COMPARISON OF PURE-TONE AND WARBLE-TONE THRESHOLDS

Thesis for the Degree of Ph.D.
MICHIGAN STATE UNIVERSITY
WAYNE JOSEPH STAAB
1971

This is to certify that the

thesis entitled

COMPARISON OF PURE-TONE AND WARBLE-TONE THRESHOLDS

presented by

WAYNE JOSEPH STAAB

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Audiology and Speech Sciences

Major professor

Date August 20, 1971

O-7639

44640

Wantore 239 200001072 # 307

ABSTRACT

COMPARISON OF PURE-TONE AND WARBLE-TONE THRESHOLDS

By

Wayne Joseph Staab

Warble-tone stimulus parameters of frequency deviation and modulation rate were investigated to determine their effect on hearing threshold.

Three normal-hearing experienced listeners were presented with thirty randomised combinations and thirty repeated measures (for a total of sixty) warble-tone frequency deviations and modulation rates. Using a sinusoidal base frequency, thresholds were measured for the following frequency deviations: 11, 3, 6, 10, and 50%. The modulation rates investigated were: 1, 2, 4, 8, 16, and 32 per second. The thresholds obtained for each of six octave frequencies from 250 through 8000 Hz were then compared with the same subject's conventional, pure-tone air-conduction thresholds. Each subject's hearing threshold levels were measured monaurally on six separate occasions, with one frequency tested per session utilizing a 2 dB step descending method.

In general, substantial agreement was found between warble- and pure-tone thresholds. However, differences were found for some stimulus parameter conditions. These differences varied by test frequency and warble-tone combination (frequency deviation and modulation rate). The

results demonstrated that changes in frequency deviation had a greater influence on threshold than changes in modulation rate. This was particularly noticeable for the ±50% frequency deviation conditions. While threshold changes related to frequency deviation were not consistent across frequencies, lower modulation rates generally resulted in better thresholds for a given frequency deviation at all test frequencies.

Two "changeover" regions were observed with respect to the types of warble-tone patterns, one between 250 and 500 Hz and the other between 1000 and 2000 Hz. The direction of threshold response reversed in these regions and was most noticeable with wider frequency deviations, e.g., from \$10% to \$250%. That is, warble-tone thresholds were better than pure-tone thresholds at 250 Hz, poorer at 500 and 1000 Hz, and were better again at 2000, 4000, and 8000 Hz.

Poorer thresholds generally were found with lower modulation indices (frequency deviation divided by modulation rate) for all frequencies and frequency deviations. In contrast to previous investigations, no evidence was found to support the notion that one or a combination of modulation indices provides a guideline for threshold prediction when testing normal hearing adult listeners.

Intersubject reliability of warble-tone thresholds was good (p. \leq 0.05). In addition, variability in warble-tone thresholds was small with the exception of 8000 Hz.

In general, warble-tone combinations up to and including frequency deviations of 110% and modulation rates as fast as 32 per second resulted in close agreement (15 dB) between warble- and pure-tone thresholds for normal hearing adults.

COMPARISON OF PURE-TONE AND WARBLE-TONE THRESHOLDS

By

Wayne Joseph Staab

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Audiology and Speech Sciences

1971

ACKNOVLEDGEMENTS

The writer wishes to express appreciation to Dr. William F. Rintelmann for his guidance as thesis adviser, and also to Drs. Herbert J. Oyer, Daniel S. Beasley, Oscar I. Tosi, and Donald A. Burke for serving as thesis committee members.

Grateful acknowledgement is also extended to Dr. Judith P. Frankmann for her assistance with the statistical aspects of the study and to Mr. Donald E. Riggs for his technical assistance with the instrumentation utilised. In addition, appreciation is extended to Miss Ellen K. Smitley and Miss Sabina A. Kurdsiel for serving as two of the three subjects.

Special gratitude is also due my wife, Lou, for her encouragement and assistance in preparing this manuscipt and for serving as a subject. Likewise, special gratitude is due four daughters who deserve more attention from their father than he has been able to give them these past years.

TABLE OF CONTENTS

	TABLES	Y
		t1
LIST OF	APPENDICES	11
Chapter	Pa	46
	-	
I	INTRODUCTION	1
	Warble-Tone As An Auditory Stimulus	3
	Statement of Purpose	5
II	REVIEW OF THE LITERATURE	6
	Warble-Tone for Threshold Determination	6
	Comparison of Warble-Tone and Conventional	
		2
		6
	▼	7
III	EXPERIMENTAL PROCEDURES	8.
		_
		8.
		9
		9
		9
		21
		21
		21
	Beat-Frequency Oscillator	22
	Test Environment	25
		25
		25
		26
		?7
		8
		29
		-
	wardle-Tone Inreshold Tests	30
IV	RESULTS AND DISCUSSION	34
		34
	· · · · · · · · · · · · · · · · · · ·	37
		ú

Warble-Tone Versus Pure-Tone Thresholds Relations Among Warble-Tone Threshold Rankings	• •	47
by Subjects	•	53
Threshold		
Discussion		61
Trends in Warble-Tone Thresholds		
Comparisons with Previous Work		63
Role of the Modulation Index		66
Summary	• •	66
V SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	• •	68
Summary		68
Conclusions		69
Recommendations for Future Research		
LIST OF REFERENCES	• •	73
A DIDENIA PARAG		20

LIST OF TABLES

Table		Page
1.	Combinations (C) of frequency deviations (1st subscript) and modulation rates (2nd subscript) utilised to produce the warble-tone at each test frequency. The table shows that repeated measurements were obtained	31
2.	Monaural, descending pure-tone air-conduction thresholds obtained during each test session for each subject at six frequencies along with the mean HTL (ANSI-1969) and SPL thresheld values	35
3.	Mean* warble-tone dB difference thresholds from the pure-tone thresholds and standard deviations for each test frequency	47
4.	Summary of coefficient of concordance (W) of inter- subject reliability of warble-tone thresholds	54
5•	Mean warble-tone threshold difference (TD) in dB from the pure-tone threshold along with the modulation indices (MI) for each of the warble-tone combinations used	56
M.	Octave band and C-scale analyses of ambient noise levels in examination room (fan on) in dB SPL according to the standards set forth by the American Standards Association (ASA 53.1-1960)	77
A2.	Pre- and post-experimental linearity of Maico MA-24 audiometer attenuator made acoustically at the test earphone	84
A3.	Pre-experiment audiometer earphone output data for the right earphone of the Maico MA-24 audiometer for (1) the output measured for the pure-tone stimuli, and (2) the output measured for the unmodulated warble-tone stimuli center frequencies. The pure-tone measurements were made according to the American National Standards Institute (ANSI S3.6-1969)	85

A4.	right earphone of the Maico MA-24 audiometer for (1) the output measured for the pure-tone stimuli, and (2) the output measured for the unmodulated warble-tone stimuli center frequencies. The pure-tone measurements were made according to the American National Standards Institute (ANSI S3.6-1969)
A 5.	Pre-experimental harmonic distortion measurements of the fundamental for test frequencies used in the study. Neasurements were made for the right earphone and right channel of the Maico MA-24 audiometer under two conditions: (1) that for the pure-tones generated by the Maico MA-24 and (2) that for the unmodulated warble-tone center frequencies through the right channel and right earphone of the Maico MA-24 audiometer. Measurements were made in compliance with the American National Standards Institute (ANSI S3.6-1969) 87
A6.	Post-experimental harmonic distortion measurements of the fundamental for test frequencies used in the study. Measurements were made for the right earphone and right channel of the Maico MA-24 audiometer under two conditions: (1) that for the pure-tones generated by the Maico MA-24 and (2) that for the unmodulated warble-tone center frequencies through the right channel and right earphone of the Maico MA-24 audiometer. Measurements were made in compliance with the American National Standards Institute (ANSI S3.6-1969)
▲ 7.	Pre- and post-experimental rise and decay times as measured for pure-tones generated by the Maico MA-24 audiometer. The times were measured from the right channel of the audiometer with the assistance of a storage oscilloscope. Measurements were made in compliance with the American National Standards Institute (ANSI S3.6-1969)
A8.	Bone-conduction calibration data recorded according to the norms specified by the Hearing Aid Industry Conference (HAIC) Interim Bone-Conduction Thresholds for Audiometry (Lyberger, 1966)
A9.	Pre- and post-experimental frequency checks of the test frequencies of the Maico MA-24 audiometer performed in compliance with the American National Standards Institute (ANSI 83.6-1969)*

A10.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session	ഹ
A11.	Randomised presentation order (PO) for the various com-	92
	binations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #2.	93
A12.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #3	94
A13.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #4	95
A14.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and medulation rates (MR) for subject #1 for test session #5	96
A15.	Randomised presentation order (po) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #6	97
A16.	Randomised presentation erder (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #1	98
M7.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and medulation rates (MR) for subject #2 for test session #2	99
A18.	Randomised presentation order (PO) for the various combinations of warble-tene frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #3	00
A19.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and medulation rates (MR) for subject #2 for test session #4	01
A20.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #5	02

. Ç

A21.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for
	test session #6
A22.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #1
A23.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test
	session #2
A24.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #3
A25.	Randomized presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #4
A26.	Randomised presentation order (PO for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #5
A27.	Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #6
A28.	The FREQUENCY DEVIATION (FD) setting required on the best-frequency escillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hs/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warble-tone frequency deviations given*
A 29.	The FREQUENCY DEVIATION (FD) setting required on the best-frequency oscillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hs/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warble-
	tone frequency deviations given*

--

. e to a commence of the commenc

A30.	The FREQUENCY DEVIATION (FD) setting required on the best-frequency oscillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hz/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warble-tone frequency deviations given*			112
A31.	The FREQUENCY DEVIATION (FD) setting required on the beat-frequency escillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hs/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warble-tone frequency deviations given*	•	•	113
A32.	The FREQUENCY DEVIATION (FD) setting required on the beat-frequency oscillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hs/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warble-tone frequency deviations given*	•	•	114
A33.	The FREQUENCY DEVIATION (FD) setting required on the beat-frequency escillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hz/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warbletene frequency deviations given*	•	•	115
A34.	Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tene combinations for 250 Hs	•	•	116
A35.	Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 500 Hs	•	•	117
A36.	Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 1000 Hs	•	•	118
A37.	Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 2000 Hz	•	•	119
A38.	Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 4000 Hs	_		120
		•	•	

•

.

..

•

A39.	Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 8000 Hz
A 40.	Differences in dB of the warble-tone threshold from the pure-tone thresheld for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 250 Hs
<i>N</i> 41.	Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 500 Hs 123
N42.	Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 1000 Hs 124
443.	Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 2000 Hs 125
A44.	Differences in dB of the warble-tone threshold from the pure-tene threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 4000 Hs 126
4 45•	Differences in dB of the warble-tene threshold from the pure-tene threshold fer all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 8000 Hs
A46.	Ranks assigned to each subject for thirty warble- tone combinations at 250 Hz
A47.	Ranks assigned to each subject for thirty warble- tone combinations at 500 Hs
448.	Ranks assigned to each subject for thirty warble- tone combinations at 1000 Hs
A49.	Ranks assigned to each subject for thirty warble- tone combinations at 2000 Hs
A50.	Ranks assigned to each subject for thirty warble- tene combinations at 4000 Hz
A51.	Ranks assigned to each subject for thirty warble- tone combinations at 8000 Hz

.

.

ŧ

.

•

9 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2

LIST OF FIGURES

Figure		1	age
1.	Block diagram of test environment showing equipment used	•	20
2.	Block diagram of the best-frequency oscillator (Bruel & Kjaer, Model 1013) with emphasis on its sections utilized in the generation and control of the warble-tone	•	23
3.	Mean monaural pure-tone air-conduction thresholds for the three subjects used in the experiment. These averages are based on five tests employing descending 2 dB steps of attenuation	•	36
4 a.	Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter	•	38
4b.	Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter	•	38
5a.	Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter	•	39
5b.	Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter	•	39
6a.	Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter	•	40
6 b.	Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter	•	40
7a.	Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter	•	41

7b.	Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter
8a.	Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter
8ъ.	Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter
9a.	Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter
9b.	Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter
10.	Mean differences in dB between warble-tone and pure-tone thresholds for the warble-tone combinations indicated in each graph
11.	Mean differences in dB between warble-tone and pure-tone thresholds for the warble-tone combinations indicated in each graph
12.	Mean differences in dB between warble-tone threshold and pure-tone threshold for the warble-tone combinations indicated in each graph
13.	Mean dB difference scores for each warble-tone combination utilised at 250, 500, and 1000 Hz as a function of the modulation index. Frequency deviation is the parameter
14.	Mean dB difference scores for each warble-tone combination utilized at 2000, 4000, and 8000 Hz as a function of the modulation index. Frequency deviation is the parameter
A1 .	Visual display on an oscilloscope produced by a spectrum analyser showing a 110% frequency deviation centered around a base frequency of 1000 Hz 81
A2.	Visual display on an oscilloscope produced by a spectrum analyser showing a 110% frequency deviation centered around a base frequency of 8000 Hz 81

 $(x_1,x_2,\dots,x_n) = (x_1,x_2,\dots,x_n) + (x_1,x_2,\dots$ • ٠, •. -- . . . •

••

LIST OF APPENDICES

Appendix		Page
۸.	Ambient Noise Levels in Test Room	77
В.	Rationale and Procedures for Calibration of the Warble-Tone Signal	78
C.	Linearity of Maico MA-24 Audiometer Attenuator	82
D.	Enrphone Output Data	85
E.	Harmonic Distortion Data	87
F.	Rise and Decay Time Data for Audiometer Interrupter	89
G.	Bone-Conduction Calibration Data	90
н.	Test Frequency Checks	91
I.	Randomised Presentation Order for Warble-Tone Stimuli	92
J.	Frequency Deviations for Each Test Frequency (In Both Percent and Hs) Along With Readings Required On the Instrumentation Utilised to Produce and Measure the Warble-Tone Stimuli	110
K.	Average Hearing Threshold Level and Sound Pressure Level Thresholds for Each Subject Under Each of the Warble-Tone Combinations for Each Frequency	116
L.	Individual Subject and Mean dB Difference Scores for Each Warble-Tone Combination and Frequency	123
M.	Ranks Assigned to Each Subject for Each Warble-Tone Combination for Kendall's Coefficient of Concordance	129

. • and the second of the second o . -5 - 1 - 1 - 1 -

CHAPTER I

INTRODUCTION

Early identification and management of hearing loss is of paramount importance if a young child's speech and language are to develop adequately. Exact knowledge of the function of the auditory system is necessary for planning a training program for those with communicative disorders due to a hearing problem.

The meanatal auditory test procedures described by Wedenberg (1956). Hardy, Dougherty and Hardy (1959), Downs and Sterritt (1967), and Schulman and Fontana (1969), as well as many others have proven helpful in the early identification of deafness in infants. Likewise, screening tests described by Johnston (1948, 1952). Reger and Newby (1947). Gardner (1947), Meyerson (1956), Nielsen (1952), Webster (1952), Glorig (1953), Glorig and Wilke (1952) and others have provided useful information for an age range from childhood through adulthood. However, from the audiological and educational point of view, many methods used to test the hearing of young children (screening and/or threshold) do not provide sufficient information concerning the child's threshold sensitivity. In fact, the period from birth up to 2 or 3 years of age, before conditioned-play audiometry can be used (Barr, 1955; Hillis and Oyer, 1960), has remained baffling with regard to threshold audiometry. tempts have been made to obtain behavioral responses with a variety of stimuli, including bells, the human voice, pure-tones, gongs, clackers,

oral instructions, household sounds, white noise, bussers, etc. A difficulty with the presentations of the majority of these test stimuli is that the frequency and intensity characteristics are not consistent or controllable. In addition, it is important to have information about hearing threshold levels as a function of frequency. However, young children frequently refuse to wear earphones for pure-tone threshold measurements. To circumvent this problem, a number of individuals have suggested the use of pure-tones in a sound-field condition (DiCarlo and Bradley, 1961; Bender, 1967; and Smith, 1969). While testing in a sound-field cannot yield results as precise as those under earphones. this method can provide useful information about a child's hearing that often may not be obtained in any other way. However, if one introduces pure-tones into a sound-field, reflections from the boundaries of the test room may result in standing waves. As a result, some of the sounds will be reinforced and others cancelled as the subject shifts position within the room. The frequencies which are affected will depend upon the acoustical characteristics of the particular test room, and the reflections are a more serious problem in some rooms than in others. This problem can be resolved satisfactorily by the use of a frequencymodulated signal (warble-tone).

Since its introduction into hearing testing, the warble-tone stimulus has been advocated for clinical use as a method of threshold testing, especially for children (Reilly, 1958a, 1958b; Allison Laboratories, Inc., <u>Bulletin A-5</u>; Langenbeck, 1965; Miller and Polisar, 1964; Hardy, 1958; Heron and Jacobs, 1968, 1969; Miller and Rabinowits, 1969; Liden Kankkunen, 1969; Peck, 1970). Likewise, some commercial neonatal testing devices employ a narrow band noise produced by frequency modulation

for infant hearing screening. Further, personal communication with a number of audiologists suggests that warble-tone is becoming a popular stimulus for threshold measurement.

Warble-Tone As An Auditory Stimulus

Warhle-tone is produced by frequency modulation. Frequency modulation refers to a periodic modification of a base or center frequency, with a variation of this base frequency to values either above, below, or around it with amplitude held constant.

The warble-tone varies as a function of three basic parameters:

(1) the center or base frequency, (2) the frequency deviation (FD), and

(3) the modulation rate (MR). The center or base frequency is the

frequency around which the modulation or frequency change takes place.

The frequency deviation (range of percent of frequency change or actual

variation in Hs of frequency change) is explained as follows: If the

base frequency is 1000 Hs, then a plus and minus (±) 5% frequency devi
ation around the base frequency would produce a variation in the 1000 Hs

tone from a lew of 950 Hs to an upper frequency of 1050 Hs or a ±50 Hs

change. As this signal is repeated, the warbling sensation results.

For a tone that warbles above the base frequency, the change for a

plus (+) 5% range would be from 1000 Hs to 1050 Hs for a 1000 Hs base

frequency or a +50 Hs change. Thus, a ±5% change is an actual nominal

10% frequency change, whereas a +5% is a nominal 5% change.

The modulation rate (rate of frequency change) refers to the number of times per second that the frequency varies (warbles) from one extreme to the other of the frequency limits. A modulation rate of 3 per second for a frequency deviation of +5% for a 1000 Hs base frequency would

mean that the tone would change in frequency from 1000 Hs to 1050 Hs three times a second.

Warble-tone is currently included as an accessory stimulus by some manufacturers of clinical audiometers. Although little has been written about the status of warble-tone in audiometers. Staab and Rintelmann (1971) conducted a survey among manufacturers in nine countries to ascertain the current status of warble-tone with respect to the various warble-tone characteristics available on commercial audiometers. Concerning the warble-tone signal itself, replies of respondents to the questionnaire indicated that the frequency deviation varied from approximately +0.2% above the base frequency to as high as 110% around the base frequency. The modulation rates ranged from 2 per second to as high as 10 per second. Audiometer manufacturers accomplished the warbletone in essentially two different ways, either by modulating around the base frequency or above the base frequency, with the waveform of the warbled signal either sinusoidal or rectangular. The signals were not calibrated to any single accepted, current standard. Of those manufacturers of audiemeters who did not offer the warble-tone as a stimulus. their primary reason was that the warble-tone's significance had not been determined adequately and that there had been little or no demand for it as an auditory stimulus. Staab and Rintelmann (1971) concluded:

. . . there is a dearth of information concerning the most appropriate warble-tone stimulus parameters to be employed in threshold determination. This problem must be resolved before warble-tone audiometry can seriously be considered as part of the audiologist's clinical armamentarium (Unpublished).

In addition, no studies have systematically explored the comparison between warble-tone thresholds and thresholds obtained by conventional, pure-tone audiometry. Since the warble-tone stimulus characteristics

(frequency deviation, medulation rate, and waveform) are variable among commercial audiemeters, differences in threshold might be expected simply as a function of the variety of stimulus parameters employed.

Statement of Purpose

From the review of literature it is obvious that information concerning the appropriate stimulus parameters with respect to the modulation rates and frequency deviations used for warble-tone audiometry is lacking. The specific questions which should be answered are:

- 1. How do warble-tone thresholds employing various combinations of modulation rates and frequency deviations compare with each other and with conventional pure-tone thresholds?
- 2. How do warble-tone thresholds (with respect to frequency deviation and modulation rate) vary as a function of frequency?
- 3. What is the interaction of frequency deviation with modulation rate?
- 4. What is the relation among the threshold rankings of the various warble-tone combinations by the subjects?
- 5. What are the effects of the modulation index (the ratio of frequency deviation to medulation rate) on warble-tone thresholds?

CHAPTER II

REVIEW OF THE LITERATURE

The following discussion presents a review of the literature relevant to this investigation. The review includes: (1) studies suggesting warble-tone for threshold determination, (2) literature concerned with comparisons (direct and/or indirect) of the warble-tone threshold and conventional pure-tone thresholds, and (3) investigations of warble-tone stimulus parameters that are currently being used on commercially-available audiometers.

Warble-Tone for Threshold Determination

evaluated by a number of individuals for meanatal hearing testing (Mendel, 1968; Beadle and Crowell, 1962; Heron and Jacobs, 1968, 1969; Peck, 1970). However, it must be realised that when used for meanatal testing, the response that one intends to obtain is that of a behavioral response to a suprathresheld stimulus and not a threshold level measurement. At least some of the "warble-tones" created by meanatal hearing testing devices give the subjective listening impression of being marrow bands of noise rather than that of a frequency modulating signal. This is due to the generation of the stimulus signal with frequency deviations around plus and minus (±) 150 Hs and modulation rates of 30 to 40 per second (Phenic Ear and the Rudmose RA-109 Warblet 3000). Stevens and

Davis (1938) have indicated that when the modulation rate increases to as high as 12 per second one begins to experience a group of tones rather than a single modulating tone. Because of this, and because of the fact that they are not intended for thresheld determination (due to the high sound pressure level tones generated to elicit behavioral responses), no further mention will be made of the neonatal testing devices unless they have been advocated for thresheld determination at some later developmental age of the infant.

As a measurement of behavioral response to warble-tone stimuli, Huising in 1953 (cited in Jerger, 1963) reported the maving of a block as the conditioned response with children between 30 months and 7 years of age. This sound-field conditioning procedure was used as an introductory test to threshold measurement (which involved pure-tones delivered through earphenes).

Reilly (1958a) who was influenced by the work of Huising developed an instrument for sound-field testing of children. Based on Huising's apparatus, it used warble-tone for the clinical determination of threshold. This instrument, the "Audie-Frequency Wobbulator," allowed for output to two sets of speakers; one set portable and the other set fixed to the arms of a chair on which the subject was seated. Reilly suggested that testing with warble-tone could begin at 6 months of age but that the possibility at "play" audiometry occurred with the 21 to 33 month age group. Children 33 months and older were introduced to warble-tone while playing at a table, and, as their familiarity with the test signal increased were taken to the test chair. Audiograms were then obtained by means of play audiometric techniques using warble-tone introduced through the speakers at fixed distances from the child's head. Pure-tenes

Were later substituted for the warble-tone and audiograms again obtained. Finally, the child was introduced to the headphones. With the experiences the child has had from the sound-field testing conditions he will tolerate the earphones more easily and at a younger age. As a result, pure-tone audiograms can be recorded much earlier than usually is the case. Beilly commented that the youngest child from whom he had been able to obtain a warble-tone audiogram was just under 2 years of age.

Again, in a panel discussion on "The Assessment of Auditory Function:

I. Hearing in Children," Reilly (1958b) stated that he had been using frequency modulation in testing babies and young children, and that during a six menth period had good success with this method. He wendered why this had not been discussed by the panel when speaking about successful techniques used with children. In response Hardy (1958) commented that they had used frequency modulation for six or seven years as part of the pure-tone battery in testing. He felt that it was a good attention centering device and that responses were sometimes obtained that could not ordinarily be elicited, especially with children having nervous system involvement.

Miller and Pelisar (1964) in a textbook ceneerning the audiological evaluation of the pediatric patient, wrote that . . . "Frequency modulation is an effective way of breaking up standing wave patterns and should be utilised whenever pure tone testing is performed in a sound field" (p. 30). They stated that both sound-field pure-tone threshold measurements and sound-field hearing aid evaluations could be better accomplished with the use of warble-tone.

In still another textbook, Langenbeck (1965) stated that if the audiometer has a provision for the continuous alteration of frequency

with intensity maintained constant, that it should be utilised to help determine the threshold curve. He further wrote that with respect to children, especially those from about 5 to 7 years of age, the tester can be just as successful as he is with adults if he can make "the game" a little more interesting for the child. One technique that can be used is to move the frequency dial up and down, which results in "webbling" of tones with changes in pitch. This adds a somewhat fluid character to the audiometric signal which maintains the child's attention.

By centrast, it should be noted that none of the three most commonly-used textbooks for the introductory study to audiology in the United States have a single reference to the assessment of hearing thresholds in children with a warble-tene stimulus (Newby, 1964; O'Neill and Oyer, 1966; Davis and Silverman, 1970).

Miller and Rabinewits (1969) performed COR (Conditioned crienting reflex audiometry) en 183 children as part of a complete audiological evaluation. The stimuli used were pure-tones in the 250-4000 Hz range frequency-medulated by 5% of the basic frequency. The children tested were in two subgroups of a rubella population; those with hearing impairments only, and these with hearing impairment plus one or more associated problems. The technique was successful with 76 of the 183 children tested. They reported: "COR and sound field audiometry are used only on children who cannot respond to conventional audiometric testing with earphenes and a bone conduction vibrator" (p. 95).

Liden and Kankkunen (1969) reported on a visual reinforcement audiometric technique in the testing of young deaf children which utilised the warble-tone. The apparatus was primarily designed for measuring the menaural sound-field threshelds for warble-tones. For

visual reinferement they used slides projected on a frosted glass window located on each side of a curved front panel of a box-shaped apparatus. They began with a 500 Hs warble-tone presented to the right loudspeaker at 30-40 dB above the estimated threshold, and immediately followed this with a picture on the right window. The visual reinforcement was intended to make the rather meaningless pure-tones more interesting to the children. By gradually reducing the intensity and watching the response of the child, it was possible to obtain a pure-tone threshold.

By the mid 1950's manufacturers of audiemeters began to advocate the use of warble-tone for threshold determination and other purposes. Allison Laboratories, Inc. Bulletin A-5 (not dated) sent a questionnaire on "The Use of Warble Tone" to a group of users (number in group not indicated) of their equipment which had the warble-tone feature available. Of these that replied, more than 85% indicated that the warble-tone was used for threshold measurement either through the earphones or loudspeaker. Allison Laboratories reported surprise in the large percentage using warble-tone for threshold measurements. More specifically, advantages were given by respondents for warble-tone with children, the elderly, and for those with timmitus. Other uses of the warble-tone included in the questionnaire responses were: masking for pure-tones, measurements through the loudspeaker of hearing aid frequency response, measurements through the loudspeaker of hearing aid gain, and difference limen frequency tests.

In a 1964 manual on operating instructions for their warble-tone adapter, the Beltone Electronics Corporation suggested the use of warble-tone in cases of tinnitus, sound-field pure-tone testing, and

Major Andiometric Measurements As Performed With Beltone Audiometric Instrumentation, also suggested that warble-tone be used for cases with tinnitus. However, he did not discuss its use for frequency difference limen. He did add that the warble-tone in a sound-field allows for aided and unaided threshold measurements and was advantageous when measuring thresholds of children because it holds their attention longer than pure-tones.

Madsen Electronics' operating manual for their clinical audiometer (Model OB 60) with the warble-tone stimulus makes no mention of the warble-tone being used for threshold measurement. Instead, they recommend its use for a difference limen for frequency (DLF) test.

Tracor, manufacturer of the Allison Model 22 Clinical and Research Audiometer, states that the warble-tone is an excellent stimulus for use where tinnitus is present. It also serves as an effective masking signal for pure-tenes and as a sound-field signal for those who cannot be tested with earphones (Tracor Specification Sheet for the Allison Model 22 Audiometer).

In correspondence with the Rion Company of Japan, manufacturers of audiometers, the following statement was made with respect to the warble-tone stimulus: "This can be used to decide threshold value for kindergarten children within a short time. It can be applied for mentally retarded persons also" (personal correspondence, 1970).

In a questionnaire survey by Staab and Rintelmann (1971) to manufacturers of audiemeters in nine countries, of those who included warble-tene as an auditory stimulus, the most often suggested use was for threshold measurement in sound-field or under earphones. However,

only two of six manufacturers reported that they had published instructions on its use for thresheld measurement.

