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ABSTRACT

DEVELOPMENT OF A JOINT ORDER
INVENTORY MODEL

by Harish L. Verma

The purpose of this study is to develop and analyze a

Joint Order Inventory Model. The term joint ordering, as used

here, implies ordering a number of items in a single purchase

order.

The potential savings resulting from the inclusion

of many items on one purchase order is quite large. Some

of the advantages of joint orders are:

1.

Ordering cost can be reduced by including several
items in one purchase order,

Shipping costs can be decreased if the total order

is of a convenient size, e.g. a truck load. Since a
number of items are ordered jointly, it is more likely
that the total order will be of a convenient size.
When a number of items are ordered jointly the dollar
value of the order is larger. Hence, there is an in-
creased opportunity to take advantage of quanity

discounts offered by a vendor.

The Joint Ordering Model that is proposed is characterized

by three parameters, S, s, and s', where § is the maximum inven-

tory level, s is the reorder point,and s' determines the items
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HARISH L. VERMA

to be included in the order. Note that S is greater than s',
which is greater than s. Thus, any item whose inventory level
is equal to or less than s' should be included in the joint

order; s' to s is defined as the reorder range. The joint

ordering rule is defined as follows:

When the inventory level (inventory on hand and on order)
of any item in the group has dropped to the reorder level s,
all items which have inventory levels within the reorder range

S'

to s are ordered jointly. The order quantity for each item
ordered is given by (S - I) where I is the inventory on hand

and on order.

Two hypotheses were proposed for testing.

Major Hypothesis: There exist a number of situations in which

the application of the joint ordering rule, i.e. ordering a group
of items in a single order, results in lower costs when compared

with the use of the fixed order quantity rule,

Minor Hypothesis: If the joint ordering rule is defined by

the three parameters S, s, and s', as defined earlier, then there
exists some optimum value for each of the parameters, such that
the total cost of the inventory control system is minimized.

The costs that are included are ordering costs, inventory carry-

ing costs, and stock out costs.

A considerable portion of this study was concerned with
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the development of a joint ordering rule and the study of the
properties of the rule, especially the performance of the rule
under extreme conditions. Hence, it was necessary to generate
some hypothetical data which represented these extreme conditions.
In generating this data it was assumed that the product group
consists of twelve items, and that demand for each item is norm-
ally distributed with a certain mean and standard deviation.
Although hypothetical data was used to study the properties of
the model, it was felt that the model should be tested with

real data. Real data were obtained from two sources, The Steel
Service Center Institute, and a million dollar farmers' cooper-
ative. However, the data from the farmers' cooperative was not
complete, and sales records for certain periods of time were
missing. For this and other reasons, the data from the farmers'
cooperative could not be used to test the proposed joint order-

ing model.

There were basically two approaches to the development
of the joint ordering model; the analytical approach, and the
simulation approach, A simulation approach was used in this
research, mainly because it was believed that the mathematical
complexity of the problem would make it extremely difficult to
formulate the problem and obtain an analytical solution. This

view was supported by a number of researchers.

Computer programs for the analysis of the data were

developed since no standard routines applicable to the specific
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HARISH L. VERMA

nature of the problem were available. These programs were used
to simulate the inventory control system when the fixed order
rule and the joint ordering rule were used to control inventory.
In order to compare the performance of the joint ordering rule
with the fixed order rule, the same data set was used to compute

the total cost per year.

The results obtained from.the hypothetical data and the
real data indicated that there was sufficient evidence to con-
clude that the major and minor hypotheses were true. Moreover,
inspection of the minimum cost values of the three parameters S,
s, and s' indicated that three distinct cases of the joint

ordering rule could be identified. These were:

1. S=1s'"> s : The proposed joint ordering rule is now
characterized by two parameters, S (or s')
and s.

2. S >s' >s : The joint ordering rule is characterized

by three parameters, S, s', and s.
3. §>s' =35 : As in case 1, the joint ordering rule is
characterized by two parameters. However,
the two parameters are S and s' (or s).
The most important conclusion drawn from these three cases
was that the proposed Joint Ordering Rule is more general, and
incorporates within itself a number of other reordering rules,
both individual item ordering rules such as the two bin inventory

control system, and some joint ordering rules proposed by other

researchers.

Besides the three cases mentioned above, it was found that
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HARISH L. VERMA

there were some situations where it was more economical to use
the fixed order quantity rule rather than the proposed joint
ordering rule. This occured when the mean demands of the items
in the group were widely dispersed. Hence, it was concluded
that when the mean demands of the items in the group are widely
dispersed, it is not only uneconomical to use the joint order-
ing rule to control inventory, but even including the items in
a group is questionable, Lastly, some criteria for grouping

items is suggested.
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CHAPTER I
INTRODUCTION

Inventories are one of the most important assets in the
average company, and their control is one of the most difficult
and challenging tasks of management. The typical manufacturing
corporation has about twenty-four percent of its assets invested
in inventories, compared with thirty-nine percent in net property,
plant, and equipment.1 Further, of all the business assets, inven-
tories are the least stable, and the most difficult to control.
Even the most successful companies are rarely able to manage their
inventories as well as they would like to. Either they have too
much inventory of certain items, too little of others, or a com-
bination of both. It is generally believed that inventory control
can make or break a company. The importance of inventories is
explained by Maynard.2

The control of inventories is one of the most complex

and far-reaching of all business activities. It is the

focal point of many seemingly conflicting interests and

congsiderations--both short-and long-range. Its plan-

ning and execution involve participation by most of the

functional segments of a business: sales, production,

purchasing, finance and accounting. The end result achiev-
ed has a major bearing on the company's financial

strength and competitive position, since it directly

affects quality of service to customers, production

costs, earnings, and soundness of working-capital pos-
ition,

1Ammer, C. Materials Management (Homewood, Ill. : Irwin,
1962,% p. 7.

Maynard, H.B. Industrial Engineering Handbook (New York:
McGraw-Hill Book Company, 1956) pp. 6-55
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In recent years, the number of items held in inventory has
been constantly growing. It is not surprising to find a company
with over five hundred individual items in inventory. This is
because of the increasing technical nature of the items, a demand
for greater variety by customers, and lastly a demand for better
service. Further, it is because of these and other factors that
the number of dollars invested in inventory is increasing at an
even faster rate than the number of items. Hence, in most com-
panies, management has begun to place greater emphasis on the
control of inventories. The word control, as used in this thesis,
implies minimizing the sum of the ordering costs, inventory carry-

ing costs, and stock out costs.

It is not surprising therefore, that in the last twenty
years there has been a rapid growth of interest in what is referred
to as scientific inventory controle the use of mathematical
models to obtain rules for operating inventory systems.1 More has
been written about this subject than any other in the field of

production management.

A survey of the literature on this subject of inventory

control reveals that:

1. Both practitioners and theorists agree on the importance

of sound inventory control.

Hanssman, F., Operations Research in Production and
Inventory Control (New York: John Wiley and Sons, Inc. 1962)
p. 6



2, A growing number of researchers are working with inven-
tory models because they present challenging theoretical

problems in mathematics.l

The technical journals are
filled with theoretical and rigorous discussions of in-
ventory control problems. Unfortunately such articles are
not meaningful to most businessmen who are faced with prag-
matic problems of running the business. This is because
the models are either abstract and too mathematical or
certain parameters used in the model are not operationally
defined. Often, assumptions made in the model are unreal-
istic. Balintfy's multi-item inventory model serves as a
good example. In his article Balintfy admits that the
assumptions were made so as to get an analytical solution
to the problem. At the same time, he believes that these

assumptions restrict the application of his model to prac-

tical problems.

3. With the development of high speed computers and the
increased emphasis on computer based inventoxry control
systems,it has become possible to apply complex decision
rules to maintain tight control over several thousand diff-
erent items in inventory. With the decreasing cost of

computer time, the trend will continue in this direction.

4, The inventory control systems that are generally

discussed in the literature are the fixed order quantity

lHanssman, F., op, cit., p. (vii)






system, the fixed interval system, and lastly, the S and s
system.

The Fixed Order System:

The oldest and most commonly used inventory control system
is the fixed order system, or the two-bin system. The system
uses a fixed-order quantity, which may be an economic order
quantity (EOQ), and a variable order interval. With this
system, the same order quantity (EOQ) of an item is ordered each
time. But the time that an order is placed varies with fluctu-

ations in usage. The reordering rule can be stated as follows:

The economic order quantity is ordered each time the in-
ventory on hand plus the inventory on order equals the expected
demand during lead time, plus the safety stock. The latter is the
inventory needed to protect against possible demand in excess of

that expected during the lead time.

1
The following numerical illustration gives a detailed

description of this system.

Assume that;

demand D = 1000 units per year

cost per unit C = $2.00

ordering cost A = $15.00 per order
inventory carrying cost I = 15 per cent of cost per year
weekly demand: Normal distribution with mean of 15 units and

demand is normally distributed with mean of 15 units and

1Stockton, R.S. Basic Inventory Systems (Boston: Allyn
and Bacon, Inc., 1965), p. 65




standard deviation of 5 units,
lead time = 1 week
Management believes that this item should not be out of stock

more than once a year.

Economic order quantity =[2AD
\‘ CI

= | 2(1000)15 = 316 units
2(0.15)

Therefore the number of orders per year

= 1000 = 3.2 approximately.
316

Therefore the number of stockouts per order

=1 =0.312
3.2

From the table for a normal distribution,
0.312 corresponds to 0.49 standard deviations

beyond the mean.

Hence, the reorder point = (15x1) + (0.49 x 5)

= 15 + 2.45 = 17.45 = 15 units.

The fixed order system works well when a continuous
review of inventory records is maintained and when the
demand for the items in stock is stable. Lee and Dobler1

list the essential characteristics of items controllable

with a fixed order quantity system.

1Lee, L. Jr. and Dobler, D.W. Purchasing and Materials
Management (New York: McGraw-Hill Book Company, 1965) p. 220
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1. The item must experience a reasonably stable
usage.

2. The item should have a lead time which does
not exhibit radical variation.

3. The item must be ac quired from a supplier
who is able to accept irregularly and
unscheduled orders.

The Fixed Interval System:

In the fixed interval system, the reorder cycle is
fixed while the order quantity varies depending on demand.
Thus the inventory level is checked at fixed intervals,

e.g. once a month, and a replenishment order is placed based
on the amount used since the last review. The replenishment
order is equal to the expected demand during lead time plus

review period less the stock on hand and on order.

The following numerical illustration demonstrates the

operation of the periodic ordering system.

Assume that the review period for an item has already
been established and is equal to 5 days. Assume that the lead
time is equal to 2 days and is constant. Further, assume that a
study of user demand during the last year indicated that demand
per day is normally distributed with a mean of 100 units and
standard deviation of 27 units. Then, if at a particular review
the stock on hand and on order is 200 units, the size of the order
to be placed (Q) should be equal to

Q = (expected demand during lead time plus review period)



- (inventory on hand and on order) + buffer stock
Buffer stock = Ji-x 27 x 2
if a 987 service level is desired

100 x 7 - 200 + 1.41 x 27 x 2

o
I

576 units

Periodic reordering system is used where a book inven-
tory control is maintained, and where it is possible to examine
inventory stocks on a fixed time cycle so as to reveal when
inventory level reaches the reorder point and an order is placed,

for example in a warehouse.

1 . .
Lee and Dobler™ 1list criteria for selecting items which

should be controlled with a fixed-interval system.

1. Those exhibiting highly irregular usage and/or lead
time.

2. Items whose purchases must be scheduled in advance
because of various conditions within the suppliers'
operations.

3. Perhaps items with volatile prices.

4, Perhaps a group of items which are all purchased
from the same supplier and can be ordered on one
purchase order and shipped together.

The (s, S) System:

The third inventory control system is a compromise be-
tween the fixed-interval and the fixed-quantity system. The

ordering rule can be simply stated as follows:

"When the inventory on hand plus the inventory on order

is equal to or less than s units, order a quantity sufficient

1Lee, L. Jr. and Dobler, D.W. op. cit., p. 220



to bring stock up to a level S, otherwise, do not order."
1
Magee and Boodman describe the (s,S) rule when applied
to a fixed-interval system.
1. Choose two inventory levels § and s, S larger
than s.
2. At each review period, compare the available
inventory I with § and s.
3. If I lies between S and . s, place no order.
4, If I is at or below the level s, place an
order for an amount equal to S - I.
For example, assume that § is equal to 100 units and
s is equal to 30 units (see Figurel.l). Assume that at a
certain review period the inventory on hand is equal to 25
units. Then, since the inventory on hand is less than s,

order an amount equal to 100 (S) minus 25, that is 75 units will

be ordered.

Inventory
level

Time

Figure 1.1 : Order Quantity under a (s, S)
inventory control system

1 Magee, J.F. and Boodman, D.M. Production Planning and
Inventory Control (New York: McGraw-Hill Book Company, 1967 )
p. 137
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In this case, the reorder point s should be large
enough so that whenever the inventory on hand and on order is

greater than s, the system is protected from run-out to the

-

desired degree over a period equal to the lead time plus the

review period. The system of control is particularly useful

Vﬁere tﬁ;-cdst of making a review and the cost of placing an order
are separate and significant.

The ordering rules described above are most appropriate
when there are few items in inventory. Thus, a reorder point and
an economic reorder quantity (the fixed order system), or reorder
interval and reorder quantity (the fixed interval systém), could
be easily calculated for each item, and the inventory controlled
accordingly. However, inventories are seldom composed of a single
or even a few items. Typically, several thousand different
items are carried in stock. Even for a single product, it is
not unusual to have an assortment of shapes, sizes, colors, etc.
For example, the product category 'screws'" in a typical manu-
facturers inventory will include screws of various lengths,
diameters, number of threads to the inch, wood screws, machine
screws, brass screws, and so on, In the same way, a department
store will carry many different sizes, colors, materials, and
styles of home appliances, men's clothing, women's clothing, etc.
A supermarket carries stocks of a variety of virtually all items
stocked. In these cases it becomes virtually impossible to

establish an economic order quantity and reorder point for
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each stock-item and more so to use these parameters to control
these inventories. What is desired is a method by which sim-
ilar items could be grouped. A rule might then be established
for the group with common parameters (reorder point, order quan-
tity) used to control the inventory of each item in the group.
The task of calculating the economic order quantity and
reorder point for each item is physically impossible. Moreover,
the conventional reordering rules (fixed order quantity, fixed
interval and the S and s reordering rules) are based on the
assumption that the inventory level of each item is controlled
separately, and that each item in inventory is ordered indepen-
dently from others. This is frequently not the case. Fetter
and Da11eck1 recognize this limitation of most inventory models.
They state:
If we now add items to our inventory management problem,
the item-by-item computations for R and Q remain the same,
but we are often faced with new difficulties., These stem
primarily from the fact that the model assumes that each
set of item decisions is independent, when in general, it
is not. (R = reorder point, Q = EOQ)
Often, one supplier is the source of a variety of related
items. Savings can be, and often are, achieved by including

2
a number of such items on one order. Magee and Boodman discuss

this principle advantage of joint orders.

1 Fetter, R.B. and Dalleck, W. Decision Models for
Inventory Management (Homewood, Illinois: Irwin, 1961), p. 63

2 Magee, J.F. and Boodman, D.M., op. cit., pp. 152-153
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For example, a field warehouse may obtain a large number
of items from a single source. It may be desirable to
have any shipment from the source to the warehouse equal
an economical size, such as a carload, in total, but the
mix of items in the order may not affect the cost of
making the shipment measurable. Frequently, a distributor
may wish to order a group of items supplied by a single
vendor not all of which he needs at the present. He may
order some items early from the vendor in order to take
advantage of a variety of forms of discount offered, to
reduce total order costs in those cases where the cost
of an additional line on an order is less than the cost
of a one-line order, or to meet a vendor constraint such
as minimum order size.

Sometimes in manufacturing operations the cost of
setting up a process may indicate the size of a total
run or batch of an item, but the run can be split among
a number of individual package sizes, etc., For example,
in textile manufacture, it may be desirable to dye or
print a large quantity of cloth which can be put up in
a number of different-width bolts.

Another advantage of joint ordering is the increased
opportunity of taking advantage of quantity discounts offered

by a vendor. Thus, according to Prichard and Eagle,

... (another) benefit of joint ordering is the discount

the vendor may offer on a large dollar purchase. Some
suppliers offer price reductions on individual items
bought in large quantities. Other suppliers allow sig-
nificant discount on the total value of single large
orders, even if many items, each of low value, are in-
cluded in the order. There are situations in which a
discount of this type becomes economically attractive only
if several items are ordered jointly.

Hence, there are many instances in which it is worthwhile
to treat items jointly rather than independently, and to order

them as a group. The potential savings resulting from the

1
Prichard, J.W. and Eagle, R.H., Modern Inventory
Management (New York: John Wiley and Sons, Inc., 1965) p.360
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the inclusion of many items on one purchase order are quite large.
Silver1 summarizes the advantages of joint orders.
1. A reduction in ordering costs may be achieved because
several items are processed under a single order.
2. The supplier may offer a discount if an order ex-
ceeds a certain quantity. One way of achieving this
discount is to lump several items under one order.
3. Shipping costs may be significantly reduced if an
order is of a convenient size, e.g. a box car., It
might be necessary to order several items simultan-
eously to achieve such a quantity.
The three basic reordering rules discussed earlier are therefore
inappropriate. What is now required is some sort of a joint

ordering rule. The term joint ordering as used here implies

ordering a number of items in a single purchase order.

A review of the literature indicates that much analytical
work has been done in the cases of independent ordering strategies.
The rules most frequently discussed are those mentioned earlier.
But the literature is almost void of discussion about a joint-
ordering strategy. It is surprising to note that most general
references about inventory theory do not mention this strategy.
Some writers recognize the advantages of the joint-ordering stra-

tegy but fail to develop any joint-ordering rules.

Hence, though much has been written about inventory con-
trol generally and independent ordering rules in particular,

there is a real need to research the joint-ordering rule. The

1Silver, E.A. '"Some characteristics of a special joint-
order inventory model", (0.R. Vol, 13, No. 2, March-April, 1965)
p. 319
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development of a joint-ordering rule seems an appropriate

topic for a doctoral dissertation.

STATEMENT OF PROBLEM

The purpose of this study was to develop a joint-ordering

rule which could be used to order a group of items at one time.
The two important decisions in any single item inventory con-
trol system are the selection of the time to order, and the
quantity to order. In the case of joint ordering, it is nec-
essary to add a third decision, namely which items should be or-
dered jointly. It was believed that these basic decisions

could be made if the joint ordering rule was defined in terms

of three parameters, S, s, and s', where S is the maximum inven-
tory level, s is the reorder point or trigger point, and s'
determines the items to be reordered. Any item whose inventory
level is equal to or less than s' should be ordered; s8' to s

is defined as the reorder range. Note that S is greater than s',
which is greater than s (see Figure 1.2). It illustrates the
variations in the inventory levels of three items. At time t,
the inventory level of item 1 is less than s, the reorder point.
This triggers the reordering process. The inventory level of
the rest of the items in the group is checked, and as is

evident from the figure, the inventory level of item 2 lies
between s' and s, the reorder range. Hence, items 1 and 2

are ordered jointly. The inventory level of item 3 lies out-
side the reorder range. Hence, item 3 is not included in the

joint order. 1t is assumed that the inventory on order for
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each of the items is equal to zero.

>

*-4 1

S - L item 2

2 > L"_um_w

v v | .

> H

— " — s
item 1

Time to

Figure 1.2: Variation in inventory level
of three items
The Jjoint~-ordering rule proposed is:
Whenever the stock of any item in a group has dropped
to the reorder level, the inventory level of all the items in
the group is checked; all items with inventory levels in the

reorder range (§' to 5) are ordered ,jointly.l

In terms of the three parameters, S, s and s' the rule

is defined as follows:

When the inventory level of any item in the group has
dropped to the reorder level s, all items which have inventory
levels (inventory on hand plus on order) within the reorder

range s' to s are ordered jointly. The order quantity for

lThe writer wishes to state that the proposed joint-order-
ing rule is not "original". The basic idea of the rule was
obtained from the article by Balintfy. '
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each item ordered is given by (S-I) where I is the inventory

on hand and on order,

The proposed joint ordering rule is an extension of the
(s,S) rule discussed earlier. Instead of two parameters, S
and s, the proposed rule has three parameters, S, s, and s'.
It was necessary to introduce s' to determine which items to
order jointly. Recall that in the case of the (s,S) system
only two decisions, when to order, and how much to order had to
be made. Hence, two parameters were sufficient., In the case of
joint orders there are three decisions to be made, when to order,b
how much to order, and which items to order. Hence, the need
for the third parameter s'. A detailed discussion of this

rule is included in Chapter three.

HYPOTHESES

The following hypotheses were proposed for testing:

Major Hypothesis:

There exist a number of situations in which the application
of the joint ordering rule, i.e. ordering a group of items in a
single order, results in lower costs when compared with the use

of the fixed order quantity rule.

Minor Hypothesis:

If the joint ordering rule is defined by the three par-
ameters S, s, and s', as defined above, then there exists some

optimum value for each of the parameters such that the total
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cost of the inventory control system is minimized. The costs
that are included are ordering costs, inventory carrying

costs, and stock out costs.

The major part of this research is concerned with test-

ing these hypotheses and hence establishing a joint ordering

rule.

There is one question that yet remains unanswered. The
proposed joint ordering rule can be applied only after the items
have been grouped. Hence, the immediate question is what criteria
should be used to group the items. The following criteria are

suggested,

1. Natural grouping: Some items can be grouped on the
basis of their physical characteristics. For example,
all screws of various lengths, diameters, and the number
of threads per inch could be included in one group. In
a farmer's cooperative visited by the writer, such a
natural grouping did exist., All fertilizers were in-
cluded in one group, all farm fences were included in
another group, all kinds of animal feed were included in
a third group, and so on. Thus, physical characteristics

provide a very simple and natural way of grouping items.

2. On the basis of demand: The criteria suggested here

is very similar to the conventional A, B, C
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classification of items in inventory. Magee and

Boodman1 describe this classification as follows,

Close examination of a large number of multi- item
inventories has revealed a useful statistical regularity
in the distribution of the demand rates of the items in
an inventory. It has been observed that item demand
rates follow lognormal distribution; the logrithms of
the item demands are normally distributed, that is,
they fall into the well-known bell-shaped normal dis-
tribution pattern. Consequently, most items have re-
latively low demand and a few high demand; proportion-
ately few items account for the major part of total
demand.

The dispersion in demand rates suggests that high-
volume items should be handled differently from low-
volume items. One approach is to segment stock into
what is called an ABC classification:

Class A : The top 5 to 10 per cent of items, which
account for the highest dollar inventory
investment.

Class B : The middle 20 to 30 per cent of items, which
account for a moderate share of investment,

Class C : The large remaining group of stock-keeping
items, which accounts for a small fraction
of total investments.

Thus, it is possible to group items on the basis of
demand. 1In addition to the broad A, B, C classification,

each class could be further sub-divided into groups. The

joint ordering could then be applied to each group.

3. Nature of the source of supply: Frequently a
number of items are supplied by a single vendor. Hence,

all such items could be put into one group and

1
Magee , J.B. and Boodman, D.M., op. cit., p. 156
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ordered jointly so as to take advantage of a variety
of forms of discount offered by the vendor. In the
case of the farmers cooperative mentioned earlier,
it was found that all farm fences came from a single
supplier. This provides an additional reason for

including all farm fences in one group.

4. Nature of production process. There are a num-
ber of production processes where the law of fixed
proportions applies to a considerable extent, This
is especially true in the chemical industry where

for example one pound of item A would require two
pounds of item B so as to get one and a half pounds
of a product C. In this case item A and B could be
included in one group. Similarly,in a manufacturing
operation every nut used requires a bolt. Hence,nuts

and bolts could be included in a group.

