
 

  

   

 

Q
.
—

‘
t

.
'

I
n
”
:

.
.
‘
q
u
a
v
g
—
L
.
.
.

-
I
fi
.
'
-
.
'
u
r
o
-

r
-
,
3

‘
-

I
f
;

I

J

”‘5“ fl ' " IIC'r.‘ 'I I I I: I I ' .~.
"'UIQ.-. 9 ' | .I I III. 4» - l . ,, a:

U ,, . (II... ’I '3‘. III _“|‘.'-. .I

s: [ell'l'l' :Ig‘ {I -{ .'y" I. 1., {ht-I‘m?“ .II.- ‘I-Qlfv ..

' 'l‘l“ ".'n.‘

‘.".I..{y'E}:

.' ’l III
“.1 ,Ilfl ,

“.43.. I“

"39".:5.4"}.

U

NIH“!:l¢

WK)“1'“‘71}? fng‘.

I,

 

I- 3'.
,J u

MK“

Na") ' . < 3‘. " .'

.fi: '2'“{'5 R.’ ‘ 1'35:

;,. €

1'
"V‘

I

 

   

 

  

      

       

   

 

'1 ..1 3’ I

:5:th'\II1?.'gl'l’ I( '3 ..j

3 . -up. .

. 'h‘é 'I." . '.4I _'.IR_ '

u \I II v v

‘l'I ‘n II‘It ' ‘i' ' é ' ~ ' "

.‘. _ . ,Ifinfiwfl‘é ' ., H l ‘53:! -1“ I

'1 . ' " ” WI":‘“ (t"” "Ill-I'M“:nl'” :‘YQ log}; . ‘(VE ' ' v' _ -. v E

a ‘ ,',.. ~JIII- _I;.I s“l""" ‘ . I. - . ., ...-II

. IOr ... .. .. .3,” .I w-I 52‘: *nfl'r_. '. In, --.u-I- .{.1 , , I. .313 ,.I‘ [A {.1 .umu ,. .vI M. ... v . ..
I . ...I.','...-' v.4 . .,3 L m ."W'Qy .‘I‘fylfil ': “'3‘; . 1'35: “J _,'I 5;.3.3.,."a a “It...” In." > _ II. ,f'. .5.‘ .J ' . I,

Mm. ". ’ A". l' "I.‘- '.'I .-‘I“ I. I‘ I.'.-‘III-' I1”; I, I,“ ‘ ‘ u ‘_I.’ ".' ‘ "IlIfI" , . 'y ". .' 33, \‘I'. - .I; I
‘1 t, I, “pad ‘f'. ‘3 V" I,“ n V'.‘ mI';""""'II I'll-{INF .3) MIL". m“, "’5 . "j 3 .',.IrI ‘ III I» .. .3 , I 0" .5 I, 3

5.. d ‘ -u” I .t . 3'. .7 I“ l - It ~. 1 H I .. l '.

L. bi. «HI. 'LL-‘I' n '1 ' .- "5" ‘67 "75' 'l I 'I.." 1'7'
In J . 1'" '. . , I ‘I ”2*...

   
  

  

.I "I "II . I ..

‘ "2:? 0" ' 'f." . U‘ "I I, ' v|l I ‘ ‘ "u"_
.. .. I. . . . V . .,

uh «I I . .» mu.‘II,
')" ' '.'.II..,.nI‘II 3'.,

" 'I I'.' -.I‘—. .
"- I. I." I. MI'I‘!:i'
,I u‘ -_ ,I ..-' ‘. 'I

“ I\. ‘0‘.) . S “I

.l I‘, '»._.r-.'I’I.llv} u".“HI

-.-'.',‘."l'.". . ‘v’‘wfi

III



 
 

This is to certify that the

dissertation entitled

ANALYSIS OF THE ERROR VARIANCE-COVARIANCE MATRIX

OF FIRST, SECOND AND THIRD LACTATIONS

IN MEXICAN HOLSTEINS

presented by

Manuel Villarreal

has been accepted towards fulfillment

ofthe requirements for

Ph.D. degree in Animal Science
 

Lw:\.\{ \ix17&3\n36\4\ 

Major professor

//9/2f/fi/
7 /

M30 is an Affirmative Action/Equal Opportunity Institution 0-12771



 

 

MSU
LIBRARIES

.-
V

RETURNING MATERIALS:
 

  

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

 

 

  



ANALYSIS OF THE ERROR.VARIANCE-COVLRIANCE NAIRIX

OF FIRST, SECOND AND THIRD LACTATIONS

IN'HEXICAN HOLSTEINS

By

Manuel Villarreal

A,DISSERIATION

Submitted to

‘Hichigan State university

in partial fulfillment of the requerilente

for the degree or

DOCTOR OF PHILOSOPHY

Dapartnent or Aninal Science

1985





ABSTRACT

ANALYSIS OF THE EH01! VARIANCE-COVARIANCE KATRIX

OF FIRST, SECOND AND THIRD LACTATIONS

IN MEXICAN HOISTEINS

by

Hanuel Villarreal

Errors from each record of the same cow have been

treated as independent of each other when analyzing later

lactations. Need to incorporate more flexibility to this

relation by allowing errors from each lactation to be

correlated with each other and to vary from lactation to

lactation in accordance with a first order non-stationary

autoregressive process has been suggested. Use of recursive

estimation techniques would be possible if residual errors

follow this pattern. More accurate estimates of a cow's

real ability could be obtained from these relationships.

This study tests the assumptions that there is

homogeneous error variance-covariance among lactations: and

examines the hypothesis that errors might follow a first

order non-stationary autoregressive process.

Milk yield records of 3999 Mexican Holsteins with three

consecutive lactations were used.

The model applied to each lactation included random

effects of sire, fixed effects of herd-year-season, and days

in lactation fitted as a covariable. Residuals were

computed from solutions to the mixed model equations. The
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variance-covariance matrix s was produced from a vector of

residuals for each lactation from each cow.

The 3 matrix is not homogeneous (p < 0.01) according to

the Box test for homogeneous variance. In the 8, matrix

error variance increases with time and error covariances are

higher in adjacent lactations.‘Using a maximum likelihood

procedure to test the hypothesis that errors follow a first

order autoregressive model was rejected (p < .01). A model

that incorporated a parameter representing the possible

variance increment caused by the maturing effect of the cow

was also rejected (p < .01). Although these models were

rejected they fitted 3 better than a model with no

correlation of errors. .Justifications would.be that if a

cow produces an unusually'good or bad.yield initially'her

caretaker would have a high or low expectation of her

ability managing her accordingly, also cumulative effects of

accidents or diseases could be carried over lactations. To

model the error structure of repeated lactations, a first

order non-stationary process should be used.
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I INTRODUCTION

The amount of milk that a cow produces varies from one

lactation to another. The variation in milk.yield from

lactation to lactation may be attributed to variations in

the environment prevailing at the time the observation is

made.

A goal of animal breeders has been to estimate

effects of environment and correct the cow's production for

those effects. For dairy cattle, it is common to correct

records for age, times milked per day, days in.milk, and

season of freshening. This process corrects or standardize

to the average of the whole population.

Each adjusted or corrected record can be considered to

represent the real ability of the cow under those "standard

conditions" plus or minus some random error. The corrected

record of the same cow in the next lactation has the same

real ability of the animal plus or minus another error for

environmental conditions. As pointed out by Lush (1945):

"So far as temporary environmental conditions are

concerned, these errors remaining in the correc-

ted records will be independent of each other.

Hence if all the records of the animal are

averaged together, some of these will have posi-

tive errors, and others will have negative

errors which will tend to cancel the positive

ones."

The average lifetime production of a cow can be expressed as:

l
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Real ability

Average Lifetime Production 8 of the animal + SUM (errors)/n

where: SUM is the summation of all n errors.

The average of n observations is the real ability of the

animal and the average of the errors that did not cancel.

The amount of error in this average becomes smaller with

more observations if errors were really random.

Animal breeders have considered this assumption to be

valid and random nature of the errors is a standard

assumption in most of the research in animal breeding.

A linear model for estimating breeding value of dairy

animals and predicting future milk production from repeated

lactations follows:

Yijkn - hysi + sj + cijk+ eijkn

where:

Yijkn is the milk production for the nth lactation of

the kth cow in the 1th herd-year-season sired

by the jth sire,

hysi is the fixed effect of the ith herd-year-season

in which this lactation was initiated,

sj is the random effect of the jth sire,

cijk is the random effect of kth cow, daughter of the

3th sire in the 1th herd,
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eijkm is the residual or random error.

From genetic theory, the cow effect in a given lactation,

cijkn' can be expressed as:

cijkn " aijkn + dijkn

with aijkn being viewed as the genetic and unseparable

permanent environmental contribution and dijkn as a

temporary environmental contribution.

The sj sire, the aijkn and, dijkn effects are taken to

be random having zero means and variances Vs, Va, Vd. The

residual effects eijkn have zero mean and common variance

Ve and are uncorrelated with each other and with sj and

aijkn'

Inherent to this model are the assumptions that a cow's

real producing ability remains constant over her'productive

lifetime, that the variance of the milk yields is constant

for‘all lactations and the covariances for all pairs of milk

yields are constant.

The assumptions that the cow's effect remains the same

over time has been challenged. Harville (1979) pointed out

that a cow might incur an ailment, such as acute mastitis

that would affect adversely her producing ability in the

lactation of initial occurence and in all sequent

lactations. He suggested that more flexibility could be

incorporated into the model by letting the temporary
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environmental part of the cow effect vary from lactation to

lactation in accordance with a first order autoregressive

process, i.e., by replacing dijkn by dijknt‘

dijknt ‘ A dijkn,t-l + Vijknt

where:

D = autogregressive coefficient

dijkn,t-1 a temporary environmental effect in previous

observations

Vijknt = uncorrelated random variable with zero:mean

and variance vv.

Mansour, Nordheim, and Rutledge (1985) presented a model to

estimate variance components in a repeated measurements

design, assuming non-stationary autoregressive errors.

Their rationale was that in many sets of data the

assumptions of constant variance and constant covariance do

not appear warranted.

They presented as an example, the variance-covariance matrix

of lactational yield of milk fat for the first three lacta-

tions of 11,613 cows reported by Butcher and Freeman (1969):

6398 3322 2623

3323 7003 3514

  2623 3514 7467
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Note the increasing value along the principal diagonal, the

increasing value 3323, 3514 on the first minor diagonal, and

the decreasing value of the covariances in the first row.

Mansour, Nordheim, and Rutledge (1985) proposed to

relax the assumption of independence of the error terms.