Comparison of Warble-Tone and Conventional Pure-Tone Thresholds

The literature review included in this section is taken from studies indirectly rather than directly related to these two types of stimulus thresholds. No study has been located in the literature which has systematically made this comparison.

In 1933. Sivian and White utilised the warble-tone with the psychophysical method of limits to determine the upper portion of the monaural. minimal audible field (MAF) thresholds for 00 incidence on 14 "normal" listeners (Sivian and White, 1933). The reasons given for using the warble-tone were ". . . psychological. in that it reduces fatigue and uncertainty on the part of the observer; and physical, because of smoothing out of the residual standing wave patterns produced by reflections" (p. 290). They used a constant modulation rate of 10 per second and a frequency deviation which was progressively reduced in percent from approximately 14.6% at 1100 Hz (150 Hs) to approximately 10.97% at 15,000 Hz (1146 Hz). They reported that a few check measurements made on the same individual with the warble- and pure-tone indicated ne systematic differences between the threshold values in the two stimulus situations other than those due to the physical and psychological considerations the warble-tone was intended to minimize. Binaural MAF threshold measurements performed the same way and also done without a "warble" tone resulted in similar results to those in the monaural MAF condition. These measurements were all made at a distance of one meter in front of a loudspeaker in a highly absorbing acoustic structure which they called the "sound stage."

Webster (1952) reported on a recorded, pulsed-tone group hearing test which used warble-tenes with a modulation rate of 5 per second and an unspecified frequency deviation. The test was given to 200 college students in both a sound-field condition in a reverberant room and under carphones. When compared with two other centrol group hearing tests [one consisting of recorded warble-tones through headsets and the other a pure-tene pulse test described by Meyers et al., (1948)], this test was as reliable as the better of the two control tests whether heard over carphones or loudspeakers. He concluded that as a screening device this test was satisfactory. Webster also indicated that "Enough information is available so that the headset levels could have been pre-set to read directly in "hearing loss" values" (p. 217).

More recently, Reilly (1958a) used an instrument for sound-field testing of children called an Audio-Frequency Webbulater based on one used by Huising in The Netherlands for the clinical determination of threshold by warble-tene. Both the modulation rate and the frequency deviation were variable, the former unspecified and the latter from 10 to 1100 Hs. He also mentioned (but presented ne data), that:

By using pure-tone sounds in the speakers instead of the warbling tone it is easily demonstrated that a child will respond to a warbling tone of much less intensity than to a pure-tone of the same frequency (1958a, p. 365).

In two recent articles (Dallos and Tillman, 1966; Young and Harbert, 1970) some effects of the modulation index (the ratio of frequency deviation to modulation rate) was sampled by Bekesy tracings but not systematically explored. Both studies specifically looked at threshold changes in abnormally adapting ears but also included some limited data concerning normal listeners.

.

·

·

, . . .

.

.

thr

He :

Dallos and Tillman (1966) used four different modulation rates (1, 2.5, 10, and 25 per second) and three different frequency deviations (10, 63, and 250 Hs which were ii, approximately i6, and i25% respectively) at 500 Hs with one normal hearing subject (one ear). The results showed that in general, the hearing sensitivity threshold improved slightly with increasing frequency deviation, and that consistently better thresholds were obtained with slower repetition rates. They suggested, however, that it is the modulation index (ratio of frequency deviation to modulation rate) which might be the critical variable in determining threshold sensitivity, and that under this condition better thresholds are obtained with smaller frequency deviation.

Young and Harbert (1970) utilized four normal, trained listeners (four ears) and modulation rates of 1, 4, 10, and 25 per second and frequency deviations of ±10, ±63, and ±250 Hs. Threshold values obtained by fixed frequency Bekesy audiometry at 1000 Hs showed that the thresholds remained about the same or improved slightly with increasing frequency deviation. As the modulation increased for a given frequency deviation, the threshold became poorer. The greatest dB change between the combinations of frequency deviation and modulation rate was 7.1 dB. With respect to the modulation index, however, Young and Harbert tend to confirm Dallos and Tillman's observation that better thresholds are obtained with smaller frequency deviation.

In an investigation of warble-tones with very young children, Peck (1970) used a frequency deviation of 5% to determine auditory thresholds. He reported that it was difficult to give a precise reference level for the warbled sound-field pure-tones, but that the results were assumed

. . .

•

.

.

.

.

.

ati

fo

to approach the ISO-1964 zero reference levels. He did not specify the modulation rate used.

While not related specifically to threshold, in a study of respiratory curve responses of the meenate to auditory stimulation, Heron and Jacobs (1968) found that of a variety of test tenes, warble-tone produced the most consistent response. In 1969 they had a warble-tone audiometer built to their specifications which had three frequency ranges: 250-500, 1000-2000, and 4000-8000 Hs, In each of these ranges it was possible to modulate the frequency up to ±1/3 of the center frequency. The modulation rate could be altered from 1 to 10 per second in gated steps. After many trials they found that the following settings were the most effective:

- Low frequency. Full modulation for 4 seconds at a modulation rate of 10 per second.
- 2. Middle frequency range. Full modulation for 4 seconds with a modulation rate of 6 per second.
- 3. High frequency range. Full modulation for 4 seconds with a medulation rate of 4 per second.

It is obvious from the aforementioned studies that none were designed to systematically investigate the threshold levels obtained for different center frequencies with varying combinations of modulation rates and frequency deviations. Still, the results of Dallos and Tillman (1966) and Young and Harbert (1970) suggest that the warble-tone stimulus parameters (pertaining to modulation rate and frequency deviation) de have an effect on hearing threshold levels.

Warble-Tone Stimulus Parameters Currently Used

There is a dearth of published information concerning the warbletone stimulus parameters currently being used. Because they suspected that the stimulus parameters varied considerably by manufacturer. Staab and Rintelmann (1971) conducted a survey to determine the current status of warble-tone in audienctors. Of twenty-nine audienctor manufacturers, twenty-four replied (82.7%), representing nine different countries. Nine manufacturers indicated that they already employ or are planning to include warble-tone on their audiometers in the near future. Of eight manufacturers (33.3%) that provided information relative to the stimulus parameters, the following infermation was obtained: (1) frequency deviation varied from approximately +0.2% above the base frequency to as high as \$10% around the base frequency, (2) modulation rate ranged from 2 per second to as high as 10 per second, (3) audiometer manufacturers accomplished the warble-tone in essentially two different ways: either by modulating around the base frequency or above the base frequency, (4) the waveform of the warbled signal was either sinusoidal or rectangular, and (5) the signal was not calibrated to any single accepted, current standard. With respect to the frequency deviation and the modulation rate, the consensus of the respondents was that the bases for the parameters currently being used had not been adequately substantiated by published research.

Aside from the study just cited, no information has been located which directs attention to the stimulus parameters being used in commercial audiemeters.

	·	
*		

Summary

While some individuals have advocated the use of the warble-tone stimulus for threshold determination, especially for young children. little information is available relative to the appropriate stimulus parameters. Systematic investigation of various frequency deviation and modulation rate combinations should be performed to determine which combination(s) give threshold levels that most closely approximate those obtained by conventional pure-tone audiometry. Although one of the major applications of warble-tone audiometry is intended for testing young children, a careful study of the important stimulus parameters should first be accomplished with experienced adult normal listeners. It is the purpose of this study to obtain such data. Thereafter, in order to obtain normative data which can be applied clinically, subsequent studies can be conducted on a limited number of stimulus parameter combinations on a large sample of children and adults. After such investigations have been completed, warble-tone audiometry can be meaningfully employed as part of the audiologist's clinical armamantarium.

CHAPTER III

EXPERIMENTAL PROCEDURES

Information concerning the selection of subjects, instrumentation, ambient noise levels, calibration, stimuli employed, and the experimental procedures utilised are included in this chapter. Briefly, three normal-hearing experienced listeners were individually administered thirty combinations (sixty repeated measurements) of frequency deviations and modulation rates for each of six frequencies at octave intervals from 250 through 8000 Hz. The warble-tone thresholds obtained were then compared with the same subject's conventional, pure-tone air-conduction thresholds at the same test frequencies and for the same ear.

Subjects

Three normal-hearing adult females, ages 22, 25, and 30 served as participants in the study. Since the study was primarily designed to compare each individual's conventional, pure-tone air-conduction thresholds with his warble-tone thresholds, three subjects were considered to be adequate. The subjects were selected on the basis of the following criteria:

- 1. No previous history of ear pathology.
- 2. No constant or disturbing tinnitus.
- 3. No family history of hearing impairment due to possible hereditary causes.

- 4. Hearing at least at 15 dB re ANSI-1969¹ reference thresholds for octave frequencies from 250 Hz through 8000 Hz in the test ear and with no air-bone gap.
- 5. Must have undergone at least ten pure-tone air-conduction threshold audiograms (criterion for experienced listeners).

Instrumentation

All equipment employed during testing, with the exception of the earphones, subject response button, bone vibrator, and calibration equipment was located in the control room of the test suite used in this study. The equipment mentioned (except the instruments necessary for air- and bone-conduction calibration) was located in the adjoining subject test room. Figure 1 provides a schematic diagram of the equipment used during testing.

Maico MA-24 Audiometer. The Maico Hodel MA-24 audiometer is a dual-channel instrument which allows for testing 11 frequencies from 125 through 8000 Hs and also has a Hearing Thresheld Level range of from -25 dB to 110 dB re ANSI-1969. This audiometer was utilized in obtaining the pure-tone air-cenduction, bene-conduction, and warble-tone threshold measurements in 2 dB steps of attenuation.

Oscilloscope and Spectrum Analyser. The Type 564B Tektronix Storage
Oscilloscope with Auto Erase is designed to store cathode-ray tube
displays for viewing or photographing up to an hour after application
of the input signal. In addition, the instrument can be operated as a

¹American National Standards Institute (ANSI) "Specifications for Audiometers" 53.6-1969.

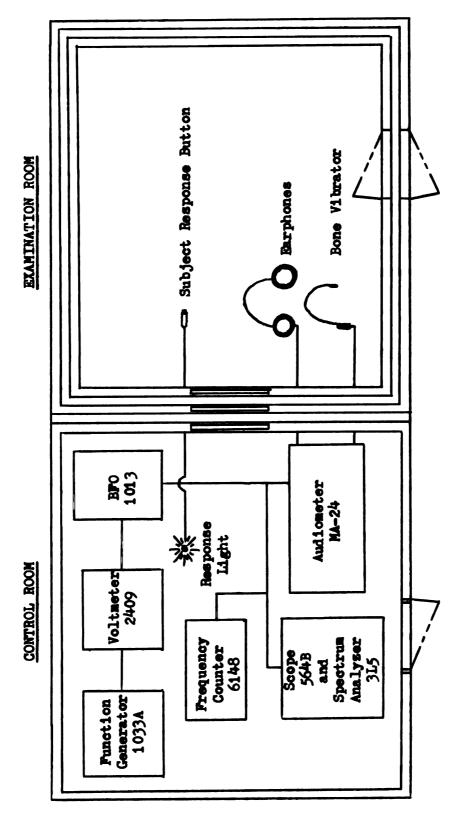


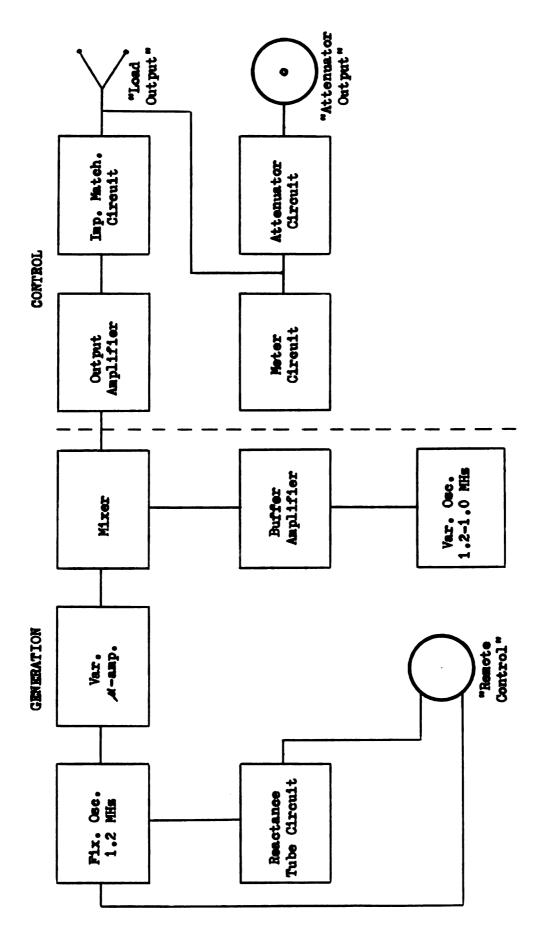
Figure 1. Block diagram of test environment showing equipment used.

conventional escilloscope and was used this way to measure the stimuli rise and decay times. The oscilloscope is compatible with Tektrenix plug-in units and a Spectrum Analyser Model 3L5 was utilised to measure the warble-tone frequency deviations desired.

Function Generator. The Hewlett-Packard Model 3310A Function Generator is a voltage-controlled generator which allows for low distortion and high stability sine wave generation over a frequency range of 0.0005 Hz to 5 MHz in 10 decade ranges. The frequency of the sine wave generation determined the modulation rates and its output voltage was instrumental in obtaining the desired frequency deviation.

Voltmeter. A Bruel & Kjaer Type 2409 Electronic Voltmeter allowed for fine adjustments of the output voltage of the function generator. This voltmeter is a vacuum tube voltmeter for AC measurements in the frequency range from 2 Hs to 200,000 Hs. Eleven voltage ranges are present allowing for full-seale deflection from 10 millivolts to 1000 volts.

Frequency Counter. The Bekman Eput and Timer, Model 6148 is a 100 MHz unit which can measure frequency, time interval, period, multiple period, ratio, multiple ratio, and which counts random events. It has a stability of better than ±3 parts in 109 per day. Visual measurements are presented in an eight-digit, inline, numerical display utilizing glow tubes. The display includes an automatically-positioned decimal point and an indigation of units of measurement. This was used initially to determine the accuracy of the frequency of the modulation rates and then during the experiment to monitor the base or center frequencies of the test stimuli.


416×

•

Beat-Frequency Oscillator. A Bruel and Kjaer (B&K) Beat-Frequency Oscillator Model 1013 was used as the main source for the generation of the warble-tones. This is designed for measurements in the frequency range 200-200,000 Hz and consists of an oscillator, mixer, and an amplifier section. It works on the heterodyne principle using two high-frequency oscillators, one of which operates on a fixed frequency, while the frequency of the other can be varied by means of a variable capacitor. The required signal base frequency is obtained as the difference between the two high frequencies and can be read off a large illuminated scale, the pointer of which is connected to the variable capacitor. The oscillator also allows for frequency modulation of the output signal.

Figure 2 shows a block diagram of the oscillator and the sections utilised in the generation and control of the warble-tone. The fixed oscillator is tuned to 1.2 MHs and can be externally frequency modulated by means of a REMOTE CONTROL² and reactance tube circuit. The latter acts as a variable inductance and the modulation swing (frequency deviation which is controlled by the amplitude of the oscillations) for this experiment was continuously varied from 0 to ±4000 Hs. This was accomplished by means of a potentiometer on the front panel of the apparatus marked FREQUENCY DEVIATION and also by the output voltage of the external function generator. A variable capacitor inserted in the tuned circuit of the fixed oscillator and operated by the knob marked FREQUENCY INCREMENT, permits exact frequency selection in the range

²Words in capital letters in this thesis relate to controls (dials) on the equipment utilised in the experiment.

Pigure 2. Block diagram of the best-frequency oscillator (Bruel & Kjaer, Model 1013) with emphasis on its sections utilised in the generation and control of the warble-tone.

 ± 500 Hs in relation to the setting on the main scale. The frequency accuracy of the incremental scale is ± 5 Hs and that for the main scale is $1\% \pm 10$ Hs.

For external frequency medulation, an external generator (Hewlett-Packard Model 3310A Function Generator) was used to allow for sinusoidal frequency deviation changes, to allow for some variation of the range of frequency deviations, and to obtain modulation rates not allowed directly by the beat-frequency oscillator. This function generator was connected to two terminals of the jack of the front plate marked REMOTE CONTROL. For external modulation it was necessary to connect the external generator between terminals f and b of the REMOTE CONTROL and have the MODULATION FREQUENCY switch set to "Ext. Mod." The impedance of the external generator had to be low (approximately 1 kohm).

The voltage developed across the grid circuit of the variable oscillator is fed to the mixer tube via a buffer amplifier stage. This stage, which prevents undesired coupling between the fixed and variable oscillator, also increases the signal level to a value required for correct functioning of the mixer.

The LOAD was connected to the INPUT of the storage oscilloscope and related spectrum analyser for measurement of the frequency deviation in Hs and also to the AC INPUT of the counter to menitor the warble-tone's base frequency.

The MATCHING IMPEDANCE of the beat-frequency oscillator was turned to "Attenuator" and the ATTENUATOR OUTPUT was set to 400 millivolts and led to the Maieo NA-24 audiometer through its ACCESSORY INPUT. (This voltage was adequate to develop enough output at the earphenes to allow for a "0" VU reading at all test frequencies.)

Test Environment

Subjects were tested in an Industrial Acoustics Corporation (IAC)
Series 1600-ACT sound-treated room combination consisting of a 400 Series
control room and a 1200 Series test booth. All threshold testing was
presented menaurally via the right earphone (Telephonics TDH-39/10Z)
mounted in a MX-41/AR cushion. The nentest ear was covered by the left
earphone as would occur in normal testing conditions. The subject was
seated alone in the test room and the majority of the equipment (except
earphones, bone vibrator, and response button) was located in an adjacent centrol room.

Ambient Noise Levels in Test Room

The ambient noise levels of the test room were measured in accordance with the criteria set forth by the American Standards Association for "Background Noise in Audiometer Rooms" (ASA S3.1-1969).3 The levels measured and the instrumentation involved in making these determinations are recorded in Appendix A. The levels recorded met the criteria set forth by the ASA and, thus, were sufficiently low so as not to interfere with threshold measurements.

Calibration

Calibration of all test equipment took place at the beginning and at the end of the experiment. Specifically, the Maico MA-24 audiometer was calibrated and/or checked for frequency at octave intervals from

³While the name of the American Standards Association (ASA) is now the American National Standards Institute (ANSI), standards adopted prior to 1969 and the name change will be specified in this paper according to their original description.

250 through 8000 Hs, linearity of attenuation, sound pressure level (SPL) output, harmonic distortion, measurement of the rise and decay times of the stimulus, and bone-conduction. The instrumentation utilised in the generation and measurement of warble-tone (the beat-frequency oscillator and spectrum analyser) was also calibrated according to the procedures specified in their respective operating manuals. Measurements of the signal to be warbled, including its base frequency, SPL output, and harmonic distortion were also measured at the earphone after it had been routed through the ACCESSORY INPUT of the Maico MA-24 audiometer.

In addition to the above, daily calibration checks were made of the SPL outputs and test frequencies. Calibration for the pure-tone stimuli was consistent with the American National Standards Institute (ANSI) 1969 "Specifications for Audiometers" and also the Hearing Aid Industry Conference (HAIC) "Interim Bone-Conduction Thresholds for Audiometry" (Lyberger, 1966). Calibration of the warble-tone stimuli followed the rationale and method given in Appendix B.

The instrumentation and procedures involved in the calibration checks and the results of those measurements are recorded in Appendices C through H.

Stimuli Employed

Stimuli employed during the experiment consisted of pure-tone airand bone-conduction and warble-tone signals. For the warble-tone stimuli, the base frequency (a pure-tone) was frequency modulated so that frequency deviations occurred in a sinusoidal manner both above and below the base frequency.

Experimental Procedures

Much subject's hearing threshold levels were measured monaurally on six separate occasions for a total of fifteen hours per subject. This averaged $2\frac{1}{2}$ hours per session and followed the outline for each session as listed below.

Session #1.

- A. Monaural pure-tone air- and bone-conduction thresholds at six test frequencies (250, 500, 1000, 2000, 4000 and 8000 Hs).
- B. Five menaural pure-tone air-conduction thresholds at 1000 Hs.
- C. Thirty combinations (sixty repeated measures) of monaural warble-tone thresholds having a center frequency of 1000 Hs.

Session #2.

- A. Five monaural pure-tone air-conduction thresholds at 2000 Hs.
- B. Thirty combinations (sixty repeated measures) of monaural warble-tene thresholds having a center frequency of 2000 Hs.

Session #3.

- A. Five monaural pure-tone air-conduction thresholds at 4000 Hz.
- B. Thirty combinations (sixty repeated measures) of monaural warble-tone thresholds having a center frequency of 4000 Hs.

Session #4.

- A. Five monaural pure-tone air-conduction thresholds at 8000 Hs.
- B. Thirty combinations (sixty repeated measures) of monaural warble-tone thresholds having a center frequency of 8000 Hs.

Session #5.

- A. Five monaural pure-tone air-conduction thresholds at 500 Hs.
- B. Thirty combinations (sixty repeated measures) of monaural warble-tone thresholds having a center frequency of 500 Hs.

Session #6.

- A. Five monaural pure-tone air-conduction thresholds at 250 Hs.
- B. Thirty combinations (sixty repeated measures) of menaural warble-tone thresholds having a center frequency of 250 Hs.

Threshold Determination. Threshold determination (with the exception of the initial screening testing) for both the pure-tone and warble-tone signals was obtained by an orienting method of limits followed by a descending method utilizing 2 dB intensity increments. The specific instructions and procedures employed were as follows:

1. Instructions. The subject was instructed as follows:

You are to listen very carefully during this test. You will hear a series of sounds, some high-pitched and some low-pitched. (For the warble-tone thresholds the subject was also told that some of the tones will seem to warble and others will seem to be steady.) You are to respond by pressing the butten I've given to you whenever you hear a sound and release it when the sound disappears. It is important that you listen and respond to very faint sounds, net merely when you can hear them easily. Do you have any questions?

- 2. Thresheld. The specific precedure utilised in thresheld determination was as fellows:
 - a. The auditory stimuli were initially arbitrarily presented at a 30 dB Hearing Level (HL).
 - b. The intensity was then decreased in 10 dB steps with two presentations per level until no response was obtained on both presentations.
 - e. The intensity was then increased by 10 dB and descents in 2 dB steps escurred with two stimulus presentations per level to establish a level where the subject correctly responded to 5 of 6 stimulus presentations.

.

- d. The intensity continued to decrease in 2 dB steps until the subject missed 5 of 6.
- e. Threshold was that value where the subject last correctly responded to both stimuli at a level minus 1 dB for each correct response below that point.
- f. As soon as threshold was obtained, the subject was teld to relax.

Pure-Tone Threshold Tests. Menaural, pure-tone air-conduction thresholds were obtained at octave intervals from 250 through 8000 Hs during the first test session in ascending 5 dB steps (Carhart and Jerger, 1959). The purpose of these measurements was to insure that the subject met the criterion for acceptable hearing levels for the experiment. Frequencies were tested in the fellowing order: 1000, 2000, 4000, 8000, 1000, 500, and 250 Hs. The repeat measurement obtained at 1000 Hs served as a reliability check. If the subject's threshold at 1000 Hs was not within ±5 dB of the initial threshold at 1000 Hs, the subject was reinstructed and testing was again started at 1000 Hs.

Menaural, pure-tone bone-conduction threshelds were established at octave intervals from 250 through 4000 Hs during the first test session only by the Head Technique (1960) employing narrow band masking provided by the Maico MA-24 audiometer. These were also obtained in 5 dB steps. Frequencies were tested in the following order: 1000, 2000, 4000, 1000, 500, and 250 Hs. The repeat measurement at 1600 Hs followed the same rationale as for air-conduction testing. The purpose of testing bone-conduction was to establish the subject's ability to meet the requirements specified for normal listeners--no air-bone gap.

After the criteria for normal hearing had been established, five pure-tone air-conduction thresholds were obtained for the frequency being tested utilizing the descending threshold procedure in 2 dB steps as previously described. These were obtained at specified times during the experiment with a single threshold measurement taken prior to the first warble-tone combination, and after the fifteenth, thirtieth, forty-fifth, and last warble-tone combinations. These were then averaged and represented the pure-tone thresholds with which the warble-tone thresholds were compared.

Warble-Tone Threshold Tests. Monaural warble-tone thresholds were obtained in 2 dB steps with center frequencies of 250, 500, 1000, 2000, 4000, and 8000 Hz utilizing thirty combinations for a total of sixty repeated measures of frequency deviations and modulation rates. The specific combinations used were derived from pilot data on two listeners who met the same requirements for normal hearing as did the test subjects. The ear tested was the right each for each subject. The order in which each subject was given a specific combination of frequency deviation and modulation rate was randomized so as to minimize temporal effects on thresholds. Table 1 shows the thirty combinations for a total of sixty repeated measures of modulation rates and frequency deviations used in this study for a single test frequency. The same combinations were available for each of the warble-tone center test frequencies. Appendix I shows the randomisations of combinations of frequency deviations and modulation rates for each subject per test session. The repeated measurements were obtained during the same test session. In Table 1 the legend in each cell, i.e., (C1.1) denotes the combination (C) of frequency deviation

Table 1. Combinations (C) of frequency deviations (1st subscript) and modulation rates (2nd subscript) utilized to produce the warble-tone at each test frequency. The table shows that repeated measurements were obtained.

		Frequency Deviation in Percent						
Modulation Rate		±1.0%	±3.0%	±6.0%	±10.0%	±50.0%		
1/sec.	Measure 1	C1,1	c _{3,1}	G,1	C _{10,1}	C _{50,1}		
	Measure 2	C _{1,1}	C3,1	^C 6,1	G _{10,1}	C _{50,1}		
2/500.	Measure 1	C _{1,2}	c _{3,2}	^C 6,2	G _{10,2}	C _{50,2}		
	Measure 2	G _{1,2}	c _{3,2}	°6,2	G10,2	C _{50,2}		
4/sec.	Measure 1	C _{1,4}	^C 3,4	C6,4	C _{10,4}	C _{50,4}		
	Measure 2	G ,4	c _{3,4}	°6,4	C _{10,4}	C _{50,4}		
8/500.	Measure 1	9,8	c _{3,8}	% ,8	G _{10,8}	^C 50,8		
	Measure 2	C1,8	c _{3,8}	%, 8	C10,8	C ₅₀ ,8		
16/sec.	Measure 1	G ,16	c _{3,16}	⁶ 6,16	^C 10,16	^C 50,16		
	Measure 2	4,1 6	c _{3,16}	^C 6,16	^C 10,16	C _{50,16}		
32/ sec.	Measure 1	c _{1,32}	c _{3,32}	c _{6,32}	C _{10,32}	c _{50,32}		
	Measure 2	^C 1,32	^C 3,32	^C 6,32	C _{10,32}	^C 50,32		

and modulation rate utilised. The first subscript denotes the frequency deviation in percent and the subscript following the comma denotes the modulation rate. In Appendix J the specific frequency deviations for each test frequency are given in both percent and Hs along with the modulation rates. Also included is information on the FREQUENCY DEVIATION position of the beat-frequency oscillator, the VOLT SCALE and output voltage of the function generator and the Hs/DIV scale on the storage oscilloscope required to produce and measure the warble-tone stimuli.

In obtaining warble-tone thresholds for each subject in each test session the following precedure was followed:

1. Preliminary Procedure for Warble-Tone Thresholds.

- a. The center frequency of the warble-tone was selected by varying the main frequency dial of the beat-frequency oscillator and it was monitored with the frequency counter until the desired center or base frequency was obtained.
- b. With the modulation rate set at 4 per second, the VU meter of the Maico MA-24 audiemeter was adjusted to give a "0" VU reading through the ACCESSORY INPUT.

2. Test Procedure for each Warble-Tone Threshold.

- a. Appendix I was consulted to determine the combination of frequency deviation and modulation rate to be used for each threshold determination.
- b. With the knob marked MODULATION FREQUENCY of the beat-frequency oscillator turned to "Ext." and the knob marked FREQUENCY DEVIATION to the frequency deviation required, the external function generator was varied in:

- 1) its output frequency to obtain the desired modulation rate, and
- 2) its output voltage to establish the frequency deviation desired.

(The relationship of the output voltage of the function generator to the FREQUENCY DEVIATION setting required for a specific range of warble-tone in Hz had previously been systematically explored with a storage oscilloscope and associated spectrum analyser. Appendix J gives the output voltages required along with the beat-frequency oscillator FREQUENCY DEVIATION setting needed to obtain the desired frequency deviation for each warble-tone combination.)

