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ABSTRACT

GENERALIZATION OF NORMAL SHOCK
THEOREMS TO MAGNETOGASDYNAMICS
WITH RADIATION

by Ram Mohan Srivastava

The present work is primarily concerned with the general-
ization of normal shock theorems by Courant and Friedrichs valid
in isentropic, inviscid, non-heat conducting fluids to radiation-
magnetogasdynamics. In the process, few generalized Rankine-
Hugoniot relations and generalized Prandtl relation have been
derived. Also, the generalized Hugoniot function has been de-
fined, and the shape of the Hugoniot curve in the (p,v)-plane
has been determined.

In the main part of this work one-dimensional, uniform,
and steady state flow of an electrically conducting, fully
ionized and compressible gas under a planar magnetic field
perpendicular to the velocity vector has been assumed. Only
first approximations for radiation parameters, for an optically
thick medium, have been considered.

The shape of the Hugoniot curve, in the (p,v)-plane, has
been found to be similar to the one in classical gasdynamics.

The generalized Rankine-Hugoniot relations are in implicit

form, hence, successive approximation technique has to be used

to find the corresponding state behind the shock front. Theorems
1 and 3 refer to change in modified entropy across a shock front.

Theorem 2 compares the pressure rise across a shock front to
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that in reversible adiabatic change. Finally, Theorem 4 refers

to the flow velocities in front and behind the shock wave.
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NOMENCLATURE
effective velocity of sound in radiation-magneto-
gasdynamics
Stefan-Boltzmann constant
magnetic flux density
velocity of light
specific heat at constant pressure
specific heat at constant volume
Rosseland diffusion coefficient of radiation
specific internal energy = ch

total internal energy per unit mass
= CvT + 3vpr + VP,

electric field
total radiation energy per unit volume = arT

total internal energy per unit mass
1 2

=CT+5u +E/p
electromagnetic force

magnetic field

Hugoniot function

electric current

mechanical equivalent of heat
electric current density
coefficient of heat conduction
constant = pu

Mach number

critical Mach number
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hydrostatic pressure

magnetic preisure
_1l, 2. 8%
2 e 2
2v

radiation pressure

1
3 Er

=p+p,

total pressure
=p+p *p

Prandtl number
total heat flux
Gas Constant

Reynolds number

radiation pressure number
=p./p

magnetic pressure number
= p,/P

modified entropy
time

absolute temperature
flow velocity
specific volume
space coordinate

ratio of specific heats
=C_/C
PV

shock wave thickness
dielectric constant

joule heat

-— —

= E.J
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constant

= /H;vH

mean free path

Rosseland mean free path of radiation
coefficient of viscosity

magnetic permeability

magnetic diffusivity

density (mass per unit volume)

excess electric charge

electrical conductivity

subscript 1 signifies the state in front of the
shock wave

subscript 2 signifies the state behind the shock
wave
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INTRODUCTION

In the magnetogasdynamics, the generalized Rankine-Hugoniot
relations referring to a normal shock have been developed by sev-
eral authors [4, 11, 13, 14]. 1In the radiation-magnetogasdynamics,
the generalized Rankine-Hugoniot relation, as the ratio of velocities

u
(i.e. Gz) only, has been developed by [15, 16]. The normal shock

theorem;, referring to some characteristic properties of normal shock
in classical gasdynamics, have been developed by [2, 6, 28] and
condensed by [3].

In the present work, we derive generalized Rankine-Hugoniot
and Prandtl relations, not covered in [15, 16], in radiation-
magnetogasdynamics. Further, we have generalized the normal shock
theorems of [3] with their proofs, to radiation-magnetogasdynamics.

In Chapter I, some aspects of normal shocks have been dis-
cussed based upon the existing literature and a table of shock
layer thickness have been compiled. 1In Chapter II the fundamental
equations of radiation-magnetogasdynamics have been collected and
reduced for the case of one-dimensional steady state flow. Chapter
III contains the derivation of the generalized Rankine-Hugoniot
and Prandtl relations. Further, modified first law of thermo-
dynamics and modified Rankine-Hugoniot relations have been in-
troduced in Section (3.4). In addition, several auxiliary in-
equalities have been derived in Section (3.5). 1In Chapter IV the

generalized Hugoniot function has been defined, and the shape of



the Hugoniot curve has been determined. The crucial part of the
work, i.e., the generalizing the four normal shock theorems with

their proofs, occupies Chapters V to VIII.



I. BRIEF REVIEW OF THE PRESENT STATUS OF THE SHOCK THEORY

1.1 Inviscid Isentropic Flow-Shock and Rankine-Hugoniot Relation
(Continuum) :

All the approaches in this chapter are phenomenological. The
considerations referring to the shock phenomena should emphasize
two kinds of assumptions which form the basis of any approach to the
shock theory. The first group refers to the fundamental laws govern-
ing the flow, i.e., three conservation laws and equation of state.
We use a unique nomenclature for these laws, namely fundamental
dynamic laws (f.d.1l.). The second group refers to the fundamental
assumptions governing the structure of the shock (f.s.l.).

The Rankine-Hugoniot relation [3, 10, 20, 27] 1is derived with
f.d.1l. as standard laws of ideal, perfect gas. The f.s.l. assume
that the shock is a step-wise transition, in all the variables, of

zero thickness.

1.2 Viscous Flow Shocks in Continuous Media:

Shock in real gases exhibit very steep but continuous
transition from the state 1 to the state 2. As the shock wave
becomes very steep, viscous stresses and heat conduction effects
become appreciable, no matter how small be the coefficient of
viscosity and the coefficient of thermal conductivity, and so a
particle of fluid is subject to diabatic effects. The effects of
viscosity and heat conduction tend to wipe out discontinuities in
velocity and temperature. Therefore these effects control the
thickness of a shock wave. Below, we discuss briefly the funda-
mental assumptions in a few representative works on the subject.

3



In [21] a perfect gas, satisfying f.d.l. with two different
uniform u, P,and T as initial and end boundary conditions, has been
assumed. The f.s.l. assume special functions describing the velocity
distribution inside the shock. The thickness of the shock is obtained
from the entire formalism.

In [23] the "Shock-Thickness Reynolds Number" is derived for
air. The f.d.l. and f.s.l. assumptions are the same as in [21].

The viscosity K has been assumed to be proportional to .

In [26] the f.d.1. assumptions are the same as in [21], the
f.s.l. assume that the quotient W/k remains approximately constant
with temperature variation. No other constraints are introduced.
This allows the author to calculate only the upper and lower bounds
of the thickness but not the actual thickness of the shock itself.

In [9] the f.d.1l. assumptions are the same as in [21], except
the viscosity terms are retained in the momentum equation and ne-
glected in the energy equation. The f.s.l. assume the inflection
point (i.e. dzu/dx2 = 0, at x = 0) inside the shock wave and this
is sufficient for the existence of the transition region. The re-
sults obtained are in close agreement with the exact solutions of

(12, 19] for the structure of the shock wave and its thickness.