An example is a two way mixed linear model:

yij 3 M + ai + tj + eij

where:

Yij is the milk yield recorded for the ith subject

at the jth time,

M is the overall fixed mean,

a1 is the random effect of the 1th animal,

tj is the fixed effect of the jth time and

eij is a random error term,

eij and ai are independently and identically'

distributed (i.i.d.) with N(0,Ve ) and N(0,Va).

In this model Ve represents the temporary environmental

factors and Va the genetics and permanent environmental

factors.

For the same conditions on ai but now assuming that eij

fellows a first order autoregressive model:

°ij ' 4 e1 (j-1> + Vij
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where:

°i(j-1) is error term in time j-l,

Vij is uncorrelated random variable i.i.d. N(0,Vv),

p is autoregressive coefficient.

The symmetric variance-covariance structure of three

milk yields associated with the model is:

  

Va+Ve Va+pVe Va+¢2Ve

Va+ (1+;a2 ) Ve Va+¢ (14132 )Ve

Symmetric Va+ (1+¢2+p4)Ve .

With simulated data, the authors calculated. maximum

likelihood estimates of Va ,Ve, and ,3. They found

substancial improvement of the autoregressive model in the

Butcher and Freeman (1969) data over the model that did not

use autoregressive statistics. These findings could have a

biological justification. The authored arguments for the

positive association among errors are: First, if a cow

initially'produces an unusually'good or ‘bad.yield, it

would be natural to think that her caretaker would have a

high or low expectation of her ability and would provide



sequent management, accordingly. Although a portion of the

initial yield is due to genetic and permanent environmental

effects, when Va is large relative to Va, the major impact

of the differential management would.be reflected better by

autoregression. .A pathogenic infection carried over from

one lactation to the next might cause a low production in

both lactations.

Rothchild and Henderson (1979b) also relaxed the

assumption of error covariance being set to zero. They

explained that in a sire evaluation model with no cow

component, to estimate variances and covariances for first

and second lactations an error covariance must be included

because the same cow has both records, and covariances

between errors must exist.

If errors are correlated and if this correlation has a

first order autoregressive pattern, there would.be the

potential to use recursive estimation techniques in the sire

evaluation for later lactations case. These techniques are

such that it is unnecessary to store old data to process

new data. .Also, more accurate estimates of the real ability

of the cow could be obtained from these relationships.

Objectives of this study are:

--Estimate the error variance-covariance structure of a

series of three lactations.

--Test the assumptions commonly made by animal breeders

that there is homogeneous error variance and constant

covariance between each pair of lactations.



--Examine the hypothesis presented by Harville (1979)

and Mansour, Nordheim, and Rutledge (1985) that errors might

follow a first order non-stationary autoregressive process.

Because of the computational simplicity of the follo-

wing tasks, they too were performed:

--Estimate sire variance components for each

lactation.

--Estimate heritability of milk yield for each

lactation.

--Estimate sire solutions for each lactation.

--Rank the sires for each lactation.

--Calculate the rank correlation among sires.
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II LITERATURE REVIEW

11.1 Studies 93 £3223 Lactations

11.1.1 Overview: First 25; Later Lactations

ig Sire Evaluation

Milk yield is and will continue to be the most

important trait selected for in dairy cattle. Currently;

dairy cattle improvement depends on the emphasis placed upon

increasing milk yield.

Cows are ranked by Dairy Herd Improvement Associations

according to criteria such as actual production, production

ability, or cow index. Bulls are ranked on milk yield of

their daughters. These methods have excelled for selecting

those cows and bulls to maximize milk output of the herd.

Sire evaluation methods have evolved rapidly. Up to 25

years ago most methods of evaluating bulls used dam-daughter

comparisons. The spread of artificial insemination, which

gave the possiblity of having daughters of a bull in.many

herds, facilitated the introduction of methods comparing

daughters with their herdmates. Onset of the computer made

it possible to implement recent advanCes of variance

component estimation on which.most sire evaluation methods

depend. One important development has been the introduction

Of'the Best Linear Unbiased Prediction (BLUP) by Henderson

(1975)- This methodology could compensate for the effect of
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selection and relationships between sires.

Because milk yield of the dairy cow'is measured through

her productive life, several records of a daughter could be

used to evaluate a dairy bull. The first, second or any or

all the lactations of daughters would be adequate to

estimate the genetic value. However, developers of each

sire evaluation system.have chosen to use one lactation.over

the others. In the progeny test of dairy bulls, selection

decisions are based principally on production by daughters

in first lactation. The rationale behind the use of first

lactation was summarized by Cassell and McDaniel (1983), who

said:

"Yield of first lactation offers advantages to

dairy breeding researchers. Results

are available earlier, and measurements exist

for more cows than from later records. Extra-

neous sources of variation such as injury,

days dry following lactation, and preferential

treatment are less likely’to influence yield

of first lactationJ'

Mao (1982) pointed out other arguments for the use of

first lactation records.

"-that the first lactation is an adequate

indicator of a cow's lifetime performance:

-that the computation is much simpler without

having had to include a cow effect in the

model:

-that the supposition of different genes

and genie actions for each lactation can be

avoided:

-that the assumption of no sire by age of cow

interaction can be avoided;

-that the potential bias due to selection can
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be also avoided, since not all cows are

allowed by farmers to continue for more lacta-

tions, and those who did make later lactations

records are superior for one reason or the

other to those cows that were cul led; and

-that the inclusion of all lactations

records would only increase the accuracy of

evaluation on those bulls who already had

plenty of daughters, but the accuracy of their

evaluation is of primary interest."

There are advantages for using later lactations for

sire evaluation. Shaeffer (1982) summarized some of these:

”-increase the number of records;

-increase the number of records per

fixed effect e.g. per like herd-year-seasons:

-reduces the standard error of prediction for sire"

Let us document these arguments. An implicit condition

for using first lactations is that the same genes influence

production in first and later lactations. A genetic

correlation less than unity would mean that some genetic

control of later lactations is independent of genetic merit

for yield of first lactation. The range of estimates of

genetic correlation between first and second lactations is

from .75 to .92 (Cassell and McDaniel, 1983).

The inclusion of later lactations in sire evaluations

systems has some advantages over first lactation evaluation

systems. One of the advantages of the use of all lactations

is the increase in accuracy in evaluation of sires for milk

yield. Ufford et al. (1979) in a study comparing first

versus all lactations by Best Linear Unbiased Prediction

(BLUP) found that the use of all lactation records decreased
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the variance of prediction error of sire solutions so that

15 daughters per sire with all lactations gave accuracy of

sire values, equivalent to 25 daughters with only first

lactations. IHe concluded that the genetic progress per year

from selection of bulls to sire daughters would be expected

to be 10 to 15% greater for all lactation records than for

only first lactation records.

A major criticism of evaluation systems employing first

lactation records as estimates of performance is that the

working life of dairy cattle may be reduced by placement of

too much emphasis on early lactations. If a cow lasted in

the herd for several lactations, it means that on several

occasions the milk producer has assessed her and found her

satisfactory; The length of life of a cow in a herd, or

longevity, does not only depend upon milk.yield but on other

characteristics including reproductive efficiency and

health.

Robertson and Barker (1966) said:

"We can then look on longevity as the ulti-

mate character in.the evaluation of different

ways of selecting dairy sires, not for its own

sake but as a numerical indicator of the

judgements of milk producersJ'

Lifetime performance of the cow is a determining factor

of her profitability in a dairy operation, and later records

may contain useful information relative to lifetime

profitability; A positive correlation between yield of first
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lactation and traits of lifetime performance such as

survival, length of herdlife, total performance, total

lifetime yield and lifetime profitability are found in all

published work concerning these matters, the remaining ques-

tions to be answered are: how accurate are they predicted

by yield of first lactation and will optimum progress for

genetic gain in economically important traits be reached by

selecting only on first yield? (Cassell and McDaniel, 1983).

There are just as many literature references concerned

with disadvantages of later records in sire evaluation. Per-

haps a valid criticism of later lactation is that cows with

second or later lactations have been selected. This

introduces selection bias into the sire evaluation. 'Wickham

and Henderson (1977) suggested that large biases seem

unlikely because a small percentage of cows is culled at the

end of the first lactation. Some other authors have

investigated whether survivors of first lactations are.not

a random sample of all first lactation cows with respect to

milk yield. Van Vleck and Henderson (1963) approached this

problem by studying daughters of sires in six classes of

production (based on their proofs). They found that a

higher proportion of daughters of lower production bulls

were culled at the end of the first lactation. _ In their

study, cows not having second records were 11 to 18% of all

daughters of high sires versus 27 to 30% of all the

daughters of low production sires. Reown et al. (1976)
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studying effects of selection bias on sire evaluation in

1969 records, found that those cows culled following second

records exceeded those culled after first by 675 kg in first

lactation.yield. A similar'positive relationship between

first lactation deviation and sequent performance and

survival was found by Hinks (1966). He reported that

whereas the starters had a positive deviation from herd

average of +51, the survivors to second lactation had a

average deviation of +363. These results indicate that

survivors of first lactations are not a random sample of all

first lactation cows with respect to milk yield.

Another difficulty for the use of later records is

genetic differences in rate of maturity. Hargrove (1974)

studying the rate of maturity of dairy females, examined

differences between first and later lactations from 19,000

records. Deviations were not subject to influences of

genetic trend and selection on first yield. He reported

heritabilities of differences in rate of maturity of .1,

approximately one-fourth the heritability for milk yield.

Hickman and Henderson (1955) studied the milk.yield increase

from first to second lactation records and age at first

freshening for data from 4,000 cows. They also found the

heritability for rate of maturity was one-third to one-

fourth the heritability of milk.yield.

Hillers and Freeman.(l965) took another approach to

measure differences between sires in rate of maturity. They



15

used the regression within actual production on age at

first calving as a measurement of rate of maturity; Data

were from 76 California herds with freshenings between 23

and 35 months of age. Sire differences in rate of maturity

were significant. .A general conclusion of this study

indicates that differences among sires in rate of maturity

are real, but heritabilities are low enough to discourage

direct selection. Freeman (1973) in a review article on age

adjustment of production records concluded that sire

differences in rate of maturity imply that age factors to

adjust records to some base by a common curve may obscure

genetic differences between sires. This will cause unequal

ranking for sires on first and later lactation. Cassell and

McDaniel (1983) concluded to the discussion on this matter:

"Thus we face the problem of knowing that age

adjustment factors may obscure genetic diffe-

rences yet to make no adjustment for age in sire

evaluation places such evaluation at the mercy

of progeny age distribution. Effective removal

of only those effects of age common to all cows

across all herds and.progeny groups is a

challenge for future workJ'

There are sire evaluation systems that use all lacta-

tions (USDA-Modified Contemporary Comparison), only first

lactations (Canadian Record of Performance, Northeastern

Sire Evaluation Program) and a combination of two separate

evaluations, for first and first and second combined (Israel

sire evaluation system).

