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ABSTRACT

LARGE-SCALE HIGH DIMENSIONAL DISTANCE METRIC
LEARNING AND ITS APPLICATION TO COMPUTER

VISION

By

Qi Qian

Learning an appropriate distance function (i.e., similarity) is one of the key tasks in

machine learning, especially for distance based machine learning algorithms, e.g., k-nearest

neighbor classifier, k-means clustering, etc. Distance metric learning (DML), the subject

to be studied in this dissertation, is designed to learn a metric that pulls the examples

from the same class together and pushes the examples from different classes away from

each other. Although many DML algorithms have been developed in the past decade, most

of them can handle only small data sets with hundreds of features, significantly limiting

their applications to real world applications that often involve millions of training examples

represented by hundreds of thousands of features. Three main challenges are encountered

to learn the metric from these large-scale high dimensional data: (i) To make sure that the

learned metric is a Positive Semi-Definitive (PSD) matrix, a projection into the PSD cone

is required at every iteration, whose cost is cubic in the dimensionality making it unsuitable

for high dimensional data; (ii) The number of variables that needs to be optimized in DML

is quadratic in the dimensionality, which results in the slow convergence rate in optimization

and high requirement of memory storage; (iii) The number of constraints used by DML is at

least quadratic, if not cubic, in the number of examples depending on if pairwise constraints

or triplet constraints are used in DML. Besides, features can be redundant due to high

dimensional representations (e.g., face features) and DML with feature selection is preferred



for these applications.

The main contribution of this dissertation is to address these challenges both theoretically

and empirically. First, for the challenge arising from the PSD projection, we exploit the

mini-batch strategy and adaptive sampling with smooth loss function to significantly reduce

the number of updates (i.e., projections) while keeping the similar performance. Second,

for the challenge arising from high dimensionality, we propose a dual random projection

approach, which enjoys the light computation due to the usage of random projection and

at the same time, significantly improves the effectiveness of random projection. Third, for

the challenge with large-scale constraints, we develop a novel multi-stage metric learning

framework. It divides the original optimization problem into multiple stages. It reduces the

computation by adaptively sampling a small subset of constraints at each stage. Finally, to

handle redundant features with group property, we develop a greedy algorithm that selects

feature group and learns the corresponding metric simultaneously at each iteration leading to

further improvement of learning efficiency when combined with adaptive mini-batch strategy

and incremental sampling. Besides the theoretical and empirical investigation of DML on

the benchmark datasets of machine learning, we also apply the proposed methods to several

important computer vision applications (i.e., fine-grained visual categorization (FGVC) and

face recognition).
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Chapter 1

Introduction

Machine learning, as a subfield of artificial intelligence, involves automatically improving

from experience and has been successfully applied for many real world applications [83].

Distance functions are essential to many machine learning tasks. For example, k-nearest

neighbor (k-NN) classifier [1] assigns the test example with the most frequent label in its

k nearest neighbors from training set. K-means clustering algorithm [53] outputs clusters

according to the distance from each instance to k centers. However, Euclidean distance

with hand crafted features may not be sufficient to capture the differences between different

classes or clusters. Fig. 1.1 provides an example where the k-NN classifier with Euclidean

distance is used to identify the flower type “English marigold”. Using LLC features [113],

we found that the example from a different class (i.e., “Common dandelion”) is more closer

to the target example than the one from the same class. Therefore, learning an appropriate

distance function becomes the key for distance based methods.

In this dissertation, we will study distance metric learning (DML), which aims to learn a

metric that pulls the examples from the same class together and pushes the examples from

the different classes away from each other according to the supervised information. We start

the discussion by introducing the form of the distance metric and supervision in DML.
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Figure 1.1: Illustrate the problem of Euclidean distance. The left image is more closer than
the right one to the target image under Euclidean distance while it is actually from a different
class “Common dandelion”.

1.1 Distance Metric

Distance function measures the distance between any two examples, which could be denoted

as dist(xi,xj) for d-dimensional examples xi and xj . Most existing DML methods adopt

the form of “Mahalanobis distance” [79]: distM (xi,xj) = (xi − xj)
�M(xi − xj), where M

is called a distance metric with the size of d × d. It is easy to verify that the distance

function is equivalent to Euclidean distance when M is an identity matrix. The target of

DML is to learn a better distance function (i.e., distance metric) than Euclidean distance

to evaluate the distances between pairs of examples correctly. As a distance function, it

should satisfy certain properties, such as symmetric, non-negative and triangle inequality.

Consequently, the learned metric is required to be a positive semi-definite (PSD) matrix,

which is often referred as the PSD constraint. We will elaborate strategies on how to

handle it in Section 2.1.
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1.2 Supervision in Distance Metric Learning

To learn a good distance metric, certain supervised information from the data is needed.

Different from many supervised [106] or semi-supervised [123] machine learning approaches,

the supervision for distance metric learning appears as pairwise or triplet constraints rather

than the labels for training examples. Each pairwise constraint is consisted of two examples.

The metric is learned to guarantee that the distance of pairs from the same class is smaller

than a pre-defined threshold while that of pairs from different classes is large [115]. In

contrast, three examples are included in a triplet constraint [114]. A good metric should

make sure that the examples from the same class is separated from the examples of different

classes with a large margin. It is obvious that a single triplet constraint could be divided in

to three pairwise constraints. Recently, some researchers proposed quadruplet constraints,

which contain four examples in a constraint and could be considered as a variant of triplet

constraints [76].

These constraints could be derived from labels or provided by the applications directly.

For example, pairwise constraints consist of pairs of examples with the same label and pairs

of those from different classes. Some applications can also provide the pairwise constraint

directly. In face recognition [63], each training example contains two face images and the

label is given as an indicator that these two images belong to the same person or not. Given

these constraints, various DML methods are developed and representative ones with pairwise

or triplet constraints are described in Section 2.2.1 and Section 2.2.2, respectively.

Note that although dimension reduction purpose methods, e.g., principle component

analysis (PCA) [95], linear discriminant analysis (LDA) [54] or unsupervised methods, e.g,

locally linear embedding (LLE) [94], isometric feature mapping (ISOMAP) [101], sometimes

3



are also categorized to distance metric learning, we will focus on the discussion of the general

purpose DML methods with pairwise or triplet supervision in this study.

1.3 Computational Challenges in Distance Metric

Learning

Given these supervised information, the objective of DML is optimizing over pairwise or

triplet constraints while keeping the learned metric in the PSD cone. Many DML meth-

ods have been developed under this framework, however, little of them try to address the

fundamental issues in DML. The computational challenges are mainly from three aspects.

• To make sure the learned metric is a PSD matrix, most DML methods have to project

the intermediate solution onto the PSD cone at every iteration. The projection step

requires the eigen-decomposition operator, which costs O(d3) (at least O(d2) and d is

the dimensionality of data).

• The number of variables that need to be optimized increases from O(d) in linear model

to O(d2) in DML. It results in a slower convergence rate in solving the related opti-

mization problem [89]. In addition, d2 variables become too huge to be stored in the

memory when the dimensionality of data is sufficiently large.

• Large number of constraints are needed to avoid overfitting when learning a metric.

The number of constraints could be up to O(n3) (i.e., triplet constraints), where n is

the number of examples. It means that the total cost of DML could be up to O(d3n3).

Besides, to capture the details of images in computer vision (e.g., face recognition),

over-completed descriptors are sampled from each image, which results in high dimensional

4



representations and redundant features.

The occurrence of all these problems makes the large-scale high dimensional DML an

extremely difficult task, and we will study it extensively in this work.

1.4 Applications of Distance Metric Learning to Com-

puter Vision

Distance metric learning is an important subject in machine learning, and has found appli-

cations in many domains, including information retrieval [56], supervised classification [114],

clustering [115, 23] and domain adaptation [93]. Besides machine learning community, other

research groups, e.g., computer vision and data mining [110, 111], also realize the importance

of DML, and have applied it for many real world applications.

In computer vision, DML is first found to be very helpful for image classification [49,

82, 108, 38], visual object recognition [36, 74] and image retrieval [57, 24, 112]. Image

classification and object recognition tasks are often solved as the multi-class classification

problem. They first obtain a metric according to the pairwise or triplet information and then

apply k-NN classifier for classification. Since images are very sensitive to different poses, light

conditions and angles, DML can learn an invariant space to obtain the semantic difference

from low level features between different objects. In a standard image retrieval scenario,

training set consists of pairwise or triplet constraints and a distance metric is learned to

rank these pairs appropriately. When there comes a query image, the system should output

the images that are most similar to the query one, which is equivalent to obtaining the

images closest to the query under the learned metric.

In addition, DML is also adopted for face verification problem [59, 50, 29, 17, 71]. Face
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verification is very practical and has already been used in many real businesses, e.g., ter-

rorist detection, border control and access control system [64]. After obtaining a metric

via optimizing lots of pairs of images from the same or different persons, the access control

system could identify the person automatically and keys are not necessary for the house.

For example, when a stranger comes, the camera in the door can take a photo for him and

then compare it to the photos of people who live in the house. If the pairwise compari-

son under the learned metric returns true, the door will open, otherwise it will keep close.

Compared with the traditional access badges, face is naturally unique for each person and

is more difficult or even impossible to copy, which makes the house much safer. Note that

different from conventional multi-class classification mission, there could be billion people

in the dataset and each person has little number of images (e.g., one per person), which

makes most of existing classifiers, especially one-vs-all methods, failed for this classification

problem with huge number of classes. Besides these applications, DML is also adopted by

object tracking [27, 104], video event detection [4, 87], etc. in computer vision.

In this work, we will introduce DML to fine-grained visual categorization (FGVC) [7]. In

contrast to classifying an image to a basic class, FGVC requires to categorize the image to a

subordinate class, where classes only have subtle difference and the number of classes could

be very large. Furthermore, the images in the same class could be very different due to the

different poses, examples, etc., which means the intra-class variant is large. The properties

of DML, which is independent from the number of classes compared to one-vs-all strategy

and flexible to handle large intra-class invariant, make it appropriate for FGVC. To the best

of our knowledge, this is the first work to apply DML for the challenging FGVC task.
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1.5 Contributions

In this study, we develop several randomized algorithms to alleviate the challenges described

in Section 1.3. First, to reduce the number of PSD projections, we combine the mini-batch

stochastic gradient descent method with an adaptive sampling strategy. Second, we develop a

dual random projection method to handle the large number of variables. Finally, we propose

a multi-stage metric learning framework to divide the learning procedure into a series of

subproblems, where each one only has an epoch (O(n)) of active constraints, and the total

computational cost of the resulting new framework of DML is linear in the dimensionality

and the number of examples (O(dn)). Besides these, we investigate the feature selection

problem and develop a greedy method to select features and learn metrics simultaneously.

The detailed contributions of the dissertation are described as follows.

• We first exploit the combination of the mini-batch strategy with smooth loss function

for DML. Then, we propose an adaptive sampling approach for efficient DML. We veri-

fy, both theoretically and empirically, the efficiency and effectiveness of the mini-batch

strategy with smooth loss and the adaptive sampling approach for DML, respectively.

Finally, we present two hybrid approaches that exploit the combination of the mini-

batch strategy with adaptive sampling for DML. To the best of our knowledge, it is

the first work that reduce the number of updates in DML while keeping the similar

performance.

• We propose a dual random projection approach for high dimensional DML. Our ap-

proach, on one hand, enjoys the light computation of random projection, and on the

other hand, significantly improves the effectiveness of random projection. We verify

the effectiveness of the proposed algorithms both empirically and theoretically.
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• We develop a novel multi-stage metric learning framework for high dimensional DML

to address high dimensional DML with large number of constraints. We divide the

original optimization problem into multiple stages. At each stage, only a small subset

of constraints that are difficult to be classified by the currently learned metric will

be adaptively sampled and used to improve the learned metric. Then we extend the

dual random projection strategy to solve each subproblem. The empirical study with

standard FVGC benchmark datasets verifies that our framework is both effective and

efficient compared to the state-of-the-art FGVC approaches.

• We propose a greedy algorithm that can select descriptors (i.e., features) and learn the

corresponding metrics simultaneously for face recognition with the guaranteed conver-

gence rate. To alleviate the high computational cost of exhausted search that finds only

one feature group at each iteration, we investigate the adaptive mini-batch strategy

and incremental sampling respectively, and the hybrid algorithm that combines these

two strategies is also studied. The empirical study on face recognition confirms the

effectiveness and efficiency of the proposed methods.
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Chapter 2

Literature Survey

In this chapter, we will introduce the existing DML methods briefly. Section 2.1 describes

the general strategies to address the PSD constraint that all DML methods have to deal

with. After that, Section 2.2 - 2.4 present the popular DML methods. Finally, Section 2.5

summarizes the theoretical analysis for DML.

2.1 PSD Constraint in Distance Metric Learning

Before introducing the specific DML methods, we first demonstrate the strategies to handle

PSD constraint, which keeps the learned metric in the PSD cone, in DML. Both early DML

methods that require the gradient from all constraints at each iteration [115, 45], and efficient

approaches [66, 98] that deal with only one constraint at each iteration by exploiting the

techniques of online learning or stochastic optimization, share one common strategy: in order

to ensure that the learned distance metric is PSD, these approaches require, at each iteration,

projecting the learned distance metric M̃ onto the PSD cone by solving the problem

min
M∈PSD

‖M − M̃‖2F

The solution is the positive eigenvalues with the corresponding eigenvectors [47] (i.e., M =

∑
i λiviv

′
i, λi > 0 where λi and vi are the i-th eigenvalue and the corresponding eigenvector
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of M̃). Therefore, it has to perform the eigen-decomposition for a given matrix, which is

computationally expensive (i.e., at least O(d2)).

Several studies have been proposed to avoid projections in SGD. In [55], the authors de-

veloped a projection free SGD algorithm that replaces the projection step with a constrained

linear programming problem. In [80], the authors proposed a SGD algorithm with only one

projection that is performed at the end of the iterations. Unfortunately, the improvement of

the two algorithms in computational efficiency is limited, because they have to compute, at

each iteration, the minimum eigenvalue and the eigenvector of the updated distance metric,

an operation with O(d2) cost, where d is the dimensionality of the data.

It is noteworthy to mention that in a recent study [24], the authors show empirically that

it is possible to learn a good distance metric using online learning without having to perform

the projection at each iteration. In fact, only one projection into the PSD cone is performed

at the end of online learning to ensure that the resulting matrix is PSD. It is different from

the algorithms presented in [55, 80] and no additional mechanisms are needed to prevent the

intermediate solutions from being too far away from the PSD cone. We refer this strategy

as one-projection paradigm in the rest of this dissertation.

2.2 Linear Distance Metric Learning

Most of conventional DML approaches are equivalent to seeking a linear transformation for

the input space. In this section, we will describe representative approaches in detail according

to the type of constraints used. More examples could be found in two survey papers [117, 73]
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2.2.1 Distance Metric Learning with Pairwise Constraints

As mentioned in Section 1.2, DML usually involves two kinds of constraints: pairwise or

triplet. Most early works for distance metric learning focus on optimizing pairwise con-

straints. Xing, et al. [115] proposed one of the earliest methods for the typical DML problem

as studied in this dissertation. The objective is maximizing the distance between the pairs of

examples from the different classes while keeping the distance between the pairs of examples

with the same label less than a pre-defined threshold. Although the problem is solved via a

semi-definite programming (SDP) method [12] that is only runnable on small datasets, they

show the advantage of DML for distance based methods and simulate more research for this

topic. POLA method [96] is then proposed to alleviate the computation cost of DML. It is

an online learning method, which only receives a single pairwise constraint at each iteration.

If the current metric makes a mistake, it will be updated accordingly, otherwise the metric

will be the same. The cost of each iteration is much less since only the gradient from a single

constraint is computed. In addition, the PSD projection is only needed when the pair of

examples from the same class is misclassified and the cost could be as low as O(d2) since

the update is a rank one matrix. MCML [45] is the convex relaxed version of NCA [46].

It represents the extreme case of DML that all data points in the same class should be

mapped into a single location by the learned metric. For this purpose, it minimizes the KL

divergence between the distribution returned by the learned metric and that from the ideal

case. It also proposed to keep a low-rank copy after obtaining the metric to achieve dimen-

sion reduction. Till now, all of these DML methods may require PSD projection at every

iteration, which could be O(d3). ITML [32] applied the LogDet regularizer to avoid PSD

projections. LogDet divergence is a Bregman matrix divergence [13] between two matrices.
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By introducing this regularizer, the metric is updated in the inverse form with a rand one

matrix at each iteration, which could be finished without computing the inverse practically

via the Sherman-Morrison-Woodbury formula. Meanwhile, the updating rule makes sure

that the intermediate learned metric is still in the PSD cone. Although there is no PSD

projection for ITML, the additional cost is included and the cost for each iteration is still

no less than O(d2).

2.2.2 Distance Metric Learning with Triplet Constraints

DML methods with pairwise constraints aim to learn a metric that collapse all examples in

each class to a small cluster whose radius is the pre-defined threshold. However, it is difficult

when the intra-class variance is large, which is often the case in real world applications.

Thus, triplet constraints is proposed to handle this problem more flexibly [114]. Each triplet

constraint contains three examples: two examples with the same label where one is among

the k-nearest neighbors of the target example and one example from the different class who

is also in the nearest neighbors of the target example. LMNN [114] then learns the metric

to push away the example of different class with a large margin. Fig. 2.1 illustrates the

effectiveness of LMNN. Compared with previous DML approaches, it only requires that the

examples in the nearest neighbors could be collapse to a small cluster, which preserves the

large intra-class variance and is more appropriate for combining with k-NN classifier. Since

it borrows the concept of large margin, it also could be analyzed from the view of support

vector machine (SVM) [107], where LMNN is similar to learn a series of local SVM-like

models [33].

After the success of LMNN, Chechik, et al. [24] applied the triplet constraints with an

online learning fashion for efficiency and achieved a good performance for ranking. Surpris-
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Figure 2.1: The figure is from the work [114] and illustrates the learning procedure of LMNN.
The learned metric pushes away the examples that are from different classes but in the nearest
neighbors with a large margin.

ingly, they found empirically that one PSD projection at the end of the algorithm will not

affect the performance, which implies the potential possibility of getting rid of the expensive

PSD projection. Since gradient descent method requires projecting the intermediate solution

onto PSD cone, Shat, et al. [98] adopted mini-batch stochastic gradient descent method to

balance the cost of computing gradient and that of PSD projection. Furthermore, it also

reduces the variance of the stochastic method, which only randomly samples a single triplet

at each iteration.

2.3 Nonlinear Distance Metric Learning

Sometimes, linear transformation could not exploit complicated data distribution sufficiently,

e.g, face images usually lie on the nonlinear manifold [59]. To handle this nonlinear feature

space, kernel trick, which has been well studied in linear model [15], is applied to extend the
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existing DML methods [45, 32, 114, 102]. Its basic idea is mapping the input examples to a

much higher or even infinite dimensional space and then obtaining the linear transformation

there. Although it sometimes performs better, the size of learned metric (i.e., dual variables)

is O(n2) for DML, which is more expensive when n � d. The alternative way to provide

nonlinear learning capacity is deep learning (or called deep neural networks), which is

very popular these years due to its encouraging performance [72]. Unlike kernel trick, deep

learning deals with the input features directly and learns the nonlinear mapping between

each layer according to nonlinear activation functions, e.g., tanh, sigmoid, etc. The original

structure of deep learning is designed for classification and the pipeline is optimized with the

single image as input. By replacing the loss function as pairwise [59] or triplet distance [112]

and concatenating the pipelines in parallel, it is convenient to adapt to DML tasks.

Besides these extensions for the single metric learning, there are some studies on learning

multiple metrics simultaneously. The key part is defining the metric for appropriate

components. Some works apply multi-metric learning on data. That is, they learn each

metric for each class or local cluster, and sometimes even for each single example [42, 84].

For example, MM-LMNN [114] learns a metric per class and the distance between two

examples is defined on the metric corresponding to the label of examples. On the other

hand, the multiple metrics also could be learned according to different feature blocks [61, 29].