1.3 Kinetic Theory Treatment of the Viscous Flow Shocks:

In [1] a perfect gas, whose specific heat is independent of
temperature, satisfies f.d.l. assumptions as that of [21]. The
f.s.l. assumptions are the same as in [9]. The author concludes.
that the thickness of a moderately strong shock is of the order of

mean free path and must be treated directly from the relevant



Boltzmann equation. Whereas very strong shocks have thickness less
than the mean free path and even the Boltzmann equation cannot be
used. Hence, the actual reference in [1] to the kinetic theory is
a recommendation that the kinetic theory equations should be used
in the shock theory.

In [25] it has been pointed out that if the increase of the
coefficients of thermal conductivityand of viscosity with increasing
temperature and pressure is taken into account, then the shock wave
thickness for a perfect gas will never be less than the mean free
path and hence the Boltzmann equation can be applied even for very
strong shocks. The author takes the third approximation to the
Boltzmann equation. The f.d.l. and f.s.l. assumptions are the
same as in [1].

In [12] the conclusions of [25] has been modified for any
gas whose W and k has been assumed to be proportional to Tn,
where n 1is a positive constant depending only on the gas in
question and for Pr = 3/4. 1In this paper f.d.l. assumptions are
the same as that in [25] and f.s.l. assumptions are the same as
in [1].

In [8] the author tries to improve the results of [26], by
taking the third approximation to the Boltzmann equation for f.d.l.
and keeping f.s.l. assumptions the same as in [26]. But the author
finds that the bounds of the shock wave thickness are not affected

by the higher order Burnett terms.

1.4 Shocks in Magnetogasdynamics:

The governing relations are derived from the magnetogasdynamic



equations describing the steady, one-dimensional flow of a viscous,
heat conducting, electrically conducting, and compressible gas under
a planar magnetic field perpendicular to the velocity vector (i.e.
velocity and magnetic field vectors are in the same plane but perpen-
dicular one to each other). If the magnetic field vector is parallel
to the velocity vector, then it will not affect the gasdynamic
equations.

In [13] a perfect gas, satisfying f.d.l. and Maxwell's
equations with two different uniform u, p, T, and H as initial and
boundary conditions, has been assumed. The f.s.l. assume that there
is a point of inflection, in the transition region, for all the
variables. As a special case the generalized Rankine-Hugoniot
relations have been derived. Moreover, the structures of the
shock wave of a finite thickness have been considered for a few
special cases.

In [11] the f.d.1. and the f.s.l. assumptions are the same
as in [13] along with Maxwell's equations. The author determines
the shock profile and width of the transition region for a few

special cases.

1.5 Shocks in Radiation-Magnetogasdynamics:

The governing relations are derived exactly in the same
manner as that for shocks in Magnetogasdynamics, except that the
radiation pressure is added to the gas pressure in the momentum
and energy equations and the radiation field energy is added to
the energy equation.

In [16] the generalized Rankine-Hugoniot, as well as sev-






eral limiting cases of Rankine-Hugoniot relations have been derived.
The f.d.l. assumptions are the same as that of [13]. The f.s.l.
assume that the shock is a step-wise transition, in all the variables,

of zero thickness.

1.6 Fundamental Properties of the Shock Transition:

The literature reviewed in Sections (1.1) to (1.5) refers
to a some sort of the phenomenological theory of shocks. Namely,
it is assumed that the shock exists and the mathematical formalism
helps to answer on such questions of how small or large is the
thickness of the shock, etc. But there are many other important
questions concerning the shock wave thoery which are of a more
fundamental nature.

Let us only quote from [28] two such questions: (a) What
are the conditions for the equation of state of a fluid under
which shocks with their distinctive qualitative features may be
produced; (b) the second question refers to the physical struc-
ture of the shock layer whose "infinitesimal" width is of the order
of magnitude € provided that heat conductivity and viscosity
are small of the same order. Below, we present a brief review of
the literature referring to this part of the shock theory.

In [2] the author derives several important theorems con-
cerning the behavior of shock waves based on the three assumptions
for the equation of state. In [28] the author derives some of the
conclusions of [2] using more rigorous mathematical methods but
made seven assumptions concerning the equation of state. 1In [3]

the authors condensed the physical assumptions of [28] and re-



arranged those of [2]. The authors follow the method of [28] and
prove four basic properties of the shock transition.

In [6] the author proves the existence and uniqueness of the
shock layer for the general class of fluids considered in [28], for
arbitrary end states satisfying the shock relations, with k and u
being arbitrary functions of the state.

In [22] the transient and steady state behaviors of normal
shock waves are examined. The transient behavior is examined from
dynamical considerations, while the stationary behavior of the

shock is studied with the help of the Rayleigh line.
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II. FUNDAMENTAL ASPECTS OF SHOCKS IN

RADIATION-MAGNETOHYDRODYNAMICS

2.1 Fundamental Systems of Equations:

The systems below refer to a one-dimensional non-steady

flow [7, 14, 15].

(a)

3

at

(b)

Hydrodynamic System:

Equation of State (perfect gas):

p = PRT.

Equation of Continuity:

2P

o -
3¢ T ax (Pu) = 0.

Equation of Motion:

ap
=-—t4+rFr +&

du
) ax e

4 du
ax ()

3 ox

du
p(at + u

o |lov
B

Equation of Energy:

8 - .9 3 (&
(PE,) + 3% (PE u) = - 3% (up) + 3% 3

9Q
+5x t€e

Electromagnetic System:

Maxwell's Equations:

d =2 Q€EE > oB
vV X = + = V X
H J 3 ’ E at 5

12

B ou

du.
X

(2.

(2.

(2

(2.

(2.

(2.

1.1)

1.2)

.1.3)

1.4)

1.5)

1.6)
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Equation of Conservation of Electric Charge:

ap

aTe+V .J=o0. (2.1.7)

Equation of Electric Current:
J=1+pu=0lE+p (@xH] +p 4. (2.1.8)

(¢) Radiation System:

Equations of radiation pressure, energy, and flux:

=

X
o - (2.1.9)

The above equations are only first approximations of P Er’ and

Qr respectively.

2.2 Reduction of the System of Equations:
The equations of Section (2.1) will be reduced for one-

dimensional steady flow in Radiation-Magnetogasdynamics.

