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ABSTRACT

As of the present, very little has been accomplished in terms of

utilizing the available information on pest ecosystems to arrive at an

optimum combination of control strategies that can be implemented in

the field. Conventional pest management strategies based on field ex-

perience tend to be ad hoc and do not necessarily lead to satisfactory

results. From the systems theoretic point of view, this problem can be

interpreted as the determination of the "optimal control" strategies

for the management of the ecosystem.

The present research focuses on the management of the cereal leaf

beetle (CLB), Oulema melanopus, a key economic pest of cereal grains in
 

the United States and Canada. A comprehensive state space model con-

sisting of 33 state variables is developed for the CLB ecosystem, which

includes the CLB, its larval parasite, T, lulis, and a host plant com-

ponent represented by oats. Both chemical and biological control as-

pects are incorporated into the model so that the model can be tested

within the framework of Integrated Pest Management (IPM).

An economic optimization problem is formulated in which we seek

to maximize the profit earned by the farmer. The optimal control prob-

lem is solved for both single season and multiple seasons. Optimal

control strategies are characterized by emphasizing biological control

and reducing chemical control usage, and are compared with conventional

spraying schemes currently used. A sensitivity analysis is carried out



with reference to the timing and amount of pesticide sprayed. In gen-

eral, the optimal strategies are at least as good as, and often times

better than, the conventional schemes. It is found that the conventional

spray is timed earlier in the growing season and is aimed at the CLB

spring adults and eggs, while the optimal spray occurs a little later

in the season and is targeted on the early larval instars of the CLB.

"Externality costs" are included to reflect the penalty imposed

for environmental pollution caused by pesticide usage. Two different

approaches are analyzed with reference to the externality problem. One

is a regulatory approach, in which pesticide use is limited by absolute

restrictions on the amount that can be used. Taxation is the other

approach considered, in which case the performance measure is augmented

with a tax. The discrete-time optimal control problems are solved using

a first order successive approximation technique.

The necessity for stochastic estimation schemes in connection with

pest management problems is pointed out. The Linear-Quadratic-Gaussian

(LQG) approach is proposed for the combined stochastic estimation and

control problem, leading to On-Line Pest Management (OLPM) systems.

The overall approach to the pest management problem adopted in this

work is general enough to be extended to a wide range of problems in

biological resource management.
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INTRODUCTION

The survival of human society requires that it exert some form of

control over some of the other existing systems. In the case of pest-

crop ecosystems there exists a competition between human and insect com-

munities for resources like vegetation. Thus, exerting control on these

systems is dictated more out of necessity than choice. However, control

of natural systems is by no means trivial, in spite of our so-called

technological and scientific progress. Insect populations no longer ap-

pear to be inert masses passively responding to changing environmental

pressures (Wellington 1977). Oftentimes the consequences of our control

actions have been counter-productive. Heavy crop losses in spite of

tremendous application of pesticides, resistance to pesticides developed

by pests, the adverse environmental effects of pesticides, and a low

success rate with biocontrol attempts all provide corroborating evidence.

It appears that we have been in search of a panacea, and somewhere along

the way, have grossly underestimated the intricacies that typify biologi-

cal systems. A logical outgrowth of these turns of events are the in-

creasing demands for pest management programs that are not only economic-

ally feasible and profitable, but also ecologically compatible and ac-

ceptable.

Toward this end two significant ideologies have emerged: (l) the

concept of "Integrated Pest Management" (Stern 1959, Smith 1962), incor-

porating strategies that attempt to utilize an optimal combination of all

known pest control techniques including biological, cultural, and chemical



approaches, and (2) the important concept of "On-Line Pest Management"

(Tummala and Haynes 1977) which, in addition to being integrated in

scope, provides for periodic updating of control strategies in light of

changing meteorological conditions (hence changing ecological states) and

the relative effectiveness of previous control strategies.

However, very little has been accomplished in terms of utilizing

the available information on the pest ecosystems to arrive at an optimum

combination of control strategies that can be implemented in the field.

From the systems theoretic point of view this can be interpreted as the

determination of "optimal control" strategies for the management of the

ecosystem.

The major objective of this research is to provide the theoretical

foundations for the design of control systems that will lead to optimal

control strategies for on-line pest management. In general, the optimal

control strategies will be characterized by efforts to emphasize biotic

control while minimizing the use of pesticides. Economic and environ-

mental trade-offs that are inherent in pest management problems will be

discussed. Our research efforts will be directed toward the Cereal

Leaf Beetle (CLB) (Oulema melanopus (L.)) ecosystem. However, the over-
 

all problem-solving methodology developed in this research will be gen-

eral enough to be extended to a wide range of problems in biological

resource management.



MODELING AND OPTIMIZATION IN THE CONTEXT OF ECOSYSTEM MANAGEMENT

Most biological systems (and many other real-world systems as well)

are far too complex to be understood in all their details at any level,

and far too intricate to be broken up into components without destroying

the integrity of the system. Hence, models are used extensively in the

representation of these systems. Modeling allows us, in principle, to

isolate the components of a system and to study their interactions. This

helps us recognize some important relationships that exist in the real-

world system but are normally masked by complexities and interactions.

More importantly models provide a framework for analyzing the system

under various hypothetical situations. Especially for ecological prob-

lems these analyses can proceed well beyond what is experimentally pos-

sible to demonstrate under field conditions.

For our purposes, the models of ecosystems are classified under the

broad categories of simulation models and mathematical models (Figure 1).

SIMULATION MODELS
 

Simulation models (sometimes referred to as descriptive models)

describe ecosystem interactions usually in terms of a set of computer

instructions. With the advent of modern digital computers, simulation

models have found widespread use in the ecosystem analysis (see Patten

1970-1976). Simulation models can handle a great deal of detail and

therefore tend to be very large. By their very nature, these simulation
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models do not lend themselves to the analysis of alternative management

options. Each one of the management options requires a large scale simu-

lation, and the cost associated with the analysis of a large number of

Options is prohibitive. The main drawback is that the simulation ap-

proach does not provide the means of eliminating options that are not

"optimal" in an efficient and systematic manner. Thus, in the case of

simulation models, the search fbr optimal policy is usually restricted

to management strategies supplied apriori (i.e. user suppled policies).

MATHEMATICAL MODELS

The shortcomings of the simulation models lead us to the second

class of models, namely, "mathematical models." These models reflect

the dominant features of the system, and their concise representation

provides us with an alternative to the detailed (and large) simulation

models.

Mathematical models are generally expressed in "state-space" form

(Ogata 1967). The state equations can be expressed in differential, dif-

ference, or partial differential forms. The major advantage of using

state-space models is that it is a very effective approach to mathematical

representation of systems. Also, several important analytical tools

like control theory, optimization theory, estimation theory, etc. are

almost exclusively based on state-space models. Hence, for decision an-

alysis involving optimization, mathematical models are generally prefer-

red over simulation models. An excellent background on mathematical

models for pest ecosystems can be found in Tummala et a1 (1975, 1976),

Tummala (1974), Barr et a1 (1973), Shoemaker (1973, 1974), Kowal (1971)

and Ruesink (1975) among others.



THE NEED FOR OPTIMIZATION SCHEMES

The need for optimization schemes arises in the context of goal-

seeking in ecosystems or the so-called teleological approach to ecosys-

tems. The controversy over the role and acceptability of the teleolog-

ical approach to biological systems is both very old and still outstand-

ing (Davis 1961). However, for many important classes of biological

situations, only by using a goal-seeking description (Mesarovdr:l968) an

effective and constructive specification of the system can be developed.

Indeed, the whole area of pest management, or in general, biological

resource management, is basically a goal-seeking endeavor.

Essential to the management of any system is the inherent assumption

that certain performance goals be defined--we would like to manage the

system in such a manner that our performance goals are achieved. From

the system theoretic point of view this can be interpreted as the deter-

mination of "Optimal control" strategies for the management of the sys-

tem. Though optimization techniques have found widespread use and suc-

cess in engineering and physical systems there is only a limited amount

of literature on the use of optimal control theory for ecosystem manage-

ment. However, the value of optimization has been recognized by biolo-

gists. Patten (1971) stated: "The whole area of Optimization theory is

certainly pertinent to renewable resource management and could be used

for...management schemes." Watt (1963) pointed out that "...many prob-

lems in the management of renewable natural resources are extremal prob-

lems: we would like to maximize fish yield* from a lake, lumber yield

 

*However, in the real world, one strives for profit maximization, not

yield, because maximization of yield does not necessarily lead to maxi-

mum profit due to the existence of price elasticity.



from a farm, or minimize survival of a pest." Optimization schemes are

most often used in conjunction with mathematical models in state-space

form and are generally referred to as "optimization models" (refer to

Figure l) .



LITERATURE REVIEW OF OPTIMIZATION MODELS IN PEST MANAGEMENT

AND RELATED AREAS

In recent years several studies (Tables 1 & 2) have appeared in the

literature related to optimization schemes for pest management. Watt

(1963) was among the first to point out the potential use of optimization

procedures like dynamic programming in pest management problems. The

approach of Watt (1964) was based on an essentially brute-force technique.

Several predetermined policies were tried on a spruce budworm model, and

optimal policies were chosen on the basis of minimum total cost that

included timber loss and control costs. Such an approach is limited by

the number of policies to be considered--it only searches over a set of

predetermined (i.e., user supplied) control policies and not over the

entire policy space. This approach, though useful when used with simu-

lation models, is clearly inefficient when used with mathematical models.

Jacquette (1970), Mann (1971), Becker (1970) have developed simple

mathematical models in which pest populations are described by Markov

processes, either continuous-time or discrete-time birth and death

processes. They used dynamic inventory theory (similar to the principle

of optimality) and calculus of variations to derive some necessary con-

ditions. Jacquette (1972) pointed out that these are elementary models

and have little practical use. Goh (1970, 1972) and Vincent (1975) have

discussed the application of the maximum principle to population models

described by simple Lotka-VOlterra type equations. Goh et a1 (1975)
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have derived optimal cropping rules for greenhouse crops based on ordin-

ary calculus. Vincent et a1 (1977) introduced the concept of isochronal

systems and derived necessary conditions for periodic optimization of a

scalar system representing biological populations.

Hueth and Regev (1974) proposed a hypothetical model with pest,

plant, and pesticide-resistance components and derived necessary condi-

tions for optimality using the maximum principle for a profit maximiza—

tion problem. Marsolan and Rudd (1976) developed a distributed parameter

model for the Southern Green Stink Bug, a major pest of soybeans, and

used the maximum principle to derive optimal control strategies. Rorres

and Fair (1975) considered an age-specific population and derived condi-

tions for optimal harvesting subject to linear ecological and economic

constraints. Peder and Regev (1975) pointed out the importance of exter-

nality costs and analyzed the effects of user-cost on optimal policy.

Mitchiner et al (1975) discussed the application of optimal linear regu-

lator theory to the pest management problem, and used the maximum prin-

ciple to solve a hypothetical problem. Taylor and Headley (1975) pre-

sented a model with genotype classes in which physiological resistance

to insecticides is incorporated, and suggested the use of dynamic pro-

gramming to solve a simplified version of the problem. Headley (1971)

in his elegant, yet simple, work reintroduced the concept of "economic

threshold" that provided significant insights into the economic consid-

erations that are inherent in pest management decision-making.

Shoemaker (1973) demonstrated the application of dynamic programming

to arrive at optimal pest management strategies by considering a semi-

realistic pest-parasite model for the Mediterranean Flour Moth. Hall
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and Norgaard (1973) derived an optimal quantity of pesticide spray under

the assumption that there exists a single optimal time for the applica-

tion of pesticides. Talpaz and Borosh (1974) derived optimal frequencies

and quantities per application of pesticide spray for a cotton crop eco-

system consisting of a single pest population. Regev et a1 (1976) util-

ized non-linear programming to solve an economic optimization problem

for the alfalfa weevil. Use of dynamic programming for the determination

of optimal sterile male release strategies for a hypothetical pest pop-

ulation is discussed by Taylor (1976). Carlos Ford-Livene (1972, 1973)

used dynamic programming to solve a hypothetical pest management problem

described by a linear model and suggests the use of stochastic dynamic

programming to solve the stochastic optimal control problem.

Birley (1977) proposed a transfer function approach to modeling

pest ecosystems and used a modified dynamic programming technique to

solve a linear optimal control problem with binary valued controls (i.e.,

spray/no spray scheme). Dantzig (1974) provided a Markov-chain inter-

pretation to the dynamic programming approach by incorporating state-

transitional probabilities. Winkler (1977) utilized a modified dynamic

programming technique based on Dantzig's approach to solve a fairly

realistic pest management problem for the spruce budworm. Talpaz et al

(1978) discussed a simulation model for the boll weevil-cotton ecosystem,

and used a modified version of Fletcher-Powell-Davidson's non-linear

programming algorithm to derive optimal pesticide spraying schemes.

Gutierrez et a1 (1979) presented a simplified model of the alfalfa

weevil ecosystem with four components: (1) population dynamics of the
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alfalfa weevil, (2) dynamics of the alfalfa crop, (3) mortality induced

by pesticides, and (4) evolution of pesticide resistance in the weevil

population, and used non-linear programming techniques to derive optimal

spraying strategies for two cases--with and without information on the

development of resistance by the weevil population.

Shoemaker (1977) employed dynamic programming to successfully solve

a comprehensive model for the alfalfa weevil. The approach was based on

decomposing the original model into two coupled models in order to reduce

the dimensionality. However, the model has some simplifying assumptions:

for example, it was assumed that pest control measures are applied only

once per generation, and the pest population has discrete (non-overlapping)

generations. Further, the approach lacks generality because the assump-

tions made toward simplification of the problem are very specific to the

pest ecosystem under consideration. Such inadequacies are likely to

preclude its applications in many problems of practical interest. Never-

theless, the work represents one of the few notable exceptions that are

oriented toward the solution of a realistic (and invariably complex)

pest management problem.

In related areas, Walter (1975, 1976) utilized stochastic dynamic

programming in conjunction with a scalar model to arrive at optimal

catching policies for salmon. Goh (1970), Sancho and Mitchell (1975)

proposed optimal management schemes for fisheries based on rudimentary

models. Rauch et a1 (1975) used the maximum principle to determine

temperature control schemes for lobster growth in a controlled environ-

ment. Katz (1978) explored the use of the maximum principle to gain

insight into optimal feeding strategies for African weaver birds.
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Hutchinson and Fischer (1979) discussed the application of stochastic

control theory to fishery management, and solved a simple logistic model

of the Atlantic sea scallop fishery using stochastic dynamic programming.

Dynamic programming for deer management (Davis 1967) and non-linear pro-

gramming to game management (Swartzman 1970) have been attempted in the

area of wild life management. Optimal control approaches are also being

explored for improving existing control schemes in medical and biomedical

problems related to population control, health care, nourishment, etc.

For example, Baharami and Kim (1975) presented optimal schemes for chemo-

therapy. They used a control vector interaction scheme based on the

gradient projection method to solve a bilinear model with a binary val-

ued {0,1} control. Detailed surveys of such problems in medical, bio-

medical, and related areas are presented by Jacquette (1972) and Swan

(1973). Generally speaking, these models, like their counterparts in

pest management, tend to be hypothetical and highly simplified, while

dynamic programming remains the tool that is widely used with these

simplified models.

DRAWBACKS IN PAST EFFORTS

The past works contributed immensely to the understanding of optimal

control schemes for pest management and related problems. Nevertheless,

several drawbacks exist.

Generally speaking, the shortcomings associated with past works

are broadly classified into three categories: (1) drawbacks related to

the model-representation of the biological system, (2) inadequacies in

dealing with economic considerations, and (3) drawbacks related to the

choice and use of mathematical representation and optimization schemes.
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Drawbacks related 32 the biological model representation
 

The major shortcoming of most of these models is that they are over

simplified from a biological point of view. Generally, the dimensions

of the models were 3 or 4, with most of them scalar. Such highly sime

plified models could not capture most of the biological details. Ideally,

the models should include the three major biological components of the

ecosystem: pest, plant, and parasite. Several state variables may be

needed to represent each one of these three components. Tummala (1977)

pointed out that the advisability of implementing any control measure

and the effectiveness of the control scheme depends on many factors,

such as the age distribution of the pest population, the maturity and

the vigor of the plant, the size of beneficial insect (parasite) popu-

lations, and weather.

The age distribution of the pest populations is very important be-

cause the damage an insect inflicts, and its susceptibility to insecti-

cides, predators, and parasites depends on its stage of development.

For example, some parasites attack only eggs, others attack only larvae

of a specific size. The damage inflicted on crops also varies as an

insect develops. For example, fourth instar larvae of the cereal leaf

beetle (hereafter referred to as CLB) cause about 24 times the damage

caused by the first instar larvae. Another related factor that should

be taken into consideration in determining the effectiveness of control

measures is plant vigor and maturity. Vigorous plants can often com-

pensate for moderate damage so that pest infestations have little effect

on yield. A plant's susceptibility to damage also varies as it matures.
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Susceptibility also depends on the temporal relationship between the

susceptible stages of the plant and the damaging stages of the insect

population. The rates at which pest populations deve10p from one life

stage to the next depend on temperature, humidity, and other climatic

factors. Finally, the potential damage to the crop can be reduced if

the pests are controlled by beneficial insects. However, the size of

this reduction depends on the sizes of the pest population and the bene-

ficial insects, the time synchrony between the two populations. and the

age distribution of the pest when it is killed by its natural enemies.

It is obvious that most, if not all, of these factors have to be

included in any real-world pest management problem, whereas the effect

of including them will be that of tremendously increasing the number of

state variables used in the model. It should be emphasized here that

we do not advocate unnecessarily increasing the complexity of the models.

As Holling (1977) points out,

...a major effort in modeling should be directed toward

achieving a minimal representation of the system and

one has to be ruthlessly parsimonious in selecting the

state variables.

However, we do wish to emphasize the fact that most of the optimization

models found in ecological literature are so simplified that they cease

to represent even the dominant features of the ecosystem, and can no

longer be identified with the real-world problem. As one would suspect,

this is one of the prime reasons why biologists have chosen to largely

ignore optimization models while opting for complex simulation models.

Clearly there exists trade-offs between the simplicity desired for the
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purposes of optimization and mathematical analysis, and the complexity

needed to capture the biological details--a meaningful and acceptable

(to biologists) compromise must be found.

In addition to being simplified, most of the optimization models

found in pest management literature are entirely hypothetical and are

not based on biological studies. This is because functional forms for

the pest ecosystem models are either not available, or (for the most

part) are not sought after. Incidentally, this points out the signifi-

cance and the need for an interdisciplinary approach to pest management

and related problems.

Furthermore, past efforts have mostly ignored the parasite or the

beneficial insect component of the ecosystem. This is a major drawback

since the parasite component represents the biotic control of the pest

population. Thus, optimal control schemes that have ignored the biotic

control aspect of pest management and have concentrated only on chemical

control do not represent an "integrated" control approach to pest manage-

ment.

Inadequacies related to economic considerations
 

Another area which has not been adequately explored is that of the

economic considerations involved in the pest management decision-making

process. The science of economics enters into the design of pest man-

agement strategies primarily because the goals of pest management are

mostly economic in nature.

Pest management problems are often posed as economic optimization

problems (i.e., profit maximization or cost minimization). Economic
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theory, as it has been applied to pest management problems, is usually

presented in the form of a threshold analysis. Such an analysis is

popularly termed as the "economic threshold" in pest management problems

(See Edens (1977) for an excellent critique of economic threshold, and

Tummala and Varadarajan (1976) for an extensive bibliography).

The concept of economic threshold evolved as a direct application

of microeconomic optimization techniques to agricultural management. In

its most simplified form it is merely a restatement of the economic cost

minimization criterion--undertake an additional expenditure only when the

incremental increase in revenue which occurs as a result of the effort

is greater than (or equal) to the incremental cost (Edens 1977).

In the context of pest management, the lowest pest density that

can cause economic damage to the crop is often referred to as the Eco-

nomic Injury Level. Based on this notion, the economic threshold is

defined as the pest density at which control measures should be deter-

mined in order to prevent the pest population from reaching the economic

injury level. It is obvious that the economic damage to any crop is

dependent on a variety of factors, including the specific crop, the

particular growing season, the prevailing crop price, the pesticide cost,

etc. Hence, pest density represented by the economic threshold may vary

through time, or vary from crop to crop, region to region, and season

to season with society's changing scale of economic values. However,

for the present, economic thresholds specified by entomologists tend to

remain as static levels. For example, the economic threshold for the

CLB is currently specified as 3 eggs and larva/stem (Ruppel 1974).
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From the control theoretic point of view, the economic threshold

can be interpreted as the optimal state (usually representing a specific

lifestage with an associated age class) trajectory for the pest density

obtained as a solution to the economic optimization problem. The more

realistic the model of the pest ecosystem the more meaningful will be

the resulting economic threshold.

Several agricultural economists (Headley 1971 & 1975, Hall and Nor-

gaard 1973, Hilderbrant 1960, and Hueth and Regev 1974) considered eco-

nomic optimization problems in pest management leading to useful theo-

retical interpretations of economic threshold. However, these works

have serious drawbacks in terms of the ecosystem model considered.

Generally speaking, the models were purely hypothetical and highly sim—

plified, and lacked the biological control component. Except for a few

isolated cases, e.g. Shoemaker (1977) attempts to solve meaningful eco-

nomic Optimization problems related to pest management are clearly lack-

ing. As Edens (1977) rightly points out:

The main impediment to the more generalized utilization

of the threshold principle is the level of abstraction

at which the concept is generally presented...Even though

conventional optimization techniques are not all applicable

to all pest management problems, they are currently under-

utilized, largely because of the difficulty involved in

operationalizing them. As the increased cost of the chem-

ical control becomes more apparent, it will be clearly

recognized that complex optimization techniques based on

the dynamic interactions of the agroecosystem have to be

used in order to arrive at viable management strategies.

