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ABSTRACT

MODEL BUILDING INCORPORATING DISCRIMINATION

BETWEEN RIVAL MATHEMATICAL MODELS IN HEAT TRANSFER

BY

Gerald James Van Fossen, Jr.

The primary concern of this thesis is the develOp-

ment of mathematical models from experimental data in

heat transfer. A model building procedure is prOposed

which enables an experimenter to deve10p several mechanis-

tic, mathematical models that describe a complex phenomenon.

A discrimination criterion is incorporated in the model

building procedure to help an experimenter decide which

of several rival models describes the phenomenon best.

The model building procedure involves performing Optimum

experiments to estimate the parameters involved in prOposed

models. A criterion for finding optimum experiments for

parameter estimation is discussed. Optimum experimental

conditions for estimating the parameters involved in a math-

ematical model that describes the temperature distribution

in a melting solid are found.

To illustrate the procedure proposed for model build-

ing including discrimination, a mathematical model is found

for the specific case of a melting solid. An Optimum,

transient experiment for parameter estimation is performed

on a finite, one-dimensional, melting, low temperature
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Gerald James Van Fossen, Jr.

alloy. The temperature data from this experiment is used

to find a mathematical model for the melting solid. The

proposed model building procedure is generally applicable

to experiments for which, a) large amounts of data are

generated for each experiment, b) the model is unknown,

c) the model can be solved numerically with reasonable

expenditures of computer time and d) optimum experiments

can be designed and run.
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CHAPTER I

DESCRIPTION OF THE PROBLEM

1.1 Introduction

One of the most fundamental problems in science is

that of obtaining mathematical models from observations.

The basic objective of this thesis is to propose and

demonstrate a procedure that can be used to develop an

adequate mathematical model for certain types of physical

PI‘Ocesses. The procedure is successfully applied to the

Specific case of finding a mathematical model from experi-

In‘E‘I‘I‘t:al data for a melting, one-dimensional solid which is

heated at one surface and insulated at the other. This re-

presents a complex heat transfer process. The proposed

pr"Deedure could be used to find an adequate mathematical

InOC1621 for any process where one can obtain large amounts of

data from a single transient experiment at a relatively low

cost . The individual parts of the prOposed procedure are

not new; however, the idea of using optimum experiments and

discrimination coupled with actual heat transfer data for

find ing a mathematical model is original.

The prOposed process is called model building which

incOrporates discrimination between rival mathematical

m . .

0C‘eels, these terms are defined in section 1.2 of this
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chapter. Model building procedures have been suggested

which do not include discrimination. Section 1.3 contains

some examples of how the prOposed procedure would be of use

in heat transfer. Section 1.4 discusses the importance of

parameter estimation in model building. A review of liter-

ature concerned with model building between rival math-

ematical models is contained in section 1.5. Section 1.6

describes how the existing methods for model building and

discrimination can be applied to heat transfer. The pro-

posed procedure for developing an adequate mathematical.

model is given in section 1.? along with a flow chart that

outlines the proposed procedure.

1. 2 Definition of model building and discrimination between

rival mathematical models.

Model Building

Model building is the complete procedure which en-

ables an experimenter to develop a "best" model for the

pro cess. It is not simply the derivation of mathematical

models from conservation principles. All the models in this

thesis can be so derived. The experimenter may; however,

be able to derive several of these models without knowing

Which is the correct one.

In the model building procedure the simplest reason-

8L"ale "first cut" model is proposed and fitted to the experi-

mental data (i.e., the parameters in the model are estimated).

1‘ «e quality of fit is then examined to learn the nature of

the deficiencies in the model. based on this knowledge,
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a modified model is proposed to better describe the process.

Discrimination

A very important part of model building is called

discrimination. Discrimination involves the design of ex-

periments so that differences between the predicted responses

of two or more models is the greatest. By using such ex-

periments along with a decision-making criteria, one can

better decide which is the correct model. Various criteria

are presented in section 1.5.

An example of the need for design of experiments for

discrimination has been given by chemical engineers (l). A

substance "A" reacts in the presence of a catalyst to form

substance "B" which in turn forms "C". One possible model

for this is given by

A-O-B‘C [l . 2 . 1]

Another possible model is

4‘320 I [i . 2 . 2]

The concentration of "B" versus reaction time is shown in

Figure 1.2.1. If the reaction is observed only until time

tl, no discrimination can be accomplished because the pre-

dicted responses and the data are essentially the same until

t1. All the parameters in the model represented by equation

[1.2.2] cannot be determined accurately if the reaction

is observed only until time t1, because there has been no

Significant production of "B" from "C" for Ofitétl. If the
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reaction is allowed to proceed until time t2, we see that

the model of equation [1.2.2] is the better of the two

proposed.

1.3 Possible application of model building.

Model building, including discrimination, can be

applied to many areas in heat transfer. For example, a

number of models have been proposed for ablating solids.

One application to this area is to determine if significant

radiant heat transfer exists within the ablating material

and, if present, should be included in the model. Another

application relates to the work of Pfahl and Litchel (2).

They used an isothermal change of phase model to describe‘

the charring of cork but a competing and untested model

uses a chemical reaction to describe the charring process.

Model building, including discrimination, can be used in

any situation where the mathematical model is unknown or

needs to be improved.

1.4 Parameter estimation and its use in model building.

Parameter estimation is a discipline that provides

techniques for calculating many of the parameters in a math-

ematical model from a single complex experiment. Some

engineers use the terms nonlinear estimation, identification,

nonlinear regression and nonlinear least squares instead of

parameter estimation.
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The classical method of determining parameters

appearing in a relatively complex mathematical model is

to design several experiments, each of which is described

by a simple model involving one parameter. Thus if the

"complex" model contains two parameters, two separate ex-

periments would be conducted in order to find both para-

meters.

An example is linear heat conduction involving

two parameters, thermal conductivity and heat capacity.

If a steady state experiment is performed, only the

thermal conductivity is involved in the reduced math-

ematical model. If a transient experiment is performed

for a specimen with no temperature gradients, only the

heat capacity is involved in another reduced model.

In most cases such separate experiments would be

adequate, but there are materials which dry or otherwise

change during the prolonged tests uSually involved. When

these changes occur, a rapid transient experiment might

be possible that would permit the estimation (using

parameter estimation) of the properties.
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1.4.1 Distinction between_parameters and properties

The distinction between parameters and properties

should be made clear. A property is a characteristic

quality of a system and may be a function of any of the

other variables in the problem. A parameter need not have

the physical significance of a property and it is not a

function of any other variable. A parameter may be con-

tained in the expression for a property; for example,in

the case of temperature dependent thermal conductivity

one may write

k(T) 2 k3 + kT [1.4.1]

where k(T) is the prOperty thermal conductivity and k8

and k are parameters.

1.4.2 Parameter estimation criterion

In testing a model's ability to describe a

physical phenomenon, the predicted response is compared

Ivith experimental data taken from the actual physical

saystem. In making this comparison, the parameters in the

nusdel can be estimated from the data if they are unknown.

A basic tool of parameter estimation is the minimi-

za13ion of a weighted sum of squared differences between the

measurements and predicted values from the mathematical
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model. (See Appendix B for a more complete description.)

The parameters in the model are varied until the combination

is found that minimizes the weighted sum of squares. The

ability of the digital computer to solve complex mathemati-

cal models has allowed parameter estimation to become more

widely used. Box and co-workers (3’4) have develOped the

method from a statistical viewpoint. Beck(5’6) was the first to

apply the method to finding parameters involved in a partial

differential equation in heat transfer. He used the method

to find thermal conductivity and heat capacity simultaneously

from a single transient experiment. Pfah1(7’8) used the

method to find seven parameters at once in charring cork.

1.4.3 Importance of optimum experiments in parameter estima-

tion.

It is important that parameter estimation experiments

be carefully planned in advance. The best or optimum ones

should be run in order to obtain the greatest accuracy. One

might think that experimentalists always do this. This is

not usually true in the sense meant here, however. One can

run the best experiment in terms of careful specimen prepara-

tion, placement of sensors, test procedure, and data aquisi-

tion and still have a poor experiment for simultaneously

estimating several parameters. It may be clear how to de-

sign an experiment for estimating a single parameter. It

is not obvious; however, how to design an Optimum experi-

ment when several parameters are to be estimated. Optimum

parameter estimation experiments are discussed further in



Chapter II.

l.§iBackground of model building and discrimination in

other fields.

Model building is the name of the general procedure

that we are discussing. It has a number of components in-

cluding selecting optimum experimental designs, performing

the experiments, analyzing the data, etc. These are dis-

cussed as a whole in Section 1.7. An essential step in

model building is discrimination. It is so important a

step that there is a tendency to confuse discrimination

with the the entire process. Discrimination is only a part

of model building, but it is a crucial part in the proposed

procedure.

1.5.1 Model building

There is extensive literature on the mathematical

modeling of different phenomena. There are cases; however,

for which the usual continuum mechanics approach can produce

several competing models. Model building is needed to choose

the "best" one of these rival models. The model building

literature is much smaller than the mathematical modeling

literature.

Box and Hunter

Most of the model building work was done by chemical

engineers and chemists in cooperation with statisticians.

(9)
Box and Hunter proposed a method for use in model build-

ing. They suggested treating the estimated parameters in the
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model as observations and the controllable variables as in-

dependent variables. Controllable variables are the varia-

bles an experimenter is able to change or control. If the

model is correct, the estimated parameters should not change

as the settings of the controllable variables change, i.e.,

parameters should stay constant. Factorial design1 is used

to choose the setting of the controllable variables (the fac-

tors) and the parameters are estimated for each setting of

the factors. Statistical analysis is used to determine the

effect of the factors on the parameters thus giving the ex-

perimenter important clues as to how the model should be mod-

ified.

In another paper Box and Hunter(1) state "all infor-

mation relating to the possible inadequacy of a tentatively

entertained model is contained in the residuals". Residuals

are the difference between the measured response and the re-

sponse predicted by the model. Examination of plots of the

residuals can aid one in telling where improvements should be

made. Residuals should be plotted in any way that might shed

light on pertinent questions. Anscombesll) Anscombe and

Tukeyslz) and Draper and SmithSlB) in addition to Box and

Hunter, all recommend graphical examination of the residuals

to show deficiencies in the model.

1.5.2 Discrimination

Discrimination has several aspects. These include,

.__‘

lFactorial design is a statistical procedure that allows

one to determine efficiently the effect of the factors on

the response; see reference (10) page 122.
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a) the develOpment of a discrimination criterion, b) the use

of this criterion and c) the optimum design of experiments to

promote the discrimination. Parts a) and c) can be confused

because the optimum experiment design can involve a criterion

based upon the discrimination criterion.

Discrimination between rival mathematical models

is an area known to statisticians as hypothesis testing.

Work has been done by statisticians and engineers on both

the discrimination criterion and on designing the most

efficient experiment to accomplish the discrimination.

Hunter and Reiner

Hunter and Reiner(14) proposed a design scheme for

the case of two rival models. Their experimental design

consists of making n initial runs to estimate the parameters

in each model (n must be greater than the number of para-

meters in each model). The n+1St setting of the controlla-

ble variables is chosen so that the predicted responses of

the two models are farthest apart. The n+18t data point is

taken, the parameters estimated again, and the n+2nd setting

of the controllable variables determined in the same manner.

The procedure is thus sequential.

The discrimination is accomplished by making replicate

runs to get an estimate of the variance which is a measure of

the experimental error. The sum of squares of the residuals

compared to the variance in an F-test is the discrimination

criterion. An F-test is a statistical test used to guard

against making the wrong decision by comparing the residual

sum of squares with an estimate of experimental error.
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Roth

Roth(15) extended the experiment design criterion of

Hunter and Reiner to any number of rival models and used a

Bayesian approach for the discrimination. Roth defined

0 = lwgl)-w§i)uw§2)-w§
i)uw§3)-wgi)13 . ... [1.5.1]

where wgi) is the predicted response of model i with the vec-

tor of controllable variables set at Ej‘ Cij is a direct

measure of spread between the predicted responses. Roth

chose to select‘gj, the setting of the controllable variables,

to subject the current "best" model to the severest test; to

accomplish this he defined the utility function

Utgj) = EE:P(model 1)ocij [1.5.2]

1

where P(model i) is the probability or degree of belief in

model i. The experiment desigg procedure is to select the

‘53 that maximizes Ugéj).

Roth used Bayes' theorem to combine a prior probabil-

ity for each model and the likelihood function for each model

to find a posterior probability for each model; i.e.,

P(model i/data) = P(model i)-L(model i/data)/P(data)[l.5.3]

The maximization ofthua posterior probability is Roth's

discrimination criterion. P(model i/data) is the posterior

probability of model i or simply the degree of belief in

model i in light of the data; P(model i) is the prior proba-

bility for model i; L(model i/data) is the likelihood funct-

ion for model i which will be discussed shortly; and P(data)

is given by
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P(data) == §E1P(mode1 i)-L(model i/data) [1.5.4]

1

If the errors in the measurements are assumed in-

dependent and normally distributed with zero mean and con-

stant variance,CTg, the likelihood function can be expressed

as

N
N

L(model i/data) = 1 exp - 1 ii: (y -w )2

«is 2? u u

“=1 [1.5.5]

Where N is the number of measurements, yu are the measure-

ments and Wu are the predicted responses.

If no prior information is available P(model i)

can be set to l/m for all i where m is the number of rival

models. The decision of calling one model best is made

by comparing the magnitudes of the posterior probabilities

for different models. The posterior probability not only

Shelps choose between models but gives the probability of

eeach model in light of the data. This is also a sequential

procedure .

Box and Hill

The experiment design procedures of Hunter and

Resiner or Roth do not take into account the magnitude of

tile experimental error; thus, it could be possible for the

neaxt design point to be in a region where the confidence

regions for the predicted response for each model overlapped
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and no real discrimination could be accomplished. A con-

fidence region is a band around the predicted response from

a model where one has a certain degree of confidence that,

if the model is correct, measurements will fall within this

band.