Equations of State and Continuity:
p = PRT, pu = constant = m. (2.2.1)

Equation of Motion: The term Fe in (2.1.3) is the x-

component of the electromagnetic force, i.e.,

- - - —ox—o 2.
F_=pE +u (I XH. (2.2.2)

Assuming the plasma as a fully ionized gas in which the excess
electric charge is zero (i.e. pe = 0). Also in magnetogasdynamics

the displacement current (i.e. GE) is very small as compared to






14
curl of the magnetic field. Hence from (2.1.5)1, we get:
J =V XH. (2.2.3)

Therefore, after substituting the value of J from (2.2.3) and

pe = 0 into (2.2.2), we get:

i"e = [ X H) x H). (2.2.4)
Hence, x component of F = -4 H ot
’ P e e ax

Now (2.1.3) after some simplification is reduced to:
mdu + dp_ + 4 H dH - d(é " 25) = 0. (2.2.5)
t e 3 dx

After integrating (2.2.5), we get:

V)
e .2 4 du
_€ -2y e = . .2,
mu + pt + > H 3 N ax cons tant mc1 (2 6)
Equation of the Magnetic Field:
For steady state case (2.1.5)2 is reduced to:
V X—E.=O. (2‘2'7)
When excess electric charge is approximately zero (i.e. Pe = 0,
then (2.1.8) is reduced to:
J =olE + ue(;’ X H)J. (2.2.8)

Substituting the value of E from (2.2.8) into (2.2.7),

we get:

-

v ox [%-ue(GXi’n] = 0. (2.2.9)
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Now substituting the value of 3 from (2.2.3) into (2.2.9), we
get after some simplication the equation of the magnetic field,

for one-dimensional steady state case as:

dH, _
d(uH) - d(vh dx) =0, (2.2.10)
where: Yy = EAE ,» is called magnetic diffusivity.
e

After integrating (2.2.10), we get:

dH
uH - vh ax constant F. (2.2.11)

Equation of Energy:

For one-dimensional steady state case (2.1.4) can be simplified as:

d N d 4 du 4q
i (PEtU) e (uPt) + (3 B u dx) + 5 +€e. (2.2.12)

=R I @i r ., dH
where: Ee =E . J= - ue ix [uH vh el
I S B
Q = kg *P &G
krc c
D - —-—

r 3 3Kop°
r
T . n n
AN o= A (_9\ 1 (po\t 2
r ro \T ) ’
where subscript o 1indicates conditions at some reference point,
2 is a positive number while n1 may be positive at

low temperature range and negative at high temperature range.

exponent n

These exponents are determined experimentally.
Now substituting the above expressions in (2.2.12) and after

some simplification we get:
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u2 E 4 du
md(CVT toF p—) + d(upt) -3 d( u H)

dE

dT r _
- d(k dX) - d(Dr I ) + F uedH = 0. (2.2.13)
After integrating (2.2.13), we get:
2 E dE
u r . 4 du . dT - r
m(CvT + e + a—) + upt 3 B u o k = Dr ™ + F ueH

= constant = mc,. (2.2.14)



III. FUNDAMENTAL EQUATIONS FOR NORMAL SHOCK

3.1 Generalized Rankine-Hugoniot Relations for an Optically
Thick Medium:

The fundamental equations governing the flow field, with no
variation in x-direction and separated by a shock wave, are obtained

from (2.2.1), (2.2.6), (2.2.11), and (2.2.14). These equations are:

p = PRT ; pu = constant = m, (3.1.1)
mu + p + pr + ph = constant = me,, (3.1.2)
u2 Er H2
_.+_ —_— = = o Le
m(CvT + 2 5 + ue 2p) + u(p + pr + ph) constant mc2, (3.1.3)
uH = constant = F, or VH = constant = _Q_ . (3.1.4)
Vi

e
The generalized Rankine-Hugoniot relation [15, 16], as the

ratio of velocities, is:

2 2
EZ - l{:ye-l + 2'Ye(Pa-Hll)] +.l[ﬁye-1 + 2.Ye(Pe-‘-hl) 2 + 8 2'.Ye h2 %
uy 2 ye+1 Ye+1 2 Ye+1 Ye+1 Ye+1 1. (3.1.5)
% P 1
where: h1 = Hl/ (2mu1/ue) , P = 7= 3> and the so-called
P My

effective values of P and of the ratio of specific heats, as

defined in [15], for radiation-magnetogasdynamics are:

P = (R

R bl + l)f(RPZ)P’ (3.1.6)

LO-DR ) + ¥
Y, = p2 ,
e “3(DR, * 1

(3.1.7)

17
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2
(R +1) (8R ,+r+1)

= [e _ v
= (R_.+1) (8R +r2+1)]/(“1 & C9
pl P
Rp = Pr/p = radiation pressure number, (3.1.9)
2
r- o= (y+1)/(y-1).

The generalized Rankine-Hugoniot relation, as the ratio of pressures,

derived from (3.1.1) and (3.1.2), is:

2
EZ ) 1+ Rpl + Rhl + YMl (1 - u2/u1)
Py 1+ sz + ha

2
where: Rh = (ue %—)/p = ph/p = magnetic pressure.number.

, (3.1.10)

The generalized Rankine-Hugoniot relation, as the ratio of temper-

atures, derived from (3.1.1) and (3.1.10), is:

2

1+ Rpl + ha + YMl (1 - uz/ul)

TR . (3.1.11)
p2 Rh2

T

-2
u

1

S

The generalized Rankine-Hugoniot relations for a viscous,
heat-conducting gas without radiation and magnetic field (17),
actually equivalent to isentropic flow, are:

u

2 L o142
e -1+, (3.1.12)
M
1
P
2 _ 1 2 _
P, VA (2y M, - v+D), (3.1.13)
) 2(y-1) .2 1
2=1+ 5 ) - DIy + 5], (3.1.14)
1 (y+1) M

1

Using (3.1.12), the velocity ratio (3.1.5) can also be



written as:

where:

Since

Using

where:

Using

as:

where:

a

1
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:1_2.=i~_1_.('Y
u y+1

—

1+,
"

velocity correction factor:

2
Y-l 2y (P_+n]) +[{Ye-

(3.1.15)

252
1 zye(peml)}+8

Z'Ye hz} %
Ye+1 1

Y +1 + Y +1 Y +1 + Y +1
= = = = (3.1.16)
._2_ ( -1 +£_)
v+1 Y 2
1
S
from (3.1.1),, — = —; hence from (3.1.15) we also get:
2’ p u
2 1
P o
1 1 2
o, = e (VL. (3.1.17)
2 M1

(3.1.13), the pressure ratio (3.1.10) can also be written as:

(3.1.14), the temperature ratio (3.1.11) can also be written

o

o

u
u

2

3

2
1

P o
2 % 2
P, VA (2yM; - Y+1), (3.1.18)
= pressure correction factor:
14+R + M2(1- /u.)
p1 Ryt Y, uy/vy v+ 1
o, = T (—=—). (3.1.19)
p2 ¥ Ry 2y M{-v+1

[

T
T—2 —a {1+ ﬂli)z- .(Mi-l).[y + 471 (3.1.20)
1 (y+1) M,
temperature correction factor:
14R . H +YM2(1-u /u.)
p1 Ry Yy (L1-uy/uy ] 1 : (3.1.21)
L+R,+ Ry 1+ 2D oy [y )
2 1 2
(y+1) M1
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The correction factors (i.e. dl, az, and 03) are equal to unity for
viscous, heat-conducting gas without radiation and magnetic field,

and for isentropic flow.

