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ABSTRACT

ON A GENERALIZATION OF
SUBNORMALITY IN INFINITE GROUPS
BY

Anthony John van Werkhooven

The concept of an f-subnormal subgroup is defined
by R. E. Phillips in [1]. We say that the subgroup H 1is
an f-subnormal subgroup of G (written Hq f4G) if there

exists a series

S:H=HocH1;...;Hn=G
of finite length such that either H;, aH, , or |Hi+1:Hi|<<a
We say that the series S 1is an f-series for H in G .. In

this paper a number of questions concerning f-subnormal sub-

groups are investigated.

We study conditions under which the join of two
f-subnormal subgroups is an f-subnormal subgroup. It is
shown, for example, that whenever G 1is metabelian, finite-
by-abelian, nilpotent-by-abelian, or FC-by-abelian, then the
join of two finite f-subnormal subgroups of G 1is a finite
f-subnormal subgroup. H. Wielandt showed that the join of
two finite subnormal subgroups is a subnormal subgroup. 1In

contrast to this result, we exhibit an abelian-by-finite
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group which has two finite f-subnormal subgroups whose join

is not an f-subnormal subgroup.

In the main result of Chapter IV we show that under
certain restrictive conditions on the class %, the join of
finitely many f-subnormal % - subgroups is a % - subgroup.
This result implies that the join of finitely many f-sub-

Vv A

normal solvable-by-finite-, M _ -, M_- subgroups is a solvable-
v A s S vV A

by-finite-, '.ms

-, M- subgroup respectively , where M (!ms)
is the minimal (maximal) condition for subnormal subgroups.
\%
In Chapter V f-subnormal ﬁRS - subgroups are studied.
It is shown that if H and K are f-subnormal !I\:‘.s - subgroups
of the group G, then |H: NH(K)| < » . This result is
used to prove that if % is a class closed under the taking

of subgroups and homomorphic images, then the following are

equivalent:

(1) If Ge%, the join of two finite f-subnormal
subgroups of G 1is a finite f-subnormal subgroup.
\
(2) If Gex, the join of two f-subnormal fms - sub-
v
groups of G 1is an f-subnormal m, - subgroup.
A generalization of the concept of a nilgroup is

investigated briefly in Chapter VI. We say that G is a

Bf-—group if for all xe¢G, <x>afaG . A description of
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Bf-groups in which the length of the shortest f-series is
bounded by 1 or 2 for each element is given. It is

\'
shown that Bf-groups which satisfy ﬂs are periodic groups

in which 1|6:2(G)| < = .

1. Phillips, Richard E., "Some generalizations of normal

series in infinite groups." To appear in the J. Austral.

Math. Soc.
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Chapter I

Introduction and Notation

In this paper we will investigate a generalization
of the concept of a subnormal subgroup. The definition is

due to R. E. Phillips, [7].

Definition 1l.1: We say that H isan f-subnormal

subgroup of G (H4af 4G) if there exists a finite chain of

subgroups
H = Hy c Hl c ... < Hn =G
such that either Hi'QHi+1 or |Hi+l :Hi| < e . We refer

to such a series as an f-series for H in G

H. Wielandt defined the concept of a subnormal

subgroup in [17].

Definition 1.2: We say that H 1is a subnormal
subgroup of G (H<44G) if there exists a finite chain of

subgroups

H=HO<JH<...H

1 n-1 n

Notation 1.3: If H is a subgroup of G, we write



Hc G and denote by |G:H| the index of H in G . If

H is a normal subgroup of G, we write HQG . If N is
a subset of G, NG denotes the normal closure of N in
G . When N = {x}, we write x®  for {x}G . If HcG,

then HY denotes the conjugate of H by ge¢G and

CoreG(H) = () uY
geG

If H and K are subgroups of G, then CK(H)
denotes the centralizer of H in K and NK(H) denotes

the normalizer of H in K .

If H44G, it can be shown that there exists a
canonical normal series from H to G (see for example
[8] or [10]). This canonical normal series from H to
G 1is referred to as the standard series for H in G . It
is well known that the standard series for H 1in G vyields

a normal series of shortest length from H to G .

Definition 1.4: If H«4<49G, the length of the

standard series for H 1in G 1is called the index of

subnormality for H in G and is denoted by s(G,H) .

H. Wielandt proved in [17] that whenever G has a
composition series, the join of two subnormal subgroups of

G 1is again subnormal in G . 1In contrast to this result,



D. Robinson has given in [l0] examples of groups in which
the join of two subnormal subgroups need not be a subnormal
subgroup. Various conditions under which the join of two
subnormal subgroups is a subnormal subgroup are discussed,
for example, in (1], [8], [9], [1l0], [1l1l], [1l2], [14], and

[17].

In this paper we establish a number of sufficient
conditions under which the join of two finite f-subnormal
subgroups is an f-subnormal subgroup. In Theorem 3.18 we
give an example of a group G which has two finite
f-subnormal subgroups whose join is not an f-subnormal
subgroup of G . One may compare this result with Theorem 7
of [17], in which H. Wielandt shows that the join of two

finite subnormal subgroups is always a subnormal subgroup.

Notation 1.5: The unit element and the group of

order one will both be denoted by 1 .

Definition 1.6: A (group theoretic) class T is a
collection of groups such that 1 ¢I" and whenever GgeT

and G1 is isomorphic to G, then G1 el

Notation 1.7: (i) We will use the following nota-
tion for those classes of groups which will be referred to

frequently.




then

3
3
|

=
3
=]
0]
]

(ii) I1If T,

rlrz is the c

(iii) If T

]

sT

arl

abelian groups

- solvable groups with derived length less

than or equal to n

solvable groups

finite groups

nilpotent groups (of class s c)

finitely generated groups

groups satisfying the maximal condition
for subgroups, normal subgroups, subnormal
subgroups

groups satisfying the minimal condition
for subgroups, normal subgroups, subnormal

subgroups

and r2 are two classes of groups,

lass defined by
N<G, NeT,, and G/Ne'[‘z} .

is a class of groups, then

{H|3GelI' and Hc G}

{H13GeI', NG, and G/N = H}

sn,T = {H|38GeT, HaaG, and |[G:H| < =}

(iv) 1If rl

GeI‘l/\I‘2 i

Gerlvrz i

and r, are two classes of groups, then

£ GeI‘1 and GeI‘z:

f GeI‘l or Ge[‘2




We define the property (*) in Definition 4.4. We
say that the class % has the property (*) if
(*) for any group G, the join of a finite number

of subnormal %¥-subgroups of G 1is a %-subgroup.

It is known for example that the class ©& has the

property (*) [16 ; Theorem A].

We establish in Theorem 4.5 that if % = snoz is a
class of groups having the property (*), then the join of a
finite number of f-subnormal %XJ-subgroups of a group G is

a ¥yx-subgroup of G .

In [11] and [12] J. E. Roseblade gives the following

definition,

Definition 1.8: Let % be any class of groups. We
say that % is a subnormal coalition class if, given that
H and K are subnormal %X-subgroups of G, the join <H,K>

is a subnormal % - subgroup of G .

It is clear that if % 1is a subnormal coalition class,
then % has the property (*)
v
In [1l1] Roseblade showed that M, is a subnormal
coalition class and in [12] he showed that Qs is a subnormal

coalition class. Further results on subnormal coalition clas-

ses may be found in [8], [9], and [14].



\Y
In Chapter V we study f-subnormal ms-subgroups of

a group. We establish in Theorem 5.8 that if H and K are
f-subnormal ;é-subgroups of G, then |H :NH(K)| < o ,
where NH(K) denotes the normalizer of K in H . We
showed in Corollary 4.12 that the join of finitely many
f-subnormal %s-subgroups is a %s-subgroup. We use

Theorem 5.8 to give an alternate proof of Corollary 4.12.

