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ABSTRACT

OPTIMAL DESIGN OF VIBRATION ISOLATORS BASED ON FREQUENCY RESPONSE

By

Lawrence Andrew Staat

In this thesis, an approach to vibration isolator design is defined

based on the frequency response at important points. The frequency

response approach is incorporated into a numerical optimization scheme

for vibration isolators. A planar test case is defined which shows the

viability of the frequency response approach. Using the test case, this

approach is compared to another approach based on natural frequencies.

The test case shows that the frequency response approach may yield less

conservative isolator designs than the natural frequency approach.
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INTRODUCTION

Vibration isolation is a commonly occuring engineering problem

which arises when a vibrating body is mounted to a supporting structure.

The isolation design problem can take one of two forms. In the first of

these, the vibrating body is excited by forces acting on it and the goal

is to reduce vibrations transmitted to the supporting structure.

Examples include the mounting of machines with rotating imbalances such

as electric motors, gas compressors, pumps, turbines, and automotive

engines. In the second type of isolation problem, support structure

motions are the source of excitation and the goal is to reduce forces

transmitted through the mounts to the vibrating body. The design of

building foundations is an example of this type of isolation problem.

A common approach to vibration isolation problems is to reduce

transmitted forces in the mounts by moving the system's natural

frequencies away from the excitation frequency. This approach

originates from the transmissibility concept applied to simple uniaxial

systems. The advantage of this approach is that it reduces vibration

throughout the system. A disadvantage of this approach is that it does

not take full advantage of the mechanisms by which vibration in a system

can be reduced. The mode shapes of a system also determine the degree

to which it is excited. If the mode shape can be modified so that it is

orthogonal to the excitation, the excitation frequency can match the

natural frequency and the mode will not be excited. Also, if particular

points in the system are more important than others in regard to



vibration, the vibration at these points can be reduced by modifying

mode shapes. Based on these comments, the transmissibility approach to

vibration isolation problems could be conservative. In design cycles

which limit mount design options, a conservative approach can be costly.

The approach to vibration isolation problems taken in this

research is to find a design which reduces the vibration at points in

the system where isolation is particularly important. The dynamics of

the system for different mount designs can be simulated on a computer

and the frequency response at important points can be calculated.

Searching for a design which maximally reduces vibration can be done

manually, but the large number of possible design changes often makes

this impractical. A better approach is to numerically identify the

mount design using an optimization technique similar to that used

previously [4].

In this thesis, the viability of the frequency response approach

will be demonstrated using a planar test case. An objective function

based on the vibration at important points will be defined for the test

case. This objective function will be incorporated into a computer

program which simulates the test case dynamics and optimizes the mount

design. A previously defined [4] objective function based on the

transmissibility approach will also be presented. The mount design

found using the transmissibility-based objective will be compared to the

mount design found using the frequency-response-based objective.



SYSTEM RESPONSE ANALYSIS

There are several ways to characterize the vibration at a point in

a system. The quantity which will be used in the proposed objective

function is the magnitude of the translational displacement at a point.

Small motions, linear stiffnesses, and a combination of structural and

viscous damping are assumed for the complete system consisting of

vibratory body, mounts, and support structure. These simplifying

assumptions allow the equations of motion for the complete system to be

written in the following form [3]:

[Mli.+ [C13 + l [K] + [D11 is - f (1)

The excitation vector f is assumed to be harmonic:

; — 3 e1“ (2)

The vector E represents the time invariant force amplitudes. To solve

for x, a harmonic solution of the same frequency but with a phase shift

is assumed.

X1e1¢1 q

i¢2

x2e iwt
x - e

(3)

  X ei¢n
h n d



Substituting the assumed solution into the equations of motion, the

following equation is formed:

[A]; - E (4)

where

[A] - [K1 - wZIMl + wICIi + [D11 (5)

r Xlei¢1 -

* X2ei¢2

2s - (6)

_ X ei¢n j  

The complex frequency response of the system in body co-ordinates

*

can be found by solving for x in Equation 4. The body co-ordinates can

then be transformed to a set of design-significant co-ordinates which

express the motion at points of importance:

* *

x - [T125 (7)

where

1* - frequency response in design-significant co-ordinates

[T] - appropriate transformation matrix

The magnitude of translational vibration at points of importance can

*

then be computed from the components of y .



NUMERICAL OPTIMIZATION OF THE MOUNT DESIGN

The best mount design can be found from the large number of

possible designs by performing an unconstrained optimization. The

design is first parameterized and then a parameter-dependent objective

function is formulated which decreases as the design objectives are met.

By finding the design parameters which minimize the objective function,

the best mount design can be found. The search for the optimal design

parameters and the subsequent evaluation of the objective function can

be performed by a computer program.

The parameters for the mount design are the stiffness, location,

and orientation of each of the mounts. The objective of the mount

design is to isolate vibrations in the system at the least cost. The

cost of a design is defined by the size of design changes from a nominal

design. Large changes in the nominal design represent a great cost.

The isolating capability of the design is measured by the response of

the system to the excitation. An objective function which incorporates

both system response and changes in design is as follows [5]:

P(e) - aR(e) + bC(.e) (8)

The vector g contains the mount design parameters. The scalar R

measures the dynamic response of the system, while the scalar C

measures changes in the nominal design. The scalars a and b are

weighting factors which define the relative importance between dynamic

response of the design and changes in the nominal design.



The size-of-change function, C, used in this work is positive

definite and increases with increasing differences between the current

and the nominal design [5].

2

)

q

0(2) - 2 (Aej/EJ (9)

j-l

The design change measure, Ae is the difference between the currentj’

and nominal value of the jth design parameter. Because different design

changes are not always comparable, a factor EJ is used to normalize each

term.

The response function, R, used in this work is positive definite

and increases with increasing vibration at points in the system defined

as important.

r

R(e) - Th C(w) 2 c S (e.w) dw (10)
i i

wl i-l

81(g,w) is the magnitude of the translational displacement at an

important point. A weighted summation of the important points is taken

so that the relative importance of each point is defined. The function

G(w) expresses the likelihood of excitation occurring at the frequency w

(Figure l). The interpretation of the triangular form is that the

excitation is most likely to occur at the frequency we.



 

 
 

(l), (dc OJh

FREQUENCY

Figure 1 Example of Excitation Frequency Probability



Another type of response function based on system natural

frequencies was proposed by Spiekermann, Radcliffe, and Goodman [4].

n

we.) - 2 rite) (11)
1-1

where

ri(g) - 0.0 for wi< ml or mi) wh (12)

ri(§) - .5 + .5COS( 2n(wi-(wh+ w1)/2)/(wh- wl) )

for w1< wi< uh

In the above equation, r1(g) is the contribution of the ith natural

frequency of the system to the response function, R'. The frequencies

ml and uh are the lower and upper frequency bounds of the excitation.