A closely related topic of interest that is often overlooked is

that of “externality costs" associated with the chemical controls. Ex-

ternalities arise due to the tacit assumption--that there is no difference
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between private and social benefits or between private and social

costs--does not hold good in several instances. In the economic jargon,

externality due to the environmental pollution caused by chemical con-

trols will be classified as the "external diseconomy of production"

(Mansfield 1975). An external diseconomy occurs when an action taken

by an economic unit results in uncompensated costs to others. When

such costs are due to increases in a firm's production, they are termed

external diseconomies of production. Most of the environmental pollu-

tion problems fall into this category of external diseconomies of pro-

duction. In such cases, the private costs do not reflect the full

social costs since the firms responsible for the pollution are not

charged for their actions that lead to environmental degradation.

In recent years, however, consumer groups have become increasingly

vocal in protesting against environmental pollution--and rightly so. It

is conceivable that legal enforcements will become widespread in the

years to come. Therefore, it is worth our efforts to consider the prob-

lem of externality as it is present in pest management problems. This

has to be carried out within the framework of hypothetical enforcement

criteria, leading to potentially useful policies. Unfortunately, a very

limited amount of literature exists in this area, especially with refer—

ence to quantitative analysis. Peder and Regev (1975), Regev et al (1976),

Brook (1972, 1973) have made some initial attempts in this direction by

considering hypothetical pest ecosystems. Obviously more research is

needed. It is the belief of this author that it has to come from econo-

mists. Nevertheless, an attempt will be made in this research to gain



25

insight into potential enforcement policies that take into account ex-

ternalities, and more importantly, to provide control theoretic inter-

pretations for such policies.

Drawbacks related tg_optimization schemes
  

One of the major drawbacks in past efforts is associated with the

choice, and consequently, the limitations of the specific optimization

schemes used. We are concerned here with discrete-time Optimization

techniques since most of the pest ecosystem and other biological systems

are conceptually modeled as discrete approximation to continuous-time

systems. Also, as Innis (1974) points out in his excellent paper "Dy-

namic Analysis of Soft-Science Studies: In Defense of Difference Equa-

tions," the use of difference equations is more appropriate in modeling

biological systems. This is because insects have several distinct life

stages, with time delays associated with maturation in each stage, which

are modeled easily with difference equations. Further, it is more mean-

ingful to model the control variables, such as pesticides, as discrete

variables, since they are usually applied at certain discrete levels and

not at a continuously varying level. Alternative modeling schemes for

pest ecosystems include differential equations involving time delays,

and partial differential equations (Barr et al 1973) that treat each in-

dividual's maturity or physiological age as a point in a continuum. In

general, such modeling approaches are cumbersome (when compared with dis—

screte-time models) from the standpoint of optimization. Thus, we are

interested in optimization schemes that can handle discrete-time problems

as well as rather large dimensional problems (since most of the real

world pest management problems are large scale).
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Basically there are three different optimization approaches that

have been tried in the past: (1) dynamic programming, (2) maximum prin-

ciple, and (3) non-linear programming.

Among the optimization techniques that were used, "dynamic pro-

gramming“ due to Bellman, is very appealing because a feedback solution

is obtained. Further, hard constraints on state and control variables

(which are very difficult to incorporate in most of the optimal control

schemes) are very easy to handle with the dynamic programming approach.

In fact, the presence of constraints on admissable state and/or control

variables actually simplify the dynamic programming procedure by reduc-

ing the size of the region over which the search for optimal solution is

made. Furthermore, extension of dynamic programming to stochastic areas

is fairly straightforward. However, the straightforward dynamic pro-

gramming technique is hampered by the "curse of dimensionality" (Kirk

1970). Thus, for a system with just three state variables and 100 quanti-

zation levels for each state, we will require (100)3 = 106 storage loca-

tions which is enormous even for modern day computers to handle. As a

result, several techniques have been developed that attempt to reduce

the amount of storage locations required to implement the dynamic pro-

gramming algorithm. State increment dynamic programmingtxfiLarson (1968)

provides considerable savings in high speed storage requirements. Bell-

man and others have suggested polynomial approximations for the return

function in order to reduce dimensionality requirements. Nevertheless,

the computer solution of a dynamic programming problem still remains a

formidable task when the dimension of the problem is greater than, say,

3 or 4 (Jacobson and Mayne 1970).
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Yet another approach that has been utilized is that of transforming

the dynamic optimization problem into an equivalent static optimization

(i.e., mathematical programming) problem, and then employing mathematical

programming techniques to arrive at optimal solutions (Pearson and Srid-

har 1966, Cannon, Cullum and Polak 1969, and Tabak and Kuo 1971). This

method has the advantage that constraints are easily handled and aperi-

odic problems can be considered. However, it is unwieldy in most cases,

especially when the grid points in the discretized time horizon are

large, resulting in an extremely large number of variables. In general,

a dynamic optimization problem with N state variables, M control varia-

bles, and K grid points in the discretized time horizon will be trans-

formed into an equivalent static optimization problem with (N + M) * K

variables. Thus, a problem of the size considered in this research will

result in (33 + 1) * 30 variables--over 1000 variables. Also, some

computational simplifications that are possible with this approach, when

the system equation is linear and time-invariant, cannot be extended to

the case of biological systems that are generally non—linear and time-

varying.

In recent years, the maximum principle has been applied to discrete-

time problems. In reality, the (continuous) maximum principle is not

universally valid for the case of discrete systems. Due to restrictions

on possible variations of the control signal, the continuous maximum

principle must be modified for the general discrete case (Sage and White

1977). Athans (1966, 1972) discusses the restrictions of the discrete

maximum principle with reference to the convexity/directional convexity
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requirement on the reachable sets. Even though the discrete maximum

principle has been used in deriving necessary conditions for optimality,

very little computing experience with this approach is reported in lit-

erature (Kleinman and Athans 1966, Athans 1972, and Jacobson and Mayne

1970) in contrast to the continuous case.

The dimensions of real-world pest management thus dictate the use

of a more suitable discrete-time optimization algorithm. However, it

should be emphasized that the choice of the optimization algorithm de-

pends on a variety of factors, including the specific problem on hand,

the computational aspects of the algorithm, and the individual's own

preference for any particular algorithm. In short, there are no general

rules for choosing between optimization schemes.

Another major drawback associated with the currently available op-

timization models in pest management is the fact that they have completely

ignored the stochastic aspects of the control problem and concentrated

instead on the deterministic problem. In the deterministic optimal con-

troller design, one assumes that exagt_measurement of all_state variables

are available. This is seldom the case in practical applications and

especially so in pest management problems. For example, while it is

generally easier to take measurement of larval stages of an insect, it

is difficult to measure densities of pupa and adult. The problem is fur-

ther compounded by the fact that certain age-classes (within life stages

of an insect) introduced for modeling purposes, cannot be distinguished

in the field, and therefore, cannot be measured. Even if one could mea-

sure all the state variables, there would be measurement errors intro-

duced by physical sensors (or human errors) in carrying out the
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measurements. This measurement uncertainty should be taken into account

in the design of the optimal controller. Also, in real world situations

there is likely to be disturbance inputs acting on the physical process

described by the system model, e.g. climatological changes affecting an

ecosystem. It is obvious that a deterministic optimal controller will

not be optimal in a real world stochastic situation. In order that we

may take into account the stochastic aspects of the problem, the design

of the optimal controller should include a stochastic estimator/filter

and a scheme for stochastic feedback control (Athans 1971).

Very few people have discussed or attempted the stochastic aspects

of pest management problems. Logan (1977) came up with an elementary

form of filter based on regression equations to provide improved density

estimations for the larvae of the CLB. Hildebrand and Haddad (1977)

considered the estimation problem for insect populations and derived a

parametric filter based on a distributed parameter model for the alfalfa

weevil. These two approaches, however, are confined to the filtering

problem and do not deal with the control problem.

Ford-Livene (1972) is the only one to have touched on the topic of

stochastic estimation and optimal control for pest management. However,

his approach appears short-sighted: he assumed a linear system dynamics

and suggested the use of stochastic dynamic programming. As mentioned

earlier, it will be a mistake to assume linear system dynamics for the

generally non—linear pest ecosystem problems. Starting with a linear

dynamics for the system (as Ford-Livene did) is markedly different from

considering a linearized version of a non-linear system about the Opti-

mal trajectory. Further, Ford-Livene suggests that the use of stochastic
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dynamic programming for solving the stochastic optimal control problem.

As Athans (1972) rightly points out, this approach is entirely impracti-

cal for most of the real world problems since the curse of dimensionality

associated with dynamic programming is far more severe in the stochastic

case as compared to the deterministic case. It is also worth noting in

passing that while Ford-Livene outlined the stochastic optimal control

problem, he has not provided the design of such a controller, nor ex-

tended it to a realistic pest management problem. In any case, the sto-

chastic dynamic programming approach will be unsuitable to large scale

pest management problems due to the curse of dimensionality.

Another approach, popular among statisticians, for handling some

stochastic aspects is the use of stochastic models incorporating "birth

and death processes" (Jacquette 1970, Mann 1971, and Chatterjee 1973).

However, this approach is restricted to very simple applications, and

caters mostly to theoretical interest. Also, this approach lacks the

generality, usefulness, and the computational advantages of the state-

space approach traditionally used in the engineering disciplines.

Another important aspect in the design of the optimal controller

for pest management systems that has not been explored in the past works

is the on-line capability of the controllers. Tummala and Haynes (1977)

in their paper "On-Line Pest Management Systems" give a lucid account of

the need and desirability of on-line features in pest management systems.

They point out that pest management systems should have provisions for

periodic updating of control strategies in light of changing meteorolog-

ical conditions, ecological states of the ecosystem, and effectiveness
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of previous control strategies. This important feature of on-line cap-

ability has not been addressed in past works.

A complete survey of the algorithm and computational techniques for

optimal control and estimation problems is beyond the scope of this

writing due to space limitations. Besides, several excellent survey

papers are available on these topics.

For example:

Survey papers on optimal control-~Fuller (1962), Paiewonsky (1965),

Athans (1966), Bryson (1967), Larson (1967), Athans (1971), Mendel and

Gieseking (1971), Athans (1972), and Polak (1973).

Survey papers on estimation techniques--Rhodes (1971), Athans (1971),

Mendel and Gieseking (1971), Athans (1972), and Leondes (1970).

In addition, there are several well-written texts in these areas--

Bryson and Ho (1975), Meditch (1969), Jacobson and Mayne (1970), Schweppe

(1973), Dyer and McReynolds (1970), Saridis (l970)--to name just a few.

Recapitulating, the drawbacks in past approaches (with a few ex-

ceptions in each case) are summarized as follows:

1. Most of the models are based on bypothetical ecosystems.

2. Most are overly simplified from a biological point of view.

3. The parasite component (which represents the biotic control

component) has been largely ignored.

4. Age-distribution of the biological populations has not been

taken into account in many cases.

5. Economic considerations have not been adequately addressed.

6. Most of the optimization schemes employed cannot handle more

than 3 or 4 state variables.
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Most of the approaches were deterministic. The need for sto-

chastic control and estimation schemes has been mostly ignored.

On-line capability for the optimal controller has not been

attempted.



PROBLEM DESCRIPTION

Briefly, the research problem can be stated as the determination

of optimal decision rules for the "integrated control" Of the CLB eco-

system. This involves the determination of both the timing and the

amount of pesticide spray to be used in the field. In addition, the

Optimal decision rules to manage the CLB will be spearheaded by efforts

to take maximum advantage of the beneficial effect of T, julis, a larval

parasite of the CLB. Obviously there exists trade-Offs between the

use of biocontrol and chemical control approaches--especially with ref-

erence tO revenue from the crop which is of great economic importance

to the farmer. For example, chemical controls lead to short-term eco-

nomic benefits. On the other hand, biocontrol attempts do not give

instant pay-offs, but, over a long run, are likely to provide stable

economic gains. As such the optimization attempts will be aimed at

striking a reasonable balance between biocontrol and chemical control

with minimal sacrifices in profit.

Within the framework of our model, Optimal decision rules will be

evaluated against current control practices (which are based on the re-

commendations Of economic entomologists) in order to gain insight into

potentially useful, and conceivably better, control strategies. Inci-

dentally , this will also allow us to view in proper perspective the

current spraying recommendations that are based on valuable field

33
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experience of entomologists but have never been quantitatively evaluated

for either the timing or the amount Of spray.

The individual farmer, who is mainly concerned about the ultimate

revenue from the crop, has a tendency to emphasize chemical control and

make some immediate monetary gains. This frequently leads to excessive

spraying, and consequently to environmental pollution. In this context,

there exist economic and environmental trade-Offs in all pest manage-

ment problems. In this work these trade-offs will be discussed within

the framework Of Optimal decision rules for pest management.

For a single growing season, the larval parasite T, juli§_virtually

plays no role, but its effect will be felt in the subsequent growing

season. Thus, control policies have to be evaluated over multiple

seasons in order to determine the effect Of biocontrol. Repeated appli-

cation Of conventional control policies season after season, as well as

repeated use of optimal policies (on a season by season basis) will be

evaluated within the framework Of the CLB ecosystem model.

As part of our approach to determine the Optimal control strategies

for the CLB problem, we will develop a discrete-time Optimal control

technique based on the successive approximation algorithm of Dyer and

McReynOlds (1970) that is similar in scope to the differential dynamic

programming approach of Jacobson and Mayne (1970). The algorithm is

utilized within a deterministic framework to solve several types of op-

timal problems associated with the integrated control approach tO the

CLB problem. Extension of the deterministic approach to the stochastic

case is discussed, and the Linear-Quadratic-Gaussion (L-Q—G) methodology
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is proposed for the design of an on-line control system for pest man-

agement.

In the following sections, we will discuss at length, all of the

aforementioned aspects of our approach to the research problem.

DESCRIPTION OF THE CLB ECOSYSTEM

The pest management problem considered in the present work is

that Of the CLB with its larval parasite, T, julis (TJ) and a crop com-

ponent represented by oats.

The rationale behind the choice of the CLB ecosystem is two-fold:

l. The CLB is a key economic pest of the cereal grains in Mich-

igan and several other states in the United States and Canada.

2. A large amount of data is available on a number of aspects of

the CLB ecosystem from the research studies conducted at the

Michigan State University over the years (Castro 1964, Yun

1967, Helgesen 1969, Ruesink 1972, Gage 1972 & 1974, Casa-

grande 1975, Jackman 1976, Logan 1977, Fulton 1975 & 1978,

and Sawyer 1978).

The CLB, Oulema melanopus (L.) is native to Europe and Central

Asia. The first reliable indentification Of this pest was made in south-

western Michigan in 1962. Since then it has rapidly spread and has

established itself as an economic pest in an area ranging from Pennsyl-

vania to Wisconsin and from Kentucky to Michigan and Ontario. The CLB

attacks small grains, mainly wheat, oats and barley. The annual com-

bined acreage of these crops in the United States is close to 100 million

acres (Cooper and Edens 1974). Radiation methods for sterilization of
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the CLB have proved to be ineffective because the dosage required to

sterilize an adult is almost lethal. Studies of plant resistance have

not provided a readily available method Of control. Chemical control is

the only viable control that is used extensively. There is a general

acceptance among entomologists that satisfactory control of the CLB can

be achieved only by a pest management program based on thorough ecolog-

ical research (Haynes 1973).

The CLB overwinters as an adult in forest litter, grass, tree bark,

or in small crevices protected from heat and cold. In Michigan, adults

become active in April and feed on grasses and winter wheat prior to

oviposition. The oviposition activity continues for 45-60 days; during

this period each female lays an average Of 50-150 eggs. The spring

adult population declines to a negligible level due to natural mortality

in about 60 days. The eggs hatch in a few days and the larval instars

feed extensively on succulent leaves of wheat and (preferably) oats.

There are 4 larval instars. New adults emerge in a few days, feed in-

tensively on any available green grass, and disperse to overwintering

sites. These adults diapause and do not lay eggs until the following

spring. Most of the damage to the crop is caused by larval feeding

during the early stages of plant development.

The CLB was introduced into North American with few, if any, of its

natural control agents. Important biocontrol agents include the imported

parasites: Anaphes flavipes, and egg parasite, and the three larval
 

parasites--Tetrastichus julis, Diaparsis carinifer, and Lemophagus
 

curtus. It appears that the egg parasite, A, flavipes will not have a
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major influence on the CLB population since the mortalities of the first

and fourth instar CLB are density dependent; thus, as egg density is

reduced, survival Of larval instars will increase (Helgesen and Haynes

1972). Preliminary studies indicate that the larval parasite T, julis

is better synchronized than the other larval parasites. Moreover, it

has two generations per year, very high reproductive potential and a

relatively low dispersal quality. The mathematical model considered

focuses on this parasite. More detailed descriptions concerning the

biology of the CLB can be found in Haynes (1973), Barr et a1 (1973),

Tummala et a1 (1975), Lee et al (1976) and several theses cited in the

literature.

MODELING ASPECTS
 

Considerable modeling work has been done on the CLB ecosystem.

Presently four models are available on various aspects of the CLB eco-

system. Gutierrez et a1 (1974) provided a simulation model for the

within field dynamics of the CLB in wheat and oats. Fulton (1978)

developed a detailed simulation model for the CLB that can be used in

an on-line fashion. Both models are aimed at providing detailed descrip-

tions of the pest population dynamics through time. However, they

CEd not includethe parasite component represented by T, julis, There-

fore these models are not suited for analyzing the biolgical control Of

the CLB. Furthermore, both models lack a dynamic host-crOp component;

hence the economic impact of the CLB feeding on the host plant cannot

be evaluated. In addition, the models are based on extensive simulations,
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and are prone to all the drawbacks associated with the simulation ap-

proach to pest management (refer to earlier discussion). In short,

these models are best suited for analyzing population dynamics Of the

CLB, but are not useful in evaluating a large number Of management

strategies.

Lee et al (1976) presented a comprehensive model of the CLB-T, julis

ecosystem based on partial differential equations and an ordinary dif-

ferential equation model for the host plant. The model, however, did not

include the chemical control component. The model is used in a simula-

tion mode to describe the maturity distribution Of the CLB and its ef-

fect on the host plant through time. Since partial differential equations

are rather cumbersome when used in conjunction with Optimization schemes,

the model of Lee et a1 is not particularly attractive for management

purposes.

Tummala et a1 (1975) developed a detailed model of the CLB-T, juli§_

dynamics based on a discrete component approach. The discrete-time

state-space model was utilized to illustrate the effect of T, igli§_on

the CLB under varying densities. Since the major Objective Of their

work was to highlight the beneficial effect of biological control, they

did not incorporate in their model the host plant component and the im-

pact Of chemical control on the pest-parasite complex.

In order to be useful in analyzing integrated control strategies,

the models should include both biological and chemical control, and

dynamic descriptions Of the economic yield from the crop, and lend them-

selves suitable for use with Optimization schemes. The state-space model

Of Tummala et a1 (1975) is particularly attractive for optimization
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purposes. In the present research, we will develop an updated version

of the model Of Tummala et a1 (1975) in such a manner that the final

version Of the model encompasses all the features necessary for analy-

zing integrated pest management Options.

A chemical control component is added to the earlier version Of

the model; thus, mortality functions that account for the mortality

caused by the application of pesticides are introduced. The pesticides

used have impact on both the pest and the parasite. In addition, the

pesticides used have different impacts on different life-stages Of the

insect. These factors should be incorporated into the model. Generally,

insect mortality is described in terms Of dosage response characteristics

that give the relationship between the amount Of pesticide applied and

the corresponding mortality (expressed as a percentage) induced.

Sevin (carbaryl) and malathion are the pesticides that are exten-

sively used in controlling the CLB. Both carbaryl and malathion are ef-

fective against the CLB larvae and adults, the larvae being more suscep-

tible than the adults. In addition, carbaryl is a powerful ovicide (i.e.,

kills eggs), has a prolonged residual effect (compared to malathion), and

is known to cause adverse side effects. The dosage response characteris-

tics Of the CLB to these pesticides are discussed in the literature (Yun

and Ruppel 1965, Ruppel 1977, and Casagrande 1975).

Our model will focus on the pesticide malathion for the following

reasons:

1. Malathion is widely used (states like New York recommend only

malathion for CLB control).

2. More data is available on this pesticide.
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3. Malathion has very little residual effectiveness, while Sevin

has a prolonged residual effectiveness that is rather diffi-

cult tO model and is likely to add quite a bit of complexity

to the present model.

The dosage response curves used in the model are illustrated in Figure

2. These are based on published data and discussions with Dr. Ruppel.

Currently there is no data available on the impact of malathion on the

larval parasite T, julis, However, according to entomologists (Dr.

Ruppel personal communication, Michigan State University) the effect of

malathion on T, jugi§_is likely to be very similar to that of malathion

on the CLB larvae.

Due to the lack Of availability Of data, Tummala et a1 (1975) as-

sumed a hypothetical function for the T, julis diapause. In the present

model it is replaced by one that is based on field studies conducted by

Gage (1974). The field data and the functional approximation (an eighth

degree polynomial fit) used in the present model are illustrated in

Figure 3.

The development of a model for the oats plant component is discussed

in detail in the following section. (Note: The threshold tempera-

ture for cats is 42°F, whereas it is 48°F for the CLB and TJ. Hence, a

transformation from 42°F to 48°F is used in calculating the cumulative de-

gree days for the plant model. This transformation is required for Opti-

mization purposes. The error associated with the transformation is mini-

mal because of the proximity of the thresholds.)
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DIRPRUSE FUNCTION FOR T.JULIS
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OATS PLANT MODEL

Since the goals of pest management are, to a large extent, economic

in nature, the economic yield from the host plant is Of utmost signifi-

cance. For a realistic characterization of the oats plant as a compo-

nent Of the CLB ecosystem, it is necessary to identify the interactions

between the CLB and the plant (for more details see Barr et a1 1973,

Lee et a1 1976, and Gage 1972).