In Theorem 5.14 we establish that for certain classes
of groups, the join of two finite f-subnormal subgroups is
always an f-subnormal subgroup if and only if the join of two
f-subnormal %S-subgroups is always an f-subnormal subgroup.

R. Baer defined in [l1] the concept of a nilgroup.

We generalize this concept in Definition 6.2. We say that
G 1is a Pg-group if for all xe¢G, <x> 9f4qQ@G . 1In
Propositions 6.4 and 6.6 we examine Bg-groups for which
there is a uniform bound on the length of the f - series for
each element. 1In Proposition 6.15 we use the results of
Chapter V to characterize 9P¢ -groups with %S

Notation 1.9: If N and M are subsets of G,

we denote by <M, N> the subgroup of G generated by N

and M . We denote by [M,N] the subgroup

<[mrn] ‘mGM: negeN>,

g

T



where ([m,n] is the commutator of m and n .

£
Notation 1.10: We will often indicate by H ¢ K

that H is a subgroup of finite index in K .

Notation 1.11: If G 1is a split extension of H

by K, we write G = H]K .

Notation 1.12: We will denote by Cpeb the group

defined by the set of generators X = {xl,xz,. . .} and the

p
i+l

set of relations R = {xg =1, x xil 1 <i}.



Chapter II

f-Subnormal Subgroups

It is inherent in Definition 1.1 that an f-series
for an f-subnormal subgroup H of a group G 1is of finite
length. Hence, for every f-subnormal subgroup H of G,
we can find an f-series of shortest length. We denote the

length of such an f-series by £ (G,H).

Remark 2.1: If H«f @G, then £f(G,H) is an
invariant of the pair (G,H). This seems to be the only

meaningful invariant of (G,H).
Suppose that f(G,H) = n and

S:H=I%CH1C...C%I=G

is an f-series for H in G . We can define functions 9;
and 9, which have as their domain all triples (G,H,S),
where H<49f 4G and S 1is an f-series for H in G of

length £f(G,H). Let

the number of non-normal "jumps" in S

9, (G,H,S)

and

g, (G,H,Ss) = 2'{|Hi+l : Hy | ‘HiﬂHi+l and |H; 4 :H | < = }




Example 2.2 shows that neither g, nor g, is an invariant

of (G’ H) .

Example 2,2: Let

N =

1 <x(l,i)> and N, =

1 2

h~8

<x(2,1) >,
1

o8

i
where the elements x(i,j) are of order 2. Let N be the

direct product of N1 and N2 s
N = Nl ® N2 .

We define the automorphisms t1 and t2 of N by

ty t
x(1,1i) = x(1,1i) x(2,1) = x(1l,i)+x(2,1)
t2 t2
x(1,1) = x(1,i) +x(2,1) x(2,1) = x(2,1)
Let G =N ]< tl,t2> . It is readily verified that tl and

t2 are automorphisms of order 2 and that
<t1:t2> = S3 )

the symmetric group on three letters. Consider the f-series

st i< x(1,1)> aNaG

and

2 © , f
ST :<x(L,1)>a(<x(1,1)> @ 2<X(1,1)>)®N2CG
i=3

for <x(1,1)> in G . Since < x(l,1)> 1is neither normal
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nor of finite index in G, f(G, <x(1,1)>) =2 2 . The

existence of the f-series S1 implies that £f(G,<x(1,1)>)=2

Hence Sl and 82 are f-series of length f(G,<x(1,1)>) .

We note that

Il
-

g,(GHsh =0 g,(,ns?

gz (GJH) Sl) =0 92 (G:H) Sz) 12

It follows that neither g, nor g, is an invariant of the

pair (G,H).

The following two lemmas are easy consequences of

Definition 1.1.

Lemma 2.3: If H4af4G and K¢ G, then HNKdJ4f 4K

and f (K,HNK) < f (G,H).

Proof: 1If £f(G,H) = n, then there exists an f-series
H=HOCH1C...CHn=G
for H in G . Let us consider the series
(a) HnK=Bo;B1;B2C...CBn=K,
where B, = HNK for O<is<n . If H, 9@H,,6,, then
i i i i+l

H,NK<H, ,nK. If |H  ,:H | < =, then
|, MK : H.NK| < |H, , :

f-series for HNK in K. Hence HNK<gf 4K and f(K,HNK)sn

Hi| < » . Thus the series (a) is an

0O
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Lemma 2.4: If HaafaG and KaG, then HK/KafaG/K

and f(G/K, HK/K) < f(G,H) .
Proof: If f(G,H) = n, then there exists an f-series

H=I%CH1C...C%I=G

for H in G . Let us consider the series
(a) HK/KcHK/Kgc...cHK/K=G/K.

If H; qH, , , then HiK/I(qu+1K/K . If \Hi+1 : Hi| < » ,
then |H; ;K/K:H,K/K|s< B, ,: H | < ». Hence (a) is an
f-series for HK/K in G/K . We conclude that HK/K af g G/K

and f(G/K, HK/K)< £(G,H) = n . C

In what follows, frequent use will be made of Lemmas

2.3 and 2.4 without further reference.

Remark 2.5: A subgroup of finite index in a subnormal
subgroup of G 1is an f-subnormal subgroup of G . Also, a
subnormal subgroup of a subgroup which has finite index in G
is an f-subnormal subgroup of G . We will show in Example
2.8 that not every f-subnormal subgroup of G need be of

either of the above types.

We will need the notion of a wreath product in

Lemma 2.7.
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Definition 2.6: Let H and K be groups and let

B= 3y H, Dbe the direct sum of isomorphic copies of H
keK

indexed by the elements of K . Let bg¢B with b(k) as

its k-th component. If x¢eK, we define p*

1

by the
rule bX(k) = b(kx~ ") . The wreath product of H with K, ' y

H wr K, 1is the split extension B ]K .

For further information see [6] .

Lemma 2.7: If A 1is a simple group and B 1is

isomorphic to Cpm , then A wr B has no proper subgroups

of finite index.

Proof: It will suffice to show that A wr B has no
proper normal subgroups of finite index. Suppose KdA wr B
and |A wr B:K| < » . Since B is divisible and
|[B:BNK| < »« , BcK . It will now suffice to show that for

B
some boeB,A SK, for then <Ab s, B> = A wr BcK and
(0]

bo
K=A wr B. Since L A, 1is an infinite group and
beB
| z2a,:( z A ) NK| <=,
beB beB b

there exists 1 # x ¢ ( v Ab)(ﬁK . Let b_eB such that
beB o

x(bo) # 0 . Let y‘eAbo such that [ x(bo), y] #1 . Using

the fact that

K zAb)ﬂKq

T A ,
beB beB b
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we observe that

_.]_y
1 # [x(b.),y] = x "x¥ ¢ T A K
o ] Kchb)n
and

1 # x~1xY ed, NK .
0]

Since A, NKaA

b is simple, it follows that

and A
(o] bO bO

A, ¢cK . Hence K= AwrB . a
bO

Example 2.8: Let A, be the alternating group on 1
letters and let C be an arbitrary infinite simple group.
Let G = C"\.SA5 be the split extension

5
\ 55,

where Ci=-C and the elements ofzg act as permutations on

5 .
the coordinates of the elements of = Ci . Let
i=1
4 G_.2s
H = C'\4A4 = K iilci ) ]A4c:G . Since H :A4 ==A5,
G Bg '
H :<:C1 ,A5j> = G . Hence, H 1is not a subnormal subgroup
of G . We note that H 1is an f-subnormal subgroup of G
since
5

f
(a) H = C‘\,4A4<1k ii:lci)~ A cG

is an f-series for H in G . Since |G:H| is not finite,
f(G,H) >1 . It follows that f(G,H) = 2, since the series

(a) shows that £f(G,H) s2

Let E=Ger, where B’—"'Cpco and p 1is a prime
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number. If we identify G with Gy, we observe that

Haf qG
since
Haf aG
and
Ga I Gb<na
beB

Since H 1is not a subnormal subgroup of G, H 1is not a

subnormal subgroup of G .

