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ABSTRACT

0(N%) CONVERGENCE IN THE FINITE STATE

RESTRICTED RISK COMPONENT SEQUENCE COMPOUND

DECISION PROBLEM

By

Stephen Bruce Vardeman

We consider a sequence of independent, structurally identical,

finite state restricted risk component decision problems, where the

choice of risk point in the ath problem is allowed to depend on observa-

tions from the previous problems, and the goal is to control the total

risk incurred across the first N problems. k-extended standards

for the risk of sequence compound procedures are introduced. In the

most general situation in terms of allowable form of the component

problem risk set and distributions of the observations, bounds are

obtained for the risks of a family of procedures employing artificial

randomization. Appropriate specification of a sequence of constants

appearing in both the bounds and description of the procedures give

*2
total risk approximating the k-extended standard at a 0(N ) rate.

It is noted that the formulation of the problem given includes a game

theoretic situation in which the information about past states carried

by the observations is perfect. Four procedures appropriate to such

a situation are offered, each of which has risk approximating the

L

k-extended standard at a OCNZ) rate. Finally, nondegeneracy con-

ditions are imposed on the distributions of the observations and the



Stephen Bruce Vardeman

resulting statistical version of the problem is studied. A rate of

weak convergence theorem of BhattaCharya ((1970). Rates of weak con-

vergence for the multidimensional central limit theorems Theory 2;

Probability and its Applications :2, 68-86.) and Mirahmedov ((1974).

The rate of weak convergence in the multidimensional limit theorem.

Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 18 no. 2, 23-28, 92-93.)

is applied to show that in a two state case, a natural procedure has

risk approximating the usual unextended standard at a 0(N%) rate.
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0. INTRODUCTION

Simultaneous consideration of a number of independent

structurally identical decision problems with the goal of controlling

the average or total risk incurred across the problems was first

suggested by Robbins (1951). Robbins termed his original example

involving N independent discriminations between normal (1,1)

and normal (-l,l) distributions a compound decision problem. The

procedure he proposed has total risk approximating N times the

Bayes risk versus the normalized empirical distribution of states in

the component testing problem, and finding procedures with similar

total risk performance became the usual objective in compound decision

theory.

Hannan (1956), (1957) in rather general finite state settings

showed that the usual compound decision theoretic goal is achievable

not only in situations in which all N of the problems are considered

simultaneously, but also in situations where the independent

structurally identical problems are faced serially. Such a modifica-

tion of the compound setting has become known as a sequence compound

decision problem. Hannan's procedures involve artificial randomiza-

tion and are applicable in situations in which before making the ath

decision one has available either the exact empiric distribution of

states through the (a-1)st problem or an estimate of the same. Van

Ryzin (1966b) showed that in many finite state finite act statistical

versions of the sequence compound problem, the extra randomization

1



employed by Hannan is not necessary. In a sense, enough randomness

enters through the estimation of empiric distributions of states.

Van Ryzin's arguments are closely tied to his assumption of a finite

action Space.

Johns (1967) and Gilliland and Hannan (1969a) suggested

standards of performance for compound procedures which are appropriate

to sequence versions of compound problems and asymptotically more

stringent than the uSual standards. These standards, which take into

account kth order empirical dependenciesixithe sequence of states

have become known as k-extended standards. Work of Ballard (1974) and

Ballard, Gilliland and Hannan (1974) shows that in Van Ryzin's finite

state finite act statistical setting, generalizations of his non-

randomized procedures have risk approximating these k-extended objectives.

In this thesis we treat a particularly tractable, yet quite

general finite state sequence compound decision problem. The gen-

erality of the problem derives primarily from the fact that a risk

structure rather than action Space and loss structure is assumed for

the component problem. In §1 this finite state restricted risk

component sequence compound decision problem is described along with

the unextended and k-extended standards for the problem. The estima-

tion of kth order empirical distributions of states is also very

briefly considered. Section 2 contains the description of procedures

which are generalizations of the procedures involving randomization

proposed originally by Hannan. We bound the total risk of the pro-

cedures and note that appropriate choice of arbitrary constants yields

bounds approximating the k-extended standards at a 0(N%) rate. In

§3 it is noted that the problem includes a game theoretic situation

in which the component risk set is composed of the risk points available



to player II, and before each repetition of the game, II is furnished

with the empirical distribution of 1's moves through the previous play.

After noting a simple game theoretic decomposition of the k-extended

standard, three procedures are provided in addition to the game

theoretic Specialization of the procedure from §2, which have risk

approximating the k-extended standard at a OCNI) rate. The basic

technique employed in §3.3 and §3.4 has been uSed independently by

Cover and Shenar (1974) in a less general situation. The results of

§4 all concern the unextended version of the problem. Using a rate

of weak convergence reSult of Bhattacharya (l970)- Mirahmedov (1974),

we Show that certain natural procedures in a two state case have risks

approximating the uSual standard at a O(N%) rate. The procedures

are related to those of Van Ryzin in that no extra randomization is

employed. The appendix contains several results applied in the body

If the thesis.

Several notational conventions should be mentioned. Vectors

in Rm are considered to be column vectors, although to save Space

they occasionally appear as row vectors in the text. Euclidean vector

norms are denoted as “0“. V and A stand for supremum and infimum

respectively. Q denotes the univariate standard normal distribution

and em is the m-variate standard normal distribution function.

m

6’ is the Borel sigma algebra on Rm} The term "range" of a matrix

refers to its column Space. lbs and rhs are used to abbreviate left

hand side and right hand side reSpectively. For probabilities v1

and v2, Ivl - V2I will denote the total variation of the signed

meaSure v1 - v2. Displays are numbered consecutively in §1 through

§4 with the diSplays in the appendix numbered separately.



1. THE k-EXTENDED FINITE STATE RESTRICTED RISK COMPONENT

SEQUENCE COMPOUND DECISION PROBLEM

1.1. The component problem.

We consider a (component) decision problem with states

9 6 ® = {l,2,...,m} and risk set S c:[0,a9“k For each 9 6 ®

let iPe bea.probability on a measurable Space (1,3). In all that

follows we shall assume that S is bounded, “sum S‘B < m for

each s E S, where “.“m denotes the supremum norm for mdvectors.

Gilliland and Hannan (1974) use the term "restricted risk" to in-

dicate that 8 may be a proper subset of the largest possible

risk set for a given action Space and loss function.

For w a finite signed measure on ® and s 6 S we will

let ws denote Js(-)dw(-). In the case where w is a proba-

bility ws is the Bayes risk of 3 against the prior distribu-

tion w. It will be convenient to identify each 9 6 ® with the

probability on ® concentrated at 9. as is then the e co-

ordinate of 3. Further notational economy will be possible by

agreeing to also identify finite signed measures on ® with m-

vectors, w correSponding to (w({l}), w({2}),...,w({m})) E Rm.

1.2. The sequence compound problem.

A compound decision problem as introduced by Robbins (1951)

involves N independent repetitions of the component problem des-

cribed in section 1. We will consider a sequence version in which

A



the choice of risk function in component a is allowed to depend

upon independent, Pe distributed observations for B s a-l, and

the compound risk is taken as the sum of risks in components 1

through N.

More precisely, let k be a positive integer and

§'= (Sl’SZ’°"’SN) be such that sa is a Sa+k-2 measurable

mapping into S. For 3N = (92_k,...,QN) we suppose that

EN = (X2 k,...,XN) is distributed as X...X P . (The pur-P

eZ-k

pose of allowing indices 0 < l in the case k > 1 here is to

simplify later notation.) The compound risk of the sequence rule

g. is

N N

2 E s X = V s - dP X...X

(1) 0:1 ea 01(‘or-1) § 90! ( ) 62_k Pea-l

When §_= (s,s,...,s) for s E S the risk (1) becomes

N N 1

E e s = (2 e )S = GN S ,

10’ 10‘

where as indicated earlier, we are identifying elements of @ with

probabilities on ® rand G; is the non-normalized empiric distribu-

. . l l 1
tion of {el,...,eN}. With Y (GN) = A G S, Hannan (1957), (1956)

568 N

first exhibited procedures in versions of the sequence-compound

problem achieving Y1(G;) asymptotically.

Let 8* be a class of 3 - measurable mappings into S.