The feeding caused by the CLB population results in a reduced leaf

surface area Of the plant. The reduced photosynthetic capability in

turn affects the final yield. Most of the CLB feeding occurs on the top

three leaves, which are responsible for over 85 percent Of the net photo-

synthetic activity (Gage 1972).

Plant growth is dependent on a variety of factors, including mois-

ture, soil chemicals, light exposure, etc. However, in our model it is

assumed that all these factors are prevalent in a non-stressed or "stan-

dard" condition. The key variables that are chosen to represent plant

growth are the total weight Of the plant W, the leaf surface area S, and

the weight WH and surface area SH of the grain seeds as functions of

degree days. The selection of these quantities as state variables is

based on the following characteristic mechanism. The biomass generated

through photosynthesis by the leaves is accumulated as plant biomass and

is converted into seed when the plant matures. The weight of the heads

directly reflects the quantity Of seed produced. Moreover, as the heads

43
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develop, their surface area should also be considered as an active

photosynthetic component.

The metabolic processes of plants are determined by the relation-

ship between the active mass which undergoes catabolism (respiration)

and the necessary surface to support anabolism (photosynthesis). The

anabolism is expressed as the product Of the rate k1 at which mass is

produced per unit area and the effective surface 8 through which ex-

changes take place. Similarly, catabolism is proportional to the entire

bulk W Of living material. Thus:

Vwhere: k1 O

k < O

2

t physiological time for the plant.

This equation was first proposed by von Bertalanffy (1957). The growth

Of surface area S also can be represented with a similar equation. Thus,

a linear approximation for the plant dynamics can, in general, be ex-

pected to have the form:

    

"w 7 I'w “

d S S
_ = K

dt

WH WH

s
L8H. L HJ

where: K = 4 x 4 matrix.

The above equation can be written in the difference equation form

as follows: -W (n + 17 1” (Dr

S (n + l) S (n)

wH (n+1) = P WH(n)

L5H (n + 1).' L8H (n)    
where: P = 4 x 4 matrix

:
3 ll

discretized physiological time steps.
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The elements of the matrix P are in general functions of soil fer-

tility, moisture, light intensity, etc. The form of these functions is

unknown at present. Evaluation of possible control strategies such as

fertilization, irrigation, etc., so as to minimize crop damage from the

CLB by manipulating plant growth would require extensive study to deter-

mine these functional forms. Nevertheless, development Of management

policies focusing on the manipulation of CLB and parasite densities

under "standard" cultural conditions and practices for the crop compo-

nent can proceed using the P matrix with constant parameters.

ESTIMATION OF PARAMETERS FOR THE OATS PLANT MODEL USING TIME-SERIES

ANALYSIS

The essential features of our approach to parameter estimation for

the oats plant model is illustrated in Figure 4. As discussed earlier,

the structure of the plant model can be expressed as follows:

1(k+1) =_P_¥_(k)

 

or:

"yl (k + 17 'P(1,1) p<1,4fl 'y1(kT

y (k + l) - ° y (k)

2 z 2

y3 (k + l) - - y3(k)

_y“ (k + 15 3(4'1) p(4,4)‘ Ly“ (k1     
where: y1(k) = weight of oats plant/sq ft

y2(k) = leaf surface area/sq ft

y3(k) = weight of head/sq ft

y“(k) = surface area Of head/sq ft

X_(o) = X_initial = initial conditions for the state

variables X,
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The parameters Of the P matrix remain to be estimated. These par-

ameters have tO be chosen in such a manner that the outputs Of the plant

model match closely the field data for the corresponding variables. The

optimization algorithm Of Box* (also known as the COMPLEX algorithm) is

used in conjunction with the model as shown in Figure 4. An initial

guess, as well as a lower and upper bound, are supplied for each one of

the parameters. Based on the initial guesses for the parameters and the

given initial condition, T_initial, for the state variables, the model

generates the state variables Tfk) through time steps k, from initial

time to to final time t The outputs Of the plant model are comparedf.

with the corresponding real world time-series (i.e., field data) at

selected points in time. A weighted least squares criterion is used as

the performance index (PI) in the Optimization algorithm:

4 n yi(k) - yobsi(k)

 

PI=

iZl k=l yobsavgi

where: yi(k) = data generated by the plant model

yobsi(k) = field data

yobsavgi = average values Of the Observed field data

n = final time step.

The COMPLEX optimization algorithm finds the values of the unknown

parameters Of the P matrix so that the performance index is minimized.

The parameter values that are generated by the Optimization procedure

are fed back to the plant model, and the model is run with these new

parameter values. When this process is repeated, a specified conver-

gence is Obtained with the Optimization procedure. The aforementioned

 

*See Kuester and Mize (1973) for details of the algorithm.
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procedure is repeated for different initial guesses Of the parameters

in order to make sure the global Optimum is Obtained with the Optimiza-

tion algorithm.

The unknown parameters of the P matrix estimated using the approach

discussed here are given below.

 

P MATRIX:

"0.803 0.517 -0.056 0.000'

-0.112 1.240 -0.018 0.065

0.000 0.036 0.765 0.614

b0.000 0.047 -0.172 1.303  
Convergence criterion employed:

[(PI/PILAST) - 1| fi'lE - 5 for 3 consecutive iterations.

The trajectories of the plant variables generated by the "best-

fit" model, and the corresponding real world time-series form field

data are illustrated in Figures 5 and 6.

CLB-OATS PLANT INTERACTIONS
 

The CLB-plant interactions are caused by the CLB feeding on the

leaves of the host plant. The CLB-plant surface area coupling may be

described by a simple form in view of the work Of Gage (1972). He Ob—

served that leaf consumption by the four CLB larval instars is in the

ratio 1.00, 2.87, 5.97, and 24.23, and that feeding by the adult CLB

is negligible when compared to larval feeding.

Thus, the total larval feeding in terms of the first instar feed-

ing equivalents can be written as:

LlEQ(n) = FEEDQ[Ll(n) + 2.87 L2(n) + 5.97 L3(n) + 24.23 L4(n)]
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where: Ll(n)‘

. CLB first instar through fourth instar larval

. > density at time n

L4(n)j

L1EQ(n) = first instar feeding equivalents at time n

FEEDQ = feeding coefficient (0.002029) that represents

the leaf surface area (in sq dm) consumed by a

first instar CLB larva in a time duration 60DD48

n = physiological time (in units of 60DD ).

48

Further, it is known that the biomass corresponding tO 1 dm2 of

leaf surface area is 0.25 gm in oven dry weight (Gage 1972).

Hence, the CLB-plant coupling can be expressed as:

'w (n + 1)" "W (In; ”0.251

s (n + 1) =3 8 (n) _ 1.00 L1EQ(n)

WH(n + l) WH(n) 0.00

LDSH(n + l)‘ EST-I‘m! 10.00..      

The ultimate yield (i.e., seed weight) from the oats plant is di-

rectly related to the weight of the grain head at harvest time, WH(N),

through the following equation (Reference: Lampert, unpublished data):

YIELD gms/sq ft WH(N) * 0.9119 - 0.003035

YIELD bushels/acre YIELD gms/sq ft * 3.000992.

It is worth emphasizing here that unlike most Of the pest manage-

ment models Of the past, the model developed in this research work is

comprehensive (over 30 state variables), includes all the three major

components of the CLB ecosystem (the CLB, T, jglig, and oats plant), and

provides dynamic relationships for calculating the crop yield. It has

both biotic and chemical control components incorporated into it so

that integrated control strategies can be evaluated. Most importantly,
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the model, to a large extent, is based On actual field studies, and not

on hypothetical relationships. It should be Obvious that models are

the critical links in developing management strategies for complex pest

ecosystems. The more realistic the model, the more meaningful will be

the resulting management strategies.

A complete mathematical description of a system model for the CLB

ecosystem is presented in the following pages.



SYSTEM MODEL FOR THE CLB ECOSYSTEM



NAME

X1

X2

X3

X4.

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X21

X22

X23

X24

X20

X25

X26

X27

X28

DICTIONARY OF STATE VARIABLES

DESCRIPTION

Spring Adult CLB Density

CLB Egg Density

First Instar CLB Density

Second Instar CLB Density

Third Instar CLB Density

Unparasitized Fourth Instar CLB Density

Unparasitized CLB Pupa Density

Summer Adult CLB Dinsity

Diapausing TJ Density

Adult TJ Density

Parasitized Fourth Instar CLB Density

Parasitized CLB Pupa Density

Parasite Per Pest Individual in Different Stages
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DICTIONARY OF STATE VARIABLES (continued)

NAME

X29

X30

X31

X32

X33

DESCRIPTION

CLB Larval Feeding

Weight of Oats Plant

Leaf Surface Area Of Oats Plant

Weight Of Grain Head

Surface Area Of Grain Head



FEEDQ

T

S)!

DF(n)

P(1,1)

P(4,4)

SYSTEM PARAMETERS

DESCRIPTION

Spring Adult Survival

CLB Eggs/CLB Female/60DD

Summer Adult Survival

T, ngT§_Adult Survival

Max Eggs/TJ Adult/60DD

Max TJ Eggs/CLB Larva/60DD

TJ Searching Constant

TJ Mortality Inside CLB

Mortality Of CLB Eggs

Mortality Of

Mortality Of

Mortality of

Mortality Of

CLB L1

CLB L2

CLB L3

CLB L4

Mortality of CLB Pupae

Mortality Of Overwintering CLB

Mortality of Overwintering TJ

Exponent in Parasitism Equation

Feeding Function Coefficient

Time When TJ First Shows

Time When CLB Leaves Oats

Diapause Function for TJ

VALUE

0.70

22.00

1.00

0.60

20.00

5.00

100.00

0.00

0.10

Variable

0.30

0.45

Variable

0.40

0.77

0.50

0.75

0.002029

6.00

(i.e. 360DD Base 48)

16.00

(i.e. 960DD Base 48)

-"fin eighth degree polynomial fitted to field

data from Gage (1974)

Parameters for the Oats Plant

Model Obtained Through Time-

Series Analysis
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X1 (n

X2 (n

X3 (n

X4 (n

X5 (n

X6 (n

X7 (n

X8 (n

X9 (n

X10(n

Xll(n

X12(n

X13(n

Xl4(n

X15(n

X16(n

X17(n

X18(n

Xl9(n

X20(n

X21(n

X22(n

1)

l)

l)

l)

1)

l)

l)

l)

1)

l)

l)

1)

l)

l)

l)

l)

l)

l)

1)

1)

l)

l)

SYSTEM MODEL

X4(n)

X5(n)

X6(n)

X7(n)

a Xl(n) SA

b Xl(n)

X2(n)

X3(n)

(1 - K1)

(1 - K2)

(1 - K3)

(1 - K4)

(1 - K5) X8(n)

X9(n)

X10(n)

Xll(n)

X12(n)

X13(n)

Xl4(n)

SL

SL

SL

[1 - f2] SL

(0 X16(n) + (l - K6) XlS(n)) SA

X17(n) + DF(n) X24(n) X28(n)

(d X18(n) + (1 - DF(n)) X24(n) X28(n)) SL

(1 - K4)f2 X7(n) SL

fl/(f2 X7(n))

(1 - K5) X19(n)
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X21(n)
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X23(n + 1) = X22(n)

X24(n + 1) = X23(n)

X25(n + 1) = (1 - rp) X20(n)

x26(n + 1) = x25(n)

X27(n + l) = X26(n)

X28(n + l) = X27(n)

x29(n + 1) = FEEDQ [x5(n) + 2.87 X6(n) + 5.97 (X7(n)

+ 24.53 (X8(n) + X19(n))]

X30(n + l) = P(1,l) X30(n) + P(1,2) X31(n) + P(l,3)

X32(n) + P(1,4))(33(n) - 0.25 x29(n)

X31(n 1) P(2,1) x30(n) + P(2,2) X31(n) + P(2,3)

X32(n) + P(2,4) X33(n) - x29(n)

X32(n l) P(3,l) X30(n) + P(3,2) X31(n) + P(3,3)

I X32(n) + P(3,4) X33(n)

X33(n 1) P(4,l) x30(n) + P(4,2) X31(n) + P(4,3)

X32(n) + P(4,4) X33(n)



ATTACK EQUATION
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X7(n) X18(n)
 

fl = X7(n)

e1

_ f1

f2 ’[xumez]

X18(n) ‘£_

e2 + e3

DENSITY DEPENDENT MORTALTTIES OF I AND IV INSTARS*

 

K2 = 0.46 logE - 0.85

K5 = 0.28 logE - 0.18

where: K2, K5 =

E =

season.

MORTALITIES INDUCED BY PESTICIDE**

Dosage response for CLB larva

Dosage response for CLB adult

where: SL

SA

{.
1 ll

 

*See Helgesen and Haynes 1972.

ogxz < 0.99

O_<_K5 <0.99

lst and 4th instar mortalities, respectively;

total number Of eggs laid per sq ft for the entire

 

and TJ = (1 - SL)

_ l

l + e-(10*u - 6.0)

= (1 - SA)

1

1 +

 

'(IORU - 8.5)
e

survival based on pesticide spray for CLB larva and TJ

survival based on pesticide spray for CLB adults

pesticide spray of Malathion lb/acre

**Dr. Ruppel, Michigan State University--personal communication.



OPTIMIZATION SCHEME

The Optimization procedure utilized (Dyer and McReynolds 1970) in

the present work is derived from dynamic programming. It is a succes-

sive approximation technique, based on dynamic programming instead Of

the calculus Of variations, for determining Optimal controls of non-

linear dynamic (Or static) systems. The method is motivated from a

consideration Of the first and second order expansion Of the return

function about some nominal control variable sequence. In each itera-

tion, the system equations are integrated forward using the current

nominal control, and the accessory equations (which yield the coeffi-

cients of a first or second order expansion of the cost function in the

neighborhood of the nominal state trajectory) are integrated backward,

thus yielding an improved control sequence. Iteratively, this method

results in control sequences that successively approximate the optimal

control sequence.

The first order technique Of Dyer and McReynolds (1970) is known

as the successive approximation by gradient method. The first order

methods are characterized by slow convergence near optimum, but are

simpler to compute and are very useful in getting starting solutions.

The second order approach of Dyer and McReynolds (1970) is called the

successive sweep method, while a similar second order approach Of Jacob-

son and Mayne (1970) is popularly known as the differential dynamic pro-

gramming. The second order methods have faster convergence than the

59
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first order schemes, but are computationally more involved and are

susceptible to nominal controls. Thus, hybrid schemes, in which first

order methods are used to start the optimization procedure and get an

improved nominal control sequence, while second order methods are uti-

lized later on to improve convergence, are more appealing. Since these

Optimization techniques are based on successive approximation schemes,

the storage and computational time requirements are very small, com-

pared to dynamic programming and possibly several other Optimization

schemes as well. However, it is to be noted that, unlike dynamic pro—

gramming, a true feedback solution is not Obtained with these approaches,

although it is possible to compute Optimal feedback control in the neigh-

borhood of the Optimal trajectory.

In the present work, the first order successive approximation al-

gorithm is used in conjunction with the Optimization model of the CLB

ecosystem consisting of 33 state variables. This is a marked improve-

ment considering the fact that almost all the Optimization approaches

employed in the past (in connection with pest management and related

problems) are confined to dimensions Of 3 or 4. Furthermore, the method

is general enough to be extended tO other problems in pest management

and many other areas as well: the major requirements being an available

state-space model Of the system under consideration and a properly forms

ulated Optimization problem. In addition, the Optimization approach

fits in nicely with the overall methodology of Linear-Quadratic-Gaussian

(L-Q-G) design (refer to Appendix B) proposed for on-line pest manage-

ment.
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We would like to point out here that the successive approximation

algorithm and differential dynamic programming are increasingly used

in solving non-linear Optimal control problems, especially Of the dis-

crete-time type (Gershwin and Jacobson 1970, Iyer and Cory 1972,

Jamshidi and Heidari 1977, to name just a few). Most recently, Profes-

sor Ohno Of Kyoto University, Japan, has come up with-a new approach

to differential dynamic programming that can directly solve optimal

control problems with hard constraints on state and/or control variables

without adjoining them (Ohno 1978, ,_Ohno--personal communication 1978) .

As Of the moment, Ohno's approach is restricted to rather small dimen-

sional problems. However, it is worth noting that efficient ways Of

handling constraints is one of the most difficult problems encountered

in the computation of Optimal controls. We envisage more widespread

use Of differential dynamic programming (and variations thereof) in

the future, especially in large dimensional, discrete-time Optimal con-

trol problems arising in pest management and related areas.

A detailed derivation Of the first order successive approximation

technique used in our work is given in the following pages. In addition,

a flow chart for computer implementation of the technique and a listing

of the FORTRAN program are included in Appendix A.



A FIRST ORDER SUCCESSIVE APPROXIMATION TECHNIQUE:

THE GRADIENT METHOD

A brief description leading to the gradient algorithm is given here.

For a detailed description Of the gradient (first order) algorithm, the

successive sweep (second order) algorithm, and other related second

order algorithms, the interested reader can refer to Dyer and McReynolds

(1970), and Jacobson and Mayne (1970).

System dynamics: The dynamics of the system are expressed in terms

of a set of discrete equations. The process is assumed to have N stages

and the state Of the system through these stages is governed by a dif-

ference equation of the form:

x(i + 1) = F(x(i),u(i),a), i = 0,1, , N - 1 (1)

where,

T

F: (F (F p 000 I F)

1 2 n

is an n - dimensional vector of functions, that are in general non-linear.

"x (if
1

x (i)

2

x(i) = °

x (i)
n

1. .J

is an n-dimensional column vector Of the state variables.
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'ul (1)7

u (i)

2

u(i) = '

Emu)   d

is an m - dimensional column vector Of control variables which normally

vary from stage to stage.

  
is a p - dimensional vector Of control parameters that are constant and

thus do not vary from stage to stage.

The performance index considered is of the form:

N-l

J = ¢(x(N).oD + 2 L1x<i).u(i).a) (2)

i=0

where L and O are scalar, single-valued functions of their respective

arguments, and O represents the performance attached to the final state

of the system. The second term represents the summation (discrete-time

counterpart Of integration) Of performance over the stages.

Further, constraints can be imposed on the system. The most gen-

eral form Of constraint is given by:

N-l

o = ‘P(x(N).Ot) + Z M(x(i).u(i).a) (3)

i=0

where W and M are single—valued, scalar or vector functions. When M=Op

this constraint will be reduced to the so-called terminal constraint.



64

In addition to these equality constraints, inequality constraints on

state and/or control variables,

C(x(i),u(i)) : O (4)

can also be imposed on the system.

The optimization problem, based onthe foregoing definitions, is

to find the sequence Of controls u(i), i = 0, ... ,n - l and the con-

trol parameters a that maximize (minimize) the performance index Of

equation 2, subject tO the system equation 1, and the constraints of

equations 3 and 4.

The dynamic programming approach to this optimization problem is

based on principles that are a direct consequence of the structure of

the problem, namely the principle Of causality, the principle Of Opti-

mality, and the principle of Optimal feedback control.

The principle of causality is a fundamental property of determin-

istic multistage systems, which says that the state x(k) and control

parameter a at the kth stage, together with the sequence Of controls

u[k,r — 1] g[u(k), u(k + l),--u(r - 1)] uniquely determine the state

of the rth stage, namely, x(r).

The principle of optimality due to Bellman, can be stated as:

An Optimal sequence of controls in a multistage optimization problem

has the property that whatever the initial stage, state, and controls

are, the remaining controls must constitute an Optimal sequence Of de-

cisions for the remaining problem with stage and state resulting from

the previous controls considered as initial conditions.

An important consequence of the principle Of Optimality is that

of Optimal feedback control (i.e. the choice of the optimal control
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at some stage may be expressed as a function of the state at that stage).

This is known as the principle Of Optimal feedback control which states

that the optimal control at the kth stage, u(k), provided it exists

and is unique, may be expressed as a function of the state at the kth

stage, x(k), and the control parameter a. Thus there exists a function:

uopt(x(k),a,k)

such that,

O t o t

n P (k) = u p (x(k).a.k).

This function, generally referred to as the optimal control law, yields

the closed-loop solution to the Optimization problem.

From the principle Of causality it follows that there exists a

function,

V(X(k) talulklN - 110k)

such that,

N-l

V(X(k).a,U[k,N - l].k) = ¢(x(N),a) + X {L(x(i).U(i).a)} (5)

i=k

This function, V, is referred to as the "return function", correspond-

ing to the control sequence u[k,N - 1]. Now from the principle of op-

timality u[k,n - 1] must be chosen to maximize V(x(k),a,u[k,N - 1],k).

If the control sequence u[k,N - l] is replaced by the optimal control

opt ll ' ' ll

sequence u [k,N - l], V becomes the optimal return function ,

Vopt(x(k),a,k) where:

v°Pt(x<k).a.k) = V(x(k).a,u°pt[k.n - 1],k). (6)
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From the definition of the return function, equation 5, V(x(k),a,k)

must satisfy the backward transition equation,

V(x(k),a,k) = L(x(k) ,u(x(k),01,k),01) + v(x(k + 1) ,01,k + 1) (7)

where x(k-+ l) is given by the state equations,

x(i + 1) = F(x(i),a,u(x(i),a,i)), i = k,k + l, ... ,N - l

with i== k. At the final stage,

V(x(N) .Ot.N) = ¢(x(N) .01) . (8)

The dynamic programming solution to the optimization problem will

require the construction Of this Optimal return function.

