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ABSTRACT

ESTIMATION OF THE PARAMETER IN THE STOCHASTIC MODEL

FOR PHAGE ATTACHMENT TO BACTERIA

by Ramesh C. Srivastava

Recently Gani has considered the following stochastic model

for phage attachment to bacteria in suspension. Let n

00
be the number of bacteria and Voo be the number of phages
\) .
at time t = 0. Also let m = Egg»be the multiplicity of
00

phages and r be the saturation capacity of a bacterium.
Further let ni(t) (1 =0,...,r) be the number of bacteria
with exactly i phages attached to them at time t > 0. If
P(no,...,nr;t) denotes the probability that there are

n ,...,nr bacteria with 0,...r phages attached to them

0
respectively at time t > 0, then, under certain assump-
tions, it is shown by Gani that

r ni(t)
T (aOi(t))

i=0
that is, at any fixed time t, O <t<t

]
noo.

n.!...n

P(no,...,nr;t) = 5

0’ the distribution

of \n(t) = (no(t)....,nr(t)) is multinomial. The probabilities

aoj(t) are functions of a single parameter o, defined by

-1
i )

j .
_ i r
ag;(t) = T DI 1)«

r e-(r—i)ap(t)
i=0 J



r-m exp(-pat)
r-m

where p(t) = % log (: )

In this thesis we investigate some of the basic properties
of this model, describe a method of estimating the parameter
o, and study the asymptotic properties of the estimate.

In Chapter 1, we describe the deterministic and the
stochastic models for phage attachment to bacteria and
review different methods of estimation for Markov chains
with continuous time parameter.

In Chapter 2, the joint probability generating function
of Q(tl) and %(tz) (t1 < t2) is derived and is used for

calculating the mixed moments of the process. The rest of
the chapter is devoted to the study of the asymptotic

distribution of g(t) and the limiting joint distribution

of Qﬂtl),...,ﬁﬁtk) (t1 < tk) as n tends to infinity.

00
The problem of estimating the parameter o in the

stochastic model is considered in Chapter 3. In section 3.2

a method of estimation is described and is shown to yield a

consistent estimate satisfying certain conditions. Then we

obtain a lower bound to the variance of a consistent estimate

satisfying certain conditions and use our result to obtain

the asymptotic efficiency of the estimate. Finally we indicate

a simpler method of estimating the parameter o. The modified

method of estimation yields an estimate with the same properties

as that obtained by the original procedure.
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CHAPTER 1

REVIEW OF PREVIOUS WORK

*
1.0. Introduction: Recently Gani [9] has considered a stochastic

model for the attachment of phages to bacteria. In the following
we study some of the basic properties of this model and describe
a method for estimating the parameter and studying the asymptotic
properties of the estimate.

This chapter consists of two parts. In the first part, which
includes sections 1.1 and 1.2, we describe the deterministic model
due to Yassky [20] and the stochastic model due to Gani for the
attachment of phages to bacteria. In the second part, which includes
sections 1.3, 1.4 and 1.5, we review different methods of estimation
for finite Markov chains with continuous time parameter t.

Before describing mathematical models for the attachment of
phages to bacteria, it may be useful to give a brief account of
some essential facts about bacteriophage. It is known.from plaque
tests on bacterial suspensions, that phages attack and destroy
bacterial colonies, after first attaching themselves to some of the
bacteria. A variety of other experiments indicate that one of more
phages may attach themselves to a bacterium.

In practice, a suspension of g9 bacteria in a nutrient
medium are infected with Yoo phages at time t = 0. Within a short

time (4 or 5 minutes) one or more phages attach themselves to a

*
Numbers in the square bracket refer to the bibliography.



bacterium and infect it. Inside an infected bacterium phage
particles reproduce following a complex reproduction cycle and
then the bacterial cell bursts out, releasing some 200 to 300
phage particles. The disintegration of the bacterium and the
scattering of new phage particles is called lysis. The entire
reproductive cycle takes place in about 20-25 minutes. Mean-
while, the uninfected bacteria continue to reproduce. The new
phages in turn attach themselves to other bacteria and infect
them. This cycle goes on for awhile. Since the reproduction
of phages is faster than that of bacteria, after some time all
bacteria are killed. The probability of extinction of a bacterial
colony by phages has been calculated by Gani [8].

Here we are mainly concerned with the phenomenon of phage
attachment to bacteria. The mathematical models which are des-
cribed in the sections 1.1 and 1.2 are derived under the following
assumptions.

Assumptions.

A The duration of experiment is taken to be very small, so

1
that the number of bacteria or phages neither increases nor

decreases in this period.

AZ' No attachment occurs between like particles.

A3. Collision of particles is due only to Brownian motionm,

both bacteria and phages being non-motile.

A4. On the basis of Bremmer's work [5], we assume that there

exists a maximum number of phage particles that can become

attached to a bacterium. This number is called the saturation

capacity of a bacterium.



1.1. A Deterministic Model for the Attachment of Phages to Bacteria:

Recently Yassky [20] has considered a deterministic model for
the attachment of phages to bacteria in suspension. Let ni(t) be
the number of bacteria with exactly i (i=0,1,...,r) phage particles
attached to them at time t > 0 and let vo(t) be the concentration

of free phage particles. Let n_ . = no(O) and v

00 = vo(O), then

00

r r
E n.(t)=n and Tin (t) =v,,-v.(t).
i=0 i 00 =0 i 00 0

Assumption B The rate of attachment of a phage particle to a

12

bacterium which is already attacked by i phage particles is

proportional to the product of ni(t) and vo(t).

Under assumptions A1 through A4 and assumption Bl’ it is
shown by Yassky that
dn
0= - Konovo
dt
dni
-at—= ()\i-]_nl-]_ - )\ini) \)0 (1=1,...)r"1) (1.1.1)
dnr
dt - (Xr-lnr-l) ‘0
and dvo r
3w =" Y .Z kini (1.1.2)
i=0

where )\i > 0 is a constant of proportionality,and as & first zpproximation

ni(t) are regarded as continuous and differentialbe functions of t.



Assumption BZ: Assume that Ki = (r - i) o 0<i<r
= 0 i 2 r
where o > 0.
Solving (1.1.2 ), we get
v . ~(r-m)
vo(t) = =2 (1.1.3)
r exp(pot)-m
Y00
where m = —— is the multiplicity of phages, and p = n_ . (r-m).
nOO 00
Next, solving (1.1.1 ), we get
- -pxt r _ a-hat -r ’
no(t) noo[e + o= (1 -e )]
-1
r
—eri-1, [ Pol®) N A
n(8) =gy C 747 0D n -0
00 00

(1.1.4)

1.2. A Stochastic Model for the Attachment of Phages to Bacteria:

Let n00 be the number of bacteria at time t = 0 in suspension
and ni(t) (i=0,1,...,r) denote the number of bacteria with exactly
i phages attached to them at time t > 0. Let P = P(no,...,nr;t)
be the probability that there are NNy, eee,ny bacteria with
0,1,...,r phages attached to them at time t > 0 and vo(t) denote
the number of unattached phages. In this model, the deterministic

value of vo(t) given by (4) in [9] is taken.

Assumption C: In addition to the assumptions A and BI’ we make

the following assumption.

C. The probability of attachment during interval (t,t + dt)



of a phage to a bacterium already having i phages is

Xinivodt + o(dt) (i=0,1,...,r - 1)
and the probability of attachment of more than one phage is o(dt).

Then we obtain in the usual way

4P r-1 r-1
il 'Z XinivoP + .E )\i(ni + l)vo P(no,...,ni+1,
i=0 i=0

If ¢(u0,...,ur;t) denotes the probability generating function

(p.g-f.) of these probabilities. then it follows that

r-1
9 _ - o9
E Xivo (ui+1 u,) (1.2.1)

at 1=0 o auy
This is a particular case of the p.g.f. for the multivariate
Markov process first considered by Bartlett [3], and has been
solved for this particular case by Gani [9]. To soive the first order

linear differential equation (1.2.1), we consider the auxiliary equations

G- SH— (i=0,1,...,r-1) (1.2.2)
%041 ™

These can be rewritten as

d u =V A -A u
It 0 0 0 ;O ; 0
1M
ur-l Ar-l-xr-l ur-l
u A u
r L r r

= v, Lu . (1.2.3)



The solution of this is of the form

P (B), o ¢ (1.2.4)

v

where u is the column vector (u ..,ur)', c a constant vector,

OJUI)‘
t
L the matrix array of xi and p(t) = £ vo(T)dT.

Thus we have

-Lp(t)

o(ust) = qy(e 1) (1.2.5)

where o is some suitable function of the new variables.

To determine the form of Py, we take into account the initial
conditions and the fact that

n

00
¢(g,0) = u, . (1.2.6)

Then

n
cpo(g;O) = ([e'Lp(t?g]O) 00 (1.2.7)

where [e-Lp(t%JO is the Oth element of the column vector [e-Lp(t;ﬂ.
We now proceed to calculate this element. Since by assumption
the Xi's are distinct and non-negative, the matrix L can be written

in the canonical form

[ ]
L=NAM=N |~ oM (1.2.8)
0

where N = M-1 and M is the matrix whose rows are eigenvectors

corresponding to the eigenvalues ko,kl,...,kr respectively.



It is easy to see that

. ioa,, ( )
M.. = M, .=17 ——— r 2 j>i
H 11 seir1rs™
-1 A
Njg =1 Nyy= ™ (r>3>1) (1.2.9)

It follows from (1.2.8) that

O R LY (1.2.10)
Ly X
Let e WP(E) o yeth p(E) y ) ag, (e || (1.2.11)
r
where a, . (t) = 0 for i > j and ¥ a,.(t) = 1. Then we see from
ij =0 0j

(1.2.7) and (1.2.11), that

r noo
o(u;t) = ( Z an(t) uJ.)

j=0

gives the p.g.f.ofa multinomial distribution and so

n ! n,(t)
. 00 r i
P(no,...,nr,t) e m aOi(t) (1.2.12)
0 r i=0
where aoj(t) = .2 NOi Mij e ) (1.2.13)

i=0

The Particular Case hi = (r - i) o: The above result holds generally

for any'li; now we discuss the particular case obtained by setting

Ki = (r - i) (i=0,1,...,r-1) and kr = 0.