We consider the sequence compound rules of the form §_= (8*,...,S*)

for 3* 6 8*. For such g_ the risk (1) reduces to the functional

(2) g E e 5*(X ... X ) = g jg 3*(-)dP X...X P

1 oz a-k+1’ ’a-l oz=1 oz Cork+1 Cw1



k

of GN’ the non-normalized empirical distribution on EN of the

vectors {(92_k,...,91),(93_k,...,ez) ,...,(eN_k+1---,QN)}. Swain

(1965), Johns (1967), and Gilliland and Hannan (1969) have termed

3 RR)“ NE 8*X x( ) Y (GN - *A * 2 ea ( a_k+1...., a_1

S 63 1

)

a k-extended simple envelope evaluated at G:: Notice that in the

3’: k ..

case S is the class of all 3 1 measurable mappings into S,

for fixed 3N, Yk(G:) s Yk-1(G:-1). That is, the extended envelopes

are increasingly stringent.

The purpose of this work is to exhibit sequence compound

rules which achieve risk Yk(G:) asymptotically with rate.

1.3. Bayes rules ig_the component problem.

We will make the assumption that S is not only bounded,

but also closed. For any w E Rm, A ws is then attained and we

denote an infimizing s by 0(w). ST: is a simple consequence of

Corollary 1 of Brown and Purves (1973) that there is a Borel measur-

able determination of o(-). In addition we may assume that o(-)

has the property that o(pw) = o(w) for p > 0. (If not, we replace

0(w) by 0(W/HWH ) for w # 0, where H-“ is the usual Euclidean

vector norm.) Notice that with this notation we have

T1<GN>= A Gls=GN 0(GN)
sES

There is no essential loss of generality in the assumption

m

that S is closed. If S. denotes the closure of S in R , for

any 6 > 0 and any sequence compound rule g} = (si,sé,...,s§)

-2 _

where s 33 k measurable mapping into 8, there exists

a



-2

a rule §_= (81,...,SN) such that sq is a 3a+k measurable

' 't 3 'th s - - s'. sz‘o’ ...mapping in o Wi I98 a( ) 96 a( )I a each 95 E O

N N

X — E ' X ' f dHence I g E 9080(‘o-1) E eoSo(—o~1)I < e or all 3N, an

theorems concerning the risks of S' valued rules have s analogues

for S valued rules.

1.4. The Pk construct.

. . . . k k
In order to describe compound rules achieVing risk Y (GN)

asymptotically, we introduce a variant of Gilliland and Hannan's

Pk decision problem. The Pk problem has finite state Space Gk

k

and risk set S c: [O,+Oo)m where

k * * *~ ~ m ~

S = {s 6 R I(e ,...,ek)s = f9 3 (-)dP XP X...XP for some 5 ES }

1 k e 9 9
1 2 k-l

k . .
The f problem Inherits the property of bounded risk from the com-

ponent problem. We shall use notational conventions for the fk

construct Similar to those introduced for the component problem.

That is, we will identify each 3_ E @k with the probability on

k k
g degenerate at 3, let m -vectors correspond to signed measures

on @k, and for v a signed measure on @k, S 6 S denote

v§ = IS(-)dv(-). 5(v) will denote a Borel measurable, positive

homogeneous minimizer of VS. (That no essential generality will be

lost by the assumption that S is closed follows from a comment

similar to that made in the previous paragraph.)

k

Using the P notation we have from (2) and (3)



k k N , *

Y (GN) = /\ z jeas (.)dPe ><...XPe

* ~k .. _

N

= A~ 2 (e . ,9 )§

ses 1 “’k+1 a

= A~ a; s

Ees

k z k

- GN 0(GN)

k
k

We extend the domain of Y to all of Rm by defining

k mk
(4) Y (V) = v5(v) all v 6 R

*

It will be important to recover elements of S which give

*

rise to values of the minimizer 6(-). Thus assume that s (-,-)

k

is a mapping from Rm X IF-l into S with the property that for

mk * *
v E R , s (v,-) E S such that

* ~ k

(5) f9 8 (v,')dP x...x P = (e .....e )g(V) each 3_ e e .

k e e 1 k
1 k-l

Notice that in the case k = l, the Pk construct is identical

A

with the original component problem and we take 3 (v) = 5(v) = o(v).

1.5. Assumption 2_ the P9 and estimation g£.empirics.

We will assume that é’= {P9} is a linearly independent

GEO

family of measures. That is, for real numbers a "%n’ g a P1,.. eg@ 9 6

is the zero signed measure only if each a9 = 0. Robbins (1964),

Van Ryzin(1966a), and Ballard (1974) discuss the estimation of

mixtures of a finite number of linearly independent distributions.

In the linearly independent Situation there are Rm valued,

bounded, 3 measurable mappings t with the property that jt(')qu



is the mdvector with all zero entries except a l in the 9 position.

t(X ) is then an unbiased estimate of the m-vector corresponding to

a

9 . Ballard (1974) uses vectors of all possible products of co-

0 k

ordinates of k Such mappings t to construct Rm valued,

k ~

bounded S measurable mappings t with the property that

IE(.)dP9 X...X P9 is the mk-vector with all zero entries except a

l k ~ '

1 in the (el,ez,...,ek) position. t(X X ) is then ana-k'tl’u.’ a

. . k .
unbiased estimate of the m -vector correSponding to (e .---.9 ),

0’
a k+l a

and E {(X, ,...,X.) is an unbiased estimate of the mk-vector

j=1 J-k+l j

k

corresponding to G .

a

We will not assume a Special product structure for our

~ k

estimates but will assume only that t is an S measurable mapping

k

. m .

into R with the properties

k

~ m
- x...‘ = ,...,(6) [a )dPe x P6 (91 9k) 6 R ,

l k

and

(7) v (\\E( )I )de ~<P x xP - 2<0 . .0. = (D ,

RI “I1 91 92 9k Tk

fi,€®

where N°N1 is the usual L1 vector norm. (Ballard's product

kernels provide examples of functions satisfying (6) and (7).) Let

a

t denote C(X ,...,X ) and T denote z E, for a > 1,

o a-k+l a a j 1 J ‘—

0 otherwise.



2. A BOUND ON THE RISK OF A k-EXTENDED SEQUENCE COMPOUND PROCEDURE

EMPLOYING ARTIFICIAL RANDOMIZATION

We introduce a generalization of a Strategy in the sequence

compound problem proposed by Hannan (1957), (1956) and bound its

risk. When constants appearing in both the description of the pro-

cedure and the bound are appropriately chosen, the strategy is

seen to achieve risk Yk(G:) + 0(Ng) uniform in 3N.

2.1. mm.

Forms of the two lemmas which follow appeared first in

Hannan (1957) and variations of one or the other have since appeared

in Samuel (1963), (1965), Swain (1965), Van Ryzin (1966), Gilliland

(1969) and Gilliland and Hannan (1969a)-

Lemma 1. Let f ,f .,f be real-valued functions on some set

1 2’“ N
a

.D. Denote F = g fj and suppose that for each 1 s a S N,

a
1

1 d 6.3 such that F (d ) = A F (d). Let d be arbitrary.

at or 01 (16.8 or 0

N N

F d .Then Efama) g N(dN) _<_ EEO} 0H)

a-l 0-1

N N-l

r . f(d =F(d -::Fd )-F(d)).ButLeaf 21: a a) N N) 1 (01(m1 a a

N

F d - F d 2 0. A13 2 f d =for each a, a( a+1) o( a) 0 1 o( 0-1)

N

F (d ) + 2 (F (d ) - F (d )). And for each a.

N N 1 a o-l a a

F d - F d 2 0 .01‘ (H) “(0) I

10
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The application we will make of this lemma is to take ,3 = S,

k 0’

f (S) = v S for v E Rm , let V = 2 v and conclude

a o a a _ B

3-1

N k N

" V " V(8) Elva“ 01) g Y (VN) g 2 vao( 01-1)

a-l a=l

We will not prove the next lemma. Apart from slight nota-

tional differences, the proof of a similar lemma in section 3 of

Gilliland (1969) applies in our case also. Gilliland's assumptions

that v,v',z are R” ‘vectors may be altered to v,v',z being

Rmk vectors without change in the form of the proof, his B may

be re-interpreted as our supremum norm on S, and his assumption

that the co-ordinates of v,v' are non-negative may be dropped.