For example, each face image could be divided into different parts, e.g., nose, eyes, ears,

etc., and then PMML [29] learns a single metric on each feature block which represents

the different part. Although multiple metrics may improve the performance over a single

metric, it intensifies the already expensive optimization problem by increasing the number

of metrics. Moreover, some good properties of a single metric are sacrificed, e.g., global

transformation, interactions between different components, etc. Since all of these extensions
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are based on conventional DML, we will focus on learning a single linear distance metric in

this dissertation.

2.4 Improving Efficiency of Distance Metric Learning

Although many DML methods have been developed, the cost of update at each iteration is

still (O(d2)) due to the number of variables. Recently, some works aim to alleviate the high

computation cost via sparsity. Different from linear classifier, the sparsity of metric could

come from two aspects: low rank and item sparsity.

Since each metric is a PSD matrix, it could be decomposed as M = LL, where M is a

d× d matrix, L is a d× r matrix and r is the rank of M . When r � d, the total number of

variables for optimizing decreases from d2 to rd, which is only O(d). Some existing methods

apply low rank strategy to accelerate the learning process [114, 31]. The drawback is that

the corresponding optimization problem is not convex anymore, hence, it is not guaranteed

to obtain a global optimal metric. In addition, these methods require to fix r before applying

the DML methods, which easily leads to the suboptimal solution when the true rank is larger

than the pre-defined rank. Some studies apply trace norm or fantope regularization [77] to

obtain a low rank metric, while the cost for training stage is still at least O(d2).

For item sparsity, it could be further categorized into two parts: sparsity on the single

item and sparsity on the columns. The former one assumes that only s items have the

nonzero value in each column/row, where s � d and is corresponding to the L1 regularizer

for each column/row [89]. In the latter scenario, there is only limited number of columns with

nonzero items, which is equivalent to penalizing the whole matrix with L2,1 regularizer [78].

These methods could output the sparse metric which is efficient for test stage, however, the
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learning process still involves O(d2) variables.

2.5 Generalization Performance of Distance Metric

Learning

Besides developing different DML methods for applications, some studies begin to analyze

the generalization performance of DML methods theoretically [68, 16, 6]. Given a specific

DML method and the training set that are i.i.d. sampled from an unknown distribution, we

are interested in the learned model’s prediction error on an arbitrary pairwise constraint from

the true distribution, which is known as generalization error. However, the only evaluation

that we could have is its prediction error on the training set, which is usually referred as

empirical error. According to the theory of stability, Jin, et al. [68] proposed the first

work that uncovered the relationship between them in DML and found that the empirical

error converges to the generalization error at the rate of O(
√

1
n) with high probability. After

that, some other studies show the similar result via different techniques [16, 6]. Cao, et al.

further researched the influence from the different regularizers, such as Frobenius norm, L1

norm, L2,1 norm and trace norm.

These analyses are based on the classification accuracy for pairwise constraints, while

the more interesting question is the performance of k-NN classifier with the learned metric.

Guo, et al. [51] proposed the theory that bridges this gap and shows that the generalization

error of the linear SVM with the similarity matrix from the learned metric is upper bound-

ed by the generalization error of the corresponding metric learning, which means that the

generalization performance of linear classifier is guaranteed by that of metric learning.
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Chapter 3

Large-scale Distance Metric Learning

by Adaptive Sampling and

Mini-Batch Stochastic Gradient

Descent (SGD)

In this chapter1, we will address the challenge from PSD projections (O(d3)). Unlike previous

efforts for handling PSD constraint as mentioned in Section 2.1, we will focus on reducing

the number of PSD projections rather than optimizing each projection in SGD, which is the

popular strategy for large-scale data. As a result, the key challenge in developing efficient

SGD algorithms for DML is how to reduce the number of projections without affecting the

performance of DML.

A common approach for reducing the number of updates and projections in DML is to

use the non-smooth loss function. A popular choice of the non-smooth loss function is the

hinge loss, whose derivative becomes zero when the input value exceeds a certain threshold.

Many online learning algorithms for DML [24, 32, 66] take advantage of the non-smooth loss

function to reduce the number of updates and projections. In [98], the authors proposed a

1This chapter is adapted from the published paper: Q. Qian, R. Jin, J. Yi, L. Zhang and S. Zhu. Effi-
cient Distance Metric Learning by Adaptive Sampling and Mini-Batch Stochastic Gradient Descent (SGD).
Machine Learning Journal (MLJ), 99:3, 353-372, 2015.
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structure preserving metric learning algorithm (SPML) that combines a mini-batch strategy

with the hinge loss to further reduce the number of updates for DML. It groups multiple

constraints into a mini-batch and performs only one update of the distance metric for each

mini-batch. But, according to our empirical study, although SPML reduces the running time

of the standard SGD algorithm, it results in a significantly worse performance for several

datasets, due to the deployment of the mini-batch strategy.

In this chapter, we first develop a new mini-batch based SGD algorithm for DML, termed

Mini-SGD. Unlike SPML that relies on the hinge loss, the proposed Mini-SGD algorithm

exploits a smooth loss function for DML. By using a smooth loss function, the proposed

algorithm is able to effectively take advantage of the reduction in the variance of gradients

achieved by the mini-batch, which in return leads to a better regret bound for online learn-

ing [28] and consequentially a more accurate prediction for the learned distance metric. We

show theoretically that by using a smooth loss function, Mini-SGD is able to achieve sim-

ilar convergence rate as the standard SGD algorithm but with significantly less number of

updates. The second contribution of this work is to develop a new strategy, termed adap-

tive sampling, for reducing the number of projections in DML. The key idea of adaptive

sampling is to first measure the “difficulty” in classifying a constraint using the learned dis-

tance metric, and then perform stochastic updating based on the difficulty measure. Finally,

we develop two hybrid approaches that combine adaptive sampling with mini-batch to

further improve the computational efficiency of SGD for DML. We conduct an extensive em-

pirical study to verify the effectiveness and efficiency of the proposed algorithms for DML.

We summarize the main contribution of this work as follows:

• To the best of our knowledge, this is the first work that exploits the combination of the

mini-batch strategy with smooth loss function for DML. We verify, both theoretically
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and empirically, the efficiency and effectiveness of the mini-batch strategy with smooth

loss for DML.

• We propose an adaptive sampling approach for efficient DML. We verify, both theoreti-

cally and empirically, the efficiency and effectiveness of the adaptive sampling approach

for DML.

• We present two hybrid approaches that exploit the combination of the mini-batch

strategy with adaptive sampling for DML. Our extensive empirical study verifies that

the hybrid approaches are significantly more efficient than both the mini-batch strategy

and the adaptive sampling approach.

The rest of this chapter is organized as follows: Section 3.1 describes the proposed SGD

algorithms for DML based on mini-batch and adaptive sampling. Two hybrid approaches

are presented that combine mini-batch and adaptive sampling for DML. The theoretical

guarantees for both mini-batch based and adaptive sampling based SGD are also presented

in Section 3.1. Section 3.2 summarizes the results of the empirical study, and Section 3.3

concludes this chapter.

3.1 Improved SGD for DML by Mini-batch and Adap-

tive Sampling

We first review the basic framework of DML with triplet constraints. We then present two

strategies to improve the computational efficiency of SGD for DML, one by mini-batch and

the other by adaptive sampling. We present the theoretical guarantees for both strategies,
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and defer more detailed analysis to the appendix. At the end of this section, we present two

hybrid approaches that combine mini-batch with adaptive sampling for more efficient DML.

Let X ⊂ R
d be the domain for input patterns, where d is the dimensionality. For the

convenience of analysis, we assume all the input patterns with bounded norm, i.e. ∀x ∈

X , |x|2 ≤ r. Given a distance metric M ∈ R
d×d, the distance square between xa and xb,

denoted by distM (xa,xb), is measured by

distM (xa,xb) = (xa − xb)
�M(xa − xb)

Let Ω = {M : M � 0, ‖M‖F ≤ R} be the domain for distance metric M , where R specifies

the domain size. Let D = {(x1i ,x1j ,x1k), . . . , (xNi ,xNj ,xNk )} be the set of triplet constraints

used for DML, where xti is expected to be closer to xtj than to xtk. Let �(z) be the convex

loss function. Define Δ(xti,x
t
j ,x

t
k;M) as

Δ(xti,x
t
j ,x

t
k;M) = distM (xti,x

t
k)− distM (xti,x

t
j)

=
〈
M, (xti − xtk)(x

t
i − xtk)

� − (xti − xtj)(x
t
i − xtj)

�〉 = 〈M,At〉

where

At = (xti − xtk)(x
t
i − xtk)

� − (xti − xtj)(x
t
i − xtj)

�

Given the triplet constraints in D and the domain in Ω, we learn an optimal distance metric

M ∈ R
d×d by solving the following optimization problem

min
M∈Ω

L̂(M) =
1

N

N∑
t=1

�
(
Δ(xti,x

t
j ,x

t
k;M)

)
(3.1)
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We also define the expectation of the loss function as

L(M) = E
[
�(Δ(xi,xj ,xk;M))

]
(3.2)

where the expectation is taken over xi, xj and xk.

The key idea of online DML is to minimize the empirical loss L̂(M) by updating the

distance metric based on one sampled constraint at each iteration. More specifically, at

iteration t, it samples a triplet constraint (xti,x
t
j ,x

t
k), and updates the distance metric Mt

to Mt+1 by

Mt+1 = ΠΩ

(
Mt − η�′(Δ(xti,x

t
j ,x

t
k;Mt))At

)

where η > 0 is the step size, �′(·) is the derivative and ΠΩ(M) projects a matrix M onto

the domain Ω. The following proposition shows ΠΩ(M) can be computed in two steps, i.e.

first projecting M onto the PSD cone, and then scaling the projected M to fit in with the

constraint ‖M‖F ≤ R.

Proposition 1. [12] We have

ΠΩ(M) =
1

max(‖M ′‖F /R, 1)
P (M)

Here P (M) projects matrix M onto the PSD cone and is computed as

P (M) =
d∑

i=1

max(λi, 0)viv
�
i

where (λi,vi), i = 1, . . . , d are the eigenvalues and corresponding eigenvectors of M .

As indicated by Proposition 1, ΠΩ(M) requires projecting distance metric M onto the
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PSD cone, an expensive operation that requires eigen-decomposition of M .

Finally, we approximate the hinge loss by a smooth loss in our study

�(z) =
1

L
log(1 + exp (−L(z − 1))) (3.3)

where L > 0 is a parameter that controls the approximation error: the larger the L, the

closer �(z) is to the hinge loss. Note that the smooth approximation of the hinge loss was

first suggested in [122] for classification and was later verified by an empirical study in [119].

The key properties of the loss function �(z) in (3.3) are given in the following proposition.

Proposition 2. For the loss function defined in (3.3), we have

∀z ∈ R, |�′(z)| ≤ 1, |�′(z)| ≤ L�(z)

Compared to the hinge loss function, the main advantage of the loss function in (3.3) is

that it is a smooth loss function. As will be revealed by our analysis, it is the smoothness

of the loss function that allows us to effectively explore both the mini-batch and adaptive

sampling strategies for more efficient DML without having to sacrifice the prediction perfor-

mance.

3.1.1 Mini-batch SGD for DML (Mini-SGD)

Mini-batch SGD improves the computational efficiency of online DML by grouping multiple

constraints into a mini-batch and only updating the distance metric once for each mini-batch.

For brevity, we will refer to this algorithm as Mini-SGD for the rest of the chapter.
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Algorithm 1 Mini-batch Stochastic Gradient Descent (Mini-SGD) for DML

1: Input: triplet constraints {(xti,xtj ,xtk)}Nt=1, step size η, mini-batch size b, and domain
size R

2: Initialize M1 = I and T = N/b
3: for t = 1, . . . , T do

4: Sample b triplet constraints {(xt,si ,x
t,s
j ,x

t,s
k )}bs=1

5: Update the distance metric by

Mt+1 = ΠΩ (Mt − η∇�t(Mt))

6: end for
7: return M̄ = 1

T

∑T
t=1Mt

Let b be the batch size. At iteration t, it samples b triplet constraints, denoted by

(x
t,s
i ,x

t,s
j ,x

t,s
k ), s = 1, . . . , b,

and defines the mini-batch loss at iteration t as

�t(Mt) =
1

b

b∑
s=1

�
(
Δ(x

t,s
i ,x

t,s
j ,x

t,s
k ;Mt)

)

Mini-batch DML updates the distance metricMt toMt+1 using the gradient of the mini-bach

loss function �t(M), i.e.,

Mt+1 = ΠΩ (Mt − η∇�t(Mt))

Algorithm 1 gives the detailed steps of Mini-SGD for DML, where in step 5 Proposition 1 is

used to efficiently compute the projection ΠΩ(·).

The theorem below provides the theoretical guarantee for the Mini-SGD algorithm for

DML using the smooth loss function defined in (3.3).

Theorem 1. Let M̄ be the solution output by Algorithm 1 that uses the loss function defined
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in (3.3). Let M∗ be the optimal solution that minimizes L(M). Assuming ‖At‖F ≤ A for

any triplet constraint and η < 1/(3LA2), we have

E[L(M̄)] ≤ L(M∗)
1− 3ηLA2

+
bR2

2(1− 3ηLA2)ηN
(3.4)

where the expectation is taken over the sequence of triplet constraints.

Remark 1 First, we observe that the second term in the upper bound in (3.4), i.e.,

bR2/[2(1−3ηLA2)ηN ], has a linear dependence on mini-batch size b, implying that the larger

the b, the less accurate the distance metric learned by Algorithm 1. Hence, by adjusting

parameter b, the size of mini-batch, we are able to make appropriate tradeoff between the

prediction accuracy and the computational efficiency: the smaller the b, the more accurate

the distance metric but with more updates and consequentially higher computational cost.

When L(M∗) = 0, we have E[L(M̄)] = O(1/N), i.e. the expected prediction error will be

reduced at the rate of b/N , significantly faster than that of the mini-batch SGD algorithm

(i.e. O(1/
√
N)) given in [28]. Second, if we set η as:

η =
ρ

3LA2(1 + 2ρ)
where ρ =

3bLR2A2

NL(M∗)
(3.5)

we have

E[L(M̄)] ≤ 2L(M∗) +
6bLA2R2

N
(3.6)

Although the step size in (3.5) requires the knowledge of L(M∗) that is usually unavailable,

as suggested in [67], L(M∗) can be estimated empirically using part of training examples.

Third, the bound in (3.4) reveals the importance of using a smooth loss function as the
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Algorithm 2 Adaptive Sampling Stochastic Gradient Descent (AS-SGD) for DML

1: Input: triplet constraints {(xti,xtj ,xtk)}Nt=1, step size η, and domain size R
2: Initialize M1 = I
3: for t = 1, . . . , N do
4: Sample a binary random variable Zt with

Pr(Zt = 1) = |�′(Δ(xti,x
t
j ,x

t
k;Mt)|

5: if Zt = 1 then
6: Update the distance metric by

τt = sign(�′(Δ(xti ,x
t
j ,x

t
k;Mt)), Mt+1 = ΠΩ (Mt − ητtAt)

7: end if
8: end for
9: return M̄ = 1

N

∑N
t=1Mt

last term in (3.4) is proportional to L that measures the smoothness of the loss function.

As a result, using a non-smooth loss function (e.g. hinge loss) in DML will not be able to

benefit the advantage of the mini-batch strategy. Finally, unlike the analysis in [98] (i.e.

Theorem 2) that only consider the case when b = 1, Theorem 1 provide a general result for

any mini-batch size b.

3.1.2 Adaptive Sampling based SGD for DML (AS-SGD)

We now develop a new approach for reducing the number of updates in SGD in order

to improve the computational efficiency of DML. Instead of updating the distance metric at

each iteration, the proposed strategy introduces a random binary variable to decide if the

distance metric Mt will be updated given a triplet constraint (xti,x
t
j ,x

t
k). More specifically,

it computes the derivative �′(Δ(xti,x
t
j ,x

t
k;Mt)), and samples a random variable Zt with

probability

Pr(Zt = 1) = |�′(Δ(xti,x
t
j ,x

t
k;Mt))|
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The distance metric will be updated only when Zt = 1. According to Proposition 2, we have

|�′(Δ(xti,x
t
j ,x

t
k;Mt))| ≤ L�(Δ(xti,x

t
j ,x

t
k;Mt)) for the smooth loss function given in (3.3),

implying that a triplet constraint has a high chance to be used for updating the distance

metric if it has a large loss. Therefore, the essential idea of the proposed adaptive sampling

strategy is to give a large chance to update the distance metric when the triplet is difficult to

be classified and a low chance when the triplet can be classified correctly with large margin.

We note that an alternative strategy is to sample a triplet constraint (xti,x
t
j ,x

t
k) base on its

loss �(Δ(xti,x
t
j ,x

t
k;Mt)). We did not choose the loss as the basis for updating because it is

the derivative, not the loss, that will be used by SGD for updating the distance metric. The

detailed steps of adaptive sampling based SGD for DML is given in Algorithm 2. We refer

to this algorithm as AS-SGD for short in the rest of this chapter.

The theorem below provides the performance guarantee for AS-SGD. It also bounds the

number of updates
∑T

t=1 Zt for AS-SGD.

Theorem 2. Let M̄ be the solution output by Algorithm 2 that uses the loss function defined

in (3.3). Let M∗ be the optimal solution that minimizes L(M). Assuming ‖At‖F ≤ A for

any triplet constraint and η < 2/LA2, we have

E
[L(M̄)

] ≤ L(M∗)
1− ηLA2/2

+
R2

2ηN(1− ηLA2/2)
(3.7)

and the number of updates bounded by

E

⎡
⎣ N∑
t=1

Zt

⎤
⎦ ≤ NLL(M∗)

1− ηLA2/2
+

LR2

2η(1− ηLA2/2)
(3.8)

where the expectation is taken over both the binary random variables {Zt}Nt=1 and the se-
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quence of triplet constraints.

Remark 2 If we set η as

η =
2ρ

LA2(1 + 2ρ)
where ρ =

LA2R2

4NL(M∗)

we have

E[L(M̄)] ≤ 2L(M∗) +
LR2A2

N
(3.9)

and

E

⎡
⎣ N∑
t=1

Zt

⎤
⎦ ≤ 2NLL(M∗) + L2A2R2 (3.10)

The bounds given in (3.7) and (3.9) share similar structures as those given in (3.4) and (3.6)

except that they do not have mini-batch size b that can be used to make tradeoff between

the number of updates and the classification accuracy. The number of updates performed

by Algorithm 2 is bounded by (3.10). The dominate term in (3.10) is O(L(M∗)N), implying

that Algorithm 2 will have a small number of updates if the optimal distance metric only

makes a small number of mistakes for the given set of training triplets. In the extreme case

when L(M∗) → 0, the expected number of updates will be bounded by a constant L2A2R2.

We note that this is consistent with our intuition: it will be easy to learn a good distance

metric when the optimal one only makes a few mistakes, and as a result, only a few updates

are needed to find a distance metric that are consistent with most of the training triplets.

Compared with the result of perceptron method [96], we do not assume that the dataset is

separable, which makes our bound for the number of updates more practically useful.
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Algorithm 3 A Framework of Hybrid Stochastic Gradient Descent (Hybrid-SGD) for DML

1: Input: triplet constraints {(xti,xtj ,xtk)}Nt=1, step size η, mini-batch size b, and domain
size R

2: Initialize M1 = I and T = N/b
3: for t = 1, . . . , T do

4: Sample b triplets {xt,si ,x
t,s
j ,x

t,s
k }bs=1

5: Compute sampling probability γt({xt,si ,x
t,s
j ,x

t,s
k }bs=1;Mt) as in Eqn. 3.11 or 3.12

6: Sample a binary random variable Zt with

Pr(Zt = 1) = γt

7: if Zt = 1 then
8: Update the distance metric by

τt = 1/γt

Mt+1 = ΠΩ(Mt − ητt∇�t(Mt))

9: end if
10: end for
11: return M̄ = 1

T

∑T
t=1Mt

3.1.3 Hybrid Approaches: Combining Mini-batch with Adaptive

Sampling for DML

Since mini-batch and adaptive sampling improve the computational efficiency of SGD

from different aspects, it is natural to combine them together for more efficient DML. Similar

to the Mini-SGD algorithm, the hybrid approaches will group multiple triplet constraints into

a mini-batch. But, unlike Mini-SGD that updates the distance metric for every mini-batch

of constraints, the hybrid approaches follow the idea of adaptive sampling, and introduce a

binary random variable to decide if the distance metric will be updated for every mini-batch

of constraints. By combining the strength of mini-batch and adaptive sampling for SGD,

the hybrid approaches are able to make further improvement in the computational efficiency

of DML. Algorithm 3 highlights the key steps of the hybrid approaches.
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One of the key steps in the hybrid approaches (step 5 in Algorithm 3) is to choose

appropriate sampling probability γt for every mini-batch constraints (x
t,s
i ,x

t,s
j ,x

t,s
k ), s =

1, . . . , b. In this work, we study two different choices for sampling probability γt:

• The first approach chooses γt based on a triplet constraint randomly sampled from a

mini-batch. More specifically, given a mini-batch of triplet constraints {xt,si ,x
t,s
j ,x

t,s
k }bs=1,

it randomly samples an index s′ in the range [1, b]. It then sets the sampling probability

γt to be the derivative for the randomly sampled triplet, i.e.,

γt = |�′(Δ(x
t,s′
i ,x

t,s′
j ,x

t,s′
k ;Mt))| (3.11)

We refer to this approach as HR-SGD.