It also follows from (1.2.9) that

M..=0 for i > j
1]



ii

yi-i, r-i _
Mij = (-1) ( j-1 ) for j i+1l,...,r. (1.2.14)

and
N..=0 fori>]j
1]

Nii =1 (1.2.15)

r-i . .
1] j-1 ) for j i+l,...,r.

Hence, from (1.2.13), (1.2.14) and (1.2.15) we have

(_l)j-i ( : )y« ;:i )e-(r-i)ap(t) (1.2.16)

h|
203(0) = iEO

where

1l . . r-mexp (-pat)
p(t) = = leg( - )

and p = noo(r—m).

In the present investigation this particular multivariate stochastic
process is discussed 1n scme detail, and the problem of estimating
the parameter oo is c(nsidered.

1.3. Estimaticn Methods for Evolutive Processes: In an early

paper Kendall [10] considered the problem of estimating the birth

rate for a purely reproductive process. Let n, be the number of

individuals at time t = 0 and suppose each individual is capable

of giving birth to a new individual in accordance with the following:
(a) The sub-populations generated by two co-existing

individuals develop in complete independence of one another,

(b) the probability that an individual existing at time

t will reproduce a new individual during (t,t + dt) is



Adt + o(dt)
and the probability of more than one birth is o(dt).
Let Pn(t) be the probability that at time t, there are

n individuals. If n_, = 1, then as shown in Kendall [10]

0
B_(t) = e M (1o Eyn-l (nz1). (1.3.1)
If n, =a > 1, then it follows from (1.3.1), that
P () = 01 ) e e, (1.3.2)

Now we consider a pure birth process and suppose
observations are taken at times

0 T 2r . . . kr=T
and the observed sizes of the population are respectively

n n n n

0 1 2 k’
The conditional probability P(nl,...,nk | no) is

k-1
P(nl,...,nk | nO) = 1 P(ni+1 | ni)
i=0
and by (1.3.2),
Ml TmgAT AT i+l

Py | np = (2

q)e Toa-e™
Therefore the lug likelihood function is

. k-1
L = constant + (n, -n.) log(l-e-AT) -AT L n.. (1.3.3)
k 0 =0 i

Differentiating (1.3.3) with respect to A, we get

oL _ Memo) -
3! 1 -AT
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)':T_n1+...+nk

n0+ +nk-1

Kendall also suggested another rough procedure for estimating
A and obtained an expression for its asymptotic variance.

In [11] and [12] Moran investigated the problem of
estimation for some simple processes; for example the
Poisson process, the pure birth process, birth and death
processes, etc.

For a pure birth process, Moran suggested the following
alternative procedure:

Let N(t) denote the size of the population at time t;
clearly N(t) is a non-decreasing function of t. The number
of births during an interval (0,T] is then given by k=N(T)-N(0).
Suppose these births occurred at times tl""’tk'
Now we consider a sample function of N(t) with k jumps.

Starting from time ts, the time (ts+ - ts) to the next

1
jump is such that

2A(N(0) + s) (ts+1 - ts)
is distributed as xz with 2 degrees of freedom. Then the log

likelihood function is

k-1
L= % 1log[A(N(O) + s) e
s=0

AM(O)+s) (t -t )y (t = 0)
0



11.

k-1
= 5% [log A + log (N(O) + s) - A(N(O) + s) (t_, .-t )].
s=0 s+l s
Equating the derivative of L to zero, we get
k-1
L - =
a kA ¥ (N(O) + s)(ts+1 tS) 0. (1.3.4)
s=0
Therefore the maximum likelihood estimate X of \ is
o k
A= "1 . (1.3.5)
T (N(O) + s)(ts+1-ts)
s=0
k-1
The sum T (N(0) + s)(t - t ) is equal to the area under
s=0 s+1 s
the curve N(t) and so
i _ k _ N(T) - N(O
T T
4; N(t)dt [ N(t)de
0
1 T -1
Also X I N(t)dt is an unbiased estimate of A and its
0

sampling distribution is (Zk}\)”1 XZ with 2k degrees of
freedom and so its variance is (klz)-l.

Further, Moran considered the problem of estimation
for the parameters in a birth and death process. Anscombe [2]
can also be consulted for sequential estimation in a birth

and death process.



12.

1.4. Maximum Likelihood Estimation for a Finite Markov Chain

with Continuous Time Parameter: Let {X(t), t = 0} be a

separable* finite Markov chain with continuous time parameter
and let P(t) = llpij(t)|| be the stationary transition matrix
function. Then under certain conditions P(t) can be written
in the form P(t) = exp(tQ) where Q = Ilqijll is an MXM matrix
known as the "infinitesimal generator'" of the process.

For a finite Markov chain with continuous time parameter,
two types of estimation problems have been studied. In [1],
Albert has considered the problem of estimating Q = Ilqijll’
the "infinitesimal generator"of the process and in [4],
Billingsley has considered the problem of estimating the
parameter 8 when Q = Ilqij(9)|| (or equivalently when P(t) =
llpij(t’9)||) is a function of 9.

Assume that pij(t) has a derivative pij'(t) with respect

to t for all t 2 0 and let

_ lim 1-p;4(0)
94 T 0 t
and
. p,.(t)
_ lim “ij . .
qlJ t-0 t 141
and let Q = Ilqijll be the matrix where i = "9

It is well known (see for example Doob [6]) that the
probabilities pij(t) satisfy Kolmogorov's forward and back-
ward equatidns.

* For definition and other questions regarding separability

see Doob [6].
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Let (2, S, P) be a probability space and {X(t), t = 0}
be a sepérable Markov process defined on this space and taking
values in a finite set X, = {1,...,M}. Then it is shown in
Doob [6], chapter vi, that if Ilpij(t)ll is stationary transition

matrix function satisfying the condition

lim p,.(t)
t-0

1 for i = j

-0 for i # ] (1.4.1)

then the limits 9, and qij exist for all i and j. Further it
follows from theorem 1.4. page 248 of [6], that almost all
sample functions are step functions with a finite number of
jumps in any finite interval.

(a) The Estimation of the Infinitesimal Generator:

For estimating the "infinitesimal generator" of a Markov
chain, first Albert [1] constructs a density on the set of all
realizations of the process; then the likelihood equation is
defined and finally large sample properties of maximum likelihood
estimates are studied.

Suppose observations are made on the process {X(t),0< t < T}
where T is finite. Due to theorem 1.4., page 248 of [6], the
sample function is a step function. Let Xi denote the state
after the ith jump and 'I‘i be the time the system stays in state

Xi. Then with probability one, a sample function

X(w,*), 0 < t < T can be written as an ordered sequence

{(XO’TO) e (x\)(T)-le\)(T)-l), XV(T)} (1 '4°2)
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where v(T) is the maximum n such that

To + ... + ']'.‘n-1 s T< T1 + ... + Tn .

Now we can obtain the probability distribution on the
space of sample functionms.

Theorem A(Albert): Let

. 0 if i = j
q'(i,]) = { e s 2
.. if i
9% # ]
and
q(i) = q; .
Then
P[Vv(T) = v; Xy = %0 TpSapse..s X =%, 0, T ) Sa o3
-q(x )T
Xv = xv] = P[XO = x0] e X
v-1 -(q(x,) - q(xv))t'
f mdt, q'(x.,x.,,) e J J (1.4.3)
§ j=0 I 377
v
v-1
= . i >
where S {(t0’°"’tv-1) jEO tj < Tand 0 < tj < aj} if v >0,
and
-q(x))T
P[V(T) = 0, X, = xO] = P[XO = x0] e .

Next we proceed to construct the density on the space of all
sample functions.
Any sample function with v jumps in [0,T) can be represented

as a point in

v-1 +
= X
X, jzo (XpXR) X X,
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where X, = {1,...,M} and R = (0,).

Let fbe the Lebesgue measure on R+ and let c be the counting

measure on X. Let c(v) be the product on Xy, defined by
v-1
c(v) ={m (cx2)} xec.
§=0

Then almost all sample functions of the process {X(t), 0 < t < T}

can be represented as a point in

©
b Jio v
For any subset A of ¥ for which Aﬂxv is o(v) measurable, we
define
@ - £ oMany).
v=0

* *
Thus o 1is defined on the o-field B , which is the smallest

o-field containing all subsets A whose projection on

v-1
{m (XO X Ks} X Xo is a measurable set for each v. Let o be
j=0

a measure on the space of all sample functions, defined for
*
all subsets B such that BNxe B ,
%*
o(B) =0 (BX).
Now we obtain the density on the set of all realizations of the
process with respect to o which is a o-finite measure.

Theorem B (Albert): If B is a subset of the space of all sample

functions over [O,T) which is measurable with respect to o, then
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P(B] = [ £ (v)do(v)
B Q

where
B -a(x)T .
P[X(0) = xO] e if v = (xo)
-q(x )T k-1 -[q(x,)-q(x )]t
P[X(0) = x,] e v A q'(xj,xj+1)e J Voo
j=0
fQ(v) = if v = ((XO’tO)""’(xv-l’tv-l)’ xv) (1.4.4)

with v > 0, xj exo, tj 20 (j=0,...,v-1)

v-1
and T t.<T
j=0

0 otherwise.

Now we define the likelihood function and obtain the maximum

likelihood estimate. If k independent realizationms Visee sV

of {X(t), 0 < t < T} are observed, then the likelihood function

is defined by the equation

k
Lq

n3x

. fQ(vj). (1.4.5)

j
Let N; (i,j) be the total number of transitions from state

i to j observed in k trials and A&(i) be the total length of
time that state i is occupied during k trials. Then we can

write

log Lk

N (1,108 q(i,)-EAN (Da(1)  (1.4.6)

=ct+tIZ I N, .
i j#i i

where K is finite with probability one and does not depend on Q.
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From (1.4.6), we conclude that

(1) {Nék)(i,j), A;k)(i)}j#i is a sufficient statistic for Q.

(2) The maximum likelihood estimate ﬁ;(i,j) of 1 is given by

. N, (1, 9)

33 (1,1) = if 143 and A0 (1) > 0.

(k).
Ap 7 (1)
If A%k)(i) = 0, then the maximum likelihood estimate does not

exist and we define
ﬁék)(i,j) =0 if i#j and Aék)(i) - 0. (1.4.7)

In this context, the term 'large sample' can be interpreted
in two ways. Many independent realizations of the process
{X(t), 0 < t < T}, keeping T fixed could be observed or a single
(finite k) realization of the process over long period of time
may be observed. In both cases, Albert [1] proved that under
certain conditions the maximum likelihood estimates are strongly
consistent and asymptotically normally distributed.

