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ABSTRACT

DEVELOPMENT OF A JOINT ORDER

INVENTORY MODEL

by Harish L. Verma

The purpose of this study is to develop and analyze a

Joint Order Inventory Model. The term joint ordering, as used

here, implies ordering a number of items in a single purchase

order. The potential savings resulting from the inclusion

of many items on one purchase order is quite large. Some

of the advantages of joint orders are:

1. Ordering cost can be reduced by including several

items in one purchase order.

2. Shipping costs can be decreased if the total order

is of a convenient size, e.g. a truck load. Since a

number of items are ordered jointly, it is more likely

that the total order will be of a convenient size.

3. When a number of items are ordered jointly the dollar

value of the order is larger. Hence, there is an in-

creased opportunity to take advantage of quanity

discounts offered by a vendor.

The Joint Ordering Model that is proposed is characterized

by three parameters, S, s, and E', where g’is the maximmm inven-

tory level, i is the reorder point,and g' determines the items
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HARISH L. VERMA

to be included in the order. Note that § is greater than s',

which is greater than s. Thus, any item whose inventory level

is equal to or less than s' should be included in the joint

order; s to s is defined as the reorder range. The joint

ordering rule is defined as follows:

When the inventory level (inventory on hand and on order)

of any item in the group has dropped to the reorder level s,

all items which have inventory levels within the reorder range

SI

to s are ordered jointly. The order quantity for each item

ordered is given by (S - I) where l is the inventory on hand

and on order.

Two hypotheses were prOposed for testing.

Major Hypothesis: There exist a number of situations in which
 

the application of the joint ordering rule, i.e. ordering a group

of items in a single order, results in lower costs when compared

with the use of the fixed order quantity rule.

Minor Hypothesis: If the joint ordering rule is defined by
 

the three parameters §, s, and g', as defined earlier, then there

exists some optimum value for each of the parameters, such that

the total cost of the inventory control system is minimized.

The costs that are included are ordering costs, inventory carry-

ing costs, and stock out costs.

A considerable portion of this study was concerned with
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the development of a joint ordering rule and the study of the

properties of the rule, especially the performance of the rule

under extreme conditions. Hence, it was necessary to generate

some hypothetical data which represented these extreme conditions.

In generating this data it was assumed that the product group

consists of twelve items, and that demand for each item is norm-

ally distributed with a certain mean and standard deviation.

Although hypothetical data was used to study the properties of

the model, it was felt that the model should be tested with

real data. Real data were obtained from two sources, The Steel

Service Center Institute, and a million dollar farmers' cooper-

ative. However, the data from the farmers' cooperative was not

complete, and sales records for certain periods of time were

missing. For this and other reasons, the data from the farmers'

cooperative could not be used to test the proposed joint order-

ing model.

There were basically two approaches to the development

of the joint ordering model; the analytical approach, and the

simulation approach. A simulation approach was used in this

research, mainly because it was believed that the mathematical

complexity of the problem would make it extremely difficult to

formulate the problem and obtain an analytical solution. This

view was supported by a number of researchers.

Computer programs for the analysis of the data were

developed since no standard routines applicable to the specific
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HARISH L. VERMA

nature of the problem were available. These programs were used

to simulate the inventory control system when the fixed order

rule and the joint ordering rule were used to control inventory.

In order to compare the performance of the joint ordering rule

with the fixed order rule, the same data set was used to compute

the total cost per year.

The results obtained from the hypothetical data and the

real data indicated that there was sufficient evidence to con-

clude that the major and minor hypotheses were true. Moreover,

inspection of the minimum cost values of the three parameters S,

s, and 3' indicated that three distinct cases of the joint

ordering rule could be identified. These were:

1. S = s' > s z The proposed joint ordering rule is now

characterized by two parameters, S (or s')

and s.

2. S > s' >'s : The joint ordering rule is characterized

by three parameters, S, g', and g.

3. S > s' = s : As in case 1, the joint ordering rule is

characterized by two parameters. However,

the two parameters are S and 3' (or g).

The most important conclusion drawn from these three cases

was that the proposed Joint Ordering Rule is more general, and

incorporates within itself a number of other reordering rules,

both individual item ordering rules such as the two bin inventory

control system, and some joint ordering rules proposed by other

researchers.

Besides the three cases mentioned above, it was found that
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HARISH L. VERMA

there were some situations where it was more economical to use

the fixed order quantity rule rather than the proposed joint

'ordering rule. This occured when the mean demands of the items

in the group were widely dispersed. Hence, it was concluded

that when the mean demands of the items in the group are widely

dispersed, it is not only uneconomical to use the joint order-

ing rule to control inventory, but even including the items in

a group is questionable. Lastly, some criteria for grouping

items is suggested.
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CHAPTER I

INTRODUCTION

Inventories are one of the most important assets in the

average company, and their control is one of the most difficult

and challenging tasks of management. The typical manufacturing

corporation has about twenty-four percent of its assets invested

in inventories, compared with thirty-nine percent in net property,

1
plant, and equipment. Further, of all the business assets, inven-

tories are the least stable, and the most difficult to control.

Even the most successful companies are rarely able to manage their

inventories as well as they would like to. Either they have too

much inventory of certain items, too little of others, or a com-

bination of both. It is generally believed that inventory control

can make or break a company. The importance of inventories is

explained by Maynard.2

The control of inventories is one of the most complex

and far-reaching of all business activities. It is the

focal point of many seemingly conflicting interests and

considerations--both short-and long-range. Its plan-

ning and execution involve participation by most of the

functional segments of a business: sales, production,

purchasing, finance and accounting. The end result achiev-

ed has a major bearing on the company's financial

strength and competitive position, since it directly

affects quality of service to customers, production

costs, earnings, and soundness of working-capital pos-

ition.

 

1Ammer, C. Materials Management (Homewood, Ill. : Irwin,

1962,; p. 7.

Maynard, H.B. Industrial Engineering Handbook (New York:

McGraw-Hill Book Company, 19565’ pp. 6:55

 

 



In recent years, the number of items held in inventory has

been constantly growing. It is not surprising to find a company

with over five hundred individual items in inventory. This is

because of the increasing technical nature of the items, a demand

for greater variety by customers, and lastly a demand for better .

service. Further, it is because of these and other factors that

the number of dollars invested in inventory is increasing at an

even faster rate than the number of items. Hence, in most com-

panies, management has begun to place greater emphasis on the

control of inventories. The word control, as used in this thesis,

implies minimizing the sum of the ordering costs, inventory carry-

ing costs, and stock out costs.

It is not surprising therefore, that in the last twenty

years there has been a rapid growth of interest in what is referred

to as scientific inventory controla-the use of mathematical

models to obtain rules for operating inventory systems.1 More has

been written about this subject than any other in the field of

production management.

A survey of the literature on this subject of inventory

control reveals that:

1. Both practitioners and theorists agree on the importance

of sound inventory control.

 

Hanssman, F., Operations Research in Production and

Inventory Control (New York: John Wiley and Sons, Inc. 1962)

P-6



2. A growing number of researchers are working with inven-

tory models because they present challenging theoretical

l The technical journals areproblems in mathematics.

filled with theoretical and rigorous discussions of in-

ventory control problems. Unfortunately,such articles are

not meaningful to most businessmen who are faced with prag-

matic problems of running the business. This is because

the models are either abstract and too mathematical or

certain parameters used in the model are not operationally

defined. Often, assumptions made in the model are unreal-,

istic. Balintfy's multi-item.inventory model serves as a

good example. In his article Balintfy admits that the

assumptions were made so as to get an analytical solution

to the problem. At the same time, he believes that these

assumptions restrict the application of his model to prac-

tical problems.

3. With the development of high Speed computers and the

increased emphasis on computer based inventory control

systems.it has become possible to apply complex decision

rules to maintain tight control over several thousand diff-

erent items in inventory. With the decreasing cost of

computer time, the trend will continue in this direction.

4. The inventory control systems that are generally

discussed in the literature are the fixed order quantity

 

lHanssman, F., op. cit., p. (vii)
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system, the fixed interval system, and lastly, the S and i

system.

The Fixed Order System:
 

The oldest and most commonly used inventory control system

is the fixed order system, or the two-bin system. The system

uses a fixed-order quantity, which may be an economic order

quantity (EOQ), and a variable order interval. With this

system, the same order quantity (EOQ) of an item is ordered each

time. But the time that an order is placed varies with fluctu-

ations in usage. The reordering rule can be stated as follows:

The economic order quantity is ordered each time the in-

ventory on hand plus the inventory on order equals the expected

demand during lead time, plus the safety stock. The latter is the

inventory needed to protect against possible demand in excess of

that expected during the lead time.

1

The following numerical illustration gives a detailed

description of this system.

Assume that:

demand 2 = 1000 units per year

cost per unit 9 = $2.00

ordering cost A $15.00 per order

inventory carrying cost I = 15 per cent of cost per year

weekly demand: Normal distribution with mean of 15 units and

demand is normally distributed with mean of 15 units and

1Stockton, R.S. Basic Inventory Systems (Boston: Allyn'

and Bacon, Inc., 1965), p. 65

 



standard deviation of 5 units.

lead time = 1 week

Management believes that this item should not be out of stock

more than once a year.

Economic order quantity = 2A2

\’ CI

= 2(1000215 = 316 units

2(0.15)

 

Therefore the number of orders per year

= 1000 = 3.2 approximately.

316

Therefore the number of stockouts per order

= 1 = 0.312

3.2

From the table for a normal distribution,

0.312 corresponds to 0.49 standard deviations

beyond the mean.

Hence, the reorder point = (15x1) + (0.49 x 5)

= 15 + 2.45 = 17.45 = 15 units.

The fixed order system works well when a continuous

review of inventory records is maintained and when the

demand for the items in Stock is stable. Lee and Dobler1

list the essential characteristics of items controllable

with a fixed order quantity system.

 

1Lee, L. Jr. and Dobler, D.W. Purchasing and Materials

Management (New York: McGraw-Hill Book Company, 1965) p. 220
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l. The item.must experience a reasonably stable

usage.

2. The item.should have a lead time which does

not exhibit radical variation.

3. The item must be ac quired from a supplier

who is able to accept irregularly and

unscheduled orders.

The Fixed Interval System;
 

In the fixed interval system, the reorder cycle is

fixed while the order quantity varies depending on demand.

Thus the inventory level is checked at fixed intervals,

e.g. once a month, and a replenishment order is placed based

on the amount used since the last review. The replenishment

order is equal to the expected demand during lead time plus

review period less the stock on hand and on order.

The following numerical illustration demonstrates the

Operation of the periodic ordering system.

Assume that the review period for an item has already

been established and is equal to 5 days. Assume that the lead

time is equal to 2 days and is constant. Further, assume that a

study of user demand during the last year indicated that demand

per day is normally distributed with a mean of 100 units and

standard deviation of 27 units. Then, if at a particular review

the stock on hand and on order is 200 units, the size Of the order

to be placed (Q) should be equal to

Q = (expected demand during lead time plus review period)



- (inventory on hand and on order) + buffer stock

Buffer stock = JE-x 27 x 2

if a 98% service level is desired

100 x 7 - 200 + 1.41 x 27 x 2
D

II

576 units

Periodic reordering system is used where a book inven-

tory control is maintained, and where it is possible to examine

inventory stocks on a fixed time cycle so as to reveal when

inventory level reaches the reorder point and an order is placed,

for example in a warehouse.

1 . . . . . .
Lee and Dobler list criteria for selecting items which

should be controlled with a fixed-interval system.

1. Those exhibiting highly irregular usage and/or lead

time.

2. Items whose purchases must be scheduled in advance

because of various conditions within the suppliers'

operations.

3. Perhaps items with volatile prices.

4. Perhaps a group of items which are all purchased

from the same supplier and can be ordered on one

purchase order and shipped together.

The (s, S) System:
 

The third inventory control system is a compromise be-

tween the fixed-interval and the fixed-quantity system. The

ordering rule can be simply stated as follows:

"When the inventory on hand plus the inventory on order

is equal to or less than §_units, order a quantity sufficient

 

1Lee, L. Jr. and Dobler, D.W. op. cit., p. 220



to bring stock up to a level S, otherwise, do not order."

1 .

Magee and Boodman describe the (3,3) rule when applied

to a fixed-interval system.

1. Choose two inventory levels S and §:.§ larger

than §°

2. At each review period, Compare the available

inventory 1 with S and S.

3. If l lies between S and S, place no order.

4. If 1 is at or below the level S, place an

order for an amount equal to S -.I.

For example, assume that S is equal to 100 units and

S is equal to 30 units (see Figure1.1). Assume that at a

certain review period the inventory on hand is equal to 25

units. Then, since the inventory on hand is less than 3,

order an amount equal to 100 (S) minus 25, that is 75 units will

be ordered.

 

I
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Time

Figure 1.1 : Order Quantity under a (s, S)

inventory control system

 

1 Magee, J.F. and Boodman, D.M. Production Planningfland

Inventory Control (New York: McGraw—Hill Book Company, 1967 )

p. 137

 

 



 

 

 



In this case, the reorder point S should be large

enough so that whenever the inventory on hand and on order is

greater than S, the system is protected from run-out to the

9-" ‘

desired degree over a period equal to the lead time plus the

review period. The system of control is particularly useful

iwhere thETCOst of making a review and the cost of placing an order

are separate and significant.

The ordering rules described above are most appropriate

when there are few items in inventory. Thus, a reorder point and

an economic reorder quantity (the fixed order system), or reorder

interval and reorder quantity (the fixed interval system), could

be easily calculated for each item, and the inventory controlled

accordingly. However, inventories are seldom composed of a single

or even a few items. Typically, several thousand different

items are carried in stock. Even for a single product, it is

not unusual to have an assortment of shapes, sizes, colors, etc.

For example, the product category "screws" in a typical manu-

facturers inventory will include screws of various lengths,

diameters, number of threads to the inch, wood screws, machine

screws, brass screws, and so on. In the same way, a department

store will carry many different sizes, colors, materials, and

styles of home appliances, men's clothing, women's clothing, etc.

A supermarket carries stocks of a variety of virtually all items

stocked. In these cases it becomes virtually impossible to

establish an economic order quantity and reorder point for
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each stock-item and more so to use these parameters to control

these inventories. What is desired is a method by which sim-

ilar items could be grouped. A rule might then be established

for the group with common parameters (reorder point, order quan-

tity) used to control the inventory of each item in the group.

The task of calculating the economic order quantity and

reorder point for each item is physically impossible. Moreover,

the conventional reordering rules (fixed order quantity, fixed

interval and the S and S reordering rules) are based on the

assumption that the inventory level of each item is controlled

separately, and that each item in inventory is ordered indepen-

dently from others. This is frequently not the case. Fetter

and Dalleck1 recognize this limitation of most inventory models.

They state:

If we now add items to our inventory management problem,

the item-by-item computations for R and Q remain the same,

but we are often faced with new difficulties. These stem

primarily from the fact that the model assumes that each

set of item decisions is independent, when in general, it

is not. (R = reorder point, Q = EOQ)

Often, one supplier is the source of a variety of related

items. Savings can be, and often are, achieved by including

2

a number of such items on one order. Magee and Boodman discuss

this principle advantage of joint orders.

 

1 Fetter, R.B. and Dalleck, W. Decision Models for

Inventory ManSgement (Homewood, Illinois: Irwin, 1961), p. 63

 

2rMagee, J.F. and Boodman, D.M., Op. cit., pp. 152-153
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For example, a field warehouse may obtain a large number

of items from a single source. It may be desirable to

have any shipment from the source to the warehouse equal

an economical size, such as a carload, in total, but the

mix of items in the order may not affect the cost of

making the shipment measurable. Frequently, a distributor

may wish to order a group of items supplied by a single

vendor not all of which he needs at the present. He may

order some items early from the vendor in order to take

advantage of a variety of forms of discount offered, to

reduce total order costs in those cases where the cost

of an additional line on an order is less than the cost

of a one-line order, or to meet a vendor constraint such

as minimum order size.

Sometimes in manufacturing Operations the cost of

setting up a process may indicate the size of a total

run or batch of an item, but the run can be split among

a number of individual package sizes, etc. For example,

in textile manufacture, it may be desirable to dye or

print a large quantity of cloth which can be put up in

a number of different-width bolts.

Another advantage of joint ordering is the increased

opportunity of taking advantage of quantity discounts offered

by a vendor. Thus, according to Prichard and Eagle,

...(another) benefit of joint ordering is the discount

the vendor may offer on a large dollar purchase. Some

suppliers offer price reductions on individual items

bought in large quantities. Other suppliers allow sig-

nificant discount on the total value of single large

orders, even if many items, each of low value, are in-

cluded in the order. There are situations in which a

discount of this type becomes economically attractive only

if several items are ordered jointly.

Hence, there are many instances in which it is worthwhile

to treat items jointly rather than independently, and to order

them as a group. The potential savings resulting from the

 

l

Prichard, J.W. and Eagle, R.B., Modern Inventogy

ManSgement (New York: John Wiley and Sons, Inc., 1965) p.360
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the inclusion of many items on one purchase order are quite large.

Silver1 summarizes the advantages of joint orders.

1. A reduction in ordering costs may be achieved because

several items are processed under a single order.

2. The supplier may offer a discount if an order ex-

ceeds a certain quantity. One way of achieving this

discount is to lump several items under one order.

3. Shipping costs may be significantly reduced if an

order is of a convenient size, e.g. a box car. It

might be necessary to order several items simultan-

eously to achieve such a quantity.

The three basic reordering rules discussed earlier are therefore

inappropriate. What is now required is some sort of a joint

ordering rule. The term joint ordering as used here implies

ordering a number of items in a single purchase order.

A review of the literature indicates that much analytical

work has been done in the cases of independent ordering strategies.

The rules most frequently discussed are those mentioned earlier.

But the literature is almost void of discussion about a joint-

ordering strategy. It is surprising to note that most general

references about inventory theory do not mention this strategy.

Some writers recognize the advantages of the joint-ordering stra-

tegy but fail to develop any joint-ordering rules.

Hence, though much has been written about inventory con-

trol generally and independent ordering rules in particular,

there is a real need to research the joint-ordering rule. The

 

1Silver, E.A. "Some characteristics of a Special joint-

order inventory model", (O.R. Vol. 13, No. 2, March-April, 1965)

p. 319
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development of a joint-ordering rule seems an appropriate

topic for a doctoral dissertation.

STATEMENT OF PROBLEM

The purpose of this study was to develop a joint-ordering
 

5219 which could be used to order a group of items at one time.

The two important decisions in any single item inventory con-

trol system are the selection of the time to order, and the

quantity to order. In the case of joint ordering, it is nec-

essary to add a third decision, namely which items should be or-

dered jointly. It was believed that these basic decisions

could be made if the joint ordering rule was defined in terms

of three parameters, S, S, and S', where S is the maximum inven-

tory level, S is the reorder point or trigger point, and S'

determines the items to be reordered. Any item whose inventory

level is equal to or less than S' should be ordered; S' to S

is defined as the reorder range. Note that S is greater than S',

which is greater than S (see Figure 1.2). It illustrates the

variations in the inventory levels of three items. At time to

the inventory level of item 1 is less than S, the reorder point.

This triggers the reordering process. The inventory level of

the rest of the items in the group is checked, and as is

evident from the figure, the inventory level of item 2 lies

between S' and S, the reorder range. Hence, items 1 and 2

are ordered jointly. The inventory level of item 3 lies out-

side the reorder range. Hence, item 3 is not included in the

joint order. It is assumed that the inventory on order for
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each of the items is equal to zero.

 

 

 

.5.

37.: «a, —— item2
G > ...........T

as "”i
,E "' .5

Item 1

  
Time to

Figure 1.2: Variation in inventory level

of three items

The joint-ordering rule proposed is:

Whenever the stock Of any item in a group has dropped

to the reorder level, the inventory level of all the items in

the group is checked; all items with inventory levels in the

reorder range (S' to S) are ordered jointly.l

In terms of the three parameters, S, S and Sf the rule

is defined as follows:

When the inventory level of any item in the group has

dropped to the reorder level S, all items which have inventory

levels (inventory on hand plus on order) within the reorder

range Sf to S are ordered jointly. The order quantity for

 

1The writer wishes to state that the proposed joint-order-

ing rule is not "original". The basic idea of the rule was

Obtained from the article by Balintfy. ’
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each item ordered is given by (8-1) where l is the inventory

on hand and on order.

The proposed joint ordering rule is an extension of the

(5,8) rule discussed earlier. Instead of two parameters, S

and S, the proposed rule has three parameters, S, S, and S}.

It was necessary to introduce S' to determine which items to

order jointly. Recall that in the case of the (3,8) system

only two decisions, BEES to order, and h2¥.EEEE.t° order had to

be made. Hence, two parameters were sufficient. In the case of

joint orders there are three decisions to be made, 2222 to order,.

EEK THEE to order, and which items to order. Hence, the need

for the third parameter S'. A detailed discussion of this

rule is included in Chapter three.

HYPOTHESES

The following hypotheses were proposed for testing:

Majorggypothesis:
 

There exist a number of situations in which the application

Of the joint ordering rule, i.e. ordering a group of items in a

single order, results in lower costs when compared with the use

of the fixed order quantity rule.

Minor Hypothesis:
 

If the joint ordering rule is defined by the three par-

ameters S, S, and S', as defined above, then there exists some

Optimum value for each of the parameters such that the total



 

 

 

 



-16-

cost of the inventory control system is minimized. The costs

that are included are ordering costs, inventory carrying

costs, and stock out costs.

The major part of this research is concerned with test-

ing these hypotheses and hence establishing a joint ordering

rule.

There is one question that yet remains unanswered. The

proposed joint ordering rule can be applied only after the items

have been grouped. Hence, the immediate question is what criteria

should be used to group the items. The following criteria are

suggested.

1. Natural grouping: Some items can be grouped on the

basis of their physical characteristics. For example,

all screws of various lengths, diameters, and the number

of threads per inch could be included in one group. In

a farmer's cooperative visited by the writer, such a

natural grouping did exist. All fertilizers were in-

cluded in one group, all farm fences were included in

another group, all kinds of animal feed were included in

a third group, and so on. Thus, physical characteristics

provide a very simple and natural way of grouping items.

2. On the basis of demand: The criteria suggested here

is very similar to the conventional A, B, C
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classification of items in inventory. Magee and

Boodman1 describe this classification as follows,

Close examination of a large number of multi- item

inventories has revealed a useful statistical regularity

in the distribution of the demand rates of the items in

an inventory. It has been observed that item demand

rates follow lognormal distribution; the logrithms of

the item demands are normally distributed, that is,

they fall into the well-known bell-shaped normal dis-

tribution pattern. Consequently, most items have re-

latively low demand and a few high demand; proportion-

ately few items account for the major part of total

demand.

The dispersion in demand rates suggests that high-

volume items should be handled differently from low-

volume items. One approach is to segment stock into

what is called an ABC classification:

Class A : The top 5 to 10 per cent of items, which

account for the highest dollar inventory

investment.

Class B : The middle 20 to 30 per cent of items, which

account for a moderate share of investment.

Class C : The large remaining group of stock-keeping

items, which accounts for a small fraction

of total investments.

Thus, it is possible to group items on the basis of

demand. In addition to the broad A, B, C classification,

each class could be further sub-divided into groups. The

joint ordering could then be applied to each group.

3. Nature of the source of supply: Frequently a

number of items are supplied by a single vendor. Hence,

all such items could be put into one group and

 

1

Magee , J.B. and Boodman, D.M., op. cit., p. 156
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ordered jointly so as to take advantage of a variety

of forms of discount offered by the vendor. In the

case of the farmers cooperative mentioned earlier,

it was found that all farm fences came from a single

supplier. This provides an additional reason for

including all farm fences in one group.

