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ABSTRACT

ESTIMATION OF THE PARAMETER IN THE STOCHASTIC MODEL

FOR PHAGE ATTACHMENT TO BACTERIA

by Ramesh C. Srivastava

Recently Gani has considered the following stochastic model

for phage attachment to bacteria in suspension. Let n

00

be the number of bacteria and v00 be the number of phages

V a

at time t = 0. Also let m = Egg-be the multiplicity of

00

phages and r be the saturation capacity of a bacterium.

Further let ni(t) (i = 0,...,r) be the number of bacteria

with exactly i phages attached to them at time t 2.0. If

P(n0,...,nr;t) denotes the probability that there are

no....,nr bacteria with 0,...r phages attached to them

respectively at time t Z_0, then, under certain assump-

tions, it is shown by Gani that

 

n 1 r n.(t)

_ 00 i

P(“0"""‘r"‘) ‘ n z...n : " (801(t))
O r .

1:0

that is, at any fixed time t, O E.t E.to’ the distribution

ofmn(t) = (n0(t),...,nr(t)) is multinomial. The probabilities

a0j(t) are functions of a single parameter a, defined by

j 0 I O O

_ 3-1 r r-i -(r-1)ap(t)



r-m exp(-uot)

r-m

 

where p(t) = %~log ( ) .

In this thesis we investigate some of the basic properties

of this model, describe a method of estimating the parameter

a, and study the asymptotic properties of the estimate.

In Chapter 1, we describe the deterministic and the

stochastic models for phage attachment to bacteria and

review different methods of estimation for Markov chains

with continuous time parameter.

In Chapter 2, the joint probability generating function

of Q(t1) and %(t2) (t1 < t2) is derived and is used for

calculating the mixed moments of the process. The rest of

the chapter is devoted to the study of the asymptotic

distribution of n(t) and the limiting joint distribution

of nfitl),...,nfitk) (t1 < tk) as n tends to infinity.
00

The problem of estimating the parameter a in the

stochastic model is considered in Chapter 3. In section 3.2

a method of estimation is described and is shown to yield a

consistent estimate satisfying certain conditions. Then we

obtain a lower bound to the variance of a consistent estimate

satisfying; certain conditions and use our result to obtain

the asymptotic efficiency of the estimate. Finally we indicate

a simpler method of estimating the parameter a. The modified

method of estimation yields an estimate with the same properties

as that obtained by the original procedure.
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CHAPTER 1

REVIEW OF PREVIOUS WORK

1.0. Introduction: Recently Gani [91* has considered a stochastic

model for the attachment of phages to bacteria. In the following

we study some of the basic properties of this model and describe

a method for estimating the parameter and studying the asymptotic

properties of the estimate.

This chapter consists of two parts. In the first part, which

includes sections 1.1 and 1.2, we describe the deterministic model

due to Yassky [20] and the stochastic model due to Gani for the

attachment of phages to bacteria. In the second part, which includes

sections 1.3, 1.4 and 1.5, we review different methods of estimation

for finite MarkOV'Chains with continuous time parameter t.

Before describing mathematical modelsfor the attachment of

phages to bacteria, it may be useful to give a brief account of

some essential facts about bacteriophage. It is known from plaque

tests on bacterial su3pensions, that phages attack and destroy

bacterial colonies, after first attaching themselves to some of the

bacteria. A variety of other experiments indicate that one or more

phages may attach themselves to a bacterium.

In practice, a SUSpension of 1:100 bacteria in a nutrient

medium are infected with v00 phages at time t - 0. Within a short

time (4 or 5 minutes) one or more phages attach themselves to a

 

*

Numbers in the square bracket refer to the bibliography.



bacterium and infect it. Inside an infected bacterium phage

particles reproduce following a complex reproduction cycle and

then the bacterial cell bursts out, releasing some 200 to 300

phage particles. The disintegration of the bacterium and the

scattering of new phage particles is called lysis. The entire

reproductive cycle takes place in about 20-25 minutes. Mean-

while, the uninfected bacteria continue to reproduce. The new

phages in turn attach themselves to other bacteria and infect

them. This cycle goes on for awhile. Since the reproduction

of phages is faster than that of bacteria, after some time all

bacteria are killed. The probability of extinction of a bacterial

colony by phages has been calculated by Gani [8].

Here we are mainly concerned with the phenomenon of phage

attachment to bacteria. The mathematical models which are des-

cribed in the sections 1.1 and 1.2 are derived under the following

assumptions.

Assumptions.

A1. The duration of experiment is taken to be very small, so

that the number of bacteria or phages neither increases nor

decreases in this period.

A . No attachment occurs between like particles.

2

A3. Collision of particles is due only to Brownian motion,

both bacteria and phages being non-motile.

A4. 0n the basis of Brenner's work [5], we assume that there

exists a maximum number of phage particles that can become

attached to a bacterium. This number is called the saturation

capacity of a bacterium.



1,1. A Deterministic Model for the Attachment of Phages to Bagteria:

Recently Yassky [20] has considered a deterministic model for

the attachment of phages to bacteria in suSpension. Let ni(t) be

the number of bacteria with exactly i (i=0,l,...,r) phage particles

attached to them at time t.ZLO and let v0(t) be the concentration

of free phage particles. Let n = n0(0) and v00 = v0(0), then
00

r r

2 n.(t) = n and 2 i n.(t) = v - v (t).
i=0 1 00 i=0 1 00 0

Assumption B The rate of attachment of a phage particle to a1:

bacterium which is already attacked by i phage particles is

 

proportional to the product of ni(t) and v0(t).

Under assumptions A1 through A4 and assumption B1, it is

shown by Yassky that

dn

0 = - I n v

dt 0 0 0

0
.
0
.

N
S 5
—
.

l
l

(ii.1ni_1 - Xini) v0 (i=l,...,r-1) (1.1.1)

(1

G
1
0
.

H
:
3

fl

l
l

r-lnr-l) \0

and dv r

0

T” ' v0 .2 )‘ini (1'1'2)
i=0

d

where I, >.0 is a constant of proportionalityr.and as a first approximation

ni(t) are regarded as continuous and differentialbe functions of t.



 

 

 

Assumption B2: Assume that Xi = (r - i) a 0.5 i < r

=0 121'

where a > 0.

Solving (1.1.2 ), we get

v (r-m)

v0(t) = 00 (1.1.3)

r exp(uat)-m

V0
where m =‘-- is the multiplicity of phages, and u = n (r-m).

n00 00

Next, solving (1.1.1 ), we get

n (t) = n [e-pat-+-£- (l - e-uyt )]-Er '
0 00 r-m

: -_1.

n (t) n (t) r i

-r+i-l 0 0

“1(t) = n00 ( i > n 1' n
00 00

(1.1.4)

r-l n (t)

nr(t)=n00 <1- z :1).

j=0 00

1.2. A Stochastic Model for the Attachment of Phages to Bacteria:

Let n00 be the number of bacteria at time t = 0 in su3pension

and ni(t) (i=0,1,...,r) denote the number of bacteria with exactly

i phages attached to them at time t 2:0. Let P = P(n0,...,nr;t)

be the probability that there are no,n .,n bacteria with
r

1,..

0,1,...,r phages attached to them at time t.Z.0 and v0(t) denote

the number of unattached phages. In this model, the deterministic

value of v0(t) given by (4) in [9] is taken.

Assumption C: In addition to the assUmptions A and B1, we make
 

the following assumption.

C. The probability of attachment during interval (t,t + dt)



of a phage to a bacterium already having i phages is

linivodt + o(dt) (i=0,l,...,r - l)

and the probability of attachment of more than one phage is o(dt).

Then we obtain in the usual way

dP r-l r-1

'3; = - .2 linivOP +'.Z Xi(ni + l)\)O P(n0,...,ni+l,

1=0 1=0

n1+1 f l,...,nr;t).

If m(uo,...,ur;t) denotes the probability generating function

(p.g.f.) of these probabilities. then it follows that

.ET r-l
fly

at 7‘ 1:0 x1"o (”1+1 ' “1) 5‘11. (1.2.1)

This is a particular case of the p.g.f. for the multivariate

Markov process first considered by Bartlett [3], and has been

solved for this particular case by Gani [9]. TO solve the first order

linear differential equation (1.2.1), we consider the auxiliary equations

 

      

{1% ‘=4 9611M 5%? = 1 vd‘z‘ij _ u) (i=0,l,...,r-l) (1.2.2)

i 0 1+1 i

These can be rewritten as

d Pu _ = v ’1 -1 - ”u _
dt 0 O O )0 -- O

1 A1

Ur-l Ar-l-xr-l ur-l

u I u

r r r

_. .. L -1- .J

= v Lu . (1.2.3)



The solution of this is of the form

e'Lp(t)u = c (1.2.4)
’1:

where 8 is the column vector (u ..,ur)', c a constant vector,
o’“1"

t

L the matrix array of Ii and p(t) a g VO(T)dT.

Thus we have

o(gfi) = cp0(e-Lp(t)g) (1.2.5)

where m is some suitable function of the new variables.
0

To determine the form of mo, we take into account the initial

conditions and the fact that

n00
m(u;0) = “0 . (1.2.6)

Then

n

1300,50) = ([e'L"(t?g]O> 0° (1.2.7)

.. t . -Lt

where [e Lp( £90 13 the 0th element of the column vector [e p( kg.

We now proceed to calculate this element. Since by assumption

the 11's are distinct and non-negative, the matrix L can be written

in the canonical form

L = NAM = N “v 4:AM (1.2.8)

  
where N = M.1 and M is the matrix whose rows are eigenvectors

correSponding to the eigenvalues 10,11,...,1r respectively.



It is easy to see that

 

s-l

M..=1 M..=fl (1.2.1),-L)

11 13 s=t+1xs'xi

j-l AS

N11 = 1 Nij " 1 _A. (r 2;J > 1) (1.2.9)

It follows from (1.2.8) that

e'Lp(t)u_ = N e'A 9(t1M 3 (1.2.10)
m

Let e'LP(t) = N e'A 9(t) M.= || aij(t) || (1.2.11)

r

where aij(t) = 0 for i > j and 2 aoj(t) = 1. Then we see from

1‘0

(1.2.7) and (1.2.11), that

r n00

¢(g;t) = ( on aoj(t) uj)

gives the p.g.f.ofa multinomial distribution and so

 

n I n,(t)

_ 00 r 1
P(n0,...,nr,t) - n !.....n I .n aOi(t) (1.2.12)

0 r 1=0

where a0j(t) = 1:0 NOi Mij e . (1.2.13)

The Particular Case I, = (£7- 1) a: The above result holds generally

for anylti; now we discuss the particular case obtained by setting

xi = (r - i)o (i=0,l,...,r-l) and Ar = 0.