(b) Estimating the Parameter 6 When the Infinitesimal

Generator is a Function of 8: Consider again a separable Markov

process {X(t),t = 0} defined on the probability space @,S,P)
and taking values in a finite set x = {1,...;M} where

0 = (91""’9r) is a parameter, taking values in an open subset
S in r-dimensional Euclidean space Rr' Let P(t,Q)-Ilpij(t,O)ll
denote the stationary transition probability matrix function.
In this case the condition expressed in (1.4.1) becomes

limp, .(£,0) = 1  if i = j (1.4.8)
t-0 J
=0 if i #j.
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Then it follows from Doob [6, theorems 1.2 and 1.3 of chapter vil],

that under certain conditions the limits

I'P (t,Q)
lim ii - qi(e) <

t=0 t
and (1.4.9)
, p..(t,0)
e R TONEE L

exist for all i and j.
Now we state the assumptions which are needed for proving

the asymptotic properties of the maximum-likelihood estimate.

Assumptions:

Dl' For each w, the sample functicn is a right continuous

step function. The limits in (1.4.8) exist for all i and j and so
there exist functions qi(O) and qij(e)(i ¥ j) satisfying (1.4.9).
For all @ and i, qi(G) > 0.

Since by assumption D,, the sample function is a right

1

continuous step function, the system starts at time t = O ingtate

X., remains there for time t_ , then it jumps to some other

0 0

state say x,, stays there for time t and so on. If v(T)

denctes the¢ number of jumps in time [0,T), then it follows

that {xn} is a Markov process and

Eox -q(xml’g)u
’ 5

> a | s erty O""’xn+1} = e s

PO{tn-i-l

@ >0 (1.4.10)

and
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) q(xn)j;e)
Pe{xn+1=_] l to,...,tn;xo,...,xn} =——q—(x—nje—)-— (1.4.11)

From (1.4.10) and (1.4.11) it follows that {(xn,tn), n=1,2,...}

is a Markov process on the Cartesian product XO X Rf where

Rf = (0,). This process is called the imbedded process and

as remarked by Billingsley (page 38, [4])the information contained
in the sample {X(t),0 < t < T} is essentially the same as that

in the sample {(xk,tk); k=0,...,v(T)-1}. The complete sample

contains only slightly more information than the sample from the

imbedded process. The additional information is the length for

which the system is in state xv(T)'
Let nij(Q) = Pg(xn+1=3 | X, = i) ié#7].
Then qij(e) = "ij(G) q,(0).

We assume that the set D of pairs (i,j) for which
ﬂij(g) > 0 (or equivalently, for which qij(e) > 0) is
independent of 6. (Note that (i,i) & D by construction).
Hence, d < M(M - 1) where d is the number of elements in D.

Assumption D The set D of pairs (i,j) such that qij(g) >0

2:

is independent of @ and the functions qij(O) have continuous

third order derivatives throughout S. The d X r matrix
39, ,(0)
llSE_J || has rank r for all 6 ¢ S.
u

Assumption D,: For each @ € S, the Markov chain {xn} has only

3:

one ergodic set and there are no transient states.

Now given a sample {(xk,tk), 0 <k < v(T)} we can write
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the log likelihood function from (1.4.6) by setting k = 1,

1 1) ,. . 1),.
tog L= 2 8{P(1,5) 10g q . (0) - £ AP (1) q,(0) (1.4.12)
D ] i t
where Aél)(i) denotes total time for which the system is in

state i and N ,j) denotes the total number of direct

(1),
r
transitions from state i to state j. In writing the expression
for the log likelihood function we have, following Billingsley,
dropped the term PQ(X(O) = xo) because the information contained

in PO(X(O) = xo) does not increase as v(T) — o,

Thus the likelihood equations are:

- (1) _ ),. .\ 3 ) (1), . 29(i,0)
agu log LT % NT (i,3) agu log qij(O) E AT (i) agu

(1.4.13)
u=1,...,r.
Finally we state the asymptotic properties of the maximum-

likelihood estimate. For a proof see Billingsley [4].

Theorem (Billingsley): If (X(t), qij(e), S) satisfies conditions

DI’DZ and D, and Ooe S is the true value of the parameter, then

3
there exists ? consistent solution ® of (1.4.13). Moreover,
lim v(T)3 % - 90) Po, and
1l
Lim v(D)> (q,.(® - q..(6%)) B 0
ij ij S

1.5. An Estimation Procedure in the Emigration-immigration

Process: While a great deal of general theory of maximum
likelihood estimation for Markov chains with continuous time

parameter has been developed, only a few particular problems
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for evolutive processes have been investigated thus far. 1In
most of the cases the maximum likelihood estimation of the
parameter is intractable.

In [17] Ruben suggested an interesting method of estimating
the interaction parameter in an emigration-immigration process.
We use this method of estimation for estimating the parameter g
in the stochastic model for phage attachment to bacteria. Before
describing Ruben's method of estimation, we describe the emigration-
immigration process.

An emigration-immigration or Poisson Markov process [3] is
a multivariate stochastic process. Suppose RI""’Rm are m
dis joint non-empty subsets of a space and R* =(R1U...URm)' where
A' denotes the complement of a set A. Consider a system of
particles performing some type of randcm motion.

Let N(t) = Thl(t;. be the number of particles in the regions

N (B)

Rl""’Rm respectively at time t > O.
Assumptions:

E The particles are moving independently of each other.

1

E,. The probability that a particle moves from Rr to R

2 s

(r #s=1,...,m) in time dt is

Nr(t) krsdt + o(dt).
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*
Ej. The probability that a particle moves from Rr to R in
time dt is
*
Nr(t) A rdt + o(dt), r = 1,...,m.
*
EA' The probability that a particle moves from R to Rr in time
dt is
p dt + o(dt), r = 1,...,m.
r

E.. In time dt, the probability of movement of more than one

particle is o(dt).

Let & =] A+ T Ay, - A -\ -
et 8= 172 M T M2 T M3 1m
j#l
A At T AL, - A A
21 2t Ltes T s 2m
A A TS N
B ml m2 ’ ) m j*‘m mj

and define a column vector v = (v .,vm)' by n' = v'A. Then

1
it is shown in [3] that at any time t, the distribution of N(t)

is

m .y (vr)Nr(t)
™ e —_— (1.5.1)
r=1 (Nr(t)) !

That is, the distribution of N(t) is the same as that of m

independent Poisson random variables with parameters v 5V

ERRREAAE
In [17] Ruben considers the problem of estimating the

*
fundamental interaction parameter 6 when the parameters KrS,K

and ur are known functions of a single parameter 8. The estimate
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*
E,. The probability that a particle moves from Rt to R in
time dt is
*
Nr(t) A rdt + o(dt), r = 1,...,m.
*
Ea. The probability that a particle moves from R to Rr in time
dt is
p dt + o(dt), r = 1,...,m.
T
E.. In time dt, the probability of movement of more than one

particle is o(dt).

o * —
Let 8 = [ A+ T oy - Ay - Ay - A
j#1
A Ay T A A
. -, .
21 2" 2 3 2m
A A VDA
ml m2 m j#m mj

and define a column vector v = (vl,...,vm)' by n' = v'A. Then
it is shown in [3] that at any time t, the distribution of N(t)
is

N_(t)
(vr) r

— (1.5.1)
r=1 (Nr(t)) !

That is, the distribution of N(t) is the same as that of m

independent Poisson random variables with parameters A ERREPA AT

In [17] Ruben considers the problem of estimating the

*
fundamental interaction parameter 6 when the parameters xrs,x

and p. are known functions of a single parameter 8. The estimate
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is based on the difference of consecutive observations on the
process N(t) taken at equal intervals of time and is called
Mean Square Consecutive Fluctuation (M.S.C.F.) estimate.
Let N(t), N(21),...,N(kT) be k Abservations on the process
N(t) at times T, 27T,...,kT respectively and let
E(N(t) - v) (N(t) - Vv)' =Z
and (1.5.2)
E(N(t) - v) (N(t+T) - v)' = P(T) L.

At

Here P(t) = e for t >0

= G-IK(t)G

where K is the diagonal matrix with diagonal elements

-klt -kmt
e yeee,y€ H kr denoting the real positive eigenvalues

of A and G is the matrix of row eigenvectors of A.
Consider the difference between consecutive observations
q?(i) defined by:
g(i) = N(it) - N((i-1)7) i=2,...,k.
Define
D’ =mts(i) Q! 6(d)
1 N ' u

where Q is the dispersion matrix of §(i).
N

Then
E Di = 1; for all i=1,...,k. (1.5.3)
The equation (1.5.3) suggests that we use
k
Loz p?- (1.5.4)
k-1 | i
i=2

as an estimation equation for 0.
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The equation (1.5.4) can be rewritten as

k m
T £ QPhs (i) 6 (i) =1 (1.5.5)
i=2 p,q=0 P 1

1
m(k-1)

where qu is the (p,q)th element of Q-l.
If the quantities v, entering in the specification of Q
are unknown, then their unbiased estimates are given by

T N(iT). (1.5.6)

-
i=1

The estimation equation (1.5.4) or (1.5.5) is a transcendental

equation in @ (the qu are functions of B8) and cannot therefore

be solved explicitly. However, a numerical solution can be

found.

Ruben also derived the large sample variance of the
M.S.C.F. estimate and considered three particular cases;
namely, (a) known ratio of 2 (b) the symmetric model, and
(c) the symmetric linear model. Finally Ruben discussed the

large sample efficiency in model (c) in the limiting case

v, - o, for j=1,...,m.



