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ABSTRACT

GENERALIZATION OF NORMAL SHOCK

THEOREMS T0 MAGNETOGASDYNAMICS

WITH RADIATION

by Ram Mohan Srivastava

The present work is primarily concerned with the general-

ization of normal shock theorems by Courant and Friedrichs valid

in isentropic, inviscid, non-heat conducting fluids to radiation-

magnetogasdynamics. In the process, few generalized Rankine-

Hugoniot relations and generalized Prandtl relation have been

derived. Also, the generalized Hugoniot function has been de-

fined, and the shape of the Hugoniot curve in the (p,v)-p1ane

has been determined.

In the main part of this work one-dimensional, uniform,

and steady state flow of an electrically conducting, fully

ionized and compressible gas under a planar magnetic field

perpendicular to the velocity vector has been assumed. Only

first approximations for radiation parameters, for an optically

thick medium, have been considered.

The shape of the Hugoniot curve, in the (p,v)-p1ane, has

been found to be similar to the one in classical gasdynamics.

The generalized Rankine-Hugoniot relations are in implicit

form, hence, successive approximation technique has to be used

to find the corresponding state behind the shock front. Theorems

1 and 3 refer to change in modified entropy across a shock front.

Theorem 2 compares the pressure rise across a shock front to
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that in reversible adiabatic change. Finally, Theorem 4 refers

to the flow velocities in front and behind the shock wave.
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NOMENCLATURE

effective velocity of sound in radiation-magneto-

gasdynamics

Stefan-Boltzmann constant

magnetic flux density

velocity of light

specific heat at constant pressure

specific heat at constant volume

Rosseland diffusion coefficient of radiation

specific internal energy = CvT

total internal energy per unit mass

= ch + 3vpr + vph

electric field

total radiation energy per unit volume = arT

total internal energy per unit mass

1 2

=ch+§u +Er/p

electromagnetic force

magnetic field

Hugoniot function

electric current

mechanical equivalent of heat

electric current density

coefficient of heat conduction

constant = pu

Mach number

critical Mach number

vi



hydrostatic pressure

magnetic praisure

1 2 9

Wt.“ ‘27

radiation pressure

= P + P
r

total pressure

= +p + 91. ph

Prandtl number

total heat flux

Gas Constant

Reynolds number

radiation pressure number

= pr/p

magnetic pressure number

= ph/p

modified entropy

time

absolute temperature

flow velocity

specific volume

space coordinate

ratio of specific heats

=c/c
p v

shock wave thickness

dielectric constant

joule heat

#fi

= E.J

vii



cons tant

==/E;yH

mean free path

Rosseland mean free path of radiation

coefficient of viscosity

magnetic permeability

magnetic diffusivity

density (mass per unit volume)

excess electric charge

electrical conductivity

subscript 1 signifies the state in front of the

shock wave

subscript 2 signifies the state behind the shock

wave

viii



INTRODUCTION

In the magnetogasdynamics, the generalized Rankine-Hugoniot

relations referring to a normal shock have been developed by sev-

eral authors [4, 11, 13, 14]. In the radiation-magnetogasdynamics,

the generalized Rankine-Hugoniot relation, as the ratio of velocities

U

(i.e. 52) only, has been developed by [15, 16]. The normal shock

theoremi, referring to some characteristic properties of normal shock

in classical gasdynamics, have been developed by [2, 6, 28] and

condensed by [3].

In the present work, we derive generalized Rankine-Hugoniot

and Prandtl relations, not covered in [15, 16], in radiation-

magnetogasdynamics. Further, we have generalized the normal shock

theorems of [3] with their proofs, to radiation-magnetogasdynamics.

In Chapter I, some aspects of normal shocks have been dis-

cussed based upon the existing literature and a table of shock

layer thickness have been compiled. In Chapter II the fundamental

equations of radiation-magnetogasdynamics have been collected and

reduced for the case of one-dimensional steady state flow. Chapter

III contains the derivation of the generalized Rankine-Hugoniot

and Prandtl relations. Further, modified first law of thermo-

dynamics and modified Rankine-Hugoniot relations have been in-

troduced in Section (3.4). In addition, several auxiliary in-

equalities have been derived in Section (3.5). In Chapter IV the

generalized Hugoniot function has been defined, and the shape of



the Hugoniot curve has been determined. The crucial part of the

work, i.e., the generalizing the four normal shock theorems with

their proofs, occupies Chapters V to VIII.



I. BRIEF REVIEW OF THE PRESENT STATUS OF THE SHOCK THEORY

1.1 Inviscid Isentropic Flow-Shock and Rankine-Hugoniot Relation

(Continuum):

All the approaches in this chapter are phenomenological. The

considerations referring to the shock phenomena should emphasize

two kinds of assumptions which form the basis of any approach to the

shock theory. The first group refers to the fundamental laws govern-

ing the flow, i.e., three conservation laws and equation of state.

We use a unique nomenclature for these laws, namely fundamental

dynamic laws (f.d.1.). The second group refers to the fundamental

assumptions governing the structure of the shock (f.s.1.).

The Rankine-Hugoniot relation [3, 10, 20, 27] is derived with

f.d.l. as standard laws of ideal, perfect gas. The f.s.l. assume

that the shock is a step-wise transition, in all the variables, of

zero thickness.

1.2 Viscous Flow Shocks in Continuous Media:

Shock in real gases exhibit very steep but continuous

transition from the state 1 to the state 2. As the shock wave

becomes very steep, viscous stresses and heat conduction effects

become appreciable, no matter how small be the coefficient of

viscosity and the coefficient of thermal conductivity, and so a

particle of fluid is subject to diabatic effects. The effects of

viscosity and heat conduction tend to wipe out discontinuities in

velocity and temperature. Therefore these effects control the

thickness of a shock wave. Below, we discuss briefly the funda-

mental assumptions in a few representative works on the subject.

3



In [21] a perfect gas, satisfying f.d.1. with two different

uniform U, P,and T as initial and end boundary conditions, has been

assumed. The f.s.1. assume special functions describing the velocity

distribution inside the shock. The thickness of the shock is obtained

from the entire formalism.

In [23] the "Shock-Thickness Reynolds Number" is derived for

air. The f.d.l. and f.s.1. assumptions are the same as in [21].

The viscosity H has been assumed to be proportional to T“.

In [26] the f.d.l. assumptions are the same as in [21], the

f.s.1. assume that the quotient u/k remains approximately constant

with temperature variation. No other constraints are introduced.

This allows the author to calculate only the upper and lower bounds

of the thickness but not the actual thickness of the shock itself.

In [9] the f.d.l. assumptions are the same as in [21], except

the viscosity terms are retained in the momentum equation and ne-

glected in the energy equation. The f.s.1. assume the inflection

point (i.e. dZu/dx2 = O, at x = 0) inside the shock wave and this

is sufficient for the existence of the transition region. The re-

sults obtained are in close agreement with the exact solutions of

[12, 19] for the structure of the shock wave and its thickness.

1.3 Kinetic Theory Treatment of the Viscous Flow Shocks:

In [1] a perfect gas, whose specific heat is independent of

temperature, satisfies f.d.l. assumptions as that of [21]. The

f.s.1. assumptions are the same as in [9]. The author concludes.

that the thickness of a moderately strong shock is of the order of

mean free path and must be treated directly from the relevant



Boltzmann equation. Whereas very strong shocks have thickness less

than the mean free path and even the Boltzmann equation cannot be

used. Hence, the actual reference in [l] to the kinetic theory is

a recommendation that the kinetic theory equations should be used

in the shock theory.

