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ABSTRACT

O(N%) CONVERGENCE IN THE FINITE STATE

RESTRICTED RISK COMPONENT SEQUENCE COMPOUND
DECISION PROBLEM
By

Stephen Bruce Vardeman

We consider a sequence of independent, structurally identical,
finite state restricted risk component decision problems, where the
choice of risk point in the gth problem is allowed to depend on observa-
tions from the previous problems, and the goal is to control the total
risk incurred across the first N problems. k-extended standards
for the risk of sequence compound procedures are introduced. In the
most general situation in terms of allowable form of the component
problem risk set and distributions of the observations, bounds are
obtained for the risks of a family of procedures employing artificial
randomization. Appropriate specification of a sequence of constants
appearing in both the bounds and description of the procedures give

%

total risk approximating the k-extended standard at a O(N®) rate.

It is noted that the formulation of the problem given includes a game
theoretic situation in which the information about past states carried
by the observations is perfect. Four procedures appropriate to such

a situation are offered, each of which has risk approximating the

k-extended standard at a OCN%) rate. Finally, nondegeneracy con-

ditions are imposed on the distributions of the observations and the



Stephen Bruce Vardeman

resulting statistical version of the problem is studied. A rate of
weak convergence theorem of Bhattacharya ((1970). Rates of weak con-
vergence for the multidimensional central limit theorem. Theory of

Probability and its Applications 15, 68-86.) and Mirahmedov ((1974).

The rate of weak convergence in the multidimensional limit theorem.

Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 18 no. 2, 23-28, 92-93.)

~e

is applied to show that in a two state case, a natural procedure has

risk approximating the usual unextended standard at a O(N%) rate.
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0. INTRODUCTION

Simultaneous consideration of a number of independent
structurally identical decision problems with the goal of controlling
the average or total risk incurred across the problems was first
suggested by Robbins (1951). Robbins termed his original example
involving N 1independent discriminations between normal (1,1)
and normal (-1,1) distributions a compound decision problem. The
procedure he proposed has total risk approximating N times the
Bayes risk versus the normalized empirical distribution of states in
the component testing problem, and finding procedures with similar
total risk performance became the usual objective in compound decision
theory.

Hannan (1956), (1957) in rather general finite state settings
showed that the usual compound decision theoretic goal is achievable
not only in situations in which all N of the problems are considered
simultaneously, but also in situations where the independent
structurally identical problems are faced serially. Such a modifica-
tion of the compound setting has become known as a sequence compound
decision problem. Hannan's procedures involve artificial randomiza-
tion and are aprlicable in situations in which before making the qth
decision one has available either the exact empiric distribution of
states through the (ao-1)st problem or an estimate of the same. Van
Ryzin (1966b) showed that in many finite state finite act statistical

versions of the sequence compound problem, the extra randomization
1



employed by Hannan is not necessary. In a sense, enough randomness
enters through the estimation of empiric distributions of states.
Van Ryzin's arguments are closely tied to his assumption of a finite
action space.

Johns (1967) and Gilliland and Hannan (1969a) suggested
standards of performance for compound procedures which are appropriate
to sequence versions of compound problems and.asymptotically more
stringent than the usual standards. These standards, which take into
account kth order empirical dependencies inthe sequence of states
have become known as k-extended standards. Work of Ballard (1974) and
Ballard, Gilliland and Hannan (1974) shows that in Van Ryzin's finite
state finite act statistical setting, generalizations of his non-
randomized procedures have risk approximating these k-extended objectives.

In this thesis we treat a particularly tractable, yet quite
general finite state sequence compound decision problem. The gen-
erality of the problem derives primarily from the fact that a risk
structure rather than action space and loss structufe is assumed for
the component problem. In §1 this finite state restricted risk
component sequence compound decision problem is described along with
the unextended and k-extended standards for the problem. The estima-
tion of kth order empirical distributions of states is also very
briefly considered. Section 2 contains the description of procedures
which are generalizations of the procedures involving randomization
proposed originally by Hannan. We bound the total risk of the pro-
cedures and note that appropriate choice of arbitrary constants yields
bounds approximating the k-extended standards at a O(N%) rate. In
§3 it is noted that the problem includes a game theoretic situation

in which the component risk set is composed of the risk points available



to player II, and before each repetition of the game, II is furnished
with the empirical distribution of 1I's moves through the previous play.
After noting a simple game theoretic decomposition of the k-extended
standard, three procedures are provided in addition to the game
theoretic specialization of the procedure from §2, which have risk
approximating the k-extended standard at a O(N%) rate. The basic
technique employed in §3.3 and §3.4 has been uéed independently by
Cover and Shenar (1974) in a less general situat ion. The results of
§4 all concern the unextended version of the problem. Using a rate

of weak convergence result of Bhattacharya (1970) - Mirahmedov (1974),
we show that certain natural procedures in a two state case have risks
approximating the usual standard at a O(N%) rate. The procedures
are related to those of Van Ryzin in that no extra randomization is
employed. The appendix contains several results applied in the body
o the thesis.

Several notational conventions should be mentioned. Vectors
in R™ are considered to be column vectors, although to save space
they occasionally appear as row vectors in the text. Euclidean vector
norms are denoted as ||-||. Vv and A stand for supremum and infimum
respectively. ¢ denotes the univariate standard normal distribution

and @m is the m-variate standard normal distribution function.

A" is the Borel sigma algebra on R™. The term "range" of a matrix

refers to its column space. 1lhs and rhs are used to abbreviate left

hand side and right hand side respectively. For probabilities 2

and Vg \vl - VZ\ will denote the total variation of the signed

measure v, - V). Displays are numbered consecutively in §1 through

§4 with the displays in the appendix numbered separately.



1. THE k-EXTENDED FINITE STATE RESTRICTED RISK COMPONENT
SEQUENCE COMPOUND DECISION PROBLEM

1.1. The component problem.

We consider a (component) decision problem with states
€ ®={1,2,...,m} and risk set S c [0,0)". For each g € @
let Pe bea probability on a measurable space (X,F). 1In all that
follows we shall assume that S is bounded, \\s\\OD <B < o for
each s € S, where “o“m denotes the supremum norm for m-vectors.
Gilliland and Hannan (1974) use the term '"restricted risk" to in-
dicate that S may be a proper subset of the largest possible
risk set for a given action space and loss function.

For w a finite signed measure on ® and s € S we will
let ws denote Js(-)dw(-). In the case where w is a proba-
bility ws 1is the Bayes risk of s against the prior distribu-
tion w. It will be convenient to identify each 9§ € @ with the
probability on ® concentrated at 9. 6s 1is then the 8§ co-
ordinate of s. Further notational economy will be possible by
agreeing to also identify finite signed measures on ©® with m-

vectors, w corresponding to (w({1}), w({2}),...,w({m})) € R".

1.2. The sequence compound problem.

A compound decision problem as introduced by Robbins (1951)
involves N independent repetitions of the component problem des-

cribed in section 1. We will consider a sequence version in which

4



the choice of risk function in component «o is allowed to depend

upon independent, Pe distributed observations for B8 s ¢-1, and

g

the compound risk is taken as the sum of risks in components 1
through N.

More precisely, let k be a positive integer and

ga+k-2

s = (sl,sz,...,s be such that Sa is a measurable

N)
mapping into S. For QN = (ez_k,...,eN) we suppose that

KN = (X2 k,...,XN) is distributed as X...x P ., (The pur-

P
%
pose of allowing indices o < 1 in the case k > 1 here is to

simplify later notation.) The compound risk of the sequence rule

s is
N N
1) ZTEgs (X ) =3 [os(-)dp X...X P
g1 @@ ol T % x Ou-1
When s = (s,s, ,8) for s € S the risk (1) becomes
N N 1
L8s=(8)s = GN s ,
1 ¢ 1 ¢

where as indicated earlier, we are identifying elements of © with
probabilities on ® and G; is the non-normalized empiric distribu-

. 1.1 1
tion of {el,...,eN}. With V¥ (GN) = A GN s, Hannan (1957), (1956)

s€S
first exhibited procedures in versions of the sequence-compound
problem achieving Yl(G;) asymptotically.