We will now show that G contains no proper subgroups
K of finite index in G . If we denote by Ag(b) the sub-
group of Gy corresponding to the subgroup Ag of G, then

the subgroup K T AS(b)) ‘B of G is isomorphic to
beB

A5 wr B, It follows from Lemma 2.7 that \ 2 A (b)}' B

has no subgroups of finite index. Hence \ T A (b))-B c K.
beB

If we denote by Cl(b) the subgroup of Gy, corresponding to

the subgroup Cy of G, then the subgroup \ Z C (b))- B

of G 1is isomorphic to C, wr B . Again, it follows from
Lemma 2.7 that & (b))'B ¢ K. It now follows that
bgB
< T Ag(b), v C;(b)> = T G cK
beB beB beB
and
G = b) B =K.

pr
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We conclude that G contains no subgroup K such that

Ha<9K and |G:K| < = .

Suppose that L 1is a subgroup of G such that
L<<G and |L:H| < ». Then LNG, =LNGaaG and
ILNG:H| < « . Hence H g LNGa4q G . We showed that
H® = G . 1t follows that (LNG)® =G and LNG = G . Since

\G :H| is not finite, we conclude that the subgroup L can-

not exist.

It will be of interest to know when an f-subnormal

subgroup is a subnormal subgroup.

Definition 2,9: Let 1 be a class of groups. We

say that G belongs to the class L' if every finitely

generated subgroup of G 1is contained in a T-subgroup of G.

Lemma 2.10: If G 1is an L M- group, then Haf qG

if and only if HaaG .

Proof: If HafaG, let

H=HOcH1<:...cHn=G

be an f-series for H in G . Suppose that
1By 8] <y
then

L = Hi+1/Core (Hi)

Hin
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is a finite L% -group since the class LN 1is closed under
homomorphic images [4;p. 222] . Hence Leg® . It is well
known that in a nilpotent group every subgroup is subnormal

[4;p. 225] . Thus

Hi/Core (Hi) Q< Hi+1/C°reH.

(H;)
i+l i+l

H

A\ e e e~ oo

But then Hi<)<1HiJr and H«q4G O

l .

The following lemma shows that in a certain sense
f-subnormal subgroups are not too far removed from being

subnormal subgroups.

Lemma 2.11: If Haqf 4G, then there exists HqqG

such that H ¢ H, |H:ﬁ| < o , and s(G,ﬁ) < £(G,H) .

Proof: We will prove the lemma by induction on

£(G,H).

Suppose f(G,H) =1 . If HaG, there is nothing to

prove. If |G:H| < », we may choose H = Core (H) .

Let us now assume that the assertion is true for

n-1 and that £f(G,H) = n . Let

be an f-series for H in G . If H _, <G, then

f(Hn_l,H) = n-1 and the induction hypothesis yields the
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existence of ﬁqun_l such that H=2H, |[H:H| < =, and

s (H H) sn-1 . But then H4q4G and s(G,ﬁ)sn .

n-1°

If |G: Hn—l\ { », we let L = CoreG(Hn_l) . Now

let us consider the series

() HLcH NLe...cH ;NL=1L.
If H, «H, ,, then HiﬁLqu_'_lﬂL and if |Hi+1:Hi|<m,
|Hi+1ﬂL:HiﬁL| < . Thus, (a) is an f-series for HNL
in L . Since f(L,HNL) < n, the induction hypothesis yields

the existence of Ha4 L with the property that |HNL:H| < =
and s(L,H) sn-1 . Now, |H:HNL| < » and L4G imply the

desired conclusion. O
A useful consequence of Lemma 2.11 is the following

Corollary 2.12: If H 1is an infinite f-subnormal
subgroup of G which has no proper subgroups of finite index,

then Ha4qG. O

Definition 2.13: If 7y 1is a class of groups, we

say that ¢ 1is a radical class if sy = § and every group
G has a normal y - subgroup, T£(G), containing all the normal
¥ - subgroups of G . We refer to y(G) as the y-radical

of G .

Lemma 2.14 [7; Theorem 3.1]: If ¢ 1is a radical

class such that § =3y and H is an f-subnormal subgroup
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of G, then 7y (H) is an f-subnormal subgroup of X (G) . O

It readily follows from Definition 2,13 that
(L3)3 = Ly 1is a radical class. Hence, we have as a conse-

quence of Lemma 2.14

Lemma 2.15 ([7; Corollary 3.1]: If H and K are
locally finite f-subnormal subgroups of G, then <H,K>
is locally finite. 1In particular, the join of finitely many

finite f-subnormal subgroups is finite. O

Next we present a few comments concerning the inter-

section of f-subnormal subgroups.

Proposition 2.16: If H and K are f-subnormal

subgroups of G, then HNKaf«G and

f(G,HNK) < f(G,H) + £ (G,K). 0

Proposition 2.16 follows readily from Lemma 2. 3.

Corollary 2.17: The intersection of a finite number
of f-subnormal subgroups of G 1is an f-subnormal subgroup

of G . O

The intersection of an arbitrary set of f-subnormal
subgroups of G need not be an f-subnormal subgroup of G .

This is shown in the following example.

L
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Example 2.18: Let G be the infinite dihedral

group

G = <a,b|bab = a—l,b2 =1>

2t P

Let H, =<a ,b>, then Hi<1<G,s(G,Hi) = i, and ‘
o
N Hi =<b> .
i=1

Suppose < b> 1is an f-subnormal subgroup of G, I
then there exists an f-series a

<b> =AOCA1C. . .CAn =G .

Since A, 2 A there is an element ambl, m #0 such that

1 + "0

m i m
ab eAl . Hence a gAl . Let n, be the least positive

n n n -n
integer such that a © eAl .  Then Al =< a O,b]ba Op=a O,b2>.
Since Ay is an infinite group, <t)>‘qA1 . But this cannot

no 2n0

occur since b? = ba Z <b> . Hence <b> 1is not an

f-subnormal subgroup of G .




Chapter III

The Join of f-Subnormal Subgroups

It is well known that the join of two subnormal
subgroups need not be a subnormal subgroup. It can be shown,

using the example given by D. Robinson in [8], that there

exists an YN, - group in which the join of two subnormal

W

subgroups need not be an f-subnormal subgroup. 1In this
chapter we study conditions which imply that the join of two

f-subnormal subgroups is an f-subnormal subgroup.

In the main result of this chapter, Theorem 3.18,
we give an example of a group in which the join of two
finite f-subnormal subgroups is not an f-subnormal subgroup.
One may wish to compare this result with Theorem 7 of [17]
in which H. Wielandt shows that the join of two finite sub-

normal subgroups of a group is always a subnormal subgroup.

The following lemma is an immediate consequence of

Lemma 2.4.

Lemma 3.1: If H4af4G and KaG, then

<H,K><afaG and f£(G,HK) s f(G,H) . 0

Lemma 3.2: If H and K are f-subnormal subgroups

20
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of G such that K has an f-series

(a) K = Koc_-ch. . .cKn = G

and KiH=Ki for i =0,1,2,...n, then J = <H,K>af aG

and f£f(G,J) <f(G,H) * £(G,K) .