Lemma 2. Let Z be uniformly distributed on [0,1]m andklet u

be the distribution of Z. For any v,v' belonging to Rm , any

.Q E @k

I“- a(6(v + 2) - 5(V' + 2))I _<_B\Iv - V'IIl.

where operator notation is used to indicate integration.

The lemma then gives

(9) “u,('5(v + z) - 5(v' + 2))“00 g BIIv - v'IIl .

2.2. Definition of the procedures 3,
 

Take {H }:_1 to be a non-decreasing sequence of positive
a _

constants. Define H = 0 for a 3.0 and denote h = H - H .

a k a a 0-1

Let Z be a uniform [0,l]m random Vector independent of Xa

for each 2-k g_a ng. We will consider the procedure

= (S1,SI
v
»

2,...,§N) where



12

*~

‘ = z ,...,x(10) sa 3 (To-k + Ha-k , (Xa-k+1 o-1))

(In the a component, the proposed procedure uses an element of

* ~

S correSponding to an element of S which is Pk Bayes against

a randomly perturbed estimate of G:_k.)

2.3. A_bound for the risk of fig.

Theorem 1.

N N

k

2 E e S g_Yk(G ) +~l-B H mk + B k T (1 + 2T 2 l"? a
(10’ N 2 N k k _ H

a=1
a-l a

uniform in EN, where for each a, E Gaga is interpreted as an

iterated integral, the first integration with reSpect to the dis—

a-k+l’...’xa-l) on Ik-l, and the second with k

,x ) on 19'1 x [0,1]m .

tribution of (X

reSpect to the distribution of (X k,Z
a-

Proof. Use operator notation to indicate integration and

2_k,...

the following notations for distributions. Let P. denote the joint

distribution of ZN’ Pa = P6 X...X PS the joint distribution

Z-k a-k

of X , = P X...X P the joint distribution of

-u-k go 9 9
a-k+l q-l

(Xa_k+1,...,Xa_1), and u the distribution of Z.

N N * ~

S = + ...

N ~

= ,..., " T + Hp u Pfi<ea_k+1 9a)°( a_k a_k2).

from (5). 80

N

(11) meg =2OP_(O

1
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Recalling that E is unbiased for (9 .,e ) and independent

0

of T + H Z, (11) gives

a-k q-k

N

2 E e 3

1

N
N ,

(12) =Eugtad +11 z)=ggr (5(T +11 z)-'5(T +Hz))
l 1 OP ry-k cg of

N

+2p_pEa(T +Hz)

Denote the first sum on the right of (12) by A and the second by

C. We will set U = T + H z, 8(U ) = 8 and bound A and C

a a a a a

separately.

First consider A. For a > k

(13) I€,P(5a-k - 80M _<_ NISOIIIlIIO.(TOPk - 25me

T k ‘, T

We write 8 k ' 5 = 3‘41;"+ fl ' 5 ‘Q'+ 2‘ and (13) and (9)

a- d IH ' H
.‘ oz-k or

give

Ifau(aa-k‘ 5a)I k

’3 Eel-Hi
.31 .I:L______ _ " .EL__ _.L_

g IIEaIIII J—I-I1= BIIEQII II Ha TOM‘S, _k H >II1

k o-k
1 1 1

PNE N (— 2 IN: .N + <—-—--—> ENalHai=a1-1c+31 Hark qu=1IIJlI

Hence

N

(14) z PIEIl-(O k - ‘5 )I

a=k+l 9" 0’

N k a-k

1 1 1
3B 2 RI— 2 EIIIIIE- -II +(—‘""‘)EIEIIIIE-II

o=k+l Ho j=1u1a o k+J 1 Ha-k Ha j=lI a 1 J 1)
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The Schwarz inequality and (7) applied to (14) give

 

.1.
H .

N N

~ ~ k 2 2

z memo -o)IgBZ(—T+(1 --L')(oz-k)'r)

_ ' a ark d H k H H k

a-k'I'l a=k+l CY d'k d

2 N 1 k N

=BT 2kg—+zL-gg—

k H111 _ H H
or 01—1 or N-k 01

But

k k

P E ~ - " P If I " - " I < B k T

0131... PI (fowl, “a” s ”E .. PI aIlIIOoz-k “MI... _ 1.

by the moment inequality. So we have

2 N 1 k N 2N

AgBka+BTk ZR; {-1- )3 g—- 2 g“- _<_Bka'i'ZBkaZ

k+l a oz=l a N-k or 1 0'

Now bound C.

N N k ~

c=1> ‘E'E SP E +hz” sP
_uif do! _u213(a and _u‘I’(TN+HNz)

by (8). But by (4)

k ~ ..

+ H = + ~g u ‘1' (TN NZ) 3 MTN HNZ)O'(TN + HNz)

< P MT + H 2)8(Gk)

= 1:65,, + THND 5mg)

agamfi) + ELNIIaccgml

RINGS) + 15%ka .I
A

, k k
That is, C 5_Y (GN) + THNka and combining the bounds, the theorem

is proved . I
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It is clear from the proof that the result of Theorem 1 is

k

basically a P phenomenon, hence the iterated integral condition

.. .. 1‘ k-1
appears. Under conditions suffic1ent to allow a 5” x 3

*

measurable choice of s (-,-) the Special interpretation of

eXpectation becomes unnecessary.

 

L

Corollary 1. With the choice H = a2 each a,

o

N

(15) z E e ‘5: = Nk<ck> + 001%)
(1:1 (y C! N

uniform in 5N.

Notice that the corollary shows that on an average, rather

1v

than total risk scale, with H = oz, the risk incurred by the

0

Jv

strategy §_ is Yk(%°G§) + 0(N 2) uniform in 3N.



3. k-EXTENDED GAME'THEORETIC RESULTS

The framework introduced in section 1 is quite flexible.

Both decision theoretic and game theoretic problems are covered.

In this section we consider a game theoretic setting, that is a

situation where the information about past states is assumed to

be perfect.

3.1. Specializations to a game theoretic setting.

We take I = 8, let S be the set of all subsets of ®

*

and suppose each P to be degenerate at e. S becomes the set

6

k-

of all functions from O 1 into S and we may take E(3_) =

mk k ,

§_ 6 R where we are still identifying m dvectors with Signed

measures on @k and elements of @k with degenerate probabilities

on CF. Theorem 1 and Corollary 1 are in force in this Situation

so that Specializations of the strategies §_ provide asymptotic

solutions of the k-extended game theoretic sequence compound

problem.

In addition, a simple decomposition of the k-extended

enve10pe is available in this setting that allows us to modify

solutions of the unextended problem to produce solutions of the

k-extended problem.

3.2. AWQI Yk(G:) £95933 k>1.

For each 3.6 QN-l define GZIfi' to be the g, section of

Gk. That is, let GZIE. be the measure on ® defined by

a _

l6



l7

czIaqep = Gk({(£.9)}) for e e O.
a

Lemma 3. In the game theoretic context, for any 3N

k k l k

Y ( ) = Z Y ( 3) .
GN H GNI

_QEO

* *

Proof. For 5 6 S

N
*

S X ...E 0319a ( o-k+1’ ,X~_1)

N “C

= 293MB ”.9 )=2 2 9329
0’: Cl’ ’Y‘k'I'l, , (1‘1 EOk-l a (e — 0’

<1 6) a ‘ “ oz-k+1’ ° ° ' ,ed‘1)—'9'

l:
* k *

= 2k 1 z 901‘ s (a) = 2k 1(GNI-Q>S (9) ~

A ‘ _ I as '
EEO I a 3 (ea-k+1""’ea-1)Ifi / 320

a -

But (16) is minimal if s (3) = 0(G:Ig) for each §_E EN 1,

Hence

k k k k l k

‘1’(G)= z (GNI3)0(GIB)= 2: Y(GI_Q)..
N k-l N k-l N

EEO EEO

The lemma suggests that given a strategy achieving the un-

extended (k = l) envelope at some rate uniform in 3N, and such

that the risk function used at stage 0 depends on E. 1 only
a“

through G; , it may be possible to achieve the k-extended envelope

1

at the same rate by at stage a choosing the risk function according

to e ) rather than C1 . Two examples of the

k

Ga-1I(ea-k+1’...’ 0-1 a-l

use of this kind of technique follow.