* k-
Let S be a class of & 1 measurable mappings into S.

We consider the sequence compound rules of the form s = (s ,...,s )

*

for s* €S . For such s the risk (1) reduces to the functional
N N

(2) <LEops 5*(X e X ) = & je s*(-)dP X.o.X P



k
of GN’ the non-normalized empirical distribution on @& of the

vectors {(ez'k,...,el),(63'1(’...’62)’...’(eN-k“'l’...’eN)}. Swain

(1965), Johns (1967), and Gilliland and Hannan (1969) have termed

N *

k, k
3 Y (Gy) = K ;1;E 0,5 (X jy12e X
s €S

)

a-1

a k-extended simple envelope evaluated at Ggl Notice that in the
case S* is the class of all 3k-1 measurable mappings into S,
for fixed ﬁN’ Yk(Gg) < Yk-l(Gg-l). That is, the extended envelopes
are increasingly stringent.

The purpose of this work is to exhibit sequence compound

rules which achieve risk Yk(Gs) asymptotically with rate.

1.3. Bayes rules in the component problem.

We will make the assumption that S 1is not only bounded,
but also closed. For any w € Rm, A ws 1is then attained and we
denote an infimizing s by og(w). Sii is a simple consequence of
Corollary 1 of Brown and Purves (1973) that there is a Borel measur-
able determination of o(-). In addition we may assume that o(-)
has the property that g(pw) = g(w) for p > 0. (If not, we replace

o(w) by o(w/||w||) for w # 0, where ||:|| is the usual Euclidean

vector norm.) Notice that with this notation we have

1
vhed) = A ops = Gy o(GY)
SES

There is no essential loss of generality in the assumption
that S 1is closed. If S denotes the closure of S 1in Rm, for
any ¢ >0 and any sequence compound rule s' = (si,sé,...,sﬁ)

. f;ar+k--2 . . Y .
where s' is a measurable mapping into S, there exists
o



-2
a rule s = (Sl’°'°’SN) such that sd is a 33 measurable

mapping into S with \sta(') -8 S&(')\ < Z-QQ each € A.

8 %
N N

v |
Hence | ? E easa(ga_l) ? E easa(gu_l)l < ¢ for all 8 and
theorems concerning the risks of S valued rules have ¢ analogues

for S wvalued rules.

1.4. The Fk construct.
: . k, k
In order to describe compound rules achieving risk Y (GN)
asymptotically, we introduce a variant of Gilliland and Hannan's

Fk decision problem. The Tk problem has finite state space Gﬁ
k
and risk set § < [0,+=)" where

~ mk *
S=({(S€R |(8,,+.+,8)8 = [0 s ()P, XP_ X...xP
1 8% = [ 8, 9, 8 -1

The rk problem inherits the property of bounded risk from the com-

ponent problem. We shall use notational conventions for the rk

* %
for some s €S } .

construct similar to those introduced for the component problem.
That is, we will identify each § € ®k with the probability on

k |3

© degenerate at @, let m -vectors correspond to signed measures
on @k, and for v a signed measure on @k, § € S denote
v§ = Ig(-)dv(-). g(v) will denote a Borel measurable, positive
homogeneous minimizer of v§. (That no essential generality will be
lost by the assumption that § is closed follows from a comment

similar to that made in the previous paragraph.)

Using the Fk notation we have from (2) and (3)



Kk Nk
b4 (GN) = A T [8s (.)dp X...X Pe
* % 04 - -
N
= A_T (8 yeees0 )E
ge§s 1 okl @
= A c; g
SES
k -,k
—GN o(GN)

k
k
We extend the domain of ¥ to all of R" by defining

K R
(4) ¥ (v) =vy(v) all v E€R

*
It will be important to recover elements of S which give

*
rise to values of the minimizer G(-). Thus assume that s (:,-)

k
is a mapping from R™ X I¥-1 into S with the property that for
k
*

v € R" , 8 (v,*) € S* such that

* ~ k
(5) je s (v,")dP_ X...XP = (8,,...,8,)3(v) each g§ € @.

k 91 ek_l 1 k

Notice that in the case k =1, the Fk construct is identical

*
with the original component problem and we take s (v) = g(v) = o(v).

1.5. Assumption on the Pe and estimation of empirics.

We will assume that @& = {Pe} is a linearly independent

IS0

family of measures. That is, for real numbers a .,a

.o % al

1 ecg 0 °
is the zero signed measure only if each ae = 0. Robbins (1964),
Van Ryzin (1966a), and Ballard (1974) discuss the estimation of
mixtures of a finite number of linearly independent distributions.

In the linearly independent situation there are R™ valued,

bounded, ¥ measurable mappings t with the property that Xt(-)qu



is the m-vector with all zero entries except a 1 in the @ position.
t(X ) 1is then an unbiased estimate of the m-vector corresponding to
o

g . Ballard (1974) uses vectors of all possible products of co-
@ k
ordinates of k such mappings t to construct Rm valued,

k ~
bounded ¥ measurable mappings t with the property that

IE(-)dPe XoooX Pe is the mk-vector with all zero entries except a
1 k ’

1 in the (91,92,...,ek) position. E(X X ) 1is then an

RN ELEERL

unbiased estimate of the mk-vector corresponding to (ea_k+1,...,ea),
o

and T E(xj_k+1,...,xj) is an unbiased estimate of the mk-vector

j=1 k
corresponding to G .
o

We will not assume a special product structure for our
~ |3
estimates but will assume only that t is an F measurable mapping

k
into R"  with the properties

k
~ _ _ m
(6) jt(-)dPe Xoo X P (91,.--,9k) €ER
1 k
and
7) % (JlECH! )de XP_ X...xP_ = 2<
. ) oo = ® ,
k-f Iy 9, 8, o, 'k
9 €9
where H-Hl is the usual 4, vector norm. (Ballard's product

kernels provide examples of functions satisfying (6) and (7).) Let

o

t denote E(X ye..,X ) and T denote v t., for a>1,
a a-k+1 o o j=1 j -

0 otherwise.



2. A BOUND ON THE RISK OF A k-EXTENDED SEQUENCE COMPOUND PROCEDURE
EMPLOYING ARTIFICIAL RANDOMIZATION

We introduce a generalization of a strategy in the sequence
compound problem proposed by Hannan (1957), (1956) and bound its
risk. When constants appearing in both the description of the pro-
cedure and the bound are appropriately chosen, the strategy is

seen to achieve risk ‘i‘k(th:) + O(N%) uniform in ﬁN

2.1. Two lemmas.

Forms of the two lemmas which follow appeared first in
Hannan (1957) and variations of one or the other have since appeared
in Samuel (1963), (1965), Swain (1965), Van Ryzin (1966), Gilliland
(1969) and Gilliland and Hannan (1969a).

Lemma 1. Let f_,f ., £ be real-valued functions on some set

iy oty

o
BH. Denote F =3¢ fj and suppose that for each 1 < ¢ <N,

o

1

3d €5 suchthat F (d) = A F (d), Let d  be arbitrary.
o a o dep @ 0
N N
Then Ef (d) <F(d) < Tf(d ).
=1 2 @ N =1 ¥ o1
N N-1
. f (d =F (d - - (F (d -F (d )). But
Proof ?ozoz) NN) l(ot(crl-l) aa)
N

d -F (d =2 0. A f (d =

for each q, Fa( ot+1) a( C’!) 0 1so f 01( 01-1)
N

FN(dN) +)13 (Foz(dol-l) - Fa(da)). And for each ¢,
F (d -F (d 0.
01( ot-l) or( a) z '

10



11

The application we will make of this lemma is to take 4§ =
k o
f () =v§ for v €R" , let V = % v_ and conclude
a o o a
g=1
N k N
(8) TvEV) ¥YV) g TvEV_ ) .