(16) used the concept of entrOpy fromBox and Hill

communication theory to develop an experiment design pro-

cedure to correct this fault. EntrOpy can be defined as

m

s = - 275an: [1.5.6]

i=1

where m is the number of rival models and‘fl; is the prob-

ability associated with model i. The least possible

information regarding discrimination occurs when entrOpy

is maximum; it can be shown that this happens when

1ri = l/m [1.5.7]

for all i. The criterion of Box and Hill is‘then to

znaximize the expected change in entropy between input and

(output; that is, to perform the experiment which will cause

'the greatest change in entropy. An upper bound for the

eaxpected change in entropy was given by Box and Hill as

 

m m (C72+(72)

.122. . ..i'n'l 3'“’l cr2+cri)«r2+cr3)

i=1 j=i+l J

+ (yn(i)-y£j))2 1 + 1 [1,5,8]

 

(62+of)(oj+o§)
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"i , n-1 and Trj , n-l

i and 3 respectively after n-l runs have been performed,

are the prior probabilities of models

0'2 is the constant variance of the data, 0'1 and 05 are

(i)‘
the variances under models 1 and j respectively, and yn

and y(j) are the predicted responses from models 1 and j
n

th or next data point. This ex-

(i)_

n

to the criteria of both Hunter and Reiner and Roth; that is,

respectively for the n

pression contains the term (y yé'fl)2 which is similar

the next data point is taken at the setting of the control-

lable variables where the predicted responses are the

farthest apart. The Box and Hill criterion also includes

the variance of the data and of each model.

Hunter and Hill<l7> propose exactly the same

criterion but they use repeated runs to obtain an estimate

of the variance,<72. The discrimination criterion used by

Box and Hill is the same as that of Roth, i.e., the Bayesian

posterior probability for each model.

Meeter, Pirie, and Elot(18) compared the method of

Box and Hill with a somewhat similar method developed by

Chernoff(19). They favor the Chernoff procedure because

the Box and Hill criterion requires maximization of an

upper bound; it would seem more logical to maximize a lower

bound but this is not easily obtained. Results on several

test cases done by heeter, Pirie and Blot; however, show

the box and Hill procedure superior. Chernoff's criterion

was develOped assuming the cost of making measurements was

zero. This is not the case in most engineering problems

Where the cost of experiments is generally high.
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Hunter, Hill and Wichern

Hunter, Hill and Wichern<2o) presented a joint

design criterion for model discrimination and parameter es-

timation. Their experiment design criterion is to maximize

C = wlD + w2E [1.5.9]

with respect to the controllable variables. Here wl and w2

are non-negative weights, D is essentially the Box and Hill

criterion described above, and B is a parameter estimation

criterion. Initially wlD is made larger but as experiment-

ation progresses and one model begins to emerge superior

w2E begins to dominate. The discrimination criterion is

the Bayesian posterior probability for each model.

Atkinson

(21) gave a discrimination criterion whichAtkinson

is a statistical test for determining if there is any evi-

dence that the models give significantly different fits to

the data; in other words, it tests the hypothesis that all

the models are the same. The test statistic is

L?

~ 2 2

HF) (;?§§L [1.5.10]

”
(
3 I
F
‘

where N is the number of measurements, p is the number of

A

models, (YF)2 is defined by

A 2 A 2
(m = 2 (5,3,4) [l.5.lO(a)]



17

f‘is the model formed by regression using the observations

or measurements as the dependent variable and the predic-

tions from each model as the independent variables. ‘?

combines the predictions from all the models into a single

set of predictions that describe the data. (f§)2 is

defined by

N

~ 2 __ _~ 2
(m — Z (yj 1’) [151000)]

=1

with 3" defined by

N

Z (fij- ?)2 =1, i=1,2,...,p [l.5.lO(c)]

f is the predicted value from model i for data point 3.

13

X, is any constant. Thus 2" is equally distant from each

model. (Y?)2 is used as an estimate of error. The test

statistic is tested by an F-test with N-p and p-l degrees

of freedom to determine if there is any significant

difference in the way the models fit the data.

Atkinson does not consider.the problem of designing

experiments to make discrimination more efficient; his

method merely treats each model as a formula that is

supposed to represent some aspect of the data and tests to

see if they are different.
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Reilly

The ratio of likelihood functions was used by

Reilly(22) as his discrimination criterion. The likelihood

function can be defined in terms of the probability den-

sity function<23). Let f(X,§) be the joint probability

density function of the independent, random variables X

and parameters 3. Suppose that N observations are made on

1, and let (Y1,Y2,Y3,...,YN) be the observations; then the

function given by

L(Y1’Y2,Y3,...,YN:§) = f(Yl,g)f(YZ,§)f(Y3,g)...£(rN,§)

[1.5.11]

is called the likelihood function. A maximum likelihood

estimator §,is an estimator that maximizes the likelihood

function with respect to the parameters 2. If the errors

are independentznui gaussian with zero mean and constant

variance, maximum likelihood parameter estimates are the

same as those given by least squares.

For the purpose of comparing the relative plaus-

ibilities of two parameter vectors £1 and 22 it is conven—

ient_to compare their likelihoods by examining the ratio.

The likelihood ratio L(§flML(§é) is sometimes called the

odds ratio and is a direct measure of the relative plaus-

ibilities of 3 and 2 in light of the data. According to
1 2

Reilly, a likelihood ratio of 10 is ordinarily taken as

showing a real difference while a ratio of 100 shows strong

preference for one parameter over the other(22).
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To discriminate between two rival mathematical models,

Reilly suggests that we examine the ratio Ll(§l)/L2(§2)

where Ll(§l) and L2(£2) are maximum likelihood functions

for models 1 and 2 reSpectively. This gives a comparison

of models at their individual best.

1.6 Application to heat transfer.

All the methods described above with the exception

of the last two were developed for a different type of ex-

perimental technique than that used in our heat transfer

experiments. In chemical engineering an experiment to study

a reaction rate mechanism, for example, may consist of sev-

eral runs. A typical experimental run might be to start

with a known initial concentration of reactants; fix the

temperature, pressure, catlyst, etc. and let the reaction

proceed for a certain length of time. The reaction is then

stopped and the reactants analysed to find the concentrations

of reactant and product. Thus each run may contain only a

single data point, and several runs must usually be made

before one may estimate all the parameters in the proposed

model.

In transient heat transfer, however, it may be

possible to obtain all the necessary data from a single

run. The experiment might consist of heating a sample of

the "unknown" material and measuring the temperature as a

function of time for several locations on the sample. The

temperature measurements are usually obtained with thermo-

couples. Several thermocouples may be used which allows
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several locations at one time to be recorded. The signal

from each thermocouple may be recorded continuously or it

may be discretized at this point. A number of parameters

in the model are estimated from a single experiment.

The method for model building proposed by Box and

Hunter(l); i.e., treating the estimated parameters in the

model as observations, may be misleading in many cases in

heat transfer. It is demonstrated in Chapter II that if

the settings of the controllable variables are not chosen

carefully, the estimated parameters may be inaccurate or it

may not be possible to find them all simultaneously. There-

fore, this method is not recommended for model building in

heat transfer.

Many researchers recommend graphical examination of

(1’ 11’ 12’ 13) This seemsthe residuals for model building.

to be a most useful tool for model building. By plotting

the residuals against different variables one may learn

where deficiencies in the model exist and prOpose a new or

modified model that will correct them. This process will be

illustrated by example in Chapter IV.

In situations like the example of the reaction rate

study discussed in the beginning of this section, many ex-

periments are required to obtain the data. If one wishes to

discriminate between two or more models that are supposed to

describe the reaction mechanism, some method of conserving

(minimizing the number) experiments is needed. For this

I?eason the design strategies outlined in section 1.5 were

(ieveloped. All the experimental designs developed thus far
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are concerned with finding the setting of the controllable

variables at which to take the Egg: data point for best

discrimination, thus all the designs are sequential. In

many cases in heat transfer there are a relatively limited

number of controllable variables. Frequently all the data

necessary for discrimination can be obtained from a single

experiment; in such cases sequential designs are not needed.

ThefiBayesian approach used by Roth and also Box and

Hill allows prior knowledge or belief about each model to

enter the design criterion. The experimenter usually has no

prior preference for any one model initially, but as experie

mentation and sequential discrimination proceed concurrently

he may gain evidence that one or more models is superior to

the others. This evidence or belief is allowed to enter the

decision criterion. Without sequential experimentation, one

has no way to gain sufficient a priori knowledge to allow it

to enter the discrimination decision. While the Bayesian

approach is a very powerful tool, it will not be employed

here because of the difficulty of performing different se-

quential experiments.

On the other hand, both the method for discrimina-

tion proposed by Atkinson and the method of maximum likeli-

hood ratios described by Reilly seem to be directly appli-

cable here. Both these methods involve the residuals in some

manner. The method of Reilly is to be employed.

1.7 The proposed model building method.

The proposed model building procedure is illustrated
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in the flow diagram of Figure 1.7.1. If the experimenter

lacks sufficient knowledge about the process to propose a

complex model, it is recommended that a simple mechanistic

model be proposed for the process even though the model is

suspected to be deficient. This is block 1. of Figure 1.7.1.

in block 2. the Optimum experiment for parameter estimation

is found. Estimating the parameters utilizing data from

the optimum experiment will cause the model to describe

the process as adequately as it can. The optimum experi-

ment is then performed (block 3.) and the parameters esti-

mated from the data (block 4.). In block 5. the model and

the data plotted together are examined visually to try and

extract information about the model. The residuals should

be plotted against any pertinent variables and examined

visually. Valuable clues as to the nature of the defi-

ciencies in the model can be gained in this manner. This

is a very important step. In block 6. the experimenter

must decide if the model or models he has to this point in

the process are plausible or capable of describing the

features of the process he is interested in. There is no

formal criterion for this decision; it is left to the judge-

ment of the experimenter. If they are plausible, he pro-

ceeds to block 8. the discrimination stage; if they are not,

he procedes to block 7. In block 7. the experimenter must

evaluate the information he gained in block 5. and propose

a new or modified model based on this information. The

experimenter then proceeds back to block 2. and repeats

the process until he has one or more plausible models.
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Figure 1.7.1 Flow diagram of the prOposed model building

procedure.
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This procedure will be illustrated in Chapter IV.

In many cases the experimenter has some prior know-

ledge about the process. If enough information is available

to propose one or more mathematical models, then the build-

ing of competing models may be skipped entirely and one

may go on to discrimination. It is highly recommended that

the residuals be examined in any case; they contain all the

information about the "goodness of fit" of the models.

The next step after proposing new models is to

test them to determine which fits the data adequately.

This is the discrimination process (block 8. of Figure 1.7.1).

Three possible cases arise here: 1.) none of the models is

adequate, 2.) one of the models is adequate or 3.) more than

one of the models is adequate. Should Case 1.) occur, more

models should be developed. Case 2.) is the most desirable

case; if this should occur, the investigation can be con-

cluded. For Case 3.) two explanations are possible; either

one model is a special case of the other or the data is not

sufficiently accurate to allow discrimination. If the for-

mer is true, the experimenter should be the judge of which

model suits his purpose best based on other considerations.

If the latter is true, methods of improving the experiment

should be sought.

To improve discrimination the experimenter might

want to devise some special experiment to discriminate

between the models. As an example of this, suppose two

rival models that describe the temperature history of a

solid being heated are : l.) a model that has change of
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phase and 2.) a model that has a chemical reaction. Since

both models might describe the temperature equally well

during heating, the experimenter should devise another ex-

periment to discriminate. Change of phase is reversible;

that is, the specimen can melt during heating and solidify

during cooling. Thus for change of phase, the measured

temperatures should exhibit the same behavior while heating

or cooling. The chemical reaction is irreversible; that is,

the reaction occurs during heating but the reactants do not

return to their original state during cooling. Hence the

measured temperature for the chemical reaction should exhibit

considerably different behavior during cooling than it did

during heating. With this information the experimenter could

discriminate more effectively by performing an experiment

that involved both heating and cooling.

All statistical tests are based on comparing the re-

siduals with some measure of experimental error to determine

if the model is adequate in light of the data. The method

proposed by Atkinson does not require the experimenter to

supply an estimate of the experimental error. This method,

however, tests the hypothesis that all the models fit the

data equally well; one could just as well say it tests the

Ihypothesis that all the models fit the data equally poorly.

It provides no means to test how well the models fit the data

on an individual basis.

The likelihood ratio test requires the experimenter

‘to supply an estimate of the eXperimental error which

can sometimes be difficult to obtain. If a reasonable
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estimate of experimental error is available, this method

can be used effectively in discrimination since only the

ratio of likelihoods is of concern. The experimenter who

is familiar with his equipment can usually supply an esti-

mate of experimental error that is good enough for this

purpose. The alternative is to perform replicate runs to

obtain an estimate of variance. Although replication is

generally to be recommended, it will not be used in this

 

work.

The likelihood function for zero mean and gaussian

error is

L(mode1 i/data) = 1,52 EXP [-HX'EYY-J-(X‘Eg

(210 [det1!]ig

where I is the covariance matrix of the errors. For in-

dependent errors 3! reduces to a diagonal matrix with the

diagonal elements equal to the square of the variance. If

the variance is constant then equation [1.7.1] reduces to

[1.5.5] . For correlated errors ‘2: can be a full N x N

.matrix. Unfortunately the errors are correlated in a tran-

sient experiment involving temperature measurements when the

sampling rate is relatively high. This is the type of ex-

‘periment that we have.

We have no way to evaluate the elements of the co—

variance matrix; all we can do is provide an estimate of the

(nonstant variance (experimental error). When errors are

correlated it is known that (24.25)
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N

Z (ya—Wu)?» (i-m'yjlq-g) [1.7.2]

1u:

.1.
C,-2

Considering this we will define a new likelihood function

in an attempt to approximate the true value of the likeli-

hood function from [1.7.1] . Let the new likelihood function

N

. l 2
L(model 1/data) = EXP - E (y -w )

[: 2CT2N u u ]

u:

[1.7.3]

This is not the correct form of the likelihood function but

be

 

it is the best we can do at this time. Equation [1.7.3]

will be used in the likelihood ratio test to discriminate

between rival models.



CHAPTER II

OPTIMUM EXPERIMENTS FOR PARAMETER ESTIMATION

2.1 Introduction

An optimum experiment is defined as the experiment

which allows the parameters in a mathematical model to be

calculated with the greatest accuracy. The combination of

experimental conditions yielding predicted responses that

are most sensitive to changes in the parameters are usually

the optimim conditions. This will be demonstrated later.

If experiments are not carefully planned, the experimental

points may be so situated in the space of controllable

variables that the calculated parameters may not only be im-

precise but also highly correlated(l). Controllable vari—

ables are defined to be the variables the eXperimenter has

the ability to change; some examples. might be location of

sensors, maximum run time for transient experiments,

boundary conditions, and initial conditions. If parameters

are correlated for certain settings of the controllable

variables, they cannot be determined simultaneously.

Seinfeld(26) calls this condition the observability problem

while others call it the identifiability condition.