- c. The center or base frequency was readjusted with the FINE FRE-QUENCY SCALE ALIGNMENT of the beat-frequency oscillator.4
- d. The descending warble-tone threshold was obtained following the procedures previously outlined.
- e. Steps "a" through "d" were repeated for each warble-tone thresheld combination for all subjects during each test session.

Even though a single base or center frequency was utilized for the warble-tone combinations on a given day, changes in the FREQUENCY DEVIATION setting of the beat-frequency oscillator resulted in shifts of the center frequency. To compensate for these shifts, the FINE FREQUENCY SCALE ALIGNMENT of the beat-frequency oscillator was adjusted until the desired center frequency was again obtained.

CHAPTER IV

RESULTS AND DISCUSSION

This chapter includes the results of the pure-tone and warble-tone threshold measurements along with the presentation of the findings relative to the questions proposed. This is followed by a discussion and a summary.

Pure-Tone Threshold Results

The criterion for "normal" hearing specified that thresholds should be at least 15 dB re ANSI-1969 reference levels for octave frequencies from 250 through 8000 Hs in the test ear and with no airbone gap. The initial screening was performed using ascending 5 dB steps according to the method advocated by Carhart and Jerger (1959). For the experiment, descending pure-tone air-conduction thresholds were obtained prior to the first warble-tone combination and after the fifteenth, thirtieth, forty-fifth, and last warble-tone combinations. Table 2 presents each subject's right ear pure-tone air-conduction descending thresholds along with the mean threshold in Hearing Threshold Level (HTL) and Sound Pressure Level (SPL). Multiple measurements of the air-conduction thresholds were obtained to allow for better averaging of threshold since preliminary testing indicated that they were not as consistent as warble-tone thresholds. Figure 3 displays graphically the Hearing Threshold Levels according to the ANSI-1969 Standard.

Table 2. Monaural, descending pure-tone air-conduction thresholds obtained during each test session for each subject at six frequencies along with the mean HTL (ANSI-1969) and SPL threshold values.

Subject	Frequency in Hs	Test 1	Test 2	Test 3	Test 4	Test 5	Me HTL	an SPL*
#1	250	-3.0	-8.0	4.0	-2.0	-8.0	-3.4	22.0
	500	-3.0	-5.0	-3.0	-6.0	-6.0	-4.6	7.0
	1000	-9.0	-5.0	0.0	-8.0	-3.0	-5.0	2.0
	2000	-5.0	0.0	-3.0	3.0	-6.0	-2.2	6.8
	4000	14.0	5.0	17.0	14.0	11.0	12.2	21.7
	8000	11.0	10.0	13.0	12.0	14.0	12.0	25.0
#2	250	4.0	2.0	-2.0	1.0	2.0	1.4	26.8
	500	0.0	0.0	-4.0	2.0	-3.0	-1.0	10.6
	1000	-4.0	-4.0	1.0	-6.0	-5.0	-4.0	3.0
	2000	-2.0	-4.0	-6.0	-5.0	-4.0	-4.2	4.8
	4000	9.0	5.0	9.0	7.0	6.0	7.2	16.7
	8000	8.0	13.0	12.0	10.0	7.0	10.0	23.0
#3	250	-5.0	-7.0	-9.0	-6.0	-8.0	-7.0	18.4
	500	6.0	6.0	8.0	6.0	6.0	6.4	18.0
	1000	9.0	8.0	5.0	2.0	6.0	6.0	13.0
	2000	8.0	6.0	4.0	10.0	11.0	7.8	16.8
	4000	6.0	8.0	9.0	9.0	9.0	8.2	17.7
	8000	8.0	11.0	8.0	4.0	2.0	6.6	19.6

^{*}Due to an initial recording error the earphone SPL outputs are 0.1 dB too weak at 250 Hs and 0.1 dB too strong at 500 Hz.

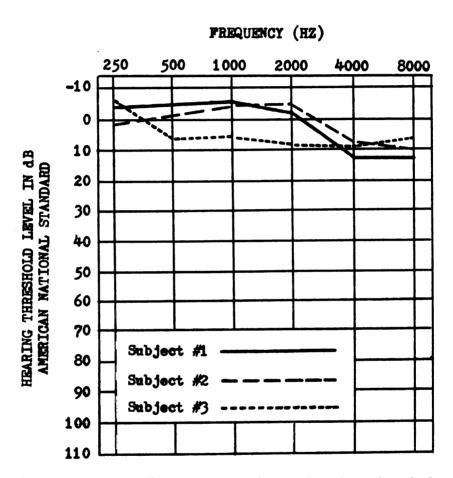


Figure 3. Mean monaural pure-tone air-conduction thresholds for the three subjects used in the experiment. These averages are based on five tests employing descending 2 dB steps of attenuation.

Warble-Tone Threshold Results

Right ear monaural thresholds were obtained for thirty warble-tone combinations and thirty repeated measures for a total of sixty at each of the following center frequencies for each subject: 250, 500, 1000, 2000, 4000, and 8000 Hs. Appendix K gives both the Hearing Threshold Levels (HTL)5 and Sound Pressure Levels (SPL) for all subjects under each of the warble-tone combinations for each frequency. The data shows that there is variation in the warble-tone thresholds as a result of both the frequency and the warble-tone combination used. The quantity of numbers representing threshold is too great to display graphically the thresholds for each combination for each subject and for each frequency. However, it is important to view the differences and trends in the warble-tone thresholds as they occurred. To display these differences and trends and derive statistics that could be meaningfully managed. each subject's mean pure-tone air-conduction threshold in SPL was subtracted from that same subject's mean warble-tone threshold in SPL (for each repeated measure combination) for the same frequency. The difference scores that resulted were then averaged and plotted as dB differences from an arbitrary sero reference line representing the pure-tone threshold. The resultant individual subject and mean dB difference scores for each warble-tone combination and frequency are given in Appendix L.

Figures 4a through 9b display graphically these mean dB differences for each warble-tene combination. If at a particular frequency the

⁵HTL for warble-tone threshold is the dial setting re 0 HTL when the audiometer is calibrated for warble-tone. (See appendix D.)

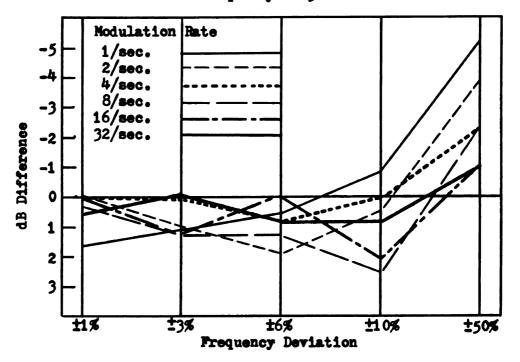
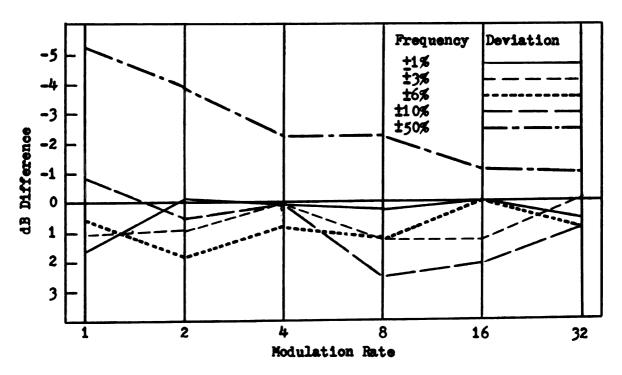



Figure 4a. Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter.

Fibure 4b. Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter.

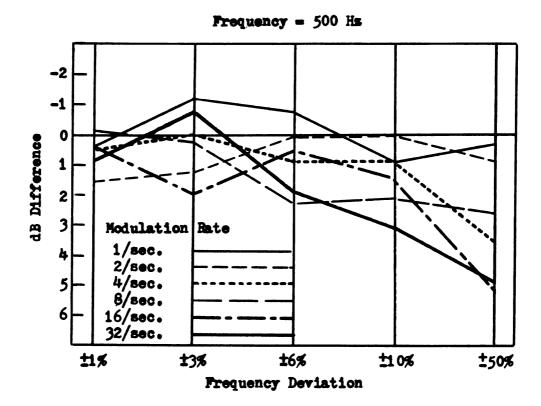


Figure 5a. Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter.

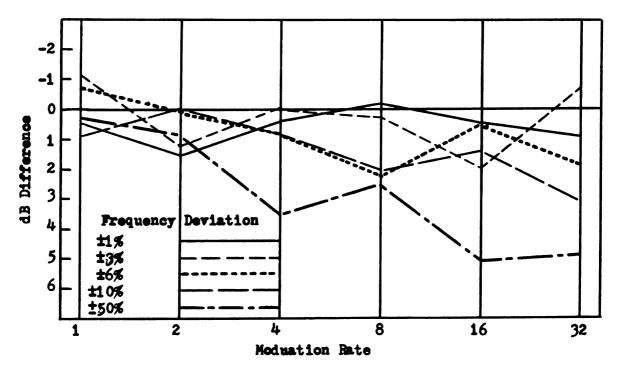


Figure 5b. Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter.

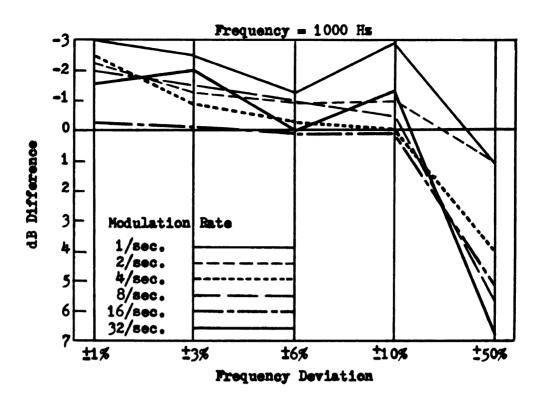


Figure 6a. Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter.

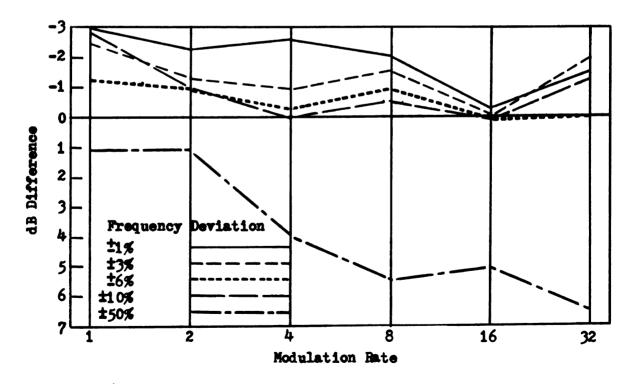


Figure 6b. Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter.

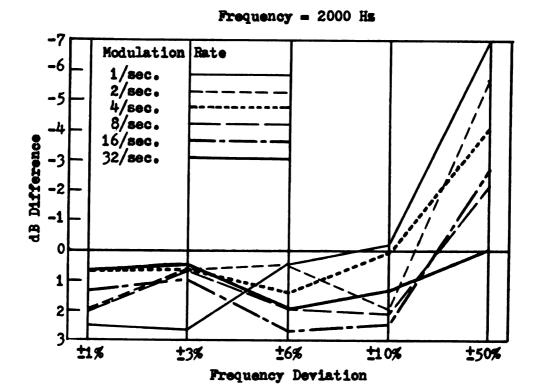


Figure 7a. Mean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter.

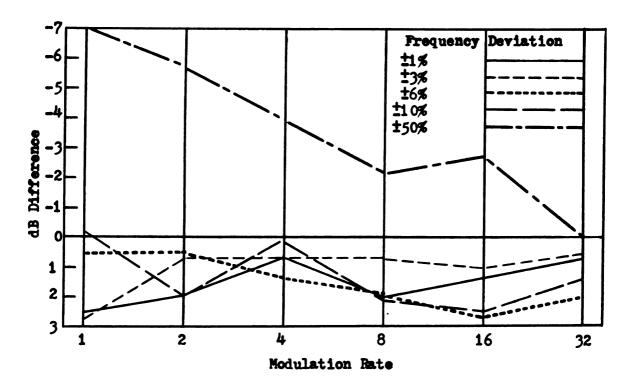


Figure 7b. Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter.

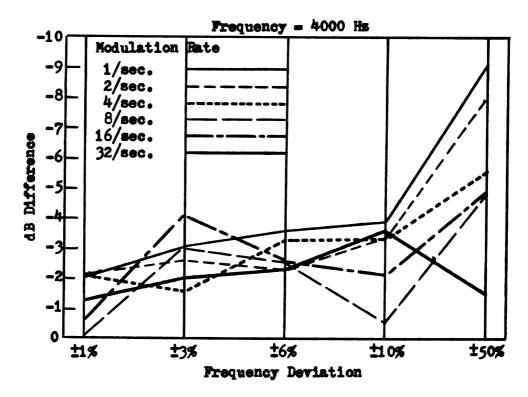


Figure 8a. Hean dB difference scores for each warble-tone frequency deviation with modulation rate as the parameter.

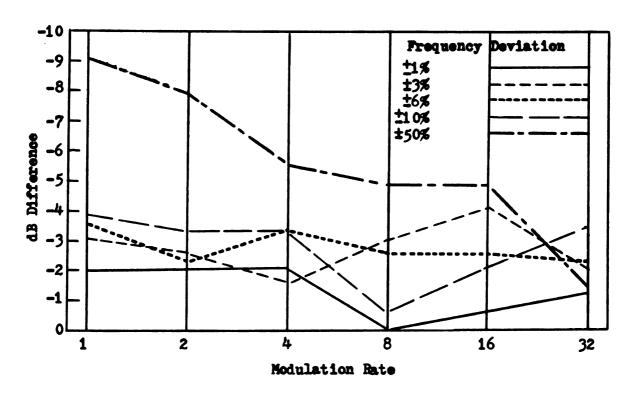
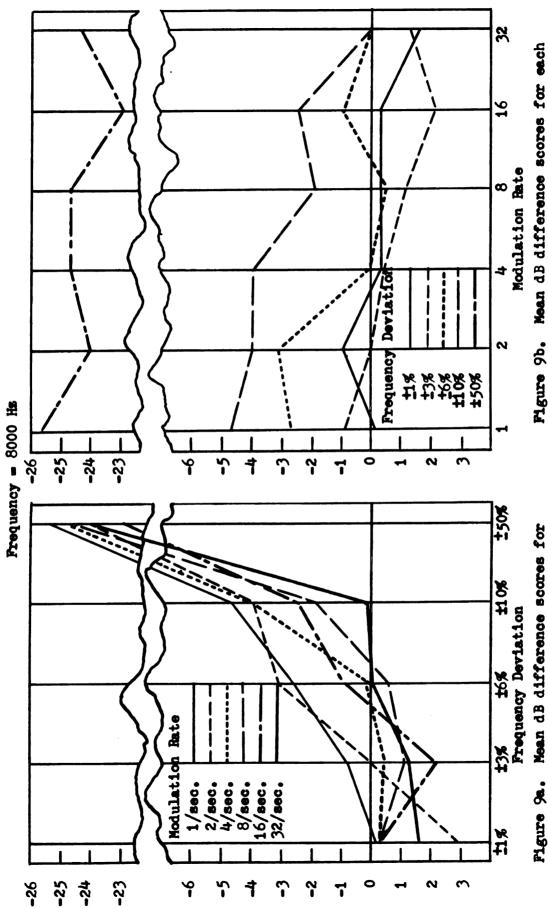



Figure 8b. Mean dB difference scores for each warble-tone modulation rate with frequency deviation as the parameter.

warble-tone modulation rate with frequency deviation as the parameter. each warble-tone frequency deviation with modulation rate as the parameter. Figure 9a.

warble-tone threshold was better (required less SPL) than by pure-tone, then the difference shown in Figures 4a through 9b would be negative. Likewise, a positive difference means that the warble-tone is poorer than the pure-tone threshold. The data for each frequency are shown two ways: first, with modulation rate as the parameter and; second, with the frequency deviation as the parameter. A cursory observation of the warble-tone thresholds shows that they are not always comparable to the pure-tone thresholds (represented by the "0" reference line). Also, certain trends occur with respect to the warble-tone combination utilised. A more detailed analysis of the results relative to the original questions of interest now follows.

Warble-Tone Thresholds Versus Frequency

Figures 4a through 9b show that there are variations in warbletone thresholds as a function of frequency. While the differences are
not great (with the exception of the ±50% frequency deviation combinations) warble-tone thresholds are generally poorer than the pure-tone
thresholds at 250, 500, and 2000 Hz and better at 1000, 4000, and
8000 Hz.

Threshold is generally poorer at 250 Hs than the pure-tone reference except for the ±50% frequency deviation (Figure 4a) which shows better thresholds. The threshold of the ±50% frequency deviation is also better at low modulation rates than at high modulation rates (Figure 4b) but this does not appear to generalise to the other frequency deviations. If the ±50% frequency deviation condition were excluded at 250 Hs no basic differences in warble-tone thresholds would be apparent.

Warble-tone thresholds are generally poorer than the pure-tone threshold at 500 Hz (Figures 5a and 5b) with the ±50% frequency deviation giving the poorest threshold. Again, if this frequency deviation were excluded from the data, no consistent differences in thresholds for 500 Hz would be evident. There is a tendency, however, for higher modulation rates to result in poorer thresholds at the higher frequency deviations.

At 1000 Hs the warble-tone thresholds are better than the puretone thresholds (Figures 6a and 6b). The single notable exception is
the ±50% frequency deviation. The effect created by this frequency
deviation is most noticeable at the higher modulation rates where a
difference (poorer) up to approximately 6 dB occurs between the warbleand pure-tone thresholds. Again, as in the previous frequencies, if
the ±50% frequency deviation condition were eliminated, essentially no
differences between the warble- and pure-tone thresholds would occur.

Almost all combinations of warble-tone (except the ±50% frequency deviation combinations) resulted in poorer thresholds than obtained by pure-tones at 2000 Hz (Figures 7a and 7b) and a reversal for the direction of change occurs from that seen at 500 and 1000 Hz. The change is that the ±50% frequency deviation condition now gives the best or most sensitive thresholds and is better than the pure-tone threshold. The most sensitive thresholds occur at low modulation rates and decrease in sensitivity at high modulation rates. Again, if the ±50% frequency deviation condition were not included, all of the thresholds would be similar and slightly poorer than the pure-tone thresholds.

At 4000 Hz all warble-tone thresholds are better than the puretone reference. In addition, distinct differences in thresholds begin to appear as a result of the warble-tone combination employed. Figures 8a and 8b show that the most sensitive (best) thresholds are those associated with the ±50% frequency deviation condition and that the least sensitive thresholds are those associated with the ±1% frequency deviation condition. In addition, better thresholds have a tendency to be associated with lower modulation rates.

Distinct differences in threshold due to the warble-tone combination are evident at 8000 Hs (Figures 9a and 9b). In general, warble-tone thresholds tend to be better than their pure-tone counterpart.

Differences due to frequency deviation show better thresholds as the frequency deviation increases. Slightly better thresholds are again associated with lower modulation rates.

An interesting phenomenon occurs in the trends associated with warble-tone thresholds. At 250 Hs the general trend is for the wider frequency deviations and lower modulation rates to be associated with the most sensitive thresholds. However, at 500 Hs this trend is somewhat reversed showing a tendency for the wider frequency deviations and higher modulation rates to produce the poorest thresholds. The trend at 500 Hs also helds true at 1000 Hs, and actually becomes more noticeable. At 2000 Hs the trend with warble-tone thresholds is similar to that reported for 250 Hs, and continues through 4000 and 8000 Hs. What this indicates is that there seems to be two "changeover" regions with respect to the types of threshold responses that might be expected; one between 250 and 500 Hs and the other between 1000 and 2000 Hs.

Table 3 shows the mean warble-tone dB difference scores from the pure-tone thresholds and standard deviations for all combinations of frequency deviation and modulation rate at each test frequency. The

Table 3. Mean* warble-tone dB difference thresholds from the pure-tone thresholds and standard deviations for each test frequency.

Frequency in Hs	Mean	Standard Deviation	
250	0.06	1.68	
500	1.17	1.50	
1000	-0.17	2.44	
2000	0.36	2.40	
4000	-3.04	1.94	
8000	-5.37	9.86	

^{*}All combinations of frequency deviation and modulation rate were averaged for the three subjects.

order of frequencies having the least to the most variability is as follows: 500, 250, 4000, 2000, 1000, and 8000 Hz.

Warble-Tone Versus Pure-Tone Thresholds

The primary purpose of this investigation was to compare pure-tone and warble-tone hearing thresholds using various combinations of frequency deviations and modulation rates. Figures 4a through 9b show the mean monaural dB difference scores from the pure-tone thresholds and are plotted in two different ways so that threshold effects of the warble-tone combinations used can be seen. Even though the data in those figures have been condensed from the original results, it is still difficult to answer one of the main questions asked by this investigation: "How do warble-tone thresholds at various combinations of modulation rates and frequency deviations compare with conventional, monaural pure-tone thresholds?"

Figures 10, 11, and 12 show the effects of each warble-tone combination on threshold across all test frequencies. The implication from such an analysis would be that the warble-tone combination(s) with the least variability or having a constant variability from the pure-tone thresholds would be best for threshold testing.

In Figure 10 the ±1% frequency deviation with its various modulation rates shows little change in threshold from one frequency to the next with all combinations fairly comparable to the pure-tone thresholds. A possible trend is that of less variability around the pure-tone thresholds with increased modulation rates. However, this speculated reduction in variability is quite small and would probably have little or no effect in clinical testing. The ±3% frequency deviation conditions also show relatively comparable warble- and pure-tone thresholds across all frequencies.

It appears that under the ±6% frequency deviation conditions

(Figure 11) that lower frequencies tend to be associated with slightly poorer thresholds than the higher frequencies. This trend becomes more noticeable in the ±10% frequency deviation conditions with threshold improving approximately 5 dB from 250 to 8000 Hz. Further, warbletone thresholds seem to become poorer with increased modulation rates.

Figure 12 shows the ±50% frequency deviation combinations and it is quite evident that the warble-tone thresholds for each combination vary as a function of frequency. This variation covers a range of approximately 32 dB with 8000 Hz having the greatest variability. In addition, the trend showing poorer thresholds with increased modulation rates (discussed for the ±6% frequency deviation conditions) is more

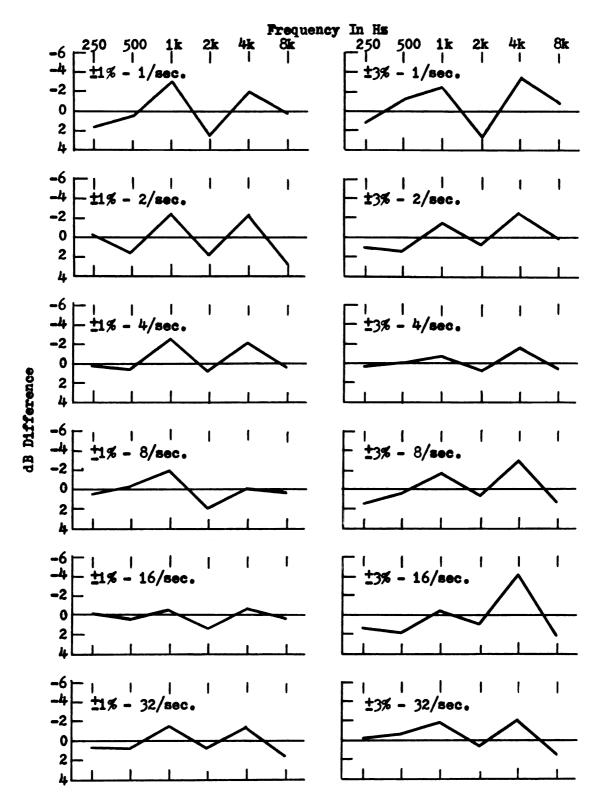


Figure 10. Mean differences in dB between warble-tone and puretone thresholds for the warble-tone combinations indicated in each graph.

Frequency in Hs

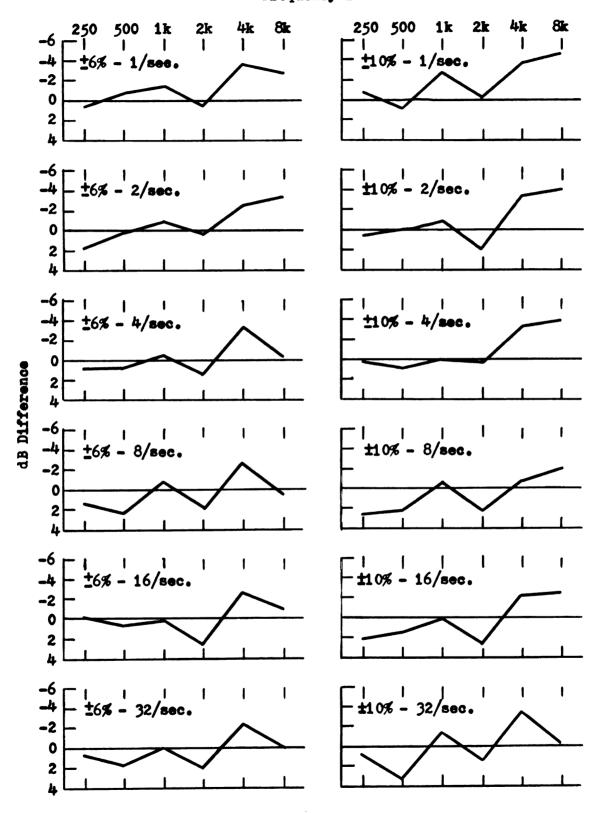


Figure 11. Mean differences in dB between warble-tone and puretone thresholds for the warble-tone combinations indicated in each graph.

Frequency in Hs 250 500 1k

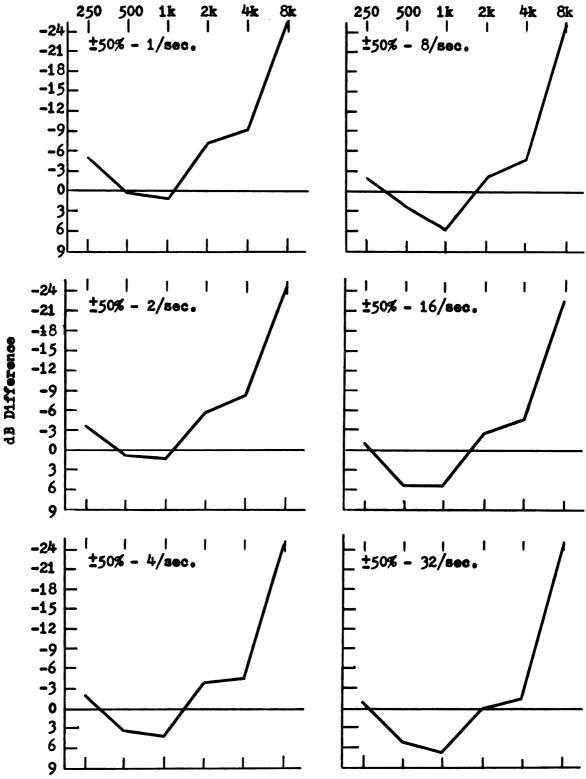


Figure 12. Mean differences in dB between warble-tone threshold and pure-tone threshold for the warble-tone combinations indicated in each graph.

noticeable here except at 8000 Hs. Poorer thresholds by approximately 5 dB occur with modulation rate increases from 1 per second to 32 per second.

In general, the conclusion from the presentation of the thirty warble-tone combinations utilised across frequencies indicates that for all practical purposes, warble-tone combinations up to and including frequency deviations as high as \$10%, and modulation rates as rapid as 32 per second result in little or no noticeable differences in warble- and pure-tone thresholds. However, beyond the limits just specified, noticeable differences exist that might preclude the use of various warble-tone combinations in routine hearing testing unless special calibration or correction factors are taken into consideration. Some of these differences (particularly at 8000 Hs and the \$50% frequency deviation) are so great that even normal calibration procedures may not be able to correct earphone sound pressure output levels to account for these differences.

Changes in frequency deviation seem to have greater influence on warble-tone threshold than do changes in modulation rate. With frequency deviation, the effects on threshold have little clinical significance (differences greater than ±5 dB) until frequency deviations become larger than ±10%. With the modulation rates utilised there appears to be little effect on threshold. There seems to be some effect (producing poorer thresholds with increasing rates) at the high frequency deviations but the resulting differences are not large and would be of little significance in routine clinical testing.

Consequently, how do warble-tone thresholds at various combinations of modulation rates and frequency deviations compare with conventional,

monaural pure-tone thresholds? In general, any combination of warble-tone modulation rate and frequency deviation up to and including 32 per second and 110% respectively should produce good agreement between warble-tone and conventional pure-tone thresholds for normal hearing adults.