3.2 Generalized Prandtl Relation:
The generalized Prandtl relation, for two uniform states
separated by a shock, is derived from (3.1.1)2 and (3.1.2). The

result is:

P, =P, P, - P P, - P
uu, - 17 % P Pep Poa ph2 G.2.1
PL =Py PP =Py 1= Py

The Prandtl relation for viscous, heat-conducting gas with-

out radiation and magnetic field is [3]:

p, - P
1~ P

du =+ 2 (3.2.2)

1’2 p -0,

Using (3.2.2), the generalized Prandtl relation (3.2.1) can also

e I

be written as:

where: a4 = correction factor for Prandtl relation:
P - P P - P
A = (1 + rl - r2 + hl - hz). (3.2’4)
P1 PZ Py P2

The correction factor, a4, is equal to unity for viscous, heat-
conducting gas without radiation and magnetic field, and for

isentropic flow.
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3.3 Shock relation in terms of change in internal energy:

The change in internal energy, between two uniform states
separated by a shock, is derived from (3.1.1)2, (3.1.2), and (3.1.3).
The result is, with e = ch:

P,+P +P_ +P_, P, *P
1 P2 Pr1"Pro™Pn1"Pho
ey-ey = (vy-vy). 2 + 3(VP V) Prg) T (VP VR o)

(3.3.1)
The change in internal energy for viscous, heat-conducting

gas without radiation and magnetic field is [3]:

P+ P,
e, - e1 = (v1 - v2).———5——- (3.3.2)
Using (3.3.2), equation (3.3.1) can also be written as:
Pyt P,
e, - e1 = as(v1 - v2).———3——— 3.3.3)
where: as = correction factor for internal energy:
- +
_ VTP tP o3P PP ) = Vo (P TP oty P3Py )
o, =1+ . (3.3.4)

The correction factor, as, is equal to unity for viscous, heat-
conducting gas without radiation and magnetic field, and for

isentropic flow.

3.4 Modified Equations:
The first law of thermodynamics, for the case of radiation-

magnetogasdynamics, is modified as [4, 24]:

dqQ = de” + p dv, (3.4.1)
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*
where: dQ =T dS .

®
]

total internal energy per unit mass,

+
ch 3v P, + VP,

total pressure,

o
n

P+p. + P

2]
]

modified entropy.

The generalized Rankine-Hugoniot relation (3.3.1) can be

modified as:

* + *
P P
* * 1 2
e, - e (v1 - VZ)' 7 . (3.4.2)
Let us introduce the Hugoniot function:
* + *
P, TP

¥=e - e: + (v - vl). (3.4.3)

2

For p = Pyr V=V, (3.4.3) reduces to the modified Rankine-
Hugoniot relation, with & = 0, across the normal shock as shown

in (3.4.2).

3.5 Auxiliary Inequalities:

Lemma 1: The value of Ye is everywhere, greater than or equal

to % and less than or equal to Y.

Proof: The proof is divided into two parts.

1. (1) % < Ye everywhere.

From (3.1.7) we have:

A(Y-l)gpz + Y

y = or -y 3y-4
e 3(Y-1)Rp2 +1 e

3{3(y-1)np2 + 1}

4
-3 = (3.5.1)
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According to [15], we have for all gases:

- 2 ' - >
3y - 420 and {3(y 1)Rp2 + 1} > o0, R, 2 0. (3.5.2)

The case 3y - 4 =0 when T approaches infinity. Therefore

from (3.5.1)2 and (3.5.2), we get the following inequality:

4 4
-2 =<
Ye 3 0, or 3 Ye’ Q.E.D. (3.5.3)

1. (ii) Ye < Y, everywhere.

From (3.5.1)l we can write:

(Y-1) BY-4)R_,

Y=Y T 3R-DR .+ 1 (3.5.4)
p2
Since (¥-1) > 0 everywhere, hence, from (3.5.2) and (3.5.4)
we get:
Y - Ye 2 0, or Ye <Y, Q.E.D. (3.5.5)

Now combining the two inequalities, (3.5.3)2 and (3.5.5)2, we get:

4
- < <
3 Ye Y, Q.E.D. (3.5.6)
Yy -1
1 e y-1
. =< = _ g
Lemma 2: 7 Ye+1 NFL’ everywhere.
Proof: The proof is divided into two parts.
1 Ye-1
2. (i) 7 < Ye+1, everywhere.

From (3.5.3)2, we have:

4 4 4 _ 4 4 7
2 < hud <2 2 < L
35 Yer O 3 Y 33V F Yot 3 (YD) =3V,
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-1
4 4 4 1 Ve
= +1) < - - 1= - T - < —
or 7 Wt =¥, or 5 (Y4 - 15y, -1, 0r g ! s v
Y -1
1,3._ 1 e
or - + (7 - 5 +1) < ¥+ (3.5.7)
e e
From (3.5.3)1, we have:
Y -220,0r (y+) - G+1) 20
e 3 ’ e 3 ’
7 3 1
- L = . 2 0. .5.
or (‘Ye+l) 3 20, or 7 e+1 0 (3.5.8)
Therefore, from (3.5.7) and (3.5.8)2, we get:
vy -1
1 e
7 s Ye+1 » Q.E.D. (3.5.9)
Yy -1
s e . xy-1
2. (ii) Ye+1 Y+ everywhere.
From (3.5.5)2 we have:
Yo Y, or v +1sy+]1,
1 1 1 1
—_ —_— < | — o —
or N+1 < Ye+1, or 0 [Ye'*'l Y+1]' (3.5.10)

Again from (3.5.5)2, we have:

< \ <
Yo SYs 0t Y FYYSYAYY,

y
< € <
or Ye(Y+l) Y(Ye+1), or Ye+1 1’

Ye 1 Y 1 Y

- < _ or e __1 + | 1 1| .X-1
Yol v+l T v+l v+ Yo+l o Y 1 Y1 ¥+l Y+l °

or

Y -1
e 1 1 y-1
or Ye"‘l + [Ye+1 Y+]] < YL (3.5.11)
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Therefore, from (3.5.10)2 and (3.5.11) we get:

Yy -1

e y-1
! < QED.

(3.5.12)

Now combining the two inequalities (3.5.9) and (3.5.12), we

get:

y -1
l__e _xy-1

7 ye+1 Yy+1’ Q.E.D.

v
Lemma 3:

2
7 everywhere.