An example of an experiment with correlated para-

meters is a semi-infinite body heated by a constant heat flux

28
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F0, at the surface x = 0. Here the controllable variable

is the location, x, of the measurement. At the heated sur-

face the temperature at time t is given by<27)

T(O,t) = 2Fo(t/‘fl'p cpk)’1r [2.1.1]

where pop is the volumetric heat capacity and k is the

thermal conductivity. If a single thermocouple were located

at the surface x = O, k and pop can not be found simultane-

ously; they are said to be correlated at this location since

only their proouct can be estimated. If the single thermo-

couple were placed at any position, x, other than zero,

then both k and pop can be simultaneously estimated provided

the heating is continued long enough to cause the temperature

to change at the sensor location.

More complex mathematical models such as those describ-

ing heatcxnnuct331 with temperature dependent thermal proper-

ties or those describing heat conduction with change of phase

do not reveal correlations between the parameters as simply

as the example given above. This is because simple exact

solutions are not known for these more general cases. Never-

theless, numerical solutions can be utilized to find Optimum

experiments in such cases.

El? Sensitivity coefficients.

Sensitivity coefficients can be utilized to aid

in finding Optimum conditions. A sensitivity coefficient

is defined as the derivative of the predicted value of a

measured quantity with respect to the parameter pi,
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31(2.£.t)

Sensitivity coefficient = 8g1(§,t) = BPi— [2.2.1]
 

where f is a vector of controllable variables and P is a

vector of parameters. T(P,£it) is the predicted response for

the controllable variables set at f and time t.

If for any fixed 6 and all values of t the relation

Zijsgjgn) = 0 [2.2.2]

3

is satisfied and any one of the constant coefficients Aj

is nonzero the sensitivity coefficients are said to be lin-

early dependent. For cases where the sensitivity coeffici-

ents are linearly dependent all the parameters cannot be

found simultaneously<28). This is illustrated by differ-

entiating equation [2.1.1] with respect to k to obtain

F 1

S£(O,t) = Egg-Lil = - EQ-(t/‘Trpcpkrz [2.2.3]

and with respect to Pop to obtain

T _ aT§O,t2 _ _,39 i
s Cp(O,t) .. 3P°p .. PCp(t/7rpcpk) [2.2.4]

we see that for all values of t

T '1‘
AlSk(O,t) + AZSPCP(O,t) = 0 [2.2.5]

where

A1 = k [2.2.5(a)]
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and

12 = -pcp [2.2.5(b)]

Any criteria for finding optimum experimental conditions

should alert the experimenter to linear dependence of the

sensitivity coefficients.

2.3, Criteria for design of Optimgm experiments.

While there is much work in the literature on para-

meter estimation, few researchers have considered the problem

of experimental design. Seinfe1d(26) states that there may

be cases where the parameters in a mathematical model can-

not be estimated but does not consider the problem of de-

signing experiments to avoid these cases. G.E.P. Box and

co-workers seem to have been the first to realize the need

for experimental design in parameter estimation.

(29)
Box and Lucas suggested maximizing the deter-

minant of the matrix I‘

l‘. = 2.22. [2.3.1]

as a criterioni The elements of the sensitivity matrix Q are

_ T

zij ’ Spi(2’6j't)£=’§

[2.5.1(a)_]

is a least squares estimate of P, the vector of parameters.P
p
)

*

Note the prime (') means transposition.



.
.
.
.
r
u
g
-
w
t
.
"

 

 

 

D
r
.

(
I
,

[
l
’

A



32

If the errors in the measurements are independent and nor-

mally distributed with zero mean and constant variance then

the volume of the confidence region in parameter space is

inversly prOportional to the square root of det 1:. By

designing the experiment to maximize det I: the confidence

region for P is minimized if these conditions are valid.

These assumptions are not all valid in our case

since the experimental errors are correlated rather than

being independent. The nature of this correlation is not

understood at this time. Other justification for maximiz-

ing the determinant of.l: that is not dependent on these

assumptions has been presented in (5). NO better criterion

is available at this time.

One justification of the criterion is to note that

if any two or more sensitivity coefficients for a given

experiment are linearly dependent as discussed in section

2.2, the criterion, det I1, is identically zero. This re-

sults from the rows of the matrix ; being proportional(30).

If det I: = O, the confidence region in parameter space is

infinite whether or not all the assumptions are valid.

Most models in heat transfer are nonlinear in the

parameters. For such cases the sensitivity coefficients are

dependent on the value of the parameters and thus an initial

estimate of P is needed to design the best experiment for

estimating P. It may seem strange that in order to use this

Seheme one must have initial estimates Of the parameters that

are to be found; however, any experimental design uses the

experimenter's prior knowledge Of the subject. The better
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his initial guess the better and more efficient the experi-

mental design will be.

The criterion can be made arbitrarily large by in-

creasing the number Of observations and the range of the

measured variable(s). Physically the experimenter is re-

stricted to finite quantities, hence constraints must be

imposed. For a large number of equally spaced measurements

in time and a model that is linear in the dependent variable

Beck<5> modified the criterion to include constraints of a

fixed number of observations and a fixed temperature range.

The resulting criterion is to maximize the determinant of

the matrix 4; whose elements are

n 1

- l m P T P

[2.3.2]

15 is the maximum dimensionless duration of the transient

experiment, n is the number of thermocouples, s; (xzyT)

i

and S? (x‘,77 are the sensitivity coefficients at location

J

:m‘ for parameters p1 and pj respectively. Zleax is the

constraint of the maximum temperature rise occurring.in

the experiment.

Beck considered models that are linear in the de-

pmnnient variables although the dependent variables may be

runtlinear in the parameters. This can be a confusing but

:hnportant distinction. For models that are linear in the

chapendent variable the dimensionless sensitivity coefficients
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are independent of temperature rise. Thus for models which

are linear in the dependent variable it becomes unnecessary

to consider temperature rise as a separate constraint. If

the model is nonlinear in the dependent variable, the sen-

sitivity coefficients are also nonlinear in the dependent

variable. Consequently the choice of maximum temperature

rise must be considered as a separate constraint. For non-

linear problems there may exist an Optimum temperature rise.

Heinekin, Tsuchiya, and Aris<3l) proposed a criterion for

systems of ordinary differential equations that is similar

to the criterion given by Beck.

For the types of experiments conducted in heat trans-

fer investigations, examples of controllable variables are

thickness of sample, initial conditions, type of boundary

condition (i.e., heat flux or temperature), maximum tempera-

ture rise, and to a limited extent the functional form of

the boundary conditions. These controllable variables must

be adjusted to maximize the determinant of the matrix 4;.

For a finite body the sample length, E, enters the

optimization criterion through the dimensionless time,

“2

If the thermal diffusivity, a, is not constant it can be

evaluated at some reference temperature for convenience.

Thus once the optimum value of Ti is known, the sample

length can be chosen from other considerations and the

maximum run time, t, can be found from equation [2.3.3] .

For a semi-infinite body with only a single thermocouple
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the thermocouple location, x, enters the criterion through

the dimensionless time,

1' = a.t/x2 [2.5.4]

After 15 is determined, the duration of the experiment and

thermocouple location(s) can be chosen from other consider-

ations.

The procedure then is to fix all the controllable

variables except ‘Th and calculate

Z = det A [2.5.5]

as a function of ‘Tm. The maximum temperature rise,

[5T

case of a step change in temperature at a boundary, this is

max’ must be attained for each value of ‘Tm. For the

automatically satisfied. For the case of a heat flux bound-

ary condition; however, the heat flux must be adjusted for

each value of ‘Tm so that the given stmax is attained in

time ‘15. The maximum value of [S

mam] = 230” [2.3.6]

indicates the best value of 15 for that particular setting

of the other controllable variables. This procedure is

repeated for different settings of the other controllable

variables until the best combination is found. The procedure

is illustrated for several test cases below.

Any Optimum experiment must be a compromise between

theory and practice. Practical considerations play an



36

important role in the choice of the controllable variables.

One of the most important of these is the choice of the

functional form of the boundary conditions. Only those

conditions which are readily attainable and measureable

in the laboratory need be considered. Other practical con-

siderations that should be taken into account when planning

an experiment are the capabilities of the measuring equip-

ment used. All measuring equipment introduces some error

into the measurement whether in the form of random electron-

ic noise or a biased error due to inaccurate calibration,

for example. To minimize the effect Of measurement errors

from noise on the calculated parameters, the overall temper-

ature rise for the experiment should be kept as large as

practical. This is introduced into the Optimization criter-

ion later in the form of a "merit" function for the tempera-

ture rise. When thermocouples are attached to a body there

is always some question as to the exact location of the

measuring junction. In Chapter III, the experimental tech-

nique will be discussed and it can be seen that the possible

uncertainty in thermocouple location is equal to the radius

of the thermocouple wire used. This effect can be minimized

by using relatively thick specimens and the smallest practi-

cal thermocouple wire diameter.

2.4 Results for several sample cases.

Semi-infinite case

Several test cases were investigated to find the

Optimum experimental conditions. The first case was that
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of a semi-infinite body of liquid having constant thermal

properties that freezes when subjected to a step decrease

in temperature at the surface x = O. The initial fluid

temperature is Ti and the surface temperature becomes To.

The solution for the temperature distribution is(27)

m (x t)-T T+
_ _§__’...__a.. .. .2..— .1.

.Ts ' Ti * To ‘ em)” [(47);] [2'4'1]

in the solid and

 

T (x,t)-T (1-T+) t i

'2? = ° = 1 - -—————;—T f [—9-]

3 Ti - To erfc[)\(a+) ] or c[ T :[

[2.4.2]

in the liquid. The dimensionless position of the solid-

liquid interface is given by

6"(7) = 53%)- : 2X7? [2.4.3]

The constant ).is found as the root of

->\2 (afiikfii-ipe'xzdf

erf()\) - T$erfc[7\(O-+)%]

 = wi'XL; [2.4.4]

‘where the five dimensionless properties are defined by

 

T - 'r

T; = ff—3efi [2.4.5]

L.

L; = P°p 8 Tf'To) [2.4.6]

1 = agt [2.4.7]



:
3 ll :
1

m

\

[
:
3 [2.4.8]

k = tz/ks [2.4.9]

The subscripts s and 1 refer to the solid and liquid re-

apectively. The heat Of fusion is L and the fusion tem-

perature is Tf-

Figure 2.4.1 (a) shows the dimensionless temperatures

Ti and TS, versus dimensionless time, T, for several values

of the dimensionless heat of fusion, Lg, with the dimension-

less fusion temperature, TE, held at 0.5. Note that the

larger the heat of fusion, the longer it takes the tempera-

ture at a given location to drOp below the fusion temperature.

Figure 2.4.1 (b) shows the dimensionless temperatures ver-

sus dimensiOnless time for several values of the dimension-

less fusion temperature, TE, with the dimensionless heat of

fusion equal to 1.0. Note that as T; approaches 1.0, there

is a more pronounced effect of the phase change upon the

temperature history.

Sensitivity coefficients for all the properties are

shown in Figure 2.4.2, for the common case of Figure 2.4.l(a)

and (b). A number of observations can be made from an in-

spection of this figure. For example, the curves for Si and

s

SidL have almost identical shape which means they are almost

linearly dependent. Because this case of a semi-infinite

body has these curves plotted in terms of a similarity

variable 1’which includes both the independent variables

x and t, an Observed linear dependence in Figure 2.4.2
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means that the dependence is true for any nonzero x and all

t's. If the body were finite, the sensitivities would not

be a function of only one independent variable. Another

observation is that the magnitude of'ST is small which
c

Pps
means this experiment would be ineffective for estimating

the heat capacity of the solid phase. Another Observation

T
T are not correlated indicating that this

f

is that SBLand S

experiment would be suscessful in simultaneously determin-

ing FL and Tf.

If one calculates Ziopt for this experiment for all

six prOperties as explained in section 2.3, the magnitude

22
is on the order of 10. indicating a very small chance of

simultaneously estimating all six parameters. Three or four

parameters could be estimated simultaneously, however. An

examination of Figure 2.4.2 can tell which ones. As noted

above ST

P°ps
upon the predicted temperatures. Hence one should not try to

is always small and thus Pope has little effect

estimate pops from such an experiment; if one does, then all

the parameters calculated at the same time could be quite

inaccurate. Also k8 and FL should not be simultaneously

estimated due to near linear dependence. A group of three

that could be estimated together is Tf, pL, and kl' By

examining sensitivity curves such as Figure 2.4.2 one can

learn a great deal in terms of possible Optimum experiments.

One estimation problem is to find the density-heat

of fusion product» FE” when the other properties are known.

The controllable variables for this case are thermocouple

location, maximum run time, initial temperature Ti,.boundary
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temperature To’ and maximum temperature rise. In order to

find an Optimum experiment for estimating pL, each of these

controllable variables must be considered. Thermocouple

location and maximum run time are both included in the

dimensionless time given by equation [2.4.7] (for a single

thermocouple). Hence maximizing Zwith respect to 7 con-

siders both location and run time for a single thermocouple.

The initial temperature and boundary temperature are included

in the dimensionless parameters T; and L;. The range of

T; is from zero to one. If T; is zero, i.e., the boundary

temperature at x = O is equal to the fusion temperature,

no freezing can occur and hence no information related to

the heat of fusion could be contained in the data. Table

2.4.1 shows the value of ZSOpt with L$=l for several values

of TE. For a single thermocouple, TE=1 (the initial

temperature Ti equal to the fusion temperature Tf) seems

to be a desirable experimental condition. The value of L;

can be controlled by an appropriate choice of the quantity

(Tf-To), or since T; will be set equal to one, (Ti—To).

The best value of L; may be chosen by examining lsopt

4.

versus LT’ we see thatversus LE. Figure 2.4.3 shows Zlopt

the Optimum experiment for a single thermocouple with T$=l

is one for which L; is larger, or in other words, (Ti-TO)

should be chosen as small as practical.

At this point, one may decide just what the Optimum

value of [STm x=(Ti-To) should be given some information
a

about the experimental equipment. In Chapter III the ex-

perimental equipment will mediscussed. The maximum
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—' +
Table 2.4.1 Aopt for several values of TT with pl.

the parameter to be estimated for the semi-

infinite example.

 

 

 

L; = 1 of’= 1 k+ = 1

TT 5opt Topt

0.00 0.00000 ----

0.25 0.00015 8.86

0.50 0.00512 3.84

0.75 0.01476 2.52

1.00 0.05709 1.91     
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property to be estimated.
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temperature rise for the equipment at the highest gain set-

ting Of the DC amplifiers is about 370°F. Electronic noise

introduced by various components is on the order of about

50F. Thus if our experiment were planned with a 10F tem-

perature rise say, any information in the signal would be

masked by the noise in the signal.