These are some of the methods that could be used to
group items. The best one seems to be the grouping of items
on the basis cf demand. However, this or any other method
could be used in conjunction with another. For example, in
the farmers cooperative visited by the writer, the items
were already classified on the basis of their physical char-
acteristics (e.g. farm fencing, fertilizers, etc.). Each

group of items was then subdivided into a number of smaller
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groups on the basis of the expected demand for each item.
The joint ordering rule could then be applied to each smaller

group.
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CHAPTER II

SURVEY OF LITERATURE

More work has been done in the area of inventory con-
trol than in any other area in production management. Starr
and Miller believe that, "bookshelves are creaking in despair
at the weight of volumes on this subject". There are literally
hundreds of articles and volumes on the subject of inventory
management. Some of these publications are devoted to the app-
lication of inventory theory to practical problems. But, an
increasing number of researchers are working with inventory
models because they present interesting theoretical problems

in mathematics.l

It would be almost impossible to list all the volumes
and articles on the subject of scientific inventory control.
Moreover most of these publications are not relevant to the
research topic in particular. Hence a general bibliography
about inventory control is included. These publications
have been selected on the basis of two criteria. In the
first place they are well known and a serious student of
inventory control should have knowledge about them. And
secondly, some of the publications touch upon the chosen

research area, joint ordering rules. However, a survey of

lHanssman, F. Operations Research in Production and
Inventory Control (New York: John Wiley and Sons, Inc.,
1962) p. vii
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the literature indicated that on joint order inventory models
in particular, there are very few publications. The discuss-
ion in this chapter will be restricted to publications relevant

to this thesis,

Following is a list of joint order inventory models of

specific interest.

Balintfy's Random Joint Order Modell

Balintfy analyzed multi-item inventory problems, where
joint order of several items might lead to savings in setup
cost. He also developed a new ordering policy called "random
joint order policy" which is characterized by a reorder range

within which several items can be ordered. Balintfy described

this policy as follows :1

As is known, the individual orders in most random out-
put systems are triggered by the inventory level, in
particular by the reorder level of the items. This
level or the corresponding point on the time scale,
the reorder point, constitutes a dead line when the
order for new items must be issued.

Now, it is easy to define another (higher) inventory
level which may be called "can-order"” level, or "can-
order" point - - such that the range determined by
difference between "can-order" and reorder points
will replace the triggering role of the reorder point.
The rule then would say that whenever an order for a
particular item must be issued, i.e., the stock of any
item has dropped to the reorder level, the inventory
level of the rest of the items will be checked, and
all items which are in the reorder range shall be or-
dered jointly.

lBalintfy, J. L., "On a basic class of Multi-item Inven-
tory Problems”, (Management Science, Vol. 10, No. 2, January
1964) pp. 287-297
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To arrive at an analytical solution to the multi-item
inventory problem, Balintfy made certain assumptions. One
assumption was that T, the reorder period for an item, is
defined as a negative exponentially distributed random variable

with an expected value To' Another assumption was, To for all

items should be the same. This implies that in general all
items are reordered everytime an order is placed. The author
admits the limitation of his analysis because of these and

other assumptions. According to him,

These restrictions were needed to clear the way for the
application of [equation] (28). [The equation gives the
probability distribution of the number of joint orders]
Their (assumptions) removal means that we have to attempt

to solve a machine interference problem with general ser-
vice time distributions, non-Poisson arrivals, and different
arrival rates in different channels, It is a known fact
that an analytical solution has not been found for this
problem thus far, Yet, it cannot be overlooked that most

of the practical problems will fall in this category.

He then goes on to suggest that one way to determine re-

order ranges in the general case, is to resort to simulation

techniques.

2
Magee and Boodman's Multi-item Model

Magee and Boodman analyzed the multi-item problem as a

production problem. That is, they were interested in determin-

ing how a single production run could be split among a number of

1
Balintfy, J.F. op. cit., p. 296

2

Magee, J.F. and Boodman, D.M. Production Planning and
Inventory Control (New York: McGraw-Hill Book Company, 1967)
pp. 152-157
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individual items or package size. This problem is faced by al-
most all manufacturing operations. For example, in chemical
manufacture, process economies may determine the total size of

a batch of an item to be produced, but this batch could be split
among a number of different container sizes or package sizes.
Magee and Boodman suggest procedures to determine when to pro-
duce a batch and how to balance the batch or shipment among
individual items. The procedure is as follows:

1. A batch, run, or shipment must be started to be
completed before any individual item runs out.

2. The sum or the amounts of the individual items made
or shipped must equal the total desired economical
batch or order.

3. The quantity made or shipped should be balanced among
individual items to delay need for the next run
or shipment as long as possible.

An approach that can be used follows these lines:

1. A reorder point is set on each individual end item,
e.g. each package size. This is set in the usual
way, to cover maximum demand or to give the desired
service protection on the individual item over pro-
curement lead time.

2. A new run or shipment is made whenever the inven-
tory on hand or in process of an individual item
reaches a reorder point,

3. The new run or shipment is distributed among the
individual items as follows:

Let I = inventory on hand or in process of one item,

the ith item.

1Magee, J.F. and Boodman, D.M., op. cit., p. 153
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p; = reorder point, the i item

s; = expected usage rate, the ith item

Q; = amount of the run or shipment given over
to the i™® item

Q@ = total run or shipment size

I = total inventory, all items

P = total of the individual reorder points

S = total of the individual usage rates

Then the amount of any individual product shipped

would be

Q’j_: Si(Q+I'P"Il+Pi

S

Magee and Boodman have analyzed the multi-item reorder
problem as a production problem rather than an inventory con-
trol problem, although the model could be used for multi-item
inventory control. However, the model has certain limitations.
In the first place, they do not indicate how the formula for
Qi was derived. It could be based on experience, Further,
the model lacks details and this severely limits the application
of the model. For example, the authors do not indicate how Q,
the total shipment size whould be determined. Lastly, though
they do illustrate how this procedure works, they fail to dem-~
onstrate any economic advantage of their procedure over the

conventional individual item ordering rules.
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Maynard's Group Ordering Rulesl

Maynard refers to the multi-item reordering rule as Group

Ordering Rules. His version of the group-ordering rule is as

follows:l

All the items in a group are coded to designate the
particular ordering group, and each item is assigned
an individual order point and order quantity. In
addition, a total order quantity is assigned for the
group of items. When the stock on hand and previously
on order of any one of the items in the group falls

to its order point, a new order is placed. The order
is made up by ordering the established order quantity
for each item in the group, starting with the item that
reached its order point and adding items that are near
thelr order points until the size of the over-all order
reaches the assigned total order quantity.

This joint ordering rule seems to be heuristic. The
author does not go into details about how the total order
quantity for the group, or the individual order quantities for
each item within the group, can be determined. Opportunities
for obtaining quantity discounts were not considered, although
this may be the principal advantage of the joint ordering rule.
Lastly, Maynard did not indicate what cost savings will result
when this rule is compared with the conventional individual

item ordering rules.

Prichard and Eagle - The Economics of Joint Orders?

lMaynard, H. B. Industrial Engineering Handbook (New York:
McGraw-Hill Book Company, 1950) pp. 7-64

2Prichard, J. W.y Bagle, R. H. Modern Inventory Management
(New York: John Wiley and Sons, Inc. 1965) pp. 360
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Prichard and Eagle have by far the best analysis of joint
orders. They include a discussion about the advantages and dis-
advantages of joint orders,and then by a numerical illustration
have demonstrated the cost savings resulting from joint orders.
They considered a group of four items ordered from one supplier
and three ways of controlling inventories of the four items.

The three inventory control methods were:

a) Periodic review and separate replenishment method.
b) Separate replenishment with continual review method.

c) Joint replenishment with periodic review method.

The authors then compared the total cost of the three
alternative methods of controlling the inventory of the four

items.

The analysis is excellent because it takes into account a
number of details which surprisingly lead to significant changes

in total costs. Some of the details considered were,

a) A portion of the total ordering cost was assumed to
dépend on the number of items on the order.

b) The safety-stock required under each replenishment
policy was calculated so as to minimize the value -of
back-ordered demands. The safety stock required turned
out to be different for the different methods of con-

trolling inventory.

¢) Quantity discounts on large orders were included.
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The calculation of the safety-stock required under each
replenishment policy led the authors to conclude thatl
The increased chance of shortage due to the higher
frequency of replenishment coupled with the need to guard
against demand variation over the review cycle and Quring
lead time leads to a much higher safety stock for joint
replenishment than for separate replenishment.

On the basis of a numerical illustration, the authors

finally concluded that in general joint replenishment is cheaper

than separate replenishment.

The analysis has one serious limitation. It is assumed

implicitly that all items are ordered every time a joint order is

placed. That is, every replenishment order is a Jjoint order and
includes all four items. This does not seem necessary. It should
be possible to achieve additional savings through decrease in
total inventory by ordering some items less frequently then others.

The joint ordering rule proposed in this thesis is not limited by

Prichard and Eagle's assumption. This is because, according to
the proposed joint ordering rule, when an order is placed, only
those items which have inventory levels within the reorder range

(s' to s) are included in the order.

Silvers's Two Item Rule2

Silver analyzed a joint-order. rule involving two items.

lprichard, J. W., Eagle, R. H., op. cit., pp. 363
Silver, E. A. "Some characteristics of a Special Joint-
Order Inventory Model" (0.R. Vol. 13, No. 2, March-April, 1965)

pp. 319-322
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The two items were assumed to have identical characteristics,
including unit Poisson demand. The joint ordering in this case
was to order both items up to a level Q each time the level of
either item dropped to zero. The author compared his joint order-
ing rule with the alternative, where the two items are ordered

1
separately. He finally concluded that,

For any given value of A\ [where A is the cost of

cr
placing an order for one item, c is the unit cost of an
item, r is the inventory carrying cost, and A 1is the
mean demand for each item] there is a critical value of
m [mA is the cost of placing an order for two items,
where 1€ m g2]below which it is preferable to use
joint ordering, above which we prefer independent
ordering.

«e.. for example, for A\ equal to 5, the critical
cr
m is 1.23. Therefore, in this case, if the cost of
placing a joint order is less than 1.23 times the cost
of placing an order for a single item, we use a joint
ordering strategy.

Silver's analysis is useful and well conceived, but it

too suffers from certain limitations. They are,

1. The analysis considers only two items.

2. The two items are assumed to have identical cost
characteristics and unit Poisson demand. Each time an
item is demanded, it is assumed that the demand is for
one unit, In addition to this, the mean demand for the
two items is assumed to be identical.

3. The reorder point is zero as the delivery lead time
is assumed to be zero, i.e., an order is assumed to

arrive instantaneously.
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4. It follows from (3) that there are no stockouts and

hence the cost of lost sales is not considered.

These assumptions indicate, that the analysis is of
limited theoretical significance. It may be that the joint or-
dering problem was analyzed by Silver because it presents an
interesting mathematical problem. It is doubtful that his joint

ordering rule could be applied given his constraints.

Starr's Constrained Control of Multiple Ttemsl

Starr views the inventory control of multiple items as a
constrained problem, the constrains being limited company resour-
ces or limited capacity of the ordering department. According to

hime,

The company's resources are limited. It is frequently
unreasonable to carry the total average dollar inventory
that the individual item's optimal policies would require.
The capacity of the ordering department may be overtaxed,
storage facilities may be filled to capacity; the amount
of capital invested in inventory may exceed the amount
that the company has available. These limitations, if
they exist, require a modification of inventory policy.
That is, the theoretical system's optimal is not feasible
because it violates other practical system's constraints.

The author then developed a procedure for handling such
problems. The problem that is analyzed by Starr is different
from that considered in this thesis. The principal difference

being that there are no contraints to the problem dealt with

1Starr, Martin, K. Production Management (Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1963.) pp. 321
Starr, M. K., op. cit., pp. 323
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in this thesis. 1In this thesis it was assumed that there was
both sufficient capital available to invest in inventory and
sufficient storage facilities to store the goods. Lacking

such constraints, the problem was simply to develop a joint
ordering rule that minimized total costs. Starr, on the other
hand, assumed that there were certain limitations, for example,
limited company resources available for inventory which re-
quire a modification of the inventory policy. That is, it was
not feasible to order the economical order quantity for each
item because it led to a total average inventory investment
greater than that available. Starr, then developed a procedure
for calculating what the order quantity for each time should
be under the constrained conditions. As is evident, the

problem is clearly different from that analyzed in this thesis.

Fetter and Dalleck: Managing Multi-item Inventory1

Fetter and Dalleck's analysis of the management of a
multi-item inventory is similar to Starr's. Like Starr, these
authors developed a least cost solution in which the total
number of orders, setup, and total order cost or setup cost
were restricted in some way. The problem was to find the order
quantity for each item under these constrained conditions.
Fetter and Dalleck's solution to this problem was very similar

to Starr's. As mentioned earlier, the problem analized

1Fetter, Robert B., and Dalleck, W. Decision Models for
Inventory Management (Homewood, Illinois: Irwin, 1961) p. 63
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in this thesis was not a constrained problem. The problem was
simply to develop a joint ordering rule that minimized total

costs,

Starr and Miller: Multiple Items, One quplier1

Starr and Miller considered the problem of joint orders
under the heading, Multiple Items from on supplier. They took
an analytical approach to the problem. However, their joint or-
dering rule was very similar to Maynard's Group Ordering

Rules mentioned earlier.

They considered all the items in the group as representing
one unit, and calculated the ordering policy for this one unit.
That is, they developed an EOQ formula when the group of items
was considered as one unit (the EOQ formula was developed in terms
of t, the months between orders). They then compared the total
cost obtained by this approach with the total costs when each
item was 'optimized separately", i.e. when each item was consi-
dered separately and the order quantity was determined so as
to minimize the total costs for each item. Lastly, Starr and
Miller analyzed the particular case when one of the items in
the group accounted for a large proportion of the total dollar
demand for the group of items, or, when the items were divided
into two sub-groups and each sub-group was optimized separately.

They concluded that a criterian could be set up which would

1Starr, M.K. and Miller, D.W. Inventory Control:
Theory and Practice (Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1962) pp. 104-110
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determine when the t (months between orders) should be the same
for all items. For example, the criteria as to when the items

should be divided into two groups was as follows:

Let,
the total number of items be = n

the total dollar demand for these items be = D

Let the cost of preparing an order be equal to a
fixed cost ¢ and a variable cost which depends on the
number of items in the order.1 The variable cost
accounts for the cost of physical inspection, cost of
pulling out a stock card, etc,, and also depends on the
number of items in the order. Let the review cost for
the individual item be expressed as a multiple of the

fixed cost, h x c, where h is a constant.
Let the items be divided into two groups, A and B.
The number of items in group A = g.

(n -g).

Therefore, the number of items in group B

Assume that group A accounts for a fraction a of

the total dollar demand.

Therefore,

1These assumptions were made by Starr and Miller in
their analysis.
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Group A has a total dollar demand = a x D

Group B has a total dollar demand (1 - a)Dd

Starr and Miller's criteria for determining when

the items should be divided into two groups was as

follows:1

Hence, whenever this inequality was true for some
g, then t, the months between orders should be deter-
mined separately for each of the two groups, A and B.
If, the inequality was not true, then it would be more

economical to use the same t for all items.

One other interesting conclusion reached by the

authors was:

....that the potential savings resulting from the
incorporation of many items on one order are generally
quite large. Of course, most companies which are able to
amalgamate items on single orders automatically do so.
However, they do not necessarily do so in the optimal
way, so further savings can be accomplished by utilizing
the methods we have been developing (in this chapter).
The point for future reference is that, since this is so,
any theoretical inventory system which does not permit
such multiple item orders is incurring a cost of the
kind we called, (in the first chapter) systemic costs,

The analysis is sound and useful, but it too has it's

limitations., They are:

1
Starr, M.K. and Miller, D.W. op. cit., p. 108

2
Starr, M.K. and Miller, D,W. op. cit., p.l1l09



-34-

1. The analysis assumes that demand for a particular item
is constant over time, i.e, certainty is assumed. Hence,
inventory carrying costs and ordering costs were the only
costs that were included in the total cost. The cost of

lost sales is not considered.

2. Although an EOQ for the group as a unit can be cal-
culated, the problem as to how much of each item within
the group should be ordered so that the total order is
equal to the EOQ for the entire unit remains unsolved.
3. The authors calculate the value of t, the number of
months between orders, which is assumed to be the same
for all items within the group. Hence every item is

ordered every t months. This is not necessary. There

may be instances where it may be more economical to

order some items more often then others.

Thus, while Starr and Miller's analysis is impressive
it does have theoretical limitations and hence restricted appli-

cation value.

Thus, the survey of the.literature indicated that although
there are definite advantages of the joint ordering over the con-

ventional independent ordering strategies, no such rule has been

developed. The few joint ordering models that were proposed have
theoretical limitations and hence, restricted application value.
In some instances the Jjoint ordering problem was analyzed

because it represents an interesting mathematical problem.



CHAPTER III

ANALYSIS OF THE MODEL

Before getting into the experimentation of the model, it
was felt that it would be worthwhile at this stage to analyze
the model in some detail. The purpose of such an analysis was

to get a better understanding of the proposed joint ordering rule.

SPECIFICATION OF THE RULE

The joint ordering rule was defined in terms of three
parameters, S, s, and s', where S is the maximum inventory level,
s the reorder point or trigger point, and s' determines the items
to be included in the joint order. s' to s was defined as the
reorder range. Note that S is greater than s', which is greater

than s as shown in the figure below.

S
>
-
o
Lo
§ 3 s'
> —~ =z 7 reorder
> s . range

Time

Figure 3.1: The Joint Ordering Rule characterized by three
parameters, S, 8 and s'.
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The proposed joint ordering rule was stated as follows:

Whenever the stock of any item (inventory on hand and on
order) in a group has dropped to the reorder level s, the inven-
tory level of the rest of the items in the group is checked and
all items with inventory levels in the reorder range s' to s

are ordered jointly. The quantity of each item ordered is

given by (S -I) where I is the inventory on hand and on order.

In general, joint ordering will lead to an increase in
inventory carrying costs. This is because some items in the
group, which have inventory levels between s' and s, the re-
order range, are ordered although they should be ordered when
the inventory level reached the reorder point s. This more
frequent ordering of some items before the reorder point is reach-

ed, leads to an increase in inventory carrying costs.

On the other hand, joint ordering will lead to a savings
in ordering costs because a number of items are included in a
single order. Further, since a number of items are included in
a single order, the total dollar value of the order is larger.
This provides an opportunity to take advantage of quantity dis-

counts,

The inventory carrying cost and the ordering cost will
depend on the size of the reorder range. An increase in the
width of the reorder range will increase the probability of

joint orders. This will lead to a savings in ordering costs.
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But the same effect (increasing the width of the reorder range)
will increase the average inventory level due to the "lifted

trigger levels of some items.”1

This suggests that an optimum
value of the three parameters S, s', and s exist and can be
found. The optimum will occur when the difference betweeen the

savings due to joint orders and increased costs due to increased

inventory is maximum,

PROPERTIES OF THE MODEL

The proposed joint ordering rule was characterized by
three parameters, S, s, and s', where S is greater than s',
and s' is greater than s. Hence, by definition s' lies between
S and s, and can have a maximum value of S and a minimum value
of s. Hence, four distinct cases can be identified depending

on the value of s'.

Case 1 : When s' = §

By definition, the reorder range s' to s determined the
number of items that would be included in a single order,
i.e. ordered jointly. The larger the size of the reorder range,
the greater the number of items that will be ordered jointly.
But for a fixed value of s, the size of the reorder range is
determined by s'. The closer 8' is to S rather than s, the

larger the size of the reorder range.

1Balintfy, J.L., "On a basic class of multi-item inven-
tory problems'" (Management Science, Vol. 10, No. 2, January
1964) p. 292
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Since, by definition s' can have a maximum value of S, the re-
order range would be maximum when s' is equal to S. Further,
since the maximum inventory for any item in the group is equal

to S (this includes inventory on hand and on order), all items
will have inventory levels (inventory on hand and on order)
between s' (equal to S) and s.. That is, all items will have in-
ventory levels within the reorder range s' to s and hence, all
items will be ordered every time a joint order is placed. The

joint ordering rule now becomes,

Whenever the stock of any item in a group has dropped to

the reorder level, all items will be included in the order.

The three parameter joint ordering has now been reduced to
a two parameter case, the two parameters being § (or g') and s.

This situation is illustrated in Figure 3.2.

_— — S = g'

Reorder Range
— (maximum)’

Inventory
Level

Time

Figure 3.2: A special case of the Joint Ordering Rule,
The Rule is now characterized by two para-
meters S (or s8') and s.
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Next, under what conditions will s' be equal toS ? This
situation, namely s' equal to S, such that all items are included
in every order, will arise when the mean demands for the items
making up the group are almost equal. That is, the dispersion
of the mean demand is relatively small.1 If the standard devi-
ation of mean demands is used as a measure of this dispersion,
and if the standard deviation is relatively small, it would be
more economical to order all items whenever an order is placed.
This is because, if the mean demands are almost equal, and if the
inventory carrying cost is assumed to be almost the same for all
items, then the reorder points and economic order quantities for

all the items in the group will be almost equal.

Case 2: When s' = s

The other extreme case will occur when s' is equal to s.
Hence, the reorder range s' to s will be minimum and equal to

zero. The situation is illustrated in Figure 3.3.

When the reorder range is equal to zero, it means that
only those items which have inventory levels less than or equal
to s, the reorder point, will be included in the order. The

joint ordering rule now becomes,

1The term ''relatively" small or ''relatively' large is used
because no single figure can be specified. The next section in
this chapter includes a discussion of what factors determine the
range of the standard deviation of the mean demands within which
each of the four cases will occur.
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Figure 3.3: Another special case of the Joint Ordering Rule.
The Rule is characterized by two parameters §
and s (or s').

Whenever the inventory level of any item in a group has

dropped to the reorder level, that item alone is reordered.

As in case (1) the three parameter rule is reduced to

a two parameter case, the two parameters being S and s (or s').
Moreover, the joint ordering rule is now very similar to the
simple individual item rule, namely the (s, S) rule or the fam-
iliar two bin inventory control system. There is however, one
important difference between the simple (s, S) rule and the
proposed joint ordering rule in the modified form (s'=s, S).

In the (8, S) system, the parameters § and s are computed for

each individual item, and these parameters are then used to
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control the inventory of the respective items. For example, if
there were twelve items in the group, it would be necessary to
compute twenty-four parameters, two for each item. But in

the proposed joint ordering rule, in the modified form (s' = s, S),
the values of the two parameters s and S are common to all items

in the group. Hence, unlike the (s, S) system, only two parameters

are sufficient to control the inventory of the entire group.

Next, under what conditions will s' equal s? s' will
equal s when it is more economical to control the inventory of
each item separately. This in turn will occur when mean demand
for the items is widely dispersed. That is, when the standard de-
viation of the mean demands for the items is relatively large.
This means that there are some slow moving items, some medium
selling items, and some fast moving items in the group. Hence,
if the economical order quantity and the reorder point were cal-
culated for each item, they would be so widely dispersed that it

would be more economical to treat the items individually.

Case 3: When S>s'>s

The two extreme cases were those mentioned under case
(1) and case (2). In case (1), s' was equal to S, and the re-
order range s' to s was maximum. In case (2), s8' was equal to
s and the reorder range s' to s was minimum. In case (3), s'
is neither equal to § nor s but lies between S and s, and the
statement of the joint ordering rule remains the same as that

proposed in Chapter 1 of this thesis. The rule is:
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Whenever the stock of any item in a group has dropped to
the reorder level s,all items which have inventory levels in

the reorder range s' to s are ordered jointly.