• The second approach is based on the average case analysis. It sets the sampling

probability as the average derivative measured by the norm of the gradient ∇�t(Mt),

i.e.,

γt =
1

W
‖∇�t(Mt)‖F (3.12)

where W = maxt ‖∇�t(Mt)‖F and is estimated by sampling. We refer to this approach

as HA-SGD.

3.2 Experiments

Ten datasets are used to validate the effectiveness of the proposed algorithms. Table 3.1

summarizes the information of these datasets. Datasets dna, letter [58], protein and sensit [35]

are downloaded from LIBSVM [22]. Datasets tdt30 and rcv20 are document corpora: tdt30 is

the subset of tdt2 data [14] comprised of the documents from the 30 most popular categories
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Table 3.1: Statistics for the ten datasets used in our empirical study.

# class # feature # train # test
semeion 10 256 1,115 478
dna 3 180 2,000 1,186
isolet 26 617 6,238 1,559
tdt30 30 200 6,575 2,819
letter 26 16 15,000 5,000
protein 3 357 17,766 6,621
connect4 3 42 47,289 20,268
sensit 3 100 78,823 19,705
rcv20 20 200 477,141 14,185
poker 10 10 1,000,000 25,010

and rcv20 is the subset of a large rcv1 dataset [5] consisted of documents from the 20 most

popular categories. Following [24], we reduce the dimensionality of these document datasets

to 200 by principle components analysis (PCA). All the other datasets are downloaded

directly from the UCI repository [40]. For all the datasets used in this study, we use the

standard training/testing split provided by the original dataset, except for datasets semeion,

connect4 and tdt30 where 70% of data is randomly selected for training and the remaining

30% is used for testing. All the experiments are repeated five times, and both the average

results and their standard deviation are reported. All the experiments are run on a laptop

with 8GB memory and two 2.50GHz Intel Core i5-2520M CPUs.

3.2.1 Parameter Setting

The parameter L in the loss function (3.3) is set to be 3 according to the suggestion in [122].

The number of triplet constraints N is set to be 100, 000 for all the datasets except for two

small datasets semeion and dna where N = 20n. To construct triplet constraints, we follow

the active sampling strategy given in [114]: at each iteration t, we first randomly pick a
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training example xti, and then xtj from the 3 positive nearest neighbors 2 of xti; we then

randomly select a triplet constraint from the set of active constraints 3 involving xti and xtj .

We note that this is different from [24], where triplet constraints are selected completely

randomly. Our empirical study shows that the active sampling strategy is more effective

than choosing triplet constraints completely randomly. This is because the actively sampled

constraints are more informative to the learned distance metric than a completely random

choice. Furthermore, to verify that the choice of N does not lead to the overfitting of

training data, particularly for the two small datasets, in Fig. 3.1, we show the training and

test errors for dataset dna. It is clear that both errors decline over epoches, suggesting that

no overfitting is found even for the small dataset.

For Mini-SGD and the hybrid approaches, we set b = 10 for the size of mini-batch as

in [98], leading to a total of T = 10, 000 iterations for these approaches. We evaluate the

learned distance metric by the classification error of a k-NN on the test data, where the

number of nearest neighbors k is set to be 3 based on our experience.

Parameter R in the proposed algorithms determines the domain size for the distance

metric to be learned. We observe that the classification error of k-NN remains almost

unchanged when varying R in the range of {100, 1000, 10000}. We thus set R = 1, 000 for

all the experiments. Another important parameter used by the proposed algorithms is the

step size η. We evaluate the impact of step size η by measuring the classification error of

a k-NN algorithm that uses the distance metric learned by the Mini-SGD algorithm with

η = {0.1, 1, 10}. We observe that η = 1 yields a low classification error for almost all

datasets. We thus fix η = 1 for the proposed algorithms in all the experiments.

2xj is a positive nearest neighbor of xi if xj and xi share the same class assignment.
3A constraint is active if its hinge loss based on the Euclidean distance is non-zero.
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Figure 3.1: The training and testing errors over epoches for dataset dna.

3.2.2 Experiment (I): Effectiveness of the Proposed SGD Algo-

rithms for DML

In this experiment, we compare the performance of the proposed SGD algorithms for DML,

i.e., Mini-SGD, AS-SGD and two hybrid approaches (HR-SGD and HA-SGD), to the full ver-

sion of SGD for DML (SGD). We also include Euclidean distance as the reference method in

our comparison. Table 3.2 shows the classification error of k-NN (k = 3) using the proposed

DML algorithms and the baseline algorithms, respectively. First, it is not surprising to ob-

serve that all the distance metric learning algorithms improve the classification performance

of k-NN compared to the Euclidean distance. Second, for almost all datasets, we observe

that all the proposed DML algorithms (i.e., Mini-SGD, AS-SGD, HR-SGD, and HA-SGD)

yield similar classification performance as SGD, the full version of SGD algorithm for DML.

This result confirms that the proposed SGD algorithms are effective for DML despite the
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modifications we made to the SGD algorithm.

Table 3.2: Classification error (%) of k-NN (k = 3) using the distance metrics learned by the
proposed SGD methods for DML. Standard deviation computed from five trials is included
in the parenthesis.

Euclid SGD Mini-SGD AS-SGD HR-SGD HA-SGD
semeion 8.79 4.39(0.30) 4.60(0.53) 4.23(0.60) 4.27(0.41) 4.18(0.26)
dna 20.71 6.90(0.16) 6.64(0.33) 7.15(0.42) 6.80(0.21) 6.86(0.15)
isolet 8.98 5.98(0.15) 4.23(0.19) 6.09(0.13) 4.59(0.30) 4.77(0.17)
tdt30 5.96 4.51(0.07) 3.52(0.08) 4.53(0.06) 3.70(0.20) 3.65(0.09)
letter 4.42 2.26(0.09) 2.54(0.06) 2.25(0.10) 2.31(0.08) 2.23(0.07)
protein 49.95 39.46(0.42) 38.16(0.24) 39.49(0.51) 40.76(0.20) 40.03(0.30)
connect4 29.48 20.16(0.08) 20.20(0.08) 20.22(0.12) 21.45(0.71) 20.41(0.14)
sensit 27.28 23.62(0.04) 22.95(0.07) 23.70(0.06) 23.39(0.20) 23.33(0.18)
rcv20 9.13 7.76(0.16) 8.42(0.04) 7.74(0.11) 8.40(0.04) 8.37(0.02)
poker 37.98 35.89(0.06) 35.22(0.18) 35.87(0.08) 35.74(0.41) 35.66(0.16)

3.2.3 Experiment (II): Efficiency of the Proposed SGD Algorithm-

s for DML

Fig. 3.2 summarizes the running time for the proposed DML algorithms and the baseline

SGD algorithm. We note that the running times in Fig. 3.2 do not take into account the

time for constructing triplet constraints since it is shared by all the methods in comparison.

It is not surprising to observe that all the proposed SGD algorithms, including Mini-SGD,

AS-SGD, HA-SGD and HR-SGD, significantly reduce the running time of SGD. For instance,

for dataset isolet, it takes SGD more than 35, 000 seconds to learn a distance metric, while

the running time is reduced to less than 4, 000 seconds when applying the proposed SGD

algorithms, roughly a factor of 10 reduction in running time. Comparing the running time of

AS-SGD to that of Mini-SGD, we observe that each method has its own advantage: AS-SGD

is more efficient on dataset semeion while Mini-SGD is more efficient on the other datasets.

This is because different mechanisms are employed by AS-SGD and Mini-SGD to reduce the
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(a) semeion (b) dna

(c) isolet (d) tdt30

(e) letter (f) protein

(g) connect4 (h) sensit

(i) rcv20 (j) poker

Figure 3.2: The comparison of running time (seconds) for various SGD methods. Note that
LMNN, a batch DML algorithm, is mainly implemented in C, which is computationally
more efficient than our Matlab implementation. All the other methods are implemented in
Matlab.
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computational cost: AS-SGD improves the computational efficiency of DML by skipping the

constraints that are easy to be classified, while Mini-SGD improves the the computational

efficiency of SGD by performing the updating of distance metric once for multiple triplet

constraints. Finally, we observe that the two hybrid approaches that combine the strength of

both adaptive sampling and mini-batch SGD, are computationally most efficient for almost

all datasets. We also observe that HR-SGD appears to be more efficient than HA-SGD on

six datasets and only loses it edge on datasets protein and rcv20. This is because HR-SGD

computes the sampling probability γt based on one randomly sampled triplet while HA-SGD

needs to compute the average derivative for each mini-batch of triplet constraints for the

sampling probability.

To further examine the computational efficiency of proposed SGD algorithms for DML, we

summarize in Fig. 3.3 the number of updates performed by the proposed SGD algorithms and

the baseline SGD algorithm, respectively. We observe that all the proposed SGD algorithms

for DML are able to reduce the number of updates significantly compared to SGD. Comparing

Mini-SGD to AS-SGD, we observe that for semeion, the number of updates performed

by AS-SGD is significantly less than Mini-SGD, while it is the other way around for the

other datasets. This is again due to the fact that AS-SGD and Mini-SGD deploy different

mechanisms for reducing computational costs. As we expect, the two hybrid approaches are

able to further reduce the number of updates performed by AS-SGD and Mini-SGD, making

them more efficient algorithms for DML.

By comparing the running time in Fig. 3.2 to the number of updates in Fig. 3.3, we

observe that a small number of updates does NOT always guarantee a short running time.

This is exhibited by the comparison between the two hybrid approaches: although HA-

SGD performs the similar number of updates as HR-SGD on datasets semeion and dna, it
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takes HA-SGD significantly longer time to finish the computation than HR-SGD. This is also

exhibited by comparing the results across different datasets for a fixed method. For example,

for the HA-SGD method, the number of updates for the protein dataset is nearly the same

as that for the poker dataset, but the running time for the protein dataset is about 100

times longer than that for the poker dataset. This result may sound counter intuitive at the

first glance. But, a more careful analysis reveals that in addition to the number of updates,

the running time of DML is also affected by the computational cost per iteration, which

explains the consistency between Fig. 3.2 and Fig. 3.3. In the case of comparing the two

hybrid approaches, we observe that HA-SGD is subjected to a higher computational cost per

iteration than HR-SGD because HA-SGD has to compute the norm of the average gradient

over each mini-batch while HR-SGD only needs to compute the derivative of one randomly

sampled triplet constraint for each mini-batch. In the case of comparing the running time

across different datasets, the protein dataset has a significantly higher dimensionality than

the poker dataset, and therefore is subjected to a higher computational cost per iteration

because the computational cost of projecting an updated distance metric onto the PSD cone

increases at least quadratically in the dimensionality.

3.2.4 Experiment (III): Comparison with State-of-the-art Online

DML Methods

We compare the proposed SGD algorithms to three state-of-the-art online algorithms and

one bath method for DML:

• SPML [98]: an online learning algorithm for DML that is based on mini-batch SGD

and the hinge loss,
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• OASIS [24]: a state-of-the-art online DML algorithm and symmetric version with only

one projection is applied,

• LEGO [66]: an online version of the information theoretic based DML algorithm [32].

• POLA [96]: a Perception based online DML algorithm.

Finally, for sanity checking, we also compare the proposed SGD algorithms to LMN-

N [114], a state-of-the-art batch learning algorithm for DML.

Both SPML and OASIS use the same set of triplet constraints to learn a distance met-

ric as the proposed SGD algorithms. Since LEGO and POLA are designed for pairwise

constraints, for fair comparison, we generate pairwise constraints for LEGO and POLA by

splitting each triplet constraint (xti,x
t
j ,x

t
k) into two pairwise constraints: a must-link con-

straint (xti,x
t
j) and a cannot-link constraint (xti,x

t
k). This splitting operation results in a

total of 2N pairwise constraints for LEGO and POLA. Finally, we note that since LMNN

is a batch learning method, it is allowed to utilize any triplet constraint derived from the

data, and is not restricted to the set of triplet constraints we generate for the SGD method-

s. All the baseline DML algorithms are implemented by using the codes from the original

authors except for SPML, for which we made appropriate changes to the original code in

order to avoid large matrix multiplication and improve the computational efficiency. SPML,

OASIS LEGO and POLA are implemented in Matlab, while the core parts of LMNN are

implemented by C that is usually deemed to be more efficient than Matlab. The default

parameters suggested by the original authors are used in the baseline algorithms. The step

size of LEGO is set to be 1, as it was observed in [24] that the prediction performance of

LEGO is in general insensitive to the step size. In all experiments, all the baseline methods

set the initial solution for distance metric to be an identity matrix.
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Table 3.3: Classification error (%) of k-NN (k = 3) using the distance metrics learned by
baseline SGD method, online learning algorithms and batch learning approach for DML.
Standard deviation computed from five trials is included in the parenthesis.

Baseline Batch Online Learning
SGD∗ LMNN POLA LEGO OASIS SPML

semeion 4.18 7.11(0.39) 19.25(1.95) 12.89(1.84) 6.74(0.34) 4.81(0.59)
dna 6.64 4.89(0.29) 7.32(0.55) 7.39(0.55) 11.75(0.43) 6.78(0.58)
isolet 4.23 4.11(0.08) 5.18(0.38) 18.08(6.98) 4.37(0.26) 4.36(0.18)
tdt30 3.52 2.80(0.0) 5.93(0.38) 21.11(3.68) 3.92(0.08) 3.47(0.13)
letter 2.23 3.20(0.00) 3.10(0.22) 5.24(0.45) 3.92(0.05) 3.98(0.53)
protein 38.16 39.86(0.16) 38.38(0.56) 42.60(1.13) 37.83(0.23) 40.12(0.53)
connect4 20.16 21.60(0.26) 25.67(0.85) 26.06(1.30) 22.37(0.63) 24.60(0.70)
sensit 22.95 24.45(0.02) 27.51(0.39) 26.50(1.37) 22.12(0.24) 23.48(0.25)
rcv20 7.74 N/A 7.96(0.08) 8.49(0.18) 8.08(0.06) 8.61(0.12)
poker 35.22 N/A 41.26(1.70) 40.58(1.23) 45.12(2.14) 39.42(0.71)

Table 3.3 summarizes the classification results of k-NN (k = 3) using the distance metrics

learned by the proposed method and by baseline algorithms, respectively. SGD∗ denotes the

best result of propose methods in Table 3.2. First, we observe that LEGO and POLA perform

significantly worse than the proposed DML algorithms for four datasets, including semeion,

connect4, sensit and poker. LEGO also performs poorly on isolet and tdt30. This can be

explained by the fact that LEGO and POLA use pairwise constraints for DML while the other

methods in comparison use triplet constraints for DML. According to [24, 98, 114], triplet

constraints are in general more effective than pairwise constraints. Second, although both

SPML and Mini-SGD are based on the mini-batch strategy, SPML performs significantly

worse than Mini-SGD on three datasets, i.e. protein, connect4, and poker. The performance

difference between SPML and Mini-SGD can be explained by the fact that Mini-SGD uses

a smooth loss function while a hinge loss is used by SPML. According to our analysis and

the analysis in [28], using a smooth loss function is critical for the success of the mini-batch

strategy. Third, OASIS yields similar performance as the proposed algorithms for almost all

datasets except for datasets semeion, dna and poker, for which OASIS performs significantly

38



worse. Overall, we conclude that the proposed DML algorithms yield similar, if not better,

performance as the state-of-the-art online learning algorithms for DML.

Compared to LMNN, a state-of-the-art batch learning algorithm for DML, we observe

that the proposed SGD algorithms yield similar performance on four datasets. They however

perform significantly better than LMNN on datasets semeion and letter, and significantly

worse on datasets dna and tdt30. We attribute the difference in classification error to the

fact that the proposed DML algorithms are restricted to 100, 000 randomly sampled triplet

constraints while LMNN is allowed to use all the triplet constraints that can be derived

from the data. The restriction in triplet constraints could sometimes limit the classification

performance but at the other time help avoid the overfitting problem. We also observe that

LMNN is unable to run on the two large datasets rcv20 and poker, indicating that LMNN

does not scale well to the size of datasets.

Table 3.4: The comparison of running time (seconds) for OASIS and the hybrid methods.
Average results over five trials are reported.

Methods semeion dna isolet tdt30 letter
OASIS 4.4 5.5 156.6 10.4 2.3
HR-SGD 3.6 5.1 363.2 21.7 1.4
HA-SGD 7.6 8.1 597.9 28.4 1.1

Methods protein connect4 sensit rcv20 poker
OASIS 161.4 4.5 19.0 46.5 1.5
HR-SGD 275.7 3.0 23.5 139.2 0.9
HA-SGD 164.6 2.5 15.3 65.6 1.2

The running times for the proposed algorithms and the baseline algorithms are summa-

rized in Fig. 3.2. The number of updates for both groups of algorithms are provided in

Fig. 3.3. It is not surprising to observe that two online DML algorithms (SPML, OASIS)

are significantly more efficient than SGD in terms of both running time and the number of

updates. We also observe that Mini-SGD and SPML share the same number of updates and
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(a) semeion (b) dna

(c) isolet (d) tdt30

(e) letter (f) protein

(g) connect4 (h) sensit

(i) rcv20 (j) poker

Figure 3.3: The comparison of number of updates for various SGD methods. Note that since
POLA and LEGO optimize pairwise constraints, we decompose each triplet constraint into
two pairwise constraints for these two methods. As a result, the number of constraints is
doubled for these two methods.
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similar running time for all datasets because they use the same mini-batch strategy. Further-

more, compared to three online DML algorithms (SPML, LEGO and POLA), the two hybrid

approaches are significantly more efficient in both running time and the number of updates.

Table 3.4 compares the detailed running time of OASIS and the hybrid methods. We also

observe that the hybrid methods are more efficient than OASIS on six datasets (i.e., semeion,

dna, letter, connect4, sensit and poker), even though OASIS only performs projection once at

the end of the program. We attribute the efficiency of the hybrid approaches to the reduced

number of updates they have to perform on the learned metric. Finally, since LMNN is

implemented by C, it is not surprising to observe that LMNN shares similar running time as

the other online DML algorithms for relatively small datasets. It is however significantly less

efficient than the online learning algorithms for datasets of modest size (e.g. letter, connect4

and sensit), and becomes computationally infeasible for the two large datasets rcv20 and

poker. Overall, we observe that the two hybrid approaches are significantly more efficient

than the other DML algorithms in comparison.

3.3 Conclusions

In this chapter, we propose two strategies to improve the computational efficiency of SGD

for DML, i.e. mini-batch and adaptive sampling. The key idea of mini-batch is to group

multiple triplet constraints into a mini-batch, and only update the distance metric once

for each mini-batch; the key idea of adaptive sampling is to perform stochastic updating

by giving a difficult triplet constraint more chance to be used for updating the distance

metric than an easy triplet constraint. We develop theoretical guarantees for both strategies.

We also develop two variants of hybrid approaches that combine mini-batch with adaptive
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sampling for more efficient DML. Our empirical study confirms that the proposed algorithms

yield similar, if not better, prediction performance as the state-of-the-art online learning

algorithms for DML but with significantly less amount of running time. In the future, we

could analysis the theoretical guarantee for the hybrid methods.
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Chapter 4

Distance Metric Learning for High

Dimensional Data

In this chapter, we will address the challenge from large number of variables (O(d2)). We

follow the one-projection paradigm as in Section 2.1 and focus on optimizing O(d2) variables.