3.3. A_mpdification gitHannan's game theoretic strategy,

Hannan (1957) shows that for the case k = l, the risk in-

curred in a game theoretic setting by the Specialization of .3
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defined in (10) with Ha = (§Q)% achieves

(17) «‘21 “0%13 E N ’é - Y1(G1) < Nl§(6 )&B
2 3' § ea 0 N —' m '

If we modify Hannan's strategy by replacing G1 1 with
a-

k

9 0-1) and H with H' = (6W6

(1‘1 0’ a ‘

Gk (
%

a-1‘ 9a_k+1,.. . , Heal-16'1“” ,ea_1)\\1/m)

k
= 'Z r

we have Sa 0(Ga_1\(ea_k+1,. .,ea_1) +‘Ha ). Then

N

k k

2 e S - ‘i’ (GN)

a=1 a a

l k

= Zk1{ Z eaSa'Y(GN\fi)} .

fleg - CY 3 (ea_k+_1"'°’ea_1)—&

Denote the term in brackets by A(§D for each 3_E Gk-l, and the

' d‘ ' ... = ...1n ices a for Wthh (ea-k+1’ ,%1_1) g. by a1 < 02 < < aN(E)

where N(_Q) = HGS‘QHI.

NE)

A(g)=£

i: - $2, ‘ k

E e 0ka _1\a+ (41—2-61) z - 3:1me .
=1 an ' a. m '

J J \ J 1,

The sequence {Gk ‘3} is a sequence of non-normalized

a.

J

empirical distributions on @, with Gk \§.= e +Gk ‘fi

0. a ' a

J 33 0-1)

and Harman's result is applicable. 80 «15(9) ('2' m)%B g A(9) 3

N%(B)(6m)!i3. Noting that 2 N(3) = N, an application of the Schwarz

E

inequality yields

153 kkB N kk % k;
(18) -N('2-m) gazes -\¥(G)_<_N(6m)2B,

a=1 a a N

uniform in 3N. Comparison of (17) and (18) shows the rate of

convergence for the risk of the modified procedure to the extended

envelope is the same as that for the original strategy. Indeed the

bounds are m(k"1)/2 times the original bounds.
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3.4. Q_modification of Blackwell's game theoretic strategy.

Hannan (1957) states that an unextended game theoretic strategy

proposed by Blackwell (1956) achieves risk Y1(G;) + 0(N%). We intro-

duce this strategy and show that a natural modification achieves risk

Yk(G§) + 0mg).

For each a 2 l we let ¢ denote the m + 1 vector

0a

(8 ,9 S ) and ® =‘l Z a = (e ,r ). With A the convex subset

a a a a 0 =1 '3 a Q

[n+1 B
of R defined by

A = {(W,U) E R 11w : Rm corresponds to a probability on

1

® and u g Y (w)],

we let pa be the Euclidean distance of Ed from A. Arbitrarily

set = O. For each m dimensional probability vector w let

00

y(w) = (w, Y1(w)) and let wa be the probability vector minimizing

H%
.2 H- 2 - 1 2a - v(w)H = neg ' w“ + (rd ' Y (w))

Blackwell's strategy g is defined inductively,

(19) g = 'any 8 E S which minimizes
a .

_ - 1 ,
- + - , f O.ieZ® (e(ea_1 WG—1) es(ro__1 Y (w0_1)) 1 pa_1 #

A proof of the following proposition is contained in the appendix.

Proposition. If S is convex, then
 

N

v 1 1r 2 2 s

2 e s - Y (cl) 3 N2((2 + B )(1 + mB ))2
a=1 a a N

uniform in EN.
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The convexity assumption on S appears in order to allow an applica-

tion of the Minimax Theorem in the proof.

 

Abbreviate “Gk\fifl as n (39 for 3.6 k-l. With

a '1 0’

-k l

<15 ‘ ((9 e >) 2 $8a n - ,..., =

a ak+2 a a B (es-k+1,...,ee_1) (ea.k+2,...,ea)

4k -k

= (9 ) r )a

a a

where we interpret %-= 0, let pk be the Euclidean diStance of 6k

0’ 0’

from A and Q: be the m dimensional probability vector minimizing

¢ - y(w)H:. We consider a procedure ‘5 defined by
0’

i any 3 E S, if p:_1 - O

(20) s = 1 any 5 6 S which minimizes

a =

l

’ - -k k . k

: v (9(6k —wk )+es(r -~y1(w )). 1f 9 #0.
: a-l 0'1 a-l a-l a-l

\GECH)

As before,

N k k 1 k “
(21) zes-Y(G)=z f2: gas-Ham».

10’0 N E®k‘1 a ( 9 )= a0! N I,

(1’: _ a ea_k+1”"3 a_1 _Q

Denoting the term in brackets by A(§) for each 3.6 Ck-l, and the

indices 0 for which (9

a

with N(E) = nN(E),

,..., = b ...ea ) E. y al < a2 < < aN<E>
4¢+1 -1

Me) 1 Nu)
A(§) = z e s - Y ( 2 e > .

. . . . a.

J=1 0[J 0’J J=1 J

With this notation ;k = —l—'J£1 ’k is the Euclidean

L=1 at J
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j-l

distance from A to 72.. 2 ® , and wk is the m dimensional

J-l _ a a.-1

‘ 2

probability vector which minimizes “-l- 2 ¢ - y(w)“ So that

comparing (19) and (20) and applying the proposition we see that if

L

S is convex A(3) s;N%(§)((2 + BZ)(1 + mB2))2. So applying the

% mac-1) /2 55
Schwarz inequality the lhs (21) s N ((2 +-BZ)(1 +-mBZ)) ,

and the modification of Blackwell's strategy provides another solu-

tion of the k-extended game theoretic problem.

3.5. A_comment 92 the effect gf_play against a_random perturbation

_§_ Gk 1 ig_the k-extended setting.
a-

 

 

Recall the k-extended procedure suggested in §2.2 had the form

A * ~

= + , , . . . ,(10) s s (Tork HTkz (Xa_k+1 X014»

The proof of Theorem 1 depends heavily on the fact that Ta-k + Hasz

is independent of (xa-k+l

of the P9 in the game theoretic situation, it is possible to replace

,...,Xa). However, because of the degeneracy

fa‘kl+ Ha4kz by 50-1 + Ha-lz’ invoke unextended results for a sequence

compound problem with Pk construct as the component problem, and

 

improve on the bound of Theorem 1.

That is, redefine s by

* ....

g = + Z , . . ., .

C! S (Ta-l Ha-l , (Xa-k-i'l XQI-l))

~ — * c“ + H z ))Then almost everywhere a, sa — S ( a-l a-l , (ea_k+1,.-.,ea_1

so that

N N N

22 = ..., ~ + . .( ) 2 E9 8 Z “(90;k+1a ea)o(Ga_l Ha-lz)
a=1 a a 0:1
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The unextended version of Theorem 1 applied to a compound problem

With Tk component implies that (22) is bounded above by

YR Gk) + l'BH mk + B l + 2 2 1‘9

0:1 a

52’ 'k/2 . . I
In fact, with the choice H = (6a) m application of Hannan s

a

reSult quoted in §3.3 gives the bounds of (18) for (22).
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4. THE UNEXTENDED STATISTICAL PROBLEM, O(N2) CONVERGENCE TO

Y1(G;) OF THE RISK OF THE NATURAL PROCEDURE IN THE TWO STATE CASE

Artificial randomization plays a major role in the solutions

of the k-extended sequence compound problem offered in §2. In that

section it was shown that under mild aSSumptions on 65 a procedure

which at stage a uses an element of 3* corresponding to a risk

point Pk Bayes versus an estimate of GZ-k plus randomization is

an asymptotic solution to the k-extended problem. It is not possible

to retain the generality of §l, delete the randomization and prove

a result parallel to Theorem 1. Even in the unextended case there

are trivial game theoretic examples in which the non-randomized

version of Theorem 1 fails.

Gilliland and Hannan (1969b) and Helmers (1972) give smooth-

ness conditions on a that allow deletion of the randomization in

some unextended game theoretic cases. Van Ryzin (1966b) shows that

under some non-degeneracy conditions on the P6, in the unextended

finite state finite act decision theoretic setting, neither the

smoothness of 0 nor the randomization is needed to obtain a result

like Theorem 1. Ballard (1974) generalizes some of Van Ryzin's

finite state finite act treatment to the k-extended level.