Proof: Let Ki and Ki+1 be members of the f-series
(a) for K in G . 1If Ki<Ki+1’ then KquKi+l . By
Lemma 2.3, Ha f<1HKi+1 . An application of Lemma 3.1 shows

that HKi<1f<1HKi_‘_1 and f(HKi+1,I-H(i)sf(G,H) . If

'Ki+1 : Ki‘ < », then |HKi+1 : HKi| < w . Thus, in any case,
HKi af <)HKi_'_1 and f (HKi+1’HKi) <f(G,H) . We conclude that
HKaf oG and f(G,HK) <f(G,K) - £(G,H) . 0O

Lemma 3.3: If H<4G, KafaG, and H.K=H, then

<H,K>, af4G and f(G,<H,K>) =<s(G,H) -f(G,K) .

Proof: Let

H=H «H ;<...aH a9H, =G
be the standard series for H in G . We will show by
induction on i that HiK = Hi . We note that HOK = GK =G .
K Hi_1
Suppose Hi—l = Hi—l’ then Hi = H and hence
H; _ H:_ H; _
HiK = (H 1 l)K = (H‘K) i-1 H* 1 Hi . An application of

Lemma 3.2 yields the desired conclusion. O
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Proposition 3.4: Let H and K be f-subnormal

subgroups of G such that H = H and |IK| < », then

<H,K>afaG and f(G,<H,K>) <f(G,H) -f(G,K) .

Proof: Let
(i) H = HOcchHzc. . .CHn = G

be an f-series for H in G . Let

Consider the series

(11) H=Bo.c_B1;B2...<;Bn=G
If H, qH then N HXa N BF If |H :H. | < =
i i+l’ i i+l ¢ i+l ° i ’
keK keK
then | N Hik+l: N Hik | < |H, - H; | Kl ¢ o . Hence, (ii)
keK keK
is an f-series for H in G . Since BiK = Bi for O<i<n,

Lemma 3.2 implies that <H,K><afaG and f(G,<H,K>) <

f(G,H) " £(G,K) . ‘ ;)
As a consequence of Proposition 3.4 we have

Corollary 3.5: If G 1is any group and G1 is
torsion free, then the join of two finite f-subnormal subgroups

of G 1is a finite f-subnormal subgroup of G .

Proof: Let G be a group such that Gl is torsion

free. If H and K are two finite f-subnormal subgroups
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of G, then <H,K>¢J by Lemma 2.15. Hence [H,K] =1
and HX = H . It now follows from Proposition 3.4 that

<H,K>afaG . 0

Theorem 3.6: If H and K are two finite Ei
1

f-subnormal subgroups of G , then the following are equivalent:

(i) <H,K>af4qaG

(ii) BNafaG U '

(iii) [H,K]afaG .

Proof: Since H and K are finite f-subnormal sub-
groups of G, it follows from Lemma 2.15 that <H,K> ¢{

K

and consequently H and [H,K] are finite subgroups of G .

Suppose that <H,K>af4qG . Since HK and [H,K]

are normal subgroups of < H,K>, HK and [H,K] are
f-subnormal subgroups of G . Thus, (i) implies (ii) and (i)

implies (iii).

On the other hand, if HK<1f<1G, it follows from
Proposition 3.4 that <HK,K> = (H,K>» 1is an f-subnormal

subgroup of G . Thus (ii) implies (i).

If [H,K]<faG, it follows from Proposition 3.4 that

< [H,K],H> = H'qfqG . Hence, (iii) implies (ii). 0

Corollary 3.7: Let % be a class of groups with
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the property

(A) If Ge%¥ , then every finite subgroup of G is

f-subnormal in G

¥
If Ge¢*¥U , then the join of two finite f-subnormal subgroups
of G 1is an f-subnormal subgroup of G .
Proof: If Ge¢%¥Y , G has a normal subgroup N
such that N¢%¥ and G/N¢¥ . Let H and K be two finite L

f-subnormal subgroups of G . Since G/Negy , [H,K]cN , It
follows from Lemma 2.15 that [H,K]e¢{ . Hence [H,K]<afaNaG
and [H,K]ofaG . It now follows from Theorem 3.6 that

<H,K», afqaG . O

Definition 3.8:

(i) We say that G 1is an FC-group (Ge¢FC) 1if for
every element x¢G, |G:C (x)| < = .

(ii) For any group G we define the FC-center of G,
FC(G) , by

FC(G) = (x| |6:Cco(x)| < = ] .

It is readily verified that FC(G) 1is a character-

istic subgroup of G .

Lemma 3.9: Every finite subgroup of an FC-group is

an f-subnormal subgroup.
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Proof: If Ge¢FC and H is a finite subgroup of
G, then |G :CG(h)| < » for every element h ¢H . Since

H is finite,

G :C.(H) G: Nc.Ml<snleg:c.h)| < o .
6@ = l6: NcgM = 1 oot

and

H<H-CG(H)

n
@

is an f-series for H in G . Hence, H 1is an f-subnormal

subgroup of G . O

Remark 3.10: The classes U, g, M and FC satisfy
the property (A) of Corollary 3.7. 1It follows from Lemma 2.15
and Corollary 3.7 that whenever <3eeﬁzlgm,gm, or (FC)Hu, the
join of two finite f-subnormal subgroups of G is a finite

f-subnormal subgroup of G .

Proposition 3.11l: Let H and K be f-subnormal

subgroups of G . If |G:NG(H)| < w, then <H,K>afdqG

and f(G,<H,K>) <2* f£(G,K)

Proof: Since |G:N (H)| < =, |K:N (H)| < = .
Let H = HX . Then there exist eiements k.,k k_ eK

l’ 2,. . . 9 n
= k1 k2 kn
such that H=<H ,H", ...,H > . Since
k.

n _ .
G : ianG(H DlsleNg® " < o, |6:N,(H| < = . Hence,

ﬁN(ﬁ)f
q G < G
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is an f-series for H in G . Since HX = H and

NG(ﬁ)K = NG(ﬁ), Lemma 3.2 implies that

<H,K> = <H,K>afaG
and

£(G,< H,K>) <2+ £(G,K) .

Corollary 3.12: If H and K are two

subgroups of the FC-group G and He g, then

Proof: If H 1is a finite subgroup of t

G, |G:N;(H)| < » . Proposition 3.11 shows that

<H,K>afaG .

O

f-subnormal

<H,K> afqG .

he FC-group

(]

Definition 3.13: If we denote the center 2Z(G) of

G by Z,(G), then for the ordinal number o we define

Za+1(G) by
2,41 (6) /2, (6) = 2(G/Z,(G)) .
If B is a limit ordinal, we define %B(G) by
z2,(G6) = UZ (G) .
P o<B ©

We define the hypercenter of G,Zw(G),

z_(G) = U{ZO(G)|<1 an ordinal number } .

by

We say that G 1is hypercentral if ZQ(G) =G .
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The following concept will be useful in the proof of

Proposition 3.15.

Definition 3,14: 1If

S:H=HOCH1C. ..CHn=G

is an f-series for H 1in G, we define n(G,H,S) to be the

number of factors in the series S which are not finite.

Proposition 3.15: If G 1is a split extension of N

by H such that Ne¢¥ and Hed, then HqfaG if and

only if Zm(G) = Zn(G) for some integer n and |G :Zm(G)l { .
Proof: Let

S:H=E%CH1C...c%n=G

be an f-series for H in G . If n(G,H,S) = k, we write
the f-series S

O+l

<{e,0sisk .