The frequency wi is the ith natural frequency of the system. The

natural frequencies are dependent on the equations of motion of the

system, and hence the design parameters g.



TEST CASE

The test case consists of two rigid bodies whose motion is

restricted to a plane. The test case is shown schematically in

Figure 2. The upper rigid body is the excited vibratory system and the

compliant elements M1 and M2 are the mounts. The lower rigid body

represents the support structure and the compliant elements F1 and F2

represent the stiffness properties of the support structure.

Figures 3 and 4 show the model used for a compliant element. As

shown in Figure 3, there is a local co-ordinate system associated with

each compliant element. The position and orientation of each compliant

element is defined by the position (qxi’qyi) and orientation (¢i) of its

local co-ordinate system. It is assumed that a compliant element is

small in relation to the rigid bodies, therefore its position can be

defined by a point. Figure 4 gives the force/deformation relationship

for a compliant element. Several simplifying assumptions are made in

deriving this relationship. First, a compliant element is assumed to

behave in a linear elastic manner. Second, the deformations of a

compliant element are assumed small in relation to its dimensions;

therefore, its stiffness matrix is diagonal. Third, the contribution of

a compliant element's torsional stiffness to the total torque exerted on

a rigid body is assumed to be small, therefore an element's torsional

stiffness is neglected. Lastly, a compliant element is assumed to

possess sub-critical viscous damping in proportion to its stiffness.
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Figure 3 Position and Orientation of a Compliant Element
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Figure 4 Force/Deformation Relationship for a Compliant Element
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Table l Compliant Element Parameters for the Planar Test Case

M1

M2

F1

F2

Table 2 Rigid Body Parameters for the Planar Test Case

Support

Structure

Excited

Body

  

Mass

60.0

30.0

4kg).— flamflfl

Axial Shear Horizontal Vertical

Stiffness Stiffness Position

(N/M) (N/M) (M) (M)

5.0x10S 6.5x105 -.400 .070

5.0x10S 6.5x10S -.250 .070

1.2x107 1.9x106 -.560 0.00

1.2x107 1.9x106 .560 0.00

Moment of Horizontal Vertical

Position Orientation

(Degrees)
 

Inertia Position

(M) (M)

15.0 0.00 0.00

1.00 -.325 .270

Position Orientation

ingress.)—

0.0

0.0

0.0

0.0

0.0

0.0
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Each compliant element is characterized by the five parameters

qxi’ qyi' oi, kxi and kyi' Each of the rigid bodies is also

characterized by five parameters. A local co-ordinate system is placed

at the c.g. of each rigid body and therefore three of the parameters

define the position and orientation of the body's local system with

respect to the reference system. The other two parameters define the

mass and rotational inertia of the body.

The design parameters for the test case are the ten parameters

which define the two mount compliant elements. The other twenty

parameters which define the two support structure compliant elements and

the two rigid bodies remain fixed. All thirty parameters used in the

test case are given in Tables 1 and 2.

Using the assumed mount model, the equations of motion (eqn. 1 )

are developed in Appendix A using previously defined matrix methods

[1]. The excitation for the test case is modelled by a force and torque

applied to the c.g. of the upper rigid body. The displacement vector

for the test case, x - [ xB yB 9B xF yF 0F ] , defines the rotation and

translation at the c.g. of each body. The mass, stiffness, and damping

matrices are as follows:

[M] " (13)

o
o
o
%
p
o

o
o
a
o
o
o

o
a
o
o
o
o

H
O
O
O
O
O

 O
O
O
H
O
O

 0
0
0
0
0
0
?



l4

  

[C1] '[Czl

[C] " (14)

'[C2] [Cs]

[k1] ’[kzl

[Kl ' (15)

'[kzl [k3]

where

_ 2 T r 1

[kl] - L §_1[Pbmi][Rbmi][kmi][Rbmi] [Pbmi] (16)

[k1 - 22: [P II lik HR ITIP 1T (17)2 1_1 bmi Rbmi mi fmi fmi

[k1 - g IP HR llk l[R ITIP 1T.3 L 1_1 ffi ffi £1 ffi ffi

2 r r

+ f 1[mei][Rfmi][kmi][Rfmi] [me1] (18)

The P and R matrices used in equations 16-18 are 3x3 translation and

rotation matrices. The matrices [kmi] and [kfi] are the 3x3 stiffness

matrices of the compliant elements. The submatrices [c1], [c2], and

[c3] are proportional to [k1], [k2], and [k3] by a factor of .001 .

Once the equations of motion are formulated, the frequency

response at points of importance can be calculated using equations

4 and 7. For the test case, the points defined as important are part of
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the support structure. The transformation from the general body

co-ordinates to the design-significant co-ordinates is as follows:

P * G P

    

it [T1] 1

*

£2 [T2]

* * *

I - 5.1 ' [Ti] K (19)

*

L er . _ [Tr] l

where

*

six

* *

51 - 31y (20)

*

‘10

0 0 0 l 0 -r

yi

[Ti] - 0 O 0 0 1 rxi (21)

0 0 0 0 O l

r - [r r 0 1T (22)
1 xi yi

*

The vector 3 is the complex frequency response for the test case in

*

body co-ordinates. The vector s1 is the complex frequency response at

the ith important point. The vector ‘1 is the position of the ith

important point relative to the c.g. of the support structure; it is



l6

expressed in local support structure co-ordinates. The magnitude of the

translational vibration at the ith important point is given by the

following equation:

)1/2

* 2 * 2
Si - [ Isixl + Is I (23)

1?

Once the vibration at points of importance have been defined, the

previously defined objective function P(g) can be used to optimize the

mount parameters for the test case. The optimization is performed by a

program called PVIP, an acronym for Planar Vibration Isolation Program.

The program first reads in the various quantities necessary to calculate

the objective function. These include the inertial and stiffness

properties of the test case, the excitation, the design change

normalizing factors, the important points, and the objective weighting

factors. With this information, the minimization of the objective

function is performed by the IMSL subroutine ZXMIN [2]. The objective

function which is evaluated can use either of the two dynamic response

objectives, the objective based on vibration at important points or the

objective based on the system's natural frequencies. The resulting

optimal design is output along with the initial design. The program

also plots the vibration at important points versus excitation

frequency. Other capabilities of the program include the plotting of

two-dimensional design spaces and the calculation of undamped

eigenvalues and eigenvectors.