In this section we consider the unextended finite state

restricted risk component statistical problem. Under non-degeneracy

conditions similar to Van Ryzin's we apply a result of Bhattacharya

(1970) - MirahuedOV'(1974) and show that neither randomization nor

23
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the smoothness of o are necessary in a two state problem.

4.1. Specializations for the unextended statistical problem,

aSSumptions Qg_the P6, the natural procedure a.

We continue under the k = 1 version of the assumptions con-

tained in §l.l through §l.4, but will alter the aSSumptions on the

Pe contained in §1.5. Throughout §4 we will suppose that t is an

Rm valued, 3 measurable map with the prOperties that

(23) jthe = a each 9 E @

and

(24) 1 y < m such that 5‘90(t - e)\3dP < v for each 9,90 6 ®.

6

In addition to (23) and (24), we will impose one or the other of the

following two sets of conditions on t and .9.

(25) For each 9 6 ® the m X m matrix V9 = §(t-6)(t-e)'dPe

is nonsingular.

(26) E at = l and for each 9 6 O the m X m matrix

9

ya = j‘(t-e)(t-9)'dPe is of rank m-l.

a a
I

Abbreviate t(X ) t0 t , Z t to T and —' Z V

a a a a a _1 E

3:1 5’ B

to Va. Ova is the covariance matrix of Ta. To obtain some of the

elementary properties of V we digress slightly to consider matrices

a

which like V are averages of nonnegative definite matrices.

0

Suppose tl’°°"tn are nonnegative definite m X m matrices

with common range £3 and fl_= (fi1,...,fin) iS a probability vector in



25

n n

R (that is, each n, 2 0 and 2 fl. = 1). Let x denote the

average 2 (niti). fin is nonnegative definite and has range N3

i=1

With 0 5 “Ii 3 n21 s...s “mi the eigenvalues of ti, let

= .=1,ooo, , . =1,ooo, d ..>0 dn. A{nji\3 m i n an “13 1 an

n = Vinmi‘i = 1,...,n]. The minimum positive eigenvalue of fin

is then greater than or equal to I} and the largest eigenvalue of

in is less than or equal to E. In the case that each ti is non-

singular, the eigenvalues of t;1 are between n and 3:1.

Throughout §4 we will let ‘L denote A{K\K > O is an

eigenvalue of V6 for some 6 E @} and I denote Vik‘k is an

eigenvalue of V6 for some 9 E ®]. The last two comments above then

apply with V; replacing in and L_ and X' replacing fl, and a;

The sequence compound procedure that we investigate in this

section is §>= (Sl’°'°’SN) where for each a

(27) 50 = o(Ta_ )
l

The compound risk of g. is

N N

(28) 2298 =2Ets
10:01 1 00’

N N

= E E t s + E t s - s .

lacr’rl $050. oz+l)

Denoting second term on the right above as A, Lemma 1 implies

N

E s S E T o T ) + A

§ ed a N ( N

1 1

s Y (GN) + A .
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The goal of §4 is to give useful bounds for A. After brief considera-

tion of the problem for general finite m, we will Specialize to the

case m = 2 and show that under (25) or (26), where S is the lower

boundary of a convex Subset of [0,B]2, there exists a constant X'

1/

depending only on B, {V9} and y Such that A s X'Nz.

EE®

4.2. Bounds 92_ A, for general finite m,

N

Recall that A = E 2 t (oCT

a a

a=1

problem of bounding a typical summand

1) - cCIa)) and consider the

(29) E twee"; - 0(T )).
0+1

Iterating expectations,

(30) (29) = Emwwua) - oawmtw],

))‘s E\E[ta+1(c(Ta) - o( ‘ta+1my” 1“.

Let 'Wa be independent of ta+1 with a normal distribution with the

same mean and covariance structure as T , that is normal (G ,aV ).

a a a

Abbreviate t to t and E[ \t ] to Et through (38). Then,

0+1 0+1

W T W

(31) rhs(30) s E‘Etto]wa+t\_ + E‘Ett(o]Ta+t - °]wa+t)\ .

at a 0’

Denote the first term on the right above as Ca and the second as

6a and bound them separately.

First consider Ca. Let v be normal (Cl,aVé) meaSure and

a1

v2 be normal (G1 + t,dv ) meaSure.

CY (1’
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w

(32) \Ettojw:+t\ = ijto d(v1 - v2)\ .

Since “tHIB is a bound for \to\, if we let \vl - v2\(Rm) stand

for the total variation of the signed measure v1 - v2

rhs(32) s BHtW1\v1 - v2\(Rm).

Under (25) the q = l Specialization of Lemma Al in the Sppendix and

the fact that the eigenvalues of d? are greater than or equal to

a

GA, Show that

t %
2 -

\vl - mm“) s <;;> Mm) .

Thus under (25)

-i 2 g ‘

(33) C& s a 23(239 EHt“1“tJ .

Also,

t W t l- W

(34) \E talwgit\ = \E £0101 a l = \ftU d(V1 ‘ V2)\
0! ——(W +t)

ar+1 a

-l l -l-' .
where v is normal (0 G , a V ) measure and v is normal

1 a at 2

((a+1)-1(C; + t),a(a+l)-2?;) measure. Under (26) the range of

‘7 is the orthogonal complement of the subSpace of Rm generated

a
-1 -

by the vector ‘1 = :9. Since IL'((a+1) (G1 + t) - o 1Gil) = 0, Lemma

0’

Al is applicable with q chosen to be 0(a+l)-1. So

2

(3S) \vl-vzHRm) s 2((m-1>1og hag—+92)
01 + 01

m1): -1 t _1__ Gl\\2)%
+ — _—

2(202+za+1) n “0+1 d(d+1) a
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where n is the minimum positive eigenvalue of 0-1? . Then weakening (35)

a

-1 ‘1 2 2 -l
by replacement of n by a L, log 2 (2a + 2a + 1)(a + a) by

-1 2 -l , g

2 (a +’q) , and by noting that for a,b > O, (a+b) s

(a + 2a%b% + b)% = (3% + b%) ,

 

I 2 " 16 " $2

(36) \v1 - vZMR‘") s (4—12‘“1 > + 22. a 2 a > ‘lt - lclll -

a+a 4a +‘4<i+2 01 or

So under (26)

(37) c3 5 BE(“tH1 - rhs(36))

In either case, (24) implies that there exists a real con-

’5
stant X’ depending only on m, B, L. and y Such that C; s XO-

Since Ta is the sum of the independent t1,...,ta we might

anticipate a central limit effect and hope to Show that 6a is also

appropriately small. Recalling the form of 5; from (31), bounding

the absolute value of the coordinates of t by “th and applying

the triangle inequality

t T t T +t

(38) 60 S EHth(§\E eglwa\ + Z‘E 9°1nq+c\) .

0! e or

T +w

Thus we address the problem of finding a uSeful bound for \Eeolflg+w\

a

with w e Rm.

Under (26) t'l = 1, so any coordinate of t may be obtained

from the remaining m-l coordinates. We will take advantage of this

fact to reduce by l the dimension of the vectors T and ‘W in this

a a

v m-l

situation. For w E Rm let w denote the point (w1,-.-,wn_1)' E R .

For r > 0 define or from Rm-1 to S by qr(y) = o(w) for w

V

die point of Rm such that w'l = r and w = y. Then we may write

under (26)
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T i

(39) Eeo1w" = E9001»?

(1’ Q

and for w 6 Rm with w'l = 1

T +w 0+1 f +&

(40) 229.3waer = EEG 1,30%

CY CY

The advantage of such a reduction of dimension will become apparent

in the proof of Lemma 4.

. . m l m ,

For a function g mapping R to R and u 6 R define

the function gu by gu(w) = g(u + w). For a set QVCLRm define

- , m

m(g,q0 = V{\g(w) - g(y)\\w,y 6 a3. With y E R and r 2 O,

S(y,r) will denote {w e Rm\“w - y“ < r}.

Lemma 4. Let Y have a normal (0,a?;) distribution. There exist

1 2

that under (25)

constants K and K depending only on m, B, {V9} and V such

T +w %
a ‘ -

‘Eeolwafiw‘ S Kla + 2 V Ew(ea, S(Y + u, K2))

m

UGR

for any w E Rm, and under (26)

T -1/

‘Eeolwa\ S Kla 2 + 2 V 1Ew(eca, S(Y + u, K2))

a uERm

and

T +w 1

a - 'é d+1 '
\EEOJW +w1 S Kla + 2 Vm_1Ew(90 ,S(Y + u, K2))

a uER

for any w E Rm with w'l = 1.