We will not prove the next lemma. Apart from slight nota-
tional differences, the proof of a similar lemma in section 3 of
Gilliland (1969) applies in our case also. Gilliland's assumptions
that v,v',z are R" vectors may be altered to v,v',z being
Rmk vectors without change in the form of the proof, his B may
be re-interpreted as our supremum norm on S, and his assumption
that the co-ordinates of v,v' are non-negative may be dropped.
Lemma 2. Let Z be uniformly distributed on [O,I]m andklet W

be the distribution of Z. For any v,v' belonging to R" , any
8€0@

lo @B + 2) - 3(v' + 2)| <Blv - v']|,
where operator notation is used to indicate integration.

The lemma then gives
(9) (v + 2) - 3" + 2| <Bllv - vl -

2.2. Definition of the procedures §.

Take ({H }:_1 to be a non-decreasing sequence of positive
a’a=
constants. Define H =0 for o< 0 and denote h =H -H .
o a o a-1
Let Z be a uniform [O,I]m random Vector independent of Xa

for each 2-k € o < N. We will consider the procedure

= (5,58,

|w?

,...,QN) where



12

X))

a-k+1’ " -1

* ~
10 8§ =s (T +H .2, (X
(10) o (a_k a-k’(

(In the o component, the proposed procedure uses an element of

* ~
S corresponding to an element of S which is Fk Bayes against

a randomly perturbed estimate of Gz_k.)

2.3. A bound for the risk of §.

Theorem 1.

N N
k
ZEog% < Yk(G ) + L B H mk +BkT (1+27r % l—ﬁ ,
a a N 2 N k k H
CY=1 a=1 o

uniform in qN, where for each o, E ¢ § is interpreted as an
a o
iterated integral, the first integration with respect to the dis-

tribution of (X seee X ) on Ik-l, and the second with
a-k+l a-1 Kk

a-1

respect to the distribution of (X on X X [O,I]m .

Z
2-k’ Xa-k )

Proof. Use operator notation to indicate integration and
the following notations for distributions. Let P denote the joint

distribution of X , P =P X...X P the joint distribution
N o %2 -k ® -k
o
of X ., =P X.eoX P the joint distribution of
ok T T T -1

a-k+1""’xa-1)’ and p the distribution of Z.

(X
N
E 98
LE oS,

n
M Z
i =
4o
@

R
(7]
*
~~
-
+
o o]
=
~
R
hy
+
r—l
£

from (5). So

N

(11) tE o8
1 a o

|
M Z

(T . +
v z(ea_k_‘_la ,Ga) C(TQf—k Hd'kZ)
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Recalling that t is unbiased for (g
o

~

+ z i
of Ta—k Hq-k , (11) gives
N
E 3
DE ol

=z

(12)

Ll

P E (T +H z
v a  a-k a-k ) =

H.M}Z

Z

+Lpf 3(T +H 2)
oy o o

—

Denote the first sum on the right of (12) by A and the second by

C. Wewillset U =T 4+Hz,3(U) =5 and bound A and C
o o o o o

separately.

First consider A. For o > k

(13) ifdu(a&_k -0 )| Hﬁ W lu(3 -k Bd)Hm
T 7
We write 3 , - 3 =5 X=+2 -7 L+ and (13) and (9)
a- o { ~ H
- a-k o
give
\Fau(aa-k ) aa)l k
~ ~ E ‘E’
T T = a-kti
-k - =1 ~ 1 1
< I|E Bl - 727, = BlE M — - T G — - P,
o a-k o a-k o
k o-k
BIE (et G B T
o'l Ha 3=1 a-k+jll Ha-k Hd 551 h j 1)
Hence
N
e a=§+12quu(o&_k ) O&)\
N k a-k

=" oz-i—*-lp(la jiluganl‘:\gd‘k'*j Iy + (H;—I - }IT; j§ i3 \ IES )

see+,0 ) and independent

Ea“(c(T +H kz) - a(’i‘a + Hdz))
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The Schwarz inequality and (7) applied to (14) give

N N 1 5
z PRIEu(@ _k-c)\<B Z G T - e - BT
a=ktl ¢ ¢ a=ktl "o ok
2 N 1 k N
=B (2% £ &+ L - 1 i
ktl Yy o=1 ¢ N-k o
But
k k
g - e | -3
0512 “‘Ea(ca-k )l < ZIP u\f | \\oa_k od‘\mgB kT

by the moment inequality. So we have

2
A< Bka + B'rk

Now bound C.

C=Enpi

Y v ]
(a2}
Ql

by (8). But by (4)

K ~
+H
llu‘l’(TN NZ)

That is, C < ‘i’k(G.tl;) +

is proved. .

N k N Ny

):H—+>:g--}:§‘- < Bkt + 2Bkr E i~

k+1 o=l o N-k o« l «
N K~

<P £t +hz2)g <P

_uf(a a)ca Pu ¥ (T + Hy2)

]
lad

(T, + H 2)3(T. + H z

IA
]

R (@ + 123G
- 2 (T + BHDFEY)

k., k -~k
Gy3(Gy) + I3 )
G + BB

IN

%}lekB and combining the bounds, the theorem
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It is clear from the proof that the result of Theorem 1 is
k
basically a T phenomenon, hence the iterated integral condition
L, . s k k-1
appears. Under conditions sufficient to allow a A xF

*
measurable choice of s (-,:) the special interpretation of

expectation becomes unnecessary.

L
Corollary 1. With the choice H = a® each o,
o
N
(15) £E g3 = vc + o’
a=1 o o N

uniform in ﬁN'
Notice that the corollary shows that on an average, rather

than total risk scale, with Ha = a%, the risk incurred by the

-5

A k1 .k
3 — + . .
strategy § is Y (N GN) ON %) wuniform in ﬁN'



3. k-EXTENDED GAME THEORETIC RESULTS

The framework introduced in section 1 is quite flexible.
Both decision theoretic and game theoretic problems are covered.
In this section we consider a game theoretic setting, that is a
situation where the information about past states is assumed to

be perfect.

3.1. Specializations to a game theoretic setting.

We take Y = @, let & be the set of all subsets of @

*
and suppose each P to be degenerate at 9. S becomes the set

9
of all functions from @k-l into S and we may take E(Q) =

8 € Rmk where we are still identifying mkdvectors with signed
measures on CF and elements of @k with degenerate probabilities
on @k. Theorem 1 and Corollary 1 are in force in this situation
so that specializations of the strategies 8 provide asymptotic
solutions of the k-extended game theoretic sequence compound
problem.

In addition, a simple decomposition of the k-extended
envelope is available in this setting that allows us to modify
solutions of the unextended problem to produce solutions of the
k-extended problem.

3.2. A deconposition of ¥'(Gy) in the case k > 1.
For each g € Ck-l de fine Gz\ﬂ to be the g section of

Gz. That is, let GZ\g be the measure on @© defined by

16
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cz\ac{ep - c‘;({(a,em for 9 € o.

Lemma 3. In the game theoretic context, for any ﬁN

k,6 k 1 k
Y G) = T Y (Gl
k-1
[:15C)
* *
Proof. For s €S
N * .
s
E aflea ( Q-Hl".. ’X(Y"'l)
N *
*
= S =
a§10a (eq_k+1!"':ed_1) 2k-1 P QaS (ﬁ)
(16) B.&@) o 9 (eCY"k'*']. P B ’ed-l) =_a
' *
= = 1/ > 0, s¥(9) = = (G;\Q)s @ -
ol =g | 2
€9 T\ a 3 (eq~k+1""’ed-1) 9 j e dc)

* -
But (16) is minimal if s (g) = G(G;\ﬁ) for each § € @F 1,

Hence

k, k k k 1,k
e = £ @locile = = victly . B
k-1 N k-1 N
89 [+
The lemma suggests that given a strategy achieving the un-
extended (k = 1) envelope at some rate uniform in ﬁN’ and such
that the risk function used at stage  depends on § 1 only
=

through Gi it may be possible to achieve the k-extended envelope

1’
at the same rate by at stage «o choosing the risk function according

to 0

k
G| Crmter? 2%
use of this kind of technique follow.