For the test case, there are a total of ten design parameters

which can be optimized. A partial optimization can be performed in

which eight of the parameters are held constant and the remaining two
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parameters are optimized. Results from a partial optimization are

useful to visualize the design space.



RESULTS

Two partial optimizations are performed with different excitations

and design parameters. In the first optimization, the optimal axial

stiffness for the two mounts is found. The important point in the

support structure is defined to be .25 meters to the right of the center

of gravity of the support structure. The system is excited by a 30.0

newton horizontal force acting on the upper body. The excitation is

most likely to occur at 8.0 Hz, with a 2.0 Hz band of uncertainty. The

form of G(w) is shown in Figure l with we, ml, and uh defined as 8.0,

7.0, and 9.0 Hz, respectively. The results of this optimization using

both the frequency response objective and the transmissibility objective

are shown in Table 3.

The values of the frequency response objective and the

transmissibility objective over the design space are shown in Figures 5

and 6. The apex of the inverted pyramid represents the initial design,

the apex of the upright pyramid the optimal design. The captions above

the plots define the quantity plotted along each of axis. The numbers

enclosed in parentheses define the range of values which appear on the

plot for each quantity. The design space of the frequency response

objective appears smooth, a condition necessary for convergence of the

optimization. In both plots it appears that the optimization has

converged to a local minimum. Both types of objectives reveal a ridge

which arcs through the design space. This ridge represents those

18
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Table 3 Optimal Axial Stiffness for the Mounts

Initial Axial Optimal Axial Normalizing Normalized

Stiffne§s_inzu1 Stiffness_inzul Easteri_fl__ Qhense____

Frequency

Response

Objective 5 5 6 _1

Mount #1 5.00x10 1.57x10 2.00x10 -1.7lx10

Mount #2 5.00x105 4.68x105 2.00x106 -1.61x10'2

Transmis-

sibility

Objective 5 5 6 _2

Mount #1 5.00x10 3.90x10 2.00x10 ~5.Slx10

Mount #2 5.00x105 3.94x105 2.00x106 -s.29x10‘2
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X: MOUNT #1 AXIAL STIFFNESS, N/M ( RANGES FROM 62500 TO 937500 )

Y: MOUNT #2 AXIAL STIFFNESS, N/M ( RANGES FROM 62500 TO 937500 )

Z: FREQUENCY RESPONSE OBJECTIVE ( RANGES FROM .0437 TO 1.08 )

   
  

 

  

  

  

  

1 1V?“ “two 1

v 3:«2’;e:€“§*‘$:-‘e’ v' a
. J'A'b'é‘. v. 0% *’ v ..\‘A.t

. r ',;.,o-,":M,a'9 «- .

II;3»:::9.:t;e>.é-zsssg?aAft.
‘ ‘3’" ' ' V “ '4' ’0

B

Kl
s.“

   

     

     

   

Figure 5 Design Space for Axial Stiffness Optimization Using the

Frequency Response Objective

X: MOUNT #1 AXIAL STIFFNESS, N/M ( RANGES FROM 62500 TO 937500 )

Y: MOUNT #2 AXIAL STIFFNESS. N/M ( RANGES FROM 62500 TO 937500 )

Z: TRANSMISSIBILITY OBJECTIVE ( RANGES FROM .00614 TO 1.05 )
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Transmissibility Objective
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Figure 7 Support Structure Vibration for Optimal Axial Stiffness Found

Using the Frequency Response Objective
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designs which have a natural frequency at 8.0 Hz. Both objectives

appear to be sensitive to shifts in the natural frequency. For the

frequency response objective, this sensitivity to natural frequency

extends over a wider range of design parameters, as evidenced by the

wider, more gradual ridge. This characteristic of the frequency

response objective is responsible for the differences between the two

optimal designs under these conditions.

The definition of the frequency response objective accounts for

the differences between the two Optimal designs, as shown in Figures 7

and 8. These figures show the effects of the optimization on the

vibration at the important point in the support structure. A resonant

peak occurs at 7.8 Hz for the initial design. The optimal design as

found by both types of objectives shifts the resonant peak to a lower

frequency. The transmissibility objective moves the peak to 7.0 Hz,

just outside the range of excitation. The frequency response objective

moves the peak to 5.4 Hz, not only driving the resonant peak out of the

range of excitation, but also minimizing the vibration of the support

structure within this range. The cost in terms of design changes is

higher for the frequency response objective (2.92x10'2) than for the

transmissibility objective (.58x10'2).

In the second optimization example, the optimal horizontal

position for the two mounts is found. The excitation and the important

point in the support structure are the same as in the axial stiffness

optimization, except that the system is excited by 30.0 newton vertical

force acting on the upper body. The results of this optimization for

both types of objectives are shown in Table 4.
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Table 4 Optimal Horizontal Position for the Mounts

Initial Hor. Optimal Hor. Normalizing Normalized

Eogigign (M2 Position (u) Eggtgz, E Chang;

Frequency

Response

Objective _1 _1 -1 _4

Mount #1 -4.00x10 -4.00x10 7.50x10 -5.60x10

Mount #2 -2.50x10'1 -2.50:.:10'1 7.50::10‘l -s.34x10’4

Transmis-

sibility

Objective _1 -1 -1 _2

Mount #1 -4.00x10 -3.9lx10 7.50x10 1.16x10

Mount #2 -2.50x10‘1 -2.58x10'1 7.50x10'1 -1.13x10‘2



Transmissibility Objective

Figure 10 Design Space for Horizontal Position Optimization Using the
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The design space for both types of objectives is shown in Figures

9 and 10. For both objectives, a ridge arcs through the design space.

As in the stiffness optimization, this ridge represents those designs

with a natural frequency of 8.0 Hz. Again, both objectives show a

sensitivity to shifts in the natural frequency. However, the frequency

response objective has a gap in the ridge that the transmissibility

objective does not have. This is because the frequency response

objective is not only sensitive to the frequency of the resonant peak,.

but also to the mode shape. The gap presents a design possibility that

the unbroken ridge of the transmissibility objective does not present.

Table 4 shows that the nominal and optimal mount horizontal

position are the same for the frequency response objective. No design

changes need to be made to get the optimal dynamic response. The

excitation frequency and a natural frequency of the nominal design

almost coincide, yet Figure 11 shows that a resonant peak does not

occur. The mode is not excited because the excitation is orthogonal to

the mode shape. The frequency response objective can detect this

orthogonality condition and that is why no change is made to the design.

The transmissibility objective indicates that the nominal design

is very undesirable from the standpoint of dynamic response. Because

the transmissibility objective simply compares the excitation frequency

to the system's natural frequencies, it cannot detect the ortogonality

condition which exists between excitation and mode shape. Guided by the

transmissibility objective, one would make unneccessary design changes

and therefore incur additional costs.