In [25] it has been pointed out that if the increase of the

coefficients of thermal conductivityand of viscosity with increasing

temperature and pressure is taken into account, then the shock wave

thickness for a perfect gas will never be less than the mean free

path and hence the Boltzmann equation can be applied even for very

strong shocks. The author takes the third approximation to the

Boltzmann equation. The f.d.1. and f.s.1. assumptions are the

same as in [1].

In [12] the conclusions of [25] has been modified for any

gas whose u and k has been assumed to be proportional to Tn,

where n is a positive constant depending only on the gas in

question and for Pr = 3/4. In this paper f.d.1. assumptions are

the same as that in [25] and f.s.1. assumptions are the same as

in [1].

In [8] the author tries to improve the results of [26], by

taking the third approximation to the Boltzmann equation for f.d.1.

and keeping f.s.1. assumptions the same as in [26]. But the author

finds that the bounds of the shock wave thickness are not affected

by the higher order Burnett terms.

1.4 Shocks in Magnetogasdynamics:

The governing relations are derived from the magnetogasdynamic



equations describing the steady, one-dimensional flow of a viscous,

heat conducting, electrically conducting, and compressible gas under

a planar magnetic field perpendicular to the velocity vector (i.e.

velocity and magnetic field vectors are in the same plane but perpen-

dicular one to each other). If the magnetic field vector is parallel

to the velocity vector, then it will not affect the gasdynamic

equations.

In [13] a perfect gas, satisfying f.d.1. and Maxwell's

equations with two different uniform u, p, T, and H as initial and

boundary conditions, has been assumed. The f.s.1. assume that there

is a point of inflection, in the transition region, for all the

variables. As a special case the generalized Rankine-Hugoniot

relations have been derived. Moreover, the structures of the

shock wave of a finite thickness have been considered for a few

special cases.

In [11] the f.d.1. and the f.s.1. assumptions are the same

as in [13] along with Maxwell's equations. The author determines

the shock profile and width of the transition region for a few

Special cases.

1.5 Shocks in Radiation-Magnetogasdynamics:

The governing relations are derived exactly in the same

manner as that for shocks in Magnetogasdynamics, except that the

radiation pressure is added to the gas pressure in the momentum

and energy equations and the radiation field energy is added to

the energy equation.

In [16] the generalized Rankine-Hugoniot, as well as sev-





eral limiting cases of Rankine-Hugoniot relations have been derived.

The f.d.1. assumptions are the same as that of [13]. The f.s.1.

assume that the shock is a step-wise transition, in all the variables,

of zero thickness.

1.6 Fundamental Properties of the Shock Transition:

The literature reviewed in Sections (1.1) to (1.5) refers

to a some sort of the phenomenological theory of shocks. Namely,

it is assumed that the shock exists and the mathematical formalism

helps to answer on such questions of how small or large is the

thickness of the shock, etc. But there are many other important

questions concerning the shock wave thoery which are of a more

fundamental nature.

Let us only quote from [28] two such questions: (a) What

are the conditions for the equation of state of a fluid under

which shocks with their distinctive qualitative features may be

produced; (b) the second question refers to the physical struc-

ture of the shock layer whose "infinitesimal" width is of the order

of magnitude 6 provided that heat conductivity and viscosity

are small of the same order. Below, we present a brief review of

the literature referring to this part of the shock theory.

In [2] the author derives several important theorems con-

cerning the behavior of shock waves based on the three assumptions

for the equation of state. In [28] the author derives some of the

conclusions of [2] using more rigorous mathematical methods but

made seven assumptions concerning the equation of state. In [3]

the authors condensed the physical assumptions of [28] and re-



arranged those of [2]. The authors follow the method of [28] and

prove four basic properties of the shock transition.

In [6] the author proves the existence and uniqueness of the

shock layer for the general class of fluids considered in [28], for

arbitrary end states satisfying the shock relations, with k and u

being arbitrary functions of the state.

In [22] the transient and steady state behaviors of normal

shock waves are examined. The transient behavior is examined from

dynamical considerations, while the stationary behavior of the

shock is studied with the help of the Rayleigh line.
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II. FUNDAMENTAL ASPECTS OF SHOCKS 1N

RADIATION-MAGNETOHYDRODYNAM1CS

2.1 Fundamental Systems of Equations:

The systems below refer to a one-dimensional non-steady

flow [7, 14, 15].

(a) Hydrodynamic System:

Equation of State (perfect gas):

p = DRT. (2.

Equation of Continuity:

g3

at

Equation of Motion:

8P
an EU I: a 4 an
—— .—— = — ——— —— — —— . 2.

p<at + u ax) 3x + Fe + 5x (3 p ax) (

Equation of Energy:

§_. e. = _ D. a. 3. 32
at (DEt) + ax (PECU) ax (”pt) + ex (3 u u ex

39
+ BK +-€e. (2.

(b) Electromagnetic System:

Maxwell's Equations:

X = ——'VX =-_
-V H J + at , E at , (2

\7 "= I: .v I: , .. B V. ueH 0, . EE pe (2

§_. =
+ 6x (Pu) 0» (2-

1.1)

1.2)

1.3)

1.4)

1.5)

1.6)
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Equation of Conservation of Electric Charge:

39

Sf+V.3=o. (2.1.7)

Equation of Electric Current:

3=i+pe3=otfi+nedfx 8)] +pe3. (2.1.8)

(c) Radiation System:

Equations of radiation pressure, energy, and flux:

Er
— O 2.1.9p ( )

The above equations are only first approximations of pr, Er’ and

Qr respectively.

2.2 Reduction of the System of Equations:

The equations of Section (2.1) will be reduced for one-

dimensional steady flow in Radiation-Magnetogasdynamics.

Equations of State and Continuity:

p = pRT, DD = constant = m. (2.2.1)

Equation of Motion: The term Fe in (2.1.3) is the x-

component of the electromagnetic force, i.e.,

-O = —0 fix... . .2

Fe peE+ue(J H) (22 )

Assuming the plasma as a fully ionized gas in which the excess

electric charge is zero (i.e. pe = 0). Also in magnetogasdynamics

the displacement current (i.e. GE) is very small as compared to



1
E
‘
1
'
.
.
'

I
I
I
.
{
(
(
I
‘
l
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curl of the magnetic field. Hence from (2.1.5)1, we get:

3 = v x 8. (2.2.3)

Therefore, after substituting the value of 3 from (2.2.3) and

pe = 0 into (2.2.2), we get:

Fe - ue[(v X i) x H]. (2.2.4)

Hence x com onent of F = -u H,éfl
: P e e ax.