Relations Among Warble-Tone Threshold Rankings by Subjects

What are the relations among the threshold rankings of the various warble-tone combinations by the subjects? This question was asked to determine intersubject reliability of warble-tone thresholds. The null hypothesis is that the rankings are unrelated. A measure that allows this kind of association to be determined on more than two sets of rankings is Kendall's Coefficient of Concordance (W) which bears a linear relation to the average correlations taken over all subjects, except that only values between 0 and +1 can occur. The coefficient of concordance is an index of the divergence of the actual agreement in the data from the maximum possible (perfect agreement). Since tied ranks occurred frequently in the warble-tone thresholds and tended to depress the value of W, a correction was introduced which slightly increased the value of W over what it would have been if uncorrected (Siegel, 1956).

Table 4 summarises the results of the coefficient of concordance for each of the test frequencies and rankings given in Appendix M. With an N larger than 7 (N = 30), the probability associated with a calculated Chi square (X^2) representing W is approximately distributed as Chi square with N - 1 degrees of freedom (Siegel, 1956, p. 236).

Table 4. Summary of coefficient of concordance (W) of intersubject reliability of warble-tone thresholds.

Frequency in Hz	Coefficient of Concordance	Calculated Chi Square Value	
250	W = 0.27	23.49	
500	W = 0.50*	43.50*	
1000	W = 0.76***	66.12***	
2000	W = 0.58**	50.46**	
4000	W = 0.49*	42.63*	
8000	W = 0.74***	64.38***	

^{*}p. ≤ 0.05

Results of the coefficient of concordance show that the null hypothesis is rejected (p. \(\leq 0.05 \)) at 500, 1000, 2000, 4000, and 8000 Hs. The interpretation is that the rankings by the subjects for the various warble-tone combinations are related, with the exception of 250 Hs. While the null hypothesis at 250 Hs was not rejected, this was possibly due to subject three's deviation from the threshold pattern exhibited by the other two subjects.

The significant value of W may be interpreted as meaning that the subjects applied essentially the same standard in performing the threshold task with the thirty combinations of warble-tone thresholds. It should be emphasized that a high or significant value of W does not mean that the orderings ebserved are correct. In fact, they may all be incorrect with respect to some external criterion.

 $^{**}_{p} \leq 0.01$

^{***}p. ≤ 0.001

Effects of Modulation Index on Warble-Tone Threshold

It has been suggested that in normal ears for a given modulation index (ratio of frequency deviation in Hz to the modulation rate at a given frequency) better thresholds are obtained with smaller frequency deviations (Dallos and Tillman, 1966; Young and Harbert, 1970).

Dallos and Tillman (1966) initially warned against drawing sweeping generalizations from their data since it was based on one normal hearing subject and a patient with acoustic neurinoma tested at 500 Hz.

Young and Harbert (1970) tested four normal and five subjects having a sensorineural loss at 1000 Hz to attempt to explore further the work of Dallos and Tillman. They concluded:

For a given modulated index, better thresholds were obtained with smaller frequency deviation in normal ears. In abnormally adapting ears, the threshold remained unchanged or increased or decreased for a given modulation index (p.7).

The possibility that an "equivalent modulation index" of 16 as suggested by Dallos and Tillman before stable threshold could be traced in abnormally adapting ears was not confirmed.

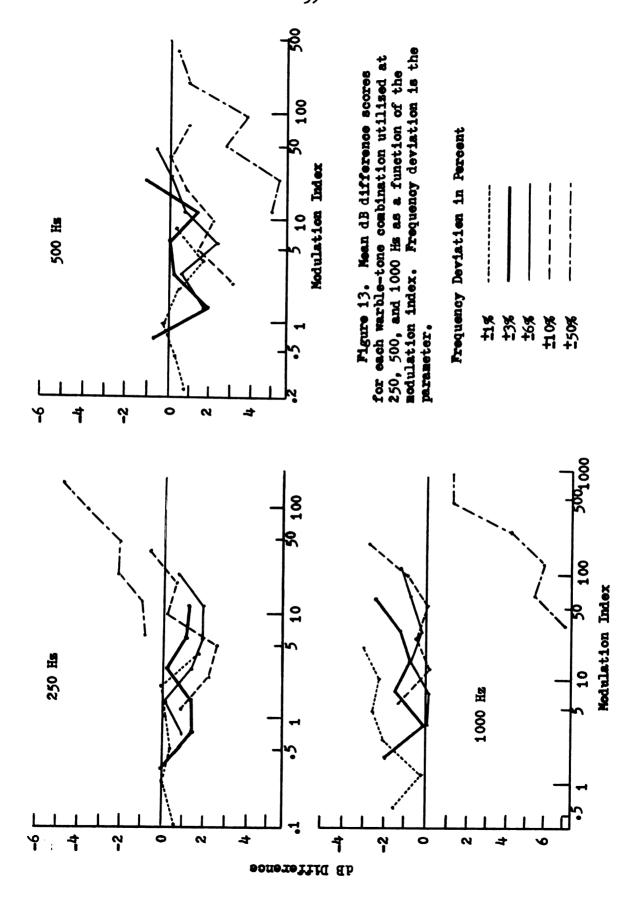
Table 5 gives the dB differences between warble- and pure-tone thresholds and the modulation indices (MI) for each of the warble-tone combinations used in this experiment for each frequency. The purpose in examining these data was to determine if the modulation index exerted any influence on the warble-tone thresholds obtained. Even without plotting graphically the data in Table 5 it is clear that with the limited variability in warble-tone thresholds (either across frequency with a single warble-tone combination or within a given frequency with a variety of warble-tone combinations) and with the large range of modulation indices, that there is no systematic effect between modulation

Table 5. Nean warble-tone threshold difference (TD) in dB from the pure-tone threshold along with the modulation indices (MI) for each of the warble-tone combinations used.

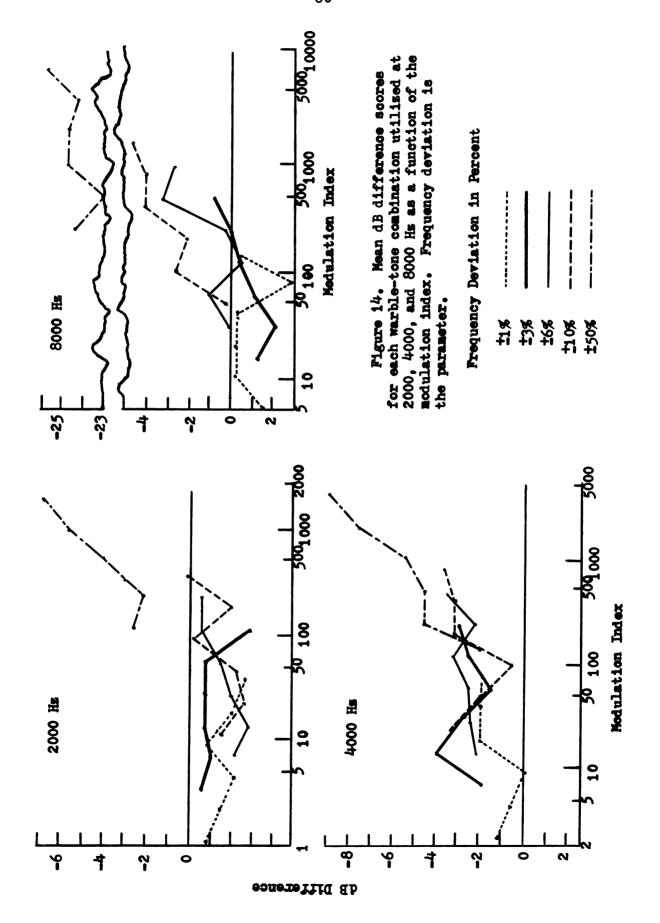
						Freque	Frequency in Hs	器				
Warble-Tone		250	2	8	1000	1	20	2000	3	0004		8000
Combination	Œ	IH	Œ	NI	ŢΩ	MI	£	HI	Œ	MI	T.D	MI
18 - 1	1.6	5.0	7°0	10.0	-3.0	20.0	2.5	0.04	-2.0	80.0	0.1	160.0
11% - 2	-0-1	2.5	1.6	5.0	-2.3	10.0	1.9	20.0	-2.1	0.04	2.8	80.0
118 - 4	0.1	1.2	0.4	2.5	-2.6	5.0	0.7	10.0	-2.1	20.0	0.3	0.04
11% - 8 8	0.3	9.0	-0.2	1.2	-2.0	2.5	2.0	5.0	0.0	10.0	0.3	20.0
11% - 16	0.0	0.3	4.0	9.0	-0-3	1.2	1.4	2.5	9.0-	5.0	0.3	10.0
±1% - 32	9.0	0.1	0.8	0.3	-1.6	9.0	0.7	1.2	-1.3	2.5	1.6	5.0
•	1.1	15.0	-1.2	30.0	-2.5	0.09	2.7	120.0	-3.1	240.0	-0.8	0.084
±3% - 2	1.0	7.5	1.3	15.0	-1.3	30.0	0.7	0.09	-2.6	120.0	0.0	240.0
•	0.1	3.7	0.0	7.5	-0.8	15.0	0.7	30.0	-1.6	0.09	0.4	120.0
±3% - 8	1.3	1.8	0.3	3.7	-1.5	7.5	0.7	15.0	-3.0	30.0	1.1	0.09
±3% - 16	1.3	6.0	1.9	1.8	-0-1	3.7	1.0	7.5	4.1	15.0	2.1	30.0
±3% - 32	-0.1	7° 0	-0.7	6.0	-2.0	1.8	0.5	3.7	-2.0	7.5	1.3	15.0
16% - 1	9.0	30.0	-0.7	0.09	-1.3	120.0	0.5	240.0	-3.6	480.0	-2.7	0.0%
t	1.8	15.0	0.1	30.0	-0.8	0.09	0.5	120.0	-2.3	240.0	-3.2	480.0
+6% - 4	0.8	7.5	0.8	15.0	-0-3	30.0	1.4	0.09	-3.3	120.0	-0.2	240.0
•	1.3	3.7	2.3	7.5	-0.8	15.0	1.9	30.0	-2.6	0.09	0.5	120.0
	_	-					_					

60.0 800.0 40000 200.0 100.0 50.0 8000.0 400000 2000.0 1000.0 500.0 250.0 30.0 1600.0 Ä 8000 -25.7 -24.2 -24.7 -24.7 -23.0 00. -1.0 0.0 -2.0 4.7 -2.5 -24.3 -0.2 5 10000 30.0 15.0 200.0 0.0004 2000.0 500.0 125.0 800.0 100.0 50.0 40000 25.0 Ħ 4000 -7.8 -9.1 4.8 -2.6 -2.3 -3.8 -3.3 -1.5 -0.6 -3.5 -2.1 5 2000.0 500.0 250.0 125.0 200.0 15.0 0000 50.0 25.0 12.5 62.5 보 2000 Frequency in Hz -7.1 -5.7 2.0 1.9 2.2 2.5 -3.9 -2.2 0.0 2.7 0.2 -0.2 E 100.0 50.0 25.0 1000.0 500.0 250.0 125.0 62.5 7.5 200.0 12.5 6.2 31.2 보 1000 -2.8 -1.0 0.0 0.0 0.1-5 100.0 500.0 250.0 125.0 62.5 31.2 3.7 1.8 50.0 25.0 12.5 6.2 3.1 15.6 보 500 0.3 3.6 2.6 5.1 4.8 0.6 1.8 0.0 0.8 1.4 3.1 2.1 5 250.0 125.0 62.5 31.2 15.6 1.8 6.0 7.8 50.0 25.0 12.5 6.2 6.2 3.1 보 250 1.1.1 1.1.1 1.1.1 1.1.1 0.0 0.8 0.5 -1.0 2.5 2.1 0.8 5 darble-Tone 16 8 16 16 32 Combination Φ × ±6% 11 12 8 ±50% ±50% ±50% ±6% 110% 110% 110% ±50% ±50% ±50% #10%

Table 5 (Continued)


index size and the dB difference scores. These comments should be reserved at least for the subjects studied (a small sample of normal listeners).

Both Dallos and Tillman (1966) and Young and Harbert (1970) reported that at a given modulation index better thresholds were obtained with smaller frequency deviations. The test frequencies from which these comments were directed were 500 Hs for the former authors and 1000 Hz for the latter. The results of the present investigation indicate that it would be hasardous to generalize those conclusions as shown by Figures 13 and 14. These figures reveal no distinct trends for a given modulation index with the possible exception being 8000 Hs. At this frequency better thresholds tend to occur at a given MI with increased frequency deviation. However, if modulation indices are considered which include the ±50% frequency deviation conditions, better thresholds seem to occur with wider frequency deviations at 250, 2000, 4000, and 8000 Hs. Poorer thresholds at a given MI occur with wider frequency deviations at 500 and 1000 Hz. The latter statement is consistent with the findings of the two studies cited.


With respect to the modulation index and modulation rates, poorer thresholds generally occur with lower modulation indices for all frequencies and frequency deviations.

Upon considering the effects of the modulation index on warbletone thresholds, no consistent generalization is evident that one or a combination of indices provides a guideline in threshold prediction when testing normal listeners.

	·	
·		

	•	
	·	

Discussion

Due to the small sample size and variation in the range of warble-tone thresholds from the pure-tone thresholds, a question concerning the validity of the findings of this investigation might be raised. It is true that in routine clinical testing much of this range would fall within the clinical error generally accepted of ± 5 dB. However, in warble-tone testing, small differences may be of more clinical significance. Recall, that when the coefficient of concordance was performed to determine the consistency of subjects to rank order thirty combinations of warble-tone at each of the test frequencies, that significance (p. ≤ 0.05) was exceeded at 500, 1000, 2000, 4000, and 8000 Hs. It is rather noteworthy that this significance level was reached since there was a limited intensity range in which the warble-tone thresholds occurred. Consequently, the results of the coefficient of concordance provide the justification for having confidence in the warble-tone thresholds obtained.

Trends in Warble-Tone Thresholds. It was stated in previous discussion that frequency deviation contributes more than modulation rate to variations in warble-tone threshold. With this in mind it is appropriate to reiterate the distinctive patterns in threshold responses that were found.

At 250 Hs the general trend was for the ±50% frequency deviation condition to result in the best thresholds for all modulation rates. However, at 500 and 1000 Hs this pattern was reversed with the ±50% condition yielding the poorest warble-tone thresholds at all modulation rates. Then, at 2000, 4000, and 8000 Hs, the ±50% condition showed a

pattern similar to that at 250 Hs with better thresholds obtained at all modulation rates. While the frequency deviation pattern of warble-tone thresholds varied as a function of the test frequency, thresholds were always improved at \$50% frequency deviation conditions with lower modulation rates. In the total pattern presented there appears to be two changeover regions—one between 250 and 500 Hs and one again between 1000 and 2000 Hs. A first logical assumption might be that the changes in threshold are related to the minimal audible pressure threshold curve for humans. However, this would imply that under the \$50% frequency deviation conditions better warble—tone thresholds should always be obtained since the audibility curve would be reached at lower sound pressure levels due to the "wide frequency sweep." On the other hand, these differences cannot be explained by individual subject variation since the patterns are consistent across all subjects (except for subject three at 250 and 4000 Hs).

Since large sample consistency in threshold trends and the significance of deviations from these trends is unknown, it is difficult to determine whether subject three or the other two subjects were deviant at 250 and 4000 Hs. At any rate it may be best to consider only the differences in individual patterns at these two frequencies. Because subject three holds a B.A. degree in music, her thresholds might be suspected to reflect a more experienced ability to listen to frequency changes. However, if this were the case the differences that occurred would more logically have been expected for all test frequencies for this subject and this did not happen. In fact, selected warble-tone combinations were repeated with no significant differences in the thresholds obtained.

At this time no feasible explanation for the threshold patterns obtained is offered by this investigator. If the warble-tone threshold patterns are confirmed by subsequent research, it would then be appropriate to speculate about possible acoustical, physiological, or psychelogical factors or interactions.

Comparisons with Previous Work. Are the results of this investigation consistent with any previous studies comparing warble- and pure-tone thresholds? Sivian and White (1933) had reported that a few check: measurements made on the same individual with the warble- and pure-tone indicated no systematic differences between the threshold values other than those due to the physical and psychological considerations the warble-tone was intended to minimise. They used a constant modulation rate of 10 per second and a frequency deviation which progressively changed in percent from approximately ±4.6% at 1100 Hs (±50 Hs) to approximately ±0.97% at 15,000 Hs (±146 Hs). The results of the present investigation tend to support their findings under the conditions utilised.

Peck (1970), using a warble-tone having a frequency deviation of 5% to determine auditory thresholds in very young children, commented that it was difficult to give a precise reference level for the warbled sound-field pure-tones. However, it was his impression (based on thresholds obtained on mere than 10 normal-hearing young adults) that the thresholds approached the ISO sero reference levels. He did not specify whether the frequency deviation was a ±5% or a +5% variation and the modulation rate was not given. Regardless, under the possible warble-tone combinations that could have resulted, this investigation supports his comments.

An Allison Laboratory <u>Bulletin A-5</u> (not dated) and Reilly (1958a), suggested that better thresholds occur with a warble-tone than with a pure-tone stimulus. This investigation does not necessarily lead to the same conclusion. While it is true that certain warble-tone combinations result in better thresholds than produced by pure-tones, this trend is not consistent across all frequencies, and in fact, shows poorer warble-tone thresholds at some frequencies than by pure-tone. A more tenable conclusion would be that warble-tone may act as a more attention centering device and serves to circumvent response difficulties produced by ambient noise and tinnitus, and thus may result in thresholds which are more consistent. However, to say that warble-tone thresholds are better than pure-tone thresholds would be a hazardous supposition. These statements, of course, apply to normal hearing adults only. Warble-tone versus pure-tone thresholds for children and for subjects with auditory pathology amait investigation.

Studies specifically comparing warble- and pure-tone thresholds are generally not available with which to relate the results of this research. However, limited data is provided in studies by Dallos and Tillman (1966) and Young and Harbert (1970) comparing warble-tone with pure-tone thresholds at 500 and 1000 Hs. While it is not possible to directly compare the thresholds they obtained with those of the current study (because of different warble-tone combinations, psychophysical method, and signal generating apparatus) there are sufficient similarities to make approximate comparisons.

Dallos and Tillman (1966) found approximately the same or slightly better thresholds with increased frequency deviation at 500 Hz with a single normal listener and better thresholds with slower modulation

rates. The present investigation showed approximately the same or slightly poorer thresholds with increased frequency deviation. While better thresholds with slower modulation rates were also found in this study, the variability was not as divergent as thresholds obtained by Dallos and Tillman.

Young and Harbert (1970) recorded the thresholds of four normal, trained listeners at 1000 Hs and found that thresholds remained about the same or improved slightly with increased frequency deviation.

Results of the current investigation at the same frequency do not show any effect with respect to frequency deviation. However, Young and Harbert's contention that better thresholds were obtained with slower modulation rates tends to be confirmed—although the improvement is not as great as obtained in their investigation.

A review of the previous two studies in light of the current investigation depicts some rather interesting comparisons. This study's results do not agree with Dallos and Tillman's at 500 Hs in that poorer thresholds were found with increased frequency deviation. Also, at 1000 Hs it is difficult to detect any consistent differences in thresholds as suggested by Young and Harbert. It is important to remember that the comparisons being made exclude the ±50% frequency deviation conditions since neither of the former studies employed that wide a frequency deviation. The findings concerning modulation rates are consistent across all three studies but differences are not as great in the current investigation. It must be emphasised that the signals used varied somewhat for the three studies compared, in that the other investigations used saw-tooth waveform frequency deviations and this study used sinusoidal waveform deviations. Perhaps the type of waveform

generating the test signal effects warble-tone thresholds in terms of modulation rate and frequency deviation.

The final point that should be made is that there is no reason to expect that changes in thresholds are similar from one frequency to the next. While this aspect should be investigated further, this research suggests that definite differences do exist.

Role of the Modulation Index. Thresholds for a given modulation index in normal listeners seems to provide no significant information or trends with respect to desirable combinations of warble-tone frequency deviation and modulation rate. In fact, a comparison of Figures 13 and 14 with 4b, 5b, 6b, 7b, 8b, and 9b shows that similar information is present except that the abscissa is expanded in the former series of figures.

Summary

In attempting to generalize the findings of this investigation to a larger population care must be taken because of the small sample size involved. However, this does not necessarily mean that the sample size detracts from the general findings presented. Recall, the coefficient of concordance did reach statistical significance demonstrating that intersubject reliability of warble-tone thresholds was good.

In general, substantial agreement was found between warble- and pure-tone thresholds. However, differences were found for some stimulus parameter conditions. These differences varied by test frequency and warble-tone combination (frequency deviation and modulation rate). The results demonstrated that changes in frequency deviation had a greater influence on threshold than changes in modulation rate. This was

particularly noticeable for the ±50% frequency deviation conditions.

While threshold changes related to frequency deviation were not consistent across frequencies, lower modulation rates generally resulted in better thresholds for a given frequency deviation at all test frequencies.

Poorer thresholds generally were found with lower modulation indices (frequency deviation divided by modulation rate) for all frequencies and frequency deviations. In contrast to previous investigations, no evidence was found to support the notion that one or a combination of modulation indices provides a guideline for threshold prediction when testing normal hearing adult listeners.

Intersubject reliability of warble-tone thresholds was good (p. ≤ 0.05). In addition, variability in warble-tone thresholds was small with the exception of 8000 Hz.

In general, warble-tone combinations up to and including frequency deviations of ±10% and modulation rates as fast as 32 per second resulted in close agreement (±5 dB) between warble- and pure-tone thresholds for normal hearing adults.

CHAPTER V

SUMMARY. CONCLUSIONS. AND RECOMMENDATIONS

Summary

Warble-tone stimulus parameters of frequency deviation and modulation rate were investigated to determine their effect on hearing threshold.

Three normal-hearing experienced listeners were individually administered thirty randomised warble-tone combinations and thirty repeated measures (for a total of sixty) at each of six octave frequencies from 250 through 8000 Hz. The thresholds obtained were then compared with the same subject's conventional, pure-tone air-conduction thresholds. Each subject's hearing threshold levels were measured monaurally on six separate occasions, with one frequency tested per session utilising a 2 dB step descending method.

The data were subjected to descriptive and statistical analyses to answer the questions originally posed. Descriptive measures were employed to explore the significance of one variable over another in contributing to warble-tone thresholds and their comparison with pure-tone results. The coefficient of concordance was utilized to determine intersubject reliability of warble-tone thresholds.

The results showed that up to and including frequency deviations and modulation rates of \$10% and 32 per second respectively, little difference between the two methods of threshold measurement can be

expected under clinical conditions with normal adult listeners. However, beyond these warble-tone combinations, variations in threshold are expected to occur and correction factors should be applied to the obtained thresholds if they are to substitute for pure-tone measurements.

Conclusions

The following conclusions seem warranted:

- 1. Warble-tone thresholds are not always comparable to pure-tone thresholds. Their comparison depends on the test frequency and warble-tone combination being tested. In general, warble-tone thresholds are poorer than pure-tone thresholds at 250, 500, and 2000 Hz and better at 1000, 4000, and 8000 Hz.
- 2. There appear to be twe "changeover" regions with respect to the types of warble-tone threshold responses expected, one between 250 and 500 Hs and the other between 1000 and 2000 Hs. The direction of threshold response reverses in these regions and is most noticeable with the wider frequency deviations.
- Variability in warble-tone thresholds is small as a function of frequency with the exception of 8000 Hs.
- 4. Intersubject reliability of warble-tone thresholds is good but some individual subject variability was found.
- 5. No evidence suggests that one or a combination of modulation indices provides a guideline in threshold prediction when testing normal adult listeners; however, poorer thresholds generally occur with lower modulation indices for all frequencies and frequency deviations.
- 6. Changes in frequency deviation, within limits, seem to have greater influence on warble-tone threshold than do changes in modulation

- rate. However, while changes in frequency deviation are not consistent from one frequency to the next, lower modulation rates generally result in better thresholds for a given frequency deviation.
- 7. Warble-tone combinations up to and including frequency deviations and modulation rates of 110% and 32 per second result in little or no clinically noticeable differences between warble- and pure-tone thresholds for normal hearing adults.

Recommendations for Future Research

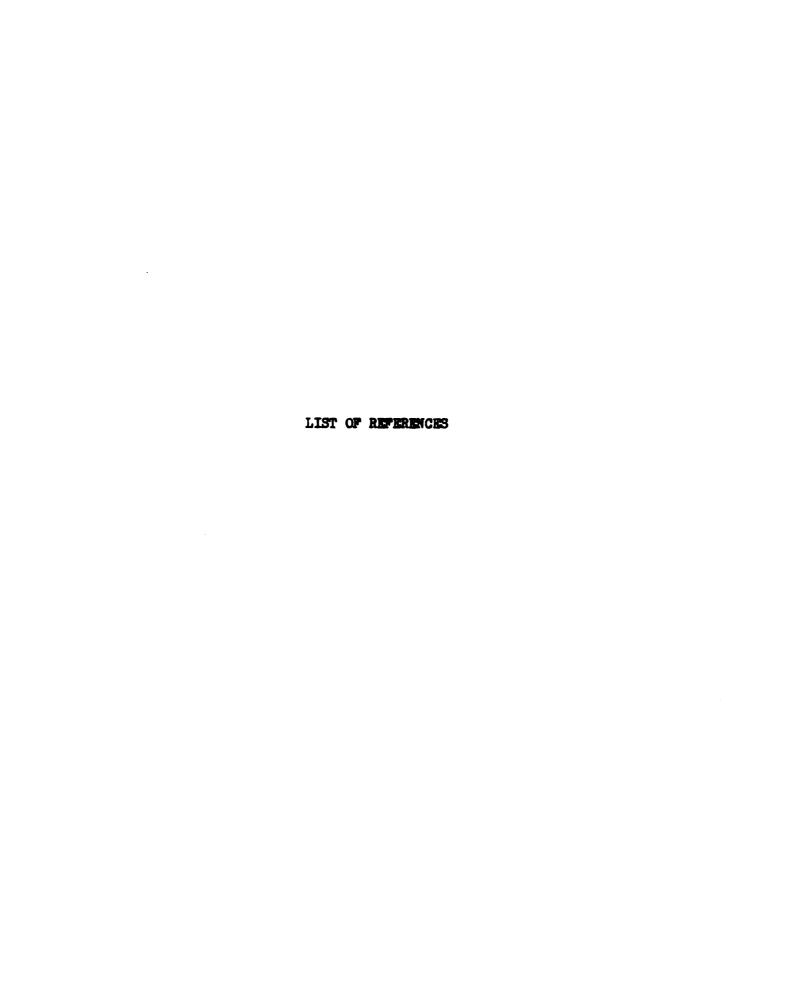
While certain patterns of warble-tone threshold were found in this investigation, their confirmation is desirable utilizing a larger adult sample on a limited number of selected combinations of frequency deviation and modulation rate.

Additional frequency deviations and waveforms might be evaluated which were not included in this initial study. For example, fewer from the 11% to 110% and more between the 110% and 150% frequency deviation range could be evaluated. A smaller number of modulation rates could be used, although the extremes of the range should be tested. Further, a comparison of thresholds should be performed using warble-tones produced by triangular, positive pulse, negative pulse, positive ramp, negative ramp, and sawtooth waveforms.

Warble-tone thresholds under earphones should be compared to soundfield thresholds on an adult population. This would provide additional information relative to the warble-tone's clinical usefulness.

The clinical utility of warble-tone (utilizing various combinations of frequency deviation and modulation rate) should be systematically examined using a large group of subjects representing various types of

auditory pathology (e.g. conductive, cochlear, retrocochlear, and central lesions). Representative response patterns could hopefully be established for the various types of auditory pathologies and thus used in differential diagnosis.


After basic warble-tone parameters have been established with adults, several experiments should be replicated with children. Additional questions that should be asked are: Does warble-tone result in more consistent thresholds than the conventional pure-tone stimulus? Is the warble-tone a better attention-centering auditory signal for children than conventional pure-tones? Can the warble-tone be applied more successfully with young children than conventional pure-tone audiometry?

A possible clinically useful extension of warble-tone study in sound-field is its use in hearing aid evaluations, especially with children and those with language problems. By comparing the unaided sound-field discrete frequency warble-tone thresholds with aided sound-field thresholds, information relative to the use gain of the hearing aid can be obtained.