CONCLUSIONS

The results indicate that the frequency response objective is

valuable for finding the mount design which best isolates vibrations in

a system. The objective function is smooth over the design space,

allowing the optimization to converge to a local minimum. The test case

showed that by minimizing the frequency response objective, the

vibration at important points is minimized over a range of excitation

frequencies.

The test case showed that, unlike the transmissibility objective,

the frequency response objective is sensitive to changes in the mode

shapes of a system. This was demonstrated in the test case when the

frequency response objective made no changes to a design which had a

natural frequency very close to the excitation frequency. The design

was not altered because the corresponding mode shape was orthogonal to

the excitation, and therefore a resonant peak did not occur. The

transmissibility objective, on the other hand, made unneccessary changes

to the design which resulted in increased costs.

It has been demonstrated that the frequency response objective is

sensitive to mode shape changes and that the excitation of modes can be

avoided by altering (or in the test case, leaving unaltered) the mode

shapes. The test case should be generalized to the three-dimensional

27



28

case and the degrees of freedom of the support structure model

increased. This generalized case should then be used to study the

altering of modes so that important points in the support structure are

nodes. Thus even though the mode is excited, the vibration at important

points is still kept to a minimum.

The frequency response objective required more computations than

the transmissibility objective. Ways of decreasing the number of

computations should be also be explored.
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APPENDIX A

EQUATIONS OF MOTION

The equations of motion for the planar test case are derived by

applying Newton's second law to a rigid body restricted to planar

motion:

Fx - mx (A.1)

F - " A.2ymy ()

Tz - Io (A.3)

The total force acting at the center of gravity of the body is given by

Fx and Fy' The total torque acting on the body is T2. The acceleration

at the center of gravity of the body is given by x and y. The angular

acceleration of the body is F. The mass of the body is m and the mass

moment of inertia of the body is I.

Figure A.1 shows two rigid bodies connected by compliant elements;

it also shows the forces exerted on the upper body. In general, an

external exciting force and torque act on a body at its center of

gravity. In addition, compliant element forces also act on a body at

the compliant element attachment points.

A.1



A.2
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.Figure A.1 Forces Exerted On a Rigid Body



A.3

A compliant element force can be moved to the center of gravity by

adding a compensating torque. For a force in the x direction, the

compensating torque is 'dyifxi' For a force in the y direction, the

compensating torque is dxifyi‘ Newton's law can then be re-written as

follows:

q .0

r + 2 trim, - [mm (AA)
-1

or
.

o. q

f - [mlt - E [P If (A.5)
i-l i i

where

l 0 0

[Pi] - 0 l 0 (A.6)

-dyi xi 1

dxi

gi- dyi (A.7)

0

m 0 0

[m] - 0 m 0 (A.8)



Figures 3 and 4.
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xi

fi - fyi

Tzi

the rigid body.

(A.9)

(A.10)

(A.11)

All vectors in equation A.5 are expressed in the local co-ordinates of

The compliant element model used for the test case is shown in

element is as follows:

£1 - [kilAKi

kxi

[k1] - 0 kyi 0

The force/deformation relationship for a compliant

(A.12)

(A.13)



xi *1

Afii - Ki ' L1 - Yi ' yi (A.14)

9i oi

The vector f1 has the same meaning as in Equation A.10 except that it is

expressed in compliant element co-ordinates instead of in rigid body co-

ordinates. All vectors in equation A.12 are expressed in compliant

element co-ordinates.

The displacement at any point in a rigid body can be found through

a transformation of the displacement at the c.g. of the rigid body. The

displacement at a compliant element attachment point is as follows:

31 - [PilTK (A.15)

where

l 0 -dyi

[P1JT - 0 1 axi (A.16)

O 0 1

The vector 31 has the same meaning as in Equation A.14 except it is

expressed in rigid body co-ordinates.

A vector expressed in one co-ordinate system can be expressed in

another co-ordinate system by multiplying the vector by a rotation

matrix as follows:

2“ - [R123 (A.17)



1

Aai - ai - a1 - yi - Y1 (A.14)

9i 91

The vector {1 has the same meaning as in Equation A.10 except that it is

expressed in compliant element co-ordinates instead of in rigid body co-

ordinates. All vectors in equation A.12 are expressed in compliant

element co-ordinates.

The displacement at any point in a rigid body can be found through

a transformation of the displacement at the c.g. of the rigid body. The

displacement at a compliant element attachment point is as follows:

a, - [PilTr (A.15>

where

1 0 «1y1

[Pi1T - 0 1 a.x11 (A.16)

0 0 1

The vector Ki has the same meaning as in Equation A.14 except it is

expressed in rigid body co-ordinates.

A vector expressed in one co-ordinate system can be expressed in

another co-ordinate system by multiplying the vector by a rotation

matrix as follows:

2“ - [313? (A.17>



A.6

where

cos¢ -sin¢ 0

[R] - sin¢ cos¢ O (A.18)

O 0 l

The vector 3“ is any general vector expressed in the a co-ordinate

system and the vector 25 is the same vector expressed in the fi

co-ordinate system. The angle ¢ is the amount by which the 6

co-ordinate system is rotated from the a co-ordinate system. It can be

easily shown that the inverse rotation is as follows:

f-[MES (Am)

The following result can be obtained by applying the appropriate

rotation matrices and by combining Equations A.5, A.12, and A.15 .

q T r
r-IMx+fJnnnnnnn1mg t

-§ nimiwimuhrfi' mzm
1-1 1 1 1 1 13 -

where

cos¢i -sin¢i 0

[R1] - sin¢i cos¢i 0 (A.21)



A.7

cosoi -sin¢i 0

[Ri] - sinoi cosoi 0 (A.22)

0 0 1

1 0 0

[Pi] - o 1 0 (11.23)

'dyi did 1

The rotation matrix [R1] transforms a vector expressed in the ith

compliant element co-ordinates to a vector expressed in the body

co-ordinates. The angle 61 is the amount by which the co-ordinate

system of the ith compliant element is rotated from the co-ordinate

system of the body. The vector 3' is the displacement of the secondary

rigid body attached to the ith compliant element. A prime mark is used

to indicate those quantities which are associated with the secondary

body attached to the ith compliant element.