4. Nature of production process. There are a num-

ber of production processes where the law of fixed

proportions applies to a considerable extent. This

is especially true in the Chemical industry Where

for example one pound Of item.A would require two

pounds of item B so as to get one and a half pounds

of a product C. In this case item A and B could be

included in one group. Similarly,in a manufacturing

Operation every nut used requires a bolt. Hence,nuts

and bolts could be included in a group.

These are some of the methods that could be used to

group items. The best one seems to be the grouping of items

on the basis of demand. However this or any other method

could be used in conjunction with another. For example,in

the farmers cooperative visited by the writer, the items

were already classified on the basis of their physical char-

acteristics (e.g. farm fencing, fertilizers, etc.). Each

group of items was then subdivided into a number of smaller
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groups On the basis of the expected demand for each item.

The joint ordering rule could then be applied to each smaller

group.





CHAPTER II

SURVEY OF LITERATURE

More work has been done in the area of inventory con-

trol than in any other area in production management. Starr

and Miller believe that, "bookshelves are creaking in despair

at the weight Of volumes on this subject". There are literally

hundreds of articles and volumes on the subject of inventory

management. Some of these publications are devoted to the app-

lication of inventory theory to practical problems. But, an

increasing number of researchers are working with inventory

models because they present interesting theoretical problems

in mathematics.1

It would be almost impossible to list all the volumes

and articles on the subject of scientific inventory control.

Moreover most Of these publications are not relevant to the

research topic in particular. Hence,a general bibliography

about inventory control is included. These publications

have been selected on the basis of two criteria. In the

first place they are well known and a serious student of

inventory control should have knowledge about them. And

secondly, some of the publications touch upon the chosen

research area, joint ordering rules. However, a survey Of

 

lHanssman, F. Operations Research in Production and

Inventory Control (New York: John Wiley and Sons, Inc.,

1962) p. vii
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the literature indicated that on joint order inventory models

in particular, there are very few publications. The discuss-

ion in this chapter“will be restricted to publications relevant

to this thesis.

Following is a list of joint order inventory models of

specific interest.

Balintfy's Random Joint Order Modell
 

Balintfy analyzed multi-item inventory problems, where

joint order Of several items might lead to savings in setup

cost. He also developed a new ordering policy called "random

joint order policy" which is characterized by a reorder range

within which several items can be ordered. Balintfy described

this policy as follows:1

As is known, the individual orders in most random out-

put systems are triggered by the inventory level, in

particular by the reorder level of the items. This

level or the corresponding point on the time scale,

the reorder point, constitutes a dead line when the

order for new items must be issued.

Now, it is easy to define another (higher) inventory

level which may be called "can-order" level, or "can-

order" point - - such that the range determined by

difference between "can-order" and reorder points

will replace the triggering role of the reorder point.

The rule then would say that whenever an order fer a

particular item must be issued, i.e., the stock of any

item has dropped to the reorder level, the inventory

level of the rest of the items will be checked, and

all items which are in the reorder range shall be or-

dered jointly.

 

lBalintfy, J. L., "On a basic class of Multi-item Inven-

tory Problems", (Management Science, Vol. 10, No. 2, January

1964) PP. 257-297
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TO arrive at an analytical solution to the multi-item

inventory problem, Balintfy made certain assumptions. One

assumption was that E, the reorder period for an item, is

defined as a negative exponentially distributed random variable

with an expected value To. Another assumption was, To for all

items should be the same. This implies that in general all

items are reordered everytime an order is placed. The author

admits the limitation of his analysis because of these and

other assumptions. According to him,

These restrictions were needed to clear the way for the

application of [equation] (28). [The equation gives the

probability distribution of the number of joint orders]

Their (assumptions) removal means that we have to attempt

to solve a machine interference problem with general ser-

vice time distributions, non-Poisson arrivals, and different

arrival rates in different channels. It is a known fact

that an analytical solution has not been found for this

problem thus far. Yet, it cannot be overlooked that most

of the practical problems will fall in this category.

He then goes on to suggest that one way £2 determine re-
 

order ranges in the general case, is to resort £2 simulation
 
  

techniqpes.
 

2

Magee and Boodman's Multi-item Model
 

Magee and Boodman analyzed the multi-item problem as a

production problem. That is, they were interested in determin-

ing how a single production run could be split among a number of
 

 

l

Balintfy, J.F. op. cit., p. 296

Magee, J.F. and Boodman, D.M. Production Planningfiand

Inventory Control (New York: McGraw-Hill Book Company, 1967)

pp. 152-157
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individual items or package size. This problem is faced by al-

most all manufacturing Operations. For example, in chemical

manufacture, process economies may determine the total size of

a batch Of an item to be produced, but this batch could be split

among a number of different container sizes or package sizes.

Magee and Boodman suggest procedures to determine when to pro-

duce a batch and how to balance the batch or shipment among

individual items. The procedure is as follows:

1. A batch, run, or shipment must be started to be

completed before any individual item runs out.

2. The sum or the amounts of the individual items made

or shipped must equal the total desired economical

batch or order.

3. The quantity made or shipped should be balanced among

individual items to delay need for the next run

or shipment as long as possible.

An approach that can be used follows these lines:

1. A reorder point is set on each individual end item,

e.g. each package size. This is set in the usual

way, to cover maximum demand or to give the desired

service protection on the individual item over pro-

curement lead time.

2. A new run or shipment is made whenever the inven-

tory on hand or in process of an individual item

reaches a reorder point.

3. The new run or shipment is distributed among the

individual items as follows:

Let I1 = inventory on hand or in process Of one item,

the ith item.

 

1Magee, J.F. and Boodman, D.M., op. cit., p. 153
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-th
pi = reorder point, the 1 item

si = expected usage rate, the ith item

Qi = amount of the run or shipment given over

to the ith item

Q = total run or shipment size

I = total inventory, all items

P = total of the individual reorder points

S = total of the individual usage rates

Then the amount of any individual product shipped

would be

Q1: Si(Q+I-P)*Il+Pi

S

Magee and Boodman have analyzed the multi-item reorder

problem as a production problem rather than an inventory con-

trol problem, although the model could be used for multi-item

inventory control. However,the model has certain limitations.

In the first place, they do not indicate how the formula for

Qi was derived. It could be based on experience. Further,

the model lacks details,and this severely limits the application

of the model. For example, the authors do not indicate how g,

the total shipment size whould be determined. Lastly, though

they do illustrate how this procedure works, they fail to dem-

onstrate any economic advantage of their procedure over the

conventional individual item ordering rules.
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Maynard's Group Ordering Rulesl

Maynard refers to the multi-item reordering rule as Group

Ordering Rules. His version of the group—ordering rule is as

follows:1

All the items in a group are coded to designate the

particular ordering group, and each item is assigned

an individual order point and order quantity. In

addition, a total order quantity is assigned for the

group of items. When the stock on hand and previously

on order of any one of the items in the group falls

to its order point, a new order is placed. The order

is made up by ordering the established order quantity

for each item in the group, starting with the item that

reached its order point and adding items that are near

their order points until the size of the over-all order

reaches the assigned total order quantity.

This joint ordering rule seems to be heuristic. The

author does not go into details about how the total order

quantity for the group, or the individual order quantities for

each item within the group, can be determined. Opportunities

for Obtaining quantity discounts were not considered,although

this may be the principal advantage of the joint ordering rule.

Lastly, Maynard did not indicate what cost savings will result

when this rule is compared with the conventional individual

item ordering rules.

Prichard and Eagle - The Economics of Joint Orders2

 

lMaynard, H. B. Industrial Engineering Handbook (New York:

McGraw-Hill Book Company, 1956) pp. 7-6h

2Prichard, J. w., Eagle, R. H. Modern Inventory Management

(New York: John Wiley and Sons, Inc. 1965) pp. 360
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Prichard and Eagle have by far the best analysis of joint

orders. They include a discussion about the advantages and dis-

advantages of joint orders,and then by a numerical illustration

have demonstrated the cost savings resulting from joint orders.

They considered a group of four items ordered from one supplier

and three ways of controlling inventories of the four items.

The three inventory control methods were:

a) Periodic review and separate replenishment method.

b) Separate replenishment with continual review method.

c) Joint replenishment with periodic review method.

The authors then compared the total cost of the three

alternative methods of controlling the inventory of the four

items.

The analysis is excellent because it takes into account a

number of details which surprisingly lead to significant changes

in total costs. Some of the details considered were,

a) A portion of the total ordering cost was assumed to

depend on the number of items on the order.

b) The safety-stock required under each replenishment

policy was calculated so as to minimize the value of

back-ordered demands. The safety stock required turned

out to be different for the different methods of con-

trolling inventory.

c) Quantity discounts on large orders were included.
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The calculation of the safety-stock required under each

replenishment policy led the authors to conclude that1

The increased chance of shortage due to the higher

frequency of replenishment coupled with the need to guard

against demand variation over the review cycle and during

lead time leads to a much higher safety stock for joint

replenishment than fOr separate replenishment.

On the basis of a numerical illustration, the authors

finally concluded that in general joint replenishment SS_cheaper
 

than separate replenishment.
 

The analysis has one serious limitation. It is assumed

implicitly that all items are ordered every time S joint order 31
 

 

placed. That is, every replenishment order is a joint order and

includes all four items. This does not seem necessary. It should

be possible to achieve additional savings through decrease in

total inventory by ordering some items less frequently then others.

The joint ordering rule proposed ig_this thesis SS_not limited Sy
  

Prichard and Eagle's assumption. This is because, according to

the proposed joint ordering rule, when an order is placed, only

those items which have inventory levels within the reorder range

(Sf to S) are included in the order.

Silvers's Two Item Rule2
 

Silver analyzed a joint-order rule involving two items.

 

lPrichard, J. w., Eagle, R. H., op. cit., pp. 363

Silver, E. A. "Some characteristics of a Special Joint-

Order Inventory MOdel" (O.R. Vol. 13, NO. 2, March-April, 1965)

PP- 319-322
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The two items were assumed to have identical characteristics,

including unit Poisson demand. The joint ordering in this case

was to order both items up to a level g_each time the level of

either item dropped to zero. The author compared his joint order-

ing rule with the alternative, where the two items are ordered

1

separately. He finally concluded that,

For any given value of SA[Where S is the cost of

cr

placing an order for one item, S is the unit cost of an

item, E is the inventory carrying cost, and SS is the

mean demand for each item] there is a critical value of

m [95 is the cost of placing an order for two items,

where I‘m $1]below which it is preferable to use

joint ordering, above which we prefer independent

ordering.

.... for example, for S5 equal to 5, the critical

cr

m is 1.23. Therefore, in this case, if the cost of

placing a joint order is less than 1.23 times the cost

of placing an order for a single item, we use a joint

ordering strategy.

Silver's anal sis is useful and well conceived but ity 2

too suffers from certain limitations. They are,

l. The analysis considers only two items.

2. The two items are assumed to have identical cost

characteristics and unit Poisson demand. Each time an

item is demanded, it is assumed that the demand is for

one unit. In addition to this, the mean demand for the

two items ii assumed to be identical.

3. The reorder point is zero as the delivery lead time

is assumed to be zero, i.e., an order is assumed to

arrive instantaneously.
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4. It follows from (3) that there are no stockouts and

hence the cost of lost sales is not considered.

These assumptions indicate, that the analysis is Of

limited theoretical significance. It may be that the joint or-

dering problem.was analyzed by Silver because it presents an

interesting mathematical problem. It is doubtful that his joint

ordering rule could be applied given his constraints.

Starr's Constrained Control of Multiple Items1

Starr views the inventory control of multiple items as a

constrained problem, the constrains being limited company resour-

ces or limited capacity Of the ordering department. According to

him2,

The company's resources are limited. It is frequently

unreasonable to carry the total average dollar inventory

that the individual item's Optimal policies would require.

The capacity of the ordering department may be overtaxed,

storage facilities may be filled to capacity; the amount

of capital invested in inventory may exceed the amount

that the company has available. These limitations, if

they exist, require a modification of inventory policy.

That is, the theoretical system's Optimal is not feasible

because it violates other practical system's constraints.

The author then developed a procedure for handling such

problems. The problem that is analyzed by Starr is different

from that considered in this thesis. The principal difference

being that there are SS_contraints to the problem dealt with
 

 

lStarr, Martin, K. Production Management (Englewood

Cliffs, New Jersey: Prentice-Hall, Inc., 1963) pp. 321

Starr, M. K., o . cit., pp. 323
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in this thesis. In this thesis it was assumed that there was

both sufficient capital available to invest in inventory and

sufficient storage facilities to store the goods. Lacking

such constraints, the problem was simply to develop a joint

ordering rule that minimized total costs. Starr, on the other

hand, assumed that there were certain limitations, for example,

limited company resources available for inventory which re-

quire a modification of the inventory policy. That is, it was

not feasible to order the economical order quantity for each

item because it led to a total average inventory investment

greater than that available. Starr, then developed a procedure

for calculating what the order quantity for each time should

be under the constrained conditions. As is evident, the

problem is clearly different from that analyzed in this thesis.

Fetter and Dalleck: Managing_Multi-item Inventory1
 

Fetter and Dalleck's analysis of the management of a

multi-item inventory is similar to Starr's. Like Starr, these

authors developed a least cost solution in which the total

number of orders, setup, and total order cost or setup cost

were restricted in some way. The problem was to find the order

quantity for each item under these constrained conditions.

Fetter and Dalleck's solution to this problem was very similar

to Starr's. As mentioned earlier, the problem analized

 

1Fetter, Robert B., and Dalleck, W. Decision Models for

Inventory Managgment (Homewood, Illinois: Irwin, 1961) p. 63
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in this thesis was not a constrained problem. The problem was

simply to develop a joint ordering rule that minimized total

COS ES 0

Starr and Miller: Multiple Items, One Supplier1
 

Starr and Miller considered the problem of joint orders

under the heading, Multiple Items from on supplier. They took

an analytical approach to the problem. However, their joint or-

dering rule was very similar to Maynard's Group Ordering

Rules mentioned earlier.

They considered all the items in the group as representing

one unit, and calculated the ordering policy for this one unit.

That is, they developed an EOQ formula when the group of items

was considered as one unit (the EOQ formula was developed in terms

of S, the months between orders). They then compared the total

cost obtained by this approach with the total costs when each

item was "optimized separately", i.e. when each item was consi-

dered separately and the order quantity was determined so as

to minimize the total costs for each item. Lastly, Starr and

Miller analyzed the particular case when one of the items in

the group accounted for a large proportion of the total dollar

demand for the group of items, or, when the items were divided

into two sub-groups and each sub-group was optimdzed separately.

They concluded that a criterian could be set up which would

 

1Starr, M.K. and Miller, D.W. Inventory Control:

Theory and Practice (Englewood Cliffs, New Jersey: Prentice-

Hall, Inc., 1962) pp. 104-110
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determine when the S (months between orders) should be the same

for all items. For example, the criteria as to when the items

should be divided into two groups was as follows:

Let,

the total number of items be = S

the total dollar demand for these items be = 2

Let the cost of preparing an order be equal to a

fixed cost S and a variable cost which depends on the

1 The variable costnumber of items in the order.

accounts for the cost of physical inspection, cost of

pulling out a stock card, etc., and also depends on the

number of items in the order. Let the review cost for

the individual item be expressed as a multiple of the

fixed cost, S x S, where S is a constant.

Let the items be divided into two groups, S and S.

The number of items in group S = g,

(n-g).Therefore, the number of items in group S

Assume that group S accounts for a fraction S of

the total dollar demand.

Therefore,

 

1These assumptions were made by Starr and Miller in

their analysis.
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Group S has a total dollar demand a x D

Group S_has a total dollar demand (1 - a)D

Starr and Miller's criteria for determining when

the items should be divided into two groups was as

follows:1

Hence, whenever this inequality was true for some

g, then S, the months between orders should be deter-

mined separately for each of the two groups, S and S.

If, the inequality was not true, then it would be more

economical to use the same S for all items.

One other interesting conclusion reached by the

authors was:

....that the potential savings resulting from the

incorporation of many items on one order are generally

quite large. Of course, most companies which are able to

amalgamate items on single orders automatically do so.

However, they do not necessarily do so in the Optimal

way, so further savings can be accomplished by utilizing

the methods we have been developing (in this chapter).

The point for future reference is that, since this is so,

any theoretical inventory system which does not permit

such multiple item orders is incurring a cost Of the

kind we called, (in the first chapter) systemic costs.

The analysis is sound and useful, but it too has it's

limitations. They are:

 

l

Starr, M.K. and Miller, D.W. Op. cit., p. 108

2

Starr, M.K. and Miller, D.W. op. cit., p.109
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1. The analysis assumes that demand for a particular item

is constant over time, i.e. certainty is assumed. Hence.

inventory carrying costs and ordering costs were the only

costs that were included in the total cost. TSS_SSS§_S£

lost sales SS_not considered.
  

2. Although an EOQ for the group as a unit can be cal-

culated, the problem as to how much of each item within

the group should be ordered so that the total order is

equal to the EOQ for the entire unit remains unsolved.

3. The authors calculate the value of S, the number Of

months between orders, which is assumed to be the same

for all items within the group. Hence every item ZE.

ordered every S months. This is not necessary. There
 

may be instances where it may be more economical tO

order some items more Often then others.

Thus, while Starr and Miller's analysis is impressive

it does have theoretical limitations and hence,restricted appli-

cation value.

Thus,the survey Of the literature indicated that although

there are definite advantages of the joint ordering over the con-

ventional independent ordering strategies, no such rule has been

developed. The few joint ordering models that were proposed have

theoretical limitations and hence,restricted application value.

In some instances the joint ordering problem was analyzed

because it represents an interesting mathematical problem.



CHAPTER III

ANALYSIS OF THE MODEL

Before getting into the experimentation of the model, it

was felt that it would be worthwhile at this stage to analyze

the model in some detail. The purpose of such an analysis was

to get a better understanding of the proposed joint ordering rule.

SPECIFICATION OF THE RULE

The joint ordering rule was defined in terms of three

parameters, S, S, and S', where S_is the maximum.inventory level,‘

S the reorder point or trigger point, and 3' determines the items

to be included in the joint order. Sf to S was defined as the

reorder range. Note that S is greater than S', which is greater

than S as shown in the figure below.
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Figure 3.1: The Joint Ordering Rule characterized by three

parameters, §a.§ and Sf.
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The proposed joint ordering rule was stated as follows:

Whenever the stock of any item (inventory on hand and on

order) in a group has dropped to the reorder level S, the inven-

tory level of the rest of the items in the group is checked and

all items with inventory levels in the reorder range S' to S

are ordered jointly. The quantity of each item ordered is

given by (S -I) where l is the inventory on hand and on order.

In general, joint ordering will lead to an increase in

inventory carrying costs. This is because some items in the

group, which have inventory levels between S' and S, the re-

order range, are ordered although they should be ordered when

the inventory level reached the reorder point S. This BEES

frequent ordering of some items before the reorder point is reach-

ed, leads to an increase in inventory carrying costs.

On the other hand, joint ordering will lead to a savings

in ordering costs because a number of items are included in a

single order. Further, since a number of items are included in

a single order, the total dollar value of the order is larger.

This provides an Opportunity to take advantage of quantity dis-

counts.

The inventory carrying cost and the ordering cost will

depend on the size of the reorder range. An increase in the

width of the reorder range will increase the probability of

joint orders. This will lead to a savings in ordering costs.
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But the same effect (increasing the width of the reorder range)

will increase the average inventory level due to the "lifted

trigger levels of some items."1 This suggests that an optimum

value of the three parameters §¢.§" and S exist and can be

found. The optimum will occur when the difference betweeen the

savings due to joint orders and increased costs due to increased

inventory is maximum.

PROPERTIES OF THE MODEL

The proposed joint ordering rule was characterized by

three parameters, S, S, and S', where S_is greater than S},

and S' is greater than S. Hence, by definition S' lies between

S and S, and can have a maximum value of S_and a minimum value

of S. Hence, four distinct cases can be identified depending

on the value of S'.

Case 1 : When 3' = S
 

By definition, the reorder range S' to S determined the

number of items that would be included in a single order,

i.e. ordered jointly. The larger the size of the reorder range,

the greater the number of items that will be ordered jointly.

But for a fixed value of S, the size of the reorder range is

determined by S'. The closer S' is to‘S rather than S, the

larger the size of the reorder range.

 

1Balintfy, J.L., "On a basic class of multi-item inven-

tory problems" (Management Science, Vol. 10, NO. 2, January

1964) p. 292
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Since, by definition S' can have a maximum value of S, the re-

order range would be maximum when S} is equal to S. Further,

since the maximum inventory for any item in the group is equal

to‘S (this includes inventory on hand and on order), Ell.i£EE§

will have inventory levels (inventory on hand and on order)

between S' (equal to S) and S,, That is, all items will have in-

ventory levels within the reorder range S' t°.§ and hence, Ell

EEEEE will be ordered every time a joint order is placed. The

joint ordering rule now becomes,

Whenever the stock of any item in a group has dropped to

the reorder level, all items will be included in the order.

The three parameter joint ordering has now been reduced to

a two parameter case, the two parameters being S (or S') and S,

This situation is illustrated in Figure 3-2.

—
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Figure 3.2: A special case of the Joint Ordering Rule.

The Rule is now characterized by two para-

meters S (or S') and S.
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Next, under what conditions will S' be equal toS 7 This

situation, namely S' equal to S, such that all items are included

in every order, will arise when the mean demands for the items

making up the group are almost equal. That is, the diapersion

of the mean demand is relatively small.1 If the standard devi-

ation of mean demands is used as a measure of this dispersion,

and if the standard deviation is relatively small, it would be

more economical to order Ell SSSES whenever an order is placed.

This is because, if the mean demands are almost equal, and if the

inventory carrying cost is assumed to be almost the same for all

items, then the reorder points and economic order quantities for

all the items in the group will be almost equal.

Case 2: When 3' = s
 

The other extreme case will occur when S' is equal to S.

Hence, the reorder range S' to S will be minimum and equal to

zero. The situation is illustrated in Figure 3.3.

When the reorder range is equal to zero, it means that

only those items which have inventory levels less than or equal

to s, the reorder point, will be included in the order. The

joint ordering rule now becomes,

 

1The term "relatively" small or "relatively" large is used

because no single figure can be Specified. The next section in

this chapter includes a discussion of what factors determine the

range of the standard deviation of the mean demands within which

each of the four cases will occur.
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Figure 3.3: Another special case of the Joint Ordering Rule.

The Rule is characterized by two parameters S

and S (or S').

Whenever the inventory level of any item in a group has

dropped to the reorder level, that item alone is reordered.
 

As in case (1) the three parameter rule is reduced to

a two parameter case, the two parameters being S and S (or S').

Moreover, the joint ordering rule is now very similar to the

simple individual item rule, namely the (S, S) rule or the fam-

iliar two bin inventory control system. There is however, one

important difference between the simple (S, §) rule and the

proposed joint ordering rule in the modified form (S'=S, S).

In the (S, S) system, the parameters S and S are computed for

each individual item, and these parameters are then used to
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control the inventory of the respective items. For example, if

there were twelve items in the group, it would be necessary to

compute twenty-four parameters, two for each item. But in

the proposed joint ordering rule, in the modified form (S' = S, S),

the values of the two parameters S and S_are common to all items

in the group. Hence, unlike the (S, S) system, only two parameters

are sufficient to control the inventory of the entire group.