As is probably evident, this situation will arise when
the mean demands for the items are neither widely dispersed as
in case (2), nor are the mean demands almost equal as in case
(1). In short, the dispersion of the mean demands would lie
somewhere between the two extremes., If the standard deviation
of mean demands is used as a measure of dispersion, then case
(3) would occur when the standard deviation would neither be

too large nor too small, but somewhere in between.

Case 4.

There is another situation that is conceivable. In some
situations it may not be economical to use the joint ordering
rule in any form what so ever. That is, it would be more eco-
nomical to control the inventory level of each item independently
of the others, using one of the three independent ordering rules
discussed in Chapter 1. This will occur when the mean demands
of the items are so widely dispersed that including the items in
a single group is also questionable. Hence, the standard devia-

tion of demands for the items will be extremely large.

The figure below summarizes the four cases discussed so
far. Using the standard deviation of mean demands for the items

as a measure of dispersion, the figure illustrates the four
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cases that are possible.

Case 1 | | Case 2 |
S =gs' s8' =8
= = I"‘—-PJ 2 7 2le——case 4
Case 3 Fixed Ordering Rule
S>s '>s is more economical

I
| Ordering Rule.
]

| I
l I
] than the Joint
I |
| ]

Standard Deviation of
mean demands

Figure 3.4: A summary of the four distinct cases of the
Joint Ordering Rule.

Range of the Standard Deviation

In the last section four cases were identified, depending
on the value of the standard deviation of mean demands of the
items, For example, in case (1) the minimum cost values of the
three parameters S, s' and s would be such that s' equalled S
and the reorder range was maximum. This would occur when the
standard deviation of the demands of the items was ''relatively"
small. In fact the term relative was used to define the order of
magnitude of the standard deviation in case (2), case (3), and
case (4). No attempt was made to specify a specific range for

the standard deviation within which case (1) would occur.

It is almost impossible to specify a specific range of

the standard deviation for each of the four cases. But a number of
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factors which do affect the magnitude of the range can be

identified,

1. Nature of the demand distribution: The most impor-

tant factor that will influence the magnitude of the
range of the standard deviation for each of the four
cases, is the probability distribution of demand for
each item. For example, the magnitude of the range of
the standard deviation will be different when the de-
mand for each item is normally distributed than when the

demand has a poisson distribution.

2. Inventory carrying costs: The joint ordering rule
leads to an increase in average inventory. Hence, the
lower the inventory carrying cost per unit per year,

the more economical it is to carry more inventory and
hence order items more frequently by including a larger
number of items in a single order. This could be done

by increasing the size of the reorder range s' to s,

as the size of the reorder range determines the items
that should be included in an order. Hence, keeping

all other conditions the same, the size of the reorder
range (at minimum total cost) will be greater when

the inventory carrying cost per unit is decreased. This
means that the range of standard deviation of mean demands
under case (1) will be greater, the greater the inventory

carrying cost. Thus, the inventory carrying cost will
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have a considerable influence on the magnitude of the

range of the standard deviation of demands in question.

3. Ordering costs: The greater the ordering cost, the

greater the savings by including a number of items in

a single order. This can be achieved by increasing

the size of the reorder range s' to s. Hence, assuming
that all other conditions remain the same, the size of
the reorder range (corresponding to minimum total cost)
for Case 1 will be greater, the greater the cost of re-
ordering. In short, the range of the standard deviation
of demands under each of the four cases will be in-

fluenced by the magnitude of the ordering cost.

4. Cost of lost sales: The greater the penalty for

unfilled demands, the greater the savings that can be
achieved by maintaining a higher level of inventory,
or more correctly by raising the reorder point s.
This is exactly what happens when a large number of
items are included in a single order. This is be-
cause some items in the group which have inventory
levels within the reorder range, are ordered although
they should be ordered when the inventory level
reached the reorder point s. In short, the effect of
joint orders results in "lifted trigger levels for

some items."1 Hence, the greater the size of the reorder

1
Balintfy, J.L., op. cit. p. 292
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range the less the losses through unfilled demands.

The cost of lost sales therefore effects the size of
the reorder range, and hence the magnitude of the range
of the standard deviation within which each of the four

cases would occur,

These are the important factors that determine exactly
what the term "relative'" used throughout the four cases means.
No specific values that are universally valid can be determined.
In this thesis, demand was assumed to be normally distributed,
and certain values for the ordering cost, inventory carrying
cost, etc., were assumed. Under these specific assumptions, the
range of the standard deviation for each of the four cases was

determined.



CHAPTER IV

EXPERIMENTATION

This chapter is divided into three sections. The first
section considers the development of the model, and experimen-
tation with it. Since a simulation approach was adopted, the
section includes an explanation as to why this particular appro-
ach was preferred. The second section considers the nature of
the data used to test the model, and the sources of the data.
The last section discusses the methodology and the detailed

steps taken in the research.

DEVELOPMENT AND EXPERIMENTATION OF THE MODEL
On the basis of the literature search, there were
basically two approaches to the development of the joint or-

dering model.

The analytical approach: This approach begins with the identi-

fication of the important, exogeneous variables, endogenous
variables, parameters, etc. Mathematical relations between
these variables and parameters are then established. The
system is then said to be described in terms of a set of
mathematical equations. A solution is then obtained by solving
the equations analytically, using such techniques as calculus,

algebra, etc.

In general, analytical techniques are most suitable for

-47-



-48-

1
solving deterministic models. Naylor defines the term deter-
ministic models and explains why deterministic models can be

solved analytically.

In deterministic models, neither the exogenous
variables nor the endogenous variables are permitted
to be random variables, and the operating characteristics
are assumed to be exact relationships rather than pro-
bability desity functions. Deterministic models are
less demanding computationally than stochastic models,
and can frequently can be solved analytically by such tech-
niques as the calculas of maxima and minima. Most of
the traditional models in microeconomic theory are de-
terministic models in which complete certainty is an
implicit assumption,

Although simulation, and in particular Monte Carlo
analysis can be used to obtain solutions to strictly
deterministic models..., in most cases analytical tech-
niques are more efficient, computationally speaking,
than simulation models...

The Simulation approach:

Simulation is essentially a technique that involves
setting up a model of a real system, and then performing ex-
periments on the model so as to obtain data about the probable

behavior of the real system.

In general, simulation techniques are most suitable for
solving stochastic models which are more complex than deter-

2
ministic models. According to Naylor ,

Those models in which at least one of the operating

1Naylor, T.H., Balintfy, J.L., Burdick, D.S., and Chu, K.
Computer Simulation Techniques (New York: John Wiley and Son,
Inc.,2 1966) p.1l6

Naylor, T.H. et. al. op. cit. p.l7
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characteristics is given by a probability fuction

are said to be stochastic models. Because stochastic
models are considerably more complex than deterministic
models, the adequacy of analytical techniques for
obtaining solutions to these models is quite limited.
For this reason, simulation is much more attractive

as a method for analyzing and solving stochastic

models than deterministic models.

Each of these approaches has it's advantages and short-
comings. It would be worthwhile at this stage to discuss these

very briefly.

Advantages and Disadvantages of the analytical approach:

The analytical approach is very general, precise, and
more accurate than the simulation approach. It is general be-
cause it applies to a whole class of problems. 1It's generality
is it's principle advantage. It is precise because all definitionms,
functions, and relationships are stated unambiguously. Lastly, the
solutions to problems obtained analytically are also unambiguous

and accurate.

However, mathematical analysis is often not powerful
enough to yield general analytical solutions to situations as
complex as are encountered in business. Often, the observed
system is so complex that it becomes almost impossible to des-
cribe it in terms of mathematical equations. For example, it
is virtually impossible to describe the operations of a firm or
industry (at the micro level) in terms of a set of algebraic
equations, And even though such a mathematical model can be

formulated, it may be almost impossible to obtain a solution
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to the model by straight forward analytical means. Complex
queuing problems provide examples of these kinds of difficulties.
Queuing problems are both difficult to set up in terms of al-
gebraic equations, and even more difficult to solve the set of
equations to obtain an analytical solution. Buffa1 believes

that most real queuing problems are beyond an analytical sol-

ution,

The main limitation of the practical application
of waiting line theory, is the fact that existing form-
ulations for standard mathematical distributions often
do not fit the actual distributions of arrival and ser-
vice rates in specific real problems. The mathematical
complexity increases with nonstandard distributions
and as the basic problem departs from the simple single-
channel situation to multichannel problems in tandem.
Fortunately, these more complex waiting line problems
can be handled by the general techniques of simulation,
regardless of how complex they might be mathematically.

Advantages and Disadvantages of the Simulation approach:

The principal reason for choosing computer simulation,
is it's ability to overcome the above mentioned difficulties.
It is possible to avoid the complex mathematics, and yet get
fairly accurate solutions to problems using a simulation
approach, Schimidt and Taylor2 list four advantages of sim-
ulation.

1. The model of a system once constructed, may be

1Buffa, E. Modern Production Management (New York:
John Wiley and Sons, Inc., 1962) p. 67

2Schmidt, J.W. and Taylor, R.E. Simulation and Analysis
of Industrial Systems (Homewood, Ill.: Irwin, Inc., 1970)
P.> .
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employed as often as desired to analyze different
situations,

2. Simulation methods are handy for analyzing proposed

systems in which information is sketchy at best,

3. Usually data for further analysis can be obtained

from a simulation model much more cheaply than it
can from the real world system.
4, ---simulation methods are often easier to apply
than pure analytic methods, and hence, can be employed
by many more individuals.

Buffa1 refers to another very important advantage of
simulation. He believes that for the decision maker, the ideal
situation is to be able to try out an idea without first risking
or committing company funds., With a simulation model and a computer,
the manager can try out dozens of alternatives. Thus, simulation,
with the aid of high speed computers, makes available an '"ex-
perimental laboratory'" to management personnel. Another ad-
vantage of computer simulation is that through simulation, one
can study the effects of certain changes (informational, environ-
mental, etc.) on the system, by making alterations on the
system's behavior. At the same time, no changes are made in

the actual physical system itself., Further, the effect of

all such changes can be studied within a matter of minutes.

Although simulation seems such a useful technique, it is
not without limitations. In the first place, it is not as ge-
neral as the analytic approach. This seems to be the principle

limitation. Secondly, a simulation model does not produce an

1Buffa, E. op. cit. p. 68
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optimum answer, as some mathematical models. Mize and Cox1

summarize this limitation of simulation methods as follows:

Simulation methods are used more broadly than in de-
riving a solution from a mathematical model of a
process. The expressed purpose of certain simulation
studies is to provide a means of observing the be-
havior of the components of a system under varying
conditions. No solution in the mathematical sense

is sought; rather, the objective is to gain an under-
standing of the relationships among components of the
system,

Thirdly, simulation generally leads to the solution of
a given problem by an iterative process. Compared to solving
equations, the iterative process is not so neat, and definitely
requires more computation, If the model is very complicated,
it may be necessary to expend a great deal of computer time
so as to obtain trustworthy answers. This is another drawback
of the simulation approach. Schmidt and Taylor2 believe
this to be a very important limitation. Thus, according to
them:

1, Simulation models for computers are very costly to
construct and to validate. 1In general, a different
program must be constructed for each separate
system, Special purpose simulation languages---
have helped to reduce this factor. However, this
is still a formidable disadvantage.

2. The running of the simulation program, once con-

structed, can involve a great deal of computer
time, which is also very costly.

IMize, J.H. and Cox, J.G. Essentials of Simulation
(Englewood Cliff, New Jersey: Prentice-Hall) p.2
Schmidt, J.W. and Taylor, R.E. Simulation and Analysis
of Industrial Systems (Homewood, Ill, : Irwin, 1970) p. 6
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Lastly, with the introduction of stochastic variables into
a simulation, the variables that are used to measure the system
performance become stochastic variables. Hence, the problem of
gauging the significance of the results must be considered, as
the values measured are no more than a sample. Wagner1 believes
that this is one of the reasons why most operations research
analysts look upon digital computer simulation as a method of

last resort,

When the model includes uncertain events, the answers
stemming from a particular simulation must be viewed
only as estimates subject to statistical error. For
example, a simulated queuing model yields only an
estimate of a waiting line's average length or the
associated probability of a delay. Therefore, when
you draw conclusions about the relative merit of
different specific trial policies as tested by a
simulation model, you must be careful to assess the
accompanying random variations,

Although no attempt will be made to get into this problem at
this stage, it must be mentioned that a large number of com-
puter runs have to be made so as to get reliable results.

This means more computer time and hence, more costs.

Simulation approach preferred:

There were basically three reasons for using a sim-

ulation approach in this research.

1. It was believed that the mathematical complexity

1Wagner, H.M. Principles of Management Science (Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1970) p. 500
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of the problem would make it extremely difficult to
formulate the problem and obtain an analytical so-
lution., This view was supported by a number of
researchers. Balintfy1 defines certain parameters
and makes certain assumptions so as to arrive at an
analytical solution to a problem very similar to the
one analyzed in this dissertation. However, he con-

cluded that an analytical solution would be difficult

to obtain for this problem when the assumptions are

dropped. Yet, most of the real problems are not
constrained problems. That is, the assumptions are

invalid. Balintfy then suggests that a simulation

approach would be appropriate. Brown2 also believes

that joint order problems reach a degree of complexity
that is unmanageable and beyond analytical solution.
In view of these opinions, it was felt that a simula-

tion approach was the only practical alternative.

2. It was also believed that some of the demand data that
would be used to test the model would not fit the
mathematically defined probability distributions,
e.g., the normal distribution, the poisson distri-
bution, etc. This is especially true when one works

with real data. Here again, simulation is the only

1Balintfy, J.L. "On a basic class of multi-item inven-
tory problems" (Management Science Vol. 10, NO. 2, January,
1964) p. 296

2Brown, R.B. Decision Rules for Inventory Management
(New York: Holt, Rinehar and Winston, 1967) p. 203
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approach available,

3. Lastly, since it was likely that some experimentation
would be involved, i.e., changing the values of the
parameters, and recording the consequences over time,
simulation would be necessary. A good example of
such an experimentation would be the search for the

optimum values of the three parameters, S, s, s', so

as to minimize total cost,

DATA SOURCE

Hypothetical Data

A considerable portion of this research was concerned
with the development of a joint ordering rule, and the study
of the properties of the rule, especially the performance of
the rule under extreme conditions. Hence, it was necessary
to generate some hypothetical data which represented these
extreme conditions. In generating this data, the following

assumptions were made.

1. The product group consists of twelve items.
2. The demand for each item is normally distributed

with a certain mean and standard deviation,

Nine data sets were generated. These are listed in

Table 4.1 through Table 4.9 As is evident from the tables,

1Costs of computer runs and the time factor in analyzing
the results were major constraints in extending the analysis to

a larger number of items.
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Table 4,.1:

Data Set 1

The means and standard deviations of the demands for the twelve
items in the groupl.

STANDARD PERCENTAGE
ITEM MEAN DEVIATION DEMAND
1 8 1 7.619
2 10 1 9.5238
3 10 2 9.5238
4 6 1 5.7143
5 10 1 9.5238
6 11 1 10.4762
7 12 1 11.4286
8 9 1 8.5714
9 9 2 8.5714
10 5 1 4,7619
11 8 1 7.619
12 7 1 6.6667
100.00

The Standard Deviation of the mean demands = 1,96

Range of mean demands = 12 - 5 = 7

11t was assumed that the demand for each item was normally
distributed with some mean and standard deviation.
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Table 4.2 .

Data Set 2

The means and standard deviations of the demands for the twelve
items in the groupl.

STANDARD PERCENTAGE
ITEM MEAN DEVIATION DEMAND
1 5 1 4.8544
2 7 1 6.7961
3 9 2 8.7379
4 8 1 7.767
6 6 1 5.8252
6 11 2 10.6796
7 12 1 11.6505
8 9 1 8.7379
9 10 1 9.7087
10 11 2 10.6796
11 8 1 7.767
12 7 1 6.7961
100.00

The Standard Deviation of the mean demands = 2.15

Range of mean demands = 12 - 5 = 7

11t was assumed that the demand for each item was normally
distributed with some mean and standard deviation.
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Table 4.3 .

Data Set 3

The means and standard deviations of the demands for the twelve
items in the groupl,

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND
i 13 2 6.7708
2 15 1 7.8125
3 16 2 8.3333
& 19 1 9.8958
5 21 1 10.9375
6 11 1 5.7292
7 17 2 8.854@
8 21 1 10.9275
9 23 2 11,9792
10 14 1 7.2917
11 10 1 5.2083
12 12 1 6.25

100.00

The Standard Deviation of the mean demands = 4.26

Range of mean demands = 23 - 10 = 13

11t was assumed that the demand for each item was normally
digtributed with some mean and standard deviation.
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Table 4.4

Data Set 4

The means and standard deviations of the demands for the twelve
items in the group-.

STANDARD PERCENTAGE

ITEM MEAN DEVIATION DEMAND
1 20 1 5.3333
2 23 2 6.1333
3 26 3 6.9333
4 28 2 7.4667
5 30 4 8.00
6 29 1 7.7333
7 33 | 8.80
8 35 4 9.3333
9 37 3 9.8667
10 40 2 10.6667
11 40 3 10.6667
12 34 3 9.0667

100.00

The Standard Deviation of the mean demands = 6.39

Range of mean demands = 40 - 20 = 20

11t was assumed that the demand for each item was normally
digtriblited with some mean and standard deviation.



Table 4.5 :

Data Set

The means and standard deviations of the demands for the twelve
items in the group-~.

STANDARD PERCENTAGE
ITEM MEAN DEVIATION DEMAND
1 4 1 2.2989
2 6 1 3.4483
3 9 2 5.1724
4 12 1 6.8966
5 15 2 8.6207
6 17 2 9.7701
7 19 3 10.9195
8 21 2 12.069
9 23 2 13.2184
10 25 3 14,3678
11 10 1 5.7471
12 13 2 7.4713
100.00

The Standard Deviation of the mean demands = 6,69

Range of mean demands = 25 = 4 = 21

1Tt was assumed that the demand for each item was normally
distributed with some mean and standard deviation,
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Table 4.6 .

Data Set 6

The means and standard deviations of the demands for the twelve
items in the groupl.

STANDARD PERCENTAGE
ITEM MEAN DEVIATION DEMAND
1 5 1 2,2222
2 7 1 3.1111
3 11 2 4.8889
4 14 2 6.2222
5 17 2 7.5556
6 21 3 9.3333
7 24 2 10.6667
8 27 3 12,00
9 30 3 13.3333
10 32 3 14,2222
11 12 1 5.3333
12 25 2 11,1111
100.00

The Standard Deviation of the mean demands = 9.04

Range of mean demands = 32 - 5 = 27

1Tt was assumed that the demand for each item was normally
distributed with some mean and standard deviation.
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Table 4.7

Data Set 7

The means and standard deviations of the demands for the twelve
items in the groupl.

STANDARD PERCENTAGE
ITEM MEAN DEVIATION DEMAND
1 10 1 3.2787
2 15 2 4.918
3 17 2 5.5738
4 19 1 6.2295
5 20 3 6.5574
6 25 2 8.1967
7 27 2 8.8525
8 29 3 9.5082
9 30 3 9.8361
10 35 3 11.4754
11 38 2 12.459
12 40 3 13.1148
100.00

The Standard Deviation of the mean demands = 9.47

Range of mean demands = 40 - 10 = 30

11t was assumed that the demand for each item was normally
distributed with some mean and standard deviation.
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Table 4.8
Data Set 8

The means and standard deviations of the demands for the twelve
items in the group-.

STANDARD PERCENTAGE
ITEM MEAN DEVIATION DEMAND
1 5 1 1.2887
2 21 1 5.4124
3 27 2 6.9588
4 31 2 7.9897
5 34 3 8.7629
6 40 2 10.3093
7 48 3 12,3711
8 54 2 13.9175
9 62 2 15.979%
10 12 1 3.0928
11 24 1 6.1856
12 30 1 7.732
100.00

The Standard Deviation of the mean demands = 16.65

Range of mean demands = 62 - 5 = 57

ITt was assumed that the demand for each item was normally
distributed with some mean and standard deviation.
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Table 4.9

Data Set 9

The means and standard deviations of the demands for the twelve
items in the group.l

STANDARD ‘ PERCENTAGE

ITEM MEAN DEVIATION DEMAND
1 60 3 14.7059

2 10 3 2.451
3 21 3 5.1471
4 30 2 7.3529
5 39 3 9.5588
6 53 3 12.9902
7 64 3 15.6863
8 3 1 .7353
9 25 1 6.1275
10 26 1 6.3725
11 33 2 8.0882
12 44 1 10.7843

100.00

The Standard Deviation of the mean demands = 18.90

Range of mean demands = 64 - 3 = 61

11t was assumed that the demand for each item was normally
distributed with some mean mean and standard deviation.,
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the standard deviation of the mean demands of the twelve items
is a minimum for data set 1. The standard deviation then grad-
ually increases and is a maximum for data set 9. Thus, it was
possible to study the behavior of the proposed reordering rule
under various demand levels. The standard deviation could not
be increased beyond that of data set 9, because then the econo-
mical order quantity for items with a high mean demand becomes

less than the reorder point. However, it was strongly believed

that though hypothetical data was used for the experimenta-
tion, the results obtained are general. The hypothetical data
is in no way different from real data.1 If actual data closely
resembling the hypothetical data were available, the results

obtained would remain unchanged.

Real Data
Although hypothetical data was used to study the properties
of the joint ordering model, it was felt that the model should be

tested with real data. Real data was obtained from two sources.

Steel Service Center Institute: One set of data was obtained from

the Steel Service Center Institute. Sales data from this source
was not obtained directly, but from the work of Basic.2 Basic se-
lected twelve items of a typical Steel Service Center which had
relatively high volume and which contributed significantly to the

firm's profit. The demand for each item, in units per month,

lThe inventory carrying cost and ordering cost assumed, were
obtained from a production handbook. (see p. 66)

2Basic, M.K., '"Development and Application of a Gamma-based
Inventory Management Theory'" (Unpublished Ph.D. dissertation,
Michigan State University, East Lansing, Michigan, 1965)
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was recorded for 59 months, from January , 1960 through November,

1965. Basic then fitted a gamma distribution function to the

sales data for each item using standard acceptable statistical

methods.

Description
1" round steel bar, Cl018, 12' long

The selected items were;

1%" round steel bar, C1l018, 12' long

153" round steel bar, C1018, 12' long

1 3/4 round steel bar, C1018, 12' long

%" square steel rod, C1018, 12' 1long

1" square steel rod, Cl018, 12' long

Price per bar1

$9.43
$14.68
$21.14
$28.72
$1.00

$12.63

¥" x 3/4" rectangular steel flat, C1018, 12' long $3.00

¥'" x 1" rectangular

¥ x
5 x
5 x
5 x

Basic concluded that the demand for each item was

4”

6"

distributed.

rectangular
rectangular
rectangular

rectangular

The values of the parameters

steel

steel

steel

steel

steel

flat,
flat,
flat,
flat,

flat,

C1018, 12' long
Cc1018, 12' long
C1018, 12' long
C1018, 12' long

C1018, 12" long

$3.56
$14.07
$6.57
$19.65

$40.15

gamma

r and _A for the

gamma distribution which best fit the data for each item were

1The prices of the twelve items were not available from

Basic's thesis.
in Lansing, Michigan.

Hence, these were obtained from a steel supplier
The prices are as of March 13, 1970.

Appendix A has a general description of a gamma distri-
bution and the meaning of the parameters r and _) .
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therefore readily available in the dissertation. Since the
primary purpose of this research was to test the joint ordering
rule developed earlier, and not fitting a probability distribu-
tion to demand data (unless necessary), it was felt that data
from Basic's dissertation would be most appropriate. Knowing
the values of the gamma parameters and the cumulative gamma
probabilities for each item, demand could be simulated fairly
easily.l Further, the twelve items selected by Basic were
essentially similar in nature; steel bars, round, square, or
rectangular in shape. And lastly, the items could be ordered

from the same supplier as a joint order.