1) rather than G1 L Two examples of the
o-

3.3. A modification of Hannan's game theoretic strategy.

Hannan (1957) shows that for the case k =1, the risk in-

curred in a game theoretic setting by the specialization of §
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defined in (10) with Ho{ = (%)% achieves

¥3 % N 1.1 5
(17) -N(fm)’BSEfeaga-‘l’(GN)gN(6m)%B.

If we modify Hannan's strategy by replacing G;-l with

and H with H' = (6\\0k | (o
o o ‘ 1

k L
G e, ... :
ot-l\ (eor-k‘*‘l eot-l) a- a-k+1’ i eoz-l) nl/m)

k
we have s = o(G_ _|(®
o a-1'" “a-

k"’l’...,ed'].) +H('1/Z). Then
N
k
Lgs -Y (Gll\;)
a=1 ¥ ¢
1 k
= ¥ T edsa-‘l’(GN\ﬁ)\-
k-1{a 3 (8 orireeer8 =8 J
[+[3C) a-k+l a-1

Denote the term in brackets by A(g) for each 3§ € @k-]‘, and the
indi i . = con
indices ¢ for which (eo/-k+1’ ’ea'l) 8 by @ < ay <ow oL aN(.Q)

where N(g = \\Gll‘;\ﬁnl

N(9Q) / _
A@ = £ Bag ofck o+ ELYH) g .
%Y ]

The sequence {Gk \9_} is a sequence of non-normalized
(o'
J
empirical distributions on @, with c* |8 =9 + Gk | &
o o o
] 3j (j-1)
and Hannan's result is applicable. So -N%(Q) (E m)%B < A(® <

N%(g)(6m)%B. Noting that 3 N(g§) = N, an application of the Schwarz

il
inequality yields
53 kh N K, k ¥k
(18) -N(Em) <EZ gs -Y(G)g_N(6m)%B,
o<1 ¢ @ N

uniform in _QN Comparison of (17) and (18) shows the rate of
convergence for the risk of the modified procedure to the extended
envelope is the same as that for the original strategy. Indeed the

bounds are m(k'l)/2 times the original bounds.
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3.4. A modification of Blackwell's game theoretic strategy.

Hannan (1957) states that an unextended game theoretic strategy

proposed by Blackwell (1956) achieves risk YI(G;) + O(N%). We intro=

duce this strategy and show that a natural modification achieves risk

@ + o).

For each g =1 we let ¢ denote the m+ 1 vector
o

MR

4= (é ,T ). With A the convex subset
1 3 o Q

R I~

(6 ,6s) and ¢4 =
a o o o

B
of Rm+1 defined by

1

mrt+
A= {(w,u) €R w C R" corresponds to a probability on

1
® and u <V (w)],

we let oy be the Euclidean distance of 8& from A. Arbitrarily

set = 0. For each m dimensional probability vector w let

o
y(w) = (w, Yl(w)) and let wQ be the probability vector minimizing

- 2 - 2 - 12
i3, = i~ = e - wilm # (r - ¥ @)
Blackwell's strategy § is defined inductively,

any s € S, if pa- =0

(
i 1
(19) §a = }any s €S which minimizes
l - . ! .
; - + - , f .
Y (9(00_1 wa~1) es(ro-l ¥ (wa-l)) ' Pa-1 0

A proof of the following proposition is contained in the appendix.

Proposition. If S is convex, then

N
T eaéa
=1

) 2
- ‘ifl(c:]) < N%((Z + B )(1 + mBz))%

uniform in gN.
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The convexity assumption on S appears in order to allow an applica-
tion of the Minimax Theorem in the proof.

Abbreviate Hck\§“1 as na(g) for g€ a7l witn
o

-k 1
% " n ((8 ) E b
a n 14278 L. = 8
o a-k+ o 8 P (es_k+1’ aea_l) (ea"k"'z,...’ed)
-k -k
=(8,1r),
o o
2 g.: 0 1 k . . -k
where we interpret 0 » let p~ be the Euclidean distance of ¢
a o

from A and wz be the m dimensional probability vector minimizing

2
6 - y(w)“z. We consider a procedure s defined by

o
k
S, if =
i any s € i Py-1 0
(20) Sy = J any s € S which minimizes
|
! -k k -k k . k
Vo(e(E | - WS ) +oes(rt -y ), if oS # 0.
' o-1 a-1 a-1 a-1 a-1
\ €0
As before,
N Kk K 1, k, |
@) zes -¥cdH =z, [ 9s ¥ G |a)) -
=1 % Vooed e s (o e p=a ¥ N
9 k172 8ym1

Denoting the term in brackets by A(g) for each § € Ck_l, and the
indi f hich seeos = b e
indices ¢« for whic (ea-k+1 ea-l) 8 by ay <oy <...< aN(ﬁD

with N(®) = n (9,

N(Q) L N(®
A() = £ o s =-¥Y(Z o ).
. . O . o,
j=1 %j %; =1 7j
ith thi on o105 k is the Euclid
With this notation I -1 ® > . -1 is the Euclidean
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j-1

distance from A to Tl— T ¢ > and wk is the m dimensional
ji-1 ,_, Y« a.-1
=1 1L 331
- 2
probability vector which minimizes “—l— Z ¢ =-+yw|~. So that
i-1 4=1 GL

comparing (19) and (20) and applying the proposition we see that if
2 L
S 1is convex A(Q < N%(Q)((Z +B )1 + mBz))z. So applying the

n% n® D720 4 5% 1 + m?)) %,

Schwarz inequality the lhs (21) <
and the modification of Blackwell's strategy provides another solu-

tion of the k-extended game theoretic problem.

3.5. A comment on the effect of play against a random perturbation

of G in the k-extended setting.

Recall the k-extended procedure suggested in §2.2 had the form

* ~
(10) § =s (T +H Z, (X
o4

R ver X)) .

a-k+1 a-1

The proof of Theorem 1 depends heavily on the fact that Ta-k + Ha-kz

_k+1,...,Xa). However, because of the degeneracy

of the Pe in the game theoretic situation, it is possible to replace

is independent of (X
o

fa-k + Ha-kz by fa-l + Ha-lz’ invoke unextended results for a sequence

compound problem with Fk construct as the component problem, and
improve on the bound of Theorem 1.

That is, redefine § by

* ~
8§ =38 (T +H .Z, (X yeoosX )).
o o=

17 Ta-l o-k+1 a-1

* N
Then almost everywhere P, 8 =s (Ga +H Z, (®
o -

1 P HL kb1’ 081

so that

N N

N
22 E = ye++50)3(G. . +H _z) . :
(22) afl .5 0,51“(901“‘“ ea)c( a-1 -1 )
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The unextended version of Theorem 1 applied to a compound problem

with Tk component implies that (22) is bounded above by

N
k, k. .1 k 1
‘i’(GN)+28HNm +B(1+22H—).
o=l o

5 -k/2

In fact, with the choice H = (6a) application of Hannan's
o

result quoted in §3.3 gives the bounds of (18) for (22).
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4. THE UNEXTENDED STATISTICAL PROBLEM, O(N®) CONVERGENCE TO
Yl(Gé) OF THE RISK OF THE NATURAL PROCEDURE IN THE TWO STATE CASE

Artificial randomization plays a ma jor role in the solutions
of the k-extended sequence compound problem offered in §2. 1In that
section it was shown that under mild assumptions on ¢, a procedure
which at stage o wuses an element of S* corresponding to a risk

. fk . k . . )
point Bayes versus an estimate of G K plus randomization is
-

an asymptotic solution to the k-extended problem. It is not possible
to retain the generality of §1, delete the randomization and prove

a result parallel to Theorem 1. Even in the unextended case there
are trivial game theoretic examples in which the non-randomized
version of Theorem 1 fails.

Gilliland and Hannan (1969b) and Helmers (1972) give smooth-
ness conditions on g that allow deletion of the randomization in
some unextended game theoretic cases. Van Ryzin (1966b) shows that
under some non-degeneracy conditions on the Pe, in the unextended
finite state finite act decision theoretic setting, neither the

smoothness of ¢ nor the randomization is needed to obtain a result

like Theorem 1. Ballard (1974) generalizes some of Van Ryzin's

finite state finite act treatment to the k-extended level.