Now (2.1.3) after some simplification is reduced to:

mdu + dp + p. H dH - d(3 u. £13)= 0. (2.2.5)

t e 3 dx

After integrating (2.2.5), we get:

u

e 2 4 du
__ -... _= = . 2.2.mu + pt + 2 H 3 u dx constant mc1 ( 6)

Equation of the Magnetic Field:

For steady state case (2.1.5)2 is reduced to:

V x E = 0. (2.2.7)

When excess electric charge is approximately zero (i.e. pe = 0),

then (2.1.8) is reduced to:

3 = oEE +-ue(3 x H)]. (2.2.8)

Substituting the value of E from (2.2.8) into (2.2.7),

we get:

—9

V X [g'- ue(3 X 3)] = 0. (2.2.9)
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Now substituting the value of 3 from (2.2.3) into (2.2.9), we

get after some simplication the equation of the magnetic field,

for one-dimensional steady state case as:

dH
(1 - -— = . .(uH) d(\2h dx) 0, (2 2 10)

where: vh = E—E-, is called magnetic difquivity.

e

After integrating (2.2.10), we get:

dH
uH h dx constant F (2 2 11)

Equation of Energy:

For one-dimensional steady state case (2.1.4) can be simplified as:

d_ g -9. 2. ft 51.2 51.9.dx (pEtU) dx (Upt) + dx (3 p. u clx) + dx + 68. (2.2.12)

v v dH . dH

h I = o = - —— - —w ere 6e E J He dx [uH Vh dx ,

dT d

Q k dx + Dr d (E 1’

A c
D _ r c ,
 

where subscript 0 indicates conditions at some reference point,

exponent n2 is a positive number while n1 may be positive at

low temperature range and negative at high temperature range.

These exponents are determined experimentally.

Now substituting the above expressions in (2.2.12) and after

some simplification we get:
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u2 Er 4 du
md(CvT +-§— + 3-) + d(upt) - 3'd(u u 3;)

dE

dT r _
- d(k dx) - d(Dr dx ) + F uedH — 0. (2.2.13)

After integrating (2.2.13), we get:

2 E dE

U r 51; du - dT _ r

m(CvT +-§- + 3-) + upt 3 u u a; k a; Dr E;— + F ueH

= constant = mcz. (2.2.14)



III. FUNDAMENTAL EQUATIONS FOR.NORMAL SHOCK

3.1 Generalized Rankine-Hugoniot Relations for an Optically

Thick Medium:

The fundamental equations governing the flow field, with no

variation in x-direction and separated by a shock wave, are obtained

from (2.2.1), (2.2.6), (2.2.11), and (2.2.14). These equations are:

p = pRT ; pu = constant = m, (3.1.1)

mu + p + pr + ph = constant = mcl, (3.1.2)

112 Er H2

__+— —
= = acm(CvT + 2 p +~ue 2p) + u(p + pr + ph) constant mcz, (3 1 3)

uH = constant = F, or vH = constant = -g— . (3.1.4)

1'J'e

The generalized Rankine-Hugoniot relation [15, 16], as the

ratio of velocities, is:

2 2

:2 a 1_ Ye.1 + 2'YeaJe-H‘ll) +.l {Ye-1 + 2ye(Pe+hl)}2 + 8 2-Ye h2 %

u1 2 ve+l ve+1 2 Ye+l ye+l ' ve+l 1 . (3.1.5)

  

 

P

k, P 1 - ~l5, and the so-called

‘1 1111 YM1

effective values of P and of the ratio of specific heats, as

where: h = Hl/ (2mu1/ue)
l 2

defined in [15], for radiation-magnetogasdynamics are:

P = (Re p1 + 1)f(Rp2)P, (3.1.6)

Y = 3 (3.1.7)
e 3(Y-1)Rp2 + l
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2
n+1 8R + +1( p )( p r )
 f(Rp) = [fi— - 1 2 ]/(3— - 1), (3.1.8)

1 (Rpl+1)(8Rp+r +1) 1

RP = Pr/p = radiation pressure number, (3.1.9)

2

r ‘ (Y+1)/(Y‘1)-

The generalized Rankine-Hugoniot relation, as the ratio of pressures,

derived from (3.1.1) and (3.1.2), is:

2

2=1+Rp1+11h1+m1 (1-u2/u1)

pl 1 + Rp2 + Rh2

2

where: Rh = (ue %—)/p = ph/p = magnetic pressure.number.

 

(3.1.10)

The generalized Rankine-Hugoniot relation, as the ratio of temper-

atures, derived from (3.1.1) and (3.1.10), is:

2
32::[1+Rp1+Rh2+YM1(1 - u2/u1):]

T .

1 u1 1+Rp2+Rh2

 

(3.1.11)

The generalized Rankine-Hugoniot relations for a viscous,

heat-conducting gas without radiation and magnetic field (17),

actually equivalent to isentropic flow, are:

U

2 _ _1_ - .2...“1 .. ¥+1 (y 1 + 2), (3.1.12)

M
1

.3; =._l_ (2 M2 - +1) (3 1 13)
p1 Y+1 Y 1 Y 3 ° °

T2 2 -1 2 1
F=1+—§L)2-(M1- 1)[v+—§]. (3.1.14)

1 (v+1) M

1

Using (3.1.12), the velocity ratio (3.1.5) can also be



l9

written as:

where:

Since

Using

where:

Using

as:

where:

u a

2 l 2
u _ Y+1 (v-1 + 2), (3.1.15)

1 M
1

a = velocity correction factor:

1

2 2 2

Ye"1 2Ye(Pe1-hl)_i'[{ye-1 214121-1111} 2“Ye 2115
   

 

v+1+ y+1 y+l+ v+l +8v+lhl

= e e e e 8 (3.1.16)

._2_(-1+.2_)

v+l Y 2

1

‘31 U2
from (3.1.1) , -— = ——; hence from (3.1.15) we also get:

2 p u

2 l

p 0'

1 1 2
p—- V+—1(‘Y-1+ 2). (3.1.17)

2 M1

(3.1.13), the pressure ratio (3.1.10) can also be written as:

p 0’

2 _ 2 2
p1 _ V11 (2YM1 v+1), (3.1.18)

a = pressure correction factor:

2

 

2
1+R 'l-Rl +YM (1-u/u)

1’1 1 1 2 1 (——Y——+1). (3.1.19)

2 1 + sz + 11112 2v Mi-Wl

(3.1.14), the temperature ratio (3.1.11) can also be written

T

.2 = a3 1 ... £91222. (M14111 + —1-§] . (3.1.20)

1 (Y+1) M1

0 = temperature correction factor:

3

2

= :12 [1+RR1+Rh1+vM1(1-u2/u1) 1 . (3.1.21)

U

1 1 1 sz + Rm 1 1+ ALT—1% . (Mi-DIV? 13]

1

 

(v+1) M
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The correction factors (i.e. a1, a and 03) are equal to unity for
2’

viscous, heat-conducting gas without radiation and magnetic field,

and for isentropic flow.

3.2 Generalized Prandtl Relation:

The generalized Prandtl relation, for two uniform states

separated by a shock, is derived from (3.1.1)2 and (3.1.2). The

result is:

p - p p - p p - p
1 2 + r1 - r2 + hl - ph2 (3‘2.1)

2 p1 p2 p1 2

 

u u =

1 2 Pl ' P

The Prandtl relation for viscous, heat-conducting gas with-

out radiation and magnetic field is [3]:

91' p2
LlU

1 21:91 -9
, (3.2JD

2

Using (3.2.2), the generalized Prandtl relation (3.2.1) can also

be written as:

 

p111p2 3 23
ulna-0437?, (..)

where: a4 = correction factor for Prandtl relation:

P ‘ P P ' P

a4 = (1 + 11 _ r2 + “1 _ h2). (3.2.4)
P1 P2 P1 P2

The correction factor, 04, is equal to unity for viscous, heat-

conducting gas without radiation and magnetic field, and for

isentropic flow.
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3.3 Shock relation in terms of change in internal energy:

The change in internal energy, between two uniform states

separated by a shock, is derived from (3.1.1) (3.1.2), and (3.1.3).
2!