To aid in selecting the optimum temperature rise,

"(32) for the temperaturewe now define a "merit function

rise based on the characteristics of the equipment used.

This idea of a merit function for the experimental equip-

ment is new in the field of optimum experiments for para-

meter estimation. Since the noise introduced into the

signal is not a function Of the temperature rise but re-

mains constant, a linear function was selected. The value

of the merit function at a szmax of 00F is chosen as zero

and at a lleax of 370°F the value of the merit function is

chosen as one. f the temperature rise goes beyond 370°F

the output of the DC amplifier goes beyond the range of

the analog to digital converter in the computer and a lower

gain.must be selected; it is not convenient to do this in

the middle of a test so the merit function is assigned a

‘value of zero for [BT greater than 3700F. Figure 2.4.4
max

shows the merit function, M, versus ATmax'

To select the Optimum temperature rise, the criteri-

cni Of the maximum of the product of the merit function and

1aiopt is chosen and is shown in Figure 2.4.5. A [BTmax of

aixn1t 350°F is the best using this criterion.

If one wishes to calculate both the density-heat of
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Figure 2.4.5 Product of merit function, M, and zOpt

versus ATmax used to determine the

Optimum ATmax for estimating QI"
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fusion product and the fusion temperature using this ex-

periment, Table 2.4.2 indicates that T$=l and large L;

still provide the best experiment. The Optimum temperature

rise was not computed for this case.

Finite solid insulated at x=E

The next example is that of a finite body of solid

material that is insulated at the surface x=E. A constant

heat flux, q, is applied at the surface x=O and the solid melts.

Sensitivity coefficients for this case were calculated

using the finite difference methods described in Appendices

A and B. The dimensionless heat of fusion is given by

L§=7584QL'EE7E, [2.4.10]

EL

and the dimensionless fusion temperature is given by

T T

T; = 3872: [2.4.11]

Figures 2.4.6 through 2.4.8 show the dimensionless sen-

sitivity coefficients for values of L;=l and T;=0.5 at

locations x/E=0.0, 0.5, and 1.0 respectively. NO attempt

‘to find the Optimum experiment for this case was made.

Visual examination of the sensitivity coefficients

in Figures 2.4.6 through 2.4.8 shows. that all the curves

Ihave distinct shapes at each location which means that they

are linearly independent at least in pairs and thus pairs of

parameters are not correlated. Closer examination reveals

that the sensitivity coefficient SIT: has a significant

8
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Table 2.4.2 l>opt for several values of T; and L; with

Tf and pL being the parameters to be estimated

for the semi-infinite example.

 

 

 

OP'==1.0 k+ = 1.0

TT LT zsopt prt

0.0 --- 0.0 ---

0.5 0.5 5.857x10‘5 1.60

0.5 1.0 1.310x10‘4 2.94

1.0 0.5 2.720x10"3 0.675

1.0 1.0 6.627x10'3 1.08       
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magnitude for only a short time relative to the other para-

meters and thus may be the least accurate of all the para-

meters estimated from this experiment.

Experience has shown that it is generally easier to

estimate accurately a few parameters simultaneously than

many. Thus we will concentrate on estimating the para-

meters pL and Tf simultaneously. These two parameters are

directly involved in model building and discrimination for

the experiments analyzed herein. The other parameters will

be measured using other eXperimental techniques which are

described in Chapter III.

T
At the heated surface, x/E=0.0, both 30L and ST

T
f

have nonzero magnitudes and distinct shapes with 33L finally

approaching a constant value of about -l.0 and sgf going to

zero after the entire body melts. This would be an excellent

thermocouple location to estimate FL and Tf simultaneously

for these experimental conditions. At x/E=O.5 both ST and

pL

3% again have nonzero magnitudes and different shapes.

f

Both are somewhat smaller in magnitude for this location

than at x/E=0.0. This location is good but not as good

as the heated surface. At x/E=l.0 SEE and'Sg are again

f

not correlated but 33L has a very smallamagnitude until

the entire body melts and then becomes very large for a

short time. ng has a fairly large magnitude until the

entire body melts and then becomes zero. Thus x=E is also

a very good thermocouple location, if the experiment is

allowed to run until some time after the entire body melts.

Thus one can conclude that the heat of fusion FL, and the

fusion temperature, Tf, can be estimated simultaneously
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using these experimental conditions and a single thermocouple

at many locations in the body. If more than one thermo-

couple is used, the accuracy of the estimate can be improved.

Figure 2.4.9 shows the dimensionless sensitivity co-

efficient figm calculated in the same manner as the previous

figures but with La=0.445 and T;=0.0. It is apparent from

Figures 2.4.6 through 2.4.8 and Figure 2.4.9 that if one

wanted to estimate only the heat of fusion, PL, using a

constant heat flux at one boundary and the other boundary

insulated, the most desirable location for a thermocouple

would be at x=E, the insulated surface. The sensitivity co-

efficient 33L has, by far, the largest magnitude at this

location. An approximate solution to the freezing-melting

problem is used to study this case in more detail.

New approximate solution

An approximate solution can sometimes give greater

insight into a problem than a more accurate solution that

is unwieldy. For this reason, an approximate solution is

obtained using an integral energy equation method given by

(33)
Goodman The simple approximation of a straight line

for the temperature distribution is used. In the approximate

solution the body is initially a solid at the fusion tempera-

ture, Tf. The solution is

11-53 - %-+ L” + [(L")2 + 21]* O§x$ em;
. f = q q 7573

‘13”; 0 €(T)éx_‘.E; 1‘1 1

[2.4.12]

where 6(7? is the position of the liquid-solid interface

[
1
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and is given by

+ _ 6(7) __ __ + + 2 4‘;
s (1) - a — Lq + [(Lq) + 21] [2.4.15]

£5

‘1' is the dimensionless time,

1' = -—2— . [2.4.14]

L; is the dimensionless heat of fusion and is given by

IDL

+

I‘q = Pop” (qE/E‘ ) [2°4'15]

 

At the instant the entire body is melted, the tem-

perature distribution is still linear; an exact solution for

the problem of a body subjected to a constant heat flux on

one side, insulated on the other side and with a linear tem-

perature distribution at T = 1E is

an

T-T ‘ n 2 2
f 2 E [-1) -n 11’ (7-7“) nfix

= 1’+ - - e n cos ;

qE7k 2 'fl’n n2 ( E )

OéxéE, ‘T>‘TE [2.4.16]

13518 the time taken to melt the entire body and is obtained

fixnn [2.4.12] by letting x=E and T-Tf=0; the result is

t
1
)1 = i— + La. [2.4.17]

'The approximate solution [2.4.12], is differentiated with

respect to pL to find ST (x,t),
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L. L” 05x5 em.
.. + 3

q l + g; ‘7‘:1E

L

PL 7’ " qE7k 3]PL[ "

o; €(T)£XéE, 7‘71:

[2.4.18]

For times greater than ‘TE the solution is found from

[2.4.16] to be

2 2

T - S : - 11' (1-7 ) 1

fipL(x’t) ' ‘L; ' 2L; ('l)ne n E cos [nE x)

The only thermocouple location considered here is

the insulated surface. Only times greater than ‘TE are of

interest because Sng’t) is zero until 7:71;. The maximum

temperature rise in the liquid occurs at the heated surface

=0 and can be shown to be

AT

O

2 2
327% = (T-T'E) + 2- 37223-14; e‘n 7' (7" E) [2.4.20]

11
n:

Equations [2.4.19] and [2.4.20] are employed in

calculating [l as described in section 2.3. Figure 2.4.10

shows A versus dimensionless time for several values of ATmax

Remember that the maximum temperature rise,Z§T is an ex-
max’

perimental constraint. For each value of 15 the heat flux,

q, must be adjusted so that tsTmax is attained in time ‘Tm.

To determine the Optimum temperature rise for this

experiment the value of ZSopt i.e., the value of £5 at the

optimum ‘Fm, is plotted versus lBTmax in Figure 2.4.11.
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Figure 2.4.10 ZS versus —rm for several values of liTmax

for a melting, finite body of solid initially

at the fusion temperature with (L the para-

meter to be estimated.
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Figure 2.4.11 Aopt versus ATmax for finite body of solid

initially at the fusion temperature with {L

the parameter to be estimated.
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Figure 2.4.11 indicates that ATmag—o is the ideal condi-

tion; however, arguments have already been presented to show

that this is not the case in practice. To complete this case

study, we refer to the merit function Of Figure 2.4.3.

Again the optimum criterion is to be the maximum value of the

M and ZSOpt product. The product M x [SOpt versus Zle
ax

is shown in Figure 2.4.12. From this figure the optimum

temperature rise is found to be about 33°F.

The Optimum dimensionless time,‘T is now fixed
m,opt’

and can be determined by calculating ZSOpt for a [STmax of

33°F as in Figure 2.4.10. Given.7h’opt, the value of E can

be selected and then q can be determined from equation [2.4.20].

It should be emphasized again that if it were not for

the existance of a relation between the maximum temperature

rise and the heat flux, such as equation [2.4.20], this

optimization process would be more difficult. In the case

Of a more accurate or more general solution such as a

numerical solution, no such relation exists. The process

thus becomes a more time consuming iterative type calcula-

tion. For each value of Ti some other method of finding

‘the heat flux that will cause a maximim temperature rise

AT

costly preliminary procedure, the lessons learned from this

max in time‘Tm must be found. Instead of attempting this

simple model and visual examination of the sensitivity co-

efficients will be used to design our experiment.

Heat flux approximating_the actual case

One other test case was examined. The actual form of
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Figure 2.4.12 The product Mzopt versus ATmax used to

determine the Optimum Mmax for estimating

the parameter QL.
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the heat flux expected from the experiment was used to calcu-

late the sensitivity coefficients S£m(x,t) and 3; (x,t) for

f

a finite body with the surface x=E insulated. The heat

flux used is that shown in Figure 2.4.13. The sensitivity

coefficients igL(x,t) and 8% (x,t) versus time are shown

for x/E = 0.0, 0.5, and 1.0 In Figures 2.4.14, 2.4.15, and

2.4.16 respectively. Examination of these figures again

indicates that the heat of fusion, pL, and the fusion tem-

perature, Tf, can be estimated simultaneously from this ex-

periment since the sensitivity coefficients igL(x,t) and

Si (x,t) are not correlated at any of the three locations

shown.

Table 2.4.3 gives the locations and times for the

maxima and minima of the sensitivity coefficients 33L and

T

Tr

infinite body with a step decrease in the surface tempera-

S for all the cases that were computed. For the semi-

ture the maxima occurs at the solid-liquid interface. The

only zero values are at the surface x=0 which is what one

would expect because the temperature is prescribed there and

changes in the prOperties can have no effect on it.

For the cases using finite bodies all the maxima

occur'at either the insulated surface or at the heated sur-

face and in most cases at times after the entire body has

melted. Zero values of both 85L and 8,]; occur but not at the

f

sanue time. 33L is zero (actually not identically zero but

relmitively small) for times less than Ty and 8% is zero for

“ f

tinues greater than 7%. figL being zero while 8% is not and

f

vice versa permits the simultaneous estimation Of pL and Tf.
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heater-calorimeter and heat flux

through copper lid versus time.
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insulated at x=E and the heat flux of

Figure 2.4.12 prescribed at x=0.0.
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The sensitivity coefficient SFT1L has a relatively

large magnitude at all locations in the body for times

greater than ‘TM. The sensitivity coefficient sg has a

f

relatively large magnitude for all locations up until time

T

E.

From the above considerations one can draw several

conclusions as to the best experiment to estimate the para-

meters pL and Tf simultaneously.

1. A finite body with one surface insulated and a

.known heat flux at the other surface is desired.

2. The best locations for measurement are at the

heated surface and the insulated surface.

3. The experiment should last somewhat longer than

the time it takes to melt the entire body.

4. To estimate the parameter pL only,ATmax should

be kept as small as possible within the limits

of the experimental equipment. This may not be

true if one wants to find both pL and Tf

simultaneously.

These conclusions were used to design an experiment to esti-

mate the parameters in a melting—freezing model. The experi-

ment will be described in Chapter III.



CHAPTER III

EXPERIMENTAL EQUIPMENT AND TECHNIQUE

3.1. The data acquisipion system.

The data acquisition system of Michigan State

University Thermal PrOperties Measurement Facility con-

sists of three basic parts: Thermocouple sensors, a com-

puter signal conditioner, and an IBM 1800 computer. The

type and mounting technique of the thermocouple sensors is

discussed in Section 3.2.

The computer signal conditioner contains an electron-

ic reference junction compensator and a DC amplifier for

each thermocouple. The electronic reference junction com-

pensators are made by Consolidated Ohmic Devices, Inc.

model number EZT 213-A9. The function of the electronic

reference junction compensator is to add to the voltage pro-

duced by the measuring junction of each thermocouple a

voltage that compensates for the actual reference junction

temperature not being at the standard 32°F. Thus, the elec-

tronic reference junctions are supposed to compensate for

changes in ambient temperature and eliminate the need for

bothersome ice baths or alternatively, calibrating before

each use. It was found that they did not perform as ex—

pected and calibration before each experiment was necessary.

69
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The DC amplifiers are the Dana Laboratories In-

corporated Model 3400. The purpose of the amplifiers, which

have a maximum gain setting of 1000, is to boost the voltage

produced by the thermocouples, which is in the millivolt

range, to a level which the computer can read accurately.

Some of the specifications for the Model 3400 are (54)

frequency response 'DC to 100 Hz - I 0.01%, linearity AC

to 2 kHz - 10.01%, noise at a gain of 1000 - 4 microvolts,

input impedence - lO megohms. The low noise figure is highly

desirable and the large imput impedence allows great free-

dom in the choice of thermocouple wire size and lead length.

There are nine separate reference junction-compensator-DC

amplifier combinations allowing up to nine separate channels

of data.

The IBM 1800 computer is equipped with an analog to

digital converter with multiplexer and an interval timer

that allow the data from each thermocouple to be auto-

matically discretized and recorded. The minimum time step

between data points is about 50 milliseconds. Data is

stored on a magnetic disk storage unit and the maximum

number of data points is limited only by the available disk

storage of the computer. A typical run may contain 2500

data points; without the computer, it would be a nearly

impossible task to discretize and record this many data

points.