Proof. All of the asserted bounds will follow from applications

of the weakened form of the Bhattacharya-Mirahmedov Theorem Stated in
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A.3. Consider first the situation under (25). Direct application of

the result shows that with E a m x m nonsingular matrix Such that

a

E'E = V'l, “Ea“ the operator norm of E , g the function from Rm

0 a

l . % -1 l
to R defined by g(y) = 90(a Ea y + w + G ), and

a

= -3/2 3 0ea C(m)a “Ea“ m55 z E(zie(t - e >\3,

T +w

E90 or 's . ,Rm + 2 V ‘6‘ ,S1 Jwaiwl m<g )ea u Jw(gu (x,ea))d¢m<x>.

. -% m
Since “Ed” 3 L , w(g,R ) s B, and (24) implies that

a 3 . -% 3/2
8 E(Z\6(tB - 98)‘ ) 3 amy, we may Set 6 = C(m)L. m y and weaken

1 9

the bound to

Tafiw’ _ -%

imawpsahwnxwemxaam%m.

Now

'% t '%
v jw(gu,s<x,a 6))d@m(x) = vfw<gu.8(x,a e>d¢m<x>
U U

L -1
Where 8:00 = 900121310 y + u). But

.} 3' -1 5'

U)(gL:aS (X’a 23)) S (MGOJS (02130 X + UzC)’ 6"‘\Q'2E

-l 5 -l -l

“E H = n2 where n is the largest eigenvalue of (Ed )‘Ea . It

a

is always the case that for A a m X r matrix and B a r X m

matrix, AB and BA have the same nonzero eigenvalues. Hence fl

is also the largest eigenvalue of E;1(E-1)' ='V . So under (25)

C1 0’

T +w

| a ‘ -%B .52,

(41) (1590)" ...w‘. S 01 e + 2v Ew(Eo,S(Y + u, 61.))-

a U



31

The Bhattacharya- Mirhamedov result is not directly applic-

able to the left sides of (39) or (40) under (26), as the V9 are

singular. For 2 a m X m matrix, let 20 be the (m-l) X (m-l)

matrix obtained from 2 by deleting the mth row and column. V:

is then the covariance matrix of the random vector {(X) under the

distribution P9. It is the case that under (26) each V2 is non-

singular. To see this, suppose that Y has mean 9_ and covariance

matrix V9. Y'1_= O a.e. so that the coordinate random variables

of Y Span the same (m-l) dimensional subSpace of L2(P) as do

the coordinates of Y. Hence the coordinates of Y are linearly

independent in L2(P), that is V9 is nonsingular.

Thus although the rate of weak convergence result is not

directly applicable to lhs (39) or lhs (40),it is directly applicable

to the right sides of the equations. And with Do a (m-l) X (m-l)

l
nonsingular matrix Such that DO 'Da = (VO)- , LP = A{k\k is an

a

eigenvalue of V2 for some 9 E ®}, i9 = Vikik is an eigenvalue of

V2 for some 9 6 ®}, 60 = C(m-l)L9-%(m-1)3/2v, g0 the function from

.. L. V

Rm 1 to R1 defined by g0(y) = an(a2Da1y + 6;) and ho the

function from Rm-1 to R1 defined by h0(y) = edy+l(a%D;1y + é;‘+ W),

under (26)

T
- 0 o -% o

\Eeolwa\ s a $5Be +'2 v ljw(gu, S(x,a 23 ))d¢m_1(x),

a -_ m

uER

and for w with w'1= l

T +w - 0 -L 0

a \ s a ;5860 + 2 V Iw(h ,S(x,a 2e ))de (X) .

\EGOJW +w m-l u m-l

uER

Then by the same argument as applied under (25),
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T
,‘ -L 0 v 0 1/

\E901wal 5 oz 236 + 2 v Ew(ec"‘,s<Y+ u, .- (Pm,
-1

a uERm

and

T +w L
. - o 1 . o L

(13901”an $0: 2Be + 2 v Ew(600+ , S(Y+ u, 6 (Tom).

a uERm.1

With K1 = B(V{e,eo]) and K2 = V{e{%, 30(i0)%}, the lemma is

proved. I

The bounds under (26) involve the functions Ca and 00+1

which involve the arbitrary choice to eliminate the final coordinate

of the arguments of a. It Should then be noted that the apparent

asymmetry of the bounds could be eliminated by replacing the terms

involving the oscillation of 909 and eca+1 on Spheres in Rm-1

by terms involving the oscillation of 60 on sets which are the

intersections of the hyperplanes {w E Rmaw'l = a] or

{w 6 Rmiwil = a + l} and appropriate spheres in Rm. For purposes

of what follows however, the Stated form is most manageable.

Applying Lemma 4 to (38), with Y normal (93 a? ), under

0’

(25)

(42) 5 SEW ‘\ (ZmK o-%+42 v Ew(90, S(Y+u. K )))
a ai’l‘co 1 e m 2

uER

and under (26)

(43) s E\\t \\ (2mK J5 + 2 V EMEOO so? + K ))601 oz+1 co 101 g m_1 ’ u’ 2

1 v

+ 2;; v Ew(6cra+ ,S(Y + u,K2)))-
9 m-l

So comparing (29), (31), (33), (37), (42) and (43), provided the
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terms V EU)(603 S(Y + U, 1(2)) a V Ew(eUa: S(§ + U, 1(2)) and

u u

v Ew(eoa+1, S(Y + u, K2)) are of order 0(a 35), A is of order

u

0(N 5).

4.3. The two State problem.
 

For the remainder of §4 we specialize to the case m = 2.

Further, we suppose that S is the lower boundary of a convex sub-

set of [0,B]2. Such a choice of S arises naturally in a situa-

tion in which the risk points corresponding to all meaSurable decision

procedures in a component decision problem with nonnegative loss function

are available, and it is determined to at each stage use an admissible

risk whose maximum component is bounded by B.

The assumptions on the form of S have several useful con-

. . u u

Sequences. First, there are pOints su = (s , 32)' and

1

L _ L L l u u
S — ($1, 52) E S such that for any 3 E S, 31 s 81, $2 2 82,

L L
31 2 s1 and 52 s 52.

Figure 1

2 2

I , {w = (w1,W2)' t R \Wz =

B a / 'I/

u /’

8 44( L u

‘x W 1

u _ Z l

‘\ 82 52
\\ 8L

 
It is the case that

(44) g(w) = s’“ for w such that w1 so and wz >
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and

s O and w <(45) g(w) = su for w Such that w2 2

2

Representing points w E R in polar form w = p(cos ¢, sin ¢)', the

positive homogeneity of o guarantees that g(w) is independent of

p >>O. With A E (-11\) ,-n/2)the angle from the positive 1 axis to the ray

L

1 - s

- 2

:)(S; - 8%) 1W1} fl (cm,0) , the coordinates of

2

{WER\w2=(S

g(w) are monotone in a E (A, A'+ Zfi)- Because of these monotonicities,

r 2 .

a set a; of the form a? = {w E R \eo(w) > r} must be v01d, all of

R or a region bounded by two distinct rays from the origin,

possibly though not necessarily including the origin and or one or

both of the rays. Also, the monotonicities guarantee that for any

r > O, eor(y) is a monotone function of its real argument y. With

r r r , r . . . . r . .

0 = (01, 02) , 01 ls nonincreaSing while 02 is nondecreaSing.

L

4.4. 0(N2) rates la the two state problem.

Theorem 2, Under hypothesis (25), in a situation where m = 2 and

S is the lower boundary of a convex Subset of [O,B]2, there exists

a real constant Ki depending only on B, {V9} and y such that

A s XiNg.

Proof. In view of the discussion in §4.2 it suffices to Show

that there exists a real constant K3 depending only on B, {V6}

and v such that for Y with a normal (Q, dY') distribution,

a

V Ew(80, S(Y + u, K2)) S K3a-g, where K2 is the constant from

uERm

Lemma 4.

2

Define functions g and h from R to R1 by

g(w) = V{eo(x)‘x E R2 with “x - w“ < K2] and
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h(w) = A{eo(x)\x E R2 with “x - w“ < K2}.