For the planar test case, two rigid bodies are present. One of

the rigid bodies represents the support structure, the other represents

the externally excited body. The two rigid bodies are connected by two

compliant mounts. Additionally, the support structure is connected to a

stationary reference frame through two compliant elements. Newton’s

second law in the form of equation A.20 can be applied to each of the

rigid bodies:

sh - [mbi‘tb + [klitb - [kzitf (A.20

o - unfitf - [kleilb + [k31tf (A.2s>



A.8

where

  

2

[k1] ' f_1[Pbm1][Rbm1][km1][Rbm1]T[Pbm1]T ] (A'Zé)

[2 T 1:-
[k2] - 1 f_1[Pbmi][Rbmi][kmi][Rfmi] [mei] (A'27)

. 2 r r -

[k3] ' f_1[P££1][R££1][k£1][Rffil [Pffi]

2 r T

+ 2_1[mei][Rfmi][kmi][Rfmi] [me1] (A'Zg)

The subcripts used in these equations come from Figure 1.

f - support structure body

b - excited body

fi - support structure compliant element

mi - mount compliant element

bmi - excited body / mount compliant element

fmi - support structure body / mount compliant element

ffi - support structure body / support structure compliant element

Analagous derivations are used to obtain structural and viscous

damping matrices. When damping forces are included in equations A.24

and A.25, the following equation results:

[MIX + [C155 + [K123 + ilDla - t (A-29)



where

A.9

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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APPPENDIX B

INSTRUCTIONS FOR RUNNING THE PVIP PROGRAM

The planar vibration isolation program finds the optimal mount

parameters for the planar test case shown in Figure 2, page 10. A

complete list of the program's capabilities is as follows:

1)

2)

3)

4)

5)

6)

Reads in the test case data and formulates the mass, damping,

and stiffness matrices.

Calculates the undamped eigenvalues and eigenvectors.

Optimizes the mount design.

Searches the design space for the global minimum of the

objective function.

Plots the weighted summation of the vibration at important

points versus the excitation frequency.

Plots the objective function versus two design parameters.

The PVIP program first displays a primary menu. The four items on

the primary menu are as follows:

1)

2)

3)

4)

Read in raw data

Optimize the mounts

Calculate the eigenvalues/eigenvectors

Exit

The first option in the primary menu, reading in raw data, must be

selected before options 2 and 3 in the menu are selected. Upon

B.1



B.2

selecting option 1, the user is prompted for the names of the files

which define the test case data. Two data files are used to define the

test case data. The first of these files defines the data for the

excited upper body and the mount compliant elements. Figure 3.1 shows

the template which should be used to create this file. The second of

these files defines the data for the support structure body and support

structure compliant elements. Figure B.2 shows the template which

should be used to create this file.

Once the raw data for the test case has been input, option 2 or 3

in the primary menu can be selected. If option 2 is selected, the

global mass, stiffness, and damping matrices are calculated for the test

case, as are the undamped eigenvalues and eigenvectors. The program

creates an output file called T_EIGER which contains these results.

The third option in the primary menu, optimizing the mount design,

serves as the starting point for the last four of the listed features.

When this option is selected, the user is first prompted for data common

to all four of the features:

1) Type of penalty?

2) Optimization data file name?

3) Number of significant digits to which design is to be found?

4) Maximum number of optimization iterations?

The first question refers to the type of dynamic response objective used

in the optimization or plotted over the design space. The user can

choose either the frequency response based objective function or the

natural frequency based objective function. Next the name of the file

which contains the information necessary to perform an optimization or

to generate a plot is specified. The template which should be used to



B.3

create this file is shown in Figure B.3 . Only mount parameters with

non-zero normalization factors (E factors) will be optimized or plotted.

If a plot is to be generated, exactly two of the mount parameters should

have non-zero normalization factors. After the optimization data file

name is specified, the convergence criteria for the optimization must be

given. The optimization terminates when the specified number of

significant digits is achieved for each of the optimized parameters or

when the number of optimization iterations exceeds the specified number.

These quantities do not enter into the plotting of the objective

function over the design space. Once the convergence criteria has been

specified, either of the following can be performed: a search for the

global optimum over the design space, a plot of the objective function

over the design space, or a simple optimization.



B.4

MOUNT AND UPPER BODY DATA FILE

MASS MATRIX

30.0 0.0 0.0

0.0 30.0 0.0

0.0 0.0 1.0

POSITION OF RIGID BODY C.G.

-.325 .27 0.0

ORIENTATION OF RIGID BODY

0.0

NUMBER OF MOUNTS

2

MOUNT NO. 1

STIFFNESS

650000.0 0.0 0.0

0.0 SOOOO0.0 0.0

0.0 0.0 0.0

VISCOUS DAMPING

650.0 0.0 0

0.0 500.0 0

0.0 0.0 0.0

STRUCTURAL DAMPING

0.0 0.0 0.0

0.0 0.0 O O

0.0 0.0 0 0

MOUNT POSITION

-.40 .07 0.0

MOUNT ORIENTATION

0.0

MOUNT NO. 2

STIFFNESS

6SOOO0.0 0.0 0.0

0.0 500000.0 0.0

0.0 0.0 0.0

VISCOUS DAMPING

650.0 0.0 0.0

0.0 500.0 0.0

0.0 0.0 0.0

STRUCTURAL DAMPING

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

MOUNT POSITION

-.25 .07 0.0

MOUNT ORIENTATION

0.0

Figure 3.1 Data File of Mount Compliant Element Parameters and Upper

Body Parameters



B.5

SUPPORT STRUCTURE DATA FILE

MASS MATRIX

60.0 0.0 0.0

0.0 60.0 0.0

0.0 0.0 15.0

NUMBER OF SUPPORTS

2

SUPPORT NO. 1

STIFFNESS

19000O0.0 0.0 0.0

0.0 12000000.0 0.0

0.0 0.0 0.0

VISCOUS DAMPING

1900. 0.0 0.0

0.0 12000. 0.0

0.0 0.0 0.0

STRUCTURAL DAMPING

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

SUPPORT POSITION

.56 0.0 0.0

SUPPORT NO. 2

STIFFNESS

l9000O0.0 0.0 0.0

0.0 12000000.0 0.0

0.0 0.0 0.0

VISCOUS DAMPING

1900. 0.0 0.0

0.0 12000. 0.0

0.0 0.0 0.0

STRUCTURAL DAMPING

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

SUPPORT POSITION

-.56 0.0 0.0

Figure B.2 Data File of Support Structure Compliant Element Parameters

and Support Structure Rigid Body Parameters



 

B.6

OPTIMIZATION DATA FILE

FREQUENCY RESPONSE PENALTY

WEIGHTING ON FREQUENCY RESPONSE

1.0

FORCING FUNCTION

MAGNITUDE

30.0 0.0 0.0

FILTER DATA

2

7.0 8.0 9.0 0.0 1.0 0.0

LOCATIONS AT WHICH FREQUENCY RESPONSE IS TO BE OPTIMIZED

NO OF LOCATIONS

1

LOCATION #1

POSITION

.25 0.0 0.0

WEIGHTING FACTOR

1.0

SIZE OF CHANGE PENALTY

WEIGHT ON SIZE OF CHANGE

1.0

NUMBER OF MOUNTS

2

MOUNT #1

MOUNT

2.0E6

0.0

0.0

MOUNT

.75

MOUNT

300.0

MOUNT #2

MOUNT

2.0E6

0.0

0.0

MOUNT

.75

MOUNT

300.0

Figure B.3

STIFFNESS

0.0 0.