Nowadays, high dimensional representations become more and more popular in various ap-

plications, especially for images and video as examples shown in Table 4.1. In contrast, DML

is only available for low dimensional data (e.g., some hundred features) due to the involve-

ment of d2 variables. Some studies try to alleviate the issue as described in Section 2.4, but

all of them have to hold some strong assumptions.

Table 4.1: Examples of applications with high dimensional features.

Applications #Features
Fave Verification [25] 100,000
Image Classification [90] 250,000
Video Event Detection [87] 500,000

The straightforward way to solve high dimensional DML problem is reducing the di-

mensionality of data using dimensionality reduction methods such as principal component

analysis (PCA) [114] or random projection (RP) [103]. Although RP is computationally

more efficient than PCA, it often yields significantly worse performance than PCA unless

the number of random projections is sufficiently large [39]. We note that RP has been suc-

cessfully applied to many machine learning tasks, e.g., classification [91], clustering [11] and
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regression [81], however, only a few studies examined the application of RP to DML, and

most of them with limited success.

In this chapter, we propose a dual random projection approach for high dimensional

DML. Our approach, on one hand, enjoys the light computation of random projection, and

on the other hand, significantly improves the effectiveness of random projection. The main

limitation of using random projection for DML is that all the columns/rows of the learned

metric will lie in the subspace spanned by the random vectors. We address this limitation

of random projection by

• first estimating the dual variables based on the random projected vectors and,

• then reconstructing the distance metric using the estimated dual variables and data

vectors in the original space.

Since the final distance metric is computed using the original vectors, not the randomly

projected vectors, the column/row space of the learned metric will NOT be restricted to

the subspace spanned by the random projection, thus alleviating the limitation of random

projection. We verify the effectiveness of the proposed algorithms both empirically and

theoretically.

We finally note that our work is built upon the recent work [120] on random projection

where a dual random projection algorithm is developed for linear classification. Our work

differs from [120] in that we apply the theory of dual random projection to DML. More

importantly, we have made an important progress in advancing the theory of dual random

projection. Unlike the theory in [120] where the data matrix is assumed to be low rank

or approximately low rank, our new theory of dual random projection is applicable to any

data matrix even when it is NOT approximately low rank. This new analysis significantly

broadens the application domains where dual random projection is applicable, which is
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further verified by our empirical study.

The rest of the chapter is organized as follows: Section 4.1 describes the proposed dual

random projection approach for DML and the detailed algorithm for solving the dual problem

in the subspace spanned by random projection. Section 4.2 summarizes the results of the

empirical study, and Section 4.3 concludes this work.

4.1 Dual Random Projection for Distance Metric Learn-

ing

Let X = (x1, · · · ,xn) ∈ R
d×n denote the collection of training examples. Given a PSD

matrix M , the distance between two examples xi and xj is given as

distM (xi,xj) = (xi − xj)
�M(xi − xj).

The proposed framework for DML will be based on triplet constraints, not pairwise con-

straints. This is because several previous studies have suggested that triplet constraints are

more effective than pairwise constraints [114, 24, 98]. LetD = {(x1i ,x1j ,x1k), . . . , (xNi ,xNj ,xNk )}

be the set of triplet constraints used for training, where xti is expected to be more similar to

xtj than to xtk. Our goal is to learn a metric function M that is consistent with most of the

triplet constraints in D, i.e.

∀(xti,xtj ,xtk) ∈ D, (xti−xtj)
�M(xti−xtj)+1 ≤ (xti−xtk)

�M(xti−xtk)
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Following the empirical risk minimization framework, we cast the triplet constraints based

DML into the following optimization problem:

min
M∈Sd

λ

2
‖M‖2F +

1

N

N∑
t=1

�(〈M,At〉) (4.1)

where Sd stands for the symmetric matrix of size d×d, λ > 0 is the regularization parameter,

�(·) is a convex loss function, At = (xti − xtk)(x
t
i − xtk)

� − (xti − xtj)(x
t
i − xtj)

�, and 〈·, ·〉

stands for the dot product between two matrices. We note that we did not enforce M in (4.1)

to be PSD because we follow the one-projection paradigm proposed in [24] that first learns

a symmetric matrix M by solving the optimization problem in (4.1) and then projects the

learned matrix M onto the PSD cone. We emphasize that unlike [120], we did not assume

�(·) to be smooth, making it possible to apply the proposed approach to the hinge loss.

Let �∗(·) be the convex conjugate of �(·). The dual problem of (4.1) is given by

max
α1,...,αN

− 1

N

N∑
t=1

�∗(αt)− 1

2λN2

∥∥∥∥∥∥
N∑
t=1

αtAt

∥∥∥∥∥∥
2

F

which is equivalent to

max
α∈[−1,0]N

−
N∑
t=1

�∗(αt)− 1

2λN
α�Gα (4.2)

where α = (α1, · · · , αN )� and G = [Ga,b]N×N is a matrix of N ×N with Ga,b = 〈Aa, Ab〉.

We denote by M∗ ∈ R
d×d the optimal primal solution to (4.1), and by α∗ ∈ R

N the optimal
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dual solution to (4.2). Using the first order condition for optimality, we have

M∗ = − 1

λN

N∑
t=1

αt∗At (4.3)

4.1.1 Dual Random Projection for Distance Metric Learning

Directly solving the primal problem in (4.1) or the dual problem in (4.2) could be compu-

tational expensive when the data is of high dimension and the number of training triplets

is very large. We address this challenge by inducing a random matrix R ∈ R
d×m, where

m � d and Ri,j ∼ N (0, 1/m), and projecting all the data points into the low dimensional

space using the random matrix, i.e., x̂i = R�xi. As a result, At, after random projection,

becomes Ât = R�AtR.

A typical approach of using random projection for DML is to obtain a matrix Ms of size

m×m by solving the primal problem with the randomly projected vectors {x̂i}ni=1, i.e.

min
M∈Sm

λ

2
‖M‖2F +

1

N

N∑
t=1

�(〈M, Ât〉) (4.4)

Given the learned metric Ms, for any two data points x and x′, their distance is measured

by (x − x′)�RMsR
�(x − x′) = (x − x′)�M ′(x − x′), where M ′ = RMsR

� ∈ R
d×d is

the effective metric in the original space R
d. The key limitation of this random projection

approach is that both the column and row space of M ′ are restricted to the subspace spanned

by vectors in random matrix R.

Instead of solving the primal problem, we proposed to solve the dual problem using the
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randomly projected data points {x̂i}ni=1, i.e.

max
α∈RN

−
N∑
t=1

�∗(αt)− 1

2λN
α�Ĝα (4.5)

where Ĝa,b = 〈R�AaR,R�AbR〉. After obtaining the optimal solution α̂∗ for (4.5), we

reconstruct the metric by using the dual variables α̂∗ and data matrix X in the original

space, i.e.

M̂∗ = − 1

λN

N∑
t=1

α̂t∗At (4.6)

It is important to note that unlike the random projection approach, the recovered metric

M̂∗ in (4.6) is not restricted by the subspace spanned by the random vectors, a key to the

success of the proposed algorithm.

Alg. 4 summarizes the key steps for the proposed dual random projection method for

DML. Following one-projection paradigm [24], we project the learned symmetric matrix M

onto the PSD cone at the end of the algorithm. The key component of Alg. 4 is to solve

the optimization problem in (4.2) at Step 4 accurately. We choose stochastic dual coordi-

nate ascent (SDCA) method for solving the dual problem (4.5) because it enjoys a linear

convergence when the loss function is smooth, and is shown empirically to be significantly

faster than the other stochastic optimization methods [97]. We use the combination strategy

recommended in [97], denoted by CSDCA, which uses SGD for the first epoch and then

applies SDCA for the rest epochs.
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Algorithm 4 Dual Random Projection Method (DuRP) for DML

1: Input: the triplet constraints D and the number of random projections m.
2: Generate a random matrix R ∈ R

d×m and Ri,j ∼ N (0, 1/m).

3: Project each example as x̂ = R�x.
4: Solve the optimization problem (4.5) and obtain the optimal solution α̂∗
5: Recover the solution in the original space by M̂∗ = − 1

λN

∑
t α̂

t∗At

6: Output: ΠPSD(M̂∗)

4.1.2 Main Theoretical Results

First, similar to [120], we consider the case when the data matrix X is of low rank. The

theorem below shows that under the low rank assumption, with a high probability, the

distance metric recovered by Algorithm 4 is nearly optimal.

Theorem 3. Let M∗ be the optimal solution to (4.1). Let α̂∗ be the optimal solution for

(4.5), and let M̂∗ be the solution recovered from α̂∗ using (4.6). Under the assumption that

all the data points lie in the subspace of r-dimension, for any 0 < ε ≤ 1/6, with a probability

at least 1− δ, we have

‖ΠPSD(M∗)− ΠPSD(M̂∗)‖F ≤ 3ε

1− 3ε
‖M∗‖F

provided m ≥ (r+1) log(2r/δ)

cε2
and constant c is at least 1/3.

The proof of Theorem 3 can be found in appendix. Theorem 3 indicates that if the

number of random projections is sufficiently large (i.e. m = Ω(r log r)), we can recover the

optimal solution in the original space with a small error. It is important to note that our

analysis, unlike [120], can be applied to non-smooth loss such as the hinge loss.

In the second case, we assume the loss function �(·) is γ-smooth (i.e., |�′(z)−�′(z′)| ≤ γ|z−

z′|). The theorem below shows that the dual variables obtained by solving the optimization
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problem in (4.5) can be close to the optimal dual variables, even when the data matrix X is

NOT low rank or approximately low rank. For the presentation of theorem, we first define a

few important quantities. Define matrices M1 ∈ R
N×N , M2 ∈ R

N×N , M3 ∈ R
N×N , and

M4 ∈ R
N×N as

M1
a,b = ‖(xai − xak)‖22 × ‖(xbi − xbk)‖22

M2
a,b = ‖(xai − xaj )‖22 × ‖(xbi − xbj)‖22

M3
a,b = ‖(xai − xak)‖22 × ‖(xbi − xbj)‖22

M4
a,b = ‖(xai − xaj )‖22 × ‖(xbi − xbk)‖22

Define κ the maximum of the spectral norm of the four matrices, i.e.

κ = max
(
‖M1‖2, ‖M2‖2, ‖M3‖2, ‖M4‖2

)
(4.7)

where ‖ · ‖2 stands for the spectral norm of matrices.

Theorem 4. Assume �(z) is γ-smooth. Let α∗ be the optimal solution to the dual problem

in (4.2), and let α̂∗ be the approximately optimal solution for (4.5) with suboptimality η.

Then, with a probability at least 1− δ, we have

‖α∗ − α̂∗‖2 ≤ max
(
8εγκ‖α∗‖2,

√
2γη

)

where κ is define in (4.7), provided m ≥ 8
ε2

ln 8N
δ .

The proof of Theorem 4 can be found in the appendix. Unlike Theorem 3 where the

data matrix X is assumed to be low rank, Theorem 4 holds without any prior assumption
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about the data matrix. It shows that despite the random projection, the dual solution can

be recovered approximately using the randomly projected vectors, provided that the number

of random projections m is sufficiently large, κ is small, and the approximately optimal

solution α̂∗ is sufficiently accurate. In the case when most of the training examples are

not linear dependent, we could have κ = Θ(N/d), which could be a modest number when

d is very large. The result in Theorem 4 essentially justifies the key idea of our approach,

i.e. computing the dual variables first and recovering the distance metric later. Finally,

since ‖α∗ − α̂∗‖2, the approximation error in the recovered dual variables, is proportional

to the square root of the suboptimality η, an accurate solution for (4.5) is needed to ensure

a small approximation error. We note that given Theorem 4, it is straightforward to bound

‖M∗ − M̂∗‖2 using the relationship between the dual variables and the primal variables in

(4.3).

4.2 Experiments

We will first describe the experimental setting, and then present our empirical study for

ranking and classification tasks on various datesets.

4.2.1 Experimental Setting

Data sets Eight datasets are used to validate the effectiveness of the proposed algorithm

for DML. Table 4.2 summarizes the information of these datasets. imagenet5 consists of 5

randomly selected classes from ImageNet [92] while cats5 contains 5 cat species from the

same archive. caltech30 is a subset of Caltech256 image dataset [48] and we use the version

pre-processed by [24]. tdt30 is a subset of tdt2 dataset [14]. Both caltech30 and tdt30 are
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Table 4.2: Statistics for the datasets used in our empirical study. #C is the number of
classes. #F is the number of original features. #Train and #Test represent the number of
training data and test data, respectively.

# C # F #Train #Test
protein 3 357 17,766 6,621
isolet 26 617 6,238 1,559

imagenet5 5 1,000 4,582 1,964
cats5 5 1,000 5,128 2,199

caltech30 30 1,000 5,502 2,355
tdt30 30 1,000 6,575 2,819
20news 20 1,000 15,935 3,993
rcv30 30 1,000 507,585 15,195

comprised of the examples from the 30 most popular categories. All the other datasets are

downloaded from LIBSVM [22], where rcv30 is a subset of the original dataset consisted

of documents from the 30 most popular categories. For datasets tdt30, 20news and rcv30,

they are comprised of documents represented by vectors of ∼ 50, 000 dimensions. Since it is

expensive to compute and maintain a matrix of 50, 000 × 50, 000, for these three datasets,

we follow the procedure in [24] that maps all documents to a space of 1, 000 dimension.

More specifically, we first keep the top 20, 000 most popular words for each collection, and

then reduce their dimensionality to 1, 000 by using PCA. We emphasize that for several

data sets in our test beds, their data matrices can not be well approximated by low rank

matrices. Fig. 4.1 summarizes the eigenvalue distribution of the eight datasets used in our

experiment. We observe that four out of these datasets (i.e., caltech20, tdt30, 20news, rcv30)

have a flat eigenvalue distribution, indicating that the associated data matrices can not be

well approximated by a low rank matrix. This justifies the importance of removing the low

rank assumption from the theory of dual random projection, an important contribution of

this work.

For the datasets used in this study, we use the standard training/testing split provided
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Figure 4.1: The eigenvalue distribution of datasets used in our empirical study

by the original datasets, except for datasets imagenet5, cats5, tdt30, caltech30 and rcv30.

For imagenet5, cats5, tdt30 and caltech30, we randomly select 70% of the data for training

and use the remaining 30% for testing; for rcv30, we switch the training and test sets defined

by the original package to ensure that the number of training examples is sufficiently large.

Evaluation metrics To measure the quality of learned distance metrics, two types of

evaluations are adopted in our study. First, we follow the evaluation protocol in [24] and

evaluate the learned metric by its ranking performance. More specifically, we treat each

test instance q as a query, and rank the other test instances in the ascending order of their

distance to q using the learned metric. The mean-average-precision(mAP) given below is

used to evaluate the quality of the ranking list

mAP =
1

|Q|
|Q|∑
i=1

1

ri

ri∑
j=1

P (xi∼j)

where |Q| is the size of query set, ri is the number of relevant instances for i-th query and

P (xi∼j) is the precision for the first j ranked instances when the instance ranked at the
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j-th position is relevant to the query q. Here, an instance x is relevant to a query q if

they belong to the same class. Second, we evaluate the learned metric by its classification

performance with k-nearest neighbor classifier. More specifically, for each test instance q,

we apply the learned metric to find the first k training examples with the shortest distance,

and predict the class assignment for k by taking the majority vote among the k nearest

neighbors. Finally, we also evaluate the computational efficiency of the proposed algorithm

for DML by its efficiency.

Baselines Besides the Euclidean distance that is used as a baseline similarity measure,

six state-of-the-art DML methods are compared in our empirical study:

• DuOri: This algorithm first applies Combined Stochastic Dual Coordinate Ascent

(CSDCA) [97] to solve the dual problem in (4.2) and then computes the distance

metric using the learned dual variables.

• DuRP: This is the proposed algorithm for DML (i.e. Algorithm 4).

• SRP: This algorithm applies random projection to project data into low dimensional

space, and then it employs CSDCA to learn the distance metric in this subspace.

• SPCA: This algorithm uses PCA as the initial step to reduce the dimensionality, and

then applies CSDCA to learn the distance metric in the subspace generated by PCA.

• OASIS [24]: A state-of-the-art online learning algorithm for DML that learns the

optimal distance metric directly from the original space without any dimensionality

reduction.

• LMNN [114]: A state-of-the-art batch learning algorithm for DML. It performs the

dimensionality reduction using PCA before starting DML.

Implementation details We randomly select N = 100, 000 active triplets (i.e., incur

the positive hinge loss by Euclidean distance) and set the number of epochs to be 3 for all
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stochastic methods (i.e., DuOri, DuRP, SRP, SPCA and OASIS), which yields sufficiently

accurate solutions in our experiments and is also consistent with the observation in [97]. We

search λ in {10−5, 10−4, 10−3, 10−2} and fix it as 1/N since it is insensitive. The step size of

CSDCA is set according to the analysis in [97]. For all stochastic optimization methods, we

follow the one-projection paradigm by projecting the learned metric onto the PSD cone. The

hinge loss is used in the implementation of the proposed algorithm. Both OASIS and LMNN

use the implementation provided by the original authors and parameters are tuned based

on the recommendation by the original authors. All methods are implemented in Matlab,

except for LMNN, whose core part is implemented in C, which is shown to be more efficient

than our Matlab implementation. All stochastic optimization methods are repeated five

times and the average result over five trials is reported. All experiments are implemented

on a Linux Server with 64GB memory and 12 × 2.4GHz CPUs and only single thread is

permitted for each experiment.

4.2.2 Efficiency of the Proposed Method

Table 4.3: CPUtime (minutes) for different methods for DML. All algorithms are implement-
ed in Matlab except for LMNN whose core part is implemented in C and is more efficient
than our Matlab implementation.

Metric in Original Space Metric in Subspace
DuOri DuRP OASIS SRP SPCA LMNN

protein 214.5±5.8 0.6±0.0 81.9±3.3 0.2±0.0 0.2±0.0 488.9
isolet 198.4±7.2 0.6±0.0 12.6±0.2 0.1±0.0 0.1±0.0 384.0

imagenet5 776.3±31.2 1.2±0.0 68.3±1.3 0.1±0.0 0.2±0.0 1,374.1
cats5 782.3±70.9 1.1±0.0 74.1±1.1 0.1±0.0 0.3±0.1 1,467.0

caltech30 1,214.5±229.5 1.3±0.0 640.4±121.2 0.2±0.0 0.5±0.0 2,197.9
tdt30 1,029.9±16.8 0.8±0.0 140.8±4.5 0.2±0.0 0.4±0.0 624.2
20news 1,212.9±154.3 1.0±0.0 216.3±48.8 0.2±0.0 0.5±0.0 1,893.6
rcv30 1,121.3±79.4 1.3±0.0 432.5±7.7 0.2±0.0 4.2±0.0 N/A
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In this experiment, we set the number of random projection to be 10, which according

to experimental results in Section 4.2.3 and 4.2.4, yields almost the optimal performance for

the proposed algorithm. For fair comparison, the number of reduced dimension is also set

to be 10 for LMNN.

Table. 4.3 compares the CPUtime (in minutes) of different methods. Notice that the

time of sampling triplets is not taken into account as it is consumed by all the methods, and

all the other operators (e.g., random projection and PCA) are included. It is not surprising

to observe that DuRP, SRP and SPCA have similar CPUtimes, and are significantly more

efficient than the other methods due to the effect of dimensionality reduction. Since DuRP

and SRP share the same procedure for computing the dual variables in the subspace, the only

difference between them lies in the procedure for reconstructing the distance metric from the

estimated dual variables, a computational overhead that makes DuRP slightly slower than

SRP. For all datasets, we observe that DuRP is at least 200 times faster than DuOri and 20

times faster than OASIS. Compared to the stochastic optimization methods, LMNN is the

least efficient on six datasets (i.e., protein, isolet, imagenet5, cats5, caltech30 and 20news),

mostly due to the fact that it is a batch learning algorithm.

4.2.3 Evaluation by Ranking

In first experiment, we set the number of random projections used by SRP, SPCA and the

proposed DuRP algorithm to be 10, which is roughly 1% of the dimensionality of the original

space. For fair comparison, the number of reduced dimension for LMNN is also set to be

10. We measure the quality of learned metrics by its ranking performance using the metric

of mAP.