Although it may be safer to avoid potential problems of
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including later lactation records in sire evaluation, there

are advantages such as cow evaluations generated as a by-

product of all records of a cow in a sire evaluation system.

The use of all records in sire evaluation may be even neces-

sary for progeny testing programs of small populations or

populations with fewer dairy records, as for less developed

countries like Mexico (McDowell, 1983).
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11.1.2 Studies Comparing Sire Values Using

Eggs; Egg Later Lactations

Considerable effort has been directed to study results

of sire evaluation methods using first, second, or later

lactations. One purpose of these studies has been to

'validate the assumption of equality of the ranking of bulls

using different lactations.

Tomaszewski et a1. (1975) from data from two samples of

daughters of 133 Holstein bulls for only first lactations

and only second lactations, reported correlations of .64

between sire values for milk.yields. They also found that a

sire value for first lactation can.predict with 85% accuracy

the sire value for second lactation.

Wickham and Henderson (1977) studied the effect of

selection in evaluating sires by second lactation data.

They developed a BLUP procedure to estimate biases. This

procedure was used to obtain estimates of biases for 1109

Holstein sires. Evaluations for first and second lactations

were estimated with a set of equations for a mixed model.

The authors found that the magnitude of the bias was small

in relation to the rank correlation of .8 between sire

evaluations by first and second lactation.

First, second and third lactation Ontario Records of

Performance were analyzed separately by Nicholson et al.

(1978) to evaluate 246 Holstein sires. These authors also
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analyzed second and third records, correcting for selection

with the method suggested by Lush and Shrode (1950). This

method consisted of subtracting the average of the first

yield to the yield of those that made a second lactation

record times the regression of second lactation on first

lactation yield. This adjustment for selection tends to

increase the variation known to be reduced by selection.

The correlation among proofs was higher for second and third

lactations adjusted for selection. This range was.71 to .75.

However, there were differences in the ranking of the sires.

Nicholson et al. (1978) did not see any need to use later

lactation for sire evaluation.

Bar-Anar (1975) studied the relationship between first

and second lactations using the Israeli method «ammulative

difference) and data representing 106 sires with two lacta-

tions from each daughters. For each sire there were at

least 60 daughters in each lactation group. The author

found the correlation between tests to be of .76. He

suggested that for the sire test program in Israeland

because no extra cost is incurred by evaluating the second

lactation a gain of 7% in accuracy in the estimation of

sires will give an estimated yield increase of 7.5 kg milk

cow/year in daughters of proven bulls.

Modified Contemporary Comparisons for first and second

lactations in the same and different herds were analyzed by

Cassell et al. (1983a). Data were from 200 Holstein sires
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with 500 or more daughters in each data set. They also used

an adjustment to account for effects of selection on later

lactations for evaluations by the same method used by

Nicholson (1978) and originally'proposed by Lush and Shrode

(1950). Correlations between first lactation evaluations in

one independent data set and second lactation evaluations in

the other were .87 and..84. The correlation between first

and adjusted second evaluation was .87 for both independent

data sets. First lactation evaluations accounted.for only

about 75% of the variation in second record evaluation

convinced the authors of a need for some form of later

record sire evaluation at least for selection of sires of

sons.

Lofgren et a1. (1983) studied effects of culling on

sire evaluation using the same data of 677,800 daughters of

200 widely used Holstein sires, those used by Cassell et

al. (1983a). From these data, 10‘, 20, and 30% of second

records were eliminated based upon least yield of milk in

first lactation. Evaluations by BLUP of sires were obtained

separately for both records and for culled.groups. They

used a model that included effects of cow when more than one

lactation was used. Second lactations were adjusted for

selection following the method of Lush and Shrode (1950).

All correlations between evaluations of first and.both‘were

.95 and were unaffected by increased culling. Because these

data are the same as those used by Cassell et al. (1983a),



20

authors were able to compare two methods of sire evalua-

tions. Evaluations by BLUP and MCC procedures were affected

similarly by culling. In both cases, culling reduced

standard deviations of evaluations by second records and re-

duced correlations between evaluations by first and second

records. The two sire evaluation procedures also ranked

bulls nearly identically.

Cassell et al. (1983b) in another study compared the

impact of culling or selection on sire evaluation by three

mixed model procedures: 1) single trait evaluation of first

and second lactations, 2) evaluation of both lactations

together including a random component for cow effect, and 3)

a multiple trait procedure where first and second lactation

evaluations were calculated simultaneously. Data were first

and second lactation records from the dairy herd at North

Carolina State University where each of 130 females produced

second records regardless of first lactation yield. The

relationship matrix of the 45 sires represented in the data

was included in all models. Culling was simulated at

intensities of 10, 20, and 30% on deviations of first

lactation from population means. The main conclusion of

this study favor the use of the multiple trait approach

because of its reduction of standard errors of prediction.

The use of both lactations, according to the authors,

appears to be a reasonable alternative for sire evaluation

until multiple trait procedures become computationally
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feasible.

One can summarize the results of these studies

comparing the sire evaluations using first and later

lactation. The correlation among them is high but not

perfect. Rankings of sires change from one evaluation to

the other. Sire values for first lactation account for only

from 75 to 85% of the sire evaluations for the second

indicating a need for the evaluation for later lactations at

least for sires of sons. These studies also indicate that

selection bias cannot be completely responsible for

differences in sire evaluations.
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11.1.3. Genetic Parameters 3g Milk Yield for First

and Later Lactations.

Emphasis on selection on first lactation yield has cen-

tered attention on the same genes influencing production in

first and later lactations. A number of authors have

conducted studies with the purpose of estimating genetic

parameters for first, second, and later lactations. Freeman

(1960) found by daughter-dam regression heritabilities for

milk of .36, .24, and .26 for first, second, and third

lactations. Genetic correlations among first, second, and

third lactations were between .93 and .98. He suggested

that because these correlations are consistently less than

unity, different sets of genes influence milk in different

lactations.

Barker and Robertson (1966) using records of 10,965

animals, 80 bulls, and a model with all random effects

nested within fixed effects reported heritabilities of

.35, .24, and .23 for milk yield of first, second, and third

lactations. Genetic correlations of first yield with later

ones averaged .80 but between second and third yields

averaged .91.

Butcher and Freeman (1968) using 12,500 Holstein lacta-

tion records estimated the relationship between various

Peirs of lactations of the same cow and heritabilities of

first through fourth lactations. Heritability estimates

Ware obtained by intrasire regression of daughter on dam.
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Heritabilities were .37, .25, .35, and .40 for first,

second, third, and fourth lactations. Repeatabilities

estimated by intracow correlation were from..54 to .50 for

the first through fifth lactation.

The same authors in another study (Butcher and

Freeman, 1969) used the same data to estimate genetic

parameters and relationships between.pairs of lactation by

five procedures.

1) Intraclass correlations for all cows that have

the first record of the pair, regardless of

whether the second record was present.

2) Intraclass correlations using only those cows with

both records of the pair under consideration.

3) The regression of the second record of the pair on

the first record of the pair.

4) A Maximum Likelihood procedure described by Curnow

(1961).

5) A procedure to estimate parameters free of the

effects of selection on the independent

variable developed by the author.

The maximum likelihood procedure (Curnow, 1961) works

as if the only factor that determines if a cow has a second

record is the magnitude of her first one,‘with no culling,

variances of all records are equal, and all first records

are available, whether the cow has a second record.

The method derived by Butcher and Freeman (1969)

constructs estimates of variances and covariances free of

effects of selection by regression techniques, and then

these relationships are computed by simple correlations.
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Ranges for heritabilities for first to third lactations

were .17 to .39, .11 to .35 and .11 to .40. These results

indicate differences in methods of computing heritabilities.

The authors suggested that the method used to estimate these

parameters should be determined by how well the data conform

to conditions necessary for unbiased estimates. The

procedure derived to remove effects of selection seemed to

accomplish the desired results. The authors suggested,

however, that to establish firmly that the procedure removes

effects of selection would have to be done by simulation

procedures.

Perhaps the most comprehensive attempt to investigate

variance and covariance components, heritabilities, and

genetic and phenotypic correlations between first and second

lactations milk records was the study of Rothschild and

Henderson (1979a). They used data of 423,314 first records

and 339,182 selected second records. The authors extended

the Maximum Likelihood.(M1) algorithm presented by Henderson

and Quaas (1977) to estimate sire and error variance and

covariances for the two trait model when records on one

trait were missing. The authors included the error covari-

ance because in a sire evaluation model, no cow component is

included. Therefore, to estimate variances and covariances

for first and second lactations an error covariance must be

included because the same cow has both records, and

therefore covariances between errors must exist. From
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results with simulated data the authors found that ML esti-

mates of variances and covariances were unaffected by 50%

selection within fixed effects. The authors discussed the

practicality of ML estimation, and.they mentioned that time

required for one round of iteration was between 28 and 30

hours for an IBM 370-138 with 512 K of memory; Heritabili-

ties for first and second records were .41 and .35. Genetic

correlation between first and second records was :92. The

authors estimate matrix of error variance-covariance for the

first two lactations is as follows:

900,561 507,430

507,430 1,032,391 .

Tong et a1. (1979) estimated heritabilities and genetic

correlations for the three lactations from records subject

to culling. Lactation records on 13,544 cows representing

daughters of 90 sires. The authors used a Restricted

Maximum Likelihood (REML) procedure derived from a multiple

trait model discribed by Schaeffer et al. (1978). After

editing, the data yielded 5,036 second lactations and 1,500

third lactations. Their model contained fixed effects of

herd-year-season and age of cow at calving and random

effects of sire and error. Error covariances were ignored

in this model. After ten rounds of iterations
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heritabilities of milk yield for first, second, and third

lactations were .26, .19 and .17. The genetic correlations

were between first and second .89, first and third .85, and

second and third..89. This study shows that genetic

correlations between adjacent lactations are higher than

between nonadjacent lactations.

Meyer (1983) developed a REML procedure for estimation

of genetic parameters for later lactations of dairy cattle.

She derived an algorithm for a two way mixed model allowing

for missing observations while taking account of residual

covariances.