The profit margin, inventory carrying costs, and the
ordering costs were not available from Basic's thesis. After
consultation with individuals experienced in the buying and

selling of steel, the following values were assumed:

Inventory carrying cost 30% of the selling price of

the item per unit per year

Profit margin 20% of the selling price

Ordering cost $15.00 per order

Delivery lead time 3 weeks

Farmers' Cooperative: One year sales figures were obtained

from a million dollar farmers' cooperative. The firm is a large

1Appendix D has a detailed description of the procedure
for the generation of gamma variates.
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organization geared mainly to the needs of Michigan farmers.

It carries a very broad line of products, estimated to include

about five thousand individual items. These items are group-

ed into fifteen categories on the basis of physical character-
istics. Some typical product groups are farm hardware, fertilizers,
and animal feed. Each product group includes fifteen to two
hundred individual items. Sales data were obtained for the farm
fence group consisting of fourteen items. All the fourteen items
were essentially different kinds of farm fence. They were all
ordered from the same supplier. This product group was selected

for several reasons:

1. The items in the group were similar in nature except
for minor physical differences. Hence, they were
appropriate for this research.

2. The items were ordered from the same supplier and
hence, could be ordered as a joint order.

3. Sales records for these fourteen items were available.
This was not true for the other product groups.

4. The product group included fourteen items, which was

neither too small nor too large a number.

The list of fourteen items, along with the cost of each item,
is provided in Table 4.10. All the items are different kinds of
farm fence, and hence, no product description is included.

After consultation with individuals in charge of the
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warehouses, the inventory carrying costs, and delivery lead time

were assumed as follows:

Inventory carrying costs 28% of the cost of the item per

unit per year.

Ordering costs $10.00 per order

Delivery lead time 1 week

Profit margin 107% of the cost of the item.

METHODOLOGY

The step by step procedure adopted when hypothetical data
was used, was different as compared to the procedure when real
data was used to carry out the simulation. Hence, these are

listed separately.

Hypothetical Data

Step 1: Computer programs for the analysis of the data were
first developed, since no standard routines applicable to the
specific nature of the problem were available. The programs
were written in FORTRAN, suitable for the CDC-6500 and CDC-3600
computers at Michigan State University. These are listed in

Appendix F of this thesis.

The following assumptions were made in preparing the

programs:

Starting inventory = 100 units for each of the twelve items

$15.00 per order1

Ordering Cost

1See Appendix B for an explanation of the basis of this
assumption.
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Value of each item = $10.00
Inventory Carrying
Cost = $2.08 per unit per year, which is

approximately 207 of the value of
an item1
Profit margin = 107 of the value of an item
= $§1.00 per unit

Value of lost

sales = $1.00 x (number of units demanded

but not supplied)2

Delivery lead

time 3 weeks

It was assumed that demand for each item is expressed
only once a week. Moreover, the demand was assumed to occur at
the beginning of each week. Hence, the inventory carried over
from the preceeding week, less the demand at the beginning of
the week. Therefore, the inventory carrying cost for the week
will be equal to balance inventory times 0.04, where 0.04 is the
inventory carrying cost per week. For example,

Initial inventory = 100 units

lgee Appendix B for an explanation of the basis for this
assumption,

2If an item is demanded but not supplied because of insuf-
ficient inventory, the sale is assumed to be lost. That is, it is
assumed that the customer is not willing to wait for fresh sup-
plies to arrive, and goes to a competitor to make his purchase.
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Assume that the demand at the beginning of week one =
12 units,
Therefore, the inventory for the remainder of week one =
100 - 12 = 88 units.
Therefore, the inventory carrying cost for week one =
88 x 0.04 = $3.52.
If the demand at the beginning of week two = 10 units,
then, the inventory for the rest of week two = 88 - 10 = 78,
Therefore, the inventory carrying cost for week two =
78 x 0.04 = $3.12.
Hence, the total inventory carrying cost at the end

of two weeks = $3,52 + $3.12 = $6,64.
This process is repeated for the third week, and so on.

Lastly, all the calculations in the simulation were
made on a weekly basis. Again, the cost of computer time
was the major constraint preventing the use of a time step

of one day.

As mentioned earlier, demand for each item was assumed
to be normally distributed with a certain mean and standard
deviation. Hence, it was necessary to generate normally dis-
tributed random variates with a specified mean and standard

deviation. Naylor1 has developed a procedure and a FORTRAN

1Naylor, T.H. et.al. op. cit, p. 95
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subroutine for the generation of normal variates. The sub-
routine was quite general, and was used directly. The procedure
involves taking the sum of twelve uniformly distributed random
variates between zero and one. Then, if X is a normally dis-
tributed random variable with standard deviation O and mean u

X =0 x (sum - 6.0) + p

where SUM = sum of the twelve uniformly distributed
random variates between zero and one.

A listing of the subroutine is provided in Appendix C.

In all, four programs were written. Program EOQ sim-
ulates the operation of the system assuming that the inventory
level of the items is controlled using the fixed order quantity

system. This system is characterized by two parameters. These

Economical order quantity EOQ =J]2 x A x D
J i

are:

where A = ordering cost (in dollars)
D = demand per unit time (in units)
i = inventory carrying costs (in dollars per unit

per unit time)
Reorder point ROP = (a xJS-x standard deviation of
weekly demand) + (3 x average

weekly demand)
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where a = a parameter to be determined by management.
It determines the allowable risk of service
failure.

= 2 (assumed)

Since the demand occurs once a week and the delivery lead time
is three weeks, the expected demand during the lead time will
be three times the average weekly demand. The square root of
three results, because the standard deviation of demand during
lead time (three weeks) is equal to square root of three times
the weekly standard deviation of demand. Recall that the
ordering cost in this case was assumed to be fifteen dollars

per item ordered.

Program EOQ Modified was the same as the program EOQ
except for one difference. The ordering cost was now assumed

to be fifteen dollars per order regardless of the number of

items included in the order.

Program REPEAT was a search program which searched for

the optimum values of the three parameters S, s, and s'.

Lastly, program CONVERG was used to simulate the system
1
for 500 years, so as to get a reasonable degree of convergence

with respect to the total cost per year,

1A detailed discussion of why 500 years was selected is
included on p. 80,
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Step 2: In step one, program REPEAT was written, which searched
for the optimum values of the three parameters S, s, and s'. But
before the search could be started, it was necessary to calculate
the initial (or starting) values of the three parameters. Hence,

in step two these initial values were calculated.

Computation of s: In the proposed joint ordering rule, s was

defined as a trigger point for the entire group. When the in-

ventory level of any item in the group is equal to or less than
s, a joint order is placed. In the simple (s, S) inventory con-

trol system, s is the trigger point for an individual item. Hence,

the only difference between s in the (s, S) rule and s in the

(s, s'

» S) rule is that in the former, s is the trigger point
for an item while in the latter, s is the trigger point for the

entire group. Hence, one way to compute s for the group would

be to compute s for each individual item in the group (using the
traditional method)and then use these values to compute s for
the entire group. Hence, as a first approximation, the reorder
point for the group, s could be computed by taking the weighted
average of the individual reorder points. The procedure adopted
for computing the weights assigned to the individual reorder

points and the initial value of s was as follows:

1. The reorder point for each item in the group was

computed using the conventional method such as
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(ROP) . reorder point for item j
J

(expected demand during lead time)

+ (a x standard deviation of demand
during lead time)

where a = a constant., It determines the allowable
risk of stock out

= 2 (assumed)

2. Once the individual reorder points had been cal-
culated, the value of s for the group was computed
as follows:

s = Zj wj X (ROP)J,

where w_ = the weight assigned to item j
1
= demand for item j
total demand for
the entire group.

Computation of S:

In the simple (s, S) inventory control system, S deter-
mines the quantity that should be ordered for each item, since
(S-I) is the order quantity where I is the inventory on
hand. As an approximation, the average order quantity will
equal the difference (S-s). In the (s, s', S) system, S

determines the order quantity for all items in the group, as

S i8 common for the entire group. It would be desirable that

the order quantity for each item be equal to an economic order
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quantity. That is, the difference (S - s) for each item in
the group be equal to an economic order quantity. But since
the parameters § and s are common for the entire group, the
difference (S - s) will also be common for the entire group.

Hence, it is necessary to compute a single value of (S - s),

i.e., a single value of the economic order quantity for each
item in the group (using the traditional method), and then
use these values to compute an economic order quantity that
is common for the entire group. As a first approximation,
the economic order quantity for the group could be computed
by taking the weighted average of the individual economic
order quantities. The procedure adopted for computing the
economic order quantity common to the group and hence com-

puting S was as follows:

1. The economic order quantity for each item in the
group was first computed using the conventional

lot size formula.

(EOQ)j = economic order quantity for item j
I
where A = ordering cost
D = demand per unit time
I = inventory carrying cost per unit per unit time,

2. Next, the individual item economic order quantities
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were used to compute an economic order quantity
common to the entire group.

(EOQ) = I Wy X (EOQ)j

weight assigned to item j

where w,
]

demand for item j
total demand for
the entire group

3. Recall that as an approximation, the difference (S - s)
was equal to an economic order quantity. Therefore,
S - s = EOQ
i.e. S = s + EOQ

where s = the parameter calculated previously.

Calculation of s':

By definition of the joint ordering rule, s' lies between
S and s and has a maximum value of § and a minimum value of s.
Hence, the most appropriate initial value of s' would be it's
maximum value S. The initial value of s' was therefore set
equal to S. Starting with this maximum value, s' was decreased
in steps up to a minimum value of s. Details of this procedure

are described in step 3.

The initial (or starting) values of the three parameters
have now been computed. In step three, these initial values

were used to search for the optimum values of the three parameters,
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S, s, and s'.

The next step was simulating the operation of the

system using three inventory control systems and the hypothetical

data,

1.

The three inventory control system were:

1
The Fixed Order System: This inventory control system

is characterized by two parameters, the economic order
quantity and the reorder point. With this system the
same order quantity (EOQ) of an item is ordered each

time; but the time that an order is placed varies with
fluctuations in usage. The ordering cost was assumed

to be $15 per item ordered.

The Modified Fixed Order System: The inventory con-

trol system in this case is the same as in (1) except
for one difference. A number of items can be included
in one order. But a separate economic order quantity
and reorder point is computed for each item. The or-
dering cost was assumed to be $15 per order regardless

of the number of items included in the order.

The Joint Ordering System: In this case, the proposed

joint ordering rule characterized by three parameters,
S, s, and 8', is used to control inventory. The ordering

cost was assumed to be $15 per order as in (2).

1See p. 4 for details.
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In order to compare the performance of the three inven-
tory control systems, the same data set was used to compute the
total cost per year when each inventory control system was used.
Thus, a data set was first used to determine the total cost under
the conventional EOQ system. The program EOQ was used to sim-
ulate the system for n years. Next, the same data set was used
in the EOQ (Modified) program to determine the total cost when
a number of items could be included in one order, although a
separate economic order quantity and reorder point was used for
each item. The system was simulated for n years. Lastly, the
same data were used to simulate the inventory control system
when the proposed joint ordering rule was used to control inven-
tory. In this case, two steps were involved. First, program
REPEAT was used to search for the minimum cost values of the
three parameters, S, s, and s'. Next, once the optimum values
of the parameters were found, the program CONVERG was used to
simulate the system for n years. In all three cases, conventional
EOQ, modified EOQ, and the joint ordering rule, a single estimate
for the total cost per year was assumed to be the mean of the

last twenty of the n yearly costs.

There are two things that need further explanation. First,
the term n years was used throughout the earlier discussion.
Hence, it is necessary to explain why the system should be simu-
lated for n years and what the appropriate value of n should be.

Second, it is necessary to explain the method adopted to search
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for the minimum cost values of the three parameters, S, s, and

s' using the program REPEAT.

The Value of n:

In any simulation experiment certain initial or starting
conditions have to be assumed. This gives rise to what is known
as an initial bias in the results., That is, the results obtained
immediately after time zero are influenced by the starting con-
ditions and hence, cannot be used as a measure of system
performance. Moreover, for the first few time periods wide varia-
bility in results are genérally obtained. Both these problems

make it difficult to get an estimate of the time results.
1 .
Gordon suggests a procedure for overcoming these problems:

The more common approach to removing initial bias
is to eliminate an initial section of the run. The run
is started from an idle state and stopped after a certain
period of time. The entities existing in the system at
that time are left as they are. The run is then restarted
with statistics being gathered from the point of restart.
As a practical matter, it is usual to program the simula-
tion so that statistics are gathered from the beginning,
and simply wipe out the statistics gathered up to the
point of restart., No simple rules can be given to decide
how long an interval should be eliminated.

Another approach to the problem of estimating the
precision of simulation results does not rely upon repet-
ition, but uses a single long run, preferably with the
initial bias removed. The run is divided into a number.
of segments to separate them into batches of equal size.
The mean of each batch is taken and the individual batch
means are regarded as independent observations. The
estimated value of the variable being measured is the

1Gordon, G. System Simulation (Englewood Cliffs, New
Jersey: Prentice-Hall, 1969) p. 285
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mean of the batch means.

The method adopted in this thesis was similar to the sec-
ond approach recommended by Gordon. In order to eliminate the
initial bias and the initial variability the system was simulated
for five hundred years (each year consisting of 52 weeks and hence,
52 interations). Hence, n was equal to 500. The cost of computer
time was a major constraint in extending the length of the run.
Moreover, it was found that convergence with respect to total
cost was obtained to a reasonable degree within five hundred
years. Then, a single estimate for the total cost per year was

assumed to be the mean of the last twenty yearly total costs.

The Search Process:

An exhaustive search for the minimum cost values of the
three parameters S, s, and s' is almost impossible because of
the large number of combinations of the three parameters that
is possible. For example, assume that the search is started

with the following initial values of two parameters.

180

o
Il

60

o
n

Then s' can take on a maximum value of 180 and a minimum
value of 60. Assuming that the values of the parameters are
changed in steps of 10, the number of possible combinations of

the parameters is equal to
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19 x 19! x 19!

Moreover, for each set of parameters it is necessary to
simulate the system for a sufficiently long period of time so
as to get a reasonable degree of convergence, and hence, a good
estimate of the total cost per year. It is clear that not
only is the task physically impossible, but the cost of computer
time would run to several thousand dollars. Hence, only a
limited search was conducted in most cases, using the following

procedure.

The parameters S and s were held constant and s' varied

between1

S and s until the minimum total cost was obtained.

The value of s' was changed in steps of 10 and for each set

of parameters the system was simulated for 50 yearsz, so as to
get a reasonable degree of convergence. A single estimate for
the total cost per year was assumed to be the mean of the last
twenty yearly costs. Next s' was held constant at it's minimum
cost value along with s and S was varied between a maximum

(the first estimate of S) and a minimum of s'. Once a minimum
cost value of S was obtained, S and s' were held constant and
s was varied between a maximum of s' and a minimum of zero. 1In

most cases the process was stopped at this stage, and it was

assumed that the minimum cost values of the three parameters had

1Recall that by definition s' can have a maximum value of
S and_a minimum value of s.

The cost of computer time was a major constraint in
limiting the simulation to 50 years.
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been determined. The search was therefore limited. But, in some
cases, the whole process mentioned earlier was repeated a number
of times until the minimum cost values of the three parameters
were obtained. It must be mentioned that the limited search
procedure did give fairly accurate results. That is, the minimum
yearly total costs did not differ significantly from the minimum

costs obtained through limited search.

Step 4: The next step was the analysis of the results. The
total yearly costs under the three reordering rules1 using the
same data set were compared, and a percentage difference in costs
with respect to the proposed joint ordering rule was calculated.
Finally, from the results obtained , the necessary conclusions

were drawn,

REAL DATA

Data from the Farmers Cooperative:

Step 1: The first step was the collection of sales data from
the farmers cooperative. The data were obtained from sales
receipts or order forms, then tabulated and finally punched

into computer cards.

Step 2: Next, the items were divided into three groups,
the high-volume items, the low-volume items, and the medium

selling items, using the ABC classification approach.2 The

1See p. 73 of this thesis for a detailed statement of
the three reordering rules.

2For an explanation of this approach, see p. 17 of this
thesis.,
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medium selling items consisting of ten items were selected for
further study since it was felt that inventory for the high
volume and low volume items could be controlled using the
traditional methods. Moreover, management at the farmer's
cooperative was more concerned with these medium selling

items,

Step 3: The sales data for these items were then tabulated

and the monthly sales for each item were computed. Since exact
dates of the sales were not available, the weekly sales figures
could not be obtained. The monthly sales for each item were
then plotted on graph paper so as to study the sales pattern

for each item over the year.

Step 4: A study of these graphs indicated that the sales of
each item was highly seasonal, being maximum during the months
of May through November, and almost zero during the period of
January through March.1 In order to simulate this data it was
necessary to fit a probability distribution to the demand
data. However, it was found that this was impossible for sev-

eral reasons.

1. In the first place, only one year's sales data were
available. And since the sales per month was computed,
only twelve data points per item were available. It was

impossible to fit a probability distribution to these

1See graphs on p. 151 and 152,



-85-

Table: 4.10

Product Cost Weight of

Code 1 role
30,000 lbs. 20,000 lbs. Less then 1bs,/roll
and over and over 20,00Q 1bs.
$/roll $/roll $/roll

1003 24,22 24,64 25.70 212

1004 21.53 21.91 22.85 188

1005 19.01 19.35 20.18 166

1006 32,44 33.00 34.40 280

1007 28.57 29.07 30.30 246

1008 24,87 25.30 26.37 214

1009 16.98 17.28 18.01 146

1010 15.31 15.58 16.24 132

1011 13.54 13.78 14.36 116

1012 22.46 22.84 23.79 190

1013 19.90 20.24 21,08 168

1014 17.49 17.79 18.53 148

1017 13.72 13.94 14.49 109

1018 11.94 12.13 12.61 95
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data points because of the small number of points available.

2. Secondly, if at all a probability distribution function
was fitted to the sales data, it would be difficult to
test the accuracy of this probability function since
no other sales data were available. This would mean
using the same data to do both obtain a probability
distribution function and next, to test the probability
distribution function. This procedure is questionable,
especially in this case where the sales patterns are

not consistent from year to year.

3. Thirdly, during the process of computing the monthly
sales it was found that sales records for certain
periods of time were missing. Hence, the accuracy

of the data in general was questionable.

It was for these reasons that the data obtained from the
farmers cooperative was not used to test the proposed joint
ordering model. However, since considerable time was spent
on the collection and analysis of this data (a worthwhile ex-
perience indeed), it was felt that whatever results were obtained

should be included in the thesis.

Data from The Steel Service Center Institute:

1
Step 1: As mentioned earlier, Basic fitted a gamma distribu-

1Basic, M.E. op. cit.
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tion function to the demand data for twelve items. The twelve
items were relatively high volume basic items which a metal
service center is expected to have on hand to satisfy customer
needs. Hence, the data from the Steel Service Center were al-
ready tabulated. Moreover, since a gamma distribution had been
fitted to the data, tables showing the gamma cumulative pro-
bability distribution for each item were readily available.
These tables are reproduced in Tables 4,11 through 4,22 of

this thesis. The gamma cumulative probability distribution was

used to generate the demand for each item.

Step 2: Computer programs for the analysis of the data were
developed, since no standard routines applicable to the specific
nature of the problem were available. The programs were

written in FORTRAN, suitable for the CDC-6500 and CDC-3600 com-
puters at Michigan State University. The programs are listed

in Appendix F.

The following assumptions were made in preparing the pro-

grams,

Starting inventory = 100 units for each of the twelve

items.

If an item was demanded but not supplied because of in-

sufficient inventory, the sale was assumed to be lost. The

1Basic, M.E. op. cit. pp. 47-56
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Table 4.11:

Cumulative gamma probability distribution for 1" round steel bar,
C1018, 12' long

Units -Cum, Prob.
10 .00024
20 .00479
30 .02329
40 .06385
50 .12839
60 .21288
70 .30995
80 .41152
90 .51058
100 .60206
1i0 _ .68292
120 .75188
130 .80897
140 .85504
150 .89144
160 . 91966
170 .94117
180 .95735
190 .96935
200 .97815

210 . 98454
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Table 4,12:

Cumulative gamma probability distribution for 1%" round steel
bar, C1018, 12' long

Units Cum. Prob,
10 .21298
20 .38938
30 .52823
40 .63635
50 .72011
60 .78482
70 .83470
80 .87309
90 .90262

100 .92531
110 .94274
120 .95611
130 . 96637
140. .97423
150 .98026
160 .98489
170 .98843
180 .99114
190 .99322
200 .99481
210 .99603
220 . 99696
230 .99767

240 .99822
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Table 4.13:

Cumulative gamma probability distribution for 1l%" round steel
bar, C1018, 12' long

Units Cum. Prob.
2 .0072
4 .00481
6 .01399
8 .02892

10 .04960
12 .07561
14 .10629
16 .14088
18 .17854
20 .21849
22 .25995
24 .30226
26 . 34479
28 . 38704
30 .42856
32 .46900
34 .50806
36 .54555
38 .58128
40 .61515
42 64711
44 .67712
46 .70518
48 .73132
50 .75559
52 .77805
54 .79878
56 .81784
58 .83535
60 .85138
62 .86602
64 .87937
66 .89152
68 .90256
70 .91257
72 .92164
74 .92983
76 .93723
78 .94390
80 .94990
82 .95530
84 .96015
86 .96450
88 .96840
90 .97189
92 .97501

94 .97780
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Table 4, 14:

Cumulative gamma probability distribution for 1 3/4" round steel
bar, C1018, 12' long

Units Cum.. Prob.
.11593
4 .25434
6 . 38247
8 .49410
10 .58860
12 .66726
14 .73199
16 .78484
18 .82773
20 .86238
22 .89027
24 .91265
26 .93056
28 . 94487
30 .95628
32 .96536
34 .97258
36 .97831
38 .98286
40 .98646
42 .98931
44 .99157
46 .99335
48 .99476

50 .99587
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Table 4.15;

Cumulative gamma probability distribution for %'" square steel
rod, C1018, 12' long

Units Cum. Prob.
10 42120
20 .65681
30 .79535
40 .87760
50 . 92666
60 .95600
70 .97358
80 .98412
90 .99045

100 .99526
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Table 4.16:

Cumulative gamma probability distribution for 1" square steel
rod, C1018, 12' long

Units Cum. Prob.
2 .00820
4 .03651
6 .08230
8 .14066

10 .20681
12 .27673
14 .34731
16 41622
18 .48187
20 .54323
22 .59970
24 .65102
26 .69718
28 .73833
30 .77474
32 .80675
34 .83472
36 .85904
38 .88010
40 .89825
42 .91385
44 .92720
46 .93860
48 . 94831
50 .95655
52 .96354
54 . 96944
56 .97443
58 .97863
60 .98216
62 .98512

64 .98760
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Table 4.17.

Cumulative gamma probability distribution for %" x 3/4"
rectangular steel flat, C1018, 12' long

Units Cum. Prob.
10 .35363
20 .49802
30 .59749
40 .67193
50 .72984
60 .77593
70 .81316
80 .84355
90 .86856

100 .88926

110 .90649

120 .92088

130 .93294

140 .94308

150 .95162

160 .95883

170 .96493

180 .97010

190 .97448

200 .97820

210 .98137

220 .98407

230 .98637

240 .98832

250 . 99000

260 .99143

2790 .99265

280 .99369

290 .99459

300 .99535

310 .99601

320 . 99657

330 .99705
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Table 4.18 .