It was discovered that the reference junction com-

pensators introduced 60 Hz noise to the signal to be ampli-

fied. Two readings from each channel are taken 1/120 of a
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second apart and then averaged to eliminate this 60 Hz noise.

This was found to be a very effective method of eliminating

the 60 Hz noise since the frequency of the signal from the

thermocouple is much much less than 60 Hz. The data acquisi-

tion system is calibrated on-line before each experiment.

Four separate constant temperature sources are employed in

the calibration, they are 8 Leeds and Northrup thermocouple

checking and calibrating furnace Model 9009, boiling distilled

water, a large copper block at room temperature and an ice

bath. The furnace is set to a temperature of about 360°F

and a Leeds and Northrup certified Platinum versus 10% Plati-

num-Rhodium thermocouple with a Leeds and Northrup guarded

six dial potentiometer Model 7556 are used to read the true

temperature of the furnace. The true temperature of the

boiling water is read using a Tagliabue certified mercury-in-

glass thermometer with a range from 167°F to 221°F and grad-

uations of 0.2OF. Similar Tagliabue certified mercury-in-

glass thermometers with apprOpriate ranges were used to read

the temperature of the copper block at room temperature and

to check the temperature of the ice bath (32°F).

Thermocouples made from the same spool as used in

the specimens are also placed in the furnace, the boiling

'water, etc. These thermocouples are connected to a Leeds

and Northrup rotary switch Model 8248 which allows one at a

time to be connected to the computer signal conditioner.

The computer reads each thermocouple ten times and stores

the average voltage. When all four calibration points are

read for all nine channels, the least squares quadratic,
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T = A(i)v(i)2 + B(i)v(i) + 0(1) [3.1.1]

is passed through the data. v(i) is the voltage read by

the computer for channel 1 and T is the temperature read

from one of the four standards.

Thus the results of the calibration procedure is a

set of coefficients A(i), B(i), and 0(1) for each data

channel. When the experiment is run, the voltages, v(i),

are read and stored on the disk and equation [3.1.1] is

used to convert them to temperatures at a later time.

§.2 Equipment and test specimens.

The test specimens consist of short, solid cylinders

of the "unknown" material three inches in diameter and of

various heights. The cylinder is insulated on the peri-

meter and at the bottom. Thermocouples are placed on the

outer radial surface of the cylinder at various locations.

Several thermocouples are located at the same height around

the perimeter of the cylinder and connected to the com-

puter signal conditioner in parallel to read an average

temperature for that 1eVe1. Thermocouples are attached to

the surface of the cylinder in various ways depending on

the type of material. For metallic specimens a small

groove 0.010 inches wide and 0.010 inches deep is machined

in the specimen at the desired point of attachment; number

30 gage wire (0.010 inches in diameter) is placed in the

groove and the sides of the groove peened over to pinch

the wire and hold it in place. A junction between the

two dissimilar metals of the thermocouple wire is not formed
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before the wire is attached to the specimen; the metal in

the specimen becomes part of the actual measuring junction.

This method eliminates the need for the usual adhesives

which add mass and may possibly insulate the thermocouple

from the specimen. For non-metallic specimens a junction is

formed by electrically welding the thermocouple wire to

form a "bead"; a shallow hole is drilled in the sample and

the bead inserted and glued in the hole. Non-metalic sub-

stances usually have much lower thermal conductivity than

metallic substances so the adhesives usually will not cause

problems by insulating the thermocouple since the conductivi-

ty of the adhesive may be chosen to be near that of the

specimen.

The specimen is mounted on the hydraulic cylinder in

the loading frame shown in Figure 3.2.1. Mounted in the

loading frame above the specimen of "unknown" material is

a similar specimen of OPHC c0pper. The copper specimen or

calorimeter is brought to some elevated temperature with the

electric heater shown in Figure 3.2.1. When the desired

temperature is reached, the bifurcated heater moves out

from between the two specimens and the hydraulic cylinder

brings the unknown and the standard into contact; the switch

that controls the hydraulic cylinder also gives a command

to the computer to initiate data aquisition. The sides of

both the Specimen and the calorimeter are insulated and the

heat flux from the copper is nearly uniform over the surface.

Thus a one dimensional heat flow analysis can be utilized.

For specimens which have a relatively high thermal



74

Copper Calorimeter

Loading

Frame

Electric

Heater

Specimen

 

Hydraulic Cylinder

Figure 3.2.1 The experimental equipment.
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conductivity the assumption of perfect insulation is reason-

able. The heat losses from the sides of a high conductivity

specimen such as used in this research are a small fraction

of the heat flow through it. The applied heat flux over a

surface is made as uniform as possible by carefully prepar-

ing flat specimens and providing a uniform layer of silicon

grease. A ”comb" can be made to provide uniform film thick-

nesses of about 0.015 inch.

One can choose either a temperature boundary con-

dition or a heat flux boundary condition. If a temperature

boundary condition is chosen, the data from the extreme

thermocouples are used as the boundary temperatures. If;

however, a heat flux boundary condition is required for

parameter estimation, the procedure is more involved.

The copper calorimeter whose thermal properties are well-

known is instrumented with thermocouples for this case.

We have found that the one dimensional heat conduction

‘equation describes the temperature distribution adequately.

Thus the describing differential equation, the temperature

history at several locations, the initial conditions, and

the insulation boundary condition are all known for the

copper calorimeter. The problem is now the inverse of the

normal boundary Value problem; that is, the boundary con-

dition at the heated surface is to be found using the given

temperature history. Beck(35) has developed a successful

technique for solving this problem and it is discussed in

Appendix C.
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3.3 The experiment.

The experiment chosen to illustrate the model build-

ing and discrimination techniques proposed in Chapter I

was designed to take maximum advantage of the previously

developed experimental techniques and equipment available.

It was decided to illustrate the techniques for a melting

material which is more complex behavior than linear heat

conduction. A eutectic alloy of 50% bismuth, 26.6% lead,

13.3% tin, and 10% cadmium was selected; this alloy melts

or changes phase at 1600F which is well within the range of

the equipment available.

A nylon cup was designed to contain the liquid metal

and hold the thermocduples in place. A % inch thick c0pper

lid was pressed into the top of the nylon cup to keep the

liquid metal from overflowing when the c0pper heater was

pressed into place, see Figure 3.3.1. A nylon plug with

pipe threads was used to seal the filler hole in the side

of the nylon cup. The thermocouple wire was 26 gage iron

versus constantan. These thermocouples gave a voltage of

about 10 millivolts for a temperature of about 370°F; for a

gain of 1000 the computer signal conditioner will then supply

a maximum of 10 volts to the computer. The IBM 1800 computer

at MSU can digitize signals only between t 10 volts. The

wire size chosen was 26 gage or 0.0159 inches in diameter.

Two 0.0160 inch diameter holes were drilled through the side

of the nylon cup at the location of each measuring junction;

the iron wire was inserted in one hole and the constantan wire
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inserted in the other and both were epoxied in place as

shown in Figure 3.3.1. The measuring junctions were com-

pleted when the nylon cup was filled with liquid metal.

The nylon cup was insulated on the sides with transite and

fastened to an insulating base, also made of transite, which

allowed it to be mounted on the hydraulic cylinder.

The conclusions obtained in Chapter II were utilized

in designing the experiment to estimate the parameters in

the melting-freezing metal alloy. A finite body with a

known heat flux at one surface and insulated at the other

surface is desired. The insulation boundary condition is

approximated as closely as possible by the low conductivity

material used for the cup. (Nylon has a thermal conductivity

of about 0.14 Btu/hr/ftoF). The heat flux from the copper

calorimeter-heater can be calculated as explained in Ap-

pendix 0. As shown on Figure 3.3.1, there are thermocouples

as close as physically possible to the insulated and heated

surfaces which are the best locations for measurement. The

experiment should run for some time longer than it takes to

melt the entire specimen. The actual run time was determin-

ed from this criterion and the thickness of the sample. The

sample thickness was chosen large enough to keep the effect

of the inaccurately known thermocouple locations to a mini-

mum but small enoughsm that enough energy could be stored

in the copper heater to melt the entire specimen. The thick-

ness was chosen as 0.75 inches and the experimental run time

was then calculated from the optimum conditions described in

Chapter II to be about 150 seconds.
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The computer program for calculating temperature

distributions in the case of melting-freezing problems

with a heat flux boundary condition requires the front

boundary condition to be applied to the melting or freezing

material, thus the heat flux leaving the copper lid must

be calculated. The copper lid cannot be considered as

part of the c0pper heater-calorimeter in the heat flux

calculation because contact resistance between the two

causes a discontinuity in the temperature distribution. To

avoid this problem, the heat flux from the copper heater-

calorimeter was computed separately using the method in

Appendix C. The method in Appendix C was also usedtto

compute the heat flux leaving the cOpper lid. The tempera-

ture history in the copper lid was obtained from a thermo-

couple at the surface nearest the cOpper heater-calorimeter

and the boundary condition at that surface is assumed to be

the heat flux that leaves the copper heater-calorimeter.

Experience has shown that the larger the number of

properties that are estimated simultaneously, the greater is

the probability that there is correlation between them. This

results in inaccuracy. To reduce this possibility, a second

specimen was constructed to be used in estimating the thermal

conductivity and density-specific heat product of the solid

phase.

A three inch diameter by one inch high cylinder was

cast of the low-temperature alloy. It was machined smooth

and thermocouples attached as described in Section 3.2.

(Beck(5) recommends that thermocouples be located at both the
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heated and insulated surfaces for determining constant

thermal conductivity and heat capacity simultaneously.

Three thermocouple locations were used with this specimen,

they were 0.0625 and 0.125 inches from the heated surface

and 0.0625 inches from the insulated surface. Prior to

using this sample it was soaked in a refrigerator so the

initial temperature was about 45°F. This allowed a greater

temperature rise during the experiment before approaching the

melting temperature which was avoided in this test.

A separate experiment was also run using the nylon

cup specimen to determine the thermal conductivity and

density-specific heat product of the liquid phase. The

sample was heated to about 180°F initially and the c0pper

calorimeter heated with the electric heater to 400°F.

Since heating of the sample is from above, natural convect-

ion effects in the liquid are negligible. One test was run

with the cOpper calorimeter at a lower temperature than the

liquid and the results showed natural convection causes a

30%>higher "effective" thermal conductivity to be calculated.

The final run was made to determine the fusion tem-

[perature and the density-heat of fusion product (or for the

melting-over-a-range-ofhtemperature model the range and the

height of the "Spike" in the density-specific heat product)

and to obtain data against which to compare all the pro—

lposed models. The nylon cup specimen was heated from above

froalan.initial temperature of 75°F to a maximum temperature

of almost 300°F.



CHAPTER IV

TEST OF THE PROPOSED METHOD

4.1 Introduction
 

In this chapter the methods for model building and

discrimination proposed in Chapter I, the results of the

sample cases on Optimum experiments for parameter estima-

tion in Chapter II, and the experimental equipment des-

cribed in Chapter III are used to illustrate the model

building and discrimination procedure. Even though we

know the sample material is a low melting point alloy, we

initially assume ignorace of this fact.

Data used to test the model building-discrimina-

tion procedure was obtained as described in Chapter III.

Both the heat flux from the copper heater and the heat

flux into the specimen (through the copper lid) are shown

in Figure 2.4.13. These were calculated by the method out-

lined in Appendix C.

4.2 The model building process
 

As a first step in the model building process, a

simple constant thermal prOperty model was fitted to the

data. This corresponds to Block 1. of Figure 1.7.1.

Beck(5) has shown that the optimum experiment for a con-

stant thermal property heat conduction model has one surface

81
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heated and the other insulated with thermocouples at the

heated and insulated surfaces. These conditions are met by

the experiment described in Chapter III. This satisfies

Block 2. of Figure 1.7.1. The experiment was performed and

the parameters estimated as in Blocks 3. and 4. of Figure

1.7.1 respectively. The property values that minimized

the sum of squares function (see Appendix B) are 5.82 Btu/

hr/ft/OF for thermal conductivity and 90.37 Btu/ftB/OF for

heat capacity.

We now proceed to Block 5. the examination of the

model and the residuals. The data and the model shown versus

time in Figure 4.2.1. From this plot one can see the lack

of fit for all thermocouples away from the heated surface.

This plot clearly shows that the model is inadequate but

it does not present the information on the deficiencies in

the model in a form that is easy to interpret.

Figure 4.2.2 shows the residuals, the difference be-

tween the experimental and calculated temperatures, plotted

against time. Note that except for the first thermocouple

(x=0) positive peaks in the residuals for each thermocouple

occur in chronological order moving from the heated surface

toward the insulated surface. This may indicate a front

moving through the body causing large errors in the pre-

dicted response.

Figure 4.2.3 shows the residuals for each thermo-

couple plotted against the measured temperature of that

thermocouple. This plot shows the residuals below a tem-

perature of about 160°F to be nearly identical in both
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magnitude and shape which seems to indicate that the de-

ficiency in the model is temperature dependent.

The decision to be made in Block 6. is an easy one

in this case because the model is inadequate. We then pro-

ceed to Block 7. of Figure 1.7.1. Because the deficiency

in the constant thermal property model seems to be a function

of temperature and moves through the body, a model with a

step change in thermal properties was proposed. To conserve

computation time the temperature at which the step change in

thermal properties occurs was set to 160°F (the fusion

temperature) and the thermal conductivity and heat capacity

for temperatures less than 160°F were evaluated from the

solid, non-melting specimen described in Chapter III. The

thermal conductivity and heat capacity above 160°F were cal-

culated simultaneously from the data using the method of

parameter estimation described in Appendix B.

Instead of actually finding the optimum experiment

for this model as in Block 2., it was assumed that the data

from the experiment already performed would be sufficient to

evaluate the remaining parameters in the model. The pro—

perties in this model were calculated to be

K(t) 'Btu/hr/ft/OF

12.24; T<160°F

6.27; T>l60°F

pcp(T) =

12.24; T<l60°F

182.0; T>l60°F

] Btu/ftB/OF

Proceed to Block 5. of Figure 1.7.1; Figure 4.2.4

shows the model and the data versus time. The prediction
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from this model is closer to the data than was the prediction

for the constant thermal property model. However, this model

still lacks the characteristic shape of the data especially

near the insulated surface. This lack of characteristic

shape indicates that this model is incapable of accurately

describing this heat transfer phenomenon.