The author presented an example of data consisting of

2,247 first lactations, 1701 second lactations, and 1,186

third lactations of British Friesians. With small herd-

year-season (HYS) subclasses, the data structure was

improved by adding records for daughters of proven sires

calving in the same herd-year-season. .As variation between

proven sires is expected to be reduced by selection of

proved sires, these sires were treated as fixed effects

(i.eq, their daughters contributed information to the

components within but not between sires). The model was

also extended further by adding four regression coefficients

per lactation to correct for the systematic effects of

lactation length (linear), month of calving within season

(linear), and calving age (linear and quadratic).

Heritabilities of milk yields for first, second, and third
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lactations were .33, .34, and .28. Estimates of genetic

correlations were 1. between first and second lactation .98

between second and third, and.83 between first and third.

The author mentioned that the data set considered was chosen

merely to illustrate the procedure: therefore, sampling

variation was too large to allow inferences. Authors' esti-

mate of error variance covariance matrix for the three

lactations is as follows:

557.31 371.67 405.91

371.67 928.51 565.45

 405.91 565.45 1,008.67 . 

The papers of Rothschild and Henderson (1979), Tong et

al. (1979), and Meyer (1983) are attempts to apply Maximum

Likelihood and Restricted Maximum Likelihood procedures to

account for bias from cow selection. The REML algorithm

used by Tong et al. was for residual covariances of zero.

Because they are repeated measures on the same cow, this is

not appropriate. The authors argued however, that the error

covariances are likely to be small relative to error

variances.

The algorithm derived by Rothschild and Henderson

( 1979) is a ML procedure, which means that variance

components estimates were biased upwards by loss of degrees

of freedom from estimating herd-year-season effects. This

bias from ML is greatest for error components because the
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denominator is the number of observations. For REML the

degrees of freedom are the number of observations minus the

number of fixed effects that is used to estimate variance

components.

Estimation of genetic parameters for later lactations

has been an important subject of study for animal breeders.

A purpose has been to try to demonstrate that different

lactations are genetically the same trait. Failing to

demonstrate this would justify the use of first only records

or multiple trait procedures for sire evaluation for milk

yield.

Estimation procedures often are subject to bias from

selection because cows that remain in the herd are likely to

have been selected for higher yields. Later lactations have

been used as typical example for analysis of data under

selection (Henderson, 1975).

The genetic correlation between lactations is greater

than.80 and genetic correlations between adjacent

lactations are higher than between nonadjacent lactations.

Several authors have speculated that the significant

difference of the genetic correlation between lactations may

have something to do with a interaction of sire by age or

sire by parity. Sire variance across all three lactations

also differed (Tong et al.,1979). This may indicate that

the sire effect is different for each lactation. The

difference of genetic correlations could be explained by
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differences in sire effect in rate of maturity. This could

be used to support that milk yield in different lactations

is genetically the same trait.

Heritabilities for milk yield are consistently lower

for later lactations. Butcher and Freeman (1968), listed

possible explanations for these differences as they said:

"a) If all genes have equal effects, first

lactations are controlled by more pairs of

genes than second lactation or, if the same

number or genes control both lactations, they

have larger effects on first lactation.

b) The presence of a genetic maternal effect

that gradually decreases in importance could

cause the estimate of heritability of first

lactation to be larger.

c) The presence of constant genetic effects

on second lactations would lower estimates of

heritability of second lactationsJ‘

Most authors seem to favor the opinion that environ-

mental factors in the lifetime of the cow, such as diseases

and.management, will.increase variation of later

records.This could obscure genetic variation resulting in

different estimates of genetic parameters.
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11.2 Analysis 2; Sequential 9;

Repeated Observations

11.2.1 Repeated Measurements Experiments
 

It is practice in a wide range of experiments to repeat

measurements over time on the same experimental units which

may be a plot, animal, or plant. Experimental designs which

are used in these situations are:

(1) Those in which experimental units are treated

once only during the experiment or receive the same

treatment repeatedlyu These include those experiments that

investigate growth curves and profile studies like block.and

treatment designs.

(2) Those in which each experimental unit receives

a sequence of treatments over successive times. These

include rotational trials, change over and superimposed

designs.

In animal experiments, analysis by repeated measurement

methods has some advantages. Gill (1978) reviewed the

rational for performing experiments in this manner. He

pointed out three major reasons, (1) to use each subject as

a block to conserve resources and reduce experimental error,

(2) to test for residual effects of treatment, and (3) to

study trends of individual responses to treatments.

Time is a factor in such experiments and the issue

which arises relates to possible correlation between
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successive observations. Gill and Hafs (1971) referring to

this problem said:

"the structure of underlying causes of

‘variation often is over-simplified in

analysis of such data. Simplifications

usually’fall into one or two categories:

1) Analyzing factorial experi ments as if

completely randomized, when the structure

is really a split plot and 2) Ignoring the

correlations of errors induced by repeated

measurements."

Recognition that measurements within animals are likely

to vary less than those among animals leads to the study of

the random effect of individual subjects. This

characterizes the split plot design where the error term no

longer represents variation among homogeneous subjects

treated alike but measures variation within subjects treated

alike.

Constancy of error variance and independence of errors,

the underlying assumptions for univariate analysis of

variance, often are violated in the analysis of repeated

measurements.

In the analysis of repeated observations, error terms

from different times are correlated. When this occurs, it

is said that the error terms are autocorrelated or serially

correlated. This happens when the errors associated with

observations in a given time carry over into future times.

When error terms are functionally related to the mean,

for example, periods with larger means also have larger
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variances, and constant error variance or homoscedasticity

‘will be unreasonable. ‘When the variance is not constant

over observations, it is said that heteroscedasticity

occurs.

To illustrate these conditions in the repeated measure-

ment case, let us examine a simple model in which n animals

are treated alike and each animal is measured r times to

monitor changes of variable y.

Let us write a model describing this relatonships.

       

Y1 1 x1,t X1,t-1 x1,t-2 - ° ° x1,r b0 61

Y2 1 x2,t x2,t-1 x2,t-2 ° ° - x2,r b1 82

e e e e e e e e e b2 e

- +

yn l xn,t xn,t-1 xn,t-2 ° ' ' Xn,r br 3n

where:

y a column vector of observations for the

dependent variable y,

x =- matrix giving r repeated measurements

of variable x, the first column of 1's

representing the intercept term,

b - column vector of unknown parameters bl,...,br,

e s column vector of n error terms associated

with each observation.

. The previously mentioned underlying assumption of

least squares methods on the error term can be represented

more explicitly by deriving the error variance by rules of
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expectations.

We can write:

e2 (e1, e2 .

E (e e') a E .

  

Performing the multiplication we obtain:

3191 e182...elen

E. 3231 e232...ezen

  en 61 en e2 en en
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Applying the expectation operator E to each element of

the preceding matrix we obtain:

E(elel) E(elez) . . . E(elen)

E (e e') - E(ezel) E(ezez) E(ezen)

E(enel) E(enez) . . . E(enen)  
With homoscedasticity and no correlation serial or

otherwise, the matrix reduces to:

Iv.0 o!

E(e e') 0 Ve . . . 0

0 0 . Ve  
because

E(etet) - Va and E(et er) - cov et e s 0

where r f t .

This is a homogeneous variance-covariance matrix. In
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other words, each error term, observed across all possible

replications, has the same variance regardless of the

observations and there is no correlation among the error

terms associated with different observations.

E(e e') also can be written by an identity matrix:

1 o o O O O 0

Vs 0 1 0 . . . 0 II VeI .

0 0 . . . 1  

To visualize the heteroscedastic (heterogeneous)

situation where the error term for each observation is drawn

from distributions with different variances but without

correlation among error terms, we write E(e e') as:

V81 0 0 e e e 0

E(. a.) - o V62 e e e o

0 0 . . Ven  
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To illustrate a heterogeneous variance-covariance

matrix let the error term in period t, et be a function of

the error term in period t-l plus a random component Vt

et - p et_1 + Vt .

By extending this equation backwards one can write each

et as a function of only previous Vt

°t ' ”2 Vt-z + p Vt-l + Vt

' p3 Vt-3 + p2 Vt-z + R Vt-1 + vt

- SUM(i- 1,t) p1 vt-i‘

This is if that the series extends prior to the

beginning of our sample of observations, so that even our

first observation corresponds to a high value for t. As t

becomes large with p<1, the series becomes:

(1 + p2 + p3 + . . .) vt - 1/(1-p2) vt

The variance of the error term in autocorrelation can

be obtain from the expectation, this can be written:

E(ezt) - E (ezt) + p2 E(e2t_1) + p4 E(e2t_2) + . .

a Ve (1 + p2 + g4 + . . .) - Ve/(l-B)
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E(et e't-s) - Vep.

This expressions for E(etz) and E(e e') imply that the

expected correlation between 3t and et_1 is p.

Consequently, E(et et-l) for first order serial

correlation the variance covariance matrix could be written:

1 p n2 . . . pn'l

vcv - Ve p 1 p . . . en'2

”11“]. fill-2 ”11-3   
There are several ways in which the errors can be asso-

ciated: periods of this association also could extend more

than a previous observation. The number of periods of this

association is known as the order: i.e., a second order

process assumes that observations made 2 and 1 periods

before the present observation are correlated with the

present observation. Later in this review some other types

of relationships will be presented.

Whatever the extent or number of lags influencing the

current observation, there is a correlation of repeated

observations. This is a major problem in analyzing

repeated measurements.

Gill and Hafs(l97l) indicated that experience calls for



examin

decidi:

univar

varian

typica;

the in}

illust

to spl;

mals.

having

Standaz

Pmcedu

Th

measure

“Sic a

U
-
H
-
r
'
f
‘
H
m
d
n
L
—
I
r
f

:
1
:

O



38

examination of the variance covariance matrix before

deciding the analytical approach because the validity of the

univariate split-plot analysis depends on the homogenous

variance-covariance matrix. The authors in presenting the

typical split-plot case to animal scientists, pointed out

the importance of random assigment of animals. They also

illustrated the severe errors of interpretation if one fails

to split residual errors into portions among and within ani-

mals. It seems to be a concensus that for balanced data

having a homogeneous variance-covariance matrix the

standard univariate analysis of variance is the best

procedure for analysis of repeated measurements.

There are other procedures used to analyze repeated

measurements. Multivariate procedures do not require the

basic assumptions of homogeneity of variance and

independence of errors because they deal with simultaneous

variation of two or more variables (Sokal and Rohlf,l969).

By this method repeated observations are treated as if they

were different variables. Gill(l981) listed some of the

advantages of multivariate procedures:

"It offers opportunity to examine not only

the original data but multivariate sets of

linear functions (usually'contrast) of

observational units without requiring equal

variances and covariances among these unitsJ'

He also added: "The principal advantage of

multivariate analysis is that it permits valid

tests of the repeated factor(e.g. time) and its

interactions with treatments without

justifications."