The "straight forward" dynamic programming approach to this con-

struction Of the Optimal return function (i.e., dynamic programming

solution to the optimization problem) which will lead to the optimal

control law is not possible except for simple systems with low dimen-

sions due to the "curse of dimensionality".

An entirely different approach to the Optimal control problem is

to get an open loop solution (i.e., to arrive at the Optimal control

solution starting from a single initial state). The basic idea behind

this approach is tO utilize a successive approximation technique that

will update some nominal control sequence so that it will converge,

eventually, to the optimum control sequence. The advantage of this ap-

proach is that storage and time requirements are relatively small. As

mentioned earlier, however, a true feedback solution is not Obtained,

although neighborhood extremal techniques can be used in some cases to

get an optimal feedback solution in the neighborhood Of the Optimal

solution.
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The gradient method is one such approach. It is based on the con-

sideration of a first-order expansion Of the return function,

V(x(0),a,u[0,N - 1])

about some nominal control variable sequence,

uj[O,N - 1]

j
and a nominal parameter, a , viz,

 

 

'+1 ' ' -

v(x(o).aj , u3+1[O,N - 1]) - v<x(o),a3,u3[o,N - 1])

j j _
+ 3V(x(0),a ,u [0,N 1])60

ac

3u[O,N - l] ' °

(9)

. . . . 3+1 3 1+1 1
The variations in the control variables 6a = a - a and Du = u -Tu

must be small enough to insure the validity of the expansion. Clearlv,

if 5u[0,N - l] and 5a are chosen by,

 

 

 

,- . . a T

_ _ DV(x(0),afl,uJTo,N - 1])
6u[o,N l] _ eh au[o,N _ 1] J T (10)

" 'j j q
56 = E 3V(x(0),a3&uLO,N - 1]) (11)

 

where e is some positive parameter, the return,

V(x(0),aj+1,uj+1[0,N - 1])

will be greater than,

V(x(0),aj,uj[O,N - 1]).

Instead Of forming,

V(x(0),a,u[O,N - 1])

explicitly and then differentiating, the gradients are computed more

easily by means of a backward sequence of equations.



68

It is clear that a change in u(k) will not affect L(x(i),a,u(k))

for i < k. Hence, the gradient of the return function

V(x(0),a,u[0,N - 1])

with respect to the control function u(k) is the same as the gradient

of V(x(k),a,u[k,N - 1]), i.e.,

3V(x(0),01,u[0,N - 1]) = 3V(x(k),a,u[k,N - 1])

3u(k) 3u(k) ' (12’
 

Now the return function V(x(k),a,u[k,N - 1]) from its definition may be

written,

V(x(k),a,u[k,N - 1]) = L(x(k),a,u(k)) + V(x(k + l),a,u[k + l,N - 1]).

Hence, differentiating with respect to u(k), we Obtain,

BV(x<k).a.u[k.N — 1))

3u(k)

= 3L(x(k),a,u(k)) + 3V(x(k + l),a,u[k + l,N — 1])

3u(k) 3x(k + l)

3F(x(k),a,u(k))

8u(k) °

 

 

(13)

 

In the following analysis the arguments x(i),a,u[i,N - l] or x(i),a,u(i)

will be replaced by the single argument i. Subscripts, unless specifi-

cally defined otherwise, denote partial derivatives. For example,

equation 13 is written,

vu(k) = Ln(k)'+ Vx(k + 1)Fu(k).

In order to evaluate this expression it is necessary to Obtain Vx(k + l)

for k = 0,1, ... ,n - 1. A sequential set of relations for Vx evaluted

along a trajectory may be obtained by taking partial derivatives Of

equations 7 and 8, i.e.,
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Vx(N) = ¢x(X(N),G) (14)

V (k) = V (k + 1)F(k) + L (k). (15)
x x x x

The partial derivative of V(O) with respect to a is obtained in

a similar fashion by partially differentiating equation 7, 8, viz,

Va(N) = ¢a(X(N).a) (16)

Va(k) = Va(k + 1) + La(k) + Vx(k + 1)Fa(k) (17)

where Vx(k + l) is given by equations 14 and 15. Thus, using equations

14-17 the gradients Of the return V(x(O),a,u[0,N - 1]) with respect to

a, and u[0,N - 1] may be formed as a backward sequence.

The gradient algorithm may now be summarized as follows:

1. Choose a nominal control sequence u3[0,N - l] and control

parameter a]. Construct and store the trajectory x[0,N] from the

system equation 1 and the nominal control variables. Also compute

the cost J where:

N-l

J = ¢(x(N).a) + {L(x(i),a.u(i))}.

i=0

2. Compute the partial derivatives, Vx(k) Vx(x(k),aj,uj[k,N - 1])

and Vaj(k) = Va(x(k),aj,uj[k,N - 1]) for k N,N - l, ... , 0 from

ij(N) = ¢x(N), Vaj(N) = ¢a(N)

ij (k) = ij (k + 1)ij (k) + ij (k)

Vaj(k) = ij(k + 1)Faj(k) + vaj(k + 1) + Laj(k)

where:

j j j j _ j 1
Fa (k) + Fa(x(k).a ,u (k)) and La (k) — La(X(k)'a .u (k)).
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3. Compute and store the gradient with respect to the control at

each stage from,

DV(x(0),aj,ujTo,N - 1])
. = v j(k + l)Fuj(k) + Lu3(k),

3u3(k) x

k N'l' 000' O.

4. For some nominal parameter E > 0, compute the new control from

uj+1(k) = uj(k) + €[3VI3uj(k)]T.

’+

5. At the initial stage compute the new control parameter a] 1

.+ . - _

from a] 1 = a] + evaT(0), where E > O.

'+ '+1

6. Use the new control variables uJ l[0,N - l], a3 I and the

system equations to construct a new trajectory xj+l[0,N] and

compute the new cost Jj+l.

7. If Jj+1 > Jj, continue with steps 2 and 3. If Jj+l < Jj,

reduce the step size parameters E, E; for example, set E = 8/2,

E = E/Z, and repeat steps 4, 5 and 6 etc.

8. The iterations are continued until either no further increase

in the cost is possible, or until the desired accuracy is attained.

Side constraints can be handled by appropriate modifications to this

basic algorithm (Dyer and McReynolds 1970). Another alternative to a

certain class of problems with side constraints, is the well-known pen-

alty function technique. However, this technique can lead tO very slow

convergence in certain cases.



RESULTS AND DISCUSSIONS

As discussed in earlier sections, the major objective Of this

research is the determination Of Optimal control strategies for the

integrated control of the CLB. In the systems terminology, the afore-

mentioned Objective can be transformed into an Optimal control problem

--derive the Optimal timing and quantity of pesticide spray, given the

state-space model Of the CLB ecosystem, a desired performance measure

to be Optimized, and other constraints imposed on the problem to reflect

the real-world situation.

We will compare the optimal decision rules determined through the

use of optimal control techniques with conventional spraying schemes

currently used in practice, and with the strategy of spraying no pesti-

cide at all (which may be a viable Option under certain circumstances).

All three of the aforementioned strategies will be evaluated within a

certain framework of the CLB ecosystem model under identical initial

conditions.

Reasonable starting densities for the CLB and T, jETT§_have to

be chosen for the problem as the optimal policies will be strongly de-

pendent on the initial conditions for the biological variables. Figure

7 describes the relationship between the spring adult CLB and the yield

from oats plant under no-spray conditions. This relationship is Ob-

tained through computer runs Of the CLB ecosystem model under no-spray

conditions. It can be Observed from the figure that spring—adult-CLB
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densities up to 0.1/sq ft make little impact on the ultimate yield from

the oats plant which remains around 60 bushels/acre. At a CLB-spring-

adult density of 1.0/sq ft the yield is fairly low--down to about 36

bushels/acre, and at a CLB density Of 2.0/sq ft the yield is very low

--about 14.7 bushels/acre. At spring adult densities of 3.0/sq ft and

above the CLB almost completely destroys the oats crop. It is Obvious

that CLB densities below 0.1/sq ft require no chemical control at all.

On the other hand, CLB spring adult densities of, say, 1.0/sq ft and

above warrant chemical control measures so as to prevent economic dam-

age to the crop. Based on the above information, and in order to il-

lustrate vividly the differences between the Optimal control strategies

and conventional spraying schemes currently in use, the CLB starting

density Of 2.0/sq ft is chosen for our example, together with an initial

density Of 0.001/sq ft for the T, ngT§,

The conventional control scheme currently in use is to spray 1 lb/

acre of the pesticide malathion when there are more than three eggs and

larvae per stem of the oats plant (Michigan State University Cooperative

Extension Service Bulletin E-829 by Dr. Ruppel, February 1977; Dr. Rup-

pel personal communication 1978). This criterion for conventional

spraying was incorporated into the CLB ecosystem model and it was found

that the spray of 1 lb/acre occurs at the third time step of the9model

(i.e., 180 DD48) and results in 23.85 bushels/acre of oats yield along

with a corresponding profit of $26.20/acre. In contrast, the no-spray

scheme leads to 14.70 bushels/acre Of yield from the oats plant and a

profit Of $16.85/acre (Table 3).
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TABLE 3. Comparison of the Optimal control policy with conventional

spray and no-spray schemes for a single season problem.

2.000/sq ftInitial densities: CLB

 

 

TJ = 0.001/sq ft

Price Of oats = $1.35/bushel

Cost of malathion = $3.00/1b

Cost of pesticide

application = $3.00/acre

TYPE OF TIME OF AMOUNT OATS PROFIT OVER

DECISION SPRAY IN 01“ SPRAY YIELD #/acre WINTERING

RULE 60DD48 UNITS 1b/acre Ibu/acre TJ/sq ft

no-spray - 0.00 14.70 16.85 0.040

°°nventl°nal 3 1.00 23.85 26.20 0.032
spray

°Pt1m°1 6 0.88 43.56 53.11 0.031
spray
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We will now focus on the determination of the optimal control

strategy using Optimization techniques. Optimization problems are

characterized by the performance measure utilized in the formulation

problem. Within the framework of pest management, the most important

Optimization problem that will be considered is the so-called profit

maximization problem:

Max[revenue - control cost].

This is probably the most realistic type of problem with regard to the

prevailing real world situation: the individual farmer's choice of

pest control schemes is generally motivated by the profit maximization

criterion, and, as Of the present, the farmers are not required to

bear the externality costs associated with the pesticide usage. In view

of the aforementioned reason, the profit maximization problem is chosen

as a typical example for the comparison Of Optimal strategies with con-

trol strategies currently in use.

The key state variable that is directly related tO the yield from

the oats plant is the weight of the grain head at harvest time (X32(N)

in the system model, where N is the final time). The control costs

consist Of the cost Of pesticides and the application costs. Further,

the performance measure utilized in the profit maximization problem

must reflect the integrated approach to pest management. In other

words, the performance measure should be aimed at reducing pesticide use

while at the same time, enhancing biological control of the CLB popula-

tion. With reference to the Optimal control problem, the pesticide

spray is the only control variable that can be directly manipulated for
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timing and amount. The biological control manifested by the parasite

population is only an indirect form Of control. Further, there is a

dynamic interaction between the CLB and T, ingthhroughout the season.

Thus, the parasite populations are represented by state variables in-

stead Of control variables. Furthermore, for a single season Optimi-

zation problem, the parasite, T, ngTg, virtually plays no role, but

its effect will be felt in the subsequent growing seasons; The key

entomological variable that captures the essence Of this situation is

the overwintering T, jETT§_density at the end Of the season. This can

be directly transformed into a constraint on the terminal state (of the

appropriate state variable) in the Optimization problem.

In light of the above-mentioned attributes Of the pest management

problem, the following performance measure (referred to as the minimum

control effort problem in the control literature) is found to be the

most appropriate for characterizing the economic Optimization problem.

n-l

Maximize: J:g x2 (N)P Q + Z x2 (1)9 Q - U2(i)P R
32 1 i=1 32 I 2

subject to the terminal constraint on diapausing T, ngTg:

x19(N) = TJLAST

where: P = price of oats

P = costs associated with chemical control

Q,R = weighting factors

N = terminal time

3 desired density of overwintering T, julis at the

terminal time.
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Obviously there exists trade-Offs between minimizing pesticide use and

maximizing revenue with reference tO the profit maximization problem.

Thus, the weighting factors can be adjusted so as to modify the rela-

tive emphasis on pesticide use and revenue. The terminal constraint for

the overwintering T, 12TT§_is set so that the density of diapausing

T, ngTg will be the same as that Obtained using the conventional spray—

ing scheme.

The profit maximization problem discussed above is solved using the

Optimization technique based on the successive approximation algorithm

(refer to earlier discussions). The Optimal control strategy is found

to be a single spray of 0.88 1b/acre timed at 360DD (i.e. the sixth
48

time step in the model) (Figure 8). Strictly speaking, the Optimal

strategy consists of a spray Of 0.88 1b/acre at the sixth time step,

along with sprays Of 0.0001 1b/acre, or less, at several other time

steps from 1 through 18. Since these sprays are totally insignificant

when compared to the spray Of 0.88 1b/acre, they are ignored. In this

sense, the single spray Of 0.88 lb/acre is suboptimal. However, the

computer runs made with the Optimal and suboptimal strategies lead to

essentially identical results with an accuracy Of 4 decimal places.

In view Of this situation, the suboptimal strategy is substituted in

place of the Optimal strategy.

Table 3 illustrates a comparison Of the optimal control policy, with

conventional spray and no-spray schemes for the single season of Opti-

mization problems considered above. It can be Observed that the Optimal

strategy results in a 12% reduction in pesticide use--0.88 lb/acre as
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compared to 1.00 lb/acre with the conventional spray. More importantly,

the density of overwintering T, jETT§_is almost identical in both

cases (0.031/sq ft in the Optimal case as compared tO 0.032/sq ft with

the conventional spray) as required by the terminal constraint (on the

overwintering T, ngTg) included in the optimal control problem. It is

also worth noting that in comparison to the conventional strategy the

Optimal strategy leads tO significant gains in oats yield (43.56 bush-

els/acre as compared to 23.85 bushels/acre with the standard policy)

and almost doubles the profit ($53.11 as compared to $26.20 with the

conventional spray).

From a biological point Of view, there is a marked difference be-

tween the conventional spraying scheme and the optimal strategy--the

conventional spray is carried out early in the season (180DD48) and

is aimed at CLB spring adults and eggs; whereas the Optimal spray is

timed later in the season (36ODD48) and is aimed at early larval in-

stars Of the CLB. It is also worth noting here that the CLB larvae are

more susceptible to malathion, as compared to CLB adults.

Figures 9-21 illustrate the evolution. of several important varia-

bles of the CLB ecosystem when subjected to different control strategies,

namely, the conventional strategy, the Optimal strategy, and the strategy

of nO spray at all. Figures 9 through 12 illustrate the state variables

related to the oats plant, namely the weight of the plant, the leaf

surface area, the weight Of the grain head, and the surface area Of the

heads. It can be easily Observed that, for the problem under consider-

ation, the Optimal strategy is far superior to the conventional strategy,
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which as can be expected, is better than no control at all. It can be

seen from Figure 13 that the conventional strategy is more effective

in controlling the CLB spring adults as compared to the Optimal strate-

gy; whereas the Optimal strategy is more effective against CLB summer

adults (Figure 14). The effect Of these different control strategies

on the parasite population is depicted in Figures 15 and 16. It is

interesting to note the density of T, ngTg in diapause at the end

of the season is approximately the same for both the optimal and con-

ventional strategies as necessitated by the terminal constraint imposed

on the overwintering T, ngTg, The small difference between the two can

be attributed to the fact that constraints are only approximately (and

not exactly) satisfied in the computational implementation of the opti-

mization algorithm. The major difference between the Optimal and con-

ventional strategies is highlighted in Figures 17 and 18, which illus-

trate the CLB egg and first instar densities under different control

strategies; the conventional strategy is aimed at the CLB spring adults

(Figure 13) and CLB eggs, while the Optimal control strategy is directed

toward the early larval instars Of the CLB. The impact Of the three

different control strategies on the CLB second and third larval instars

are portrayed in Figure 19 and 20. Figure 21 illustrates the CLB feed-

ing on the oats plant for the three different control schemes, and

clearly brings forth the effectiveness Of the Optimal spray in reducing

the CLB feeding.

Optimal strategies may not always lead to such spectacular gains

over conventional policies; however, optimal strategies will always be



88

as good as, and Often times better than, the conventional schemes.

This is due to the fact that the Optimization algorithm routinely

searches numerous policy options, with reference to the timing and

amount of pesticide spray, and chooses the one that Optimizes the de-

sired performance measure specified for the problem. In the event the

conventional spraying scheme happens to be the Optimal, the optimiza-

tion scheme will automatically choose it.

SENSITIVITY ANALYSIS
 

In order that we may fully appreciate the effect Of the timing and

amount of pesticide spray on the economic yield from the crop and sev-

eral other important variables characterizing the CLB ecosystem, a

sensitivity analysis is carried out with reference to the timing and

amount Of pesticide spray. Thus, several computer runs of the CLB eoc-

system model (initial conditions remaining as before at CLB = 2.000/sq ft

and TJ = 0.001/sq ft) are carried out with the timing of pesticide spray

kept fixed at l8ODD48, while the amount Of spray is varied from 0.1 to

2.0 lbs/acre. This process is repeated for several other spray times--

240DD 300DD 8, 36ODD48’ 4 8' and 420DD The results are illustrated in

4 48'

Figures 22 through 27.

It can be seen from Figure 22 that the conventional spray timed at

180DD48 leads to very poor yield from the oats plant; whereas the opti-

mal spray timed at 360DD results in the maximum yield. A similar
48

situation exists in the case of profit (Figure 23). It can also be seen

from Figures 22 and 23 that a pesticide spray of slightly over 1 lb/acre
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is the probable upper limit on the amount of a single spray--in other

words, at any one particular time period, any amount of spray over and

above this upper limit of l lb/acre will not improve the yield, but will

only lead to a reduction in profits due to unnecessary expenses incurred

on pesticide-related costs. It is also interesting to note that the

amount of spray currently recommended, namely 1 lb/acre, also happens

to be the upper limit on the amount of spray.

Figures 24 and 25 illustrate the effect of timing and the amount

of the pesticide spray on the spring adult CLB and the adult 2, julis

of the subsequent season (i.e., the impact of spraying in the current

season on the starting densities of CLB and TJ for the next season).

With regard to the timing of the spray, early applications of pesticide

are less effective in reducing the CLB population. However, early

applications of pesticide are more beneficial to 2, jgli§_as compared

to the sprays at a later point in the season.

The optimal policy chose a spraying amount of 0.88 lb/acre (in con-

trast to 1.0 lb/acre of the conventional scheme) such that the densities

of overwintering g, julis at the end of the season are the same under

the conventional and the optimal schemes, as required by the constraints

we imposed on the optimization problem. Thus, the optimization algorithm

simultaneously chooses the timing and the amount of spray so that the de-

sired performance measure is optimized.

Figures 26 and 27 illustrate the results of the sensitivity analysis

in the total CLB eggs and the total third larval instar for the entire

season. It is obvious that the conventional spray is most effective

against the CLB eggs while the optimal spray is most effective against
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the CLB larvae. Incidentally, this highlights the biological implica-

tions of the control schemes-~conventiona1 policy being aimed at CLB

spring adults and eggs, while the optimal spray is aimed at the early

larval instars of the CLB as described earlier.

Sensitivity analysis with reference to the timing and the amount

of pesticide spray can be very useful in analyzing various control op-

tions and quickly narrowing the options to a few good (not necessarily

optimal) strategies. Optimization techniques will still be needed to

determine the best control strategy. Further, sensitivity analyses

with reference to timing and amount of pesticide spray will be more

cumbersome when there is a need to spray several times during the growing

season as opposed to the single spray strategy that we have considered

for the CLB ecosystem.

ANALYSIS OF CONTROL STRATEGIES FOR THE MULTISEASON PROBLEM

As discussed earlier, the single season optimization problem could

not vividly illustrate the beneficial effect of the parasite population,

because for any given season the impact of T, jgli§_cannot be perceived

during the current growing season, but the beneficial effect of the

parasite manifests itself in subsequent growing seasons. In the single

season optimization problem, this situation is implicitly taken into

account by imposing a terminal constraint on the density of the diapausing

g; jglig at the end of the season. Nevertheless, in order to fully cap-

ture the beneficial impact of T, iglig on the CLB ecosystem, it is

necessary to consider multiple-season problems.
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The multiple season optimization problem is solved as a series of

single season optimization problems. In this sense, the optimal policy

will be only suboptimal over the time horizon comprising the multiple

season as a whole. Such multiple season problems extendingwover a four

year period are solved for several different combinations of starting

densities for the spring adult CLB and the adult T, julis:

1. Initial densities: CLB = 2.000/sq ft

TJ = 0.001/sq ft

2. Initial densities: CLB = 2.000/sq ft

TJ = O.lOO/sq ft

3. Initial densities: CLB = 1.000/sq ft

TJ 0.00l/sq ft

Furthermore, these initial densities are chosen in such a manner

that comparison of cases 1 and 2 will illustrate the effect of a change

in the initial density of T, 12TT§_(for the same initial density of CLB)

on the evolution of the CLB ecosystem. Likewise, the comparison of cases

1 and 3 will exemplify the impact on the CLB ecosystem due to a change

in the starting density of CLB spring adults.

In the optimization problem used with the multiseason analysis, the

terminal constraint imposed on the overwintering T, 13TT§_is set in such

a manner that the overwintering T, 13g3§_density under the optimal policy

will be about 80% of that obtained under the no-spray scheme. Briefly,

this implies a further increase of T, jETT§_overwintering density as

compared to the Optimization problem considered before in which the con—

straint level of overwintering T, igTT§_is set to be the same as that

obtained with the conventional spraying scheme. Such an increase in the
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level of the terminal constraint on overwintering T, 12TT§_is incorpor-

ated in the optimization problem in order to fully capture the beneficial

effect of the parasite pOpulation.