In this section we consider the unextended finite state
restricted risk component statistical problem. Under non-degeneracy
conditions similar to Van Ryzin's we apply a result of Bhattacharya

(1970) - Mirahmedov (1974) and show that neither randomization nor
23
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the smoothness of ¢ are necessary in a two state problem.

4.1. Specializations for the unextended statistical problem,

assumptions on the Pe, the natural procedure s.

We continue under the k =1 version of the assumptions con-
tained in §1.1 through §1.4, but will alter the assumptions on the
Pe contained in §1.5. Throughout §4 we will suppose that t is an

R™ valued, ¥ measurable map with the properties that
(23) Ithe =9 each g€ @
and

(24) 3 y < » such that I\eo(t - e)\3dP < vy for each e,eo € ®.

G

In addition to (23) and (24), we will impose one or the other of the

following two sets of conditions on t and &.

(25) For each g € ® the m X m matrix Ve = J‘(t-e)(t-e)'dPe

is nonsingular.

(26) £ ot =1 and for each g € ® the m X m matrix

D

Vg = j(t-e)(t-e)'dpe is of rank m-1.

o o
1
Abbreviate t(Xa) to €y’ T tB to Ta and . pX Ve
8=1 g=1 "8
to Vd- dVa is the covariance matrix of Ta. To obtain some of the

elementary properties of Vv we digress slightly to consider matrices
o
which like V are averages of nonnegative definite matrices.
o

Suppose tl,...,tn are nonnegative definite m X m matrices

with common range &, and n = (ﬂl,..-,ﬂn) is a probability vector in
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n

Rn (that is, each 7w, 20 and Z g, =1). Let x denote the
n ' i=1 * n

average T (niti). ;ﬂ is nonnegative definite and has range ¥.

i=1
With 0 < Ty s nZi Seees T the eigenvalues of xi’ let

m= A{ﬂji\j =1,ee.,my, i =1,...,n and nij >0} and

M = v{nmi‘i =1,...,n}. The minimum positive eigenvalue of :ﬂ

is then greater than or equal to T and the largest eigenvalue of

tﬂ is less than or equal to 1. 1In the case that each ti is non-

singular, the eigenvalues of t;l are between ﬁ-l and 3-1.
Throughout §4 we will let ) denote A{A|\A >0 1is an

eigenvalue of ve for some 9 € @} and { denote V{\|\ 1is an

eigenvalue of Ve for some ¢ € @}. The last two comments above then

apply with ?& replacing zﬂ and ) and x replacing 7 and E.
The sequence compound procedure that we investigate in this

section is s = (sl,...,s where for each ¢

N

2 = o(T .
27 8 °(a-1)
The compound risk of s is
N N
28 E s =T Ets
@) Z o, TEELS,
N N
=EZts +EZTt (s -s .
1 o« otl f a( o d+1)

Denoting second term on the right above as A, Lemma 1 implies
N

E s <ET oT,)) + A
L85y = & Tnoly

11
sY(GN)"'A .
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The goal of §4 is to give useful bounds for A. After brief considera-
tion of the problem for general finite m, we will specialize to the
case m = 2 and show that under (25) or (26), where S 1is the lower

2
boundary of a convex subset of [0,B] , there exists a constant ¥

%

depending only on B, {Ve] and vy such that A < % N°,

S&C)

4.2, Bounds on A for general finite m.
N
Recall that A =E % t (g(T
o o

a=1
problem of bounding a typical summand

1) - G(Ta)) and consider the

(29) Bty (0T ) = o(T 1))

otl

Iterating expectations,

(30)  (29) = EE[t_, (o(T ) - o(T 1 ]

< E\E[tarl-l(C(Ta) - c(Tm_l))‘ltwlT\ .

Let Wa be independent of ta+1 with a normal distribution with the

same mean and covariance structure as T , that is normal (Ga,av ).
o o

Abbreviate t to t and E[ \t to Et through (38). Then,

ol e

W T W
(31) rhs(30) = E\Ettc]wz+t\_ + E\Ett(o].[.}t - clwz+t)\

Denote the first term on the right above as C& and the second as
aa and bound them separately.
First consider C&. Let v be normal (G;,avg) measure and

) be normal (G1 + t,aV ) measure.
o o
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W
(32) \atco]w:+t*, = iftod(v, - v)| .

Since “t\\lB is a bound for |to|, if we let '\vl - vz\(Rm) stand
for the total variation of the signed measure V] T vy

rhs (32) < Blle'l;|v; - v)| R™).

Under (25) the q = 1 specialization of Lemma Al in the sppendix and
the fact that the eigenvalues of o(V are greater than or equal to
a

a) show that

% %

2 -
vy = % B s (el
Thus under (25)
X 2 %
(33) Oa <a ZB(E) E\x\t“l‘i\t” .
Also,
1
t wa t ;wa
(34) |E tolyye] = [Etal’; | = |fto dlv; = vp)|
o —(W +t)
otl o
-1 1 -1=
where v is normal (¢ "G , o V¥ ) measure and \2) is normal
1 x o

((Ml)-l(G; + t) ,a(otl) -ZVQ) measure. Under (26) the range of

vV is the orthogonal complement of the subspace of R™ generated
a

) ' -1 1 -1.1, _
by the vector 1 = g£g. Since 1'((aotl) (G + t) - « Ga) = 0, Lemma
o

Al is applicable with q chosen to be a(otl) -1. So

m 1,2 2+2a+1
(35)  |v;-vy| R s 2((m-1)1og 5 (=)
a + o

e o

+ —
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where 1| is the minimum positive eigenvalue of a-IV . Then weakening (35)
- -1 > -
by replacement of T by « IL, log 2 (2o + 2o + 1)(0,2 + ) 1 by
-1. 2 -
2 l(d + @) 1, and by noting that for a,b >0, (a+b)15 <

(a + Za%b;é + b)% = (a% + b%),

- L - L
(36) vy - vl ® = ERIE L gy a5 Ll
a +o boa + ba + 2 @ o

So under (26)
(37) e, = BE(\\tnl * rhs(36))

In either case, (24) implies that there exists a real con-
stant % depending only on m, B, )} and <y such that C& < X@-%-
Since Td is the sum of the independent tl""’ta we might
anticipate a central limit effect and hope to show that sa is also
appropriately small. Recalling the form of 6& from (31), bounding

the absolute value of the coordinates of t by ||t!| and applying
(o]

the triangle inequality

t T t T +t
(38) g, = E\\t!\m<g\E 0o}, %l + Z|E a0}, %, 1) -
o4 0 o

T 4w
Thus we address the problem of finding a useful bound for \Eeg}wo;w\
o

with w € R™.
Under (26) t'l = 1, so any coordinate of t may be obtained
from the remaining m-1 coordinates. We will take advantage of this

fact to reduce by 1 the dimension of the vectors Ta and wa in this

v m‘l
situation. For w € R™ let % denote the point (wl,...,wn_l)' €R .

For r >0 define of from R" ' to S by o (y) = o(w) for w

v

the point of R™ such that w'l =r and ¥ =y. Then we may write

under (26)
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T T
(39) Egol,” = E6o” 1%
o

R

and for w € R® with w'l=1

T 4w leh}
(40) Eec]wa;w = Ego 1;?+§ .
o o

The advantage of such a reduction of dimension will become apparent
in the proof of Lemma 4.
. . m 1 m .
For a function g mapping R to R and u €R define
the function 8, by gu(w) =g(u+w). For a set gCZ R™ define
. , m
w(g,@ = v{|gw) - g(¥)||w,y € g}. With y € R and r 20,

S(y,r) will denote {w € Rm\“w -yl < r}.