It also follows from (1.2.9) that

M.. = 0 for i > j

1J



ii

'= _ j-i r-i . = .
Mij ( 1) ( j-i ) for J r+l,...,r. (1.2.14)

and

N.. = 0 for i > j

1]

Nii = 1 (1.2.15)

r 1 . .
ij j-i ) for J r+1,...,r.

Hence. from (1.2.13), (1.2.14) and (1.2.15) we have

1 j-i

j . . .

aoj(t) - .2 (.1)J"l ( r ) ( r-i )e'(r'1)ap(t) (1.2.16)

i=0

where

 o(t) =§ 1ug( “n “P flail )r-m and u = n00(r-m).

In the present investigation this particular multivariate stochastic

process is discussed 1n some detail, and the problem of estimating

the parameter a is etnsidered.

1.3. Estimation Methods for Evolutive Processes: In an early

paper Kendall [10] considered the problem of estimating the birth

rate for a purely reproductive process. Let nO be the number of

individuals at time t = 0 and suppose each individual is capable

of giving birth to a new individual in accordance with the following:

(a) The Sub-populations generated by two co-existing

indiv1duals develop in complete independence of one another,

(b) the probability that an individual existing at time

t will reproduce a new individual during (t,t + dt) is



ldt +- o(dt)

and the probability of more than one birth is o(dt).

Let Pn(t) be the probability that at time t, there are

n individuals. If n = 1, then as shown in Kendall [10]
O

Pn(t) = e'At (l-e'M)“'1 (n 2 1). (1.3.1)

If nO = a > 1, then it follows from (1.3.1), that

Pn(t) = (::I ) e‘xta (1 - e'xt)“'a. (1.3.2)

Now we consider a pure birth process and suppose

observations are taken at times

0 T 2r . . . kt = T

and the observed sizes of the population are reSpectively

n n n0 1 2 . . . k'

The conditional probability P(n1,...,nk I no) is

n

k-l

P(n1,...,nk I no) - :0 P(ni+1 I ni)

and by (1.3.2).

n -1 -n 1T n. -n.
_ i+1 ' -17 1+1 1

Pm... I w - < .>e <1 - >

Therefore the log likelihood function is

--T k-l

L = constant + (n -n ) log(l-e A ) - IT 2 n.. (1.3.3)

k 0 i=0 1

Differentiating (1.3 3) with reSpect to I, we get

aL (“k'no 41* k'1
—T'= -_-—_TRT Te - T 2 ni

5 1 - e . i=0



10.

T - T Z n

-1 101

A _ n + ... + nk

n0 + ... + nk_1'

Kendall also suggested another rough procedure for estimating

I and obtained an expression for its asymptotic variance.

In [11] and [12] Moran investigated the problem of

estimation for some simple processes; for example the

Poisson process, the pure birth process, birth and death

processes, etc.

For a pure birth process, Moran suggested the following

alternative procedure:

Let N(t) denote the size of the population at time t;

clearly N(t) is a non-decreasing function of t. The number

of births during an interval (0,T] is then given by k=N(T)-N(0).

Suppose these births occurred at times tl""’tk'

Now we consider a sample function of N(t) with k jumps.

Starting from time ts, the time (ts+ - ts) to the next

1

jump is such that

21(N(0) + s) (ts+1 - ts)

is distributed as x2 with 2 degrees of freedom. Then the log

likelihood function is

k-I

L = E log[l(N(0) + s) e-X(N(O)+S)(ts+l-ts)] (t0 = 0)

s=0



11.

k-l

= $50 [log 1 + log (N(O) + s) - 1(N(o) + s) (ts+1-ts)].

Equating the derivative of L to zero, we get

k-l

31 - -1 - -ax - kA sEo (n(0) + s)(t8+1 - ts) — 0. (1-3 4)

Therefore the maximum likelihood estimate X of I is

 

A k

I - k-l . (1.3.5)

2 (N(0) + s)(ts+1-ts)

s=0

k-l

The sum 2 (N(0) + s)(t - t ) is equal to the area under
s=0 3+1 3

the curve N(t) and so

 

g: __k_ = NH) - N(g)
T T

£N(t)dt IN(t)dt

0

1 T 1
Also E’I N(t)dt is an unbiased estimate of I- and its

0

sampling distribution is (2k}()”1 x2 with 2k degrees of

freedom and so its variance is (kkz)-1.

Further, Moran considered the problem of estimation

for the parameters in a birth and death process. Anscombe [2]

can also be consulted for sequential estimation in a birth

and death process.



12.

1.4. Maximum Likelihood Estimation for a Finite Markov Chain

with Continuous Time Parameter: Let {x(t), t 2 0} be a

separable* finite Markov chain with continuous time parameter

and let P(t) = IIpij(t)II be the stationary transition matrix

function. Then under certain conditions P(t) can be written

in the form P(t) = exp(tQ) where Q = IIqijII is an MXM matrix

known as the "infinitesimal generator" of the process.

For a finite Markov chain with continuous time parameter,

two types of estimation problems have been studied. In [1],

Albert has considered the problem of estimating Q = IIqijII,

the "infinitesimal generator"of the process and in [4],

Billingsley has considered the problem of estimating the

parameter 0 when Q = IIqij(9)II (or equivalently when P(t) =

IIpij(t,9)II) is a function of 9.

Assume that pij(t) has a derivative pij'(t) with reapect

to t for all t 2 0 and let

= lim 1-pii(t)

qi t—10 t

and

= lim Pij(t) i # .

qij t~0 t J

and let Q = IIqijII be the matrix where qii = -qi.

It is well known (see for example Doob [6]) that the

probabilities pij(t) satisfy Kolmogorov's forward and back-

ward equations.

;TFET-EETinition and other questions regarding separability

see Doob [6].



13.

Let (0,.3, P) be a probability Space and {X(t), t 2 0]

be a separable Markov process defined on this Space and taking

values in a finite set x0 = {l,...,M}. Then it is shown in

Doob [6], chapter vi, that if IIpij(t)II is stationary transition

matrix function satisfying the condition

lim pij(t) = 1 for i = j

t—10

= o for 1 # j (1.4.1)

then the limits qi and qij exist for all i and j. Further it

follows from theorem 1.4. page 248 of [6], that almost all

sample functions are step functions with a finite number of

jumps in any finite interval.

(a) The Estimation of the Infinitesimal Generator:

For estimating the "infinitesimal generator" of a Markov

chain, first Albert [1] constructs a density on the set of all

realizations of the process; then the likelihood equation is

defined and finally large sample properties of maximum likelihood

estimates are studied.

Suppose observations are made on the process {X(t),0£ t < T}

where T is finite. Due to theorem 1.4., page 248 of [6], the

sample function is a step function. Let Xi denote the state

after the ith jump and Ti be the time the system stays in state

Xi' Then with probability one, a sample function

X(w,'), 0 s t < T can be written as an ordered sequence

{(xO,TO),...,(XV(T)_1,Tv(T)_1), XV(T)} (1.4.2)



14.

where v(T) is the maximum n such that

TO + ... + Tn-l S T < T1 + ... + Tn .

Now we can obtain the probability distribution on the

space of sample functions.

Theorem.A(Albert): Let
 

. . 0 1f 1 = j

q'(1:J) = I
. . 1f 1<11)J # J

and

q(1) = q1

Then

P[v(T) = v, X0 = x0, TO 5 do, , XV-1= xv_1, v_1 S av_1;

-q(xv)T

Xv = xv] - P[XO = x0] e X

v-l -(q(xj) - q(xv))t.

I n dt. q'(x,,x. ) e J (1.4.3)

. J J J+1
S j=0

v

v-l

where Sv = {(t0""’tv-l) : jEO tj < T and 0 s tj s oj} if v > 0,

and

-q(xO)T

P[v(T) = 0, X0 = x0] = P[XO = x0] e .

Next we proceed to construct the density on the Space of all

sample functions.

Any sample function with v jumps in [0,T) can be represented

as a point in

v-l +

xv =j:0 (XOXR ) X x0



15.

where x0 = [1,...,M} and RI = (0,w).

Let lbe the Lebesgue measure on Rf and let c be the counting

measure on x0. Let C(v) be the product on Xv’ defined by

v-l

o(v) = I n (c x 2)} X c.

i=0

Then almost all sample functions of the process {X(t), 0 s t < T}

can be represented as a point in

m

X = Ji0 XV.

For any Subset A of x for which Aan is o(v) measurable, we

define

0*(A) = E o(v)(Aflxv).

v=0

* *

Thus 0 is defined on the o-field B , which is the smallest

o-field containing all subsets A whose projection on

v-l

{ n (x0 X R3} X x0 is a measurable set for each v. Let G be

i=0

3 measure on the Space of all sample functions, defined for

*

all subsets B such that ane B ,

*

o(B) = o (30x).

Now we obtain the density on the set of all realizations of the

process with respect to c which is a o-finite measure.

Theorem B (Albert): If B is a subset of the Space of all sample
 

functions over [0,T) which is measurable with reSpect to a, then



16.

FEB] = I f (v)do(v)

B Q

where

[' "’(xo)T .
P[X(0) = x0] e if v = (x0)

'Q(X )T k'1 '[Q(X.)-Q(X )Jt.

P[X(0) = x0] e V jzo q'(xj,xj+1)e J v J

fQ(v) = if v - ((XO’tO)""’(Xv-1’tv-l)’ xv) (1.4.4)

with v > 0, xj exo, tj 2 0 (j=0,...,v-l)

v-l

and 2 t, < T

i=0

0 otherwise. 
Now we define the likelihood function and obtain the maximum

likelihood estimate. If k independent realizations v1,...,vk

of {X(t), 0 s t < T} are observed, then the likelihood function

is defined by the equation

k

LQ I

n
3
5
¢

1 fQ(vj). (1.4.5)

j

Let N; (i,j) be the total number of transitions from state

i to j observed in k trials and A;(i) be the total length of

time that state i is occupied during k trials. Then we can

write

log Lk
Q (k)(i)j)log q(i,j)-2A§k)(i)q(i) (1.4.6)

7 Ck + g .2. NT .
1 j¥1 1

where ck is finite with probability one and does not depend on Q.
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From (1.4.6), we conclude that

(1) {Nék>(i,j), ATk)(i)}j#i is a sufficient statistic for Q.

(2) The maximum likelihood estimate §¥(i,j) of qij is given by

(k) . .
A(k) NT (1).-I)

. . (R)

q (12]) a
T Aék)(i)

if i¥j and AT
 

(i) > 0.