Cumulative gamma probability distribution for %" x 1"
rectangular steel flat, Cl018, 12' long

Units Cum. Prob.
10 .00028
20 .00335
30 .01303
40 .03216
50 .06192
60 .10202
70 .15107
80 .20710
90 .26785

100 .33115

110 .39501

120 45776

130 .51808

140 .57500

150 .62787

160 .67630

170 .72014

180 .75940

190 .79422

200 .82485

210 .85159

220 .87477

230 .89474

240 .91186

250 .92643

260 .93880

270 . 94924

280 .95802

290 .96537

300 .97151

310 .97661

320 .98085

330 .98435

340 .98724

350- .98961

360 .99156

370 .99315

380 .99446
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Table 4. 19 .

Cumulative gamma probability distribution for %" x 4"
rectangular steel flat, C1018,.12' long

Units Cum. Prob.
10 .05307
20 .20366
30 .38551
40 .55313
50 .68853
60 .78966
70 .86138
80 .91039
90 . 94297

100 .96418

110 .97774

120 .98630

130 .99163

140 . 99492

150 .99694

160 .99817
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Table 4.20 .

Cumulative gamma probability distribution for %" x 1"
rectangular steel flat, C1018, 12' long

Units Cum. Prob.
5 .05855
10 .16992
15 .29440
20 .41453
25 .52255
30 .61568
35 .69379
40 .75802
45 .81007
50 .85177
55 .88487
60 .91094
65 .93136
70 .94727
75 . 95960
80 .95960
85 .96913
90 . 97646
95 .98639

100 .98968
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Table4.21 :

Cumulative gamma probability distribution for %" x 3"
rectangular steel flat, C1018, 12' long

Units Cum. Prob,
2 .00087
4 .00643
6 .01946
8 .04098

10 .07079

12 .10794

14 .15110

16 .19880

18 .24956

20 .30204

22 . 35502

24 .40752

26 .458%0

28 .5079%

30 .55476

32 .59883

34 .63998

36 .67807

38 .71311

40 .74515

42 .77427

44 .80061

46 .82433

48 .84560

50 . 86460

52 .88151

54 .89652

56 .90980

58 .92152

60 .93182

62 . 94087

64 . 94880

66 .95573

68 .96177

70 .96703

72 .97160

74 .97557

76 .97901

78 .98198

80 . 98455
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Table 4.22 :

Cumulative gamma probability distribution for %" x 6"
rectangular steel flat, C1018, 12' long

Units Cum. Prob.,
2 .03403
4 .10151
6 .18286
8 .26840

10 .35260

12 43231

14 .50583

16 .57242

18 .63190

20 . 68446

22 .73051

24 .77059

26 .80526

28 .83510

30 .86069

32 .88254

34 .90114

36 .91694

38 .93031

40 .94162

42 .95115

44 .95917

46 .96592

48 .97157

50 .97631

52 .98028

54 .98360

56 .98637
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loss was assumed to be equal to the profit margin on each item

not supplied.

It was assumed that demand for each item is expressed only
once a week, Moreover, the demand was assumed to occur at the
beginning of each week. The procedure adopted to compute the
inventory carrying cost was the same as when hypothetical data

1
was used.

However, there was one problem in this case. Basic expressed
the demand for each item in units per month, not units per week.
Hence, if the gamma cumulative probability distribution tables were
used to generate demand, the demand would be in units per month
not units per week. But, as mentioned earlier, it was assumed
that the demand for each item occured once a 3395.2 Hence, it was
necessary to convert the demand per month into demand per week.
The following procedure was adopted. It was assumed that there
are 4 1/3 weeks in a month. Then, every week demand was generated
using the gamma cumulative distribution tables. The demand ob-
tained was therefore demand in units per month. This figure was
then divided by 4 1/3 to obtain the demand in units per week,

Appendix E includes a short proof of the validity of this procedure.

The final assumption made was that all the calculations in

the simulation were made on a weekly basis. The cost of computer

lFor details see p. 70.
2Further, all calculations in the simulation were made on
a weekly basis (see p. 71).



-101-

time was the major constraint preventing the use of a time step

of one day.

In all, four programs were written.1 They were:

1.

Program EOQ simulates the operation of the system,
assuming that the inventory level of the items was
controlled using the fixed order quantity inventory
control system. The order quantity was assumed to

be $15 per item ordered.

Program EOQ Modified was the same as the above pro-
gram, except that in this case the ordering cost was
assumed to be $15 per order regardless of the number
of items included in the order.

Program REPEAT searches for the optimum values of the
three parameters S, s, and s'.

Program CONVERG was used to simulate the system for n
years, using the optimum values of the parameters found

by program REPEAT.

These four programs were identical to those developed

earlier for the analysis of the hypothetical data. But there were

two differences.

First, in the case of the hypothetical data, the demand for

each item was assumed to be normally distributed with a certain

1

A listing of the programs is provided in Appendix F,
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mean and standard deviation. The mean and standard deviation of
the normal distribution were used to generate normal variates,
using the FORTRAN subroutine developed by Naylor.1 But, in the
case of the data from the Steel Service Center, demand for each
item was gamma distributed, and the tables of the gamma cumu-
lative probabilities for each item were available. Hence,
instead of using the mean and standard deviation of the gamma
distribution to generate gamma variates, the cumulative proba-
bility tables were used. The procedure was therefore slightly
different, Naylor2 recommends a procedure for generating ran-
dom variates from a particular statistical population whose
cumulative distribution function is known. The procedure is
called the Inverse Transformation Method.3 This procedure was

used to generate gamma variates.

The second difference was in the method used to compute

the reorder point for each item. Instead of using the formula,

(ROP)

Reorder point for item j

(a x standard deviation of demand during lead time)
+ (expected demand during lead time)
where a = a parameter to be determined by management.
It determines the allowable risk of service

failure

lsee p. 71.

Naylor, T.H. et. al. op. cit. p. 70

See Appendix D for a detailed description of this
procedure,
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1
as done previously, (pp. 70-71), Basic's method was used to
compute the reorder point for each item. This method was as

follows:

1. The economic order quantities for each item were first

computed using the formula

(EOQ)j = economic order quantity for item j
=[2 AD
I
where A = ordering cost

[<]
"

expected demand per unit time

I
]

inventory carrying cost per unit per

unit time

2. Next, the optimum probability of stock out for each
item was computed using the formula

= (UHC) x (CPU) x (EOQ)

(STKCOS) x (DPY) + (UHC) x (CPU) x (EOQ)

where UHC = unit holding cost expressed as a percentage

of the cost per unit
CPU = cost per unit
EOQ = economic order quantity

STKCOS

stock out cost per unit short

DPY expected demand per year

3. Given the mean and standard deviation of the demand

1

Basic, E.M. op. cit. p. 98
2 . -

Basic, E.M. op. cit. p. 9
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for each item, the two gamma parameters r and _A
were computed,

r = (Mean)2
(Standard Deviation)

2

A = _(Mean)
(Standard Deviationg

4, Having computed the optimum probability of stock out
and the gamma parameter r, the table of cumulative
gamma probabilities1 was used to compute a parameter
m, where m = (A) x (X)

where X is the quantity whose probability is under study.

5. Using this value of m and the value of the gamma par-

ameter ) , the reorder point was computed as follows,
X=m
A

where X = reorder point.

Step 3: In this step the starting values of the three parameters
S, s and s' were computed using the economic order quantity, and
the reorder point of each item computed in step (2). The procedure
adopted was the same as that described on pages 70 to 73. As

a first approximation, the value of s was set equal to the
weighted average of the reorder points of the individual items

in the group, while the value of S was set equal to the starting

value of s computed earlier, plus the weighted average of the

1
Basic, E.M. op. cit. p. 38
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economic order quantities of the individual items. The initial

value of s' was set equal to S, since by definition of the joint

ordering rule s' has a maximum value of S.

Step 4 : 1In this step, the operation of the system was simu-
lated using the three reordering rules and the real data. The
reordering rules were the same as those described on pages 73

and 74, Briefly, these were:

1. The Fixed Order Rule : 1In this case the ordering cost

was assumed to be $15 per item ordered.

2. The Modified Fixed Order Rule : Ordering cost was

assumed to be $15 per order regardless of the num-
ber of items included in the order.

3. The Joint Ordering Rule : This was the proposed joint

ordering rule characterized by three parameters, S,
s, and s'. Ordering cost was assumed to be $15 per

order.

In order to make a comparison, the same data set was used
to compute the total cost per year under each reordering rule.
Hence, a data set was first used to determine the total cost
when the fixed order system was used to control inventory, and
the program EOQ was used to simulate the system for n years.
Next, the same data set was used in the modified EOQ program
to determine the total cost when the modified fixed order system
was used to control inventory. Once again the system was sim-

ulated for n years. Lastly, the same data set was used to deter-
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mine the total cost when the joint ordering rule was used. First,
program REPEAT was used to search for the minimum values of the
three parameters S, s, and s'. Next, the optimum values of the
parameters were used to simulate the system for n years using

program CONVERG.

1 .
As mentioned earlier, it was necessary to simulate

the system for n years so as to eliminate the initial bias

and initial variability. The value of n selected was 500 years
(as before). As regards the search process, the procedure was -
once again the same as that described on page 81. But, in this
case the search was not partial but complete. That is, the
parameters S and s were held constant and s' varied until the
minimum total cost was obtained. Next, s' (corresponding to
the minimum cost) and s were held constant, and S was varied
until the minimum total cost was obtained. Then s' and §
(corresponding to minimum total cost) were held constant and

s varied until minimum total cost was obtained. The whole
procedure was repeated until the minimum cost values of the

three parameters were obtained.

The data from the Steel Service Center was used in two ways.
First, it was assumed that the product group consisted of only

8 items. The items selected were:

1%" round steel bar, Cl018, 12' long

1%'" round steel bar, C1018, 12' long

lsee p.80.
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3" square steel rod, Cl018, 12' long

1" square steel rod, Cl018, 12' long

%" x 3/4" rectangular steel flat, Cl1018, 12' long
3" x 4" rectangular steel flat, C1018, 12' long
" x 1" rectangular steel flat, C1018, 12' long

X" x 3" rectangular steel flat, Cl018, 12' long

These items were selected so as to decrease the dispersion
of the mean demands of the items. The standard deviation of the

mean demands for the 8 items was equal to 8.26 (See Table 5.10).

In the second case, it was assumed that the product group
consisted of all twelve items. The standard deviation of the

mean demands for the 12 items was equal to 35.4 (See Table 5.11).

Thus, with one set of real data that was available, it was
possible to test the proposed joint ordering rule when the stan-
dard deviation of mean demands was both relatively large and

relatively small,

Step 5 : The last step was the analysis of the results. The total
yearly costs corresponding to the three reordering rules, using

the same data set, were compared. The savings, if any, resulting
from the use of the proposed joint ordering rule were computed.

Finally, the necessary conclusions were drawn.



CHAPTER 5

RESULTS

This chapter is divided into two sections. The results
obtained from the hypothetical data are reported in the first
section. The results obtained from real data are reported in

the second section,

HYPOTHETICAL DATA
Table 5.2 through 5.10 have a detailed account of the
results. However, they are summarized in Table 5.1. The results
indicated that:
1. The average total cost per year when the proposed Joint
Ordering Rule was used to control inventory was less than
the average total cost per year when the Fixed Order System
was used. This was true of all data sets. The savings
resulting from the use of the Joint Ordering Rule were sub-
stantial and ranged from a minimum of 11.647 in the case

of Data Set 7 to a maximum of 48.167% for Data Set 9,

2., The average total cost per year when the proposed Joint
Ordering Rule was used to control inventory was in general,
less than the average total cost per year when the Modified
Fixed Order System was used. There were only two situations
(Data Sets 8 and 9) out of nine where this was not true,

and the proposed Joint Ordering Rule resulted in higher costs
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Table 5.1

DATA  STANDARD AVERAGE TOTAL AVERAGE TOTAL PROPOSED JOINT ORDERING SAVINGS OVER
SET DEVIATION COST PER YEAR COST PER YEAR RULE FIXED ORDER MODIFIED FIXED
OF MEAN FIXED ORDER MODIFIED FIXED OPTIMUM VALUES AVERAGE TOTAL SYSTEM ORDER SYSTEM
DEMANDS SYSTEM ORDER SYSTEM mm m»w»zmﬂmwm COST PER YEAR DOLLARS PERCENT DOLLARS PERCENT
1 1.96 $2387.66 $1871.18 80 28 80 $1412.79 $975 40.82 $459 24,49
2 2.15 $2361.64 $1892.89 50 30 50 $1224 .04 $1137 48.16 $668 35.33
3 4.26 $3338.64 $2603.40 80 50 80 $1829.86 $1508 45.19 $773 29.71
4 6.39 $5009.27 $3815.28 170 105 160 $3367.37 $1641 32.77 $447 11.73
5 6.69 $3156.39 $2509.29 90 50 80 $2131.01 $1025 32.47 $378 15.06
6 9.04 $3616.00 $2833.75 107 63 87 $2639.27 $976 27.01 $194 6.86
7 9.47 $4292,20 $3280.45 128 83 108 $3103.51 $1188 27.69 $176 5.39
8 16.65 $5153.85 $3991.50 220 130 160 $4553.85 $600 11.64 -$562 -14.08
9 18.90 $5549.74 $4384.99 246 139 156 $4693.79 $855 15.42 -$308 -7.04
REAL DATA
1 8.26 $2881.97 $2620.97 65 15 65 $1616.19 $1265 43.92 $1004 38.33
2 35.40 $4902.56 $4335.96 60 40 60 $3991.23 $911 18.58 $344 7.95
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than the Modified Fixed Order System. The reasons for this

are analyzed later.

The savings resulting from the use of the Joint Order-
ing Rule were not as large as in the previous case (see (1)
above). The savings ranged from a minimum of 6.867% for Data

Set 10, to a maximum of 35.33% for Data Set 9.

The above two conclusions indicated that there was
sufficient evidence to believe that in general, the pro-
posed Joint Ordering Rule characterized by three parameteré,
S, s, and s' results in lower total costs, as compared to
both the Fixed Order System and the Modified Fixed Order
System. Hence, whenever possible, it would be more eco-
nomical to group items and order them jointly using the

proposed Joint Ordering Rule.

The major hypothesis was therefore true.

Inspection of the minimum cost values of the three parameters
S, s, and s' obtained for the various data sets indicated
that for Data Sets 1, 2, and 3, S was equal to s', and both

S and 8' were greater than s.

That is,

S =s'

>s
But for Data Sets 4, 5, 6, and 7, S was greater than s',

which in turn was greater than s. That is,

S >s' >s
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Hence, two distinct cases could be identified.

Case 1: s' = 8§

When S is equal to s' the Joint Ordering Rule is

modified and becomes:1

When the inventory level of any item in the group is
equal to or less than the reorder point s, all items in the

group should be reordered jointly.

Analysis of the data sets which gave rise to these
particular cases (Data Sets 1, 2, and 3) indicated that the
standard deviations of mean demands for the items in the
group were relatively small. For example, the standard
deviation of mean demands for Data Set 1 was less than one
fourth that of Data Set 6 (standard deviation = 9.04). The
standard deviation of meand demands for Data Set 3 (standard
deviation = 4,26) was less than half that of Data Set 8,
(standard deviation = 16.65). These relatively small values
of the standard deviation of mean demands for the items in
the group, indicates that the mean demands are not widely

dispersed. Hence, it was concluded that:

If the standard deviation of mean demands for the item

is relatively small, it is not only economical to group the

1 See p. 37.



-112-

items and order them jointly, but when an order is placed,

it is more economical to include all items in every joint
order. That is, when the inventory level of any item is less
than or equal to the reorder point, all items in the group

should be ordered jointly.

Case 2; S >s' > s;:

In this case the Joint Ordering Rule is as follows:1

When the inventory level of any one item is equal to
or less than the reorder point s, the inventory level of
the rest of the items in the group is checked, and all items
that have inventory levels between s' and s are reordered

jointly.

Inspection of the data which gave rise to this situa-
tion (Data Sets 4, 5, 6, and 7) indicated that the standard
deviations of mean demands were neither too small as in Case
(1), nor relatively large. For example, the standard de-
viation of mean demands for Data Set 6 (standard deviation
= 9.04) was greater than that of Data Set 1, (standard de-
viation = 1.96). 1In fact, the standard deviations of demands
for Data Sets 4, 5, 6, and 7 were greater than that of data
sets included in Case 1, discussed earlier.2 But when

compared to Data Sets 8 and 9, the standard deviations of

1See p. 36.
25ee p. 111.
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mean demands were relatively smaller. All this means is,
that in the case of Data Sets 4, 5, 6, and 7, the mean
demands for the items in the group are neither as widely
dispersed as in Data Sets 8 and 9, nor are they as narrow-
ly dispersed as in Data Sets 1, 2, and 3. Hence, it was

concluded that:

When the standard deviation of mean demands of the items
in the group is neither too large nor too small, it is not
economical to include all items in every order. Instead,
it is more economical to include some items in the joint
order., The items that should be included is determined by
the reorder range s' to s. In short, the joint ordering rule
that would be most economical would be the one stated on p.

112.

According to the definition of the Joint Ordering Rule, s'
could have any value between S and s. That is, s' could
have a maximum value of S and a minimum value of s. Hence,

three distinct cases were identified.

Case 1: s' = §

Data Sets 1, 2, and 3 illustrated this particular case.
The standard deviation of the mean demands for the items
ranged from 1.96 to 6.0, approximately.

Case 2: S >s' > s:

Data Sets 4, 5, 6, and 7 illustrated this case. The standard



-114-

deviation of mean demands for the items ranged from 6.0

to 14, approximately.

Case 3: s' = s:

No data sets gave rise to this case.

In addition to these three, there was another distinct

case,

Case 4:

Here, the total cost per year when the proposed Joint Order-
ing Rule was used was greater than the total cost per year
when the Modified Fixed Order System was used to control
inventory. Data Sets 8 and 9 were examples of this case.
The standard deviations of mean demands were greater than

16.50.

Hence, using the standard deviation as a measure of
the dispersion of the mean demands (of the items in a group),
the approximate ranges of standard deviation within which

each of the four cases would occur are as shown:

i | |

Case 1 | |case J

§=3s' | 8'=8
IL‘-—-—C : , ———— Case 4

ase

| S>s '>s | !

' |

| ' |

]
I l |
6.0 14.0 16.5

Standard Deviation of mean demands

Figure 5.1: Approximate ranges for the four cases of the Joint
Ordering Rule. The ranges are expressed in terms
of the mean demands.
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It must be recognized that these approximate ranges
are valid only under the assumptions made in the analysis.
If these assumptions are changed, new estimates of these
ranges will have to be determined. Some of the assumptions

made in arriving at the approximate ranges are:1

i) The demand for each item is normally distributed with
a certain mean and standard deviation.
ii) Ordering cost is equal to $15 per order regardless

of the number of items included in the order.

iii) Inventory carrying cost per unit per year is approxi-

mately equal to 20 per cent of the value of an item.
The value of the item was assumed to be $10. Hence,
the inventory carrying cost was $2.08 per unit per
year.

iv) The profit margin is equal to 10 percent of the value
of an item, which is equal to $1 per unit.

v) The value of lost sales is equal to $1 times the number

of units demanded but not supplied.

As mentioned in (4), no data sets gave rise to the particular
case where s' = s. It would be worthwhile to investigate
the reason for this.

When s' is equal to s, the reorder range s' to s is
minimum and is equal to zero. Hence, no items can have

inventory levels in the reorder range. This means that the

lSee pp. 55, 69.



-116-

Joint Ordering Rule is modified as follows:

Whenever the inventory level of an item is equal to,
or less than the reorder point s, that item alone should
be reordered.

It is evident that the Joint Ordering Rule has been
reduced to a simple individual item reorder rule. Moreover,
instead of three parameters, the rule is characterized by
two parameters, namely S and s (or s'). The rule is now
very similar to the simple (S , s8) rule, or the familiar
two bin inventory control system.

There is however, one important difference between
the simple (S, s) rule and the Joint Ordering Rule in the
modified form, (s' = 8, S). In the simple (S, 8) rule,

the parameters S and s are computed for each individual

item, and these are used to control the inventory of the
respective items. Thus, if there were twelve items in the
group, it would be necessary to compute twenty-four values,
two for each item. But, in the modified Joint Ordering
Rule (s' = s, S), the parameters S and s (or s') are com-

mon to all items in the group. Hence, unlike the simple

(S, s) system, two parameters are sufficient to control
the inventory of the entire group.
It is this difference between the simple (S, s) system

and the modified form of the Joint Ordering Rule that is
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responsible for a less frequent occurance of this case,
namely s' equal to s. This is because, though the demands
for the items are widely dispersed,1 a single reorder

point s and a single maximum inventory level S are used

to control the inventory of all items in the group. In
most cases the use of these single values for the entire
group would be less economical, and lead to higher total
costs than when the simple (S, s) system or two bin system
is used. For example, since the mean demands for the items
are widely dispersed, the reorder points computed for each
of these items independently will be widely dispersed.
Hence, the use of a single reorder point for the entire group,
will lead to increased back orders for some items and
increased average inventory for others. The net effect
would be an increase in total costs, or more correctly,

the total costs would be greater than when the two bin
system is used. This corresponds to Case (4) mentioned ear-
lier.

On the other hand, if at all, it was more economical to
use the Joint Ordering Rule. Then, it would (generally) be
more economical to order more than one item at a time, at least
sometimes, if not always. This in turn implies a non zero

reorder range, i.e., s' not equal to s, and corresponds to

lsee p. 111. This particular case where s' is equal to
s should occur when the standard deviations of mean demands
is between 14.0 and 16.5, approximately.

25ee p. 113,
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case (2) mentioned earlier.1 In short, when the standard
deviation of mean demands is relatively large, either case
(2), (S >s' >s), or case (4), (the Fixed Order system is
more economical than the Joint Ordering Rule) would occur.
That is, situations where s' is equal to'§ would be less

frequent,

In order to determine the optimum2 values of the parameters,

5, s

and s, which characterize the Joint Ordering Rule, a
search was conducted. For reasons mentioned on p. 81, a
limited search procedure was conducted in most cases. Be-
cause of this limited search, the optimum values of the
parameters were only local optimums. But, for all data sets
where such a limited search was conducted, a local optimum

was found.

For Data Sets 4 and 5 an extensive search for the op-
timum values of the parameters was conducted. For both
data sets the optimum values of the three parameters were

found. The minor hypothesis was therefore true.

But, during the search process (extensive or limited)
an interesting thing was noticed; the optimum values of the
parameters were not unique. For example, when Data Set 7

was used, two sets of optimum values of the three parameters

1

See page 112.

The word "optimum'" as used here means the values of the
parameters corresponding to minimum total cost.
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were obtained. These were:

1. s =128

s' =128

s = 83

Average total cost per year = $3100,
2. § =128

s' = 83

s = 108

Average total cost per year = $3103.

Hence,it was concluded that for a certain data set there

may not necessarily be a unique optimum set of parameters.
REAL DATA

Table 5.11 and 5. 12 have a detailed account of the results
obtained when real data was used to simulate the inventory con-

trol system. The results indicated that:

1. The average total cost per year when the proposed Joint
Ordering Rule was used to control inventofy was less than
the average total cost per year when the Fixed Order System
was used. This was true for both Real Data Set 1, when there
were 8 items in the group, and Real Data Set 2, when the
number of items in the group was equal to 12, The savings
resulting from the use of the Joint Ordering Rule were 43.927

for Real Data Set 1, and 18.58% for Real Data Set 2.
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The average total cost per year when the proposed Joint
Ordering Rule was used to control inventory was less than the
average total cost per year when the Modified Fixed Order
System was used. This was true for both Real Data Sets 1 and
2. The savings resulting from the use of the Joint Ordering
Rule were 38.33% for Real Data Set 1, and 7.95% for Real Data
Set 2. As is evident, the savings are less than when the

Joint Ordering rule is compared with the Fixed Order System.