The Sensorineural Acuity Level (SAL) test described by Jerger and Tillman (1960) has generated interest as a method to quantify the status of the sensorineural mechanism. While the procedure is simple to employ, it is limited in its application because of two problems. First, the occlusion effect results in underestimating low frequency cochlear reserve in conductive hearing loss cases. Secondly, cases with sensorineural losses are likely to be overmasked due to "spread of masking" resulting in overestimating SAL thresholds particularly in the high frequency region. A study could be conducted to determine whether

warble-tone can be used in sound-field SAL testing with the warble-tone serving as the tonal stimulus. Hopefully, this method would circumvent the occlusion effect problem mentioned above. The usefulness of sound-field SAL employing spondee words has already been demonstrated by Rintelmann and Johnson (1970). The warble-tone SAL studies should be performed initially under earphones (conventional) and then in sound-field. Normal hearing adult subjects should be tested first followed by pathological ears and then its feasibility should be investigated with children.

In summary, warble-tone audiometry should prove to be a useful audiological tool for a variety of clinical applications. However, before this technique can become a routine part of the audiologists' test battery, a series of studies must first be completed. Some of these basic investigations have been mentioned above.

LIST OF REFERENCES

- Allison Laboratories, Inc., The use of warble tone in clinical audiometry,

 <u>Bulletin A-5</u>. LaHabra, Calif.: Allison Laboratories, Inc. (not
 dated).
- American National Standards Institute, Inc., American National Standard Specification for Audiometers (ANSI S3.6-1969). New York:

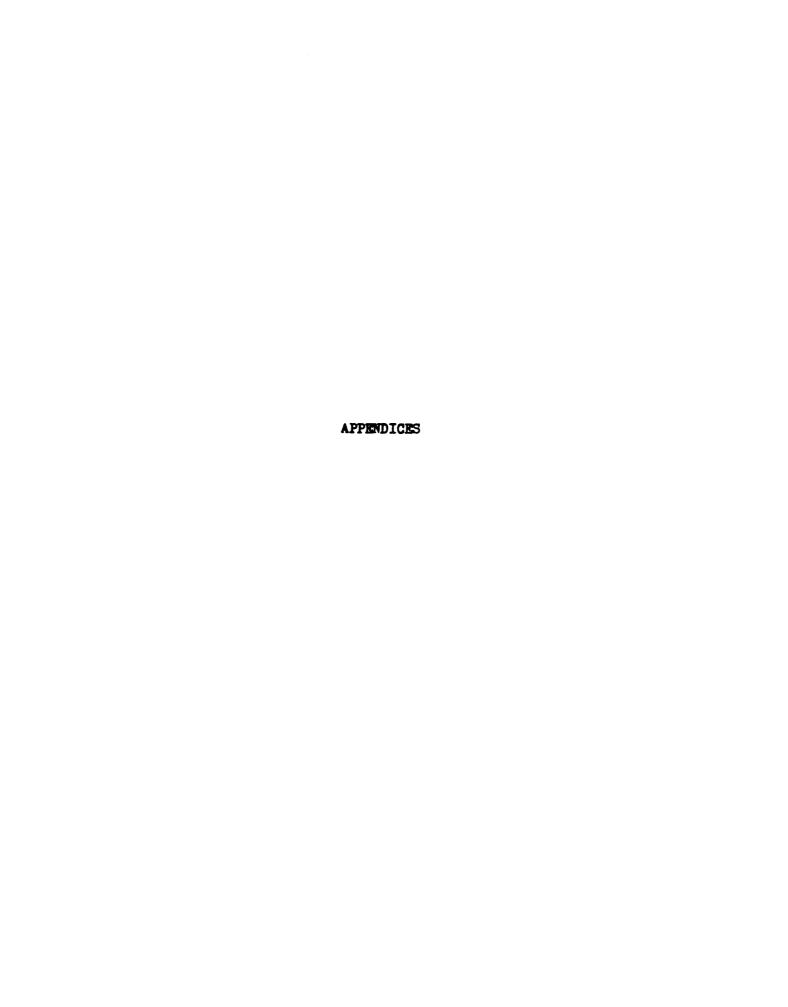
 American Standards Institute, Inc. (1969).
- American Standards Association, American Standard Criteria for Background
 Noise in Audiometer Rooms (ASA S3.1-1960). New York: American
 Standards Association (1960).
- Barr, B., Pure tone audiometry for pre-school children. Acta Otolaryng., Suppl. 121 (1955).
- Beadle, C., and Crowell, D. H., Neonatal EKG responses to sound. J. Speech Hearing Res., 5, 112-123 (1962).
- Beltone Electronics Corp., Operating Instructions: Beltone WT-401
 Warble Tone Adapter. Chicago: Beltone Electronics Corp. (1964).
- Bender, R., A child's hearing: Part II Evaluation of a child's hearing.

 Maice Audiological Library Series, 3, 4-7 (1967).
- Carhart, R., and Jerger, J. F., Preferred method for clinical determination of pure-tone thresholds. J. Speech Hearing Dis., 24, 330-345 (1959).
- Carver, W. F., <u>Major Audiometric</u> <u>Measurements</u>. Chicago: Beltone Electronics Corp. (1965).
- Dallos, P., and Tillman, T., The effects of parameter variations in Bekesy audiometry in a patient with acoustic neurinoma. J. Speech Hearing Res., 9, 557-572 (1966).
- Davis, H., and Silverman, S. R., <u>Hearing and Deafness</u> (3rd Rh.). New York: Holt, Rinehart & Winston (1970).
- DiCarlo, L., and Bradley, W., A simplified auditory test for infants and young children. Laryngoscope, 71, 628-646 (1961)
- Downs, M., and Sterritt, G. M., A guide to newborn and infant hearing screening programs. Arch. Otolaryng., 85, 15-22 (1967).

- Fletcher, H., and Munson, W. A., Loudness, its definition, measurement, and calculation. J. acoust. Soc. Amer., 5, 82-108 (1933).
- Furukawa, S., Personal communications, Rion Co., Ltd., Tokyo, Japan (1970).
- Gardner, M. G., A pulse-tone technique for clinical audiometric measurements. J. acoust. Soc. Amer., 19, 592-599 (1947).
- Glorig, A., Screening techniques for the assessment of hearing loss.

 Paper presented to the International Course in Paedo-Audiology,
 The Netherlands (1953).
- Glorig, A., and Wilke, R. R., A new screening audiometer. J. acoust. Soc. Amer., 24, 450 (1952).
- Hardy, J. B., Dougherty, A., and Hardy, W. G., Hearing responses and audiologic screening in infants. J. Pediat., 55, 382-390 (1959).
- Hardy, W. G., The assessment of auditory function. I. Hearing in children--panel discussion. <u>Laryngoscope</u>, 68, 250 (1958).
- HC Electronics, Inc., HC 213 Phonic Far Infant Audiometer. Tiburon, Calif.: HC Electronics, Inc. (1968).
- Heron, T. G., and Jacobs, R., A physiological response of the neonate to auditory stimulation. <u>Int. Audiol.</u>, 7, 41-47 (1968).
- Heron, T. G., and Jacobs, R., Respiratory curve responses of the neonate to auditory stimulation. <u>Int. Audiol.</u>, London Congress, 8, 77-84 (1969).
- Hillis, J. W., and Oyer, H. J., Success of play audiometry as a function of chronological age. Paper presented to the Annual Convention of ASHA, Los Angeles, Calif. (1960).
- Hood, J. D., The principles and practice of bone conduction audiometry.

 <u>Iaryngoscope</u>, 70, 1211-1228 (1960).
- Jerger, J., (El.), Modern Developments in Audiology. New York: Academic Press, 141 (1963).
- Jerger, J., and Tillman, T., A new method for the clinical determination of sensorineural acuity level (SAL). Arch. Otolaryng., 71, 948-955 (1960).
- Johnston, P. W., The Massachusetts hearing test. J. acoust. Soc. Amer., 20, 697-703 (1948).
- Johnston, P. W., An efficient group screening test. J. Speech Hearing Dis., 17, 8-12 (1952).


- Langenbeck, B., Textbook of Practical Audiometry. Baltimore: The
 Williams & Wilkins Co., 23-25 (1965).
- Liden, G., and Kankkuren, A., Visual reinforcement audiometry in the management of young deaf children. Int. Audiol., London Congress, 8, 99-106 (1969).
- Lyberger, S. F., Interim bone conduction thresholds for audiometry.

 J. Speech Hearing Res., 9, 483-487 (1966).
- Madsen Electronics, Clinical Audiometer Model OB 60. Copenhagen, Denmark: Madsen Electronics.
- Mendel, M. I., Infant responses to recorded sounds. J. Speech Hearing Res., 11, 811-816 (1968).
- Meyers, C. J., Harris, J. D., and Fowler, E. P., The feasibility of group audiometry. <u>Indust</u>. Medicine, 17, 245-252 (1948).
- Meyerson, L., Hearing for speech in children: A verbal audiometric test. Acta Otolaryng., Suppl. 128 (1956).
- Miller, M. H., and Polisar, I. A., <u>Audiological Evaluation of the Pediatric Patient</u>. Springfield: Charles C. Thomas, 29-30, 74 (1964).
- Miller, M. H., and Rabinowitz, M., Audiological problems associated with pre-natal rubella. <u>Int. Audiol.</u>, London Congress, 8, 90-98 (1969).
- Newby, H., Audiology (Rev. El.). New York: Appleton-Century-Crofts, Inc. (1964).
- Nielsen, S. F., Group testing of school children by pure tone audiometry.

 J. Speech Hearing Dis., 16, 4-7 (1952).
- O'Neill, J. J., and Oyer, H. J., Applied Audiometry. New York: Dodd, Head & Co., Inc. (1966).
- Peck, J. E., The use of bottle-feeding during infant hearing testing.

 J. Speech Hearing Dis., 35, 364-368 (1970).
- Reger, S. N., and Newby, H., A group pure-tone hearing test. J. Speech Dis., 12, 61-66 (1947).
- Reilly, R. N., Frequency and amplitude modulation audiometry. A.M.A. Arch. Otolaryng., 60, 363-366 (1958a).
- Reilly, R. N., The assessment of auditory function. I. Hearing in Children-panel discussion. <u>Laryngoscope</u>, 68, 250 (1958b).

- Rintelmann, W. F., and Johnson, K. R., Comparison of pure-tone versus speech sensorineural acuity level (SAL) test. Paper presented at the Annual Convention of ASHA, New York (1970).
- Schulman, C. A., and Fontana, V. J., A clinical technique for the evaluation of hearing levels in infants. (In preparation). Cited in <u>Cardiac Evoked Response Audiometry</u>, Canberra Industries, Inc., Meriden, Conn. (1969).
- Siegel, S., Monparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill (1956).
- Sivian, L. J., and White, S. D., On minimum audible sound fields. J. acoust. Soc. Amer., 4, 288-321 (1933).
- Smith, C. R., Pediatric audiology. Maico Audiological Library Series, 6, 29-32 (1969).
- Staab, W. J., and Rintelmann, W. F., Status of warble-tone in audiometers, Unpublished (1971).
- Stevens, S. S., and Davis, H., <u>Hearing</u>, <u>Its Psychology and Physiology</u>. New York: John Wiley & Sons, Inc., 235 (1938).
- Tracor, Inc., Allison Model 22 Clinical and Research Audiometer. Austin, Texas: Tracor, Inc.
- Tracor, Inc., The Rudmose RA 109 Warblet 3000 Infant Audiometer. Austin, Texas: Tracor, Inc.
- Webster, J. C., A recorded warble tone audiometer test suitable for group administration over loudspeakers. J. Speech Hearing Dis., 17, 213-223 (1952).
- Wedenberg, E., Auditory tests on newborn infants. Acta Otolaryng., Stockholm, 46, 446-461 (1956).
- Young, I. M., and Harbert, F., Frequency modulated tone thresholds in normal and abnormally adapting ears. Ann. Otol. Rhinol. Laryng., 79, 138-144 (1970).

APPENDIX A

AMBIENT NOISE LEVELS IN TEST ROOM

AMBIENT NOISE LEVELS IN TEST ROOM

Table Ai. Octave band and C-scale analyses of ambient noise levels in examination room (fan on) in dB SPL according to the standards set forth by the American Standards Association (ASA S3.1-1960).

	om = IAC one = B&K		CT		0et	nd Leve ave Bar Frequer	d Filt	er Set		_
	C-Scale	31.5	63				1000	<u></u>	4000	8000
dB SPL	45	34	44	26	<10	<10	<10	<10	<10	<10

		APPEND)	IX B			
RATIONALE AND	PROCEDURES	FOR CALIBR	RATION OF	THE WARBLI	-tone sign	NL

Calibration of Warble-Tone

There are no accepted or consistent standards on which to base warble-tone calibration (Staab and Rintelmann, 1971). Since the subjective loudness of a sound does not parallel its physical intensity, because of both intensity and frequency (Fletcher and Munson, 1933), it would seem desirable to calibrate the warble-tone so that the loudness is constant in the total test frequency range. However, to do this would require that there be an understanding of the frequency deviations and modulation rates necessary to equate the loudness at the various frequencies. Since this information is not known, it seemed desirable to calibrate the center or base frequency of the warble-tone through the ACCESSORY INPUT of the MA-24 audiometer without any "warble" in a manner similar to that advocated by the American National Standards Institute (S3.6-1969). The effect of this was that the sound pressure level (SPL) outputs obtained were not the same as those for pure-tones because the ACCESSORY INPUT of the MA-24 audiometer was calibrated to a 19 dB SPL at "0" VU. However, with the SPL output of the pure-tone and the center frequency of the signal to be warbled known, (after the input Hearing Threshold Level dial setting had been subtracted) it was a simple matter to allow for the SPL differences and make appropriate comparisons of the hearing thresholds obtained. This was done by

determining the SPL outputs for "0" Hearing Threshold Level for both the warble- and pure-tones and adding or subtracting that value to the measured Hearing Threshold Levels.

This procedure can be used with any audiometer as long as the SPL outputs and Hearing Threshold Level dial inputs are known for both the pure-tones and the center frequencies of the unmodulated warble-tones.

Tables A3 and A4 reflect the pre- and post-experiment SFL outputs obtained for both the pure-tones and unmodulated warble-tones. These values would most likely change for other instrumentation.

It was mandatory that the exact center frequencies, modulation rates and frequency deviations utilised during the testing procedures be specified. The following indicates how this was done.

Calibration of Center Frequency. This refers to the unmodulated center frequency obtained from the B&K 1013 beat-frequency oscillator. Since it was a sine wave the frequency counter (Bekman Eput and Timer, Model 6148) was utilized to set the frequency by varying the FINE SCALE FREQUENCY ALIGNMENT of the beat-frequency oscillator until the frequency counter recorded the frequency desired.

Calibration of Modulation Rate. An independent function generator (Hewlett-Rackard Model 1033A) externally drove the beat-frequency oscillator to generate the various modulation rates used. For example, if the function generator produced a 5 Hz signal, the modulation rate was 5 per second. Consequently, the modulation rates were easily determined by reading a frequency counter connected to the output of the function generator.

Calibration of Frequency Deviation. Calibration of frequency deviation was performed using a Tektronix Type 3L5 Spectrum Analyzer Plug-in Unit designed for use with the Tektronix Type 564B Model 121N oscilloscope. The analyzer displayed signal amplitude as a function of frequency deviation and stability of amplitude of the warble-tones.

The basic procedure utilized in frequency deviation determination involved the manipulation of a DISPERSION knob on the Tektronix Type 3L5 Spectrum Analyser Plug-in Unit which allowed for the selection of a certain value of Hz/DIVision on the visual display area of the oscilloscope. The value of the warble-tone frequency deviation desired at a given time was manually varied by manipulating the FREQUENCY DEVIATION knob on the B&K 1013 beat-frequency oscillator along with the output voltage of the external function generator until the display fell within the predetermined scale selected on the oscilloscope and outlined by the graticule divisions. Figure A1 gives an example of a \(\frac{1}{2} \) 0% frequency deviation at 1000 Hs and Figure A2 shows a \(\frac{1}{2} \) 10% frequency deviation at 8000 Hs.

••
••

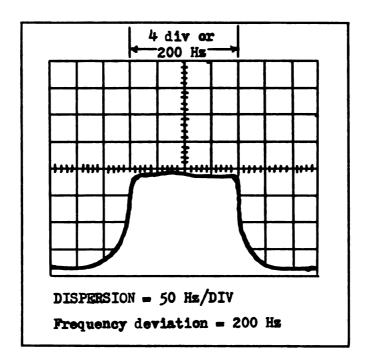


Figure A1. Visual display on an oscilloscope produced by a spectrum analyser showing a 110% frequency deviation centered around a base frequency of 1000 Hs.

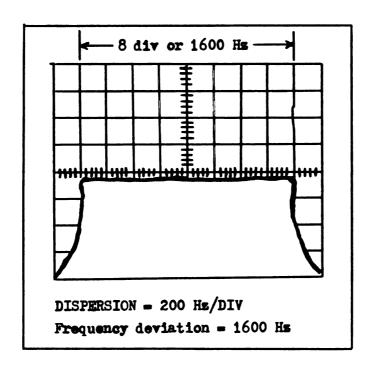


Figure A2. Visual display on an oscilloscope produced by a spectrum analyser showing a 110% frequency deviation centered around a base frequency of 8000 Hs.

APPENDIX C

LINEARITY OF MAICO MA-24 AUDIOMETER ATTENUATOR

LINEARITY OF MAICO MA-24 AUDIOMETER ATTENUATOR

A check of the linearity of the audiometer attenuator was performed acoustically with the test earphone attached to a B&K artificial ear and associated sound level meter and octave band filter set. While the ANSI-1969 Standard (S3.6-1969) indicates that "Measures for compliance with this requirement shall be made electrically at the input to the earphone . . .," it was not possible with the system utilised, to measure the electrical signals at low Hearing Threshold Level settings because of the internal noise of the instrumentation. Consequently, a modified version of checking audiometer attenuator linearity was utilised which permitted these measurements to be made acoustically. The rationale and procedure for the technique follows:

Rationale and Procedure

The reason for measuring audiometer attenuation is to ensure that changes in the Hearing Threshold Level dial result in comparable sound pressure changes in the earphone. As long as these changes occur in a linear fashion (within given tolerances) throughout the entire range of the attenuator, it can be assumed that the attenuator is functioning properly and in fact will result in appropriate sound pressure changes. Since the difficulties with noise usually encountered in making these measurements acoustically (and in this experiment also electrically), occur at maximum attenuation, a probable solution appeared to be to

shift the SPL scale upward on the Hearing Threshold Level dial. This was achieved by externally sending a 1000 Hz tone through the ACCESSORY INPUT of the audiometer. This input was calibrated to 19 dB for a "0" VU reading and consequently allowed for approximately an additional 20 dB range over which to test the linearity of the attenuator—even though the noise levels had not changed. This procedure is similar to that advocated for checking the Range and Intervals of Hearing Threshold Levels for Speech (ANSI S3.6-1969) except that the measurement is made acoustically rather than electrically. In a good sound-treated room (as was utilized in this experiment) acoustical measurements down to approximately -20 dB on the Hearing Threshold Level dial can be performed. The values recorded in Table A2 indicate that the Hearing Threshold Dial is linear down to -15 dB if the ANSI criterion is utilized (did not differ by more than 0.3 of the dial interval measured in dB).

A by-product of this modification is that at the upper end of the Hearing Threshold Level dial the maximum power output of the audiometer is reached at approximately 95 dB HTL. However, to check for linearity above this, measurements can be made through the regular pure-tone system.

In the current study thresholds were obtained in 2 dB steps by
use of a six position VERNIER on the MA-24 audiometer which changes
the Hearing Threshold Level output in 1 dB steps through a range of
5 dB. The audiometer also allows for a -20 dB loss pad in series with
the Hearing Threshold Level control. Although not shown in tabular
form, accustical and electrical linearity checks of both of these controls indicated that they provided appropriate changes in sound pressure.

Table A2. Pre- and post-experimental linearity of Maico MA-24 audiometer attenuator made acoustically at the test earphone.

Andiometer = Maico MA-24 Audiometer Channel = Right Artificial Ear = B&K 4152 Sound Level Meter = B&K 2204

Earphone = Right (TDH-39/10Z) Microphone = B&K 4144 Earphone Cushion = MX-41/AR Octave Band Filter Set = B&K 1613 Post-experiment Pre-experiment 1000 Hz 1000 Hz dB HTL dB SPL dB dif dB SPL dB dif 95 115.4 115.7 90 110.7 4.7 111.1 4.6 4.9 85 105.8 106.1 5.0 80 101.0 4.8 101.4 4.7 75 5.1 96.2 95.9 5.2 70 4.8 91.4 91.1 4.8 65 86.0 5.1 86.4 5.0 60 4.8 81.6 4.8 81.2 76.1 76.4 55 5.1 5.2 50 71.3 4.8 71.6 4.8 45 66.2 5.1 66.5 5.1 4.8 40 61.4 61.7 4.8 56.2 56.6 35 5.2 5.2 51.4 4.8 4.8 30 51.8 25 46.3 5.1 46.7 5.1 20 41.5 4.8 41.8 4.9 36.4 36.7 15 5.1 5.1 10 31.5 4.9 4.8 31.9 26.4 26.8 5.1 5 5.1 4.8 4.6 0 21.6 22.2 4.4 -5 17.2 18.1 4.1 4.6 -10 12.6 13.6 4.5 -15 4.1 4.6 8.5 9.0 -20 3.0 2.0 5.5 7.0

APPENDIX D

EARPHONE OUTPUT DATA

The pure-tone measurements were made according to the Pre-experiment audiometer earphone output data for the right earphone of the Maico MA-24 audiometer for (1) the output measured for the pure-tone stimuli, and (2) the output measured for the American National Standards Institute (ANSI 83.6-1969). unmodulated warble-tone stimuli center frequencies. Table A3.

Audiometer = Maico MA-24 Earphone Type = TDH-39/102	- Maio ype - T	10 MA-24 TDH-39/10Z		Cushi Micro Artif	Gushion Type = MX-41/AR Microphone = B&K 4144 Artificial Bar = B&K 4152	MX-41/ &K 4144 = B&K	'AR 41 52	Sound Le	Sound Level Meter = B&K 2204 Octave Band Filter Set = B&K	r = B&i er Set	Sound Level Meter = B&K 2204 Octave Band Filter Set = B&K 1613
at 60 c	E 13 Hear	Arphone Or ing Thresi	Earphone Output Check at 70 dB Hearing Threshold Level for Pure Tones and at 60 dB Hearing Threshold Level and "0" VV Reading for Unmodulated Warble-Tone Center Frequencies	at 70 d nd "0"	B Hearing VU Readin	Thresh g for U	old Ler	rel for Pura	Tone Cen	nd ter Fr	squencies
Test Tone Frequency	No 1140 14	Normal Calibration Level*	Mcrophone	Cor Cals	Corrected Calibration Level		Reg	Right Earphone Measured Values for Right Channel	arphone Measured for Right Channel	Value	
in Hs	Pure- Tone	Warble- Tone**	Correct 1 on	Pure- Tone	Marble- Tone	Pure- Tone	Eror	Arror Correction Marble-	Marble- Tone	Eror	Eror Correction
250	4.26	₩* 18	•	4.26	4° 18	92.6	+0.2	•	81.4		
200	81.6	81.5	•	9* 18	81.5	4.18	-0.2	•	81.5		-
1000	0.22	81.5	•	0.77	81.5	4.9%	9*0-	•••	8.5	•	•
2000	0.66	2.62	•	9.0	79.2	79.5	+0.5	•	79.2		
0004	29.62	5°48	8*0-	78.7	83.7	78.4	-0.3		83.7	•	•
8000	83.0	67.0	+2.0	85.0	0*69	84.5	-0.5		0°69	•	•

obtained by measuring the SPL outputs of the unmodulated warble-tone center frequencies at "O" VU reading **The "normal calibration levels" listed for the warble-tone are not standardized. These levels were at a 60 dB Hearing Threshold Level setting through the ACCESSORY INPUT of the MA-24 audiometer. *All calibrations and measured dB levels are taken re 0,0002 dynes/ cm^2 .

NOTE: Due to an initial recording error the earphone SPL outputs are 0.1 dB too weak at 250 Hs and 0.1 dB too strong at 500 Hz for the pure-tone data. unmodulated warble-tone stimuli center frequencies. The pure-tone measurements were made according to the American National Standards Institute (ANSI 53.6-1969). Table A4. Post-experiment audiometer earphone output data for the right earphone of the Maico MA-24 audiometer for (1) the output measured for the pure-tone stimuli, and (2) the output measured for the

T all	Audiometer = Maloo MA-24 Earphone Type = TDH-39/10Z Earnhone On	co MA-24 Cushion Type = MX-41/AR Sound Level Meter of Microphone = B&K 4144 Octave Band Filter Artificial Ear = B&K 4152 Rarnhone Outmut Chack at 20 dB Hearing Threshold Level for Pure-Tones and	Cushi Micro Artif	Gushion Type = MX-41/AR Microphone = B&K 4144 Artificial Ear = B&K 4152 70 dB Hearing Threshold	= MX-41/. = B&K 4144 Ear = B&K 4100 Thresh	AR 4152 old I ev	Sound Le Octave I	Sound Level Meter = B&K 2204 Octave Band Filter Set = B&K for Pure-Tones and	r = B&k	Sound Level Meter = B&K 2204 Octave Band Filter Set = B&K 1613 for Pure-Tones and
aring	Thresh	at 60 dB Hearing Threshold Level and	1 "0" V	"O" VU Reading	for Un	modulat	for Unmodulated Warble-Tone Center Frequencies	one Cent	er Freq	uencies
Normal Calibration Level*	al ation	Mcrophone	Cor Cal1	Corrected Calibration Level		Rtgh	Right Earphone Measured Values for Right Channel	arphone Measured for Right Channel	Value	
Pure- W Tone T	Warble- Tone**	Correction	Pure- Tone	Warble- Tone	Pure- Tone	Greor	Error Correction Warble-	Warble- Tone	Error	Error Correction
4.56	4° 18	•	95.4	₩° 18	95.4	0.0	•	80.8	9.0-	-
9.18	81.5		91.6	81.5	81.0	9*0-	•	81.4	-0.1	•
77.0	81.5		77.0	81.5	76.3	2.0-	-	4° 18	-0.1	•
0.66	2.62	••••	29.0	2.67	78.8	-0.2	-	79.3	+0.1	-
29.5	84.5	8*0-	78.7	83.7	78.5	-0.2		83.8	+0•1	•
83.0	0°29	+5.0	85.0	0*69	0°48	-1.0		68.3	-0.7	•

obtained by measuring the SPL outputs of the unmodulated warble-tone center frequencies at "0" VU reading at a 60 dB Hearing Threshold Level setting through the ACCESSORY INPUT of the MA-24 audiometer. **The "normal calibration levels" listed for the warble-tone are not standardised. These levels were *All calibrations and measured dB levels are taken re 0.0002 dynes/cm2.

NOTE: Due to an initial recording error the earphone SPL outputs are 0.1 dB too weak at 250 Hs and 0.1 dB too strong at 500 Hz for the pure-tone data.

APPENDIX E

HARMONIC DISTORTION DATA

Table A6. Post-experimental harmonic distortion measurements of the fundamental for test frequencies used in the study. Measurements were made for the right earphone and right channel of the Maico MA-24 audiometer under two conditions: (1) that for the pure-tones generated by the Maico MA-24 and (2) that for the unmodulated warble-tone center frequencies through the right channel and right earphone of the Maico MA-24 audiometer. Measurements were made in compliance with the American National Standards Institute (ANSI S3.6-1969).

Audiometer = Maico MA Earphone Type = TDH-3 Cushion Type = MX-41/ Harr Condition #1	9/10Z	stortion	Artific Cathodo Freques	e Follow ney Anal	æK 4144 - B&K 41 er = B&K yser = B&	2617				
Frequency in Hs	250	500	1000	2000	4000	8000				
SPL of Fundamental	102.6	110.7	106.1	109.8	103.9	86.7				
SPL with Fundamental Rejected* 68.8 79.5 70.2 75.3 66.6 52.5										
Dif. in dB	33.8	31.2	35•9	34.5	37•3	34.2				
Condition #2										
SPL of Fundamental	113.1	115.7	115.6	112.6	105.8	95•3				
SPL with Fundamental Rejected*	74.6	75•9	82.0	76.0	61.9	52.3				
Dif. in dB	38.5	39.8	33.6	36.6	43.9	43.0				

^{*}These values represent the total SPL remaining after the fundamental has been rejected.