Lemma 4. Let Y have a normal (0,&;&) distribution. There exist

1 2
that under (25)

constants K., and K, depending only on m, B, {Ve] and v such

o -5
|E60), "l S K@ "+ 2V Ew(eo, S(Y +u, K,))
o m

u€R

for any w € Rm, and under (26)

T 1
|Eeol,*| = K@ 2+2v  Eo(ed®, S + u, K,))
o uERm-l
and
T +w .
a -3 atl hd
|E6o)y 4yl < Kjo "+ 2 vm_lEm(ec S(Y + u, K,))
o u€eR

for any w € R" with w'l=1.
Proof. All of the asserted bounds will follow from applications

of the weakened form of the Bhattacharya-Mirahmedov Theorem stated in
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A.3. Consider first the situation under (25). Direct application of

the result shows that with E a m X m nonsingular matrix such that

o
E'E = V'l, i\E “ the operator norm of E , g the function from Rm
a o o o (07

1 . -1 1
to R defined by g(y) = eo(azEa y+w+ Gd), and

- -3/2, 3 %¢
e, = Cmao g [IPm? £ g(zlae. - 9|3
* P A

T 4w
a m D
\Eeojwa| | = w(g,R )ea + 2 Z Jw(gu’S(X’EQ))de(x)'

Since “EQH < L-%, w(g,Rm) < B, and (24) implies that

o 3 -% 3/2
LEC|e(t -8 )\ ) = amy, we may set ¢ = C(m)) 2m3/
1 @ B B

the bound to

Y and weaken

Tt - -%
[Beky syl = 2 B+ 2 o, 5 (xua™* ) dgy ().

Now
-% = ' -%
v Julg »S(xa *e))de (x) = Vlw(g!,S(x.a “e)dg, (x)
u u

where gd(y) = GO(G%E;ly + u). But

w(g] 8 (50 70)) = w(oo S (B x + u=a'%eﬂa%E;1H>>-

- - -1
HE 1“ = n% where T is the largest eigenvalue of (Eal)'Ea . It
o

is always the case that for A a m X r matrixand B a r Xm
matrix, AB and BA have the same nonzero eigenvalues. Hence T
is also the largest eigenvalue of E;l(E—l)' =V . So under (25)
o o
T +w

(0 4 . -
(41) ‘lE901w t S o %Be + 2V Ew(80,5(Y + u, e{%))‘
a u



31

The Bhattacharya- Mirhamedov result is not directly applic-
able to the left sides of (39) or (40) under (26), as the Ve are
singular. For £ a m X m matrix, let zo be the (m-1) X (m-1)
matrix obtained from g by deleting the mth row and column. Vg
is then the covariance matrix of the random vector E(X) under the
distribution Pe. It is the case that under (26) each Vg is non-

singular. To see this, suppose that Y has mean Q and covariance

mtrix Ve. Y'l =0 a.e. so that the coordinate random variables

of Y span the same (m-1) dimensional subspace of L,(P) as do
the coordinates of Y. Hence the coordinates of Y are linearly
independent in L2(P), that is Ve is nonsingular.

Thus although the rate of weak convergence result is not

directly applicable to lhs (39) or lhs (40), it is directly applicable

to the right sides of the equations. And with Da a (m-1) X (m-1)

1

nonsingular matrix such that D, 'Da = (Vo)- s LP = A{A|\ is an
o

eigenvalue of Vg for some ¢ € 8}, XO = v{A\|» 1is an eigenvalue of

Vg for some ¢ € 8}, eO = C(m-l)Lp-%(m-1)3/2y, go the function from
R™! to R! defined by go(y) = Gca(a%D;ly + é;) and hY the
function from R™ ! to r! defined by ho(y) = e&y+1(a%D;1y + é; + W),
under (26)

T
o -3, 0 0 -5 0
Eel, %l = B2 v fue, SGoa i) ae, 00,
u€R

and for w with w'l =1

T 4w -5 0 0 -5 0
\Eeg]wa;w\ sqo Be *2 Vm_lfw(hu,s(x,a e))de_ . (x) .
o ucR

Then by the same argument as applied under (25),
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T

, =L v 1

ool %l s B +2 V. Ea(ed® ST +u, ¢ GO,

o m-l

u€R
and
T +w
. - 0 1 v

\Eeo]wa+w\ <« %Be + 2V Ew(ecd+ , S(Y + u, eo(io)%)).

@ u€Rm.1

With Kl = B(V{e,eo}) and K2 = V{ez%, 60({0)%}, the lemma is
proved. .

The bounds under (26) involve the functions OQ and og+1
which involve the arbitrary choice to eliminate the final coordinate
of the arguments of ¢g. It should then be noted that the apparent
asymmetry of the bounds could be eliminated by replacing the terms
involving the oscillation of eoa and eca+1 on spheres in Rm-1
by terms involving the oscillation of @c on sets which are the
intersections of the hyperplanes {w € Rmiw'l = o} or
{w € Rmiw'l = o+ 1} and appropriate spheres in R". For purposes
of what follows however, the stated form is most manageable.

Applying Lemma 4 to (38), with Y normal (0, aV;), under

(25)

. -% .
42) ¢ = E“twﬂ\m(z"“ﬁ“ + 4V Ew(8o, S(Y + u, K,)))

m
6 uéR

and under (26)

43 < E|lt |l (2K Fiop v Ew(ed®, S 4 u, K))
(43) 5(1 \ d’i’l\oo la z »S ( u, 2

) UERm-l
1
+ 2%V Ew(ecg+ ,S(Y + u,Kz)))-
) UERm-l

So comparing (29), (31), (33), (37), (42) and (43), provided the
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terms V Ew(6o, S(Y + u, Kz)) s V Ew(eod’ S(§ + u, Kz)) and
u v u -
Vv Em(edy+1, S(Y + u, KZ)) are of order O(y %), A 1is of order

u
oO(N 52).

4.3. The two state problem.

For the remainder of §4 we specialize to the case m = 2,
Further, we suppose that S is the lower boundary of a convex sub-
set of [O,B]Z. Such a choice of S arises naturally in a situa-
tion in which the risk points corresponding to all measurable decision
procedures in a component decision problem with nonnegative loss function
are available, and it is determined to at each stage use an admissible
risk whose maximum component is bounded by B.

The assumptions on the form of S have several useful con-
sequences. First, there are points s" = (s?, s;)' and

L _ 4 Ay u u
s” = (sl, sz) € S such that for any s € S, s1 < 81’ s2 2 8,5

L 1
s1 2 s1 and s2 < s2.
Figure 1
2 2
/ {w = (wl,wz)' € R \wz =
B s / ’/
u -
8 .&ff’ 4 u
AN 17 %1
p <~ Vi
~ S - 8
S 2 2
.. SL

It is the case that

L st - s
(44) o(w) =8” for w such that w. <0 and w, > "

1 2 v

1’

N (=

1
8, - 8
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and
. -5
(45) o(w) =s for w such that w, < 0 and w, < o 11
s, - S
2 2

. . 2
Representing points w € R in polar form w = p(cos @, sin ¢) ', the
positive homogeneity of ¢ guarantees that g(w) is independent of

p >0. With A€ (~nv ,-m/2) the angle from the positive 1 axis to the ray

L
1 - S

o(w) are monotone in ¢ € (A, A+ 27w). Because of these monotonicities,

- 2
T)(S; - Sg) lwl] N (-=,0) , the coordinates of

{w € Rz\w2 = (s

a set (¢ of the form af = {w € Rzlec(w) > r} must be void, all of

R2 or a region bounded by two distinct rays from the origin,

possibly though not necessarily including the origin and or one or

both of the rays. Also, the monotonicities guarantee that for any

r >0, eo?(y) is a monotone function of its real argument y. With
r

r r,, r . , . . r
o = (cl, 02) » 0p is nonincreasing while ¢

? is nondecreasing.

1
4.4, O(Nz) rates in the two state problem.