However, Morrison (1967) demonstrated that unless the



 

seri

abso

than

race}

data

been

that

repea

there

are t

leasu

combi

each

mEasu



39

serial correlation between two periods exceeds .5 in

absolute value, univariate procedures are more sensitive

than the multivariate T2 test (Hotelling's T). It has been

recommended (Gill,l978) that lowly but uniformly correlated

data should be analyzed by univariate methods.

Anotherdrawback of the multivariate procedures has

been pointed out by Gupta and Perlman (1974). They found

that the power of the test declined as the number of

repeated measurements in one animal (unit) increased:

therefore, one has to be careful with inferences when there

are fewer animals than sampling points.

There are other approaches to the analysis of repeated

measurements, Gill (1979) presented a procedure that

combines significance levels of correlated univariate tests,

each performed on data from a different periods of

measurement. This method is based in intratreatment

correlations between data from all pairs of periods.

Another approach to deal with the problem of serial

correlation is to adjust for serial correlation or to use

time methods such as autoregression analysis. Chistian et

a1. (1978) opted to remove serial correlation by a moving

average time series process of first order as described by

Box and Jenkins (1970). The data generated by the time

series analysis later were analyzed by conventional methods.

The authors fail to provide theoretical support to the basis

of their analysis.‘ Gill (1981) mentioning this method
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commented that users of this procedure were skeptical of its

'value because of its low power.

Gallant and Goebel (1976) demostrated in a monte carlo

study that the autoregressive estimators are the most

efficient linear unbiased estimators in finite samples.

Anderson (1981) in a study of the Tribolium egg

production curves as a model for dairy cattle lactation

curves used this approach. He compared estimates of

parameters obtained with the autoregressive process with

those obtained with standard regression. In this study, it

was assumed that only three previous egg counts were

correlated with the current count, i. e., only three lags.

The autoregression coefficients of each of the three lags

were solved by Yule-Walker equations. To determine the

value of the autoregression coefficients, autocorrelation

from ordinary least squares was estimated. The original

data then were adjusted by the coefficients to remove

autocorrelation. The author postulated that

autoregression, which is based on the autocorrelation

between ordinary least squares residuals may be considered a

transformation of the data. Estimates of parameters were

similar for each method (autoregressive and ordinary least

squares). Therefore, the author concluded, "Autoregression

analysis improved the accuracy of the estimates of error

variance and not the accuracy of estimates the model parame-

ters.”
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Kesner et al. (1981) in a study to show that estradiol

inducespreovulatory Luteinaizing Hormone.(LH) surge in

cattle, used a similar approach to that of Anderson (1981)

to correct for autocorrelations caused by the repeated

measurement nature of the experiment. Facing a

heterogeneous variance-covariance matrix the authors opted

for a logarithmic transformation to correct for

heterogeneous variance and an autoregressive process to

correct for serial correlation. Further, they performed a

split-plot analysis with transformed data improving in this

way the accuracy of the estimate of error.
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11.2.2 Analysis 9; Time Series Data
 

Studies in which the responses of each individal are

observed on two or more occasions represent one of the

principle research strategies in animal and medical

research. Much of the literature on specifying and fitting

linear models for serial measurements use methods based on

standard regression, analysis of variance (ANOVA) and

multivariate linear models (Ware, 1985). Harville's (1977)

opinion on this matter is that it is a mistake to think of

linear models only in terms of ordinary regression and ANOVA

models.'To do so is to miss many potential applications. In

particular, not all the observations may’ have been taken at

the same time so that the observations are regarded best as

time series. Such time series data are common in many

fields, such as economics. Ware (1985) indicated that

analysis of serial measurements should be viewed as a

univariate regression analysis of responses with

correlated errors. Such a formulation suggests new and more

flexible approaches to modeling and estimation of parameters

For example, Wilson et a1. (1981) presented the methodology

for estimation of biological parameters when the within

individual observations errors are autocorrelated.

It is timely now to discuss approaches to the study of

change or behavior of a variable throughout time. This can

be derived intuitively from.the study of repeated

measurements. As an example, consider a series of
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measurements of the variable y throughout time. This could

be represented as a time function y(t), which may represent

the historical performance of some biological variable: it

may have moved up or down partly in response to other

variables. However, much of its movement may have been due

to factors that one simply may have not been able to

explain. It may be difficult to relate to other biological

variables, or data are not available for those explanatory

variables that are believed to affect y(t). In this case,

it is no longer possible to predict future movements in a

variable by relating it to a set of other variables: instead

the basis of prediction depends solely on past behavior of

the variable and that variable alone.

The study of a single sequence of observations is

called time series analysis. This is the study of repeated

observations of a single variable, e.g., the study of a

hormone during the estrous cycle. If some kind of,

systematic behavior like a trend or a cyclical pattern is in

the variable to study, one can attempt to construct a model

for the time series which does not offer an explanation for

its behavior in terms of other variables but does replicate

its past behavior in a way that might help to forecast its

future behavior.

The choice of a time series model usually'will result

in cases where little information is known of the

determinants of the variable of primary concern, and a
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sufficiently large amount of data is available to construct

a time series of reasonable length (number of measurements

throughout time).

A time series model accounts for patterns in past

movements of a particular variable. Durbin (1960) pointed

out the purposes for studyng time series was to 1) describe

the data, 2) explain the behavior of the data, 3) forecast

the behavior, 4) control the system, and 5) study

simultaneous variation of several series.

A simple view of the time series model is to think of

it as a sophisticated method of extrapolation: however,

difference arises because time series analysis presumes

that the series has been generated by a random process: it

is assumed that each y1, y2, Yt in the series is drawn

randomly from a probability distribution. In this way, it

is possible to infer something about the probabilities

associated with alternative future values of the series.

Theoretically, it is assumed that the observed series

y1“.yt is drawn from a set of jointly distributed random

variables, i.e., that there exists some probability

distribution function, guy1.uyt) that assigns probabilities

to all possible combinations of Yt'

Because complete specification of the probability

distribution for a time series is almost always difficult,

especially if the series has more than six data points, it

is necessary to constuct a simplified model of the time
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series which explains its randomness. For example, it may

be assumed that the yd,uu,yt are correlated with each other

according to a simple first order autoregressive process.

The actual distribution of y's may be much more complicated,

but this simple model may be a reasonable approximation.

Nelson (1973) talking about the problem of finding the

actual joint distribution concluded:

"In practice, of course, we must first

attempt to infer from the data what mechanism

it is that generated the data. Thus, the past

history of the time series is called upon to

do double duty: First it must inform us about

the particular mechanism which describes its

evolution.through.time and.second, it allows

us to put that mechanism to use in forecasting

the future"

Another characteristic of time series that one should

know is whether the underlying random process that generated

the series is invariant with respect to time. Such a series

is called stationary: this requires the series to have a

constant mean and to fluctuate about that mean with a

constant variance. This is because if the random process is

fixed in time, it is possible to model the process with an

equation with fixed coefficients that can be estimated from

past data.

A non-stationary series will be one that has been chan-

ging in average over time, presenting a trend: as an example

we have some economical variables like.the.Gross National

Product which has been growing steadily: for this reason
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alone its random properties in 1980 are different from those

in 1933.

Pindyck and Rubinfeld (1981) mentioned that probably’

few of the time series that one meets in practice are

stationary. However, many of the non-stationary time series

encountered have the property that if they are differenced

one or more times, the resulting series will be stationary

or will be called homogeneous.

The number of times that the original series must be

differenced before a stationary series results is called the

order of homogeneity. A first order homogeneous non-

stationary time series (wt)‘will be:

wt ' Yt ' Yt-i ' DYt

where:

wt - observations t of the w stationary series

resulting from the subtracting of the observations

Yt - Yt-l of the nonstationary series.

If a series happened to be second order homogeneous, the

series would be stationary by subtracting the first

differences. It can be shown in this way

wt ' DzYt ‘ DYt ' DYt-1°

Time series data often are analyzed on the basis of
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linear models in which errors are generated by stochastic

processes like moving average processes, autoregressive

processes, or mixed autoregressive moving average processes

(Box and Jenkins,l970)

Let discuss some of the basic models in time series

analysis. Each observation can be represented with this

formula:

yt - mt + St + at

where:

Yt - observation in time "t"

mt - trend or trend cycle effect

St - periodic or seasonal effect

°t - random error.

As we discussed earlier, by differencing we can eliminate mt

or the trend or trend cycle. The formula will be reduced

and could be written:

yt I St + at.

The seasonal variation (St) in a time series can be removed

by seasonal adjustment techniques that basically’consist of

a complex averaging of past estimates. National economic

data in the United States usually'is adjusted by the Bureau

of Census of the U.S. Department of Commerce (X-ll Variant

of the Census Method 11 Seasonal Adjustment Program, 1967)



by thi

hehavi

cycles

other

produc

decrea

curren

M

averag

antoree

I]

a weig)

More.

past Va

A

Obsel'v;

“Ito



48

by this method of adjustment. Seasonality is a cyclical

behavior that occurs on a regular calendar basis, i.e.,

cycles with a periodicity that is annual, monthly or any

other unit of calendar time. For example, Peruvian anchovy

production shows seasonal once every 7 years in response to

decreased supply brought about by cyclical changes in ocean

currents.

Models used to study time series are: 1) moving

average, 2) autogregressive, and 3) mixed model, the

autoregressive-moving'averagetmodel.

In a moving average model, Yt is derived completely by

a weighted sum of current and lagged random errors. In the

autoregressive model, Yt depends on a weighted sum of its

past values and a random error term.

A moving average model of order q where each

observation Yt is generated by a weighted average of random

error going back q periods (lags) can be written in the form

of an equation and denoted by MA(q):

yt ‘ M + at - 0 et_1 - 92 et_2 - eee Sq Bt_q

where:

91 . . . eq a fixed parametes

et_1 . . . et-q a error terms times t to q

M = mean of the series.

An autoregressive model of order p where each observation y
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is generated by a weighted average of t past observations

going back p periods, together with a random disturbance in

the current period can be written with this equation and

denoted as AR (p):

Yt - pl Yt-l + 82 Yt-Z + . . . + 0p yt-p + M + at

where:

p1 . . . pp - weights of 1 to q past observations

M a constant associated with the mean of the TS

et - error term for time t.

An example of a simple autoregressive model would.be the

AR(1) or first order autoregressive process that can be

written in the equation form:

Yt ' A Yt-i 1 et'

The number of past periods used in these models is

referred to as the order, the number of lags, or the memory

of the series.