APPENDIX F

RISE AND DECAY TIME DATA FOR AUDIOMETER INTERRUPTER

RISE AND DECAY TIME DATA FOR AUDIOMETER INTERRUPTER

Table A7. Pre- and post-experimental rise and decay times as measured for pure-tones generated by the Maico MA-24 audiometer. The times were measured from the right channel of the audiometer with the assistance of a storage oscilloscope. Measurements were made in compliance with the American National Standards Institute (ANSI S3.6-1969).

Audiometer - Maico MA-24

Storage Oscilloscope - Tektronix Type 564B

Rarphone Jack = Right

Rise and Decay Time Measurements of the Tone Signals

7	Pre-Experim	ental Values	Post-Experi	mental Values
Frequency in Hs	Rise Time*	Decay Time**	Rise Time*	Decay Time**
250	40 msec.	45 msec.	40 msec.	50 msec.
500	40 msec.	50 msec.	50 msec.	45 msec.
1000	45 msec.	40 msec.	55 msec.	50 msec.
2000	35 msec.	50 msec.	45 msec.	45 msec.
4000	35 msec.	40 msec.	50 msec.	50 msec.
8000	55 msec.	55 msec.	50 msec.	50 msec.

^{*}Time for SPL to rise from -20 dB to -1 dB re its final steady value.
**Time for SPL to decay by 20 dB.

APPENDIX G

BONE-CONDUCTION CALIBRATION DATA

BONE-CONDUCTION CALIBRATION DATA

Table A8. Bone-conduction calibration data recorded according to the norms specified by the Hearing Aid Industry Conference (HAIC) Interia Bone-Conduction Thresholds for Audiometry (Lyberger, 1966).

Audiometer = Maico MA-24 Bone Vibrator = Radioear B-70-A Microphone amp. = B&K 2603		Artifiels Artifiels	il Mastoid =	Artificial Mastoid = Beltone Model MSA Artificial Mastoid Amp. = Beltone Model MSA	el MSA e Model MSA
Bone-C	onduction Ca	Bone-Conduction Calibration Cheek	100k		
Attenuator Settings: 25 dB for 250 Hs and 45 dB for 500, 1000, 2000, and 4000 Hz	and 45 dB 1	or 500, 1000), 2000, and	4000 Hz	
Frequency in Hz	250 Hs	500 Hs	1 000 Hs	2000 Hs	3H 000 村
1. Actual millivolt reading	26.1	178.0	21.6	10.2	6.17
2. Computed dB level re 1 millivolt*	28.3	44.7	26.5	20.1	15.7
3. Expected dB reading	28.4	45.1	26.7	20.2	15.8
4. Line 2 minus Line 3	-0.1	4.0-	-0.2	-0.1	-0.1
5. Correction	0	0	0	0	0

*To obtain dB level use the following computation: dB = 20 log (millivolt reading)

APPENDIX H

TEST FREQUENCY CHECKS

TEST FREQUENCY CHECKS

Table A9. Pre- and post-experimental frequency checks of the test frequencies of the Maico MA-24 audiometer performed in compliance with the American National Standards Institute (ANSI S3.6-1969).*

Audiometer = Maio Channel = Right	co MA-24	Voltmeter = E Frequency Cou	&K 2409 inter = Bekman 6148					
	Pre-experiment	Frequency Checks						
Test Frequency in Hz	Measured Frequency in Hs	Difference in Hs	Difference in percent					
250	254	+4	1.6%					
500	503	+3	0.6%					
1000	1006	+6	0.6%					
2000	2008	+8	0.4%					
4000 4000 0 0.0% 8000 2008 -2 0.034								
8000 7998 -2 0.02%								
	Post-experiment	Frequency Checks						
250	252	+2	0.8%					
500	499	-1	0.2%					
1000	1003	+3	0.3%					
2000	2006	+6	0.3%					
4000	4001	+1	0.02%					
8000	8002	+2	0.02%					

*The unmodulated warble-tone center frequencies were observed during all testing and were manually varied so that they were within three percent of the indicated frequency.

APPENDIX I

RANDONIZED PRESENTATION ORDER FOR WARBLE-TONE STIMULI

RANDOMIZED PRESENTATION ORDER FOR WARBLE-TONE STIMULI

Table AiO. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #1.

				Cente	r Freque	oy .	- 100	0 Hz			
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	3%	4/sec.	16.	10%	16/ sec.	31.	6%	2/ sec.	46.	10%	1/sec.
2.	50%	32/ sec.	17.	10%	1/sec.	32.	6%	16/sec.	47.	3%	32/sec.
3.	10%	2/800.	18.	1%	32/ s ec.	33.	1%	1/sec.	48.	6%	32/ sec.
4.	6 %	16/sec.	19.	50%	1/sec.	34.	3%	16/sec.	49.	1%	2/500.
5.	6%	1/sec.	20.	3%	8/sec.	35•	3%	1/sec.	50.	50%	8/sec.
6.	6%	2/800.	21.	1%	2/ se c.	36.	1%	16/sec.	51.	6%	8/sec.
7.	10%	8/ sec.	22.	50%	1/sec.	37.	6%	1/sec.	52.	6%	4/sec.
8.	10%	4/sec.	23.	1%	32/ sec.	38.	6 %	32/sec.	53.	3%	4/sec.
9.	1%	8/sec.	24.	3%	32/sec.	39•	10%	4/sec.	54.	1%	4/sec.
10.	10%	2/ se c.	25.	1%	4/sec.	40.	1%	1/sec.	55.	3%	16/sec.
11.	6%	4/sec.	26.	10%	32/sec.	41.	10%	16/sec.	56.	3%	8/ sec.
12.	10%	32/ sec.	27.	1%	8/ sec.	42.	50%	4/sec.	57.	50%	32/sec.
13.	50%	2/800.	28.	6%	8/sec.	43.	50%	8/ sec.	58.	1.0%	8/ sec.
14.	50 %	2/800.	29.	1%	16/sec.	44.	50%	4/sec.	59.	3%	1/sec.
15.	3%	2/800.	30.	50%	16/ sec.	45.	3%	2/ se c.	60.	50%	16/ sec.

Table All. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #2.

				Cente	r Freque	BCY ·	- 200	O Hs			
PO	FD	MR	PO	FD	MR	PO	PD	MR	PO	FD	MR
1.	50%	4/sec.	16.	6≸	16/800.	31.	1%	2/800.	46.	10%	2/sec.
2.	1%	4/sec.	17.	50%	32/ sec.	32.	10%	4/sec.	47.	10%	8/sec.
3.	3%	4/ sec .	18.	10%	1/200.	33.	50%	4/sec.	48.	6%	8/sec.
4.	1%	4/sec.	19.	50%	16/200.	34.	50%	8/ sec.	49.	6%	4/sec.
5.	10%	16/800.	20.	1%	8/800.	35.	3%	32/800.	50.	50%	16/sec.
6.	1%	1/sec.	21.	6 %	1/sec.	36.	10%	8/ sec.	51.	3%	8/sec.
7.	3%	1/sec.	22.	50%	1/sec.	37.	50%	2/200.	52.	3%	1/sec.
8.	3%	2/800.	23.	6%	32/800.	38.	10%	32/ sec.	53.	50%	2/sec.
9.	50%	32/ sec.	24.	1%	8/200.	39.	6%	2/500.	54.	3%	32/sec.
10.	6%	32/sec.	25.	1%	16/sec.	40.	6%	1/sec.	55.	1%	32/ sec.
11.	3%	16/200.	26.	50%	8/sec.	41.	10%	4/sec.	56.	10%	2/sec.
12.	10%	32/ sec.	27.	1%	32/800.	42.	1%	2/200.	57.	3%	8/ sec.
13.	50 %	1/sec.	28.	1%	16/200.	43.	3%	16/500.	58.	6%	4/sec.
14.	1%	1/200.	29.	3%	2/800.	44.	6%	16/ sec.	59•	3%	4/sec.
15.	6%	8/200.	30.	10%	1/500.	45.	6%	2/500.	60.	10%	16/ sec.

Table A12. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #3.

				Cente	r Freque	ney ·	400	0 Hs			
PO	FD	MR	РО	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	4/sec.	16.	3%	16/800.	31.	1%	1/sec.	46.	50%	32/sec.
2.	6%	32/ sec.	17.	6%	2/800.	32.	6%	4/ sec.	47.	1%	32/ sec.
3.	3%	1/sec.	18.	3%	1/sec.	33.	1%	16/500.	48.	1%	1/800.
4.	50%	4/sec.	19.	50%	8/800.	34.	1%	8/sec.	49.	50%	8/ sec.
5.	1%	2/800.	20.	3%	32/ sec.	35.	6%	8/sec.	50.	6%	1/800.
6.	10%	32/ sec.	21.	3%	8/sec.	36.	3%	32/500.	51.	6%	32/800.
7.	6%	2/800.	22.	50%	32/ sec.	37.	10%	4/sec.	52.	10%	8/sec.
8.	10%	1/sec.	23.	50%	4/sec.	38.	1%	8/ sec.	53.	10%	16/ sec.
9.	6%	1/200.	24.	10%	8/ sec.	39•	10%	16/ sec .	54.	3%	8/800.
10.	3%	16/200.	25.	50%	2/800.	40.	3%	4/sec.	55.	50%	1/sec.
11.	6 %	16/sec.	26.	10%	1/sec.	41.	50%	16/ sec.	56.	3%	2/800.
12.	.50%	1/sec.	27.	1%	2/800.	42.	6%	16/200.	57.	1%	16/200.
13.	6%	8/200.	28.	3%	2/500.	43.	50 %	16/200.	58.	1%	4/sec.
14.	50%	2/sec.	29.	6%	4/200.	44.	3%	4/ se c.	59.	10%	4/sec.
15.	10%	32/800.	30.	1%	32/800.	45.	10%	2/500.	60.	10%	2/500.

Table A13. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #4.

	Center Frequency = 8000 Hs										
РО	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	16/sec.	16.	10%	32/ sec.	31.	50%	16/ sec.	46.	1%	32/sec.
2.	1%	2/800.	17.	3%	16/ sec.	32.	1%	32/200.	47.	10%	32/ sec.
3.	3%	1/sec.	18.	10%	4/sec.	33.	6%	1/sec.	48.	6%	32/ sec.
4.	6%	32/ sec.	19.	6%	4/ sec.	34.	1%	2/800.	49.	3%	2/800.
5.	10%	16/sec.	20.	3%	16/sec.	35.	10%	1/sec.	50.	50%	3 2/sec.
6.	10%	8/sec.	21 .	1%	8/sec.	36,	6%	16/sec.	51.	10%	16/sec.
7.	1%	1/sec.	22.	10%	8/800.	37.	3%	4/sec.	52.	50%	4/sec.
8.	50%	1/sec.	23.	50%	8/sec.	38.	50%	4/sec.	53.	50%	8/200.
9.	10%	1/sec.	24.	3%	4/ se c.	39•	1%	8/ sec.	54.	3%	2/ sec.
10.	6%	1/sec.	25.	3%	32/800.	40.	6%	2/800.	55.	3%	8/ sec.
11.	50%	2/800.	26.	10%	2/800.	41.	6%	8/sec.	56.	3%	32/sec.
12.	50%	2/200.	27.	50%	16/sec.	42.	1%	4/sec.	57.	6%	16/ sec.
13.	10%	2/800.	28.	6 %	4/ sec .	43.	6%	2/800.	58.	50%	1/sec.
14.	1%	4/sec.	29.	1%	16/ sec.	44.	50%	32/sec.	59•	3%	1/sec.
15.	6%	8/sec.	30.	3%	8/200.	45.	10%	4/sec.	60.	1%	1/sec.

Table A14. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates. (MR) for subject #1 for test session #5.

	Center Frequency = 500 Hs										
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	32/800.	16.	10%	1/sec.	31.	6%	6/ sec.	46.	6 %	32/ sec.
2.	50%	32/ sec.	17.	3%	4/sec.	32.	3%	4/200.	47.	10%	16/sec.
3.	10%	4/sec.	18.	1%	2/800.	33•	6%	4/200.	48.	50%	1/sec.
4.	3%	16/800.	19.	3%	16/sec.	34.	50 %	32/500.	49.	3%	1/sec.
5.	6%	8/sec.	20.	3%	2/800.	35.	1%	16/500.	50.	6%	1/sec.
6.	6 %	4/ se c.	21.	50%	16/ sec.	36.	6%	8/ sec .	51.	50%	2/500.
7•	6 %	32/sec.	22.	3%	32/ sec.	37.	10%	4/sec.	52.	10%	8/500.
8.	50%	4/ sec .	23.	50%	4/sec.	38.	1%	4/ sec.	53.	6%	2/800.
9.	10%	32/ sec.	24.	1%	8/sec.	39.	3%	2/ sec.	54.	50%	2/800.
10.	50%	16/sec.	25.	6%	1/sec.	40.	10%	2/ se c.	55.	3%	1/sec.
11.	10%	32/ sec.	26.	10%	1/200.	41.	3%	32/ sec .	56.	10%	8/sec.
12.	1%	1/sec.	27.	1%	16/ sec.	42.	6%	16/ sec .	57.	6%	2/800.
13.	50%	8/500.	28.	10%	16/ sec .	43.	1%	8/sec.	58.	10%	2/800.
14.	1%	4/200.	29.	50%	1/sec.	44.	3%	8/sec.	59.	50%	8/sec.
15.	1%	2/800.	30.	1%	32/sec.	45.	3%	8/sec.	60.	1%	1/sec.

Table A15. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #1 for test session #6.

	Center Frequency = 250 Hs										
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	6 %	1/500.	16.	1%	2/ se c.	31.	1%	16/sec.	46.	1%	1/sec.
2.	1%	1/sec.	17.	10%	2/500.	32.	3%	32/ sec.	47.	3%	2/ sec.
3.	1%	32/800.	18.	6%	4/sec.	33•	10%	8/sec.	48.	3%	8/ sec.
4.	50 %	2/800.	19.	50%	16/ sec.	34.	6 %	8/ sec.	49.	6%	32/ sec.
5.	6%	2/ sec.	20.	3%	4/ se c.	35.	50 %	8/sec.	50.	50%	1/sec.
6.	10%	16/ sec.	21.	10%	4/sec.	36.	3%	8/ sec.	51.	1%	4/ sec.
7.	1%	2/800.	22.	10%	8/sec.	37•	50%	16/ sec.	52.	1%	16/ sec.
8.	10%	32/ sec.	23.	3%	4/sec.	38.	10%	2/sec.	53.	10%	16/sec.
9•	50%	8/sec.	24.	50%	1/sec.	39.	6 %	8/sec.	54.	6%	32/ sec.
10.	1%	32/ sec.	25.	6%	16/sec.	40.	50%	32/ sec.	55•	6%	4/sec.
11.	10%	1/sec.	26.	50%	4/ se c.	41.	3%	16/sec.	56.	50%	32/sec.
12.	1%	8/800.	27.	3%	1/sec.	42.	10%	4/sec.	57•	3%	32/ sec.
13.	6 %	2/500.	28.	10%	32/ sec.	43.	1	8/sec.	58.	3%	1/sec.
14.	10%	1/800.	29.	50%	2/800.	44.	10%	16/sec.	59•	50%	4/sec.
15.	6%	16/ sec.	30.	1%	4/ se c.	45.	3%	2/ sec.	60.	6%	1/sec.

Table A16. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #1.

	Center Frequency = 1000 Hs										
PO	FD	MR	PO	FD	MR	PO	PD	MR	PO	FD	MR
1.	50%	2/ sec .	16.	3%	1/sec.	31.	3%	1/sec.	46.	50%	1/sec.
2.	10%	32/ sec.	17.	50%	2/800.	32.	3%	2/sec.	47.	6%	32/ sec.
3.	6%	2/sec.	18.	3%	32/sec.	33.	50%	32/sec.	48.	1%	8/ sec.
4.	6%	1/sec.	19.	1%	32/ sec.	34.	6%	32/ sec.	49.	1%	16/sec.
5.	1%	4/sec.	20.	10%	2/ se c.	35.	3%	16/ sec.	50.	50%	8/sec.
6.	1%	2/sec.	21.	3%	8/ sec .	36.	10%	32/sec.	51.	1%	32/ sec.
7.	3%	16/ sec.	22.	6%	4/sec.	37.	50%	1/sec.	52.	1%	16/ sec.
8.	6%	16/ sec.	23.	3%	4/ s ec.	38.	1%	1/500.	53.	3%	2/ sec.
9.	6 %	2/ sec.	24.	10%	16/ sec.	39.	6%	8/sec.	54.	10%	1/sec.
10.	10%	2/800.	25.	50%	4/200.	40.	6%	16/ sec.	55.	1%	2/ sec.
11.	10%	8/ sec.	26.	10%	4/sec.	41.	50%	32/ sec.	56.	10%	4/sec.
12.	6%	8/sec.	27.	3%	4/sec.	42.	10%	1/sec.	57.	50%	4/sec.
13.	6%	4/sec.	28.	1%	4/sec.	43.	50 %	16/sec.	58.	50%	8/sec.
14.	50%	16/ sec.	29.	10%	16/ sec.	44.	1%	8/ sec.	59.	3%	32/sec.
15.	3%	8/800.	30.	1%	1/ se c.	45.	6%	1/sec.	60.	10%	8/sec.

Table A17. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #2.

				Cente	r Preque	ncy ·	200	O Hs			
РО	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	16/ sec.	16.	10%	32/800.	31.	50 %	16/sec.	46.	1%	32/sec.
2.	1%	2/506.	17.	3%	16/800.	32.	1%	32/sec.	47.	10%	32/ sec.
3.	3%	1/sec.	18.	10%	4/sec.	33.	6%	1/500.	48.	6%	32/sec.
4.	6%	32/ sec.	19.	6%	4/sec.	34.	1%	2/ se c.	49.	3%	2/500.
5.	10%	16/ sec.	20.	3%	16/ sec.	35.	10%	1/sec.	50.	50%	32/ sec.
6.	10%	8/sec.	21.	1%	8/200.	36.	6%	16/ sec.	51.	10%	16/sec.
7.	1%	1/200.	22.	10%	8/800.	37•	3%	4/sec.	52.	50%	4/sec.
8.	50 %	1/800.	23.	50%	8/sec.	38.	5 0%	4/200.	53.	50%	8/sec.
9.	10%	1/500.	24.	3%	4/sec.	39•	1%	8/200.	54.	3%	2/sec.
10.	6%	1/500	25.	3%	32/ sec .	40.	6%	2/ se c.	55.	3%	8/sec.
11.	50%	2/800	26.	10%	2/ se c.	41.	6%	8/sec.	56.	3%	2/800.
12.	50 %	2/ sec	27.	50%	16/800	42.	1%	4/sec.	57.	6%	16/ sec.
13.	10%	2/800	28.	6 ≸	4/sec.	53.	6%	2/500	<i>5</i> 8.	50%	1/sec.
14.	1%	4/200	29.	1%	16/200.	54.	50%	32/ sec .	59.	3%	1/sec.
15.	6%	8/ se c.	30.	3%	8/sec.	55•	10%	4/sec.	60.	1%	1/800.

. . .

Table A18. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #3.

				Cente	r Freque	ney :	400	O Hs			
PO	FD	MR	PO	FD	MR	PO		MR	PO	FD	MR
1.	6%	1/sec.	16.	1%	1/800.	31.	1%	32/sec.	46.	10%	4/sec.
2.	10%	8/ s ec.	17.	6%	16/ sec.	32.	6%	4/sec.	47.	50%	16/sec.
3.	10%	8/sec.	18.	1%	2/ sec .	33.	6%	32/ sec.	48.	10%	1/sec.
4.	3%	2/500.	19.	1%	1/sec.	34.	3%	8/sec.	49.	50%	2/500.
5.	50%	8/sec.	20.	6%	1/sec.	35.	1%	4/sec.	50.	1%	8/ sec.
6.	6%	2/800.	21.	3%	8/sec.	36.	6%	32/ sec.	51.	3%	16/ sec.
7.	1%	16/ sec.	22.	50%	8/sec.	37.	1%	8/sec.	52.	50%	4/sec.
8.	1%	1/sec.	23.	3%	1/800.	38.	3%	4/sec.	53•	50%	16/sec.
9.	6 %	8/sec.	24.	3%	4/sec.	39•	6%	2/ se c.	54.	1%	16/200.
10.	1%	32/ sec.	25.	10%	4/ sec.	40.	10%	1/sec.	55•	1%	4/sec.
11.	10%	32/ sec.	26.	3%	32/ sec.	41 .	10%	2/800.	56.	3%	1/sec.
12.	6%	8/ sec .	27.	3%	16/800.	42.	50%	1/ sec.	57.	50%	2/ sec.
13.	10%	16/sec.	28.	3%	2/ sec.	43.	10%	32/ sec.	58.	6%	16/ sec.
14.	50%	32/ s ec.	29.	6%	4/ sec.	44.	10%	16/ sec.	59.	50%	1/sec.
15.	50%	4/200.	30.	50%	32/800.	45.	3%	32/ sec .	60.	10%	2/sec.

Table A19. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #4.

				Cente	r Freque	ney :	800	O Hs			
PO	FD	MR	PO	FD	MR	PO		MR	PO	FD	MR
-		1/222	46		0.4	A		A (1	h.c		4.4-
	6%				-			16/800.			·
2.	1%	1/sec.	17.	10%	2/ se c.	32.	3%	32/ sec .	47.	3%	2/800.
3.	1%	32/ sec .	18.	6%	4/sec.	33.	10%	8/sec.	48.	3%	8/800.
4.	50%	2/ sec.	19.	50%	16/sec.	34.	6%	8/ sec.	49.	6%	32/ sec.
5.	6%	2/ se c.	20.	3%	4/sec.	35.	50%	8/sec.	50.	50%	1/sec.
6.	10%	16/sec.	21.	10%	4/200.	36.	3%	8/200.	51.	1%	4/sec.
7.	1%	2/sec.	22.	10%	8/sec.	37•	50%	16/ sec.	52.	1%	16/ sec.
8.	10%	32/800.	23.	3%	4/sec.	38.	10%	2/500.	53.	10%	16/sec.
9.	50%	8/sec.	24.	50%	1/sec.	39•	3%	16/ sec.	54.	6%	32/ sec .
10.	1%	32/800.	25.	6%	16/ sec.	40.	6%	8/sec.	55.	6%	4/200.
11.	10%	1/sec.	26.	50%	4/sec.	41.	50%	32/ sec.	56.	50%	32/ sec.
12.	1%	8/800.	27.	3%	1/200.	42.	10%	4/sec.	57•	3%	32/ sec.
13.	6%	2/806.	28.	10%	32/800.	43.	1%	8/sec.	58.	3 %	1/sec.
14.	10%	1/sec.	29.	50%	2/ se c.	44.	3%	16/800.	59.	50%	4/sec.
15.	6 %	16/800.	30.	1%	4/ se c.	45.	3%	2/800.	60.	6 %	1/sec.

Table A20. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #5.

				Cent	er Frequ	ency	- 50	0 Hs			
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	4/sec.	16.	3%	16/sec.	31.	1%	1/sec.	46.	50%	32/sec.
2.	6 %	32/ sec.	17.	6%	2/800.	32.	6%	4/sec.	47.	1%	32/ sec .
3.	3%	1/sec.	18.	3%	1/sec.	33.	1%	16/sec.	48.	1%	1/500.
4.	50%	4/sec.	19.	50%	8/sec.	34.	1%	8/200.	49.	50%	8/ sec.
5.	1%	2/200.	20.	3%	32/ sec.	35.	6%	8/sec.	50.	6%	1/sec.
6.	10%	32/800.	21.	3%	8/sec.	36.	3%	32/ sec.	51.	6%	32/800.
7.	6%	2/ sec.	22.	50%	32/ sec.	37•	10%	4/sec.	52.	10%	8/sec.
8.	10%	1/500.	23.	50%	4/ sec .	38.	1%	8/sec.	53.	10%	16/800.
9.	6%	1/sec.	24.	10%	8/ sec.	39•	10%	16/ sec.	54.	3%	8/sec.
10.	3%	16/ sec.	25.	50%	2/ sec.	40.	3%	4/sec.	55•	50%	1/800.
11.	6%	16/200.	26.	10%	2/200.	41 .	50%	16/sec.	56.	3%	2/500.
12.	50%	1/sec.	27.	1%	2/ sec .	42.	6%	16/ sec.	57•	1%	16/ sec.
13.	6%	8/sec.	28.	3%	2/500.	43.	50%	16/sec.	58.	1%	4/sec.
14.	50%	2/800.	29.	6%	4/ se c.	44.	3%	4/sec.	59•	10%	4/sec.
15.	10%	32/ sec.	30.	1%	32/ se c.	45.	10%	2/500.	60.	10%	2/sec.

Table A21. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #2 for test session #6.

				Cent	er Frequ	ency	- 25	0 Hs			
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	4/sec.	16.	3%	16/ sec.	31.	1%	1/sec.	46.	50%	32/ sec.
2.	6%	32/sec.	17.	6%	2/500.	32.	6%	4/sec.	47.	1%	32/800.
3.	3≴	1/sec.	18.	3%	1/200.	33.	1%	16/sec.	48.	1%	1/800.
4.	50%	4/sec.	19.	50%	8/sec.	34.	1%	8/sec.	49.	50%	8/200.
5.	1%	2/800.	20.	3%	32/ sec.	35.	6%	8/800.	50.	6 %	1/500.
6.	10%	32/ sec.	21.	3%	8/800.	36.	3%	32/800.	51.	6%	32/ sec.
7.	6%	2/ sec.	22.	50%	32/ sec.	37.	10%	4/sec.	52.	10%	8/sec.
8.	10%	1/sec.	23.	50%	4/sec.	38.	1%	8/ sec.	53.	10%	16/ sec.
9.	6 %	1/800.	24.	10%	8/sec.	39•	10%	16/sec.	54.	3%	8/200.
10.	3%	16/ sec.	25.	50%	2/800.	40.	3%	4/800.	55.	50%	1/500.
11.	6%	16/ sec.	26.	10%	1/800.	41.	50%	16/ sec.	56.	3%	2/200.
12.	50%	1/sec.	27.	1%	2/800.	42.	6%	16/ sec.	57.	1%	16/sec.
13.	6%	8/sec.	28.	3%	2/300.	43.	50%	16/sec.	58.	1%	4/ se c.
14.	50 %	2/800.	29.	6%	4/sec.	44.	3%	4/sec.	59•	10%	4/sec.
15.	10%	32/ sec.	30.	1%	32/ sec .	45.	10%	2/ se c.	60.	10%	2/800.

Table A22. Randomized presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #1.

				Cente	r Freque	ncy ·	- 100	O Hs			
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	16/sec.	16.	10%	32/sec.	31.	50%	16/ sec.	46.	1%	32/sec.
2.	1%	2/ se c.	17.	3%	16/sec.	32.	1%	32/ sec.	47.	10%	32/sec.
3.	3%	1/sec.	18.	10%	4/sec.	33.	6%	1/sec.	48.	6%	32/sec.
4.	6%	32/ sec.	19.	6%	4/sec.	34.	1%	2/sec.	49.	3%	2/sec.
5.	10%	16/ sec .	20.	3%	16/sec.	35•	10%	1/sec.	50.	50%	32/ sec.
6.	10%	8/sec.	21.	1%	8/sec.	36.	6%	16/ sec.	51.	10%	16/sec.
7•	1%	1/sec.	22.	10%	8/ s ec.	37•	3%	4/sec.	52.	50%	4/sec.
8.	50%	1/sec.	23.	50%	8/sec.	38.	50%	4/ se c.	53•	50%	8/ ,sec.
9.	10%	1/sec.	24.	3%	4/ sec .	39•	1%	8/sec.	54.	3%	2/sec.
10.	6%	1/sec.	25.	3%	32/sec.	40.	6%	2/ sec .	55•	3%	8/sec.
11.	50%	2/800.	26.	10%	2/ sec .	41.	6%	8/ sec.	56.	3%	32/sec.
12.	50 %	2/800.	27.	50%	16/sec.	42.	1%	4/sec.	57.	6%	16/sec.
13.	10%	2/ sec .	28.	6%	4/sec.	43.	6%	2/sec.	58.	50%	1/sec.
14.	1%	4/sec.	29.	1%	16/sec.	44.	50%	32/ sec .	59•	3%	1/sec.
15.	6 %	8/ sec.	30.	3%	8/ sec.	45.	10%	4/sec.	60.	1%	1/sec.

Table A23. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #2.