(i) H=H,< H «aH cH <«H, ¢.
Bo 01 Bp oy By

where HB /HO £%,1l<sisk, and |H
i i

..cH «qH, cH
ok Px

: H
%i+1 5i|

We proceed to prove the proposition by induction on
n(G,H,s). If n(G,H,S) =0, Ge¢Q and the assertion is

trivially true.

We now state our induction hypothesis: If G is a
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split extension of N by H such that Ne¢% and HeJ,
then for some integer n Zw(a) = Zn(a) and |G:2 (G)]| < =

whenever H has an f-series § such that n(G,H,S) < k .

Now, suppose that G 1is a split extension of N by

H such that Ne¢¥y, HeJd, and H has an f-series S as

given in (i) with n(G,H,S) k. Since H(J ed and
1

H «H, ,|H, :C, (H )| < w® . Since |G:N| < = it
oy “F8y ey B, %1 | ’
follows that

|H, : NNC H, )| < = .
But then |H, :H, MNZ(G)]| < », since NNOC, (H ) cZ2Z(G)
B1” Py Hs, 1
Let us now consider the group G/Z(G) . G/Z(G) 1is a split

extension of N2Z(G)/Z(G) by HZ(G)/Z(G) such that

NZ(G)/Z(G) e¥ and HZ(G)/Z(G) ¢y . The f-series

S:HZ(G)/Z(G) = H 2(G) /2(G)cH Z(G)/Z(G)qHﬁlz(G)/Z(G)...
1 :

Po

H_ 2(G)/2(G)<H, Z(G)Z(@<H_ k 2 (G)/Z(G) =G/Z(G)
% %

Px +1

satisfies the inequality n(G/2(G),HZ(G)/Z2(G),S) < k . An
application of the induction hypothesis yields the existence
of an integer n such that Z“(G/Z (G)) = Z, (G/2(G)) and
|6/2(6) : 2_(G/2(G))| < = . But then 2 (G) =2z ,,(G) and

l6:2_(G)| < = .
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The converse is a special case of Proposition 3.16.

Proposition 3.16: If G 1is a group such that

|G : z, (G)| < » for some integer n, then every subgroup of

G 1is an f-subnormal subgroup.

Proof: Let H be a subgroup of G, then

qul(G)H-a... <)Zn(G)H cf G

is an f-series for H in G since |G: zn(H)l < » and

2, (6)

H =<H,[H,Zi]><;<H,Zi_l>, l<is<n,. O

Corollary 3.17: If G = N]H such that Ne¢¥ and
Hed, then Hafd4aG implies that every subgroup K of G
is subnormal in a subgroup having finite index in G . Con-

sequently, every subgroup of G 1is an f-subnormal subgroup

of G .
Proof: If HafaG, then |G: Zk(G)| < ® for some
integer k . For any subgroup K of G,
K aKZ, (G) « aK £G
1 . . . Zk
is an f-series for K in G . The corollary follows. a
Theorem 3.18: There exists a group G e%[(B)A bR

such that the join of two finite f-subnormal subgroups H

and K of G 1is not f-subnormal in G .

O
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Proof: We let G be the group of Example 2.2, G is
a split extension of N = N1®N2 by < tl,t2>, where N ¢ ¥
and <t1, t:2>=~-S3 , the symmetric group on three letters.

(3)

Hence, G ¢ ¥ AUX . We recall that ti centralizes N. and

i
N/Ni’ i =1,2 . The subgroups <t1> and <t2> are

f-subnormal subgroups of G since
<t aN t Nt >fG
i> 9N <> 9 i> <
is an f-series for <ti> in G, 1i=1,2,

We now verify that 2(G) = 1. Suppose n-t e Z(G),

where ne¢N and te< tl’t2> . If t # 1, there exists
te< tisty,> such that tT;- # t . But then (nt)?= nt and
n-ln_t- = t(t?)—1 . Since NN<t,t,> =1, tF = t, contra-
dicting the fact that t? #t . Hence t =1 . Since

nt = n*1l =n¢N, nt= n, +n2, where n, eNl ang n, eN2 .
If nlafo,then nz#n. If nz#o,then nlyfn.
Hence n =1 . We conclude that 2Z(G) = 1 . Now, Proposition

3.15 implies that < tl,t2> cannot be f-subnormal in G . O

Remark 3.19: If % 1is the class 91(3),213, (FC)gy, or
Y(FC) and Ge%¥, then the join of two finite f-subnormal

subgroups of G need not be f-subnormal in G .




Chapter IV

The Join of f-Subnormal %{ - Subgroups

In order to prove the main result of this section,

we will need the following technical lemma.

Lemma 4.l: Suppose HaG,|G:H| =n< «, and KcH,

If A= {a(l),a(2),...,a(n)} 1is a right transversal for H
in G such that 1 ¢A and G = <K,A>, then there exists

a finite subset L of H such that
a -
H=<K,L|a 1€A> .

Proof: Let a,be¢ A and keK . Since KgcHgqG,
akb™ 1 ¢eH if and only if a =b . For a(i), a(j) ¢A,
l<i, js<n, we define a(i,j) ¢A uniquely by the equation

. . . . =1
a(i)a(jla(i,j) “e¢H .
Let H be defined by
= a . . . .= 1,_-1 .o
H=<K,a(i)a(jla(i,j) “|a "eA,1<i,jsn~ .

Since HqG,EGH. If geH, then

€1 €2 €

g=9; 9 “...g "

m

for some elements 9; e KUA and €; = + 1,1 <ism, Set a(i0)= 1.,

31
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There exists a unique element a(il) e A such that

€ €
. 1 . . 1.2 —1 .
a(:.o)g1 eHa(ll) . Hence a(10)g1 a(:l) cH .c It is
easily verified in fact that (a(ij)g; 'la(il)_l) l isa

(displayed) generator of H . Suppose that for all 3j ,

l<j<gsm, we have chosen a (ij) ¢ A such that ' ]
a(ij_l)gjeja(ij)'l ¢H . We then choose a(i,) eAe as the 1
unique element satisfying the equation a (iz_l)g‘ 4 ¢ Ha (i‘) .

Then (a(iz_l)gle"a(i,z)—l)e‘ is a (displayed) generator of {0

—_— . [ . -1 —
H and a(1l_1)g‘ za(1£) eH . But then

e ¢ _
g = (aligle; ratip™H@lg, 2aiy)™h ...

(aliy 19, Mati ) Hat ),

€ -1 — —
where a(i‘_l)g‘ !‘a(il) leH, lc«sg<m . Since HcgH, it

follows that a(i ) = 1 . Conseduently, g eH and H=H .

The lemma now follows if we set
L = {a(i)a(i)a(i,i) |1 <i,5 <n}. o

Definition 4.2: If % is a class of groups, we

define Gz(G) by
0, (G) = <H|HqqG and Hc%()>

We note that em(G) is the Baer radical of G

(see for example [8; p. 1l01]).
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Remark 4.3: It is clear from Definition 4.2 that

for any class %

(1) GI(G) is a characteristic subgroup of G and

(ii) whenever T 1is a finite subset of ez(G), there
exist a finite number of subnormal %¥-subgroups Hl’HZ” . .Hn
of G such that

<T>c<H,Hy, .. . ,H>

n

Definition 4.4: We say that the class % has the

property (*) if

(*) for any group G, the join of a finite number of

subnormal % - sugroups of G 1is a ¥ - subgroup of G .

We recall that, for an arbitrary class %, the

class snoz is defined by
sn ¥ = {H|HaaGegx and |G:H| < =} .

Theorem 4.5: If % = sn is a class of groups

o¥
which has the property (*), then the join of a finite number
of f-subnormal %{ - subgroups of a group G 1is a XJ-subgroup

of G .