Proof: From (3.1.5) we get:

since all other terms in (3.1.5) are greater than zero.

u, v,
from continuity equation, =5 and (3.5.14) we get:
1 1
vy Yol V2o 1 Yool
el gvas BCLEal Rvirs Sl
1 e 1 e
Ye-1 1

From (3.5.13),

Ye+1 7

- =2 0, hence from (3.5.15) we get:

(3.5.13)

The ratio of the specific volumes, ;l, is less than

(3.5.14)

Then

(3.5.15)
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=-3>0,0or 7-= >0. Q.ED. (3.5.16)

*
Lemma 4: d2p

4 1 > 0 at the point of state 1.

*
Proof: By definition, p = p + P, + Py >

* a 4 2
or o' = p + S om + &, (3.5.17)
3R 2v

* *
Thus, p = g(v,p), where p = p(v,5 ).

* *
Therefore, p = g(v,p(v,S )),

* *
or P =G(v,S), (3.5.18)

*
where, v and § are assumed to be independent agruments, so

thato

a  a%” ¥ oav 4 p L dsyav + 2—(dpHyas”. (3.5.2
an P =(p,VVv p’s*VS)V'f‘as*(P)dS.(..O)

At the point of state 1, we have from (5.2.4), (see below),

*
dS1 = 0, thus:

2 * * 2
d°p, = {p’vv(dv) }ll. (3.5.21)

Differentiating (3.5.17) twice with respect to v, we obtain:
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2 4a
* - 36 r 2 2
P el el CORCI G IR |
v R
4 % 3
+ {3 = (ew)7. (2 + ve D+ {p W, 3522
Let p*w|1 = {1} + {11} + {111}. (3.5.23)

(1) {I} > 0 everywhere, since each term of {I} is positive
everywhere.

(ii) From (4.2.5) and (4.2.10), we get: respectively,

Yp,
Pl =-E.+16p‘1 ,
VL, 125
17vy-1 P
1
64 p 124 p 36 p
rl 2 rl rl 2
| 1 1 p1
P =- ’
,vv'l ol 1 . 12 pr1]
17vy-1 P,
pz Y(y+l)p 93
Y.___Y152-zz; byt 16.13{;;”. rl , . 1, 12288.%1
(y-1) 1. &b P]
°r p,vvll =
L 12 pr1]3 (3.5.24)
17vy-1 Py

Therefore,
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Yp 12 p
1 1 rl, 2
2{(g + 16 p ) +
(G P §T br )%}
152-24 112433 p21 Y(y+D)p, p31
+y.—=="Lp , +16. (v-l)Y'pr + 5 + 12288.—=
) | v-1? 1 (D Py
( p’v+vp’vv) 1= >
v [-l— + 12.—51]3
17y-1 P,
or
o2
—Y—.p, +8. 3YG- Y)+4(Y 1).p +16. _?¢;%¥ Pr1
(¥-1) (v-1)° Y-
)3
+ 7680.-§l
| al
vk 4 123
Y Py (3.5.25)

From (3.5.25) for 1< vy < 2, we get:

>
2 +ve DI, >0,

since all other functions on the right hand side of (3.5.25) are
greater than zero everywhere.

Therefore, {II} > 0 at the point of state 1, since all other
quantities in {II} is positive everywhere.

(iii) From (3.5.24), {III} > 0 at the point of state 1 for

1< y< 2.
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*
Hence, from (3.5.23), p vv|1 >0 and then from (3.5.21),
bl

we get:

dzp: >0, Q.E.D. (3.5.26)
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IV. GENERALIZED HUGONIOT FUNCTION

4.1 Generalized Hugoniot Function:

Transferring all quantities from the right hand side to the
left hand side in the generalized Rankine-Hugoniot relation (3.3.1)
and abandoning the subscript 2 in this equation, we obtain a
function defined as the generalized Hugoniot function. This function

is, with e = Y :
vy-1

P,V a
ZBbv 11 .1 x_ 4 4
¥ -y *20-vp - lp+p + " [ev™ + (pyvp 7]

2 a 2
8” rl 1 r ¢ 45 4 5 8- (1 1
+3 (5 +353+— (oY - pvil +3 -3 1. .1.1)
v v 1
1

The right side of (4.1.1) is a function of p and v only, the
variables at the state 1 being fixed. Therefore the Hugoniot
function, ¥ = #(v,p). We get the Hugoniot relation across a normal
shock by substituting &(v,p) = 0 in (4.1.1), and p = Py and

vsvz.

4.2 Hugoniot Curve:

The graph of the Hugoniot relation, ¥(p,v) = 0, in the
(p,v)-plane is called the Hugoniot curve. The general shape of
this curve can be determined if the signs of first and second
derivatives of p with respect to v are known. With d¥ =0

along this curve, we have:

N=¥ dv+¥ dp=0, (4.2.1)
v >P

31



thus, dp . . v (4.2.2)
From (4.1.1), we have:

12 .1 1 V1 1 M5!
¥ o=l +ge +e DY+ {5 B35 -4 D)+ {50 -p) R (1- 3O,

(4.2.3)
¥ =lv{r2+zsa -E(1+4R)}. (4.2.4)
P 2 P Vv P
Therefore:
(or2 + (o 42} + (o (356 D) + {(p, -p)-2p (1- 1))
dp _ _ ‘P P1Pr1 Pr v Ph1™Ph’ ""Ppt "
dv 9 v ’
vr +28 Rp-v—(1+4Rp)] %.2.5)

Equation (4.2.5) gives the slope at a point of the Hugoniot curve
in (p,v)-plane.
. . dp .
Theorem 4.2: The derivative qy s everywhere less than
zero along the entire Hugoniot curve.
Proof: The proof is divided into two parts.

1. (i) N’v > 0 along the entire Hugoniot curve.

From (4.2.3), let:

¥ o={1] + {11} + {111}. (4.2.6)

(i.a) {1} > 0 everywhere, since r2>0 for Yy>1 and

all the functions in {I} are positive everywhere.
1 V1 1 V1
(i.b) {11} =5 p [35 - —"1 =2 p [(35 - 28) +4(7 - 2],

1 V1
or {11} = 5 9 [7 + 40 - D].
Therefore, {II} > 0 everywhere from (3.5.16).
2 2 2 v
. 6 1
G.o {mm} = (&5 -85 .25 a - by,
4v 4v 2v

1
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_ 82(v1 - v)2(2v1 + v)
or {111} =

4 v vl

Therefore, { III} > 0 everywhere, since v and v, are always

positive. Thus, from (4.2.6), we get:

¥ >o,
,V

along the entire Hugoniot curve. Q.E.D.
2. (ii) N’p > 0 along the entire Hugoniot curve.
b

From (4.2.4), let:

1 _ ye+1 v1 v+l Ye+1
v o= vl {(1+¢.Rp) (—Ye'l -+ {Y_1 +28R - v (1+4Rp)}],
let v % vl{1} +{11}]. 4.2.7)

(ii.a) {I] > 0 everywhere from (3.5.15)1.
Ye+1 7(Y-1)Rp + y+1

(ii.b) From (3.1.7), Ye-l = (Y'l)(Rp+1)

(4.2.8)

From (4.2.8), we have:

6R_(3Y-4)

(1) = S

Therefore, { II} 2 0 everywhere, since Y 2 % from (3.5.6).
Thus, from (4.2.7) we get: k} >0 along the entire Hugoniot
curve. Q.E.D.