4. 50% 2/sec. 19. 50% 16/sec. 34. 6% 8/sec. 49. 6%	2/sec. 8/sec. 32/sec.
1. 6% 1/sec. 16. 1% 2/sec. 31. 1% 16/sec. 46. 1% 2. 1% 1/sec. 17. 10% 2/sec. 32. 3% 32/sec. 47. 3% 3. 1% 32/sec. 18. 6% 4/sec. 33. 10% 8/sec. 48. 3% 4. 50% 2/sec. 19. 50% 16/sec. 34. 6% 8/sec. 49. 6%	1/sec. 2/sec. 8/sec. 32/sec.
2. 1% 1/sec. 17. 10% 2/sec. 32. 3% 32/sec. 47. 3% 3. 1% 32/sec. 18. 6% 4/sec. 33. 10% 8/sec. 48. 3% 4. 50% 2/sec. 19. 50% 16/sec. 34. 6% 8/sec. 49. 6%	2/sec. 8/sec. 32/sec.
3. 1% 32/sec. 18. 6% 4/sec. 33. 10% 8/sec. 48. 3% 4. 50% 2/sec. 19. 50% 16/sec. 34. 6% 8/sec. 49. 6%	8/sec. 32/sec.
4. 50% 2/sec. 19. 50% 16/sec. 34. 6% 8/sec. 49. 6%	32/sec.
	-
	_
5. 6% 2/sec. 20. 3% 4/sec. 35. 50% 8/sec. 50. 50%	1/sec.
6.10% 16/sec. 21. 10% 4/sec. 36. 3% 8/sec. 51. 1%	4/sec.
7. 1% 2/sec. 22. 10% 8/sec. 37. 50% 16/sec. 52. 1%	16/sec.
8. 10% 32/sec. 23. 3% 4/sec. 38. 10% 2/sec. 53. 10%	16/ sec.
9.50% 8/sec. 24.50% 1/sec. 39. 3% 16/sec. 54.6%	32/sec.
10. 1% 32/sec. 25. 6% 16/sec. 40. 6% 8/sec. 55. 6%	4/sec.
11.10% 1/sec. 26. 50% 4/sec. 41.50% 32/sec. 56.50%	32/ sec.
12. 1% 8/sec. 27. 3% 1/sec. 42.10% 4/sec. 57. 3%	32/ sec.
13. 6% 2/sec. 28. 10% 32/sec. 43. 1% 8/sec. 58. 3%	1/sec.
14. 10% 1/sec. 29. 50% 2/sec. 44. 3% 16/sec. 59. 50%	4/sec.
15. 6% 16/sec. 30. 1% 4/sec. 45. 3% 2/sec. 60. 6%	1/200.

Table A24. Randomized presentation order (PO) for the various combinations of warble-tene frequency deviations (FD) and medulation rates (MR) for subject #3 for test session #3.

f											
				Cente	r Freque	ncy ·	- 40 0	O Hs			
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	50%	2/800.	16.	3%	1/800.	31.	3%	1/500.	46.	50%	1/sec.
2.	10%	32/ sec.	17.	50%	2/500.	32.	3%	2/800.	47.	6%	32/ sec.
3.	6%	2/ sec.	18.	3%	32/ sec .	33•	50%	32/ sec.	48.	1%	8/ sec.
4.	6%	1/sec.	19.	1%	32/ sec.	34.	6%	32/ sec.	49.	1%	16/sec.
5.	1%	4/sec.	20.	10%	2/ se c.	35.	3%	16/ sec.	50.	50%	8/sec.
6.	1%	2/ sec.	21.	3%	8/sec.	36.	10%	32/sec.	51.	1%	32/ sec.
7.	3%	16/ sec.	22.	6%	4/500.	37.	50 %	1/sec.	52.	1%	16/sec.
8.	6%	16/sec.	23.	3%	4/ sec .	38.	1%	1/500.	53•	3%	2/800.
9.	6%	2/800.	24.	10%	16/200.	39•	6%	8/ se c.	54.	10%	1/sec.
10.	10%	2/800.	25.	50%	4/ se c.	40.	6%	16/ sec.	55•	1%	2/ se c.
11.	10%	8/ sec.	26.	10%	4/sec	41.	50%	32/ sec.	56.	10%	4/800.
12.	6%	8/ sec.	27.	3%	4/ se c	42.	10%	1/sec.	57•	50%	4/sec.
13.	6%	4/ sec .	28.	1%	4/ se c	43.	50%	16/ sec .	58.	50%	8/sec.
14.	50 %	16/200.	29.	10%	16/sec	44.	1%	8/sec.	59•	3%	32/ sec.
15.	3%	8/200.	30.	1%	1/200	45.	6%	1/sec.	60.	10%	8/sec.

Table A25. Randomised presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #4.

				Cente	r Freque	ney (- 800	0 Hs			
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	1%	32/800.	16.	10%	1/sec.	31.	6%	16/ sec.	46.	6 %	32/800.
2.	50%	32/ sec.	17.	3%	4/ sec.	32.	3%	4/sec.	47.	10%	16/200.
3.	10%	4/sec.	18.	1%	2/ sec.	33.	6%	4/sec.	48.	50%	1/sec.
4.	3%	16/ sec.	19.	3%	16/sec.	34.	50%	32/ sec.	49.	3%	1/sec.
5.	6%	8/sec.	20.	3%	2/800.	35•	1%	16/ sec.	50.	6 %	1/ sec.
6.	6%	4/sec.	21.	50%	16/sec.	36.	6%	8/ sec .	51.	50%	2/500.
7.	6%	32/800.	22.	3%	32/ sec.	37.	10%	4/sec.	52.	10%	8/ sec.
8.	50%	4/sec.	23.	50 %	4/ sec.	38.	1%	4/sec.	53.	6%	2/800.
9•	10%	32/ sec.	24.	1%	8/sec.	39•	3%	2/ sec.	54.	50%	2/ sec.
10.	50%	16/ sec.	25.	6 %	1/sec.	40.	10%	2/ sec.	55•	3%	1/sec.
11.	10%	32/ sec.	26.	10%	1/sec.	41.	3%	32/ sec.	56.	10%	8/sec.
12.	1%	1/sec.	27.	1%	16/sec.	42.	6%	16/500.	57.	6%	2/400.
13.	50%	8/sec.	28.	10%	16/ sec.	43.	1%	8/ sec.	58.	10%	2/sec.
14.	1%	4/ se c.	29.	50%	1/sec.	44.	3%	8/200.	59.	50%	8/ sec.
15.	1%	2/ sec.	30.	1%	32/ sec.	45.	3%	8/sec.	60.	1%	1/sec.

Table A26. Randomized presentation order (PO) for the various combinations of warble-tene frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #5.

				Cent	er Freque	ency	= 50	O Hs			
PO	FD	MR	PO	FD	MR	PO	FD	MR	PO	FD	MR
1.	6%	1/sec.	16.	1%	1/sec.	31.	1%	32/ sec .	46.	10%	4/sec.
2.	10%	8/ sec .	17.	6%	16/sec.	32.	6%	4/sec.	47.	50%	16/ sec.
3.	10%	8/sec.	18.	1%	2/ sec.	33.	6%	32/ sec.	48.	10%	1/sec.
4.	3%	2/800.	19.	1%	2/800.	34.	3%	8/sec.	49.	50%	2/500.
5.	50%	8/sec.	20.	6%	1/sec.	35.	1%	4/sec.	50.	1%	8/sec.
6.	6%	2/800.	21.	3%	8/sec.	36.	6%	32/ sec.	51.	3%	16/sec.
7.	1%	16/sec.	22.	50%	8/sec.	37•	1%	8/sec.	52.	50%	4/sec.
8.	1%	1/sec.	23.	3%	1/sec.	38.	3%	4/sec.	53.	50%	16/sec.
9.	6%	8/ sec.	24.	3%	4/sec.	39.	6%	2/ sec.	54.	1%	16/800.
10.	1%	32/ sec.	25.	10%	4/sec.	40.	10%	1/sec.	55.	1%	4/sec.
11.	10%	32/ sec.	26.	3%	32/ sec.	41.	10%	2/sec.	56.	3%	1/sec.
12.	6%	8/ sec .	27.	3%	16/sec.	42.	50%	1/sec.	57.	50%	2/sec.
13.	10%	16/ sec .	28.	3%	2/ se c.	43.	10%	32/sec.	58.	6%	16/sec.
14.	50%	32/800.	29.	6%	4/sec.	44.	10%	16/ sec.	59.	50%	1/sec.
15.	50%	4/sec.	30.	50%	32/sec.	45.	3%	32/ sec.	60.	10%	2/ se c.

Table A27. Randomized presentation order (PO) for the various combinations of warble-tone frequency deviations (FD) and modulation rates (MR) for subject #3 for test session #6.

				Cent	er Frequ	ency	= 25	60 H ≤			
PO	FD	MR	PO	FD	_	PO	_	MR	PO	FD	MR
1.	1%	4/sec.	16.	3%	16/800.	31.	1%	1/sec.	46.	50%	32/ sec .
2.	6%	32/ sec.	17.	6%	2/800.	32.	6%	4/sec.	47.	1%	32/ sec.
3.	3%	1/sec.	18.	3%	1/sec.	33.	1%	16/ sec.	48.	1%	1/sec.
4.	50%	4/ se c.	19.	50%	8/sec.	34.	1%	8/sec.	49.	50%	8/sec.
5.	1%	2/ se c.	20.	3%	32/ sec.	35•	6%	8/sec.	50.	6%	1/sec.
6.	10%	32/ sec .	21.	3%	8/sec.	36.	3%	32/ sec.	51.	6%	32/ sec.
7.	6%	2/800.	22.	50%	32/ se c.	37•	10%	4/sec.	52.	10%	8/sec.
8.	10%	1/sec.	23.	50%	4/sec.	38.	1%	8/ sec.	53•	10%	16/ sec.
9.	6%	1/sec.	24.	10%	8/sec.	39•	10%	16/ sec .	54.	3%	8/ s ec.
10.	3%	16/sec.	25.	50%	2/800.	40.	3%	4/sec.	55•	50%	1/sec.
11.	6%	16/ sec.	26.	10%	1/ se c.	41.	50%	16/ sec.	56.	3%	2/ sec.
12.	50%	1/sec.	27.	1%	2/ se c.	42.	6%	16/sec.	57•	1%	16/sec.
13.	6%	8/sec.	28.	3%	2/ sec.	43.	50%	16/ sec.	58.	1%	4/ sec.
14.	50%	2/ s ec.	29.	6%	4/ se c.	44.	3%	4/ se c.	59•	10%	4/sec.
15.	10%	32/ sec.	30.	1%	32/sec.	45.	10%	2/500.	60.	10%	2/sec.

APPENDIX J

FREQUENCY DEVIATIONS FOR EACH TEST FREQUENCY (IN BOTH PERCENT AND HZ)
ALONG WITH READINGS REQUIRED ON THE INSTRUMENTATION UTILIZED
TO PRODUCE AND MEASURE THE WARBLE-TONE STIMULI

FREQUENCY DEVIATIONS FOR EACH TEST FREQUENCY (IN BOTH PERCENT AND HZ)
ALONG WITH READINGS REQUIRED ON THE INSTRUMENTATION UTILIZED
TO PRODUCE AND MEASURE THE WARBLE-TONE STIMULI

Table A28. The FREQUENCY DEVIATION (FD) setting required on the beat-frequency oscillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hz/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warbletone frequency deviations given.*

	Center Frequency = 250 Hz												
Percent Frequency Deviation	± 1%	±3%	± 6%	±1 0%	± 50%								
Frequency Deviation in Hs	5	15	30	50	250								
	Instrument Dial Setting Required												
מיזו	±100	±100	±100	±100	±2 50								
vs	1	1	3	3	10								
V	0.25	0.5	1.1	1.6	4.0								
н/р	10	10	10	10	50								

^{*}The modulation rates used in this study had no effect on any of the measured frequency deviations and consequently are not shown in the table.

Table A29. The FREQUENCY DEVIATION (FD) setting required on the beat-frequency oscillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hz/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warbletone frequency deviations given.*

	Cent	er Frequency	y = 500 Hs		
Percent Frequency Deviation	±1%	±3%	± 6%	土%	±50%
Frequency Deviation in Hz	10	30	60	100	500
	Instrume	nt Dial Set	ting Requi	red	
FD	±100	±100	±100	±100	±400
Y S	1	3	3	3	20
٧	0.4	1.0	1.9	2.8	4.0
H/D	10	10	10	20	100

^{*}The modulation rates used in this study had no effect on any of the measured frequency deviations and consequently are not shown in the table.

Table A30. The FREQUENCY DEVIATION (FD) setting required on the beat-frequency oscillator, along with the VOLT SCALE (VS) and OUPUT VOLTAGE (V) on the function generator, and the Hs/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warble-tone frequency deviations given.*

	Center	Frequency	= 1000 Hs		
Percent Frequency Deviation	±1%	±3%	±6%	±10%	±50%
Frequency Deviation in Hs	20	60	120	200	1000
	Instrumen	t Dial Set	ting Requi	red	
FD	±100	±100	±100	±160	± 630
٧s	1	3	10	10	10
V	0.78	1.7	3.4	4.2	4.2
H/D	10	50	50	50	100

^{*}The modulation rates used in this study had no effect en any of the measured frequency deviations and consequently are not shown in the table.

Table A31. The FREQUENCY DEVIATION (FD) setting required on the beat-frequency oscillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hz/DIV (H/D) setting of the storage scope spectrum analyzer to produce and measure the warbletone frequency deviations given.*

	Center	Frequency	= 2000 Hz		
Percent Frequency Deviation	±1%	±3%	<u>±</u> 6%	±1 0%	±50%
Frequency Deviation in Hs	40	120	240	400	2000
÷	Instrumen	t Dial Set	ting Requi	red	
FD	±100	±100	±1 60	±400	±1 000
vs	3	10	10	10	10
٧	1.3	3.4	4.8	3.2	4.0
H/D	20	50	50	100	200

^{*}The modulation rates used in this study had no effect on any of the measured frequency deviations and consequently are not shown in the table.

Table A32. The FREQUENCY DEVIATION (FD) setting required on the beat-frequency escillator, along with the YOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hz/DIV (H/D) setting of the storage scope spectrum analyser to produce and measure the warble-tone frequency deviations given.*

	Center	Frequency	= 4000 Hz		
Percent Frequency Deviation	#1%	±3%	± 6%	±10%	±50%
Frequency Deviation in Hs	80	240	480	800	4000
	Instrumen	t Dial Set	ting Requi	red	
FD	±100	± 250	±400	±630	±1 500
VS	3	10	10	10	10
V	2.4	3.7	3.8	3.4	3.6
H/D	20	50	100	100	500

^{*}The modulation rates used in this study had no effect on any of the measured frequency deviations and consequently are not shown in the table.

Table A33. The FREQUENCY DEVIATION (FD) setting required on the beat-frequency oscillator, along with the VOLT SCALE (VS) and OUTPUT VOLTAGE (V) on the function generator, and the Hz/DIV (H/D) setting of the storage scope spectrum analyzer to produce and measure the warble-tone frequency deviations given.*

	Center	Frequency	= 8000 Hs		
Percent Frequency Deviation	±1%	±3%	± 6%	±10%	±50%
Frequency Deviation in Hs	160	480	960	1600	8000
	Instrumen	t Dial Set	ting Requi	red	
FD	±400	±400	±%0	11000	±2500
VS	3	10	10	10	10
٧	1.4	4.1	4.4	3. 8	8.6
H/D	50	100	200	500	1000

^{*}The modulation rates used in this study had no effect on any of the measured frequency deviations and consequently are not shown in the table.

APPENDIX K

AVERAGE HEARING THRESHOLD LEVEL AND SOUND PRESSURE LEVEL THRESHOLDS FOR EACH SUBJECT UNDER EACH OF THE WARBLE-TONE COMBINATIONS FOR EACH FREQUENCY

AVERAGE HEARING THRESHOLD LEVEL AND SOUND PRESSURE LEVEL THRESHOLDS FOR EACH SUBJECT UNDER EACH OF THE WARBLE-TONE COMBINATIONS FOR EACH FREQUENCY

Table A34. Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 250 Hs.

9789	1/sec. 2/sec.	HTL SPL SPL SPL HTL	1 3.0 24.4 -1.5 19.9	2 2 7.0 7.0 28.4 6.0 27.4 5.5	t 3 -2.0 19.4 -2.0	1 -0.5 20.9 1.0 22.4 0.0	Center 28 3 30.9 18 28.9 18 6.5 -3	3 3 3 18.9 18.9 18.9 -3.0	Frequency Frequence Frequence 1 1 1 5 -2.5 9 18.9 2 0 0.0 0 0.0	y = 250 acy Devi ±6% Subject 2 8.5 - 29.9 2 9.5 - 30.9 2 8.0 -	Acquency = 250 Hz Frequency Deviation 1	1 18.4 4.0 17.4	10% Subject 2 7.0 7.0 28.4 10.0 31.4	t 3 -3.5 17.9 -1.5 19.9	1 -10.0 11.4 -9.0 -5.0	2 Subject 2 -1.5 19.9 1.5 22.9	3 -1.5 19.9 -1.0 20.4
uotat	4/ 8@C•	SPL	22.4	26.9	18.4	21.4	27.9	18.4	21.4	29.4	18.9	19.9	28.4	19.4	16.4	22.4	21.4
ognŢŧ	8/sec.			28.9	19.9	21.9	4.62	19.9	20.9	28.4	21.9	21.9	33.4	19.4	17.4	22.9	19.9
	16/886.			6.5	-2.0	1.0	8.0	-2.0	-2.0	7.0	-2.0	-2.5	12.0	0.0	-2.0	3.5	-2.0
	22/22	HTL	-0.5	9.0	-3.5	1.5	7.0	-5.0	-1.0	7.0	-0.5	0.5	6.5	-1.5	0.4-	2.0	.2.0
)z/ sec.	SPL	20.9	30°4	17.9	21.9	28.4	16.4	50°	28.4	20.9	21.9	27.9	19.9	12.4	23.4	23.4

Table A35. Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 500 Hz.

							Cent	Tr. Pres	Center Frequency = 500 Hz	200	ij						
								- 로I	Frequency Deviation	y Devi	ation						
		•		±1%			±3%			76%			#10%			±50%	
				Subject	دد	J 2	Subject		<i>51</i> ·	Subject	دد	0,1	Subject		Ø	Subject	
			1	2	3	1	2	3	1	2	3	1	7	3	1	2	3
	, ,	HTL	-13.0	-11.5	-3.0	-15.5	-12.0	-5.0	-15.5	-13.5	-2.0	-14.0	5.6-	-3.0	-15.5	-11.0	-1.5
	1/50C	SPL	8.5	10.0	18.5	0*9	5•6	16.5	0°9	8.0	19.5	7.5	12.0	18.5	0°9	10.5	20.0
	2/000	HIL	-10.0	-11.5	-2.5	-11.5	-11 • 0	-2.5	-14.5	-11.5	-2.5	-15.5	0*01-	-3.5	0.41-	-11.0	-1.5
	5) sec	SPL	11.5	10.0	19.0	10.0	10.5	19.0	2.0	10.0	19.0	6.0	11.5	18.0	7.5	10.5	20.0
9 7 18	11/000	HTL	-11.5	-12.5	-3.5	-13.0	-12.5	-3.5	-10.5	-11.0	-5.0	0.6-	-10.5	-7.0	0.4-	-10.0	-1.0
y uc	-/ sec •	SPL	10.0	0°6	18.0	8.5	0°6	18.0	11.0	10.5	16.5	12.5	11.0	14.5	14.5	11.5	20.5
118	0 /2.5	ТЈН	-13.0	-12.5	0.4-	-14.0	-11.5	-2.5	5.6-	-10.5	-2.0	-13.5	6.6-	0.0	0*6-	-11.5	-0.5
Lubo	• ၁ 88 / o	SPL	8.5	0°6	17.5	2.5	10.0	19.0	12.0	11.0	19.5	8.0	12.5	21.5	12.5	10.0	21.0
W	16/900	HTL	-14.5	-11.0	-2.0	0*8-	-12.5	-2.5	-12.5	-10.5	0.4-	-11.0	-10.5	-3.0	0*5-	-8.0	5. 0-
	202/01	SPL	7.0	10.5	19.5	13.5	0.6	19.0	0*6	11.0	17.5	10.5	11.0 18.5	18.5	16.5	13.5	21.0
	32/00	HTL	-9.5	-12.5	-4.5	-15.0	-12.0	0.4-	5.5-	-12.0	-1.5	-5.5	-10.5	-3.5	0*9-	-8.5	0.0
	266 /20	SPL	12.0	0°6	17.0	6.5	9.5	17.5	14.0	9.5	20.0	16.0	11.0	18.0	15.5	13.0	21.5

Table A36. Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 1000 Hs.

							Center	Frequ	ency .	Center Frequency = 1000 Hs	器						
				ti 8			***	리	uenbe	Frequency Deviation +6g	ation		#		•	±50\$	
			8	Subject		නි	Subject		ග්	Subject		8	Subject		Sul	Subject	
				2	2	-	2	3	-	2	3	7	2	3		2	3
	,,,	HTL	-21.0	-24.5	-10.0	-20.0	-22.0	-12.0	-22.5	-19.0	0.6-	-22.0	-22.5	-10.5	-18.0	-17.0	-8.0
	1/ sec.	SPL	0.5	-3.0	11.5	1.5	-0.5	9.5	-1.0	5.5	12.5	-0.5	-1.0	11.0	3.5	4.5	13.5
	2/625	HTL	-22.0	-21.0	-10.5	-20.5	-19.0	-11.0	-2000	-2000	0*6-	-2000	5*02-	0.6-	0*41-	-17.5	-8.5
	•) 99 C •	SPL	5°0-	0.5	11.0	1.0	2.5	10.5	1.5	1.5	12.5	1.5	1.0	12.5	4.5	4.0	13.0
e) as	7, 7	HTL	-22.5	-22.0	-10.0	-20.0	-20.0	0.6-	-2000	-19.0	-8.5	-18.5	-19.0	0.6-	-16.5	-12.5	4.5
no.	*/ 20C	SPL	-1.0	-0.5	11.5	1.5	1.5	12.5	1.5	2.5	13.0	3.0	2.5	12.5	5.0	9.0	16.0
१३७७	0,00	HTT	-22.0	0.12-	5.6-	-20.5	-20.5	-10.0	19.0	-19.0	-11.0	19.0	-2000	0.6-	-14.5	-10.5	-5.0
npoj	• 286 /o	SPL	-0.5	0.5	12.0	1.0	1.0	11.5	2.5	2.5	10.5	2.5	1.5	12.5	2.0	11.0	16.5
[46/200	HTL	-20.5	-19.5	-7.5	-19.0	-20.0	0.8-	-18.0	-19.5	-8.5	-18.5	-2000	-7.5	-15.5	-10.5	-5.0
	• pag /oT	SPL	1.0	2.0	14.0	2.5	1.5	13.5	3.5	2.0	13.0	3.0	1.5	14.0	0°9	11.0	16.5
	32/22	HTT	0.12-	-21.0	5.6-	-21.5	-20.5	-10.5	-17.5	-18.5	-10.5	-19.5	-20.5	-10.5	-11.5	-10.5	-3.5
)2/ 56G	SPL	6.5	0.5	12.0	0.0	1.0	11.0	4.0	3.0	11.0	2.0	1.0	11.0	10.0	11.0	17.0

•

:

 $\frac{1}{2} \frac{1}{2} \frac{1}$

.

.

:

Table 437. Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 2000 Hs.

						Center	Freq.	Center Frequency = 2000 Hz Frequency Deviation	2000 xy Devi	Hz						
			#1%			+3%	ı		76%			110%			720%	
		3,	Subject		01	Subject			Subject			Subject			Subject	1
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
1/000	HTL	0.6-	-12.0	-0.5	0.6-	-12,0	0.0	-12,0	-13.0	-2.5	-11.5	-14.0	-4.5	-18.5	-19.5	-12.5
	SPL	10,2	7.2	18.7	10,2	7.2	19,2	7.2	6.2	16.7	7.7	5.2	14.7	2.0	-0.3	6.7
,	HTL	-11.0	-11.5	-1.0	-11.0	-11.0 -14.0 -2.0	-2.0	0.6-	-1.50	-3.5	-8.5	-13.0 -2.0	-2.0	-18.5	-18.5 -17.0 -11.0	-11.0
z/sec.	SPL	8.2	7.7	18,2	8,2	5.2	17.2	10,2	4.2	15.7	10.7	6.2	17.2	0.7	2,2	8,2
	HTL	-10.0	-15.5	-1.5	-11.5	-13.0	-2.5	-11.5	-12,0	-1.5	-11.0	-14.5	-3.0	-16.0	-15.5	-9.5
4/8ec.	SPL	9.2	3.7	17.7	7.7	6,2	16.7	7.7	7.2	17.7	8,2	4.7	16.2	3.2	3.7	9.7
8/20	HTL	0.6-	-12.5	-1.5	-10.0	-15.5	-1.5	-2.0	-13.5	-3.0	-8.0	-12.0	-2.5	-14.5	-12,0	-9.5
o) sec	SPL	10,2	1	6.7 17.7	9.2	3.7	17.7	12,2	3	5.7 16.2	11.2	2	7.2 16.7	4.7	7.2	9.7
16/22	HTL	-12,0	-12.0	-1.0	-11.5	-13.5	-1.0	-7.5	-13.0 -0.5	-0.5	-7.5	-11.5	-2.5	-15.5	-12.5	-9.5
oas/or	SPL	7.2	7.2	18,2	7.7	5.2	18,2	11.7	6.2	18.7	11.7	23	7.7 16.7	3.7	6.7	6.6
1	HTL	-9.5	-13.5	0.4-	-11.5	-14.5	-1.5	-11.0	-11.5	-0.5	-9.5	-13.0 -2.5	-2.5	-12.5	-12.5	0.4-
)2/ sec.	SPL	9.7	94	5.7 15.2	7.7		4.7 17.7	8.2	31	7.7 18.7	9.7	24	6.2 16.7	6.7	6.7	15.2

. . • • • •

•

.

Table A38. Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SPL) thresholds for each subject under each of the warble-tone combinations for 4000 Hs.

							Cente	Center Frequency = 4000 Hs	nency	4000	HS .						
				#1%			±3%	네	red neu	rrequency reviation	141100		110%			±50%	
			S	Subject		ά	Subject		w	Subject		ß	Subject		₁ S	Subject	
			1	2	3	1	2	3	1	2	3	1	2	3	1	2	~
	1 /000	HTL	-3.0	-8.5	-9.5	6 •9=	-9.5	-9.0	0*9-	-10.5	-9.5	-5.0	-12.0	-9.5	-16.0	-16.0	-10.5
	1/000	SPL	20.7	15.2	14.2	17.7	14.2	14.7	17.7	13.2	14.2	18.7	11.7	14.2	7.7	7.7	13.2
	2/22	HTT	0.4-	-8.5	0.6-	0.4-	-9.5	-9.5	5.5-	-8.5	-8.0	2.4-	-10.0	-10.5	-14.0	0.41-	-10.0
	c/ 560.	SPL	19.7	15.2	14.7	19.7	14.2	14.2	18,2	15.2	15.7	19.2	13.7	13.2	9.2	6.5	13.7
भुष्य	11 /2.2.2	HTL	0.4-	0.6-	-10.5	-2.5	-7.0	-10.5	5.4-	-9.5	-11.0	-4.5	-11.5	0.6-	-10.0	-11.5	-10.5
uoţ	4/ 56C.	SPL	19.7	16.7	13.2	21.2	16.7	13.2	19.2	14.2	12.7	19.2	12.2	14.7	13.7	12.2	13.2
tali	8/222	TJH	-2.0	0*9-	0.7-	-2.5	-7.5	-14.0	5.4-	-7.5	-11.0	-1.5	-7.5	0*8-	-8.5	-13.0	-8.0
Mod	o/ sec.	SPL	21.7	17.7	16.7	21.2	16.2	2.6	19.2	16.2	12.7	25.2	16.2	15.7	15.2	10.7	15.7
	16/200	HTL	-2.5	-7.0	-7.5	-8.5	0.6-	-10.0	-3.5	-9.5	-10.0	0.4-	-7.5	-10.0	-10.0	-12.0	-7.5
	10/ 596	SPL	21.2	16.7	16.2	15.2	14.7	13.7	20°5	14.2	13.7	19.7	16.2	13.7	13.7	11.7	16.2
	33/222	HTT	-2.0	-8.0	0.6-	-1.5	-8.5	-11.0	-3.5	5.9-	-12.0	-5.5	-8.5	-11.5	-3.0	-7.5	0.6-
)2/ 880 •	SPL	21.7	15.7	14.7	25.2	15.2	12.7	20°5	17.2	11.7	18.2	15.2	12,2	20.7	16.2	14.7

. . . .