If Aék)(i) = 0, then the maximum likelihood estimate does not

exist and we define

aTk)(i,j) = o if i¥j and Aék)(i) = 0. (1.4.7)

In this context, the term 'large sample' can be interpreted

in two ways. Many independent realizations of the process

{X(t), 0 s t < T}, keeping T fixed could be observed or a single

(finite k) realization of the process over long period of time

may be observed. In both cases, Albert [1] proved that under

certain conditions the maximum likelihood estimates are strongly

consistent and asymptotically normally distributed.

(b) Estimating the Parameter 0 When the Infinitesimal
 

Generator is a Function of 9: Consider again a separable Markov
 

process {X(t),t 2 0} defined on the probability Space (0,3,P9)

and taking values in a finite set)(0 - {l,...;M} where

9 - (91""’9r) is a parameter, taking values in an open subset

S in r-dimensional Euclidean Space Rr' Let P(t,9)=IIpij(t,9)II

denote the stationary transition probability matrix function.

In this case the condition expressed in (1.4.1) becomes

lim p..(t,9) = 1 if i = j (1.4.8)

t~O 13
=0 if ia‘j.
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Then it follows from.Doob1[6, theorems 1.2 and 1.3 of chapter vi],

that under certain conditions the limits

lim l'pii(t’9)
 

t—oO t 3 qi(9) < °

and (1.4.9)

1. p..(t,9) .

.323 41—;— - q,j(e> 1 1‘ J

exist for all i and j.

Now we state the assumptions which are needed for proving

the asymptotic properties of the maximum-likelihood estimate.

Assumptions:
 

D1. For each w, the sample function is a right continuous

step function. The limits in (1.4.8) exist for all i and j and so

there exist functions qi(9) and qij(9)(i ¢ j) satisfying (1.4.9).

For all 9 and i, qi(9) >10.

Since by assumption D the sample function is a right
19

continuous step function, the system starts at time t = 0 in state

x0, remains there for time t then it jumps to some other

0’

state say x1, Stays there for time t1 and so on. If v(T)

denotes the number of jumps in time [0,T), then it follows

that {xn} is a Markov process and

'Q(Xn+1)9)a

.,tngx0,...,xn+1} - e ,

o 2.0 (1.4.10)

and
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Q(Xn)j)e)

P9{Xn+1=J I t0,...,tn;x0,...,xn] ='-a?;;:§y- (1.4.11)

From (1.4.10) and (1.4.11) it follows that {(xn,tn), n=1,2,...}

+

is a Markov process on the Cartesian product x0 X R where

p
d

I- (0,w). This process is called the imbedded process and

as remarked by Billingsley (page 38, [4])the information contained

in the sample {X(t),0 s t < T} is essentially the same as that

in the sample {(xk’tk); k=0,...,\)(T)-1}. The complete sample

contains only Slightly more informationtfluni the sample from the

imbedded process. The additional information is the length for

which the system is in state x

v(T)'

Let nij(0) = P9(Xn+1=J I xn = 1) 1 # 3.

Then qij(9) = fiij(9) qi(9).

We assume that the set D of pairs (i,j) for which

nij(0) > 0 (or equivalently, for which qij(9) > 0) is

independent of 9. (Note that (1,1) I D by construction).

Hence, d s M(M - l) where d is the number of elements in D.

Assumption D The set D of pairs (i,j) such that qij(9) > 02:

 

is independent of 0 and the functions qij(9) have continuous

third order derivatives throughout S. The d X r matrix

aqi.(9)

IIEKYJ II has rank r for all 9 e S.

Assumption D For each 9 e S, the Markov chain {xn} has only3:

one ergodic set and there are no transient states.

 

Now given a sample {(Xk’tk)’ 0 S k S v(T)} we can write
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the log likelihood function from (1.4.6) by setting k = l,

l l . . l .
log Lé )= E N; )(1,J) log q..(9) - E Aé )(1) q.(9) (1.4.12)

D 13 i 1

where Aé1)(i) denotes total time for which the system is in

state i and N§1)(i,j) denotes the total number of direct

transitions from state i to state j. In writing the expression

for the log likelihood function we have, following Billingsley,

dropped the term P9(X(0) = x0) because the information contained

in P9(X(0) = x0) does not increase as v(T) a m.

Thus the likelihood equations are:

_§_
(1) (I) ' ° —5— (1) . i 9)

59” log LT =15) NT (1m) agu log qi.(9) -§13AT (1) agé—L

J

(1.4.13)

u = 1,...,r.

Finally we state the asymptotic properties of the maximum-

likelihood estimate. For a proof see Billingsley [4].

Theorem (Billipgslgy): If (X(t), qij(9)’ S) satisfies conditions

D1,D2 and D3 and 906 S is the true value of the parameter, then

there exists a consistent solution 0 of (1.4.13). Moreover,

, ”'3 . 0
11m v(I) (9 - 9 ) E 0, and

.1.

11m v<T)3 (q (6) - q (90)) P 0.
ij ij —»

1.5. An Estimation Procedure in the Emigration-immigration

Process: While a great deal of general theory of maximum

likelihood estimation for Markov chains with continuous time

parameter has been developed, only a few particular problems
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for evolutive processes have been investigated thus far. In

most of the cases the maximum likelihood estimation of the

parameter is intractable.

In [17] Ruben suggested an interesting method of estimating

the interaction parameter in an emigration-immigration process.

We use this method of estimation for estimating the parameter a

in the stochastic model for phage attachment to bacteria. Before

describing Ruben's method of estimation, we describe the emigration-

immigration process.

An emigration-immigration or Poisson Markov process [3] is

a multivariate stochastic process. Suppose R1,...,Rm are m

disjoint non-empty subsets of a Space and RI =(R1U...URm)' where

A' denotes the complement of a set A. Consider a system of

particles performing some type of random motion.

Let N(t) = IN1(t)-T be the number of particles in the regions

  

 

Nm(t)

R1,...,Rm reSpectively at time t 2:0.

Assumptions:

E1. The particles are moving independently of each other.

E2. The probability that a particle moves from Rr to RS

(r ¥ s = l,...,m) in time dt is

Nr(t) xrsdt + o(dt).
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*

E.. The probability that a particle moves from Rr to R in

time dt is

*

Nr(t) I rdt + o(dt), r = l,...,m.

*

E . The probability that a particle moves from R to Rr in time

dt is

p dt + o(dt), r = l,...,m.

r

E . In time dt, the probability of movement of more than one

particle is o(dt).

 

j *

Let A — I" 11+ .2 11]. - 112 - 113 - 11111

J?”

1 1*+ 2 1 1 1
21 2 #2 2j 23 2m

1 1 1* 2 1_ - . . + ,
m1 m2 111 j¥m [[1]

and define a column vector v = (v1,...,vm)' by u' = v'A. Then

it is Shown in [3] that at any time t, the distribution of N(t)

is

N t

-\) (vr) r( )m

n e . (1.5.1)

r=1 (Nr(t)) !

 

That is, the distribution of N(t) is the same as that of m

independent Poisson random variables with parameters v ,v1,... m'

In [17] Ruben considers the problem of estimating the

*

fundamental interaction parameter 0 when the parameters er,1

and pr are known functions of a single parameter 0. The estimate
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*

E.. The probability that a particle moves from Rr to R in

time dt is

*

Nr(t) 1 rdt + o(dt), r = l,...,m.

*

E . The probability that a particle moves from R to Rr in time

dt is

p dt + o(dt), r = l,...,m.

r

E . In time dt, the probability of movement of more than one

particle is o(dt).

 

.. * ...

Let A = I" 11+ .2 11j - 112 - 113 - 11m

Ja‘l

1 1*+ z 1 1 1
21 2 j¥2 2j 23 2m

1 1 1*+ 2 1
m1 n12 . ' m j¢fll mj

and define a column vector v = (V1,...,vm)' by u' = v'A. Then

it is shown in [3] that at any time t, the distribution of N(t)

is

-v (vr)Nr(t)
 

(1.5.1)

r=l (Nr(t)) !

That is, the distribution of N(t) is the same as that of m

independent Poisson random variables with parameters v ,v1,... m'

In [17] Ruben considers the problem of estimating the

*

fundamental interaction parameter 9 when the parameters krs’x

and pr are known functions of a single parameter 0. The estimate
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is based on the difference of consecutive observations on the

process N(t) taken at equal intervals of time and is called

Mean Square Consecutive Fluctuation (M.S.C.F.) estimate.

Let N(T), N(2T),...,N(kT) be k observations on the process

N(t) at times T, 27,...,kT reSpectively and let

E(N(t) - v) (N(t) - v)’ = E

and (1.5.2)

E(N(t) - v) (N(t+T) - v)‘ = P(T) 2.

-At
Here P(t) = e for t.Z 0

-1
= G K(t)G

where K is the diagonal matrix with diagonal elements

-k1t -kmt

e ,...,e ; kr denoting the real positive eigenvalues

of A and G is the matrix of row eigenvectors of A.

Consider the difference between consecutive observations

q6(1) defined by:

2(1) 2 N(iT) - N((i-1)T) i=2,...,k.

Define

1321. m'1 g'o) 0'1 go)

where Q is the dispersion matrix of 6(1).

m

Then

E D: - 1; for all i = l,...,k. (1.5.3)

The equation (1.5.3) suggests that we use

k
1 2

k-l .E Di - 1 (1.5.4)

as an estimation equation for 9.
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The equation (1.5.4) can be rewritten as

k m

__1__ pq . . ___

m(k-l) 122 p i=0 9 6p(1) 6q(1) 1 (1.5.5)

where qu is the (p,q)th element of Q-l.

If the quantities vr entering in the Specification of Q

are unknown, then their unbiased estimates are given by

Q = N(iT). (1.5.6)

l
l
e
‘

1

k i 1

The estimation equation (1.5.4) or (1.5.5) is a transcendental

qu are functions of 9) and cannot thereforeequation in 0 (the

be solved explicitly. However, a numerical solution can be

found.

Ruben also derived the large sample variance of the

M.S.C.F. estimate and considered three particular cases;

namely, (a) known ratio of vr, (b) the symmetric model, and

(c) the symmetric linear model. Finally Ruben discussed the

large sample efficiency in model (c) in the limiting case

v a w, for j = l,...,m.



CHAPTER 2

SOME ASPECTS OF THE STOCHASTIC MODEL FOR THE ATTACHMENT 0F PHAGES

TO BACTERIA

2.0. Introduction: In this chapter we study some of the basic
 

properties of the stochastic model for phage attachment to

bacteria, described in section 1.2. In section 2.1 the joint

probability generating function (p.g.f.) of 3(t1) and 3(t2)

(t1 < t2) is derived; this is useful in calculating the mixed

moments of the process used in subsequent work. In section 2.2

we investigate the limiting distribution of p(t) under different

conditions. In section 2.3 we prove a convergence theorem which

is used to obtain the limiting joint distribution of

pal), E(tz),..,rrb1(tk) (t1 < t2 < < tk)

2.1. The Joint_p.g.f. and Moments of C(tl) and E(tz) (t1 < t2):

Let Y(t1,t2,pl,pz) denote the joint p.g.f. of 3(t1) and E(tz)

H r * . “

where pi n 1110 (1 m 1,2)

  
u.