Next, under what conditions will S' equal S? .E' will

equal S when it is more economical to control the inventory Of

each item separately. This in turn will occur when mean demand

for the items is widely dispersed. That is, when the standard de-

viation of the mean demands for the items is relatively large.

This means that there are some slow moving items, some medium

selling items, and some fast moving items in the group. Hence,

if the economical order quantity and the reorder point were cal-

culated for each item, they would be so widely dispersed that it

would be more economical to treat the items individually.

Case 3: When S>s'>s

The two extreme cases were those mentioned under case

(1) and case (2). In case (1), Sf was equal to S, and the re-

order range Sf to S was maximum. In case (2), S} was equal to

S_and the reorder range S' to S was minimum. In case (3):.E'

is neither equal to S nor S but lies between S_and S, and the

statement of the joint ordering rule remains the same as that

proposed in Chapter 1 of this thesis. The rule is:
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Whenever the stock of any item in a group has dropped to

the reorder level S,all items which have inventory levels in

the reorder range S' to S are ordered jointly.

As is probably evident, this situation will arise when

the mean demands for the items are neither widely dispersed as

in case (2), nor are the mean- demands almost equal as in case

(1). In short, the dispersion of the mean demands would lie

somewhere between the two extremes. If the standard deviation

of mean demands is used as a measure of dispersion, then case

(3) would occur when the standard deviation would neither be

too large nor too small, but somewhere in between.

Case 4:

There is another situation that is conceivable. In some

situations it may BEE be economical to use the joint ordering

rule in any form what so ever. That is, it would be more eco-

nomical to control the inventory level of each item independently

Of the others, using one of the three independent ordering rules

discussed in Chapter 1. This will occur when the mean demands

of the items are so widely dispersed that including the items in

a single group is also questionable. Hence, the standard devia-

tion of demands for the items will be extremely large.

The figure below summarizes the four cases discussed so

far. Using the standard deviation of mean demands for the items

as a measure of dispersion, the figure illustrates the four
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cases that are possible.

Case 1 l I Case 2 |

S = s' s' = s
— - l-fi———)J - “I4-—Case 4

Case 3 Fixed Ordering Rule

S>S'>S is more economical

I I

I l

l than the Joint

I I Ordering Rule.

J l

l

I

I

1
  

Standard Deviation of

mean demands

Figure 3.4: A summary of the four distinct cases of the

Joint Ordering Rule.

Range of the Standard Deviation

In the last section four cases were identified, depending

on the value of the standard deviation of mean demands of the

items. For example, in case (1) the minimum cost values of the

three parameters S, S' and S would be such that Sf equalled S

and the reorder range was maximum. This would occur when the

standard deviation of the demands of the items was "relatively"

small. In fact the term relative was used to define the order of

magnitude of the standard deviation in case (2), case (3), and

case (4). No attempt was made to specify a specific range for

the standard deviation within which case (1) would occur.

It is almost impossible to specify a specific range of

the standard deviation for each of the four cases. But a number of
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factors which do affect the magnitude of the range can be

identified.

1. Nature of the demand distribution: The most impor-
 

tant factor that will influence the magnitude of the

range of the standard deviation for each of the four

cases, is the probability distribution Of demand for

each item. For example, the magnitude of the range of

the standard deviation will be different when the de-

mand for each item is normally distributed than when the

demand has a poisson distribution.

2. Inventory carrying costs: The joint ordering rule

leads to an increase in average inventory. Hence, the

lower the inventory carrying cost per unit per year,

the more economical it is to carry more inventory and

hence order items more frequently by including a larger

number of items in a single order. This could be done

by increasing the size of the reorder range Sf to S,

as the size of the reorder range determines the items

that should be included in an order. Hence, keeping

all other conditions the same, the size of the reorder

range (at minimum total cost) will be greater when

the inventory carrying cost per unit is decreased. This

means that the range of standard deviation of mean demands

under case (1) will be greater, the greater the inventory

carrying cost. Thus, the inventory carrying cost will
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have a considerable influence on the magnitude of the

range of the standard deviation of demands in question.

3. Ordering costs: The greater the ordering cost, the

greater the savings by including a number of items in

a single order. This can be achieved by increasing

the size of the reorder range Sf to S, Hence, assuming

that all other conditions remain the same, the size of

the reorder range (corresponding to minimum total cost)

for Case 1 will be greater, the greater the cost of re-

ordering. In Short, the range of the standard deviation

of demands under each of the four cases will be in-

fluenced by the magnitude of the ordering cost.

4. Cost of lost sales: The greater the penalty for
 

unfilled demands, the greater the savings that can be

achieved by maintaining a higher level of inventory,

or more correctly by raising the reorder point S,

This is exactly what happens when a large number of

items are included in a single order. This is be-

cause some items in the group which have inventory

levels within the reorder range, are ordered although

they should be ordered when the inventory level

reached the reorder point S, In short, the effect of

joint orders results in "lifted trigger levels for

some items."1 Hence, the greater the size of the reorder

 

l

Balintfy, J.L., op. cit. p. 292
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range the less the losses through unfilled demands.

The cost of lost sales therefore effects the size of

the reorder range, and hence the magnitude of the range

of the standard deviation within which each of the four

cases would occur.

These are the important factors that determine exactly

what the term "relative" used throughout the four cases means.

NO specific values that are universally valid can be determined.

In this thesis, demand was assumed to be normally distributed,

and certain values for the ordering cost, inventory carrying

cost, etc. were assumed. Under these specific assumptions, the

range of the standard deviation for each of the four cases was

determined.



CHAPTER IV

EXPERIMENTATION

This chapter is divided into three sections. The first

section considers the development Of the model, and experimen-

tation with it. Since a simulation approach was adopted, the

section includes an explanation as to why this particular appro-

ach was preferred. The second section considers the nature of

the data used to test the model, and the sources Of the data.

The last section discusses the methodology and the detailed

steps taken in the research.

DEVELOPMENT AND EXPERIMENTATION OF THE MODEL

On the basis of the literature search, there were

basically two approaches to the development of the joint or-

dering model.

The analytical approach: This approach begins with the identi-
 

fication of the important, exogeneous variables, endogenous

variables, parameters, etc. Mathematical relations between

these variables and parameters are then established. The

system is then said to be described in terms of a set of

mathematical equations. A solution is then obtained by solving

the equations analytically, using such techniques as calculus,

algebra, etc.

In general, analytical techniques are most suitable for

-47-
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1

solving deterministic models. Naylor defines the term deter-

ministic models and explains why deterministic models can be

solved analytically.

In deterministic models, neither the exogenous

variables nor the endogenous variables are permitted

to be random variables, and the operating characteristics

are assumed to be exact relationships rather than pro-

bability desity functions. Deterministic models are

less demanding computationally than stochastic models,

and can frequently can be solved analytically by such tech-

niques as the calculas of maxima and minima. Most of

the traditional models in microeconomic theory are de-

terministic models in which complete certainty is an

implicit assumption.

Although simulation, and in particular Monte Carlo

analysis can be used to Obtain solutions to strictly

deterministic models..., in most cases analytical tech-

niques are more efficient, computationally speaking,

than simulation models...

The Simulation approach:
 

Simulation is essentially a technique that involves

setting up a model of a real system, and then performing ex-

periments on the model so as to Obtain data about the probable

behavior of the real system.

In general, simulation techniques are most suitable for

solving stochastic models which are more complex than deter-

ministic models. According to Naylor ,

Those models in which at least one of the Operating

 

1Naylor, T.H., Balintfy, J.L., Burdick, D.S., and Chu, K.

Computer Simulation Techniqpes (New York: John Wiley and Son,

Inc., 1966) p.16

2Naylor, T.H. et. a1. Op. cit. p.17
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characteristics is given by a probability fuction

are said to be stochastic models. Because stochastic

models are considerably more complex than deterministic

models, the adequacy of analytical techniques for

Obtaining solutions to these models is quite limited.

For this reason, simulation is much more attractive

as a method for analyzing and solving stochastic

models than deterministic models.

Each of these approaches has it's advantages and short-

comings. It would be worthwhile at this stage to discuss these

very briefly.

Advantages and Disadvantages of the analytical approach:
 

The analytical approach is very general, precise, and

more accurate than the simulation approach. It is general be-

cause it applies to a whole class of problems. It's generality

is it's principle advantage. It is precise because all definitions,

functions, and relationships are stated unambiguously. Lastly, the

solutions to problems obtained analytically are also unambiguous

and accurate.

However, mathematical analysis is often not powerful

enough to yield general analytical solutions to situations as

complex as are encountered in business. Often, the observed

system is so complex that it becomes almost impossible to des-

cribe it in terms of mathematical equations. For example, it

is virtually impossible to describe the Operations of a firm or

industry (at the mkro level) in terms of a set of algebraic

equations. And even though such a mathematical model can be

formulated, it may be almost impossible to obtain a solution
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tO the model by straight forward analytical means. Complex

queuing problems provide examples Of these kinds of difficulties.

Queuing problems are both difficult to set up in terms of al-

gebraic equations, and even more difficult to solve the set Of

equations to Obtain an analytical solution. Buffa1 believes

that most real queuing problems are beyond an analytical sol-

ution.

The main limitation of the practical application

of waiting line theory, is the fact that existing form-

ulations for standard mathematical distributions often

do not fit the actual distributions of arrival and ser-

vice rates in specific real problems. The mathematical

complexity increases with nonstandard distributions

and as the basic problem departs from the simple single-

channel situation to multichannel problems in tandem.

Fortunately, these more complex waiting line problems

can be handled by the general techniques Of simulation,

regardless of how complex they might be mathematically.

Advantages and Disadvantages Of the Simulation approach:
 

The principal reason for choosing computer simulation,

is it's ability to overcome the above mentioned difficulties.

It is possible to avoid the complex mathematics, and yet get

fairly accurate solutions to problems using a simulation

approach. Schimidt and Taylor2 list four advantages of sim-

ulation.

l. The model of a system once constructed, may be

 

1Buffa, E. Modern Production Management (New York:

John Wiley and Sons, Inc., 1962) p. 67

2Schmidt, J.W. and Taylor, R.E. Simulation and Analysis

of Industrial Systems (Homewood, 111.: Irwin, Inc., 1970)

p.5 ‘
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employed as often as desired to analyze different

situations.

2. Simulation methods are handy for analyzing proposed

systems in which information is sketchy at best.

3. Usually data for further analysis can be obtained

from a simulation model much more cheaply than it

can from the real world system.

4. ---simulation methods are Often easier to apply

than pure analytic methods, and hence, can be employed

by many more individuals.

Buffa1 refers to another very important advantage of

simulation. He believes that for the decision maker, the ideal

situation is to be able to try out an idea without first risking

or committing company funds. With a simulation model and a computer,

the manager can try out dozens of alternatives. Thus, simulation,

with the aid of high speed computers, makes available an ”ex-

perimental laboratory" to management personnel. Another ad-

vantage of computer simulation is that through simulation, one

can study the effects of certain changes (informational, environ-

mental, etc.) on the system, by making alterations on the

system's behavior. At the same time, no changes are made in

the actual physical system itself. Further, the effect of

all such changes can be studied within a matter of minutes.

Although simulation seems such a useful technique, it is

not without limitations. In the first place, it is not as ge-

neral as the analytic approach. This seems to be the principle

limitation. Secondly, a simulation model does not produce an

 

1Buffa, E. op. cit. p. 68
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. . 1
Optimum answer, as some mathematical models. Mlze and Cox

summarize this limitation of simulation methods as follows:

Simulation methods are used more broadly than in de-

riving a solution from a mathematical model of a

process. The expressed purpose of certain simulation

studies is to provide a means of observing the be-

havior of the components of a system under varying

conditions. No solution in the mathematical sense

is sought; rather, the objective is to gain an under-

standing of the relationships among components of the

system.

Thirdly, simulation generally leads to the solution of

a given problem by an iterative process. Compared to solving

equations, the iterative process is not so neat, and definitely

requires more computation. If the model is very complicated,

it may be necessary to expend a great deal of computer time

so as to obtain trustworthy answers. This is another drawback

of the simulation approach. Schmidt and Taylor2 believe

this to be a very important limitation. Thus, according to

them:

1. Simulation models for computers are very costly to

construct and to validate. In general, a different

program must be constructed for each separate

system. Special purpose simulation languages---

have helped to reduce this factor. However, this

is still a formidable disadvantage.

2. The running of the simulation program, once con-

structed, can involve a great deal of computer

time, which is also very costly.

 

1Mize, J.H. and Cox, J.G. Essentials of Simulation

(Englewood Cliff, New Jersey: Prentice-Hall) p.2

Schmidt, J.W. and Taylor, R.B. Simulation and Analysis

of Industrial Systems (Homewood, Ill. : Irwin, 1970) p. 6
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Lastly, with the introduction of stochastic variables into

a simulation, the variables that are used to measure the system

performance become stochastic variables. Hence, the problem of

gauging the significance of the results must be considered, as

l

the values measured are no more than a sample. Wagner believes

that this is one of the reasons why most operations research

analysts look upon digital computer simulation as a method of

last resort.

When the model includes uncertain events, the answers

stemming from a particular simulation must be viewed

only as estimates subject to statistical error. For

example, a simulated queuing model yields only an

estimate of a waiting line's average length or the

associated probability of a delay. Therefore, when

you draw conclusions about the relative merit of

different specific trial policies as tested by a

simulation model, you must be careful to assess the

accompanying random variations.

Although no attempt will be made to get into this problem at

this stage, it must be mentioned that a large number of com-

puter runs have to be made so as to get reliable results.

This means more computer time and hence, more costs.

Simulation approach preferred:

There were basically three reasons for using a sim-

ulation approach in this research.

1. It was believed that the mathematical complexity

 

1Wagner, H.M. Principles Of Management Science (Engle-

wood Cliffs, New Jersey: Prentice-Hall, 1970) p. 500
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Of the problem would make it extremely difficult to

formulate the problem and Obtain an analytical so-

lution. This view was supported by a number of

researchers. Balintfy1 defines certain parameters

and makes certain assumptions so as to arrive at an

analytical solution to a problem very similar to the

one analyzed in this dissertation. However, he con-

cluded that an analytical solution would SS difficult
 

£2 obtain for this problem when the assumptions are
 

dropped. Yet, most Of the real problems are not

constrained problems. That is, the assumptions are

invalid. Balintfy then suggests that S simulation
 

approach would SS apppopriate. Brown2 also believes
  

that joint order problems reach a degree of complexity

that is unmanageable and beyond analytical solution.

In view of these opinions, it was felt that a simula—

tion approach was the only practical alternative.

2. It was also believed that some Of the demand data that

would be used to test the model would not fit the

mathematically defined probability distributions,

e.g., the normal distribution, the poisson distri-

bution, etc. This is especially true when one works

with real data. Here again, simulation is the only

 

1Balintfy, J.L. ”On a basic class of multi-item inven-

tory problems" (Management Science Vol. 10, NO. 2, January,

1964) p. 296

2Brown, R.B. Decision Rules for Inventory Management

(New York: Holt, Rinehar and Winston, 1967) p. 203
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approach available.

3. Lastly, since it was likely that some experimentation

would be involved, i.e., changing the values of the

parameters, and recording the consequences over time,

simulation would be necessary. A good example Of

such an experimentation would be the search for the

Optimum values of the three parameters, S, S, s', so

as to minimize total cost.

DATA SOURCE

Hypothetical Data
 

A considerable portion of this research was concerned

with the development of a joint ordering rule, and the study

of the prOperties of the rule, especially the performance Of

the rule under extreme conditions. Hence, it was necessary

to generate some hypothetical data which represented these

extreme conditions. In generating this data, the following

assumptions were made.

1. The product group consists of twelve items.

2. The demand for each item is normally distributed

with a certain mean and standard deviation.

Nine data sets were generated. These are listed in

Table 4.1 through Table 4.9 As is evident from the tables,

 

1Costs of computer runs and the time factor in analyzing

the results were major constraints in extending the analysis to

a larger number of items.
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Table {0. 1 :
 

Data Set 1

The means and standard deviations of the demands for the twelve

items in the groupl.

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND

1 8 1 7.619

2 10 1 9.5238

3 10 2 9.5238

4 6 1 5.7143

5 10 1 9.5238

6 ll 1 10.4762

7 12 1 11.4286

8 9 1 8.5714

9 9 2 8.5714

10 5 1 4.7619

11 8 1 7.619

12 7 1 6.6667

100.00

 

The Standard Deviation of the mean demands a 1.96

Range of mean demands = 12 - 5 = 7

 

1It was assumed that the demand for each item.was normally

distributed with some mean and standard deviation.
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Table 4.2 :
 

Data Set 2

The means and standard deviations of the demands for the twelve

items in the groupl.

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND

1 5 1 4.8544

2 7 1 6.7961

3 9 2 8.7379

4 8 1 7.767

6 6 1 5.8252

6 ll 2 10.6796

7 12 1 11.6505

8 9 1 8.7379

9 10 1 9.7087

10 ll 2 10.6796

11 8 1 7.767

12 7 1 6.7961

100.00

 

The Standard Deviation of the mean demands = 2.15

Range of mean demands = 12 - 5 = 7

 

iIt was assumed that the demand for each item.was normally

distributed with some mean and standard deviation.
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Table 4-3 :
 

Data Set 3

The means and standard deviations of the demands for the twelve

items in the groupl.

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND

l 13 2_ 6.7708

2 15 1 7.8125

3 16 2 8.3333

4 19 1 9.8958

5 21 1 10.9375

6 11 1 5.7292

7 17 2 8.8540

8 21 1 10.9275

9 23 2 11.9792

10 14 1 7.2917

11 10 1 5.2083

12 12 1 6.25

100.00

 

The Standard Deviation of the mean demands = 4.26

Range of mean demands = 23 - 10 e 13

 

IIt was assumed that the demand for each item was normally

distributed with some mean and standard deviation.
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Table 4.4 :
 

Data Set 4

The means and standard deviations of the demands for the twelve

items in the group .

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND

l 20 1 5.3333

2 23 2 6.1333

3 26 3 6.9333

4 28 2 7.4667

5 30 4 8.00

6 29 1 7.7333

7 33 9 8.80

8 35 4 9.3333

9 37 3 9.8667

10 40 2 10.6667

11 40 3 10.6667

12 34 3 9.0667

100.00

 

The Standard Deviation of the mean demands a 6.39

Range of mean demands = 40 - 20 = 20

 

1It was assumed that the demand for each item was normally

distribbted with some mean and standard deviation.



Table 4.5 :
 

Data Set 5

The means and standard deviations of the demands for the twelve

items in the group .

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND

1 4 1 2.2989

2 6 1 3.4483

3 9 2 5.1724

4 12 1 6.8966

5 15 2 8.6207

6 17 ' 2 9.7701

7 19 3 10.9195

8 21 2 12.069

9 23 2 13.2184

10 25 3 14.3678

11 10 1 5.7471

12 13 2 7.4713

100.00

 

The Standard Deviation Of the mean demands = 6.69

Range of mean demands = 25 - 4 = 21

 

IIt was assumed that the demand for each item.was normaIIy

distributed with some mean and standard deviation.
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Table 4 - 6
 

Data Set 6

The means and standard deviations of the demands for the twelve

items in the groupl.

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIAIION DEMAND

1 5 1 2.2222

2 7 1 3.1111

3 ll 2 4.8889

4 14 2 6.2222

5 17 2 7.5556

6 21 3 9.3333

7 24 2 10.6667

8 27 3 12.00

9 30 3 13.3333

10 32 3 14.2222

11 12 1 5.3333

12 25 2 11.1111

100.00

 

The Standard Deviation of the mean demands = 9.04

Range of mean demands = 32 - 5 = 27

 

IIt was assumed that the demand for each item was normally

distributed with some mean and standard deviation.
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Table 4.7
 

Data Set 7

The means and standard deviations of the demands for the twelve

items in the groupl. '

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIAIION DEMAND

l 10 1 3.2787

2 15 2 4.918

3 17 2 5.5738

4 19 1 6.2295

5 20 3 6.5574

6 25 2 8.1967

7 27 2 8.8525

8 29 3 9.5082

9 30 3 9.8361

10 35 3 11.4754

11 38 2 12.459

12 40 3 13.1148

100.00

 

The Standard Deviation of the mean demands = 9.47

Range of mean demands = 40 - 10 = 30

 

llt was assumed that the demand for each item was normally

distributed with some mean and standard deviation.
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Table 4-8:
 

Data Set 8

The means and standard deviations of the demands for the twelve

items in the group .

 

 

 

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND

1 5 1 1.2887

2 21 1 5.4124

3 27 2 6.9588

4 31 2 7.9897

5 34 3 8.7629

6 40 2 10.3093

7 48 3 12.3711

8 54 2 13.9175

9 62 2 15.9794

10' 12 1 3.0928

11 24 1 6.1856

12 30 1 7.732

100.00

 

The Standard Deviation of the mean demands = 16.65

Range of mean demands = 62 - 5 = 57

 

1It was assumed that the demand for each item.was normally

distributed with some mean and standard deviation.
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Table 4.9

Data Set 9

The means and standard deviations of the demands for the twelve

items in the group.1

 

 

 

STANDARD . PERCENTAGE

ITEM MEAN DEVIATION DEMAND

1 60 3 14.7059

2 10 3 2.451

3 21 3 5.1471

4 30 2 7.3529

5 39 3 9.5588

6 53 3 12.9902

7 64 3 15.6863

8 3 1 .7353

9 25 1 6.1275

10 26 > 1 6.3725

11 33 2 8.0882

12 44 1 10.7843

100.00

 

The Standard Deviation of the mean demands 1 18.90

Range of mean demands 2 64 - 3 = 61

 

1It was assumed that the demand for each item was normally

distributed with some mean mean and standard deviation.
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the standard deviation of the mean demands of the twelve items

is a minimum for data set 1. The standard deviation then grad-

ually increases and is a maximum for data set 9. Thus, it was

possible to study the behavior of the proposed reordering rule

under various demand levels. The standard deviation could not

be increased beyond that of data set 9, because then the econo-

mical order quantity for items with a high mean demand becomes

less than the reorder point. However, it was strongly believed

that though hypothetical data was used for the experimenta~

tion, the results obtained are general. The hypothetical data

is in no way different from real data.1 If actual data closely

resembling the hypothetical data were available, the results

obtained would remain unchanged.

Real Data

Although hypothetical data was used to study the properties

of the joint ordering model, it was felt that the model should be

tested with real data. Real data was obtained from two sources.

Steel Service Center Institute: One set of data was obtained from
 

the Steel Service Center Institute. Sales data from this source

was not obtained directly, but from the work of Basic.2 Basic se-

lected twelve items of a typical Steel Service Center which had

relatively high volume and which contributed significantly to the

firm's profit. The demand for each item, in units per month,

 

1The inventory carrying cost and ordering cost assumed, were

obtained from a production handbook. (see p. 66)

2Basic, M.K., "Development and Application of a Gamma-based

Inventory Management Theory" (Unpublished Ph.D. dissertation,

Michigan State University, East Lansing, Michigan, 1965)
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was recorded for 59 months, from January ,1960 through November,

1965. Basic then fitted a gamma distribution function to the

sales data for each item using standard acceptable statistical

methods. The selected items were:

  

Description Price per bar1

1" round steel bar, C1018, 12' long $9.43

1%” round steel bar, C1018, 12' long $14.68

1%“ round steel bar, C1018, 12' long $21.14

1 3/4 round steel bar, C1018, 12' long $28.72

%" square steel rod, C1018, 12' long $1.00

1” square steel rod, C1018, 12' long $12.63

%” x 3/4" rectangular steel flat, C1018, 12' long $3.00

%” x l" rectangular steel flat, C1018, 12' long $3.56

%" x 4” rectangular steel flat, C1018, 12' long $14-07

%” x l" rectangular steel flat, C1018, 12' long $6.57

a" x 3" rectangular steel flat, C1018, 12' long $19.65

%” x 6" rectangular steel flat, 01018, 12” long $40.15

Basic concluded that the demand for each item.was gamma

2

distributed. The values of the parameters .3 and A for the

gamma distribution which best fit the data for each item were

 

1The prices of the twelve items were not available from

Basic's thesis. Hence, these were obtained from a steel supplier

in Lansing, Michigan. The prices are as of March 13, 1970.