Table 439. Average (repeated measure) Hearing Threshold Level (HTL) and Sound Pressure Level (SFL) thresholds for each subject under each of the warble-tone combinations for 8000 Hz.

	±20%	t Subject	3 1 2 3	6.5 -9.5 -14.0 -13.0	15.5 -0.5 -5.0 -4.0	7.0 -8.0 -12.0 -12.0	16.0 1.0 -3.0 -3.0	8.5 -9.5 -12.0 -12.0	17.5 -0.5 -3.0 -3.0	6.0 -10.0 -10.5 -13.0	15.0 -1.0 -1.5 -4.0	8.0 -9.5 -7.0 -12.0	17.0 -0.5 2.0 -3.0	2 44 7 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	110%	Subject	2	5 7.5	5 16.5	0 10.5	0 19.5	5 7.5	5 16.5	5 12.0	.5 21.0	0.6 0.	0 18.0	A 42 K
ation			3 1	9.0 12.5	18.0 21.5	5.5 11.0	14.5 20.0	12.0 12.5	21.0 21.5	11.0 16.5	22.0 25.5	7.5 16.0	16.5 25.0	12.0 15.5
Frequency - 000 mg	76%	Subject	2	5.0	14.0	8.0	17.0	12.0	21.0	13.0	22,0	12.5	21.5	13.5
requen			-1	18.5	27.5	17.5	26.5	16.0	25.0	15.0	24.0	17.5	26.5	150
[354]		ب	3	7.0	16.0	10.0	19.0	11.5	20.5	12.5	21.5	16.0	25.0	12.0
	+3%	Subject	2	13.0	22.0	14.0	23.0	14.0	23.0	14.0	23.0	13.0	22.0	12.0
	+	- S	-1	18.0	27.0	16.5	25.5	16.5	25.5	17.5	26.5	18.0	27.0	20.5
		4	6	10.5	19.5	17.5	26.5	11.0	20.0	12.5	21.5	10.0	19.0	17.0
	#17%	Subject	2	12.5	21.5	14.0	23.0	13.5	22.5	12.0	21.0	19.5 12.0	21.0	12.0
			1	18,0	27.0	17.5	26.5	17.0	26.0	17.0	26.0		28.5	16.5
				HTL	SPL	HTL	SPL	HTL	SPL	HTL	SPL	HTL	SPL	HTT.
				1 /000	1/ 260	,	°2)sec	Rate		0/00	o) sec	16/200	10/ sec.	

•

 $(-1)^{-\frac{1}{2}} = (-1)^{-\frac{1}{2}} = (-1)^{-\frac{1$

- - .

APPENDIX L

INDIVIDUAL SUBJECT AND MEAN dB DIFFERENCE SCORES FOR EACH WARBLE-TONE COMBINATION AND FREQUENCY

-	- · ·		

INDIVIDUAL SUBJECT AND MEAN dE DIFFERENCE SCORES FOR EACH WARBLE-TONE COMBINATION AND FREQUENCY Table A40. Differences in dB of the warble-tone threshold from the pure-tone threshold for all

11.0% 2 2 2 2 2 4.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	2 3 1 2 1.6 -0.5 10.6 -6.9 1.6 -0.5 10.6 -6.9 1.6 1.0 -5.6 13.9 0.5 -7.3 0.1 -2.3 0.1 -2.3 0.2 -2.3 0.2 -2.3 0.3 -2.6 -2.3 0.4 -4.4 0.1 -2.6 -3.9 0.1 -4.6 -3.9 0.1 -4.6 -3.9 0.1 -4.6 -3.9 0.1 -4.6 -3.9 0.1 -4.6 -3.9
--	---

Table A41. Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 500 Hs.

Subject	1 2	0.5	0.8	-1.0	0.0	5.5	9.0	1.0	2.1	3.5	1.4	0.6	3,1
Subject	1 2 3	-2.6	-0.7	9.0-	0.1	-0.1	8.0	5.0 0.4 1.5	2.3	4.0	9.0	7.0 -1.1 -0.5	1.8
Subject	1 2 3	-1.0 -1.1 -1.5	-1.2	3.0 -0.1 1.0	1.3	1.5 -1.6 0.0	0*0	0.5 -0.6 1.0	0.3	6.5 -1.6 1.0	1.9	-0.5 -1.1 -0.5	-0.7
Subject	1 2 3	1.5 -0.6 0.5	0.4	4.5 -0.6 1.0	1.6	3.0 -1.6 0.0	4.0	1.5 -1.6 -0.5	-0.2	0.0 -0.1 1.5	4.0	5.0 -1.6 -1.0	8.0
	Subject	Subject Subject Subject Subject 2 3 1 2 3 1 2 3 1	Aubject Subject Subjec	abbject Subject Subject 2 3 1 2 3 1 2 3 1 -0.6 0.5 -1.0 -1.1 -1.5 -1.0 -2.6 1.5 0.5 0.4 -1.2 -0.7 -0.7 -0.7 -0.7 -0.7	bject Subject Subject Subject 1 2 3 1 2 3 1 2 3 1 2 3 1 -0.6 0.5 -1.0 -1.1 -1.5 -1.0 -2.6 1.5 0.5 0.4 -1.2 -1.2 -0.7 -0.7 -1.0	Subject Subj	Subject Subj	Diject Subject Subje	Diject Subject Subje	Subject Subject Subject Subject 2 3 1 2 3 1 2 3 1 -0.6 0.5 -1.0 -1.1 -1.5 -1.0 -2.6 1.5 0.5 -0.6 1.0 3.0 -0.1 1.0 0.0 -0.6 1.0 -1.0 -0.6 1.0 1.5 -1.6 0.0 4.0 -0.1 -1.5 -0.4 0.0 1.5 -0.6 1.0 0.8 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 5.0 0.4 1.5 1.0 -0.2 0.3 -0.6 1.0 0.5	Subject Subj	Diject Subject Subje	Diject Subject Subje

Table AA2. Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 1000 Hz.

ţ	ţ	‡.				+3¢		Freque	Frequency Deviation	viatio	u	± 0%			+50%	
Ş.				Subj	ub.	ect		62	Subject		0,7	Subject			Subject	
1 2 3 1	2 3 1	3 1	1	_		2	3	1	2	6	1	2	3	-1	2	3
-1.5 -6.0 -1.5 -0.5	-6.0 -1.5 -0.5	-6.0 -1.5 -0.5	-1.5 -0.5			-3.5	-3.5	-3.0	-0.5	-0.5	-2.5	0.4-	-2.0	1.5	1.5	0.5
1/sec3.0 -2					-2	-2.5			-1.3			-2.8			1.1	
-2.5 -2.5 -2.0 -1.0 -0.5	-2.5 -2.0 -1.0	-2.5 -2.0 -1.0	-2.0 -1.0			5	-2.5	5.0-	-1.5	-0.5	-0.5	-2.0	-0.5	2.5	1.0	0.0
2/88C2.3 -1.3			-1.	-1.	7	3			-0.8			-1.0			1,1	
-3.0 -3.5 -1.5 -0.5	-3.5 -1.5 -0.5	-3.5 -1.5 -0.5	-1.5 -0.5			2	-1.5 -0.5	5.0-	-0.5	0.0	1.0	-0.5	-0.5	3.0	0.9	3.0
4/880.			-0.8	-0-	-0-	m			-0.3			0.0			0.4	
-2.5 -2.5 -1.0 -1.0 -2.0	-2.5 -1.0 -1.0	-2.5 -1.0 -1.0	-1.0 -1.0			0	-1.5	0.5	-0.5	-2.5	0.5	-1.5	-0.5	5.0	8.0	3.5
-2.0 -1.5			-1-	-1.	4	2			-0.8			-0.5			5.5	76.64
2.1- 2.0 1.0 1.0 0.5 -1.5	-1.0 1.0 0.5	-1.0 1.0 0.5	1.0 0.5			5.	0.5	1.5	-1.0	0.0	1.0	-1.5	1.0	0.4	8.0	3.5
-0.3	630 871	630 871	0-	0-	0	Ψ.	2.13	512	0.1	5.00	0.6	0.1	8100	7.0	5.1	27/2
-1.5 -2.5 -1.0 -2.0 -2.0	-2.5 -1.0 -2.0	-2.5 -1.0 -2.0	-1.0 -2.0			0	-2.0	2.0	0.0	-2.0	0.0	-2.0	-2.0	8.0	8.0	0.4
-1.6	640 813	640 013	-2	-2	-2	0	6003	2.43	0.0		645	-1.3	2ªAal	11000	9.9	

•

.

Table A43. Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 2000 Hz.

Subject	1 2	0.9 0.4 -2.1	-0.2	3.9 1.4 0.4	1.9	1.4 -0.1 -0.6 -3.6	0.2	4.4 2.4 -0.1	2,2	4.9 2.9 -0.1 -3.1	2.5	2.9 1.4 -0.1 -0.1	1,4
Subject	1 2 3	0.4 1.4 -0.1	0.5	3.4 -0.6 -1.1	5.0	0.9 2.4 0.9	1,4	9.0- 6.0 4.5	1.9	4.9 1.4 1.9	2.7	1.4 2.9 1.9	2.0
Subject	1 2 3	3.4 2.4 2.4	2.7	1.4 0.4 0.4	2.0	0.9 1.4 -0.1	2.0	2.4 -1.1 0.9	2.0	0.9 0.9 1.4	1.0	0.9 -0.1 0.9	6.5
Subject	1 2 3	3.4 2.4 1.9	2.5	1.4 2.9 1.4	1.9	2.4 -1.1 0.9	0.7	3.4 1.9 0.9	2.0	0.4 2.4 1.4	1.4	2.9 0.9 -1.6	0.7
	Subject	Subject Subject Subject 2 3 1 2 3 1 2	Subject Subject Subject Subject 1 2 3 1 2 3 1 2 3.4 2.4 1.9 3.4 2.4 2.4 0.4 1.4	Subject Subject Subject Subject 1 2 3 1 2 3 1 2 3,4 2,4 1,9 3,4 2,4 2,4 1,4 1,4 2,5 2,7 2,7 0,5 0,5 0,5 0,5	Subject Subj	Subject Subject Subject Subject 1 2 3 1 2 3 1 2 3,4 2,4 1,9 3,4 2,4 0,4 1,4 2,5 2,7 2,7 0,5 1,4 2,9 1,4 1,4 0,4 0,4 3,4 -0,6 1,9 -0,5 -0,5 -0,5 1,9 -0,5 -0,5 1,9 -0,5 -0,5 1,0 -0,5 1,0 -0,5 1,0	Subject Subject Subject Subject 1 2 3 1 2 3 1 2 3.4 2.4 1.9 3.4 2.4 2.4 0.4 1.4 2.5 1.4 1.4 0.4 0.4 0.4 0.6 1.4 2.9 1.4 1.4 0.4 0.4 0.4 1.5 1.5 0.9 0.9 1.4 0.1 0.9 2.4 2.4 1.1 0.9 0.9 1.4 0.1 0.9 2.4	Subject Subj	Subject Subject Subject Subject 1 2 3 1 2 3 1 2 3,4 2,4 1,9 3,4 2,4 2,4 0,4 1,4 2,5 2,7 2,7 0,5 1,4 2,9 1,4 1,4 0,4 0,4 3,4 -0,6 1,9 0,9 1,4 -0,1 0,9 2,4 0,7 0,7 0,5 1,4 0,1 0,9 2,4 0,8 2,4 1,9 0,9 2,4 1,1 0,9 2,4 1,1 0,9 2,4 0,9 0,9 2,4 1,1 0,9 2,4 0,9 0,9 2,4 0,9 2,4 0,9 0,9 2,4 0,9 2,4 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,	Subject Subject Subject Subject 1	Subject Subject Subject Subject 1	Subject Subject Subject Subject 1 2 3 1 2 3 1 2 3.4 2.4 1.9 3.4 2.4 2.4 0.4 1.4 2.5 1.4 1.4 0.4 0.4 3.4 0.5 1.4 2.9 1.4 1.4 0.4 0.4 3.4 0.5 2.4 1.1 0.9 0.9 1.4 0.1 0.9 2.4 3.4 1.9 0.9 2.4 1.1 0.9 5.4 0.9 2.0 2.0 2.4 2.1 0.9 2.4 1.4 3.4 3.4 3.4 0.9 0.9 1.4 4.9 1.4 3.4 3.4 3.4 3.4 0.5 3.4 0.9 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.5 3.4 3.5 3.5 3.5 3.5 3.5 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Subject Subject Subject Subject 1

.

.

•

•

•

Table Add. Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 4000 Hz.

								Freque	Frequency Deviation	viatio	u					
			11%			+3%			¥9 +			¥10%			720%	
		o ₂	Subject		O3	Subject		O)	Subject		Ø	Subject			Subject	
		1	2	9		2	3	-1	2	3	1	2	6		2	3
	1 /225	-1.0	-1.5	-3.5	0.4-	-2.5	-3.0	0.4-	-3.5	-3.5	-3.0	-5.0		-3.5 -14.0	0.6-	-4.5
	1/ sec.		-2.0			-3.1			-3.6			-3,8			-9.1	
	2/201	-2.0	-1.5	-3.0	-2.0	-2.5	-3.5	-3.5	-1.5	-2.0	-2.5	-3.0	-4.5	-12.5	-7.0	0.4-
)sec		-2.1			-2.6			-2.3			-3.3			-7.8	
eta	1, 1	-2.0	0.0	-4.5	-0.5	0.0	-4.5	-2.5	-2.5	-5.0	-2.5	-4.5	-3.0	-8.0	-4.5	-4.5
ı uo	4/ sec.		-2.1			-1.6			-3.3			-3.3			-5.6	
lati	0/-	0.0	1.0	-1.0	-0.5	-0.5	-8.0	-2.5	-0.5	-5.0	0.5	-0.5	-2.0	-6.5	0.9-	-2.0
npow	o/sec•		0.0			-3.0			-2.6			9.0-			8.4-	
	17/70	-0.5	0.0	-1.5	-6.5	-2.0	0.4-	-1.5		-2.5 -4.0	-2.0	-0.5	0.4-	-8.0	-5.0	-1.5
	10/ sec.		9.0-			-4.1			-2.6			-2.1			-4.8	
	32/200	0.0	-1.0	-3.0	0.5	-1.5	-5.0	-1.5	0.5	0.9-	-3.5	-1.5	-5.5	-1.0	-0.5	-3.0
)4/ sec.		-1.3			-2.0			-2.3			-3.5			-1.5	

.

Table A45. Differences in dB of the warble-tone threshold from the pure-tone threshold for all subjects at each combination of frequency deviation and modulation rate, plus the average dB difference for 8000 Hz.

			3	-23.6		-22.6		-22.6		-23.6		-22.6		-25.1	
	‡ 20%	Subject	2	-28.0	-25.7	-26.0	-24.2	-26.0	-24.7	-24.5	-24.7	-21.0	-23.0	-22.5	-24.3
			1	-25.5		-24.0		-25.5		-2.0 -4.6 -26.0		-2.6 -15.5		1.4 -15.5	
			3	-4.1		-3.6		-2.1		9.4-				1.4	
	¥10%	Subject	2	-6.5	4.7	-3.5	0.4-	-6.5	0.4-	-2.0	-2.0	-5.0	-2.5	-1.5	-0.2
		.g	1	-3.5		-5.0		-3.5		6.0		0.0		5.0-	
Frequency Deviation			9	-1.6		-5.1		1.4		7.0		-3.1		1,4	
тсу Дел	76%	Subject	2	0.6-	-2.7	0.9-	-3.2	0.0 -2.0	-0.2	-1.0	0.5	-1.5	-1.0	-0.5	0.0
reque		S	1	2.5		1.5		0.0		-1.0		1.5		-1.0	
			3	-3.6		9.0-		6.0		1.9		5.4		1.4	
	1 3%	Subject	2	-1.0	8.0-	0.0	0.0	0.0	4.0	0.0	1.1	-1.0	2.1	-2.0	1.3
		Sul	1	2.0		0.5		0.5		1.5		2.0		4.5	
			3	-0.1		6.9		4.0		1.9		9.0-		4.9	
	11%	Subject	2	-1.5	0.1	0.0	2.8	-0.5	0.3	-2.0	0.3	-2.0	0.3	-2.0	1.6
		Su	1	2.0		1.5		1.0		1.0		3.5		0.5	-
				,,	1/sec.	2/200	*/ sec / z	1, /	*/ sec	0/22	• pag/o	16/200	• 000 /01	20/000)2/ sec.
								97.65	uo	tast	Wodu				

• •

•

-

APPENDIX M

RANKS ASSIGNED TO EACH SUBJECT FOR EACH WARBLE-TONE COMBINATION FOR KENDALL'S COEFFICIENT OF CONCORDANCE

RANKS ASSIGNED TO EACH SUBJECT FOR EACH WARBLE-TONE COMBINATION FOR KENDALL'S COEFFICIENT OF CONCORDANCE

Table A46. Ranks assigned to each subject for thirty warble-tone combinations at 250 Hz.

Hereble Men		O.b. d. ada d. Da		C
Warble-Tone Combination		Subjects Ra	nkings 3	Sum of Ranks
1. 1%/1	30.0	15.0	12.5	57.5
2. 1%/2	14.0	8.0	12.5	34.5
3. 1%/4	28.0	7.0	4.5	39.5
4. 1%/8	11.0	19.5	19.5	50.0
5. 1%/16	14.0	10.0	12.5	36.5
6. 1%/32	18.0	25.0	2.5	45.5
7. 3%/1	18.0	26.5	7.0	51.5
8. 3%/2	28.0	19.5	7.0	54.5
9. 3%/4	21.0	10.0	4.5	35.5
10. 3%/8	24.5	22.0	19.5	66.0
11. 3%/16	28.0	22.0	12.5	62.5
12. 3%/32	24.5	15.0	1.0	40.5
13. 6%/1	8.5	24.0	24.0	56.5
14. 6%/2	21.0	26.5	24.0	71.5
15. 6%/4	21.0	22.0	7.0	50.0
16. 6%/8	18.0	15.0	29.0	62.0
17. 6%/16	11.0	15.0	12.5	38.5
18. 6%/32	16.0	15.0	26.0	57.0
19. 10%/1	7.0	15.0	2.5	24.5
20. 10%/2	5.0	28.0	19.5	52.5
21. 10%/4	14.0	15.0	12.5	41.5
22. 10%/8	24.5	29.5	12.5	66.5
23. 10%/16	8.5	29.5	27.5	65.5
24. 10%/32		10.0	19.5	54.0
25. 50%/1	1.0	1.0	19.5	21.5
26. 50%/2	2.0	3.5	24.0	29.5
27. 50%/4	3.0	2.0	27.5	32.5
28. 50%/8	5.0	3.5	19.5	28.0
29. 50%/16		6.0	12.5	29.5
30. 50%/32		5.0	30.0	40.0

Table A47. Ranks assigned to each subject for thirty warble-tone combinations at 500 Hz.

Warbl	-Tone	Sub	jects' Ranki	ngs	Sum of
Combin	ations	1	2	3	Ranks
1.	1%/1	13.0	12.0	13.0	38.0
2.	1%/2	20.0	12.0	17.0	49.0
3.	1%/4	16.5	4.0	9.5	30.0
4.	1%/8	13.0	4.0	6.0	23.0
5•	1%/16	6.5	17.0	21.0	44.5
6.	1%/32	21.5	4.0	4.0	29.5
7•	3%/1	2.5	8.0	2.5	13.0
8.	3%/2	16.5	17.0	17.0	50.5
9•	3%/4	13.0	4.0	9.5	26.5
10.	3 %/ 8	9.0	12.0	17.0	38.0
11.	3%/16	25.0	4.0	17.0	46.0
12.	3%/32	5.0	8.0	6.0	19.0
13.	6%/1	2.5	1.0	21.0	24.5
14.	6%/2	6.5	12.0	17.0	35.5
15.	6%/4	19.0	17.0	2.5	38.5
16.	6%/8	21.5	22.0	21.0	64.5
17.	6%/16	15.0	22.0	6.0	43.0
18.	6%/32	26.0	8.0	24.0	58.0
19. 1	0%/1	9.0	27.0	13.0	49.0
	0%/2	2.5	25.5	9•5	37.5
	0%/4	23.5	22.0	1.0	46.5
	0%/8	11.0	28.0	29.5	68.5
	0%/16	18.0	22.0	13.0	53.0
	0%/32	29.0	22.0	9.5	60.5
	0%/1	2.5	17.0	24.0	43.5
	0%/2	9.0	17.0	24.0	50.0
	0%/4	27.0	25.5	26.0	78.5
	i0 %/ 8	23.5	12.0	27.5	63.0
	0%/16	30.0	30.0	27.5	87.5
	i0%/32	28.0	29.0	29.5	86.5

Table A48. Ranks assigned to each subject for thirty warble-tone combinations at 1000 Hz.

War	ble-Tone	Sub	iects' Ranki	ngs	Sum of
	inations	1	jects' Ranki 2	3	Ranks
1.	1%/1	7.5	1.0	10.0	18.5
2.	1%/2	4.0	5.5	6.0	15.5
3.	1%/4	1.5	5•5	10.0	17.0
4.	1%/8	4.0	5•5	12.5	22.0
5.	1%/16	10.0	17.5	25.5	53.0
6.	1%/32	7.5	5.5	12.5	25.5
7.	3%/1	14.0	3.0	1.0	18.0
8.	3%/2	10.0	21.0	2.5	33.5
9.	3%/4	14.0	14.0	16.5	44.5
10.	3%/8	10.0	9.5	10.0	29.5
11.	3%/16	19.0	14.0	23.5	56.5
12.	3%/32	6.0	9.5	6.0	21.5
13.	6%/1	1.5	21.0	16.5	39.0
14.	6%/2	14.0	14.0	16.5	44.5
15.	6%/4	14.0	21.0	21.0	56.0
16.	6 %/8	19.0	21.0	2.5	42.5
17.	6%/16	23.5	17.5	21.0	62.0
18.	6%/32	25.0	24.0	6.0	55.0
19.	10%/1	4.0	2.0	6.0	12.0
20.	10%/2	14.0	9•5	16.5	40.0
21.	10%/4	21.5	21.0	16.5	59.0
22.	10%/8	19.0	14.0	16.5	49.5
23.	10%/16	21.5	14.0	25.5	61.0
24.	10%/32	17.0	9•5	6.0	32.5
25.	50%/1	23.5	26.0	23.5	73.0
26.	50%/2	26.0	25.0	21.0	72.0
27.	50%/4	27.0	27.0	27.0	81.0
28.	50%/ 8	29.0	29.0	28.5	ر ۵۰
29.	50%/16	28.0	29.0	28.5	85.5
30.	50%/32	30.0	29.0	30.0	89.0

Table A49. Ranks assigned to each subject for thirty warble-tone combinations at 2000 ${\rm Hz}_{\, \bullet}$

Warb]	le-Tone	Sub	iects' Ranki	n <i>e</i> s	Sum of
	nations	1	jects' Ranki 2	3	Ranks
1.	1%/1	23.5	24.5	28.0	76.0
2.	1%/2	15.5	29.0	25.0	69.5
3.	1%/4	18.5	4.0	21.0	43.5
4.	1%/8	23.5	20.0	21.0	64.5
5.	1%/16	7.5	24.5	25.0	57.0
6.	1%/32	20.5	12.0	7•5	40.0
7.	3%/1	23.5	24.5	30.0	78.0
8.	3%/2	15.5	9.5	17.5	42.5
9.	3%/4	11.0	16.0	14.0	41.0
10.	3%/8	18.5	4.0	21.0	43.5
11.	3%/16	11.0	12.0	25.0	48.0
12.	3%/32	11.0	7•5	21.0	39.5
13.	6%/1	7.5	16.0	14.0	37.5
14.	6%/2	23.5	6.0	9.0	38.5
15.	6%/4	11.0	24.5	21.0	56.5
16.	6 %/ 8	30.0	12.0	10.5	52.5
17.	6%/16	28.5	16.0	28.0	72.5
18.	6%/32	15.5	29.0	28.0	72.5
19.	10%/1	11.0	9•5	6.0	26.5
20.	10%/2	26.0	16.0	17.5	59.5
21.	10%/4	15.5	7.5	10.5	33.5
22.	10%/8	27.0	24.5	14.0	65.5
23.	10%/16	28.5	29.0	14.0	71.5
24.	10%/32	20.5	16.0	14.0	50.5
	50%/1	1.5	1.0	1.0	3.5
26.	50%/2	1.5	2.0	2.0	5.5
27.	50%/4	3.0	4.0	4.0	11.0
28.	50%/8	5.0	24.5	4.0	33.5
29.	50%/1 6	4.0	20.0	4.0	28.0
30.	50%/32	6.0	20.0	7•5	33.5

Table A50. Ranks assigned to each subject for thirty warble-tone combinations at 4000 Hs.

Warble	-Tone	Sub	jects' Ranki	ngs	Sum of
	ations	1	jects' Ranki 2	3	Ranks
1.	1%/1	22.5	17.0	17.5	57.0
2.	1%/2	17.5	17.0	22.0	56.5
3.	1%/4	17.5	27.0	9.0	53.5
4.	1%/8	27.5	30.0	30.0	87.5
5.	1%/16	25.0	27.0	28.5	80.5
6.	1%/32	17.5	20.0	22.0	69.5
	3%/1	7•5	11.5	22.0	41.0
	3%/2	17.5	11.5	17.5	46.5
	3%/4	25.0	27.0	9.0	61.0
	3%/ 8	25.0	23.0	1.0	49.0
	3%/1 6	5.5	14.0	13.5	33.0
	3 %/ 32	29.5	17.0	5.0	51.5
	6%/1	7.5	8.0	17.5	33.0
	6%/2	9•5	17.0	26.0	52.5
	6%/4	13.5	11.5	5.0	30.0
16.	6%/8	13.5	23.0	5.0	41.5
17.	6%/16	20.5	11.5	13.5	45.5
18.	6%/32	20.5	29.0	2.0	51.5
	0%/1	11.0	4.5	17.5	33.0
20. 1	0%/2	13.5	9.0	9.0	31.5
	0%/4	13.5	6.5	22.0	42.0
22. 1	0%/8	29.5	23.0	26.0	78.5
	0%/16	17.5	23.0	13.5	54.0
	0%/32	9.5	17.0	3.0	29.5
	0%/1	1.0	1.0	9.0	11.0
26. 5	0%/2	2.0	2.0	13.5	17.5
27. 5	0%/4	3.5	6.5	9.0	19.0
28. 5	0%/8	5•5	3.0	26.0	34.5
29. 5	0%/16	3.5	4.5	28.5	36.5
30. 5	0%/32	22.5	23.0	22.0	67.5

Table A51. Ranks assigned to each subject for thirty warble-tone combinations at 8000 Hz.

liarb	le-Tone	Sub	iects' Ranki	nes	Sum of
	Lnations	1	jects Ranki 2	3	Ranks
1.	1%/1	26.0	20.0	18.0	64.0
2.	1%/2	22.5	28.5	30.0	81.0
3.	1%/4	19.5	25.5	19.5	64.5
4.	1%/8	19.5	15.5	26.5	61.5
5.	1%/1 6	29.0	15.5	16.5	61.0
6.	1%/32	16.5	15.5	29.0	61.0
7•	3 %/ 1	26.0	23.0	10.5	59•5
8.	3%/2	16.5	28.5	16.5	61.5
9.	3%/4	16.5	28.5	21.0	66.0
10.	3 %/ 8	22.5	28.5	26.5	77.5
11.	3 %/1 6	26.0	23.0	28.0	77.0
12.	3 %/ 32	30.0	15.5	23.5	69.0
13.	6 %/1	28.0	7.0	15.0	50.0
14.	6 %/ 2	22.5	10.0	7.0	39.5
15.	6 %/ 4	13.5	15.5	23.5	52.5
16.	6 %/8	10.5	23.0	19.5	53.0
17.	6 %/1 6	22.5	20.0	12.0	54.5
18.	6 %/32	10.5	25.5	23.5	59.5
19.	10%/1	8.5	8.5	9.0	26.0
20.	10%/2	7.0	12.0	10.5	29.5
21.	10%/4	8.5	8.5	14.0	31.0
22.	10%/8	16.5	15.5	8.0	40.0
23.	10%/16	13.5	11.0	13.0	37.5
24.	10%/32	12.0	20.0	23.5	55•5
25.	50%/1	3.5	1.0	2.5	7.0
26.	50%/2	6.0	2.5	5.0	13.5
27.	50%/4	3.5	2.5	5.0	11.0
28.	5 0%/ 8	1.0	4.0	2.5	7.5
29.	50%/16	3.5	6.0	5.0	14.5
30.	50%/32	3.5	5.0	1.0	9.5

-		ļ

