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ABSTRACT

As of the present, very little has been accomplished in terms of
utilizing the available information on pest ecosystems to arrive at an
optimum combination of control strategies that can be implemented in
the field. Conventional pest management strategies based on field ex-
perience tend to be ad hoc and do not necessarily lead to satisfactory
results. From the systems theoretic point of view, this problem can be
interpreted as the determination of the "optimal control" strategies
for the management of the ecosystem.

The present research focuses on the management of the cereal leaf

beetle (CLB), Oulema melanopus, a key economic pest of cereal grains in

the United States and Canada. A comprehensive state space model con-
sisting of 33 state variables is developed for the CLB ecosystem, which
includes the CLB, its larval parasite, T. julis, and a host plant com-
ponent represented by oats. Both chemical and biological control as-
pects are incorporated into the model so that the model can be tested
within the framework of Integrated Pest Management (IPM).

An economic optimization problem is formulated in which we seek
to maximize the profit earned by the farmer. The optimal control prob-
lem is solved for both single season and multiple seasons. Optimal
control strategies are characterized by emphasizing biological control
and reducing chemical control usage, and are compared with conventional

spraying schemes currently used. A sensitivity analysis is carried out



with reference to the timing and amount of pesticide sprayed. In gen-
eral, the optimal strategies are at least as good as, and often times
better than, the conventional schemes. It is found that the conventional
spray is timed earlier in the growing season and is aimed at the CLB
spring adults and eggs, while the optimal spray occurs a little later

in the season and is targeted on the early larval instars of the CLB.

"Externality costs" are included to reflect the penalty imposed
for environmental pollution caused by pesticide usage. Two different
approaches are analyzed with reference to the externality problem. One
is a regulatory approach, in which pesticide use is limited by absolute
restrictions on the amount that can be used. Taxation is the other
approach considered, in which case the performance measure is augmented
with a tax. The discrete-time optimal control problems are solved using
a first order successive approximation technique.

The necessity for stochastic estimation schemes in connection with
pest management problems is pointed out. The Linear-Quadratic-Gaussian
(LQG) approach is proposed for the combined stochastic estimation and
control problem, leading to On-Line Pest Management (OLPM) systems.

The overall approach to the pest management problem adopted in this
work is general enough to be extended to a wide range of problems in

biological resource management.
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INTRODUCTION

The survival of human society requires that it exert some form of
control over some of the other existing systems. 1In the case of pest-
crop ecosystems there exists a competition between human and insect com-
munities for resources like vegetation. Thus, exerting control on these
systems is dictated more out of necessity than choice. However, control
of natural systems is by no means trivial, in spite of our so-called
technological and scientific progress. Insect populations no longer ap-
pear to be inert masses passively responding to changing environmental
pressures (Wellington 1977). Oftentimes the consequences of our control
actions have been counter-productive. Heavy crop losses in spite of
tremendous application of pesticides, resistance to pesticides developed
by pests, the adverse environmental effects of pesticides, and a low
success rate with biocontrol attempts all provide corroborating evidence.
It appears that we have been in search of a panacea, and somewhere along
the way, have grossly underestimated the intricacies that typify biologi-
cal systems. A logical outgrowth of these turns of events are the in-
creasing demands for pest management programs that are not only economic-
ally feasible and profitable, but also ecologically compatible and ac-
ceptable.

Toward this end two significant ideologies have emerged: (1) the
concept of "Integrated Pest Management" (Stern 1959, Smith 1962), incor-
porating strategies that attempt to utilize an optimal combination of all

known pest control techniques including biological, cultural, and chemical

1



approaches, and (2) the important concept of "On-Line Pest Management"
(Tummala and Haynes 1977) which, in addition to being integrated in
scope, provides for periodic updating of control strategies in light of
changing meteorological conditions (hence changing ecological states) and
the relative effectiveness of previous control strategies.

However, very little has been accomplished in terms of utilizing
the available information on the pest ecosystems to arrive at an optimum
combination of control strategies that can be implemented in the field.
From the systems theoretic point of view this can be interpreted as the
determination of "optimal control" strategies for the management of the
ecosystem.

The major objective of this research is to provide the theoretical
foundations for the design of control systems that will lead to optimal
control strategies for on-line pest management. In general, the optimal
control strategies will be characterized by efforts to emphasize biotic
control while minimizing the use of pesticides. Economic and environ-
mental trade-offs that are inherent in pest management problems will be
discussed. Our research efforts will be directed toward the Cereal

Leaf Beetle (CLB) (Oulema melanopus (L.)) ecosystem. However, the over-

all problem-solving methodology developed in this research will be gen-
eral enough to be extended to a wide range of problems in biological

resource management.



MODELING AND OPTIMIZATION IN THE CONTEXT OF ECOSYSTEM MANAGEMENT

Most biological systems (and many other real-world systems as well)
are far too complex to be understood in all their details at any level,
and far too intricate to be broken up into components without destroying
the integrity of the system. Hence, models are used extensively in the
representation of these systems. Modeling allows us, in principle, to
isolate the components of a system and to study their interactions. This
helps us recognize some important relationships that exist in the real-
world system but are normally masked by complexities and interactions.
More importantly models provide a framework for analyzing the system
under various hypothetical situations. Especially for ecological prob-
lems these analyses can proceed well beyond what is experimentally pos-
sible to demonstrate under field conditions.

For our purposes, the models of ecosystems are classified under the

broad categories of simulation models and mathematical models (Figure 1).

SIMULATION MODELS

Simulation models (sometimes referred to as descriptive models)
describe ecosystem interactions usually in terms of a set of computer
instructions. With the advent of modern digital computers, simulation
models have found widespread use in the ecosystem analysis (see Patten
1970-1976) . Simulation models can handle a great deal of detail and

therefore tend to be very large. By their very nature, these simulation
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models do not lend themselves to the analysis of alternative management
options. Each one of the management options requires a large scale simu-
lation, and the cost associated with the analysis of a large number of
options is prohibitive. The main drawback is that the simulation ap-
proach does not provide the means of eliminating options that are not
"optimal"” in an efficient and systematic manner. Thus, in the case of
simulation models, the search for optimal policy is usually restricted

to management strategies supplied apriori (i.e. user suppled policies).

MATHEMATICAL MODELS

The shortcomings of the simulation models lead us to the second
class of models, namely, "mathematical models." These models reflect
the dominant features of the system, and their concise representation
provides us with an alternative to the detailed (and large) simulation
models.

Mathematical models are generally expressed in "state-space" form
(Ogata 1967). The state equations can be expressed in differential, dif-
ference, or partial differential forms. The major advantage of using
state~-space models is that it is a very effective approach to mathematical
representation of systems. Also, several important analytical tools
like control theory, optimization theory, estimation theory, etc. are
almost exclusively based on state-space models. Hence, for decision an-
alysis involving optimization, mathematical models are generally prefer-
red over simulation models. An excellent background on mathematical
models for pest ecosystems can be found in Tummala et al (1975, 1976),
~ummala (1974), Barr et al (1973), Shoemaker (1973, 1974), Kowal (1971)

and Ruesink (1975) among others.



THE NEED FOR OPTIMIZATION SCHEMES

The need for optimization schemes arises in the context of goal-
seeking in ecosystems or the so-called teleological approach to ecosys-
tems. The controversy over the role and acceptability of the teleolog-
ical approach to biological systems is both very old and still outstand-
ing (Davis 196l1) . However, for many important classes of biological
situations, only by using a goal-seeking description (Mesarovic 1968) an
effective and constructive specification of the system can be developed.
Indeed, the whole area of pest management, or in general, biological
resource management, is basically a goal-seeking endeavor.

Essential to the management of any system is the inherent assumption
that certain performance goals be defined--we would like to manage the
system in such a manner that our performance goals are achieved. From
the system theoretic point of view this can be interpreted as the deter-
mination of "optimal control" strategies for the management of the sys-
tem. Though optimization techniques have found widespread use and suc-
cess in engineering and physical systems there is only a limited amount
of literature on the use of optimal control theory for ecosystem manage-
ment. However, the value of optimization has been recognized by biolo-
gists. Patten (1971) stated: "The whole area of optimization theory is
certainly pertinent to renewable resource management and could be used
for...management schemes."” Watt (1963) pointed out that "...many prob-
lems in the management of renewable natural resources are extremal prob-

lems: we would like to maximize fish yield* from a lake, lumber yield

*However, in the real world, one strives for profit maximization, not
yield, because maximization of yield does not necessarily lead to maxi-
mum profit due to the existence of price elasticity.



from a farm, or minimize survival of a pest." Optimization schemes are
most often used in conjunction with mathematical models in state-space
form and are generally referred to as "optimization models" (refer to

Figure 1).



LITERATURE REVIEW OF OPTIMIZATION MODELS IN PEST MANAGEMENT

AND RELATED AREAS

In recent years several studies (Tables 1 & 2) have appeared in the
literature related to optimization schemes for pest management. Watt
(1963) was among the first to point out the potential use of optimization
procedures like dynamic programming in pest management problems. The
approach of Watt (1964) was based on an essentially brute-force technique.
Several predetermined policies were tried on a spruce budworm model, and
optimal policies were chosen on the basis of minimum total cost that
included timber loss and control costs. Such an approach is limited by
the number of policies to be considered--it only searches over a set of
predetermined (i.e., user supplied) control policies and not over the
entire policy space. This approach, though useful when used with simu-
lation models, is clearly inefficient when used with mathematical models.

Jacquette (1970), Mann (1971), Becker (1970) have developed simple
mathematical models in which pest populations are described by Markov
processes, either continuous-time or discrete-time birth and death
processes. They used dynamic inventory theory (similar to the principle
of optimality) and calculus of variations to derive some necessary con-
ditions. Jacquette (1972) pointed out that these are elementary models
and have little practical use. Goh (1970, 1972) and Vincent (1975) have
discussed the application of the maximum principle to population models

described by simple Lotka-Volterra type equations. Goh et al (1975)
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have derived optimal cropping rules for greenhouse crops based on ordin-
ary calculus. Vincent et al (1977) introduced the concept of isochronal
systems and derived necessary conditions for periodic optimization of a
scalar system representing biological populations.

Hueth and Regev (1974) proposed a hypothetical model with pest,
plant, and pesticide-resistance components and derived necessary condi-
tions for optimality using the maximum principle for a profit maximiza-
tion problem. Marsolan and Rudd (1976) developed a distributed parameter
model for the Southern Green Stink Bug, a major pest of soybeans, and
used the maximum principle to derive optimal control strategies. Rorres
and Fair (1975) considered an age-specific population and derived condi-
tions for optimal harvesting subject to linear ecological and economic
constraints. Feder and Regev (1975) pointed out the importance of exter-
nality costs and analyzed the effects of user-cost on optimal policy.
Mitchiner et al (1975) discussed the application of optimal linear regu-
lator theory to the pest management problem, and used the maximum prin-
ciple to solve a hypothetical problem. Taylor and Headley (1975) pre-
sented a model with genotype classes in which physiological resistance
to insecticides is incorporated, and suggested the use of dynamic pro-
gramming to solve a simplified version of the problem. Headley (1971)
in his elegant, yet simple, work reintroduced the concept of "economic
threshold" that provided significant insights into the economic consid-
erations that are inherent in pest management decision-making.

Shoemaker (1973) demonstrated the application of dynamic programming
to arrive at optimal pest management strategies by considering a semi-

realistic pest-parasite model for the Mediterranean Flour Moth. Hall
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and Norgaard (1973) derived an optimal quantity of pesticide spray under
the assumption that there exists a single optimal time for the applica-
tion of pesticides. Talpaz and Borosh (1974) derived optimal frequencies
and quantities per application of pesticide spray for a cotton crop eco-
system consisting of a single pest population. Regev et al (1976) util-
ized non-linear programming to solve an economic optimization problem

for the alfalfa weevil. Use of dynamic programming for the determination
of optimal sterile male release strategies for a hypothetical pest pop-
ulation is discussed by Taylor (1976). Carlos Ford-Livene (1972, 1973)
used dynamic programming to solve a hypothetical pest management problem
described by a linear model and suggests the use of stochastic dynamic
programming to solve the stochastic optimal control problem.

Birley (1977) proposed a transfer function approach to modeling
pest ecosystems and used a modified dynamic programming technique to
solve a linear optimal control problem with binary valued controls (i.e.,
spray/no spray scheme). Dantzig (1974) provided a Markov-chain inter-
pretation to the dynamic programming approach by incorporating state-
transitional probabilities. Winkler (1977) utilized a modified dynamic
programming technique based on Dantzig's approach to solve a fairly
realistic pest management problem for the spruce budworm. Talpaz et al
(1978) discussed a simulation model for the boll weevil-cotton ecosystem,
and used a modified version of Fletcher-Powell-Davidson's non-linear
programming algorithm to derive optimal pesticide spraying schemes.
Gutierrez et al (1979) presented a simplified model of the alfalfa

weevil ecosystem with four components: (1) population dynamics of the
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alfalfa weevil, (2) dynamics of the alfalfa crop, (3) mortality induced
by pesticides, and (4) evolution of pesticide resistance in the weevil
population, and used non-linear programming techniques to derive optimal
spraying strategies for two cases--with and without information on the
development of resistance by the weevil population.

Shoemaker (1977) employed dynamic programming to successfully solve
a comprehensive model for the alfalfa weevil. The approach was based on
decomposing the original model into two coupled models in order to reduce
the dimensionality. However, the model has some simplifying assumptions:
for example, it was assumed that pest control measures are applied only
once per generation, and the pest population has discrete (non-overlapping)
generations. Further, the approach lacks generality because the assump-
tions made toward simplification of the problem are very specific to the
pest ecosystem under consideration. Such inadequacies are likely to
preclude its applications in many problems of practical interest. Never-
theless, the work represents one of the few notable exceptions that are
oriented toward the solution of a realistic (and invariably complex)
pest management problem,

In related areas, Walter (1975, 1976) utilized stochastic dynamic
programming in conjunction with a scalar model to arrive at optimal
catching policies for salmon. Goh (1970), Sancho and Mitchell (1975)
proposed optimal management schemes for fisheries based on rudimentary
models. Rauch et al (1975) used the maximum principle to determine
temperature control schemes for lobster growth in a controlled environ-
ment. Katz (1978) explored the use of the maximum principle to gain

insight into optimal feeding strategies for African weaver birds.
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Hutchinson and Fischer (1979) discussed the application of stochastic
control theory to fishery management, and solved a simple logistic model
of the Atlantic sea scallop fishery using stochastic dynamic programming.
Dynamic programming for deer management (Davis 1967) and non-linear pro-
gramming to game management (Swartzman 1970) have been attempted in the
area of wild life management. Optimal control approaches are also being
explored for improving existing control schemes in medical and biomedical
problems related to population control, health care, nourishment, etc.
For example, Baharami and Kim (1975) presented optimal schemes for chemo-
therapy. They used a control vector interaction scheme based on the
gradient projection method to solve a bilinear model with a binary val-
ued {0,1} control. Detailed surveys of such problems in medical, bio-
medical, and related areas are presented by Jacquette (1972) and Swan
(1973) . Generally speaking, these models, like their counterparts in
pest management, tend to be hypothetical and highly simplified, while
dynamic programming remains the tool that is widely used with these

simplified models.

DRAWBACKS IN PAST EFFORTS

The past works contributed immensely to the understanding of optimal
control schemes for pest management and related problems. Nevertheless,
several drawbacks exist.

Generally speaking, the shortcomings associated with past works
are broadly classified into three categories: (1) drawbacks related to
the model-representation of the biological system, (2) inadequacies in
dealing with economic considerations, and (3) drawbacks related to the

choice and use of mathematical representation and optimization schemes.
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Drawbacks related to the biological model representation

The major shortcoming of most of these models is that they are over
simplified from a biological point of view. Generally, the dimensions
of the models were 3 or 4, with most of them scalar. Such highly sim-
plified models could not capture most of the biological details. Ideally,
the models should include the three major biological components of the
ecosystem: pest, plant, and parasite. Several state variables may be
needed to represent each one of these three components. Tummala (1977)
pointed out that the advisability of implementing any control measure
and the effectiveness of the control scheme depends on many factors,
such as the age distribution of the pest population, the maturity and
the vigor of the plant, the size of beneficial insect (parasite) popu-
lations, and weather.

The age distribution of the pest populations is very important be-
cause the damage an insect inflicts, and its susceptibility to insecti-
cides, predators, and parasites depends on its stage of development.

For example, some parasites attack only eggs, others attack only larvae
of a specific size. The damage inflicted on crops also varies as an
insect develops. For example, fourth instar larvae of the cereal leaf
beetle (hereafter referred to as CLB) cause about 24 times the damage
caused by the first instar larvae. Another related factor that should
be taken into consideration in determining the effectiveness of control
measures is plant vigor and maturity. Vigorous plants can often com-
pensate for moderate damage so that pest infestations have little effect

on yield. A plant's susceptibility to damage also varies as it matures.
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Susceptibility also depends on the temporal relationship between the
susceptible stages of the plant and the damaging stages of the insect
population. The rates at which pest populations develop from one life
stage to the next depend on temperature, humidity, and other climatic
factors. Finally, the potential damage to the crop can be reduced if
the pests are controlled by beneficial insects. However, the size of
this reduction depends on the sizes of the pest population and the bene-
ficial insects, the time synchrony between the two populations, and the
age distribution of the pest when it is killed by its natural enemies.
It is obvious that most, if not all, of these factors have to be

included in any real-world pest management problem, whereas the effect
of including them will be that of tremendously increasing the number of
state variables used in the model. It should be emphasized here that
we do not advocate unnecessarily increasing the complexity of the models.
As Holling (1977) points out,

...a major effort in modeling should be directed toward

achieving a minimal representation of the system and

one has to be ruthlessly parsimonious in selecting the

state variables.
However, we do wish to emphasize the fact that most of the optimization
models found in ecological literature are so simplified that they cease
to represent even the dominant features of the ecosystem, and can no
longer be identified with the real-world problem. As one would suspect,
this is one of the prime reasons why biologists have chosen to largely
ignore optimization models while opting for complex simulation models.

Clearly there exists trade-offs between the simplicity desired for the
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purposes of optimization and mathematical analysis, and the complexity
needed to capture the biological details--a meaningful and acceptable
(to biologists) compromise must be found.

In addition to being simplified, most of the optimization models
found in pest management literature are entirely hypothetical and are
not based on biological studies. This is because functional forms for
the pest ecosystem models are either not available, or (for the most
part) are not sought after. Incidentally, this points out the signifi-
cance and the need for an interdisciplinary approach to pest management
and related problems.

Furthermore, past efforts have mostly ignored the parasite or the
beneficial insect component of the ecosystem. This is a major drawback
since the parasite component represents the biotic control of the pest
population. Thus, optimal control schemes that have ignored the biotic
control aspect of pest management and have concentrated only on chemical
control do not represent an "integrated" control approach to pest manage-

ment.

Inadequacies related to economic considerations

Another area which has not been adequately explored is that of the
economic considerations involved in the pest management decision-making
process. The science of economics enters into the design of pest man-
agement strategies primarily because the goals of pest management are
mostly economic in nature.

Pest management problems are often posed as economic optimization

problems (i.e., profit maximization or cost minimization). Economic
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theory, as it has been applied to pest management problems, is usually
presented in the form of a threshold analysis. Such an analysis is
popularly termed as the "economic threshold" in pest management problems
(See Edens (1977) for an excellent critique of economic threshold, and
Tummala and Varadarajan (1976) for an extensive bibliography).

The concept of economic threshold evolved as a direct application
of microeconomic optimization techniques to agricultural management. In
its most simplified form it is merely a restatement of the economic cost
minimization criterion--undertake an additional expenditure only when the
incremental increase in revenue which occurs as a result of the effort
is greater than (or equal) to the incremental cost (Edens 1977).

In the context of pest management, the lowest pest density that
can cause economic damage to the crop is often referred to as the Eco-
nomic Injury Level. Based on this notion, the economic threshold is
defined as the pest density at which control measures should be deter-
mined in order to prevent the pest population from reaching the economic
injury level. It is obvious that the economic damage to any crop is
dependent on a variety of factors, including the specific crop, the
particular growing season, the prevailing crop price, the pesticide cost,
etc. Hence, pest density represented by the economic threshold may vary
through time, or vary from crop to crop, region to region, and season
to season with society's changing scale of economic values. However,
for the present, economic thresholds specified by entomologists tend to
remain as static levels. For example, the economic threshold for the

CLB is currently specified as 3 eggs and larva/stem (Ruppel 1974).
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From the control theoretic point of view, the economic threshold
can be interpreted as the optimal state (usually representing a specific
lifestage with an associated age class) trajectory for the pest density
obtained as a solution to the economic optimization problem. The more
realistic the model of the pest ecosystem the more meaningful will be
the resulting economic threshold.

Several agricultural economists (Headley 1971 & 1975, Hall and Nor-
gaard 1973, Hilderbrant 1960, and Hueth and Regev 1974) considered eco-
nomic optimization problems in pest management leading to useful theo-
retical interpretations of economic threshold. However, these works
have serious drawbacks in temrms of the ecosystem model considered.
Generally speaking, the models were purely hypothetical and highly sim-
plified, and lacked the biological control component. Except for a few
isolated cases, e.g. Shoemaker (1977) attempts to solve meaningful eco-
nomic optimization problems related to pest management are clearly lack-
ing. As Edens (1977) rightly points out:

The main impediment to the more generalized utilization
of the threshold principle is the level of abstraction

at which the concept is generally presented...Even though
conventional optimization techniques are not all applicable
to all pest management problems, they are currently under-
utilized, largely because of the difficulty involved in
operationalizing them. As the increased cost of the chem-
ical control becomes more apparent, it will be clearly
recognized that complex optimization techniques based on
the dynamic interactions of the agroecosystem have to be
used in order to arrive at viable management strategies.