Notice that w(eo, S(w,K2)) = g(w) - h(w). Both g and h are

Borel measurable. For example, with r > O and a; =

{W E R2\60(W) > r},

{w : R2\g(w) > r]

2

{w e R \S(w,K,> n at ¢ $3,

{w e R21Hw - x“ < K2 for some x 6 gr}

2 _

which is an open set in R . So with v normal (u, an) meaSure

(46) Emma, S(Y + u, R,» = jg - h dv.

By the Fubini representation of the integrals of the nonnegative

functions g and h,

rhs(46) =13 v({w‘g(w) > r}) - v({w\h(w) > r})dr .

2

Letting at be as above, and for any ,BC R denoting

{w E R2\“w - x“ < e for some x in .D} as '86 and the complement

C .

of .B as .0 , notice that

{w\g(w) > r} = a;

and

{w\h(w> > r}:: (((af>°>K2>° .

So

(47) Ew<eo, S(Y + u, K,>) s )2 v(d;2 - (((a;)C)K )C)dr.
2

r

But because a; has one of the forms indicated in §4.3, GR -

2

(((6;)c)K2)C is either void or is a subset of the union of two
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2

closed infinite strips in R of width 2K2. Lemma A2 then implies

2

that the integrand in (47) is bounded by 2(;—)%

.3

the smallest eigenvalue of avg. Hence the integrand is bounded by

41<2(%-)}5(1,)'}50f}5 and

(2K2) where ‘3 is

N
V
"

~
\
"
‘

2} -

Eu)(90a S(Y + U, K2)) 5 4BK2(TT)2(D

2 -lv

The bound is uniform in u so that with K3 = ABK2(;;%L) 2 the

proof is complete. I

In the m = 2 case, hypothesis (26) implies that the matrices

V and V2 have the forms

1

v2 _v2\ 2 v2

1 1 \ V2 2

vi = v2 v2 and V2 = \ v2 V2

\' 1 1‘ ' 2 2/

for v1 and v2 nonzero real numbers. Note then that with

2 —- v

i, v2)', if Y has a normal (9, av ) distribution, Y is

a

univariate normal (0, v'Gi).

v = (v

Theorem 2. Under hypothesis (26), in a situation where m = 2 and

2

S is the lower boundary of a convex Subset of [0,3] , there exists

a real constant K? depending only on B, {V9} and V such that

A s XéNg.

Proof. In View of the discussion in §4.2 it Suffices to show

that there exists a real constant K depending only on B, {V9}
4

and V such that for Y with a normal (9, a?&) distribution

v Emma“, so? + u. R,» < K {’5
uER 4

and
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V Ew(eoa+1, S(§ + u, K2)) <‘K

uER

-%
4a

where K2 is the constant from Lemma 4.

By the monotonicities of CO and oo+l, for y E R

Meg“, S<y, K2» s (-1)e'1(ec°‘(y - K2) - eoo‘w + 1(2)),

and

-1 l

(ea“+w<eay*1, S(y, x2)) s (-1)6 (y - K2) - eda+1(y +’K2)).

So that with v1 univariate normal (u - K2, v'Gl) measure and

a

v2 normal (u + K2, v'Gi) measure,

Ew(eo“, s<§ + u, x2>>) s (-1>9‘1§eo“d<v1 - v2)

and

1 v -1 1

Em(eo“+ , S(Y + u. K2>> s <-1>e $900+ d(v1 - v2)-

But the right sides above are bounded in absolute value by

1 L -L -

B‘v1 - v2\(R1). And Lemma A1 shows that \Vl - v2‘(R ) s 2%" 2“ $5(2K2)

v 2

where n is the variance of Y. With v = A{vi, v2) we may then

bound

v 2 -L -L -L

Em(eoa, S(Y + u, K2)) 5 23/ fi 2v sza 2

and

l v 3 2 -L - -

Ew(eoa+ , S(Y + u, K2)) 5 2 l n 2V nga %.

Since the bounds above are uniform in u the proof is complete. I
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A.1. A bound for the risk of Blackwell's unextended strategy.

The following proof referred to in §3.4 derives from a 1957

note of Hannan.

Proposition. If S is convex, then
 

N v L 1

z e s - w1(c.1) s 24’2((2 + 32)(1 + 1:132)?
0:1 01 or N

uniform in QN.

Proof. Note that the concavity of Y1 and the definition

of wth imply that 1f 90-1 > O

(l) (yiw) - Y<wa-l))(¢a-l - Y<wabl)) > O for any w

and

(2) E -‘¥1(w )>o.
0-1 0.1

We first show that

2
2 2 2 2 + B

(3) by s (l - a)pq_l + 02

If = 0 then 2 s \- — Q “2 But - - - =
p 1 ’ pa \ma Varl‘ ° ¢a ©9‘1

l 2 - - 2 - 2

a<¢a - ¢ 1) and He - ¢a_1H - Med - 90-,H + (easd - ra_,>

$2+B2,

so that (3) holds in this case. In the case that p > 0 we
a-l

38
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first observe W2 3 V5 - y(w )WZ. Abbreviating v(w ) to Y

bor ha a-l‘ o a’

2 , - 2 " " " u" - 2

- - ' r' - a i. —(4) pa s H5014 Ya_1\\ + 2(00-1 Va’l)(0a WW1) + M d; 1H -

Using the identity

1 -

- ai<¢a - y -l) + (fy_l ‘ m _1))3
*

I

(
g
r

u

0-1 a

on the right hand side of (4)

2- 2‘“ ~2 2" - - 2

s - —- , - , —-n - ., — + w' l

(5) pa (1 o)\®a—l \d-IM +Da(‘a-l Ya-IH‘to/ Y01—1) H¢a fia-lx

We can show that the cross product term above is non—positive and

hence weaken (5) by its omission. To accomplish this, consider a

game where I has pure strategies 9 E @, II has pure strategies

3 c S, and the risk R is taken to be R(w,s) = (w,ws)(rba_l _Na-l)

V

for probability vectors w. s was chosen to minimize

a

v (9, es)(:}. -v, )=v (w,ws>(5. -\/ )
€63 oz—l 0-]. w 01-]. CY-l

Thus

(6) v(e,e§>(.- -v)=v(,v)1 - )
BEG) oz 901-1 cy-l w “'st (Va—1 Ya‘l

= A V (w,w:~3)(q)m_l “Ya-1)

868 w

Applying the Minimax Theorem to the game described above we have

-Yl(w )>).rhs(6) =v A (“(901-1 - wwl) + ws<ra._l a-
V7363

Applying (2) and then (1),
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rhs(6) = sup v(w)(" “Y )
w 050—1 01 -1

= Y<wa~1)(%~1 "V9, -1)'

So that the product term in (S) is non-positive and we may write

 

p2 2 - - 2

(7) 9V <<1 -:)\\€bo[_1-va_11\ + My - $0.4” -

Since W; - & l2 5 a-2(2 + BZ) the definition of and1.0 0-14 ! pCY-l

(7) yield (3) in the pa-l > 0 case as well as in the pa-1 = 0

case.

Iteration of (3) shows that

p2 (3)(2)l__ N(N--l)__2

<8) pV s (2+32)<V(V_1)<—”) + N(N—l)(3 >2 +‘fi?fi‘f7‘u> )

N-l N—2 l

S<2+B2)(N(N-1))(N +I—Q:I+"'+ 2)

2 l

< (2 + B )N .

Consider E — Yl( (
I
)

V

II

- l 1 1 _

N rN — Y (wN) + Y (wN) ~ Y (SN).

1 1- --
V (wN) - Y (6N) wNo(wN) - eNo(eN)

l
/
\

on<éV> - éNo(éV)

So

. _ '1 _ _

(9) rN - Y (SN) 3 HeN - w§hngB + (EN - yl(wN)).

N'l(2 + 32) theRecalling “6N - wNHZ + (EN -“¥1(wN))2 = p§'<

problem of bounding EN - Yl(éN) has been reduced to the problem
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of bounding the function of two real variables f(u,v) = u + /h Bv

2 2 2 2 %

on the ball u + v SépN. For such u and v, f(u,v) s;pN(l + mB ) .

Hence

__ _ _1/ l l

(10) rN — vim“) SN 2(2 + Bzfiu + mBzfi

and multiplication of (10) by N completes the proof. I



A.2. Two lemmas concerning properties of multivariate normal
 

distributions.
 