Llrl

*

and m (twp2 I p(t1))be the conditional p.g.f. of 3(t2) given p(t1).

If P(n0,...,nr;t) denotes the probability that there are

n .,nr bacteria with 0,...,r phages attached to them reSpectively

0"

at time t 2_0, then we obtain in the usual way by assumption C,

25.
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dP r-l r-1

'5? = - .2 AinivOP + .2 Xi(ni+l)v0P(n0,...,ni+l,ni+1-l,...,nr;t)

1:0 180

and

* r-1 *

asp-3' E k» (u . - 11 .)fl- . (2.1.2)
atz 190 1 0 2,1+1 21 auzi

This is a particular case of a p.g.f. for the multivariate Markov

process first considered by Bartlett [3] and can be easily solved.

We now proceed to solve (2.1.2). The auxiliary equations are

  

      

dt du * du .

——2-= 2r: fli—a 21 (i=0,...,r-1)

‘1 O 0 A1V0(“2 1+1'“21)
’ (2.1.3)

These can be rewritten as

dt2 I u20 = Vo I X0 '10 U20

11 -11

u2,t-1 )‘r-l -Ar-l Ul2,r-1

“FZr _I I_ Xr_[:br d

= VOLEZ (2.1.4)

The solution of (2.1.4) is of the form

eDLp(tl’t2)u z c (2.1.5)
m2

where c is a constant column vector, L the matrix array of 1i and

t2

p(t1:t2) = I VO(T)dT.

t1
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Thus we have

* _ * ‘Lp(t1:t2) .
m (t2,sz€(t1)) — m0 (e 52) (2.1.6)

*

where m0 is some suitable function of the new variables.

*

To determine the form of mo we take into account the

fact that

, r ni(t1>

v (t1,3213<t1>) = .30 u21 , (2.1.7)

then we have

Lp<t ,t > r -Lp(t ,t ) “i‘t1)
* - l 2 l 2 .

(PO (8 32) = n (e 152% (2.1.8)

i=0

-Lp(t1)t2)

where (e €2)i is the ith element of the column vector

e 32. We now proceed to calculate it. Since by

assumption 11's are distinct and non-negative, the matrix L

can be written in the form

L2 NAM==N F10 M (2.1.9)

11

X

_ r-J  
where N = M-1 and M is the matrix whose rows are eigenvectors of L

corre3ponding to the eigenvalues 10,...,1r reSpectively. It is
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easy to see that

j-l 1

S a 0

N11 _ l Nij u 3:; xsmxj (r‘z J > 1)

J' 1 . .
M11 “ 1 Mij " ..izl (r.Z J > 1). (2.1.10)

s=i+1 1 -1.

s 1

In part1cular,Nir = 1 for all 1 = 0,...,r and Mir = - TEE—IMIr-l

for i = 0,...,r-1. It follows from (2.15?) that

—Lp(t t ) -Ap(t t )
1’ 2 1’ 2

e ’92 = N e M792 , (2.1.11)

’Lp(t12t2) .. DAMtI’tZ) "’ (2-1-12)

L91: 8 = N e ’ M = Ilaij(t1)t2)II

r

where aij(tl’t2) = 0 for 1 > j and janij(t1,t2) = l for all

T a 0,...,r. Hence we see from (2.1.7) and (2.1.11), that

n1(t1)
(t1,t2)u2j ) , (2.1.13)

which gives

Wt1’t2 ; 31’32) 3 E g 301(t1) ( é aij(tl’t2)u2j)uli ]

W (2.1.14)

It is clear from (2.1.13) that the conditional distribution of

E(tz) given E(tl) is the same as that of the sum of (r+l)

independent random variables Such that the jth random variable

has a multinomial distribution with parameter nj(t1) and

probabilities aj0(t1,t2),...,ajr(t1,t2).
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Next we proceed to calculate the second order

mixed moments which will be needed in subsequent work.

[IEvaluation of elements of R(t ,t ) E n(t ) n'(t )

12 mlmz

i! ll Ena(t1)nB(t2)II.

Differentiating Y(t1,t u2) with respect to u and u and
2T1h 1a 25

llputtingrp = u l where l is the column vector, we get
1 m2 m m

r

E na(t1) nB(t2) a n00(nOO-1) a0a(t1)[iz aOi(t1)aiB(tl,t2)]if B < o

=5

3 H00 30o(tl) aas(t1’t2)

v r ( \

+ “00(“00'1) 80a(t1) E i28301~t1’aie(t1’t2> 3

if B_? o (2.1.15)

- Ap(t ) -Ap(t )-Ap(t ,t )

Since N e 2 M = N e 1 1 2 M

I p(t ) ‘ p(t 3t )

= N e 1 M N e 1 2 M ,

that is,

Ilaij(t2)ll = IIaij(t1) II IIaij(t1)t2) II 2

then we have

r .

301(t2) = Z an(t1) ajk(t1’t2) for 1 — 0,...,r

i=0

Therefore (2.1.15) can be written as:

= ( - .' < .E na(t1) nB(t2) n00\n00 l) 80o(tl) aOB(t2) if B o

n00 30o(tl) aoB (t1’t2)

+ nOO(nOO-l) 800(t1) aOB(t2) if 8 2:0. (2.1.16)
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This gives

Cov “o(t1)n8(t2) = - n00 a01(t1) 306(t2) if B < a.

= n00 a0y(t1) {aae(t1,t2)-aoe(t2)}

if 5202. (2.1.17)

2.2. General Discussion of the Model: We have shown that for
 

fixed t, 0 S_t‘5 to, n(t) has a multinomial distribution with

’\J

parametertboand probabilities a00(t),...,a0r(t) where

j C O O O

j-1 r r-1 -(r-1)op(t)

.0j(t) = .2 <-1) < i > < . > e
1=0 J-l

These probabilities are functions of n O,m, and t; that is, they

0

depend on the initial concentration of bacteria, the multiplicity

of phages and the duration of the experiment. In this section

we confirm mathematically certain experimental facts. For

example, we consider the limiting behavior of the probability

distribution of n(t) when m, the multiplicity of phages, is

large, and prove that in a short time all bacteria are saturated

with the maximum of r phages, as is known experimentally. The

following cases are considered:

(a) Let m-# m, keeping t fixed. Then u = n (r—m) d -m as m- w.

 

00

-mt

Since p(t) = é-log ( iEEIEL'——') 5

a (t) = f (411‘1 < r > ( r'i > < r‘m >r'i
0j i=0 ‘ i j-i r-m exp(-uyt)
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and

a0r(t) d l

as m tends to infinity, that is, if the multiplicity of phages

is large, then in a Short time all bacteria are saturated by the

maximum of r phages.

(b) If m is small and fixed, then m exp(-pat) is very small and

l r

P(t) 31; 10g 1:;

(the Signgimeans approximate equality). In this case we get a

fixed distribution after some time. In fact in a Short time all

the phages attach themselves to bacteria and no more phages are

left. Therefore further observations do not give us any more

information.

(c) Thus we see that if m is very large, then in a short time

all the bacteria are saturated by the maximum of r phages, and

if m is small, then in a short time all phages attach themselves

to bacteria and no more phages are left. To avoid both these

extreme cases, we choose m less than r in such a way that the

product n -m) is constant; this proves to be an interesting

00<r

case. We shall assume throughout that m (the multiplicity of

phages) is such that

n00(r-m) = no > 0 (2.2.1)

is constant.

If (2.2.1) is satisfied, it is clear from (1.2.12) that the

distribution of n(t) tends to a multivariate normal distribution.

'12
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More precisely, if

nj(t) - nOOaOi(t)

 

l§j(t) =

then as n00 tends to infinity, the joint distribution of

§O(t),...,§r(t) tends to a multivariate normal distribution

with means zero and covariance matrix

W11 = II zij II where

2.. = 1
11

and

z aOi(t)aoj(t) ‘%

 

ij‘ "(1-a0,(t))<1-a0j<t1>’ ’

i # j.

2.3. A Useful Convergence Theorem: In this section we prove a

convergence theorem which is used in the next section to derive

the limiting joint distribution of E(tl),...,’p(tk),t1 < ,...,< tk.

For the formulation of our theorem, we require the notion of

UC* convergence. The notion of the UC* convergence has been

introduced by Parzen in [13]; we use a slightly different defini-

tion of it, already given by Sethuraman [18]. Let vn(0,'),

n = 0,1,... be a family of sequences of probability measures on

R the Euclidean Space of k dimensions. Assume that 8 takes
k)

values in a compact metric space I. Let Yn(u,9) denote the

m

characteristic function (c.f.) of vn(0,°), that is,

“(3,6) = I exp(i p'pwnmmm) n = 0,1,... (2.3.1)

Rk
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Definition (Sethuraman): The family of sequences Vn(°;') is said

* *

to converge in the UC sense to vo(6,') (denoted by UC ) relative

to 6 e I as n tends to infinity if

(a) 3:1 I In)?” ' 1’0“?” I " 0 as n00 " ”2

(b) Y0(u,8) is equicontinuous in 6 at u = 0;

m m

and

(c) YO(U,9) is a continuous function of 6 for each u.

m m

We shall also require the notion of weak convergence of

distribution functions (d.f.g). Let Fn(x)(n = 0,1,...) be a

sequence of d.f.'S. We say that Fn(x) converges weakly

(denoted by Fn(x) w F0(xX)to F0(x) if If(x)an(x) tends to

If(x)dFO(x) as n tends to infinity for all bounded continuous

functions.

Now let Hn(x1,...,xk) (n = 0,1,...) be a sequence of

distribution functions (d.f.'S) in 111.1 + ... mk = m dimensional

. 1 ._
Euclidean Space R.m where xi 6 Rmi. Also let Hn(x1) (n—0,1,...)

be the correSponding sequence of the marginal d.f.'S and

H:(inx1...xi_1) (n = 0,1,...) be the sequences of the conditional

d.f.'S (i = 2,...,k). Then we have the following theorem

' l 1
Theorem 2.3.1. If (a) Hn(x1) w H0(x1) , and
 

i * i

(b) Hn(inx1,...,xi_1) Us H0(inx1,...,xi_1)

relative to (x1,...,xi_1) e I where I is any compact subset of

Rm + ... + m. ,and i = 2,...,k,

1 1-1
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then

Hn(x1,. .,xk) w H0(x1,...,xk)

x1 1 k

=I; H0(dx1) ..... 2E H0(dkux1,...,xk_1)-

The proof of this theorem depends on the following result

due to Sethuraman [18]. Let Fn(x1,x2) (n = 0,1,...) be a

sequence of d.f.'S. Also let F;(x1) and F:(x2Ix1) (n=0,l,...)

be the correSponding sequences of the marginal and the conditional

d.f.'S, respectively.