Table. 4.4 summarizes the performance of different methods for DML. First, we observe
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Table 4.4: Comparison of ranking results measured by mAP (%) for different metric learning
algorithms.

Metric in Original Space Metric in Subspace Metric
Euclid DuOri DuRP OASIS SRP SPCA LMNN

protein 39.0 47.0±0.1 49.1±0.1 45.7±0.1 37.7±0.1 41.9±0.1 41.9
isolet 46.7 77.1±0.5 70.5±0.6 67.6±0.2 11.9±1.2 36.5±2.6 68.7

imagenet5 25.4 34.6±0.1 34.1±0.3 29.2±0.1 21.5±0.3 28.1±0.2 31.9
cats5 22.5 26.3±0.1 27.3±0.3 23.7±0.1 21.0±0.1 21.5±0.2 24.8

caltech30 16.4 23.8±0.1 25.5±0.1 25.4±0.2 8.1±0.4 19.5±0.0 16.3
tdt30 36.8 65.9±0.2 69.4±0.3 55.9±0.1 11.2±0.3 49.7±0.2 66.4
20news 8.4 20.1±0.2 24.9±0.3 16.2±0.1 5.3±0.1 12.2±0.1 22.5
rcv30 16.7 65.7±0.1 63.2±0.2 68.6±0.1 12.8±0.4 46.5±0.0 N/A

that DuRP significantly outperforms SRP and SPCA for all datasets. In fact, SRP is worse

than Euclidean distance which computes the distance in the original space. SPCA is only able

to perform better than the Euclidean distance, and is outperformed by all the other DML

algorithms. Second, we observe that for all the datasets, DuRP yields similar performance as

DuOri. The only difference between DuRP and DuOri is that DuOri solves the dual problem

without using random projection. The comparison between DuRP and DuOri indicates that

the random projection step has minimal impact on the learned distance metric, justifying

the design of the proposed algorithm. Third, compared to OASIS, we observe that DuRP

performs significantly better on three datasets (i.e., imagenet5, tdt30 and 20news) and has the

comparable performance on the other datasets. Finally, we observe that for all datasets, the

proposed DuRP method significantly outperforms LMNN, a state-of-the-art batch learning

algorithm for DML. We also note that because of limited memory, we are unable to run

LMNN on datasets rcv30.

In the second experiment, we vary the number of random projections from 10 to 50.

All stochastic methods are run with five trails and Fig. 4.2 reports the average results with

standard deviation. Note that the performance of OASIS and DuOri remain unchanged with
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varied number of projections because they do not use projection. It is surprising to observe

that DuRP almost achieves its best performance with only 10 projections for all datasets.

This is in contrast to SRP and SPCA, whose performance usually improves with increasing

number of projections. We also observe that DuRP outperforms DuOri for several datasets

(i.e. protein, imagenet5, cats5, caltech30, tdt30 and 20news). We suspect that the better

performance of DuRP is because of the implicit regularization due to the random projection.

We plan to investigate more about the regularization capability of random projection in the

future. We finally point out that with sufficiently large number of projections, SPCA is

able to outperform OASIS on 5 datasets (i.e., protein, imagenet5, cats5, tdt30 and 20news),

indicating that the comparison result may be sensitive to the number of projections.
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Figure 4.2: The comparison of different stochastic algorithms for ranking

4.2.4 Evaluation by Classification

In this experiment, we evaluate the learned metric by its classification accuracy with k-

NN (k = 5) classifier. We emphasize that the purpose of this experiment is to evaluate the

58



metrics learned by different DML algorithms, not to demonstrate that the learned metric will

result in the state-of-art classification performance1. Similar to the evaluation by ranking,

all experiments are run five times and the results averaged over five trials with standard

deviation are reported in Fig. 4.3. We essentially have the same observation as that for

the ranking experiments reported in Section 4.2.3 except that for most datasets, the three

methods DuRP, DuOri, and OASIS yield very similar performance.

Note the main concern of this chapter is time efficiency and the size of learned metric

is d × d. It is straightforward to store the learned metric efficiently by keeping a low-rank

approximation of it.
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Figure 4.3: The comparison of different stochastic algorithms for classification

4.3 Conclusions

In this chapter, we propose a dual random projection method to learn the distance metric

for large-scale high-dimensional datasets. The main idea is to solve the dual problem in

1Many studies (e.g., [114, 116]) have shown that metric learning do not yield better classification accuracy
than the standard classification algorithms (e.g., SVM) given a sufficiently large number of training data.
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the subspace spanned by random projection, and then recover the distance metric in the

original space using the estimated dual variables. We develop the theoretical guarantee that

with a high probability, the proposed method can accurately recover the optimal solution

with small error when the data matrix is of low rank, and the optimal dual variables even

when the data matrix cannot be well approximated by a low rank matrix. Our empirical

study confirms both the effectiveness and efficiency of the proposed algorithm for DML

by comparing it to the state-of-the-art algorithms for DML. In the future, we may further

improve the efficiency of our method by exploiting the scenario when optimal distance metric

can be well approximated by a low rank matrix.

60



Chapter 5

Fine-Grained Visual Categorization

via Multi-stage Metric Learning

In this chapter1, we will address the challenge from the large number of constraints (O(n3))

and propose a new DML framework for FGVC by combining the approach in the last chapter.

FGVC aims to distinguish objects in subordinate classes. For instance, dog images are

classified into different breeds of dogs, such as “Chihuahua”, “Pug”, “Samoyed” and so

on [70, 88]. As a result, FGVC classification has to handle the co-occurrence of two somewhat

contradictory requirements: 1) it needs to distinguish many similar classes (e.g., the dog

breeds that only have subtle difference), and 2) it needs to deal with large intra-class variance

(e.g., caused by different poses, examples, etc.). Fig. 5.1 demonstrates an example and such

co-occurring requirements make FVGC very challenging.

The popular pipeline for FVGC consists of two steps, feature extraction step and clas-

sification step. The feature extraction step, which sometimes combines with segmenta-

tion [2, 21, 88], part localization [8, 118] or both [20], is to extract image level representations,

and popular choices are LLC features [2], Fisher vectors [44] and so on. A recent development

is to use convolutional neural network (CNN) [72] trained on large-scale image classification

dataset (e.g., ImageNet [92]) and then use the trained model to extract features [34]. The so-

1This chapter is adapted from the published paper: Q. Qian, R. Jin, S. Zhu and Y. Lin. Fine-Grained
Visual Categorization via Multi-stage Metric Learning. In: Proceedings of the 28th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’15), Boston, MA, 2015.
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Figure 5.1: Illustration of how DML learns the embedding that pulls together the data points
from the same class and pushes apart the data points from different classes. Blue points
are from the class “English marigold” while red ones are “Barberton daisy”. An important
note here is that our DML does not require to collapse data points from each class and this
allows the flexibility to model intra-class variance. A big challenge now is how to deal with
high-dimension feature representation which is typical for image-level visual features. To
this end, we propose a multi-stage scheme for metric learning.

called deep learning features have demonstrated the state-of-the-art performance on FGVC

datasets [34]. Note that training CNN directly on FGVC datasets is difficult because the ex-

isting FGVC benchmarks are often too small [34] (only several tens of thousands of training
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images or less). In this chapter, we simply take the state-of-the-art deep learning features

without any other operators (e.g., segmentation) but focus on studying better classification

approach to better address the aforementioned two co-occurring requirements in FGVC.

For the classification step, many existing FGVC methods simply learn a single classifier

for each fine-grained class according to the one-vs-all strategy [2, 8, 21, 118]. Apparently,

this strategy does not scale well to the number of fine-grained classes while the number

of subordinate classes in FGVC could be very large (e.g., 200 classes in birds11 dataset).

Additionally, such one-vs-all scheme is only to address the first issue in the two issues,

namely, it makes efforts to separate different classes without modeling intra-class variance.

In contrast, this chapter proposes a DML approach, aiming to explicitly handle the two co-

occurring requirements with a single metric. Fig. 5.1 illustrates how DML works. The key

idea of DML is in two folds: 1) it learns a distance metric that pulls neighboring data points

of the same class close to each other and data points from different classes far apart, and

2) it has the flexibility to define neighboring size and require only a portion of data points

from the same class to be close to each other. Consequently, the flexibility of neighboring

size acts as an effective way to model large intra-class variance. With a learned metric, a

k-nearest neighbor classifier will be applied to find the class assignment for a test image.

There are three challenges in learning a metric directly from the original high dimensional

space:

• Large number of constraints: A large number of training constraints are usually re-

quired to avoid the overfitting of high dimensional DML. The total number of triplet

constraints could be up to O(n3) where n is the number of examples.

• Computational challenge: DML has to learn a matrix of size d × d, where d is the

dimensionality of data and d = 134, 016 in our study. The O(d2) number of variables
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leads to two computational challenges in finding the optimal metric. First, it results in

a slower convergence rate in solving the related optimization problem [89]. Second, to

ensure the learned metric to be positive semi-definitive (PSD), most DML algorithms

require, at every iteration of optimization, projecting the intermediate solution onto a

PSD cone, an expensive operation with complexity of O(d3) (at least O(d2)).

• Storage limitation: It can be expensive to simply save O(d2) number of variables in

memory. For instance, in our study, it would take more than 130 GB to store the

completed metric in memory, which adds more complexity to the already difficult

optimization problem.

In this chapter, we propose a multi-stage metric learning framework for high dimensional

DML to explicitly address these challenges. First, to deal with a large number of constraints

used by high dimensional DML, we divide the original optimization problem into multiple

stages. At each stage, only a small subset of constraints that are difficult to be classified

by the currently learned metric will be adaptively sampled and used to improve the learned

metric. By setting the regularizer appropriately, we can prove that the final solution is

optimized over all appeared constraints. Second, to handle the computational challenge in

each subproblem, we extend the theory of dual random projection [120], which was originally

developed for linear classification problems, to metric learning. The proposed method, on one

hand, enjoys the efficiency of random projection, and on the other hand learns a distance

metric of size d × d. This is in contrast to most dimensionality reduction methods that

learn a metric in a reduced space. Finally, to handle the storage problem, we propose to

maintain a low rank copy of the learned metric by a randomized algorithm for low rank

matrix approximation. It not only accelerates the whole learning process but also regularizes

the learned metric to avoid overfitting. Extensive comparisons on benchmark FGVC datasets
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verify the effectiveness and efficiency of the proposed method.

The rest of the chapter is organized as follows: Section 5.1 describes the details of the

proposed method. Section 5.2 shows the results of the empirical study, and Section 5.3

concludes this work.

5.1 Multi-stage Metric Learning

The proposed DML algorithm focuses on triplet constraints so as to pull the small portion

of nearest examples from the same class together [114]. Let D = {(xi, yi), i = 1, . . . , n} be a

collection of n training images, where xi ∈ R
d and yi is the class assignment of xi. Given a

distance metric M , the distance between two data points xi and xj is measured by

distM (xi,xj) = (xi − xj)
�M(xi − xj)

Let {xti,xtj ,xtk}(t = 1, . . . , N) be a set of N triplet constraints derived from the training

examples in D. Since in each constraint (xti,x
t
j ,x

t
k), x

t
i and xtj are assumed to share the

same class that is different from that of xtk, we expect dM (xti,x
t
j) < dM (xti,x

t
k). As a result,

the optimal distance metric M is learned by solving the following optimization problem

min
M∈Sd,M�0

λ

2
‖M‖2F+

N∑
t=1

�(dM(xti,x
t
k)−dM(xti,x

t
j)) (5.1)

where Sd includes all d × d real symmetric matrices and �(·) is a loss function that penal-

izes the objective function when dM (xti,x
t
k) is not significantly larger than dM (xti,x

t
j). In

this study, we choose the smoothed hinge loss [97] that appears to be more effective for
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optimization than the hinge loss while keeping the benefit of large margin

�(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 : x > 1

1− x− γ/2 : x < 1− γ

1
2γ (1− x)2 : o.w.

One main computational challenge of DML comes from the PSD constraint M � 0 in

(5.1). We address this challenge by following the one-projection paradigm [24] that first

learns a metric M without the PSD constraint and then projects M to the PSD cone at

the very end of the learning process. Hence, in this study, we will focus on the following

optimization problem for FGVC

min
M∈Sd

λ

2
‖M‖2F +

N∑
t=1

�(〈At,M〉) (5.2)

where At = (xti−xtk)(x
t
i−xtk)

�−(xti−xtj)(x
t
i−xtj)

� is introduced as a matrix representation

for each triplet constraint, and 〈·, ·〉 represents the dot product between two matrices.

We will discuss the strategies to address the three challenges of high dimensional DML,

and summarize the framework of high dimensional DML for FGVC at the end of this section.

5.1.1 Constraints Challenge: Multi-stage Division

In order to reliably determine the distance metric in a high dimensional space, a large number

of training examples are needed to avoid the overfitting problem. Since the number of triplet

constraints can be O(n3), the number of summation terms in (5.2) can be extremely large,

making it difficult to effectively solve the optimization problem in (5.2). Although active

learning may help reduce the number of constraints [114], the number of active constraints
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can still be very large since many images in FGVC from different categories are visually

similar, leading to many mistakes. To address this challenge, we divide the learning process

into multiple stages. At s-th stage, let Ms−1 be the distance metric learned from the last

stage. We sample a subset of active triplet constraints that are difficult to be classified by

Ms−1 (i.e., incur large hinge loss). Given Ms−1 and the sampled triplet constraints Ns, we

update the distance metric by solving the following optimization problem

min
Ms∈Sd

λ

2
‖Ms −Ms−1‖2F +

∑
t∈Ns

�(〈At,Ms〉) (5.3)

Although only a small size of constraints is used to improve the metric at each stage, we

have

Theorem 5. The metric learned by solving the problem (5.3) is equivalent to optimize the

following objective function

min
M∈Sd

λ

2
‖M‖2F +

s∑
k=1

∑
t∈Nk

�(〈At,M〉)

Proof. Consider the objective function for the first s stages

min
M∈Sd

λ

2
‖M‖2F +

s−1∑
k=1

∑
t∈Nk

�(〈At,M〉)
︸ ︷︷ ︸

:=Ls−1(M)

+
∑
t∈Ns

�(〈At,M〉) (5.4)

It is obvious that Ls−1 is strongly convex, so we have (Chapter 9, [12])

Ls−1(M)=Ls−1(Ms−1)+〈∇Ls−1(Ms−1),M −Ms−1〉

+
1

2
〈(M −Ms−1)∇2Ls−1(M

′),M −Ms−1〉
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for some M ′ between M and Ms−1.

Since Ms−1, the solution obtained from the first s − 1 stages, approximately optimizes

Ls−1(M) and Ls−1 is λ-strongly convex, then

Ls−1(M) ≈ Ls−1(Ms−1) +
λ

2
‖M −Ms−1‖2F (5.5)

We finish the proof by replacing Ls−1(M) in (5.4) with the approximation in (5.5).

Remark This theorem demonstrates that the metric learned from the last stage is opti-

mized over constrains from all stages. Therefore, the original problem could be divided into

several subproblems and each only has an affordable number of active constraints. Fig. 5.2

summaries the framework of multi-stage learning procedure.

Figure 5.2: The framework of the proposed method.

68



5.1.2 Computational Challenge: Dual Random Projection

Now we will try to solve the high dimensional subproblem by dual random projection tech-

nique which is similar to that in the last chapter. For simplifying the analysis, we will

investigate the subproblem at the first stage and following stages could be analyzed in the

same way. By introducing the convex conjugate �∗ for � in (5.3), the dual problem of DML

is

max
α∈R|N1|

−
|N1|∑
t=1

�∗(αt)− 1

2λ
α�Gα (5.6)

where αt is the dual variable for At and G is a matrix defined as Ga,b = 〈Aa, Ab〉. M1 =

− 1
λ

∑|N1|
t=1 αtAt by setting the gradient with respect to M1 to zeros. Let R1, R2 ∈ R

d×m be

two Gaussian random matrices, where m is the number of random projections (m � d) and

R
i,j
1 , R

i,j
2 ∼ N (0, 1/m). For each triplet constraint, we project its representation At into low

dimensional space using the random matrices, i.e. Ât = R�
1 AtR2. By using double random

projections, which is different from the single random projection in [120], we have

Lemma 1. ∀Aa, Ab, the double random projections preserve the pairwise similarity between

them: E[〈Âa, Âb〉] = 〈Aa, Ab〉

The proof is straightforward. According to the lemma, the dual variables in (5.6) could

be estimated in the low dimension space as

max
α̂∈R|N1|

−
|N1|∑
t=1

�∗(α̂t)− 1

2λ
α̂�Ĝα̂ (5.7)

where Ĝ(a, b) = 〈Âa, Âb〉. Then, by the definition of convex conjugate and the smoothness

of the loss function, which is different from the analysis as in Chapter 4, each dual variable
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α̂t in (5.7) could further be estimated by �′(〈Ât, M̂1〉), where M̂1 ∈ R
m×m is the metric

learned in the reduced space. Generally, M̂s is learned by solving the following optimization

problem

min
M̂s∈Sm

λ

2
‖M̂s − M̂s−1‖2F +

|Ns|∑
t=1

�(〈Ât, M̂s〉) (5.8)

Since the size of M̂s ∈ R
m×m is significantly smaller than that of Ms, (5.8) can be solved

much more efficiently than (5.3). In our implementation, a simple stochastic gradient descent

is developed to efficiently solve the optimization problem in (5.8). Given M̂1, the final

distance metric M1 ∈ R
d×d in the original space is estimated as

M1 = −1

λ

|N1|∑
t=1

α̂tAt (5.9)

5.1.3 Storage Challenge: Low Rank Approximation

Although (5.9) allows us to recover the distance metric M in original d dimensional space

from the dual variables {αt}|N |
t=1, it is expensive, if not impossible, to save M in the memory

since d is very large in FGVC [2]. To address this challenge, instead of saving M , we propose

to save the low rank approximation of M . More specifically, let σ1, . . . , σr be the first r � d

eigenvalues of M , and let u1, . . . ,ur be the corresponding eigenvectors. We approximate M

by a low rank matrix M ′ =
∑r

i=1 σiuiu
�
i = LL�. Different from existing DML methods

that directly optimize L [113], we obtain M first and then decompose it to avoid suboptimal

soulition. Unlike M that requires O(d2) storage space, it only takes O(rd) space to save

M ′ and r could be arbitrary value. In addition, the low rank metric also accelerates the

sampling step by reducing the cost of computing distance from O(d) to O(r). Low rank is
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also a popular regularizer to avoid overfitting when learning high dimensional metric [78].

However, the key issue is how to efficiently compute the eigenvectors and eigenvalues of M

at each stage. This is particularly challenging in our case as M in (5.9) even can not be

computed explicitly due to its large size.

To address this problem, first we investigate the structure of the recovering step for s-th

stage as in (5.9)

Ms = Ms−1 −
1

λ

|Ns|∑
t=1

αstA
s
t

= Ms−2 −
1

λ
(

|Ns|∑
t=1

αstA
s
t +

|Ns−1|∑
t=1

αs−1
t As−1

t )

= −1

λ

s∑
k=1

|Nk|∑
t=1

αktA
k
t

Therefore, we could express the summation as matrix multiplication. In particular, for

each triplet (xti,x
t
j ,x

t
k), we denote its dual variable by α = �′(〈Â, M̂〉) and set the corre-

sponding entries in a sparse matrix C as

C(i, j) =
α

λ
, C(j, i) =

α

λ
, C(j, j) = −α

λ

C(i, k) = −α

λ
, C(k, i) = −α

λ
, C(k, k) =

α

λ
(5.10)

It is easy to verify that M can be written as

M = XCX� (5.11)

Second, we exploit the randomized theory [52] to efficiently compute the eigen-decomposition
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of M . More specifically, let R ∈ R
d×q (q � d) be an Gaussian random matrix. According

to [52], with an overwhelming probability, most of the top r eigenvectors of M lie in the

subspace spanned by the column vectors in MR provided q ≥ r + k, where k is a con-

stant independent from d. The limitation of the method is that it requires the appearance

of the matrix M for computing MR while keeping the whole matrix is unaffordable here.