Identifying the order of the underlying process is a

major problem. The knowledge of the autocorrelations will

indicate the appropriate order.

Many time series cannot be modelled.aSjpurely’moving

average or as purely autoregressive. For these cases a

logical extension of the models AR and MA is used.
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A mixed autoregressive moving average process of order

(p,q) can be written with this equation and denoted as an

ARMA.(p,q) mOdel:

The components of this model already have been defined.

If a series is non-stationary, it can be homogenized by

differencing the series to produce the stationary series wt:

a model using this series is said to be integrated. .An

autoregressive model with a differenced series will be

denoted as ARI (p, d) were the number of differences used is

indicated by the letter d.

Time series models presented have not been used widely

in animal breeding. Perhaps one of the reasons for not using

them is that traditionally the traits of interests are short

series, i.g., total lactation yield, annual wool production.

Researchers have not thought of these observations as time

series data. But other important traits like growth and

lactation curves have been considered time series data.

Another deterent for the use of these models is because

satisfactory methods for analysis of serial measurements in

animal breeding are not applied easily.



 



IIIiIMATERIALS AND METHODS

111.1 Data

111.1.1 Source 2; Data

The "Asociacion de Criadores Holstein-Friesian de

Mexico" sponsors a DHIA.(Dairy Herd Improvement Association)

program. Records are processed by the regional Center at

Provo, Utah, and completed milk records are forwarded to the

United States Department of Agriculture (USDA) and Cornell

University. Fat test are not recorded in Mexico.

The herds consist mainly of cattle registered with the

association plus grade Holsteins and crossbreds of other

breeds. A number of cows were imported from the United

States and Canada. Semen used to breed these cows is from

either the United States, Canada, or Mexico.

The data bank contained 152,331 records for calvings

from 1969 to 1980. These data are 45,655 first lactations,

34,472 second lactations, 26,345 third lactations, and the

remaining are fourth and later lactations.

The record format is similar to that adopted at the

1966 National Computing Workshop and presented in the Dairy

Herd Improvement Letter ARS 44-22 (1970).

This population may not be a true random sample of the

Mexican dairy cattle population because animals are identi-

fied. They should constitute a superior population because

51
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the DHI herds in Mexico are under better management and are

in temperate areas of the country.

111.1.2 Data Screening and Editing Procedures

Records were deleted for several reasons including:

Breed other than Holstein,

Incorrect Identification,

Unidentified sire, and

Abnormal termination of lactation.

For the purpose of this study it was necessary to form a

subset of data with the records of cows that completed the

first three lactations. There were 5259 cows with three

consecutive lactations. Also no cow in this subset changed

herds during the three first lactations. In addition to

the previous requirements, more records were deleted for the

following'reasons:

Sires having fewer than six records,

Lactations following in.a single herd-year-season

group, and

Records of daughters of sires disconnected.

Restrictions on the number of daughters per sire to six was

arbitrary. Lactations falling in a single herd-year-season

group were deleted because all other effects would be

confounded with herd-year-season and would have not contri-
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buted to estimation. For this reason there are different

number of cows in each lactation.

After screening and editing there were 3989 cows for

the first lactation, 3985 cows for the second, and 3990 for

the third lactation. They were distributed in 9 years, 2

climatic seasons, and 80 herds. Seasons are dry (October

through March) and rainy ( April through September). In

Mexico seasonal management changes are determined by the

type of feeding and feedstuffs available, not by

temperature. This is reason for only two seasons.

There were different numbers of herd-year-seasons for

each lactation also. Number of of herd-year-seasons are 361,

357, and 371 for the models for first, second, and third

lactations, respectively.

111.2 Strate to Calculate the Error

Variance-Covariance Matrix

To understand methods of this study an overview of the

steps needed to construct the error variance-covariance

matrix of three lactations is necessary.

In analyzing dairy records there have been three

approaches taken by researchers. When they studied all or

several lactation of cows, they used.the so-called.multiple

lactation model. This model incorporated the cow effect and

could be described by:
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yi - Fixed and Random Effects + Cow + ei

where:

e1 - random error.

When only one lactation was studied at a time, a single

lactation model is used, and it could be described by:

Yi - Fixed and Random Effects + “i

where:

u.
1 ' COW'1+el'

In the latter case the residual “i contains the cow effect

and the error effect e1.

Another approach to study multiple lactations is

multiple trait analysis. This procedure is an extension of

mixed procedures designed to analyze simultaneously traits

that can.be explained by similar'model equations. Unlike

multivariate analysis where Yi are lined up side by side as

colums of a matrix Y, the multiple trait operation requires

Yi to stack up on top of the next to become a long column

vector, y. Therefore, a basic multiple trait model is:



 
where:
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yl x1 0 o bl 21 o o l sl n1

0 - O O O O + O O O O + I

where: Y1 is vector of trait 1 (lactation 1) equation

being X fixed effects and Z random effects

for traits 1 to t,

b1 is vector of solutions for fixed effects,

s1 is vector of solutions for random sire

effects,

“1 is vector residuals lactation 1.

Each lactation is a different trait instead of repeated

observations of the same cow. There are several multiple

trait algorithms that have been used in the later lactation

model. Walter and Mao, (1985) compared assumptions and

statistical properties of each of them. Tong et a1. (1979),

treated each lactation as a different trait with error

covariances zero. Rothschild and Henderson (1979) and Meyer

(1983) developed algorithms that do not require zero

residual covariances.

The approach used in this study to calculate the

variance-covariance matrix was to fit a single lactation

model to each of three lactations to obtain solutions.

Estimates Yij were obtained by each observation Yij adjusted
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for solutions. The individual residuals then were computed

by subtracting Yij from observation Yij'

Estimated residuals “ij of ith lactation in the jth cow

form a vector of residuals. With the three vectors of

residuals, one for each lactation, the matrix E was formed

as suggested by Morrison (1967k

“11 “21 “31

E ‘ “12 “22 “32

“in “2n “3n  

The E matrix then is premultiplied by E' (i.e., 15']: is pro-

duced) to obtain the sum of squares and products SSCP

matrix, which divided by the degrees of freedom becomes

variance-covariance matrix VCOV named S.

Steps to estimate the variance covariance matrix S is

summarized:

-Obtain solutions from fitting a single lactation model

to each of the three lactations.

-Estimate Yij from solutions.

-Subtract Yij - Yij to obtain residuals “ij'

-Form matrix E with the vectors of residuals uin'
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-Produce the SSCP matrix by multiplying E' with E.

-Divide SSCP by degrees of freedom to obtain 8.

111.3 Medel

111.3.1 Equations and Characteristics 9; Model

A model describing each of the variables of interest was

applied to each lactation.

Ytijk ' Hut + Sti + HYSij + ftl DIMtijk + °tijk

where:

Ytijk is the unadjusted milk yield for the tth

lactation (t - 1,2,3) for the 1th sire in the

jth herd-year-season from a population of

registered Holsteins in Mexico DHI, having

their sires identified and lactating from

1969 to 1980.

Nut is the tth mean of the named fixed effects.

sti is the random effect of the ith sire in the

tth lactation: i - i, ..., 193:

HYStj is the fixed effect of the jth

herd-year-season in the tt'h lactation in

which a cow freshened. The j has andifferent

number of factor depending of the lactation
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being fitted j = 361, j = 357, and j = 371

for t = 1,2,3.

ftl is the regression coefficient of Ytijk on DIM

Dn‘tijk is the effect of days in milk in the tijkth

subclass, and

etijk is the error effect associated with Ytijk'

Factors HYStj and DIMtijk are fixed effects and Ytijk'

stir and etijk are random.

E(y) - Xb, and the variance of y is ‘V - 2 G 2' + R.

Because the objective of this study is to examine the

variance-covariance structure of the residuals, no specific

assumptions about errors are set other than multivariate

normal distribution of the three dimensional vector of

errors corresponding to the three lactations: Cov (s, e):- 0

is no correlation between error and sire: (Vs) - G is

that there is no covariance between 3's, in other words, no

additive genetic relationship and independent sampling

between s's: and that each sire effect is drawn from the

same population with mean zero and variance Vs.

Sire effect, 3, is normally distributed:

no correlation between the ranking of sti and the

number of observations for sti’

interactions of sire with herd-year-season effects are
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trivial and negligible: and

sire and residual effects are of primary interest

whereas herd-year-season and days in milk.are nuisance

factors.

Presenting the model in matrix form one obtains:

y - Kb + Zs + e

where:

Y

X

is the observation vector on either the first,

second, or third unadjusted lactation

is an n x p incidence matrix where n -

number of cows and p is the number of parameters

to estimate, number of herd-year-seasons (HYS) and

one for column Mu. It contains 1's and 0's

correspondingto the presence or absence of

observations in the HYS: and for observation a

1in the column for Mu and the observation

for the covariate.

is a vector of length nHYS+l containing the

unknown constants of the fixed effects

b'-[ u, HYSleee HYSn’ b1]

is a n x 193 incidence matrix containing 1's

and.0's corresponding'to the presence or absence

of observations within each sire.

is an 193 by 1 vector of unobservable random

effects for s, 31 . . . s193

is a n by 1 vector of unobservable random

residuals corresponding to y.

Characteristics of the model also can be expressed in

matrix form:

30?) ' Kb

E(s) - 0
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COV(s,e) - 0

vy - V'- 262' + R

where:

G - Vs - E(s's)

' EIS' E(3)] [5 "' E(SH'

$1 [31 82 e e e 519310

  8193

For s all covariances are zero and both.have homogeneous

variance i.e., 1 Va.

  

Va 0 . . 0

0 Ve . . 0

G - e e e e e a 1193ve

0 0 . . Ve

R is then

R - Ve - E(ee') = E[6 ‘ E(3)] [e ' E(e)]'
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31 [31 32 e e e $4076] .

E3 32

  

For each independent model it is assumed that R has

homogeneous variance, i.e., IVe.

 

Ve 0 . . . 0

0 Ve . . . 0

RE 0 O O O O O -Inve

O O O 0 ve 

In this way the variance-covariance matrix for all random

factors of each model can be written

  

y vn ZVS InVe

Var s - 1193V3 0

e Sym InVe  
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111.3.2 Numerical Example

To describe methods used for setting up and solving

mixed model equations, it is often beneficial to do so in an

example.

A hypothetical example of ten cows in three herd-year-

seasons (HYS) with two covariates is illustrated.

Tables 3.1 and 3.2.

Table 3.1 - Data for example problem.