Theorem 2. Under hypothesis (25), in a situation where m =2 and
S 1is the lower boundary of a convex subset of [O,B]Z, there exists
a real constant Ki depending only on B, {Ve] and vy such that
A< K’N%.
1
Proof. In view of the discussion in §4.2 it suffices to show

3

and vy such that for Y with a normal (0, oV ) distribution,
o

that there exists a real constant K, depending only on B, {Ve)

V Ew(8o, S(Y + u, KZ)) < K3a-%, where K, fis the constant from

uERm
Lemma 4.

Define functions g and h from R2 to R1 by

g(w) = v{eo(x)|x € R2 with |x - w| < Kz] and
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h(w) = A{po(x)Ix € Rz with \\x - w\\ < Kz].

Notice that w(6o, S(w,Kz)) = g(w) - h(w). Both g and h are
Borel measurable. For example, with r >0 and J =

(we Rz\ec(W) > r},

2 2
(weR |gw) >r) = (w €RT|SW,K) N& # 4},

[

{wERZ\‘!\w-x“<K for some XGJ}

2

2 -
which is an open set in R . So with v normal (u, orVa) measure

(46) Ew(80, S(Y + u, K,)) = jg -hdv .

By the Fubini representation of the integrals of the nonnegative

functions g and h,
ths (46) = [0 v({w|g@) >t} - v({w|hw) > r]dr .

2
Letting dr be as above, and for any /S CR denoting

{w € RZH\W - x\\ < ¢ for some x in B} as .Be and the complement

c .
of B as JB, notice that

[w\g(w) >r) = dl‘(z
and
(wlh) >} 2 (@)D O° .
2

So

(47) Eu(ea, S(Y +u, K)) = [f WG - (@), ).
2

But because ar has one of the forms indicated in §4.3, qi -
2

(((dr)c)K?-)C is either void or is a subset of the union of two
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2
closed infinite strips in R of width 2K2. Lemma A2 then implies

2
that the integrand in (47) is bounded by 2(;E?%

the smallest eigenvalue of a?;. Hence the integrand is bounded by

(2K2) where 7 is
4K2(§)%(L)-%a-% and

Ea(80, S(Y + u, Ky)) < 48k, (B 7

2 <L
The bound is uniform in u so that with K3 = ABKZ(;;%l) ? the

proof is complete. .
In the m = 2 case, hypothesis (26) implies that the matrices

v and V2 have the forms

1
2 _vzi 2 2

"1 1 Vo ™2

Vl ) v2 v2 an V2 ) \ V2 v2

V1 Y 2 2]

2
2 — .
v = (vi, vz)', if Y has a normal (0, oV ) distribution, Y is
o

univariate normal (O, v'G;).

for Vl and v nonzero real numbers. Note then that with

Theorem 3. Under hypothesis (26), in a situat ion where m =2 and
2
S is the lower boundary of a convex subset of [0,B] , there exists
a real constant X, depending only on B, {Ve] and v such that
%
A < KON .
Proof. In view of the discussion in §4.2 it suffices to show

that there exists a real constant K, depending only on B, {V,}

and vy such that for Y with a normal (0, a?;) distribution

v Eu(eo”, S(E + u, K,)) <K, ?

u€R 4

and
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vV Ew(ec®!l, s(¥ + u, K,)) <K

u€R

-%
4

where K2 is the constant from Lemma &.

atl

By the monotonicities of o¥ and o , for y € R

w(es™s S k) = (-1 ¥’y - Ry - 8y + Ky),

and

-1 1
(BQY+

w(as™ ', S(y, Kp)) 5 (-1)° & -k - 0™y + k).

So that with vl univariate normal (u - KZ’ v'Gl) measure and
o

v, nmormal (u +K,, v'G;) measure,

Ewo(oo”, S(¥ + u, K))) < (-1 a?dly; - v,))
and

atl

Ew(60

, s +u, k) s (-1 g™

d(\,l - \)2) .

But the right sides above are bounded in absolute value by
1 1,5 -5 -%
B\v1 - vz\(R ). And Lemma Al shows that \vl - vz\(R ) = 2% (2K2)

where 1T 1is the variance of Y. With v = A{vi, V;] we may then

bound
v - -1 L
E(.D(eoa, S(Y + u, Kz)) < 23/211 }év 2[(20 2
and
v 3/2 -% - -
Ew(eoa+1, S(Y + u, KZ)) < 2 / m v %Kza %.

Since the bounds above are uniform in u the proof is complete. Il
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A.1. A bound for the risk of Blackwell's unextended strategy.

The following proof referred to in §3.4 derives from a 1957

note of Hannan.
Proposition. If S 1is convex, then
N L1 s 2 2. %
L 0s - Y (G)) =N?(2+ B7)(1 + mBY))
oo N
a=1
uniform in QN.
Proof. Note that the concavity of Yl and the definition

of w imply that if ¢ >0

1 o1
(1) (y(w) - N(Wa_l))(ma_l - Y(wa-l)) ~ 0 for any w
and
(2) - vlw )y >o0.
a-1 a-1
We first show that
2 2, 2 2 + B2
(3) o < (1 -E)pd_l + 2
If o . =0, then o> <l -2 .| But 3 -3 . =
o1 o o -l o -l
- 2 . - 2 - 2
(o, - ¢, 1) and e - 3 M= Uea - ea-ln +(es, -1, 1)
<2+ BZ,
so that (3) holds in this case. 1In the case that p >0 we

a-1
38
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2

first observe p; < “%a - Y(Wy-l)“ . Abbreviating y(wo) to v

2 - 2 - - - -
(4) P = WByor = Yutll™ + 26 3 = v DG —gy ) * f2 g

Using the identity

- 1 -
) - = = - + -
ﬁa 2a-1 a((¢a Yy‘l) (Ya‘l Ta-1

))

on the right hand side of (4)

) prs (=3 -y, 1P+ 26

4
a-1 ‘a-1 a-1 a-

We can show that the cross product term above is non-positive and
hence weaken (5) by its omission. To accomplish this, consider a
game where I has pure strategies 6 ¢ ©®, II has pure strategies
s ¢ S, and the risk R is taken to be R(w,s) = (w,ws)(f;a_l

v

for probability vectors w. s was chosen to minimize
o'

v (e, es)(; -Y )=V (w,ws)(é -y ) .
663 a-1 a-1 w a—l a—l
Thus
6) Vv (8,880@ . -Y. ) =v (wws)E , - )
% 07 Py-1 7 Ya-1 A O A |
= ANV (w,ws)(@o[_1 -va_l) .

SES w

Applying the Minimax Theorem to the game described above we have

the(6) =V A (u@y - w ) +ws(E_ =¥ ).

w SES -1

Applying (2) and then (1),
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rhs(6)

sup v(w) (4 -y )
w ol "y -1

Y(WQ‘-].) ( ’Dof‘l _Y‘y -l) :

So that the product term in (5) is non-positive and we may write

2 2. 1< 2 - - 2
< (1 -= - + - \
M e =@ =Dl -y T+l -8l
Since H; - é 2 < 0_2(2 + B2) the definition of and
Wy 1" > pd_l
(7)_yield (3) in the pa_1 > 0 case as well as in the pa'l =0
case.
Iteration of (3) shows that
2 _ 22 1.2 ., (3)(2),1,2 N(N-1) 1,2
@) oy = CBIQE DR Y303 TR W)
2 1 N-1 N-2 1
] =
SQHBYGE R e et D

2.1
< (2 + B )N .

- 1 - - 1 1 1, =
1 — ‘y = — —
Consider Ty ( eN) e Y (wN) + Y (wN) Y (GN).

1 1,- - -
Y. (WN) -Y (GN) wNo(wN) - eNo(eN)

A

w8 = 8,0 (8y)

So
9 T -¥'G) < |8, - wimB + (G, -vie)).
N N N N N N

. = 2 - 1 2 2 -1 2
Recalling “eN - wNH + (rN -V (wN)) =py< N (2 + B7) the

problem of bounding ;N - Yl(éN) has been reduced to the problem
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of bounding the function of two real variables f(u,v) = u + »/’m Bv

1
on the ball u2 + v2 < pf] For such u and v, f(u,v) < pN(l + mB2)'2.