The first lemma in this section is used in §4.2 and provides

bounds on the total variation of the difference of certain multi-

variate normal measures.

Lemma Al. Let 2 be a nonnegative definite m x m matrix with

range hfi With w and v elements of RI11 such that w—v E a;

q >,0, and r = rank 2, let v1 be normal (v,ZD measure on Rm,

v2 be normal (w, qZLD measure on Rm, and N be any r X m

matrix such that NEN' = Ir’ the r X r identity matrix. Then

1 l 2 L

T>+——Tz— )2-
q 2(l+q )

\v - v21(Rm) s 2(r log(% + HN(w-v)“

In the case q = l

 

1-; __

2(Qgflig%lglg _ i1 UN(W V)fll), m

" 21(R) 2

l

Zéfi-%HN(w-v)“ .V
fl

Further, if 71 is the minimum positive eigenvalue of Z,

_1/

“NW-WEE S T1 2\\w-V\\-

Proof. Let Y = (Y .,Ym)' have a normal (932) dis—1,..

tribution.

42
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\v - v2\(Rm)1 2 v (P((Y + v) 6 a0 - P((qY + W) E 60).

are”

= 2 v (P(Y E GLV) - P(qY + (w-V) E GLV)),

afifim

\vi - vé‘(Rm),

\\'

where v' is normal (9,2) measure and v2 is normal (w—v, qzz)

1

measure. So for the rest of the proof we suppose v =‘Q and

w 6 $2

Since 2 is of rank r, the subspace of L2(P) spanned by

the coordinate random variables of Y is of dimension r.

The coordinates of Z = NY form an orthonormal basis for this sub—

space. Because each Yi is a linear combination of {2i}:=l the

coordinates of Z, there exists a m X r matrix M such that

Y = M2. Then Z = NMZ and the uniqueness of representation of

elements of a subspace of L2(P) as linear combinations of elements

of a basis for that subspace guarantees that NM = Ir' ThUS, since

MM' = Z, the range of M is WI While MN is not Im it does

act like the identity on RE That is, if h E N; h = MX for some

r

x E R and MNh = MNMX = Mx = h.

1

Both v1 and v2 concentrate on V, for if x 63"”,

both x'Y and x'(qY + w) are 0 a.e.. Thus

v1 - v21<Rm> = 2 v (v1 - v2><ao,

gas”

2 V (v

aeemnv

l "‘ V2) (a),

where 5P (1%' is the sigma algebra of Borel subsets of WI Now for
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aeamnw

(v1 - v2)(a> = m e a: — P((qY +w) e a).

Also, P(Y e a) = P(NY eNa) and P((qY + w)€ a) = P((qNY + M) 6 N0),

the equalities following because MNd= a, w E 1’, and Y E N

with probability one. So

(v1 — v2)(d) = P(NY t Na — P((qNY + Nw) 61152),

and

(11) \vl — v2!(Rm) = 2 V (P(NY 6 Nd) - P((qNY + Nw) c Nd).

fimflf

But as 67 ranges over éfl'r1y; Na’ ranges over 5;. So with ”1

normal (0, Ir) measure on Rr and ”2 normal (Nw, qzlr)

measure on Rr

l 1 m I'

\vl — v21(R ) = rhs(ll) = \”1 - u2\(R ).

and we bound \”1 - u2\(Rr)-

Letting f be the density of ul with respect to Lebesgue

1

measure on Rr and f2 be the density of ”2,

(12) \ul — u2\(Rr) = jifl - f2\dx .

It is well known (see for example section 3 0f Hannan (1960)) that

L L

with p = ff; fgdx,

2 g g 2

(13) (rhs(12)) s 4j(f1 - £2) dx = 8(1-p) s -8 log p.
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Abbreviating Nw to d,

_1/ -I/

p = (det (1211,) “f(ZTr) 2exp -12(¥§(l+1—)x' x - 1—2x' d + ——1—2-d' d)dx,

- <12 q 2‘1

- 'd d'

= q r/2(§(1+12)) r/zj eXp (X——2 — —%3)f (X)dx,

q 2q 4q

where f3 is the normal (9, (%(l + l§))_llr) density. So

q

- ' 1 d
UM p=<9+ls‘”€mm-3£~+aau+~a)1<——>(~—».

2 2q 2 2

AK1 q 2q2 2q2

- 2 d'd

q 4(l+q )

Combining (12) through (14) the first bound holds.

Now consider the special case where q = 1. Here

f

u, - u2\(Rr) = [11 - fiqdir

$11 - exp(- 959-+ x'd)\d¢r(x),

1 H21d,

= 511 - exp<~ “§*-+ Hde>ld2<Z>:

\dl

H

= I 2 (l - exp(- ugfl—’+ Hdflz)d®(z)

2

m d‘ ‘+ EHdMeXM‘ JAEL + Whiz) ' 1)d¢(z),

2

l \ I'

— 2(¢(u%l) - 2(- L311»,

and the Special bound for the q = 1 case holds.
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'1 1

Finally, notice that £§¥h-= *gjfi-. For any a E Rm,

“Manz = a'M'Ma 2 Wafizx where X is the minimum eigenvalue of M'M.

It is always the case that for A a m X r matrix and B a r X m

matrix AB, and BA have the same nonzero eigenvalues, so M'M

has the same nonZero eigenvalues as Pm“. Also r 3 rank MN =

rank N'M'MN g rank M'M s r. Thus M'M is nonsingular, A = fl,

2
11 1

A§l_§ g l’ and the proof is complete. i‘

“Md“ Tl
The second lemma is used in §4.4 to bound the probability of

. . . . . 2 . . .
an infinite strip in R under a nonSingular bivariate normal

meaSure.

Lemma A2. Let L be a hyperplane in Rm. For 6 > 0 let

L- 6R2“ -‘1 f s ‘-L Lt VERm bae—{w MW y‘1.<€ or ome yc ]. e ,‘f, e

m x m nonnegative definite matrix and v be normal (v,z) measure

on Rm. Then

v(L) «:- (1271—1121.:

where 3' is the smallest eigenvalue of 2.

Proof. Let W have a normal (v,2) distribution. Denote

by d(w) the distance from a w E Rm to L. Then v(L ) =

e

P(d(W) < e). Let be a point of L and u be a unit vector
y0

orthogonal to L - yo. uu' is then the matrix of orthogonal

projection onto the line generated by u. SO d(W) = HUU'(W ‘ YO)H'

But Huu'(W - yo)“ = \u'(w - yO)E. Since u'(W - yo) is univariate

normal (u'(v - yo), u'Zu), P(‘u'(W - y0)1 < e) is the standard

N
\
"
‘

normal probability of some interval of length 23(u'2u)- The

stated bound is then a weakening. .
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A.3. A rate of weak convergence reSult 9£_Bhattacharya-Mirahmedov.
   

Mirahmedov (1974) proves the following improvement of a rate of

weak convergence result due to Bhattacharya (1970).

Theorem Al. (BhattaCharya-Mirahmedov) Let X ,X ,...,X ,...,X be
 

l 2 k n

independent random vectors in Rd with E(X ) = Q_ and

_ _ -1 1n . .
Dk — Cox(Xk,Xk) . ASSume that Bn — n 21 Dk is non-Singular,

-1 _ ' _ “3.2 ,n _ '3/2 ‘11 1 113

and 18C Bn - EnEn, Sn — n Enll Xk’ and L3n - n 215(hEnXkd ).

d

For any measurable function g(x) on R , set w(g,A) =

V{1g(x) - g(y)1 : x,y E A}, and gu(x) = g(x + u). With

S(X,r) = {y E Rd1HX-yH < r},

d
\fg(y)(Pn(dy) - ©d(dy))\ s C(d)w(g,R )L3n

+ 2 SUP 311*(guy S(Xa C(d)L3n))Qd(dX)

U

where Pn is the distribution of S is the d-variate standard

n’ éd

normal distribution and C(d) is a constant depending only on d.

Notice that with “En“ the operator norm of the matrix En’

3L S n-3/2 n3 n E(WXRH) ,

3n HEN” 2:1

m 5

I
;

D
.

M

p
1
A

n
V

o
.

:
a

V

so the theorem may be weakened by the replacement of L3n by the

last line above.
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