Theorem (Sethuraman): If (a) F:(x1) w F3(x1), and

(b) F2(x Ix) 00* F2(x Ix)
n 2 1 w 0 2 1

relative to x1 6 I where I is any compact subset of Rp and xzeRq,

then

Fn(x1’x2) 1' F0(x1’x2>

x1 x2 2

= I F0(dx1) I F0(dx2Ix1).

0 0

Now we prove the theorem 2.3.1.

Proof of theorem 2.3.1: We prove this theorem by induction. The

result is true for k = 2 by Sethuraman's theorem. Suppose it is

true for k, then again by Sethuraman's theorem it is true for k1+ l.
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2.4. The Limiting Joint Distribution of E(tl)""’n(tk): Let

1, m
 

n(t ),...,n(t ) be k observations on the process n(t) and let

m 1 m k m

“1(51) ' “00301(tj)
 

  

§.(t.) = ‘1

1 J {“00301(tj)(1‘a01(tj)) I:

and 5.01.1) = I§O(tj)7 and 5 = S0031)

slop

srctl)

J's'ruj)

took)

§r(tk)

L ._  
Also let W = E(gg'), that is, W is a square matrix of order

mm

k(r+l). It is the covariance matrix of the random vectorq§.

r

Further 2 §i(tj) = 0 for j = l,...,k; that is, the random

i=0

vector 5 takes values in rk-dimensional subspace and W is a

m

. . 2
singular matrix of rank rk. The matrix W con51sts of k

submatrices Wij (i,j = l,...,k) each of order (n+1) where

Wjj = E(N(tj)§'(tj))

and

W.. = E(§(t.) '(tj)) (i 9‘ J' = 1:'°°:k)
1] 1r»
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Before deriving the limiting joint distribution of

,p(t1),...,p(tk), we prove several lemmas which are used for

proving that the conditional distribution of §(t2) given

* m

§(t1) = E(tl) converges in the UC sense relative to any

’1:

compact set I to a multivariate normal distribution (t1 < t2).

Lemma 2.4.1: The c.f. of’€(t2) givenf5(t1) =.§(t1) is given by

Tammy, I 3“?)

1. .1

= exp[-i no: ; (lag-(ti)))2 u2.

j=0 "303‘ 2 J

1 1

2 a —

{“00301(t1) + Kim) “00 a0, (t1) (1-aOi(t1))2 } x

H

r

+ 2

i=0

1 { E a (t t ) ( i u2j 1 )}]08 - , exp " '(2.4.l)

i=0 i3 1 2 (n00a0,<t2)<1-a0j<t,>>>2

 

Proof: As remarked in section 2.1, it follows from (2.1.13) that

the conditional distribution of n(tz) given n(tl) is the same as

’b ’\o

that of the sum of (n+1) independent random variables such that

the jth random variable has a multinomial distribution with

parameter nj(t1) and probabil1t1es aj0(t1,t2),...,a. (t1,t2).
Jr

So we have

( ;t |x<t ))
:finOO H 2 m 1
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n(t )--n ('12 )

E(exp[i E “1”2 008DJ 1 1

j=-0 (“003Oj.(t2 )(1--aoj(t2)))2

,§(t1) )

1

E ( l-a0.(t2) ) “2j 3 x
 II

(
D

N

'
U

r
m I

H :
3

u21 1_ ni(t1)

2) 1
“0030. (t2 >(1- a0.<t,>>>
 

r

11E): a.jz(1:1,1: )exp( (n

i=-0 j=—0

N
I
H

where ni(t1) = nOOaOi(t1)+xi(tl)(nOOaOi(t1)(l-aOi(t1)))

 

= exp[-1 1100

1 1.

nOOa0i (t1)+xi (t1
)nm2 aOi (t1)(1'aoi(t1))2

} xN
I
H

r

+ 2 {

i=0

i ugi

Hj‘1’“2 ) ex?‘ (nn00 aojoz2 1(1--a0j<t,>>>

N
I
H

 

r

log{ 2 a

1‘0

)1]

The equation (2.4.1) may be compared with (2.1.13) which gives

the conditional p.g.f. of n(t ) given n(t ).

m2 ’1.1

Lemma 2.4.2: Let C be any compact subset of R the Euclidean
n+1’

Space of (r+l) dimensions. Then for any fixed u

 

m2,

uggofiflmb=QfifiwQ1

00 00

unifromly in x(t1) on C.

Here

50(32‘t2'i‘(t1)

1 l
r _ .7 r a, (t ,t2)U2.

= expEi { 2 Xi(t1) 80i(t1)2 (1-301(C1)) 2 lj 1 J % }

i=0 i=0 (a0j(t,><1-aoj(c,>>
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aij(tl’t2) aijxt1,t2)u2ju2j,

 

r

+ 2 Oil(t ) { 2
l

1 jrj (aOJ(t,>aOJ.<t,)(1-a0J(t,>>(1-aOJ.(t,>))2ll

0

2
- 1. g aij(t1,t2)(l-aij(tl,t2))u21

2 J 80J(t2)(1-80J(t2))

Proof: It is sufficient to prove the theorem for any bounded

closed rectangle C = {E(tl) I x145 xi(t1) 5 xi"; 1 = 0,...,r}

because any compact set can be enclosed by a bounded closed

rectangle and uniform convergence on a set implies uniform

convergence on all subsets of the set.

From (2.4.1), we have

't 1:1100932, 2he 1))

.1

 

. 2 r M(t )

‘ exPE'l n00 JED (1-0a0J.(t2 ))% "2i

1.
r

+ z {“00 301(t1) + "1(t1)(“00801“1)“”01“?”2 } X
i=0

r i “2'

1og< 2 aJJ(t1,t,) exp< J —) J

i=0 (nn00aOJ<t2 1(1- a0J(t2m2

1 1

'2' r ao~<t2> '2'
= exp[-1 1100 ED (f:ggj?2;7- ) u2j
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1

r
.—

+ .20 {n00a01<t1> + xi(c1)(n00a01(c1>(1-a01(c1>>>2 } x
1:

log{l + i f: aii(t1’t2)u2j .1

i=0 (nooaoj(t2><1-aoj(c2)>2

2 2

- l- 5 aij<t1’t2)u23 + .... }] .

2 j=0 “0030j(t2)(1'301(t2))

1 l

— " r a, (t ,t )u

= exp[i{ g xi(t1) aoi (t1)(1-a01(t1))2 z 11 1 2 23 %3

J=O(aoj(t2)(1-aoj(t2)))

 

 

l l l

+ E (a (t ) + nfz x (t ) a 2 (t )(l-a (t )2 ) x

1.0 Oi 1 00 i 1 Oi 1 Oi 1

z aii(tl’t2)aij'(tl’t2)u2ju2j' '%

j¥j' (an(t2)an'(t2)(1'aoj(t2))(l'a03'(t2)))

a .(t ,t )(l-a. (t ,t )

--§1- )3 ail(t1)(21-a (:.L))1 2 ug. + } ,

j Oj 2 Oj 2 J

1 l

. . '3 r 301(t2) 2
Since 1 no0 :0 ( l'aoj(t2) ) u2j
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1
- r r a (t )a. (t ,t ) u

= i n30 Z Z 01 1 11* 1 2 12j

J=0 1=O (a0j(t2)(l-a0j(t2)))2

'21' 1' r aij(tl’t2)u2’
= inoo 2 aOi(t1) 2 J %

J=0 J=0 (aoj(t2)(1—a0j(t2)))

.fl .1 .1

But [n2 x (c ) a2 (c )(l-a (c ))2 1 x
00 i 1 01 1 01 1

aij(t1,t2)aiL(t1,t2)uzjuzj, 1

 Z

j#j' (an(t2)an'(t2)(1-80j(t2))(1-30j'(t2)))2.

2

- %- z aij(tl’t2)(1'aij(t1’t2)“2j } 1

J a0j(t2)(1-a0j(t2))

! I I

tends to zero un'form' ‘ . t for x, S x. t s x, as1 11y 1n x1( 1) 1 1( 1) 1

nOO tends to infinity for i = 0,...r, therefore

:En00(g2;t2|§(t1)) coverges to

.
.
.
;

3' '% r aij(tl’t2)u2‘ 1
exP[i{ 5; xi(t1)<'=lOi (t1)(1-aOi(t1)) 2 l 3}

1 j=O (a0j(t2)(1-aoj(t2)))

 

 

r a (t ,t )a ,(t ,t )u u ,
+ 2 80101) {2 ij 1 2 1L 1 2 212j _21_

i=0 j¥j' (a0j<t2>a0j.(t2)(1-a0j(t2>><1-aoj.(c25»

2

aij£t1,t2)(l-aii(t1,t2)u2j

 

l

2 J 1

a0j(c2>(1-a0j(t2>)
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l

uniformly on C as n00 tends to infinity.

Lemma 2.4.3: §b(u2;t2Ix(t1))is a continuous function of §(t1)

’b ’b

for any fixed 32.

The proof of this lemma is immediate.

Lemma 2.4.4: If f(x,y) is a continuous function on [a,b] X [c,d],

then the family of functions f(x,'), for x 6 [a,b], is equi-

continuous in x at y = y0 e [c,d].

'Egggf: First we note that the function f(x,y) is uniformly

continuous since [a,b] X [c,d] is a compact set. The family of

functions f(x,-), x 6 [a,b], is equicontinuous in x at y = y0

if given 6 > 0, there exists 6(a) (depending only on e) such that

If(x,y) - f(x,y0) I < e if I y - y0 I < 6(a). But such a

6(a) exists since f(x,y) is a uniformly continuous function. Hence

the family f(x,') is equicontinuous at y = yo.

Lemma 2.4.5: 50(32;t2|§(t1)) is equicontinuous in §(t1) e: I at
 

32 = 0 where I is any compact subset of Rr+l'

Proof: It is sufficient to prove the theorem for closed rectangles

I H

I = {§(t1)Ixi(t1) s xi(t1) S xi(t1),i = 0,...,r}. The function

§b(22;t2I§(t1)) is continuous in (§(t1),gz) on I X J where J 18

any closed subset of Rr+l containing the p01nt 32 = 0. Hence by

lemma 2.4.4, the function:§o(gz;t2I§(t1)) is equ1continuous

in 3(t1) at £2 = 0.