CHAPTER 2

SOME ASPECTS OF THE STOCHASTIC MODEL FOR THE ATTACHMENT OF PHAGES
TO BACTERIA

2.0. Introduction: In this chapter we study some of the basic

properties of the stochastic model for phage attachment to
bacteria, described in section 1.2. 1In section 2.1 the joint
probability generating function (p.g.f.) of Q(tl) and E(tz)

(t1 < t2) is derived; this is useful in calculating the mixed
moments of the process used in subsequent work. In section 2.2
we investigate the limiting distribution of E(t) under different
conditions. In section 2.3 we prove a convergence theorem which

is used to obtain the limiting joint distribution of

B(tl), ,E(tz),..,)\n’(tk) (t1 < t, < ... < tk)

2.1. The Joint p.g.f. and Moments of Q(tl) and g(tz) (t1 < tz):

Let Y(tl,tz,gl,%z) denote the joint p.g.f. of E(tl) and Q(tz)

- - .
where Ny < Uig (i=1,2)

u,

L ir
*

and o (tz,,g2 ' Q(tl))be the conditional p.g.f. of Q(tz) given E(tl)'
If P(no,...,nr;t) denotes the probability that there are

RRERRT LN bacteria with 0,...,r phages attached to them respectively

0

at time t > 0, then we obtain in the usual way by assumption C,

25.
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4P r-1 r-1
Friai .2 kinivOP + .2 Xi(ni+1)voP(no,...,nf+1,nr+1-1,...,nr;t)
i=0 i=0
and
* r-1 *
X - Z A.v, (u, .,,= u,.) g (2.1.2)
at2 j=0 I 0 "72,i+l 2i auzi

This is a particular case of a p.g.f. for the multivariate Markov
process first considered by Bartlett [3] and can be easily solved.

We now proceed to solve (2.1.2). The auxiliary equations are

*
7 e T e duy g (i=0 1)
-1 0 0 k'vO(UZ i+1-u2i) S
t ) (2.1.3)
These can be rewritten as
dey 1 u20 | = Vo | Moo Y20
xl -kl
Uy r-1 Meel Pec1| Y20
__u2r | B )\r_ _u2r _
= VOLEZ (2.1.4)
The solution of (2.1.4) is of the form
e Pt ) o (2.1.5)

n 2

where ¢ is a constant column vector, L the matrix array of Ki and

ty

plty,t,) = [ vo(r)dr,
‘1
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Thus we have
* _ X 'Lp(tl:tZ)
© (ty,u,|n(t))) = gy (e u,y) (2.1.6)

*
where P is some suitable function of the new variables.

%*
To determine the form of @O we take into account the

fact that
* r ni(tl)
¢ (:l,gzl{l(tl)) = ouy , (2.1.7)
i=0
then we have
Lo(t,,t,) r Lp(t €t ) nl(tl)
* - 1’72 1’72
9 (e 32) = m (e gz)i (2.1.8)
i=0
-Lp(tlJtz)
where (e 52)1 is the ith element of the column vector
'Lp(tl:tz)
e Ny - We now proceed to calculate it. Since by

assumption xi's are distinct and non-negative, the matrix L

can be written in the form

L=NAM=N Fxo M (2.1.9)

where N = M-1 and M is the matrix whose rows are eigenvectors of L

corresponding to the eigenvalues ko,...,xr respectively. It is
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easy to see that

j-1 A
S . .
Nig =1 15T 1N (rz3>19
j
M., =1 M, =7 Mol (r>5>1). (2.1.10)

11 e . Aghy

. . _ r-1

In partlcularj,Nir 1 for all i = 0,...,r and Mir = -3 Mir-l
for i = 0,...,r=-1. It follows from (2.19) that

-Lo(t,,t,) -Ap(t.,t,)

e 1 2,\\;2= N e 1 2M,\92 ) (2.1.11)

Lo(t,t) T Aot ) (2.1.12)

Let e =Ne , M= 'laij(tl’tZ)ll
r

where aij(tl’tz) = 0 for i > j and j=oaij(t1’t2) = 1 for all

i=0,...,r. Hence we see from (2.1.7) and (2.1.11), that

¢ (tysm, | nle)) = A ( jzoaij(tl,tz)uzj ) , (2.1.13)

which gives

r r noo
Y(e,t, 5 mpony) = [ T ag,(e) ( z ]

a, . (t,,t,)u, Ju,.
i=0 j ijt 1’27727 14

0
(2.1.14)

It is clear from (2.1.13) that the conditional distribution of
R(tz) given R(tl) is the same as that of the sum of (r+l)
independent random variables such that the jth random variable

has a multinomial distribution with parameter nj(tl) and

probabilities ajo(tl’tZ)"'"ajr(tl’tZ)'
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Next we proceed to calculate the second order
mixed moments which will be needed in subsequent work.

Evaluation of elements of R(t,,t ) = E n(t.) n'(t,)
1 LV R 2

2)

]

|| Ena(tl)nB(t2)||.

Differentiating Y(tl, A ) with respect to u, and u,. and

27 lo 28

putting/s = u

1= Y 3 where & is the column vector, we get

E na(tl) nB(tZ) =] noo(noo-l) aOa(t1>[ E a0 ( 1) (t ,t Y]if B <«

i~8 ip

]

%00 200 t1) %plt1rt)

r
* no0(MgoD) 2t [ iEBaOi(tl)aie(tl’tz) ]
if B>« (2.1.15)
- Ap(t)) -Ap(t)) - Ap(t,,t,))
Since N e 2M=Ne 1 12M
- p(t) - p(t,,t,)
=N e UMK e 2hy
that is,
”aij(tz)H = ”aij(tl) | Haij(tl,tz) |,
then we have
r -
aOX(tZ) = jEO (t ) 3, ( 1’ 2) for A = 0,...,r

Therefore (2.1.15) can be written as:

E na(tl) nB(tz) = noo(n00~1) aOa(tl) aOB(tZ) if B <ue.

"00 %00 (*1) %p (f17%2)

+

noo(noo-l) aOa(tl) aOB(tZ) if B >ao. (2.1.16)
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This gives
Cov na(tl)ns(tz) = -1y, aOy(tl) aOB(tz) if B < a.
=1, aOa(tl) {aaa(tl,tz)-aos(tz)}

if B 2 «. (2.1.17)

2.2. General Discussion of the Model: We have shown that for

fixed t, 0 <t < ¢t R(t) has a multinomial distribution with
parameter Qnand probabilities aOO(t),...,aOr(t) where

ag;(6) = ERERETSSN. T et

i=0

These probabilities are functions of Noo™s and t; that is, they
depend on the initial concentration of bacteria, the multiplicity
of phages and the duration of the experiment. In this section
we confirm mathematically certain experimental facts. For
example, we consider the limiting behavior of the probability
distribution of Q(t) when m, the multiplicity of phages, is
large, and prove that in a short time all bacteria are saturated
with the maximum of r phages, as is known experimentally. The

following cases are considered:

(a) Let m = o, keeping t fixed. Then p = noo(r-m) - -® as m - ©,

-pat
Since p(t) = é log ( %jﬁ—g'—__ )
() = £ (DIt Ty (Fhy (o £t
an i i j-i r-m exp(-pot)

i=0

-0 for j = 0,...,r-1
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and
aOr(t) -1

as m tends to infinity, that is, if the multiplicity of phages
is large, then in a short time all bacteria are saturated by the
maximum of r phages.

(b) If m is small and fixed, then m exp(-pyt) is very small and

r

p(t) ﬁi log ——
(the sign™ means approximate equality). In this case we get a
fixed distribution after some time. In fact in a short time all
the phages attach themselves to bacteria and no more phages are
left. Therefore further observations do not give us any more
information.
(c) Thus we see that if m is very large, then in a short time
all the bacteria are saturated by the maximum of r phages, and
if m is small, then in a short time all phages attach themselves
to bacteria and no more phages are left. To avoid both these
extreme cases, we choose m less than r in such a way that the
product nOO(r-m) is constant; this proves to be an interesting
case. We shall assume throughout that m (the multiplicity of

phages) 1is such that

noo(r-m) = ¥ >0 (2.2.1)

is constant.
If (2.2.1) is satisfied, it is clear from (1.2.12) that the

distribution of n(t) tends to a multivariate normal distribution.
v
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More precisely, if

nj(t) - nooaoj(t)

1

g, (6) =
(npgag(®) (124 (£)))7

then as "0 tends to infinity, the joint distribution of

go(t),...,gr(t) tends to a multivariate normal distribution

with means zero and covariance matrix

wll = || zij || where
.. =1
ii
and
a..(t)a..(t) 1
> 0i 0j 5

157 ey () (a (00))7
P43

2.3. A Useful Convergence Theorem: 1In this section we prove a

convergence theorem which is used in the next section to derive
the limiting joint distribution OE,E(tl))"'&B(tk)’tl < 5ee< g
For the formulation of our theorem, we require the notion of
UC* convergence. The notion of the UC* convergence has been
introduced by Parzen in [13]; we use a slightly different defini-
tion of it, already given by Sethuraman [18]. Let vn(e,'),
n=0,1,... be a family of sequences of probability measures on

R the Euclidean space of k dimensions. Assume that @ takes

k}

values in a compact metric space I. Let Yn(u,e) denote the
v

characteristic function (c.f.) of vn(e,'), that is,

¥ (u,8) = [ exp(i S'E)vn(e,dm) n=20,1,... (2.3.1)
R
k
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Definition (Sethuraman): The family of sequences vn(O,-) is said
* *

to converge in the UC sense to vo(e,') (denoted by uc ) relative

to B8 ¢ I as n tends to infinity if

(@ s | ¥,008) - ¥o(0,0) | = 0 a5 gy = o,

(b) Yo(u,e) is equicontinuous in @ at u = 0;
N N
and

(c) YO(U,G) is a continuous function of 8 for each's.
N

We shall also require the notion of weak convergence of

distribution functions (d.f.'s). Let Fn(x)(n = 0,1,...) be a

sequence of d.f.'s. We say that Fn(x) converges weakly

(denoted by Fn(x) w Fo(x» to Fo(x) if If(x)an(x) tends to

If(x)dFO(x) as n tends to infinity for all bounded continuous
functions.