The above two conclusions once again indicated that the
proposed Joint Ordering resulted in lower total cost per
year, as compared to both the Fixed Order System and the
Modified Fixed Order System. Hence, if possible, items should
be grouped and ordered jointly so as to minimize total costs.

The major hypothesis was therefore true,.

Inspection of the minimum cost values of the parameters §,

s', and s, obtained for the two data sets, indicated that

for both data sets S was equal to s', and both § and s' were
greater than s. That is, (S = s' > s). Hence, for both data
sets it was not only more economical to order the items jointly,
but, when an order was placed, additional savings were achieved
by including all items in every joint order. This corresponds

to case (1) discussed on p. 111,

Inspection of the two data sets indicated that the standard

deviation of mean demands for Real Data Set 1 was 8.26, while
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that for Real Data Set 2 was 35.4. It is evident that the
standard deviation for Real Data Set 2 is very large as com-
pared to the standard deviation for Real Data Set 1. Yet,

in both cases it was more economical to include all items in
every order. This is contrary to the conclusions reached
when the hypothetical data was used to simulate the inventory
control system.1 According to those conclusions, Real Data

Set 2 would probably come under Case 4. That is, since the
standard deviations of mean demands for Real Data Set 2 is

so large, the mean demands are widely dispersed, and hence,

it would probably be more economical to treat each item in-
dividually and use an individual item rule to manage inventory.
But, as mentioned earlier (see p.ll5), the approximate ranges
of the standard deviation determined for each of the four
cases were only valid under certain conditions. These con-
ditions are not valid for the real data. For example, in

the case of the hypothetical data, demand for each item was
assumed to be normally distributed. For the real data, demand
for each item has a gamma distribution. In addition to this,
for the hypothetical data, inventory carrying cost was assumed
to be 20 percent of the value of an item. In the case of

the real data, inventory carrying cost was 30 percent of the

value of the item. These are but a few differences between

lgee p. 114,
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the assumptions made in the hypothetical data and the real
data. Hence, the ranges established for the four cases using
hypothetical data will not be valid for the real data. Lastly,
the ranges of the standard deviation for the four different
cases could not be established for the real data, because

of the limited data available.

In order to determine the optimum values of the parameters
S, s' and s, which characterize the Joint Ordering Rule, a
search procedure was adopted. The search in this case was
not limited , but extensive. The search procedure is out-

lined on p.81l. For both data sets the optimum values of the

three parameters were found. The minor hypothesis was there-

fore true. But, as in the case of the hypothetical data, the
optimum values of the parameters were not unique, especially
for Real Data Set 1. For this data set, the two sets of

parameters which lead to the same minimum cost are:

! 65
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Table 5.1 .

Data Set 1l

The means and standard deviations of the demands for the twelve

items in the group.

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.0.Q. POINT DEMAND
1 8 1 77 27 7.619
2 10 1 86 33 9.5238
3 10 2 86 36 9.5238
4 6 1 67 21 5.7143
5 10 1 86 33 9.5238
6 11 1 90 36 10.4762
7 12 1 94 39 11.4386
8 9 1 82 20 8.5714
9 9 2 82 33 8.5714
10 5 1 61 18 4,7619
11 8 1 77 27 7.619
12 7 1 72 24 6.6667
100.00

The Standard Deviation of the mean demands = 1.96
Range of mean demands = 12 - 5 = 7

The Weighted Average E.0.Q. = 82.0667
The Weighted Average Reorder Point = 31,1143

1. The Fixed Order System:

Cost per item ordered = $15
Average total cost per year = $2387.66

2. The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $1871.18

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:
S = 80 s = 28 s' = 80
Average total ¢ogt per year = $1412.79

Savings in Total Cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed
Order System

$974.87

40.827%

$458.39

24.497
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Table 5.2:
Data Set 2

The means and standard deviations of the demands for the twelve
items in the group.

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.0.Q. POONT DEMAND

1 5 1 61 18 4.8544
2 7 1 72 24 6.7961
3 9 2 82 33 8.7379
4 8 1 77 27 7.767

5 6 1 67 21 5.8252
6 11 2 90 39 10.6796
7 12 1 94 39 11.6505
8 9 1 82 30 8.7379
9 10 1 86 33 9.7087
10 11 2 90 39 10.6796
11 8 1 77 27 7.767
12 7 1 72 24 6.7961

100.00

The Standard Deviation of the mean demands = 2.15

Range of mean demands 12 - 5=17

The Weighted Average E.0.Q. = 81.466
The Weighted Averrge Reorder Poin* = 31.1359

1. The Fixed Order System :

Cost per item ordered = $15
Average total cost per year = $2361.64

2. The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $1892,.89

3. The Proposed Joint Odering Rule:

Optimum Values of the Parmeters:
S =50 s = 30 s' = 50
Average total cost per year = $1224.04

Savings in Total Cost with respect to The Fixed Order System = $1137.60
= 48,167
Savings in Total Cost with respect to The Modified Fixed
Order System = $668.85

35.33%
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Table 5.3:
Data Set 3

The means and standard deviations of the demands for the twelve
items in the group.

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.0.Q. POLNT DEMAND
1 13 2 98 45 6.7708
2 15 1 106 48 7.8125
3 16 2 109 54 8.3333
4 19 1 119 60 9.8958
5 21 1 125 66 10.9375
6 11 1 90 36 5.7292
7 17 2 112 57 8.8542
8 21 1 125 66 10.9375
9 23 2 131 75 11.9792
10 14 1 102 45 7.2917
11 10 1 86 33 5.2083
12 12 1 -94 39 6.25
100.00

The Standard Deviation of the mean demands = 4,26
Range of imean demands = 23 - 10 = 13

The Weighted Average E.0.Q. = 111,6771
The Weighted Average Reorder Point = 55.2031

1., The Fixed Order System:

Cost per item ordered = $15
Average total cost per year = $3338.64

2. The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $2603.40

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:
S = 80 s = 50 s' = 80
Average total cost per year = $1829.86

Savings in Total Cost with respect to The Fixed Order System = $1508.78
= 45,197
Savings in Total Cost with respect to The Modified Fixed
Order System = $§773.54

[}

29.71%
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Table 5.4:
Data Set 4

The means and standard deviations of the demands for the twelve
items in the group. '

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.O0.Q. POINT DEMAND
1 20 1 122 63 5.3333
2 23 2 131 75 6.1333
3 26 3 139 88 6.9333
4 28 2 144 90 7.4667
5 30 4 149 103 8.00
6 29 1 147 90 7.7333
7 33 2 157 105 8.80
8 35 4 162 118 9.3333
9 37 3 166 121 9.8667
10 40 2 173 126 10.6667
11 40 3 173 130 10.6667
12 34 3 159 112 9.0667
100.00

The Standard Deviation of the mean demands = 6.39
Range of mean demands = 40 - 20 = 20

The Weighted Average E.0.Q. = 154.856
The Weighted Average Reorder Point = 105.6347

1. The Fixed Order System:

Cost per item ordered = $15
Average total cost per year = $5009.27

2, The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $3815.28

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:
S = 170 8 = 105 s' = 160
Average total cost per year = $3367.37

Savings in Total Cost with respect to The Fixed Order System = $1641.90
= 32.77%
Savings in Total Cost with respect to The Modified Fixed
Order System = $447,91

11.737%
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Data Set 5
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The means and standard deviations of the demands for the twelve

items in the group.

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.0.Q. POINT DEMAND
1 4 1 54 15 2.2989
2 6 1 67 21 3.4483
3 9 2 82 33 5.1724
4 12 1 94 39 6.8966
5 15 2 106 51 8.6207
6 17 2 112 47 9.7701
7 19 3 119 67 10.9195
8 21 2 125 69 12.069
9 23 2 131 75 13.2184
10 25 3 136 85 14,3678
11 10 1 86 33 5.7471
12 12 2 98 45 7.4713
100.00

The Standard Devaiation of the mean demands = 6.69
Range of mean demands = 25 - 4 = 21

The Weighted Average E.0.Q. = 111,5575
The Weighted Average Reorder Point = 58.4958

1, The Fixed Order System:

Cost per item ordered = $15
Average total cost per year = $3156.39

2. The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $2509.29

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:
§ =90 s = 60 s' =90
Average total cost per year = $2131.01

Savings in Total Cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed
Order System

[t}

$1025.38

32.477%

$378.28

15.067%
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Table 5.6

Data Set 6

The means and standard deviations of the demands for the twelve

items in the group.

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.0.Q. POINT DEMAND
1 5 1 61 18 2.2222
2 7 1 72 24 3.1111
3 11 2 90 39 4.8889
4 14 2 102 48 6.2222
5 17 2 112 57 7.5556
6 21 3 125 73 9.3333
7 24 2 134 78 10.6667
8 27 3 142. 91 12.00
9 30 3 149 100 13.3333
10 32 3 154 106 14,2222
11 12 1 94 39 5.3333
12 25 2 136 81 11.1111
100.00

The Standard Deviation of the mean demands = 9.04
Range of mean demands = 32 - 5 = 27

The Weighted Average E.0.Q. = 127.6978
The Weighted Average Reorder Point = 75.8889

1. The Fixed Order System:

Cost per item ordered = $15
Average total cost per year = $3616.00

2. The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $2833.75

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parmeters:
S = 107 s = 63 s' = 87

Average total cost per year = $2639.27

Savings in Total Cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed
Order System

£976.73

27.017%

$194.48

6.86%
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Table 5.7:

Data Set 7

The means and standard deviations of the demands for the twelve
items in the group.

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.0.Q. POINT DEMAND
1 10 1 86 33 3.2787
2 15 2 106 51 4.918
3 17 2 112 57 5.5738
4 19 1 119 60 6.2295
5 20 3 122 70 6.5574
6 25 2 136 81 8.1967
7 27 2 142 87 8.8525
8 29 3 147 97 9.5082
9 30 3 149 100 9.8361
10 35 3 162 115 11.4754
11 38 2 168 120 12.459
12 40 3 173 130 13.1148
100.00

The Standard Deviation of the mean demands = 9,47
Range of mean demands = 40 - 10 = 30

The Weighted Average E.0.Q. = 144,2492
The Weighted Average Reorder Point = 93.6918

1. The Fixed Order System:

Cost per item ordered = $15.
Average total cost per year = $4292.20

2, The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $3280.45

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:
S =128 s =83 s' =108
Average total cost per year = $3103.51

Savings in Total Cost with respect to The Fixed Order System = $1188. 69
= 27.69%
Savings in Total Cost with respect to The Modified Fixed
Order System = §176,94

= 5.39%
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Table 5.8 ;

Data Set 8

The means and standard deviations of the demands for the twelve
items in the group.

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.0.Q. POINT DEMAND
1 5 1 61 18 1.2887
2 21 1 125 - 66 5.4124
3 27 2 142 87 6.9588
4 31 2 152 99 7.9897
5 34 3 159 112 8.7629
6 40 2 173 126 10.3093
7 48 3 189 154 12.3711
8 54 2 201 168 13.9175
9 62 2 215 192 i15.9794 .
10 12 1 94 39 3.0928
11 24 1 134 75 6.1856
12 30 1 149 93 7.732
100.00

The Standard Devtation of the mean demands = 16.65
Range of mean demands = 62 - 5 = 57

The Weighted Average E.0.Q. = 169.7732
The Weighted Average Reorder Point = 126.7216

1. The Fixed Order System:

Cost per item ordered = $15
Average total cost per year = $5153.85

2, The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $3991.50

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters
S = 220 s =130 8' = 160
Average total cost per year = $4553.85

Savings in Total Cost with respect to The Fixed Order System = $600.00
= 11.647%
Savings in Total Cost with respect to The Modified Fixed
Order System = -$562.35

]

-14.087%
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Table 5.9 :

Data Set 9

The means and standard deviations of the demands for the twelve
items in the group.

STANDARD REORDER PERCENTAGE
ITEM MEAN DEVIATION E.0.Q. POINT DEMAND
1 60 3 212 190 14.7059
2 10 3 86 40 2.451
3 21 3 125 73 5.1471
4 30 2 149 96 7.3529
5 39 3 171 127 9.5588
6 53 3 199 169 12,9902
7 64 3 219 202 15.6863
8 3 1 47 12 .7353
9 25 1 136 78 6.1275
10 26 1 139 81 6.3725
11 33 2 157 105 8.0882
12 44 1 181 135 10.7843
100.00

The Standard Deviatien of the mean demands
Range of mean demands = 64 - 3 = 61

The Weighted Average E.0.Q. = 176.9779
The Weighted Average Reorder Point = 138,598

1.

Savings in Total Cost with respect to The Fixed Order System

The Fixed Order System:

Cost per item ordered -~ $15
Average total cost per year = $5549.74

The Modified Fixed Order System:

Cost per order = $15
Average total cost per year = $4384.99

The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:

S = 246 s = 139 8= 156

Average total cost per year = $4693.79

= 18.90

$855.95

15.427

Savings in Total Cost with respect to The Modified Fixed
Order System ==$308. 80

= -7.047
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Table 5.10:

REAL Data -Set 1.

The means and standard deviations of the demands for the eight

items in the group.

ST ANDARD REORDER PERCENTAGE

ITEM MEAN  DEVIATION E.0.Q. POINT DEMAND

1 39.27 1452 56.6 249.8 15.1

2 37.81 491 46.3 190.1 14.6

3 18.84 374 150.3 123.5 7.3

4 21.51 195 45.2 112.9 8.3

5 40.19 2869 126.7 306.1 15.5

6 42.05 701 59.8 217.8 16.2

7 29.02 464 72.8 161.6 11.2

8 ~30.93 309 43.4 153.6 11.9

100.0

The Standard Deviation of the mean demands = 8.264
Range of mean demands = 23,21

The Weighted Average E.0.Q. = 72.6
The Weighted Average Reorder Point = 202.8

1. The Fixed Order System:

Cost per item ordered = $15
Avergge total cost per year = $2881.97

2. The Modified Fixed Order System:

@ost per order = $15
Average total cost per year = $2620.97

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:
S = 65 s =15 s' =65
Average total cost per year = $1616.19

Savings in Total Cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed
Order System

$1265.78

43.927%

$1006.78

38.33%
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The means and standard deviations of the demands for the twelve
items in the group.

STANDARD REORDER PERCENTAGE

ITEM MEAN DEVIATION E.0.Q. POINT DEMAND
1 95.27 1844 110.1 432.5 18.3
2 39.27 1452 56.6 249.8 7.5
3 37.81 491 46.3 190.1 7.3
4 10.63 85 21.0 63.8 2.0
5 18.84 374 150.3 123.5 3.6
6 21.51 195 45.2 112.9 4.1
7 40.19 2869 126.1 306.1 7.7
8 138.64 4945 216.1 659.5 26.6
9 42.05 701 59.8 217.8 8.1
10 29.02 464 72.8 161.6 5.6
11 30.93 309 43.4 153.6 5.9
12 16.9 162 22.4 94.7 3.2

100.00

The Standard Deviation of the mean demands
Range of mean demands = 128.01

The Weighted Average E.0.Q.

114.9

The Weighted Average Reorder Point

1. The Fixed Order System:

Cost per item ordered

Average total cost per year

= $4902.56

2. The Modified Fixed Order System:

Cost per order = $15

Average total cost per year

= $4335.96

3. The Proposed Joint Ordering Rule:

Optimum Values of the Parameters:
S = 60

3 5 =40 s
Average total cost per year

S

= 60
= $3991.23

35.4

Savings in Total cost with respect to The Fixed Order System

Savings in Total Cost with respect to The Modified Fixed
Order System

$911.33

18.58%

$344.73

7.95%



CHAPTER 6

SUMMARY OF CONCLUSIONS

The purpose of this research was to develop a joint order-
ing rule which could be used to order a group of items at one
time. The potential savings resulting from the inclusion of many
items on one purchase order are quite large. Some of the ad-

vantages of joint orders are:

1. Ordering costs can be reduced by including several items
in a single order. This is especially true when one
supplier is the source of a variety of related items.

2. Shipping costs can be decreased if the total order is
of a convenient size, e.g., a truck load. Since a num-
ber of items are ordered jointly, it is more likely that
the total order will be of a convenient size.

3. By including a number of items in a single order, there
is an increased opportunity of taking advantage of

quantity discounts offered by a vendor.

A review of the literature indicates that much analytical
work has been done in the cases of independent ordering strategies
such as the fixed order rule, the periodic ordering rule, and the
(s, S) inventory control rule. But, the literature is almost void

of discussion about a joint ordering rule. Hence, it was felt
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that there was a real need to research the joint ordering rule.

The proposed joint ordering rule1 was defined in terms of

three parameters, S, s, and s', where S is the maximum inventory

level, s is the reorder point, and s' determines the items that
should be included in the order. g' to s was defined as the re-

order range, Note that S is greater than s', which is greater
g S g s, g

than s as shown in the figure.

Inventory
Level

— ——— e — — . s reorder
IV/"/' range

Time

Figure 6.1: The Joint Ordering Rule characterized by three

parameters, S, s and s'.

The joint ordering rule was defined as follows:

When the inventory level of any item in the group has dropped
to the reorder level s, the inventory level of all items in the

group is checked; all items which have inventory levels (inventory

1The writer wishes to state that the proposed joint ordering
rule is not "original", but was first proposed by Balintfy.
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on hand and on order) within the reorder range s' to s are or-
dered jointly. The order quantity for each item ordered is

given by (S-I), where I is the inventory on hand and on order.

HYPOTHESES
Besides a joint ordering rule, two hypotheses were proposed

for testing. These were:

Major Hypothesis:

There exist a number of situations in which the application
of the joint ordering rule to control inventory, i.e. ordering
a group of items in a single order, results in lower costs when

compared with the use of the fixed order quantity rule.

Minor Hypothesis:

If the joint ordering rule is defined by the three parameters
S, s, and s' as mentioned above, then there exists some optimum
value for each of the parameters, such that the total cost of the
inventory control system is minimized. The costs that are in-

cluded are ordering costs, inventory carrying costs, and stock out

costs,

METHODOLOGY

On the basis of the literature search, there were basically
two approaches to the development of the joint ordering model:
the analytical approach and the simulation approach. A simulation

approach was used in this research, mainly because it was believed
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that the mathematical complexity of the problem would make it
extremely difficult to formulate the problem and obtain an
analytical solution. This view was supported by a number of

researchers,

DATA SOURCE
Two kinds of data were used to test the proposed joint

ordering rule.

Hypothetical data: A considerable portion of this research was

concerned with the study of the properties of the joint ordering
rule, especially under extreme conditions. Hence, nine sets of
hypothetical data which represented these extreme conditions were
generated. In generating this data it was assumed that a product
group consists of twelve items, and the demand for each item is
normally distributed with a specified mean and standard deviation.
The standard deviation of the mean demands of the twelve items

was a minimum for Data Set 1 and a maximum for Data Set 9. Data

Sets 1 and 9 correspond to the extreme conditions mentioned earlier.

Real Data: Real data were obtained from the Steel Service Center
Institute, and a farmers cooperative. Unfortunately, only limited
data were available from the farmers cooperative, and hence it
was almost impossible to fit a probability distribution to the

data. Thus, this data was not used.

Sales data from the Steel Service Center were not obtained
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directly, but from the work of Basic.1 Basic selected twelve
items of a typical Steel Service Center and found that the demand
for each item was gamma distributed. Hence, the cumulative gamma
probabilities for each item were available from Basics' dis-

sertation.

EXPERIMENTATION

The proposed joint ordering policy was compared with two
other ordering policies. These were essentially independent
ordering policies; that is, each item is assumed to be independent
of the others, and hence, the inventory level of each item is
controlled independently from the others. 1In all, three ordering

policies were tested.

1. The Fixed Order System: In this case, the same quantity

(economic order quantity) of an item is ordered each
time the inventory level of the item is equal to or less
than the reorder point. The time interval between
orders varies with fluctuations in usage. The ordering

cost was assumed to be $15 per item ordered.

2. The Modified Fixed Order System: The inventory control

system in this case is the same as in (1). But the

ordering cost was assumed to be $15 per order regardless

1Basic, M.K., '"Development and Application of a Gamma-based
Inventory Management Theory'" (Unpublished Ph.D. dissertation,
Michigan State University, East Lansing, Michigan, 1965)
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of the number of items included in the order.

1. Program EOQ simulates the operation of the inventory
control system when the Fixed Order System is used to

manage inventory.

2. Program EOQ (Modified) was the same as program EOQ.
But the ordering cost was now assumed to be $15 per
order regardless of the number of items included in

the order.

3. Program REPEAT searches for the optimum values of the
three parameters S, s, and s', that define the Joint

Ordering Rule.

4. Once the optimum values of the parameters were found,
program CONVERG was used to simulate the system for n
years, so as to get a reasonable degree of convergence

with respect to the total cost per year.

In order to compare the performance of the three inventory
control systems, the same data set was used to compute the total
cost per year when each inventory control system was used. Thus,
a data set was first used to determine the total cost per year
when the Fixed Order System was used to control inventory. Pro-
gram EOQ was used here. Next, the same data set was used in the

EOQ (Modified) program to determine the total cost per year when
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the Modified Fixed Order Systen was used to control inventory.
Lastly, the same data set was used to determine the total cost
per year when the proposed joint ordering rule was used to con-
trol inventory. Program REPEAT was first used to search for the

minimum cost values of the three parameters S, s'

, and s. Then
program CONVERG was used to simulate the system for n years,

using the optimum values of the parameters.

CONCLUSIONS
The results obtained are presented in Table 5.1 through
5.11. An inspection of the results led to the following con-

clusions:

1. The most important conclusion was, that for certain values

of the parameters S, s'

and s, the Joint Ordering Rule resulted

in lower total costs per year when compared to the two individual
item rules,1 the Fixed Order Rule and the Modified Fixed Order

Rule. Moreover, for certain optimum2 values of the three parameters,
the savings resulting from the use of the Joint Ordering Rule

were substantial, For example, for Data Set 2 the savings were

55.33%.

There was sufficient evidence to support this conclusion.

The use of the Joint Ordering Rule resulted in savings for all

lThese are referred to as individual item rules because the
inventory level of each item is controlled independently from the
others.

2Optimum , means minimum cost values of the parameters.
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hypothetical data sets except Data sets 8 and 9. When the data
from the Steel Service Center was used, the Joint Ordering Rule
once again resulted in lower total cost per year than either

the Fixed Order System or the Modified Fixed Order System. Hence,

it was concluded that the major hypothesis was true.

2. By definition of the Joint Ordering Rule, s' can have a
maximum value of S and a minimum of s. Hence, three distinct

cases can be identified.

Case 1: s' = §S:

When s' is equal to S, the three parameter Joint Ordering
Rule is then defined by two parameters, § (or s') and s. And,
since S is the maximum inventory level and s' to s is defined as
the reorder range, the reorder range now becomes S to s and is
maximum. Moreover, the inventory level of an item (inventory on
hand and on order) will always lie between the maximum S and the
reorder point s. Therefore, when S is equal to s', the inventory

level will always lie in the reorder range S to s. All this means

is, that the Joint Ordering Rule is modified and now becomes:

When the inventory level (inventory on hand and on order)
of any item in the group is equal to or less than the trigger
point s, all items in the group should be reordered. The quantity
of each item ordered is equal to (S - I), where I is equal to the

inventory on hand and on order.
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This modified form of the Joint Ordering Rule is very similar
to the one proposed by Starr and Miller.l Starr and Miller com-
pute a value of t, the number of months between orders which is
assumed to be the same for all items within the group. Hence,
according to the authors, every item should be ordered every
t months. Starr and Miller's joint ordering rule is simply a

particular case of the Joint Ordering Rule proposed in this thesis.