The result is, with e = ch:

9 +9 +p +p +p +p
1 2 r1 r2 hl h2

ez'el (V1’V2)' 2 + 3("1"r1‘V2 Prz) + (V1Ph1‘vzph2)°
 

(3.3.1)

The change in internal energy for viscous, heat—conducting

gas without radiation and magnetic field is [3]:

 

p1 1 p2
e2 - e1 = (v1 - v2).——-§-—— (3.3.2)

Using (3.3.2), equation (3.3.1) can also be written as:

p1 + P2
e2 - e1 = as(v1 - v2);-—-§——- (3.3.3)

where: as = correction factor for internal energy:

- + +
_ V1(7pr1+Pr2+3ph1+Ph2) v2(pr1 7pr2+phl 39112)

a — l + . (3.3.4)

5 (v1 - v2).(p1 + p2)

The correction factor, as, is equal to unity for viscous, heat-

conducting gas without radiation and magnetic field, and for

isentropic flow.

3.4 Modified Equations:

The first law of thermodynamics, for the case of radiation-

magnetogasdynamics, is modified as [4, 24]:

* *

dQ = de + p dv, (3.4.1)
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*

where: dQ = T dS .

*

e = total internal energy per unit mass,

= + + Ach 3v pr vph,

*

p = total pressure,

= p + pr + ph.

*

S = modified entropy.

The generalized Rankine-Hugoniot relation (3.3.1) can be

modified as:

* + *

P P
* * l 2

e2 - e1 (v1 - v2). 2 . (3.4.2)

Let us introduce the Hugoniot function:

* *

* 91 + p

r... e - .115. (v - v1). (3.4.3)
2

For p = p2, v = v (3.4.3) reduces to the modified Rankine-
2’

Hugoniot relation, with. &'= 0, across the normal shock as shown

in (3.4.2).

3.5 Auxiliary Inequalities:

Lemma 1: The value of Ye is everywhere, greater than or equal

to'% and less than or equal to Y.

Proof: The proof is divided into two parts.

1. (i) %'5 Ye everywhere.

From (3.1.7) we have:

4(y-1)RP2 + y
_ _£_+ _ 3v-4

Ye ‘ 3(Y-1)Rp2 + 1 ’ °r Ye ' ' (3"S°1)3 ’ 313(Y-1)Rp2 + 1]
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According to [15], we have for all gases:

- 2 ' - >3v 4 o and {3(v 1)Rp2 + 1] o, sz 2 0. (3.5.2)

The case 3y - 4 = 0 when T approaches infinity. Therefore

from (3.5.1)2 and (3.5.2), we get the following inequality:

4 4

‘e 3 0’ or 3 'e, Q.E.D. (30503)

1. (ii) Ye S Y, everywhere.

From (3.5.1)1 we can write:

(Y- 1) (TY-4) sz

 

Y - Ye = 3(Y-1)R + 1 (3.5.4)

p2

Since (v-l) > O everywhere, hence, from (3.5.2) and (3.5.4)

we get:

Y - Ye 2 0, or 'Ye S Y, Q.E.D. (3.5.5)

Now combining the two inequalities, (3.5.3)2 and (3.5.5)2, we get:

 

4
._ s s .3 Ye y, Q.E.D. (3.5.6)

Y-1
1 e X'1

. —S——S
Lemma 2. 7 Ye+1 Y+1’ everywhere.

Proof: The proof is divided into two parts.

1 Ye-1
2. (1) -7 s Ye+1, everywhere.

From (3.5.3)2, we have:

4 4 4 4 4 7
_g _ _ .. _ g...

3 Ye’ or 3 Ye + 3 S 3 Ye + Ye’ or 3 (Ye+1) 3 Ye’



 

I
I
‘
l
l
'

l
l
l
l
l

I
l
l

1
1
.
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4 1 s Ye-1

7

4 4
._ + g _. - S - - ____ .——_—

 

 

 

 

 
 

v -1

l .3 1 e

or 7+(7-——Y+1)S—---—Y+l. (3.5.7)

e e

From (3.5.3)1, we have:

v-EZO or (Y+l)-(£+1)20

e 3 ’ e 3 ’

7 3 1
-—2 —- 2 o 00or (Ye+1) 3 0, or 7 Ye+1 0 (3 5 8)

Therefore, from (3.5.7) and (3.5.8)2, we get:

1 Ye-l
— s7 Ye+1 , Q.E.D. (3.5.9)

v -1

,. e x-l
———— S2. (11) Ye+1 Y+1 , everywhere.

From (3.5.5)2 we have:

S SYe Y, or Ye + 1 Y + l,

1 l 1 l
——-s—— s -—or Y+1 Ye+1’ or 0 [§e+1 Y+{]. (3.5.10)

Again from (3.5.5)2, we have:

s ' s
Ye Y, or Ye +’YeY Y + YeY,

or Y (Y+1) S Y(Y +1) or Ye S _X_

e e ’ ve+1 v+l’

Y Y

or e -J—Si-i,or ———e—__1_.+1 _ 1 SE,

ve+l v+1 v+l y+l ye+l ye+l ve+l v+l v+l

Y -1

e 1 l X'1
— -

or 311 + l_;_1 _—1| 5 1. (3.5.11)
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Therefore, from (3.5.10)2 and (3.5.11) we get:

v -1

e
 S

ye+1

x-_1Y“, Q.E.D. (3.5.12)

Now combining the two inequalities (3.5.9) and (3.5.12), we

get:

Y -1
1 y-l
_ S ——

7 ye+1 Sv-H’ Q°E°D'

V

LemmaIQ:

7 everywhere.

Proof: From (3.1.5) we get:

u

2 >

U

1

since all other terms in (3.1.5) are greater than zero.

u

from continuity equation, :2

1

3.212;},
+,

v1 Ye 1

we.1 1
 

From (3.5.13), Ye+1 7

r

2

Y-1

.11..

ve+1

 

v2
= -—3 and (3.5.14) we get:

v
1

2__1>Ye‘1_1
v 7 Y +1 7'

H m

- —.2 0, hence from (3.5.15) we get:

(3.5.13)

The ratio of the specific volumes, Si, is less than

(3.5.14)

Then

(3.5.15)



26

:2.
V \

H
P
‘

> O, or 7 --- > O. Q.E.D. (3.5.16)

H

d

N

*

Lemma 4: dzp 1 > O at the point of state 1.

*

Proof: By definition, p = p + pr + ph,

* a 4 2

or p = p +—r£(pv) +97, (3.5.17)

3R 2v

* *

Thus, p = g(v,p), where p = p(v,S )-

* *

Therefore, p = g(v,p(v,S )),

* *

or p = G(v,S ), (3.5.18)

*

where, v and S are assumed to be independent agruments, so

that:

* * * ‘k *

dp = G vdv + G d8 5 p vdv + p S*dS , (3.5.19)
3*

d d2 * * d + * d * a d * * 3 5an p = (p vv V p,S*V S )dv + *( p )dS . ( . .20)

3 as

At the point of state 1, we have from (5.2.4), (see below),

*

dS1 = 0, thus:

dzp: = {pfvv(dv)2}|1. (3.5.21)

Differentiating (3.5.17) twice with respect to v, we obtain:
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2 4a

,._. 39 r 2 2

I1 {v4 + R4 (PV) (P + VP,V) }|1

*

,W

a

+{§-§<pv>3.<2p +vp >}l1+{p 1|
R

,v ,vv ,vv 1. (3.5.22)

Let p*W|1 - {I} + {II} + {111}. (3.5.23)

(i) {I} > 0 everywhere, since each term of {I} is positive

everywhere.