2.0E6 O.

0.0 0.0

POSITION

.75 0.0

ORIENTATION

O

O

STIFFNESS

0.0 0

2.0E6 O

0.0 0.0

POSITION

.75 0.0

ORIENTATION

.0

.0

Data File of the Optimization Parameters
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SEARCH LIMIT DATA FILE

MOUNT #1

STIFFNESS

568750.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

POSITION

0.0 0.0 0.0

ORIENTATION

0.0

MOUNT #2

STIFFNESS

568750.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

POSITION

0.0 0.0 0.0

ORIENTATION

0.0

Figure B.4 Data File of Search Limits or Plotting Limits



SEARCHING FOR A GLOBAL MINIMUM

After the convergence data is input, the user is asked whether or

not a search for the global minimum is to be performed. If a search is

performed, the user is prompted for the name of the file containing the

range of design parameters over which the search is to be conducted.

The template which should be used to create this data file is shown in

Figure B.4 . The values specified in the search data file are added to

or subtracted from the nominal design parameter values to give the upper

and lower limits for the search.

In addition to the range of design parameter values, the number of

search starting points per design parameter must be specified. If r is

the number of design parameters and p is the number of starting points

per design parameter, pr is the number of optimizations performed.

Therefore, when performing a search, it is recommended that the maximum

number of optimization iterations be kept low.

When a search is performed, two output files are generated. The

first file, T_LOCMIN, lists the final value of the objective function

for each of the pr optimizations which are performed. The user should

look for the lowest values in the list and note the corresponding design

number. The other file, LMINDAT, contains the design parameters

for each design number listed in T_LOCMIN. After the search is

performed, the program returns to the primary menu.

B.8



PLOTTING THE OBJECTIVE FUNCTION OVER THE DESIGN SPACE

Initially, the procedure for generating plots of the objective

function over the design space are the same as for conducting a search

of the design space. After the convergence data is input, the user is

asked whether or not a search for the global minimum is to be performed.

For plotting of the design space, the user should reply "yes". The

range of design parameters over which the plot is to be generated must

then be defined. The user is prompted for the name of the file which

defines the plotting limits. The template which should be used to

create this file is shown in Figure B.4 . The values specified in this

data file are added to or subtracted from the nominal design parameter

values to give the upper and lower limits for the plot. At this point

the program asks the user if he wants to abort the search and plot

instead. After answering "yes", the following menu is displayed:

1) Draw

2) Save

3) Viewpoint

4) Optimum

5) Magnify

6) Title

7) Ensdat

8) Quit

A description of the menu items is given on the following page. Items

2-7 should be selected before the draw option is selected.

B.9



Draw:

Save:

Viewpoint :

Optimum :

Magnify :

Ensdat :

Quit :

B.1O

Draws a plot of the design space. The points to be

plotted can either be read in from a previously generated

file or can be generated using the defined objective

function. If the points are read in from an existing file,

the user will be prompted for the name of the file. The

program will then ask the user if he wishes to tack on the

currently defined size of change part of the objective

function. The user would only want to do this if the size

of change part of the objective function was not included

when the data file was generated. If the points to be

plotted are generated on the spot, the points can be saved

in a data file after they are generated. The user is

prompted for the name of the file in which he wishes to

save the data.

Saves the generated plot in a graphics file. The user is

prompted for the name of the graphics file.

Changes the point from which the generated plot is viewed.

The user is prompted for the two points which define the

new viewing vector.

Displays the inital and optimal points if an optimization

of the two design parameters has been performed. The

initial and optimal points must be saved when the

optimization is performed. The user will be promted for

the name of the file containing the initial and optimal

points.

Magnifies the plot to be generated. User is prompted for

the magnification factor (1-no mag).

Generates files that allow the design space to be displayed

on the Evans and Sutherland computer. An in-house program

called PLOTEM written by Steve Southward is used to

display the file. The advantage of plotting the design

space on the E & S is that different viewpoints are easily

obtained. The PLOTEM co-ordinate file generated is called

ENS.CORD while the PLOTEM sequence file is called ENS.SEQ .

Return to primary menu.



PERFORMING A SIMPLE OPTIMIZATION

After the convergence data is input, the user is asked whether or

not a search for the global minimum is to be performed. The user should

answer "no" to perform a simple optimization. The program will then ask

the user if the starting point of the optimization is to be read in from

a global minimum result file. If the user replies "yes", the program

will ask the user for the design number. This is simply the line number

which the user has selected from T_LOCMIN (see page B.6). If the user

replies "no", the starting point of the optimization defaults to the

nominal parameters. Once the optimization starting point is defined,

the program will ask the user if the initial (starting) point and

optimal point are to be saved for later plotting. If two parameters are

being optimized, a file which saves the initial and optimal points can

be generated. If the user wishes to generate such a file, he will be

asked for the name of the file in which the points are to be saved. If

more than two parameters are being optimized the user should answer

"no". At that point, the program will perform the optimization. Two

output files will be generated. One of the files, G_RESPONSE, will

contain a plot of the weighted sum of the vibration at important points

versus the excitation frequency. The other file, T_OPTIMIZ, will

contain the initial design, the optimal design, and the changes in the

design. After the optimization is performed, the program returns to the

primary menu.

B.11
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APPENDIX C

DOCUMENTATION FOR THE PVIP SOURCE CODEE

The subroutine calling tree for the PVIP program is shown in

Figure C.1 . Common block occurences for the program are shown in Table

C.1 . Descriptions of the routines employed in the PVIP program are

listed on pages C.3 through C.1l .