Since ﬂlv >0 and ﬂ: > 0 everywhere along the Hugoniot
curve, hence, from (4.2.2) %s < 0 along the entire Hugoniot
curve. Q.E.D.

With d%V = (0 and dp = gs dv along the Hugoniot curve,

we can write from (4.2.1) after differentiation:
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2
i} dp dp, 2 d%p 2
W=+ XD K @D aw EBlew

p dv dv
Since dv # 0, therefore:
dpy2 | __2 =
ylvv ( ) p(dv) ’p(dv ) 0,
dp
o2 {v,w+ O )2]
or —P = ‘
2 ' ¥
dv »P

Substituting the value of %g from (4.2.2), we get:

| Ta -
dzp w,pvy.p WV y,w(z.y y.pp(y)

2" 3
dv ®

Differentiating (4.2.3) with respect to v, we get:

2p 3p

_r . —h -
k;vv v2 (35v 3v1) + vz (v vl).

Differentiating (4.2.4) with respect to v and p, we get:

r2 2pr
ﬂ;pv =3 + ;;— (35v - 4v1).
6pr
o™ ;2— v -vp.

(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

Equation (4.2.11) gives the second derivative of p with respect

to v at a point of the Hugoniot curve in (p,v)-plane.

second derivative is positive everywhere along the Hugoniot curve.

To verify this statement the positive real roots, of (4.1.1) with

¥ (p,v) = 0, are determined by programming this Hugoniot relation

on CDC 3600 computer [see Appendix A].Then corresponding to these

roots the values of ——%, are calculated by programming (4.2.11)

dv
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2
on CDC 3600 computer which gives E—g always positive for each
dv
and every root of the Hugoniot relation. Hence, it can be inferred
a%p .
that 5 1is positive everywhere along the Hugoniot curve.
dv
2
Since gg < 0 and g—g > 0 along the entire Hugoniot
dv

curve, hence, the shape of the Hugoniot curve is convex downwards

in (p,v)-plane.
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V. THEOREM 1

5.1 The Present Formulation of Theorem 1:

Courant and Friedrichs [3] have proven a series of theorems
referring to the mathematical formulation of the description of a
normal shock in an isentropic flow. We quote below the first of

these theorems (denoted by letters C.F.):

Theorem 1 [C.F.]: 'The increase of entropy across a [normal] shock

front is of the third order in the shock strength."
Here the shock strength refers to any of the differences Py - Pys

Vy =V

2 l, or |u, - uf.

1

5.2 Theorem 1 in Radiation-Magnetogasdynamics:

We generalized the theorem and proof by [C.F.] to the case
of radiation-magnetogasdynamics.
Theorem 1: '"The increase of modified entropy across a normal shock
front in radiation-magnetogasdynamics is of the third order .in the
shock strength."
Proof: The proof is a straightforward one. Along the Hugoniot

curve & = 0, (4.2.1), hence from (3.4.3), we get by differentiation:
* * * *
2d¢ = 2de + (p + pl)dv + (v - vl)dp = 0. (5.2.1)
From the modified first law of thermodynamics (3.4.1), we get:

* * *
de =TdS - p dv. (5.2.2)

*
Substituting the value of de from (5.2.2) into (5.2.1), we get:

36
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* * * *
2Tds + (p1 - pldv + (v - vl)dp = 0. (5.2.3)

At the point of state 1, we have:

* *
P =p1,V=V1,

and thus from (5.2.3) with Tlf 0, we get:

*
ds] = 0. (5.2.4)

Differentiating (5.2.3) again along the Hugoniot curve and con-

sidering v as the independent variable, we get:
* *
2d(Tds™) + (v - vl)dzp = 0. (5.2.5)
Therefore at the point of state 1, we have from (5.2.5):
* 2 * *
d(Tds )|1 =0, or (Td“S + dTds )|1 =0,

*
But dS1 =0 from (5.2.4), hence:

2 %
d’s) = 0. (5.2.6)

Differentiating (5.2.5) again along the Hugoniot curve and con-

sidering v as the independent variable, we get:

2

* * *
242 (Tas™) + av d%p” + (v - vl)d3p - 0. (5.2.7)

Therefore at the point of state 1, we have from (5.2.7):

2 * 2 *
2d“(Tds )|1 = -(dv d“p )|1,

2

* * * *
or 2(Td%s* + a%ras® + 241 d%s )|1 = -(dv d%p )|1,
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2

* *
But dS1 =0 and d Sl =0 from (5.2.4) and (5.2.6) respectively,

hence:

3 * 2 *
d(Td’s )|1= -(dvdp)ll. (5.2.8)
Therefore from (5.2.8), we get for T1 > 0:
d3s’1'>o, (5.2.9)

*
when dv1 < 0, since d2p1 >0 from (3.5.26). Hence from (5.2.9)

the increase of the modified entropy is exactly of the third order

in the shock strength. Q.E.D.
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VI. THEOREM 2

6.1 The Present Formulation of Theorem 2:
[C.F.] have proven the following theorem 2 in an isentropic
flow:

Theorem 2 [C.F.]: "The pressure rise across a _normal] shock front

agrees with the pressure rise in the adiabatic [reversible] change
up to terms of the second order in the shock strength." Also,
[C.F.] had shown that geometrically the Hugoniot curve and the
adiabatic [reversible] curve, passing through the point of state
1, have a contact of second order at this point. It is assumed
here that the initial state and one quantity (say specific volume)
in the final state, i.e. at the end of the shock process, are the
same for both, the isentropic flow and Hugoniot curve (process).
This assumption implies that the both curves, isentropic and
Hugoniot, pass through the point 1, but do not meet at the final

state.

6.2 Theorem 2 in Radiation-Magnetogasdynamics:

We generalize the theorem and proof by [C.F.] to the case
of radiation-magnetogasdynamics.
Theorem 2: '"The pressure rise across a normal shock front in
radiation-magnetogasdynamics is not equal to the pressure rise
in the reversible adiabatic change."

Geometrically, the Hugoniot curve and the reversible

adiabatic curve, passing through the point of state 1, intersect

39
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each other at this point. Additionally, the slope of the adiabatic
curve at 1 is steeper than the slope of the Hugoniot curve at the
same point.
Proof: The proof is divided into two parts.

1. The Hugoniot curve intersects the adiabatic curve at

the point of state 1.