(ii) From (4.2.5) and (4.2.10), we get: respectively,

 
 

p1 ,v 1 2 V1(p,v|1)

 

T]

2 3
P

v 123l3%1.pr1 + 16.1%3fiiy. ‘1 3 + 12288x—El

(Y-l) 1’1 (11-1) 1»,

Y(Y+1)P1 p

 

12 p

v2[ 1 + r

133 (3.5.24)

1 y-l p1

Therefore,
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YP 12 p

...l _1_ r1 2
-2{(Y_1 + 16 pr1)-(.Y_1 + p1 ) l

p2 Y<¥+1)p p3

+ y.——Yl52'242.pr1 + 16.1%333Y.pr1 + 31 + 12288.-—;—1

<v-1) 1 (Y-l) p1
+vp v )I =

’ V 1 1 9:1 3
VIE-{T1- + 12.7]

1

or

2

_;Y__2 p + s 3Y(3-Y)+4(Y-1) F +16 64+15Y prl
. 1 . 2 . . _ .

(v-l) (v-l) ‘1 (V 1) P1

p3

+ 7680.4571-

I P1
(2p,v+vP,vv) l B . -3

v1[ 31 + 12: r113

p1 (3.5.25)

From (3.5.25) for 1 < y < 2, we get:

>(211., + vp,W)I1 0,

since all other functions on the right hand side of (3.5.25) are

greater than zero everywhere.

Therefore, {II} > 0 at the point of state 1, since all other

quantities in {II} is positive everywhere.

(iii) From (3.5.24), {III} > 0 at the point of state 1 for

1 < y < 2.
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*

Hence, from (3.5 23), p W|1 > o and then from (3.5.21),

we get:

*

dzpl > o, Q.E.D. (3.5.26)



3
.
6

T
a
b
l
e

o
f

S
t
e
p
w
i
s
e

S
h
o
c
k

R
e
l
a
t
i
o
n
s

 

2

(
Y
'
1

+
'
_
§
)

3
_
—

=
—
—

°
p

u

M
1

2
l

 

—
—
—

(
2
y
m
i

-
y
+
1
)
.

 

a
3

{
1
+
Z
j
X
-
_
1
)
2
.
(
M
i

-
1
)
.
[
v
+
-
—
1
—
2
-
]
}
.

(
y
+
1
)
2

M
1

 

.
p
1
-
p
2

a
4
(
p
-

)
.

 

1
2

P
+
P

1
2

a
s

(
v
l
-
v
z
)

2
.

 

w
h
e
r
e
:

2
5

2
[
y
e
-
1

2
y
e
(
P
e
+
h
1
)

Y
e
-
1
+
2
Y
e
(
P
e
+
h
1
)

2
g

y
+
1
+

Y
+
1

Y
ee
+
1
+

y
+
1

Y
e
+
1

b
l
}

/
[
y
+
l

e
e

2
M
1

 

 

 
 

 
 

 
 

 
 

 

(
v
-
1
#
3
)
]
.

 

1
+
3

+
R
h
l
+

Y
M
i
(
1
-
—
-
)
D
-
;
¥
f
-
-
J
/
(
1

+
'
R
p

u
1

Z
y
M
1
-
‘
Y
+
1

2
+

h
a
)
,

 

 

2
u
2

u
l
+

R
+

+
Y
M

(
l

-
E
—

.
7
2
p
2
1

“
1
:
“

+
1

L
J
/
{
l
+
5
1
%

(
M
i

-
1
)
[
v

+
i
z
-
J
}
.

1
p
2

h
a

(
y
+
l
)

M

p
-

p
p

-
P

1
+

r
l

-
:
2

+
.

h
l

h
2

p
1

p
2

p
1

‘
p
2

 

1

  
1
+
v
1
(
7
p
r
1
+

p
r
Z
+

3
p
h
1
+

p
h
Z
)

'
v
2
(
p
r
l
+

7
p
r
2
+

p
h
l
+

3
P
h
2
)

(
V
1

'
V
2
)

-
(
P
1
+

P
2
)

 

  
 

30



IV. GENERALIZED HUGONIOT FUNCTION

4.1 Generalized Hugoniot Function:

Transferring all quantities from the right hand side to the

left hand side in the generalized Rankine-Hugoniot relation (3.3.1)

and abandoning the subscript 2 in this equation, we obtain a

function defined as the generalized Hugoniot function. This function

is, with e = E!- -

 

Y-l '

”=PV _p1v1+_]_-_( - ) { + +:£.[( )4+( v)4]

v-1 Y-l 2 V V1 ' P p1 3R4 P" P1 1

2 a 2

e 1 1 r 4 5 4 5 e _1_ __ 1
+ 2 [v2 + 2]} + R4 {p v - p1v1}+ 2 {V VI}. (4.1.1)

v1

The right side of (4.1.1) is a function of p and v only, the

variables at the state 1 being fixed. Therefore the Hugoniot

function, 1’ = N(v,p). We get the Hugoniot relation across a normal

shock by substituting NKv5p) = O in (4.1.1), and p = p2, and

VEVZ.

4.2 Hugoniot Curve:

The graph of the Hugoniot relation, NKp,v) = 0, in the

(p,v)-plane is called the Hugoniot curve. The general shape of

this curve can be determined if the signs of first and second

derivatives of p with respect to v are known. With dV'= 0

along this curve, we have:

W=wvdv+3rpdp=o, (4.2.1)
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d 3!

thus, 35- '7’1' (4.2.2)

From (4.1.1), we have:

 

1 2 1 1 11. 1 11
”w {2 pr +2(p1+pr1)} +12 pr(35 - 4v)} +{2(ph1-ph)-ph(1- V )1,

(4.2.3)

fl' = l'v {r2 + 28 R - :1 (1 + 4 R )}. (4-2-4)
.p 2 p v 13

Therefore:

{r2+( + )}+{ (35-43)}+{< - >-2 (131)}
.92 g _ p p1 pr1 pr v phl ph ph v

dv 2 v1

vr +28 RP-7(1+4Rp)} (4.2.5)

Equation (4.2.5) gives the slope at a point of the Hugoniot curve

in (p,v)-plane.

Theorem 4.2: The derivative g5 is everywhere less than
 

zero along the entire Hugoniot curve.

Proof: The proof is divided into two parts.

1. (i) fl'v_> 0 along the entire Hugoniot curve.

From (4.2.3), let:

Arv={1} +{11}+{111}. (4.2.6)
’

(i.a) {I} > O everywhere, since r2 > O for Y > 1 and

all the functions in {I} are positive everywhere.

1 4V1 1 V1
(1.1:) {11} = 3 pr[35 - -v—] = -2- pr[(35 - 28) + 40 - 7)],

1 V1
or {11} = -2- pr[7 + 40 - 7)].

Therefore, {II} > 0 everywhere from (3.5.16).