The results of the multiseason analysis of the repeated application

of conventional and optimal policies over a four year period are given

in Tables 4, 5 and 6 and are graphically illustrated in Figures 28 through

32. Figures 28 through 32 clearly illustrate the enormous advantages

associated with the optimal strategy--of great significance is the amount

of pesticide used, which is much less with the Optimal scheme as com-

pared tO the conventional practice, for 2TT_Of the three cases considered

(see Figure 28). Furthermore, in comparison to the conventional policy,

the optimal strategy always leads to higher yield from the oats plant

(see Figure 29), correspondingly higher profits (Figure 30) and is su-

perior in terms of controlling the CLB (Figure 31). In addition, the

Optimal strategy is more conducive to the parasite T, 12TT§_as compared

to the control policy currently in use (Figure 32).

The beneficial effect of T, ngTgDin controlling the CLB population

and the manner in which the Optimal strategy exploits this beneficial

aspect to reduce the use Of pesticides are clearly brought forth in the

multiseason analysis. Thus, it can be seen that, for the same density

(2.0/sq ft) of spring adult CLB, case 2 with a higher (as compared to

case 1) T, igTTg population not only uses much less pesticide (Figure

28 a and b) but also results in higher yield (Figures 29 a and b) and

correspondingly higher profit (Figures 30 a and b). This beneficial

effect of T, julis can be observed in both the conventionaland optimal
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TABLE 4. Comparison of Optimal and conventional spraying schemes for

a multiseason problem with initial densities of CLB = 2.000/

sq ft and TJ = 0.001/sq ft.

Table 4a. Repeated application of conventional policy over a 4 year

 

 

period.

PESTICIDE TIME OF OATS SPRING

YEAR SPRAY 5PRAY IN YIELD $3223: ADULT T£DULTft

lb/acre 60DD UNITS bu/acre CLB/sq ft sq

l 1.0 3 23.85 26.20 2.00 0.001

2 1.0 3 11.45 9.45 2.83 0.016

3 1.0 3 3.24 - 3.42 0.224

4 1.0 3 0.55 - 3.62 1.708

 

Table 4b. Repeated application of optimal policy over a 4 year period.

 

 

YEAR “SEES.“ 5123312 51?; 335;: 85.?ch nggmft
lb/acre 60DD UNITS bu/acre CLB/sq ft q

l 0.96 5 42.58 53.08 2.00 0.001

2 0.90 5 39.39 48.92 2.18 0.029

3 0.95 5 37.41 46.20 2.46 0.902

4 0.92 5 39.08 48.49 2.25 5.288
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TABLE 5. Comparison of Optimal and conventional spraying schemes for a

multiseason problem with initial densities of CLB = 2.0/sq ft

and TJ = 0.1/sq ft.

Table 5a. Repeated application of conventional policy over a 4 year

period.

PESTICIDE TIME OF OATS SPRING

YEAR SPRAY SPRAY IN YIELD giggiz ADULT nggLTft

lb/acre 600D UNITS bu/acre CLB/sq ft q

l 1.0 3 23.85 26.20 2.00 0.10

2 1.0 3 13.15 11.76 2.71 0.96

3 1.0 3 10.79 8.56 2.87 4.11

4 1.0 3 18.86 19.47 2.32 10.88

Table 5b. Repeated application of Optimal policy over a 4 year period.

PESTICIDE TIME OF OATS SPRING

YEAR SPRAY SPRAY IN YIELD 232::2 ADULT nggant

lb/acre 6000 UNITS bu/acre CLB/sq ft q

l 0.96 5 42.58 53.08 2.00 0.10

2 0.91 5 40.97 51.05 2.04 1.56

3 0.91 5 44.60 55.85 1.80 7.15

4 0.90 5 51.36 65.08 1.08 11.78

 



98

TABLE 6. Comparison Of optimal and conventional spraying schemes for

a multiseason problem with initial densities of CLB = 1.000/

sq ft and TJ = 0.001/sq ft.

Table 6a. Repeated application of conventional policy over a 4 year

 

 

period.

PESTICIDE TIME OF OATS SPRING

YEAR SPRAY SPRAY IN YIELD 232::2 ADULT TJ?:UL:t

lb/acre 60DD UNITS bu/acre CLB/sq ft q

1 1.0 4 48.79 59.86 1.00 0.001

2 1.0 4 45.97 56.06 1.19 0.011

3 1.0 4 43.88 53.24 1.37 0.127

4 1.0 4 43.27 52.42 1.43 0.818

 

Table 6b. Repeated application of Optimal policy over a 4 year period.

 

 

PESTICIDE TIME OF OATS SPRING

YEAR SPRAY 8PRAY IN YIELD 232::1' ADULT TJI/XISDUL':t

lb/acre 600D UNITS bu/acre e CLB/sq ft q

l 0.88 5 51.94 65.86 1.00 0.001

2 0.85 5 48.42 61.20 1.25 0.028

3 0.91 5 46.83 58.89 1.57 0.822

4 0.86 5 46.70 58.84 1.43 3.664
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schemes; however, it is more pronounced in the Optimal case. An anal-

ogous situation exists between case 1 and case 3, both of which have

the same starting density for the T, igli§_(0.001/sq ft) but different

starting densities for the CLB (2.0/sq ft in case 1 as opposed to 1.0/

sq ft in case 3) (Figures 28-32).

It can also be Observed (Figures 29c and 300) that for case 2 with

a low CLB density (1.0/sq ft) the conventional spray leads to high crop

yield and large profit only slightly less than the corresponding ones

obtained through the Optimal strategy. However, bear in mind that these

spectacular gains with the conventional spraying scheme have been achieved

at the expense of using a much larger quantity of pesticide (Figure 28 c)

as compared to the optimal strategy. Further, with the conventional

spray, T, 13TT§_density through the years is much lower than the Optimal

case (Figure 32c) even though the spring adult CLB density is just about

the same in both cases (Figure 31c).

It is remarkable that the optimal scheme is superior to the conven-

tional scheme in all 3 cases, representing different combinations of

CLB-TJ densities. The Optimal policy leads to higher yields and greater

profits, is more effective in suppressing CLB densities, and reinforces

the increase of T, 12TT§_pOpulations. More importantly, all of these

gains are obtained with a much smaller pesticide use when compared to

the standard practice.

ENVIRONMENTAL CONSIDERATIONS
 

The pest management problems discussed thus far have focused on the

profit maximization criterion without due consideration to the
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externality costs associated with environmental pollution. More often

than not, farmers are not held liable for most of the envirommental dam-

age caused by pesticide use. In the case of agricultural pest manage-

ment problems we are concerned with negative externalities (i.e., external

diseconomies of production) that result in uncompensated costs to the

society. In this sense, there exists a divergence between private pro-

fits and social benefits. The major part of these externalities falls

outside the scope of the market system and is not reflected in relative

market prices (Kneese 1971, Kneese and Schultze 1975).

Externality problems have two important characteristics: (1) there

exists an element of interdependency--interactions between the decisions

of economic agents (e.g. the decisions Of the individual farmer and those

Of neighboring farmers concerned with market prices for the crop, pesti-

cide costs determined by the chemical companies, etc.) and (2) there

exists no compensation; therefore, the one creating the externality costs

(e.g. the farmer) is not legally or socially liable to pay for it.

Another, but less important property Of externalities, is emphasized by

Mishan (1976) who points out that the environmental spill-over should be

unintentional <xr an incidental by-product of some otherwise legitimate

activity--which in our case is agricultural production. These character-

istics make the externality problem very complex.

It is important to emphasize that an operational analysis of exter-

nalities is an extremely difficult task. Our approach to the externality

problems arising in pest management will be confined to a rather simple

analysis in terms of the economic considerations.
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Generally speaking, there are two basic approaches to regulating

pesticide use and associated pollution in pest management problems:

direct regulation,and.taxes and subsidies (see Judy 1970 for a detailed

discussion on the instruments of environmental control).

The direct regulation approach involves directly regulating the

amount of pesticide used in crop production. In terms of the optimiz -

tion problem, the direct regulation criterion can be transformed into a

constraint on the control variable, namely the amount of pesticide. In

the present analysis, we impose an integral (isoperimetric) constraint

on the profit maximization problem discussed earlier. Such a constraint

implies that the total amount of pesticide used through the entire sea—

son will be set at certain prescribed levels by a regulatory agency. The

regulatory agency will also have the task of overseeing the implementation

of such a policy to insure that the prescribed levels of pesticide use

are not exceeded. The profit maximization problem can now be restated

as follows:

N

Max 2 [revenue from oats] - control costs

i=1

subject to integral constraint on pesticide use:

N-l

u. =UMAX

. 1

1=l

where UMAX is the prescribed level of pesticide use.

This optimization problem (together with a terminal constraint on

overwintering T, julis) is solved using the same initial conditions as

for the single season profit maximization discussed earlier for different

constraint levels on the control variable (i.e., different amounts Of

pesticide used).
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Figure 33 illustrates the yield from the oats plant and the corres-

ponding profit in relation to the constraint level imposed on pesticide

usage. It can be seen that a pesticide spray Of 0.88 lb/acre results

in maximum yield and correspondingly maximum profit. Any further in-

crease in pesticide use does not increase the profit. In this particular

case, the limit on the pesticide usage can be set at 0.88 1b/acre, which

incidentally is less than the 1.00 lb/acre currently used in practice.

However, the regulatory agency can choose to impose even a lower limit,

say, 0.7 lb/acre, which will result in reduced yield and profit as com-

pared tO the pesticide use Of 0.88 lb/acre.

It may be necessary to impose such a regulatory policy in order to

meet certain guidelines Of environmental toxicity (at the expense Of

lower profits to the private grower). Of course, in extreme cases the

regulatory agency can ban the use of a pesticide.

There are several drawbacks with the direct regulation approach.

First, pesticide use is strongly dependent on the degree Of infestation

in any given field, the presence or absence of biological control, etc.

Ideally, there should be different levels of pesticide for different

farmers growing the same crop, to allow them to make approximately the

same monetary gains. These factors make direct regulation very difficult

to implement. Second, it is very difficult to oversee the compliance of

direct regulation. An attractive alternative is voluntary regulation

under which the farmers are advised to follow certain recommendations as

to the use Of pesticides. As a matter of fact, the recommendations of

extension serVice personnel can be categorized under the voluntary'regu-

lation approach.
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The taxation policy is more complicated, and we will consider only

a very simple case in which there is a constant tax per 1b Of pesticide

used. Equivalently, this can be viewed as an increase in the cost Of

pesticide and as a variable cost of production. In this case, the profit

maximization problem (considered before) is transformed to:

Max [revenue - control cost - tax].

The optimization problem, with initial conditions set as above, is

solved for different levels of tax per 1b of pesticide used. The results

are illustrated in Figures 34 through 36 in which the non-optimal case

represents a user assumed to spray 1 1b/acre regardless of the tax levied.

With the Optimal scheme, 0.88 lb/acre continues to be the Optimal amount

of spray until the tax levied is as high as $40/lb Of pesticide used, and

the pesticide use does not decline gradually with the increase in taxes.

This is because any conSiderable reduction (down from 0.88 lb/acre) in

pesticide use and the associated saving in taxes are more than offset by

a reduction in revenue. This situation is critically dependent on the

nature of the dosage response characteristics and the relationship between

yield and pesticide use (see discussions on sensitivity analysis with

reference to timing and amount of spray). A tax over and above $4l/lb

leads to the Optimal rule being to not spray at all (Figure 34). This

may also imply that the spraying strategies decided by the farmer are

essentially binary strategies--to spray some fixed amount of pesticide

or not spray at all.

The Optimal user always receives larger yield (Figure 35) and higher

profits (Figure 36) as compared to the non-Optimal user. More importantly,

in comparison with the Optimal user, the profits of the non-optimal
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user decline at a faster rate as the taxes are increased. This is be-

cause in the non-Optimal case the farmer uses more pesticide in compar-

ison to the Optimal user. It is Obvious that a large tax is required

to reduce pesticide use, but in the problem under consideration, we have

only two levels of pesticide use for the Optimal case--0.88 1b/acre

and no spray. This can be changed by using taxation schemes where the

rate of taxation increases drastically with the increased use of pesti-

cides. However, it will be extremely difficult to justify any one

particular basis used in structuring the taxes.

EFFECTS OF CHANGE IN CROP PRICE ON PESTICIDE USE
 

As a matter of general interest, the effect of varying the price

of the crop on the use of pesticide is also viewed within the framework

of the prOfit maximization problem (results are illustrated in Figure

37). As expected, the increased crop price provides an incentive to

the farmer to increase pesticide usage even when it is not warranted.

Although the effective profit increases due to the increased crop price

(and the increased pesticide use) it can be seen that the oats yield

eventually stabilizes.

We would like to emphasize once again that there is no easy solu-

tion to the externality problems-all of the approaches, direct regula-

tion, taxes and subsidies, pricing, etc., are complex and are difficult

to implement. More research.is definitely needed in this area.
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SUMMARY AND CONCLUSIONS

In this research work, we have developed a comprehensive model of

the CLB ecosystem with all its major components--the CLB, its larval

parasite T, ngTs, and the oats plant. Both chemical control and bio-

logical control aspects are incorporated into the model so that it can

be tested within the framework of integrated pest management.

A first order, successive approximation algorithm is utilized to

develop optimal control strategies for the integrated control of the CLB

ecosystem. The optimal control strategies are characterized by emphasis

on biological control and reduction in the use of chemical control. The

optimal strategies are compared with the conventional spraying schemes

currently utilized. Such analysis are carried out for both single sea-

son and multiple season pest management problems. The Optimal policy

leads to higher yields and greater profits, reinforces the increase of

T, ngT§_populations, and is more effective in suppressing the CLB dam-

age; more significantly, all of the aforementioned gains are obtained

with a reduced pesticide use as compared to the conventional spraying

practice.

Optimal strategies may not always lead to spectacular gains over

conventional policies; however, Optimal strategies will always be at

least as good as, and Often times better than, the conventional schemes.

This is because the optimization algorithm routinely searches numerous

policy Options with reference to the timing and amount of pesticide

113
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spray, and chooses the one that maximizes yield and profit with minimal

pesticide use. In the event the conventional spraying schemes happen

to be Optimal, the optimization scheme will automatically choose it.

A sensitivity analysis is carried out with reference to timing

and amount of pesticide spray, and it is found that the Optimal timing

is at odds with the timing of spray under the conventional schemes:

the conventional strategy is timed earlier in the growing season and is

aimed at the CLB spring adults and the CLB eggs. On the other hand,

the optimal spray is timed later in the season and is targeted for the

early larval instars of the CLB. Regarding the amount of spray, the

Optimal scheme results in an average reduction of about 10% in the use

of pesticides as compared to the conventional strategy. This may not

seem impressive at first glance, but considering the fact that the acre-

age of oats harvested in the United States is close to 13.5 million acres

(Michigan Agricultural Statistics, June 1978) and assuming 40% of these

are infested by CLB, a 10% reduction will result in a reduction of

500,000 lbs Of pesticide use annually--for oats alone. This will be an

enormous reduction in terms of pesticide use and associated environmental

pollution.

Unlike the CLB infestation which usually requires just a single

spray, Optimal schemes will lead to greater savings in pesticide use

when used with pest management problems in which frequent sprayings are

common--like the onion maggot problem currently under investigation at

Michigan State University. Furthermore, the optimal scheme achieves

such a reduction in pesticide usage with minimal reduction in crop

yield and profits.



A simple analysis is carried out, based on direct regulation and

taxation approaches to regulating the environmental pollution caused

by the pesticide sprays. It is found that, for the problem under con-

sideration, the pesticide use is not very sensitive to taxes--heavy

taxation is required to reduce pesticide use. The direct regulatory

approach, in which absolute limits are prescribed as the level of pesti-

cide use, is also discussed. In general, it is extremely difficult to

formulate an equitable policy based on either direct regulation or

taxation.

The analyses carried out in this research point to several areas

where improvements can be made by conducting more field (or laboratOry)

experiments. Among them, the dosage response characteristics are the

most important. The amount of spray used is directly dependent on the

dosage response characteristics. Currently available data on dosage

response are incomplete, especially with reference to low level dosages.

Further, no experimental data is available on the effect of pesticides

on T, jglis, Field and laboratory experiments are needed to acquire

the necessary data in these areas. Further, field experiments have to

be carried out to evaluate conventional and optimal spraying strategies

with reference to their effect on crOp yield, profit, CLB feeding,

parasite densities, etc.

In the present research work we have designed an Optimal controller

for pest management problems. However, it is confined to a deterministic

framework, but the real world pest management problem is actually sto-

chastic--due to variations in climatic factors, sampling errors, etc.
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Thus, the deterministic optimal controller will not be optimal in real

world stochastic situations. Further, we would like to have on-line

features incorporated into the optimal controller so that the pest man-

agement strategies can be implemented on-line. We propose the Linear-

Quadratic-Gaussian (L-Q-G) methodology (Athans 1971, 1974) for the

design of such an on-line controller. A brief description of the L-Q-G

methodology is presented in Appendix B. Essentially the L-Q—G design

consists Of two components, (1) a deterministic optimal controller, and

(2) a stochastic estimator. The complete design of the deterministic

optimal controller has been accomplished in this research. The design

of the stochastic estimator must await another work.

The essential features of the on-line controller for pest manage-

ment are illustrated in the block diagram of Figure 38. The determinis-

tic Optimal controller utilizes the ecosystem model to compute (off-

line) the determinisitc Optimal control strategy. On the other hand,

the stochastic estimator (filter) combines model estimates and actual

field data (containing errors) of biological and climatological variables

of the ecosystem, to give a new improved estimate Of the states of the

ecosystem. The deviations between the actual states Of the ecosystem

from its ideal, deterministic response generated by the model are used

to generate the on-line correction strategy. One Of the most signifi-

cant features of the L-Q-G design is that it fits the general guidelines

established for the on-line pest management systems (Haynes and Tummala

1977). Furthermore, the methodology developed in this research can be

easily extended to the L-Q—G design.
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Finally, we wish to emphasize that optimization is 222.3 substitute

for the decision-making process, but rather a powerful tool in aiding

it. Optimization has been proven successful in a wide range of engi-

neering and physical problems. The same ideas can be carried over to

the management of biological problems--the major difference being that

biological systems are much more complicated, and mathematical descrip-

tions for their behavior do not exist but for a few cases. Nevertheless,

even some of the simplified models along with optimization schemes can

provide valuable insights to the management of biological systems. It

will be a while before optimal control strategies are "directly" put

into use in pest management. With the advent of more quantitative ap-

proaches to biological problems, and the interdisciplinary systems ap-

proaches becoming increasingly popular, such a situation is likely in

a conceivable future.



APPENDIX A

COMPUTER PROGRAM FOR THE OPTIMIZATION ALGORITHM



COMPUTER PROGRAM FOR THE OPTIMIZATION ALGORITHM

PROGRAM STRUCTURE
 

The structure of the computer program used in implementing the

optimization algorithm (refer to earlier discussions) is illustrated

in Figure 39. It consists of a main program and subroutines.

MAIN program coordinates all the subroutines. Subroutine INPUT

reads in the initial conditions for the state variables and all the

other parameters required for the optimization algorithm.

Subroutine MODEL generates the state variable trajectories using

the state-space model of the system. It also computes the performance

index.

Subroutine FX computes the matrix of partial derivatives, Fx (i.e.,

partial derivatives, 3%) with reference to state variables X.

Subroutine FU computes the matrix of partial derivatives Pu (i.e.,

partial derivatives, 3%) with reference to control variables U.

Subroutine OUTPUT prints optimal controls and optimal state trajec-

tories for every time step. It also prints the performance index and

other variables (if any) for every iteration. The subroutine OUTPUT

also writes all these outputs in catalogued tapes that can be accessed

for graphing at a later point in time.

CONVERGENCE PROPERTIES
 

Convergence of the optimization algorithm is illustrated in Figure

40 in which the two cases correspond to two different nominal controls.
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CONVERGENCE OF OPTIMIZATION RLGORITHM

5
0
0
.
0

J CONVERGES IN 7 ITERRTIONS

1
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.
0

CONVERGES IN 18 ITERRTIONS

I
N
D
E
X

3
0
0
.
0

2
0
0
.
0

1
A

P
E
R
F
O
R
M
R
N
C
E

1
0
0
.
0
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0
.
0

r f r 1' r v I '

FIGURE 40. Convergence of the optimization algorithm.



122

It can be observed that in both cases the optimim value of the perform-

ance index is almost identical (within 0.05% error), thereby implying

good convergence. On the average, the algorithm takes about 15 itera-

tions to converge. Of course, convergence of any optimization algorithm

depends on a variety of factors that include functional forms of the

model, performance index, constraints on the problem, Characteristic

features of the algorithm (i.e., first order or second order algorithm)

programming efficiency, etc. As such it will be rather difficult to

draw any general conclusions about the convergence of the algorithm.

Using the CDC 6500 computer system at the Michigan State University

the optimization algorithm takes about 0.8 cp sec (central processor

seconds) per iteration. Total memory requirements are about 20,000

octal units, which is quite modest, especially so in view of the dimen-

sions of the problems handled-—over 30 state variables.

A flow chart for the computational algorithm is illustrated in

Figure 41, and a complete listing of the FORTRAN program is also attached.
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START

 
 

INITIALIZATIN PHASE:

CALI. SIBROUTIHE 'IIPUT'. GET

INITIAL CMOITIMS FOR 1. SET

PAMTEB FOR WIHIZATIN

ALGORITHI.