Figure 4.2.5 shows the residuals for each thermo-

couple versus time. This figure is harder to interpret

than the previous examples. With the exception of thermo-

couple number one at the heated surface, this model is an

improvement over the constant thermal property model except

at later times near the insulated surface. The peaks in

the residuals for each thermocouple still seem to occur in

chronological order but are negative instead of positive.

Figure 4.2.6 shows the residuals for each thermo-

couple versus the measured temperature for that thermo-

couple. Note that the peak error for each thermocouple still

occurs at approximately the same temperature, near 160°F.

Moving on to Block 6. of Figure 1.7.1; the modification

made to the constant thermal property model is insufficient

to describe the heat transfer process. There is still some

unmodeled phenomenon occurring. The calculated heat capa-

city for temperatures greater than l60°F is 182.0 Btu/ftB/OF.

This large value also leads to rejecting this model because

it is several times higher than that for any known substance.

With the information gained from the models proposed

this far, we move on to block 7. of Figure 1.7.1 and pro-

pose two additional models. Both Figures 4.2.1 and 4.2.4,

the data and the predicted responses versus time for both
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the above models, seem to indicate that energy is being

absorbed and not accounted for by either model. Figure

4.2.6 indicates that the unaccounted for energy is being

absorbed in a small temperature range around 160°F. In

order to account for this absorbed energy, two different

models were proposed; an isothermal change of phase model

and a melting over a range of temperature model.

The melting over a range of temperature model was

simulated by a triangular pulse in the heat capacity. The

solution to temperature variable thermal property problems

is discussed in Appendix A. Details of the pulse appear

on Figure 4.2.7. The parameters kl, the thermal conductivi-

ty of the solid, and popl, the heat capacity of the solid,

were evaluated from the solid, non-melting specimen des-

cribed in Chapter III. The parameters k2, the thermal

conductivity of the liquid, and pop}, the heat capacity

of the liquid, were evaluated from a separate experiment

using the nylon cup specimen with the sample initially all

liquid as described in Chapter III. The experiment perform-

ed in Chapter III appears to satisfactorily cover the range

of controllable variables so that Black 2. of Figure 1.7.1

can be skipped. The height of the triangular pulse fbcpz,

the range of melting and the location of the apex of the

pulse, Tf, were calculated from the data shown in Figure

4.2.8. Values for all the parameters obtained are shown on

Figure 4.2.8.

The numerical solution of isothermal melting-

freezing problems is also discussed in Appendix A. The
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parameters ks_and chps were evaluated from the all solid,

non-melting specimen. The parameters kl. and Pep; were

evaluated from a separate experiment using the nylon cup

specimen initially all liquid as described previously in

Chapter III. Optimum experiments for this case are dis-

cussed in Chapter II; this satisfies Block 2. of Figure 1.7.1.

The parameters Tf and pL were calculated using the data

shown in Figure 4.2.8.

If one calculates the energy absorbed by finding the

area under the triangular pulse as shown in Figure 4.2.7.,

it should be approximately equal to the heat of fusion in

the isothermal melting-freezing model. The area under the

Btu

lbm

heat of fusion was estimated from the isothermal melting-

freezing model to be 10,625 §%fi; thus they agree to within

1%.

triangular pulse was calculated to be 10,683 and the

Figure 4.2.8 shows the temperature plotted against

time. Note that there are oscillations in the calculated

temperature; this is due to the sensitivity of the numerical

scheme to large changes in the physical properties. The

oscillations damp out with time indicating that numerical

method remains stable.

Proceed now to Block 5. for the melting over a

range of temperature model. The improvment in fit for the

thermocouples near the insulated surface is apparent from

an inspection of Figure 4.2.9 which shows the residuals

versus time for all five thermocouples.

Thermocouple number one which is located at the



50-0 -

25-0 "

T
a
p
"

T
c
a
l

R
E
S
I
D
U
A
L
,

—2eo»

 
- 50-0

00

 

 

95

thermocouple no. G

 

model: melting over a range of temperature

Mm",- 6-785

11J1111JIL_11111111l

37-5 7.5-0 Ila-5 l50~0

TIRE IN SECODDS

Figure 4.2.9 Residuals for the melting over a range of

temperature model versus time.



96

heated surface has the largest error at the early times.

This same residual pattern in thermocouple number 1 was

also observed in all previous figures discussed. This

pattern has also been noted in many previous experiments

conducted at the Michigan State University Thermal

Properties Measurement Facility with constant thermal

property models. The most probable explanation is non-

uniform heat flux across the surface causing three-dimen-

sional effects to influence the measured temperature near

this surface. Silicone grease applied carefully and uni-

formly can help to reduce these effects.

Figure 4.2.10 shows the residuals versus measured

temperature. We note that the residuals for thermocouples

3,15 and 5 show similar characteristics when the material

is completely solid, i.e., their sign is negative with a

peak in amplitude just before melting begins. After melting

these thermocouples exhibit residuals that have the same

sign and increasing amplitude. In the melting range we

note small spikes in the residuals indicating that the model

does not completely describe the complex behavior in the

melting range.

For the isothermal melting-freezing model, Figure

4.2.11 shows the data and the model versus time. This model

is also a great improvment over the first two. We note that

there is no oscillation in this model as in the melting

over a range of temperature model. Figures 4.2.12 and

4.2.13 show the residuals versus time and measured tempera-

ture for the isothermal melting-freezing model respectively.
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The residuals are very similar in character to those for

the melting over a range of temperature model.

Both the melting over a range of temperature and

isothermal melting—freezing models appear to be inadequate

after the entire body has melted; the residuals for all

thermocouples versus time have a negative slaps. This in-

dicates that the calculated temperatures rise more rapidly

than do the measured temperatures. We can conclude that

the heat capacity for the liquid phase used in the models

is too small. In fact, our early attempts to estimate the

thermal conductivity and heat capacity in the liquid phase

and the heat of fusion and fusion temperature simultaneously

gave values for the heat capacity of the liquid which seemed

erroneously large; for this reason it was decided to estimate

the properties of the liquid phase from a separate experiment.

It was possible to run only one experiment to evaluate the

properties of the liquid phase because the specimen was

accidentally overheated and the nylon cup destroyed. The

cause of the discrepency between the liquid phase properties

evaluated from the spearate all liquid experiment and those

obtained from the experimental data shown of Figure 4.2.8

is not understood. It was decided to accept the prOperties

calculated from the all liquid experiment because they were

closer to published data(36).

We proceed to Block 6. for both models. Examination

of Figures 4.2.8 and 4.2.11 shows that both models have the

same characteristic shape as the data they are supposed to
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represent. That is, both models follow the data reasonably

well and are able to absorb energy at nearly a constant

temperature as evidenced by the thermocouples near the

insulated surface. Since both these models are plausible,

we now proceed to the discrimination stage, Block 8. in

Figure 1.7.1.

4.3 Discrimination between rival mathematical models

To discriminate by the likelihood method described

in Chapter I, an estimate of experimental error is needed.

One statistically proper way to obtain an estimate of vari-

ance is to perform replicate runs. A true replicate run is

not just a repeat of the experiment but must be made with

completely different specimens and the equipment must also

be recalibrated. The experiment is repeated and the differ-

ences in the measurements of the two or more replicate runs

are then used to estimate the variance. This can be an

expensive task but it is usually recommended. Another way

to estimate eXperimental error in temperature measurements

is to use an estimate based on previous experience with the

experimental equipment. This latter method is the procedure

used in this work.

During the course of checking out the experimental

equipment,several tests were run to determine the variation

in temperature indicated by each of the nine thermocouple-

reference junction-data channel combinations. The process

<20nsisted of simply having the computer read the data signal
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continuously for an arbitrary length of time while all nine

thermocouples were imbedded in an isothermal block of alumin-

um. Data from these tests showed that the variance between

readings on the same data channel was never more than

0.50F and between channels was usually not more than 50F.

With this data as a basis, 50F was chosen as an estimate of I

experimental error.

It should be noted that the test used as a basis for I

this estimate of experimental error includes only the error L

introduced by the equipment used to amplify and read the

voltage produced by the thermocouples. Errors caused by

thermocouple wire variation, inaccurately known thermocouple

location, heat losses from the sides and bottom of the

specimen, expansion or contraction of the material during

melting, and other similar errors are not accounted for in

this test. However, these conditions tend to cause biased

errors; that is, they tend to be one-sided for a given test.

One purpose of replicate runs is to eliminate these biased

errors. With a single experiment one has no way to discern

these biased errors other than using several thermocouples-

at each position relative to the heated surface.

For the purpose of comparing likelihood functions

we will follow the example set by Reilly(22) and multiply

the likelihood functions for each model by an appropriate,

common constant to make their magnitudes more tractable.

Table 4.3.1 shows the likelihoods for each model that

have been normalized by dividing by the likelihood of the

step change in thermal prOperty model. The table of
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Table 4.3.1 Comparison of the likelihood functions of

the four models.

 

 

 

 

 

 

Model mrms L(model/data) W

ggggzfifl; thermal 18.70 0.0009 0.0235

giggmgiagggpigties 12.74 0.0389 1.000

ggltigge::§firz range 6.785 0.3982 10.23

Isothermal melting- 7.031 0.3721 9.559

freezing      
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likelihoods shows that the constant thermal property model

is an implausible choice as the magnitude of its normalized

likelihood is very small. The normalized likelihoods for

both the melting over a range of temperature model and the

isothermal melting-freezing model show a marked preference

for either of these models over the step change in thermal

properties model. The normalized likelihoods for the melt-

ing over a range of temperature model and the isothermal

melting-freezing models show that no discrimination is possi-

ble between them, in other words the two models describe the

data equally well. This is not an unreasonable conclusion

since the isothermal melting-freezing model is really a

special case of the melting over a range of temperature

model, i.e., the range is zero for the isothermal model.

Note that the melting range for the melting over a range

of temperature model is only 60F; the estimate of experiment-

al error was 50F, thus it is possible that the true melting

range could be near zero. For this case both of the two

melting-freezing models are capable of describing this com-

plex heat transfer process. Practical considerations lead

one to choose the isothermal melting-freezing model because

it contains one less parameter and the numerical solution

does not oscillate as does the melting over a range of

temperature solution.



CHAPTER V

CONCLUSIONS

This thesis considers one of the fundamental problems

in science - how to build improved mathematical models from

observations. This has been given the name of model build-

ing and uses concepts of discrimination. A procedure to

help an experimenter "build" an adequate mathematical model

for cases where there are large amounts of transient data

available at relatively low cost has been proposed.

The proposed procedure for model building has been

illustrated by finding several rival mathematical models

for a complex heat transfer process. The specific heat

transfer process chosen to illustrate the procedure was a

finite, one-dimensional, solid, melting body. A heat flux

boundary condition was applied to one surface of the body

while the other surface was insulated. Temperature data

was obtained by actual experiment.

Through the example it was demonstrated that the

deficiencies in a mathematical model can be brought to light

by examining the model and the residuals. Knowledge of the

deficiencies in a model is the information the experimenter

needs to pr0pose an improved model.

A method to help an experimenter discriminate between

several rival mathematical models has also been incorporated

in the model building procedure; it is illustrated using the

106
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same experimental data. The discrimination problem is a

fundamental and difficult one. Some analytical work has

been done on this problem as indicated by the literature

review. There is a need, however, of more discrimination

studies that attempt to extend and apply the concepts to

actual experimental data. This thesis is intended to help

satisfy this lack particularly related to heat transfer.

It is shown that not all discrimination procedures can be

applied to heat transfer problems due to the expense of

running each test and the dynamic nature of the tests.

The method proposed for model building including

discrimination was successful for the specific case of the

melting low temperature alloy. The best mathematical model

for this case is the isothermal melting-freezing model.

The method presented could be used in other situations to

find a mathematical model for a process; that is, under

conditions where:

1. Large amounts of data can be obtained easily;

e.g., where there is a transient experiment

with thermocouples at several positions in the

body.

2. The optimum conditions for parameter estimation

can be found; i.e., the paramaters can be

estimated.

3. A solution to the mathematical model can be

found; this may mean that a digital computer is

necessary.
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The methods presented must be tempered with practical

considerations and common sense. If this rule is observed

the methods presented here can be useful tools to the ex-

perimenter who is seeking a mathematical model for a process.
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APPENDICES



APPENDIX A

FINITE DIFFERENCE METHOD FOR CALCULATING TEMPERATURE

DISTRIBUTIONS IN ONE-DIMENSIONAL FREEZING—MELTING

AND TEMPERATURE VARIABLE PROPERTY PROBLEMS

A.l General finite difference method.

The most flexible method of solving the heat conduction

equation for composite bodies with temperature variable pro-

perties and general boundary conditions is the method of

finite differences. The finite difference equations applying

to a general interior node, heat flux boundary condition at

x=O and x=E, and temperature boundary condition at x=O and

x=E are presented.

A.l.l General interior node.

An energy balance for node n, shown in Figure A.l, be-

tween two dissimilar materials can be written

m+1 m+1 m+1 _
A(n)Tn_l + B(n)Tn + c(n)'rn+1 - D(n) [1.1.1]

where the coefficients A(n), B(n), and C(n) are defined by

2kn_i(l-CNBD)

A(n) = - 2

(Ax_ + Ax_Ax+)

 [A.l.l(a)]
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2k l-CNBD 2k l-CN

B(n) = 2%? + n+i( ; + 3‘3( ED)

(Ax_Ax+ +Ax+) (Ax_ +Ax_Ax+)

[A.l.l(b)]

2k (l—CNBD)

C(n) = - ”*3 2 [A.l.l(C)]

(AX_AX+ + Ax.)

2kn+&(CNBD) m

D(n) = 2 Tn+1

mam. + Ax+)

2k (CNBD) 2k (CNBD

+ 2%? _ n+1 2 _ 2n-& ) T:

(£§x_[§x+ +£§x+) ([5x_ + [5x_[§x+)

2k (CNBD)

"‘3 Tm 1.1.1 (14' [( AXE + Ax-AX+)] n-l [ ( )]

T: is the temperature of node n at time tm, kn++ is the

thermal conductivity evaluated between nodes n and n+1,

Z§x+ and [3x_ are defined on Figure A.l. CNBD is a finite

difference parameter that may take on values between zero a

and one. If CNBD is set equal to one, the explicit forward

difference method results; CNBD being set equal to zero

results in the implicit backward difference method. If

CNBD is set equal to 4 the Crank-Nicolson implicit method

is obtained. P is the average heat capacity of node n and

is given by
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Interface betweenmateriais o and b

  

  

 

material material 0

AX- AX...

O O O

n-I n n+l

Figure A.1 Node geometry and nomenclature for the finite

difference solution to the heat conduction

equation at the interface between dissimilar

 
 

 

materials.