A closely related topic of interest that is often overlooked is

that of "externality costs" associated with the chemical controls. Ex-

ternalities arise due to the tacit assumption--that there is no difference
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between private and social benefits or between private and social
costs--does not hold good in several instances. In the economic jargon,
externality due to the environmental pollution caused by chemical con-
trols will be classified as the "external diseconomy of production"
(Mansfield 1975). An external diseconomy occurs when an action taken
by an economic unit results in uncompensated costs to others. When
such costs are due to increases in a firm's production, they are termed
external diseconomies of production. Most of the environmental pollu-
tion problems fall into this category of external diseconomies of pro-
duction. 1In such cases, the private costs do not reflect the full
social costs since the firms responsible for the pollution are not
charged for their actions that lead to environmental degradation.

In recent years, however, consumer groups have become increasingly
vocal in protesting against environmental pollution--and rightly so. It
is conceivable that legal enforcements will become widespread in the
years to come. Therefore, it is worth our efforts to consider the prob-
lem of externality as it is present in pest management problems. This
has to be carried out within the framework of hypothetical enforcement
criteria, leading to potentially useful policies. Unfortunately, a very
limited amount of literature exists in this area, especially with refer-
ence to quantitative analysis. Feder and Regev (1975), Regev et al (1976),
Brook (1972, 1973) have made some initial attempts in this direction by
considering hypothetical pest ecosystems. Obviously more research is
needed. It is the belief of this author that it has to come from econo-

mists. Nevertheless, an attempt will be made in this research to gain
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insight into potential enforcement policies that take into account ex-
ternalities, and more importantly, to provide control theoretic inter-

pretations for such policies.

Drawbacks related to optimization schemes

One of the major drawbacks in past efforts is associated with the
choice, and consequently, the limitations of the specific optimization
schemes used. We are concerned here with discrete-time optimization
techniques since most of the pest ecosystem and other biological systems
are conceptually modeled as discrete approximation to continuous-time
systems. Also, as Innis (1974) points out in his excellent paper "Dy-
namic Analysis of Soft-Science Studies: In Defense of Difference Equa-
tions," the use of difference equations is more appropriate in modeling
biological systems. This is because insects have several distinct life
stages, with time delays associated with maturation in each stage, which
are modeled easily with difference equations. Further, it is more mean-
ingful to model the control variables, such as pesticides, as discrete
variables, since they are usually applied at certain discrete levels and
not at a continuously varying level. Alternative modeling schemes for
pest ecosystems include differential equations involving time delays,
and partial differential equations (Barr et al 1973) that treat each in-
dividual's maturity or physiological age as a point in a continuum. In
general, such modeling approaches are cumbersome (when compared with dis-
screte-time models) from the standpoint of optimization. Thus, we are
interested in optimization schemes that can handle discrete-time problems
as well as rather large dimensional problems (since most of the real

world pest management problems are large scale).
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Basically there are three different optimization approaches that
have been tried in the past: (1) dynamic programming, (2) maximum prin-
ciple, and (3) non-linear programming.

Among the optimization techniques that were used, "dynamic pro-
gramming"” due to Bellman, is very appealing because a feedback solution
is obtained. Further, hard constraints on state and control variables
(which are very difficult to incorporate in most of the optimal control
schemes) are very easy to handle with the dynamic programming approach.
In fact, the presence of constraints on admissable state and/or control
variables actually simplify the dynamic programming procedure by reduc-
ing the size of the region over which the search for optimal solution is
made. Furthermore, extension of dynamic programming to stochastic areas
is fairly straightforward. However, the straightforward dynamic pro-
gramming technique is hampered by the "curse of dimensionality" (Kirk
1970). Thus, for a system with just three state variables and 100 quanti-
zation levels for each state, we will require (100) 3 = 10° storage loca-
tions which is enormous even for modern day computers to handle. As a
result, several techniques have been developed that attempt to reduce
the amount of storage locations required to implement the dynamic pro-
gramming algorithm. State increment dynamic programming of Larson (1968)
provides considerable savings in high speed storage requirements. Bell-
man and others have suggested polynomial approximations for the return
function in order to reduce dimensionality requirements. Nevertheless,
the computer solution of a dynamic programming problem still remains a
formidable task when the dimension of the problem is greater than, say,

3 or 4 (Jacobson and Mayne 1970).
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Yet another approach that has been utilized is that of transforming
the dynamic optimization problem into an equivalent static optimization
(i.e., mathematical programming) problem, and then employing mathematical
programming techniques to arrive at optimal solutions (Pearson and Srid-
har 1966, Cannon, Cullum and Polak 1969, and Tabak and Kuo 1971). This
method has the advantage that constraints are easily handled and aperi-
odic problems can be considered. However, it is unwieldy in most cases,
especially when the grid points in the discretized time horizon are
large, resulting in an extremely large number of variables. In general,
a dynamic optimization problem with N state variables, M control varia-
bles, and K grid points in the discretized time horizon will be trans-
formed into an equivalent static optimization problem with (N + M) % K
variables. Thus, a problem of the size considered in this research will
result in (33 + 1) % 30 variables--over 1000 variables. Also, some
computational simplifications that are possible with this approach, when
the system equation is linear and time-invariant, cannot be extended to
the case of biological systems that are generally non-linear and time-
varying.

In recent years, the maximum principle has been applied to discrete-
time problems. In reality, the (continuous) maximum principle is not
universally valid for the case of discrete systems. Due to restrictions
on possible variations of the control signal, the continuous maximum
principle must be modified for the general discrete case (Sage and White
1977). Athans (1966, 1972) discusses the restrictions of the discrete

maximum principle with reference to the convexity/directional convexity
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requirement on the reachable sets. Even though the discrete maximum
principle has been used in deriving necessary conditions for optimality,
very little computing experience with this approach is reported in lit-
erature (Kleinman and Athans 1966, Athans 1972, and Jacobson and Mayne
1970) in contrast to the continuous case.

The dimensions of real-world pest management thus dictate the use
of a more suitable discrete-time optimization algorithm. However, it
should be emphasized that the choice of the optimization algorithm de-
pends on a variety of factors, including the specific problem on hand,
the computational aspects of the algorithm, and the individual's own
preference for any particular algorithm. In short, there are no general
rules for choosing between optimization schemes.

Another major drawback associated with the currently available op-
timization models in pest management is the fact that they have completely
ignored the stochastic aspects of the control problem and concentrated
instead on the deterministic problem. In the deterministic optimal con-
troller design, one assumes that exact measurement of all state variables
are available. This is seldom the case in practical applications and
especially so in pest management problems. For example, while it is
generally easier to take measurement of larval stages of an insect, it
is difficult to measure densities of pupa and adult. The problem is fur-
ther compounded by the fact that certain age-classes (within life stages
of an insect) introduced for modeling purposes, cannot be distinguished
in the field, and therefore, cannot be measured. Even if one could mea-
sure all the state variables, there would be measurement errors intro-

duced by physical sensors (or human errors) in carrying out the
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measurements. This measurement uncertainty should be taken into account
in the design of the optimal controller. Also, in real world situations
there is likely to be disturbance inputs acting on the physical process
described by the system model, e.g. climatological changes affecting an
ecosystem. It is obvious that a deterministic optimal controller will
not be optimal in a real world stochastic situation. In order that we
may take into account the stochastic aspects of the problem, the design
of the optimal controller should include a stochastic estimator/filter
and a scheme for stochastic feedback control (Athans 1971).

Very few people have discussed or attempted the stochastic aspects
of pest management problems. Logan (1977) came up with an elementary
form of filter based on regression equations to provide improved density
estimations for the larvae of the CLB. Hildebrand and Haddad (1977)
considered the estimation problem for insect populations and derived a
parametric filter based on a distributed parameter model for the alfalfa
weevil. These two approaches, however, are confined to the filtering
problem and do not deal with the control problem.

Ford-Livene (1972) is the only one to have touched on the topic of
stochastic estimation and optimal control for pest management. However,
his approach appears short-sighted: he assumed a linear system dynamics
and suggested the use of stochastic dynamic programming. As mentioned
earlier, it will be a mistake to assume linear system dynamics for the
generally non-linear pest ecosystem problems. Starting with a linear
dynamics for the system (as Ford-Livene did) is markedly different from
considering a linearized version of a non-linear system about the opti-

mal trajectory. Further, Ford-Livene suggests that the use of stochastic
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dynamic programming for solving the stochastic optimal control problem.
As Athans (1972) rightly points out, this approach is entirely impracti-
cal for most of the real world problems since the curse of dimensionality
associated with dynamic programming is far more severe in the stochastic
case as compared to the deterministic case. It is also worth noting in
passing that while Ford-Livene outlined the stochastic optimal control
problem, he has not provided the design of such a controller, nor ex-
tended it to a realistic pest management problem. 1In any case, the sto-
chastic dynamic programming approach will be unsuitable to large scale
pest management problems due to the curse of dimensionality.

Another approach, popular among statisticians, for handling some
stochastic aspects is the use of stochastic models incorporating "birth
and death processes" (Jacquette 1970, Mann 1971, and Chatterjee 1973).
However, this approach is restricted to very simple applications, and
caters mostly to theoretical interest. Also, this approach lacks the
generality, usefulness, and the computational advantages of the state-
space approach traditionally used in the engineering disciplines.

Another important aspect in the design of the optimal controller
for pest management systems that has not been explored in the past works
is the on-line capability of the controllers. Tummala and Haynes (1977)
in their paper "On-Line Pest Management Systems" give a lucid account of
the need and desirability of on-line features in pest management systems.
They point out that pest management systems should have provisions for
periodic updating of control strategies in light of changing meteorolog-

ical conditions, ecological states of the ecosystem, and effectiveness
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of previous control strategies. This important feature of on-line cap-
ability has not been addressed in past works.

A complete survey of the algorithm and computational techniques for
optimal control and estimation problems is beyond the scope of this
writing due to space limitations. Besides, several excellent survey
papers are available on these topics.

For example:

Survey papers on optimal control--Fuller (1962), Paiewonsky (1965),
Athans (1966), Bryson (1967), Larson (1967), Athans (1971), Mendel and
Gieseking (1971), Athans (1972), and Polak (1973).

Survey papers on estimation techniques--Rhodes (1971), Athans (1971),
Mendel and Gieseking (1971), Athans (1972), and Leondes (1970).

In addition, there are several well-written texts in these areas--
Bryson and Ho (1975), Meditch (1969), Jacobson and Mayne (1970), Schweppe
(1973), Dyer and McReynolds (1970), Saridis (1970)--to name just a few.

Recapitulating, the drawbacks in past approaches (with a few ex-
ceptions in each case) are summarized as follows:

1. Most of the models are based on bypothetical ecosystems.

2. Most are overly simplified from a biological point of view.

3. The parasite component (which represents the biotic control

component) has been largely ignored.

4. BAge-distribution of the biological populations has not been

taken into account in many cases.

5. Economic considerations have not been adequately addressed.

6. Most of the optimization schemes employed cannot handle more

than 3 or 4 state variables.
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Most of the approaches were deterministic. The need for sto-
chastic control and estimation schemes has been mostly ignored.
On-line capability for the optimal controller has not been

attempted.



PROBLEM DESCRIPTION

Briefly, the research problem can be stated as the determination
of optimal decision rules for the "integrated control" of the CLB eco-
system. This involves the determination of both the timing and the
amount of pesticide spray to be used in the field. In addition, the
optimal decision rules to manage the CLB will be spearheaded by efforts
to take maximum advantage of the beneficial effect of T. julis, a larval
parasite of the CLB. Obviously there exists trade-offs between the
use of biocontrol and chemical control approaches--especially with ref-
erence to revenue from the crop which is of great economic importance
to the farmer. For example, chemical controls lead to short-term eco-
nomic benefits. On the other hand, biocontrol attempts do not give
instant pay-offs, but, over a long run, are likely to provide stable
economic gains. As such the optimization attempts will be aimed at
striking a reasonable balance between biocontrol and chemical control
with minimal sacrifices in profit.

Within the framework of our model, optimal decision rules will be
evaluated against current control practices (which are based on the re-
commendations of economic entomologists) in order to gain insight into
potentially useful, and conceivably better, control strategies. Inci-
dentally , this will also allow us to view in proper perspective the

current spraying recommendations that are based on valuable field
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experience of entomologists but have never been quantitatively evaluated
for either the timing or the amount of spray.

The individual farmer, who is mainly concerned about the ultimate
revenue from the crop, has a tendency to emphasize chemical control and
make some immediate monetary gains. This frequently leads to excessive
spraying, and consequently to environmental pollution. In this context,
there exist economic and environmental trade-offs in all pest manage-
ment problems. In this work these trade-offs will be discussed within
the framework of optimal decision rules for pest management.

For a single growing season, the larval parasite T. julis virtually
plays no role, but its effect will be felt in the subsequent growing
season. Thus, control policies have to be evaluated over multiple
seasons in order to determine the effect of biocontrol. Repeated appli-
cation of conventional control policies season after season, as well as
repeated use of optimal policies (on a season by season basis) will be
evaluated within the framework of the CLB ecosystem model.

As part of our approach to determine the optimal control strategies
for the CLB problem, we will develop a discrete-time optimal control
technique based on the successive approximation algorithm of Dyer and
McReynolds (1970) that is similar in scope to the differential dynamic
programming approach of Jacobson and Mayne (1970). The algorithm is
utilized within a deterministic framework to solve several types of op-
timal problems associated with the integrated control approach to the
CLB problem. Extension of the deterministic approach to the stochastic

case is discussed, and the Linear-Quadratic-Gaussion (L-Q-G) methodology
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is proposed for the design of an on-line control system for pest man-
agement.
In the following sections, we will discuss at length, all of the

aforementioned aspects of our approach to the research problem.

DESCRIPTION OF THE CLB ECOSYSTEM

The pest management problem considered in the present work is
that of the CLB with its larval parasite, T. julis (TJ) and a crop com-
ponent represented by oats.

The rationale behind the choice of the CLB ecosystem is two-fold:

1. The CLB is a key economic pest of the cereal grains in Mich-

igan and several other states in the United States and Canada.

2. A large amount of data is available on a number of aspects of

the CLB ecosystem from the research studies conducted at the
Michigan State University over the years (Castro 1964, Yun
1967, Helgesen 1969, Ruesink 1972, Gage 1972 & 1974, Casa-
grande 1975, Jackman 1976, Logan 1977, Fulton 1975 & 1978,
and Sawyer 1978).

The CLB, Oulema melanopus (L.) is native to Europe and Central

Asia. The first reliable indentification of this pest was made in south-
western Michigan in 1962. Since then it has rapidly spread and has
established itself as an economic pest in an area ranging from Pennsyl-
vania to Wisconsin and from Kentucky to Michigan and Ontario. The CLB
attacks small grains, mainly wheat, oats and barley. The annual com-
bined acreage of these crops in the United States is close to 100 million

acres (Cooper and Edens 1974). Radiation methods for sterilization of
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the CLB have proved to be ineffective because the dosage required to
sterilize an adult is almost lethal. Studies of plant resistance have
not provided a readily available method of control. Chemical control is
the only viable control that is used extensively. There is a general
acceptance among entomologists that satisfactory control of the CLB can
be achieved only by a pest management program based on thorough ecolog-
ical research (Haynes 1973).

The CLB overwinters as an adult in forest litter, grass, tree bark,
or in small crevices protected from heat and cold. In Michigan, adults
become active in April and feed on grasses and winter wheat prior to
oviposition. The oviposition activity continues for 45-60 days; during
this period each female lays an average of 50-150 eggs. The spring
adult population declines to a negligible level due to natural mortality
in about 60 days. The eggs hatch in a few days and the larval instars
feed extensively on succulent leaves of wheat and (preferably) oats.
There are 4 larval instars. New adults emerge in a few days, feed in-
tensively on any available green grass, and disperse to overwintering
sites. These adults diapause and do not lay eggs until the following
spring. Most of the damage to the crop is caused by larval feeding
during the early stages of plant development.

The CLB was introduced into North American with few, if any, of its
natural control agents. Important biocontrol agents include the imported

parasites: Anaphes flavipes, and egg parasite, and the three larval

parasites--Tetrastichus julis, Diaparsis carinifer, and Lemophagqus

curtus. It appears that the egg parasite, A. flavipes will not have a
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major influence on the CLB population since the mortalities of the first
and fourth instar CLB are density dependent; thus, as egg density is
reduced, survival of larval instars will increase (Helgesen and Haynes
1972) . Preliminary studies indicate that the larval parasite T. julis
is better synchronized than the other larval parasites. Moreover, it
has two generations per year, very high reproductive potential and a
relatively low dispersal quality. The mathematical model considered
focuses on this parasite. More detailed descriptions concerning the
biology of the CLB can be found in Haynes (1973), Barr et al (1973),
Tummala et al (1975), Lee et al (1976) and several theses cited in the

literature.

MODELING ASPECTS

Considerable modeling work has been done on the CLB ecosystem.
Presently four models are available on various aspects of the CLB eco-
system. Gutierrez et al (1974) provided a simulation model for the
within field dynamics of the CLB in wheat and oats. Fulton (1978)
developed a detailed simulation model for the CLB that can be used in
an on-line fashion. Both models are aimed at providing detailed descrip-
tions of the pest population dynamics through time. However, they
did not include the parasite component represented by T. julis. There-
fore these models are not suited for analyzing the biolgical control of
the CLB. Furthermore, both models lack a dynamic host-crop component;
hence the economic impact of the CLB feeding on the host plant cannot

be evaluated. 1In addition, the models are based on extensive simulations,
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and are prone to all the drawbacks associated with the simulation ap-
proach to pest management (refer to earlier discussion). 1In short,
these models are best suited for analyzing population dynamics of the
CLB, but are not useful in evaluating a large number of management
strategies.

Lee et al (1976) presented a comprehensive model of the CLB-T. julis
ecosystem based on partial differential equations and an ordinary 4dif-
ferential equation model for the host piant. The model, however, did not
include the chemical control component. The model is used in a simula-
tion mode to describe the maturity distribution of the CLB and its ef-
fect on the host plant through time. Since partial differential equations
are rather cumbersome when used in conjunction with optimization schemes,
the model of Lee et al is not particularly attractive for management
purposes.

Tummala et al (1975) developed a detailed model of the CLB-T. julis
dynamics based on a discrete component approach. The discrete-time
state-space model was utilized to illustrate the effect of T. julis on
the CLB under varying densities. Since the major objective of their
work was to highlight the beneficial effect of biological control, they
did not incorporate in their model the host plant component and the im-
pact of chemical control on the pest-parasite complex.

In order to be useful in analyzing integrated control strategies,
the models should include both biological and chemical control, and
dynamic descriptions of the economic yield from the crop, and lend them-
selves suitable for use with optimization schemes. The state-space model

of Tummala et al (1975) is particularly attractive for optimization
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purposes. In the present research, we will develop an updated version
of the model of Tummala et al (1975) in such a manner that the final
version of the model encompasses all the features necessary for analy-
zing integrated pest management options.

A chemical control component is added to the earlier version of
the model; thus, mortality functions that account for the mortality
caused by the application of pesticides are introduced. The pesticides
used have impact on both the pest and the parasite. In addition, the
pesticides used have different impacts on different life-stages of the
insect. These factors should be incorporated into the model. Generally,
insect mortality is described in terms of dosage response characteristics
that give the relationship between the amount of pesticide applied and
the corresponding mortality (expressed as a percentage) induced.

Sevin (carbaryl) and malathion are the pesticides that are exten-
sively used in controlling the CLB. Both carbaryl and malathion are ef-
fective against the CLB larvae and adults, the larvae being more suscep-
tible than the adults. 1In addition, carbaryl is a powerful ovicide (i.e.,
kills eggs), has a prolonged residual effect (compared to malathion), and
is known to cause adverse side effects. The dosage response characteris-
tics of the CLB to these pesticides are discussed in the literature (Yun
and Ruppel 1965, Ruppel 1977, and Casagrande 1975).

Our model will focus on the pesticide malathion for the following
reasons:

1. Malathion is widely used (states like New York recommend only

malathion for CLB control).

2. More data is available on this pesticide.
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3. Malathion has very little residual effectiveness, while Sevin
has a prolonged residual effectiveness that is rather diffi-
cult to model and is likely to add quite a bit of complexity
to the present model.

The dosage response curves used in the model are illustrated in Figure
2. These are based on published data and discussions with Dr. Ruppel.
Currently there is no data available on the impact of malathion on the
larval parasite T. julis. However, according to entomologists (Dr.
Ruppel personal communication, Michigan State University) the effect of
malathion on T. julis is likely to be very similar to that of malathion
on the CLB larvae.

Due to the lack of availability of data, Tummala et al (1975) as-
sumed a hypothetical function for the T. julis diapause. In the present
model it is replaced by one that is based on field studies conducted by
Gage (1974). The field data and the functional approximation (an eighth
degree polynomial fit) used in the present model are illustrated in
Figure 3.

The development of a model for the oats plant component is discussed
in detail in the following section. (Note: The threshold tempera-
ture for oats is 42°F, whereas it is 48°F for the CLB and TJ. Hence, a
transformation from 42°F to 48°F is used in calculating the cumulative de-
gree days for the plant model. This transformation is required for opti-
mization purposes. The error associated with the transformation is mini-

mal because of the proximity of the thresholds.)
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DOSAGE RESPONSE CURVES
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FIGURE 2. Dosage response characteristics of CLB larva, CLB adult, and
T. julis to a pesticide spray of malathion.
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DIAPAUSE FUNCTION FOR T.JULIS
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FIGURE 3. Diapause functions for T. julis--observed field data and
fitted curve.



OATS PLANT MODEL

Since the goals of pest management are, to a large extent, economic
in nature, the economic yield from the host plant is of utmost signifi-
cance. For a realistic characterization of the oats plant as a compo-
nent of the CLB ecosystem, it is necessary to identify the interactions
between the CLB and the plant (for more details see Barr et al 1973,

Lee et al 1976, and Gage 1972).