Now let Hn(xl"°"xk) (n=0,1,...) be a sequence of

distribution functions (d.f.'s) in m, + ... m o =m dimensional

. 1
Euclidean space R where X, € Rmi. Also let Hn(xl) (n=0,1,...)
be the corresponding sequence of the marginal d.f.'s and
H;(xilxl...xi_l) (n = 0,1,...) be the sequences of the conditional

d.f.'s (i = 2,...,k). Then we have the following theorem

' 1 1
Theorem 2.3.1: If (a) Hn(xl) w Ho(xl) s and

i * i
(b) Hn(xi|x1,...,xi_1) uc HO(xilxl""’xi-l)

relative to (xl,...,xi 1) € I where I is any compact subset of

Rm + ... +m, and i = 2,...,k,
1 i-1
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then
Hn(xl’ . ’xk) w Ho(x1: )xk)
e k
= g HO(dxl) ..... g HO(dxklxl""’xk-l)'

The proof of this theorem depends on the following result
due to Sethuraman [18]. Let Fn(xl’XZ) (n=0,1,...) be a
sequence of d.f.'s. Also let F;(xl) and Fﬁ(lexl) (n=0,1,...)
be the corresponding sequences of the marginal and the conditional
d.f.'s, respectively.

Theorem (Sethuraman): If (a) Fi(xl) w Fé(xl); and

2 * 2
(b) Fn(x2|x1) uc Fo(x2|x1)

relative to 3 € I where I is any compact subset of Rp and xzeRq,

then
Fn(xl)xz) y. Fo(xl)xz)
! *2 )
= f FO(dxl) I Fo(dx2|x1).
0 0
Now we prove the theorem 2.3.1.

Proof of theorem 2.3.1: We prove this theorem by induction. The

result is true for k = 2 by Sethuraman's theorem. Suppose it is

true for k, then again by Sethuraman's theorem it is true for k + 1.
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2.4, The Limiting Joint Distribution of E(tl)""’n(t Let
n

K°

n(t,),...,n(t, ) be k observations on the process n(t) and let
v 1 Nk "

€ (t) ni () - o3 (E)
(t,) =
T ngoags (£ (1ag (£4)) ¥

and ECe) = g and €= lE(E))
g (e

g_(t))
[5<e)

§,(ty)

g_(t))

L -

Also let W= E(EE'), that is, W is a square matrix of order
N
k(r+1). It is the covariance matrix of the random vectorfg.

r
Further I

§i(tj) =0 for j=1,...,k; that is, the random
i=0

vector § takes values in rk-dimensional subspace and W is a
N

singular matrix of rank rk. The matrix W consists of k2

submatrices Wij (i,j =1,...,k) each of order (r+l) where

Wjj = Eﬁg(tj2§'(tj))

and

Wy = E(E(E)E(E))) (1#5=1,...,0
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Before deriving the limiting joint distribution of
'B(tl)""*P(tk)’ we prove several lemmas which are used for
proving that the conditional distribution Of,g(tZ) given
g(tl) = f(tl) converges in the UC* sense relative to any

compact set I to a multivariate normal distribution (t1 < tz).

Lemma 2.4.1: The c.f. °f.5(t2) given'g(tl) =’§(t1) is given by

§5oo§32;t2 Ifg(tl))

—
N
[e—

1 1
+ I {ngoa0,(t)) + x, (&) nyy ag (€)) (1"'301(‘:1))2 } x
1=0

r i u,
log{ T aij(tl’tZ) exp( i

311 @41

Proof: As remarked in section 2.1, it follows from (2.1.13) that
the conditional distribution of n(tz) given E(tl) is the same as
n
that of the sum of (r+l) independent random variables such that
the jth random variable has a multinomial distribution with
parameter nj(tl) and probabilities ajO(tl’tZ)"'"ajr(tl’tz)'

So we have

(u 5t |x(t,))
E“oo}é 2l
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n,(t,)-n_.a .(t )
E(exp[i é 127 00 0j 11

120 (nggaq;(£)) (1-ag, (£,)))7

x(t) )

1 t 1
r a ( ) 2

us s ] x
ni(tl)

1
r. I 2 )
Zo[Janij(tl’tZ)eXP( G oj(tz)(l aoj(tz)))Z) ]1

where n(t,) = nOOaOi(t1)+xi(t1)(nooaOi(tl)(l-aOi(tl)))z

N

(t) 3
) Usj

= exp[-i n

N Mnr

(12

00 0 Oj(tZ)

i
1 1

1
2 ap,2(e)) (1-ay, (£, x

r
+ iEo {nOOaO (t )+x (t )n

r i uZi l
108[j§0 aij(tl’tz) exp( (n00 aoj(tz)(l-aoj(tz)))z)}]

The equation (2.4.1) may be compared with (2.1.13) which gives
the conditional p.g.f. of E(tZ) given E(tl)'

Lemma 2.4.2: Let C be any compact subset of R the Euclidean

r+l’
space of (r+1) dimensions. Then for any fixed 22,
lim ]in(u2 el x(e)) = B Cupsty|x(e))

n—o&

00
unifromly in x(tl) on C.
a,

Here

Eo(k’,z;tzl’{(tl)
1

r
=exp[i { & x. (t)) aoi(tl)2 (l-aOi(tl))
i=0 J

N

2;1(£1289)U5 5 1,
2 (ag, (£)) (-3, (£))°

"M
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aij(tl,tz) aij(tl,tz)uzjuzj,

+ % ag(e) { T 1
i=0 331 Cag () ag  (8y) (1-ag (£5)) (1-a 14 (£,)))?
i l 2 J(tl’t )(1- aij(tl’t ))U
2 J.(t )(1-a j(t )

Proof: It is sufficient to prove the theorem for any bounded

closed rectangle C = {x(t ) | x < x, (t ) < xi ; 1 =0,...,r}

because any compact set can be enclosed by a bounded closed
rectangle and uniform convergence on a set implies uniform
convergence on all subsets of the set.

From (2.4.1), we have
b t
Ewowz’ﬂf(ln

1 01 ()

. 2
= exp[-l nOO (1 a (t )) 2_]

r
z

§=0

|

r
* Lo {ngg ag;(e) + x; (£) (ggag, (£)) (1-ag, (€)1 ] X
i=0

iu
2] 25
(t5) (1=, (£,)))?

r
log( & a,.(t,,t,) exp(
" ijt1’ 2

j=0 (Mp020
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1

. 1
+ B fmgean, () + x, (6D (ggaq, (£ (L-ag, () ] %
1=0

a,. (t. ,t )u
log{l + i E 1j 17 27 2§ %
j=0 (nooaoj(tz)(l-aoj(tz))

2 2
a;; (£1,5)uy, .\ 1
0 Pooojlta)(1-ap;(t)) = 7 '

1
2

N Me

i

% % rooa;,(t),t)u,, 1
= exp[i{ £ x,(t)) a y (t)(1-a,,(t;))" T 7}

=
—

1
i 1
+ T (ag;(t)) + “og x, (t)) aoi (t))(1-a, (t))
i=0

2 ) X

aii(tl’tz)aij'(tl’tZ)UZjUZj' 1
2

{z
33" (ag(ep)ag, (8)) (L-ag (D) (1-ag,, (£)))

a, (t ,t )(l-a, (t,,t,))
-7 T aij(cl)(i-a (tji)l, : “gj e s
j 0j"2 0j" 2

1 1
2 a5;(t)) 3

( 1-aoj(c2) ) Y25

nMnr

since i n2
00

§=0
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I o: 201810235 (8y,6) upy
1
? 570 120 (ap,(£))(1-a,(£,)))7

=1in

1
- r a,. (t,,t)u
=i ngo 5 ag; () T i) 1727 2§ %
J=O J=0 (aoj(tz)(l-aoj(tz)))
1 1 1
But [n2 x.(t,) a? (t,)(l-a_ . (t ))2 ] x
00 i1 0i‘"1 0i‘"1
8330610898551 (81, 85)u55uy4, 1

z
33" (o (t)ag 1 (£;) (L-ag 1 (£)) (L-ag 1, (£,0))7

T aij(tl,t2)(1-aij(t1,t2)ugj2 }]
j aoj(tz)(l-aoj(tz))

)
N

. . ! (N
tends to zero uniformily in xi(tl) for X, < xi(tl) < x; as

n.. tends to infinity for i = 0,...r, therefore

00

EnOO(EZ;t2|¥(t1)) coverges to

% %’ rooa,(t,0)uy, 1

expli{ & x (t))ay; (£))(1-a (€))7 I 33
i j=0 (aoj(tz)(l-aoj(tz)»

a;4(t,t5)a, 40 (8, 8))u,y uy ., 1

™M

+ ag;(t)) { T

0 33" (agy(ep)ag ;i (ey) (Lmag (£,)) (1-ag (£,

i

2
aij(tl,tz)(l-aij(tl,tz)uzj

1
_l g }
2 3 ]

a05(tp) (1-a,(£,))
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!

uniformly on C as 0 tends to infinity.

Lemma 2.4.3: Eo(uz;tzlx(tl))is a continuous function of &(tl)
" Ly

for any fixed Yy
The proof of this lemma is immediate.

Lemma 2.4.4: If f(x,y) is a continuous function on [a,b] x [c,d],

then the family of functions f(x,:), for x ¢ [a,b], is equi-

continuous in x at y = y, € (c,d].

Proof: First we note that the function f(x,y) is uniformly

continuous since [a,b] X [c,d] is a compact set. The family of

functions f(x,:), x ¢ [a,b], is equicontinuous in x at y = Yo

if given ¢ > 0, there exists §(e¢) (depending only on ¢) such that

|f(x,y) - f(x,yo) | <eg if | y = ¥ | < 6(e). But such a

6(e) exists since f(x,y) is a uniformly continuous function. Hence

the family f(x,°) is equicontinuous at y = Yo-

Lemma 2.4.5: 56(32;t2|:(t1)) is equicontinuous in ﬁ(tl) e I at

= 0 where I is any compact subset of Rr

N2 +1°

Proof: It is sufficient to prove the theorem for closed rectangles

) 11
I-= {¥(t1)lxi(t1) < xi(tl) < xi(tl)’i = 0,...,r}. The function
EO(EZ;t2|5(t1)) is continuous in (ﬁ(t1)’¥z) on I X J where J is

any closed subset of R containing the point u, = 0. Hence by

r+l 2

lemma 2.4.4, the function 50(82;t2|¥(t1)) is equicontinuous

in,f(tl) at Xy = 0.

Theorem 2.4.1: The conditional distribution of §(t2) given
N

§(t1) =,§(t1) converges in the UC* sense relative to any compact
n

SUbSECIOer+1 to a multivariate normal d.f.
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Proof: Since Ebgpz;tsz(tl))ls a c.f. of a multivariate normal
d.f., we conclude from the lemmas 2.4.2, 2.4.3, and 2.4.5 that
the conditional d.f. of E(t,) given E(t.) = x(t,) converges in the UC*
v 2 v 1 L 1
sense relative to any compact subset I of Rr+1 to a multivariate

normal d.f.