Data are in

 

 

Milk

Sire Yield

Cow Identification HYS kg/100 Cov Cov 2

1 l l 600 396 305

2 l 2 700 401 380

3 l 3 800 304 280

4 l 1 580 400 370

5 2 2 420 365 305

6 2 2 560 426 360

7 2 3 910 550 410

8 3 l 1010 370 320

9 3 l 340 400 340

10 3 3 580 410 380
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Table 3.2 - Sire by Herd-year-season Distribution.

 

 

Sire

HYS 1 2 3 SW1

1 2 0 2 4

2 1 2 0 3

3 1 1 1 3

$0141 4 3 3 10

 

The model can be written in matrix notation:

y - Xb + 23 + e

where:

y is the observation vector of milk yield

x is an n x p incidence matrix, where n - 10 number of

cows, p is number of parameters to estimate, and

one for columnMu. It contains 1's and 0's

corresponding to the presence or absence of

observations in the HYS-, and for each observation

a.l in the column for Mu.and observations for

each covariate.

b is a vector of length 6 containing the unknown

constants of the fixed effects

2 is a 10 x 3 incidence matrix containing 1's and

0's corresponding to the presence or absence of

observations within each sire.

s is a 3 x 1 vector of unobservable random effects

for s,
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is a 10x 1 vector of unobservable random

residuals corresponding to y.
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The normal equation are then:

X'X

Z'X 

X'Z

Z'Z  

and become for the example:

  

 

 

X'y

Z'y

 

 

“111

“122

“133

“114

“225

“226

“237

“318

“329

“3210  
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[ x'x z'z 1

10 4 3 3 4022 3454 g 4 3 3

4 4 0 0 1566 1335 g 2 o 1

3 0 3 0 1192 1045 g 0 2 1

3 o 0 3 1264 1070 g 2 o 1

4022 1566 1192 1264 1652234 140666531501 1341 1180

.3.:.-‘:2..:39.§.....1.24.5. 107° .3.19.6.9.9:.34939332333354.3273.-1922.
4 2 o 2 1501 1335 g 4 0 o

3 1 2 0 1341 1075 g 0 3 0

3 1 1 1 1180 1040 i 0 0 3 

covl

COVz

heesee

  
E X'Y: Z'Y 1'-

2,530

1,680

2,290

2,633,360

2,249,600

2,680

1,890

1,930  
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The variance of y a vy = ZGZ' + R

[Z I I G J [ 2'

   

  

100

100 Veoo'11100

vysioo OVeO 00011

010 OOVe 00000

010 3x3

010

001

001

001

001

10x3

j R

Ve

Ve

Ve

Ve 0

Ve

+ 0 Ve

Ve

Ve

Ve

Ve  

0 0 0 0 0

1 0 0 0 0

0 1 1 1 1  
3x10



68

= [ VY J

Vs+Ve Vs Vs 0 0 0 0 0 0 0

Vs+Ve 0 Vs Vs Vs 0 0 0 0

Vs+Ve 0 0 0 Vs Vs Vs Vs

Vs+Ve 0 0 0 0 0 0

Vs+Ve 0 0 0 0

Symmetric

Vs+Ve 0 0 0

0

0

Vs+Ve 0 0 0

Vs+Ve 0 0

0Vs+Ve  Vs+Ve

Henderson (1975) derived mixed model equations (MME) by

a maximum likelihood approach assuming normality. He proved

that fixed constants from MME are equivalent to those from

normal equations of generalized least squares and that

predictors from MME are best linear unbiased predictor

(BLUP) with or without normality assumption. Prediction

refers to the likely outcome that one would expect of a

future occurrence from a class, which is randomly out of a

population of classes defined by a factor. The mixed model

equation MME of best linear unbiased predictors are (Mao,

1983):
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X'RTlX x'R‘lz b X'Rle

=

z'nflx Z'Rle +c‘1 s z'nfly

Then,“ x'n'lx develops from:

I X'

1 1 1 1 1 1 1 1 1 1

0 0 1 o o o 1 o o 1

0 0 0 0 1 1 0 o 1 0

1 1 0 1 0 0 o 1 0 o

410 400 370 550 426 355 400 304 401 396

380 340 320 410 360 305 370 280 380 305

e R‘1

l/Ve o 0 0 o 0 0 o 0

l/Ve o 0 o 0 0 o 0

l/Ve 0 0 o 0 o 0

l/Ve o o o 0 0

l/Ve 0 0 0 0

l/Ve 0 0 0

l/Ve 0 0

Sym l/Ve 0

l/Ve 

 

 
6x10

 



 .
4

H
r
:

1
4

H
F
‘

r
4

1
4

H

Similiarly:

O
H

 
Because 6'1 is:

l/Vs

O

 O

0

l/Vs

0

2

1501

1335

70

x

o 395

o 401

1 304

o 400

o 355

1 550

o 370

1 400

1 410

x'R'lz

3

o

2

o

1341

1075

o

o

l/Vs  

1

1180

1040  

305

380

280

370

305

410

320

340

 380 .

l/Ve.
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[ z'R.‘l z + 6'1 1

4 + l/Vs O 0

0 3 + l/Vs 0 l/Ve

i0 0 3 + l/Vs

[ x'R‘l x 1

10 4 3 3 4022 3454

4 4 0 0 1566 1335

3 0 3 0 1192 1045 l/Ve

3 0 0 3 1264 1070

4022 1566 1192 1264 1652234 1406665

3450 1335 1045 1070 1406665 1205850  
In the same way:

[ z'R‘lx 1

4 2 o 2 1501 1335

3 1 2 0 1341 1075 l/Ve

3 1 1 1 1180 1040  

The right hand side is:

 

2,530

1,680

2,290

2,633,360

2,249,600

2,680

1,890

1,930 . 
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The mixed model equations are multiplied by R, and 6'1

is multipled by Ve/Vs, which is the variance ratio for error

and sire components. In doing this 12'”1 is cancelled from

both sides leaving a ratio of Ve/Vs - L in the diagonal of

the z'z portion.

The final MME is this:

  

10 4 3 3 4022 3454 g 4 3 3

4 4 0 0 1566 1335 E 2 0 1

3 0 3 0 1192 1045 g 0 2 1

3 0 0 3 1264 1070 E 2 0 1

4022 1566 1192 1264 1652234 1406665 g 1501 1341 1180

3450 1335 1045 1070 1406665 1205850 g 1335 1075 1040

.....2......3..."...6........2........I;6.1..........1.;.;5...§.;:;;}V;...m......6..."...........(.).. V

3 1 2 o 1341 1075 g 0 3+Ve/Vs 0

3 1 1 1 1180 1040 g 0 0 3+Ve/Vs

HYSl 2,530

Hys2 1,680

HYS3 - 2,290

COVl 2,633,360

cov2 2,249,600

...;I... ........2.:.6..:;).

52 1,890

53 1,930 .    
To solve for these equations a L ratio of 15, derived

from estimates of heritability for milk yield was used. The
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heritability of milk yield in dairy cattle has been

estimated to be around .25. The paternal half-sisters

heritability is:

h2 - .25 a 4Vs / (Ve + Vs), set Vs = 1,

then: .25 = 4(1) / (l + Ve),

L - Ve/Vs - 15/1 - 15.

then:

L = 15.

Solutions are:

Hys1 559

HYSZ 492

HYS3 684

COV 1 = .64

COV 2 -.54

31 7.37

82 -3.46

53 -3.91     
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III.3.3 Programming Strategy

The actual labor of setting up the mixed model

equations requires understanding matrix manipulations. In

programming mixed model equations one cannot read the

records and create the incidence ( 0's and 1's ) matrix X

and premultiply it to create X'X. This would require much

computer memory, making this alternative inefficient.

Therefore, it was required to set the mixed model equations,

directly. To reduce further the number of equations within

manageable limits and still obtain the exact same solutions

as it all the equations were solved, a mathematical

procedure called absorption was used. (Mohammad et al.

1985). For example, in this case one may have thousands

of HYS's, and solutions for HYS's in this study are not of

great importance, then one may absorb HYS into sire and

covariate group.

As described by Searle (1971), it is possible to reduce

the mixed model equation by partitioning the XWX matrix into

four submatrices and the XEy vector into two subvectors.

This procedure is called.absorption by partition or block

absorption because it involves reduction of. equations as a

block after the normal equation is partitioned. 'To

illustrate this process we will absorb the HYS submatrix

into the Sire submatrix.
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For this example, only the Sire, and HYS portion of the

normal equation will be used, the covariate‘will ignored for

simplicity porpuses. The row and column for Mu will be ig-

nored, because the sum of the effects equals the Mu row and

column.

The normal equation will be of this form:

z'z z'x Z'y

x'z x'x 7 X'y

4 0 0 2 1 1 2680

0 3 0 0 2 1 1890

o 0 3 2 0 1 _ 1930

2 0 2 4 0 0 - 2530

1 2 0 0 3 0 1680

1 1 1 0 0 3 2290 _    
To absorb HYSs submatrix into sire submatrix*we*will

use the following formula

z'z = z'z - z'x (x'X)"1 x'z . . .(1)

x'x absorbed

[ 2'2 J-[ 2'1!) [ (x'X>‘1 J [ x'2

4 0 0 2 1 1 1/4 0 0 2 0 2

z'zA - 0 3 0 - 0 2 1 0 1/3 0 1 2 0

0 0 3 2 0 1 0 0 1/3 1 1 1        
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4 0 0 .5 .33 .33 2 0 2

0 3 0 - 0 .66 .33 1 2 0

0 0 3 .5 0 .33 1 1 1

1.66 1 1.33

1 1.66 .33

1.33 .33 1.33

4 0 3 1.66 1 1.33 2.33 -1 1.33

Z'ZA - 0 3 0 - 1 1.66 .33 3 -1 1.33 -.33

0 0 3 1.33 .33 1.33 1.33 -.33 1.66 .     

To absorb the HYS subvector 3"}! into the sire subvector y'z

we use the following formula

Z'YX'yabsorbed a Z'y - z'x (x'X)"1 X'y . . . (2)

my 1 [ z'x amt)"1 1 WY 1

  

2680 .5 .33 .33 2530

y'zA - 1890 - 0 .66 .33 1680

1930 .5 0 .33 2290

2680 2588.33 91.67

1890 - 1883.33 - 6.67

1930 2028.73 -98.33    
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The new normal equations with the nuisance effect absorbed

will be:

2.33 -1 -1.33 51 91.67

-1 1.33 - 33 $2 a 6.67

-1.33 -.33 1.66 83 -98.33      

This procedure is, nevertheless, inadequate for large data

sets and computers because it will require set up and

storage of the entire matrix.