Theorem 2.4.1: The conditional distribution of §(t2) given

’b

 

§(t1) =.§(t1) converges in the UC* sense relative to any compact

’b

subsetIof Rr+l to a multivariate normal d.f.
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Proof: SinceZEOgu2;t2L§(t1))is a c.f. of a multivariate normal

d.f., we conclude from the lemmas 2.4.2, 2.4.3, and 2.4.5 that

the conditional d.f. of §(t ) given §(t ) = x(t ) converges in the UC*

I» 2 I» 1 I» 1

sense relative to any compact subset I of Rr+1 to a multivariate

normal d.f.

Lemma 2.4.6: If F(x,Y) is a d.f. such that the marginal d.f.
 

G(x) has the c.f. expE- ] and the conditional d.f.“l 2 c: U U
zijij 111j

. _ ’ . .1
of Y given X - x has the c.f. exp[1 g xj u2j - 2 iZjBijUZiuzj,

I

then the joint d.f. F(X,Y) is multivariate normal d.f.

Proof: The c.f. of F(X,Y) is

expE- %- Z. BijUZiuzj]. E(exp[i g xj(ulj + u2j)] ).

i,J J

_ l. .1

‘ exPE' 2 izjaij (“11 + u21)(“1j + “2j) 2 izjaijUZiUZjJ'

) I

But this is the c.f. of a multivariate normal d.f.

Corollary: If F(x1,...,xk) is a d.f. such that (i) the marginal

-1 z2 i,j alijuliulj] and (ii) thed.f. of X1 has the c.f. eXp[-

conditional d.f. of X1 given X = x1,...,X 1 = x has the c.f.
1 i- 1-1

1
l

exp[i 2 x .u. . - -' 2

j i'lyJ 1)] 2 “i j j"“ij“ij'jyj' J )

for i 2,...,k, then the joint d.f. F(x1,...,xk) is a multi-

variate normal d.f.

Proof: We prove this result by induction. This is true for

k = 2 by the above lemma. Suppose it is true for k, then again

by the above lemma, it is true for k+l.
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Theorem 2.4.2: The joint d.f. of §(t1) and 5(t2) converges

weakly to the multivariate normal d.f. N(O,II 11 12II) as n
- W21 W 2 00

tends to infinity.

Proof: It follows from theorem 2.3.1, that the joint d.f. of

§(t ) and §(t ) converges weakly to a joint d.f. as n tends

m 1 I» 2 00

to infinity. The limiting d.f. is a multivariate normal d.f.

W11 W12
N(0,II II) by lemma 2.4.6 since the marginal d.f. of

W21 w22

§(t1) converges weakly to a multivariate normal d.f. N(O,W11)

N

and by theorem 2.4.1 the conditional d.f. of §(t2) given

§(t1) - 5(t1) converges in the UC* sence relative to any

m

compact subset I of Rr+l to a multivariate normal d.f. whose

c. f. is E09255 I301» .

Now we state and prove the main theorem of this section.

Theorem 2.4.3: The joint d.f. of §(tj)(j = l,...,k) converges

weakly to a multivariate normal d.f. N(O,W) as nOO tends to

infinity.

Proof: (1) It is clear from (1.2.12) that the marginal d.f.

of §(t1) converges weakly to a multivariate normal d.f. N(0,W11).

'b

(i1) From theorem 2.4.1, we know that the conditional

‘ *

d.f. of §(t ) given §(t ) = x(t. ) converges in the UC sense
q, 1 9 1-1 q, 1'].

relative to any compact subset to a multivariate normal d.f.

whose c.f. 15:§O€31;tiL§(ti-l)) as 1100 tends to infinity. This

13 true for 1 = 2,...,k.

(iii) Fr'm the corollary to lemma 2.4.6 and theorem 2.3.1,
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,we conclude that the joint d.f. of 5(t1),...,§(tk) converges

weakly to a multivariate normal d.f. N(O,W) as n00 tends to

infinity.



CHAPTER 3

ESTIMATION OF THE PARAMETER IN THE STOCHASTIC

MODEL FOR PHAGE ATTACHMENT TO BACTERIA.

3.0. Summary: In this chapter we consider the problem of

estimating the parameter a in the stochastic model for the

attachment of phages to bacteria described in section 1.3.

A simple method, of the type originated by Ruben [17], for

estimating the parameter a in this model is described in

section 3.2. The estimate is based on k observations 2ft1)’

...,\n(tk) at times t = jT (T > o,j=1,...k) and is shown to

J

be consistent and asymptotically normally distributed. In

section 3.6 we study the efficiency of the estimate.

3.1. Introduction: The stochastic model for phage attach-

ment to bacteria gives rise to a multivariate stochastic

process n(t), depending on a single unknown parameter a.

This process R(t) is Markovian and its transition probabilities

are functions of a. For a Markov process in general it does

not seem unrealistic to expect that relatively efficient

estimates for the transition probabilities, hence for the

parameter a, may sometimes be obtained from the consecutive

differences of the relative frequencies observed at discrete

points in time. Following Ruben we call such an estimate the

Mean Square Consecutive Fluctuation(M.S.C.F.) estimate.

45.
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Consider the differences

Fd<i)“=—1—Fn(t>-n<c T
O n00 O i O i-l

    
d (i) n (t.) - n (t )
r r 1 r i-l

_ J 1_ J

r

Since 2 dj(i) = O, the covariance matrix of (d0(i),...,dr(i))

j=o

is singular. Hence we base our method on the differences

531 = I. d0(i) _= ITI— T “o(ti) ' “Gui-l) T
00

dr-l(i) nr-l(ti) - nr-l(ti-l)    
We remark here that the covariance matrix R = E(d.d:)

i mlml

of Si is non-singular. For, suppose the covariance matrix of

Si is singular, then there exists a linear relation

r-1

2 a d.(i) = 5 (3.1.1)

jgon 0

with probability one. That is,

r-l r-1

2 ajn.(t.) = janjnj(ti_1) + BOnOO' (3.1.2)

But this means that given n0(ti_ ),---,nr(ti_1), the random

1

variables n0(ti)""’nr-l(ti) can take only such values as

satisfy (3.1.2); but this is not true, as is shown below.
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* '1: 'k c

From (3.1.2), for somete (t) = (n0(ti),...,nr(ti)) , we have

r-l * r-1

2 or n.(ti) = 2 a.n.(t3-0 j J j=0 J J i-l) + BOnOO = constant. (3.1.3)

_ ‘k * * 9: '

A180 E(ti) - (n0(ti) + 1, n1(ti) ’ 1; n2(ti))°--)n (ti))

satisfies (3.1.2), hence we have from (3.1.3)

r-l'

r-l

But this implies that with probability one 2 nj(ti) is a

i=0

constant, and hence nr(ti) is also a constant, given,€(ti 1).

This is a contradiction. This completes our proof that the

covariance matrix Ri offldi is non-singular.

Also Ripq(a) = E(dp(i)dq(i)), is a linear function of

'

an(ti)’ a0j(ti-l) and ajk(ti-l’ti)' But the ajk Eiare

transcendental functions of 0. Hence Ripq is not constant

for all values of a.

In section 3.2 we describe an estimation procedure based

on the differenceslsi(i = l,...k). This procedure is originally

due to Ruben [l7] and has been used by Ruben for estimating the

interaction parameter in the emigration-immigration process.

In section 3.5 we prove that this method of estimation yields

a consistent estimate satisfying certain conditions. Then we
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obtain a lower limit to the asymptotic variance of a consistent

estimate satisfying certain conditions, and use our result to

obtain the asymptotic efficiency of the estimate. Finally we

indicate a simplermethod of estimating the parameter or. The

modified method of estimation yields an estimate with the same

properties as that obtained by the original procedure.

3.2. Derivation of the Estimation Equation: Let n(tl),...,n(tk)

be k observations on the process n(t) at times tj = jT(j=l,...,k).

    

Let

.. r . ‘1 _ _lt.1’ - '

qi ' Ido(1) ’ n00 “o(ti) n0(ti-l)

Lér-l(ili .Lnr-l(ti) - nr-l(ti-IZI

and let Ri = E(gidi'). Thus, R1 = IIRiquI = II Edp(i)dq(i) II

where

- _ _l_E(dp(i) dq<1>>- E{ n, (“p(t1) - np(ci_1>><nq<c1) - nq(ti-l))}

OO

1 2

- 2 [n 00 aOp(ti) an(t') - nOO a0p(ti) an(ti)n 1

OO

' noo an(ti-l) aqp(ti-1’ti) ' “00(“00'1)aoq(t1-1)30p(ti)

n00 aOp(ti-l) apq(ti-l’ti) ' “00(“oo'l) a0p(ti-l)an(ti)

2

+ n 00 aOp(ti-1) a0q(ti-l) ' noo aOp(ti-l) an(ti-1)]

and, we have

1 -1

-

.2.E[«- 2,1 R. d.] — l. (3 l)
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The equation (3.2.1) is true for all values of i,i=l,...,k.

This suggeSts that we use

1 k

rk 2
i=1

1 R-1
d. d. = 1 3.2.201"; ()

as an estimation equation; this may be rewritten as

1 k r-l

1:1:— 2 2 Rpiq d (1):: (1) = 1 (3.2.3)

i=1 qu=O P q

where Riq denotes the (p,q)th element of Ri-1

Any solution of (3.2.2) or (3.2.3) which effectively depends

' n (t )

on the relative frequencies qi(tj) =-i;-l- may be taken as

00

an estimate of a. It may be noted that the estimation equation

is a transcendental equation in a and therefore in general can-

not be solved explicitly. However, a numerical solution may be

found.

3.3. Preliminary Results: The purpose of this section is to
 

prove that consistent estimates satisfying assumption F are

asymptotically normally distributed, and to obtain a sufficient

condition for such an estimate to have a minimum asymptotic

variance. Let

= , v

V [300(tl),...,do’r_l(t1),...,ao’r_l(tk)]

and T = N") be a function of V- Also

let

q = [q0(tl).-...qr_1(tl).---.qr_1(tk)] .
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and

v =15! = 3300(t1) Bao r-l(tl) aao r-l(tk)]'
0 ad 30’ J 2 Ba 2 2 ad

Further, let

W0 = nOOE( (q-V) (Cl-V) ' ) -

Assumption F: Assume that T admits continuous first partial

derivatives,with reSpect to all qi(tj) (i=0,...,r-l; j=1,...,k).