The feeding caused by the CLB population results in a reduced leaf
surface area of the plant. The reduced photosynthetic capability in
turn affects the final yield. Most of the CLB feeding occurs on the top
three leaves, which are responsible for over 85 percent of the net photo-
synthetic activity (Gage 1972).

Plant growth is dependent on a variety of factors, including mois-
ture, soil chemicals, light exposure, etc. However, in our model it is
assumed that all these factors are prevalent in a non-stressed or "stan-
dard" condition. The key variables that are chosen to represent plant
growth are the total weight of the plant W, the leaf surface area S, and
the weight wH and surface area SH of the grain seeds as functions of
degree days. The selection of these quantities as state variables is
based on the following characteristic mechanism. The biomass generated
through photosynthesis by the leaves is accumulated as plant biomass and
is converted into seed when the plant matures. The weight of the heads

directly reflects the quantity of seed produced. Moreover, as the heads
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develop, their surface area should also be considered as an active
photosynthetic component.

The metabolic processes of plants are determined by the relation-
ship between the active mass which undergoes catabolism (respiration)
and the necessary surface to support anabolism (photosynthesis). The
anabolism is expressed as the product of the rate kl at which mass is
produced per unit area and the effective surface S through which ex-
changes take place. Similarly, catabolism is proportional to the entire

bulk W of living material. Thus:

E“k5+kw
where: k1 >0
k <0
2
t = physiological time for the plant.

This equation was first proposed by von Bertalanffy (1957). The growth
of surface area S also can be represented with a similar equation. Thus,
a linear approximation for the plant dynamics can, in general, be ex-

pected to have the form:

w W
d S S
—_— = K
dat

wH wH

SH SH

where: K = 4 x 4 matrix.

The above equation can be written in the difference equation form

as follows: W (n+ 1) W (n)
S (n+ 1) S (n)
= P
WH (n + 1) WH (n)
SH (n + 1) SH (n)

where: P = 4 x 4 matrix

n = discretized physiological time steps.
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The elements of the matrix P are in general functions of soil fer-
tility, moisture, light intensity, etc. The form of these functions is
unknown at present. Evaluation of possible control strategies such as
fertilization, irrigation, etc., so as to minimize crop damage from the
CLB by manipulating plant growth would require extensive study to deter-
mine these functional forms. Nevertheless, development of management
policies focusing on the manipulation of CLB and parasite densities
under "standard" cultural conditions and practices for the crop compo-

nent can proceed using the P matrix with constant parameters.

ESTIMATION OF PARAMETERS FOR THE OATS PLANT MODEL USING TIME-SERIES

ANALYSIS
The essential features of our approach to parameter estimation for
the oats plant model is illustrated in Figure 4. As discussed earlier,
the structure of the plant model can be expressed as follows:
Y (k +1) =P Y(k)

or:

y, (k+ 1)] P(1,1) ... P(1,4)] y (k)
y, (e + 1) | . y, (k)
Y, (k + 1) . . ys(k)
y“ (k + lﬁ r4,1) ... P(4,4{ y“(k)

where: yl(k) = weight of oats plant/sq ft
yz(k) = leaf surface area/sq ft
ya(k) = weight of head/sq ft
y“(k) = surface area of head/sq ft
Y (o) =Y initial = initial conditions for the state

variables Y.
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The parameters of the P matrix remain to be estimated. These par-
ameters have to be chosen in such a manner that the outputs of the plant
model match closely the field data for the corresponding variables. The
optimization algorithm of Box* (also known as the COMPLEX algorithm) is
used in conjunction with the model as shown in Figure 4. An initial
guess, as well as a lower and upper bound, are supplied for each one of
the parameters. Based on the initial guesses for the parameters and the
given initial condition, Y initial, for the state variables, the model
generates the state variables Y (k) through time steps k, from initial
time to to final time tf. The outputs of the plant model are compared
with the corresponding real world time-series (i.e., field data) at
selected points in time. A weighted least squares criterion is used as
the performance index (PI) in the optimization algorithm:

4 n yi(k) - yobsi(k)

PI = )
i=1 k=1 yobsavg,
where: yi(k) = data generated by the plant model
yobsi(k) = field data
yobsavgi = average values of the observed field data

n final time step.

The COMPLEX optimization algorithm finds the values of the unknown
parameters of the P matrix so that the performance index is minimized.
The parameter values that are generated by the optimization procedure
are fed back to the plant model, and the model is run with these new

parameter values. When this process is repeated, a specified conver-

gence is obtained with the optimization procedure. The aforementioned

*See Kuester and Mize (1973) for details of the algorithm.
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procedure is repeated for different initial guesses of the parameters
in order to make sure the global optimum is obtained with the optimiza-
tion algorithm.

The unknown parameters of the P matrix estimated using the approach

discussed here are given below.

P MATRIX:
0.803 0.517 -0.056 0.000
-0.112 1.240 -0.018 0.065
0.000 0.036 0.765 0.614
0.000 0.047 -0.172 1.303

Convergence criterion employed:
|(PI/PILAST) - l| < 1E - 5 for 3 consecutive iterations.
The trajectories of the plant variables generated by the "best-
fit" model, and the corresponding real world time-series form field

data are illustrated in Figures 5 and 6.

CLB-OATS PLANT INTERACTIONS

The CLB-plant interactions are caused by the CLB feeding on the
leaves of the host plant. The CLB-plant surface area coupling may be
described by a simple form in view of the work of Gage (1972). He ob-
served that leaf consumption by the four CLB larval instars is in the
ratio 1.00, 2.87, 5.97, and 24.23, and that feeding by the adult CLB
is negligible when compared to larval feeding.

Thus, the total larval feeding in terms of the first instar feed-
ing equivalents can be written as:

L1EQ(n) = FEEDQ[Ll(n) + 2.87 L2(n) + 5.97 L3(n) + 24.23 L4(n)]
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where: Ll(n)

. CLB first instar through fourth instar larval
. density at time n
L4 (n)
L1EQ(n) = first instar feeding equivalents at time n
FEEDQ = feeding coefficient (0.002029) that represents
the leaf surface area (in sq dm) consumed by a
first instar CLB larva in a time duration GODD48
n = physiological time (in units of 600048).

Further, it is known that the biomass corresponding to 1 am? of
leaf surface area is 0.25 gm in oven dry weight (Gage 1972).

Hence, the CLB-plant coupling can be expressed as:

(W (n + 1)] "W (n)] [0.25]
S (n + 1) =p S (n)] _ |1.00 L1EQ (n)
WH(n + 1) WH(n) 0.00
-SH(n + l)- ‘Sﬁ(n)J _0.00.

The ultimate yield (i.e., seed weight) from the oats plant is di-
rectly related to the weight of the grain head at harvest time, WH(N),

through the following equation (Reference: Lampert, unpublished data):

YIELD gms/sq ft WH(N) * 0.9119 - 0.003035

YIELD bushels/acre = YIELD gms/sq ft % 3,000992.

It is worth emphasizing here that unlike most of the pest manage-
ment models of the past, the model developed in this research work is
comprehensive (over 30 state variables), includes all the three major
components of the CLB ecosystem (the CLB, T. julis, and oats plant), and
provides dynamic relationships for calculating the crop yield. It has
both biotic and chemical control components incorporated into it so

that integrated control strategies can be evaluated. Most importantly,
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the model, to a large extent, is based on actual field studies, and not
on hypothetical relationships. It should be obvious that models are
the critical links in developing management strategies for complex pest
ecosystems. The more realistic the model, the more meaningful will be
the resulting management strategies.

A complete mathematical description of a system model for the CLB

ecosystem is presented in the following pages.



SYSTEM MODEL FOR THE CLB ECOSYSTEM



DICTIONARY OF STATE VARIABLES

NAME DESCRIPTION
X1 Spring Adult CLB Density
X2
X3 CLB Egg Density
X4/
X5 First Instar CLB Density
X6 Second Instar CLB Density
X7 Third Instar CLB Density
X8 Unparasitized Fourth Instar CLB Density
X9 \
X10
X11
X12 > Unparasitized CLB Pupa Density
X13
X14
X15)
X16 Summer Adult CLB Dinsity
X17 Diapausing TJ Density
X18 Adult TJ Density
X19 Parasitized Fourth Instar CLB Density
X21
X22
x23 Parasitized CLB Pupa Density
X24
X20
X25 Parasite Per Pest Individual in Different Stages
X26
X27
X28

53
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DICTIONARY OF STATE VARIABLES (continued)

NAME DESCRIPTION

X29 CLB Larval Feeding

X30 Weight of Oats Plant

X31 Leaf Surface Area of Oats Plant
X32 Weight of Grain Head

X33 Surface Area of Grain Head



FEEDQ

T
sy

DF (n)

P(1,1)

P(4,4)

SYSTEM PARAMETERS

DESCRIPTION

Spring Adult Survival

CLB Eggs/CLB Female/60DD
Summer Adult Survival

T. julis Adult Survival

Max Eggs/TJ Adult/60DD

Max TJ Eggs/CLB Larva/60DD

TJ Searching Constant

TJ Mortality Inside CLB
Mortality of CLB Eggs
Mortality of CLB L1

Mortality of CLB L2

Mortality of CLB L3

Mortality of CLB L4

Mortality of CLB Pupae
Mortality of Overwintering CLB
Mortality of Overwintering TJ
Exponent in Parasitism Equation
Feeding Function Coefficient
Time When TJ First Shows

Time When CLB Leaves Oats

Diapause Function for TJ

VALUE

0.70
22,00
1.00
0.60
20.00
5.00
100.00
0.00
0.10
Variable
0.30
0.45
Variable
0.40
0.77
0.50
0.75
0.002029

6.00
(i.e. 360DD Base 48)

16.00
(i.e. 960DD Base 48)

--an eighth degree polynomial fitted to field

data from Gage (1974)

Parameters for the Oats Plant
Model Obtained Through Time-
Series Analysis
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SYSTEM MODEL

X1 (n + 1) = a X1(n) SA
X2 (n + 1) = b X1(n)
X3 (n+1) = X2(n)
X4 (n +1) = X3(n)

X5 (n + 1) = (1 - K1) X4(n) SL
X6 (n + 1) = (1 - K2) X5(n) SL
X7 (n + 1) = (1 - K3) X6(n) SL
X8 (n + 1) = (1 - K4) X7(n) [1 - f2] sL

X9 (n + 1) = (1 - K5) X8(n)

X10(n + 1) = X9 (n)

X11(n + 1) = X10(n)
X12(n + 1) = X11l(n)
X13(n + 1) = X12(n)
X14(n + 1) = X13(n)
X15(n + 1) = X14(n)

X16(n + 1) = (c X16(n) + (1 - K6) X15(n)) SA

X17(n + 1) = X17(n) + DF(n) X24(n) X28(n)

X18(n + 1) = (4 X18(n) + (1 - DF(n)) X24(n) X28(n)) SL
X19(n + 1) = (1 - K4)£f2 X7(n) SL

X20(n + 1) = £f1/(£f2 X7(n))

X21(n + 1) = (1 - K5) X19(n)

X22(n + 1) = X21 (n)
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X23(n
X24(n
X25(n
X26(n
X27(n
X28(n

X29(n

X30(n

X31l(n

X32(n

X33(n

1)
1)
1)
1)
1)
1)

1)

1)

1)

1)

1)

(1 - rp)

FEEDQ [X5(n) + 2.87 X6(n) + 5.
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X22(n)

X23(n)

X20(n)

X25(n)

X26(n)

X27(n)

+ 24.53 (x8(n) +

P(1,1) X30(n) + P(1,2) X31(n)

P(2,1)

P(3,1)

P(4,1)

X32(n)
X30(n)
X32(n)
X30(n)
X32(n)
X30(n)

X32(n)

+

+

P(1,4) Xx33(n)

P(2,2)
P(2,4)
P(3,2)
P(3,4)
P(4,2)

P(4,4)

X31(n)
X33(n)
X31(n)
X33(n)
X31(n)

X33(n)

97 (X7(n)

X19(n))]

+

+

P(1,3)
0.25 X29(n)
P(2,3)
X29(n)

P(3,3)

P(4,3)
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ATTACK EQUATION

X7(n) X18(n)
£l = | X7(n) X18(n) +l_
el e2 e3

£1
£2 '[x7(n)e2]

DENSITY DEPENDENT MORTALITIES OF I AND IV INSTARS*

K2 = 0.46 logE - 0.85 0 < K2 £0.99
K5 = 0.28 logE - 0.18 0 <K5<0.9
where: K2, K5 = 1lst and 4th instar mortalities, respectively.
E = total number of eggs laid per sqg ft for the entire
season.
MORTALITIES INDUCED BY PESTICIDE**
Dosage response for CLB larva and TJ = (1 - SL)
_ 1
1+ e-(lO*u - 6.0)
Dosage response for CLB adult = (1 - SA)
- 1
1+ e-(lO*u - 8.5)
where: SL = survival based on pesticide spray for CLB larva and TJ
SA = survival based on pesticide spray for CLB adults
u = pesticide spray of Malathion lb/acre

*See Helgesen and Haynes 1972,

**Dr, Ruppel, Michigan State University--personal communication.



OPTIMIZATION SCHEME

The optimization procedure utilized (Dyer and McReynolds 1970) in
the present work is derived from dynamic programming. It is a succes-
sive approximation technique, based on dynamic programming instead of
the calculus of variations, for determining optimal controls of non-
linear dynamic (or static) systems. The method is motivated from a
consideration of the first and second order expansion of the return
function about some nominal control variable sequence. In each itera-
tion, the system equations are integrated forward using the current
nominal control, and the accessory equations (which yield the coeffi-
cients of a first or second order expansion of the cost function in the
neighborhood of the nominal state trajectory) are integrated backward,
thus yielding an improved control sequence. Iteratively, this method
results in control sequences that successively approximate the optimal
control sequence.

The first order technique of Dyer and McReynolds (1970) is known
as the successive approximation by gradient method. The first order
methods are characterized by slow convergence near optimum, but are
simpler to compute and are very useful in getting starting solutions.
The second order approach of Dyer and McReynolds (1970) is called the
successive sweep method, while a similar second order approach of Jacob-
son and Mayne (1970) is popularly known as the differential dynamic pro-

gramming. The second order methods have faster convergence than the

59
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first order schemes, but are computationally more involved and are
susceptible to nominal controls. Thus, hybrid schemes, in which first
order methods are used to start the optimization procedure and get an
improved nominal control sequence, while second order methods are uti-
lized later on to improve convergence, are more appealing. Since these
optimization techniques are based on successive approximation schemes,
the storage and computational time requirements are very small, com-
pared to dynamic programming and possibly several other optimization
schemes as well. However, it is to be noted that, unlike dynamic pro-
gramming, a true feedback solution is not obtained with these approaches,
although it is possible to compute optimal feedback control in the neigh-
borhood of the optimal trajectory.

In the present work, the first order successive approximation al-
gorithm is used in conjunction with the optimization model of the CLB
ecosystem consisting of 33 state variables. This is a marked improve-
ment considering the fact that almost all the optimization approaches
employed in the past (in connection with pest management and related
problems) are confined to dimensions of 3 or 4. Furthermore, the method
is general enough to be extended to other problems in pest management
and many other areas as well: the major requirements being an available
state-space model of the system under consideration and a properly form-
ulated optimization problem. In addition, the optimization approach
fits in nicely with the overall methodology of Linear-Quadratic-Gaussian
(L-Q0-G) design (refer to Appendix B) proposed for on-line pest manage-

ment.
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We would like to point out here that the successive approximation
algorithm and differential dynamic programming are increasingly used
in solving non-linear optimal control problems, especially of the dis-
crete-time type (Gershwin and Jacobson 1970, Iyer and Cory 1972,
Jamshidi and Heidari 1977, to name just a few). Most recently, Profes-
sor Ohno of Kyoto University, Japan, has come up with  a new approach
to differential dynamic programming that can directly solve optimal
control problems with hard constraints on state and/or control variables
without adjoining them (Ohno 1978, Ohno--personal communication 1978).
As of the moment, Ohno's approach is restricted to rather small dimen-
sional problems. However, it is worth noting that efficient ways of
handling constraints is one of the most difficult problems encountered
in the computation of optimal controls. We envisage more widespread
use of differential dynamic programming (and variations thereof) in
the future, especially in large dimensional, discrete-time optimal con-
trol problems arising in pest management and related areas.

A detailed derivation of the first order successive approximation
technique used in our work is given in the following pages. In addition,
a flow chart for computer implementation of the technique and a listing

of the FORTRAN program are included in Appendix A.



A FIRST ORDER SUCCESSIVE APPROXIMATION TECHNIQUE:

THE GRADIENT METHOD

A brief description leading to the gradient algorithm is given here.
For a detailed description of the gradient (first order) algorithm, the
successive sweep (second order) algorithm, and other related second
order algorithms, the interested reader can refer to Dyer and McReynolds
(1970) , and Jacobson and Mayne (1970).

System dynamics: The dynamics of the system are expressed in terms
of a set of discrete equations. The process is assumed to have N stages
and the state of the system through these stages is governed by a dif-
ference equation of the form:

x(i + 1) = F(x(i),u(i),a), i=0,1, ... , N-1 (1)
where,
F = (FI,FZ, cee s Fn)T
is an n - dimensional vector of functions, that are in general non-linear.
’xl(if
xz(i)

x(i) =

xn(i)

is an n - dimensional column vector of the state variables.

62



63

'ul (1))
u (i)
2

.

um(i)

=3 -

is an m - dimensional column vector of control variables which normally

vary from stage to stage.

is a p - dimensional vector of control parameters that are constant and
thus do not vary from stage to stage.
The performance index considered is of the form:
N-1

J = ¢(x(N),@) + )} Lx(i),u(i),q) (2)
i=0

where L and ¢ are scalar, single-valued functions of their respective
arguments, and ¢ represents the performance attached to the final state
of the system. The second term represents the summation (discrete-time
counterpart of integration) of performance over the stages.
Further, constraints can be imposed on the system. The most gen-
eral form of constraint is given by:
0 = ¥(x(N),a) + Nil M(x(i) ,u(i) ,q) (3)
i=0
where Y and M are single-valued, scalar or vector functions. When M=O,

this constraint will be reduced to the so-called terminal constraint.
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In addition to these equality constraints, inequality constraints on
state and/or control variables,

C(x(i),u(i)) <0 (4)
can also be imposed on the system.

The optimization problem, based on the foregoing definitions, is
to find the sequence of controls u(i), i = 0, ... ,n - 1 and the con-
trol parameters o that maximize (minimize) the performance index of
equation 2, subject to the system equation 1, and the constraints of
equations 3 and 4.

The dynamic programming approach to this optimization problem is
based on principles that are a direct consequence of the structure of
the problem, namely the principle of causality, the principle of opti-
mality, and the principle of optimal feedback control.

The principle of causality is a fundamental property of determin-
istic multistage systems, which says that the state x(k) and control
parameter o at the kth stage, together with the sequence of controls
ulk,r = 1] A [u(k), u(k + 1),--u(r - 1)] uniquely determine the state
of the rth stage, namely, x(r).

The principle of optimality due to Bellman, can be stated as:

An optimal sequence of controls in a multistage optimization problem
has the property that whatever the initial stage, state, and controls
are, the remaining controls must constitute an optimal sequence of de-
cisions for the remaining problem with stage and state resulting from
the previous controls considered as initial conditions.

An important consequence of the principle of optimality is that

of optimal feedback control (i.e. the choice of the optimal control
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at some stage may be expressed as a function of the state at that stage).
This is known as the principle of optimal feedback control which states
that the optimal control at the kth stage, u(k), provided it exists

and is unique, may be expressed as a function of the state at the kth

stage, x(k), and the control parameter 0. Thus there exists a function:

wPE (x (k) , 0, k)

such that,

PPy = Pt (x(x),a,k).
This function, generally referred to as the optimal control law, yields
the closed-loop solution to the optimization problem.

From the principle of causality it follows that there exists a

function,
Vi(x (k) ,a,u[k'N - l] k)
such that,
N-1
v(x(k),a,u[k,N - 1],k) = ¢(x(N),a) + X {L(x(i) ,u(i),a)} (5)
i=k

This function, V, is referred to as the "return function", correspond-
ing to the control sequence ul[k,N - 1]. Now from the principle of op-
timality u[k,n - 1] must be chosen to maximize V(x(k),2,ulk,N - 1],k).
If the control sequence ul[k,N - 1] is replaced by the optimal control

sequence uoPt[k,N - 1], V becomes the "optimal return function",

VoPt(x(k),a,k) where:

VOPE (x (k) ,0,k) = V(x(k),a,uPEk,N - 1],K). (6)
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From the definition of the return function, equation 5, V(x(k),a,k)
must satisfy the backward transition equation,

v(x(k),a,k) = L(x(k) ,u(x(k),a,k),a) + v(x(k + 1) ,a,k + 1) (7)
where x(k + 1) is given by the state equations,

x(i + 1) = F(x(i),a,u(x(i),a,i)), i=k,k+1, ... N -1
with i = k. At the final stage,

V(x(N),a,N) = ¢(x(N),q). (8)

The dynamic programming solution to the optimization problem will
require the construction of this optimal return function.

The "straight forward" dynamic programming approach to this con-
struction of the optimal return function (i.e., dynamic programming
solution to the optimization problem) which will lead to the optimal
control law is not possible except for simple systems with low dimen-
sions due to the "curse of dimensionality”.