PRIK comm U: U ' [START

 

HAIH m LOOP

 

 
 

 

IKREIEHT ITERATIM

1 . 1 0 I

 
 

 
 

 

OULRmeDE'Innnan

m: x as A roman steam.

sroas x‘ AFTER Inca STEP. ,

comnznmmmmaxmxxn

 
 

 

u-nmm.¢..wufl
 

 

ISI-I?

 

YES

V   

IS

(PI/PILAST)-I

 
YES _
   < TOLER?

  

 

p——45¢- c-snnuu

 

\
V
/

 

¢-¢.Snmu

  
PILAST - PI

 

j..__.,

 

 

CALI. SURWTIHES F! AID FU.

CWUTE MTRICES LA AID LU.

CWUTE THE

HARD SEQUENCE. USE THESE TO

CWUTE THE GRADIENT OVN.

anuvquamh

 
 

 
  
 

FIGURE 41.

 
 

CALL SWROUTIHE NTPUT

AHO PRINT OPTIML 0.I.

CATALW TAPES FOR GRAPHIHG.

 

 
EHO

Computer flow chart for the optimization algorithm.



FORTRAN LISTING

f

4

9

'0

0

0

§

§

+

9

9

FROGRAP MATOFT (INFUT=65, OUTTUT8129, TAFF3865, TAFE‘865,

TAFE5=65, TAPEéBOS, TAFE7=65, TAFE77365, TAFE78=65.

ZZZZOT=65, TAPEOSZZZZOT, TAPE61=0UTPUT)

INTEGER TLAST,VR,T£AR,TD,T$FRAT

REAL LX,LU,JULISIN,INTERM,HX,NU,INCOME

REAL K1,K!,KA,K6,K7,K8,HORTFN,MORTFV2

DI'ENSION vx(35,35),Lx(35,35),Pvarx(35,35),DVDU(35,2)

4,FPVXFU(35,2),TERM1(35,2),TER”2(35,Z),LU(35,2),TEFFU(35,Z)

DIMENSION Rx(35,35),Hx(35,35),VU(LC,2),FRHXFU(AP,2),

+ FRUXFX(35,35),DHDU(3S,2)

CO'HON

CCISON

(IMHON

CFHMON

CF'MON

CLHWCN

CFVHON

(”NMON

(C‘XON

(fivaN

CEVMFN

CT'MCN

(5"GN

x(35,35),u¢35,2)

IPLANTI P(£,6)

[ENOUGH] c1,c2,c3,c&,01,02,03,oa,os

IENOUGHI DTT,DT2,Dr3,ora,ors,os¢,or7,ora,or9

IENOUGHI A,S,c,o,r,x1,x3,x4,K6,r7,xe,TEEDc

IENGUGHIRF,CP,E1,EZ,E3,ECF,ONECP,TD,IDIA,IFEED,NTOATS

IaLocrI HORTFN(39),MORTFN2(30),SURVFN(33),SURVFN2(3C)

[BLOCK] SL1(30),SL4(3”),F1(3?),DIAFFN(3?),DIFMFN(37)

Iaanx/ DIFVFN2(31),F1DR(3%),FZ(30),DSL1(30),DSL6(3¢)

IFxl onsa,onsoz,r1DRcr,TTDAcp1,x18cr,x1°c91

[INPUT] IrLaa, NITER, EFSILON, STEFHIN, STEFRAX, o, a

IINFUT/ USTART, TVALUE, TOLER, ET, TLAST, CLBIN

IINPUTI JULISIN, FINALTJ, NYEAR, TSPRAY, SPRAY

C"”‘(N IINPUTI PRICE, TAX

chnUR [MODEL] xner(35),oxru,sunu,sumuso,rIruso,rI

COMMON IWODELI TEGG, 1J2, TLAR3, TUNPAR‘, TPAR‘

COVUON ITITEI TR, ”N, NSTEF, NX, NU

DATA I F(T,I), 13‘,‘ ) I 8.035127 E'OT , 5.17'637 E'31,

'5.6‘“611 E'OZ , {.0 I

DATA ( P(2,I), I31,‘ ) I'T.127719 E'OT , 1.2‘0371 E‘OO,

-108.6|-73 E-02 ' 6.510352‘ [-32 I

DATA ( F(3,I), IST,‘ ) I (.0 , 3.638312 5'02,

7.656(6‘ 5-01 , 5.155583 5’01 I

DATA I P(b,1), 181,4 ) I C.O , 4.77990C 5'02,

'1.726377 5'71 , 1.3'3389 E‘TC I

DATA K1,KT,KA,K6,K7,KP I v.1, 0.3, 0.45, v.4, n.5, 0.5 I

DATA A,B,C,D,F I 3.7, 22.3, 1.:, ‘.6, 1.‘ I

DATA FEEDQ,RP,CP I $.002329, 0.O, 0.75 I

DATA TD,IDIA,IFEED,NTOATS I 13, 1, 1, 13 I

DATA C1,C2,C3,CA I¢.68b8‘8E-L1, 1.829393E-?3, '3.TC&SS8E-.S,

6.634597E-58 I

DATA DT,D?,D3,DA,DS I 9.402374E'01, 1.6832525' 2,

Z. 76TSFE'36, -2.31A922E-vo, 7.3266325-‘° I

DATA an,or2,Dr3,or4,ors,ora,or7,ore,or9 I

4. QTiTTE-JT, -3.:939ce+ro, 3.9525950'0.

'1.15387E000, 1.66972E-t1, '1.23781E-?2,

6.86E'3E‘Jb, -9.7172“E-té, 7.?6777E-'8 I

DATA E1,EZ,E3 I 2’.“, 5.0, TC0.0 I

DATA DELTAU I 1.0 I
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......it........OOOOOOQCOO......OOQOOOOOOOOOO0....

O o

* DICTICNARY OF STATE VARIABLES *

o a

ttifitfififitttitfitfitttfiititfiiiiifitfifitfi**ififlfiittit...

x1 SPRING ADULT CLB DENSITY

x2

x3 CLB EGG DENSITY

x.)

x5 FIRST INSTAR (LP DENSITY

xe SECLND INSTAR CLB DENSITY

x7 THIRD INSTAR CLD DENSITY

X? UNFARASITIIED TPURTH INSTAR CLB DENSITY

xc

x1

x11

x12 UNPARASITIZED CLP FUPA DENSITY

x13

x11.

x15

x16 SUFMER ADULT CLB DENSITY

X17 DIAPAUSING TJ DENSITY

11H ADULT TJ DENSITY

X1? FARASITIZED FOURTH INSTAR CLB DENSITY

12‘

X22 PARASITIZED CLB PUPA DENSITY

X23

X24

RP.

X25

X26 PARASITE PER FEST INDIVIDUAL IN DIFFERENT STAGES

7??

REE

129 CLB LARVAL FEEDING

X32 HEIGHT 0F OATS PLANT

731 LEAF SURFACE AREA 0F OATS FLANT

33 NEIGHT CF GRAIN HEAD

X33 SURFACE AREA OF GRAIN HEAD
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tfitttttfititiifiiifiitfififififititfifiififiiitfifitititittittt.

9 D

t SYSTEF PARAMETERS *

A i

iii......90‘!fittititfiiifiiififittfiitfiitfifitfi.....ifiti.

NAPE DESCRIPTION VALUE

A SPRING ADULT SURVIVAL .7c

8 CLB EGGS I CLa TERALE I 6‘ DD 22.;3

c SUMFER ADULT SURVIVAL 1.-D

D T.JULIS ADULT SURVIVAL '.Ac

E1 NAx EGGS I TJ ADULT I an DD 2 .co

E2 NAx TJ EGGS I LLN LARVA I 69 DD 5.'c

E3 TJ SEARcNINc cDNSTANT 1-n.cr

RF TJ MORTALITY INSIDE (LB ".60

KT NDRTALITY or CLE EGGS . n.1c

x2 ~|DRTALITY 0? CLE LT VARIAFLE

x3 NDRTALITY 0F CLE L2 2.30

RA MORTALITY or CLB L? ‘.55

x5 NORTALITY or CLR L4 VARIADLE

K6 aI-DRTALITTI Dr CLB FUFAE '.LD

(7 MCRTALITY 0F OVERUINTERINS CLe ‘.77

RE NTRTALITY 0F DVERHINTERINS TJ ‘.5c

CF EXPCNENT IN RARASITISN EDUATIDN ‘.75

FEEDG FEEDING FUNCTIDN COEFFICIENT .302 2°

F NATRIx DIMENSIONED (a,£) CONTAINING

FARAFETERS FOR THE OATS PLANT MODEL

OFTAINED THROUGH TIHE'SERIES ANALYSIS
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P MATRIX VALUES:

8.C35127E'CT 5.173637E-01 “5.650611E-’Z 5.C

-1.127719E'f1 1.24‘871E’CO '1.866073E-OZ 6.588521F-TZ

(.0 3.638312E-02 7.656066E-01 6.1A5583E'01

6.0 6.779CJOE-O2 “1.726377E-01 1.3(33896000

REHIND ALL r‘UTFUT FILES

REHIND 3 S RFHIND A S REUIND 5 S REUIND 6 1 REHIND 7

REHIND 77 S REkIND 78

DEFINE ALL VARIABLES IN IINFUTI CONBON BLOCK IN ORDER OF

DECLARATION. PROHFT USER FOR EACH, THEN READ VARIABLE FREE

FORMAT, ONE NUMBER PER LINE. SEE SUBROUTINE INPUT.

CALL INFUT

ECF 8 E2**CF

ONECP = 1.0 - CP

NUMBER OF TIME STEPS FROM START TO HARVEST.

NSTEP827

NNtNSTEPRT

N=NSTEP

NUHBER OF STATE VARIABLES.

NX'BB

NU81

‘999 DO LOOP FOR IULTIFLE YEAR RUNS *’**

D0 1 YEAR a T, NYEAR

YR 3 YEAR

CLEAR ARRAYS

DC 5 I=1,NN

Dr S J21,NX

LI(I,J)=D.‘

VX(I,J)83.5

MX(I,J)8C.P

HXII,J)IO.0

X (I,J)80.0

CONTINUE

DC 6 I=1,NN

IREF(I) 8 T00C.O

IF (I .LE. TLAST) XREF(I) 8 ET

CONTINUE

DC 7 181,NSTEP

DC 7 J81,NU

MU(I,J)8?.“

LUII,J)=D.¢

DUDUII,J)=F.O

DVDU(I,J)=3.€

U(I,J)=USTART

CONTINUE

*Efifi USTART IS ADJUSTED TO BE SAFE AS CONVENTIONAL SPRAY 99*.
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C .... P(3,1) 8 1.0

UCTSFRAY,1) . SPRAY

DEFINE NON-ZERO INITIAL CONDITIONS (IF ANY ) FOR THE

C STATE VARIABLES.

x¢6,19)8JULISIN

AC1,1 )8CLBIN

x<6,3‘) = 3.:92963 E-‘T

x(6,31) = L.T<3903 60';

C INITIALIZATION FOR SUNVATION VARIAPLES

TEGG 8 1.0E-7

TLAR3 8 :.C

TFARA 8 :.C

TUNEARL: ?.0

TJ? 8 0.0

SU’U 8 0.0

SU‘USG 8 0.0

C DEFINE TERMINAL VALUES FOR X (If ANY), VI, ux.

x(NN,TE) = FINALTJ

c .OttttttitttitttttOtttttttfittttttttfitttttttttttittttOtttttittit

C tttttttiti NAXIHIZATION PROBLEM 09.9.9.9.ttttiittttttfitttttti

VXCNN,32) = 1.3

C **8* DC LOCF FOR OPTIMIZATION STARTS HERE ****

S 10 ITER=T,NITER

C HRITE THE TERFINAL CONSTRAINT EQUATION

H

C **** CALL SUPRTUTINE MCDEL TO COFFUTE STATE VARIABLES .888

CALL MODEL

ADD ANT TERMINAL (NON-INTEGRAL) TERM TO FI.

CHECK FCR VERY EIRST ITERATInN

IE (ITER .E0. 1) CC TO 62

IE ( AESCPI/PILAST - 1.0) .LT. TOLER ) GO TO 5‘

If (F! .LE. PILAST) an To 57

C FI IS LEss THAN PILAST

EFSILfN = EFSILON*STEPNAX

CC TO 62

c PI 15 GREATER THAN PILAST

57 EESILON : EFSILONASTEERIN

6: T0 177

62 PILAST . F!

C CCPPUTE PARTIAL DERIVATIVES FOR THE RETURN IUNCTICN av

C BACKHARD INTEGRATION.

C FIRST EVALUATE FA,LX,MX MATRICES.

C NOTE: Ix AND rU ARE EVALUATED AS FUNCTION SUPEROCRAES.

or 16 K=T,NSTEF

Lx <x,32) = 2.0 . YCK,32) c ( a . PRICE 1 1.35 )

IF ( IFLAG .NE. 1 ) 50 TO 16

LU(K,1) : - 2.n . (RoTAx) . U(x,1)

16 CONTINUE

or 17 K81,NSTEP

NUCK,1) a 2.% . (RoTAx) . U(x,1)

T7 CCNTINUE

C DErINE TER~INAL VALUES row x (Ir ANT), vx,ux

n
n
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c NExT EVALUATE ux,vx IATRICES.

C CLEA

18

22

21

T)

C TC F

R FRHXFX,FRVXFX ARRAYS.

DD 19 I81,NSTEP

DO 19 J8T,NX

PRVXFX(I,J)8O.O

FRHXFA(I,J)8O.O

CONTINUE

DO 20 K8T,NSTEP

N1K8 N018!

N2K8 V’Z‘K

DRSO 8 FTDRCNTK)**(29CF)

DRSBZ 8 F1DR(NTK)**(2.C*ONECF)

FTDRCF 8 FTDRCNTK)** CF

FTDRCET 8 1.3/(FTDRCNTK) *8 (1.9-CP) )

XTSCF 8 X(N1K,TB) ** CF

ATSCPT 8 1.0 I (XCNTK,TB) *8 (T.C-CP) )

IF ( XCNTK,TP) .EQ. 0.0 ) XTBCF 8 1585

IF ( KCNTK,1!) .EQ. 0.0 ) XTBCFT8 1E‘A

DC 21 I81,NX

DC 22 J8T,NX

FAX8FXCJ,I,N1K)

PRVXFX(NTK,I)8PRVXFX(N1K,I)9VX(N2K,J)8FXX

FRdXFX(N1K,I)=FRHXFX(NTK,I)*UX(N2K,J)*FXX

VI(N1K,I)8PRVXFX(NTK,I)*LX(N1K,I)

HX(NTK,I)8PRHXFX(N1K,I)§HXCNTK,I)

CONTINUE

IND THE RULTIPLIER V FOR CONSTRAINED PROBLE”S.

C FIRST COHFUTE THE SUN TERPS.

Z8

32

33

DC 28 I81,NSTEP

D? 28 J81,NU

FRVXFU(I,J)=C.O

ERHXFUCI,J) 8C.O

TERH1(I,J) 8 (.0

TERH2(I,J)8¢.G

CONTINUE

SU*1 8 0.3

3”,? 3 50'.

DC 30 K81,NSTEP

KFT=K*T

DR 30 I=1,NU

or 32 J81,Nx

FUU8 EU(J,I,K)

FRVXFUCK,I)8 FRVXFU(K,I)* VX(KP1,J) 8FUU

FRHXFU(K,I)8 PRHXFU(K,I)* UX(KFT,J) *FUU

TERNT(K,I)8FRHXFUCK,I)*HU(K,I)

TERHZ(K,I)8PRVXFU(K,I)0LU(K,I)

SUIT 8 SUNT A (TERHT(K,I) *8 2 )

SUEZ 8 SUN? 0 (TERMTCK,I) A TERH2(K,I) )

CONTINUE

DO A1 I81,NSTEP

DO ‘1 J81,NU

TENPUCI,J)= U(I,J)
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41 C(NTINUE

IF (IFLAG .EO. T) 50 TO T77

INTERK 8 T.C I (EFSILON 8 SUVT)

V 8 INTERN 8 (DIFUSO ' EPSILON 8 SUMZ )

C COMPUTE GRADIENT HRT CONTROL

C NOTE: DVDU‘I,J)‘TERHZ(I,J); DUDUCI'J2'TERMTCI,J)

C UPDATE CONTROL

177 DELTAU 8 C.O

DC ‘0 I3T,NSTEP

DC ‘0 J'T,NU

UCI,J) 8 TEHPU(I'J) 8 EPSILON8TERMZCI,J)

IF (IFLAG .EOo O) UCI,J) 8 UCI,J) 8 EPSILON8V8TERMTCI,J)

U(I,J) 8 ABS‘UCI,J))

DELTAU 8 DELTAU 8 ( UCI,J) ' TEMPUCI,J) )

LT CONTINUE

PRINT ‘7,ITER,PI'FILASTpEPSILON,$UMU,SUPUSO,XCNN,TP)

47 FORMAT C"CITEH'",IZ,5X,"PI3",TPETC.3,5X,”PILAST8",TPETCo3,

85X,"EPSILON",TPET3.3,5X,"SUMU",TPETO.3,5X,"SUFUSO”,TPETO.3,

8ZX,”X(NN,TS)'",2X,TPETO.3)

TO CONTINUE

C COMPUTE INCOME FROM OATS YIELD

C REF EMMETT 888 SEED UT 8 HEAD DRY UT 8 3.9119 - 0.C03€35

50 SEEDUT : X(NN,32) 8 0.9119 - ?.003035

C YIELD IN BUSHELSIACRE 8 SEED UT IN EMS/SOFT 8 3.003992

YIELD 8 SEEDUT 8 3.600992

C INCOME SIACRE : YIELD IN BUIACRE 8 PRICE OF OATS IN S

C CURRENT BUYING PRICE OF OATS IN MICHIGAN AS BOUGHT FROM FARMERS

C $1.35 I BUSHEL REF: MASON ELEVATOR COMPANY

INCOME 8 YIELD 8 PRICE

COMPUTE PESTICIDE COSTS, INCLUDING MATERIAL AND APPLICATION COST

COST OF MALATHION : S 3.00 I LB

COST OF APPLICATION : S 3.00 I ACPE

TAXES CAN ALSO BE IMPOSED ON PESTICIDE USE

COST 8 SUMU 8 ( PRICE 8 TAX ) 8 3.30

C NET PROFIT/ACRE : INCOME - COST

PROFIT 8 INCOME 8 COST

C COMPUTE PERCENT PARASITISM

PARA 8 ( TFARA I C TPARA 8 TUNPARA ) ) 8 100.0

n
n
n
n

C INITIALIZE CLB AND T JULIS DENSITIES FOR NEXT YEAR

C NCTE : DVERVINTERINC MORTALITY FOR CLa IS SET AT 77 BASED ON

C REFERENCES ( YUN, 196A; VELLSD ET AL., 1970 )

C DVERRINTERINC MORTALITY OF T.JULIS Is SET AT SC

CLBIN . n.23 . x(NN,16)

JULISIN8 D.so . XCNN,17)

C VRITE YEARLY RUTRUTS IN A SEPERATE TAPE A 77

RRITE ( 77,44A).VEAR, x<1,1), TECC, x(6,18), TJ2,TLAR3, PARA

AAA TORNATA("-",T11,Iz,T19,TpE1D.3,T3A,TRETD.3,TA9,1RETD.3,

. TSA,TRE1C.3,T79,TRETD.3,T9A,TEETD.3 )

C RRITE INCOME-RELATED OUTPUTS ON A SEPARATE TAPE A 73

URITE ( 78,699) YEAR, YIELD, INCOME, SUMU, COST, PROFIT

499 FORMAT ("-",TTT,Iz,T2A,TRE10.3,TAA,TRETD.3,TDA,TRETD.3,

A T87,TRETD.3,TTD¢,TEE10.3 )

C
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Ottfittt PRINT TABLES REAR...

SUBROUTINE OUTPUT URITES UNHEADERED TABLES ON OUTPUT TAPES AND

ALSF PRINTS HEADERED TABLES CN OUTPUT.

TABLE I IS THE CONTROL VARIABLES "U”, PRINTED YEARLY.

THE UNHEADERED CONTROL VARIABLES ARE URITTEN TO TAPE3.

TABLE 3 IS FOUR TABLES CF STATE VARIABLES, PRINTED YEARLY:

T: XT-XTH 2: XTT'XZO 3: XZT'X3? A: X31-X34

ON TAPE TAPEA TAPES TAPE6 TAPE?

CALL OUTPUT (1)

CALL OUTPUT (2)

CONTINUE

TABLE I IS A DIRECT COPY OF TAPE77, NHICH IS URITTEN ABOVE.

TABLE 4 IS A DIRECT COPY OF TAPE78, HHICH IS HRITTEN ABOVE.

BOTH CF THESE ARE URITTEN AT THE END OF RUN ONLY.

NOTE THAT TAPE77 AND TAPE7B ARE THE UNHEADERED VERSIONS OF

THE PRINTED TABLES 3 AND 4 RESPECTIVELY.