Appendix A has a general description of a gamma distri-

bution and the meaning of the parameters 5 and A .
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therefore readily available in the dissertation. Since the

primary purpose of this research was to test the joint ordering

rule developed earlier, and not fitting a probability distribu-

tion to demand data (unless necessary), it was felt that data

from Basic's dissertation would be most apprOpriate. Knowing

the values of the gamma parameters and the cumulative gamma

probabilities for each item, demand could be simulated fairly

easily.1 Further, the twelve items selected by Basic were

essentially similar in nature; steel ban5,round, square, or

rectangular in shape. And lastly, the items could be ordered

from the same supplier as a joint order.

The profit margin, inventory carrying costs, and the

ordering costs were not available from Basic's thesis. After

consultation with individuals experienced in the buying and

selling of steel, the following values were assumed:

Inventory carrying cost 30% of the selling price of

the item per unit per year

Profit margin 20% of the selling price

Ordering cost $15.00 per order

3 weeksDelivery lead time

Farmers' Cooperative: One year sales figures were obtained
 

from a million dollar farmers' cooperative. The firm is a large

 

1Appendix D has a detailed description of the procedure

for the generation of gamma variates.
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organization geared mainly to the needs of Michigan farmers.

It carries a very broad line of products, estimated to include

about five thousand individual items. These items are group-

ed into fifteen categories on the basis of physical character—

istics. Some typical product groups are farm hardware, fertilizers,

and animal feed. Each product group includes fifteen to two

hundred individual items. Sales data were obtained for the farm

fence group consisting of fourteen items. All the fourteen items

were essentially different kinds of farm fence. They were all

ordered from the same supplier. This product group was selected

for several reasons:

1. The items in the group were similar in nature except

for minor physical differences. Hence, they were

appropriate for this research.

2. The items were ordered from the same supplier and

hence, could be ordered as a joint order.

3. Sales records for these fourteen items were available.

This was not true for the other product groups.

4. The product group included fourteen items, which was

neither too small nor too large a number.

The list of fourteen items, along with the cost of each item,

is provided in Table 4.10. All the items are different kinds of

farm fence, and hence, no product description is included.

After consultation with individuals in charge of the
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warehouses, the inventory carrying costs, and delivery lead time

were assumed as follows:

Inventory carrying costs 28% of the cost of the item per

unit per year.

$10.00 per orderOrdering costs

Delivery lead time 1 week

Profit margin 10% of the cost of the item.

METHODOLOGY

The step by step procedure adopted when hypothetical data

was used, was different as compared to the procedure when real

data was used to carry out the simulation. Hence, these are

listed separately.

Hypothetical Data
 

Step 1: Computer programs for the analysis of the data were

first developed, since no standard routines applicable to the

specific nature of the problem were available. The programs

were written in FORTRAN, suitable for the CDC-6500 and CDC-3600

computers at Michigan State University. These are listed in

Appendix E of this thesis.

The following assumptions were made in preparing the

programs:

Starting inventory = 100 units for each of the twelve items

$15.00 per order1Ordering Cost

 

1See Appendix E for an explanation of the basis of this

assumption.
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Value of each item = $10.00

Inventory Carrying

Cost = $2.08 per unit per year, which is

approximately 20% of the value of

an item1

Profit margin = 10% of the value of an item

= $1.00 per unit

Value of lost

sales = $1.00 x (number of units demanded

but not supplied)2

Delivery lead

time 3 weeks

It was assumed that demand for each item is expressed

only once a week. Moreover, the demand was assumed to occur at

the beginning of each week. Hence, the inventory carried over

from the preceeding week, less the demand at the beginning of

the week. Therefore, the inventory carrying cost for the week

will be equal to balance inventory times 0.04, where 0.04 is the

inventory carrying cost per week. For example,

Initial inventory = 100 units

 

1See Appendix E for an explanation of the basis for this

assumption.

21f an item is demanded but not supplied because of insuf-

ficient inventory, the sale is assumed to be lost. That is, it is

assumed that the customer is not willing to wait for fresh sup-

plies to arrive, and goes to a competitor to make his purchase.
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Assume that the demand at the beginning of week one =

12 units.

Therefore, the inventory for the remainder of week one =

100 - 12 = 88 units.

Therefore, the inventory carrying cost for week one =

88 x 0.04 = $3;§3,

If the demand at the beginning of week £39 = 10 units,

then, the inventory for the rest of week two = 88 - 10 = 78.

Therefore, the inventory carrying cost for week £39 =

78 x 0.04 = $3,12.

Hence, the total inventory carrying cost at the end

of two weeks = $3.52 + $3.12 = $6.64.

This process is repeated for the third week, and so on.

Lastly, all the calculations in the simulation were

made on a weekly basis. Again, the cost of computer time

was the major constraint preventing the use of a time step

of one day.

As mentioned earlier, demand for each item was assumed

to be normally distributed with a certain mean and standard

deviation. Hence, it was necessary to generate normally dis-

tributed random variates with a specified mean and standard

deviation. Naylor1 has developed a procedure and a FORTRAN

 

1Naylor, T.H. et.al. op. cit. p. 95
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subroutine for the generation of normal variates. The sub-

routine was quite general, and was used directly. The procedure

involves taking the sum of twelve uniformly distributed random

variates between zero and one. Then, if x'is a normally dis-

tributed random variable with standard deviation. 0 and mean n

X = U x (sum - 6.0) + u

where SUM = sum (fifthe twelve uniformly distributed

random variates between zero and one.

A listing of the subroutine is provided in Appendix 9.

In all, four programs were written. Program EOQ sim-

ulates the operation of the system assuming that the inventory

level of the items is controlled using the fixed order quantity

system. This system is characterized by two parameters. These

are 2

Economical order quantity EOQ = 2 x A x D

J i

where A = ordering cost (in dollars)

.2 = demand per unit time (in units)

i = inventory carrying costs (in dollars per unit

per unit time)

Reorder point ROP = (§_xJ3-x standard deviation of

weekly demand) + (3 x average

weekly demand)
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where a = a parameter to be determined by management.

It determines the allowable risk of service

failure.

= 2 (assumed)

Since the demand occurs once a week and the delivery lead time

is three weeks, the expected demand during the lead time will

be three times the average weekly demand. The square root of

three results, because the standard deviation of demand during

lead time (three weeks) is equal to square root of three times

the weekly standard deviation of demand. Recall that the

ordering cost in this case was assumed to be fifteen dollars

per item ordered.
 

Program EOQ Modified was the same as the program EOQ

except for one difference. The ordering cost was now assumed

to be fifteen dollars per order regardless of the number of
  

items included in_the order.
  

Program REPEAT was a search program which searched for

the optimum values of the three parameters S, s, and s'.

Lastly, program CONVERG was used to simulate the system

1

for 500 years, so as to get a reasonable degree of convergence

with respect to the total cost per year.

 

1A detailed discussion of why 500 years was selected is

included on p. 80.
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Step 2: In step one, program REPEAT was written, which searched

for the optimum values of the three parameters S, E: and S'. But

before the search could be started, it was necessary to calculate

the initial (or starting) values of the three parameters. Hence,

in step two these initial values were calculated.

Computation of s: In the prOposed joint ordering rule, E was
 

defined as a trigger point for the entire group. When the in-
 

ventory level of any item in the group is equal to or less than

S, a joint order is placed. In the simple (E: S) inventory con-'

trol system, S is the trigger point for an individual item. Hence,
 

the only difference between E in the (E: S) rule and S in the

(E, i.
, S) rule is that in the former, S is the trigger point

for E2 item while in the latter, E is the trigger point for the

entire group. Hence, one way to compute E for the group would
 

be to compute S for each individual item in the group (using the

traditional method)and then use these values to compute E for

the entire group. Hence, as a first approximation, the reorder

point for the group, E could be computed by taking the weighted

average of the individual reorder points. The procedure adopted

for computing the weights assigned to the individual reorder

points and the initial value of E was as follows:

1. The reorder point for each item in the group was

computed using the conventional method such as
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(ROP). reorder point for item 1

J

(expected demand during lead time)

+ (S_x standard deviation of demand

during lead time)

where g - a constant. It determines the allowable

risk of stock out

= 2 (assumed)

2. Once the individual reorder points had been cal-

culated, the value of E for the group was computed

as follows:

= , 0
S Xj wJ x (R P)j

where w, = the weight assigned to item 1

_l

=demand for item j

total demand for

the entire group.

 

Computation of S:
 

In the simple (S, S) inventory control system, S deter-

mines the quantity that should be ordered for each item, since

(S-I) is the order quantity where S_is the inventory on

hand. As an approximation, the average order quantity will

equal the difference (§T§)- In the (§:.§': S) system, S

determines the order quantity for Ell iggmg 12 £hg_g£ppp, as

S is common for the entire group. It would be desirable that

the order quantity for each item be equal to an economic order
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quantity. That is, the difference (S.- E) for each item in

the group be equal to an economic order quantity. But since

the parameters S and E are common for the entire group, the

difference (S - S) will also be common for the entire group.

Hence, it is necessary to compute a single value of (S - S),
 

i.e., a single value of the economic order quantity for each

item in the group (using the traditional method), and then

use these values to compute an economic order quantity that

is common for the entire group. As a first approximation,

the economic order quantity for the group could be computed

by taking the weighted average of the individual economic

order quantities. The procedure adopted for computing the

economic order quantity common to the group and hence com-

puting S was as follows:

1. The economic order quantity for each item in the

group was first computed using the conventional

lot size formula.

(EOQ), = economic order quantity for item 1

J

= ’2AD

I

where A = ordering cost

H
: u demand per unit time

I
H ll inventory carrying cost per unit per unit time.

2. Next, the individual item economic order quantities
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were used to compute SS economic order quantity

common to the entire group.

(EOQ) Zj wj x (EOQ):j

where w. weight assigned to item j

J

demand for item j

total demand for

the entire group

3. Recall that as an approximation, the difference (§.' S)

was equal to an economic order quantity. Therefore,

S - s = EOQ

i.e. S = s + EOQ

where s = the parameter calculated previously.

Calculation of 8':

By definition of the joint ordering rule, S' lies between

S and S and has a maximum value of S and a minimum value of S.

Hence, the most appropriate initial value of S1 would be it's

maximum value S. The initial value of S' was therefore set

equal to S. Starting with this maximum value, S1 was decreased

in steps up to a minimum value of S. Details of this procedure

are described in step 3.

The initial (or starting) values of the three parameters

have now been computed. In step three, these initial values

were used to search for the optimum values of the three parameters,
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S, S, and S'.

The next step was simulating the Operation of the

system using three inventory control systems and the hypothetical

data.

10

The three inventory control system were:

1

The Fixed Order System: This inventory control system
 

is characterized by two parameters, the economic order

quantity and the reorder point. With this system the

same order quantity (EOQ) of an item is ordered each

time; but the time that an order is placed varies with

fluctuations in usage. The ordering cost was assumed

to be $15 per item ordered.

The Modified Fixed Order System: The inventory con-
 

trol system in this case is the same as in (1) except

for one difference. A number of items can be included

in one order. But a separate economic order quantity

and reorder point is computed for each item. The or-

dering cost was assumed to be $15 EEE.2£§EE regardless

of the number of items included in the order.

The Joint Ordering System: In this case, the proposed
 

joint ordering rule characterized by three parameters,

S, S, and S', is used to control inventory. The ordering

cost was assumed to be $15 per order as in (2).

 

1See p. 4 for details.
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In order to compare the performance of the three inven-

tory control systems, the same data set was used to compute the

total cost per year when each inventory control system was used.

Thus, a data set was first used to determine the total cost under

the conventional EOQ system. The program EOQ was used to sim-

ulate the system for S years. Next, the same data set was used

in the EOQ (Modified) program to determine the total cost when

a number of items could be included in one order, although a

separate economic order quantity and reorder point was used for

each item. The system was simulated for S years. Lastly, the

same data were used to simulate the inventory control system

when the proposed joint ordering rule was used to control inven-

tory. In this case, two steps were involved. First, program

REPEAT was used to search for the minimum cost values of the

three parameters, S, S, and S'. Next, once the optimum values

of the parameters were found, the program CONVERG was used to

simulate the system for S years. In all three cases, Conventional

EOQ, modified EOQ, and the joint ordering rule, a single estimate

for the total cost per year was assumed to be the mean of the

last twenty of the S yearly costs.

There are two things that need further explanation. First,

the term S years was used throughout the earlier discussion.

Hence, it is necessary to explain why the system should be simu-

lated for S years and what the appropriate value of S should be.

Second, it is necessary to explain the method adopted to search
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for the minimum cost values of the three parameters, S, S, and

S using the program REPEAT.

The Value of n:
 

In any simulation experiment certain initial or starting

conditions have to be assumed. This gives rise to what is known

as an initial bias in the results. That is, the results obtained

immediately after time zero are influenced by the starting con-

ditions and hence, cannot be used as a measure of system

performance. Moreover, for the first few time periods wide varia-

bility in results are generally obtained. Both these problems

make it difficult to get an estimate of the time results.

1 .

Gordon suggests a procedure for overcoming these problems:

The more common approach to removing initial bias

is to eliminate an initial section of the run. The run

is started from an idle state and stopped after a certain

period of time. The entities existing in the system at

that time are left as they are. The run is then restarted

with statistics being gathered from the point of restart.

As a practical matter, it is usual to program the simula-

tion so that statistics are gathered from the beginning,

and simply wipe out the statistics gathered up to the

point of restart. No simple rules can be given to decide

how long an interval should be eliminated.

Another approach to the problem of estimating the

precision of simulation results does not rely upon repet—

ition, but uses a single long run, preferably with the

initial bias removed. The run is divided into a number1

of segments to separate them into batches of equal size.

The mean of each batch is taken and the individual batch

means are regarded as independent observations. The

estimated value of the variable being measured is the

 

1Gordon, G. System Simulation (Englewood Cliffs, New

Jersey: Prentice-Hall, 1969) p. 285
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mean of the batch means.

The method adopted in this thesis was similar to the sec-

ond approach recommended by Gordon. In order to eliminate the

initial bias and the initial variability the system.was simulated

for five hundred years (each year consisting of 52 weeks and hence,

52 interations). Hence, S was equal to 500. The cost of computer

time was a major constraint in extending the length of the run.

Moreover, it was found that convergence with respect to total

cost was obtained to a reasonable degree within five hundred

years. Then, a single estimate for the total cost per year was

assumed to be the mean of the last twenty yearly total costs.

The Search Process:
 

An exhaustive search for the minimum cost values of the

three parameters S, S, and S' is almost impossible because of

the large number of combinations of the three parameters that

is possible. For example, assume that the search is started

with the following initial values of two parameters.

180

l
m u

60

I
m I
I

Then S' can take on a maximum value of 180 and a minimum

value of 60. Assuming that the values of the parameters are

changed in steps of 10, the number of possible combinations of

the parameters is equal to
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19 x 19! x 19!

Moreover, for each set of parameters it is necessary to

simulate the system for a sufficiently long period of time so

as to get a reasonable degree of convergence, and hence, a good

estimate of the total cost per year. It is clear that not

only is the task physically impossible, but the cost of computer

time would run to several thousand dollars. Hence, only a

limited search was conducted in most cases, using the following

procedure.

The parameters S and S were held constant and S' varied

between1 S and S until the minimum total cost was obtained.

The value of S' was changed in steps of 10 and for each set

of parameters the system was simulated for 50 yearsz, so as to

get a reasonable degree of convergence. A single estimate for

the total cost per year was assumed to be the mean of the last

twenty yearly costs. Next Sf was held constant at it's minimum

cost value along with S and S was varied between a maximum

(the first estimate of S) and a minimum of S'. Once a minimum

cost value of S was obtained, S and S} were held constant and

S was varied between a maximum of Sf and a minimum of zero. In

most cases the process was stopped at this stage, and it was

assumed that the minimum cost values of the three parameters had

 

1

Recall that by definition S' can have a maximum value of

‘S and a minimum value of S.

The cost of computer time was a major constraint in

limiting the simulation to 50 years.
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been determined. The search was therefore limited. But, in some

cases, the whole process mentioned earlier was repeated a number

of times until the minimum cost values of the three parameters
 

were obtained. It must be mentioned that the limited search

procedure did give fairly accurate results. That is, the minimum

yearly total costs did not differ significantly from the minimum

costs obtained through limited search.

Step 4: The next step was the analysis of the results. The

total yearly costs under the three reordering rules1 using the

same data set were compared, and a percentage difference in costs

with respect to the proposed joint ordering rule was calculated.

Finally, from the results obtained , the necessary conclusions

were drawn.

REAL DATA

Data from the Farmers Cooperative:
 

Step 1: The first snap was the collection of sales data from

the farmers cooperative. The data were obtained from sales

receipts or order forms, then tabulated and finally punched

into computer cards.

Step 2: Next, the items were divided into three groups,

the high-volume items, the low-volume items, and the medium

selling items, using the ABC classification approach.2 The

 

1See p. 73 of this thesis for a detailed statement of

the three reordering rules.

2For an explanation of this approach, see p. 17 of this

thesis.
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medium selling items consisting of ten items were selected for

further study since it was felt that inventory for the high

volume and low volume items could be controlled using the

traditional methods. Moreover, management at the farmer's

cooperative was more concerned with these medium selling

items.

Step 3: The sales data for these items were then tabulated

and the monthly sales for each item were computed. Since exact

dates of the sales were not available, the weekly sales figures

could not be obtained. The monthly sales for each item were

then plotted on graph paper so as to study the sales pattern

for each item over the year.

Step 4: A study of these graphs indicated that the sales of

each item was highly seasonal, being maximum during the months

of May through November, and almost zero during the period of

January through March.1 In order to simulate this data it was

necessary to fit a probability distribution to the demand

data. However, it was found that this was impossible for sev-

eral reasons.

1. In the first place, only one year's sales data were

available. And since the sales per month was computed,

only twelve data points per item were available. It was

impossible to fit a probability distribution to these

1See graphs on p. 151 and 152.
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Table: 4.10

Product Cost Weight of

Code 1 role

30,000 lbs. 20,000 lbs. Less then Ibsglroll

and over and over 20,000 lbs.

$/roll $/roll $/roll

1003 24.22 24.64 25.70 212

1004 21.53 21.91 22.85 188

1005 19.01 19.35 20.18 166

1006 32.44 33.00 34.40 280

1007 28.57 29.07 30.30 246

1008 24.87 25.30 26.37 214

1009 16.98 17.28 18.01 146

1010 15.31 15.58 16.24 132

1011 13.54 13.78 14.36 116

1012 22.46 22.84 23.79 190

1013 19.90 20.24 21.08 168

1014 17.49 17.79 18.53 148

1017 13.72 13.94 14.49 109

1018 11.94 12.13 12.61 95
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data points because of the small number of points available.

2. Secondly, if at all a probability distribution function

was fitted to the sales data, it would be difficult to

test the accuracy of this probability function since

no other sales data were available. This would mean

using the £223.9353 to do both obtain a probability

distribution function and next, to test the probability

distribution function. This procedure is questionable,

especially in this case where the sales patterns are

not consistent from year to year.

3. Thirdly, during the process of computing the monthly

sales it was found that sales records for certain

periods of time were missing. Hence, the accuracy

of the data in general was questionable.

It was for these reasons that the data obtained from the

farmers cooperative was not used to test the proposed joint

ordering model. However, since considerable time was spent

on the collection and analysis of this data (a worthwhile ex-

perience indeed), it was felt that whatever results were obtained

should be included in the thesis.

Data from The Steel Service Center Institute:
 

1

Step 1: As mentioned earlier, Basic fitted a gamma distribu-

 

1Basic, M.E. op. cit.



-37-

tion function to the demand data for twelve items. The twelve

items were relatively high volume basic items which a metal

service center is expected to have on hand to satisfy customer

needs. Hence, the data from the Steel Service Center were al-

ready tabulated. Moreover, since a gamma distribution had been

fitted to the data, tables showing the gamma cumulative pro-

bability distribution for each item were readily available.

These tables are reproduced in Tables 4.11 through 4.22 of

this thesis. The gamma cumulative probability distribution was

used to generate the demand for each item.

Step 2: Computer programs for the analysis of the data were

developed, since no standard routines applicable to the specific

nature of the problem were available. The programs were

written in FORTRAN, suitable for the CDC-6500 and CDC-3600 com-

puters at Michigan State University. The programs are listed

in Appendix E.

The following assumptions were made in preparing the pro-

grams.

Starting inventory = 100 units for each of the twelve

items.

If an item was demanded but not supplied because of in-

sufficient inventory, the sale was assumed to be lost. The

 

1Basic, M.E. op. cit. pp. 47-56
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Table 4.11 :
 

Cumulative gamma probability distribution for 1" round steel bar,

C1018, 12' long

Units ‘Cum. Prob.

10 .00024

20 .00479

30 .02329

40 .06385

50 .12839

60 .21288

70 .30995

80 .41152

90 .51058

100 .60206

110 1 .68292

120 .75188

130 .80897

140 .85504

150 .89144

160 .91966

170 .94117

180 .95735

190 .96935

200 .97815

210 .98454
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Table 4.12:
 

Cumulative gamma probability distribution for 1%" round steel

bar, C1018, 12' long

Units Cum. Prob.

10 .21298

20 .38938

30 .52823

40 .63635

50 .72011

60 .78482

70 .83470

80 .87309

90 .90262

100 .92531

110 .94274

120 .95611

130' - .96637

140. .97423

150 .98026

160 .98489

170 .98843

180 .99114

190 .99322

200 .99481

210 .99603

220 .99696

230 .99767

240 .99822
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Table 4.13:
 

Cumulative gamma probability distribution for 1%” round steel

bar, C1018, 12' long

Units Cum. Prob.

2 .0072

4 .00481

6 .01399

8 .02892

10 .04960

12 .07561

14 .10629

16 .14088

18 .17854

20 .21849

22 .25995

24 .30226

26 .34479

28 .38704

30 .42856

32 .46900

34 .50806

36 .54555

38 .58128

40 .61515

42 .64711

44 .67712

46 .70518

48 .73132

50 .75559

52 .77805

54 .79878

56 .81784

58 .83535

60 .85138

62 .86602

64 .87937

66 .89152

68 .90256

70 .91257

72 .92164

74 .92983

76 .93723

78 .94390

80 .94990

82 .95530

84 .96015

86 .96450

88 .96840

90 .97189

92 .97501

94 .97780
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Table 4 . 14;
 

Cumulative gamma probability distribution for 1 3/4" round steel

bar, C1018, 12' long

Units Cum. Prob.

.11593

4 .25434

6 .38247

8 .49410

10 .58860

12 .66726

14 .73199

16 .78484

18 .82773

20 .86238

22 .89027

24 .91265

26 .93056

28 .94487

30 .95628

32 .96536

34 .97258

36 .97831

38 .98286

40 .98646

42 .98931

44 .99157

46 .99335

48 .99476

50 .99587
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Table 4 15:
 

Cumulative gamma probability distribution for %" square steel

rod, C1018, 12' long

Units Cum. Prob.