Theorem 3.3.1: If T(q) is a consistent estimate of a

satisfying assumption F, then we have the following:

(i) T(V) = a,

1

(ii) n30 (T(q) - a) is asymptotically normally distributed

with mean zero and variance T'WOT, where

T=[i!7___ 5T 8T... ... 1' \

3300(t1) ’ ’ aao,r-1(t1)’ ’ aaO,r-l(tk) ,

and

(iii) a sufficient condition for T(q) to have a minimum

1 ' -l . ,
variance is that T' = 5— VO W0 ; moreover, the minimum variance

is El where

0

Proof: Expanding T(q) by Taylor’s series about the point V
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up to first order terms, we have

T(q) = T(V) + 2 (q.(t.) - aO ij(t )) [L 1 (3.3.1)
i)j 1 J aq. (t. ) qi(tj)

where q:(tj) e (qi(tj)’ aOi(tj))'

Part (i) of the theorem follows from (3.3.1) since T(q) is

a consistent estimate of a, qi(tj) converges in probability to

5T .
aOi(tj) as n00 tends to infinity and aqi(tj) is a bounded

function of q. 1

It follows from Rao [l4,§5e] that n30 (T(q)-a) is

asymptotically normally distributed with mean zero and variance

T'WOT since the asymptotic distribution of q is a multivariate

normal. This proves part (ii) of the theorem.

Differentiating T(V) = a with respect to a, we get

T'VO = 1,4 Let T0(q) be any estimate of a which is consistent

and satisfies assumption F, and let

6T 3T 6T 1

T = D——9——- ,..., 0 ,..., 0 ] .

O 5300(t1) aao,r-1(t1) aaO,r-l(tk)

  

Then (TO - T)’ WO(TO - T) is non-negative and

- ' -(TO T) WO(TO T) T W T -T W T—T 'W T +T 'W T.
o o o o o o 0 o

l -l l I
= ' - — -

Toono cO Towowo V0 c0VOW01W0T0+TwoT

' I
TOWOTO T WOT.

This proves part (iii) of the theorem.
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It is easy to check that the minimum variance is '%- .

0

Remark: Thus we have obtained a lower limit to the asymptotic

variance of a consistent estimate satisfying assumption F. In

section 3.5 we show that the estimation equation (3.2.2) has a

root satisfying assumption F, and use the result of our theorem

to study the efficiency 0f the M.S.C.F. estimate.

3.4. An Extension of the Implicit Function Theorem: In this

section we prove a lemma which is an extension of the implicit

function theorem. A similar extension is given by Ferguson in

[7]. Proof of our lemma is essentially the same as that ofa

lemma due to Ferguson on page 1052 in [7]. First we state the

implicit function theorem which may be found in [19], page 244

from which the lemma will follow.

Implicit Function Theorem: Let x = (x1,...,xn) and let F(x,z)

be defined on an Open set B containing the point (a,c). Suppose

that F has continuous partial derivatives in B. Also assume

that

F(a,c) = o (53-) o.

3“ (a,c)*

Then, there exists a neighbourhood

A(a,c) = {(x,z) I Ixi - ail < Ai’ i=l,...,n; lz-cI < C}

such that the following are true:

Let N(a) = {XI lxi-ail < Ai’ i=l,.,n}, then

(i) for any x e N(a), there is a unique 2 such that

Iz-cl < C and F(x,z) = O.
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Let us express this dependence of 2 on x by z = f(x).

(ii) The function f is continuous in N.

(iii) The function f has continuous first partial derivatives.

Remark: It follows from (i), that

f(a) = c. (3.4-1)

Lemma 3.4.1: Let x = (x1,..,xn) and let F(x,z) be a function

defined on the open set

B = {XI-l < xi < l, i = l,...,n; z e D = (O,m)}.

A180 let p(z) be a function from D into the set

A = {:4 -l<xi< 1, i = l,...,n}.

Assume that

(i) p(z) is one-to-one and inversely continuous.

(ii) F(x,z) is continuous and has continuous first

partial derivatives with reSpect to x ..,xn and z.
1"

(m) F(p(z),z) = o and (5%) +0 for all z e D.

5 (WM)

Then, there exists a neighbourhood N of the set S= [p(z)|zeD}

and a unique function f from the set A into the set D such that

(a) f is continuous and has continuous first partial

derivatives on N,

(b) f(p(z)) = z for all z e D,

(c) F(x,f(x)) = 0 for all x e N,

(d) there exists a neighbourhood of the curve {@(z),z)|zeD}

in which the only zeros of the function F(x,z) are the points

(x,f(x)).
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Egggfz From the implicit function theorem, for any 2 e D, there

is a neighbourhood N(p(z)) = {XI Ixi-pi(z) I < Ai,i=l,...,n}

of the point p(z) = (p1(z),...,pn(z)) and the unique function

fz (which may, in general, depend on 2) from the set N(p(z))

into the set D such that

(1) f2 is continuous on N(p(z)) and has continuous

first partial derivatives,

(3.4.2)

(11) fz(p<z>) = z,

and

(iii) for any point x e N(p(z)),

F(x,fz(x)) = O and Ifz(x) - z | < CZ. (3.4.3)

That is, for any point x e N(p(z)), fz(x) 6 NZ where

Nz = (z - Cz’ z + CZ)

Since fz is a continuous function, the set f;1(Nz) is an

open set and contains p(z). Also f;1 (Nz) n N(p(z)) is an

open set containing p(z). So we can choose a Spherical

neighbourhood N*(p(z)) of p(z) such that

* -1 -1 *

N (9(2)) sz (NZ) 0 N(p(2)) and p (N (p(2)))C NZ

-1 *

because p is a continuous function. Now if p(zl)eN (p(22))

for any z in D, then p(zl) e p(Nz )

2

but then 21 6 NZ . That is, due to inverse continuity of p

2

and continuity of f2 we can replace the neighbourhood N(p(z))

1’22

*

by the Spherical neighbourhood N (p(z)) with the additional
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property

*

(iv) 1f p(zl) e: N (p(zz» for any 21,22 3 D, then 21 6: N22.

**

Now consider the spherical neighbourhoods N (p(z)) with

*

radii equal to l/3 that of N (p(z)) with centre at p(z). Let

**

N = U N (p(z)). The set N is clearly a neighbourhood of the

25D

set S = {p(z) I z e D}.

o ** **

We will show that if x e N (p(zl) n N (p(zz)), then

fz (x0) = fz (x0). Since n**(p(zl>> n n**<p<zz>) ¢ ¢
1 2

(where ¢ denotes the null set) we have, either

p<21> e u*(p(zz>> (3.4.4)

or

p(zz) e N*<p<zl>>. (3.4.5)

Suppose (3.4.4) is true. Then

F<p<zl>. f22<p<zl)>) = 0.

But F(p(zl), le(p(zl))) = 0 and 21 e Nz2 , hence

fzz(P(zl)) = fZI(P(Zl)) = 21- (3-4.6)

** *

If x e N (p(zl)) flN (p(zz)), then fz is continuous and

2

*

satisfies F(x,f (z)) = 0. Also f (x) e N for x e N (p(z ))
z z z 1

2 l l

and this implies that fz is the unique function, as is shown

1

below, which is continuous and has continuous first partial
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**

derivatives in N (p(zl)) such that

0. (3.4.7)le(p(zl)) = 21 and F(x,le(X))

Suppose g is any other continuous function , having continuous

**

first partial derivatives in N (p(zl)) such that

g(p(zl)) = z1 and F(x,g(x)) = 0.

Let B = {x I fzfx) - g(x) = 0}. Then B is a closed set since

fzfx) - g(x) is a continuous function. Let x e B, then

f (x) = g(x). Since f (x) e N , there exists an Open set G,

z1 z1 21

containing le(x) (hence also g(x)) such that f;:(G) and

g-1(G) are both contained in N(p(zl)). Hence by the implicit

function theorem, fz (x) = g(x) on g-1(G), that is, x is an

1

interior point of B. So B is open. Therefore either B is the

**

null set or the whole set N (p(zl)). Since B is not null, B

**

is N (p(zl)). So fz is a unique continuous function, having

1

*9:

continuous first partial derivatives in N (p(zl)) such that

le(p(zl)) = 21 and F(x,le(x)) = 0. (3.4.8)

Hence f (x0) = f (x0). (3.4.9)

21 z2

. *9: *9:

If x e N = U N (p(z)), then x e N (p(z)) for some 2.

ZeD

Define

f(x) = fz(x).

It may be remarked here that in view of (3.4.9), we may take
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**

any 2 such that x e N (p(z)). Thus we have defined a function

on N. Clearly this function has the properties (a),(b) and (c)

of the lemma. For (d), the neighbourhood can be taken to be

id:

U (N (p(2)) X NZ).

zeD .

3.5. Properties of the M.S.C.F. Estimate: In this section we

consider the question of existence of a root (or roots) of the

estimation equation (3.2.2) and study the analytic properties

of such a root. The idea of studying the analytic properties

of an estimate was initiated by Rao [15] and has been found to

be very useful in the theory of maximum likelihood estimation.

As noted by Rao [15], "In fact, many probability statements

concerning the maximum likelihood estimate are direct conse-

quences of the continuity and differentiability properties of

the maximum likelihood estimate as a function of the observed

relative frequencies." This is also true for the M.S.C.F.

estimate. First we prove that the M.S.C.F. estimate & is a

continuous function of dp(i) dq(i) (i = l,...,k; p,q 0,...r-l)

possessing continuous first partial derivatives with reSpect

to each dp(i) dq(i). Then we deduce the consistency and

asymptotic normality of the M.S.C.F. estimate &.

We need the notion of Fisher Consistency (F.C.).

Definition: A statistic T which is a function of dp(i) dq(i)

(i = l,...,k; p,q = 0,...,r-l) only is F.C. if when the

expected values of dp(i) dq(i), are substituted in T, the

function T identically reduces to the value of the parameter.
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If T is F.C. and is also a continuous function of dp(i)dq(i),

then T converges in probability to a as n tends to infinity,
00

since as shown in (3.5.4), dp(i)dq(i) ‘ R converges in Probability

ipq

to zero as n00 tends to infinity. That is, in this case, F.C.

implies the usual consistency (convergence in probability)

Theorem 3.5.1: (i) As n tends to infinity, there exists, with
00

probability tending to one, one and only one function & of

dp(i)dq(i) (i = l,...,k; p,q = 0,...,r-l) which satisfies the

estimation equation (3.2.2) and has the following properties,

(ii) & possesses continuous first partial

derivatives with reSpect to all dp(i)dq(i), (111) &(R(a)) =0; for all

a e D (which implies that &(d) is a consistent estimate of a),

1

(iv) n30 (& - a) is asymptotically normally

distributed with mean zero and variance 02(a) as n00 tends

to infinity, where 02(a) is defined in (3.5.6).

Before we present the proof of this theorem, we make a

few remarks.

Remark 1: (t) is a one-to-one continuous function of a for

800

any fixed t.