Lemma 2.4.6: If F(x,y) is a d.f. such that the marginal d.f.

1
G(x) has the c.f. exp[- 2 izjaij uliulj] and the conditional d.f.
; . 1
of Y given X = x has the c.f. exp[i ? xj Uyy 2 izjsijuZiUZj’
)

then the joint d.f. F(x,y) is multivariate normal d.f.
Proof: The c.f. of F(x,y) is

1

exp[ - 7 i?j eijUZiUZj]' E(exp[i ? xj(u1j + u2j)] ).
= exp[ - 1 z (u,, + u, )(u,, + u,,) - 1 T B..u,.u,.]
PL= 3 . j“ij SO A * I S A A & b3 I
J J

But this is the c.f. of a multivariate normal d.f.
Corollary: 1If F(xl,...,xk) is a d.f. such that (i) the marginal

1
d.f. of X, has the c.f. exp[ - 2 igj alijuliulj] and (ii) the

conditional d.f. of Xi given Xl = xl,...,Xi_1 =X, has the c.f.

1
exp[ i ; Xi1,3%,9 " 2 z

r R BRI AT
for i = 2,...,k, then the joint d.f. F(xl,...,xk) is a multi-
variate normal d.f.

Proof: We prove this result by induction. This is true for

k = 2 by the above lemma. Suppose it is true for k, then again

by the above lemma, it is true for k+l.
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Theorem 2.4.2: The joint d.f. ofr§(t1) andfg(tz) converges

weakly to the multivariate normal d.f. N(0,||w11 w12||) as n
2 2 00

tends to infinity.
Proof: It follows from theorem 2.3.1, that the joint d.f. of

§(c1) and §(t2) converges weakly to a joint d.f. as n.. tends
n N

00
to infinity. The limiting d.f. is a multivariate normal d.f.
11 Y12
N(O, ||, " . I]) by lemma 2.4.6 since the marginal d.f. of
1 22

§(t1) converges weakly to a multivariate normal d.f. N(O,Wll)
"

and by theorem 2.4.1 the conditional d.f. of’S(tz) given
§(t1) = ¥(t1) converges in the UC* sence relative to any

"

compact subset I of Rr+1 to a multivariate normal d.f. whose

c.f. is Eoggz;tztf(tl)).
Now we state and prove the main theorem of this section.

Theorem 2.4.3: The joint d.f. °f,§(tj)(j = 1,...,k) converges

weakly to a multivariate normal d.f. N(O,W) as "0 tends to
infinity.
Proof: (i) 1It is clear from (1.2.12) that the marginal d.f.
of §(t1) converges weakly to a multivariate normal d.f. N(O’wll)‘
N
(i1) From theorem 2.4.1, we know that the conditional
' %*
d.f. of E(t.) given E(t ) = x(t, ) converges in the UC sense
N 1 v i-1 n i-1
relative to any compact subset to a multivariate normal d.f.

whose c.f. is Ebgsl;tilf(ti-l)) as n,, tends tc infinity. This

1s true for » = 2,. ., k.

(iii) Fr m the corollary to lemma 2.4.6 and theorem 2.3.1,



44,

.we conclude that the joint d.f. Ofrs(gl)""4§(tk) converges

weakly to a multivariate normal d.f. N(O,W) as 50 tends to

infinity.



CHAPTER 3
ESTIMATION OF THE PARAMETER IN THE STOCHASTIC

MODEL FOR PHAGE ATTACHMENT TO BACTERIA.

3.0. Summary: In this chapter we consider the problem of

estimating the parameter o in the stochastic model for the
attachment of phages to bacteria described in section 1.3.

A simple method, of the type originated by Ruben [17], for
estimating the parameter o in this model is described in
section 3.2. The estimate is based on k observations Eftl),

"'Ap(tk) at times t, = jt (T > 0,j=1,...k) and is shown to

3
be consistent and asymptotically normally distributed. In
section 3.6 we study the efficiency of the estimate.

3.1. Introduction: The stochastic model for phage attach-

ment to bacteria gives rise to a multivariate stochastic
process E(t), depending on a single unknown parameter ¢.

This process R(t) is Markovian and its transition probabilities
are functions of o. For a Markov process in general it does
not seem unrealistic to expect that relatively efficient
estimates for the transition probabilities, hence for the
parameter ¢, may sometimes be obtained from the consecutive
differences of the relative frequencies observed at discrete
points in time. Following Ruben we call such an estimate the

Mean Square Consecutive Fluctuation(M.S.C.F.) estimate.

45.
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Consider the differences

[d,(1) ] = = [ny(t) - ny(e, )]

d (i) n (t ) - n (t

N L

)
i-1
_
r
Since I dj(i) = 0, the covariance matrix of (do(i),...,dr(i))

3=0

is singular. Hence we base our method on the differences

STam J-LT .
g4 = [ 4@ - ng | "ol T mottiy)
ALY ne1 (8 - e (Eyy)

We remark here that the covariance matrix R, = E(d.d )
i Aind

of Si is non-singular. For, suppose the covariance matrix of

Si is singular, then there exists a linear relation

r-1

_dyjd (i) = BO (3.1.1)

with probability one. That is,

r-1 r-1
z djnj(t ) = ? ajnj(ti_l) + BOnOO' (3.1.2)
j=0 §=0

But this means that given no(ti_l),---,nr(ti_l), the random

variables nO(ti)”"’nr-l(ti) can take only such values as

satisfy (3.1.2); but this is not true, as is shown below.
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* * * '
From (3.1.2), for some n (t) = (no(ti)""’nr(ti)) , we have

r-1 r-1
jfdajnj(ti) = jgdajnj(ti_l) + BO“OO = constant. (3.1.3)

Also,e(ti) = (n;(ti) + 1, n:(ti) -1, n;(ti),...,n*(ti))'

satisfies (3.1.2), hence we have from (3.1.3)

.=, = .... =0

0 1 r-1°
r-1
But this implies that with probability one T nj(ti) is a
j=0

constant, and hence nr(ti) is also a constant, givenl\r‘l(ti 1).
This is a contradiction. This completes our proof that the
covariance matrix Ri of 31 is non-singular.

Also Ripq(a) = E(dp(i)dq(i)), is a linear function of
1
an(ti)’ an(ti-l) and ajk(ti-l’ti)' But the ajk S are

transcendental functions of o. Hence Ripq is not constant
for all values of «.

In section 3.2 we describe an estimation procedure based
on the differences ei(i = 1,...k). This procedure is originally
due to Ruben [17] and has been used by Ruben for estimating the
interaction parameter in the emigration-immigration process.
In section 3.5 we prove that this method of estimation yields

a consistent estimate satisfying certain conditions. Then we
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obtain a lower limit to the asymptotic variance of a consistent
estimate satisfying certain conditions, and use our result to
obtain the asymptotic efficiency of the estimate. Finally we
indicate a simplermethod of estimating the parameter o. The
modified method of estimation yields an estimate with the same

properties as that obtained by the original procedure.

3.2. Derivation of the Estimation Equation: Let R(tl),...,g(tk)

be k observations on the process g(t) at times t, = jT(j=1,...,k).

j
Let
_ T ™ =__1_1— _ -
Ry = [do(D (Mot - mpleyy)
00
_?r-l(il LPr-l(ti) B nr-l(ti-l)_
and let R, = E(d;d;"). Thus, R, = llRqu|| = || Ed_(1)d, (1) ||
where

i) = L
E(, (1) dg@)= B 5= (n(e)) = my (e 1) (ng(e) - mo(ey )]
00

.1 r2 -
== % 20p(t1) ag(ty) - my g, (t;) ay (€,)

n i i
00

P00 20q¢t1-17 3qp¢ti-1751) = Roo (Moo 120l F1-1)%0p ¥y

P00 20p{ti-10 2pq(ti-1781) = RooMoo!) 0p(i-1)%0q¢ )

2

+ 0700 3gpti 1) 3gqCts 1) - Mgy 29, (E5 1) 3peCt; )]

and, we have

1 -1
—-— = .2.
E( r gi' Ri gi] L. (3.2.1)
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The equation (3.2.1) is true for all values of i,i=1,...,k.

This suggests that we use
k -1
—— T d 'R, d, =1 (3.2.2)
rk j=1 ¥ i Al

as an estimation equation; this may be rewritten as

1 k r-1
o T T ’RY a4 (d()=1 (3.2.3)
i=1 p,q=0 P 1
where Riq denotes the (p,q)th element of Ri'1
Any solution of (3.2.2) or (3.2.3) which effectively depends
' n, (t,)
on the relative frequencies qi(tj) = —;——1— may be taken as
00

an estimate of o. It may be noted that the estimation equation
is a transcendental equation in o and therefore in general can-
not be solved explicitly. However, a numerical solution may be
found.

3.3. Preliminary Results: The purpose of this section is to

prove that consistent estimates satisfying assumption F are
asymptotically normally distributed, and to obtain a sufficient
condition for such an estimate to have a minimum asymptotic

variance. Let
= - ]
Vo= lagg(tp)seeenag g (E)seeesag g (8))]
and T = T(V) be a function of V. Also

let

q = [qo(tl),...,qr—l(tl)’...,qr—l(tk)] ’
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and
v 2v [3aoo(t1) o 330 r-1(t) - aao,r-1(tk)]'
0 m aa ) ’aa J ) aa o

Further, let

Wy = 0B ((a-V)(q-V)").

Assumption F: Assume that T admits continuous first partial

derivatives,with respect to all qi(tj) (i=0,...,r-1; j=1,...,k).

Theorem 3.3.1: If T(q) is a consistent estimate of ¢

satisfying assumption F, then we have the following:
(i) T(V) = a,

1

(ii) ngo (T(q) - o) is asymptotically normally distributed

with mean zero and variance T'WOT, where

T=[ﬂ__;---,'a'1‘—_)-“:'a'r—_—]' A
33 (t) 33y ,.1(ty) 23y ro1(ty)

and

(iii) a sufficient condition for T(q) to have a minimum

' -
variance is that 7' = El VO Wol; moreover, the minimum variance
0

is El where

0

Proof: Expanding T(q) by Taylor's series about the point V
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up to first order terms, we have

T(q) = T(V) + T (q;(t)) - ag; () () (3.3.1)
i, & aqi(tj) i(tj)
where  qi(t;) € (a,(c)), ag (£))).