Fortunately, by replacing M with XCX� according to (5.11), we can approximate the top

eigenvectors of M by those of XCX�R that is of size d× q and can be computed efficiently

since C is a sparse matrix. The overall computational cost of the proposed algorithm for

low rank approximation is only O(qnd), which is linear in d. Note that the sparse matrix C

is cumulated over all stages.

Alg. 5 summarizes the key steps of the proposed approach for low rank approximation,

where qr and eig stand for QR and eigen decomposition of a matrix. Note that the distributed

computing is particularly effective for the realization of the algorithm because the matrix

multiplication XCX�R can be accomplished in parallel, which is helpful when n is also

large.

Algorithm 5 An Efficient Algorithm for Recovering M and Project It onto PSD Cone from
M̂

1: Input: Dataset X ∈ R
d×n, M̂ ∈ R

m×m, the number of random combinations q
2: Compute a Gaussian random matrix R ∈ R

d×q

3: Compute a sparse matrix C using (5.10)
4: Y = R×X�, Y = Y × C, Y = Y ×X
5: [Q,R] = qr(Y )
6: B = Q� ×X�, B = B × C, B = B ×X
7: [U,Σ] = eig(B)
8: U = Q ∗ U
9: return L = [

√
σ1u1, · · · ,√σrur] and M = LL�, where ui is the ith column of U and

σi is the ith positive diagonal element of Σ

Alg. 6 shows the whole picture of the proposed method. The total cost of the framework
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Algorithm 6 The Multi-stage Metric Learning Framework for High Dimensional DML
(MsML)

1: Input: Dataset X ∈ R
d×n, the number of random projections m, the number of random

combinations q, and the number of stages T
2: Compute two Gaussian random matrices R1, R2 ∈ R

d×m

3: Initialize M̂0 = 0 ∈ R
m×m and M0 = 0 ∈ R

d×d

4: for s = 1, . . . , T do
5: Sample one epoch (O(n)) active triplet constraints using Ms−1

6: Estimate M̂s by solving the optimization problem as in (5.8) using SGD
7: Recover the distance metric Ms in the d dimensional space using Alg. 5
8: end for
9: return MT

is only O(dn).

5.2 Experiments

DeCAF features [34] are extracted as the image representations in the experiments. Although

it is from the activation of a deep convolutional network, which is trained on ImageNet [72],

it outperforms conventional visual features on many general tasks [34]. We concatenate

features from the last three full connected layers (i.e., DeCAF5+6+7) and the dimension of

resulting features is 51, 456.

We apply the proposed algorithm to learn a distance metric and use the learned metric

together with a smoothed k-nearest neighbor classifier, a variant of k-NN, to predict the

class assignments for test examples. Different from traditional k-NN, smoothed k-NN first

obtains k reference centers for each class by clustering images in each class into k clusters.

To predict the class assignment for a test image x, it computes a distance between x and a
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class C using the reference centers C1, . . . , Ck as

dis(x, C) = − 1

β
log

⎛
⎝ k∑

j=1

exp
(
−β|x− Cj |2

)⎞⎠ , (5.12)

and assigns x to the class with the shortest distance. The distance function given in (5.12)

actually computes the soft min among the distance between x and Cj , and we use hard min

min1≤j≤k |x − Cj |2 when β = 0. We find that smoothed k-NN is more efficient than the

traditional k-NN, especially for large-scale learning problems. We refer to the classification

approach based on the metric learned by the proposed algorithm and the smoothed k-

NN as MsML, and the smoothed k-NN with Euclidean distance in the original space as

Euclid. Although the size of covariance matrix is very large (51, 456 × 51, 456), its rank

is low due to the small number of training examples, and thus PCA can be computed

explicitly. The state-of-the-art DML algorithm, i.e. LMNN [114] with PCA as preprocess,

is also included in comparison. The one-vs-all strategy, based on the implementation of

LIBLINEAR [37], is used as a baseline for FGVC, with the regularization parameter varied

in the range {10i}(i = −2, · · · , 3). We refer to it as LSVM. We also include the state-of-the-

art results for FGVC in our evaluation. All the parameters used by MsML are set empirically,

with the number of random projections m = 100 and the number of random combinations

q = 600. PCA is applied for LMNN to reduce the dimensionality to m before DML is

learned. LMNN is implemented by the code from the original authors and the recommended

parameters are used 2. To ensure that the baseline method fully exploits training data, we

set the maximum number of iterations for LMNN as 104. These parameter values are used

throughout all the experiments. All training/test splits are provided by datasets. Mean

2We did vary the parameter slightly from the recommended values and did not find any noticeable change
in the classification accuracy.
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accuracy, a standard evaluation metric for FGVC, is used to evaluate the classification

performance. All experiments are run on a single machine with 16 2.10GHz cores and 96GB

memory.

5.2.1 Oxford Cats&Dogs

Cats&dogs contains 7, 349 images from 37 cats and dogs species [88]. There are about 100

images per class for training and rest for testing. Table 5.1 summaries the results. First, we

observe that MsML is more accurate than the baseline LSVM. This is not surprising because

the distance metric is learned from the training examples of all class assignments. This is in

contrast to the one-vs-all approach used in LSVM in which the classification function for a

class C is learned only by the class assignments of C. Second, our method performs signif-

icantly better than the baseline DML method, indicating that the unsupervised dimension

reduction method PCA may result in suboptimal solutions for DML. Fig. 5.3 compares the

images that are most similar to the query images using the metric learned by the proposed

algorithm (Column 8-10) to those based on the metric learned by LMNN (Column 5-7) and

Euclid (Column 2-4). We observe that more similar images are found by the metric learned

by MsML than by LMNN. For example, MsML is able to capture the difference between two

cats species (longhair v.s. shorthair) while LMNN returns the very similar images with wrong

label. More examples are given in Fig. 5.6. Third, MsML has overwhelming performance

compared to all state-of-the-art FGVC approaches. Although the method [88] using ground

truth head bounding box and segmentation achieves 59.21%, MsML is 20% better than it

with only image information, which shows the advantage of the proposed method. Finally,

it takes less than 0.2 second to extract DeCAF features per image based on a CPU imple-

mentation while a simple segmentation operator costs more than 2.5 seconds as reported in
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the study [2], making the proposed method for FGVC practically more appealing.

Table 5.1: Comparison of mean accuracy(%) on cats&dogs dataset. “#” means that more
information (e.g., ground true segmentation) is used by the method.

Methods Mean Accuracy (%)
Image only [88] 39.64
Det+Seg [2] 54.30
Image+Head+Body# [88] 59.21

Euclid 72.60
LSVM 77.63
LMNN 76.24
MsML 80.45
MsML+ 81.18

Figure 5.3: Examples of retrieved images. First column are query images highlighted by
green bounding boxes. Columns 2-4 include the most similar images measured by Euclid.
Columns 5-7 show those by the metric from LMNN. Columns 8-10 are from the metric of
MsML. Images in columns 2-10 are highlighted by red bounding boxes when they share the
same category as queries, and blue bounding boxes if they are not.

To evaluate the performance of MsML for extremely high dimensional features, we con-

catenate conventional features by using the pipeline for visual feature extraction that is

outlined in [2]. Specifically, we extract HOG [30] features at 4 different scales and encode
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them to 8K dimensional feature dictionary by the LLC method [113]. A max pooling strate-

gy is then used to aggregate local features into a single vector representation. Finally, 82, 560

features are extracted from each image and the total dimension is up to 134, 016. MsML with

the combined features is denoted as MsML+ and we can observe that it further improves

the performance by about 1% as in Table 5.1. Note that the time of extracting this high

dimensional conventional features is only 0.5 second per image, which is still much cheaper

than any segmentation or localization operator.

5.2.2 Oxford 102 Flowers

102flowers is the Oxford flowers dataset for flower species [86], which consists of 8189 images

from 102 classes. Each class has 20 images for training and rest are for testing. Table 5.2

shows the results from different methods. We have the similar conclusion for the methods us-

ing the same DeCAF features. That is, MsML outperforms LSVM and LMNN significantly.

Although LSVM already performs very well, MsML further improves the accuracy. Addition-

ally, it is observed that the performance of state-of-the-art methods even with segmentation

operators are much worse than that of MsML. Note that GT [86] uses hand annotated seg-

mentations followed by multiple kernel SVM, while MsML outperforms it about 3% without

any supervised information, which confirms the effectiveness of the proposed method.

Fig. 5.4 illustrates the changing trend of test mean accuracy as the number of stages

increases. We observe that MsML converges very fast, which verifies that multi-stage division

is essential in our proposed framework.
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Table 5.2: Comparison of mean accuracy(%) on 102flowers dataset. “#” means that more
information (e.g., ground true segmentation) is used by the method.

Methods Mean Accuracy (%)
Combined CoHoG [65] 74.80
Combined Features [85] 76.30
BiCoS-MT [19] 80.00
Det+Seg [2] 80.66
TriCoS [21] 85.20
GT# [86] 85.60

Euclid 76.21
LSVM 87.14
LMNN 81.93
MsML 88.39
MsML+ 89.45
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Figure 5.4: Convergence curve of the proposed method on 102flowers.

5.2.3 Birds-2011

birds11 is the Caltech-USCD-200-2011 birds dataset for bird species [109]. There are 200

classes with total 11, 788 images and each class has rough 30 images for training. We use the

version with ground truth bounding box. Table 5.3 compares the proposed method to the

state-of-the-art baselines. First, it is obvious that the performance of MsML is significantly
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better than all baseline methods as the observation above. Second, although Symb [20]

combines segmentation and localization, MsML outperforms it by 9% without any time

consuming operator. Third, Symb* and Ali* mirror the training images to improve their

performances, while MsML is even better without this trick. Finally, MsML outperforms

the method combining DeCAF features and DPD models [121], which is due to the fact

that most of research of FGVC ignore choosing the appropriate base classifier and simply

adopt linear SVM with one-vs-all strategy. For comparison, we also report the result with

mirroring training images and is denoted asMsML+*. It provides another 1% improvement

over MsML+ as shown in Table 5.3.
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Figure 5.5: Comparison with different size of classes on birds11.

To illustrate the capacity of MsML in exploring the correlation among classes, which

makes it more effective than a simple one-vs-all classifier for FGVC, we conduct one addi-

tional experiment. We randomly select 50 classes from birds11 as the target classes and use

the test images from the target classes for evaluation. When learning the metric, besides

the training images from 50 target classes, we sample k classes from the 150 unselected ones
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Table 5.3: Comparison of mean accuracy(%) on birds11 dataset. “*” denotes the method
that mirrors training images.

Methods Mean Accuracy (%)
Symb [20] 56.60
POOF [9] 56.78
Symb* [20] 59.40
Ali* [44] 62.70
DeCAF+DPD [34] 64.96

Euclid 46.85
LSVM 61.44
LMNN 51.04
MsML 65.84
MsML+ 66.61
MsML+* 67.86

as the auxiliary classes, and use training images from the auxiliary classes as additional

training examples for distance metric learning. Fig. 5.5 compares the performance of LSVM

and MsML with the increasing number of auxiliary classes. It is not surprising to observe

that the performance of LSVM decreases a little since it is unable to explore the supervision

information in the auxiliary classes to improve the classification accuracy of target classes

and more auxiliary classes just intensify the class imbalance problem. In contrast, the per-

formance of MsML improves significantly with increasing auxiliary classes, indicating that

MsML is capable of effectively exploring the training data from the auxiliary classes and

therefore is particulary suitable for FGVC.

5.2.4 Stanford Dogs

S-dogs is the Stanford dog species dataset [70]. It contains 120 classes and 20, 580 images,

where 100 images from each class is used for training. Since it is the subset of ImageNet [92],

where DeCAF model is trained from, we just report the result in Table 5.4 as reference.
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Table 5.4: Comparison of mean accuracy(%) on S-dogs dataset. “*” denotes the method
that mirrors training images.

Methods Mean Accuracy (%)
SIFT [70] 22.00
Edge Templates [118] 38.00
Symb [20] 44.10
Symb* [20] 45.60
Ali* [44] 50.10

Euclid 59.22
LSVM 65.00
LMNN 62.17
MsML 69.07
MsML+ 69.80
MsML+* 70.31

5.2.5 Comparison of Efficiency

In this section, we compare the training time of the proposed algorithm for high dimensional

DML to that of LSVM and LMNN. MsML is implemented by Julia, which is a little slower

than C3, while LSVM uses the LIBLINEAR package, the state-of-the-art algorithm for solv-

ing linear SVM implemented mostly in C. The core part of LMNN is also implemented in C.

The time for feature extraction is not included here because it is shared by all the methods

in comparison. The running time for MsML includes all operational cost (i.e., the cost for

triplet constraints sampling, computing random projection and low rank approximation).

Table 5.5: Comparison of Running time (seconds).

Methods cats&dogs 102flowers birds11 S-dogs
LSVM 196.2 309.8 1,417.0 1,724.8
LMNN 832.58 702.7 1,178.2 1,643.6
MsML 164.91 174.4 413.1 686.3
MsML+ 337.20 383.7 791.3 1,229.7

Table 5.5 summarizes the results of the comparison. First, it takes MsML about 1/3

of the time to complete the computation than LMNN. This is because MsML employs a

3Detailed comparison can be found in http://julialang.org
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stochastic optimization method to find the optimal distance metric while LMNN is a batch

learning method. Second, we observe that the proposed method is significantly more efficient

than LSVM on most of datasets. The high computational cost of LSVM mostly comes from

two aspects. First, LSVM has to train one classification model for each class, and becomes

significantly slower when the number of classes is large. Second, the fact that images from

different classes are visually similar makes it computationally difficult to find the optimal

linear classifier that can separate images of one class from images from the other classes. In

contrast, the training time of MsML is independently from the number of classes, making it

more appropriate for FGVC. Finally, the running time of MsML+ with 134, 016 features only

doubles that of MsML, which verifies that the proposed method is linear in dimensionality

(O(d)).

5.3 Conclusions

In this chapter, we develop a multi-stage metric learning framework of high dimension-

al FGVC problem, which addresses the challenges arising from conventional DML. More

specifically, it divides the original problems into multiple stages to handle the challenge

arising from too many triplet constraints, extends the theory of dual random projection to

address the computational challenge for high dimensional data, and a randomized algorithm

for low rank matrix approximation for the storage challenge. The empirical study shows that

the proposed method with general purpose features yields performance that is significantly

better than the state-of-the-art approaches for FGVC. In the future, we could try to com-

bine the proposed DML algorithm with segmentation and localization to further improve

the performance of FGVC.

82



Figure 5.6: Examples of retrieved images. First column are query images highlighted by
green bounding boxes. Columns 2-4 include the most similar images measured by Euclid.
Columns 5-7 show those by the metric from LMNN. Columns 8-10 are from the metric of
MsML. Images in columns 2-10 are highlighted by red bounding boxes when they share the
same category as queries, and blue bounding boxes if they are not.
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Chapter 6

Feature Selection for Face

Recognition:

A Distance Metric Learning Approach

In this chapter, we will study feature selection problem in face recognition. Face recognition

involves identifying if two face images belong to the same person (i.e., face verification)

or which person the face image belongs to (i.e., face classification). It is an important

application of computer vision and has been studied extensively in the past decades [26, 100,

3, 62, 25]. Many face recognition methods require estimating the similarity between images

appropriately using the technique of distance metric learning [50, 60, 61].

One challenge in applying DML to estimate the similarity of face images is the high

dimensionality of face representations used to capture the subtle differences between the

faces [25, 3]. The high dimensionality comes from the fact that over-completed descrip-

tors are sampled for face images and the total number of features can be up to 1, 000, 000 [61].

Most of existing DML methods project the high dimensional face features to a low dimen-

sional space with unsupervised dimension reduction techniques (e.g., PCA) and then learn

a metric for the low dimensional space [60, 50]. The resulting solution can be suboptimal

since important information of face images is lost after dimension reduction.
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By further investigating the problem, it is found that although the dimensionality of

feature vectors for face images is very high, the number of features used by each descriptor

is significantly small and is only 45 in our study. It is thus efficient to learn a metric for

the group of features from each descriptor. On the other hand, since the descriptors are

over-completed, a subset of them may be sufficient to verify face images. Fig. 6.1 illustrates

the feature selection (i.e., descriptor selection) for face verification. Each descriptor is cor-

responding to a small patch on the face, and a subset of them (e.g., eyes, nose, etc.) can

capture most of differences.

�������	
��
��
��	�
�

Figure 6.1: Illustration of feature selection for face verification. Although descriptors are
over-completed, a subset of descriptors (e.g., eyes, nose, etc) can capture most of differences.

In this chapter, we propose a DML method that can select a subset of descriptors and

learn a distance metrics for each selected descriptor simultaneously. Unlike the previous

methods that learn a single metric from the original feature space, we learn a metric for

each feature group that is corresponding to the selected descriptor at every iteration and

the ensemble of metrics is used for the verification. The method avoids dealing with high

dimensional features directly while keeping useful information from all descriptors.

The main contributions of this work are summarized as follows.

• We propose a DML method to handle the over-completed descriptors in face verifi-

cation. At each iteration, a linear optimization problem is solved to simultaneously

select a descriptor and learn the corresponding metric. This problem has the closed-

form solution, which making the computation efficient.
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• We prove that the proposed method has O(1/T ) convergence rate, where T is the

number of iterations and equivalent to the number of selected descriptors in this work.

• To reduce the high computational cost of exhaustive search that selects one single

descriptor at each iteration, we exploit mini-batch strategy and incremental sampling,

respectively. It is shown theoretically and empirically that the accelerated methods

are able to yield similar performance with significantly reduced computational costs.

The hybrid method with these strategies together achieves the best efficiency in our

empirical study.

The rest of this chapter is organized as follows: Section 6.1 describes the proposed ap-

proach. Section 6.2 shows the results of the empirical study and Section 6.3 concludes this

work with future research directions.

6.1 DML for feature selection

Given a set of face images X ∈ R
d×n, DML aims to learn a metric that estimates pairwise

distances as

distM (xi,xj) = (xi − xj)
�M(xi − xj)

In face verification, a good metric can separate the images from the same person and those

from different persons as

∀xi,xj : distM (xi,xj) ≤ b− 1; ∀xi,xk : distM (xi,xk) ≥ b+ 1

where xi and xj are from the same person while xk is from a different person, and b is a

pre-defined threshold.
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The metric can be learned by solving the corresponding optimization problem, which is

min
M∈Sd+

L(M) =
1

N

N∑
i,j

�(Yij(distM (xi,xj)− b)) (6.1)

where Sd
+ is the set of positive semi-definite (PSD) matrices with size d× d, and �(·) can be

any smooth loss function and is the logistic loss in our work as

�(z) = log(1 + exp(z + 1))

Yij ∈ {−1,+1} is the indicator where Yij = 1 if xi and xj are from the same person and

Yij = −1 otherwise.

It is hard to handle the problem in (6.1) directly by conventional DML methods due to

the high dimensionality of the feature space. On the other hand, features are known to be

redundant and the number of features from each descriptor is small, making it possible to

efficiently learn a metric for every group of feature. . Therefore, we propose an iterative

algorithm that is able to perform feature selection and metric learning simultaneously: it

selects one informative descriptor at each iteration and learn a metric for the features of the

selected descriptor.

At the t-th iteration, we select the descriptor as

arg min
s=1,··· ,S

min
Mt∈Sk+,‖Mt‖F≤1

〈��′(Zt−1), �zts〉

where S is the number of descriptors, k is the dimension of features from a single descriptor

and we have kS = d. ��′(Zt−1) = [�′(Zt−1
i,j )], �zts = [Yi,j(distMt

(xsi ,x
s
j)− b)] and xs is the s-th
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feature group of the example. It is a linear optimization problem and is equivalent to

arg min
s=1,··· ,S

min
Mt∈Sk+,‖Mt‖F≤1

〈
∑
i,j

Yi,j�
′t−1
i,j As

i,j ,Mt〉 (6.2)

where As
i,j = (xsi −xsj)(x

s
i −xsj)

�. The intuition of Eqn. 6.2 is to learn the optimal metric for

each feature group and then greedily select the feature group whose distance is the closest

to the negative direction of the gradient with the learned metric.