10 .42120

20 .65681

30 .79535

40 .87760

50 .92666

60 .95600

70 .97358

80 .98412

90 .99045

100 .99526
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Table 4.16:
 

Cumulative gamma probability distribution for 1” square steel

rod, C1018, 12' long

Units Cum. Prob.

2 .00820

4 .03651

6 .08230

8 .14066

10 .20681

12 .27673

14 .3473!

16 .41622

18 .48187

20 .54323

22 .59970

24 .65102

26 .69718

28 .73833

30 .77474

32 . 806 75

34 .83472

36 .85904

38 .88010

40 .89825

42 .91385

44 .92720

46 .93860

48 .94831

50 .95655

52 .96354

54 .96944

56 .97443

58 .97863

60 .98216

62 .98512

64 .98760
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Table 4.17;

Cumulative gamma probability distribution for k” x 3/4”

rectangular steel flat, 01018, 12' long

Units Cum. Prob.

10 .35363

20 .49802

30 .59749

40 .67193

50 .72984

60 .77593

70 .81316

80 .84355

90 .86856

100 .88926

110 .90649

120 .92088

130 .93294

140 .94308

150 .95162

150 .95883

170 .96493

180 .97010

190 .97448

200 .97820

210 .98137

220 .98407

230 .98637

240 .98832

250 .99000

260 .99143

270 .99265

280 .99369

290 .99459

300 .99535

310 .99601

320 .99657

330 .99705
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Tab1e4.18;
 

Cumulative gamma probability distribution for 2' x l"

rectangular steel flat, 01018, 12' long

Cum. Prob.
Units

10 .00028

20 .00335

30 .01303

40 .03216

50 .06192

60 .10202

70 .15107

80 .20710

90 .26785

100 .33115

110 .39501

120 .45776

130 .51808

140 .57500

150 .62787

160 .67630

170 .72014

180 .75940

190 .79422

200 .82485

210 .85159

220 .87477

230 .89474

240 .91186

250 .92643

260 .93880

270 .94924

280 .95802

290 .96537

300 .97151

310 .97661

320 .98085

330 .98435

340 .98724

350' .98961

360 .99156

370 .99315

380 .99446
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Table 4. 19 ;
 

Cumulative gamma probability distribution for %" x 4"

rectangular steel flat, 01018,,12' long

Units Cum. Prob.

10 .05307

20 .20366

30 .38551

40 .55313

50 .68853

60 .78966

70 .86138

80 .91039

90 .94297

100 .96418

110 .97774

120 .98630

130 .99163

140 .99492

150 .99694

160 .99817
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Table 4 - 20:
 

Cumulative gamma probability distribution for %” x 1"

rectangular steel flat, C1018, 12' long

Units Cum. Prob.

5 .05855

10 .16992

15 .29440

20 .41453

25 .52255

30 .61568

35 .69379

40 .75802

45 .81007

50 .85177

55 .88487

60 .91094

65 .93136

70 .94727

75 .95960

80 .95960

85 .96913

90 .97646

95 .98639

100 .98968
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Table4.21 ;
 

Cumulative gamma probability distribution for %" x 3"

rectangular steel flat, C1018, 12' long

Units Cum. Prob.

2 .00087

4 .00643

6 .01946

8 .04098

10 .07079

12 _ .10794

14 .15110

16 .19880

18 .24956

20 .30204

22 .35502

24 .40752

26 .45870

28 .50794

30 .55476

32 .59883

34 .63998

36 .67807

38 .71311

40 .74515

42 .77427

44 .80061

46 .82433

48 .84560

50 .86460

52 .88151

54 .89652

56 .90980

58 .92152

60 .93182

62 .94087

64 .94880

66 .95573

68 .96177

70 .96703

72 .97160

74 .97557

76 .97901

78 .98198

80 .98455



-99-

Table4422:

Cumulative gamma probability distribution for %" x 6"

rectangular steel flat, C1018, 12' long

Units Cum. Prob.

2 .03403

4 .10151

6 .18286

8 .26840

10 .35260

12 .43231

14 .50583

16 .57242

18 .63190

20 .68446

22 .73051

24 .77059

26 .80526

28 .83510

30 .86069

32 .88254

34 .90114

36 .91694

38 .93031

40 .94162

42 .95115

44 .95917

46 .96592

48 .97157

50 .97631

52 _ .98028

54 .98360

56 .98637
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loss was assumed to be equal to the profit margin on each item

not supplied.

It was assumed that demand for each item is expressed only

once a week. Moreover, the demand was assumed to occur at the

beginning of each week. The procedure adopted to compute the

inventory carrying cost was the same as when hypothetical data

1

was used.

However, there was one problem in this case. Basic expressed

the demand for each item in units per SSSSS, not units per week.

Hence, if the gamma cumulative probability distribution tables were

used to generate demand, the demand would be in units per month

not units per week. But, as mentioned earlier, it was assumed

that the demand for each item occured once a 3335.2 Hence, it was

necessary to convert the demand per month into demand per week.

The following procedure was adopted. It was assumed that there

are 4 1/3 weeks in a month. Then, every week demand was generated

using the gamma cumulative distribution tables. The demand ob-

tained was therefore demand in units per month. This figure was

then divided by 4 1/3 to obtain the demand in units per week.

Appendix S includes a short proof of the validity of this procedure.

The final assumption made was that all the calculations in

the simulation were made on a weekly basis. The cost of computer

 

1For details see p. 70.

2Further, all calculations in the simulation were made on

a weekly basis (see p. 71).
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time was the major constraint preventing the use of a time step

of one day.

In all, four programs were written.1 They were:

1. Program EOQ simulates the operation of the system,

assuming that the inventory level of the items was

controlled using the fixed order quantity inventory

control system. The order quantity was assumed to

be $15 ESE SSSS_ordered.

Program EOQ Modified was the same as the above pro-

gram, except that in this case the ordering cost was

assumed to be $15 225 23223 regardless of the number

of items included in the order.

Program REPEAT searches for the optimum values of the

three parameters S, S, and S'.

Program CONVERG was used to simulate the system for S

years, using the optimum values of the parameters found

by program REPEAT.

These four programs were identical to those developed

earlier for the analysis of the hypothetical data. But there were

two differences.

First, in the case of the hypothetical data, the demand for

each item was assumed to be normally distributed with a certain

 

1A listing of the programs is provided in Appendix E.
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mean and standard deviation. The mean and standard deviation of

the normal distribution were used to generate normal variates,

using the FORTRAN subroutine developed by Naylor.1 But, in the

case of the data from the Steel Service Center, demand for each

item.was gamma distributed, and the tables of the gamma cumu-

lative probabilities for each item were available. Hence,

instead of using the mean and standard deviation of the gamma

distribution to generate gamma variates, the cumulative proba-

bility tables were used. The procedure was therefore slightly

different. Naylor2 recommends a procedure for generating ran-

dom variates from a particular statistical population whose

cumulative distribution function is known. The procedure is

called the Inverse Transformation Method.3 This procedure was

used to generate gamma variates.

The second difference was in the method used to compute

the reorder point for each item. Instead of using the formula,

(ROP) Reorder point for item 1

(S x standard deviation of demand during lead time)

+ (expected demand during lead time)

where a = a parameter to be determined by management.

It determines the allowable risk of service

failure

 

1See p.71.

Naylor, T.H. et. a1. op. cit. p. 70

See Appendix 2 for a detailed description of this

procedure.
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l

as done previously, (pp. 70-71), Basic's method was used to

compute the reorder point for each item. This method was as

follows:

1. The economic order quantities for each item were first

computed using the formula

economic order quantity for item.j(EOQ)j

= 2 A D

I

 

where S = ordering cost

2 = expected demand per unit time

I
H ll inventory carrying cost per unit per

unit time

2. Next, the optimum probability of stock out for each

item was computed using the formula

= (UHC) x (CPU) x (E00)

(STKCOS) x (DPY) + (UHC) x (CPU) x (EOQ)

 

where UHC unit holding cost expressed as a percentage

of the cost per unit

CPU = cost per unit

EOQ = economic order quantity

STKCOS stock out cost per unit short

DPY expected demand per year

3. Given the mean and standard deviation of the demand

 

1

Basic, E.M. op. cit. p. 98

2Basic, E.M. op. cit. p. 94
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for each item, the two gamma parameters S and 1

were computed.

E = (Mean)2

(Standard Deviation)

 

2

2L = S(Mean)

(Standard Deviation?

 

4. Having computed the optimum probability of stock out

and the gamma parameter S, the table of cumulative

gamma probabilities1 was used to compute a parameter .

S, where m = (1.) x (X)

where S is the quantity whose probability is under study.

5. Using this value of‘m and the value of the gamma par-

ameter 1 , the reorder point was computed as follows,

where S = reorder point.

Step 3: In this step the starting values of the three parameters

' were computed using the economic order quantity, anda, a and .s.

the reorder point of each item computed in step (2). The procedure

adopted was the same as that described on pages 70 to 73. As

a first approximation, the value of S was set equal to the

weighted average of the reorder points of the individual items

in the group, while the value of S was set equal to the starting

value of‘S computed earlier, plus the weighted average of the

 

1

Basic, E.M. op. cit. p. 38
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economic order quantities of the individual items. The initial

value of S' was set equal to S, since by definition of the joint

ordering rule 3' has a maximum value of S.

Step 4 : In this step, the operation of the system was simu-

lated using the three reordering rules and the real data. The

reordering rules were the same as those described on pages 73

and 74. Briefly, these were:

1. The Fixed Order Rule : In this case the ordering cost
 

was assumed to be $15 per item ordered.

2. The Modified Fixed Order Rule : Ordering cost was
 

assumed to be $15 per order regardless of the num-

ber of items included in the order.

3. The Joint Ordering Rule : This was the proposed joint
 

ordering rule characterized by three parameters, S,

s, and S'. Ordering cost was assumed to be $15 per

order.

In order to make a comparison, the same data set was used

to compute the total cost per year under each reordering rule.

Hence, a data set was first used to determine the total cost

when the fixed order system was used to control inventory, and

the program EOQ was used to simulate the system for S years.

Next, the same data set was used in the modified EOQ program

to determine the total cost when the modified fixed order system

was used to control inventory. Once again the system was sim-

ulated for S years. Lastly, the same data set was used to deter-
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mine the total cost when the joint ordering rule was used. First,

program REPEAT was used to search for the minimum values of the

three parameters S, S, and S'. Next, the optimum values of the

parameters were used to simulate the system for S years using

program CONVERG.

1 .

As mentioned earlier, it was necessary to simulate

the system for S years so as to eliminate the initial bias

and initial variability. The value of‘S selected was 500 years

(as before). As regards the search process, the procedure was.

once again the same as that described on page 81. But, in this

case the search was not partial but complete. That is, the

parameters S and S were held constant and S' varied until the

minimum total cost was obtained. Next, S' (corresponding to

the minimum cost) and S were held constant, and S was varied

until the minimum total cost was obtained. Then S' and S

(corresponding to minimum total cost) were held constant and

S varied until minimum total cost was obtained. The whole,

procedure was repeated until SSS_minimum cost values of the

three parameters were obtained.

The data from the Steel Service Center was used in two ways.

First, it was assumed that the product group consisted of only

8 items. The items selected were:

1%" round steel bar, 01018, 12' long

1%” round steel bar, C1018, 12' long

 

1See p.80.
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%" square steel rod, C1018, 12' long

1" square steel rod, C1018, 12' long

%” x 3/4" rectangular steel flat, C1018, 12' long

i" x 4” rectangular steel flat, C1018, 12' long

%” x l” rectangular steel flat, C1018, 12' long

%" x 3" rectangular steel flat, C1018, 12' long

These items were selected so as to decrease the dispersion

of the mean demands of the items. The standard deviation of the

mean demands for the 8 items was equal to 8.26 (See Table 5.10).

In the second case, it was assumed that the product group

consisted of all twelve items. The standard deviation of the

mean demands for the 12 items was equal to 35.4 (See Table 5.11).

Thus, with one set of real data that was available, it was

possible to test the proposed joint ordering rule when the stan-

dard deviation of mean demands was both relatively large and

relatively small.

Step 5 : The last step was the analysis of the results. The total

yearly costs corresponding to the three reordering rules, using

the same data set, were compared. The savings, if any, resulting

from the use of the proposed joint ordering rule were computed.

Finally, the necessary conclusions were drawn.



CHAPTER 5

RESULTS

This chapter is divided into two sections. The results

obtained from the hypothetical data are reported in the first

section. The results obtained from real data are reported in

the second section.

HYPOTHET ICAL DATA

Table 5.2 through 5.10 have a detailed account of the

results. However, they are summarized in Table 5.1. The results

indicated that:

l. The average total cost per year when the proposed Joint

Ordering Rule was used to control inventory was less than

the average total cost per year when the Fixed Order System

was used. This was true of fill data sets. The savings

resulting from the use of the Joint Ordering Rule were sub-

stantial and ranged from a minimum of 11.64% in the case

of Data Set 7 to a maximum of 48.16% for Data Set 9.

2. The average total cost per year when the proposed Joint

Ordering Rule was used to control inventory was in general,

less than the average total cost per year when the Modified

Fixed Order System was used. There were only two situations

(Data Sets 8 and 9) out of nine where this was not true,

and the proposed Joint Ordering Rule resulted in higher costs
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than the Modified Fixed Order System. The reasons for this

are analyzed later.

The savings resulting from the use of the Joint Order-

ing Rule were not as large as in the previous case (see (1)

above). The savings ranged from a minimum of 6.86% for Data

Set 10, to a maximum of 35.33% for Data Set 9.

The above two conclusions indicated that there was

sufficient evidence to believe that in general, the pro-

posed Joint Ordering Rule characterized by three parameters,

S, S, and Sf results in lower total costs, as compared to

both the Fixed Order System and the Modified Fixed Order

System. Hence, whenever possible, it would be more eco-

nomical to group items and order them jointly using the

proposed Joint Ordering Rule.

The major hypothesis was therefore true.
 

Inspection of the minimum cost values of the three parameters

S, S, and Sf obtained for the various data sets indicated

that for Data Sets 1, 2, and 3, S was equal to S', and both

S and Sf were greater than S.

That is,

S = s' > 3

But for Data Sets 4, 5, 6, and 7, S was greater than S',

which in turn was greater than S. That is,

S >‘S' > s
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Hence, two distinct cases could be identified.

Case 1: s = S
 

When S is equal to S' the Joint Ordering Rule is

modified and becomes:1

When the inventory level of any item in the group is

equal to or less than the reorder point S, all items in the

group should be reordered jointly.

Analysis of the data sets which gave rise to these

particular cases (Data Sets 1, 2, and 3) indicated that the

standard deviations of mean demands for the items in the

group were relatively small. For example, the standard

deviation of mean demands for Data Set 1 was less than one

fourth that of Data Set 6 (standard deviation = 9.04). The

standard deviation of meand demands for Data Set 3 (standard

deviation = 4.26) was less than half that of Data Set 8,

(standard deviation = 16.65). These relatively small values

of the standard deviation of mean demands for the items in

the group, indicates that the mean demands are not widely

dispersed. Hence, it was concluded that:

If the standard deviation of mean demands for the item

is relatively small, it is not only economical to group the

 

1 See p. 37.
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items and order them jointly, but when an order is placed,

it is more economical to include Ell items in every joint

order. That is, when the inventory level of any item is less

than or equal to the reorder point, all items in the group

should be ordered jointly.

Case 2: 8 >8' > s:
 

In this case the Joint Ordering Rule is as follows:1

When the inventory level of any one item is equal to

or less than the reorder point S, the inventory level of

the rest of the items in the group is checked, and all items

that have inventory levels between S' and S are reordered

jointly.

Inspection of the data which gave rise to this situa-

tion (Data Sets 4, 5, 6, and 7) indicated that the standard

deviations of mean demands were neither too small as in Case

(1), nor relatively large. For example, the standard de-

viation of mean demands for Data Set 6 (standard deviation

= 9.04) was greater than that of Data Set 1, (standard de-

viation = 1.96). In fact, the standard deviations of demands

for Data Sets 4, 5, 6, and 7 were greater than that of data

2
sets included in Case 1, discussed earlier. But when

compared to Data Sets 8 and 9, the standard deviations of

 

1See p. 36.

2See p. 111.
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mean demands were relatively smaller. All this means is,

that in the case of Data Sets 4, 5, 6, and 7, the mean

demands for the items in the group are neither as widely

dispersed as in Data Sets 8 and 9, nor are they as narrow-

ly dispersed as in Data Sets 1, 2, and 3. Hence, it was

concluded that:

When the standard deviation of mean demands of the items

in the group is neither too large nor too small, it is not

economical to include all items in every order. Instead,

it is more economical to include SSSS items in the joint

order. The items that should be included is determined by

the reorder range S' to S, In short, the joint ordering rule

that would be most economical would be the one stated on p.

112.

According to the definition of the Joint Ordering Rule, S'

could have any value between S and S, That is, S' could

have a maximum value of S and a minimum value of S. Hence,

three distinct cases were identified.

Case 1: s' = S
 

Data Sets 1, 2, and 3 illustrated this particular case.

The standard deviation of the mean demands for the items

ranged from 1.96 to 6.0, approximately.

Case 2: S >s' >s:
 

Data Sets 4, 5, 6, and 7 illustrated this case. The standard
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deviation of mean demands for the items ranged from 6.0

to 14, approximately.

Case 3: s' = s:
 

No data sets gave rise to this case.

In addition to these three, there was another distinct

case.

Case 4:

Here, the total cost per year when the proposed Joint Order-

ing Rule was used was greater than the total cost per year,

when the Modified Fixed Order System was used to control

inventory. Data Sets 8 and 9 were examples of this case.

The standard deviations of mean demands were greater than

16.50.

Hence, using the standard deviation as a measure of

the dispersion of the mean demands (of the items in a group),

the approximate ranges of standard deviation within which

each of the four cases would occur are as shown:

‘

—

_

 

 
6.0 14.0 16.5

Standard Deviation of mean demands

Figure 5.1: Approximate ranges for the four cases of the Joint

Ordering Rule. The ranges are expressed in terms

of the mean demands.
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It must be recognized that these approximate ranges

are valid only under the assumptions made in the analysis.

If these assumptions are changed, new estimates of these

ranges will have to be determined. Some of the assumptions

made in arriving at the approximate ranges are:1

i) The demand for each item is normally distributed with

a certain mean and standard deviation.

ii) Ordering cost is equal to $15 per SSSSS regardless

of the number of items included in the order.

iii) Inventory carrying cost per unit per year is approxi-

mately equal to 20 per cent of the value of an item.

The value of the item was assumed to be $10. Hence,

the inventory carrying cost was $2.08 per unit per

year.

iv) The profit margin is equal to 10 percent of the value

of an item, which is equal to $1 per unit.

v) The value of lost sales is equal to $1 times the number

of units demanded but not supplied.

As mentioned in (4), no data sets gave rise to the particular

case where s' = s. It would be worthwhile to investigate

the reason for this.

When S' is equal to S, the reorder range S' to S is

minimum and is equal to zero. Hence, no items can have

inventory levels in the reorder range. This means that the

 

1See pp. 55, 69.
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Joint Ordering Rule is modified as follows:

Whenever the inventory level of an item is equal to,

or less than the reorder point S, that item alone should

be reordered.

It is evident that the Joint Ordering Rule has been

reduced to a simple individual item reorder rule. Moreover,

instead of three parameters, the rule is characterized by

two parameters, namely S and S (or S'). The rule is now

very similar to the simple (8 , 8) rule, or the familiar

two bin inventory control system.

There is however, one important difference between

the simple (S, 3) rule and the Joint Ordering Rule in the

modified form, (8’ = s, S). In the simple (8, 8) rule,

the parameters S and S are computed for each individual
 

SEES, and these are used to control the inventory of the

respective items. Thus, if there were twelve items in the

group, it would be necessary to compute twenty-four values,

two for each item. But, in the modified Joint Ordering

Rule (5' = s, S), the parameters S and S (or S') are SSS-

222.£2.§ll.l£29§.ifl £h£.8£22£- Hence, unlike the simple

(S, 3) system, two parameters are sufficient to control

the inventory of the entire group.

It is this difference between the simple (S, 3) system

and the modified form of the Joint Ordering Rule that is
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responsible for a less frequent occurance of this case,

namely S' equal to S. This is because, though the demands

for the items are widely dispersed,1 a single reorder

point S and a single maximum inventory level S_are used

to control the inventory of all items in the group. In

most cases the use of these single values for the entire

group would be less economical, and lead to higher total

costs than when the simple (8, 8) system or two bin system

is used. For example, since the mean demands for the items

are widely dispersed, the reorder points computed for each

of these items independently will be widely dispersed.

Hence, the use of a single reorder point for the entire group,

will lead to increased back orders for some items and

increased average inventory for others. The net effect

would be an increase in total costs, or more correctly,

the total costs would be greater than when the two bin

system is used. This corresponds to Case (4) mentioned ear-

lier.

On the other hand, if at all, it was more economical to

use the Joint Ordering Rule. Then, it would (generally) be

more economical to order more than one item at a time, at least

sometimes, if not always. This in turn implies a non zero

reorder range, i.e., S not equal to s, and corresponds to

 

1See p. 111. This particular case where S' is equal to

3 should occur when the standard deviations of mean demands

Ts between 14.0 and 16.5, approximately.

2See p. 113.
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case (2) mentioned earlier.1 In short, when the standard

deviation of mean demands is relatively large, either case

(2), (S > s' > s), or case (4), (the Fixed Order system is

more economical than the Joint Ordering Rule) would occur.

That is, situations where S' is equal to S would be less

frequent.

In order to determine the optimum2 values of the parameters,

5. s' and S, which characterize the Joint Ordering Rule, a

search was conducted. For reasons mentioned on p. 81, a

limited search procedure was conducted in most cases. Be-

cause of this limited search, the optimum values of the

parameters were only local optimums. But, for all data sets

where such a limited search was conducted, a local optimum

was found.

For Data Sets 4 and 5 an extensive search for the op-

timum values of the parameters was conducted. For both

data sets the optimum values of the three parameters were

found. The minor hypothesis was therefore true.
 

But, during the search process (extensive or limited)

an interesting thing was noticed; the optimum values of the

parameters were not unique. For example, when Data Set 7

was used, two sets of optimum values of the three parameters

 

1

See page 112.

The word "optimum" as used here means the values of the

parameters corresponding to minimum total cost.
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were obtained. These were:

1. S = 128

S' = 128

S = 83

Average total cost per year = $3100.

2. S = 128

S' = 83

S = 108

Average total cost per year = $3103.

Hence,it was concluded that for a certain data set there

may not necessarily be a unique optimum set of parameters.

REAL DATA

Table 5.11 and 5. 12 have a detailed account of the results

obtained when real data was used to simulate the inventory con-

trol system. The results indicated that:

l. The average total cost per year when the proposed Joint

Ordering Rule was used to control inventory was less than

the average total cost per year when the Fixed Order System

was used. This was true for both Real Data Set 1, when there

were 8 items in the group, and Real Data Set 2, when the

number of items in the group was equal to 12. The savings

resulting from the use of the Joint Ordering Rule were 43.92%

for Real Data Set 1, and 18.58% for Real Data Set 2.
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The average total cost per year when the proposed Joint

Ordering Rule was used to control inventory was less than the

average total cost per year when the Modified Fixed Order

System was used. This was true for both Real Data Sets 1 and

2. The savings resulting from the use of the Joint Ordering

Rule were 38.33% for Real Data Set 1, and 7.95% for Real Data

Set 2. As is evident, the savings are less than when the

Joint Ordering rule is compared with the Fixed Order System.

