs. Meadows) for the Pavia University 
dataset (݀ᇱ ൌ 1). 

We define the classification accuracy as the minimum (worst) of the True Positive Rate 

(sensitivity) and the True Negative Rate (specificity). Figure 24 shows an instance of the 

distribution of the classification accuracy for a pair of classes over 1000 random trials. As it can 

be seen, in the presence of measurement diversity, classification results are more consistent 

(reflected in the low variance of accuracy). Due to the limited space, we only report the worst-

case OAO accuracies (i.e. the minimum pair-wise accuracies among 1000 trials) for the Pavia 

scene.  

The results for the case of one-measurement-per-pixel (݀ᇱ ൌ 1) are shown in Table 7 and 

Table 8. Similarly, the results for the case of  ݀ᇱ ൌ 3 (which is equivalent to the sampling rate of 

a typical RGB color camera) are shown in Table 9 and Table 10. Note that the employed SVM 
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classifier is linear and would not result in perfect accuracy (i.e. accuracy of one) when the classes 

are not linearly separable. To see this, we have reported ground-truth accuracies in Table 11. 

To measure the classifier recovery accuracy, we compute the cosine similarity, or 

equivalently the correlation, between ෝ߱∗ and ߱∗: 

ሺܥ  ෝ߱∗, ߱∗ሻ ൌ
〈ఠෝ∗,ఠ∗〉

‖ఠෝ∗‖మ‖ఠ∗‖మ
 (7.11) 

In Table 12 and Table 13, we have reported the average recovery accuracy for the case of 

three-measurements-per-pixel (i.e. ݀ᇱ ൌ 3). 

Table 7. One FCA measurement per pixel: worst-case classification accuracies (for 1000 trials) for the 
Pavia scene. 

Classes Meadow Gravel Trees Soil Bricks 

Asphalt 0.45 0.38 0.42 0.36 0.44 

Meadow  0.48 0.48 0.41 0.47 

Gravel   0.44 0.44 0.44 

Trees    0.42 0.53 

Soil     0.44 
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Table 8. One DMD measurement per pixel: worst-case classification accuracies (for 1000 trials) for the 
Pavia scene 

Classes Meadow Gravel Trees Soil Bricks 

Asphalt 0.71 0.64 0.79 0.60 0.71 

Meadow  0.72 0.61 0.46 0.73 

Gravel   0.79 0.60 0.44 

Trees    0.69 0.79 

Soil     0.60 

 

Table 9. Three FCA measurement per pixel: worst-case classification accuracies (for 1000 trials) for the 
Pavia scene 

Classes Meadow Gravel Trees Soil Bricks 

Asphalt 0.61 0.80 0.94 0.63 0.86 

Meadow  0.67 0.82 0.50 0.62 

Gravel   0.94 0.62 0.54 

Trees    0.89 0.93 

Soil     0.66 
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Table 10. Three DMD measurement per pixel: worst-case classification accuracies (for 1000 trials) for the 
Pavia scene 

Classes Meadow Gravel Trees Soil Bricks 

Asphalt 0.91 0.76 0.96 0.87 0.84 

Meadow  0.90 0.82 0.57 0.91 

Gravel   0.95 0.82 0.49 

Trees    0.93 0.96 

Soil     0.80 

 

Table 11. Ground-truth accuracies for the Pavia scene. 

Classes Meadow Gravel Trees Soil Bricks 

Asphalt 1.00 0.97 0.97 1.00 0.94 

Meadow  0.99 0.96 0.89 0.99 

Gravel   1.00 1.00 0.86 

Trees    0.98 1.00 

Soil     0.99 
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Table 12. Three FCA measurement per pixel: average recovery accuracy (for 1000 trials) for the Pavia 
scene 

Classes Meadow Gravel Trees Soil Bricks 

Asphalt 0.051 0.055 0.113 0.056 0.048 

Meadow  0.100 0.033 0.019 0.077 

Gravel   0.122 0.064 0.050 

Trees    0.017 0.123 

Soil     0.031 

 

Table 13. Three DMD measurement per pixel: average recovery accuracy (for 1000 trials) for the Pavia 
scene 

Classes Meadow Gravel Trees Soil Bricks 

Asphalt 0.164 0.189 0.483 0.129 0.132 

Meadow  0.468 0.147 0.140 0.380 

Gravel   0.617 0.272 0.197 

Trees    0.102 0.582 

Soil     0.128 
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CONCLUSION  

In the field of ensemble learning, it has been discovered that the diversity among the base 

learners enhances the overall learning performance [21]. Meanwhile, our aim has been to exploit 

the diversity that can be efficiently built into the sensing system. Both measurement schemes of 

pixel-invariant (measurement without diversity) and pixel-varying (measurement with diversity) 

have been suggested as practical designs for compressive hyperspectral cameras [37]. The 

presented analysis indicates that employing a DMD would result in more accurate recovery of 

the classifier and a more stable classification performance compared to the case when an FCA is 

used. Meanwhile, for tasks that only concern class prediction (and not the recovery of the 

classifier), FCA is (on average) a suitable low-cost alternative to the DMD architecture. 
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