Table C.1 Common Block Occurences for the PVIP Program

0 ock subroutines

DSGN DRAWIT, GRAPH

EANDS DRAWIT, DR3, GRAPH, MV3

FRCE FRESP, PENALTY, RESPNTS

MDS EIGER, EQNS, FRESP, NODAMP

OPMl OPARAM, OPTIMIZ

OPM2 FUNCl, NATFPEN, OPTIMIZ, PENALTY, RESPNTS

OPM3 OPARAM, OPTIMIZ

PARCOM DRAWIT, GRAPH, OPTIMIZ

PENTYPE OPTIMIZ, PENALTY

RBDATAl EQNS, RAWDAT

RBDATA2 EQNS, OPARAM, OPTIMIZ, RAWDAT

SCALE OPARAM, OPTIMIZ
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Figure C.1 Subroutine Calling Tree for the PVIP Program
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SUBROUTINE ADDCPLX(SUM,REALMAT,IMAGMAT)

SUBROUTINE 'ADDCPLX' CONVERTS 2 REAL MATRICES INTO

A COMPLEX MATRIX. THIS COMPLEX MATRIX IS THEN ADDED

TO THE COMPLEX MATRIX 'SUM'. THE RESULT IS RETURNED

IN 'SUM'

CALLING ROUTINES:

IN-HOUSE ROUTINE CMMLT

SUBROUTINE 'CMMLT' CALCULATES THE PRODUCT OF 2 COMPLEX

MATRICES.

CALLING ROUTINES:

SUBROUTINE DR3(X,Y,Z)

SUBROUTINE 'DR3' PERFORMS A 3-D DRAW AND WRITES THE

NECESSARY LINES TO THE ENS DATA FILES IF THE ENS FLAG IS ON.

CALLING ROUTINES:

DRAWIT

SYMBOL

SUBROUTINE DRAWIT(ZMIN,ZMAX)

SUBROUTINE 'DRAWIT' DRAWS THE DESIGN SURFACE GENERATED

IN THE ROUTINE 'GRAPH'. IT ALSO GENERATES CO-ORDINATE AND

SEQUENCE FILES FOR THE EVANS & SUTHERLAND PROGRAM 'PLOTEM'.

THE ENS OPTION IN 'GRAPH' MUST BE SPECIFIED FOR THIS

FUNCTION TO BE PERFORMED. THIS ROUTINE ALSO GENERATES

SYMBOLS TO SHOW WHERE THE INITIAL AND OPTIMAL DESIGN ARE

LOCATED. THE OPTIMAL OPTION MUST BE SPECIFIED IN 'GRAPH'

FOR THIS FUNCTION TO BE PERFORMED.

CALLING ROUTINES:
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SUBROUTINE EIGER

SUBROUTINE 'EIGER' CALCULATES THE EIGENVALUES AND

EIGENVECTORS FOR THE RIGID BODY VIBRATION ISOLATION

PROGRAM. THE RESULTS ARE WRITTEN TO A FILE CALLED

'T_EIGER'.

CALLING ROUTINES:

PVIPDRV

IMSL ROUTINE EIGZF

SUBROUTINE 'arczr' FINDS THE EIGENVALUES AND EIGENVECTORS

FOR THE FOLLOWING EIGENVALUE PROBLEM: [A]; - A[B]x - 0 .

[A] AND [31 ARE REAL NXN MATRICES.

CALLING ROUTINES:

SUBROUTINE EQNS

SUBROUTINE 'EQNS' CALCULATES THE GLOBAL MASS, DAMPING

AND STIFFNESS MATRICES.

CALLING ROUTINES:

EIGER

RESPNTS

PENALTY

SUBROUTINE FRESP(W,Z)

SUBROUTINE 'FRESP' CALCULATES THE FREQUENCY RESPONSE OF

THE PLANAR 6 D.O.F. ISOLATION PROBLEM.

CALLING ROUTINES:
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FUNCTION FUNC1(IFILT,W)

FUNCTION 'FUNCT' FINDS THE RESPONSE AT THE SPECIFIED POINTS

OF CONCERN IN THE VIBRATIONAL SYSTEM. IT THEN FINDS THE

NORM AT THESE POINTS AND WEIGHTS THEM AS SPECIFIED. THE SUM

OF THESE WEIGHTED NORMS IS RETURNED.

CALLING ROUTINES:

RESPNTS

GAUSS

SUBROUTINE GAUSS(XL,XH,NINC,IORDER,FUNCT,SUM,IERR)

SUBROUTINE 'GAUSS' NUMERICALLY INTEGRATES A FUNCTION USING

GAUSSIAN QUADRATURE. THE FUNCTION TO BE INTEGRATED IS

DEFINED BY THE USER IN 'FUNCT'. THE ORDER OF THE POLYNOMIAL

APPROXIMATING THE FUNCTION CAN BE SPECIFIED BY THE VALUE OF

'IORDER'. ONLY 3RD AND 5TH ORDER POLYNOMIALS CAN BE

USED, OR ELSE THE ERROR FLAG (IERR) IS SET.

CALLING ROUTINES:

SUBROUTINE GRAPH

SUBROUTINE 'GRAPH' DRAWS 3-D PLOTS. VARIATIONS IN A PAIR

OF DESIGN PARAMETERS ARE PLOTTED ALONG TWO OF THE AXES, AND

THE CORRESPONDING VARIATION IN THE PENALTY FUNCTION IS

PLOTTED ALONG THE THIRD AXIS. THE RANGE OF DESIGN PARAMETER

VARIATIONS IS READ IN FROM A FILE WHILE IN THE ROUTINE

'OPTIMIZ'. THE ROUTINE 'OPTIMIZ' PASSES THESE LIMITS TO

'GRAPH' THROUGH THE COMMON ARRAY 'PNT'. THE POINTS

COMPRISING THE PLOT CAN EITHER BE GENERATED OR READ IN FROM

A FILE. IF THE POINTS ARE GENERATED, AN OPTION TO SAVE THE

THE POINTS FOR LATER PLOTTING IS AVAILABLE. THE ROUTINE

ALSO ALLOWS THE MAGNIFICATION AND THE VIEWPOINT OF THE PLOT

TO BE CHANGED. THE INITIAL AND OPTIMAL DESIGN POINTS CAN

ALSO BE DISPLAYED, ASSUMING THAT AN OPTIMIZATION WAS

PERFORMED SOLELY WITH RESPECT TO THE PLOTTED DESIGN

PARAMETERS. LASTLY, THE ROUTINE CAN GENERATE FILES

COMPATIBLE WITH THE EVANS AND SUTHERLAND PROGRAM 'PLOTEM'.

CALLING ROUTINES:

OPTIMIZ
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SUBROUTINE INTRUP(IVAR)

SUBROUTINE 'INTRUP' SETS IVARFI IF TTY$IN FINDS THAT INPUT

BUFFER HAS HAD INPUT FROM KEYBOARD, OTHERWISE IVAR-O.

CISSUE CLEARS THE INPUT BUFFER. MUST LOAD DYNTLIB FOR

TTY$IN AND CISSUE.