During the experimentation process it was found that for
Data Sets 1, 2 , and 3, and Real Data Sets 1 and 2, the least .
cost values of the parameters were such that s' was equal to S.
Hence, these data sets illustrate this particular case. Analysis
of the four hypothetical data sets indicated that the standard
deviations of the mean demands for the items were relatively
small (between 1,96 and 4.26). This means that the mean weekly
demands for the items in the group were not widely dispersed.
Hence, it was concluded that when the mean demands for the items
are not widely dispersed, it is not only economical to group
the items and order them jointly, but additional savings may be

achieved by including all items in every joint order.

Case 2: S > s' > s:

In this case, the Joint Ordering Rule is characterized by

three parameters, S, s'

and s, and is as stated in the major

hypothesis:

1Starr, M.K. and Miller, D.W., Inventory Control: Theory
and Practice (Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1966) pp. 104-110
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When the inventory level (inventory on hand and on order) of
any item in the group is equal to or less than the reorder point
s, the inventory level (inventory on hand and on order) of the
rest of the items in the group is checked, and all items that
have inventory levels (inventory on hand and on order) between
1

s' and s, the reorder range, are ordered jointly.

The results indicate that Data Sets 4, 5, 6, and 7 are illu-
strations of this particular case. Analysis of these three data
sets indicated that the standard deviations of the mean demands
for the items (between 6.39 and 9.47) were neither as small as
those of Data Sets 1,2,3, or 4 (i.e. Case 1) nor were they as
large as those of Data Sets 8 and 9., This means that the mean
Qemands of the items were neither too widely dispersed nor too
narrowly dispersed. Hence, it was concluded that if the mean
demands of the items are neither too widely nor too narrowly
dispersed, it is more economical to include only some items in
the joint order. The items that should be included are those
which have inventory levels (inventory on hand and on order)

within the reorder range s' to s, when an order is placed.

Case 3: s' = s:

When s' is equal to s the Joint Ordering Rule is once again
defined by two parameters, S and s' (or s) as in Case (1). Since
)

s' to s is the reorder range, when s' is equal to s the reorder

range is equal to zero and is minimum, The Joint Ordering Rule
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now becomes:

When the inventory level (inventory on hand and on order)
of an item is equal to or less than the reorder point s, only that

single item should be reordered.

The joint ordering rule is therefore reduced to an individual
item rule such as the simple (s, S) rule. However, there is one
difference between this modified form of the Joint Ordering Rule
and the (s, S), or the two bin inventory control system. In the
simple (s, S) inventory control system, the parameters s and §.
are computed for each individual item, and these parameters are
then used to control the inventory of the respective items. In
the proposed Joint Ordering Rule in the modified form, the values
of the two parameters s and § are common to all items in the group.
Other than this, the two reordering rules are identical and both

are essentially individual item rules.

Hence, it was concluded that, if the value of the two
parameters s and S of (s, S) inventory control system is the
same for all items, then the (s, S) individual ordering rule
is a particular case of the joint rule characterized by three

parameters, S, s' and s.

Out of the nine data sets used to test the proposed joint
ordering rule, in no case were the minimum cost parameters such

that s' was equal to s. This was indeed surprising. An explan-
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ation as to why examples of this particular case would be rare

is given on p. 115.

The most important conclusion that was drawn from these
three cases was that the Joint Ordering Rule proposed in this

thesis is more general and incorporates within itself a number

of other reordering rules. Both individual item ordering rules
such as the two bin inventory control system, and some joint
ordering rules such as the one proposed by Starr and Miller are

incorporated.

3. Besides the 3 cases identified above, there is another case
which is conceivable. As mentioned in the major hypothesis,

there will exist a number of situations where the joint ordering
rule will lead to lower total costs than the individual item
ordering rule., However, there will also be certain situations

where the joint ordering rule will lead to total costs greater

than the individual item ordering rules. During the experimentation
process it was found that for Data Sets 8 and 9 the average total
cost per year when the Joint Ordering Rule was used to manage
inventory was greater than the average total cost when the Modified

Joint Ordering Rule was used.

Analysis of Data Sets 8 and 9 indicated that the standard
deviation of the mean demands for the items was relatively large.

For example, for Data Set 8 the standard deviation was equal to
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Figure 6.2 : Approximate ranges for the four cases of
the Joint Ordering Rule. The ranges are
expressed in terms of the standard devia-
tion of the mean demands.

5. In Chapter 4, a method for calculating the starting values
of the parameters S, s', and s was suggested (see p. 74). It
was necessary to calculate these values so as to have some in-
itial values to begin the search for the optimum values of the
three parameters S, s, and s'. The starting value of s was
assumed to be the weighted average of the individual reorder
points. The starting value of S was assumed to be the weighted
average of the individual economic order quantities, plus the
starting value of s computed earlier. Lastly, the starting

value of s' was assumed to equal S, the maximum value of s'.
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However, the results indicated that minimum cost values of
the three parameters were not close to these starting values.
This was true for all data sets. For example, for Real Data

Set 1 the starting values of the three parameters were:

S =113
§'= 113
s = 31

But the minimum cost values of the three parameters were:

S =65
s' = 65
s =15

It was therefore concluded that the procedure for calcu-
lating the starting values of the three parameters suggested
in Chapter 4 was not the best. The writer believes that this
conclusion will be most useful if further investigation of the

proposed Joint Ordering Rule is planned.

6. Joint ordering will lead to a savings in ordering costs
because a number of items are included in a single order. Ad-
ditional savings can be achieved through quantity discounts,
since the dollar value of a joint order is larger. On the other
hand, joint ordering will lead to an increase in inventory carry-

ing costs because some items which have inventory levels within
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the reorder range are ordered, though they should be ordered
when the inventory level reaches the reorder point s. This more
frequent ordering of some items leads to an increase in average

inventory, and hence, an increase in inventory carrying costs.

These opposite costs will depend on the value of the three
parameters S, s', and s. This suggests that there should be
some values of the three parameters such that the total cost is
minimum.1 These optimum values were found for all data sets,
including Real Data Sets 1 and 2. When the search for the optimum
values was essentially a limited search, ''local" optimums were
found. 1In the case of Real Data Sets 1 and 2, and hypothetical
Data Sets 4 and 5, an extensive search was conducted.2 Hence,
the optimum values of the parameters were found. All this in-

dicated that the minor hypothesis was true. However, during

the search it was found that the optimum values of the three

parameters are not necessarily unique.

7. Attempts to find an analytical method for computing the
optimum values of S, s, and s' so as to minimize total cost

of the system meet with little success. The only method that
can be suggested to compute these optimum values, is the search
method used in this research.3 It must be pointed out that this

procedure is not as time consuming as it appears. The average

lThis was the minor hypothesis.
23ee pp. 36-37 for details.
3see p. 81 for details.
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time for computing the minimum cost values of the three parameters
on the CDC 6500 at Michigan State University was about 20 to 30
minutes for each data set., The cost of this computer time is a
very small fraction of the potential savings resulting from the
use of the Joint Ordering Rule.

Lastly, as mentioned earlier, one important advantage of the
Joint Ordering Rule is that there is an increased opportunity for
taking advantage of quantity discounts offered by a vendor. How-
ever, quantity discounts have not been included in the analysis.
Yet, the savings resulting from the use of the Joint Ordering
Rule to control inventory were found to be substantial. Hence,
if quantity discounts were included in the analysis, the savings
would probably be greater still, This would merely provide
additional evidence that the major hypothesis is true.

There is considerable scope for further research, Firstly,
some method for computing the minimum cost values of the three
parameters must be developed. Secondly, a certain parameter
(or ratio) should be defined which would indicate which of the
four cases of the Joint “rdering Rule is likely to occur. This
parameter would be a function of the ordering cost, the inventory
carrying cost, most of unfilled demand, and some measure of the
dispension of the mean demands of the items in the group. This
parameter could also be used to indicate whether the Joint
Ordering Rule should be used at all. Lastly, the ultimate goal
would be to develop an analytical solution to the joint ordering

problem.
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APPENDIX A

THE GAMMA DISTRIBUTION

Most real processes in business can be approximated by either
the normal distribution or the poisson distribution. But both these
distributions suffer from certain limitations. The normal distri-
bution becomes inappropriate when the ratio of the standard deviation
to the mean of the process is larger than about 1/3.}! This is because
the normal variates generated will often be negative when this ratio
of 1/3 is exceeded. The poisson process does not generate negafive
variables. But the mean and the variance in the poisson distribution
are always equal. This restricts the usefulness of the poisson
distribution.

The gamma distribution does not suffer from these limitations
and hence is very useful. The probability density function of the

gamma distribution is:

r r-1_-Ax
£ = Ax e
(r-1)1
where r and A are the gamma parameters. The gamma distribution
results from an effort to determine the probability of x units of

length between one success and the rth succeeding success. The

mean and the standard deviation of a gamma distribution are:

! McMillan, C. and Gonzalez, R. F. Systems Analysis (Homewood,
Illinois: Richard D. Irwin, Inc., 1968), p. 261.
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Mean = r/\
Standard Deviation = V't /)

From this it follows that:

_ (mean) 2
r = -z
(standard deviation)
X = (mean)

~ (standard deviation)*

Hence a gamma distribution, like a normal distribution, can be
uniquely specified by its mean and its standard deviation.

When r=1, the gamma distribution is identical to the exponen-
tial distribution. If r is a positive integer, the gamma distribution
is identical to the Erlang distribution. As r increases, the gaﬁma

distribution approaches a normal distribution asympotically.



APPENDIX B
ESTIMATION OF INVENTORY CARRYING COSTS
AND ORDERING COSTS

In order to carry out the simulation with the hypothetical
data, it was necessary to assume certain values for the inventory
carrying costs and the ordering costs. The inventory carrying
cost per unit per year was assumed to be approximately 20 percent
of the value of the item, while the ordering cost was assumed to
be $15 per order. These values were based on the estimates
provided by Carson.!

According to Carson, the inventory carrying costs usually
runs from 10 percent to 25 percent of the value of the inventory

per year. One commonly used estimate of the percentage cost per

year of carrying inventory is

Interest on Investment 3.0%
Shrinkage

(waste, scrap, losses, theft, etc.) 5.0%
Storage

(rent, heat, light, etc.) 2.0%
Taxes 1.5%
Insurance 0.5%
Depreciation on Capital Assets 2.0%
Material Handling and Record Keeping 4.07
TOTAL 18.0%

1 Carson, G. B. Production Handbook (New York: The Ronald
Press, 1960) sections 4-55 to 4-58.
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Since the inventory carrying costs are estimated to run from
10 percent to 25 percent, a value of 20 percent was assumed in
this research.

Carson estimated the ordering costs to range from $8 to $20.

Hence, an ordering cost of $15 per order was assumed in this research.
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APPENDIX C

FORTRAN SUBROUTINE FOR THE GENERATION OF NORMAL VARIATES

The following subroutine! was used for the generation of normal

variates with some mean (EX) and standard deviation (STDX)

SUBROUTINE NORMAL (EX,STDX,X)

SUM = 0.0 l4a
DO 5 I =1,12

R = RANF (-1)

SUM = SUM + R

X = STDX * (SUM - 6.0) + EX

RETURN

END

1 Naylor, T. H., Balintfy, J. L., Burdick, D. S. and Chu, K.
Computer Simulation Techniques (New York: John Wiley and Sons, Inc.,
1968), p. 95.




APPENDIX D
GENERATION OF RANDOM VARIATES FROM SOME
STATISTICAL POPULATION WHOSE CUMULATIVE
PROBABILITY DISTRIBUTION IS GIVEN

Naylor! has developed a procedure called "The Inverse Trans-

formation Method" for the generation of random variates from some

|£ L2k Sy

particular statistical population whose cumulative distribution
function is known. The procedure is as follows:

Let F(x) be the cumulative distribution function of a random
variate x. Then, since F(x) is defined over the range zero to one,
we can generate uniformly distributed random numbers r between
zero and one and set

F(x) =r

Hence x is uniquely determined by r = F(x). Also, for any
particular value of r say r, generated, it is possible to find the
corresponding value of x, say x, by the inverse function of F.
That is,

X, = F‘l(ro)

where F’l(r) is the inverse transformation of r.

! Naylor, T. H., Balintfy, J. L., Burdick, D. S., and Chu, K.
Computer Simulation Techniques (New York: John Wiley and Sons, Inc.,
1968), pp. 70-71. '
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Graphically the procedure is as follows:

F(x) = r
- T T 1.0

[
[
|
Y
X

o

Hence the procedure involves the generation of a uniformly
distributed random variable r, between zero and one, and then

reading off the corresponding value of x, i.e., xg,

from the cumu-
lative distribution function F(x).

The values of the cumulative proSabilities (ARG) for various
values of x (VAL) were first read in. Then the following FORTRAN
FUNCTION was used to determine the appropriate value of x, given r.

FUNCTION TABLI(VAL,ARG,DUMMY,K)
DIMENSION VAL(1) ,ARG(1)
DUM=AMX1 ( AMIN1 ( DUMMY ,ARG(K) ) ,ARG(1))
DO 1 I=2,K
IF (DUM-ARG(I))2,2,1
2 TABLI=(DUM-ARG(I-1))*(VAL(I)-VAL(I-1))/(ARG(I)-ARG(I-1))+VAL(I-1)
TABLI=TABLI*3/13
RETURN
1 CONTINUE
RETURN

END



APPENDIX R
CONVERSION OF DEMAND PER MONTH
TO DEMAND PER WEEK
Let D; = demand during month i
Then,
m
the mean demand per month = E— D

11
m

and the variance of the demand per month is = ?Di gbi) 2
m m

Assume that there are 4 1/3 weeks in a month. It will be shown
that the procedure adopted in this thesis, namely generating a
monthly demand (given the mean and standard deviation) and then
computing the weekly demand as 4 1/3 the monthly demand, is valid.

Let di = demand during week i

Then,

the mean of the weekly demand = Zdi

m

and the variance of the weekly demand = Z(di)2 (Zdi)z

m m

But dy = (3/13) Dy

Therefore mean of the weekly demand = £ 3/13 Dy

m
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m
= 3/13 (mean of monthly demand)
Similarly,

The variance of the weekly demand

L (3/13 D)2 -[z 3/13 Di]"

m m

m

m
(3/13)%| Ip} -(zni)z
Tw \Tm

(3/13) 2(variance of monthly demand)

(3/13)25(Dy)% - (3/13) 2[291]2

Therefore,
Mean of the weekly demand = 3/13(mean of monthly demand)

Variance of the weekly demand = 3/13 (variance of monthly demand)
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22

36
35

12

11

APPENDIX F

LISTING OF THE FORTRAN
PROGRAMS

PROGRAM CONVERG (INPUT,OUTPUT)
DEMENSION INV (12,75),IE0Q(12,75),IDEM(12) ,MARGIN(12,IEX(12,ISTD(
112,IH00(12,IGIT(12,4),IDUM(12,100)
COMMON IDEM,IEX,ISTD

DO 21 I=1,12

READ 22,IEX(I),ISTD(I)

FORMAT (2I10)

DO 35 J=1,100

DO 36 Jl=1,12

IDUM(J1,J)=0

CONTINUE

pol I=1,12

MARGIN(I)=1

IGIT(I,3)=0

IGIT(I,2)=0

IGIT(I,1)=0

INV(I,1)=100

IE0Q(I)=0

CONTINUE

ITC3=0

ITC2=0

TC1=0,

TC=0.

IORDER=0

ICAPS=50

IDASHS=50

ISMALLS=30

D0600 J6=1,500

DO 100 I=1,52

IF (I-1)9,8,9

DO 10 J=1,12
INV(J,I)=INV(J,I-1)+IGIT(J,3)
CALL DEMAND

DO 11 J=1,12
INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(J,I)-0)12,11,11
ITC3=ITC3- (INV(J,I)*MARGIN(J))
INV(J,I)=0
TC1=TC1+INV(J,I)*0.04

DO 14 J=1,12

THOO (J)=INV(J,I)+IGIT (J,3)+IGIT (J,2)+IGIT(J,1)
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CONTINUE
Do 3 J=1,12

IF (IHOO(J)-ISMALLS(15,15,3
CONTINUE

GO TO 101

IORDER=IORDER+1

ITC2=ITC2+15

DO 16 Jl1=1,12

IF (ITHOO(J1)-IDASHS)17,17,16
IE0Q(J1,I)=ICAPS-INV(J1,I)
IDUM (J1,I)=IE0Q(J1,I)
CONTINUE

DO 30 12=1,12
IGIT(12,3)=IGIT(12,2)
IGIT(12,2)=IGIT(12,1)
IGIT(12,1)=LDUM(12,10
IDUM(12,1)=0

CONTINUE

TC=ITC3+ITC2+TCl

PRINT 200,ICAPS,ISMALLS,IDASHS,ITC3,ITC2,TCl,TC
FORMAT (5(10X,I7),2(10X,F8.2))
ITC3=ITC2=0

TC1=TC=0.

CONTINUE

PRINT 800, (IEX(I),I=1,12)
PRINT 800, (ISTD(I),I=1,12)
FORMAT (///,12(5X,16))

END

SUBROUTINE DEMAND

DIMENSION ID(12),1S(12),IE(12)
COMMON 1ID,IE,IS

DO 10 I1=1,12

SUM=0.

DO 20 I=1,12

R=RANF (-1)

SUM=SUM+R
ID(I1)=ABS (IS (I1)*(SUM-6.0)+IE(I1))
RETURN

END

PROGRAM REPEAT (INPUT ,OUTPUT)

DIMENSION INV (12,75),IE0Q(12,75),IDEM(12) ,MARGIN(12),IEX(12),ISTD(
112) ,1HO0(12) ,IGIT(12,4),IDUM(12,100)

COMMON IDEM,IEX,ISTD

DO 21 I=1,12

21 READ 22,IEX(I),ISTD(I)
22 FORMAT (2I10)

ICAPS=110
ISMALLS=30
IDASHS=110
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MARGIN(I)=1

IGIT(I,3)=0

IGIT(I,2)=0

INV(I,1)=100

IGIT(I,1)=0

IE0Q(I)=0

CONT INUE

ITC3=0

ITC2=0

TC1=0.

TC=0.

IORDER=0

SUM=0.

DO 222 K6=1,50

DO 100 I=1,52

IF (1-1)9,8,9

DO 10 J=1,12
INV(J,I)=INV(J,*-1)+IGIT(J,3)
CALL DEMAND

DO 11 J=1,12
INV(J,I)=INV(J,I)-IDEM(J)
IF (INV(J,I)-0)12,11,11
ITC3=ITC3- (INV(J,I)*MARGIN(J))
INV(J,I)=0
TC1=TC1+INV(J,I)*0.04

DO 14 J=1,12

THOO (J)=INV(J,I)+IGIT(J,3)+IGIT(J,3)+IGIT(J,1)

CONTINUE
DO 3 J=1,12

IF (IHOO(J)-ISMALLS)15,15,3
CONTINUE

GO TO 101

IORDER=IORDER+1

ITC2=ITC2+15

DO 16 J1=1,12

IF (IHOO(J1)-IDASHS(17,17,16
IE0Q(J1,I)=ICAPS-INV(J1,I)
IDUM J1,I)=IE0Q(J1,I)
CONTINUE

DO 30 12=1,12

IGIT (12,3)=1GIT(12,2)
IGIT(12,2)=IGIT(12,1)
IGIT(12,1)=IDUM(12,1I)
IDUM(12,1)=0

CONTINUE
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TC=ITC3+ITC2+TCl
PRINT 200,ICAPS,ISMALLS,IDASHS,ITC3,ITC2,TCl,TC

200 FORMAT (5(10x 17) 2(10Xx,F8.2))
IF (K6-31)19,18,18

18 SUM=SUM+TC

19 ITC3+ITC2=0
TC1=TC=0.

222 CONTINUE
XMEAN=SUM/ 20,
PRINT 202,XMEAN

202 FORMAT (*///*,* THE MEAN OF LAST TWENTY TC IS *,F10.3)

53 IDASHS=IDASHS-10
END
SUBROUTINE DEMAND
DIMENSION ID(12,1S(12,1E(12)
COMMON 1ID,IE,IS
DO 10 I1=1,12
SUM=0.
DO 20 I=1,12
R=RANF (-1)

20 SUM=SUM+R

10 ID(I1)+ABS(IS(I1)*(SUM-6.0)+IE(I1))
RETURN
END

PROGRAM EOQ (INPUT,OUTPUT)
DIMENSION INV(12,75),IE0Q(12),IDEM(12),MARGIN(12),IEX(12),ISTD(12)
1,IHO0(12),IGIT(12,4),IDUM(12,100),IR(12)
COMMON IDEM,IEX,ISTD
THIS IS THE MODIFIED EOQ PROGRAM
IFLAG=0
DO 21 =1,12

21 READ 22,IEX(I),ISTD(I)

22 FORMAT (2110)
DO 35 J=1,100
DO 36 J1=1,12

36 IDUM(J1,J)=0

35 CONTINUE
DO 1 I=1,12
MARGIN(I)=1
IGIT(1,3)=0
IGIT (1,2)=0
IGIT(I,1)=0
IEOQ(I)=((15%2*IEX(I))/0,04)*%*0,5
IR(I)=3*IEX(I)+2%(3%*0,5)*ISTD(I)
INV(I,1)=100

1 CONTINUE
ITC3=0
ITC2=0
TC1=TC=0
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IORDER=0
DO 600 J6=1,500

DO 100 I=1,52

IF (I-1)9,8,9

DO 10 J=1,12
INV(J,I)=INV(J,I-1)+IGIT(J,3)
CALL DEMAND

DO 11 J=1,12
INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(J,I)-0)12,11,11
ITC3=ITC3- (INV(J,I)*MARGIN(J))
INV(J,I)=0
TC1=TC1+INV(J,I)*0.04

DO 14 J=1,12

IHOO (J)=INV(J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)
CONTINUE

DO 3 J=1,12

IF (IHO0(J)-IR(J))15,15,3
IDUM(J,I)=IE0Q(J)
IORDER=IORDER+1

IFLAG=1

CONTINUE

IF (IFLAG-0)23,101,23
ITC2=ITC2+15

IFLAG=0

DO 30 12=1,12
IGIT(12,3)=1GIT(12,2)
1GIT(12,2)=IGIT(12,1)
IGIT(12,1)=IDUM(12,1)
IDUM(12,1)=0

CONTINUE

TC=ITC3+ITC2+TCl

PRINT 200,1TC3,ITC2,TC1,TC
FORMAT (2(10X,17),2(10X,F8.2))
ITC3=ITC2=0

TC1=TC=0.

CONTINUE

PRINT 71, (IE0Q(I),I=1,12)
PRINT 71, (IR(I),I=1,12)
FORMAT (12(15,5X((

PRINT 800, (IEX(I),I=1,12)
PRINT 800, (ISTD(I),I=1,12)
FORMAT (///,12(5X,16))

END

SUBROUTINE DEMAND

DIMENSION ID(12),1S(12),IE(12) ‘
COMMON ID,IE,IS

DO 10 Il=1,12

SUM=0.