We obtain the slope of the Hugoniot curve at the point of

state 1, from (4.2.5) after substituting p = Pys V= V95 P = Pgs

2
pl(r +1) + 32 prl

%El 1 2
v'H ’
vl{(r -1) + 24 RpI]
2+ 16(y-1)
or 30| .. Py PP (6.2.1)
dv'H1 v,{p; + 12(v-Dp_,]

The equation of the reversible adiabatic curve, passing

through the point of state 1, is:

v’ = pyv, . (6.2.2)

We obtain the slope of the adiabatic curve at the point of state
1 by differentiating (6.2.2) with respect to v and then sub-

stituting p = p; and v = vy The result is:

Yp
dp| = . 1 (6.2.3)

dv'Al v1

Since the slope of the Hugoniot curve (6.2.1) is not equal to the

slope of the adiabatic curve (6.2.3) and the point of state 1 is
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common in both curves, hence the Hugoniot curve intersects the
adiabatic curve at the point of state 1. Thus the pressure rise
across a normal shock front, in radiation-magnetogasdynamics, is
not equal to the pressure rise in the reversible adiabatic change
at all, Q.E.D.
2. The slope of the reversible adiabatic curve is steeper
than the slope of the Hugoniot curve at the point of
state 1. i.e.,

<gp . 9p >
dv|H1 dv'Al 0. (6.2.4)

From (6.2.1) and (6.2.3), we get:

2
dv'H1 ~ dv'al vilp, + 12¢v-Dp,} " v,

or - = =
dv'Hl " dv'Al v1[p1 + 12(Y-1)Pr1}

N
D (6.2.5)

2. (i) D>0 for vy >1.

2. (ii) N >0, since Y > % from (3.5.2). Thus, from

(6.2.5), we get:

dpy _dp| > 2.
Bl - Sl >0 QE.D. (6.2.6)



VII. THEOREM 3

7.1 The Present Formulation of Theorem 3:
(c.F.] have proven the following theorem 3 in an isentropic
flow:

Theorem 3 [Cc.F.]: "Along the whole Hugoniot curve the entropy

increases with decreasing specific volume."

7.2 Theorem 3 in Radiation-Magnetogasdynamics:
We generalize the theorem and proof by [C.F.] to the case
of radiation-magnetogasdynamics.
Theorem 3: '"Along the whole hugoniot curve the entropy, S*, increases

with decreasing specific volume in radiation-magnetogasdynamics."

Proof: The generalized equation of state can be written as:
* * %
p =p (8 ,v). (7.2.1)
* * %
Equation (7.2.1) implies that, S =S (p ,v). Therefore:
* * * %
S =85 (p (S ,v),v). (7.2.2)

*
Assuming S and v as independent arguments and differentiating

(7.2.1) and (7.2.2), we obtain:

* * * *
dp = p’vdv + p,s*dS R (7.2.3)

* * * *
ds =S _,dp + S dv. (7.2.4)
p* »V

b

*
Substituting the value of dp from (7.2.3) into (7.2.4), we get:

42
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*

*
ds =S5

* * * * *
PxdS (S + S v, (7.2.5)

*
Since S and v are assumed to be independent arguments, there-

fore from (7.2.5) we get:

* *

s,p*p,s*

=1, (7.2.6)

* *
s* =o. (7.2.7)

+
S,p*p,v »V

From (3.4.1) and (3.4.3) with ¥ = 0, we obtain:

1ds™ = 2 d ((v-v). ]+p")]} + pTa,

* %

V.-V P -p
1 * 1
o 4P + 5y dv. (7.2.8)

*
or dS =

* *
Since vy >v and p > P> which can be obtained from (3.1.10),
everywhere along the Hugoniot curve; thus along this curve, we

get by comparing (7.2.4) and (7.2.8):

* S5 0.8 >0 7.2.9
S,p* ’ S,v ) (7.2.9)

Now from (7.2.6) and (7.2.9)1, we get:

> 0. (7.2.10)

From (7.2.7), using (7.2.9), we get:

*
* S v
pv=-—;——< 0. (7.2.11)
b}
S,p*

From (3.5.22), we have:

* —3—6—2-+-£m—r( )2[( + )2+ﬂ(2 +v )] + (7.2.12)
» VV - 4 R4 PV P VP,V 3 p9v p’vv p’vv. o
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Equation (7.2.12) is put on the CDC 3600 computer [see Appendix A)
*
and the values of p v are evaluated at the number of points
’
*
along the Hugoniot curve. The result gives p w always positive

’

for each and every calculated points of the Hugoniot curve, thus:

*

P v >0, (7.2.13)

Differentiating (7.2.11) with respect to v, we get:

S* S* s* S* s* S* S* S*
* vvo,p* D,V ,p*v prv- ,pk 0 y° pkpk, *
E - ] 2 ) 9 9 9 g 5
dp C 2 + { — 3. 7.2.14)
,P* ,p*

*
Substituting the value of p v from (7.2.11) into (7.2.14), we
obtain:

* *x 2 % * *x % *2

S =28 S S +4S S
* * % * *pk
P - = - [ 2VV_,P JP*V3,P 2V L,P7Pp ,V]‘ (7.2.15)
’
S
» P¥

* *
But p w >0 and S
bl

b

D >0 from (7.2.13) and (7.2.9)l respectively,

thus from (7.2.15), we get:

* % 2 * * % * *2

- + < . VAN
s VV_ , p¥ ZS,p*vs,p*S,v S,p*p*s,v 0 (7.2.16)

The increasing character of the entropy, S*, along the Hugoniot
curve, is proven below by showing that dS* > 0, along this curve
except at the point of state 1 where dS*I1 = 0.

The Hugoniot curve in (pfv)-plane, prtv) = 0, is also

convex downwards from (7.2.11) and (7.2.13).
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*
P
*
Let a ray K, in the (p,v)-plane,
is represented in the parametric
form as: -
v
Fig. 1.
* *
P =p1+at; v=v1+bt, (7.2.17)
h b= H
where: a =p, - p,, =V, - V. ence,
*
dp = adt; dv = bdt. (7.2.18)
Therefore, from (7.2.8), we get:
* * * *
2T ds + (p1 -pldv + (v - vl)dp = 2. (7.2.19)
* *
Substituting the value of p,v, dp , and dv, from (7.2.17) and
(7.2.18), into (7.2.19), we get:
*
T dS = d¥, along the ray R. (7.2.20)
*
Considering both § and ¥ as functions of t along &,

*
therefore if either S (t) or ¥(t) is stationary (i.e. their

particular characteristic properties, like the maximum value of

*
S (t) or X(t) do not change their location, are invariant) then
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other is also stationary which is seen from (7.2.20). Since the
Hugoniot curve, k(p*,v) = 0, is convex at 1, hence ray & cannot
coincide with this Hugoniot curve. Since ﬂ%t)l = NKC)Z =0
(both are lying on the Hugoniot curve defined as ¥ = 0), implies
that X(t) possesses at least one extremum in between. There-
fore at the point of extremum the entropy, S*(t), is likewise

stationary, or:

ds* * d * * d (7.2.21)
S p* p + S,v V. L2.

b

*
Now substituting the value of dp and dv from (7.2.18) into

(7.2.21), and after dividing the resulting equation by dt we get:

*
ds _ro* *
i exer. [s’p*a+s’vb]|extr_ 0. (7.2.22)
* %
Therefore, S _/S = - a/b. Next:
V., p*
as* 3 ast  x 3 as*
dqe) = = GGde + av (G ) avs
ap
2.* * 2 * * 2
or ds . 5 wox® T 25 _ab+S5 b,
ael s P*P s P*V »VV
_b? s” . 8%l 2s™  gF §F 4+s* gF?
TR 2 ek v T T e o v T )
*
P (7.2.23)
But the expression, inside the parenthesis, on the right hand side
2
of (7.2.23) is always less than zero from (7.2.16) and b*z >0,
S,p*
therefore,
2 %
d5 <. (7.2.24)

dt
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Thus S* and consequently ¥ possess one and only one single
stationary point on R between the point of states 1 and 2.