Proof: We have from (1.2.6)

r- r

300“) = ( r-m exp(-n00(r-m)at)) '

Clearly a00(t) is a continuous function of 0. Suppose a1# 02

( r-m exp(-n00(r-m)mf) r-m exp(-n00(r-m)a2t)



59.

or m exp(-n00(r-m)alt) = m.exp(-n00(r-m)azt). (3.5.1)

But (3.5.1) implies that 01 = a2. This proves the one-to-one

continuit of a (t).

y 00

Remark 2: Let d be a vector whose elements are dp(i)dq(i)

(i = l,...,k; p,q = 0,...,r-l) and R(a) = E(d). Then R(a) is

a one-to-one continuous function of a.

Proof: Clearly R(a) is a continuous function of 0 because

Ripq(a) (i = l,...,k; p,q = 0,...,r-l) is a continuous function

of 0. Now R(a) is a one-to-one function of a if one element of

R(a) is a one-to-one function of a. We show that R100(a) is a

one-to-one function of a. Be definition

R (m)=n'2 E(n(t)-n )2
100 00 O l 00

300(t1) (1 - a00(t1))

n

 

2

=(l-a(t))+

00 1 00

Clearly R100(a) is a one-to-one function of a00(t1) which is a

one-to-one function of 0. Hence R100(a) is a one-to-one function

of a.’

Remark 3: If f(x) = (f1(x),...,fk(x)) is a one-to-one continuous

vector valued function of a real variable x, then f(x) is inversely

continuous if one of the functions f1(x),...,f (x) is one-to-one

and inversely continuous.

nggf: Suppose f1(x) is one-to-one and inversely continuous.

Let fn(x0); n = 0,1,... be a sequence of points in the range

Space of f(x) such that fn(x0) tends fo(x0) as n tends to infinity.

Then f:1(x0) tends to ff)(x0). Due to the inverse continuity of

-l n -l O _
f1(x), f1 (f1 (x0) tends to fO (f1(x0)) - x0. But
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(f )-1(fn(x0)) = fi1(f?(xo), hence (ffi)-1(fn(xo)) tends to xO

as n tends to infinity. This proves remark 3.

Remark 4: In view of remarks 2 and 3, R(a) is a one-to-one and

bicontinuous function of a.

Proof of Theorem 3.5.1, (i) and (ii): The estimation equation is

1 pq . .
-'2 2 R. d 1 d 1 - l = O .1 p()qu
rk .

1 P:q

The expression on the left hand side of the above equation is

a function of d and a. Denote this function by F(d,a).

By assumption B2, a e (0,”). The function R(a) is a one-to-

one and inversely continuous function of a as shown above. Also

the function F(d,a) is continuous in d and a. Clearly‘gg exists

and is given by

pq
.QE = l_.z z 5R1 d (i)d (1)
ad rk i p,q 50 p q

which is a continuous function of d and 0. Also the derivatives

 

.bE . .
a(d (i)d (1))ex1st and are continuous. We have

P q

2 z R.pq R, = rk. (3.5.2)
. 1 1pq

1 P:q

Differentiating (3.5.2) with reSpect to a, we get

Pq

5R 3R.

2 2 333 Ripq=-2 2:18;“ 3013‘!

i qu i P29

= _ ..L

‘
4
0
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Thus we see that all the conditions of lemma 3.4.1 are satisfied-

Hence there exists a neighbourhood N of the set S =[R(a)laeD}

and a unique function &(d) from N to D such that

(a) &(d) is continuous and has continuous first partial

derivatives,

(b) &(R(a)) = a for all a e D,

(c) F(R(a),a) - 1 = O for all R(a) e N,

(d) there exists a neighbourhood of the curve {(R(a),a)|aeD}

in which the only zeros of the function F(x,z) are the points

(d;&(d)).

Thus we see that for d e N, the estimation equation has one and

only one root &(d) which possesses the properties mentioned in

(a) through d . B defin’tion R, = E d i d i( > y x lpq ( p( > q( >)

53 E(np<ti) - np(ti-1)) (nq(ti) - nq(ti-l))

D: E[np(ti)nq(ti) - n (ti_1)nq(ti)-np(ti)nq(ti_1)

P

+ np(ti_1)nq(ti_1)]

-ZEnZ a (t )a (t ) - n a (t ) a (t )

OO 00 Op i Oq i 00 0p 1 Oq i

00 30q(ti-1)aqp(ti—1’ti)'“oo(“oo’1)30q(ti-1)aop(ti)

(t )
00 a0p i apq(ti-1’ti)'“oo(“oo'1)30p(ti)80q(t1)

2

00 aop(ti-1)"0q(ti-l)”"r‘ooaopfl‘i-1>"“0q(ti-1):|

1 1

(a0p<t.> - a0p<ti_1>>(aoq(t.) - a0q<ti_1>) (3.5.3)
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as n00 tends to infinity.

Also

dp<i>dq<i) n5§<npcti)-np(ti_1>>(nq<ti)-nq<ti_1))

b
u (aop<ti)-aop<ti_1)>(a0q(ti)-aoq(ci_1)> (3.5.4)

as nOO tends to infinity.

Hence from (3.5.3) and (3.5.4), we have

R P 0 (3.5.5)

dp(i)dq(i) ipq -'

as n00 tends to infinity.

Therefore given e,fl positive, there exists n(e,n) such that

for n00 > n(e,n)

P(Id-RI < e) > 1-1].

Hence with probability tending to one, as n00 tends to infinity

the estimation equation has one and only one root which possesses

the properties mentioned in the theorem.

Proof of (iii): If follows from (b) that &(d) is F.C. Since
 

x ; , P

G(d) is a continuous function of d,and dp(i)dq(i) . Ripq + 0 as n00

tends to infinity, &(d) P'a as n tends to infinity. That is,
00

'o(d) is consistent.’

Proof of4(iv): To prove this part of the theorem, we need the
 

following lemma:

 

Lemma 3.5.1: If Xn - Yn‘g 0 and Fn(x) H F(x), then

Gn(x) W F(x) where Fn(x) = P(X.n s x) and Gn(x) = P(Yn s x).

This is a well kniwn result.
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By Taylor's firmula, we have

O(&(d) - a) = n2  

O
S
N
I
o
-
d

O 2 E (dp (i)dq (i)- m)[ J
i p,q 3(dp(i)dq(i)) d*0

where d: is a point on the line segment joining d and R. Let

2

Xn00=n00 E pzq(80q(ti)'80q(ti-1))[np(ti)'“p(ti-1)’aop(ti)'aop(ti-1)J'

But

(i) n63(nq(ti)-nq(ti g (a0q(ti)-a0q(ti_1)) as n00 —. on;

(ii) we know from (3.5.3), that

Ripq -+ (aOp(ti) - aOp(ti-1)) (aoq(ti) - an(ti-1))

as n00 tends to infinity; and

 (iii) [ <—5§ . 1 *.§ -j£L-
a(dp(1)dq(1)) d aRipq

as n00 tends to infinity, since &(d) has continuous partial

derivatives. Clearly (i),(ii) and (iii) imply that

n (& -(y) - X converges in probability to zero as n

00 n00

tends to infinity. But it follows from Rao[l4,§ 5e] that Xn

00

00

is asymptotically normally distributed with mean zero and

variance 02(a) since X.n is a linear function of normally

00

distributed random variables. Here

 

2 2 [Riq REE] ] A‘ilAqi'E(Xp (i)Xp ,(i'))

.,.' J L 'q'

02(0): 1 1 P Q,P aRqu_fi 2

( Z 2 -- R ) (3.5.6)

i pq aa ipq

1

2
. = - - - dwhere Xp(1) n00 ( np(ti) np(ti-1) aop(ti) aOp(ti—1)) an
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q-
Ai — (a0q(t.) (ti-1))'

i - an

1

Hence n30 (& - a) is asymptotically normally distributed with

mean zero and variance 02(a).

3.6. Efficiency of the M.S.C.F. Estimate: We now discuss the

asymptotic efficiency of the M.S.C.F. estimate &. In the

theorem 3.5.1. we proved that the M.S.C.F. estimate & is

asymptotically normally distributed with mean a and variance

1
;- 02(a). In section 3.3 we considered the whole class of

00

consistent estimates satisfying assymption F and proved that

the variance of a consistent estimate is greater than or equal

to %— .

0

Hence the efficiency of the M.S.C.F. estimate & of a is

1

given by 'ESSESEEZE)

3.7. A Modified Estimation Procedure: The estimation procedure

described in section 3.2. is somewhat lengthy and is not suit-

able for numerical computation. 'In practice the value of r

(the maximum number of phages that can become attached to a

bacterium) is usually quite large (for example, 130 or 140),

and this requires the inversion of a 140 X 140 matrix. In this

section we describe a simpka:method which is essentially a

modification of the method described in 3.2.

The modification consists in pooling the data in p classes.

Let r be p positive integers such that r1 +...+rp = r-l1,...,rp

and let
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r

m0(t) = .2 nj(t)

J=0

r2

m(t) = 2 n.(t)

1 '=r +1 J

J 1

r1+.+rp

m (t) = 2 n.(t).

p j=r++r +1 J
l ' p-l

In practice, we may take p = 4 from the point of view of

numerical calculation.

Modified Estimation Equation:

1

I100

Let Q (i) = Fmoui) - m0(ti_1)]

mp(ti) - mp(ti-1)

  
and “1 = E(S i)€(i) ), then we have

1 ' -1 _

Emmni f(ifl' 1'’b

The equation (3.7.1) is true for all values of i, i = 1,..

This suggest that we use

4— 12; 5' n'1 a )= 1
pk i 1M1) i «.(i) ’

as an estimation equation.

(3.7.1)

.,k.

(3.7.2)

The estimation equation (3.7.2) may
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be rewritten as

l k p pq
—— 5: 2 n 5 5 =1 (3.7.3)
pk i=1 p q=0 1 p(1) q(i)

where nipq denotes the (p,q)th element of ni-l. It may be noted

that the estimation equation (3.7.3) connot be solved explicitly;

however, numerical solutions can be obtained fairly readily. It

is clear that the modified procedure of estimation will yield several

estimates, one of these with the same asymptotic properties as that

obtained by the original procedure described in 3.2.

In general (3.7.3) will have many roots and the problem of

selecting the root satisfying the conditions of theorem 3.5.1 does

not seem to have a simple solution and needs some further investi-

gation.

Suppose a1,...,ap are p roots of (3.7.3), then sometimes it

may be possible to determine p functions 6 ,...,&p of d such that

l

&l(d) = al,...,&p(d) = up. Now according to theorem 3.5.1 there

is one and only one root which possessses the properties (ii) and

(iii) of theorem 3.5.1 and we can select this root by checking

these conditions. This is one possible solution and it is

proposed to study this method in some detail.
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