Hence
(10) T - \vl(é&) <N E2 + B E(1 + mBd)®

and multiplication of (10) by N completes the proof. .



A.2. Two lemmas concerning properties of multivariate normal

distributions.

The first lemma in this section is used in $§4.2 and provides
bounds on the total variation of the difference of certain multi-
variate normal measures.

Lemma Al. Let £ be a nonnegative definite m X m matrix with
range %&. With w and v elements of Rm such that w-v € ¥,
m

q >0, and r = rank Z, let v be normal (v,Z) measure on R,

V) be normal (w, qzh) measure on Rm, and N be any r Xm

matrix such that NXN' = Ir’ the r X r identity matrix. Then
- 1 1 2.5
IV = % (RN = 2(r log(@ + 50 + ———[NG-0) D7 .
d 2(1+q7)

In the case q =1

- 1 U - |
\Vl - zi(Rm) = 2(Q(M§£%_!lh) - Qi_+§£%}lg4bg

w

z%ﬂ-%HN(w-v)“ .

Further, if T is the minimum positive eigenvalue of I,
_
N Goe=v) i = 12 w-vl].

Proof. Let Y = (Y ..,Ym)' have a normal (9,2) dis-

1’

tribution.

42
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]

2V (P((Y+V) €ED -P((qY +w) €Q),
&&"

=2V (P(Y € ¢Vv) - P(qY + (w-v) € V),
ass"

\\i - vzi(Rm)

\vi - vé\(Rm),

where vi is normal (0,£) measure and is normal (w-v, qzz)

o
2
measure. So for the rest of the proof we suppose v = 0 and
w EX.

Since ¥ 1is of rank r, the subspace of L2(P) spanned by
the coordinate random variables of Y is of dimension r.
The coordinates of Z = NY form an orthonormal basis for this sub-
space. Because each Yi is a linear combination of {Zi}§=l the
coordinates of Z, there exists a m X r matrix M such that
Y = MZ. Then Z = NMZ and the uniqueness of representation of
elements of a subspace of LZ(P) as linear combinations of elements
of a basis for that subspace guarantees that NM = Ir' Thus, since
MM' = L, the range of M is . While MN 1is not Im it does
act like the identity on #&. That is, if h € &, h = Mx for some
x € R" and MNh = MMMx = Mx = h.

Both v, and v, concentrate on ¥, for if x € ¥°,

1 2
both x'Y and x'(qY + w) are O a.e.. Thus

\\)1 - Vz‘;(Rm) =2V (vl - vz)(d),
&a3"
=2 vV (vl - vz)(aﬁ,
&

where A" N% 1is the sigma algebra of Borel subsets of &. Now for
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ae /Ny

(v - V(@ =P E€EQD -PUX +w) €+

Also, P(Y € @ = P(NY € N@ and P((qY + w)€ ¢ ) = P((qNY + M) € N@),
the equalities following because MNZ= & w €%, and Y € ¥

with probability one. So
(\)l - vz)(d) = P(NY €« N@ - P((gNY + Nw) € N@,
and

(11) \vl - vz‘,(Rm) =2 V (P(NY € N@ - P((qNY + Nw) € N@).
EF W

But as (¢ ranges over [:r‘n N ¥, N7 ranges over Br So with 1
normal (O, Ir) measure on R' and Uy normal (Nw, qzlr)

r
measure on R

v = %R = rhs(11) = | - | (RD),

and we bound \pl - LL2\(Rl’).

Letting £ be the density of Hy with respect to Lebesgue

1

measure on R' and f2 be the density of Hos

(12)  fuy = uplRD = Jif) - £ |ax .

It is well known (see for example section 3 of Hannan (1960)) that

r L
with p = Iff fzzdx,

2 X L2
(13) (rhs(12))" < AI(fl - £,) dx = 8(l-p) < -8 log p.
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Abbreviating Nw to d,

2 '% '% (1 1 ' 1 (] 1 [}
p = (det q°1) j(zn) exp -5 (1+ —)x"x - —x'd + —d'd)dx,
r 2 2 2
q q 2q
-r/2,, -r/2 'd d'd
= a2 T T ep S - L6 Goax,
2 2 2°7°3
q 2q 4q

where f is the normal (0, (s(1 + l-E-))_llr) density. So

3
q
16 o= G+ ep L4 near L) TN E  H),
d 4q q 2q° 24
1 .-r/2 d'd
= @+ ) exp(- 5
2 2q 4(l+q2)

Combining (12) through (14) the first bound holds.

Now consider the special case where q = 1. Here

£
s 7| @) = JIL - e,
= 1 - exp(- S x| (0,
n Hdmz
= |1 - exp(- *5—+ |[d||2) |de (=),
1d!
2 L
=j (1 - exp(- 4=+ |ldjiz) de(z)
a2
+ [irgCexp (- H=+ ldlz) - 1dacz),
2
\ |
= 2(@(”%‘1) - 3(- L'g'ﬂ)),

and the special bound for the q =1 case holds.
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Hage o 4 Hog i
Finally, notice that ‘Nw = ]L"g—n— . For any a € R",
|w v‘.Md:“
2 2 ‘
||Mall” = a'M'Ma 2 'la||"n where )\ is the minimum eigenvalue of M'M.
It is always the case that for A a m Xr matrixand B a r Xm
matrix AB, and BA have the same nonzero eigenvalues, so M'M

has the same nonzero eigenvalues as MM'. Also r < rank MN =

rank N'"M'MN < rank M'M < r. Thus M'M is nonsingular, )\ = 1,

2
< L and the proof is complete. '

!
‘2 1]
fraf” 7
The second lemma is used in §4.4 to bound the probability of

an infinite strip in R2 under a nonsingular bivariate normal
measure.,

Lemma A2. Let L be a hyperplane in R". For ¢ >0 let

Le = {w € Rz\""\‘w - y“ < ¢ for some y &« L}. Let v € Rm, Y be a

m X m nonnegative definite matrix and + be normal (v,r) measure

on Rm. Then

w(l) = (%)

where 1 is the smallest eigenvalue of Z.

Proof. Let W have a normal (v,I) distribution. Denote
by d(w) the distance froma w € R®™ to L. Then v(Le) =
P(d(W) < ¢). Let Yo be a point of L and u be a unit vector
orthogonal to L - Yo uu' is then the matrix of orthogonal
projection onto the line generated by u. So d(W) = |luu'(W - YO) IE
But |luu'(W - yo)“\ = |lu'W - yo)‘.‘. Since u'(W - yo) is univariate
normal (u'(v - yo), u'su), P(‘lu'(w - yo)\ < ¢) 1is the standard
normal probability of some interval of length 2g(u'gu) -;2. The

stated bound is then a weakening. .
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A.3. A rate of weak convergence result of Bhattacharya-Mirahmedov.

Mirahmedov (1974) proves the following improvement of a rate of
weak convergence result due to Bhattacharya (1970).

Theorem Al. (Bhattacharya-Mirahmedov) Let X ,X.,...,X ,...,X Dbe

1’72 k n
independent random vectors in Rd with E(Xk) =0 and
_ _ -1 _n . .
Dk = Cox(Xk,Xk) . Assume that Bn =n 21 Dk is non-singular,
-1 _ o _ 5. N _ =3/2_n_ .3
and let B = =E'E ,S =n *E¥ X, and Ly =n ZlE(‘;,Enthl ) -
For any measurable function g(x) on Rd, set w(g,A) =

vilg(x) - g(y)} : x,y € A}, and g, (x) = g(x + u). With
S(,r) = (v € Ryl < x),
d
|Je() (B (dy) - 2,(dy))| s C(Duw(g.R )L,

4+ 2 sup jux(gu, S(x, C(d)Ly )) e (dx)

u

where Pn is the distribution of Sn’ éd is the d-variate standard

normal distribution and C(d) 1is a constant depending only on d.

b

Notice that with “En“ the operator norm of the matrix E

-3/2, .3

n i 3
3n sn \\\En.l 21 E(._leH) >

so the theorem may be weakened by the replacement of L by the

3n

last line above.
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