AXI

II-X)-a'~———— >.

-——-i-O X 0

q l a 2

Figure A.2 Node geometry and nomenclature for the finite

difference solution to the heat conduction

equation at the heated surface with a known

heat flux.

0 - fixed node

X - floating node

r—AX'-—.1Ax'+thsz_—sz+—.i

l-i l L23 bu I+2

fusion front location

Figure A.3 Node geometry and nomenclature for the

floating node used in the finite difference

solution of the freezing-melting problem.
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( ) + £3 ( )

P = Ax- P21: + A: POL: [A'l'l(°)]

(Pop)_ and (Pap)+ are the heat capacities corresponding to

materials a and b in Figure A.l respectively. [5t is the

time step i.e., the difference between times tm and tm+l°

If node n is not between two different materials then

P simply becomes (f)cp)n, the heat capacity of node n. If

the node spacing to the right and left of node n is equal

then [3x_ = [§x+. Thus this single equation applies to any

interior node, that is, any node not on a boundary.

A.l.2 Heat flux boundary condition at x=O.

An approximation used by Beck(5) to improve the accuracy

of finite difference calculations involving heat flux

boundary conditions will be presented here. The method will

be refered to as the quarter point method.

Referring to Figure A.2, the temperature at point a

can be approximated as

a: = M? + (1- MT; [1.1.2]

The temperature at point a will be used in the approxi-

mation for the time derivative instead of the temperature

at point 1. An energy balance on node 1 then gives

m+1 m+1 _
B(ml + c(1)*r2 _ D(1) [1.1.3]

The coefficients B(l), C(1), and D(l) are defined by
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2(l-CNBD)k]fi "EKL‘ [A.l.3(a)]

 B(l)

(l-XH ) (1-CNBD)kl
0(1) = AtPcE—a - 2 ii [A. l. 3(b)]

[5112

 

M c I1 (011131))de m
11(1) = - 2 T

l: _%?L A"12 ] l

+ [II-Alfpcp)g + 2(CNBD)kl:}—]Tm

At Axl2 1

2(1-0NBD)qn+1 2(CNBD)qm
... Ax]. + All [Aele3(c)]
  

[5x1 is the distance between node 1 and node 2, kl+i is the

thermal conductivity evaluated between nodes 1 and 2, and

qm and qm+l

are the heat fluxes at times tm and tm+1 r

spectively. The parameter A was found by experiment to

have a best value of 0.75, thus the term "quarter point

method". If q is set to zero, the heat flux boundary con-

dition becomes an insulation boundary condition at x=0.

A.l.3 Heat flux boundary condition at x=E.

The quarter point method is also used at x=E. The re-

sulting equation for node N at x=E is
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A(N)T§:§: + B(N)T§+l = D(N) [1.1.4]

The coefficients A(N), B(N), and D(N) are defined by

(1- AM pep)N 2(l-CNBD)kN-i
  A(N) = 1.1.4( )

At AXNZ [ a]

M c ) 2(l-CNBD)k

B(N) =.- N + ————15=i 1.1.406)—§—2—. 44- [ I

MN) = lit-3:911: _W Tm
At AxN2 N

 

- 2 CNBD k

+ [(1 ngi‘lm’i + —-—-2—i() N' ] TEL].

AXN

2qm+l(l-CNBD) 2qm(CNBD)
- [SIN - [SIN [A.l.4(c)]
  

)x is again 0.75 and if q=O, we have an insulated boundary

at x=E.

A.l.4 Temperature boundary condition.

For the case in which the boundary temperature is a

known function of time we need not write an energy balance

for nodes 1 or N, since the new temperature at node 1 or node

N is simply equated to the known function.

a?” = 11(1) [415(3)]
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or

T§+l = D(N) [A.l.5(b)]

where D(l) and B(N) are the known functions evaluated at

time tm+l°

A.l.5 Solution of the finite difference equations.

The result of the energy balances at all N nodes can

be written in matrix notation as follows:

      

)- 1? +11 I- 1

B(l) 0(1) 0 0 ....... 0 a? D(l)

1(2) B(2) 0(2) 0 ....... o 13*1 ntz)

'9 4(3) 13(3) cm .....9 11;” = D(3)

0 . ..... . A(N-l) B(N—l) C(N-l) afiji B(N-l)

0 ............. ... A(N) B(N) T§*1 a(n)
_

..lL. .. I. .-

[A.l.6(a)]

or in short form

m+l

__g = p [1.1.6(b)]

The solution for the temperature distribution at time tm+l

is very efficiently obtained by Guass's elimination method.

For a discussion of this method see Smith<37).
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A.2 The solution of freezing-melting problems.

A.2.l Mathematical statement of the problem.

The temperature distribution in a substance that melts

or freezes isothermally such as a eutectic alloy or water

can be described mathematically by(27).

9T 3 35?

Pope 3??- = “(ks—87g) [A.2.l]

in the solid region, and by

31- 3 3T1.

Pep; 575-7 = 37:45. ax ) [11.2.2]

in the liquid region if natural convection can be neglected.

 

At the interface between solid and liquid

where E is the position of the interface and T1. is the

fusion temperature. An energy balance at the interface be-

tween solid and liquid yieldsl

d€___1|_.___k 9T8

dt’pLsax

 

  

3T

x= e__" 1‘1 3x
1: 6+] [1.2.4]

where fig is the velocity of the interface and pL is the

heat of fusion. Equation [A.2.4] couples equations [A.2.l]

and [A.2.2] in a highly nonlinear manner.

 

1. This equation is written for a freezing problem; the

interface is moving in the positive x-direction with solid

to the left of x=€ and liquid to the right of x=€ . Melting

<can be treated by interchanging the subscripts s and L.
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A.2.2 Numerical solution of freezing-melting problems.

The first method of Murray and Landis.

Murray and Landis<38) presented two methods that have

general practical application for finite difference solutions

of freezing-melting problems. In the first method, the body

to the left of the solid-liquid interface is divided into

r lumps or nodes. The body to the right of the solid-liquid

interface is divided into N-r nodes. The number of nodes

in liquid and solid remains fixed and as the interface moves

to the right the r nodes to the left on the interface are

stretched while the N—r nodes to the right are compressed.

The temperature history of these traveling-nodes is

determined by using the substantial derivative,

93 = T g; EBT
t 'Lax dt 4 "Ta [1.2.5]

dx d6
where Ei'is determined from the fusion front velocity 3?.

If equation [A.2.5] is substituted into equations [A.2.1J

and [A.2.2] with constant properties in both solid and

liquid and %% determined from the relationship for equally

spaced nodes,

dx

2
1
2
i

, [A.2.6]

we obtain the substantial derivative representing the rate

d
-

n
u
s

of change of temperature at any point in the body

 

2
dT x: .3T 3 T

t 5 3:: dt I C"s 3:2 [L257]
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in the solid, and

EE§_= Ekx:EE!;+_ 3 2T3

dt E—e 3: 0137—2 [A'Z'a]

in the liquid. C18 and (11 are the thermal diffusivity of

solid and liquid respectively. E is the length of the finite

body. In'a forward finite difference form equations [A.2.7]

and [A.2.8] become

 

     

m+l m m
m m

Tn - Tn = nlfixe Tn+1T 2‘1 -2Tn + Tn+l
ZSt 6n:

[3x8

n=192939°"9r-l
[Ae2e9]

in the solid, and

+1 m m m1): - Tn (N-n)Ax‘ Tn+1‘ Tn—l A3 {En-121.: + Tn+l

t

z ———————-— (1 -_________§_____

" ZSt 111-em 22E! '5‘ I b Ax;

n=r+l, r+2,..., N-l. [A.2.10]

in the liquid. The numerical approximation to equation

[A.2.4] used by Murray and Landis is

gmzia’fifj... SL[ks£I:T—'r-g::r-1 -5_L5r_+1]

[1.2.11]

where

Axe .5. and Ax; ff; [1.2.12]

Nodes O and N can be treated in a similar manner by applying
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whatever boundary conditions are needed. Since this is a

forward difference method, the time step must be governed

by the choice of node spacing to insure stability. When

6 =0, equation [A.2.9] does not apply and the problem must

be started by assuming a value for 6= 60. A starting tem-

perature distribution must also be assumed for points to

the left of x: £0. This procedure introduces a considerable

starting error if’ 60 and the temperature distribution are

not chosen carefully. If 60 is chosen too small, [5x8

the node spacing to the left of 60 becomes very small as

seen from equations [A.2.12]. Stability requirements

dictate that [St be correSpondingly small and thus the com-

puter solution time goes up substantially. The solution

must be stopped before 6 =E for the same reason and the re-

sults extrapolated to find the remainder of the solution.

Heitz and Westwater modification

Heitz and Westwater (39), in a study of freezing

water, used this method but proposed a method of obtaining

reasonable starting values. They assume that the body was

initially semi-infinite and at the fusion temperature, Tf,

and the boundary condition was a step change in surface

temperature. The heat removed from the body in time to is

then

t
0 t0 %

[th = 2k£[Tf- T(O.to)] m— [A.2.13]

O
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This heat removal results in subcooling the liquid. They

assumed that all the heat of subcooling was instantaneously

converted to latent heat of fusion resulting in a solid

thickness 60 at time to given by

‘ iv

60 = Egg-53 [Tf- T(O,to)] [71%;] [A.2.l4]

They then assumed a linear temperature distribution in the

solid to begin calculation by the Murray-Landis method.

Heitz and Hestwater state that it is only necessary to

obtain reasonable estimates of the starting values because

to is a very small fraction of the total elapsed time.

Pfhal and Mitchel modification

In a study of ablating materials, Pfhal and Mitchelgz)

used a modified Murray-Landis method. They applied a non-

linear transformation to the grid in both the virgin and char

materials. This transformation allowed them to have more

nodes near the virgin-char interface where more accurate

temperatures are required to predict the motion of the

interface. They also used an implicit method similar to

that in secion A.l. The implicit method allowed the stability

restriction on the time step to be relaxed. Pfhal and Mitchell

did not give a comparison of their results with those of

uniform grid spacing so no conclusion as to the merit of

this procedure is available.

This first prOposal of Murray and Landis can treat

temperature variable prOperties and any boundary condition.

It may be quite difficult; however, to
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apply the method to composite bodies. Despite its dis—

advantages this method seem to be widely used and gives

good results once the starting error has damped out.

Murray and Landis second method

The second method proposed by Murray and Landis utilizes

a fixed space network. At some time the fusion front, 6,

will be in the 1th lump or node. For all node points except

0, i, and N the finite difference form of equations [A.2.l]

and [A.2.2] for constant properties apply. That is

m+l m m m

Tn - Tn = O. Tn-l-ZT: + Tn+l [A 2 15]

2:13 8 A15 . .

for n l, 2, ..., i-l in the solid, and

m+l m m m

Tn " T: _ a‘Tn-l'z'rn + Tn+1 [A 2 16]

25‘ ” Ax? ' '

for n = 1+1, 1+2, ..., N-l in the liquid. Equations [A.2.15]

and [A.2.16] are equivalent to [A.l.l] with CNBD = 1.0.

For nodes 0 and N one of the boundary equations in section

A.l with CNBD = 1.0 will apply. In node i a discontinuity

in the temperature distribution occurs at x=E . Two tem-

peratures are calculated for node i, one by interpolation

from temperatures in the solid region and one by inter-

polation from temperatures in the liquid region. In each

case the location of the fusion front, ‘6, and the fusion

temperature, Tf, are used in the interpolation procedure.

The temperature obtained by interpolation from the left of

‘
q
n
.
.
.
.
_
_
.
.

,
m

_
;

.
.

0
_
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€? is used in the finite difference equation for node i-l

and the temperature obtained by interpolation from the

right of 6 is used in the equation for node i+l. The space

derivatives in equation [A.2.4] were approximated by Murray

and Landis as

 

m m

3‘ Tie” Til-2 + ( Ax + 31) Ti-2’ ZTi-l * Tis

ax x= €_ 225x A12

[A.2.l7]

in the solid, and

m m m m

3T1, T +2- T _ (A! _8x) T1 - 2Ti+1 + Tit-2

51- x= €+ 2 A15

[A.2.18]

in the liquid. TTB is the temperature determined by inter-

polation from the solid at time tn, T:"is the temperature

determined by interpolation from the liquid at time tm, and

8x is the distance of the fusion front from node 1 (note

that - g5 5 8x 93%). When these approximations are sub-

stituted into equation [A.2.4] the position of the fusion

front at time t+Z§t may be determined by integration. When

i=0, 1, N-l, or N a lower order approximation for the space

derivatives must be substituted for equations [i.2.17] and

[A.2.18].

Again the fusion front must be started at some finite

distance from the boundary with the starting value £5. With

this method, however, the space network remains fixed, thus
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the time step does not have to be reduced when € or E-€

is small. Because of the fixed space network, composite

bodies will be much simpler to treat with this second

method of Murray and Landis. Despite the advantages of

the second method over the first, it does not seem to be as

widely used as the first.

A.2.3 Implicit moving node method

After careful review of the various methods available

for the solution of freezing-melting problems, a modifi-

cation of the second method prOposed by Murray and Landis

was chosen. A fixed space network was chosen because of

the ease of treating composite bodies. Instead of finding

two temperatures for the lump which contains the fusion

front as Murray and Landis suggested, a single floating

node located at the fusion front which travels within the

fixed space network was used. Figure A.3 shows the re-

lationship between the floating node and the fixed nodes.

When the fusion front comes within 10.000115x1 of node i,

where Axi is the grid spacing of the fixed network, the

floating node is removed until the fusion front passes out

of this band. When this happens, the temperature of node i

is set equal to the fusion temperature, Tf.

Equation [A.l.l] applies to both fixed nodes i and i+1

with l3x_=l§xl_ and Z§x+= Z5xl+ for node i and Z5x_= [1x2_

and Z§x+= [3x2+ for node 1+1; the subscripts l and 2 refer

to the left and right of the fusion front respectively.
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Murray and Landis suggested a forward difference approxi—

mation to the heat conduction equation, however, the com-

pletely implicit backward difference method (CNBD=0.0 in

equation [A.l.l] ) was chosen because this method allows

greater freedom in the choice of calculation time steps and

also gave the best comparison with results from an exact

solution to the freezing-melting problem.