An entirely different approach to the optimal control problem is
to get an open loop solution (i.e., to arrive at the optimal control
solution starting from a single initial state). The basic idea behind
this approach is to utilize a successive approximation technique that
will update some nominal control sequence so that it will converge,
eventually, to the optimum control sequence. The advantage of this ap-
proach is that storage and time requirements are relatively small. As
mentioned earlier, however, a true feedback solution is not obtained,
although neighborhood extremal techniques can be used in some cases to
get an optimal feedback solution in the neighborhood of the optimal

solution.
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The gradient method is one such approach. It is based on the con-
sideration of a first-order expansion of the return function,
v(x(0),a,uf0,N - 1])
about some nominal control variable sequence,
wo,N - 1]

J

and a nominal parameter, a°, viz,

vix(0),a7*, wI*tro,n - 1]) = v(x(0),ad,uI[o,N - 1])

j .3
. av(x(0) ,a” ,u’[0,N - l])éa

aa
+ aV(X(O) laj'uj[orN - 11)51.1[0 N - 1]
dul[o,N - 1] ! :
(9)
The variations in the control variables 6a = aJ+1 - ol and Su = u3+1-1uJ

must be small enough to insure the validity of the expansion. Clearly,

if Suf[0o,N - 1] and 8a are chosen by,

. T
oy L |avexcoy,ed,ulfo,N - 1]) ]
Sulo,N - 1] = e[ 5a[0.N - 1] . (10)
J o3
Sq = E[av(x(O),aa&u (o,N - 1]) ] (11)

where € is some positive parameter, the return,
vix(0,09*, W o, - 1]
will be greater than,
V(x(O),aj,uj[O,N -1]).
Instead of forming,
v(x(0),a,ul[0,N - 1])
explicitly and then differentiating, the gradients are computed more

easily by means of a backward sequence of equations.
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It is clear that a change in u(k) will not affect L(x(i),a,u(k))
for i < k. Hence, the gradient of the return function
v(x(0),a,u[0,N - 1])
with respect to the control function u(k) is the same as the gradient
of v(x(k),o,ulk,N - 1]), i.e.,

aV(X(O),a,quN = 1]) - av(x(k) ,a,u[k,N - l])
du (k) B du (k)

. (12)

Now the return function V(x(k),o,u[k,N - 1]) from its definition may be
written,

V(x(k) ,0,u[k,N - 1]) = L(x(k),a,u(k)) + v(x(k + 1),a,ulk + 1,N - 1]).
Hence, differentiating with respect to u(k), we obtain,

v (x(k),o,ulk,N - 1])

du (k)
_ OL(x (k) ,a,u(k)) + V(x(k + 1) ,a,ul[k + 1,N - 1])
du (k) ax(k + 1)
(13)
« OF(x(k),a,u(k))
ou(k) :

In the following analysis the arguments x(i),a,uf[i,N - 1] or x(i),o,u(i)
will be replaced by the single argument i. Subscripts, unless specifi-
cally defined otherwise, denote partial derivatives. For example,
equation 13 js written,

Vu(k) = L,k + vV (k + 1)F (k).
In order to evaluate this expression it is necessary to obtain Vx(k + 1)
for k = 0,1, ... ,n - 1. A sequential set of relations for Vx evaluted
along a trajectory may be obtained by taking partial derivatives of

equations 7 and 8, i.e.,
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Vx(N) = ¢x(x(N),a) (14)

vx(k) = Vx(k + l)Fx(k) + Lx(k). (15)

The partial derivative of V(0) with respect to a is obtained in
a similar fashion by partially differentiating equation 7, 8, viz,

Va(N) = ¢a(x(N),a) (16)

Va(k) = Va(k +1) + La(k) + Vx(k + l)Fa(k) (17)

where Vx(k + 1) is given by equations 14 and 15. Thus, using equations
14-17 the gradients of the return V(x(0),x,uf[0,N - 1]) with respect to
o, and u[0,N - 1] may be formed as a backward sequence.

The gradient algorithm may now be summarized as follows:

1. Choose a nominal control sequence uJ[O,N - 1] and control

parameter aj. Construct and store the trajectory x[0,N] from the

system equation 1 and the nominal control variables. Also compute

the cost J where:
N-1
J=oxm,n) + ) {L(x(i),a,u(i))}.
i=0

2. Compute the partial derivatives, Vx(k) Vx(x(k),aj,uj[k,N - 1D
and Vaj(k) = Va(x(k),aj,uj[k,N -1]) for k = NN -1, ... , O from
ij(N) = ¢ (N), vaj(N) =6,
volmw =v Ik +nrloo + )
vim =vIa+nr o +v e v o

where:

3 33 Iy = i3
Fy (k) *F (x(k),0”,u” (k) and L (k) =L (x(k),a”,u" (k).
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3. Compute and store the gradient with respect to the control at
each stage from,

v (x(0) :aj IujlolN - 1])
du? (k)

=V j(k + 1)F j(k) + L J(k),
X u u

k

N‘l, oo o p o-

4., For some nominal parameter € > 0, compute the new control from

W) = WJw) + efav|oud 1t

i+
5. At the initial stage compute the new control parameter o) 1

‘r . _ _
from aj 1 = aJ + eVaT(O), where € > 0.

. j+ j+1

6. Use the new control variables u’ l[O,N - 1], a’¥*, ana the
; . i+

system equations to construct a new trajectory x3 l[O,N] and

i+
compute the new cost JJ 1

i L R, 3 o 53

7. If > J7, continue with steps 2 and 3. 1If
reduce the step size parameters €, g; for example, set € = €/2,
€ = E/Z, and repeat steps 4, 5 and 6 etc.
8. The iterations are continued until either no further increase
in the cost is possible, or until the desired accuracy is attained.
Side constraints can be handled by appropriate modifications to this
basic algorithm (Dyer and McReynolds 1970). Another alternative to a
certain class of problems with side constraints, is the well-known pen-

alty function technique. However, this technique can lead to very slow

convergence in certain cases.



RESULTS AND DISCUSSIONS

As discussed in earlier sections, the major objective of this
research is the determination of optimal control strategies for the
integrated control of the CLB. In the systems terminology, the afore-
mentioned objective can be transformed into an optimal control problem
--derive the optimal timing and quantity of pesticide spray, given the
state-space model of the CLB ecosystem, a desired performance measure
to be optimized, and other constraints imposed on the problem to reflect
the real-world situation.

We will compare the optimal decision rules determined through the
use of optimal control techniques with conventional spraying schemes
currently used in practice, and with the strategy of spraying no pesti-
cide at all (which may be a viable option under certain circumstances).
All three of the aforementioned strategies will be evaluated within a
certain framework of the CLB ecosystem model under identical initial
conditions.

Reasonable starting densities for the CLB and T. julis have to
be chosen for the problem as the optimal policies will be strongly de-
pendent on the initial conditions for the biological variables. Figure
7 describes the relationship between the spring adult CLB and the yield
from oats plant under no-spray conditions. This relationship is ob-
tained through computer runs of the CLB ecosystem model under no-spray

conditions. It can be observed from the figure that spring-adult-CLB
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FIGURE 7. Relationship between spring-adult CLB density and yield from

oats plant under no-spray conditions (plotted on a semi-log-
arithmic scale).
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densities up to 0.1/sq ft make little impact on the ultimate yield from
the oats plant which remains around 60 bushels/acre. At a CLB-spring-
adult density of 1.0/sq ft the yield is fairly low--down to about 36
bushels/acre, and at a CLB density of 2.0/sq ft the yield is very low
--about 14.7 bushels/acre. At spring adult densities of 3.0/sq ft and
above the CLB almost completely destroys the oats crop. It is obvious
that CLB densities below 0.1/sq ft require no chemical control at all.
On the other hand, CLB spring adult densities of, say, 1.0/sq ft and
above warrant chemical control measures so as to prevent economic dam-
age to the crop. Based on the above information, and in order to il-
lustrate vividly the differences between the optimal control strategies
and conventional spraying schemes currently in use, the CLB starting
density of 2.0/sq ft is chosen for our example, together with an initial
density of 0.001/sq ft‘for the T. julis.

The conventional control scheme currently in use is to spray 1 lb/
acre of the pesticide malathion when there are more than three eggs and
larvae per stem of the oats plant (Michigan State University Cooperative
Extension Service Bulletin E-829 by Dr. Ruppel, February 1977; Dr. Rup-
pel personal communication 1978). This criterion for conventional
spraying was incorporated into the CLB ecosystem model and it was found
that the spray of 1 lb/acre occurs at the third time step of the 'model
(i.e., 180 DD48) and results in 23.85 bushels/acre of oats yield along
with a corresponding profit of $26.20/acre. In contrast, the no-spray
scheme leads to 14.70 bushels/acre of yield from the oats plant and a

profit of $16.85/acre (Table 3).
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TABLE 3. Comparison of the optimal control policy with conventional
spray and no-spray schemes for a single season problem.
Initial densities: CLB = 2.000/sq ft
T3 = 0.001/sq ft
Price of oats = $1.35/bushel
Cost of malathion = $3.00/1b
Cost of pesticide
application = $3.00/acre
TYPE OF TIME OF AMOUNT OATS PROFIT OVER
DECISION SPRAY IN OF SPRAY YIELD #/acre WINTERING
RULE 60DD48 UNITS 1lb/acre bu/acre TJ/sq ft
no-spray - 0.00 14.70 16.85 0.040
conventional 3 1.00 23.85  26.20 0.032
spray
optimal 6 0.88 43.56  53.11 0.031

spray
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We will now focus on the determination of the optimal control
strategy using optimization techniques. Optimization problems are
characterized by the performance measure utilized in the formulation
problem. Within the framework of pest management, the most important
optimization problem that will be considered is the so-called profit
maximization problem:

Max[revenue - control cost].
This is probably the most realistic type of problem with regard to the
prevailing real world situation: the individual farmer's choice of
pest control schemes is generally motivated by the profit maximization
criterion, and, as of the present, the farmers are not required to
bear the externality costs associated with the pesticide usage. In view
of the aforementioned reason, the profit maximization problem is chosen
as a typical example for the comparison of optimal strategies with con-
trol strategies currently in use.

The key state variable that is directly related to the yield from

the oats plant is the weight of the grain head at harvest time (X, (N)

32
in the system model, where N is the final time). The control costs
consist of the cost of pesticides and the application costs. Further,
the performance measure utilized in the profit maximization problem
must reflect the integrated approach to pest management. In other
words, the performance measure should be aimed at reducing pesticide use
while at the same time, enhancing biological control of the CLB popula-

tion. With reference to the optimal control problem, the pesticide

spray is the only control variable that can be directly manipulated for
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timing and amount. The biological control manifested by the parasite
population is only an indirect form of control. Further, there is a
dynamic interaction between the CLB and T. julis throughout the season.
Thus, the parasite populations are represented by state variables in-
stead of control variables. Furthermore, for a single season optimi-
zation problem, the parasite, T. julis, virtually plays no role, but
its effect will be felt in the subsequent growing seasons. The key
entomological variable that captures the essence of this situation is
the overwintering T. julis density at the end of the season. This can
be directly transformed into a constraint on the terminal state (of the
appropriate state variable) in the optimization problem.

In light of the above-mentioned attributes of the pest management
problem, the following performance measure (referred to as the minimum
control effort problem in the control literature) is found to be the
most appropriate for characterizing the economic optimization problem.

n-1
Maximize: J A X® ()P 9+ )] x? (i)P Q - u2(i)P R
32 1 j=1 32 1 2
subject to the terminal constraint on diapausing T. julis:

X1 6 (N) = TJLAST

where: P =.price of oats
P = costs associated with chemical control
Q,R = weighting factors

N = terminal time

:

desired density of overwintering T. julis at the

terminal time.
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Obviously there exists trade-offs between minimizing pesticide use and
maximizing revenue with reference to the profit maximization problem.
Thus, the weighting factors can be adjusted so as to modify the rela-
tive emphasis on pesticide use and revenue. The terminal constraint for
the overwintering T. julis is set so that the density of diapausing

T. julis will be the same as that obtained using the conventional spray-
ing scheme.

The profit maximization problem discussed above is solved using the
optimization technique based on the successive approximation algorithm
(refer to earlier discussions). The optimal control strategy is found
to be a single spray of 0.88 lb/acre timed at 360DD48 (i.e. the sixth
time step in the model) (Figure 8). Strictly speaking, the optimal
strategy consists of a spray of 0.88 lb/acre at the sixth time step,
along with sprays of 0.0001 lb/acre, or less, at several other time
steps from 1 through 18. Since these sprays are totally insignificant
when compared to the spray of 0.88 lb/acre, they are ignored. In this
sense, the single spray of 0.88 lb/acre is suboptimal. However, the
computer runs made with the optimal and suboptimal strategies lead to
essentially identical results with an accuracy of 4 decimal places.

In view of this situation, the suboptimal strategy is substituted in
place of the optimal strategy.

Table 3 illustrates a comparison of the optimal control policy, with
conventional spray and no-spray schemes for the single season of opti-
mization problems considered above. It can be observed that the optimal

strategy results in a 12% reduction in pesticide use--0.88 lb/acre as
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compared to 1.00 lb/acre with the conventional spray. More importantly,
the density of overwintering T. julis is almost identical in both

cases (0.031/sq ft in the optimal case as compared to 0.032/sq ft with
the conventional spray) as required by the terminal constraint (on the
overwintering T. julis) included in the optimal control problem. It is
also worth noting that in comparison to the conventional strateqgy the
optimal strategy leads to significant gains in oats yield (43.56 bush-
els/acre as compared to 23.85 bushels/acre with the standard policy)

and almost doubles the profit ($53.11 as compared to $26.20 with the
conventional spray).

From a biological point of view, there is a marked difference be-
tween the conventional spraying scheme and the optimal strategy--the
conventional spray is carried out early in the season (1800048) and
is aimed at CLB spring.adults and eggs; whereas the optimal spray is
timed later in the season (36ODD48) and is aimed at early larval in-
stars of the CLB. It is also worth noting here that the CLB larvae are
more susceptible to malathion, as compared to CLB adults.

Figures 9-21 illustrate the evolution of several important varia-
bles of the CLB ecosystem when subjected to different control strategies,
namely, the conventional strategy, the optimal strategy, and the strategy
of no spray at all. Figures 9 through 12 illustrate the state variables
related to the oats plant, namely the weight of the plant, the leaf
surface area, the weight of the grain head, and the surface area of the
heads. It can be easily observed that, for the problem under consider-

ation, the optimal strategy is far superior to the conventional strategy,
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which as can be expected, is better than no control at all. It can be
seen from Figure 13 that the conventional strategy is more effective
in controlling the CLB spring adults as compared to the optimal strate-
gy; whereas the optimal strategy is more effective against CLB summer
adults (Figure 14). The effect of these different control strategies
on the parasite population is depicted in Figures 15 and 16. It is
interesting to note the density of T. julis in diapause at the end
of the season is approximately the same for both the optimal and con-
ventional strategies as necessitated by the terminal constraint imposed
on the overwintering T. julis. The small difference between the two can
be attributed to the fact that constraints are only approximately (and
not exactly) satisfied in the computational implementation of the opti-
mization algorithm. The major difference between the optimal and con-
ventional strategies is highlighted in Figures 17 and 18, which illus-
trate the CLB egg and first instar densities under different control
strategies; the conventional strategy is aimgd at the CLB spring adults
(Figure 13) and CLB eggs, while the optimal control strategy is directed
toward the early larval instars of the CLB. The impact of the three
different control strategies on the CLB second and third larval instars
are portrayed in Figure 19 and 20. Figure 21 illustrates the CLB feed-
ing on the oats plant for the three different control schemes, and
clearly brings forth the effectiveness of the optimal spray in reducing
the CLB feeding.

Optimal strategies may not always lead to such spectacular gains

over conventional policies; however, optimal strategies will always be
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as good as, and often times better than, the conventional schemes.
This is due to the fact that the optimization algorithm routinely
searches numerous policy options, with reference to the timing and
amount of pesticide spray, and chooses the one that optimizes the de-
sired performance measure specified for the problem. In the event the
conventional spraying scheme happens to be the optimal, the optimiza-

tion scheme will automatically choose it.

SENSITIVITY ANALYSIS

In order that we may fully appreciate the effect of the timing and
amount of pesticide spray on the economic yield from the crop and sev-
eral other important variables characterizing the CLB ecosystem, a
sensitivity analysis is carried out with reference to the timing and
amount of pesticide spray. Thus, several computer runs of the CLB eoc-
system model (initial conditions remaining as before at CLB = 2.000/sq ft
and TJ = 0.001/sq ft) are carried out with the timing of pesticide spray

kept fixed at 180DD,_., while the amount of spray is varied from 0.1 to

48

2.0 lbs/acre. This process is repeated for several other spray times--

240DD 300DD48' 36ODD48, and 420DD The results are illustrated in

48’ 48°

Figures 22 through 27.
It can be seen from Figure 22 that the conventional spray timed at
180DD48 leads to very poor yield from the oats plant; whereas the opti-

mal spray timed at 360DD,_, results in the maximum yield. A similar

48

situation exists in the case of profit (Figure 23). It can also be seen

from Figures 22 and 23 that a pesticide spray of slightly over 1 lb/acre
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is the probable upper limit on the amount of a single spray--in other
words, at any one particular time period, any amount of spray over and
above this upper limit of 1 lb/acre will not improve the yield, but will
only lead to a reduction in profits due to unnecessary expenses incurred
on pesticide-related costs. It is also interesting to note that the
amount of spray currently recommended, namely 1 lb/acre, also happens

to be the upper limit on the amount of spray.

Figures 24 and 25 illustrate the effect of timing and the amount
of the pesticide spray on the spring adult CLB and the adult T. julis
of the subsequent season (i.e., the impact of spraying in the current
season on the starting densities of CLB and TJ for the next season).
With regard to the timing of the spray, early applications of pesticide
are less effective in reducing the CLB population. However, early
applications of pesticide are more beneficial to T. julis as compared
to the sprays at a later point in the season.

The optimal policy chose a spraying amount of 0.88 lb/acre (in con-
trast to 1.0 1lb/acre of the conventional scheme) such that the densities
of overwintering T. julis at the end of the season are the same under
the conventional and the optimal schemes, as required by the constraints
we imposed on the optimization problem. Thus, the optimization algorithm
simultaneously chooses the timing and the amount of spray so that the de-
sired performance measure is optimized.

Figures 26 and 27 illustrate the results of the sensitivity analysis
in the total CLB eggs and the total third larval instar for the entire

season. It is obvious that the conventional spray is most effective

against the CLB eggs while the optimal spray is most effective against
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the CLB larvae. Incidentally, this highlights the biological implica-
tions of the control schemes--conventional policy being aimed at CLB
spring adults and eggs, while the optimal spray is aimed at the early
larval instars of the CLB as described earlier.

Sensitivity analysis with reference to the timing and the amount
of pesticide spray can be very useful in analyzing various control op-
tions and quickly narrowing the options to a few good (not necessarily
optimal) strategies. Optimization techniques will still be needed to
determine the best control strategy. Further, sensitivity analyses
with reference to timing and amount of pesticide spray will be more
cumbersome when there is a need to spray several times during the growing
season as opposed to the single spray strategy that we have considered

for the CLB ecosysten.

ANALYSIS OF CONTROL STRATEGIES FOR THE MULTISEASON PROBLEM

As discussed earlier, the single season optimization problem could
not vividly illustrate the beneficial effect of the parasite population,
because for any given season the impact of T. julis cannot be perceived
during the current growing season, but the beneficial effect of the
parasite manifests itself in subsequent growing seasons. In the single
season optimization problem, this situation is implicitly taken into
account by imposing a terminal constraint on the density of the diapausing
T. julis at the end of the season. Nevertheless, in order to fully cap-
ture the beneficial impact of T. julis on the CLB ecosystem, it is

necessary to consider multiple-season problems.
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The multiple season optimization problem is solved as a series of
single season optimization problems. In this sense, the optimal policy
will be only suboptimal over the time horizon comprising the multiple
season as a whole. Such multiple season problems extending over a four
year period are solved for several different combinations of starting
densities for the spring adult CLB and the adult T. julis:

1. Initial densities: CLB

2.000/sq ft
T3 = 0.001/sq ft

2, Initial densities: CLB = 2.000/sg ft
T3 = 0.100/sq ft

3. 1Initial densities: CLB = 1.000/sq ft
TJ = 0.001/sq ft

Furthermore, these initial densities are chosen in such a manner
that comparison of cases 1 and 2 will illustrate the effect of a change
in the initial density of T. julis (for the same initial density of CLB)
on the evolution of the CLB ecosystem. Likewise, the comparison of cases
1 and 3 will exemplify the impact on the CLB ecosystem due to a change
in the starting density of CLB spring adults.

In the optimization problem used with the multiseason analysis, the
terminal constraint imposed on the overwintering T. julis is set in such
a manner that the overwintering T. julis density under the optimal policy
will be about 80% of that obtained under the no-spray scheme. Briefly,
this implies a further increase of T. julis overwintering density as
compared to the optimization problem considered before in which the con-
straint level of overwintering T. julis is set to be the same as that

obtained with the conventional spraying scheme. Such an increase in the
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level of the terminal constraint on overwintering T. julis is incorpor-
ated in the optimization problem in order to fully capture the beneficial
effect of the parasite population.

The results of the multiseason analysis of the repeated application
of conventional and optimal policies over a four year period are given
in Tables 4, 5 and 6 and are graphically illustrated in Figures 28 through
32, Figures 28 through 32 clearly illustrate the enormous advantages
associated with the optimal strategy--of great significance is the amount
of pesticide used, which is much less with the optimal scheme as com-
pared to the conventional practice, for all of the three cases considered
(see Figure 28). Furthermore, in comparison to the conventional policy,
the optimal strategy always leads to higher yield from the oats plant
(see Figure 29), correspondingly higher profits (Figure 30) and is su-
perior in terms of controlling the CLB (Figure 31). In addition, the
optimal strategy is more conducive to the parasite T. julis as compared
to the control policy currently in use (Figure 32).