(i. c) {111} = {——2- - —2 - ——2- (1 - 7)}.
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92(v1 - v)2(2v1 + v)

 or {111} =

4 V VI

Therefore, {III} > O everywhere, since v and v1 are always

positive. Thus, from (4.2.6), we get:

91 >0,
,v

along the entire Hugoniot curve. Q.E.D.

2. (ii) fl'p > 0 along the entire Hugoniot curve.

From (4.2.4), let:

  

Y +1 V Y +1

= l ‘ e - .1 11.1 _ e
”:13 2 v[{(1+411p)(Ye_1 v )} +{v-1 + 28 RP Ye'l (1+4Rp)}],

let fi’p a é-vEfI} +-{II}]. (4.2.7)

(ii.a) {I} > 0 everywhere from (3.5.15)1.

Ye+1 7(Y-1)Rp + Y+1

Ye'l (Y'1)(Rp+1)

 

(ii.b) From (3.1.7), (4.2.8)

From (4.2.8), we have:

6Rp(3y-4)

‘ (Y—1)(Rp+1)

 

{11}

Therefore, {II} 2 O everywhere, since Y 2‘; from (3.5.6).

Thus, from (4.2.7) we get: .3} > 0 along the entire Hugoniot

curve. Q.E.D.

Since .&:v > O and .fl; > O everywhere along the Hugoniot

curve, hence, from (4.2.2) %$‘< 0 along the entire Hugoniot

curve. Q.E.D.

With dév 8 O and dp = 35 dv along the Hugoniot curve,

we can write from (4.2.1) after differentiation:
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2
= fig 2 d 2

<1sz [31,W+W§(—§+)gp(dv> +%,p<—Edv2>1<dv>

Since dv # 0, therefore:

2

 

  

92 2 $12 =”NH pv—jfl>+ ”ppqv) +:’P(dv2> o,

2 v 12‘?” gm
0, LB ..at”?:W .

2 ‘ fi'v

dv ,p

. QR _
Substituting the value of dv from (4.2.2), we get.

2 21! A! M -A/ -

$12 . JV .1: .v .vv(3112)2fi(,1>1>wv)2

dv2 0V p)3

Differentiating (4.2.3) with respect to v, we get:

2pr 3ph

vav = :2- (35v - 3v1) +-;§- (v - v1).

Differentiating (4.2.4) with respect to v and p, we get:

r2 2pr

&;pv = E— +-E;— (35v - 4V1).

691,

fl' = ——— 7v - v

,pp p2 (1)

(4.2.9)

(4.2.

(4.2.

(4.2.

(4.2.

(4.2.

Equation (4.2.11) gives the second derivative of p with respect

to v at a point of the Hugoniot curve in (p,v)-plane.

second derivative is positive everywhere along the Hugoniot curve.

To verify this statement the positive real roots, of (4.1.1) with

fiKp,v) = 0, are determined by programming this Hugoniot relation

on CDC 3600 computer [see Appendix A].Then corresponding to these

roots the values of ‘g-g, are calculated by programming (4.2.11)

dv

10)

ll)

12)

13)

14)
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2

on CDC 3600 computer which gives 2—5- always positive for each

dv

and every root of the Hugoniot relation. Hence, it can be inferred

that 2 1S p031tive everywhere along the Hugoniot curve.

dv

2

Since g5~< 0 and ‘9—5 > 0 along the entire Hugoniot

dv

curve, hence, the shape of the Hugoniot curve is convex downwards

in (p,v)-plane.
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V. THEOREM 1

5.1 The Present Formulation of Theorem 1:

Courant and Friedrichs [3] have proven a series of theorems

referring to the mathematical formulation of the description of a

normal shock in an isentropic flow. We quote below the first of

these theorems (denoted by letters C.F.):

Theorem 1 [C.F.|: "The increase of entropy across a [normal] shock

front is of the third order in the shock strength."

Here the shock strength refers to any of the differences p2 - p1,

1.. ..V'V 2 1.

2 1|

5.2 Theorem 1 in Radiation-Magnetogasdynamics:

We generalized the theorem and proof by [C.F.] to the case

of radiation-magnetogasdynamics.

Theorem 1: "The increase of modified entropy across a normal shock

front in radiation-magnetogasdynamics is of the third order in the

Shock strength."

.Egggf: The proof is a straightforward one. Along the Hugoniot

curve 6V = 0, (4.2.1), hence from (3.4.3), we get by differentiation:

* * * *

25V = 2de + (p + p1)dv + (v - v1)dp = 0. (5.2.1)

From the modified first law of thermodynamics (3.4.1), we get:

* * *

de = TdS - p dv. (5.2.2)

*

Substituting the value of de from (5.2.2) into (5.2.1), we get:
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* * * *

2TdS + (p1 - p )dv + (v - v1)dp = 0. (5.2.3)

At the point of state 1, we have:

* *

p =p1,V=V1,

and thus from (5.2.3) with T1# 0, we get:

*

dS1 = 0. (5.2.4)

Differentiating (5.2.3) again along the Hugoniot curve and con-

sidering v as the independent variable, we get:

* *

2d(TdS ) + (v - v1)d2p = 0. (5.2.5)

Therefore at the point of state 1, we have from (5.2.5):

* 2 * *

d(TdS )I1 = 0, or (Td s + de3 )I1 = 0,

*

But dsl = 0 from (5.2.4), hence:

2*

d 31 = 0. (5.2.6)

Differentiating (5.2.5) again along the Hugoniot curve and con-

sidering v as the independent variable, we get:

* * *

2d2(TdS ) + dv dzp + (v - v1)d3p = 0. (5.2.7)

Therefore at the point of state 1, we have from (5.2.7):

2 * 2 *

2d (TdS )I1 = -(dv d p )l1’

2* * * 2 *

or 2(Td38 + d TdS + 2dT dZS )I1 = -(dv d p )|l’
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* *

But dS1 = 0 and dZS1 = 0 from (5.2.4) and (5.2.6) respectively,

hence:

3 * 2 *

d(Td s )|1 = -(dv d p )|1. (5.2.8)

Therefore from (5.2.8), we get for T1 > 0:

'k

833 > 0, (5.2.9)
1

*

when dv1 < 0, since de1 > 0 from (3.5.26). Hence from (5.2.9)

the increase of the modified entropy is exactly of the third order

in the shock strength. Q.E.D.
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VI. THEOREM 2

6.1 The Present Formulation of Theorem 2:

[C.F.] have proven the following theorem 2 in an isentropic

flow:

Theorem 2 [C.F.|: "The pressure rise across a {normal] shock front

agrees with the pressure rise in the adiabatic [reversible] change

up to terms of the second order in the shock strength." Also,

[C.F.] had shown that geometrically the Hugoniot curve and the

adiabatic [reversible] curve, passing through the point of state

1, have a contact of second order at this point. It is assumed

here that the initial state and one quantity (say specific volume)

in the final state, i.e. at the end of the shock process, are the

same for both, the isentropic flow and Hugoniot curve (process).

This assumption implies that the both curves, isentropic and

Hugoniot, pass through the point 1, but do not meet at the final

state .

6.2 Theorem 2 in Radiation-Magnetogasdynamics:

We generalize the theorem and proof by [C.F.] to the case

of radiation-magnetogasdynamics.