The metric is learned from the subproblem

min
Mt∈Sk+,‖M‖F≤1

〈
∑
i,j

Yi,j�
′t−1
i,j As

i,j ,Mt〉

According to the K.K.T. condition [12], the problem has the closed-form solution

M∗
t = ΠPSD,‖Mt‖F=1(−

∑
i,j

Yi,j�
′t−1
i,j As

i,j) (6.3)

where ΠPSD,‖M‖F=1(M) is to project the metric into the PSD cone with the unit Frobenius

norm. By taking Eqn. 6.3 back to Eqn. 6.2, the selection criterion becomes

arg min
s=1,··· ,S

Scores = −‖ΠPSD(−
∑
i,j

Yi,j�
′t−1
i,j As

i,j)‖F (6.4)

After selecting the descriptor with the minimal score, the distance is updated as

Zt
i,j = (1− αt)Z

t−1
i,j + αtz

t
i,j
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The stepsize αt can be optimized by solving the problem

min
αt:0<αt<1

1

N

∑
i,j

�((1− αt)Z
t−1
i,j + αtz

t
i,j)

with Newton’s method or use the pre-defined size as

αt =
2

t+ 1

Alg. 7 summarizes the key steps of the proposed method.

Algorithm 7 Greedy Coordinate Descent Metric Learning for Face Verification (Greco)

1: Input: Dataset X ∈ R
d×n, # Iterations T

2: for t = 1, · · · , T do
3: Select a single descriptor according to Eqn. 6.4
4: Compute the corresponding metric as in Eqn. 6.3
5: Update the distance using the selected feature group and the learned metric as

Zt
i,j = (1− αt)Z

t−1
i,j + αtz

t
i,j

6: end for
7: return ZT

The greedy coordinate descent method in Alg. 7 is similar as Frank-Wolfe method [41, 43]

or conditional gradient descent method [75], but it learns the ensemble of metrics rather than

a single model as in previous work. We have the following theorem for the guarantee of the

performance.

Theorem 6. Let ZT be the solution of Alg. 7 after T iterations and Z∗ be the optimal

solution. Assume that the loss function �(·) is convex and β-smooth and ∀i, j : ‖zi− zj‖2 ≤

D. By setting αt =
2

t+1 , we have

L(Zt)− L(Z∗) ≤ 2βD

T + 1
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The proof is similar to that of Frank-Wolfe method.

Proof.

L(Zt)− L(Z∗) = L((1− αt)Z
t−1 + αtz

t)− �(Z∗)

≤ L(Zt−1)− L(Z∗) + αt〈∇L(Zt−1), zt − Zt−1〉+ α2tβ

2
‖Zt−1 − zt‖2 (6.5)

≤ L(Zt−1)− L(Z∗) + αt〈∇L(Zt−1), Z∗ − Zt−1〉+ α2tβ

2
D (6.6)

≤ (1− αt)(L(Zt−1)− �(Z∗)) + α2tβ

2
D (6.7)

Eqn. 6.5 is obtained because that the loss function is β-smooth. Eqn. 6.6 is from the fact

that zt is the optimal solution of Problem 6.2 and Z∗ is in the convex hull as zt. Eqn. 6.7

is due to that L is convex.

By setting αt =
2

t+1 , we prove the theorem by induction. We hold the assumption that

�(ZT )− �(Z∗) ≤ 2βD

T + 1

When T = 1, α1 = 1 and it is obvious that

�(Z1)− �(Z∗) ≤ βD

2
≤ βD

For T = t, we have

�(Zt)− �(Z∗) ≤ (1− 1

t+ 1
)
2βD

t
− 1

t+ 1

2βD

t
+

2βD

(t+ 1)2

≤ 2βD

t+ 1
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6.1.1 Adaptive Mini-batch Strategy

Although the proposed method can handle the high dimensional challenge in face verification,

it has to exhaustively search through all descriptors to select only one descriptor at each

iteration, which is computationally inefficient when the number of descriptors is very large.

We propose two variants of DML based feature selection methods to improve the efficiency.

First, we investigate the mini-batch strategy, which select a mini-batch descriptors rather

than a single descriptor at each iteration. After computing the score of each descriptor as

in Eqn. 6.4, top m descriptors will be selected. Then, a larger metric (i.e., size of mk×mk)

will be learned from all features of selected descriptors as

M∗
t = ΠPSD,‖Mt‖F=1/m(−

∑
i,j

Yi,j�
′t−1
i,j A

s1,··· ,sd
i,j )

Note that the norm of Mt is shrank by 1/m to make sure the norm of zt is still bounded

over multiple feature groups. It is because

‖As1,··· ,sm
i,j ‖F ≤ m(max

i,j,s
‖As

i,j‖F )

This shrinkage ratio also can be estimated empirically as
max ‖As1,··· ,smi,j ‖F

max ‖Asi,j‖F
for a tighter

approximation.

Given the normalized score of mini-batch descriptors, the updating is adaptively by

comparing to the score of the optimal single descriptor. If the former score is better than

the later one, the distance will be updated by the mini-batch feature groups. Otherwise, the
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single optimal descriptor will be used. Alg. 8 shows the method with mini-batch strategy.

Algorithm 8 Greedy Coordinate Descent Metric Learning with Adaptive Mini-batch
(Greco-mini)

1: Input: Dataset X ∈ R
d×n, # Iterations T , mini-batch size m

2: for t = 1, · · · , T do
3: Select top d descriptors according to Eqn. 6.4
4: Compute a single metric from the selected feature groups
5: if 〈∇L(Zt−1), zMmini−batch

〉 ≥ 〈∇L(Zt−1), zMsingle
〉 then

6: Mt = Mmini−batch
7: else
8: Mt = Msingle
9: end if
10: Update the distance using the selected feature group and the learned metric as

Zt
i,j = (1− αt)Z

t−1
i,j + αtz

t
i,j

11: end for
12: return ZT

We can prove that the mini-batch strategy will not affect the convergence rate if its score

is better than the single one, which is stated in the following theorem.

Theorem 7. Let ZT be the solution of Alg. 8 after T iterations and Z∗ be the optimal

solution. Assume that the loss function �(·) is convex and β-smooth and ∀i, j : ‖zi− zj‖2 ≤

D. By setting αt = 2
t+1 and assuming that the score of mini-batch descriptors is η better

than the score of the optimal single descriptor, we have

L(Zt)− L(Z∗) ≤ 2βD − 2η

T + 1

The proof is trivial and we list it for completeness.

Proof. We consider the problem when the solution of each iteration is slightly better than the

single optimal solution with a factor η where η > 0 and 〈∇�(Zt−1), z̃t〉 ≤ 〈∇�(Zt−1), zt〉−η.
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With the similar process as above, we have

L(Zt)− L(Z∗) = L((1− αt)Z
t−1 + αtz̃

t)− �(Z∗)

≤ L(Zt−1)− L(Z∗) + αt〈∇L(Zt−1), zt − Zt−1〉 − αtη +
α2tβ

2
‖Zt−1 − z̃t‖2

≤ (1− αt)(L(Zt−1)− L(Z∗))− αtη +
α2tβ

2
D

We prove the result by induction. We set αt = 2/(t+1) as before and the assumption is

�(ZT )− �(Z∗) ≤ 2βD − 2η

T + 1

When T = 1, it is

�(Z1)− �(Z∗) ≤ βD

2
− η ≤ βD − η

When T = t, we have

�(Zt)− �(Z∗) ≤ 2βD

t+ 1
− (1− 2

t+ 1
)
2η

t
− 2η

(t+ 1)2

≤ 2βD − 2η

t+ 1

Remark η is the trade-off between the performance and the number of selected descrip-

tors. Although the number of iterations for the method with mini-batch strategy is less than

that of the original method to achieve the same performance, the number of descriptors can

be larger than that of original one.
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However, if the solution of mini-batch is good enough as

η ≥ βD

2
(1− T + 1

Tm+ 1
)

where m is the mini-batch size, we have

�(ZT )− �(Z∗) ≤ 2βD

Tm+ 1

which means that even with the same number of descriptors, the method with mini-batch

performs the same as the original method and the running time is shrank by the factor m

in this ideal case.

6.1.2 Incremental Sampling Strategy

In this section, we exploit the sampling strategy to reduce the number of candidate descrip-

tors at each iteration. Different from uniform sampling, a subset with size �1 − γt
t+1�S will

be sampled at the t-th iteration, where 0 < γt < t+1 and maxt γt = c. The size of candidate

subset is incremental with the increasing number of iterations, which means the selected

descriptor is closer and closer to the optimal one and this step is critical for convergence.

Alg. 9 summarizes the proposed method.

We can show that the method with incremental sampling has the similar convergence

rate as the original one, which is summarized in the following theorem.

Theorem 8. Let ZT be the solution of Alg. 9 after T iterations and Z∗ be the optimal

solution. Assume that the loss function �(·) is convex and β-smooth and ∀i, j : ‖zi− zj‖2 ≤
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Algorithm 9 Greedy Coordinate Descent Metric Learning with Incremental Sampling
(Greco-isamp)

1: Input: Dataset X ∈ R
d×n, # Iterations T , sampling ratio γt

2: for t = 1, · · · , T do
3: Randomly sample a subset of descriptors with size of �1− γt

t+1�S
4: Select a single descriptor in the subset according to Eqn. 6.4 and compute the corre-

sponding metric
5: Update the distance using the select feature group and the learned metric as

Zt
i,j = (1− αt)Z

t−1
i,j + αtz

t
i,j

6: end for
7: return ZT

D. By setting αt =
2

t+1 and 0 < γt < min{c, t+ 1},we have

E[L(Zt)]− L(Z∗) ≤ 2βD + 4c

T + 1

Proof. We consider the general case that the solution at the t-th iteration is not optimal

but close to the optimal one with a factor η where 0 < ηt < 1 and 〈∇L(Zt−1), z̃t〉 ≤

ηt〈∇L(Zt−1), zt〉 since the optimal score is negative. With the similar strategy as in previous

proof, we have

L(Zt)− L(Z∗) = L((1− αt)Z
t−1 + αtz̃t)− L(Z∗)

≤ L(Zt−1)− L(Z∗) + αt〈∇L(Zt−1), ηtz
t − Zt−1〉+ α2tβ

2
‖Zt−1 − z̃t‖2

≤ L(Zt−1)− L(Z∗) + αtη〈∇L(Zt−1), Z∗ − Zt−1〉

−αt(1− ηt)〈∇L(Zt−1), Zt−1〉+ α2tβ

2
D

≤ (1− αtη)(L(Zt−1)− L(Z∗)) + αt(1− ηt)(L(0)− L(Zt−1)) +
α2tβ

2
D (6.8)

= (1− αt)(L(Zt−1)− L(Z∗)) + αt(1− ηt)(L(0)− L(Z∗)) + α2tβ

2
D

≤ (1− αt)(L(Zt−1)− L(Z∗)) + 2αt(1− ηt) +
α2tβ

2
D (6.9)
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Eqn. 6.8 is from the fact that L is convex and Eqn. 6.9 is because

L(0)− L(Z∗) = log(1 + e)− �(Z∗) < 2

If we set ηt ≥ 1− γt/(t+ 1) where 0 < γt < min{c, t+ 1}, Eqn. 6.9 becomes

�(Zt)− �(Z∗) ≤ (1− αt)(�(Z
t−1)− �(Z∗)) + 2

αtγt
t+ 1

+
α2tβ

2
D

We prove the result by induction. We set αt = 2/(t+ 1) and take the assumption

�(ZT )− �(Z∗) ≤ 2βD + 4c

T + 1

When T = 1, it is

�(Z1)− �(Z∗) ≤ γ1 +
βD

2
≤ βD + 2c

When T = t, we have

�(Zt)− �(Z∗) ≤ 2βD

t+ 1
+ (1− 2

t+ 1
)
4c

t
+

4γt
(t+ 1)2

≤ 2βD + 4c

t+ 1

We finish the proof by showing that ηt ≥ 1− γt/(t+ 1) in Alg. 9, which is

E[〈∇L(Zt−1), z̃t〉] ≤ Pr[zt ∈ Ssub]〈∇L(Zt−1), zt〉

≤ (1− γt
t+ 1

)〈∇L(Zt−1), zt〉
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The proposed adaptive mini-batch strategy and incremental sampling can be combined

to further improve the efficiency and the hybrid algorithm is summarized in Alg. 10.

Algorithm 10 Greedy Coordinate Descent Metric Learning with Hybrid strategies (Greco-
hybrid)

1: Input: Dataset X ∈ R
d×n, # Iterations T , mini-batch size m, sampling ratio γt

2: for t = 1, · · · , T do
3: Randomly sample a subset of descriptors with size of �1− γt

t+1�S
4: Select top d descriptors according to Eqn. 6.4 within the selected subset
5: Compute a single metric from the selected feature groups
6: if 〈∇L(Zt−1), zMmini−batch

〉 ≥ 〈∇L(Zt−1), zMsingle
〉 then

7: Mt = Mmini−batch
8: else
9: Mt = Msingle
10: end if
11: Select a single descriptor in the subset according to Eqn. 6.4 and compute the corre-

sponding metric
12: Update the distance using the select feature group and the learned metric as

Zt
i,j = (1− αt)Z

t−1
i,j + αtz

t
i,j

13: end for
14: return ZT

6.2 Experiments

We collect a face image dataset with 4, 000 training examples and 2, 040 test images. There

are 400 people in training set and each of them has 10 images. Test set consists of 60 different

people with 34 images for each. We use the covariance matrix descriptors [105] to extract

features and 7, 671 descriptors are sampled for face images. Each descriptor has 45 features

and the final dimensionality of representations is up to 345, 195.

Five variants of proposed methods are compared through the experiments:

• Greco-random: randomly select a descriptor at each iteration and learn the optimal

metric
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• Greco: the method that selects the feature group and learns the metric simultaneously

as in Alg. 7

• Greco-mini: the proposed method with adaptive mini-batch strategy as in Alg. 8

• Greco-isamp: the proposed method with incremental sampling strategy as in Alg. 9

• Greco-hybrid: the proposed hybrid method as in Alg. 10

The number of iterations is set to be T = 100. The size of mini-batch is set as m = 3. We

set the sampling ratio of Greco-isamp as 10% in the first 50 iterations and 1− 45/(t+ 1) in

the rest ones. All experiments are repeated three times and the average results are reported.

6.2.1 Experiment I: Face Verification

For face verification, we randomly sample 4, 000 positive pairs and negative pairs respectively

to compute the score of each descriptor at each iteration. 40, 800 randomly sampled pairs

from test set, where half of them are positive, are used as test pairs. We also randomly sample

80, 000 pairs from training set ,where half of them are positive, to estimate the training error.

Besides the method proposed in this work, we include ITML [32] the state-of-the-art DML,

in the comparison. Since it can not handle the high dimensional data directly, we reduce

the dimension to 500 by PCA before applying the method. The number of iterations for

ITML is set to be 1, 000, 000 to make sure the approach has explored the data sufficiently.

Note that Greco samples 8, 000 pairs at each iteration, the total number of pairs used in our

method is only 800, 000, which is less than that of ITML. The threshold is set empirically

as b = 6.

Figs. 6.2-6.3 compare the performance of different methods on face verification problem.

First, it is obvious that all proposed methods perform significantly better than ITML. This
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is because the using of PCA in ITML results in a significant loss of information. Second,

the performance of Greco-random is worse than the proposed methods, which verifies the

effectiveness of the proposed greedy coordinate descent method. Third, the training error of

Greco-mini decreased more rapidly than Greco, indicating that the incorporation of mini-

batch method is effective, as illustrated in Theorem 7. Finally, Greco-isamp and Greco-

hybrid have the similar performance as Greco and Greco-mini, respectively, confirming that

the incremental sampling will not sacrifice the performance too much.

Table 6.1 compares the running time of proposed methods. Compared with Greco, Greco-

mini saves more than 40% running time while Greco-isamp only uses 28% of that. The hybrid

method is the most efficient one and takes 11% running time of Greco. Besides running time,

we find that Greco-mini samples 126 descriptors and Greco-hybrid samples 119 descriptors

to achieve the same performance as the Greco with 100 descriptors. We thus conclude that

Greco-mini and Greco-hybrid trade the number of descriptors for efficiency at limited cost.
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Figure 6.2: Comparison of training error on face verification. Red star denotes the position
that Greco-mini achieves the same performance as Greco with 100 iterations. Red cross
denotes the position that Greco-hybrid achieves the same performance as Greco with 100
iterations.

99



0 20 40 60 80 100
20

25

30

35

40

45

#Iterations

Te
st

 E
rr

or
(%

)

ITML
Greco−random
Greco
Greco−mini
Greco−isamp
Greco−hybrid

Figure 6.3: Comparison of test error on face verification.

Table 6.1: Comparison of running time (seconds). The reported running time of Greco-mini
and Greco-hybrid is that they achieve the same training performance as Greco with 100
iterations.

Face verification
Greco Greco-mini Greco-isamp Greco-hybrid
3,716.3 2,084.4 1,044.5 412.8
Face classification
Greco Greco-mini Greco-isamp Greco-hybrid
3,643.8 2,252.8 1,012.5 356.7

6.2.2 Experiment II: Face Classification

In this section, we conduct the experiment for face classification task. The only difference

from the face verification is the loss function. Given the triplet constraint {xi,xj ,xk} where

xi and xj are from the same person and xk is different, we have the learning problem as

min
M∈Sd+

L(M) =
1

N

N∑
i,j,k

�(distM (xi,xj)− distM (xi,xk))

which can be solved by the proposed methods with appropriate modifications. We include

LMNN [114] with 500 PCA features as the baseline DML method in comparison and the
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results of leave-one-out 3-NN are summarized in Figs. 6.4-6.5.

We share the same observation as the last experiment, i.e. the learned distance metric

with PCA features yields significantly worse performance than the proposed methods, and

the proposed methods are significantly better than randomly picking a descriptor at each

iteration. Greco-isamp has the similar performance as Greco and Greco-mini is better than

Greco. Greco-hybrid has the comparable performance with Greco-mini but takes significantly

less running time.
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Figure 6.4: Comparison of training error on face classification. Red star denotes the position
that Greco-mini achieves the same performance as Greco with 100 iterations. Red cross
denotes the position that Greco-hybrid achieves the same performance as Greco with 100
iterations.

Besides comparing to general DML methods, we also conduct the comparison that in-

cludes the proposed hybrid method and the DML method specified for face recognition [61].

Since more constraints will approximate the expectation in Eqn. 6.1 better, we increase the

number of sampled constraints at every iteration from one epoch (i.e., 4000) to five and ten

epochs, which are denoted as Greco-hybrid-1, Greco-hybrid-5 and Greco-hybrid-10, respec-

tively. Figs. 6.6-6.7 summarize the results of the proposed hybrid methods and the baseline
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Figure 6.5: Comparison of test error on face classification.

method developed by NEC [61], which also selects features along with learning metrics. It is

a commercial software and among the top performers for face recognition. With the sufficient

number of constraints at each iteration, our hybrid methods perform even better than the

well deployed software. The NEC’s baseline method consumes 14, 799.1 seconds on the server

with 32 core 2.10 GHz CPUs, while our hybrid methods cost only 532.4 and 583.7 seconds

for Greco-hybrid-5 and Greco-hybird-10, respectively, to achieve the same performance by

using the server with 24 core 2.30 GHz CPUs, which further verifies the effectiveness and

efficiency of the proposed method.

6.3 Conclusion

In this chapter, we propose a DML method to select descriptors (i.e., feature groups) and

learn corresponding metrics simultaneously for face recognition. Our method exploits the

fact that the dimensionality of the features from a single descriptor is small and greedily

selects one descriptor from all candidates at each iteration. To improve the computational
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Figure 6.6: Comparison of training error on face classification with the baseline method
developed by NEC. Red cross denotes the position that Greco-hybrid-5 achieves the same
performance as NEC’s baseline method with 100 iterations. Red star denotes the position
that Greco-hybrid-10 achieves the same performance as NEC’s baseline method with 100
iterations.
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Figure 6.7: Comparison of test error on face classification with the baseline method developed
by NEC.

efficiency, we propose two variants with mini-batch and incremental sampling strategies,

respectively. Both the efficiency and effectiveness of the hybrid method with these two
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strategies are also verified in the empirical study. In the future, we could try the method for

the face images with different kinds of descriptors where the dimensionality of features from

different descriptor can be different.
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Chapter 7

Conclusions & Future Plan

In this dissertation, we study the fundamental challenges in applying DML to large-scale

high dimensional data and evaluate the performance of the proposed methods with computer

vision applications. We summarize them as follows.