Part (i) of the theorem follows’from (3.3.1) since T(q) is

a consistent estimate of o, qi(tj) converges in probability to

af
aOi(tj) as 0 tends to infinity and 3q (t ) is a bounded
function of q. 1

It follows from Rao [14,85e] that ngo (T(qQ)-a) is

asymptotically normally distributed with mean zero and variance

T‘WOT since the asymptotic distribution of q is a multivariate

normal. This proves part (ii) of the theorem.
Differentiating T(V) = o with respect to o, we get

T'vo =1. Let To(q) be any estimate of a which is consistent

and satisfies assumption F, and let

3T, 3T, o1,

T = [— ,...,, —— ..., —— ] .
0 "dagy(ty)) 777 dag (&) 7T Rag ()

Then (70 -T)' WO(TO - T) is non-negative and

Wor T W TeT'W oT F7 "W oT.

- ' -
(To=m) Wo(Tg=T) = To WgToTo¥o o "o

1 -1 1
]
To"oTo - c, Towowo Vo - 0w01w070+¢ WoT

! -
TOWOTO T WOT.

This proves part (iii) of the theorem.
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It is easy to check that the minimum variance is %— .
0

Remark: Thus we have obtained a lower limit to the asymptotic
variance of a consistent estimate satisfying assumption F. In
section 3.5 we show that the estimation equation (3.2.2) has a
root satisfying assumption F, and use the result of our theorem
to study the efficiency of the M.S.C.F. estimate.

3.4. An Extension of the Implicit Function Theorem: 1In this

section we prove a lemma which is an extension of the implicit
function theorem. A similar extension is given by Ferguson in
[7]. Proof of our lemma is essentially the same as that of a
lemma due to Ferguson on page 1052 in [7]. First we state the
implicit function theorem which may be found in [19], page 244
from which the lemma will follow.

Implicit Function Theorem: Let x = (xl,...,xn) and let F(x,z)

be defined on an open set B containing the point (a,c). Suppose
that F has continuous partial derivatives in B. Also assume
that

F(a,c) = 0 (X 0.
9% (a,c) '

Then, there exists a neighbourhood

A(a,c) = {(x,2) | Ix, - a/l < A, i=1,...,m; lz-¢[ < c}
such that the following are true:

Let N(a) = {x| Ixi-ai| <A, i=1,.,n}, then

(i) for any x ¢ N(a), there is a unique z such that

lz-c| < C and F(x,z) = 0.
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Let us express this dependence of z on x by z = f(x).
(ii) The function f is continuous in N.
(iii) The function f has continuous first partial derivatives.
Remark: It follows from (i), that
f(a) = c. (3.4.1)
Lemma 3.4.1: Let x = (xl,..,xn) and let F(x,z) be a function
defined on the open set
B = {x|-1< x; <1l,i=1,...,n; zg D= (0,o)}.
Also let p(z) be a function from D into the set
A={x| -1< x, <1, i=1,...,n}.
Assume that
(i) p(z) is one-to-one and inversely continuous.
(ii) F(x,z) is continuous and has continuous first

partial derivatives with respect to x ceXy and z.

1’

(111) F(p(z),2) = 0 and (&£ ) ko for all z ¢ D.
9%(p(2),2)

Then, there exists a neighbourhood N of the set S= {p(z)'zeD}
and a unique function f from the set A into the set D such that
(a) f is continuous and has continuous first partial
derivatives on N,
(b) f£(p(2)) = z for all z ¢ D,
(c) F(x,f(x)) = 0 for all x ¢ N,
(d) there exists a neighbourhood of the curve {@(z),z)lzeD}

in which the only zeros of the function F(x,z) are the points

(x,£(x)).
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Proof: From the implicit function theorem, for any z ¢ D, there
is a neighbourhood N(p(z)) = {xl Ixi-pi(z) | < Ai,i=1,...,n}
of the point p(z) = (pl(z),...,pn(z)) and the unique function
fz (which may, in general, depend on z) from the set N(p(z))
into the set D such that

(i) fz is continuous on N(p(z)) and has continuous

first partial derivatives,

(3.4.2)
(i) £ (p(2)) = 2,
and
(iii) for any point x ¢ N(p(z)),
F(x,f,(x)) = 0 and |£,(x) -z | <c,. (3.4.3)

That is, for any point x ¢ N(p(2)), fz(x) € Nz where

Nz = (z - Cz, z + Cz)

Since fz is a continuous function, the set f;l(Nz) is an
open set and contains p(z). Also f;l (Nz) N N(p(z)) is an
open set containing p(z). So we can choose a spherical
neighbourhood N*(p(z)) of p(z) such that

* - -1, %
N (p(2)) C£N(N) N N(p(2))  and  p (N (p(2)))C N,
-1 %
because p is a continuous function. Now if p(zl)eN (p(zz))

for any z,,2, in D, then p(zl) € p(sz)

but then z, € Nz . That is, due to inverse continuity of p
2
and continuity of fz we can replace the neighbourhood N(p(z))

*
by the spherical neighbourhood N (p(z)) with the additional
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property
*
(iv) if p(zl) €N (9(22» for any 2,2, € D, then z) € sz.
*k
Now consider the spherical neighbourhoods N (p(z)) with

*
radii equal to 1/3 that of N (p(z)) with centre at p(z). Let

%k
N= UN (p(z)). The set N is clearly a neighbourhood of the
zeD

set S = {p(z) | z ¢ D}.

0 *k *k
We will show that if x € N (p(zl) Nn N (p(zz)), then

le(xo) = fzz(xo). Since N**(p(zl)) N N**(p(zz)) # 0

(where @ denotes the null set) we have, either

p(z) € N (p(2))) (3.4.4)

or

p(z) ¢ N (p(2))). (3.4.5)

Suppose (3.4.4) is true. Then

Flo(z)), £, (@(z)) = 0.

But F(p(zl), le(p(zl))) =0 and z) € sz , hence

£, @) = £, () = 2. (3.4.6)

%k *
If xe N (p(zl)) NN (p(zz)), then fz is continuous and

2
*
satisfies F(x,f (z)) = 0. Also f_ (x) ¢ N for x e N (p(z,))
z z z 1
2 1 1
and this implies that fz is the unique function, as is shown

1
below, which is continuous and has continuous first partial
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*%k
derivatives in N (p(zl)) such that

fz (p(zl)) =z, and F(x,le(x)) 0. (3.4.7)

1

Suppose g is any other continuous function , having continuous

F%k
first partial derivatives in N (p(zl)) such that
g(p(zy)) =z, and F(x,g(x)) = 0.

Let B = {x | fz(x) - g(x) = 0}. Then B is a closed set since
1

fz(x) - g(x) is a continuous function. Let x € B, then
1
f (x) = g(x). Since fz (x) e Nz , there exists an open set G,
1 1

containing fz (x) (hence also g(x)) such that f;l
1 1

(G) and

g-l(G) are both contained in N(p(zl)). Hence by the implicit
function theorem, fz (x) = g(x) on g-l(G), that is, x is an

1
interior point of B. So B is open. Therefore either B is the

*ok
null set or the whole set N (p(zl)). Since B is not null, B

*k
is N (p(zl)). So fz is a unique continuous function, having
1

%k
continuous first partial derivatives in N (p(zl)) such that

le(p(zl)) =z, and F(x,le(x)) = 0. (3.4.8)

Hence f (xo) = f (xo). (3.4.9)
%1 )

) sk *k
If xe N=UN (p(z2)), then x ¢ N (p(z)) for some z.
zcD

Define
f(x) = fz(x).

It may be remarked here that in view of (3.4.9), we may take
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*k
any z such that x ¢ N (p(2z)). Thus we have defined a function
on N. Clearly this function has the properties (a),(b) and (c)
of the lemma. For (d), the neighbourhood can be taken to be

U () X N ).
zeD .

3.5. Properties of the M,S.C.F, Estimate: In this section we

consider the question of existence of a root (or roots) of the
estimation equation (3.2.2) and study the analytic properties
of such a root. The idea of studying the analytic properties
of an estimate was initiated by Rao [15] and has been found to
be very useful in the theory of maximum likelihood estimation.
As noted by Rao [15], "In fact, many probability statements
concerning the maximum likelihood estimate are direct conse-
quences of the continuity and differentiability properties of
the maximum likelihood estimate as a function of the observed
relative frequencies." This is also true for the M.S.C.F.

estimate. First we prove that the M.S.C.F. estimate ¢ is a

continuous function of dp(i) dq(i) (i=1,...,k; p,q =0,...r-1)
possessing continuous first partial derivatives with respect
to each dp(i) dq(i). Then we deduce the consistency and
asymptotic normality of the M.S.C.F. estimate «.

We need the notion of Fisher Consistency (F.C.).
Definition: A statistic T which is a function of dp(i) dq(i)
(i=1,...,k; p,q =0,...,r-1) only is F.C. if when the

expected values of dp(i) dq(i), are substituted in T, the

function T identically reduces to the value of the parameter.
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If T is F.C. and is also a continuous function of dp(i)dq(i),

then T converges in probability to o as n tends to infinity,

00

since as shown in (3.5.4), dp(i)dq(i) - R converges in Probability

ipq

to zero as mn,, tends to infinity. That is, in this case, F.C,

implies the usual consistency (convergence in probability)

Theorem 3.5.1: (i) As n_ . tends to infinity, there exists, with

00

probability tending to one, one and only one function & of

dp(i)dq(i) (i=1,...,k; p,q =0,...,r-1) which satisfies the

estimation equation (3.2.2) and has the following properties,
(ii) o possesses continuous first partial

derivatives with respect to all dp(i)dq(i), (111) a(R(0)) =a for all

a € D (which implies that a(d) is a consistent estimate of «a),
1

(iv) ngo (@ - @) is asymptotically normally
distributed with mean zero and variance cz(a) as n,, tends
to infinity, where cz(a) is defined in (3.5.6).

Before we present the proof of this theorem, we make a

few remarks.

Remark 1: (t) is a one-to-one continuous function of o for

400
any fixed t.