The beneficial effect of T. julis in controlling the CLB population
and the manner in which the optimal strategy exploits this beneficial
aspect to reduce the use of pesticides are clearly brought forth in the
multiseason analysis. Thus, it can be seen that, for the same density
(2.0/sq ft) of spring adult CLB, case 2 with a higher (as compared to
case 1) T. julis population not only uses much less pesticide (Figure
28 a and b) but also results in higher yield (Figures 29 a and b) and
correspondingly higher profit (Figures 30 a and b). This beneficial

effect of T. julis can be observed in both the conventional and optimal
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TABLE 4. Comparison of optimal and conventional spraying schemes for
a multiseason problem with initial densities of CLB = 2.000/
sq ft and TJ = 0.001/sq ft.

Table 4a. Repeated application of conventional policy over a 4 year

period.
PESTICIDE TIME OF OATS SPRING
YEAR SPRAY SPRAY IN YIELD 1;522: ADULT T JA/DSULTft
1b/acre 60DD UNITS bu/acre CLB/sq ft e
1 1.0 3 23.85 26.20 2.00 0.001
2 1.0 3 11.45 9.45 2.83 0.016
3 1.0 3 3.24 - 3.42 0.224
4 1.0 3 0.55 - 3.62 1.708
Table 4b. Repeated application of optimal policy over a 4 year period.
PESTICIDE TIME OF OATS SPRING
YEAR SPRAY SPRAY IN YIELD zl:/{gi:: ADULT T?BULT £t
lb/acre  60DD UNITS bu/acre CLB/sq ft sq
1 0.96 5 42.58 53.08 2.00 0.001
2 0.90 5 39.39 48.92 2.18 0.029
3 0.95 5 37.41 46.20 2.46 0.902
4 0.92 5 39.08 48.49 2.25 5.288
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TABLE 5. Comparison of optimal and conventional spraying schemes for a
multiseason problem with initial densities of CLB = 2.0/sq ft
and T3 = 0.1/sq ft.

Table 5a. Repeated application of conventional policy over a 4 year

period.
PESTICIDE TIME OF OATS SPRING
YEAR SPRAY SPRAY IN YIELD zﬁgziz ADULT Tg?gLTft
1b/acre 60DD UNITS bu/acre CLB/sq ft a
1 1.0 3 23.85 26.20 2.00 0.10
2 1.0 3 13.15 11.76 2.71 0.96
3 1.0 3 10.79 8.56 2,87 4.11
4 1.0 3 18.86 19.47 2.32 10.88
Table 5b. Repeated application of optimal policy over a 4 year period.
PESTICIDE TIME OF OATS SPRING
YEAR SPRAY SPRAY IN YIELD §§2§£: ADULT nggLTft
lb/acre  60DD UNITS bu/acre CLB/sq ft q
1 0.96 5 42,58 53.08 2.00 0.10
2 0.91 5 40.97 51.05 2.04 1.56
3 0.91 5 44.60 55.85 1.80 7.15
4 0.90 5 51.36 65.08 1.08 11.78
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TABLE 6. Comparison of optimal and conventional spraying schemes for
a multiseason problem with initial densities of CLB = 1.000/
sq ft and TJ = 0.001/sq ft.

Table 6a. Repeated application of conventional policy over a 4 year

period.
PESTICIDE TIME OF OATS SPRING
YEAR SPRAY SPRAY IN YIELD zigzi: ADULT TJ?gULit
lb/acre  60DD UNITS bu/acre CLB/sq ft q
1 1.0 4 48.79 59.86 1.00 0.001
2 1.0 4 45,97 56.06 1.19 0.011
3 1.0 4 43.88 53.24 1.37 0.127
4 1.0 4 43.27 52.42 1.43 0.818
Table 6b. Repeated application of optimal policy over a 4 year period.
PESTICIDE TIME OF OATS SPRING
YEAR SPRAY SPRAY IN YIELD zigiiz ADULT TJ?DULgt
lb/acre  60DD UNITS bu/acre CLB/sq ft sq
1 0.88 5 51.94 65.86 1.00 0.001
2 0.85 5 48.42 61.20 1.25 0.028
3 0.91 5 46.83 58.89 1.57 0.822
4 0.86 5 46.70 58.84 1.43 3.664
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schemes; however, it is more pronounced in the optimal case. An anal-
ogous situation exists between case 1 and case 3, both of which have
the same starting density for the T. julis (0.001/sq ft) but different
starting densities for the CLB (2.0/sq ft in case 1 as opposed to 1.0/
sq ft in case 3) (Figures 28-32).

It can also be observed (Figures 29c and 30c) that for case 2 with
a low CLB density (1.0/sq ft) the conventional spray leads to high crop
yield and large profit only slightly less than the corresponding ones
obtained through the optimal strategy. However, bear in mind that these
spectacular gains with the conventional spraying scheme have been achieved
at the expense of using a much larger quantity of pesticide (Figure 28 c)
as compared to the optimal strategy. Further, with the conventional
spray, T. julis density through the years is much lower than the optimal
case (Figure 32c) even though the spring adult CLB density is just about
the same in both cases (Figure 3lc).

It is remarkable that the optimal scheme is superior to the conven-
tional scheme in all 3 cases, representing different combinations of
CLB-TJ densities. The optimal policy leads to higher yields and greater
profits, is more effective in suppressing CLB densities, and reinforces
the increase of T. julis populations. More importantly, all of these
gains are obtained with a much smaller pesticide use when compared to

the standard practice.

ENVIRONMENTAL CONSIDERATIONS

The pest management problems discussed thus far have focused on the

profit maximization criterion without due consideration to the
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externality costs associated with environmental pollution. More often
than not, farmers are not held liable for most of the environmental dam-
age caused by pesticide use. In the case of agricultural pest manage-
ment problems we are concerned with negative externalities (i.e., external
diseconomies of production) that result in uncompensated costs to the
society. In this sense, there exists a divergence between private pro-
fits and social benefits. The major part of these externalities falls
outside the scope of the market system and is not reflected in relative
market prices (Kneese 1971, Kneese and Schultze 1975).

Externality problems have twé important characteristics: (1) there
exists an element of interdependency--interactions between the decisions
of economic agents (e.g. the decisions of the individual farmer and those
of neighboring farmers concerned with market prices for the crop, pesti-
cide costs determined by the chemical companies, etc.) and (2) there
exists no compensation; therefore, the one creating the externality costs
(e.g. the farmer) is not legally or socially liable to pay for it.
Another, but less important property of externalities, is emphasized by
Mishan (1976) who points out that the environmental spill-over should be
unintentional or an incidental by-product of some otherwise legitimate
activity--which in our case is agricultural production. These character-
istics make the externality problem very complex.

It is important to emphasize that an operational analysis of exter-
nalities is an extremely difficult task. Our approach to the externality
problems arising in pest management will be confined to a rather simple

analysis in terms of the economic considerations.
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Generally speaking, there are two basic approaches to regulating
pesticide use and associated pollution in pest management problems:
direct regulation, and taxes and subsidies (see Judy 1970 for a detailed
discussion on the instruments of environmental control).

The direct regulation approach involves directly regulating the
amount of pesticide used in crop production. In terms of the optimiza-
tion problem, the direct requlation criterion can be transformed into a
constraint on the control variable, namely the amount of pesticide. 1In
the present analysis, we impose an integral (isoperimetric) constraint
on the profit maximization problem discussed earlier. Such a constraint
implies that the total amount of pesticide used through the entire sea-
son will be set at certain prescribed levels by a regulatory agency. The
regulatory agency will also have the task of overseeing the implementation
of such a policy to insure that the prescribed levels of pesticide use
are not exceeded. The profit maximization problem can now be restated
as follows:

N

Max ) [revenue from ocats] - control costs
i=1

subject to integral constraint on pesticide use:

N-1

u, = UMAX

. i

i=1
where UMAX is the prescribed level of pesticide use.

This optimization problem (together with a terminal constraint on

overwintering T. julis) is solved using the same initial conditions as
for the single season profit maximization discussed earlier for different

constraint levels on the control variable (i.e., different amounts of

pesticide used).
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Figure 33 illustrates the yield from the oats plant and the corres-
ponding profit in relation to the constraint level imposed on pesticide
usage. It can be seen that a pesticide spray of 0.88 lb/acre results
in maximum yield and correspondingly maximum profit. Any further in-
crease in pesticide use does not increase the profit. 1In this particular
case, the limit on the pesticide usage can be set at 0.88 lb/acre, which
incidentally is less than the 1.00 lb/acre currently used in practice.
However, the regulatory agency can choose to impose even a lower limit,
say, 0.7 lb/acre, which will result in reduced yield and profit as com-
pared to the pesticide use of 0.88 lb/acre.

It may be necessary to impose such a regulatory policy in order to
meet certain guidelines of environmental toxicity (at the expense of
lower profits to the private grower). Of course, in extreme cases the
regulatory agency can ban the use of a pesticide.

There are several drawbacks with the direct regulation approach.
First, pesticide use is strongly dependent on the degree of infestation
in any given field, the presence or absence of biological control, etc.
Ideally, there should be different levels of pesticide for different
farmers growing the same crop, to allow them to make approximately the
same monetary gains. These factors make direct regulation very difficult
to implement. Second, it is very difficult to oversee the compliance of
direct regulation. An attractive alternative is voluntary regulation
under which the farmers are advised to follow certain recommendations as
to the use of pesticides. As a matter of fact, the recommendations of
extension service personnel can be categorized under the voluntary regqu-

lation approach.
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The taxation policy is more complicated, and we will consider only
a very simple case in which there is a constant tax per 1b of pesticide
used. Equivalently, this can be viewed as an increase in the cost of
pesticide and as a variable cost of production. In this case, the profit
maximization problem (considered before) is transformed to:

Max [revenue - control cost - tax].

The optimization problem, with initial conditions set as above, is
solved for different levels of tax per 1b of pesticide used. The results
are illustrated in Figures 34 through 36 in which the non-optimal case
represents a user assumed to spray 1 lb/acre regardless of the tax levied.
With the optimal scheme, 0.88 lb/acre continues to be the optimal amount
of spray until the tax levied is as high as $40/1b of pesticide used, and
the pesticide use does not decline gradually with the increase in taxes.
This is because any conéiderable reduction (down from 0.88 1lb/acre) in
pesticide use and the associated saving in taxes are more than offset by
a reduction in revenue. This situation is critically dependent on the
nature of the dosage response characteristics and the relationship between
yield and pesticide use (see discussions on sensitivity analysis with
reference to timing and amount of spray). A tax over and above $41/1b
leads to the optimal rule being to not spray at all (Figure 34). This
may also imply that the spraying strategies decided by the farmer are
essentially binary strategies--to spray some fixed amount of pesticide
or not spray at all.

The optimal user always receives larger yield (Figure 35) and higher
profits (Figure 36) as compared to the non-optimal user. More importantly,

in comparison with the optimal user, the profits of the non-optimal
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user decline at a faster rate as the taxes are increased. This is be-
cause in the non-optimal case the farmer uses more pesticide in compar-
ison to the optimal user. It is obvious that a large tax is required

to reduce pesticide use, but in the problem under consideration, we have
only two levels of pesticide use for the optimal case--0.88 lb/acre

and no spray. This can be changed by using taxation schemes where the
rate of taxation increases drastically with the increased use of pesti-
cides. However, it will be extremely difficult to justify any one

particular basis used in structuring the taxes.

EFFECTS OF CHANGE IN CROP PRICE ON PESTICIDE USE

As a matter of general interest, the effect of varying the price
of the crop on the use of pesticide is also viewed within the framework
of the profit maximization problem (results are illustrated in Figure
37) . As expected, the increased crop price provides an incentive to
the farmer to increase pesticide usage even when it is not warranted.
Although the effective profit increases due to the increased crop price
(and the increased pesticide use) it can be seen that the oats yield
eventually stabilizes.

We would like to emphasize once again that there is no easy solu-
tion to the externality problem--all of the approaches, direct regula-
tion, taxes and subsidies, pricing, etc., are complex and are difficult

to implement. More research, is definitely needed in this area.



112

(W]
w o
-H w
4 _ N
w7 OATS YIELD e
€ o T w
U ® i '-° M
a - PR
S a
® <
. 2
1 o w
o 2' "2 &
W PESTICIDE SPRARY S
> @
T |
= 3
n @ Lo O
od 8 -
w w
= —
— >
Q p
S o wm
= =
(7p] o -t a
w =
m -
Q e
v N " v v ' LA v l v v ' v v I v v
o 60 120 180 240 300 360"
PRICE OF OATS - CENTS / BUSHEL
FIGURE 37. Sensitivity of oats yield and amount of pesticide sprayed

with reference to changes in the price of oats.



SUMMARY AND CONCLUSIONS

In this research work, we have developed a comprehensive model of
the CLB ecosystem with all its major components--the CLB, its larval
parasite T. julis, and the oats plant. Both chemical control and bio-
logical control aspects are incorporated into the model so that it can
be tested within the framework of integrated pest management.

A first order, successive approximation algorithm is utilized to
develop optimal control strategies for the integrated control of the CLB
ecosystem. The optimal control strategies are characterized by emphasis
on biological control and reduction in the use of chemical control. The
optimal strategies are compared with the conventional spraying schemes
currently utilized. Such analysis are carried out for both single sea-
son and multiple season pest management problems. The optimal policy
leads to higher yields and greater profits, reinforces the increase of
T. julis populations, and is more effective in suppressing the CLB dam-
age; more significantly, all of the aforementioned gains are obtained
with a reduced pesticide use as compared to the conventional spraying
practice.

Optimal strategies may not always lead to spectacular gains over
conventional policies; however, optimal strategies will always be at
least as good as, and often times better than, the conventional schemes.
This is because the optimization algorithm routinely searches numerous

policy options with reference to the timing and amount of pesticide
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spray, and chooses the one that maximizes yield and profit with minimal
pesticide use. In the event the conventional spraying schemes happen
to be optimal, the optimization scheme will automatically choose it.

A sensitivity analysis is carried out with reference to timing
and amount of pesticide spray, and it is found that the optimal timing
is at odds with the timing of spray under the conventional schemes:
the conventional strategy is timed earlier in the growing season and is
aimed at the CLB spring adults and the CLB eggs. On the other hand,
the optimal spray is timed later in the season and is targeted for the
early larval instars of the CLB. Regarding the amount of spray, the
optimal scheme results in an average reduction of about 10% in the use
of pesticides as compared to the conventional strategy. This may not
seem impressive at first glance, but considering the fact that the acre-
age of oats harvested in the United States is close to 13.5 million acres
(Michigan Agricultural Statistics, June 1978) and assuming 40% of these
are infested by CLB, a 10% reduction will result in a reduction of
500,000 1lbs of pesticide use annually--for oats alone. This will be an
enormous reduction in terms of pesticide use and associated environmental
pollution.

Unlike the CLB infestation which usually requires just a single
spray, optimal schemes will lead to greater savings in pesticide use
when used with pest management problems in which frequent sprayings are
common--like the onion maggot problem currently under investigation at
Michigan State University. Furthermore, the optimal scheme achieves
such a reduction in pesticide usage with minimal reduction in crop

yield and profits.



A simple analysis is carried out, based on direct regulation and
taxation approaches to regulating the environmental pollution caused
by the pesticide sprays. It is found that, for the problem under con-
sideration, the pesticide use is not very sensitive to taxes--heavy
taxation is required to reduce pesticide use. The direct regulatory
approach, in which absolute limits are prescribed as the level of pesti-
cide use, is also discussed. In general, it is extremely difficult to
formulate an equitable policy based on either direct regulation or
taxation.

The analyses carried out in this research point to several areas
where improvements can be made by conducting more field (or laboratbry)
experiments. Among them, the dosage response characteristics are the
most important. The amount of spray used is directly dependent on the
dosage response characteristics. Currently available data on dosage
response are incomplete, especially with reference to low level dosages.
Further, no experimental data is available on the effect of pesticides
on T. julis. Field and laboratory experiments are needed to acquire
the necessary data in these areas. Further, field experiments have to
be carried out to evaluate conventional and optimal spraying strategies
with reference to their effect on crop yield, profit, CLB feeding,
parasite densities, etc.

In the present research work we have designed an optimal controller
for pest management problems. However, it is confined to a deterministic
framework, but the real world pest management problem is actually sto-

chastic--due to variations in climatic factors, sampling errors, etc.
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Thus, the deterministic optimal controller will not be optimal in real
world stochastic situations. Further, we would like to have on-line
features incorporated into the optimal controller so that the pest man-
agement strategies can be implemented on-line. We propose the Linear-
Quadratic-Gaussian (L-Q-G) methodology (Athans 1971, 1974) for the
design of such an on-line controller. A brief description of the L-Q-G
methodology is presented in Appendix B. Essentially the L-Q-G design
consists of two components, (1) a deterministic optimal controller, and
(2) a stochastic estimator. The complete design of the deterministic
optimal controller has been accomplished in this research. The design
of the stochastic estimator must await another work.

The essential features of the on-line controller for pest manage-
ment are illustrated in the block diagram of Figure 38. The determinis-
tic optimal controller utilizes the ecosystem model to compute (off-
line) the determinisitc optimal control strategy. On the other hand,
the stochastic estimator (filter) combines model estimates and actual
field data (containing errors) of biological and climatological variables
of the ecosystem, to give a new improved estimate of the states of the
ecosystem. The deviations between the actual states of the ecosystem
from its ideal, deterministic response generated by the model are used
to generate the on-line correction strategy. One of the most signifi-
cant features of the L-Q-G design is that it fits the general guidelines
established for the on-line pest management systems (Haynes and Tummala
1977) . Furthermore, the methodology developed in this research can be

easily extended to the L-Q-G design.
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Finally, we wish to emphasize that optimization is not a substitute
for the decision-making process, but rather a powerful tool in aiding
it. Optimization has been proven successful in a wide range of engi-
neering and physical problems. The same ideas can be carried over to
the management of biological problems--the major difference being that
biological systems are much more complicated, and mathematical descrip-
tions for their behavior do not exist but for a few cases. Nevertheless,
even some of the simplified models along with optimization schemes can
provide valuable insights to the management of biological systems. It
will be a while before optimal control strategies are "directly"” put
into use in pest management. With the advent of more quantitative ap-
proaches to biological problems, and the interdisciplinary systems ap-
proaches becoming increasingly popular, such a situation is likely in

a conceivable future.
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COMPUTER PROGRAM FOR THE OPTIMIZATION ALGORITHM



COMPUTER PROGRAM FOR THE OPTIMIZATION ALGORITHM

PROGRAM STRUCTURE

The structure of the computer program used in implementing the
optimization algorithm (refer to earlier discussions) is illustrated
in Figure 39. It consists of a main program and subroutines.

MAIN program coordinates all the subroutines. Subroutine INPUT
reads in the initial conditions for the state variables and all the
other parameters required for the optimization algorithm.

Subroutine MODEL generates the state variable trajectories using
the state-space model of the system. It also computes the performance
index.

Subroutine FX computes the matrix of partial derivatives, Fx (i.e.,
partial derivatives, %g) with reference to state variables X.

Subroutine FU computes the matrix of partial derivatives Fu (i.e.,
partial derivatives, %§) with reference to control variables U.

Subroutine OUTPUT prints optimal controls and optimal state trajec-
tories for every time step. It also prints the performance index and
other variables (if any) for every iteration. The subroutine OUTPUT

also writes all these outputs in catalogued tapes that can be accessed

for graphing at a later point in time.

CONVERGENCE PROPERTIES

Convergence of the optimization algorithm is illustrated in Figure

40 in which the two cases correspond to two different nominal controls.

119
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FIGURE 40. Convergence of the optimization algorithm.
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It can be observed that in both cases the optimum value of the perform-
ance index is almost identical (within 0.05% error), thereby implying
good convergence. On the average, the algorithm takes about 15 itera-
tions to converge. Of course, convergence of any optimization algorithm
depends on a variety of factors that include functional forms of the
model, performance index, constraints on the problem, characteristic
features of the algorithm (i.e., first order or second order algorithm)
programming efficiency, etc. As such it will be rather difficult to
draw any general conclusions about the convergence of the algorithm.

Using the CDC 6500 computer system at the Michigan State University
the optimization algorithm takes about 0.8 cp sec (central processor
seconds) per iteration. Total memory requirements are about 20,000
octal units, which is quite modest, especially so in view of the dimen-
sions of the problems handled--over 30 state variables.

A flow chart for the computational algorithm is illustrated in

Figure 41, and a complete listing of the FORTRAN program is also attached.
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START

INITIALIZATION PHASE:

CALL SUBROUTINE "INPUT". GET
INITIAL CONDITIONS FOR X, SET
PARAMETERS FOR OPTIMIZATION
ALGORITHM,

PRIME CONTROL U: U « USTART

MAIN DO LOOP

INCREMENT ITERATION
1=144

AS A FORMARD SEQUENCE.
STORE X1 AFTER EACH STEP. T
COMPUTE PERFORMANCE INDEX PI

CALL svumm: “MODEL". COM-
PUTE X

U = TEMPU + € ¢ DVDU

YES

1$
(P1/PILAST)-1
< TOLER?

\V/

[ € * € o STEPWAX [

[ PILAST = PI p—

CALL SUBROUTINES FX AND FU.
COMPUTE MATRICES LX AND LU.
COMPUTE THE MATRIX VX AS A BACK-A
WARD SEQUENCE. USE THESE TO
COMPUTE THE GRADIENT OVOU.

CALL SUBROUTINE OUTPUT
AND PRINT OPTIMAL U,X.
CATALOG TAPES FOR GRAPHING.

FIGURE 41. Computer flow chart for the optimization algorithm.