CALL OUTPUT (3)

CALL OUTPUT (6)

END
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FUNCTION Fx COMPUTES THE MATRIX

(DF/DX) HITH REFERENCE TO STATE VARIABLES X.
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FUNCTI'N FX A
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RF PARTIAL DERIVATIVES

REAL KT,r3,KA,K6,K7,K9,MORTFN,NORTFNZ

COMMON A(35,35),U(3$,2)

COMMON

CCMMON

COMMON

CCMMON

CC'MON

(CHMON

COMMON

COMMON

COMMON [FX]

FX=Z.G

C FUNCTIONS ARE DEFINED EELUR

GO

A

IF

1E

1F

IF

IF

IF

IF

IFJ
J
V
C
F
U
‘
F
L
N
R
L
a

IF

0 IF

10 IF

11 IF

2 IF

13 IF

1‘ IF

15 IF

16 IF

IF

47 IF

IF

IF

[PLANT] P(A,A)

[ENOUGH] C1,C2,C3,CA,D1,D2,D3,DA,DS

[ENOUGH] DF1,DFZ,DF3,DF4,0FS,DF6,DF7,DF?,DFC

[ENOUGH] A,B,C,D,F,K1,K3,K6,K6,K7,K?,FEEDG

[ENOUGH]RP,CP,ET,E2,E3,ECP,ONECP,TD,IDIA,IFEED,NTOATS

[BLOCK] MORTFN(3”),MORTFNZCSO),SURVFN(3C),SURVFNZC3 )

[BLOCK] SL1(3.),SLA(30),F1(30),DIAFFNCSG),DIFMFN(33)

[BLOCK] DIFMFN2(3?),F10R(36),F2(30),DSL1(3!),DSLACBI)

DRSO,DRSOZ,FTDRCP,FTDRCPT,XTBCP,XIPCPT

FOR NCNZERO FUNCTIONS ONLY.

TC (1,2,3,6,S,6,7,c,9,1 ,11,12,13,14,15,16,17,18,1°,2“,

21'22'23'2"25’26'27'2fi'29,}3,31,32,33'3‘) J

(I.ER.T)

(I.E0.1)

(I.EG.2)

(I.ER.3)

(I.E0.4)

(I.E0.5)

(I.E0.6)

(I.EG.7)

FX8 A8$URVFN2(K)

FA: 8

FX8T.“

rx=1.c

FX=(T.'-K1)*SURVFN(K)

Fx= DSLT(K)8$URVFN(K)

FA: (1.9-K3)8$URVFN(K)

FA: (1.(-KA)8SURVFN(K)8(1.C - (((1.']ECP)

SRETURN

SRETURN

SRETURN

SRETURN

SRETURN

IRETURN

SRETUUN

AFTDRCPAXTECP - XTBCPAX(K,7)8CPAFTDRCPA(T.LIE1)) I 0280))

C I.Ea.18 ) Fx 8 - (1.0-Kb) A SURVFNCK) A (1.:IFCP) A

(( FTDRCP . CF A x18CF1 A x(x,7) - XTECP A x<r,7) A cr A

FTDRCFT A (1.0/92) ) I DRSD )

(I .E..?) FX8DSLLCK)

(I.EO.¢) FX=1.0

(I.EO.I1)

(I.E0.11)

(I.EO.12)

(I.EG.13)

(I.EO.1A)

(I.EG.I5)

(I.E0.16)

(I.EG.17)

(I.EG.?L)

(I.EG.2°)

FX81.'

FX8T.’

Fx81.'

Fx=1.

FX81.’

FX8(1.t-k6)8SURVFN2(K)

FX8C8SURVFNZCK)

Ex: 1,

FXSDIAFFN(K)8X(V,?P)

FX8DIAFFNCK)8X(K,2L)

SFETURN

TPETURN

TRETURN

SNETURN

TRETURN

SPPTURN

SRETURN

QRETU°N

SPETURN



18

19

25

3O

31

32

33

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IFCK.LT.6) RETUR

1r

IF

IF

IF

1:

IFCK.LT.TA) RETURN

CK.LT.C) RETURN
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CI.EO.1?) FX8D8SUPVFNCX)

CI.EG.2A) FX8CT.'8DIAPFNCK))8X(¥,2?)8SURVFNCK)

CI.E0.2?) FX8C1.“8DIAPFNCKI)8XCK,26)8SURVFNCK)

C I.ER.7 ) FX CT.O8KA)8SURVFNCK)8C C C1.‘[ECP)8

FTDRCF8X18CF

[ DRSO )

CI.EO.1? ) FX

SRETURN

- ATRCPAA(A,7)ACPAE1DRCETACT.c/ETI)

C1.C8¥A) 8 SURVFNCK) 8 CT.0[ECP) 8

C C FTDRCP8CF8X18CF18XCK,7) 8 X18CP8XCK,7)8CF8

FTDRCP18(1.C[EZ) ) [

C XCK,7).EG.”.C

DPSQ )

.OR. XCX,1‘).EO.3.? ) RETURN

C I.EU.7 ) FX 8 8 ECP 8 C C CT.U]X18CP1) 8 ONECF 8

C1.’[FTDRCF) 8 CT.D]E1) ) [ DRSO? )

SPETUFN

CI.EG.T°) FX 8 I"CP8CCC‘I.C‘IF‘TDRCPT)8ONECP8C‘I.fPIX‘TtACP)

8 C1.v/XTPCP1)8CNECP8C1.‘IFTDRCP)8CT.UIE2))

[DRSGZ)

CI.EG.T9) FX8DSLLCX)

CI.EG.ZT) FX81.’

CI.E0.22) FX=1.'

CI.E0.2‘) FX=T.'

C XCK,2S) .50

C I.EG.2 ) F X

”.0 )

: 1.‘

(I.EG.25) FX81.I

CI.EG.26) FX81.‘

CI.EQ.27) FX81."

(I.EG.6) FY8FEEDR8?.87

CI.EO.7) FX8FEEDQ8S.97

CI.EO.8) FX8FEEDG826.23

CI.EG.T9) FX8FEEDG826.23

(K.LT.6) RETURN

(I.EO.39) FX

CI.E0.31) FX

CI.EG.32) FX

CI.EG.33) FX

CI.EO.29) FX

CI.EG.30) FX

(I.EG.3T) FX

CI.EO.32) FX

CI.EG.33) FX

CI.E0.29) FX

3

PC1,1)

P(1,2)

P(1,4)

-3‘..25

PC2,T)

PC2,2)

PC2,2)

-1. 7

IF CI.EO.3‘) FX 8 P(3,1)

IF CI.EG.31) FX FC3,2)

IF CI.E0.32) FX 8 P(3,3)

IF CI.E0.33) FX 8 P(3,4)

IFCK.LT.14) RETURN

IF

IF

IF

IF

(1.50.31) Fx

(I.Eo.?1) Fx

(I.£G.32) Fx

(1.60.33) Fx

FCA,1)

FCA,2)

FCA,3)

PCA,A)

RETURN

SRETURN

SRETURN

SRETURN

SRETURN

SRETURN

SRETURN

SPETURN

FRETURN

SRETURN

TRETURN

SRETURN

SPETURN

SRETURN

IRETURN



IF

IF

IF

IF

IF

IF

IF

IF

END

A
A
A
A
A
A
A
A

I.EO.2 )

IOEGOE )

I.E0.A)

I.E0.5 I

I.E0.6 )

IOEQO7 )

I.EG.8 )

I.EG.19)

FX

FX

FX

FX

FX

FX

FX C
‘
d
d
d
e
-
D
d

7
‘
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SRETURN
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FuNCTION FU (J.I.K)
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FUNCTI"N FU COMPUTES THE MATRIX nF PARTIAL DERIVATIVES

(DF/DU) HITH REFERENCE TO CONTROL VARIABLES U.

REAL K1,r3,KA,K6,F7,KE,MORTFN,PORTFN2

COMMON

CCMNON

CCMMON

COMMON

CFMMON

COMMON

COMMON

COMMON

COMMON

FU30.C

XC35,35),UC35,Z)

[PLANT] PC6,A)

[ENOUGH] C1,C2,C3,CA,DT,D2,DS,DA,DS

[ENOUGH] DF1,DF2,DF3,DFA,DF5,DF6,DF7,DF8,DFO

[ENOUGH] A,B,C,D,F,K1,K3,KA,K6,K7,KP,FEEDO

[ENOUGH]RP,CP,E1,E2,ES,ECP,ONECP,TD,IDIA,IFEED,NTOATS

[BLOCK] MORTFNC3O),MORTFNZCSC),SURVFNCSU),SURVFN2C3-)

[BLOCK] SL1C30),SLAC3C),FTC30),DIAFFNC39),DIFMFNC3C)

[BLOCK] DIFMFNZCSC),FTDRCSC),F2C3C),DSLTC3“),DSL6C3T)

IF CI.NE.T) RETURN

GO TO C1,2,3,A,5,6,7,8,9,1£,11,12,13,TA,TS,16,17,1P,19,2',

21,22,23,24,25,26,27,2E,29,3J,31,32,33,36) J

FUNCTIONS ARE DEFINED EELnV FOR NDNzERo FUNCTIONS ONLY.

FU=-ACA,T)AAADIFNFN2(E) SRETURN

RETURN

RETURN

RETURN

FU=8XCK,C)8CT.C8K1)8DIFMFNCK) 3RETURN

FU88XCK,5)8SLTCK)8PIFMFNCK) SRETURN

FU88X(¥,6)8C1.R8K3)8DIFMFNCK) FRETURN

FU88XCK,7)8CT.D8KA)8CT.O8F2CK))8DIFMFNCK) SPETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

FU=-(xCK,TA)ACAA(K,15)A(T.D-r6))ADIFMFN(K) SRETURN

RETURN

FU88CXCK,18)8D8CT.‘8DIAPFN(K))8XCK,2A)8XCK,28))8DIFMFNCK)

RETURN

FU88XCK,7)8C1.38KA)8F2(K)8DIFFFNCK) TRETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN



TO

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

END
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SUBROUTINE OUTPUT CIT)
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A SURROUTINE OUTPUT A
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SUBROUTINE OUTPUT PRINTS OPTIMAL CONTROLS AND OPTIMAL STATE

TRAJECTORIES FOR EVERY TIME STEP. IT ALSO PRINTS THE

PERFORMANCE INDEX AND OTHER VARIABLES FOR EVERY ITERATION.

SUBRCUTINE OUTPUT ALSO URITES ALL THESE OUTPUTS ON CATALOGUED

TAPES THAT CAN BE ACCESSED FOR GRAPHING AT A LATER TIME.

COMMON XC35,35),UC35,2)

COMMON [TIME] YR, NN, NSTEP, NX, NU

INTEGER YR,LINEC1A)

THE PARAMETER 8IT8 IS THE TABLE NUMBER TO PRINT, AND IS ALSO

A FLAG TO PRINT THE TABLE ON A NEH PAGE (FINAL TABLE PRINTOUTS),

OR TO PRINT SEVERAL TABLES PER PAGE (DEBUGGING PURPOSES).

IF (IT .LT. 5) PRINT TABLE NUMBER IABSCIT) ON THE SAME PAGE,

ELSE PRINT TABLE NUMBER CIT) ON A NEH PAGE.

TABLE 1, PRINT 8U8 ARRAY FOR HHOLE YEAR.

TABLE 2, PRINT 8X8 ARRAY FOR HHOLE YEAR.

TABLE 3, PRINT TAPE77 TABLE.

TABLE 4, PRINT TAPE7B TABLE.

IABSIT 8 IABSCIT)

GO TO (TDD, 200, 3RD, ADO) IABSIT

10° 1' (It .LT. C') PRINT 6" ..-”, VR

66

65

IF (IT .GT. 0) PRINT S4, "1", YR

FORMAT CAT,“ TEARfi,13,/,"- TIME“,8x,”CONTROL“,/l)

PRINT 65, (II,UCII,1),II=1,NSTEP)

VRITE (3,65) (II,U(II,T),II81,NSTEP)

FORMAT (3A,I4,sx,1PE15.6)

RETURN

ZOO IF (IT .GT. 0) PRINT 7‘, ”1"

7A

8‘

IF (IT .LT. C) PRINT 74, ”-8

FORMAT (AT,2x,'TINE",Sx,“x1",9x,“x2",9x,“x3",9x,"x4",

09X,”!5",0X,"Xb",9X,”X7”,9X,"X8”,9x,”X9”,8X,”x1?”[[)

PRINT 9s, (II,(XCII,LL),LL81,T”),II81,NN)

URITE (4,95) (II,(x(II,LL),LL=1,TD),II=T,NN)

IF (IT .GT. 0) PRINT 84, ”1"

IF (IT .LT. 0) PRINT E4, "-"

FORMAT CA1,2X,“TIME",SX,”X11”,8X,”X12”,8X,”X13”,8X,“X1&",

A8A,~x1s”,Rx,"x16",ax,"x17",aA,"ATE",8x,"x19",8x,"x20”//)

PRINT 9s, (II,(x(II,LL),LL-TT,20),II=1,NN)

HRITE (5,95) (II,(x(II,LL),LLATT.ZD),II=T,NN)

IF (IT .GT. D) PRINT 94, ”1"

IF (IT .LT. D) PRINT 94, "-"
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04 FORMAT (A1,2A,“TIPF",€A,"x21“,Ex,”x22",8x,“xZ3”,8x,“x24",

08X,“X25",Ex,"126“,“x,”X27”,6X,"X28“,BX,”X2°”,8X,"X30“II)

PRINT 95, (II,(X(II,LL),LL821,3C),II'1,N~)

dRITE (6,95) (II,(XCII,LL),LL=21,30),II=1,NN)

IF (IT .GT. 0) PRINT 97, “1”

IF (IT .LT. O) PRINT 97, ”-“

97 FORMAT (A1,3x,"TIPE”,Sx,"131",ax,”x32”,81,“x33”,sx,"x36")

PRINT 96, (II,(Y(II,LL),LL=31,36),II=1,NN)

URITE (7,96) (II,(x(II,LLI,LL=31,3(),IIs1,NN)

95 FORMAT (IS,1PE12.3,9E11.3)

96 FORMAT (15,1FE12.3,5E11.3)

RETURN

30c REdIND 77

PRINT 667

667 FORMAT ("1", T10,"YEAR",T21,”0H CLE“,T35,'CL8 EGGS",TS1,

+ ”TJ(1ST)",T66,”TJ(2ND)”,T80,"CL8 TLAR3',T97,~PARA" )

31w READ (77,666) LINE

IF (EOF(77) .NE. P) RETURN

PRINT 666, LINE

GO TO 31v

400 REJIND 78

PRINT 777

777 FORMAT ("1“,T10,"YEAR”,T22,”YIELD PU/ACRE",T(3,

. “YIELD s/ACRE",T6c," PESTICIDE La/ACRE",T85,

+ "TOTAL cOST s/ACRE",T1.E,"PROFIT s/ACRE" )

(It REAO (’8,666) LINE

IF (EOF(7?) .NE. C) RETURN

PRINT 666, LINE

GO TO 413

666 FORMAT (13A1(,A7)

END
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* SUPROUTINE INPUT *

a 6

...fitttttitttttttttittttitttttitittttiiittttttittt

SUPROUTINE INPUT pEADS IN THE INITIAL CONDITIONS FOR

THE STATE VARIAPLES, AND ALL OTHER PARAMETERS REQUIRED

FER THE OPTEMIZATION ALGORITHM.

n
n
n
n
n
n
n
n
n
a
n

CnuMnN IINPUT/ IFLAC, NITER, EPSILON, STEFMIN, STEFPAx, a,

CEMMON IINFUT/ USTART, TVALUE, TOLER, FT, TLAST, CLPIN

CC“MON IINFUT/ JULISIN, FINALTJ, NYEAR, TSPRAY, SPPAv

CfMMON IINFUT/ PRICE, TAx

COMMON ITIME/ YR, NN, NSTEP, Nx, NU

REAL JULISIN

INTFGER TLAST,TSPRIY

THIS IS THE C'MMON INPUT PROCESSOR. THIS INITIALIZES ALL

OF THE VARIABLES IN THE IINPUT/ COMMON PLCCK PY PROMPTING

AND READING THEM IN. THEN THEY ARE PRINTED OUT ON THE

OUTPUT FILE TN A SEPARATE PAGE. THE VARIABLES ARE SET

IN ORDER OF THEIR SPECIFICATION IN THE IINPUT/ FLOCK.

-TAPEC‘ IS THE TELETYPE PROMPTINB FILE. THIS IS DFCLAPED

Tr BE THE FILE -ZZZZOT‘ ON THE PROGRAM CARD. IF UNIT 9

(ZZZZFT) IS CONNECTED, IT USUALLY IS FOR INTERACTIVE RUNS,

ALL THE PROMPTING LINES HILL PE DISPLAYED ON TERMINAL,

AND THE PROGRAM HILL PEAD USER TYPEINS. IF RUN FROM

BATCH, ALL PROMPTING LINES HILL BE dRITTEN TO LOCAL

FILE ‘ZZZZOT- AND NOT PRINTED, AND INPUT VARIABLES

HILL PE READ FROM DATA CARDS.fi
fi
fi
fi
fi
fi
fi
fi
fi
n
fi
fi
fi

CALL CONNEC (9)

C IFLAC DETERMINES THE TYPE OF OPTIMIZATION FRORLEM :

C IFLAG = r IPPLIES ExPLICIT CONSTRAINT ON CONTROL

C IFLAG = 4 IMPLIES NO EXPLICIT CONSTRAINT ON CONTROL

PRINT (9,F>"PROaLEP TYPE (IFLAG):”

READ *,IFLAG

PRINT (9,*)"NUMBER CF INTERATIONS (NITER):"

READ *,NITER

PRINT (¢,F)"INITIAL STEP-SIIE (EPSILON):"

READ *,EPSILON

PRINT (°,*)"EFSIL7N STEP DECREMENT (STEFMIN>:"

READ *,STFPFIN

PRINT (9,*)”EFSIL"* STEP INCREPENT (STEPNAx):"

DEAD *,STEFPAX

PRINT (9,*)"HEIGHTING FACTOR (0):"

READ F,a

PRINT (9,F)"UEICNTINC FACTOR (R):“

READ *,R

PRINT (9,9)“NCMINAL CONTROL (USTART):"
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READ *,USTART

PRINT (9,*)”CONSTRAINT LEVEL FOR CONTROL U (TVALUE):"
READ *,TVALUE

PRINT (9,F)"PERFORPANCE INDEx TOLERANCE (TOLER):”
READ A, TOLFR

PRINT (9,0)"ECONOMIC INJURY LEVEL (ET):"

READ *.FT

PRINT (9,*)”TIME UNIT (TLAST):“

READ *,TLAST

PRINT (9,*)"STARTING DENSITY FOR SPRING-ADULT CLE (CLBIN):”

READ fi,CLFIN

PRINT (9,*)”STARTING DENSITY FOR ADULT T.JULIS (JULISIN):”

READ *,JULISIN

PRINT (°,*)"VALUE FOR OVERVINTERINC T JULIS (FINALTJ):"

READ *,FINALTJ

PRINT (9,.) ”ENTER A TEARS FOR MODEL RUN (NYEAR):"

READ ., NYEAR

PRINT (9,.) ”ENTER TIME FOR CONVENTIONAL SPRAY (TSPRAY):"

READ ., TSPRAY

PRINT (9,A) “ENTER SPRAY AMOUNT LBS/ACRE (SPRAY):”

READ A, SPRAY

PRINT (9,F) ”PRICE OF PESTICIDE lea (PRICE):"

READ ., PRICE

PRINT (9,F) ”TAX IMPOSED S/Le OF PESTICIDE USE (TAR):"

PRINT 3(2, IFLAG, NITER, EPSILON, STEPMIN, STEFMAx, R, R,

USTART, TVALUE, TOLER, ET, TLAST

FORMAT (“-“,I,“-“,l,”-',I,

”-“,T25,“DEFINE TYPE OF PROBLEM (IFLA6)“,T7S,IZ,I,

"-”,T25,"NUMBER OF ITERATIONS (NITER)”,T?S,I3,I,

”-",T25,”INITIAL STEP SIzE (EFSILON)',T7S,1PE12.3,I,

“-",T25,"EFSILDN STEP DECREMENT (STEPMIN)",T75,EIO.3,/,

”-“,T2$,”EPSILON STEP INCREMENT (STEPMAII*,T75,E1P.3,I,

”-",TZS,”HEIGHTIN6-FACTOR (0)”,TTS,E10.3,I,

”-”,T25,'HEIGHTIN6 FACTOR CR)",T75,E1C.3,I,

”-",T25,”NOMINAL CONTROL (USTART)",T7S,E1:.3,I,

"-”,T25,”CONSTRAINT LEVEL FOR CONTROL - U (TVALUE)”,T7S,

ETC.3,I,

”-”,T25,“PERFDRMANCE INDEX TOLERANCE (TOLER)",T75,ETD.3,I,

"-",TZS,"ECONOMIC INJURY LEVEL (ET)”,T?S,E10.3,I,

"-“,TZS,”TIME UNIT (TLAST)”,T7S,13)

PRINT 3(3,PRICE, TAx, JULISIN, FINALTJ, NYEAR, TSPRAY, SPRAY

FORMAT

("-',TZS,"STARTING DENSITY SPRING-ADULT CLB (CLBIN)”,T75,

519.3,],

”-”,TZS,”STARTING DENSITY ADULT T.JULIS (JULISIN)”oT75F

E1C.3,I,

"-”,TZS,”VALUE FOR OVERUINTERINC T.JULIS (FINALTJ)".T75.

E1D.3,/,

“-”,T25,“A YEARS FOR MODEL RUN (NYEAR)”,T75,I3,I,

”-”,TZS,”TIME STEP FOR CONVENTIONAL SPRAY (TSPRAY)”,T75,IZI

”'",T25,”SPRAY AMOUNT LBS/ACRE (SPRAY) :",T75,ETC.3,I,

”O”,T25,“PRICE OF OATS ° SIBUSHEL (PRICE) :",T75,E13.3,l,

”-”,T25,”TAX - SILB OF PESTICIDE SPRAY (TAX)”,T75.ETO.3pI)
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PRINT 356

34‘ FORMAT (1H1)

RETURN

END
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SUBROUTINE MODEL

tfiittittiflififiitfiOfififiifififitttfitfififi.....ifififiiiitfififififi

R a

* SUBROUTINE MODEL *

R O

0.........ttittttttfififittfifi......tfiittfifitCROOOOOOOO

SUBROUTINE MODEL GENERATES THE STATE VARIABLE TRAJECTORIES

USING THE STATE'SPACE MODEL OF THE SYSTEM. IT ALSO COMPUTES

THE PERFORMANCE INDEX.