The above two conclusions once again indicated that the

proposed Joint Ordering resulted in lower total cost per

year, as compared to both the Fixed Order System and the

Modified Fixed Order System. Hence, if possible, items should

be grouped and ordered jointly so as to minimize total costs.

The mSjor hypothesis was therefore true.
 

E.

Inspection of the minimum cost values of the parameters S,

', and S, obtained for the two data sets, indicated that

for both data sets S was equal to S', and both S and S} were

greater than S. That is, (S = s' > 3). Hence, for both data

sets it was not only more economical to order the items jointly,

but, when an order was placed, additional savings were achieved

by including all items in every joint order. This corresponds

to case (1) discussed on p. 111.

Inspection of the two data sets indicated that the standard

deviation of mean demands for Real Data Set 1 was 8.26, while
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that for Real Data Set 2 was 35.4. It is evident that the

standard deviation for Real Data Set 2 is very large as com-

pared to the standard deviation for Real Data Set 1. Yet,

in both cases it was more economical to include all items in

every order. This is contrary to the conclusions reached

when the hypothetical data was used to simulate the inventory

control system.1 According to those conclusions, Real Data

Set 2 would probably come under Case 4. That is, since the

standard deviations of mean demands for Real Data Set 2 is

so large, the mean demands are widely dispersed, and hence,

it would probably be more economical to treat each item in-

dividually and use an individual item rule to manage inventory.

But, as mentioned earlier (see p.115), the approximate ranges

of the standard deviation determined for each of the four

cases were only valid under certain conditions. These con-

ditions are not valid for the real data. For example, in

the case of the hypothetical data, demand for each item was

assumed to be normally distributed. For the real data, demand

for each item has a gamma distribution. In addition to this,

for the hypothetical data, inventory carrying cost was assumed

to be 20 percent of the value of an item. In the case of

the real data, inventory carrying cost was 30 percent of the

value of the item. These are but a few differences between

 

1See p. 114.
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the assumptions made in the hypothetical data and the real

data. Hence, the ranges established for the four cases using

hypothetical data will not be valid for the real data. Lastly,

the ranges of the standard deviation for the four different

cases could not be established for the real data, because

of the limited data available.

In order to determine the optimum values of the parameters

S, S' and S, which characterize the Joint Ordering Rule, a

search procedure was adopted. The search in this case was

not limited , but extensive. The search procedure is out-

lined on p.81. For both data sets the optimum values of the

three parameters were found. The minor hypothesis was there-

£252.££ES- But, as in the case of the hypothetical data, the

optimum values of the parameters were not unique, especially

for Real Data Set 1. For this data set, the two sets of

parameters which lead to the same minimum cost are:
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Table 5-1
 

Data Set 1

The means and standard deviations of the demands for the twelve

items in the group.

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

1 8 l 77 27 7.619

2 10 l 86 33 9.5238

3 10 2 86 36 9.5238

4 6 1 67 21 5.7143

5 10 l 86 33 9.5238

6 ll 1 9O 36 10.4762

7 12 l 94 39 11.4386

8 9 1 82 20 8.5714

9 9 2 82 33 8.5714 '

10 5 l 61 18 4.7619

11 8 l 77 27 7.619

12 7 1 72 24 6.6667

100.00

 

The Standard Deviation of the mean demands = 1.96

Range of 1.1.1.881; demands = 12 - 5 = 7

The Weighted Average E.O.Q. = 82.0667

The Weighted Average Reorder Point = 31.1143

1. The Fixed Order System:
 

Cost per item ordered = $15

Average total cost per year r $2387.66

2. The Modified Fixed Order System:
 

Cost per order = $15

Average total cost per year = $1871.18

3. The Proposed Joint Ordering Rule:
 

Optimum Values of the Parameters:

‘S = 80 .E = 28 S' = 80

Average total cost per year = $1412.79

Savings in Total Cost with respect to The Fixed Order System = $974.87

= 40.82%

Savings in Total Cost with respect to The Modified Fixed

Order System = $458.39

24.49%
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Table 5.2:

 

Data Set 2

The means and standard deviations of the demands

items in the group.

for the twelve

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

l 5 l 61 18 4.8544

2 7 l 72 24 6.7961

3 9 2 82 33 8.7379

4 8 l 77 27 7.767

5 6 l 67 21 5.8252

6 ll 2 9O 39 10.6796

7 12 l 94 39 11.6505

8 9 l 82 30 8.7379

9 10 l 86 33 9.7087

10 ll 2 9O 39 10.6796.

11 8 l 77 27 7.767

12 7 l 72 24 6.7961

100.00

 

The Standard Deviation of the mean demands

Range of mean demands 12 - 5 = 7

The Weighted Average E.O.Q. = 81.466

The Weighted Average Reorder Point =

l. 'The Fixed Order System :

Cost per item ordered = $15

Average total cost per year = $2361.64

2. The Modified Fixed Order System:

Cost per order = $15

Average total cost per year = $1892.89

3. The Prpposed Joint Odering Rule:
 

Optimum Values of the Parmeters:

S=50 s=30 s'=50

Average totzl cost per—year = S1224.04

Savings in Total Cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed

Order System

$1137.60

48.16%

$668.85

35.33%
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Table 5.3;
 

Data Set 3

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

l 13 2 98 45 6.7708

2 15 l 106 48 7.8125

3 l6 2 109 54 8.3333

4 l9 1 119 60 9.8958

5 21 l 125 66 10.9375

6 ll 1 90 36 5.7292

7 l7 2 112 57 8.8542

8 21 1 125 66 10.9375

9 23 2 131 75 11.9792

10 14 l 102 45 7.2917

11 10 1 86 33 5.2083

12 12 l :94 39 6.25

100.00

 

The Standard Deviation of the mean demands =

Range oflmean demands = 23 - 10 = 13

The Weighted Average E.O.Q. = 111.6771

The Weighted Average Reorder Point = 55.2031

1. The Fixed Order System:

Cost per item ordered = $15

Average total cost per year = S3338.64

2. The Modified Fixed Order System:

Cost per order = $15

Average total cost per year = $2603.40

3. The Pr0posed Joint Ordering Rule:
 

Optimum Values of the Parameters:

S = 80 s = 50 s' = 80

Average total cost per year = $1829.86

Savings in Total Cost with respect to The Fixed Order System

4.26

$1508.78

45.19%

Savings in Total Cost with respect to The Modified Fixed

Order System $773.54

29.71%
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Table 5- 4:
 

Data Set 4

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

l 20 l 122 63 5.3333

2 23 2 131 75 6.1333

3 26 3 $39 88 6.9333

4 28 2 144 90 7.4667

5 30 4 149 103 8.00

6 29 l .147 90 7.7333

7 33 2 157 105 8.80

8 35 4 162 118 9.3333

9 37 3 166 121 9.8667

10 40 2 173 126 10.6667

11 4O 3 173 130 10.6667

12 34 3 159 112 9.0667

100.00

 

The Standard Deviation of the mean demands = 6.39

Range of mean demands= 40 - 20:20

The Weighted Average E.O.Q. = 154.856

The Weighted Average Reorder Point = 105.6347

1. The Fixed Order System:
 

Cost per item ordered = $15

Average total cost per year = $5009.27

2. The Modified Fixed Order System:
 

Cost per order = $15

Average total cost per year = $3815.28

3. The Proppsed Joint Ordering Rule:

Optimum Values of the Parameters:

= 170 s = 105 s' = 160

Average total cost per year = $3367.37

Savings in Total Cost with respect to The Fixed Order System = $1641.90

= 32.77%

Savings in Total Cost with respect to The Modified Fixed

Order System = $447.91

-= 11.73%
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Table 5.5_:

Data Set 5

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

l 4 1 54 15 2.2989

2 6 l 67 21 3.4483

3 9 2 82 33 5.1724

4 12 l 94 39 6.8966

5 15 2 106 51 8.6207

6 l7 2 112 47 9.7701

7 l9 3 119 67 10.9195

8 21 2 125 69 12.069

9 23 2 131 75 13.2184

10 25 3 136 85 14.3678

11 10 l 86 33 5.7471

12 12 2 98 45 7.4713

100.00

 

The Standard Devaiation of the mean demands = 6.69

Range of mean demands = 25 - 4 = 21

The Weighted Average E.O.Q. = 111.5575

The Weighted Average Reorder Point = 58.4958

1. The Fixed Order System:
 

Cost per item ordered = $15

Average total cost per year = $3156.39

2. The Modified Fixed Order System:
 

Cost per order = $15

Average total cost per year = $2509.29

3. The Prgposed Joint Ordering Rule:
 

Optimum Values of the Parameters:

S’= 9O §.= 60 S7 = 90

Average total cost per year = S2131.01

Savings in Total Cost with respect to The Fixed Order System = $1025.38

= 32.47%

Savings in Total Cost with respect to The Mbdified Fixed

Order System = $378.28

15.06%
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Table 5.6
 

Data Set 6

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

l 5 l 61 18 2.2222

2 7 l 72 24 3.1111

3 ll 2 9O 39 4.8889

4 14 2 102 48 6.2222

5 l7 2 112 57 7.5556

6 21 3 125 73 9.3333

7 24 2 134 78 10.6667

8 27 3 142. 91 12.00

9 30 3 149 100 13.3333

10 32 3 154 106 14.2222 .

ll 12 l 94 39 5.3333

12 25 2 136 81 11.1111

100.00

 

The Standard Deviation of the mean demands = 9.04

Range of mean demands = 32 - 5 = 27

The Weighted Average E.O.Q. = 127.6978

The Weighted Average Reorder Point = 75.8889

1. The Fixed Order System:
 

Cost per item ordered = $15

Average total cost per year = $3616.00

2. The Modified Fixed Order System:
 

Cost per order = $15

Average total cost per year = $2833.75

3. The Proposed Joint OrderngiRule:

Optimum Values of the Parmeters:

S = 107 s = 63 s' = 87

Average total cost per year = $2639.27

Savings in Total Cost with respect to The Fixed Order System = $976.73

= 27.01%

Savings in Total Cost with respect to The Modified Fixed

Order System = $194.48

= 6.86%
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Table 5.7:
 

Data Set 7

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

l 10 l 86 33 3.2787

2 15 2 106 51 4.918

3 l7 2 112 57 5.5738

4 l9 1 119 60 6.2295

5 20 3 122 70 6.5574

6 25 2 136 81 8.1967

7 27 2 142 87 8.8525

8 29 3 147 97 9.5082

9 3O 3 149 100 9.8361

10 35 3 162 115 11.4754

11 38 2 168 120 12.459

12 40 3 173 130 13.1148

100.00

 

The Standard Deviation of the mean demands = 9.47

Range of mean demands = 40 - 10 = 30

The Weighted Average E.O.Q. = 144.2492

The Weighted Average Reorder Point = 93.6918

1. The Fixed Order System:
 

Cost per item ordered = $15.

Average total cost per year = $4292.20

2. The Modified Fixed Order System:
 

Cost per order = $15

Average total cost per year = $3280.45

3. The Proposed Joint Orderi g Rule:
 

Optimum Values of the Parameters:

S = 128 s = 83 s' = 108

Average total cost per year = $3103.51

Savings in Total Cost with respect to The Fixed Order System = $1188. 69

= 27.69%

Savings in Total Cost with respect to The Modified Fixed

Order System = $176.94

5.39%
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Table 5-8 :
 

Data Set 8

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM. MEAN DEVIATION E.O.Q. POINT DEMAND

l 5 1 61 18 1.2887

2 21 l 125 -66 5.4124

3 27 2 142 87 6.9588

4 31 2 152 99 7.9897

5 34 3 159 112 8.7629

6 4O 2 173 126 10.3093

7 48 3 189 154 12.3711

8 54 2 201 168 13.9175

9 62 2 215 192 15.9794.

10 12 1 94 39 3.0928

11 24 l 134 75 6.1856

12 3O 1 149 93 7.732

100.00

 

The Standard Deviation of the mean demands = 16.65

Range of mean demands = 62 - 5 = 57

The Weighted Average E.O.Q. = 169.7732

The Weighted Average Reorder Point = 126.7216

1. The Fixed Order System:
 

Cost per item ordered = $15

Average total cost per year = $5153.85

2. The Modified Fixed Order SyStem:
 

Cost per order a $15

Average total cost per year = $3991.50

3. The Prgposed Joint Ordering Rule:

Optimum Values of the Parameters

S = 220 3.: 130 S7 = 160

Average total cost per year = $fi553.85

Savings in Total Cost with respect to The Fixed Order System = $600.00

= 11.64%

Savings in Total Cost with respect to The Modified Fixed

Order System = -$562.35

= -l4.08%
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Table 5.9:
 

Data Set 9

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

l 60 3 212 190 14.7059

2 10 3 86 40 2.451

3 21 3 125 73 5.1471

4 30 2 149 96 7.3529

5 39 3 171 127 9.5588

6 53 3 199 169 12.9902

7 64 3 219 202 15.6863

8 3 l 47 12 .7353

9 25 1 136 78 6.1275.

10 26 1 139 81 6.3725

11 33 2 157 105 8.0882

12 44 l 181 135 10.7843

100.00

The Standard Deviation of the mean demands = 18.

Range of mean demands =

The Weighted Average E.O.Q. =

64 - 3 2 61

176.9779

The Weighted Average Reorder Point 3 138.598

1.

Savings in Total Cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed

Order System

The Fixed Order System:
 

Cost per item ordered 3 $15

Average total cost per year = $5549.74

The Modified Fixed Order System:
 

Cost per order = $15

Average total cost per year = $4384.99

The Proposed Joint Orderi g Rule:
 

S a 246 S =

Optimum Values of the Parameters:

139 .2: 156

Average total cost per year = $4693.79

$855.95

15.42%

=”$308.80

-7.04%
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Table 5.10:
 

REAL Data ‘Set 1:

The means and standard deviations of the demands for the eight

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.O.Q. POINT DEMAND

1 39.27 1452 56.6 249.8 15.1

2 37.81 491 46.3 190.1 14.6

3 18.84 374 150.3 123.5 7.3

4 21.51 195 ‘ 45.2 112.9 8.3

5 40.19 2869 126.7 306.1 15.5

6 42.05 701 59.8 217.8 16.2

7 29.02 464 72.8 161.6 11.2

8 “30.93 309 43.4 153.6 11.9
 

100.0

 

The Standard Deviation of the mean demands = 8.264

Range of mean demands =: 23.21

The Weighted Average E.O.Q. = 72.6

The Weighted Average Reorder Point = 202.8

1. The Fixed Order System:
 

Cost per item ordered = $15

Average total cost per year = $2881.97

2. The Modified Fixed Order System:
 

Gost per order = $15

Average total cost per year = $2620.97

3. The Proposed Joint Ordering Rule:
 

Optimum Values of the Parameters:

S = 65 S = 15 S' = 65

Average total cost per year = $1616.19

Savings in Total Cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed

Order System

$1265.78

43.92%

$1004.78

38.33%
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Table 5.11;
 

REAL Data Set 2:

The means and standard deviations of the demands for the twelve

items in the group.

 

 

 

STANDARD REORDER PERCENTAGE

ITEM. MEAN DEVIATION E.O.Q. POINT DEMAND

l 95.27 1844 110.1 432.5 18.3

2 39.27 1452 56.6 249.8 7.5

3 37.81 491 46.3 190.1 7.3

4 10.63 85 21.0 63.8 2.0

5 18.84 374 150.3 123.5 3.6

6 21.51 195 45.2 112.9 4.1

7 40.19 2869 126.1 306.1 7.7

8 138.64 4945 216.1 659.5 26.6.

9 42.05 701 59.8 217.8 8.1

10 29.02 464 72.8 161.6 5.6

11 30.93 «309 43.4 153.6 5.9

12 16.9 162 22.4 94.7 3.2

100.00

 

35.4The Standard Deviation of the mean demands

Range of mean demands = 128.01.

The Weighted Average E.O.Q. = 114.9

The Weighted Average Reorder Point = 360.3

1. The Fixed Order SyStem:
 

Cost per item ordered = $15

Average total cost per year = $4902.56

 

2. The Modified Fixed Order System:

Cost per order = $15

Average total cost per year = $4335.96

3. The Prpposed Joint Ordering Rule:
 

Optimum Values of the Parameters:

S = 60 §.= 40 Sf = 60

Average total cost per year = $3991.23

Savings in Total cost with respect to The Fixed Order System = $911.33

= 18.58%

Savings in Total Cost with respect to The Modified Fixed

Order System = $344.73

= 7.95%
 



CHAPTER 6

SUMMARY OF CONCLUSIONS

The purpose of this research was to develop a joint order-

ing rule which could be used to order a group of items at one

time. The potential savings resulting from the inclusion of many

items on one purchase order are quite large. Some of the ad-

vantages of joint orders are:

1. Ordering costs can be reduced by including several items

in a single order. This is especially true when one

supplier is the source of a variety of related items.

2. Shipping costs can be decreased if the total order is

of a convenient size, e.g. a truck load. Since a num—

ber of items are ordered jointly, it is more likely that

the total order will be of a convenient size.

3. By including a number of items in a single order, there

is an increased opportunity of taking advantage of

quantity discounts offered by a vendor.

A review of the literature indicates that much analytical

work has been done in the cases of independent ordering strategies

such as the fixed order rule, the periodic ordering rule, and the

(s, S) inventory control rule. But, the literature is almost void

of discussion about a joint ordering rule. Hence, it was felt

-134-
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that there was a real need to research the joint ordering rule.

The proposed joint ordering rule1 was defined in terms of

three parameters, S, S, and S', where S is the maximum inventory

level, S is the reorder point, and S' determines the items that

should be included in the order. S' to S was defined as the re-

order range. Note that S is greater than S', which is greater

than S as shown in the figure.

I

__.___———--——
S reorder

M range

I
n
v
e
n
t
o
r
y

L
e
v
e
l

  Time

Figure 6.1: The Joint Ordering Rule characterized by three

parameters, S, S and S'.

The joint ordering rule was defined as follows:

When the inventory level of any item in the group has dropped

to the reorder level S, the inventory level of all items in the

group is checked; all items which have inventory levels (inventory

 

1The writer wishes to state that the prOposed joint ordering

rule is not "original", but was first proposed by Balintfy.



-136-

on hand and on order) within the reorder range S' to S are or-

dered jointly. The order quantity for each item ordered is

given by (S-I), where l is the inventory on hand and on order.

HYPOTHESES

Besides a joint ordering rule, two hypotheses were proposed

for testing. These were:

Major Hypothesis:
 

There exist a number of situations in which the application

of the joint ordering rule to control inventory, i.e. ordering

a group of items in a single order, results in lower costs when

compared with the use of the fixed order quantity rule.

Minor Hypothesis:
 

If the joint ordering rule is defined by the three parameters

§:.§a and S' as mentioned above, then there exists some optimum

value for each of the parameters, such that the total cost of the

inventory control system is minimized. The costs that are in-

cluded are ordering costs, inventory carrying costs, and stock out

COS tS .

METHODOLOGY

On the basis of the literature search, there were basically

two approaches to the develOpment of the joint ordering model:

the analytical approach and the simulation approach. A simulation

approach was used in this research, mainly because it was believed
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that the mathematical complexity of the problem would make it

extremely difficult to formulate the problem and obtain an

analytical solution. This view was supported by a number of

researchers.

DATA SOURCE

Two kinds of data were used to test the proposed joint

ordering rule.

Hypothetical data: A considerable portion of this research was
 

concerned with the study of the properties of the joint ordering

rule, especially under extreme conditions. Hence, nine sets of

hypothetical data which represented these extreme conditions were

generated. In generating this data it was assumed that a product

group consists of twelve items, and the demand for each item is

normally distributed with a specified mean and standard deviation.

The standard deviation of the mean demands of the twelve items

was a minimum for Data Set 1 and a maximum for Data Set 9. Data

Sets 1 and 9 correspond to the extreme conditions mentioned earlier.

Real Data: Real data were obtained from the Steel Service Center
 

Institute, and a farmers cooperative. Unfortunately, only limited

data were available from the farmers cooperative, and hence it

was almost impossible to fit a probability distribution to the

data. Thus, this data was not used.

Sales data from the Steel Service Center were not obtained
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directly, but from the work of Basic.1 Basic selected twelve

items of a typical Steel Service Center and found that the demand

for each item was gamma distributed. Hence, the cumulative gamma

probabilities for each item were available from Basics' dis-

sertation.

EXPERIMENTATION

The proposed joint ordering policy was compared with two

other ordering policies. These were essentially independent

ordering policies; that is, each item is assumed to be independent

of the others, and hence, the inventory level of each item is

controlled independently from the others. In all, three ordering

policies were tested.

1. The Fixed Order System: In this case, the same quantity
 

(economic order quantity) of an item is ordered each

time the inventory level of the item is equal to or less

than the reorder point. The time interval between

orders varies with fluctuations in usage. The ordering

cost was assumed to be $15 per item ordered.

2. The Modified Fixed Order System: The inventory control
 

system in this case is the same as in (1). But the

ordering cost was assumed to be $15 per order regardless

 

1Basic, M.K., "Development and Application of a Gamma-based

Inventory Management Theory" (Unpublished Ph.D. dissertation,

Michigan State University, East Lansing, Michigan, 1965)
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of the number of items included in the order.

1. Program EOQ simulates the operation of the inventory

control system when the Fixed Order System is used to

manage inventory.

2. Program EOQ (Modified) was the same as program EOQ.

But the ordering cost was now assumed to be $15 per

order regardless of the number of items included in

the order.

3. Program REPEAT searches for the optimum values of the

three parameters S, S, and S', that define the Joint

Ordering Rule.

4. Once the optimum values of the parameters were found,

program CONVERG was used to simulate the system for S

years, so as to get a reasonable degree of convergence

with reSpect to the total cost per year.

In order to compare the performance of the three inventory

control systems, the same data set was used to compute the total

cost per year when each inventory control system was used. Thus,

a data set was first used to determine the total cost per year

when the Fixed Order System was used to control inventory. Pro-

gram EOQ was used here. Next, the same data set was used in the

EOQ (Modified) program to determine the total cost per year when



-l40-

the Modified Fixed Order System was used to control inventory.

Lastly, the same data set was used to determine the total cost

per year when the proposed joint ordering rule was used to con-

trol inventory. Program REPEAT was first used to search for the

minimum cost values of the three parameters S, S' , and S. Then

program CONVERG was used to simulate the system for S years,

using the optimum values of the parameters.

CONCLUSIONS

The results obtained are presented in Table 5.1 through

5.11. An inspection of the results led to the following con-

clusions:

l. The most important conclusion was, that for certain values

of the parameters S, S' and S, the Joint Ordering Rule resulted

in lower total costs per year when compared to the two individual

item rules,1 the Fixed Order Rule and the Modified Fixed Order

Rule. Moreover, for certain optimum2 values of the three parameters,

the savings resulting from the use of the Joint Ordering Rule

were substantial. For example, for Data Set 2 the savings were

55.33%.

There was sufficient evidence to support this conclusion.

The use of the Joint Ordering Rule resulted in savings for all

 

1These are referred to as individual item rules because the

inventory level of each item is controlled independently from the

others.

2Optimum , means minimum cost values of the parameters.
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hypothetical data sets except Data sets 8 and 9. When the data

from the Steel Service Center was used, the Joint Ordering Rule

once again resulted in lower total cost per year than either

the Fixed Order System or the Modified Fixed Order System. SSSSS,

SS was concluded that the major hypothesis was true.

2. By definition of the Joint Ordering Rule, S' can have a

maximum value of S and a minimum of S. Hence, three distinct

cases can be identified.