Proof: Let Hl’HZ""’Hn be f-subnormal %{¥-subgroups
of G . We may assume, without loss of generality, that

G = <H1,H2:- . .,Hn> . Since Hi € ¥y, there exists Kqui
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such that lH.

i :Ki| < » and K& c¥ for l<is<n . We note

that Ki’l <i<n, 1is an f-subnormal % - subgroup of G .
It follows from Lemma 2.11 that for each subgroup Ki there
exists a subnormal subgroup F, of G such that Fis:Ki
and |Ki :Fi| < o . Since % = sn ¥ ,Fi c¥,1€i<n . Since

|H,

i :Fi\< o and Fis:ez(G), it follows that HiGI(G)/Gz(G)

is a finite f-subnormal subgroup of G/B!(G) . An applica-

tion of Lemma 2.15 shows that
G/ez(G) = <Hy, .. .,Hn>eI(G)/91(G) ey -

Let T and T, be right transversals for ez(G) in G and
Fi in Hi,l €i<sn, respectively such that 1 ¢T . Since

G = <H1:H2:- . ~:Hn>1
G = <F1:F2, . . -:FnJTlezx e ooy T

Each of the subsets Ti,l <i<n, 1is finite, hence there

exists a finite subset T0 of ei(G) such that

G =<F,Fy, .. .,F,T,T>

It now follows from the finiteness of T and the definition

0]
of GI(G) that there exist subnormal ¥ - subgroups

Ll’LZ""’II of G such that

<TO>C<L1,L2,- * o ’LL\
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Hence,
G =<dF,Fy 00 obF 500, 0. ,Lz,T\
If we let
K=<F,..,F,L,.. "LL\’ hlg

an application of Lemma 4.1 yields the existence of a finite

subset L of ex(G) such that

t t
10 - -

t t
GI(G) =<F,°,...,F L

Again, it follows from the definition of GI(G) and the
finiteness of L that there exist subnormal ¥ - subgroups

Ml’MZ""’Mm of G such that

<L> §<M1,M2, o« . ,Mm> .
Hence,
t t t t -1
Gx(G) =<F; 7, .. ,F L0, L, ,Ml,...,Mm\t e T~
Since % has the property (*), it now follows that
GI(G) c¥ . Consequently,
G =<H),H,, . . .,H >ec¥F . a

In the remainder of this section we will point out

a number of interesting consequences of Theorem 4.5.
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Definition 4.6: If % 1is a class of groups, we

define the class nox by

nOI = {G|G is generated by finitely many normal

% - subgroups of G }.

Lemma 4.7 [12; Theorem 1] : Every class % = noz
A
contained in ﬂs is a subnormal coalition class. a

Corollary 4.8: The join of finitely many f-subnormal

A A
ﬂs-—subgroups of G 1is a ﬂs-subgroup of G . O
Since = n_ (N = sn A is a subclass
. m/\gg o Agg) o (R ‘;;g)

of Ty » We have as an immediate consequence of Lemma 4.7

and Theorem 4.5

Corollary 4.9: The join of finitely many f-subnormal

mgﬁ\gg-subgroups of a group G 1is a MJ - subgroup of G . O

Remark 4.10: Corollary 4.9 may also be deduced

from Corollary 3.2 of [7].

Lemma 4.11[11; Theorem l1]: Every subclass ¥ = n_ %

o
\%
of Mg is a subnormal coalition class. O
Corollary 4.12: The join of finitely many f-subnormal
Y \%)
ms-subgroups of G 1is a ms-subgroup of G . O

Remark 4.13: We will give another proof of Corollary

4,12 in Theorem 5.9,
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The following theorem is proved by S. E. Stonehewer

in [16].

Lemma 4.14 [16; Theorem A]: In any group G, the
join of finitely many subnormal & - subgroups of G is an

& - subgroup of G . O

Theorem 4.5 and Lemma 4.14 yield

-n

Corollary 4.15: 1In any group G, the join of finitely

many f-subnormal €3 - subgroups is an &g - subgroup. 0




Chapter V
A
f-Subnormal M S—Subgroups

In this chapter we examine the f-subnormal ;‘(s - sub-
groups of a group. In Theorem 5.8 we show that whenever H
and K are f-subnormal 5\;?8 - subgroups, |H:Ny(K)| < = . We
use this result to obtain an alternate proof of Corollary 4.12,
which we give as Theorem 5.9. In Theorem 5.14, we show that
for certain classes of groups the join of two finite f-sub-
normal subgroups is always an f-subnormal subgroup if and only
if the join of two f-subnormal “\'{?s - subgroups is always an

f-subnormal subgroup.

\) \Y
Lemma 5.1: If Ggm}s and Haf 4G, then Hegms .

\Y

Proof: It is clear that Kemls whenever Ka«G

Y,
and GeMm_ .

s

Vi
Let HcG,G esms and |G:H| < » . Then,
Vv .
|G = CoreG(H)\| < » and CoreG(g) esms . Since H/CoreG(H)e 3,
Y, v

H/CoreG (H) eﬂlls . Hence H emsns = 'ms.

Now, by induction on £f(G,H), it follows that every

\%
f-subnormal subgroup H of G belongs to My - O

38
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\%
Lemma 5.2: If Gesms, then G satisfies the minimum
condition for subgroups of finite index. O

\
Lemma 5.3: If ngHchgm{S and if

]
(1) [6:Ng(Hy))| < =

and
(ii) |Hy : H | < =,

then |G:N (H))| < = . }

Proof: If H and H are as indicated, then

1 2
f f

H1;H2<NG(H2) €G . Hence H; and H, are f-subnormal sub-

groups of G and it follows from Lemma 5.1 that Hy and H

v
are m - subgroups of G . Let F be the minimum subgroup

2

of finite index in H2 . F 1is a characteristic subgroup of

H, and FcH . Since H, <K = NG(HZ)’ FaK . We consider

2

HI/F c H2/F<1K/F .

Since H2/F e and H2/F<1K/F, |K/F : NK/F (Hl/F)l <{ » . Hence,

|K: N (Hj) | < » and [G:N (H))| < = . It follows that
|G : N (H)) | < = . m)
Y
Lemma 5.4 [1ll; Theorem 3]: If HaaqG and Ge Ty
then |G:NG(H)| < o . O

Y%
Theorem 5.5: If G e Mg and Ha f G, then

l6: N (H) | < = .
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Proof: We prove the assertion by induction on £(G,H).

If £(G,H) = 1, then either H<4G or |G:H| < =» .

In either case the assertion follows trivially.

Suppose that f(G,H) = n and H = HnCHn-lc"’CH} = G

is an f-series for H in G . By the induction hypothesis

v
|G :NG(Hn__l)\  » . By Lemma 5.1, K = NG(Hn_l) e‘.ms and we
have
\
HQHH_IQKe‘ms .
If HaH_ _,, then by Lemma 5.4 ]K:NK(H)l < o . If
‘Hn—l :H| < », then by Lemma 5.3 |K: NK(H)\ < » . Hence

G : NK(H)| < o, from which we conclude that |G: Ng H)]< ». D

\"
Corollary 5.6: Let GeSIRS and suppose H and K

are f-subnormal subgroups of G . Then J = (H,K> 1is an
\
f-subnormal ﬁJ?s - subgroup of G .
Proof: Once we have shown that J«qf4qG, we can con-

\
clude, using Lemma 5.1, that Je‘ms . Since Haf 4G and

v
GeM,, |G:N,(H)| < » . Proposition 3.11 shows that

J = <H,K>afaqaG . 0
\Y

N Corollary 5.7: If Gefms and H)\qqu for MeA,

then

(i) (1 H,afaG
Ael
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and
(ii) <Hk|keA><f4G.
v 3 0 . 3
Proof: Since G € M» N NG(H)\) has finite index in
AeA
G . Hence, since
N N_.(H )cN_ (N H)
xep © A G onep A
and

N N,(H)cN_ (KH | XxeA>),
Nep G A G A

the normalizer in G of both N H)\ and <H)\| Ae AS has
Aeh
finite index in G . Hence,

f
N H)\QNG\ )\Q H)\) cG

Ael A

and

£
<H,[Aeh>aNg(<KHy [Aen>)c6

are f-series for N H)\ and < H)\\x e N~ respectively. The

Aeh
corollary now follows. O
\%
Theorem 5.,8: If H and K are f-subnormal ﬁns-

subgroups of G, then |H: NH(K)| < w .