• Expensive PSD projections (O(d3)): We alleviate the cost of PSD projections by reduc-

ing the number of updates in SGD. To limit its impact on the prediction performance,

we exploit the mini-batch strategy and adaptive sampling method, respectively. We

verify the effectiveness for both of them theoretically and empirically. Then, we pro-

pose two hybrid methods by combining these two strategies and further improve the

efficiency while obtaining the similar performance as the standard SGD.

• Large number of variables (O(d2)): We develop the dual random projection technique

for high dimensional DML. We first project the data from the original space to the

low dimensional space by random projection. Then, the dual variables are estimated

there and the final metric is reconstructed in the original space according to them. The

proposed method is as efficient as random projection methods while it could recover

the optimal metric theoretically. The empirical study confirms its effectiveness and

efficiency.

• Huge number of triplet constraints (O(n3)): To handle huge number of constraints,

we divide the original problem into multiple stages where each subproblem only keeps
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a small subset of active constraints. After learning through all stages, the final met-

ric is nearly optimal over all appeared constraints as shown in the theoretical analysis.

Then, we evaluate the proposed multi-stage metric learning framework for the challeng-

ing FGVC task. It achieves the significantly better performance than state-of-the-art

FGVC methods while it is even more efficient than the linear SVM.

• Feature selection: We propose a greedy method to select the feature group and learn the

corresponding metric simultaneously at each iteration with guaranteed performance.

Then, we investigate the adaptive mini-batch strategy and incremental sampling to

alleviate the high computational cost of exhausted search that finds one feature group

at each iteration. In addition, the hybrid approach is also studied in this dissertation

that combines the strength of adaptive mini-batch and incremental sampling. The

empirical study on face verification and classification confirms the effectiveness and

efficiency of the proposed methods.

In the future, the work on distance metric learning inspired by this dissertation can be

further continued in the following direction:

• Improving Efficiency of Distance Metric Learning by Effectively Leveraging

the Sparse Structure of Data

In this direction, we plan to generalize the feature selection work presented in Chapter 6

to a general sparse structure in the distance metric to be learned. We plan to explore

the theory of compressive sensing, group lasso, and matrix completion for more effective

DML for high dimensional large-scale data.
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Appendix

Proofs

Proof of Theorem 1

Proof. Using the standard analysis for online learning (Chapter12, [18]), we have

�t(Mt)− �t(M∗) ≤ 〈Mt −M∗,∇�t(Mt)〉

≤ ‖Mt −M∗‖2F
2η

− ‖Mt+1 −M∗‖2F
2η

− ‖Mt −Mt+1‖2F
2η

+ 〈Mt −Mt+1,∇�t(Mt)〉

≤ ‖Mt −M∗‖2F
2η

− ‖Mt+1 −M∗‖2F
2η

− ‖Mt −Mt+1‖2F
2η

+
1

b

b∑
s=1

〈Mt −Mt+1,∇�t,s(Mt)〉

≤ ‖Mt −M∗‖2F
2η

− ‖Mt+1 −M∗‖2F
2η

+
η

2b

b∑
s=1

‖∇�t,s(Mt)‖2F

By taking the expectation with respect to the t-th mini-batch of triplet constraint, we have

L(Mt)− L(M∗) ≤
‖Mt −M∗‖2F

2η
− Et[‖Mt+1 −M∗‖2F ]

2η
+

η

2b

b∑
s=1

Et,s[‖∇�t,s(Mt)‖2F ]

By adding the inequalities of all iterations and taking expectation over the sequence of triplet

constraints, we have

T∑
t=1

E[L(Mt)]− L(M∗) ≤ 1

2η
‖M1 −M∗‖2F +

η

2b

T∑
t=1

b∑
s=1

E[‖∇�t,s(Mt)‖2F ]
︸ ︷︷ ︸

:=CT
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According to Proposition 2, we have �′(z)2 ≤ |�′(z)| ≤ L�(z). Using A = max
1≤t≤N

‖At‖F , we

have

CT =
T∑
t=1

b∑
s=1

Et,s[‖∇�t,s(Mt)‖2F ] ≤ LA2b
T∑
t=1

E[L(Mt)]

Using the result for CT , we have

(
1− 3ηLA2

)
L(M̄) ≤ L(M∗) +

R2

2ηT

We complete the proof by dividing both sides with 1−3ηLA2 and replacing T with N/b.

Proof of Theorem 2

Proof. To bound the number of updates, we have

E

⎡
⎣ N∑
t=1

Zt

⎤
⎦ = E

⎡
⎣ N∑
t=1

|�′t(Mt)|
⎤
⎦ ≤ LE

⎡
⎣ N∑
t=1

L(Mt)

⎤
⎦

where the last step follows from |�′t(M)| ≤ L�t(M).

Using the standard analysis for online learning (Chapter 12, [18]), we have:

�(Mt)− �(M∗) ≤ 〈�′(Mt)At,Mt −M∗〉

= τtZt〈At,Mt −M∗〉+ (�′(Mt)− τtZt)〈At,Mt −M∗〉

≤ ‖Mt −M∗‖2F − ‖Mt+1 −M∗‖2F
2η

+
ηA2Zt

2
+ τt(|�′(Mt)| − Zt)〈At,Mt −M∗〉

Taking the sum from t = 1 to N and expectation over both binary variables {Zt}Nt=1 and
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the sequence of triplet constraints, we have:

N∑
t=1

E[L(Mt)]− L(M∗) ≤
‖M1 −M∗‖2F

2η
+

ηA2

2
E

⎡
⎣ N∑
t=1

Zt

⎤
⎦

We complete the proof by reorganizing the above inequality.

Proof of Theorem 3

Proof. First, we want to prove that Ĝ is a good estimation for G. We rewrite Ga,b by

Kronecker product:

Ga,b = 〈Aa, Ab〉

=〈(xai −xak)(x
a
i −xak)

�−(xai −xaj )(x
a
i −xaj )

�, (xbi−xbk)(x
b
i−xbk)

�−(xbi−xbj)(x
b
i−xbj)

�〉

=〈(xai −xak)⊗(xai −xak)−(xai −xaj )⊗(xai −xaj ), (x
b
i−xbk)⊗(xbi−xbk)−(xbi−xbj)⊗(xbi−xbj)〉

= 〈za, zb〉

where zt = (xti − xtk)⊗ (xti − xtk)− (xti − xtj)⊗ (xti − xtj). Define Z = [z1, · · · , zN ], we have

G = Z�Z.

Under the low rank assumption that all training examples lie in the subspace of r-

dimension, the dataset X = [x1, · · · ,xn] can be decomposed as:

X = UΣV =
r∑

i=1

λiuiv
�
i

where λi is the i-th singular value of X, and ui and vi are the corresponding left and right

singular vectors of X. Given the property of Kronecker product that (A ⊗ B)(C ⊗ D) =
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(AC)⊗ (BD), we have:

zt = (xti − xtk)⊗ (xti − xtk)− (xti − xtj)⊗ (xti − xtj)

= [U(x̃ti − x̃tk)]⊗ [U(x̃ti − x̃tk)]− [U(x̃ti − x̃tj)]⊗ [U(x̃ti − x̃tj)]

= (U ⊗ U)
[
(x̃ti − x̃tk)⊗ (x̃ti − x̃tk)− (x̃ti − x̃tj)⊗ (x̃ti − x̃tj)

]

where x̃ti = U�xti. Define Z̃ = (z̃1, . . . , z̃n), where z̃t = (x̃ti − x̃tj)⊗ (x̃ti − x̃tj)− (x̃ti − x̃tk)⊗

(x̃ti − x̃tk), we have:

G = Z̃�(U� ⊗ U�)(U ⊗ U)Z̃ = Z̃�(Ir ⊗ Ir)Z̃ = Z̃�Z̃

where Ir ⊗ Ir equals to the identity operator of r2 × r2.

With the random projection approximation, we have:

zt = (R�(xti − xtk))⊗ (R�(xti − xtk))− (R�(xti − xtj))⊗ (R�(xti − xtj))

= [R�U(x̃ti − x̃tk)]⊗ [R�U(x̃ti − x̃tk)]− [R�U(x̃ti − x̃tj)]⊗ [R�U(x̃ti − x̃tj)]

= (R� ⊗R�)(U ⊗ U)
[
(x̃ti − x̃tk)⊗ (x̃ti − x̃tk)− (x̃ti − x̃tj)⊗ (x̃ti − x̃tj)

]

So,

Ĝ = Z̃�(U� ⊗ U�)(RR� ⊗RR�)(U ⊗ U)Z̃

= Z̃([U�RR�U ]⊗ [U�RR�U ])Z̃

In order to bound the difference between G and Ĝ, we need the following corollary:
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Corollary 9. [120] Let S ∈ R
r×m be a standard Gaussian random matrix. Then, for any

0 < ε ≤ 1/2, with a probability 1− δ, we have

∥∥∥∥ 1

m
SS� − I

∥∥∥∥
2
≤ ε

provided

m ≥ (r + 1) log(2r/δ)

cε2

where constant c is at least 1/4.

Define Δ = U�RR�U − Ir. Using Corollary. 9, with a probability 1 − δ, we have

‖Δ‖2 ≤ ε. Using the notation Δ, we have the following expression for Ĝ−G

Ĝ−G = Z̃� ((Ir +Δ)⊗ (Ir +Δ)− Ir ⊗ Ir) Z̃

= Z̃� (Δ⊗ Ir + Ir ⊗Δ+Δ⊗Δ) Z̃ = Z̃�ΓZ̃

where Γ = Δ⊗ Ir + Ir ⊗Δ+Δ⊗Δ. Using the fact that the eigenvalue values of A⊗B is

given by λi(A)λj(B), it is easy to verify that,

‖Γ‖2 ≤ ‖Δ‖2 + ‖Δ‖2 + ‖Δ‖2‖Δ‖2

Using the fact that ‖Δ‖2 ≤ ε and taking ε ≤ 1/6 which results in c ≥ 1/3, with a probability

1− δ, we have

‖Γ‖2 ≤ 3ε (.1)
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Define L(α) and L̂(α) as

L(α) = −
n∑

i=1

�∗(αi)−
1

2λN
α�Gα,

L̂(α) = −
n∑

i=1

�∗(αi)−
1

2λN
α�Ĝα

We are now ready to give the proof for Theorem 1. The basic logic is straightforward.

Since Ĝ is close to G, we would expect α̂∗, the optimal solution to L̂(α), to be close to α∗,

the optimal solution to L(α). Since both M∗ and M̂∗ are linear in the dual variables α∗ and

α̂∗, we would expect M̂∗ to be close to M∗.

Since α̂∗ maximizes L̂(α) over its domain, which means (α∗ − α̂∗)�∇L̂(α̂∗) ≤ 0, we

have

L̂(α̂∗) ≥ L̂(α∗) +
1

2λN
(α̂∗ −α∗)�Ĝ(α̂∗ −α∗) (.2)

Using the concaveness of L̂(α) and the fact that α∗ maximizes L(α) over its domain, we

have:

L̂(α̂∗) ≤ L̂(α∗) + (α̂∗ −α∗)�∇L̂(α∗)− 1

2λN
(α̂∗ −α∗)�Ĝ(α̂∗ −α∗)

= L̂(α∗)− 1

2λN
(α̂∗ −α∗)�Ĝ(α̂∗ −α∗)

+ (α̂∗ −α∗)�
(
∇L̂(α∗)−∇L(α∗) +∇L(α∗)

)

≤ L̂(α∗) +
1

λN
(α̂∗ −α∗)�(G− Ĝ)(α∗)− 1

2λN
(α̂∗ −α∗)�Ĝ(α̂∗ −α∗) (.3)
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Combining the inequalities in (.2) and (.3), we have

1

λN
(α̂−α∗)�(G− Ĝ)α∗ ≥ 1

λN
(α̂−α∗)�Ĝ(α̂−α∗)

or

(α∗ − α̂∗)�(Ĝ−G)α∗ ≥ (α̂∗ −α∗)�G(α̂∗ −α∗) + (α̂∗ −α∗)�(Ĝ−G)(α̂∗ −α∗)

Define p∗ = Z̃α∗, p̂∗ = Z̃α̂∗, we have:

(p∗ − p̂∗)�Γp∗ ≥ ‖p̂∗ − p∗‖22 + (p̂∗ − p∗)�Γ(p̂∗ − p∗)

Using the bound given in (.1), with a probability 1− δ, we have

‖p̂∗ − p∗‖2 ≤ 3ε

1− 3ε
‖p∗‖2

We complete the proof by using the fact

‖M∗ − M̂∗‖F =
1

λN
‖p∗ − p̂∗‖2, ‖M∗‖F =

1

λN
‖p∗‖2

and [99]

‖ΠPSD(M∗)− ΠPSD(M̂∗)‖F ≤ ‖M∗ − M̂∗‖F
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Proof of Theorem 4

Proof. Our analysis is based on the following two theorems.

Theorem 10. (Theorem 2 [10]) Let x ∈ R
d, and x̂ = R�x/√m, where R ∈ R

d×m is a

random matrix whose entries are chosen independently from N (0, 1). Then

Pr
{
(1− ε)‖x‖22 ≤ ‖x̂‖22 ≤ (1 + ε)‖x‖22

}
≥ 1− 2 exp

(
−m

4
(ε2 − ε3)

)
.

Theorem 11. (Lemma B-1 [69]) Suppose M is a real symmetric matrix with non-negative

entries, and E is a real symmetric matrix such that maxi,j |Ei,j | ≤ ξ. Then, ‖E ◦M‖2 ≤

ξ‖M‖2, where ‖ · ‖2 stands for the spectral norm of matrix and E ◦M is the element-wise

product between matrices E and M .

Define L(α) and L̂(α) as

L(α) = −
N∑
i=1

�∗(αi)−
1

2λN
α�Gα,

L̂(α) = −
N∑
i=1

�∗(αi)−
1

2λN
α�Ĝα

Since �(z) is γ-smooth, we have �∗(α) be γ−1-strongly-convex. Using the fact that α̂∗

approximately maximizes L̂(α) with η-suboptimality and �∗(·) is γ−1-strongly-convex, we

have

L̂(α̂∗) ≥ L̂(α∗)+
1

2λN
(α̂∗ −α∗)�(γ−1I + Ĝ)(α̂∗ −α∗)−η (.4)

Using the concaveness of L̂(α) and the fact that α∗ maximizes L(α) over its domain, we
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have:

L̂(α̂∗) ≤ L̂(α∗)

+
1

λN
(α̂∗ −α∗)�(G− Ĝ)α∗ − 1

2λN
(α̂∗ −α∗)�(γ−1I + Ĝ)(α̂∗ −α∗) (.5)

Combining the inequalities in (.4) and (.5), we have

η + (α∗ − α̂∗)�(Ĝ−G)α∗ ≥ 1

γ
‖α̂∗ −α∗‖22

when we set λ = 1/N . Using the fact (α∗ − α̂∗)(Ĝ−G)α∗ ≤ ‖α∗ − α̂∗‖2‖α∗‖2‖Ĝ−G‖2,

we have

‖α∗ − α̂∗‖22 ≤ γ‖α∗ − α̂∗‖2‖α∗‖2‖Ĝ−G‖2 + γη,

implying that

‖α∗ − α̂∗‖2 ≤ max
(
2γ‖Ĝ−G‖2‖α∗‖2,

√
2γη

)
. (.6)

To bound ‖α∗ − α̂∗‖2, we need to bound ‖Ĝ−G‖2. To this end, we write the Ga,b as

Ga,b = 〈Aa, Ab〉

=
[
(xai −xak)

�(xbi−xbk)
]2
+
[
(xai −xaj )

�(xbi−xbj)
]2

−
[
(xai −xak)

�(xbi−xbj)
]2−[

(xai −xaj )
�(xbi−xbk)

]2
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Similarly, we write Ĝa,b as

Ĝa,b = 〈R�AaR,R�AbR〉

=
[
(xa

i −xa
k)

�RR�(xb
i−xb

k)
]2
+
[
(xa

i −xa
j )

�RR�(xb
i−xb

j)
]2

−
[
(xa

i −xa
k)

�RR�(xb
i−xb

j)
]2−[(xa

i −xa
j )

�RR�(xb
i−xb

k)
]2

Hence, we can write Ĝ−G = B1 + B2 + B3 + B4, where B1, B2, B3, and B4 are defined

as

B1
a,b =

[
(xai −xak)

�RR�(xbi−xbk)
]2−[

(xai −xak)
�(xbi−xbk)

]2

B2
a,b =

[
(xai −xaj )

�RR�(xbi−xbj)
]2−[

(xai −xaj )
�(xbi−xbj)

]2

B3
a,b =

[
(xai −xak)

�(xbi−xbj)
]2−[

(xai −xak)
�RR�(xbi−xbj)

]2

B4
a,b =

[
(xai −xaj )

�(xbi−xbk)
]2−[

(xai −xaj )
�RR�(xbi−xbk)

]2

Using the result from Theorem 10 and the definition of matrices M1, M2, M3, M4, we have,

with a probability 1− δ, for any a, b,

|Bi
a,b| ≤ εM i

a,b, i = {1, 2, 3, 4}

provided that ε ≤ 1/2 and

m ≥ 8

ε2
ln

8N

δ
(.7)
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Using Theorem 11, under the condition in (.7), we have, with a probability 1− δ,

‖Ĝ−G‖2≤ε
(
‖M1‖+‖M2‖+‖M3‖+‖M4‖

)
≤4κε

where the last step uses the definition of κ. We complete the proof by plugging the bound

for ‖Ĝ−G‖2 into (.6).

118



BIBLIOGRAPHY

119



BIBLIOGRAPHY

[1] David W. Aha, Dennis F. Kibler, and Marc K. Albert. Instance-based learning algo-
rithms. ML, 6:37–66, 1991.

[2] Anelia Angelova and Shenghuo Zhu. Efficient object detection and segmentation for
fine-grained recognition. In CVPR, 2013.

[3] Oren Barkan, Jonathan Weill, Lior Wolf, and Hagai Aronowitz. Fast high dimensional
vector multiplication face recognition. In IEEE International Conference on Computer
Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013, pages 1960–1967, 2013.

[4] Hila Becker, Mor Naaman, and Luis Gravano. Learning similarity metrics for event
identification in social media. In WSDM, pages 291–300, 2010.

[5] Ron Bekkerman and Martin Scholz. Data weaving: scaling up the state-of-the-art in
data clustering. In CIKM, pages 1083–1092, 2008.

[6] Aurélien Bellet and Amaury Habrard. Robustness and generalization for metric learn-
ing. CoRR, abs/1209.1086, 2012.

[7] Alex Berg, Ryan Farrell, Aditya Khosla, Jonathan Krause, Fei-Fei Li, Jia Li, and
Subhransu Maji. Fine-grained challenge 2013. 2013.

[8] Thomas Berg and Peter N. Belhumeur. Poof: Part-based one-vs-one features for fine-
grained categorization, face verification, and attribute estimation. In CVPR, 2013.

[9] Thomas Berg and Peter N. Belhumeur. POOF: part-based one-vs.-one features for
fine-grained categorization, face verification, and attribute estimation. In CVPR, pages
955–962, 2013.

[10] Avrim Blum. Random projection, margins, kernels, and feature-selection. In SLSFS,
pages 52–68, 2005.

[11] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for
k-means clustering. In NIPS, pages 298–306, 2010.

120



[12] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[13] Lev M Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
computational mathematics and mathematical physics, 7(3):200–217, 1967.

[14] Deng Cai, Xuanhui Wang, and Xiaofei He. Probabilistic dyadic data analysis with
local and global consistency. In ICML, pages 105–112, 2009.

[15] Colin Campbell. Kernel methods: a survey of current techniques. Neurocomputing,
48(1-4):63–84, 2002.

[16] Qiong Cao, Zheng-Chu Guo, and Yiming Ying. Generalization bounds for metric and
similarity learning. CoRR, abs/1207.5437, 2012.

[17] Qiong Cao, Yiming Ying, and Peng Li. Similarity metric learning for face recognition.
In ICCV, pages 2408–2415, 2013.
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