FORTRAN LISTING

FROGRAM MATOFT (INFU'T=65, ODUTFUT=129, TAFF3=65, TAFEL=6S5,

+ TAFES=65, TAPEA=65, TAFE7=65, TAFE77=65, TAFE?8=65,
+ 222207=65, TAFEO=2221I0GT, TAPE61=0UTPUT)

INTEGER TLAST,YR,YEAR,TD,TSFRAY

REAL LX,LU,JULISIN,INTERM MX MU, INCOME

REAL K1,K?,K&,K6,K7,K8B,MORTFN,MORTFN2

DI%ENSION VX (%5,35),Lx(35,35),PRVXFX(35,35),DVDU(35,2)
+,FRVXFU(35,2),TER™1(35,2) ,TER~2(35,2),LU(35,2),TEMFU(RS,2)
ODIMENSION MXx(35,35),wWx(35,35),vu(4C,2) ,FRWXFU(4r,2),

+ FRWXFXx(35,35),0wDl'(35,2)

COwmON x(25,35),U(25,2)

Cr»mON /PLANT/ P(4,4)

CrmMON /ENOUGM/ C1,C2,C3,C4,D1,02,D3,D4,05

CrmMrMON /JENNUGH/ OF1,DF2,DF3,DF4,DFS,DF6,DF7,DF2,DF9

CCWMON /ENOQUGH/ A,E,C,D,F, K1,K3,K4,K6,K7 ,KR,FEEDR

CLMMCN /ENCUGH/RF,CP,EY1,EC,E3,ECF,ONECP,TD,IDIA,IFEED,NTOATS
CTPMON /RLGCK/ MORTEN(37") ,MORTFN2(30),SURVFN(32) ,SURVFN2(3)
C¥mCGN /BLNCK/ SL1(20),SL4L(37) ,F1(37) ,DIAFFN(32) ,DIFMFN(Z")
CTw%0N /BLNCK/ DIFMFN2(37),F1DR(3%),F2(3(),DSLIC3C),DSLL(3:)
C"»vON /Fx/ DFSG,DRSQZ,F1DRCF, FIDRCF1, X18CF, X12CP1

CTYMCN /INFUT/ 1FL26, NITER, EFSILON, STEFMIN, STEFMAX, Q, R
CTYMCN /JINFUT/ USTART, TVALUE, TOLER, ET, TLAST, CLBIN
C™WCN /JINFUT/ JULISIN, FINALTJ, NYEAR, TSPRAY, SFRAY

CE™MTN JINFUT/ PRICE, TAY

crwmoN /MCDEL/ XREF(3S5),DIFU, SUMU,SUMUSQ,NIFUSG,FI

CrwMON /™ODEL/ TEGG, TJC, TLAR3, TUNPARSG, TPAR4

CoPMON /TIME/ YR, NN, NSTEF, NX, NU

DATA ¢ F(1,1), I=%,4 ) / £.G35127 E=C1 , S5.17 637 £="1,

4

+ =5.641611 E=02 P {0 /
DATA C F(2,1), I=21,4 ) /=1.127719 E=01 , 1.24CR71 E+00,

+ =1.876.73 E=02 , €.542521 E=72 /
DATA ( F(2,1), I=1,4 ) / (.0 » 3.638312 €=02,

+ 7.656764 E-0U1 , €.145583 E-"1 /
DATA ( P(4,1), I=21,4 ) / (.0 s L.77990C E=D2,

+ =1.726377 €=71 , 1.3°3389 E+ 7 /

DATA K1,K?,K&,K6,K7,KF / C,1, 0,3, C.45, “.4, D.5, 0.5 /
DATA A,B,C,D,F / 107, 2245, Ve, "o, 1t 1

DATA FEEDQ,RP,CP / v.002325, ".0, 0.75 /

DATA TD,IDIA,IFEED,NTOATS / 13, 4, 1, 13 /

DATA €1,€2,C3,C4 /%.684848E="1, 1.829393E-"3, =3.10E5S2E~-. S,
. €.6245 7E=08 /

DATA D1,02,D3,04,D5 /7 9.4C2374F=01, 1.683252€- 2,

. 2.76°50E=24, =2,314922E=26, 7.326632€-9 /
DATA DF1,0F2,0F3,0F4,DFS,DF6,DF7,DFE,DF9 /

+ 4.97 31E-11, =3.29392€+79, 3.95259E+ °C,

+ “11STR7E+00, 1,.€5972€=i1, =1.23781€-'2,

+ L4.56% "E=1b4, =0,T7V72"€E=1.&, 7.T6777E="8 /

DATA E1,EZ,E3 / 2.7, 5.0, 12,0 /
DATA DELTFU / 1.0/
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(220 AE RS2 R R ARl AR AR RS RS2 RARSRS SR X )

» *
* DICTICNARY OF STATE VARIABLES *
* *

(R AA A SRR 2222222222222 X222 2 XX}

X1 SFRING ADULY CLB DENSITY

xe

x? CLB EGG DENSITY

e

| ] FIRST INSTAR CLK DENSITY

¢ SECUND INSTAR CLB DENSITY

X7 THIRD INSTAR CLE DENSITY

X" UNFARASITIZED FITURTH INSTAR CLE DENSITY
X<

X1

x11

X112 UNFARASITIZED CLP FUPA DENSITY
x43

X4

*¥15

x1é SUMMER ADULT CLBR DENSITY

X417 DIAPAUSING TJ DENSITY

¥1X  ADULT TJ DENSITY

X19 FARASITIZED FOURTH INSTAR CLE DENSITY
X2

xX22 PARASITIZED CLE PUPA DENSITY

Xxz3

X2&4

X25

XZé PARASITE PER FEST INDIVIDUAL IN DIFFERENT STAGES
¥??7

reé

X29 CLB LARVAL FEEDING

3 WEIGHT OF OATS FLANT

¥31 LEAF SURFACE AREER *F OATS FLANT
3z wEIGHT CF GRAIN KHEAD

X3 SURFACE AREA CGF GRAIN HEAD
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[ Z 2222222222222 2222222222222 2222222222222 2222 3]

*
*
*

SYSTENM PARAMETERS

| ]
*
*

(2222322222222 22 X222 2222222222222 2222 2222222232 X2 ]

NAFE DESCRIPTINN VELUE

A SFRING ADULT SUFRVIVaL .7C

8 CLE EGGS / CLER FEMALE / 6" DD 22.° ¢

C SUMMER ADULT SURVIvVAL 1..¢

D T.JULIS ADULT SURVIVAL " .60

E1 MAX EGGS / TJ ADULT / &5 DD 2 .Co

E2 MAX TJ EGGS / CLH LARVA / 6C DD 5.°¢

E2 TJ SEARChHING CCNSTANT 10,07
RF TJ MORTALITY INSIDE CLB Teol

K1 MORTALITY OF CLE EGGS : s ic

Ké MORTALITY OF CLE L? VARTARLE
K3 MORTALITY OF CLE L2 ".30

K& MGRTALITY COF CLB L7 “obS

K5 MORTALITY OF CLk L& VARIABLE
Ké WCRYALITY CF CLE FUFAE Y 3

K? MCRTALITY NF OVERWINTERING CLE .77

K& MORTALITY NF OVFRWINTERING TJ “.5C

CF EXPCNENT IN PARASITISM EQUATION Y &
FEEDQ FEEDING FUNCTION CUEFFICIENT .22 29
F MATRIX DIMENSIONED (4,4) CONTAINING

FARAMETERS FOR THE OATS PLANT MNDEL
JETAINED THROUGH TIME=-SERIES ANALYSIS
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F MATRIX VALUES:
8.035127e-¢1 5.17%37€e=-01 =5.640611€E="2 J.C
-1.127719€="1 1.26°871E+(CO =1.806073E=0C2 6.54R8521¢=12
(.0 3.632312E~-02 7.656064E-01 6.1455336-01
(7} 4.7796)0E=02 =1.726377€E=-C1 1.3C3389E+09

REWIND ALL CUTFUT FILES

KEWIND 3 8 RFWIND &4 $ REWIND S S REWIND ¢ § REWIND 7

REWIND 77 $ REWIND 78

DEFINE ALL VARIABLES IN /INFUT/ CO™MON BLOCK IN ORLER 0F
DECLARATION, PROMFT USER FOR EACH, THEN READ VARIABLE FREE
FORMAT, ONE NUMBER PER LINE., SEE SURROUTINE INPUT.

CALL INFUT

ECF = E2#¢CF
ONECP = 1.0 = CP
NUMBER 0OF TIME STEFS FRNM START TO HARVEST,.
NSTEF=27
NN=NSTEP +1
N=NSTEF
NUMBER NF STATE VARIABLES.
Nx=23
NU=1
seae DO LOOP FOR PULTIFLE YEAR RUNS wrun
DO 1 YEAR = 1, NYEAR
YR = YEAR
CLEAR ARRAYS
0C S I=1,NN
DC S J=1,NX
Lx(1,9)=z2.9
VX(I,d)=2.0
MX(I,d)=S,
WwX(l,J)=9.0
X (1,3)=2,0
CONTINUE
oG 6 I=1,NN
XREF(I) = 1050C.0
IF (I JLE. TLAST) XFKEF(1) = ET
CUNTINUE
oL 7 I1=9,NSTEP
DT 7 J=1,NU
mu(l,Jd)=o,"
LU(I,d)=2,"
DwDU(I,J)=",0
oVDU(I,Jd)=2,3
UCI,J)=USTART
CUNTINUE
aoad USTART IS ADJUSTED TC BE SAME AS CONVENTIONAL SPRAY weee
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C wees '(3,1) = 1,0
UCTSFRAY,1) = SFRAY
DEFINE NON-ZEKO INITIAL CONDITIONS (IF ANY ) FOP THE
C STATE VARIABLES.
X(6,12)=JULISIN
X€1,1 )=CLBIN
Y(5,3°) = 2,192963 =1
X(6,31) = 4,1.3903 £+ .
C INITIALIZATICN FOR SUMVATION VARIAPLES
TEGG = 1.CE=7
TLAR3 = ;.2
TFARL =
TUNFARG=
142

~

e\
':.O
= U.0
suvu = 0.0
suvuse s 0,0
C DEFINE TERMINAL VALUES FOR X (IF ANY), VX, WX,
X(NN,1F) = FINALTY
L2 X2 R R R 2 X X R R X R R R Y R Y Y Y X XX X2 222222 22Z.
snnnaannndt MAXIMIZATION FROBLEY 4 atad st ettt Attt tttRadnddddd
VX(NN,32) = 1,7
C #o2e DC LPCF FOR COFTIMIZATION STARTS HERE wewe
o 10 ITER=1,NITER
C WRITE THE TERMINAL CONSTRAINT FQUATION

o

C wwas CALL SUBKTUTINE MCUCDEL TD COFFUTE STATE VARIABLES #wwe
CaLL MCGDEL

C ADD ANY TERMINAL (NON-INTEGRAL) TFRM TC FI1,

C CHECK FTR VERY FIRST ITERATION
IF (ITER .EQ., 1) GC TG 62
IF C ABS(PI/PILAST = 1.0)
IF (F1 .LF., PILAST) GD TO

C FI IS LESS THAN PILAST
EFSIL N = EFSILONSSTEFMAY
T 10 62

C P1 IS GREATER THAN

oLT. TOLER ) GC TO S5°
5?7

PILAST

4 EFSILON = EFSILON®STEFMIN
G Y0 177
62 PILAST = F1
C CCFFUTE PARTIAL DERIVATIVES FNR THE RETURN FUNCTICN BY

C BACKWARD INTEGRATION,

C FIRST EVALULATE FXx,LX, Mx MATRICES.

C NCTE: FX AND FU ARE EVALUATED AS FUNCTION SUPFROGRA™S,
DC 1€ k=1,NSTEF

Lx (K,32) = 2.0 * y(K,32) « ( @ « PRICE /7 1.35)

IF ¢ IFLAG NE. 1 ) G0 TC 16

LUCK,1) = = 2,7 & (R4TAX) #* U(K,1)
16 CONTINUE

Df 17 K=1,NSTEF

MUCK,1) = 2.% * (R4TAX) * U(K,1)
17 CONTINUE

C DEFIVE TERMINAL VALUES

FOP X (1F ANY), VX,WX



C NEXT
C CLEA

18

c2
21
A
CTCF
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EVALUATE WX,VX BATRICES.
R FRWXFX FRVXFX ARRAYS,
LU 1€ I=1 ,NSTEP
DO 1% J=1,NX
PRVXFX(1,J)=C.0
FRWXFX(],J)=0,0
CCNTINUE
of; 20 k=9 ,NSTEP
N1K=z N+f=K
N2K= N42=K
DRSQ = FIDR(NIK)*a(2(CF)
DRSQ2 = FIDR(NIK)** (2 ,C*ONECF)
FIDRCF = FIDR(NIK)»» (F
FIDRCFT = 1.2/(FIDR(NIK) #&« (1,.0<=CP) )
X18CF = X(N1K,18) ++ (P
IF € Xx(N1K,18) .EQ. 0. ) X1RCF = 1E=S
IF ( X(N1K,1%) .EQ. V.0 ) X1RCF1= 1E+¢
DC 21 I=1,NX
DC 22 J=9,NX
Fxx=Fx(J,I,N1K)
PRVXFX(NIK,I)=PRVXFY (NIK,I)*VX(N2K J)*FXX
FRAXFX(NIK,I)=SFRWUXFX(NTIK,I)*+WX(N2K,J)*FXX
VX(NIK,I)=PRVXFX(NIK,I)*LX(NIK,I)
WX(NIK,1)=PRUXFX(NIK,I)+MX(NIK,I)
CONTINUE
IND THE PULTIPLIER V FOR CONSTRAINED PRCBLEMS.

C FIRST CCMFUTE THE SUM TERMS,

®

32

)

DL 28 I=1,NSTEP

Dr 28 J=1,NU

FRVXFU(1,d)=C.0

FRWXFU(I,J) =C.0

TERMI(I,J) = (.0

tEan (I 'J )‘(‘ o(‘

CONTINUE

SUMY = 0.0

SU"Z = ':‘o'.

DC 30 K=1 _NSTEP

KF1=K+1

D™ 3C I1=1,NU

Df 32 J=1,Nx

Fuu=s FUW,I,K)

FRVXFU(K,1)= FRVXFU(K,I)* VX(KP1,J) #*FUU
FRUXFUCK,I)= PRWXFU(K,I)+ WX(KF1,J) *FUU
TERMICK,I)D=FRWXFU(K,I)+MU(K,])

TERM2 (K,ID=PRVXFU(K,I)+LU(K,I])

SUMY = SUMY ¢ (TERMI(K,I) ** 2 )

SUM2 = SUM2 ¢ (TERMI(K,I) + TERM2(K,I) )
CONTINUE

DO &1 I=1,NSTEP

D0 41 J4=1,NU

TEMPU(I, L J)= U(I,D)
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41 CCNTINUE
IF (IFLAG .EQ. 1) 60 TO 177
INTER® = 1.0 / CEFSILON * SUr1)
V = INTERN « (DIFUSQ = EFSILON # SUM2 )

C COMFUTE GRADIENT WRT CONTROL

C NOTE: DVDU(I,J)=TERM2(I,J); DWDUCI,J)=TERM1(I,J)

C UFDATE CCNTROL

177 DELTAU = (.G

DC 40 I=1,NSTEP
DC 40 J=1,NU
UCI,J) = TEMPUCI,J) + EPSILONSTERM2(I,J)
IF (IFLAG .EQ., 0) UCI,J) = UCI,J) ¢ EPSILON#V*TERMI(I,J)
UC1,d) = ABSCU(I,J))
DELTAU = DELTAU ¢ ( UCI,J) = TEMPU(I,J) )
" CONTINUE
FRINT 47 ,ITER,PI,FILAST,EPSILON,SUMU,SUMUSQ,X(NN,18)

47 FCRMAT ("CITER=",12,5X,"PI=",1FE1¢.3,5X,“FILAST=",1PE1C.3,
+5X,"EPSILON",1PE17.3,5X,"SUMU",1PE10.3,5X,"SuMusa”,1PE10.3,
+2X,"X(NN,18)=%,2X,1FE10.3)

14 CONTINUE

C CCMPUTE INCOME FROM QOATS YIELD
C REF EMMETT s#x SEED WT = HEAD DRY WT + ),9119 - 0,003235
£0 SEEDWT = X(NN,32) * 0,9119 - ¢,00%035
C YIFLD IN BUSHELS/ACRE = SEED WT IN GMS/SQFT » 3,00:992
YIELD = SEEDWT * 3,200992

C INCOME S$/ACRE : VYIELD IN BU/ACRE * FRICE OF OATS IN $
C CURRENT BUYING PRICE NF OATS IN MICHIGAN AS BOUGHT FROM FARMERS
C $9.35 7/ BUSHEL REF: MASON ELEVATOR COMPANY

INCOME = YIELD * FRICE
COMPUTE FESTICIDE COSTS, INCLUDING MATERIAL AND APFLICATION COSY
COSY OF MALATHION : 8 3,00 / LB
COST OF APPLICATION : 8 3.,Nn0 / ACPE
TAXES CAN ALSC BE IMFNSED ON FESTICIDE USE

CNST = SUMU * ( FRICE *+ TAX ) ¢+ 3.7
NET PRCFIT/ACRE : INCOME - COST

PRCFIT = INCOME = COST
COMPUTE PERCENT PARASITISM

FARA = ( TFARA / ( TPAR&L ¢+ TUNPARSG ) ) * 120.0C

o (o] (s NaNalal

C INITIALIZE CLB AND T JULIS DENSITIES FOR NEXT YEAR
C NCTE : OVERWINTERING MORTALITY FOR CLB IS SET AT 77 BASED ON
C REFERENCES ( YUN, 1964; WELLSO ET AL,., 1970 )
C CVERWINTERING MOURTALITY OF T, JULIS IS SET AT €¢
CLBIN = n,23 & X(NN,16)
JULISIN= 9,50 * X(NN,17)
C WRITE YEARLY TUTPUTS IN A SEPERATE TAFE # 77

WRITE ( 77,444) YEAR, X(1,1), TEGG, X(6,18), TJ2,TLARS, PARA
“‘ '0“"‘1’ (‘.-“'T11'12"19'1PE10030T3‘ '1PE’('.3"‘9’1 PE1 003'
. T64,1PE10.3,779,1PE19.3,794,1FE16.3 )
C WRITE INCOME=-RELATED OUTPUTS ON A SEPARATE TAFE # 78
WRITE ( 78,499) YEAR, YIELD, INCOME, SUMU, COST, PROFIT
499  FORPAT ("=",T741,12,724,9PE10.3,T44,1PE1C.2,T64,1PE10.3,
+ 187,1P€10.3,7109,1PE10.3 )
C
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stnntes FRINT TABLES svvenne

SUBRNUTINE OUTFUT WRITES UNHEADERED TABLES N OUTFUT TAPES AND
ALSC FRINTS HEADERED TARLES CN OUTPUT,

TARLE 1 1S THE CONTROL VARIABLES "U™, PRINTED YEARLY,
THE UNHEADERED CONTROL VARIABLES ARE WRITTEN TO TAFEZ,
TABLE 2 IS FOUR TASLES CF STATE VARIARLES, FRINTED YEARLY:
1 X1=x1: s X11=x20 3: x21=x3" b: X31=-x34
ON TAFPE TAPES TAFES TAPES TAPE?
CALL OQUTFUT (1)
CALL OUTFUT (2)
CONTINUE

TABLE T IS A DIRECT COFY OF TVTAFE?77, WHICH 1S WRITTEN ABOVE,
TABLE 4 IS A DIRECY CNFY OF TAFE78, WHICH 1S WRITTEN ABOVE,
BGTH CF THESE ARE WRITTEN AT THE END OF RUN ONLY,
NCTE THAT TAPE?7 AND TAFE7R ARE THE UNHEADERED VERSICNS OF
THE FRINTED TABLES 3 AND & RESFECTIVELY.

CALL OQUTPUT (3)

CALL OQUTPUT (&)

END
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FULCTION FX(J,1,K)

PRANREARARANARARAERER R RO RN RN P PRRN RN AN R NN SRR AR P RO ORO R

FUNCTYI "N FX *
»

122222 222222222 22 X222 22 22 22 22X 322X R X X}

FUNCTINN Fx CONMFUTES THE MATRIX "F PARTIAL DERIVATIVES
(DF/DXx) WITH RFFERENCE TD STATE VARIABLES ¥.