Theorem 2: "The pressure rise across a normal shock front in

radiation-magnetogasdynamics is not equal to the pressure rise

in the reversible adiabatic change."

Geometrically, the Hugoniot curve and the reversible

adiabatic curve, passing through the point of state 1, intersect

39
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each other at this point. Additionally, the slope of the adiabatic

curve at l is steeper than the slope of the Hugoniot curve at the

same point.

Egggf: The proof is divided into two parts.

1. The Hugoniot curve intersects the adiabatic curve at

the point of state 1.

We obtain the slope of the Hugoniot curve at the point of

state 1, from (4.2.5) after substituting p = p1, v = v1, pr = Prl’

2

p1(r +1) + 32 pr1

 

 

.%2| 1 = 2
H , 9

v v1{(r -l) + 24 Rpl}

sz + 16(Y 1)p p

or 92 1 1 r1 (6 2.1)
dv H1 vlfp1 + 12(Y-l)pr1} '

The equation of the reversible adiabatic curve, passing

through the point of state 1, is:

PVY = PIVIY. (6.2.2)

We obtain the slope of the adiabatic curve at the point of state

1 by differentiating (6.2.2) with respect to v and then sub-

stituting p = p1 and v = v1. The result is:

VP

in =-__1dv|A1 v1 . (6.2.3)

Since the slope of the Hugoniot curve (6.2.1) is not equal to the

slope of the adiabatic curve (6.2.3) and the point of state 1 is
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common in both curves, hence the Hugoniot curve intersects the

adiabatic curve at the point of state 1. Thus the pressure rise

across a normal shock front, in radiation-magnetogasdynamics, is

not equal to the pressure rise in the reversible adiabatic change

at all. Q.E.D.

2. The slope of the reversible adiabatic curve is steeper

than the slape of the Hugoniot curve at the point of

state 1. i.e.,

£2, -.22 >
dlel dv A1 0' (6'2'4)

From (6.2.1) and (6.2.3), we get:

2

dv H1 dv A1 vllp1 + 12(Y-l)pr1} v1

or ' 3 =

dv H1 dv A1 vlip1 + 12(Y-1)pr1}
 

N
3'. (6.2.5)

2. (i) D > 0 for »Y > 1.

. . . 4
2. (11) N > 0, Since .Y >'§ from (3.5.2). Thus, from

(6.2.5), we get:

92 ..92 > .2.dvlH1 dv A1 0. Q.E.D. (6 6)



VII. THEOREM 3

7.1 The Present Formulation of Theorem 3:

[C.F.] have proven the following theorem 3 in an isentropic

flow:

Theorem 2 [C.F.|: "Along the whole Hugoniot curve the entropy

increases with decreasing specific volume."

7.2 Theorem 3 in RadiationrMagnetogasdynamics:

We generalize the theorem and proof by [C.F.] to the case

of radiation-magnetogasdynamics.

*

Theorem 3: "Along the whole hugoniot curve the entropy, S , increases

with decreasing specific volume in radiation-magnetogasdynamics."

Proof: The generalized equation of state can be written as:

* * *

P = P (S .V). (7.2.1)

* * *

Equation (7.2.1) implies that, S = S (p ,v). Therefore:

* * * *

S = S (p (S ,v),v). (7.2.2)

*

Assuming S and v as independent arguments and differentiating

(7.2.1) and (7.2.2), we obtain:

*

dp

* 'k *

d + dS .2.3
p’v v p’s* , (7 )

* * * *

d8 = S dp + S dv. (7.2.4)

P* ,v3

*

Substituting the value of dp from (7.2.3) into (7.2.4), we get:

42
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'k ‘k *

d5 = S,p*p,S*

* * *

dS + (S ’p*p

*

‘v'+ S,v)dvu (7.2.5)

*

Since S and v are assumed to be independent arguments, there-

fore from (7.2.5) we get:

* *

S.p*p.s*

=1,

* * *

+

S.p*p.v ,v

From (3.4.1) and (3.4.3) with fl'2 0, we obtain:

S = 0.

NS" = fi- d {(vl-v).(p"{+p*>} + p*dv.

vl-v * p
*

ordS=2po+
  

(7.2.6)

(7.2.7)

(7.2.8)

* *

Since v1 > v and p > p1, which can be obtained from (3.1.10),

everywhere along the Hugoniot curve; thus along this curve, we

get by comparing (7.2.4) and (7.2.8):

5*

*

p - -'—L!-H< 0

’v 8*

.P*

2 4a

2 2 p

p = ——— +-—Z£(pv) [(p + vp ) + 3v(2p +tvp

R ,v ,v
3

(7.2.9)

(7.2.10)

(7.2.11)

W)] + p,vv. (7.2.12)
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Equation (7.2.12) is put on the CDC 3600 computer [see Appendix A]

*

and the values of p vv are evaluated at the number of points

3

*

along the Hugoniot curve. The result gives p vv always positive

!

for each and every calculated points of the Hugoniot curve, thus:

*

pW>o, (7.2.13)

Differentiating (7.2.11) with respect to v, we get:

  

5* 8* 3* 3* 8* 8* 3* 3*
* W P*- v p*v R'kv 2*- v p*p* *

z _ 3 3 3 3 3 3 4 3
dp,v E * 2 + { * 2 }p,v]. (7.2.14)

S,p* .p*

*

Substituting the value of p v from (7.2.11) into (7.2.14), we

obtain:

* * 2 * * * * *2

 

* [S1vvsip*'zs.p*vs.p*s,v+s,p*p*s,v 2 5
p‘,\’8 - *3 J. (70 .1)

’ s

,P*

* *

But p vv > 0 and ~S

39

p* > 0 from (7-2-13) and (7.2.9)1 respectively,

thus from (7.2.15), we get:

3* 3*2 23* 3* 3* +s* 8*2<0 (72 16)
,vv ,p* ,p*v ,p* ,v ,p*p* ,v ' ' °

The increasing character of the entropy, 8*, along the Hugoniot

curve, is proven below by showing that dS* > 0, along this curve

except at the point of state 1 where dS*|1 = 0.

The Hugoniot curve in (PTV)-plane,.flprv) = 0, is also

convex downwards from (7.2.11) and (7.2.13).



45

*

Let a ray E3 in the (p,v)-plane,

is represented in the parametric  
 

 

form as:

'
0 ll

*

p1 + at; v = v1 +

* *

where: a = p2 - p1, b = v2 - v1. Hence,

*

dp = adt; dv = bdt.

Therefore, from (7.2.8), we get:

* * * *

2T dS + (p1 - p )dv + (v - v1)dp

bt,

v

Fig. 1.