REAL JULISIN,K1,K3,KA,K6,K7,MDRTFN,MORTFN2

INTEGER TLAST

COMMON X(35,35),U(35,2)

COMMON IPLANT/ P(A,A)

COMMON IENOUSNI C1,C2,C3,CA,DT,D2,D3,D(,Ds

COMMON IENOUON/ DFT,DF2,DF3,DF(,DF5,DF6,DF7,DFE,DF9

COMMON IENOUENI A,9,C,D,F,R1,R3,R4,R6,E7,R8,FEEDD

COMMON IENOUSNIRP,CP,ET,E2,E3,ECP,ONECP,TD,IDIA,IFEED,NTOATS

COMMON [BLOCK] MORTFNCSO),MORTFNZC3D),SURVFNI3O),SURVFN2(3C)

COMMON [BLOCK] SL1(30),SL((30),F1(30),DIAPFN(30),DIFMFN(30)

COMMON [BLOCK] DIFMFN2(SO),F1DR(SD),F2(3D),DSL1(3C),DSLA(3:)

COMMON IFXI DRSR,DRSRZ,F1DRCP,F1DRCP1,xTSCP,RTECP1

COMMON IINPUTI IFLAG, NITER, EPSILON, STEPMIN, STEPMAx, a, R

COMMON IINPUT/ USTART, TVALUE, TOLER, ET, TLAST, CLBIN

COMMON IINPUT/ JULISIN, FINALTJ, NYEAR, TSPRAY, SPRAY

COMMON IINPUT/ PRICE, TAX

COMMON ITIMEI YR, NN, NSTEP, Nx, NU

COMMON IMODEL/ xREF(35),DIFU,SUMU,SUMUSR,DIFUSR,PI

COMMON IMODEL/ TEES, TJZ, TLAR3, TUNPARA, TPARA

RUN THE MODEL FOR A SINGLE STEP. COPIED FROM OLD MAIN

PROGRAM, ALL ADDITIONAL VARIABLES DEFINED IN [MODEL] BLOCK.

********* SPECIFY VALUE (1’0) FOR THE VARIABLE " IMORT ********

IMORT 3 1

INITIALIZE PERFORMANCE INDEX.

PI‘0.0

SUMU I 0.0

SUHUSO 80.0

GET STATE TRAJECTORY.

DO 15 1:1,NSTEF

If ( I.EO.NTOATS ) x(1,1) = “.0

118 1+1

DIFFERENTIAL KILL TOR ADULT AND LARVAE.

CTRLDRPA€3.A

CTRL2=£915.0

IF (U(1,1).6T.C.0) CTRLOR=EXP(-(1C.D*U(I,1)-6.“))

1F (U(1,1).6T.0.0) CTRLZOEXP(-(TO.0 *U(I,1)-8.S))

MORTFN(I)81.Ol(1.?YCTRLDR)

MORTTN2(I)=1.0/(T.OOCTPL2)

SURVFN(I)=1.0-MORTFN(I)

SURVFNZ(I)-T..-HORTFN2(I)
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DIFMFN(I)=1'. '((1.'*CTRLDR)*i(-2))8CTRLDR

DIFMFNZ(I)81O.3*((1.OFCTRL2)**(-2))*CTRL2

FTDR(I) 8 X(I,7)IE1 F X(I,18)IE2 * T.CIE3

F1(I) 8 (X(I,7)*X(I,18))IF1DR(I)

F2(I) = ( X(I,18) I (E2*FTDR(I)) ) ** CP

C NOTE: IDIA 8 1 IMFLIES ROGER'S FUNCTION

C NOTE: IDIA 8 0 IMPLIES LAL'S FUNCTION

IF ( IDIA .ED. 0 I GO TO 12

DIAPFN(II . (DF9FIFF8 F DFSFIFFT F DF7FIFF6 F DF6FIFFS F

F DFSFIFFA F DFAFIFF} F DF3FIFF2 F DF2FI F DF1IFC.D1

CO TO 14

12 IF ( I.LE.TD I DIAPFN(II F D.o

DTERM . TD -I

IF ( I.CT.TD I DIAPFN(II F 1.0 — ExP ( DTERM I

1( x(IT,1IF ICI,1IFA FSURVFN2(II

X(11,2)= x(I,1IFa

C TOTAL E66 INPUT

TEGG F TEOC F x(I,2I

C DENSITY DEPENDENT PORTALITY MORTALITY FOR L1 AND L6.

C NOTE: IMORT F 1 IMPLIES ROGER'S FUNCTION

C NOTE: IMORT = o IMPLIES LAL'S FUNCTION

IF ( IMORT .ED. O I GO TO 22

SLTCIIF C1FC2FCxCI,SIIFC3F(x(I,sIFF2IFC(F(Y(I,SIFF3I

SL((II F DFSFACI,8IFF( F DFAFICI,3IFF3 F DF3FxCI,EIFF2 F

F DF2FYYI,RI F DFI

DSL1(I) = C1 F 2.C F C2 F x(I,5I F 3.0 F C3 F x(I,5IFF2 F

F (.0 F CA F x(I,SIFF3

DSLACII = D1 F 2.” F D2 F x(I,8) F 3.n FD3 F X(I,8)**2 F

F (.2 F DA F x(I,EIFF3 F 5.R F 05 F Y(I,EIFFA

CO TO 11

22 SL1(I)81.' - AHAX1( 0.0, AMIN1(C.99,D.(6FALOCTO(TEOCI-c.8SII

SLA(IIF1.O - AMAYTC 0.0, AMIN1(D.99,D.28FALOCTD(TECCI-C.TRII

11 ACIT,3IF YCI,2I

x(IT,AIFx(I,3I

x(IT,SI=xCI,(IF(T.'-x1IFSURVFN(II

X(11,6)= SLTCIIFx(I,5IFSURVFN(II

x(IT,7IF x(I,6IF(1.O-FSIFSURVFN(II

X(IT,8)= x(I,7IF (1.0-YAIF (1.0-F2(I)) FSURVFNCII

X(IT,°)= SLACIIFYCI,FI

X(11,TC)= x(I,9I

x(11,11IF X(I,10)

x(IT,12I- x(I,11I

x(IT,13IF x(I,12I

ACIT,TAI= 7(I,13)

X(11,15)= x(I,1(I

X(11,16)8 (XCI,16IFCFI(I,15IF(1.C-MEIIFSURVFNZCII

x(IT,T7IF x(I,17I F F F DIAPFN(II F x(I,2(IFx(I,2PI

IF ( I.LT.6 I so TO 29

SECTJ F ( 1.0 - DIAPFN(II I F Y(I,2(I F x(I,2EI

ACIT,18I = C RCI,13I F D F SECTJ I F SURVFNCII

GO TO 39

29 SECTJ = o.'

x(I.13I F:.D
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I(IT,19I F (1.r-KA)FF?(I)FX(1,7)FSURVFN(I)

IF ( x(I,7I.EU.c.f .OR. X(I,18).EG.0.C I 50 TO 1

X(11,2.) = £CFF((x(I,18)IF1DR(I))FFONECP)

GO TO 2

X‘I1'2.) = Coc

x(IT,21IF SLA(I) FYCI,19I

X(I1,22)8 x(I ,ZTI

XCIT,23IF ICI,22I

XCTT,2(IF x(I,23I

X(IT,25)8 X(I,ZCIF(1.O-RPI

X(IT,26IF x(I,25I

X(I1,27IF Y(I,26I

X(I1,2F)= Y(I,27)

X(IT,29)8 FEEDRF (YCI,SIF2.87FY(I,6)FS.97FX(I,7)FZA.23

FF(X(I,8)FX(I,19)))

IF ( I.LT.6 ) GO TO 59

x(IT,3 I F F(1,1) F x¢l,3’) F P(1,2) F x(1,31) F F(1,3) F

F x(I,32) F P(1,4) F X(I,33) - ”.25 F X(I,?9) F IFEED

ICIT,31) F P(2,1) F x(1,3¢) F P(2,2) F X(I,31) F P(z,3) F

F X(I,32) F P(2,6) F I(I,33) - X(I,29) F IFEED

IF (I.LT.TA) GO TO 59

X(11,32) = F(3,1) F x(I,30I F P(3,2) F u(I,31) F P(3,3 F

F x(1,32) F P(3,£) F x<1,33)

X(IT,33) = F(4,1) F X(I,35) F P(A,2I F x¢1,31) F F(6,3) F

F X(1,32) F P(4,b) F X(I,33) .

X(IT,IA) = x(1,2) F x(I,3) F X(I,b) F X(I,S) F I(I,6I F

F XCI,7) F X(I,1°)

C SUM PERFORMANCE INDEX FVER TIME.

C tittttitttiittttfitt MAXIMIZATION PROBLEH RRARRORRRRRRORRRRRRRRO

39

F7

C

PI F PI F ( o F PRICE I 1.35 I F X(1,32) . X(I,32)

IF (IFLAG .NE. 1 I GO TO 17

PI F PI - (RFTAxI F U(I,1I F UCI,1I

SUFU F SUPU F U(1,1)

SUMUSD F SUPUSD F UCI,1I F U(I,1)

SUMS UP 2ND GENERATION T JULIS

TJZ 8 TJZ F SECTJ

TOTAL 3RD INSTAR POPULATION

TLAR3 8 TLAR3 F Y(I,7)

TOTAL UNPARASITIZED 6TH INSTAR POPULATION

TUNPARA F TUNPARA F x(I,RI

TOTAL PARASITIZED ATH INSTAR POPULATION

TFARG 8 TPARG F I(I,T°)

TOTAL PESTICIDE USE FOR A SINGLE GROHING SEASON

CONTINUE

PI 8 Fl F XCNN,32)

DIFU8 SUMU-TVALUE

DIFUSO 8 SUPUSO ' TVALUE

RETURN

END
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L-Q-G DESIGN FOR ON-LINE CONTROL

The basic problem in real-world control system design almost invar-

iably involves the on-line (i.e., real-time) feedback control of an un-

certain, usually non-linear, physical process. This is especially true

with pest management problems--pest ecosystems are usually characterized

by non-linear, dynamic processes; stochastic variations in abiotic factors

affecting the ecosystem adds uncertainty to the process. Further, model-

ing errors are invariably present since models are just simple abstrac-

tions representing only the dominant features of the pest ecosystem under

consideration.

To recapitulate our discussions from an earlier section, one of the

major drawbacks associated with the currently available optimization models

in pest management is that, for the most part, they have ignored the sto-

chastic aspects of the control and concentrated instead on the determin-

istic problem. In the deterministic optimal controller design, one as-

sumes that there is no uncertainty, and that gfiggt_measurement of all

state variables are available. This is seldom the case is almost all

practical applications and especially so in pest management problems.

For example, while it is generally easier to take measurement of larval

stages of an insect, it is difficult to measure densities of pupae and

adult. This problem is further compounded by the fact that certain age-

classes (within life-stages of an insect) introduced for modeling purposes,

145



146

cannot be distinguished in the field, and hence, cannot be measured.

Even if all the state variables could be measured, there will be measure-

ment errors introduced by physical sensors, human errors inrcarrying out

the measurements, and sampling errors. This uncertainty in measurement

should be taken into account in the design of the optimal controller.

Also, in real-world situations there are likely to be disturbance in-

puts acting on the physical process described by the system model (e.g.

climatological changes affecting an ecosystem). It is obvious that a

deterministic optimal controller will not be optimal in a real—world

stochastic situation. In order that we may take into account the sto-

chastic aspects of the problem, the design of the optimal Controller

should include a stochastic estimator/filter and a scheme for stochastic

feedback control.

Figure 42 illustrates a generalized control problem encountered

in the real-world situation. It is modeled as a feedback control sys-

tem subject to persistent disturbances. The entire system consists of

three basic components:

(i) The physical process--In the pest management problem it

will be represented by the system model for the pest eco-

system. The ecosystem is subject to environmental dis-

turbance.

(ii) Measurement unit--This represents the sensors or human

measurements carried out in the field. All measurements

are subject to measurement noise.

(iii) Decision-making unit--This consists of an optimal control-

ler, a stochastic estimator, and provisions for stochastic

feedback control.
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FIGURE 42. Schematic illustrating a generalized control problem.
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The decision-making unit, which is called the "compensator" in

control literature, has the task of translating the actual sensor measure-

ments into the actual commanded inputs (i.e. control strategies for man-

aging the pest ecosystem) in such a manner that the performance criterion

specified for the problem is optimized. It is obvious that the design

of the compensator will be dependent on:

(i) Natural dynamics of the system under consideration, both

in the absence of uncertainty (deterministic), and in the

presence of uncertainty (stochastic).

(ii) The level of uncertainty associated with the system.

(iii) The performance criterion specified for the problem.

Clearly the design issue is clouded because it involves the inter-

play between the natural dynamics of the physical process, the stochastic

nature of the uncertainties, and the effects of the deterministic com-

manded inputs. Nonetheless, one can adopt a design philosophy, known

as the Linear-Quadratic-Gaussian methodology, that involves the following

three basic steps:

Step 1. Deterministic Ideal Response Analysis and Design.

Step 2. Stochastic Estimation Analysis and Design.

Step 3. Stochastic Feedback Control System Design.

We outline here the L-Q-G approach to the stochastic optimal con-

troller design. Detailed discussion on all aspects of this problem can

be found in the excellent papers by Athans (1971, 1972) (see also Meier

et al 1971, Kramer and Athans 1972, and Saridis 1977.)
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TECHNIQQES FOR IMPLEMENTING THE L-Q-G ALGORITHM
 

Step 1 involves the design of a discrete-time, deterministic opti-

mal controller. As mentioned earlier, a variety of approaches are pos-

sible (i.e., dynamic programming, discrete maximum principle, non-linear

programming, differential dynamic programming/successive sweep method,

and their variations). For the reasons discussed earlier, we can adopt

the first order successive approximation technique of McReynolds and

Dyer (1970).

Step 2 involves the design of a state estimator. It should be em-

phasized here that a linearized perturbation model is obtained prior

to step 2. The linearization is done with reference to the optimal state

and trajectories obtained as a solution to the deterministic optimal

control problem in Step 1. Based on the linearized perturbation model,

the deterministic linear quadratic problem can be formulated. This

problem can be readily solved using the matrix Riccati equation (see

references on Optimal Control) and leads to a linear time-varying/time-

invariant feedback relationship between the state perturbation vector

6x(t) and the control perturbation vector 5u(t). Detailed discussions

on the perturbation problem, the choice of quadratic criterion, and the

solution of the deterministic, linear-quadratic problem can be found

in Athans (1971, 1972).

In the stochastic estimation problem of Step 2, the uncertainties

arising out of disturbances, measurement errors, as well as the input

uncertainty, will be modeled by the use of white noise. The resulting
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linear-gaussian estimation problem can be solved through the use of the

Kalman-Bucy filter that generates the best estimate 5&(t/t) of the de-

viation of the true state vector x(t) from its ideal deterministic re-

sponse xo(t). Since excellent treatment of the Kalman-Bucy filter is

available in the literature (see references cited under Optimal Control

and Estimation Techniques) it will not be repeated here. However, the

key equations involved in its implementation will be summarized toward

the end of this section.

In short, the Kalman filter combines two independent estimates of

a state vector to provide "best" (minimum variance) estimate of the sys-

tem state. The two independent estimates of the states of the system

are given by:

(i) a process model based on apriori understanding of the proto-

type system, and

(ii) measurements of some or all state variables.

As discussed earlier, estimates from the process model contain uncer—

tainty due to model errors and other limitations. Also measurements

contain sampling and analytical errors. The filter combines the model

and sensor estimates by weighting them according to the uncertainties

associated with each of them in such a manner that the uncertainty as-

sociated with the filter estimate is less than the uncertainty associated

with either independent estimate individually. Output from the filter

consists of a new improved estimate of the states of the system and the

variance associated with that estimate. The Kalman filter utilizes a

recursive algorithm for its implementation. Because of its recursive
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nature only the most recent measurements are stored in the computer.

Thus the memory and computational requirements are minimal.

Step 3 involves the design of the stochastic controller. The linear-

ized Kalman-Bucy filter can be designed so as to generate on-line the

estimated deviation 5§(t/t) of the actual plant state x(t) from its

ideal deterministic response xo(t). It is to be noted that 6x(t) also

depends on the control correction vector 6u(t). Hence, one can now

think of the final step of the desing process as the techniques neces-

sary for generating on-line the control correction vector 6u(t) as a

function of the measurements so as to keep 6x(t) small.

The remarkable property of t3“: Linear-Quadratic-Gaussian control

problem is that the optimal control correction 6u(t) is generated from

the estimated state deviation 6§(t/t) generated by the Kalman filter

by means of the relationship:

6u(t) = -Go(t)6£(t/t)

where the gain matrix Go(t) is precisely the one determined in the solu-

tion of the deterministic linear-quadratic problem. (Note that the

deterministic linear-quadratic problem has the solution:

6u(t) = -Go(t)6x(t)

with the assumption that the entire state perturbation vector 6x(t) is

measured exactly.)

This valuable feature of the Linear-Quadratic-Gaussian problem

arises due to the so-called "separation theorem" that can be stated

as follows:
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In linear systems with quadratic performance criteria

and subjected to Gaussian inputs, the stochastic optimal

feedback controller is synthesized by cascading an optimal

estimator (Kalman-Bucy filter) with the determinisitic

optimal controller. (Sar 1977)

The separation theorem is always valid for "neutral systems"* which

includes the class of Linear-Quadratic-Gaussian problems. For detailed

discussions on the separation principle and related topics, see Bryson

and Ho (1975), Meier et al (1971), Kramer and Athans (1972), Patchell

and Jacobs (1971), and Saridis (1977).

SUMMARY OF THE LfoG APPROACH
 

We summarize here the key steps involved in the Linear-Quadratic-

Gaussian approach to the design of stochastic optimal feedback control-

ler (see also Figures 43 and 44):

Part A. Deterministic Modeling:

Step 1. Determine a deterministic model of the plant; this yields:

x(t + l) = f(x(t),u(t),t).

Step 2. Determine a deterministic model of the sensors; this yields:

y(t) = g(x(t),t).

Step 3. Determine ideal input-state-output sequences using deter-

ministic optimal control techniques:

{uo(t)}: ideal input sequence

{xo(t)}: ideal state sequence

{yo(t)}: ideal output sequence

for all t = O, l, 2, ..., T.

 

*The class of neutral control problems (Fel'dbaum 1965) includes all

problems where the rate of reduction of uncertainty is unaffected by

the control signals.
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Part B. Stochastic Modeling:

Step 4. Model uncertainty in initial plant state:

Select mean: xo E(x(0)

Select covariance: 2° cov[x(0);x(0)]

Step 5. Model input uncertainty:

Select covariance: E(t)6tT = cov[€(t);€(T)]

Step 6. Model sensor uncertainty:

Select covariance: O(t)6tT== cov[6(t);6(T)]

Part C. Linearization:

Step 7. Establish matrices A0(t), Bo(t), and Co(t) from information

in Steps 1, 2, and 3:

=3f __3_f_. __§_9__
Ao(t) 3x(t) o ' Bo(t) - 3u(t)()' Co(t) - 3x(t) 0'

Step 8. Depending on "degree of nonlinearity" select weighting

matrices Qo(t), Rb(t) with due consideration of the values of XO,E(t),

and O(t).

Part D. Control Problem Calculations (Off-Line):

Step 9. Using the weighting matrices Qo(t), Rb(t) of Step 8 and the

matrices Ab(t), Bo(t) of Step 7 solve backward in time the matrix dif-

ference equation:

= + ' + - ' K + 1 B tKo(t) Qo(t) Ao(t)Ko(t l)Ao(t) Ao(t) o(t ) o( )

* [B'(t)K (t + 1)B (t) + R (t)]-1B'(t)K (t + l)A (t)

o o o O o o o

with KO(T) = QO(T).

Step 10. Compute the control gain matrix Go(t):

_ 3 -1l
Gb(t) - [Bo(t)Kb(t + 1)Bo(t) + Rb(t)] Bo(t)KO(t + l)Ao(t).
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Part E. Filter Problem Calculations (Off-Line)

Step 11. Using the covariance matrices 20,3(t) and O(t), estab-

lished in Steps 4-6, and the matrices Ao(t), Co(t) of Step 7, solve

forward in time the matrix difference equations:

Zo<t + 1|t) Ao(t)20(tlt)Aé(t) + E(t)

20(t + 1|t + 1) 20(t + 1|t) + 20(t + lit + l)Cé(t + 1)

, -l

* [Co(t + 1)Zo(t + 1|t)Co(t + 1) + O(t + 1)] Co(t + 1)Zo(t + lit)

with 20(OIO) = {0.

Step 12. Compute the filter gain matrix:

H (t + 1) = Z (t + 1|t + l)C'(t + l)O-l(t + 1).
O O 0

Part F. On-Line Calculations

From actual measurements 2(1), 2(2), ...

(a) Compute Oz(l),Oz(2),...,by:

52(t) = z(t) - g(xo(t),t).

(b) Compute estimated deviations 5x(t/t) and control correction

6u(t) by:

6fi(t + 1|t) Ao(t)6fi(t|t) + Bo(t)6u(t)

6r(t + l) 52(t + 1) - co(t + 1)6£(t + 1|t)

52(t + 1|t + 1) 62(t + 1|t) + Ho(t + 1)5r(t + 1)

5u(t) -G (t)52(t|t)
O

69(o|0) E{x(o)} - xo(0).

(c) Compute actual control u(t) by:

u(t) = uo(t) + Ou(t).

It is worth noting here that the on-line computational requirements

are minimal, thus leading to a simpler and economical controller.
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