REAL K1,r?,K&4,K6,K7,rs MORTFN, MORTFN?

cCommgN x€35,35),u(22,2)

CCYMON /PLANT/ P(&4,4)

CCmMCN /ENSUGH/ C€1,€2,C3,C4,01,02,03,04,D5

COPMON /ENDUGH/ DF1,DF2,DF3,Dt4,DFS,0F6,0F7,DF°,DFC

CTMMON /ENCUGH/ A,B,C,D,F K% ,K3,K4,K6,K7,K2 FEEDR

CC"MON /ENOUGH/RF ,CF,E1,EC , ES,ECF,ONECF,TD,IDIA, IFFED, MTNATS
CCMMON /BLNCK/ MORTEN(31) ,MOKRTFN2(34) ,SURVFN(IL) ,SU'RVFN2(3 )
CTMMON /BLGCK/ SL1(3.),SL4(30),F1(30),DIAFFNC3S) ,DIFMFN(CRY)

CCMMCN /RLGCK/ DIFMFNZ(3: ), FIDR(3.),F2(30),DSLT1(2: ), DSLL(3))
CCMMON /FXx/ DRSQ,DRSQ2,FI1DKCP,FI1DRCPY,X18BCP, X1PCF1

FX=:,0G

(
¢
€
( *
C »
C
c
C
C
c
C FUNCTIC
60
+
1 IF
2 IF
3 IFf
4 1F
5 1Ff
6 IF
7 IF
Q l'
+
IF
+
+
9 IF
10 IF
11 IF
l IF
13 If
14 IF
15 4
16 IF
IF
17 IF

IF
IF

NS ARE DEFINED EEL"W FOR NCNZERU FUNCTINNS ONLY,

TC €1,2,2,6,5,4,7,¢,9,% ,11,12,13,14,15,16,17,18,19,2"~,
21,82,23,24,25,26,27,2%,29,3:,34,32,33,34) )

(1.6Q,1) Fx= A*SURVFN2(K) SRETURN
(1.EQ.1) Fr= B SRETURN
(I1.EQ,2) Fx=1," $RETURN
(1.EQ.%) FX=1," SRETURN
(1.E0.4) FyY=(1,=F1)*SURVFN(K) SRETURN
(1.EQ.5) Fx= DSLI(K)*SURVFN(K) SRETURN
(I1.EQ.5) FXx= (1.,0=K3)2SURVFN(K) SRETUVN
(1.6Q.7) FX= (1,.(=K&L)*SURVFN(K)*(1,.% = (((1,7/ECP)

*FADRCF2X18CP = X1RCF*X(K,?)*CF*FI1DRCP*(1.L/E1)) / DPRSQ))
( I.EQ.12 ) Fx = = (1,0=K4) * SURVFN(K) & (1,{/FCP) =
(C FIPRCP » CF * X18CF1 *» X(K,7) = X1ECP & X(K,7) = CF

FIDRCFT » (1,0/%2) ) / DRSQ ) SRETURN
(1.EQ.F) FXx=DSL4L(K) TFETURN
(1.EQ.C) FX=1,9 $RETURN
(1.EQ.11) FX=9," SKETURN
(1.60,11) FX=1," SRETURN
(1.50.12) "‘1.‘ SPFTURN
(I1.EG.13) FXx=1., SRETURN

(1.EQ.14) Fx=1,.°

(1.EG.15) Fx=(1,. =KE&)*SURVFNZ(K)

(1.EG.16) FX=C*SURVFN2(K) SRETUCN
(1.EG.17) Fx= 1,

(I1.EQ.c4) FX=DIAFFN(K)aY (K, 7R)

(I1.EQ.¢®) FX=DIAFFN(K)®X(K,24) $PR=TURN
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2n

30

31

32

33

133

IfF (K.LT7.¢) RETUPRN

IF (1.EQ,1¢) Fx=D*SUFVFN(K)

IF (1.6G.24) FX=(1, =DIAFFN(K))aX (K, 2°)+SURVFN(K)

IF (1.€Q.2%) FX=(1.'=DIAPFN(K))*X (K, 24)*SURVFN(K)

IF C I,EG.7 ) FX = (1.0=K&)*SURVFN(K)*C ( (1, /ECP)»
FIDKCF*X1R8CF = XY1SCP*X(K,7)*CP*F1DRCFI*(1,C/E1)
/ DRrSQ )

IF (1.EQ.1% ) FX = (1,f=r&) * SURVFEN(K) * (1,0/ECP) »
€ C FIDRCP#CF#*XTHCFIoX(K,7) = X1B8CP#X(K,7)*C»
FIDRCFI#(1,(/E2) ) 7/ DRSG ) SRET

IF ( X(K,7)eEQe"et oORe X(K,1%) ,EQe04% ) RETURY

IF ( T.EW.7 ) FX = = ECP = ( ¢ (1,0/X18CF1) » ONECF »

(Y. /FIDRCF) * (1.3/E1) ) / DRS@2 )

IF (1.5Q.72) FXx = €CP»(((1.C/FIDRCPI)*ONECF*(1,0/%15C
* (Voe/X1BCF1)*INECF*(1,"/FIDRCPI* (1. /ER))
/DRSQ2)

IF (1.EG.19) Fx=DSL4L(K)

IF (1.EQ.21) Fx=1,’

IF (1.EG,22) FX=1,"

IF (1.€Q.23) Fx=1,

IF ¢ X(K,2") .EQ. ".4 ) RETURN

IF ( 1.EG.2 ) Fx = 1.°

IF (1.EQ.25) Fx=1.:

IF (1.€EQ,.2¢) Fx=1,

IF (1.€Q.27) Fx=1,"

IF (1.EQ.5) FX=FCEDR

IF (1.EQ.£) Fy=FEED"*?2 .87

IF (1.EQ.7) FX=FEEDG*S5,97

IF (1.€Q0.t) FX=FEEDH*24,.23

IF (1.EQ.19) FX=FEEDQ*24,.23

IF (K.,LT.4) RETURN

IF (1.EQ.3D) FXx = P(1,1)

IF (1.EQ0.,21) FX = F(1,2)
IfF (1.EQ.32) FX = F(1,3)
IF (1.EG.33) FXx = F(1,4)
IF (1 -EQ .29) FX = -!!.25
IF(K.LT.6) RETURN

IF (1.EQ.31) FXx = F(2,2)
IF (1.EQ.32) FX = F(2,2)
IF (1.€6Q.33) Fx = K(2,3)

IF (1.EQ,29) fX = =1,"
IF(K.LT.14) RETURN

IF (1.EQ.,3M) FX = F(3,1)
IF (1.EQ.31) FXx = +(3,2)
IF (1.EQ.23) FXx = ¥(3,4)
IF(KLT.14) RETURM

IF (I1.EQ.7™) FX = F(4,1)
IF (1.EQ.71) FX = F(4,2)
IF (1.6G.32) FX = F(4,3)
IF (1.EQ.33) FX = F(4,4)

SKETURN

)

UFN

F)

SRETURN
SRETURN
SRETURN
SRETUPN
SRETURN
SRETURN
SPETURN
$RETURN
SKRETURN

SRETURN

SRETURN

$FETURN

SRETURN

TRETUPN



IF
IFf
I1F
IF
IF
IF
IF
IFf
END

PN NN

1.E6.2 )
1.80.7 )
1.€EQ.4)

1.EQ.5 )
1.EG,.6 )
1.EQ.7 )
1.6Q.8 )
1.€Q.1¢)

Fx
Fx
Fx
FX
FXx
FXx
FX
FX

el s I I I I Y

134

SKETURN
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FUNCTION FU (J,I,K)

I 22222222 X2XR2EEZ2A2 AR RRERRRARXEZES 22222222 2R RX2X 2

-
*
*

*

FUNCTICN FU *
»

(XXX RAZARRZ X222 XX 22222222 RAZE 22

FUNCTI™N FU CCMFUTES THE MATRIX NF FARTIAL DERIVATIVES
(DF/DU) WITKH REFERENCE TZ CONTROL VARIABLES U.

REAL K1,r%,K4,K6,F7,KE ,MORTFN,FORTFN2

COMMON
CCMMON
CCMMON
COLMMON
CrvmgN
CCMMON
CNMMON
crmmny
CMMON
FU=0,.C

¥(35,35),0(35,2)

/PLANT/ P(6,4)

/ENOUGH/ €1,€2,€3,C4,01,02,03,04,D5

/ENOUGH/ DF1,0F2,DF3,0F4,DFS5,DF6,DF7,DF2,DFO

/ENOUGH/ A,B,C,0,F ,K%,K3,Kb,K6,K7,KB , FEEDG

/ENOUGH /RF ,CF ,E1,E2,E3,ECF,ONECP,TD,IDIA,IFEED,NTOATS
/BLGCK/ MORTFN(30) ,MORTFN2(3(),SURVFN(3.),SURVFN2(3.)
/BLOCK/ SL1C30),SL4(3C), F1(30),DIAFFN(32) ,DIFMFN(3F)

JBLOCK/ DIFMFN2(30),FIDR(3IL),F2(3C),DSL1(2),DSL4(27)

IF (1.NE.1) RETURN

60 TO
+

(1,2,3,4,5,6,7,8,9,1.,%1,12,13,14,15,16,17,1%,16,2",

21,22,23,24,25,26,27,28,29,31,31,32,33,34) J

FUNCTIONS ARE DEFINED EELNW FOR NONZERO FUNCTIGNS ONLY,
FU==X(K,1)*A*DIFMFN2(K) SRETURN

RETURN
RETURN
RETURN

FUs=X(K,46)*(1,2=K1)*DIFMFN(K) SRETURN
FU=X(K,S5)*SLI(K)*PIFMFN(K) SRETURN
Fuz=X (¥ ,6)2(1.0=K3)*DIFMFN(K) SRETURN
FUZ=X(K,7)*(1,0=K4L)2(1,0=F2(K))*DIFMFN(K) SFETURN

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

FUS=(X(K,16)2C+X(K,15)2(1.9=K&))*PIFMFN(K) SRETURN

RETURN

FU=(X(K,18)*D+ (1, =DIAPFN(K))*X (K, 24)*X (K, 28))*DIFMFN(K)

RETURN

FU=X(K,7)*(1,.3=K&)*F2(K)*DIFMFN(K) SPETURN

RFTURN
RETURN
RETURN
RETURN
RETURN
RETURN



RETURN
RETURN
FETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

END

136
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SURRQUTINE CUTPUT (IT)

(232 222222222222 22222 22222 22222 222222222222 XR}

*
SURROUTINE OUTFUT -

a N e NN NN NaNa NN NaleNe

e Nz NaNa N NalalaNa el

* »
(2332222 2222222222222 222222221222 2222222221 Y]

SUBROUTINE OUTPUT PRINTS OPTIMAL CONTROLS AND OPTIMAL STATE
TRAJECTGRIES FOR EVERY TIME STEP. IT ALSO FRINTS THE
PERFCRMANCE INDEX AND GTHER VARIABLES FOR EVERY ITERATION.
SUBRCUTINE OUTPUT ALSO WRITES ALL THESE OUTPUTS ON CATALOGUED
TAFES THAT CAN BE ACCESSED FNR GRAPHING AT A LATER TIME,

CO"MON x(35,35),U(35,2)
CCMMON /TIME/ YR, NN, NSTEP, NX, NU
INTEGER YR,LINE(14)

THE PARAMETER =IT= IS THE TABLE NUMBER TO FRINT, AND IS ALSO

A FLAG TO PRINT THE TABLE ON A NEW PAGE (FINAL TABLE PRINTOUTS),
CR TN FRINT SEVERAL TAPRLES FER PAGE (DEBUGGING PURFODSES).

IF (IT LT. ©) PRINT TABLE NUMBER IABS(IT) ON THE SAME PAGE,
ELSE PRINY TABLE NUMBER (IT) ON A NEW PAGE.

TABLE 1, FRINT =U= ARRAY FOR WHOLE YEAR,
TABELE 2, PRINT =x= ARRAY FOR WHOLE YEAR.
TABLE 3, PRINT TAPE77 TABLE.
TAELE &, FRINT TAFE?78 TABLE.

IABSIT = JABS(IT)
GO 70 (10C, 20C, 300, 40C0) 1ABSIY

100 IF (IT LT, 0©) PRINT 64, “=", VYR

64

é5

IF (IT .6T. O) PRINT 64, "1", YR

FORMAT (A1," YEAR",13,/,"= TIME™,8X,"CONTROL",//)
PRINT 65, (I1,U(1I,1),I1I=1,NSTEF)

WRITE (3,65) €(1I,uC11,1),1XI=1,NSTEP)

FORMAT (3x,14,5X,1FE15.6)

RETURN

20C IF (1T .GV. O) PRINT 74, ™"

74

24

IF C(IT .LT. C) FRINT 74, "=%

FORMAT (A1,2X,"TIME™,SX,"X1%,0X,%X2",9¥,"X3",9X,"X4",
OX NS ,0X,"NE% 0K, " X7, 0K, "XE®, 09X, X", BX, X1/ /)
FRINT 95, (II,(XCII,LL),LL=9,1"),II=1,NN)

WRITE (4,95) CI1,CxCII,LL),LL=1,10),11=1,NN)

It C(IT .6T. G) FRINT 24, "%

IF (IT .LT. 0) PRINT £4, "=

FORMAT (A1,2X,"TIPE",SX,"¥11%,8X,"X12",8% ,"X13",8X,"x 14",
CRX,OXIS% RX,"X16% BN, " K17, 8X,"X18% 8BX,"X19% ,8X,"X20%//)
FRINT 95, (II,(XCII,LL),LL=11,20),11=1,NN)

WRITE (5,65) €II,(x(II,LL),LL=11,22),11=1,NN)

IF (IT .6T. €) PRINT G4, "1"

IF (IT .LT. ©) FRINT 94, "=




QL

95
96

306
667
31

400
7777

41r

666

138

FCRMAT (A1,2X,"TIMF", SX,"X21%,6X,"X22" ,8X ,"X23" BX "X 24",
SRX 25", %X, K26% X, X276, "X2R", BX,"XZ0" 8X,"X20"//)
ERINT 65, (II,(X(II,LL),LL=21,30),11=1,NN)

WRITE (6,95) CII,C(xC¢II,LL),LL=21,39),11=1,NN)

IF (IT .6T. ©) PRINT 97, *1*

IF (IT .LT. ©) PRINT 97, %=

FORMAT (A1, 3X,"TIFE™,SX,"X39", 8X,"X32" X ,"X33%,6X,"X34")
FRINT 96, (II,(¥CIT,LL),LL=39,34),11=1,NN)

WRITE (7,56) (I1,C(xCII, LL),LL=31,34),11=1,NN)
FORMAT (I5,1FE12.3,9E11.3)

FORMAT (IS5,1FE12.3,3E11.3)

RETURN

REJIND 77

FRINT 667

FORMAT (*1%, T1C,"YEAR",T21,"0W CLE",T35,"CLB EGGS"”,TS1,
+ "TJISTI",T66,"TI(2NDI ™, TEO,"CLE TLAR3",TS7,"FARA" )
READ (77,666) LINE

IF (EOF(77) .NE. ) RETURN

FRINT 666, LINE

6™ TO 31°

REJIND 78

PRINT 777

FORMAT ("1%,T10,"YEAR",T22,"YIELD RU/ACKE",T43,

+ “YIELD $/ACRE",T6C,” FESTICIDE LB/ACRE™,TES,
+ “TOTAL COST S$S/ACRE",T1.%,"PROFIT $S/ACRE"™ )
READ (78,666) LINE

IF (ENF(7P) .NE, ) RETURN

PRINT 666, LINE

6C TO 41-

FORMAT (13A1C,A7)

END
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SUSRTUTINF INFUTY

([ EXXXZXEZ2R2X222X2E2EIZZR2XZIRR2XZRR2 2222222 22X 2 84
* *
* SUFROUTINE INFUT »
* *
(L Z2 X222 X222 2222222222 22222 X2X2XXX XXX X2 2 X2

SURRTUTINEG INFUT PEADS IN THE INITIAL CONDITICXS FrR
THE STATE VARIAPLES, AND ALL NTHER FARAMETERS REQUIFED
FTR THE OFTEMIZATION ALGORITHM,

aNaNaNeNalalellele el el

CrwMO~ /INFUT/ IFLAG, NITER, EFSILON, STEFMIN, STEFFAX, G,
Co¥MON /INFUT/ USTART, TVALUt, TOLER, FT, TLAST, CLPIN

C “MON /INFUT/ JULISIN, FINALTJ, NYEAR, TSPRAY, SFFAY

C WMON /INFUT/ PRICE, TAX

CNMMGN /TIME/ YR, NN, NSTEF, NY, NU

REEL JULISIN

IMTFGER TLAST,TSFRAY

THIS IS THE C' “MGN INFUT FRNCESSOR. THIS INITIALIZES ALL
f THE VARIABLES IN THE /INFUT/ CCMMON PLCCK FY FRMMPTING
AND READING THEM IN. THEN THEY ARE PRINTED OUT ON THE
OQUTPUT FILE (N A SEFARATE FAGE. THE VARIARLES ARE SET

IN CRPER CF THEIR SPECIFICATINN IN THE /INFUT/ FLOCK,
=TAFE“= IS THE TELETYFE FR™FTING FILE. THIS IS DFCLAFED
Tr PE THE FILE =2222Z07= ON TrE FRUGRAM CARD, IF UNIT 6
(2222C7) 1S CONNECTED, IT USUALLY IS FCR INTERACTIVE RUNS,
ALL THE FROMFTING LINES WILL HE DISFLAYED ON TERMINAL,
AND THE PRMGRAM WILL PEAD USER TYFEINS., IF RUN FRMM
BATCH, ALL FRO™PTING LINFS WILL BE WRITTEN TO LOCAL

FILE =72270T= AND NiT PRINTED, AND INFUT VARIALLES

wILL PE READ FROM™ DATA CARDS.

VOO MO DHYAOHNOO

CALL CUNNEC (9)

€ IFLAG DETERMINES THE TYFE 0F OFTIMIZATION FRORLEM :
C IFLAG = © IMFLIES EXFLICIT CONSTRAINT NN CONTROL
C IFLAG = 4 IMPLIES NO EXFLICIT CONSTRAINT ON CCNTROL
FRINT (Y,#)"FROBLE® TYPE (IFLAG):"
READ +,1FLAG
FRINT (9,*)"NUMBER (.F INTERATIONS (NITER):"
READ #*,NITER
FRINT (S,#)"INITIAL STEF=SIZE (EFSILON):"
READ +,EFSILON
FRINT (9,#)"EFSILIN STEP DECREMENT (STEFMIN):"
RESD #,STEFNIN
FRINT (S,%)"EFSILM STEF INCREFENT (STEPMAX):"
PEAD #,STEFNMAYX
FRINT (S,*)"WEIGHTING FACTOR (Q):"
READ +*,Q
FRINT (9,#)"WEIGHTING FACTOR (K):"
READ #+,R
FRINT (9,%)“NCMINAL CONTPOL (USTART):"
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READ *,USTART

FRINT (9,*)"CONSTRAINT LEVEL FOR CONTROL U (TVALUE):"
READ *,TVALUE

PRINT (9,#)"FERFORMANCE INDEX TOLERANCE (TOLER):"

READ ¢, TOLER

FRINT (9,#)"ECONOMIC INJURY LEVEL (ET):"

REBD +_FT

FRINT (9,#)"TIME UNIT (TLAST):"

READ #,TLAST

PRINT (9,+)"STARTING DENSITY FOR SPRING=ADULT CLE (CLBIN):"
READ #,CLEIN

PRINT (9,*)"STARTING DENSITY FOR ADULT T.JULIS (JULISIN):®
READ #,JULISIN

FRINT (9,#)"VALUE FOR OVERWINTERING T JULIS (FINALTJ):"
READ *,FINALTY

PRINT (9,%*) “ENTER # YEARS FOR MODEL RUN (NYEAR):"

READ *, NYEAR

FRINT (9,+#) "ENTER TIME FOR CONVENTIONAL SPRAY (TSFRAY):®
READ *, TSFRAY

PRINT (9,%*) “ENTER SPRAY AMOUNT LBS/ACRE (SPRAY):™

READ ¢, SFRAY

FRINT (9,*) “FRICE OF PESTICIDE $/LB (PRICE):"

READ *, FRICE

FRINT (9,#) “TAX IPPOSED $/LB OF PESTICIDE USE (TAX):"
READ *, TAX

FRINT 342, IFLAG, NITER, EFSILON, STEFMIN, STEFMAX, Q, R,
’ USTART, TVALUE, TOLERK, ET, TLAST
FORMAT (%=%,/, %=",/, "="/,

“e",T25,“DEFINE TYPE OF PROBLEM CIFLAG)™,T75,12,/,
"e®_725,"NUMBER OF ITERATIONS (NITER)",TV75,13,/,

“e® T25,"INITIAL STEF SIZE (EFSILON)™,T?5,1PE1-.2,/,
“e®,T25,"EFSILON STEP DECREMENT (STEPMIN)",T?S5,E17.3,/,
“a_ 725,"EPSILON STEF INCREMENT (STEPMAX)™,T75,E17.3,/,
“er 725,"WEIGHTING -FACTOR (Q)",T175,E10.3,/,
"a®,T25,"WEIGHTING FACTOR (R)"™,T75,E12.3,/,
"=®_T25,"NOMINAL CONTROL (USTART)",T75,E1:.3,/,
"e®_T25,"CONSTRAINT LEVEL FOR CONTROL = U (TVALUE)™,T7S,

£1C.3,/,

“e®,T25,“PERFORMANCE INDEX TOLERANCE (TOLER)",T75,E10.3,/,
"e",T25,"ECONOMIC INJURY LEVEL (ET)",T75,€10.3,/,
“e%_T25,"TIME UNIT (TLAST)",T75,13)

LR B IR IR IR 22K K 2R 2 2K N

PRINT 343,PRICE, TAX, JULISIN, FINALTJ, NYEAR, TSPRAY, SPRAY

0:93:::2§,~srnnrlns PENSITY SPRING-ADULT CLB (CLBIN)*,T75,
. "-”,$;§:3§4;911NG DENSITY ADULT T.JULIS (JULISIN)®,T7S,
"-",$;§:§§:fus FOR OVERWINTERING T.JULIS (FINALTJI",T7S,
~-",$;5:531§raas FOR MODEL RUN (NYEAR)™,T75,13,/,

+

$e",T25,"SFRAY AMOUNT LBS/ACRE (SPRAY) :",T?75,€1¢.3,/,
®e",T725,"FRICE OF OATS = S/RUSHEL (FRICE) :%,T7S5,E13.3,/,
"e®,T25,"TAX = $/LB OF PESTICIDE SPRAY (TAX)*,T75,E1¢.3,/)

L I B N R N

"e®,T25,"TIME STEF FOR CONVENTIONAL SPRAY (TSFRAY)",T175,12/
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PRINT 244
344 FURMAT (1H1)

RETURN

END
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SUBROUTINE MODEL

[ 22322222 222222222222 2222222222122 222222222 X}

. *
* SUBROUTINE MODEL -
. »

A A2 2222222222 2222222222 222222222222 222 222K 2]

SUBROUTINE MODEL GENERATES THE STATE VARIABLE TRAJECTCRIES
USING THE STATE-SPACE MODEL OF THE SYSTEM. IT ALSO COMPUTES
THE PERFORMANCE INDEX.