Case 1: s' = S:
 

When S' is equal to S, the three parameter Joint Ordering

Rule is then defined by two parameters, S (or S') and S. And,

since S is the maximum inventory level and S' to S is defined as

the reorder range, the reorder range now becomes S to S and is

maximum. Moreover, the inventory level of an item (inventory on

hand and on order) will always lie between the maximum S and the

reorder point S. Therefore, when S is equal to S', the inventory

level will always lie in the reorder range S to S. All this means

is, that the Joint Ordering Rule is modified and now becomes:

When the inventory level (inventory on hand and on order)

of any item in the group is equal to or less than the trigger

point E2.§ll items in the group should be reordered. The quantity

of each item ordered is equal to (S - I), where l is equal to the

inventory on hand and on order.
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This modified form of the Joint Ordering Rule is very similar

to the one proposed by Starr and Miller.1 Starr and Miller com-

pute a value of S, the number of months between orders which is

assumed to be the same for all items within the group. Hence,

according to the authors, every item should be ordered every

S months. Starr and Miller's joint ordering rule is simply a

particular case of the Joint Ordering Rule proposed in this thesis.

During the experimentation process it was found that for

Data Sets 1, 2 , and 3, and Real Data Sets 1 and 2, the least.

cost values of the parameters were such that S} was equal to S.

Hence, these data sets illustrate this particular case. Analysis

of the four hypothetical data sets indicated that the standard

deviations of the mean demands for the items were relatively

small (between 1.96 and 4.26). This means that the mean weekly

demands for the items in the group were not widely dispersed.

Hence, it was concluded that when the mean demands for the items

are not widely dispersed, it is not only economical to group

the items and order them jointly, but additional savings may be

achieved by including all items SS every joint order.
 

Case 2: S > s' > s:
 

In this case, the Joint Ordering Rule is characterized by

three parameters, S, S and S, and is as stated in the major

hypothesis:

 

l

Starr, M.K. and Miller, D.W., Inventory Control: Theory

and Practice (Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,

I966) pp. 104-110

 



-143-

When the inventory level (inventory on hand and on order) of

any item in the group is equal to or less than the reorder point

S, the inventory level (inventory on hand and on order) of the

rest of the items in the group is checked, and all items that

have inventory levels (inventory on hand and on order) between

3' and S, the reorder range, are ordered jointly.

The results indicate that Data Sets 4, 5, 6, and 7 are illu-

strations of this particular case. Analysis of these three data

sets indicated that the standard deviations of the mean demands

for the items (between 6.39 and 9.47) were neither as small as

those of Data Sets 1,2,3, 0r 4 (i.e. Case 1) nor were they as

large as those of Data Sets 8 and 9. This means that the mean

demands of the items were neither too widely dispersed nor too

narrowly dispersed. Hence, it was concluded that if the mean

demands of the items are neither too widely nor too narrowly

dispersed, it is more economical to include only some items in

the joint order. The items that should be included are those

which have inventory levels (inventory on hand and on order)

within the reorder range S to S, when an order is placed.

Case 3: s' = s:
 

When S' is equal to S the Joint Ordering Rule is once again

defined by two parameters, S_and S' (or S) as in Case (1). Since

S' to S is the reorder range, when Sf is equal to S the reorder

range is equal to zero and is minimum. The Joint Ordering Rule
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now becomes:

When the inventory level (inventory on hand and on order)

of an item is equal to or less than the reorder point S, only that

single item should be reordered.

The joint ordering rule is therefore reduced to an individual

item rule such as the simple (3, S) rule. However, there is one

difference between this modified form of the Joint Ordering Rule

and the (s, S), or the two bin inventory control system. In the

simple (3, S) inventory control system, the parameters S and S.

are computed for each individual item, and these parameters are

then used to control the inventory of the respective items. In

the proposed Joint Ordering Rule in the modified form, the values

of the two parameters S and S are common to all items in the group.

Other than this, the two reordering rules are identical and both

are essentially individual item rules.

Hence, it was concluded that, if the value of the two

parameters S and S of (s, S) inventory control system is the

same for all items, then the (s, S) individual ordering rule

is a particular case of the joint rule characterized by three

parameters, S, s' and 3.

Out of the nine data sets used to test the proposed joint

ordering rule, in no case were the minimum cost parameters such

that S} was equal to S. This was indeed surprising. An explan-
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ation as to why examples of this particular case would be rare

is given on p. 115-

The most important conclusion that was drawn from these

three cases was that the Joint Ordering Rule prOposed in this

thesis is more general and incorporates within itself a number
 

of other reordering rules. Both individual item ordering rules

such as the two bin inventory control system, and some joint

ordering rules such as the one proposed by Starr and Miller are

incorporated.

3. Besides the 3 cases identified above, there is another case

which is conceivable. As mentioned in the major hypothesis,

there will exist a number of situations where the joint ordering

rule will lead to lower total costs than the individual item

ordering rule. However, there will also be certain situations

where the joint ordering rule will lead to total costs greater

than the individual item ordering rules. During the experimentation

process it was found that for Data Sets 8 and 9 the average total

cost per year when the Joint Ordering Rule was used to manage

inventory was greater than the average total cost when the Modified

Joint Ordering Rule was used.

Analysis of Data Sets 8 and 9 indicated that the standard

deviation of the mean demands for the items was relatively large.

For example, for Data Set 8 the standard deviation was equal to
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l I '
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Case 2

S > s' > s

 

' l

' I
l

. I

I I

I l 1

Standard Deviation of mean demands 
Figure 6.2 : Approximate ranges for the four cases of

the Joint Ordering Rule. The ranges are

expressed in terms of the standard devia-

tion of the mean demands.

5. In Chapter 4, a method for calculating the starting values

of the parameters S, S' , and S was suggested (see p. 74). It

was necessary to calculate these values so as to have some in-

itial values to begin the search for the optimum values of the

three parameters S, S, and S’. The starting value of S was

assumed to be the weighted average of the individual reorder

points. The starting value of S was assumed to be the weighted

average of the individual economic order quantities, plus the

starting value of S computed earlier. Lastly, the starting

value of S' was assumed to equal S, the maximum value of s'.
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However, the results indicated that minimum cost values of

the three parameters were not close to these starting values.

This was true for all data sets. For example, for Real Data

Set 1 the starting values of the three parameters were:

S = 113

S'= 113

S = 31

But the minimum cost values of the three parameters were:

S = 65

S' = 65

S = 15

It was therefore concluded that the procedure for calcu-

lating the starting values of the three parameters suggested

in Chapter 4 was not the best. The writer believes that this

conclusion will be most useful if further investigation of the

proposed Joint Ordering Rule is planned.

6. Joint ordering will lead to a savings in ordering costs

because a number of items are included in a single order. Ad-

ditional savings can be achieved through quantity discounts,

since the dollar value of a joint order is larger. On the other

hand, joint ordering will lead to an increase in inventory carry-

ing costs because some items which have inventory levels within
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the reorder range are ordered, though they should be ordered

when the inventory level reaches the reorder point g. This more

frequent ordering of some items leads to an increase in average

inventory, and hence, an increase in inventory carrying costs.

These opposite costs will depend on the value of the three

parameters S, s' , and g. This suggests that there should be

some values of the three parameters such that the total cost is

minimum.1 These optimum values were found for all data sets,

including Real Data Sets 1 and 2. When the search for the optimum

values was essentially a limited search, "local" Optimums were

found. In the case of Real Data Sets 1 and 2, and hypothetical

Data Sets 4 and 5, an extensive search was conducted.2 Hence,

the Optimum values of the parameters were found. All this in-

dicated that the minor hypothesis was true. However, during
 

the search it was found that the optimum values of the three

parameters are not necessarily unique.

7. Attempts to find an analytical method for computing the

optimum values of g, E) and £1 so as to minimize total cost

of the system meet with little success. The only method that

can be suggested to compute these optimum values, is the search

method used in this research.3 It must be pointed out that this

procedure is not as time consuming as it appears. The average

 

1This was the minor hypothesis.

2See pp. 36-37 for details.

3See p. 81 for details.
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time for computing the minimum cost values of the three parameters

on the CDC 6500 at Michigan State University was about 20 to 30

minutes for each data set. The cost of this computer time is a

very small fraction of the potential savings resulting from the

use of the Joint Ordering Rule.

Lastly, as mentioned earlier, one important advantage of the

Joint Ordering Rule is that there is an increased opportunity for

taking advantage of quantity discounts offered by a vendor. How-

ever, quantity discounts have not been included in the analysis.

Yet, the savings resulting from the use of the Joint Ordering

Rule to control inventory were found to be substantial. Hence,

if quantity discounts were included in the analysis, the savings

would probably be greater still. This would merely provide

additional evidence that the major hypothesis is true.

There is considerable scope for further research. Firstly,

some method for computing the minimum cost values of the three

parameters must be develOped. Secondly, a certain parameter

(or ratio) should be defined which would indicate which of the

four cases of the Joint qrdering Rule is likely to occur. This

parameter would be a function of the ordering cost, the inventory

carrying cost, most of unfilled demand, and some measure of the

dispension of the mean demands of the items in the group. This

parameter could also be used to indicate whether the Joint

Ordering Rule should be used at all. Lastly, the ultimate goal

would be to develop an analytical solution to the joint ordering

problem.
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APPENDIX A

THE GAMMA DISTRIBUTION

Most real processes in business can be approximated by either

the normal distribution or the poisson distribution. But both these

distributions suffer from certain limitations. The normal distri-

bution becomes inappropriate when the ratio of the standard deviation

to the mean of the process is larger than about 1/3.1 This is because

the normal variates generated will often be negative when this ratio

of 1/3 is exceeded. The poisson process does not generate negative

variables. But the mean and the variance in the poisson distribution

are always equal. This restricts the usefulness of the poisson

distribution.

The gamma distribution does not suffer from these limitations

and hence is very useful. The probability density function of the

gamma distribution is:

xrxr-le-Ax

f(x) = (P1), 

where r and_l are the gamma parameters. The gamma distribution

results from an effort to determine the probability of.§ units of

length between one success and the rth succeeding success. The

mean and the standard deviation of a gamma distribution are:

 

1 McMillan, C. and Gonzalez, R. F. Systems Analysis (Homewood,

Illinois: Richard D. Irwin, Inc., 1968), p. 261.
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Mean = r/A

Standard Deviation = V r/X

From this it follows that:

 

 

_ (mean)2

r ' it
(standard deviation)

A (mean)

= (s tandard dev iat ion)‘

Hence a gamma distribution, like a normal distribution, can be

uniquely specified by its mean and its standard deviation.

When r=l, the gamma distribution is identical to the exponen-

tial distribution. If_r is a positive integer, the gamma distribution

is identical to the Erlang distribution. As r increases, the gamma

distribution approaches a normal distribution asympotically.



APPENDIX B

ESTIMATION OF INVENTORY CARRYING COSTS

AND ORDERING COSTS

In order to carry out the simulation with the hypothetical

data, it was necessary to assume certain values for the inventory

carrying costs and the ordering costs. The inventory carrying

cost per unit per year was assumed to be approximately 20 percent

of the value of the item, while the ordering cost was assumed to

be $15 per order. These values were based on the estimates

provided by Carson.1

According to Carson, the inventory carrying costs usually

runs from 10 percent to 25 percent of the value of the inventory

per year. One commonly used estimate of the percentage cost per

year of carrying inventory is

Interest on Investment 3.0%

Shrinkage

(waste, scrap, losses, theft, etc.) 5.0%

Storage

(rent, heat, light, etc.) 0%

Taxes 51

Insurance

Depreciation on Capital Assets

b
N
O
I
—
‘
N

O
O
U
‘
I

N
N
N

Material Handling and Record Keeping

TOTAL

 

H 0
0

O 0
"

1 Carson, G. B. Production Handbook (New York: The Ronald

Press, 1960) sections 4-55 to 4-58.
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Since the inventory carrying costs are estimated to run from

10 percent to 25 percent, a value of 20 percent was assumed in

this research.

Carson estimated the ordering costs to range from $8 to $20.

Hence, an ordering cost of $15 per order was assumed in this research.
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APPENDIX C

FORTRAN SUBROUTINE FOR THE GENERATION OF NORMAL VARIATES

The following subroutine1 was used for the generation of normal

variates with some mean (EX) and standard deviation (STDX)

SUBROUTINE NORMAL (EX,STDX,X)

 

SUM = 0.0

DO 5 I = 1,12

R = RANF (—1)

SUM = SUM + R

X = STDX * (SUM - 6.0) + EX

RETURN

END

 

1 Naylor, T. H., Balintfy, J. L., Burdick, D. S. and Chu, K.

Computer Simulation Techniques (New York: John Wiley and Sons, Inc.,

1968), p. 95.

 



APPENDIX D

GENERATION OF RANDOM VARIATES FROM SOME

STATISTICAL POPULATION WHOSE CUMULATIVE

PROBABILITY DISTRIBUTION IS GIVEN

Naylor1 has develOped a procedure called "The Inverse Trans—

formation Method" for the generation of random variates from some

particular statistical population.whose cumulative distribution

function is known. The procedure is as follows:

Let F(x) be the cumulative distribution function of a random

variate 5. Then, since F(x) is defined over the range zero to one,

we can generate uniformly distributed random numbers r_between

zero and one and set

F(x) = r

Hence r is uniquely determined by r - F(x). Also, for any

particular value of r_say ro generated, it is possible to find the

correSponding value of_§, say xo by the inverse function of F.

That is,

x0 = F'1(ro)

where F"1(r) is the inverse transformation of r.

 

1 Naylor, T. H., Balintfy, J. L., Burdick, D. 3., and Chu, K.

Computer Simulation Techniques (New York: John Wiley and Sons, Inc.,
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Graphically the procedure is as follows:

F(x‘ - r

w—~~—— 1.   

 
 

Hence the procedure involves the generation of a uniformly

distributed random variable rO between zero and one, and then

reading off the correSponding value of x, i.e., x0, from the cumu-

lative distribution function F(x).

The values of the cumulative probabilities (ARG) for various

values of.§ (VAL) were first read in. Then the following FORTRAN

FUNCTION was used to determine the apprOpriate value of 5, given r.

FUNCTION TABLI(VAL,ARG,DUMMY,K)

DIMENSION VAL(1),ARG(1)

DUM=AMX1(AMIN1(DUMMY,ARG(K)),ARG(1))

D0 1 I-2,K

IF (DUM-ARG(I))2,2,1

2 TABLI=(DUM-ARG(I-l))*(VAL(I)-VAL(I—l))/(ARG(I)—ARG(I-1))+VAL(I-l)

TABLI=TABLI*3/13

RETURN

l CONTINUE

RETURN

END



APPENDIX E

CONVERSION OF DEMAND PER MONTH

TO DEMAND PER WEEK

Let Di = demand during month_l

 

Then,

m

the mean demand per month = X D,

i=1 1

m

”I 2 h

and the variance of the demand per month is = §Di ZDi) 2
fl

m m

Assume that there are 4 l/3 weeks in a month. It will be shown

that the procedure adapted in this thesis, namely generating a

monthly demand (given the mean and standard deviation) and then

computing the weekly demand as 4 1/3 the monthly demand, is valid.

Let d1 = demand during 3333 1

Then,

the mean of the weekly demand = Ed

m

and the variance of the weekly demand = Z(di)2 (Zd1)2

m m

Therefore mean of the weekly demand = 2 3/13 Di

Ill
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3/13 EDi

m

3/13 (mean of monthly demand)

Similarly,

The variance of the weekly demand

 

m m

2 (3/13 Di)2 -[2 3/13 131]"

(3/13)22(D1)2 - (3/13)2[Zni]2

m m

(3/13)2 2U; - ED 2

[T (s) ]

(3/13)2(variance of monthly demand)

Therefore,

Mean of the weekly demand = 3/l3(mean of monthly demand)

Variance of the weekly demand = 3/13 (variance of monthly demand)

 



21

22

36

35

12

11

APPENDIX F

LISTING OF THE FORTRAN

PROGRAMS

PROGRAM CONVERG (INPUT,OUTPUT)

DEMENSION INV (12,75),IEOQ(12,75),IDEM(12),MARGIN(12,IEX(12,ISTD(

112,IHOO(12,IGIT(12,4),IDUM(12,100)

COMMON IDEM,IEX,ISTD

DO 21 I=1,12

READ 22,IEX(I),ISTD(I)

FORMAT (2110)

DO 35 J=1,100

DO 36 J1=1,12

IDUM(J1,J)=0

CONTINUE

001 1:1,12

MARGIN(I)=1

IGIT(I,3)=0

IGIT(I,2)=0

IGIT(I,1)=0

INV(I,1)=1OO

IEOQ(I)=0

CONTINUE

ITC3=0

ITC2=O

TC1=O.

TC=O.

IORDER=0

ICAPS=50

IDASHS=50

ISMALLS=30

D0600 J6=1,500

DO 100 I=1,52

IF (1-1)9,8,9

DO 10 J=1,12

INV(J,I)=INV(J,I-1)+IGIT(J,3)

CALL DEMAND

DO 11 J=l,12

INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(J,I)-0)12,11,11

ITC3=ITC3-(INV(J,I)*MARGIN(J))

INV(J,I)=0

TC1=TC1+INV(J,I)*0.04

DO 14 J=1,12

IHOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)
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15

17

16

101

30

100

200

600

800

20

10

-170-

CONTINUE

DO 3 J=1,12

IF (IHOO(J)-ISMALLS(15,15,3

CONTINUE

GO TO 101

IORDER=IORDER+1

ITC2=ITC2+15

DO 16 Jl=1,12

IF (ITHOO(Jl)-IDASHS)17,17,16

IEOQ(J1,I)=ICAPS-INV(J1,I)

IDUM (J1,I)=IEOQ(J1,I)

CONTINUE

D0 30 12=1,12

IGIT(12,3)=IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(12,1)=LDUM(12,IO

IDUM(12,I)=0

CONTINUE

TC=ITC3+ITC2+TC1

PRINT 200,ICAPS,ISMALLS,IDASHS,ITC3,ITC2,TC1,TC

FORMAT (5(10X,I7),2(10X,F8.2))

ITC3aITcz=0

TC1=TC=0.

CONTINUE

PRINT 800,(IEX(I),I=1,12)

PRINT 800,(ISTD(I),I=1,12)

FORMAT (///,12(5X,16))

END

SUBROUTINE DEMAND

DIMENSION ID(12),IS(12),IE(12)

COMMON ID,IE,IS

DO 10 11:1,12

SUM=O.

DO 20 I=1,12

R=RANF(-l)

SUM=SUM+R

ID(Il)=ABS(IS(Il)*(SUM-6.0)+IE(Il))

RETURN

END

PROGRAM REPEAT (INPUT ,OUTPUT)

DIMENSION INv (12,75),IEOQ(12,75),IDEM(12),MARGIN(12),IEX(12),ISTD(

112),IHOO(12),IGIT(12,4),IDUM(12,100)

COMMON IDEM,IEX,ISTD

DO 21 I=1,12

21 READ 22,IEX(I),ISTD(I)

22 FORMAT (2110)

ICAPS=110

ISMALLS=3O

IDASHS=110
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D0 53 K1=1,9

DO 35 J=1,100

DO 36 31:1,12

IDUM(J1,J)=0

CONTINUE

DO 1 I=1,12

MARGIN(I)=1

IGIT(I,3)=0

IGIT(I,2)=O

INV(I,1)=100

IGIT(I,1)=0

IEOQ(I)=0

CONTINUE

ITC3=0

ITC2=O

TC1=0.

TC=0.

IORDER=0

SUM=0.

DO 222 K6=l,50

DO 100 I=1,52

IF (I-l)9,8,9

Do 10 J=1,12

INV(J,I)=INV(J,*-l)+IGIT(J,3)

CALL DEMAND

DO 11 J=1,l2

INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(J,I)-O)12,11,11

ITC3=ITC3-(INV(J,I)*MARGIN(J))

INV(J,I)=O

TCL=TCl+INV(J,I)*0.04

DO 14 J=1,12

IHOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,3)+IGIT(J,1)

CONTINUE

D0 3 J=1,12

IF (IHOO(J)-ISMALLS)15,15,3

CONTINUE

GO TO 101

IORDER=IORDER+1

ITC2=ITC2+15

DO 16 31:1,12

IF (IHOO(J1)-IDASHS(17,17,16

IEOQ(J1,I)=ICAPS-INV(J1,I)

IDUM J1,I)=IEOQ(J1,I)

CONTINUE

DO 30 12=1,12

IGIT(12,3)=IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(12,1)=IDUM(12,I)

IDUM(12,I)=O

CONTINUE



  
i
i
i
i
l
‘
l
l

I
1
.
1

 
  



-172-

TC=ITC3+ITC2+TCl

PRINT 200 ,ICAPS ,ISMALLS, IDASHS ,ITC3, ITC2,TC1, TC

200 FORMAT (5(10x, I7), 2(10x, F8. 2))

IF (K6-31)19,18,18

18 SUM=SUM+TC

19 ITC3+ITCZ=0

TC1=TC=0.

222 CONTINUE

XMEAN=SUM/20.

PRINT 202,XMEAN

202 FORMAT (*///*,* THE MEAN OF LAST TWENTY TC IS *,F10.3)

53 IDASHS=IDASHS-10

END

SUBROUTINE DEMAND

DIMENSION ID(12,IS(12,IE(12)

COMMON ID,IE,IS

DO 10 11:1,12

SUM=0.

DO 20 I=1,12

R=RANF(-l)

20 SUM;SUM+R

10 ID(I1)+ABS(IS(11)*(SUM-6.0)+IE(II))

RETURN

END

 

PROGRAM EOQ (INPUT,OUTPUT)

DIMENSION INV(12,75),IEOQ(12),IDEM(12),MARGIN(12),IEX(12),ISTD(12)

l,IHOO(12),IGIT(12,4),IDUM(12,100),IR(12)

COMMON IDEM,IEX,ISTD

C THIS IS THE MODIFIED EOQrPROGRAM

IFLAG=O

DO 21 =1,12

21 READ 22,IEX(I),ISTD(I)

22 FORMAT (2110)

DO 35 J=1,100

DO 36 J1=1,12

36 IDUM(J1,J)=O

35 CONTINUE

D0 1 I=1,12

MARGIN(I)=1

IGIT(I,3)=O

IGIT(I,2)=0

IGIT(I,1)=O

IEOQ(I)=((15*2*IEX(I))/0,04)**0.5

IR(I)=3*IEX(I)+2*(3**O.5)*ISTD(I)

INV(I,1)=100

1 CONTINUE

ITC3=0

ITC2=O

TCl=TC=0
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IORDER=0

DO 600 J6=1,500

DO 100 I=1,52

IF (I-1)9,8,9

DO 10 J=l,12

INV(J,I)=INV(J,I-l)+IGIT(J,3)

CALL DEMAND

DO 11 J=1,12

INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(J,I)-0)12,ll,ll

ITC3=ITCB~(INV(J,I)*MARGIN(J))

INV(J,I)=O

TCl=TC1+INV(J,I)*0.04

DO 14 J=l,12

IHOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)

CONTINUE

DO 3 J=l,12

IF (IHOO(J)—IR(J))15,15,3

IDUM(J,I)=IEOQ(J)

IORDER=IORDER+1

IFLAG=1

CONTINUE

IF (IFLAG-0)23,101,23

ITC2=ITC2+15

IFLAG=O

D0 30 12=1,12

IGIT(12,3)=IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(12,1)=IDUM(12,I)

IDUM(12,I)=O

CONTINUE

TC=ITC3+ITCZ+TC1

PRINT 200,ITC3,IT02,TCI,TC

FORMAT (2(1OX,I7),2(10X,F8.2))

ITC3=ITC2=0

TC1=TC=O.