Proof: Suppose that the theorem is false, Then
Y%
there exists a group G with f-subnormal ’;U.S - subgroups H
\%
and K, such that |HO: NHO(KO)I 4« . Since Hy e Mg,

(0]
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there exists a subnormal subgroup H of HO minimal with
respect to the existence of an f-subnormal ﬂ\]{s - subgroup Kl
of G such that |H: NH(K1)| 4~ . Since K, eu\r{.s, there
exists a subnormal subgroup K of K1 such that K 1is
minimal with respect to |H: NH(K)l d «, It follows from
Lemma 5.1 that H and K are f-subnormal ‘,mvs - subgroups of
G .

Let F be the minimum subgroup of finite index in
H . Since Heﬁ}t/s, F exists and |H:F| < » . Suppose
that F f H, then |F :NF(K)| < ® by our choice of H and
K . But NF(K) = FﬁNH(K) . Hence |H:NH(K)| < w, con-
tradicting our choice of H and K . Hence H = F . Since
H has no proper subgroups of finite index, H normalizes
every proper subnormal subgroup of K by our choice of H

and K . In particular, H normalizes Q, where Q is

the product of all the proper normal subgroups of K . Thus
QaqJ = <H,K> .

Let U = HQ/Q,V =K/Q, and W=J/Q . Then U and V are
f-subnormal ﬁ}fs - subgroups of W . Also, U has no proper
subgroups of finite index and V is simple. An application
of Corollary 2.12 shows that UqqW . If V 1is an infinite
simple group, then V would have no subgroups of finite
index, and consequently would also be subnormal in W . 1In

\
this case, we can apply Lemma 4,11 to conclude that We!D?s .
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If V 1is a finite simple group, then UV is the join of a

finite number of conjugates of U and, applying Lemma 4.11,
Y

we conclude that UV e:ms and UV<1<1W . In fact, UV<)W
\% \%
since W = < U,V>s . Hence W/Uva- v/Uva eMg = qMg - We
vV VvV \
conclude that w€fmgﬁs =£ms.
\Y Y
In either case, Wem_ . But W =J/Q and Qem
v vy v S
by Lemma 5.1. Hence, Jefmsgms =My - By Theorem 5.5,
|7 :N;(K)| < » . We conclude that |H:N_(K)NH| =
|H: N (K) | < = . O

We now use the results of this section to give

another proof of Corollary 4.12,

Theorem 5.9: If Hl’HZ’ . "Hn are f-subnormal
\ v
!D‘.s-subgroups of G then J = <H1,H2, .. ,Hn> €W -
Proof: Let Fi’l <1 sn, be the minimum subgroup
of finite index in Hi . It follows from Lemma 5.2 that Fi
v
exists, F; e® , and \Hi : Fi| < » . By Corollary 2.12,
Fi<1<1G .
Let F = <Fi|ls isn> . Suppose F has a proper

subgroup L of finite index, then |Fi : FiﬂL\ < » and
L :Fi,l <i<n ., Hence L =F ., Thus, F has no proper
subgroups of finite index. It follows from Lemma 4.1l that

v
F 1is a subnormal !ms- subgroup of G . Hence, since F has
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no proper subgroups of finite index, F normalizes every

\

f-subnormal :ms-subgroup of G . The subgroup F has

finite index in the group <Hi’F> = HiF , hence F 1is

the minimum subgroup of finite index in HiF ,l<isn. 1In
H.

particular, F L=F for 1<i<n and FaJ .

Now, consider the groups

J J/F,H; = H,F/F,lsisn

The groups ﬁi are finite f-subnormal subgroups of J .

Hence, it follows from Lemma 2.15 that 3:68 .

\Y v
JeM,§ = Ty

Vv

Since F ¢ ‘_ms,

We obtain the following corollary from the proof of

Theorem 5,9,

Corollary 5.10: Suppose Hy,Hy, .. .,H are f-sub-
Y%
normal ims—subgroups of G . 1If Fi and F denote the

minimum subgroup of finite index in H, and

respectively, then

F=<F |l<sisn>aaG
and

<H,Hy, . .. » HO>/Feg

Corollary 5.11: Let HaaG and
\Y}
that H and K are ns—subgroups of G

<H | 1sis<nm

0

KafaG be such

Then

<H,K>afaG,
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Y
and < H,K> esms .

Proof: It follows from Theorem 5.8 that ‘K:NK(H) | < .

K

Thus H is the join of a finite number of conjugates of H .
Since ‘_\628 is a subnormal coalition class (Lemma 4.11),
HK<:<1G and ngﬁ\;as . Lemma 3.3 now implies that

<HK,K> = {H,K>afqG . It follows from Theorem 5.9 that
<H,K> ei\éls . 0

Remark 5.12: It follows from Theorem 3.18 and the
observation that § 1is contained in g\J/“s that the join of
two f-subnormal g;]/ts ~ subgroups of a group G need not be
f-subnormal in G .

Lemma 5.13 [9; Lemma 4.3]: If F 1is a subnormal
;vs - subgroup of G such that F has no proper subgroups of

finite index, then s(G,P) <2 .,

Proof: If xe¢G, it follows from Theorem 5.8 that

Fx;NG(F) . Hence FG

;;NG(F) . We conclude that
F<1FG<1G . O

Theorem 5.14: If %X =g ¥ = si is a class of groups,

then the following are equivalent:

(1) If Ge¢%, the join of two finite f-subnormal

subgroups of G 1is f-subnormal in G
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\")
(2) If Ge%, the join of two f-subnormal mts-sub—

groups is f-subnormal in G .

Proof: Since {ﬁ;';!s , 1t is clear that property (2)
implies property (1).
v ! -
Suppose that H and K are f-subnormal ﬂjts - subgroups
of the ¥-group G . If we let J = <H,K>, then Je;ts
by Theorem 5.9, Let F, FH’ and FK be the minimum subgroups "
of finite index in J,H, and K respectively. By Corollary
5.10, F = FH- FK . Lemma 5,13 shows that F<|FG<G . Hence
F<1FGJ . We now observe that HF/F and KF/F are finite

f-subnormal subgroups of FGJ/F and FGJ/F cX = st =qi .

Hence (1) implies that
< HF/F,KF/F~> = J/Faf aFC°3/F .

Thus JqquGJ . Also HFG/FG and KFG/FG are finite

f-subnormal subgroups of G/FG, where G/FG cdX = ¥ . Hence,
it follows from (1) that <HFG/FG,KFG/FG> = JFG/FGchG/FG .
Thus, FGJ<1 faG . The statements Jaf <1FGJ and JFGqqu

imply that Jaf <G . ]

Corollary 5.15: Let % = s¥ = g% be a class of
groups such that every finite subgroup of a ¥ ~-group G 1is
f-subnormal in G . If Gg¢ %%, then the join of two f-sub-

v A

normal Tig, = subgroups of G is an f-subnormal g - subgroup

of G.
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Proof: The corollary is a consequence of Corollary

3.7, Theorem 5.14, and Theorem 5.9, O

Remark 5.16: In the statement of Corollary 5.15, we

may take for the class % the classes J,%,R, or FC .