REAL JULISIN,K1,K3,K&,K6,K7,MORTFN, MORTFN?2

INTEGER TLAST

COMMON Xx(35,35),0(35,2)

CNMMON /PLANT/ P(4,4)

CCMMON /ENOUGH/ C1,C2,C3,C4,01,02,03,04,05

COMMON /ENOUGN/ OF9,DF2,DF3,0F4,DFS5,DF6,DF7,DF2,DF9

CCMMON /ENOUGH/ A,B,C,D,F,K1,K3,Kb,K6,K7,K8,FEEDQ

CIMMON /ENOUGH/RF,CP,E1,E2,E3,ECP,ONECP,TD,IDIA, IFEED ,NTOATS
COMMON /BLOCK/ MORTFN(30) ,MORTFN2(30),SURVFN(3C) ,SURVFN2(3Q)
COMMON /BLOCK/ SL1(30),SL4(30),F1(30),0IAPFN(30),DIFMFN(30)
COMMON /BLOCK/ DIFMFN2(30),F1DR(30),F2(30),0SL1(3C),DSLL(3)
CNMMON /FX/ DRSQ,DRSQ2,F1DRCF,FIDRCP1,X18CP, X18CF1

COMMON /INPUT/ 1FLAG, NITER, EPSILON, STEPMIN, STEFMAX, Q, R
COMMON /INPUT/ USTART, TVALUE, TOLER, ET, TLAST, CLBIN
CG™MON /INPUT/ JULISIN, FINALTJ, NYEAR, TSPRAY, SPRAY

COMMGN /INFUT/ PRICE, TAX

CGMFON /TIME/ YR, NN, NSTEP, NX, NU

COMMON /MODEL/ XREF(35),DIFuU,SUMU,SUNUSQ,DIFUSQ,PI

CNMMON /MCDEL/ TEGG6, TJ2, TLAR3Z, TUNPAR4L, TPARL

RUN THE MODEL FOR A SINGLE STEP, COPLIED FROM OLD MAIN
PROGRAM, ALL ADPDITIONAL VARIABLES DEFINED IN /™ODEL/ BLOCK,

eansennsnr SPECIFY VALUE (9/0) FOR THE VARIABLE == IFMORT w#eswwnew

IMORT = 1
INITIALIZE PERFORMANCE INDEX.
PI1=y.)

sumy s 0.0
SUMUSQ =0.0
GET STATE TRAJECTORY,
b0 15 I=9,NSTEF
IF ( 1.,EQ.NTOATS ) x(1,1) = &0
I1= 1+4
DIFFERENTIAL KILL FOR ADULT AND LARVAE.
CTRLDR=4"3 .4
CTRL2=4915,.0
IF (U(l,’).st.:.')) C'RLDR:ExP(-(1603.0(1'1)-6.n))
I' (U(I,‘).GT.Q.O) CTRLZ'E!P('(?C’.O .0(101)-805))
MORTFN(I)=1.0/(1."+CTRLOR)
MGRTFN2(I)=1,.0/(1.04CTRL2)
SURVFN(I)=1,.0=MORTFN(I)
SURVFN2(I)=1, =MORTFN2(I)
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DIFMFN(I)=1", *((1. ¢+CTRLDR)**(=2))«CTRLDR
DIFMFN2CI)=T10, 0% ( (1, 04CTRL2) #wo(=2))*CTRL2
FIDR(I) = X(I1,7)/E1 + X(I,18)/E2 + 1.C/E3
FI1C(I) = (X(1,7)*x(1,18))/F1DR(I)
F2(I) = C X(1,78) / CE2*F1DR(I)) ) s+ (P

C NCTE: IDIA = 1 IMFLIES ROGER®'S FUNCTION

C NCTE: IDIA = O IMFLIES LAL®S FUNCTION

IF ¢ 1IDIA .EQ. O ) GO TO 12
DIAPFN(I) = (DFOelwe3 ¢ DFBe]aa? & DF70Ineb ¢ DFle]lne$S ¢
¢ DFSaJeael & DF4e]eel & DF3xI#42 + DF2+] ¢ DF1)*C.C1
GG T0 14
12 IF ( 1.LE.TD ) DIAFFN(1) = 0,0
DTERM = 7D -]
IF ( I1.6T.TD ) DIAFFN(I) = 1.0 = EXP ( DTERM )
16 X(I1,1)= X(I,1)*A *SURVFN2(I)
xX(11,2)= x(1,1)*8
C TOTAL E66 INFUT
TEGG = TEGG ¢ Xx(I,2)
C DENSITY DEPENDENT MORTALITY MORTALITY FOR L1 AND L4,
C NOTE: IMORT = 1 IMFLIES ROGER®S FUNCTION
C NOTE: IMORTYT = O IMPLIES LAL'S FUNCTION
IF ( IMORT .EQ@. " ) GO TC 22
SL1(I)= CT14C2*(X(I,5))+C30(X(1,5)2%2)+Che(xX(1,5)*23)
SLO(I) = DFSex(1,8)o%L 4+ DFA*X(]1,8)e*3 ¢ DF3ex(I, B)ex2 +
¢ DF2»x(1,8) ¢ DF1
DSLICI) = C1 ¢ 2.7 « €2 # X(1,5) ¢ 3.0 » C3 & X(I,S)ew2 +
+ Loty & Cb * X(],S5)ee3
DSL&A(I) = DY ¢ 2, » D2 * X(I,8) ¢ 3., #D3 & X(I, R)wa2 ¢
+ 4.0 * D6 * X(],8)%23 ¢+ 5.7 % DS ¢ X(I, B)#e4
Gl T0 11
22 SLI1(I)=1," = AMAX1( 0.0, AMINTI(*.99,0.46*ALOGID(TEGG)=C,.85))
SLA(I)=1.0L = AMAXTI( 0,0, AMINT(0.99,0.28*AL0GIC(TEGE)=~,17))
11 x(11,3)= x(1,2)
X(11,4)=x(1,3)
X(I1,5)=x(1,4)*(1."=K1)*SURVFN(I)
XCI1,6)= SLA(I)*X(],S)*SURVFN(I)
X(I1,2)= X(I,7)* (1.C=ré&)x (1,0=F2(I)) #SURVFN(I)
X(I11,9)= SL&L(I)ex(1,5)
X(11,1C)= x(1,9)
XC(I1,11)= Xx(1,10)
X(I1,12)= x(I1,11)
X(11,13)= x(1,12)
X(11,16)= ¥(1,13)
X(11,15)= »(1,14)
X(11,16)= (X(I1,16)+C+X(1,15)2(1,C=-ré))«SURVFN2(1)
X(I1,17)= X(1,17) * F + DIAPFN(I) * X(1,24)*X(I,2&)
IF ( 1.LY.6 ) GO 70 2v
SECTY = ( 1.0 = DIAPFN(I) ) » x(I,24) = Xx(1,2%)
X(I1,18) = ( x(1,18) » D ¢ SECTJ ) * SURVFN(I])
GO T0 329
B SECTY = 0,
x(1,13) =:.0
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19 X(I1,19) = (1.C=K&)*F2(I)ex(1,?7)9SURVFN(I)
IF ( x(I,7).E0.C.’ .OR. X(I,18).EQ.C.C ) 50 TO 1
X(11,2.) = ECF*((X(I,18)/F1DR(I))*+*0ONECF)

6" 70 2
1 X(I11,2°) = 7,9
2 X(11,21)= SL&(I) =¥(1,19)

x(11,22)= x(1 ,21)

X€I1,23)= x(1,22)

X(11,24)= x(1,23)

xX(11,25)= x(1,2C)*(1,2=RF)

X(11,2¢)= x(1,25)

x(I11,27)= x(1,26)

x(r1,28)= »(1,27)

X(11,29)= FEEPQ* (¥ (1,5)42.87+¥(1,6)¢5.97+X(1,7)424.23
+2(x(1,8)*x(1,19)))

IF ( 1.LT.6 ) 6O 7O Sv

XC11,3°) = F(1,1) *+ X(1,37) + P(1,2) * x(1,31) + F(1,3) »
4 X(1,32) + F(1,4) * X(I,33) = ~.25 * x(I,29) * IFEED
¥(11,31) = P(2,1) » X(I1,32) + F(2,2) #* X(CI,31) + F(2,3) #
+ X(1,32) + F(2,6) * ¥(1,33) = X(1,29) » IFEED

IF (I.LT.14) 6O 1O S

X(11,32) = F(3,1) = x(1,30) + F(3,2) * X(I1,31) + F(3,3) «
+ X(1,32) + P(3,4) + x(I,33)

X(11,33) = FC4,1) * X(I,37) ¢ P(4,2) * X(1,31) ¢ F(4,3) »
+ X(1,32) + F(&,6) * X(I,33) .

XC(I1,34) = x(1,2) + X(I,3) + X(1,4) + X(1,5) ¢ x(I,6) +

+ X(1,7) + x(1,19)
C SUM FERFORMANCE INDEX CVER TIME,
C 222222222222 222X ] HAXIMIZA"ION PRDBLE" 22 L R 2 X X X SR XXX
9 FI1 = FI ¢ ( Q@ ~ PRICE / 1.35 ) = x(1,32) *» x(1,32)
IF (IFLAG .NE. 1) GO TO %7
PI = FI = (R4TAX) # U(CI,1) * UCI,1)
7 SUMU = SUMU ¢+ UC(I,1)
SUMUSQ = SUMUSG + U(I,1) = u(I,1)
C SUMS UP 2ND GENERATION T JULIS
TJ2 = TJ2 + SECTJ
C TOTAL 3RD INSTAR POPULATION
TLAR3 = TLAR3 ¢ x(I,7)
C TOTAL UNPARASITIZED 4TH INSTAR POPULATION
TUNPARG = TUNPARG + X (I,R)
C TOTAL FARASITIZED &4TH INSTAR FOFULATION
THARG = TPARG *+ X(1,19)
C TOTAL FESTICIDE USE FOR A SINGLE GROWING SEASON
15 COGNTINUE
PI = FI 4 X(NN,32)
DIFU= SUMU=TVALUE
DIFUSQ@ = SUMUSG = TVALUE
RETURY
END
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L-Q-G DESIGN FOR ON-LINE CONTROL

The basic problem in real-world control system design almost invar-
iably involves the on-line (i.e., real-time) feedback control of an un-
certain, usually non-linear, physical process. This is especially true
with pest management problems--pest ecosystems are usually characterized
by non-linear, dynamic processes; stochastic variations in abiotic factors
affecting the ecosystem adds uncertainty to the process. Further, model-
ing errors are invariably present since models are just simple abstrac-
tions representing only the dominant features of the pest ecosystem under
consideration.

To recapitulate our discussions from an earlier section, one of the
major drawbacks associated with the currently available optimization models
in pest management is that, for the most part, they have ignored the sto-
chastic aspects of the control and concentrated instead on the determin-
istic problem. In the deterministic optimal controller design, one as-
sumes that there is no uncertainty, and that exact measurement of all
state variables are available. This is seldom the case is almost all
practical applications and especially so in pest management problems.

For example, while it is generally easier to take measurement of larval
stages of an insect, it is difficult to measure densities of pupae and
adult. This problem is further compounded by the fact that certain age-

classes (within life-stages of an insect) introduced for modeling purposes,
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cannot be distinguished in the field, and hence, cannot be measured.
Even if all the state variables could be measured, there will be measure-
ment errors introduced by physical sensors, human errors in:carrying out
the measurements, and sampling errors. This uncertainty in measurement
should be taken into account in the design of the optimal controller.
Also, in real-world situations there are likely to be disturbance in-
puts acting on the physical process described by the system model (e.qg.
climatological changes affecting an ecosystem). It is obvious that a
deterministic optimal controller will;not be optimal in a real-world
stochastic situation. In order that we may take into account the sto-
chastic aspects of the problem, the design of the optimal controller
should include a stochastic estimator/filter and a scheme for stochastic
feedback control.

Figure 42 illustrates a generalized control problem encountered
in the real-world situation. It is modeled as a feedback control sys-
tem subject to persistent disturbances. The entire system consists of
three basic components:

(i) The physical process--In the pest management problem it
will be represented by the system model for the pest eco-
system., The ecosystem is subject to environmental dis-

turbance.

(ii) Measurement unit--This represents the sensors or human
measurements carried out in the field. All measurements

are subject to measurement noise.

(iii) Decision-making unit--This consists of an optimal control-
ler, a stochastic estimator, and provisions for stochastic

feedback control.
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FIGURE 42, Schematic illustrating a generalized control problem.
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The decision-making unit, which is called the "compensator" in
control literature, has the task of translating the actual sensor measure-
ments into the actual commanded inputs (i.e. control strategies for man-
aging the pest ecosystem) in such a manner that the performance criterion
specified for the problem is optimized. It is obvious that the design
of the compensator will be dependent on:

(1) Natural dynamics of the system under consideration, both
in the absence of uncertainty (deterministic), and in the

presence of uncertainty (stochastic).
(ii) The level of uncertainty associated with the system.

(iii) The performance criterion specified for the problem.

Clearly the design issue is clouded because it involves the inter-
play between the natural dynamics of the physical process, the stochastic
nature of the uncertainties, and the effects of the deterministic com-
manded inputs. Nonetheless, one can adopt a design philosophy, known
as the Linear-Quadratic-Gaussian methodology, that involves the following
three basic steps:

Step 1. Deterministic Ideal Response Analysis and Design.

Step 2. Stochastic Estimation Analysis and Design.

Step 3. Stochastic Feedback Control System Design.

We outline here the L-Q-G approach to the stochastic optimal con-
troller design. Detailed discussion on all aspects of this problem can
be found in the excellent papers by Athans (1971, 1972) (see also Meier

et al 1971, Kramer and Athans 1972, and Saridis 1977.)
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TECHNIQUES FOR IMPLEMENTING THE L-Q-G ALGORITHM

Step 1 involves the design of a discrete-time, deterministic opti-
mal controller. As mentioned earlier, a variety of approaches are pos-
sible (i.e., dynamic programming, discrete maximum principle, non-linear
programming, differential dynamic programming/successive sweep method,
and their variations). For the reasons discussed earlier, we can adopt
the first order successive approximation technique of McReynolds and
Dyer (1970).

Step 2 involves the design of a state estimator. It should be em-
phasized here that a linearized perturbation model is obtained prior
to step 2. The linearization is done with reference to the optimal state
and trajectories obtained as a solution to the deterministic optimal
control problem in Step 1. Based on the linearized perturbation model,
the deterministic linear quadratic problem can be formulated. This
problem can be readily solved using the matrix Riccati equation (see
references on Optimal Control) and leads to a linear time-varying/time-
invariant feedback relationship between the state perturbation vector
§x(t) and the control perturbation vector Su(t). Detailed discussions
on the perturbation problem, the choice of quadratic criterion, and the
solution of the deterministic, linear-quadratic problem can be found
in Athans (1971, 1972).

In the stochastic estimation problem of Step 2, the uncertainties
arising out of disturbances, measurement errors, as well as the input

uncertainty, will be modeled by the use of white noise. The resulting
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linear-gaussian estimation problem can be solved through the use of the
Kalman-Bucy filter that generates the best estimate 6X(t/t) of the de-
viation of the true state vector x(t) from its ideal deterministic re-
sponse xo(t). Since excellent treatment of the Kalman-Bucy filter is
available in the literature (see references cited under Optimal Control
and Estimation Techniques) it will not be repeated here. However, the
key equations involved in its implementation will be summarized toward
the end of this section.

In short, the Kalman filter combines two independent estimates of
a state vector to provide "best" (minimum variance) estimate of the sys-
tem state. The two independent estimates of the states of the system
are given by:

(i) a process model based on apriori understanding of the proto-

type system, and

(ii) measurements of some or all state variables.
As discussed earlier, estimates from the process model contain uncer-
tainty due to model errors and other limitations. Also measurements
contain sampling and analytical errors. The filter combines the model
and sensor estimates by weighting them according to the uncertainties
associated with each of them in such a manner that the uncertainty as-
sociated with the filter estimate is less than the uncertainty associated
with either independent estimate individually. Output from the filter
consists of a new improved estimate of the states of the system and the
variance associated with that estimate. The Kalman filter utilizes a

recursive algorithm for its implementation. Because of its recursive



151

nature only the most recent measurements are stored in the computer.
Thus the memory and computational requirements are minimal.

Step 3 involves the design of the stochastic controller. The linear-
ized Kalman-Bucy filter can be designed so as to generate on-line the
estimated deviation 8% (t/t) of the actual plant state x(t) from its
ideal deterministic response xo(t). It is to be noted that 8x(t) also
depends on the control correction vector Su(t). Hence, one can now
think of the final step of the desing process as the techniques neces-
sary for generating on-line the control correction vector Su(t) as a
function of the measurements so as to keep Ox(t) small.

The remarkable property of the Linear-Quadratic-Gaussian control
problem is that the optimal control correction Su(t) is generated from
the estimated state deviation 6X%X(t/t) generated by the Kalman filter
by means of the relationship:

Su(t) = -G, (t) SR (t/t)
where the gain matrix Go(t) is precisely the one determined in the solu-
tion of the deterministic linear-quadratic problem. (Note that the
deterministic linear-quadratic problem has the solution:

Su(t) = -Go(t)Gx(t)
with the assumption that the entire state perturbation vector 6x(t) is
measured exactly.)

This valuable feature of the Linear-Quadratic-Gaussian problem
arises due to the so-called "separation theorem" that can be stated

as follows:
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In linear systems with quadratic performance criteria
and subjected to Gaussian inputs, the stochastic optimal
feedback controller is synthesized by cascading an optimal

estimator (Kalman-Bucy filter) with the
optimal controller. (Sar 1977)

The separation theorem is always valid for "

determinisitic

neutral systems"* which

includes the class of Linear-Quadratic-Gaussian problems. For detailed

discussions on the separation principle and related topics, see Bryson

and Ho (1975), Meier et al (1971), Kramer and Athans (1972), Patchell

and Jacobs (1971), and Saridis (1977).

SUMMARY OF THE L-Q-G APPROACH

We summarize here the key steps involved in

the Linear-Quadratic-

Gaussian approach to the design of stochastic optimal feedback control-

ler (see also Figures 43 and 44):

Part A. Deterministic Modeling:
Step 1. Determine a deterministic model of
x(t + 1) = f(x(t),u(t),t).
Step 2. Determine a deterministic model of
y(t) = g(x(t),t).
Step 3. Determine ideal input-state-output
ministic optimal control techniques:
{uo(t)}: ideal input sequence
{xo(t)}: ideal state sequence

{yo(t)}: ideal output sequence
for all t=0,1, 2, ..., T.

the plant; this yields:

the sensors; this yields:

sequences using deter-

*The class of neutral control problems (Fel'dbaum 1965) includes all
problems where the rate of reduction of uncertainty is unaffected by

the control signals.
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Part B. Stochastic Modeling:

Step 4. Model uncertainty in initial plant state:

Select mean: xo E(x(0)

Select covariance: zo cov[x(0);x(0)]
Step 5. Model input uncertainty:
Select covariance: E'(t)(StT = cov[E(t);E(T)]

Step 6. Model sensor uncertainty:

Select covariance: O(t)GtT== cov[B(t);0(T)]

Part C. Linearization:
Step 7. Establish matrices Ao(t), Bo(t), and Co(t) from information

in Steps 1, 2, and 3:

of of 3g

Ao(t) = ox(t) |5 ' Bo(t) = Bu(t)o' Co(t) = x(t) o.

Step 8. Depending on "degree of nonlinearity" select weighting
matrices Qo(t), Rb(t) with due consideration of the values of XO,E(t),
and O(t).

Part D. Control Problem Calculations (Off-Line):

Step 9. Using the weighting matrices Qo(t), Rb(t) of Step 8 and the
matrices Ao(t), Bo(t) of Step 7 solve backward in time the matrix dif-
ference equation:

= ' + - A' K (t + 1)B (t

Ko(t) Qo(t) + Ao(t)Ko(t l)Ao(t) Ao(t) o( ) O( )

« [B' (£)K (t + 1)B () + R (£)] 1B' (£)K (t + 1)A (t)
o o) o o o o o
with KO(T) = QO(T).
Step 10. Compute the control gain matrix Go(t):

' -1,
Go(t) = [Bo(t)l(o(t + l)Bo(t) + Ro(t)] Bo(t)l(o(t + l)Ao(t).
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Filter Problem Calculations (Off-Line)

Step 1l. Using the covariance matrices EO,E(t) and O(t), estab-

lished in Steps 4-6, and the matrices Ao(t), Co(t) of Step 7, solve

forward in time the matrix difference equations:

I e+ 1]

Zo(t + 1|t + 1)

Ao(t)zo(tlt)Aé(t) + E(t)

Lt +1fe) + ] (e + 1]+ 1ci(e + 1)

« le (e + DY (e +1ocie+ 1+ oe + DI e_(£+ DI (e + 1[0

with }_(0]o) = ] .

Step 12.

Part F.

Compute the filter gain matrix:

- L -l
H (t+1) = Zo(t + 1]t + el (e + 10 “(e + 1.

On-Line Calculations

From actual measurements z(1l), z(2), ...

(a) Compute 8z(1),8z(2),...,by:

Sz(t) = z(t) - g(xo(t),t).

(b) Compute estimated deviations 6x(t/t) and control correction

Su(t) by:

SR(t + 1]t)

SR(t + 1|t + 1)

Ao(t)dx(t|t) + B_(t)du(t)

Sr(t + 1)

§z(t + 1) - C_(t + 1)SR(t + 1|t)

§R(t + 1|t) + H_(t + 1)8r(t + 1)

Su(t)

-G_(t) 8R(t|t)
o

§%(0]0)

E{x(0)} - xo(O).

(c) Compute actual control u(t) by:

u(t) = uo(t) + Su(t).

It is worth noting here that the on-line computational requirements

are minimal, thus leading to a simpler and economical controller.
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