CALLING ROUTINES:

IN-HOUSE ROUTINE MMLT

SUBROUTINE 'MMLT' CALCULATES THE PRODUCT OF 2 REAL MATRICES

CALLING ROUTINES:

IN-HOUSE ROUTINE MTRN

SUBROUTINE 'MTRN' CALCULATES THE TRANSPOSE OF A REAL MATRIX

CALLING ROUTINES:

SUBROUTINE MV3(X,Y,Z)

SUBROUTINE 'MV3' PERFORMS A 3-D MOVE AND WRITES THE

NECESSARY LINES TO THE ENS DATA FILES IF THE ENS FLAG IS ON.

CALLING ROUTINES:

DRAWIT

SYMBOL

SUBROUTINE NATFPEN(FPEN)

SUBROUTINE 'NATFPEN' CALCULATES THE PENALTY DUE TO A

NATURAL FREQUENCY OF THE SYSTEM LYING WITHIN THE

PENALIZED FREQUENCY BAND.

CALLING ROUTINES:
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SUBROUTINE NODAMP(NF,RZ)

SUBROUTINE 'NODAMP' CALCULATES THE UNDAMPED NATURAL

FREQUENCIES OF THE SYSTEM.

CALLING ROUTINES:

NATFPEN

MODRESP

SUBROUTINE OPARAM(IASSIGN,NPARAM,X,XA,XB,SPEN)

SUBROUTINE 'OPARAM' DETERMINES THE NUMBER OF SYSTEM

PARAMETERS TO BE OPTIMIZED (NPARAM). USING THE INITIAL

SYSTEM PARAMETER VALUES READ IN BY 'RAWDAT', IT INITIALIZES

THE PARAMETER LIST PASSED TO THE OPTIMIZING ROUTINE.

GONVERSELY, IT CAN TAKE A PARAMETER LIST PASSED FROM THE

OPTIMIZING ROUTINE AND CONVERT IT INTO CHANGES IN THE

SYSTEM PARAMETERS. IN ADDITION, THE SIZE OF CHANGE PART OF

THE PENALTY FUNCTION IS CALCULATED IN THIS ROUTINE. THE

FUNCTION PERFORMED BY THIS ROUTINE DEPENDS ON THE VALUE OF

'IASSIGN'.

CALLING ROUTINES:

OPTIMIZ

GRAPH

PENALTY

SUBROUTINE OPTIMIZ

SUBROUTINE 'OPTIM' OPTIMIZES THE MOUNT DESIGN WITH RESPECT

TO THE FREQUENCY RESPONSE OF SPECIFIED POINTS IN THE

REFERENCE SYSTEM. SYSTEM PARAMETERS MUST FIRST BE READ IN

BEFORE THIS ROUTINE CAN BE EXECUTED.

CALLLING ROUTINES:

PVIPDRV
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SUBROUTINE ORIGIN(V,OX,OY,ORIG)

SUBROUTINE 'ORIGIN' CALCULATES THE POSITION OF THE

CO-ORDINATE SYSTEM DRAWN ON 3-D PLOTS. THE COORDINATE

SYSTEM ALWAYS APPEARS IN THE SAME AREA OF THE SCREEN,

REGARDLESS OF CHANGES IN THE VIEWPOINT.

CALLING ROUTINES:

GRAPH

SUBROUTINE OUTCMAT(IUNIT,CMAT)

SUBROUTINE 'OUTCMAT' PRINTS OUT THE SPECIFIED COMPLEX

6*6 MATRIX.

CALLING ROUTINES:

SUBROUTINE OUTEIG(IUNIT,NF,RZ)

SUBROUTINE 'OUTEIG' PRINTS OUT EIGENVALUES AND THE

EIGENVECTORS ASSOCIATED WITH THE EIGENVALUES.

CALLING ROUTINES:

SUBROUTINE PENALTY(N,X,PEN)

SUBROUTINE 'PENALTY' FINDS THE PENALTY FOR A GIVEN MOUNT

DESIGN FOR THE VIBRATIONAL SYSTEM.

CALLING ROUTINES:

ZXMIN

GRAPH

PROGRAM PVIPDRV

PVIPDRV IS THE DRIVER FOR THE PLANAR VIBRATION ISOLATION

PROGRAM
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SUBROUTINE QUADRAT(QUAD,LMAT,CMAT,RMAT,I)

SUBROUTINE 'QUADRAT' TAKES 3 MATRICES LMAT, GMAT, RMAT,

AND COMPUTES THE PRODUCT LMAT*CMAT*RMAT. IT STORES THE

PRODUCT IN 'QUAD'.

CALLING ROUTINES:

EQNS

SUBROUTINE RAWDAT(IERR)

SUBROUTINE 'RAWDAT' READS IN DATA TO BE USED IN THE PLANAR

VIBRATION ISOLATION PROBLEM

CALLING ROUTINES:

PVIPDRV

SUBROUTINE RESPNTS(IPNTS,X,Y,FMAX)

SUBROUTINE 'RESPNTS' CALCULATES THE FREQUENCY RESPONSE

OF THE VIBRATIONAL SYSTEM.

CALLING ROUTINES:

OPTIMIZ

SUBROUTINE ROT(THETAZ,ROTMAT)

SUBROUTINE 'ROT' CALCULATES THE ROTATION MATRIX FOR A

ROTATION THETAZ ABOUT THE Z AXIS. THETAZ IS ASSUMED

TO BE IN DEGREES.

CALLING ROUTINES:

SUBROUTINE SYMBOL(P1,P2)

SUBROUTINE 'SYMBOL' DRAWS THE SYMBOLS WHICH POINT TO THE

INITIAL AND OPTIMAL DESIGN POINTS.

CALLING ROUTINES:
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IMSL ROUTINE ZXMIN

SUBROUTINE 'ZXMIN' FINDS THE MINIMUM OF A FUNCTION OF

SEVERAL PARAMETERS. THE USER DEFINES THE FUNCTION AND

SUPPLIES THE STARTING POINT AND THE CONVERGENCE CRITERIA.

THE ROUTINE RETURNS THE SET OF PARAMETERS WHICH GIVES THE

MINIMUM VALUE OF THE FUNCTION.

CALLING ROUTINES:

OPTIMIZ

IMSL ROUTINE ZSRCH

SUBROUTINE 'ZSRCH' GENERATES A SET OF STARTING POINTS USED

IN SEARCHING FOR THE GLOBAL MINIMUM OF A MULTI-PARAMETER

FUNCTION. THE USER MUST SUPPLY THE LOWER AND UPPER LIMITS

OF EACH OF THE PARAMETERS AND THE TOTAL NUMBER OF STARTING

TO BE GENERATED.

CALLING ROUTINES:

OPTIMIZ
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