Chapter VI

Bf - Groups
The following definition is due to R. Baer [1].

Definition 6.1: We say that G 1is a nilgroup if for

all xe¢eG,<x>q4aG

We generalize the concept of a nilgroup in the fol-

lowing definition,

Definition 6.2: We say that G 1is a Bf-group if

for all xeG,<x>af«G

It is clear that every nilgroup is a Bf-group. Oon
the other hand, since the class {§ is contained in Bf and
not every finite group is a nilgroup, the class Bf properly

contains the class of nilgroups.

Definition 6.3: A non-abelian group in which every

subgroup is normal is a Hamiltonian group.

The structure of Hamiltonian groups is well known.

A description may be found in 9.7.4 of [15].

It is clear that every Hamiltonian group is a Bf-group.

We have the following partial converse.

48
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Proposition 6.4: If G 1is a non-abelian Bf—group

such that for all xe¢G, £(G,<x>) =1, then G 1is a

finitely generated FC-group or a Hamiltonian group.

Proof: If Xx¢G, either <x>aG or |G:<x | < =.

In either case, |G: CG(x)| < » . Hence G is an FC-group.

If there is an element xe¢G such that |G:<x>| < =,

then G is a finitely generated FC-group and |G:2(G)| < o .

On the other hand, if for all xe¢G, {x>4G, then
every subgroup of G 1is a normal subgroup. In this case, by

Definition 6,3, G 1is a Hamiltonian group. O

Lemma 6.5 [15; 7.1.7]: If G 1is a finitely generated
group having a subgroup K such that |G:K| < «», then

there exists NcharG such that NcK and |G:N| < o . O

Proposition 6.6: Let G be a Bf—group such that

for all xe¢G, £f(G,<x>) =<2 . Then, G/FC(G) is a nilgroup
in which each cyclic subgroup < x> has subnormal defect

s(G/FC(G),<Xx>) <2 .

Proof: Let xeG such that << x> 1is not subnormal
in G with subnormal defect s(G,<(x>)<2 . Then, there
exists a subgroup K of G (K may be equal to G ) such that

either

(a) <x>LKaG
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or
f
(b) <x>aKcG .

£ AN A
Suppose < x>¢cKaG . Then Kefmsm=!m;3g. By

Lemma 6.5, there exists Nc< x> such that NcharK and

|[K:N| < « . Hence NaG . Let us consider

< x> /N sfi K/NaG/N .

Since K/MNge¢d and K/NaG/N, \G/N:NG/N(<x>/N)‘<oo. We

conclude that |G: NG(< x>)] < « and hence |G :CG(x)‘ < ® .

Suppose that <x><1st:G . Then \G:NG(<x>)| < ® .

Since NG(<xs)/CG(<x>) €, We obtain that |G:CG(<x>)|<m.

Let N; = {xeG|< x> has an f-series (a) or (b)}. By
the above remarks, it is clear that the set N, is contained
in FC(G), the FC-center of G . Since every element of FC(G)

has an f-series (b), FC(G) <N, . We conclude that N1=FC(G).

If x¢{FC(G) = N we must have <x><1xG<G by

l’
the definition of N, . Hence, in the group G/FC(G) every
cyclic subgroup < X> is subnormal with subnormal defect

s(G/FC(G),<x>)s2 and G/FC(G) is a nilgroup. O

We need the following commutator notation. We write
[x,1y] for ([x,y] and [x,(n+l)y] for [[x,nyl,y]. We

write I‘l(G) for G and I‘n+1(G) for [rn(G),G]
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Definition 6.7: We say that G satisfies the nth

Engel condition if ([x,ny] =1 for all x,yeG .

Groups satisfying the third-Engel condition are

investigated by H. Heineken in [2].

Theorem 6.8 [2; Hauptsatz 1 and 2]: If G is a

group satisfying the third-Engel condition, then

(i) G 1is locally nilpotent and
(ii) FS(G) is contained in the direct product of the

Sylow 2 - and Sylow 5 - subgroups of G . 0O

As an immediate consequence of Proposition 6,6 and

Theorem 6.8 we have

Corollary 6.9: Let Geﬁf such that for all x ¢G,
f(G,<«x>)=<2 . 1If G/FC(G) has no elements of order two or

five, then G/FC(G) eMy - O

Definition 6.10: We say that G is locally normal
if every finite subset of G 1is contained in a finite normal

subgroup of G .

‘Lemma 6.11 (Dietzmann's lemma) [4; p. 154]: If M
is a finite normal periodic subset of a group G, then < M>

is a finite normal subgroup of G . O

Lemma 6,12 [15; 15.1.16]: If G 1is an FC-group
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then G/Z(G) 1is a periodic FC-group. ' 0

Lemma 6.13 [5; Theorem 3,2]: Let G be a locally

A
nilpotent group satisfying ™, - Then G 1is a finitely
A
generated nilpotent group and hence satisfies M . O

We have the following corollary to Proposition 6.6.

Corollary 6.14: Let G be a Bf-group such that
A

A
for all xe¢G,f(G,<x>) <2 . 1If Ge:mn, then Gem .

Proof: Let 2 = Z(FC(G)). Since 2 char FC(G) charg,

A
Z«G . Thus, if xez,xG;:Z. Since GeM, » there exist

elements X1sXgs 0 o osX of Z such that

Since 2 1is abelian and |G: C(x;)| < » for i=1,2,...,m
we conclude that 2 is the direct sum of a finite number of
cyclic groups. Hence —Z_gg)\z .

We now consider the subgroup FC(G)/Z of G/Z .
Since FC(G)/Z is periodic by Lemma 6.12, it follows from
Lemma 6,11 that FC(G)/Z2 is finite. It was shown in
Proposition 6.6 that G/FC(G) 1is locally nilpotent. Since
G/FC(G) céj\‘? , Lemma 6.13 implies that G/FC(G) e!!/J\l . Hence

AANA
GeDTtM =M . a

Using the results of Chapter V, we have the following
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proposition.

Proposition 6.15: If G 1is a Bf-group satisfying

v
T, , then G is a periodic FC-group with 6:2(6G)]| < = .

Proof: Let x¢G . Since GePg<x><2faG . Now,
Lemma 5.1 implies that < x> €§s . Hence G 1is a periodic
group. It follows from Theorem 5.5 that |G :NG(<:x>ﬂ < © .
Hence [G:C,(x)| < » for all x¢G and Ge¢FC. If F
is the minimum subgroup of finite index in G, Fc:CG(x) for

all xe¢G and |6:2(G)| < = . O

As consequences of Proposition 3.16 and Proposition

6.15, we have the following corollaries.

\%
Corollary 6.16: If G 1is a Bf-group with ﬂs’
then every subgroup of G 1is f-subnormal in G . O
v

Corollary 6.17: If G 1is a T - group, then every
subgroup of G 1is f-subnormal in G if and only if

|G:2(6) ]| < = .

Proof: If every subgroup of G 1is f-subnormal in
\
G, then G ng/\ﬂ% . It follows from Proposition 6.15 that

I6:2(G)| < = .
The converse is a special case of Proposition 3.16.0

Remark 6.18: According to Proposition 3.16, if
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there exists a positive integer n such that |G :Zn(G)| { o,
then every subgroup of G is f-subnormal in G . We leave
as an open question whether the converse of Proposition 3.16

is true.
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