DO 20 I=1,12

R=RANF (-1)

“N
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20 SUM=SUM+R

10 ID(11)=ABS(IS(I1)*(SUM-6.0)*IE(Il))
RETURN
END

PROGRAM EOQ (INPUT,OUTPUT)
DIMENSION INV(12,75),IE0Q(12),IDEM(12),MARGIN(12,IEX(12),ISTD(12)
1,1H00(12),1SIT(12,4),IDUM(12,100),IR(12)
COMMON IDEM,IEX,ISTD
DO 21 1I=1,12
21 READ 22,IEX(I),ISTD(I)
22 FORMAT (2I10)
DO 35 J=1,100
DB 36 J1=1,12
36 IDUM(J1,J)=0
35 CONTINUE
DO 1 I=1,12
MARGIN(I)=1
IGIT(I,3)=0
1GIT(1,2)=0
IGIT(I,1)=0
IEOQ(I)=((15%2*IEX(1))/0.04)*%0,5
IR(I)=3**TEX (I)+2% (3**0,5)*ISTD(I)
INV(I,1)=100
1 CONTINUE
ITC3=0
ITC2=0
TC1=TC=0.
IORDER=0
DO 600 J6=1,500
DO 100 I=1,52
IF (I-1)9,8,9
9 DO 10 J=1,12
10 INV(J,I)=INV(J,I-1)=ITIT(J,3)
8 CALL DEMAND
Do 11 J=1,12
INV(J,I)=INV(J,I)-IDEM(J)
IF (INV(J,1)-0)12,11,11
12 ITC3=ITC3-(INV(J,*)*MARGIN(J))
INV(J,I)=0
11 TC1l=TCl+INV(J,I)*0.04
DO 14 J=1,12
THOO (J)=INV(J,I)+IGIT (J,3)+IGIT(J,2)+IGIT(J,1)
14 CONTINUE
DO 3 J=1,12
IF (IHOO(J)-IR(J))15,15,3
15 IDUM(J,I)=IE0Q(J)
IORDER=IORDER+1
ITC2=ITC2+15
3 CONTINUE
191 DO 30 12=1,12
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IGIT(12,3)=IGIT(12,2)
IGIT(12,2)=IGIT(12,1)
IGIT(12,1)=IDUM(12,1)
30 IDUM(12,1)=0
100 CONTINUE
TC=ITC3+ITC2+TCl
PRINT 200,ITC3,ITC2,TCl,TC
200 FORMAT (2(10X,17),2(10X,F8.2))
ITC3=ITC2=0
TC1=TC=0.
600 CONTINUE
PRINT 71, (IEOQ(I),I=1,12)
PRINT 71, (IR(1),I=1,12)
71 FORMAT (12,(15,5X))
PRINT 800, (IEX(I),I=1,12)
PRINT 800, (ISTD(I),I=1,12)
800 FORMAT (///,12(5X,16))
END
SUBROUTINE DEMAND
DIMENSION ID(12),IS(12,IE(12)
COMMON 1ID,IE,IS
DO 10I1=1,12
SUM=0.
DO 20 1I=1,12
R=RANF (-1)
20 SUM=SUM+R
10 ID(I1)=ABS(IS(I1)*(SUM-6.0)4+IE(I1))
RETURN
END

PROGRAM CONVERG (INPUT,OUTPUT) ‘

DIMENSION INV(12,75),IE0Q(12,75),IDEM(12),XMARGIN(12),IH00(12),IGI
1T(12,4),1DUM(12,100) ,CPU(12)

DIMENSION VALI(22),ARG1)22),VAL2(25),ARG2)25),VAL3(48),ARG3(48),VA
114 (26) .ARGA (26) ,VALS (11) ,ARG5 (11, VAL6 (33,ARG6 (33) ,VAL7 (34) ,ARG7 (
234 ,VAL8 (39),ARG8 (39) ,VAL9 (17) ,ARG9(17) ,VAL10(21) ,ARG10(21) ,VAL11(
341) ,ARG11(41) ,VAL12(29) ,ARG12(29)

IFLAG=0

K2=25

K3=48

K5=11

K6=33

K7=34

K9=17

K10=21

Kl1=41

20 FORMAT (F10.7)

VALX=0.

DO 811 I=1,25

VAL2 (I)=VALX
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VALX=VALX+10
READ 20,ARG2(I)
VALX=0,

DO 812 I=1,48
VAL3(I)=VALX
VALX=VALX+2.
READ 20,ARG3(I)
VALX=0.

DO 814 I=1,11
VALS (I)=VALX
VALX=VALX+10.
READ 20,ARG5(I)
VALX=0,

DO 815 I=1,33
VAL6 (I1)=VALX
VALX=VALX+2.
READ 20,ARG6 (1)
VALX=0.

DO 816 I=1,34
VAL7 (1)=VALX
VALX=VALX+10.
READ 20,ARG7(I)
VALX=0,

DO 818 1=1,17
VAL9(I)=VALX
VALX=VALX+10.
READ 20,ARG9(I)
VALX=0.

DO 819 I=1,21
VAL10 (I)=VALX
VALX=VALX+5.
READ 20,ARG10(I)
VALX=0, '

DO 821 I=1,41
VAL11(I)=VALX
VALX=VALX+2,
READ 20,ARGL1(I)
DO 21 1=1,8
READ 22,CPU(I)
FORMAT (F10.4)
ICAPS=65
IDASHS=65
ISMALLS=15

DO 35 J=1,100
DO 36 J1=1,12
IDUM(J1,J)=0
CONTINUE

DO 1 1=1,12
XMARGIN(I)=0,2
IGIT(1,3)=0
IGIT(1,2)=0
INV(I,1)=100
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IGIT(I,1)=0
IE0Q(I)=0
1 CONTINUE
TC1=TC=XTC3=0.
ITC2=0
IORDER=0
SUM=0.
DO 600 J6=1,500
DO 100 I=1,52
IF (I-1)9,8,9
9 DO 10 J=1,8
10 INV(J,I)=INV(J,I-1)+IGIT(J,3)
8 X=RANF (-1)
IDEM(1) =TABLI (VAL2,ARG2,X ,K2)
IDEM(2)=TABLI (VAL3,ARG3,X,K3)
IDEM(3)=TABLI (VALS , ARG5, X ,K5)
IDEM (4)=TABLI (VAL6 ,ARG6 , X ,K6)
IDEM(5)=TABLI (VAL7 ,ARG7 ,X,K7)
IDEM(6)=TABLI (VAL9,ARGY,X,K9)
IDEM(7)=TABLI (VAL10,ARG10,X,K10)
IDEM(8)=TABLI (VAL11,ARG11,X K11)
DO 11 J=1,8
INV(J,I)=INV(J,I)-IDEM(J)
IF (INV(,I)-0)12,11,11
12 XTC3=XTC3- (INV(J,I)*XMARGIN(J)*CPU(J))
INV(J,1)=0
11 TC1=TC1+(INV(J,I)*0.3*CPU(J)/52.)
DO 14 J=1,8
THOO (J)=INV(J,I)+IGIT (J,3)+IGIT (J,2)+IGIT(J,1)
14 CONTINUE
DO 3 J=1,8
IF (IHOO(J)-ISMALLS)15,15,3
3 CONTINUE
GO TO 101
15 IORDER=IORDER+1
ITC2=1TC2+15
DO 16 J1=1,8
IF (IHOO(J1)-IDASHS)17,17,16
17 IE0Q(J1,I)=ICAPS-INV(J1,I)
IDUM (J1,I)=IE0Q(J1,I)
16 CONTINUE
101 DO 30 I2=1,8
IGIT(I2,3)=IGIT(12,2)
IGIT(I2,2)=IGIT(I2,1)
IGIT (12,1)=IDUM(I2,I)
30 IDUM(I2,I)=0
100 CONTINUE
TC=XTC3+ITC2+TC1
PRINT 200,ICAPS,ISMALLS,IDASHS,XTC3,TTC2,TCl,TC
200 FORMAT (3(10X,17),10X,F8.2,10X,17,2(iX,F14.2))
IF(J6-481)19,18,18
18 SUM=SUM+IC
19 TC1=TC=XTC3=0.
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ITC2=0
CONTINUE

XMEAN=SUM/20.

PRINT 202.XMEAN

FORMAT (*///*,* THE MEAN OF LAST TWENTY TC IS *,F10.3)

END

FUNCTION TABLI (VAL,ARG,DUMMY ,K)

DIMENSION VAL(1),ARG(1)

DUM=AVAX1 (AMIN1 (DUMMY , ARG (K) ) , ARG (1))

DO 1 I=2,K

IF (DUM-ARG(I))2,2,1

TABLI=(DUM-ARG (I-1))* (VAL(I)-VAL(I-1))/(ARG(I)-ARG(I)-1))+VAL(I-1)
TABLI=TABL*3/13

RETURN

CONTINUE

RETURN

END

PROGRAM REPEAT (INPUT,OUTPUT)

DIMENSION INV(12,75),IE0Q(12,74),IDEM(12) ,XMARGIN(12),IH00(12),IGIL
1T (12,4) ,IDUM(12,100) ,CPU(12)

DIMENSION VAL1(22),ARG1(22),VAL2(25),ARG2)25),VAL3)48),ARG3(48),VA
114 (26) , ARG4 (26) ,VAL5 (11) , ARG5) 11) , VAL6 (33) , ARG6 (33) ,VAL7 (34) , ARG (
234 ,VAL8 (39) ,ARG8 (39) ,VAL9 (17,ARG9 (17, VA
341) ,ARGL1 (41) ,VAL12(29) , ARG12(29)

IFLAG=0

K2=25

K3=48

K5=11

K6=33

K7=34

K9=17

K10=21

K11=41

FORMAT (F10.7)

VALX=0.

DO 811 I=1,25

VAL2 (I)=VALX

VALX=VALX+10,

READ 20,ARG2(I)

VALX=0.

DO 812 I=1,48

VAL3(I)=VALX

VALX=VALX+2.

READ 20,ARG3(I)

VALX=0.

DO 814 I=1,11

VALS (I)=VALX

VALX=VALX+10.

READ 20, ARG5S (1)

ey
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VALX=0.

DO 815 I=1,33
VAL6 (I)=VALX
VALX=VALX+2.
READ 20,ARG6(I)
VALX=0.

DO 816 I=1,34
VAL7 (1)=VALX
VALX=VALX+10.
READ 20,ARG7(I)
VALX=0.

DO 818 I=1,17
VALY (I)=VALX
VALX=VALX+10.
READ 20,ARG9(I)
VALX=0.

Do 819 I=1,21
VAL10 (I)=VALX
VALX=VALX+5.
READ 20,ARG10(I)
VALX=0.

DO 821 I=1,41
VAL11 (I)=VALX
VALX=VALX+2.
READ 20,ARG11(I)
Do 21 1=1,8
READ 22,CPU(I)
FORMAT (F10.4)
IDASHS=105
ISMALLS=15
ICAPS=105

DO 53 KK1=1,10
DO 35 J=1,100
DO 36 J1=1,12
IDUM(J1,J)=0
CONTINUE

DO 1 I=1,12
XMARGIN(I)=0.2
IGIT(I,3)=0
IGIT(I,2)=0
INV(I,1)=100
IGIT(I,1)=0
IE0Q(I)=0
CONTINUE
TC1=TC=XTC3=0.
ITC2=0
TORDER=0

SUM=0,

DO 222 KK6=1,50
DO 100 I=1,52
IF (I-1)9,8,9
DO 10 J=1,8

INV(J,I)=INV(J,I-1)+IGIT(J,3)
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X=RANF (-1)
IDEM(1)=TABLI (VAL2 ,ARG2,X,K2)
IDEM(2)=TABLI (VAL3,ARG3,X,K3)
IDEM(3)=TABLI (VALS5,ARG5,X ,K5)
IDEM(4)=TABLI (VAL6 ,ARG6 ,X ,K6)
IDEM(5)=TABLI (VAL7 ,ARG7 ,X,K7)
IDEM(6)=TABLI (VAL9,ARG9,X,K9)
IDEM(7)=TABLI (VAL10,ARG10,X,K10)
IDEM(8)=TABLI (VAL11,ARG11,X,K11)

Do 11 J=1,8

INV(J,I)=INV(J,I)-IDEM(J)

IF (INV(J,I)-0)12,11,11

XTC3=XTC3- (INV(J,I)*XMARGIN(J)*CPU(J))
INV(J,I)=0
TC1=TC1l+(INV(J,I)*0.3*CPU(J)/52.)

DO 14 J=1,8

THOO (J)=INV (J,I)+IGIT(J,3)+IGIT(J,2)+IGIT(J,1)
CONTINUE

DO 3 J=1,8

IF (IHOO(J)-ISMALLS)15,15,3

CONTINUE

GO TO 101

IORDER=IORDER+1

ITC2=ITC2+15

DO 16 J1=1,8

IF (IHOO(J1)-IDASHS)17,17,16
IEOQ(J1,I)=ICAPS-INV(J1,I)
IDUM(J1,I)=IE0Q(J1,I)

CONTINUE

DO 30 12=1,8

IGIT(12,3)-IGIT(I2,2)
IGIT(12,2)=IGIT(I2,1)
IGIT(I2,1)=IDUM(I2,I)

IDUM(I2,1)=0

CONTINUE

TC=XTC3+ITC2+TC1

PRINT 200,ICAPS,ISMALLS,IDASHS,XTC3,ITC2,TCl,TC
FORMAT (3, (10X,17),10X,F8,2,10X,17,29iX,F14.2))
IF (KK6-31)19,18,18

SUM=SUM+TC

TC1=TC=XTC3=0.

ITC2=0

CONTINUE

XMEAN=SUM/20.

PRINT 202 ,XMEAN

FORMAT (*///*,* THE MEAN OF LAST TWENTY TC IS *,F10.3)
IDASHS=IDASHS-10

END

FUNCTION TABLI (VAL ,ARG,DUMMY,K)
DIMENSION VAL (1) ,ARG(1)

DUM=AMAX1 (AMIN1 (DUMMY , ARG (K) ) , ARG (1))
DO 1 I=2,K

IF (DUM-ARG(I))2,2,1
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TABLI=XDUM-ARG(I-1))*(VAL(I)-VAL(I-1)))/(ARG(I)-ARG(I-1))+VAL(I-1)
TABLI=TABLI*3/13
RETURN

1 CONTINUE

20

811

812

814

815

816

RETURN
END

PROGRAM EJQ (INPUT,OUTPUT)
DIMENSION INV(12,75),IE0Q(12,IDEM(12) ,XMARGIN(12),IH00(12),IGIT (1
12,4) ,1DUM(12,100) ,CPU(12) ,IR(12)
DIMENSION VAL1(22),ARGl(22),VAL2(25,ARG2(25),VAL3(48),ARG3(48,VA
1L4(26) ,ARG4 (26) ,VAL5 (11) ,ARG5 (11) , VAL6 (33) , ARG6 (33) ,VAL7 (34) , ARG7 (
234 (,VAL8(39) ,ARG8 (39) ,VAL9 (17) ,ARG9(17) ,VAL10(21) ,ARG10(21),VAL11(
341),ARG11 (41) ,VAL12(29) ,ARG12(29)
THIS IS THE MODIFIED EOQ PROGRAM
IFLAG=0
K2=25
K3=48
K5=11
K6=33
K7=34
K9=17
K10=21;
K11=41
FORMAT (F10.7)
VALX=0.
DO ‘811 I=1,25
VAL2 (I)=VALX
VALX=VALX+10.
READ 20,ARG2(I)
VALX=0,
DO 812 I=1,48
VAL3(I)=VALX
VALX=VALX+2.
READ 20,ARG3(1)
VALX=0.
DO 814 1I=1,11
VAL5 (1)=VALX
VALX=VALX+10.
READ 20,ARG5(I)
VALX=0,
DO 815 I=1,33
VALG (I)=VALX
VALX=VALX+2,
READ 20,ARG6 (1)
VALX=0.
DO 816 i=1,34
VAL7 (I)=VALX
VALX-VALX+10.,
READ 20,ARG7(I)
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VALX=0.

DO 818 I=1,17:

VAL9 (I)=VALX

VALX=VALX+10.

READ 20,ARGY(I)

VALX=0.

DO 819 I-1,21

VAL10 (I)=VALX

VALX=VALX+5.

READ 20,ARG10«(X)

VALX=0,

DO 821 I=1,41

VAL11(I)=VALX

VALX=VALX+2,

READ 20,ARG11(I)

Do 101 I=1,8

READ 102,CPU(I),IEOQ(I),IR(I)
FORMAT (F10.3,110,110)

DO 35 J=1,100

DO 36 Jl=1,8

IDUM(J1,J)=0

CONTINUE

DO 1 I=1,8

XMARGIN(I)=0.2

IGIT(I),3)=0

IGIT(I,2)=0

IGIT(I,1)=0

INV(I,1)=100

CONTINUE

TC1=TC=XTC3=0.

ITC2=0

IORDER=0

DO 600 J6=1,500

DO 100 I=1,52

IF (I-1)9,8,9

Do 10 J=1,8
INV(J,I)=INV(J,I-1)+IGIT(J,3)
X=RANF (-1)

IDEM(1)=TABLI (VAL2,ARG2,X,K2)
IDEM(2) =TABLI (VAL3,ARG3,X,K3)
IDEM(3)=TABLI (VALS, ARG5S, X ,K5)
IDEM (4) =TABLI (VAL6 , ARG6 ,X ,K6)
IDEM(5)=TABLI (VAL7 ,ARG7 ,X ,K7)
IDEM(6)=TABLI (VAL9, ARG9,X,K9)
IDEM(7)=TABLI (VAL10,ARG10,X,K10)
IDEM(8)=TABLI (VAL11,ARG11,X K11)
Do 11 J=1,8

IV (J,I)=INV(J,I)-IDEM(J)
IF(INVOJ,I)-0)12,11,11
XTC3=XTC3- (INV(J,I)*XMARGIN(J)*CPU(J))
INV‘("." l)-o :
TC1=TC1+(INV(J,I)*0.3*CPU(J)/52.)
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IHOO (J)=INV (J,I)+IGIT (J,3)+IGIT (J,2)+IGIT(J,1)
14 CONTINUE
DO 3 J=1,8
IF (IHOO(J)-ISMALLS)15,15,3
15 IDUM(J,I)=IE0Q(J)
TORDER=IORDER+1
IFLAG=1
3 CONTINUE .
IF (IFLAG-0) 23,10)),23
23 ITC2=ITC2+15"
IFLAG=0
1011 DO 30 I2=1,8
IGIT(12,3)=IGIT(I2,2)
ISIT(12,2)=IGIT(I2,1)
IGIT(12,1)=IDUM(I2,TI)
30 IDUM(I2,I)=0
100 CONTINUE
TC=XTC3+ITC2+TC1
PRINT 200,XTC3,ITC2,TCl,TC
200 FORMAT (F18.2,10X,17,2(iX,F14.2))
ITC2=0
TC1=TC=XTC3=0.
600 CONTINUE
PRINT 71, (IEOQ(I),I=1,8)
PRINT 71, (IR(I),I=1,8)
71 FORMAT (8(I5,5X))
END
FUNCTION TABLI (VAL,ARG,DUMMY,K)
DIMENSION VAL(1),ARG(1)
DUM=AMAX1 (AMIN1 (DUMMY , ARG (K)) , ARG (1))
DO 1 I=2,K
IF (DUM-ARG(I))2,2,1
2 TABLI=(DUM-ARG(I-1))* (VAL (I)-VAL(I-1))/(ARG(I)-ARG(I-1))+VAL(I-1)
TABLI=TABLI*3/13
RETURN
1 CONTINUE
RETURN
END

PROGRAM EOQ (INPUT,OUTPUT)

DIMENSION INV(12,75),IE0Q(12),IDEM(12),XMARGIN(12),IH00(12),IGIT(1
12,4),1DUM(12,100) ,CPU(12),IR(12)

DIMENSION VALI (22),ARG1(22),VAL2(25),ARG2(25) ,VAL3 (48) ,ARG3 (48,VA
114 (26) ,ARG4 (26) ,VAL5 (11) ,ARG5 (11) , VAL6 (33) , ARG6 (33) ,VAL7 (34) , ARG7 (
234) ,VAL8 (39) ,ARG8 (39) ,VAL9 (17) ,ARG9 (17) ,VAL10(21) ,ARG10(21),VAL11(
341) ,ARG11(41) ,VAL12(29) ,ARG12(29)

k2=25

K3=48

K5=11

K6=33

K7=34
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K9=17
K10=21
Kl1=41
20 FORMAT (F10.7)
VALX=0,
DO 811 I=1,25
VAL2 (I)=VALX
VALX=VALX+10.
811 READ 20,ARG2(I)
VALX=0.
DO 812 I=1,48
VAL3(I)=VALX
VALX=VALX+2.
812 READ 20,ARG3(I)
VALX=0.
DO 814 I=1,11
VALS (I)=VALX
VALX=VALX+10.
814 READ 20,ARG5(I)
VALX=0.,
DO 815 1=1,33
VAL6 (I)=VALX
VALX=VALX+2.
815 READ 20,ARG6(I)
VALX=0,
DO 816 I=1,34
VAL7 (I)=VALX
VALX=VALX+10.
816 READ 20,ARG7(I)
VALX=0.
DO 818 I=1,17
VALY (I)=VALX
VALX=VALX+10.
818 READ 20,ARGY(I)
VALE=0.
DO 819 I=1,21
VAL10 (I)=VALX
VALX=VALX+5.
819 READ 20,ARG10(I)
VALX=0.
DO 821 I=1,41
VAL11 (I)=VALX
VALX=VALX+2,
821 READ 20,ARGL1(I)
Do 101 I=1,8
101 READ 102,CPU(I),IEOQ(I),IR(L)
102 FORMAT (F10.2,I10,110)
DO 35 J=1,100
DO 36 J1=1,8
36 IDUM(J1,J)=0
35 CONTINUE
Do 1 I=1,8
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XMARGIN(I)=0.2
IGIT(I,3)=0
IGIT(I,2)=0
IGIT(I,1)=0
INV(I,1)=100
1 CONTINUE
TC1=TC=XTC3=0.
ITC2=0
TORDER=0
DO 600 J6=1,500
DO 100 I=1,52
IF (I-1)9,8,9
9 DO 10 J=1,8
10 INV(J,I)=INV(J,I-1)+IGIT(J,3)
8 X=RANF(-1)
IDEM(1)=TABLI (VAL2,ARG2,X,K2)
IDEM(2)=TABLI (VAL3, ARG3,X,K3)
IDEM(3)=TABLI (VALS, ARG5,X,K5)
IDEM (4)=TABLI (VAL6 , ARG6 ,X ,K6)
IDEM(5)=TABLI (VAL7,,ARG7,X,K7)
IDEM(6)=TABLI (VAL9, ARGY, X ,K9)
IDEM(7)=TABLI (VAL10,ARG10,X,K10)
IDEM(8)=TABLI (VAL11,ARG11,X ,K11)
DO 11 J=1,8
INV(J,I)=INV(J,I)-IDEM(J)
IF "(INV(J,I)-0)12,11,11
12 XTC3=XTC3- (INV(J,*)*XMARGIN (J)*CPU(J))
INV(J,I)=0
11 TC1=TC1+(INV(J,I)*0.3*CPU(J)/52.)
DO 14 J=1,8
IHOO (J)=INV (J,I)+IGIT (J,3)+IGIT (J,2)+IGIT (J,1)
14 CONTINUE
Do 3 J=1,8
IF (IHOO(J)-IR(J))15,15,3
15 IDUM(J,I)=IE0Q(J)
IORDER=IORDFR+1
ITC2=1ITC2+15
3 CONTINUE
1011 DO 30 I2= 1,8
IGIT (12,3)=IGIT (12,2)
IGIT (12,2)=IGIT(I2,1)
IGIT (I2=1)=IDUM(I2,I)
30 IDUM(I2,I)=0
100 CONTINUE
TC=XTC3+ITC2+4TC1
PRINT 200,XTC3,ITC2,TC1,TC
FUNCTION TABLI (VAL,ARG,DUMMY ,K)
DIMENSION VAL (1) ,ARG(1)
DUM=AMAX1 (AMIN1 (DUMMY , ARG (K)) , ARG (1))
Lo 1 I=2,K
IF (DUM-ARG(I))2,2,1
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2 TABLI=(DUM-ARG(I-1))*(VAL(I)-VAL(I-1))/(ARG(I)-ARG(I-1))+VAL(I-1)
TABLI=TABLI*3/13
RETURN
1 CONTINUE
RETURN
END
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