When the body is initially above or below

the fusion temperature, the temperature distribution is

calculated by the standard method of finite differences as

outlined in section A.1 until the temperature at x=0 passes

the fusion temperature. If the temperature at 1:0 is within

one degree of the fusion temperature, calculation procedes

from this point by the implicit moving node method. If the

temperature at x=0 passes the fusion temperature by more

than one degree, the calculation is backed up one time step

and the time step halved. The calculation is allowed to

proceed with the new time step and this process is repeated

until the boundary temperature is within plus or minus one

degree of the fusion temperature. At this time, the

freezing-melting calculation by the implicit moving node

method begins.

The space derivatives in equation [A.2.4] are approxi-

mated by passing a quadratic through nodes i-l, i and the

floating node (referring to Figure A.3) for the derivative

to the left of the fusion front and nodes i+l, 1+2, and the
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floating node for the derivative to the right of the fusion

front. The approximations are then

 

 

 

3T1 (T1_l- Tf)Ax1+ - (T1 - T£)(Axl_+ Axl+)2

ax x=€-‘=’—‘ Axl“(Ax_1+Ax+) - (Axl_+Axl+)2Axl

[A.2.l9]

and,

3T___2 ”1+2" Tf)A122 ‘2(TT+1‘ Ti'MszfiAxgifi

ax:

 

1"- 5+: (A12_+g12+)A"2.2. " (sz-+AXZ+)2AX2-

[i220]

If the fusion front is between nodes 0 and l or between

nodes N-l and N a linear approximation must be used. The

position of the fusion front at time tm+1 can be calculated

  

as

__. A___t 311 312
€m+l 6m +PL l‘l-m-3x 1: €_- 1‘2 3x x= 6+ [L211]

In the case of a flux boundary condition the procedure is

started at time to by replacing kl-g-g-l- x=€_ in equation

[A.2.21] by ql the average heat flux between time to and

time t1; this continues until A1::Hi0.0001l1xl where A11

is the distance between nodes 0 and 1. In the case of a

temperature boundary condition an estimate of the fusion

front position must be made to start the procedure. In

order to obtain this estimate an exact solution for a semi-

infinite body subjected to a step change in surface tem-

perature was employed. This solution gives



129

61 :- 2AVCTlt—l' [1.2.22]

where £1 is the estimate of the fusion front location at

time t1, C11 is the thermal diffusivity of the material to

the left of the fusion front, and >\ is a constant deter-

mined by solving for the root of equation [2.4.4].

Equation [2.4.4] can be solved easily by the Newton-Raphson

iterative method. The time step should be small enough so

that El from equation [A.2.22] is much less than x1, the

distance from the surface to the first node. The temperature

of the boundary node is determined from the given boundary

temperature and the temperature of the floating node is

fixed at the fusion temperature.

The calculation procedure for a single time step is

then:

1. Using the fusion front location at time tn, cal-

culate the temperature distribution for time tm+1.

The body is treated as two separate bodies, one to

the left of the fusion front and one to the right;

the finite difference equations of section A.l are

applied to both. The rear boundary condition of

the body to the left of the fusion front is that of

constant temperature, i.e. the fusion temperature.

The front boundary of the body to the right of the

fusion front is also held at the fusion temperature.

2. Calculate the fusion front location for time t
m+l

using equations [A.2.l9], [A.2.20], and [A.2.21].
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3. Calculate Axl_, Axl+, Ax2_, andAx2+ for use

in calculation of the next time step.

4. Return to step 1.

Calculation proceeds in this manner until the fusion front

crosses the entire body, then the calculation procedure

returns to the standard finite difference methods of section

A.l.

Several test cases were run to check the accuracy of

the method and the computer program. Comparison was made

with the results of an exact solution for a semi-infinite

body initially at a uniform temperature above the fusion

temperature with a step change in surface temperature and

an approximate solution for a finite slab initially at the

fusion temperature with a constant heat flux boundary con-

dition at x=O and an insulation boundary condition at x=E.

The exact solution is given in Chapter II by equations

[2.4.1] through [2.4.9]. A comparison of results from the

finite difference solution for both Crank-Nicolson (CNBD=O.5)

and backward difference (CNBD=0.0) methods and the exact

solution is shown in Figure A.4. The backward difference

method seems to be superior to the Crank-Nicolson method

for this problem.

The approximate solution used to check the accuracy of

the computer program was found using an integral energy

method similar to that used in Chapter II. The body is

considered to be initially completely solid at the fusion

temperature; thus, no heat passes the interface between
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to an exact solution of the freezing-melting

problem.
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solid and liquid and only the prOperties of the liquid and

the heat of fusion become involved in the solution. After

the fusion front moves across the entire body, an exact

solution for a finite slab with a constant heat flux at

x=O and insulated at x=E was used to describe the tem-

perature distribution. The solution is

T-T 2

T2 " un7—kx' ‘ A[E E] " B[E E] ' 757w O‘E‘E

 

[A.2.23(a)]

- T'Tf , ‘ €‘x‘
Ts ... M; = o, 1-7m, 13-3- 1 [A.2.23(b)]

where A and B are given by

L+ L+ L+2 %
A = .. ___Q_+ -—-£— 11.2.23

—% [(6/13) 4(6/E)2] [ (0)]

and

L+ L+ L+2 %

z ,1, l + ___9_]- .3 __9._ _I.‘_c:__

(e/E) 2(e/E) (es/N 4(e/E)4

[A.2.23(d)]

The location of the fusion front e/E is found by solving

the algebraic equation

asMmweas) warmm]

The time ‘Th is the time for the entire body to melt and is

given by

arm = EL; +% [1,; + %L;2T + "16'- [A.2.25]
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After the entire body melts (’T>Tm), the solution is given

by

T-T 2

"' .. f .. a _ 1‘. _
Tz—mi-Tt-fhz) E A+B+%

co 2 2

2 2B - l -n 1T 1' _ g
+ _7T2 ———_n2 e cos[n1r(l En

n:l

[A.2.26]

Results of the approximate solution and the finite

difference solution using the backward difference ap—

proximation are shown in Figure A.5. There seems to be

quite good agreement between the two solutions.
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APPENDIX B

THE PARAMETER ESTIMATION PROCEDURE AND

THE CALCULATION OF SENSITIVITY COEFFICIENTS

3.1 The Gauss-Newton or linearization method of minimizing

the sum of squares function

The sum of squares function 18(40)

P(E) = [z - w<2>]y‘1[z - my] [13.1.1]

Where 1 is the vector of observations of n thermocouples

and m time steps.

r- '1

(m x I)

ll

Y(nm x l) Y<m x l)
_ . [B.l.l(a)]

  
!(2) is the vector of predictions from the mathematical

model for n locations and m time steps,

-!im 1 l)(£)

1

pf“ 1‘ 1)(_13_) -..- 12m x )(E) [B.l.l(b)]

Lgém X l)(£)

  
g is the vector of parameters in the mathematical model,
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g -.- P2 [B.l.l(c)]

  
and TZ'is a weighting matrix.

For the most accurate parameter estimates 1’ should

be made the covariance matrix of the observation errors

(see Deutsch (40), p. 60, for proof). Unfortunately we have

no way to determine the covariance matrix at this time;

thus the weighting matrix will be defined as

Where (,2 is the constant variance of the observations

and g is the identity matrix. The sum of squares function

then becomes

N

l
F(P) = -——

.. 02 u: (yu-wu)2 [B.l.l(e)]

Where yu is the uth measurement and wu is the corresponding

prediction. N is the total number of observations which

is equal to the product nm.

One of the simplest and most efficient methods of

minimizing the sum of squares function is called the Gauss-

Newton or linearization method. It is assumed that

an initial estimate, 20, of the parameter vector 2 is

available and of sufficient accuracy to allow !(§*), where

2* is the parameter vector that minimizes F in equation
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[A.3.l], to be approximated by the truncated Taylor series1

2112*) = 103°) + [2p3'<_13°)]' (12* - 2°) [5.1.2]

where

'
U

H

0
’

0
0
0
"
l
e

N

[B.l.2(a)]

..é...

epk   
The sum of squares function F(P), is minimized by differen-

tiating with respect to pi and equating to zero

2.174 1.1 [1 - 3112.)] = 9, [13.1.3]

where

Z'(_P.> = .prz) [B.l.3(a)]

If we substitute equation [8.1.2] into equation [3.1.3],

we obtain

£3?le - 1(2°)] + z(p°)<;3_* - p°> = 9 [3.1.4]

Solving for 2* in equation [B.l.4]

3* = 13° + N’l;'(§°)_Y_‘l [x - 3(g°)] [13.1.5]

 

1. Note the prime (') denotes transposition.
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where the square matrix K is defined by

1; = g'l’l; [B.l.6]

The true value of 2* is usually not reached on the first

iteration so the iterative formula

2" = 2“ + i‘lz'<2““1>1‘1[1 - mk'H] [3.1.7]

is applied. The iteration can be stopped when all the

pi - pE-l have satisfied some predetermined criterion such as

k k-l

p <--E--' 0.001

B.2 Calculation of sensitivity coefficients

The matrix Q is called the matrix of sensitivity

coefficients. The sensitivity coefficients are an important

part of parameter estimation, not only in the Gauss-Newton

algorithm but in the determination of Optimum experiments.

The numerical approximation of these derivatives is not

difficult once the mathematical model has been programmed;

the differentiation can be approximated as

3W(£:Xioti)

EDPJ

 

w(plo'°°9pl+ 8p19°npk9xi9ti) " w(p1!°-01p1v4tgovxivt1)

8p

[13.2.1]

 

J'
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where 8 is some small value, say 0.001.

In order to test the method and the computer program,

sensitivity coefficients for a test case were computed

using the computer program and compared with sensitivity

coefficients calculated using the exact solution. The test

case used a finite body exposed to a constant heat flux at

one surface (x=0) and insulated at the other (x=E). The

exact solution for the dimensionless sensitivity coefficients

 

is

0°

.7.“ 32 = .. LL—E-x2 - 32 + —a— .2— 9-..?" 27564;”)qE k Bk: 6E2 '1r2~n= n2 E

09

—n2'n'21'
+ 21’ e cos(n1T x) [13.2.2]

n=l E

a. 2 2

qE k —(--———7333c a T[l + ZZ e-n ’fl' Tcos (n1ETx] [R25]

p n=1

The results are shown in Figure B.l and Figure B.2; the

numerical approximation to the derivatives seems to work

quite well for the case of no change of phase.
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proximation of the dimensionless sensitivity

coefficient 35° (x,t) for a finite body with

constant heat flux, q, at x=0 and insulated

at x=E.



APPENDIX C

THE CALCULATION OF SURFACE HEAT FLUX FROM AN.

INTERNAL TEMPERATURE HISTORY

The problem of finding the surface heat flux given the

temperature history of a body at some internal point is

known as the inverse heat conduction problem. That is,

the boundary condition at one surface (the heat flux) is un-

known, while the temperature (or solution to the normal

boundary value problem) at some internal point is known.

The heat conduction equation for a one dimensional

homogeneous body is

{2(1‘33—k-¥=) pcpi-at [0.1]

and the boundary and initial conditions for the inverse

problem, assuming for simplicity the body to be insulated

at x=E, and the temperature history for some point xse is

known, are

T(e,t) . T.(t) [0.2]

1'33: a 0 V [0.3]

T(x,o) = 11(1) [c.4]

The problem is to calculate

q(0,t) . -1: Jig-2&3)- [c.5]
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For a review of the various methods, the reader is

referred to the paper by Beck<35). To illustrate the diffi-

culty encountered by most methods of solving the inverse

problem, Beck considered the effect of a short heat pulse

of duration ‘Tp at x=0 upon the temperature rise at x=E,

the insulated surface of the body. The ratio of the tem-

perature rise to the maximum temperature rise [T(E,t)-T1]/

[T(E)max'Ti] versus T/‘T p for several values of 1p is

shown in Figure C.l. Note that the ratio of temperature

 
rise to maximum temperature rise at time ‘T/“Tp=l becomes

very small as ‘Tp decreases below 0.1. Thus very little

information about the heat pulse reaches the insulated

surface in time 7p for 1p less than 0.1. As T/‘Tp

becomes larger than 1; however, more information becomes

available about the heat pulse. Beck used this fact in his

concept of "future temperatures". That is, to calculate the

average heat flux over the time interval ‘Tp he employed

temperatures at times 2‘Tp, 3‘Tp,... The temperatures at

times 2‘Tp, 31'p,... are called future temperatures. In

general, the smaller‘l’p the more future temperatures are

needed.

The procedure to solve the inverse problem for an

arbitrarily varying heat flux is to divide the heat flux

into a finite number of heat pulses. The duration of pulse

qm is from time tm-l to time tm. This is illustrated in

Figure 0.2. The duration of the various pulses need not be

same. ql is found by minimizing the sum of squares function
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I

2
_ l+i l+i

F(qp - 2119 <qu - Tm] [0.6]

l+i i=1
where Te (ql) is the calculated temperature at location

1+1, T1+1

exp

temperature at the same time and location, and I is the

x=e and time t is the experimentally measured

number of future temperatures used.

Once ql is found, q2 is found in the same manner using

the calculated temperatures at time t as the initial
1

conditions in the mathematical model. The sum of squares

function then becomes

2
_ 2+1 2+1

F(Qz) - ZEPQ (‘12) ' Texp] [(3-7]

i=1

Thus the solution is marched out in time until all the heat

pulses are found.

The power of this method now becomes apparent. The

calculated temperature in the sum of squares function can

be supplied from any solution of the heat conduction

equation; thus, finite difference solutions which can treat

composite bodies and temperature variable properties can be

employed. The sum of squares function can be extended to

include measurements from thermocouples at several different

locations in the body, thus helping to minimize the effect

of errors due to inaccurately known thermocouple locations.

A computer program was written for this algorithm using

the Crank-Nicolson finite difference method to solve the

heat conduction equation for composite bodies with tem-

perature variable properties. Two test cases were solved
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using the program and are presented here. Several dif-

ferent cases can be found in the paper by Beck. The first

case is that of a finite slab with a step change in heat

flux at x=0 and insulated at x=E. The data used in this

case is the temperature of the insulated surface and it is

accurate to six places. The results are shown in Figure

0.3. for values of I=l, 2, and 3. The dimensionless time

step for the qi was £31h=0.05. Note the improved response

time between values of 1:1 and 1:2. The second case has

the same geometry as the first, but with noisy data

being used. The data from case 1 was truncated to three

places without rounding. Two future temperatures were used

in the calculation and the time step for the q1 remained

at A7E=0.05. The results of this test are shown in Figure

0.4. They make it evident that this method of solving the

inverse heat conduction problem is very successful.
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temperature data accurate to six places
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