From the fact that S* has just one maxima between the
states 1 and 2, we infer the inequalities:

*
ds

>
ac 1 0, (7.2.25)

*
ds

ac |2 < 0. (7.2.26)

The inequality (7.2.26) excludes the possibility of the magnitude
*
of S  being stationary along the Hugoniot curve at the point of
state 2, otherwise ray K would be tangent to the Hugoniot curve
at such a point. Thus, & = 0 at this point would therefore imply
*
ds (t |
dt '2

*
proven that the entropy, S , increases along the Hugoniot curve

= 0, in contradiction to (7.2.26). Thus, it has been

with decreasing specific volume in radiation-magnetogasdynamics. Q.E.D.



VIII. THEOREM 4

8.1 The Present Formulation of Theorem 4:

[C.F.] have proven the following theorem 4 in an isentropic flow:

Theorem 4 [C.F.]: "The flow velocity relative to the shock front

is supersonic at the front side, subsonic at the back side."

8.2 Theorem 4 in Radiation-Magnetogasdynamics:

We generalize the theorem and proof by [C.F.] to the case
of radiation-magnetogasdynamics.
Theorem 4: '"The flow velocity relative to the shock front is
greater than the effective speed of sound at the front side, and

is less than the effective speed of sound at the back side."

Proof: It can be demonstrated [see Appendix B] that infinitesimal
pressure disturbance propagates with the effective speed of sound,

a, in radiation-magnetogasdynamics:

* 2 * 2 2
p,p =a; thus 1::,v -p a_

and from (7.2.11), we get:

*

S
*

.—J—*v = - p = pzaz, (8.2.1)
s »V e

» P*

From (7.2.18), we get:
* * dv

(8.2.2)

QF?
T
*

TP TP g T V2 T Ve
and from (7.2.4), we obtain after dividing this equation by dt:
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* *
ds * dp * dv
dt s,p* dt + S,v dt °

Hence at the point of state 1, we get from (8.2.3) using (7.2.25)

and (7.2.9)1:
dp. S d
SR 2V | SV 5,
dt s* 1dt 0 (8.2
»P*
d * d
After eliminating EE— and E% from (8.2.4) using (8.2.2), we
get:
*
* * S
- + 2] (v, -v,)>0 (8.2
(py =P + 5|, (V7 : e
x o P*
S v
Substituting the value of —}— from (8.2.1) into (8.2.5), we
S,p*
get:
* oYy + pla? >0 8.2
(p2 = pl) plael (V2 - vl) . ( . .

Similarly we get, at the point of state 2 from (7.2.26):
* * 2 2
- +
(p, - P)) P8, (v,
Since v, < vy in a normal shock, then vy, - v2 > 0; therefore
from (8.2.6), we get:

* *
P, - P
—2—:——1 > piazl, (8.2
vy -V,
and from (8.2.7), we get:
* *
P, = P
2 1 2.2
Pa—— < p28e2' (8.2.

(8.2.

- vl) < 0. (8.2.

3

.4)

3)

6)

7)

.8)

9
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Using (3.1.1)2, we get from (3.2.1):

* * * *

P, - P, P,-P
m2=v1’vz_v2-v1’ 8.2.10)

2”1 172

where: m = plu1 = p2u2.

Thus, from (8.2.10) and (8.2.8), we get:

2 2
>
ug a (8.2.11)
Also from (8.2.10) and (8.2.9), we get:
2 2
u, < aez. (8.2.12)

Hence, the flow velocity relative to the shock front is greater
than the effective speed of sound at the point of state 1 from
(8.2.11), and is less than the effective speed of sound at the

point of state 2 from (8.2.12). Q.E.D.
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APPENDIX A
Fortran Program

The following fortran program for H-CURVE, help us to
. a%p *
verify the statements that 5 and p vy are both greater
dv ?
than zero along the entire Hugoniot curve. In this program

SUBROUTINE POLYRT, supplied by the MSU Computer Center, has
been used to find the roots of (4.1.1), with X(p,v) = 0.
The variables used in the program are:

AR = ar, GMA = v, R = Gas Constant, V1 = Vi V=yv,

Pl = P> THETA = 6, PRl = P 1> PH] = Phie P =p,

PR = P PH = P> HV = M’v, HP = H’p, HVV -JV’W,

HPV = ¥ v’ HPP = N'pp’ DPV = dp/dv, DSPV = dzp/dvz,

I b

*
PSTWV = p .
V'V
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APPENDIX B
Effective Speed of Sound in Radiation-Magnetogasdynamics

Considering the speed of sound, a_ in radiation-magneto-
gasdynamics, it is derived by means of the small perturbation
theory [27], in which the second and higher order terms of small
quantities are negligible in comparison to the first-order terms.
For the simplicity sake we restrict our presentation to one
dimension and time. Consider a small perturbation of the state
of rest, caused by an initial disturbance: to each (x,t) there
will correspond small values of wu, p - Py? etc. Hence, the

equation of continuity (2.1.2) is reduced to:

Qu P (B-1)

u
p0 3x  at’

and the equation of motion (2.1.3), using (2.2.4), is reduced

to:

* *
Qu _ _8p u_ _3p| 23 -
Po 3t ax * °F Po 3t 3 loax - B2

Now differentiating (B-1) with respect to t and (B-2)2 with

respect to x, we get: respectively,

2 2
po T = - 28, (B-3)
dtax 3t
2 * 2
p QU - 2| 3P (B-4)
0 Jtdx ap '0 2
ox
a2
Eliminating the value of po SE§; , using (B-3), from (B-4),

we get:
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btz

2 * 2
2P _ .a_Ll é_% ) (B-5)
ap '0 ax

The one dimensional wave equation for p, with the small dis-

turbance propagation velocity, a_, can be written as:

2 2
5_% = a: 3_% . (B-6)
at x

Now comparing (B-5) and (B-6), we obtain the effective speed
of sound, a_ in radiation-magnetogasdynamics as:
*

2
al = a&'lo' (B-7)

p
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