(7.2.17)

(7.2.18)

ZCW. (7.2.19)

* *

Substituting the value of p,v, dp , and dv, from (7.2.17) and

(7.2.18), into (7.2.19), we get:

*

T d8 = CW, along the ray P. (7.2.20)

*

Considering both S and .Q' as functions of t along E2

*

therefore if either S (t) or .HKt) is stationary (i.e. their

particular characteristic properties, like the maximum value of

*

S (t) or .flXt) do not change their location, are invariant) then

V
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other is also stationary which is seen from (7.2.20). Since the

Hugoniot curve, fiKp*,v) = 0, is convex at 1, hence ray E’ cannot

coincide with this Hugoniot curve. Since flXt)1 = NKt)2 = 0

(both are lying on the Hugoniot curve defined as fl'= 0), implies

that NXt) possesses at least one extremum in between. There-

fore at the point of extremum the entropy, 8*(t), is likewise

stationary, or:

* * * *

d8 = S *dp + S vdv. (7.2.21)

3 9

*

Now substituting the value of dp and dv from (7.2.18) into

(7.2.21), and after dividing the resulting equation by dt we get:

*

dS * *

-- = = . 7.2.22

dt Iextr. [S,p*a + S,vb]|extr. 0 ( )

* *

Therefore, S /S = - a/b. Next:

,v .p*

* * * d *

d(fi— g .9... (Lyn, +1. (Ii—)dv,

 

 

 

dt * dt v

81» a

2 * * 2 * * 2

or d S = S * *a + ZS * ab + S b ,

dtZ ,p p .p v .vv

b2 (8* 8*2 28* * 8* + 8* 3* 2

- 3* 2 :P*P* ,v - ,p*vs.p* ,v .vv .p*)'

*

’9 (7.2.23)

But the expression, inside the parenthesis, on the right hand side

2

b

of (7.2.23) is always less than zero from (7.2.16) and *2 > 0,

8.9*
therefore,

2*

d S 1< 0. (7.2.24) 
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Thus 8* and consequently' N’ possess one and only one single

stationary point on E’ between the point of states 1 and 2.

From the fact that 8* has just one maxima between the

states 1 and 2, we infer the inequalities:

*

dS
>dt 1 0, (7.2.25)

*

1s.
<. ..dt 2 0 (7 2 26)

The inequality (7.2.26) excludes the possibility of the magnitude

*

of 3 being stationary along the Hugoniot curve at the point of

state 2, otherwise ray E’ would be tangent to the Hugoniot curve

at such a point. Thus, &V = 0 at this point would therefore imply

= 0, in contradiction to (7.2.26). Thus, it has been

*

proven that the entropy, S , increases along the Hugoniot curve

with decreasing specific volume in radiation-magnetogasdynamics. Q.E.D.



VIII. THEOREM 4

8.1 The Present Formulation of Theorem 4:

[C.F.] have proven the following theorem 4 in an isentropic flow:

Theorem 4 [C.F.|: "The flow velocity relative to the shock front

is supersonic at the front side, subsonic at the back side."

8.2 Theorem 4 in RadiationrMagnetogasdynamics:

We generalize the theorem and proof by [C.F.] to the case

of radiation-magnetogasdynamics.

Theorem 4: "The flow velocity relative to the shock front is

greater than the effective speed of sound at the front side, and

is less than the effective Speed of sound at the back side."

Proof: It can be demonstrated [see Appendix B] that infinitesimal

pressure disturbance propagates with the effective speed of sound,

ae, in radiation-magnetogasdynamics:

-a2 h *
p’p - e3 t US p,V ' 9 ae

and from (7.2.11), we get:

*

S
*

_:_*V e - p = 9232, (8.2.1)
S ,v e

.9*

From (7.2.18), we get:

(12* * * d
= _ —-v-= - .202

dt p2 p1’ dt v2 v1’ (8 )

and from (7.2.4), we obtain after dividing this equation by dt:
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* *

dS g * dp * d!

dt S,p* dt + S,v dt ' (8'2

Hence at the point of state 1, we get from (8.2.3) using (7.2.25)

and (7.2.9)1:

d * s d
..2. +._L!_ ..X.) . _2

dt 8* 1 dt 0 (8

.p*

d * d
After eliminating 35—1 and 3% from (8.2.4) using (8.2.2), we

get:

*

* * S

- +--¢!— (v - v ) > o (8 2
(P2 P1) * 1 2 1 ' ' '

* .p*

S v
Substituting the value of -fi-— from (8.2.1) into (8.2.5), we

S p*

get:

* * 2 2
_ - > . .(p2 p1) + plae1 (v2 v1) 0. (8 2

Similarly we get, at the point of state 2 from (7.2.26):

* * 2 2

(p2 ’ p1) + pzaez (V2

Since v21< v1 in a normal shock, then v1 - v2 > 0; therefore

from (8.2.6), we get:

* *

P ' P

____21 > 6:321, (8.2
v1 v2 e

and from (8.2.7), we get:

* *

P ' P
2 l 2 2

. 8.2.

v - v < p ae2 (

- v1) <0. (8.2.

.3)

.4)

5)

6)

7)

.8)

9)
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Using (3.1.l)2, we get from (3.2.1):

 

****

zp-pp-p
m = v1 _ v2 - v2 _ v1 , (8.2.10)

2112

where: m = plu1 a pzuz.

Thus, from (8.2.10) and (8.2.8), we get:

2 2
>

Also from (8.2.10) and (8.2.9), we get:

2 2

u2 < aez. (8.2.12)

Hence, the flow velocity relative to the shock front is greater

than the effective speed of sound at the point of state 1 from

(8.2.11), and is less than the effective Speed of sound at the

point of state 2 from (8.2.12). Q.E.D.
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APPENDIX A

Fortran Program

The following fortran program for H-CURVE, help us to

. dzp *
verify the statements that 2 and p vv are both greater

dv ’

than zero along the entire Hugoniot curve. In this program

SUBROUTINE POLYRT, supplied by the MSU Computer Center, has

been used to find the roots of (4.1.1), with .RXp,v) = 0.

The variables used in the program are:

AR = at, GMA = Y, R = Gas Constant, VI = v1, V = v,

P1 = p1, THETA = 9, PR1 = prl’ PHl - phl’ P = p,

PRnpr,PH-ph,.HV-N’V,HP-H’p,HVV=Y ,

,vv

HPV 3 N pv’ I-IPP -= V pp’ DPV = dp/dv, DSPV = dzp/dvz,

3 3

*

PSTVV = p vv'

3
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APPENDIX B

Effective Speed of Sound in Radiation-Magnetogasdynamics

Considering the speed of sound, ae, in radiation-magneto-

gasdynamics, it is derived by means of the small perturbation

theory [27], in which the second and higher order terms of small

quantities are negligible in comparison to the first-order terms.

For the simplicity sake we restrict our presentation to one

dimension and time. Consider a small perturbation of the state

Of rest, caused by an initial disturbance: to each (x,t) there

will correspond small values of u, p - p0, etc. Hence, the

equation of continuity (2.1.2) is reduced to:

32., ..52 -
PO ax ac’ (B 1)

and the equation of motion (2.1.3), using (2.2.4), is reduced

to:

32-

p0 at 50iloax ’ (3‘2)

Now differentiating (B-l) with respect to t and (B-2)2 with

respect to x, we get: respectively,

 

2 2

a u Q 9

p = ' 3 (3'3)

0 atax at2

§___.= _ 22. .:_E. _
90 atax IO (B 4)

Eliminating the value of po %E§; , using (B-3), from (B-4),

we get:

56





57

2 * 2

§2=32 82 _5

2 an o 2 ° (B )
at 5x

The one dimensional wave equation for p, with the small dis-

turbance propagation velocity, ae, can be written as:

2 2

fi-% = a2 3_% . (B-6)

at e ax

Now comparing (B-5) and (B-6), we obtain the effective speed

of sound, ae, in radiation-magnetogasdynamics as:

*

2
ae - BAP—‘0' (B-7)

p
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