Proof: We have from (1.2.6)

r-m r
).

aOO(t) =3 exp(-noo(r-m)at)

Clearly aoo(t) is a continuous function of &. Suppose al# @,

but

r-m ) r = ( r-m ) r
r-m exp(-n_.(r-m)at) r-m exp(-n..(r-m)a,t)

00 L 00 2

(
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or m exp(-noo(r-m)alt) =m exp(-noo(r-m)azt). (3.5.1)

But (3.5.1) implies that @) =, This proves the one-to-one
continuity of aoo(t).

Remark 2: Let d be a vector whose elements are dp(i)dq(i)
(i=1,...,k; p,gq=0,...,r-1) and R(z) = E(d). Then R(a) is

a one-to-one continuous function of «.

Proof: Clearly R(x) is a continuous function of o because
Ripq(a) (i=1,...,k; p,q=20,...,r-1) is a continuous function
of . Now R(aw) is a one-to-one function of ¢ if one element of

R(a) is a one-to-one function of . We show that R ) is a

100
one-to-one function of . Be definition

-2 2
Ri00@) = ngg E(ng(t)) - ngyp)

aoo(tl) (1 - aOO(tl))

= (1= agg(e)” + n

00
Clearly Rloo(a) is a one-to-one function of aoo(tl) which is a
one-to-one function of . Hence Rloo(a) is a one-to-one function
of o.’

Remark 3: If f(x) = (fl(x),...,f (x)) is a one-to-one continuous
vector valued function of a real variable x, then f(x) is inversely
continuous if one of the functions fl(x),...,fk(x) is one-to-one
and inversely continuous.

Proof: Suppose fl(x) is one-to-one and inversely continuous.

Let fn(xo); n=0,1,... be a sequence of points in the range

space of f(x) such that fn(xo) tends fo(xo) as n tends to infinity.
Then f;l(xo) tends to f:)(xo). Due to the inverse continuity of

-1,.n -1,..0 _
fl(x), f1 (f1 (xo) tends to fo (fl(xo)) = X;- But
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-1,.n _ e~l,.n -1l,.n
(£ ) (£ (xo)) = f1 (fl(xo), hence (fn} (f (xo)) tends to X5
as n tends to infinity. This proves remark 3.
Remark 4: In view of remarks 2 and 3, R(w) is a one-to-one and

bicontinuous function of ¢.

Proof of Theorem 3.5.1, (i) and (ii): The estimation equation is

1 Pq . . _
= T R| dp(l)dq(l) -1=0.
ip,q

The expression on the left hand side of the above equation is
a function of d and . Denote this function by F(d,x).

By assumption BZ’ o € (0,»). The function R(¢) is a one-to-
one and inversely continuous function of o as shown above. Also
the function F(d,x) is continuous in d and o. Clearly gg exists
and is given by

oF _

1 .
— I ST d (i)d (i)
o rk ip,q * P d

which is a continuous function of d and . Also the derivatives

Szﬁa%zja—zz))exist and are continuous. We have
P q
r £ RPIR, = rk. (3.5.2)
. i ipq
1 p,q
Differentiating (3.5.2) with respect to o, we get
Pq
3R aR.
T T -a-a-i Ripg = - F £ RPI i
ip,q ip,q

-z |Ri|—§;|Ri| # 0.
1

aa)
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Thus we see that all the conditions of lemma 3.4.1 are satisfied.
Hence there exists a neighbourhood N of the set S ={R(a)|aeD}
and a unique function &(d) from N to D such that

(a) &(d) is continuous and has continuous first partial
derivatives,

(b) a(R(@)) =« for all o ¢ D,

(¢c) F(R@),x) - 1 =0 for all R(z) ¢ N,

(d) there exists a neighﬁourbosd of the curve {(R(a),a)laeD}
in which the only zeros of the function F(x,z) are the points
(d,a(4d)).

Thus we see that for d ¢ N, the estimation equation has one and
only one root @(d) which possesses the properties mentioned in

(a) through (d). By definition Ripq = E(dp(i)dq(i))
= ngo E(n (£ - n (€, 1)) (a ;) = n (e 1))

- nag E(n (e )n (€)= n (€, (e )-n (e (E; )
+ np(ti-l)nq(ti-l)]

2.2
ol %00 20p€t1)20q(ts) = Rog 20p(ts) Zoqlts)

- n
00 20q(t1-172qp Ei-1751) P00 oo 30q E1-1)20p (£1)

" P00 20p¢t1)%pq t1-171) Moo Moo 20p(F1 )20 (1)

2
00 20p ti-1720q(t1-12P00%0p (t1-1720q(F1-171

- (aOp(ti) - aop(ti_l))(aoq(ti) - an(ti-l)) (3.5.3)
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as nOO tends to infinity.

Also

4,(d (1) = ngdm (£)-n (€, 1)) (e )-n (t; 1))

lrg

(aop(ti)-aop(ti_l))(aoq(ti)-aoq(ti_l)) (3.5.4)

as ng, tends to infinity.

Hence from (3.5.3) and (3.5.4), we have

R, PO 3.5.5
ipq X ( )

dp(i)dq(i)

as n,o tends to infinity.

Therefore given ¢,7 positive, there exists n(e,T|) such that

for LAY > n(e,M)

P(|d-R| < ¢) > 1-7.

Hence with probability tending to one, as n_,, tends to infinity

00
the estimation equation has one and only one root which possesses
the properties mentioned in the theorem.

Proof of (iii): If follows from (b) that &@(d) is F.C. Since

@(d) is a continuous function of d,and dp(i)dq(i) - R 14 0 as 40

ipq

tends to infinity, &(dﬁ‘g o as n_ . tends to infinity. That is,

00

(d) is consistent.

Proof of (iv): To prove this part of the theorem, we need the

following lemma:

Lemma 3.5.1: If Xn - Yn 3 0 and Fn(x) H F(x), then

Gn(x) w F(x) where Fn(x) = P(Xn < x) and Gn(x) = P(Yn < x).

This 1s a well kn:«n result.
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By Taylor's fYrmula, we have

A

0 G - @) = ng pe’ [a(d (D3 (D) T

O Nl»—-

IR (d (1)d (i) -

0
ip,q

where dt is a point on the line segment joining d and R. Let

X =n,, 2 z (a (ti)-aoq(ti_l))[np(ti)-np(ti_l)-aop(ti)-aop(ti_

00 ip,q

But

. -1
(i) noo(nq(ti)-nq(ti P (aoq(ti)-aoq(ti_l)) as ny, = ®;

(ii) we know from (3.5.3), that

Ripq - (aOp(ti) - aOP(ti-l)) (an(ti) - an(ti-l))
as m,, tends to infinity; and
28 -
TN O ER DR
ipq
as n, . tends to infinity, since @(d) has continuous partial

00
d?rivatives. Clearly (i),(ii) and (iii) imply that
n? @ -o) - X converges in probability to zero as n
00 Mo

tends to infinity. But it follows from Rao[ 14,§ 5e] that X
00

00

is asymptotically normally distributed with mean zero and

variance © (a) since X is a linear function of normally
00
distributed random variables. Here

Pq ,Pp'q'y ,qa ,9q' . 4
z z ' '[Ri R}, lei A, E(Xp(l)xp,(l))

(3.5.6)

( n (t )- n (t ) aOthi)-aop(ti-l)) and

DI,
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q . -
Ai (aoq(ti) an

1

(e, ).

i-1

Hence ngo (@ - @) is asymptotically normally distributed with
mean zero and variance cz(a).

3.6. Efficiency of the M.S.C.F. Estimate: We now discuss the

asymptotic efficiency of the M.S.C.F. estimate &. In the
theorem 3.5.1. we proved that the M.S.C.F. estimate a is

asymptotically normally distributed with mean o and variance

%— cz(a). In section 3.3 we considered the whole class of
00
consistent estimates satisfying assymption F and proved that

the variance of a consistent estimate is greater than or equal

o L
0

Hence the efficiency of the M,S.C.F. estimate & of o is

1
given by € 2.
goCe?” @)

3.7. A Modified Estimation Procedure: The estimation procedure

described in section 3.2. is somewhat lengthy and is not suit-
able for numerical computation. In practice the value of r
(the maximum number of phages that can become attached to a
bacterium) is usually quite large (for example, 130 or 140),
and this requires the inversion of a 140 X 140 matrix. In this
section we describe a simpler method which is essentially a
modification of the method described in 3.2.

The modification conmsists in pooling the data in p classes.
Let rl,...,rP be p positive integers such that r, +...+rp = r-1

and let
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r

1
m (t) = I n,(t)
0 3=0 j
2
m, (t) =.=iri +1nj(t)
TR
r1+.+rp
mp(t) = z nj(t)-
J=r1+.+rp_1+1

In practice, we may take p = 4 from the point of view of
numerical calculation.

Modified Estimation Equation:

1 — -
§ = — -
Let 2 (1) To0 mO(ti) mo(ti-l)

mp(ti) - mp(ti-l)

(]
and ﬂi = Egs i)é(i) ), then we have

1.0 .
5 EGiyMy begy)= 1 (3.7.1)

N

The equation (3.7.1) is true for all values of i, i = 1,...,k.

This suggest that we use

—1—155' 1ls ) =1 (3.7.2)
pk il(v(i) i ~v()’ e

as an estimation equation. The estimation equation (3.7.2) may
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be rewritten as

1 X P Pq
— ¥ z n 8 ) =1 (3.7.3)
pk 1=1 p,q=0 i p(1) "q(1)

where nipq denotes the (p,q)th element of ni-l. It may be noted

that the estiﬁation equation (3.7.3) connot be solved explicitly;
however, numerical solutions can be obtained fairly readily. It

is clear that the modified procedure of estimation will yield several
estimates, one of these with the same asymptotic properties as that
obtained by the original procedure described in 3.2.

In general (3.7.3) will have many roots and the problem of
selecting the root satisfying the conditions of theorem 3.5.1 does
not seem to have a simple solution and needs some further investi-
gation.

Suppose al,...,ap are p roots of (3.7.3), then sometimes it

may be possible to determine p functions a ”"’&p of d such that

1
&l(d) = al,...,&p(d) = ap. Now according to theorem 3.5.1 there
is one and only one root which possessses the properties (ii) and
(1iii) of theorem 3.5.1 and we can select this root by checking

these conditions. This is one possible solution and it is

proposed to study this method in some detail.
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