CONTINUE

PRINT 71,(IEOQ(I),I=1,12)

PRINT 71,(IR(I),I?1,12)

FORMAT (12(15,5X((

PRINT 800,(IEX(I),I=1,12)

PRINT 800,(ISTD(I),I=1,12)

FORMAT (///,12(5x,I6))

END

SUBROUTINE DEMAND

DIMENSION ID(12),IS(12),IE(12)

COMMON ID,IE,IS

DO 10 II=1,12

SUMFO.

DO 20 I=1,12

R:RANF(-l)

l
i
f
t
—
1
3
m
g

i
t
?
?
?
“'
”
I

‘
l
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20 SUM=SUM+R

10 ID(Il)=ABS(IS(I1)*(SUM-6.0)*IE(Il))

RETURN

END

PROGRAM EOQ (INPUT,OUTPUT)

DIMENSION INV(12,75),IEOQ(12),IDEM(12),MARGIN(12,IEX(12),ISTD(12)

1,IHOO(12),ISIT(12,4),IDUM(12,100),IR(12)

COMMON IDEM,IEx,ISTD

DO 21 I=1,12

21 READ 22,IEX(I),ISTD(I)

22 FORMAT (2110)

DO 35 J=1,100

D0 36 J1=1,12

36 IDUM(J1,J)=O

35 CONTINUE

DO 1 I=1,12

MARGIN(I)=1

IGIT(I,3)=0

IGIT(I,2)=0

IGIT(I,1)=0

IEOQ(I)=((15*2*IEX(I))/0.04)**O.5

IR(I)=3**IEX(I)+2*(3**O.5)*ISTD(I)

INV(I,1)=100

1 CONTINUE

ITC3=O

ITC2=0

TC1=TC=0.

IORDER=O

D0 600 J6=l,500

DO 100 I=1,52

IF (I-1)9,8,9

9 DO 10 J=l,12

10 INV(J,I)=INV(J,I-1)=ITIT(J,3)

8 CALL DEMAND

DO 11 3:1,12

INV(J,I)FINV(J,I)-IDEM(J)

IF (INV(J,I)-O)12,11,ll

12 ITC3=ITC3-(INV(J,*)*MARGIN(J))

INV(J,I)=0

11 TC1=TC1+INV(J,I)*0.04

DO 14 J=1,12

IHOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,Z)+IGIT(J,1)

14 CONTINUE

DO 3 J=1,12

IF (IHOO(J)-IR(J))15,15,3

15 IDUM(J,I)=IEOQ(J)

IORDER=IORDER+1

ITC2=IT02+15

3 CONTINUE

101 D0 30 12=1,12
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IGIT(12,3)=IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(12,1)=IDUM(12,I)

IDUM(12,I)=0

CONTINUE

TC=ITC3+ITC2+TC1

PRINT 200,ITC3,ITC2,TC1,TC

FORMAT (2(10X,I7),2(10X,F8.2))

ITC3=ITC2=0

TC1=TC=0.

CONTINUE

PRINT 71,(IEOQ(I),I=1,12)

PRINT 71,(IR(I),I=1,12)

FORMAT (12,(15,5X))

PRINT 800,(IEX(I),I=1,12)

PRINT 800,(ISTD(I),I=1,12)

FORMAT (///,12(5x,16))

END

SUBROUTINE DEMAND

DIMENSION ID(12),IS(12,IE(12)

COMMON ID,IE,IS

DO 1011=1,12

SUM=O.

DO 20 I=1,12

R=RANF(-l)

SUM=SUM+R

ID(I1)=ABS(IS(Il)*(SUM-6.0)+IE(II))

RETURN

END

PROGRAM CONVERG (INPUT,OUTPUT)

DIMENSION INV(12,75),IEOQ(12,75),IDEM(12),XMARGIN(12),IHOO(12),IGI

1T(12,4),IDUM(12,100),CPU(12)

DIMENSION VALI(22),ARGl)22),VAL2(25),ARG2)25),VAL3(48),ARG3(48),VA

1L4(26).ARG4(26),VAL5(11),ARGS(11,VAL6(33,ARG6(33),VAL7(34),ARG7(

234),VA18(39);ARG8(39),VA19(17),ARG9(17),VA110(21),ARG10(21),vA111(

341),ARG11(41),VAL12(29),ARG12(29)

IFLAG=0

K2=25

K3=48

K5=ll

K6=33

K7=34

K9=17

K10=21

K11=41

FORMAT (F10.7)

VALX=0.

DO 811 I=1,25

VAL2 (I) =VALX



811

812

814

815

816

818

819

821

21

22

36

35

-176-

VALX=VALX+10

READ 20,ARG2(I)

VALX=0.

DO 812 I=1,48

VAL3(I)=VALX

VALX=VALX+2.

READ 20,ARGB(I)

VALX=0.

D0 814 I=1,11

VAL5(I)=VALX

VALX=VALX+10.

READ 20,ARGS(I)

VALX=O.

D0 815 I=1,33

VAL6(I)=VALX

VALX=VALX+2.

READ 20,ARG6(I)

VALX=O.

DO 816 I=1,34

VAL7(I)=VALX

VALX=VALX+10.

READ 20,ARG7(I)

VALX=0.

D0 818 I=1,17

VAL9(I)=VALX

VALX=VALX+10.

READ 20,ARG9(I)

VALX-O.

D0 819 I=1,21

VAL10(I)=VALX

VALX=VALX+5.

READ 20,ARGlO(I)

VALX=O. -

D0 821 I=1,41

VAL11(I)=VALX

VALX=VALX+2.

READ 20,ARGll(I)

D0 21 I=1,8

READ 22,CPU(I)

FORMAT (F10.4)

ICAPS=65

IDASHS=65

ISMALLS=15

DO 35 J-1,100

DO 36 J1=1,12

IDUM(J1,J)=0

CONTINUE

D0 1 I=1,12

XMARGIN(I)=O.2

IGIT(I,3)=O

IGIT(I,2)=0

INV(I,1)=100
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ICIT(I,1)=0

IEOQ(I)=O

CONTINUE

TC1=TC=XTC3=0.

ITC2=0

IORDER=O

SUM=0.

DO 600 J6=1,500

DO 100 I=1,52

IF (I-l)9,8,9

DO 10 J=1,8

INV(J,I)=INV(J,I-1)+IGIT(J,3)

X=RANF(-1)

IDEM(1)=TABLI(VAL2,ARG2,X,K2)

IDEM(2)=TABLI(VAL3,ARG3,X,K3)

IDEM(3)=TABLI(VAL5,ARGS,X,K5)

IDEM(4)=TABLI(VAL6,ARG6,X,K6)

IDEM(5)=TABLI(VAL7,ARG7,X,K7)

IDEM(6)=TABLI(VAL9,ARG9,X,K9)

IDEM(7)=TABLI(VAL10,ARG10,X,K10)

IDEM(8)=TABLI(VAL11,ARG11,X,K11)

DO 11 J=1,8

INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(,I)-O)12,11,11

XTC3=XTC3-(INV(J,I)*XMARGIN(J)*CPU(J))

INV(J,I)=O

TC1=TC1+(INV(J,I)*0.3*CPU(J)/52.)

DO 14 J=1,8

THOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)

CONTINUE

DO 3 J=1,8

IF (IHOO(J)-ISMALLS)15,15,3

CONTINUE

GO TO 101

IORDER=IORDER+1

ITC2=ITC2+15

DO 16 J1=1,8

IF (IHOO(J1)-IDASHS)17,17,16

IEOQ(J1,I)=ICAPS-INV(J1,I)

IDUM (J1,I)=IEOQ(J1,I)

CONTINUE

DO 30 12=1,8

IGIT(I2,3)=IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(12,1)=IDUM(12,I)

IDUM(I2,I)=O

CONTINUE

TC=XTC3+ITC2+TC1

PRINT 200,1CAPS,ISMALLS,IDASHS,XTC3,TTC2,TC1,TC

FORMAT (3(1OX,I7),10X,F8.2,10X,I7,2(iX,F14.2))

IF(J6-481)19,18,18

SUM=SUM+TC

TC1=TC=XTC3=O.
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ITC2=0

CONTINUE

XMEAN=SUM/20.

PRINT 202.XMEAN

FORMAT (*///*,* THE MEAN OF LAST TWENTY TC IS *,F10.3)

END

FUNCTION TABLI(VAL,ARG,DUMMY,K)

DIMENSION VAL(1),ARG(1)

DUM=AVAX1(AMIN1(DUMMY,ARG(K)),ARG(1))

D0 1 I=2,K

IF (DUM-ARG(I))2,2,1

TABLI=(DUM-ARG(I-l))*(VAL(I)-VAL(I-l))/(ARG(I)-ARG(I)-1))+VAL(I-l)

TABLI=TABL*3/13

RETURN

CONTINUE

RETURN

END

PROGRAM REPEAT (INPUT,0UTPUT)

DIMENSION INV(12,75),IEOQ(12,74),IDEM(12),XMARGIN(12),IHOO(12),IGI

1T(12,4),IDUM(12,100),CPU(12)

DIMENSION VAL1(22),ARG1(22),VAL2(25),ARG2)25),VAL3)48),ARG3(48),VA

1L4(26),ARG4(26),VAL5(11),ARG5)11),VAL6(33),ARG6(33),VAL7(34),ARG7(

234,VAL8(39),ARG8(39),VAL9(17,ARG9(17,VA

341),ARCII(41),VAL12(29),AR012(29)

IFLAG=0

K2=25

K3=48

K5=11

K6=33

K7=34

K9=17

K10=21

K11=41

FORMAT (FlO.7)

VALX=O.

DO 811 I=1,25

VAL2(I)=VALX

VALX=VALX+10.

READ 20,ARG2(I)

VALX=0.

D0 812 I=l,48

VAL3(I)=VALX

VALX=VALX+2.

READ 20,ARG3(I)

VALx=0.

DO 814 I=1,11

VAL5(I)=VALX

VALX=VALX+10.

READ 20,ARGS(I)

'
"
.
'
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VALX=0.

DO 815 I=1,33

VAL6(I)=VALX

VALX=VALX+2.

READ 20,ARG6(I)

VALX=0.

D0 816 I=1,34

VAL7(I)=VALX

VALX=VALX+10.

READ 20,ARG7(I)

VALX=0.

DO 818 I=1,17

VAL9(I)=VALX

VALX=VALX+10.

READ 20,ARG9(I)

VALX=0.

DO 819 I=1,21

VAL10(I)=VALX

VALX=VALX+5.

READ 20,ARGIO(I)

VALX=0.

DO 821 I=1,41

VAL11(I)=VALX

VALX=VALX+2.

READ 20,ARGII(I)

DO 21 I=1,8

READ 22,CPU(I)

FORMAT (F10.4)

IDASHS=1OS

ISMALLS=15

ICAPS=105

D0 53 KK1=1,10

DO 35 J=1,1OO

D0 36 J1=1,12

IDUM(J1,J)=0

CONTINUE

D0 1 I=1,12

XMARGIN(I)=O.2

IGIT(I,3)=O

IGIT(I,2)=0

INV(I,1)=100

IGIT(I,1)=0

IEOQ(I)=0

CONTINUE

TC1=TC=XTC3=0.

ITC2=0

IORDER=0

SUMbO.

D0 222 KK6=1,50

D0 100 I=1,52

IF (I-1)9,8,9

D0 10 Jél,8

INV(J,I)=INV(J,I-1}+IGIT(J,3)

.
.
I

9
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4
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X=RANF(-1)

IDEM(1)=TABLI(VAL2,ARGZ,X,K2)

IDEM(2)=TABLI(VAL3,ARG3,x,K3)

IDEM(3)=TABLI(VAL5,ARG5,X,K5)

IDEM(4)=TABLI(VAL6,ARG6,X,K6)

IDEM(5)=TABLI(VAL7,ARG7,X,K7)

IDEM(6)=TABLI(VAL9,ARG9,X,K9)

IDEM(7)=TABLI(VAL10,ARG10,X,K10)

IDEM(8)=TABLI(VAL11,ARGll,X,Kll)

DO 11 J=1,8

INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(J,I)-0)12,11,11

XTC3=XTC3-(INV(J,I)*XMARGIN(J)*CPU(J))

INV(J,I)=O

TC1=TC1+(INV(J,I)*0.3*CPU(J)/52.)

DO 14 J=1,8

IHOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)

CONTINUE

DO 3 J=1,8

IF (IHOO(J)-ISMALLS)15,15,3

CONTINUE

GO TO 101

IORDER=IORDER+1

ITC2=ITC2+15

D0 16 J1=1,8

IF (IHOO(J1)-IDASHS)17,17,16

IEOQ(J1,I)=ICAPS-INV(J1,I)

IDUM(J1,I)=IEOQ(J1,I)

CONTINUE

DO 30 12=1,8

IGIT(12,3)-IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(12,1)=IDUM(I2,I)

IDUM(I2,I)=O

CONTINUE

TC=XTC3+ITC2+TC1

PRINT 200,ICAPS,ISMALLS,IDASHS,XTC3,ITC2,TC1,TC

FORMAT (3,(10X,I7),10X,F8.2,1OX,I7,29iX,F14.2))

IF (KK6-31)19,18,18

SUM:SUM+TC

TC1=TC=XTC3=0.

ITC2=0

CONTINUE

XMEAN=SUM/20.

PRINT 202,XMEAN

FORMAT (*///*,* THE MEAN 0F LAST TWENTY TC IS *,FlO.3)

IDASHS=IDASHS-10

END

FUNCTION TABLI(VAL,ARG,DUMMY,K)

DIMENSION VAL(1),ARG(1)

DUM=AMAX1(AMIN1(DUMMY,ARG(K)),ARG(1))

DO 1 I=2,K

IF (DUM—ARG(I))2,2,1
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TABLI=KDUM-ARG(I-l))*(VAL(I)-VAL(I—1)))/(ARG(I)-ARG(I-1))+VAL(I-l)

TABLI=TABLI*3/13

RETURN

1 CONTINUE

20

811

812

814

815

816

RETURN

END

PROGRAM EOQ (INPUT,OUTPUT)

DIMENSION INV(12,75),IEOQ(12,IDEM(12),XMARGIN(12),IHOO(12),IGIT(1

12,4),IDUM(12,100),CPU(12),IR(12)

DIMENSION VAL1(22),ARG1(22),VAL2(25,ARGZ(25),VAL3(48),ARG3(48,VA

1L4(26),ARG4(26),VALS(11),ARGS(11),VAL6(33),ARG6(33),VAL7(34),ARG7(

234(,VAL8(39),ARG8(39),VAL9(17),ARG9(17),VAL10(21),ARGlO(21),VAL11(

341),ARGII(41),VAL12(29),ARG12(29)

THIS IS THE MODIFIED EOQ PROGRAM

IFLAC=O

K2=25

K3=48

K5=ll

K6=33

K7=34

K9=17

KlO=21L

K11=41

FORMAT (F10.7)

VALX=O.

D0 811 I=1,25

VAL2(I)=VALX

VALX=VALX+10.

READ 20,ARGZ(I)

VALX=0.

DO 812 I=1,48

VAL3(I)=VALX

VALX=VALX+2.

READ 20,ARGB(I)

VALX=0.

DO 814 I=1,11

VAL5(I)=VALX

VALX=VALX+10.

READ 20,ARGS(I)

VALX=0.

DO 815 I=1,33

VAL6(I)-VALX

VALX=VALX+2.

READ 20,ARG6(I)

VALX=O.

D0 816 I=1,34

VAL7(I)=VALX

VALX-VALX+10.

READ 20,ARG7(I)
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VALX=0.

D0 818 I=1,17‘

VAL9(I)=VALX

VALX=VALX+10.

READ 20,ARG9(I)

VALx=0.

DO 819 I-1,21

VAL10(I)=VALX

VALX=VALX+5.

READ 20,ARG10(I)

VALx=0.

DO 821 I=1,41

VAL11(I)=VALX

VALX=VALX+2.

READ 20,ARC11(1)

DO 101 I=1,8

READ 102,CPU(I),IEOQ(I),IR(I)

FORMAT (F10.3,110,I10)

D0 35 J=1,100

DO 36 J1-l,8

IDUM(J1,J)=0

CONTINUE

DO 1 I=1,8

XMARGIN(I)=O.2

IGIT(I),3)=0

IGIT(I,2)-0

IGIT(I,1)=0

INV(I,1)-100

CONTINUE

TC1=TC=XTC3=O.

ITC2=0

IORDER=0

DO 600 J6=1,500

DO 100 I=1,52

IF (I-l)9,8,9

DO 10 J=1,8

INV(J,I)=INV(J,I-l)+IGIT(J,3)

x=RANF(-1)

IDEM(1)=TABLI(VAL2,ARG2,X,K2)

IDEM(2)=TABLI(VAL3,ARG3,X,K3)

IDEM(3)=TABLI(VAL5,ARG5,X,K5)

IDEM(4)=TABLI(VAL6,ARG6,X,K6)

IDEM(5)=TABLI(VAL7,ARG7,X,K7)

IDEM(6)=TABLI(VAL9,ARG9,X,K9)

IDEM(7)=TABLI(VALlO,ARGlO,X,K10)

IDEM(8)=TABLI(VAL11,ARG11,X,Kll)

DO 11 J=1,8

IIV(J.I)=INV(J.I)-IDEM(J)

IF(INVOJ,I)-O)12,1l,11

XTC3=XTC3-(INV(J,I)*XMARGIN(J)*CPU(J))

MIMI-0 ;~
TC1=TC1+(INV(J,I)*O.3*CPU(J)/52.)
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IHOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)

14 CONTINUE

DO 3 J=1,8

IF (IHOO(J)-ISMALLS)15,15,3

15 IDUM(J,I)=IEOQ(J)

IORDER=IORDER+1

IFLAG=1

3 CONTINUE _

IF (IFLAG—O) 23,10)),23

23 ITC2=ITC2+15'

IFLAG=0

1011 DO 30 12=1,8

IGIT(12,3)=IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(12,1)=IDUM(12,I)

30 IDUM(I2,I)=0

100 CONTINUE

TC=XTC3+ITC2+TC1

PRINT 200,XTC3,ITC2,TC1,TC

200 FORMAT(F18.2,10X,I7,2(iX,F14.2))

ITC2=0

TC1=TC=XTC3=0.

600 CONTINUE

PRINT 71,(IEOQ(I),I=1,8)

PRINT 71,(IR(I),I=1,8)

71 FORMAT (8(15,5X))

END

FUNCTION TABLI(VAL,ARG,DUMMY,K)

DIMENSION VAL(1),ARG(1)

DUM:AMAX1(AMIN1(DUMMY,ARG(K)),ARG(1))

DO 1 I=2,K

IF (DUM-ARG(I))2,2,1

2 TABLI=(DUM-ARG(I-1))*(VAL(I)-VAL(I-1))/(ARG(I)-ARG(I-1))+VAL(I-1)

TABLI=TABLI*3/13

RETURN

1 CONTINUE

RETURN

END

 

PROGRAM EOQ (INPUT,OUTPUT)

DIMENSION INV(12,75),IEOQ(12),IDEM(12),XMARGIN(12),IHOO(12),IGIT(1

12,4),IDUM(12,100),CPU(12).IR(12)

DIMENSION VALI(22),ARG1(22),VAL2(25),ARG2(25),VAL3(48),ARG3(48,VA

1L4(26),ARG4(26),VAL5(11),ARG5(11),VAL6(33),AR06(33),VAL7(34),ARG7(

234),VAL8(39),ARG8(39),VAL9(17),ARG9(17),VAL10(21),ARG10(21),VAL11(

341),ARG11(41),VAL12(29),ARG12(29)

k2=25

K3=48

K5=11

K6-33

K7=34
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K9=17

K10=21

K11=41

FORMAT (F10.7)

VALX=0.

DO 811 I=1,25

VAL2(I)=VALX

VALX=VALX+10.

READ 20,ARG2(I)

VALX=0.

DO 812 I=1,48

VAL3(I)=VALX

VALX=VALX+2.

READ 20,ARG3(I)

VALX=0.

DO 814 I=1,11

VAL5(I)=VALX

VALX=VALX+10.

READ 20,ARG5(I)

VALX=O.

D0 815 I=1,33

VAL6(I)=VALX

VALX=VALX+2.

READ 20,ARG6(I)

VALX=O.

DO 816 I=1,34

VAL7(I)=VALX

VALX=VALX+10.

READ 20,ARG7(I)

VALX=0.

DO 818 I=1,17

VAL9(I)=VALX

VALX=VALX+10.

READ 20,ARG9(I)

VALIhO.

DO 819 I=1,21

VAL10(I)=VALX

VALX=VALX+5.

READ 20,ARGlO(I)

VALX=O.

DO 821 I=l,41

VAL11(I)=VALX

VALX=VALX+2.

READ 20,ARGll(I)

DO 101 I=1,8

READ 102,CPU(I),IEOQ(I),IR(I)

FORMAT (F10.2,IIO,I10)

DO 35 J=1,100

DO 36 J1=1,8

IDUM(J1,J)=O

CONTINUE

DO 1 I=1,8
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XMARGIN(I)#O.2

IGIT(I,3)=O

IGIT(I,2)=0

IGIT(I,1)=0

INV(I,1)=100

CONTINUE

TC1=TC=XTC3=O.

ITC2=0

IORDER=0

DO 600 J6=1,500

DO 100 I=1,52

IF (I-l)9,8,9

DO 10 J=1,8

INV(J,I)=INV(J,I-1)+IGIT(J,3)

.X=RANP(-1)

IDEM(1)=TABLI(VAL2,ARGZ,X,K2)

IDEM(2)=TAELI(VAL3,ARG3,x,K3)

IDEM(3)=TABLI(VAL5,ARG5,X,K5)

IDEM(4)=TABLI(VAL6,ARG6,X,K6)

IDEM(5)=TABLI(VAL7,ARG7,X,K7)

IDEM(6)=TABLI(VAL9,ARG9,X,K9)

IDEM(7)=TABLI(VAL10,ARG10,X,K10)

IDEM(8)=TABLI(VAL11,ARGll,X,K11)

DO 11 J=1,8

INV(J,I)=INV(J,I)-IDEM(J)

IF’(INV(J,I)-0)12,11,ll

XTC3-XTC3-(INV(J,*)*XMARGIN(J)*CPU(J))

INV(J,I)=0

TCl=TC1+(INV(J,I)*O.3*CPU(J)/52.)

DO 14 J=1,8

IHOO(J)=INV(J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)

CONTINUE

DO 3 J=1,8

IF (IHOO(J)-IR(J))15,15,3

IDUM(J,I)=IEOQ(J)

IORDER=IORDER+1

ITC2=ITC2+15

CONTINUE

D0 30 12= 1,8

IGIT(12,3)=IGIT(12,2)

IGIT(12,2)=IGIT(12,1)

IGIT(I2=1)=IDUM(12,I)

IDUM(IZ,I)=O

CONTINUE

TC=XTC3+ITC2+TC1

PRINT 200,XTC3,ITCZ,TC1,TC

FUNCTION TABLI(VAL,ARG,DUMMY,K)

DIMENSION VAL(1) ,ARG(1)

DUM:AMAX1(AMIN1(DUMMY,ARG(K)),ARG(1))

DO 1 I=2,K

IF (DUM-ARG(I))2,2,1
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2 TABLI=(DUM-ARG(I-l))*(VAL(I)-VAL(I-l))/(ARG(I)-ARG(I-l))+VAL(I-1)

TABLI=TABLI*3/13

RETURN

1 CONTINUE

RETURN

END



  