An alternative method is to use a row and column

technique. This absorbs one class at a time while setting

up equations pertaining to the effects of interest. This

technique requires that data be sorted by classes of the

factor being absorbed. Additional sorting by classes of the

factors being adjusted reduces the programming task, but it

is not required.

The mixed model equation will be constructed from all

records of one HYS group at a time. After all of its records

are read, it will be absorbed immediately into the rest of

the equation. In this way, it never*will be necessary to

store more than one HYS at a time in computer memory nor

will execution time be spent to obtain solutions for HYS.

This process will be illustrated with.the same data

sample. The algorithm is as follows. First, data are

sorted by HYS; then sires are sorted within HYS. The data
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sorted in this manner are presented in Table 34%

Table 3.3- Example data sorted by HYS and sire sorted

 

 

within HYS.

Milk Yield

HYS Sire Cow kg/loo Covl Cov2

l 1 1 600 396 305

1 1 4 580 400 370

1 3 8 1010 370 320

1 3 9 340 400 340

2 1 2 700 401 380

2 2 5 420 365 305

2 2 6 560 426 360

3 1 3 800 304 280

3 2 7 910 550 410

3 3 10 580 410 380

 

Because we are going to absorb HYS into the matrix con-

taining sires and the covariates,let us call this matrix 2'2

and the elements of this matrix A(i row, j column). The

right hand side vector will be RES and its elements ri.

For our example, a memory array of n(number of sires) +

2(number of covariate) squared for 2'2 and a vector space of

n+2 for RHS.

We will read the first HYS into z'z, and element Aij

represents the number of daughters of the sire Aij' the ri

elements of R38 are the totals of milk yield of the

daughters of sire i. For the covariates part, the Aij

elements are totals of the covariate for sire as well as the

sums of squares and crossproducts of the covariates in the



RHS, the ri are crossproducts of the covariates with milk

yield.

As the first HYS is read, it will accumulate in a

vector the total number of observation for each sire as

well as totals for the covariates in a vector (VectHYS) of

order n+2 x 1. We also will store the total number of

observation in each HYS in the scalar nHYS and the total

milk yield in scalar YHYS'

A15 

z'zA

A55   

RHS]

 
After reading all the records contained in each HYS we will

have VectHYS and the scalars “ms and YHYS'
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veCtHYS

V1

V2 [hays] [YHys]

where:

nHYS - number of records in HYSi

V5 YHYS . Z'Y'S in HYSi'  
The new elements for matrix z'z and vector RHS wil 1 be gene-

rated by:

Aij - Aij - Vecti x Vectj/nHYS . . . (3)

r1- r1 ' VECti x YHYS/nHYS e e e (4).

After absorption of one HYS, the vector‘Vect.and

scalars “Hys and YHYS are zeroed out for the next HYS. With

this procedure only one pass of the data is required to

complete the absorption and setup the normal equations. This

procedure will be illustrated with the data used previously.

Remember that herd-year-seasons will be absorbed into sires

and covariates reducing our matrix by three to a 5 x 5 which

equals the number of sires plus the number of covariates.

The first Z'ZA matrix is formed after four records

falling in the first HYS class are read.
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[ z'zA

[ 51 s2 s3 Covl

2 0 0 796

0 0 0 0

0 0 2 0

796 0 770 613716

675 0 660 523180 

YHys = [21530]

J

Cov2 J

675

0

0

523180

 447925

To form the absorb matrix Z'ZA and vector

formulas (3) and (4), i.e.,

A11 - 2 - (2x2)/4 - 1 rl

A13 - 0 - (2x2)/4 - -1

A31 - 0 - (2x2)/4 - 1 r2

A33 - 2 - (2x2)/4 - -1

A14 - 796 - (2x1566)/4 - 13 r3

A41 - 796 - (2x1566)/4 - 13

A43 - 770 - (2x1566)/4 - -13 r4

A34 - 770 - (2x1566)/4 - -13

A15 - 675 - (2x1335)/4 = 7.5

A51 - 675 - (2x1335)/4 - 7.5

A35 - 660 - (2x1335)/4 - 7.5 r5

A53 . 660 - (2x1335)/4 - -7.5

A44 - 613,716-(1566x1566)/4 - 627

A55 - 447,925-(1335xl335)/4 - 2368.75

A45 - 523,180-(1335x1566)/4 - 527.5

A54 - N " " = 527.5

    

[ Vect ] [ RHS 1

2 1180

0 o

2 1350

1566 979300

1335 836400

nHYS = [4].

RES we use the

- 1180-(2x2530)/4 = -85

- 0 - 0 - 0

- 1350-(2x2530)/4 - 85

979,300-(1566x2530)/4

-11,195

835,400-(1335X2530)/4

“7,987.5
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E ”A J E ans 1.

1 O -l 13 7.5 -85

O 0 O O 0 0

-1 O l -13 -7.5 85

13 0 -13 627 527.5 -ll,195

7.5 0 -‘7.5 527 2368.75 -7,98‘7.5 
The following HYS class is accumulated into Z'ZA and R38

 
    

[ z'zA 1 [Vect] [ ans 1:

1+1 0 -1+0 13+401 7.5+380 1 700-85

0 2 0 791 665 2 980+0

-1 0 1 -13 -7.5 0 85

13+401 791-13 -13 627 527.5 672,560

+475,065 +417,065 1192 -11,195

7.5+38 665 -7.5 527.5 2368.7 595,700.0

+417,065 367,025. 1045 -7,987.5

“Hys - [3] yHYS = [1680].

New 2'2; and R38 are then calculated with formulas (3) and

(4), i.e.,

All - 2 -(lxl)/3 = 1.66

A12 - 0 -(1+2)/3 - -.66

r5 - 5,877,125.5 - (1045x1680)/3 = 2512.5.

The second Z'ZA and RES is then obtained:
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[ z'zA

1.66 -.66 -1 16.66

-.66 .66 0 -3.66

-1 0 1 -13

-16.66 -3.66 -13 2,507.66

39.16 -31.66 -13 2,379.16 

1

39.16

-31.66

-7.5

2,379.16

 5,385.41

E RES 1.

55

-140

85

6155

  2512.5

This example only has three HYS classes to absorb. Thus, the

information in the last HYS group is accumulated now.

I

1+1.55 0-.56

0-066 1+066

0‘1 0

16.55+304 '3.56+550

39.16+280 '31.56+410

z'zA

0-1 16.66+304

o -3.66+550

1+1 -13+410

-13+410 +2507

563016

-7.5+38 +2379

466420

YHYS - [1680].

39.16+280 1

-31.66+410 1

-705+308

+2,379

466420

+5385

390900

] [Vect] [RES ]

800+55

910+l40

1 580+85

6155

1264 +981500

2512

+817500

     107q

The last Z'ZA and RES then are calculated with algorithm

formulas (3) and (4),

All I 2.66 -

A12 I -.66 -

r5 8 820,012 -

i.e.,

(lxl)/3 = 2.33

(lxl)/3 a -.99 ~ 1

(lO70x2290)/3 = 3245.85.
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The final absorbed matrix Z'ZA and vector RES are:

( z'zA J [ RES ].

2.33+15 -1 -1.33 -100.67 -37.50 91.67

-1 1.33+15 -.33 125 21.67 6.67

41.33 -.33 1.66+15 -24.33 15.83 -98.33

100.67 125 -24.33 32958 17972 10491.6

-37.50 21.67 15.83 17972 14652 3245.83   
Before 2'2; is inverted.and.s and covariate are solved.the

ratio 1:. was added to the diagonal elements of random or

sire components as one can see in the underlined elements of

Z'ZA. This is to follow the MME procedures described.

The solutions obtained by these two methods of

absorption are the same as those from the unabsorbed matrix.

However, no solutions are obtained for the absorbed fixed

effects. The solution vector is:

81 70375

A

32 -30462

83 - -3.913

cov~1 .649

    C0V~2 -0546 e

The solutions for HYS can be obtained.by back solving. This

is using the solutions, the accumulated Vect of each HYS,

and nHYS and yHYS. This either requires storing the Vect,

nHYS and yHYS information or rereading the data. Generally'
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the data are reread as this reduces storage requirements

significantly. For the present example one has for HYSl.

Solutions Vectl nHYS YEYSl

7.375 2 [4] [2580]

-3.462 0

-3.913 2

.649 1566

-.546 1335    

Hys1 - [2580 - 2(7.375) - 0(7.375) - O(-3.462) - 2(-3.913)

-(.649) (1566) - {-.546) (1335) 1/4

- [2235.65]/4 s 558.91.

For EYSZ similarly;

Vect2 nHYs2 YHYSz

1 [3] [1680]

2

0

1192

1045

HYSZ = [1680 - 1(7.375) - 2(-3.462) -

.649(ll92) - -.546 (1045)]/3

8 [1476.51]/3 a 492.17.

Finally, for HYS3 we have:

Vect3 nHYS3 YHYS3

1 [3] [2290]

1

1

1264

1070  
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HYS3 - [2290 - (7.375) - (-3.462) -(2.913)

-.649 (1264) - -.546(lO70)]/3

- [2053.881/3 - 684.62.

In this way the vector of solutions is identical to that

obtained with the direct inversion approach. This also

could be used to check the two methods.

Hvsl 559

HY82 492

HYS3 684

31 __ 7.37

32 " -3.46

83 -3.91

covl .64

cov2 -.54     
An in-house Fortran program to accomplish this task was

developed. The International Mathematical and Statistical

Library (IMSL) of Fortran subroutines was used in part to do

the matrix manipulations. The matrix inversion algorithm

used was developed by Healy (1968). The in-house program is

in Appendix A.
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III.4 Variance Components Estimation

There are many methods for estimation of variance

components from.unbalanced data. These methods vary in

degrees of computational complexity. There is no method

that can be said to be best for all situations (Mao, 1981).

The appropriate method is determined by the statistical

properties and characteristics of the model studied. The

iterative restricted maximum likelihood (REML) procedure

using solutions from mixed model equations (MME) was used to

compute variance components in this study. The most

desirable characteristics of REMI.are (Mao, 1981):

1) It renders non-negative estimates of variance compo-

nents when MME solutions are used in maximum likelihood

equation.

2) It maximizes the random portion of the likelihood

which is invariant to the fixed effects in a mixed model and

does not require that the fixed effects are known, as in

maximum likelihood (ML).

3) REML can be used in iterative computations.

Let us continue using the sample of data to illustrate

the iterative restricted maximum likelihood procedure.

The solutions from.mixed model equation 5 and 3 will be

computed for each lactation by:



U
!
)

   5 X'Z

Z'z + G'lL z'x Z'y

   x'x X'y

where: L is a diagonal matrix of the variance ratio of

Ge/Gs, and 6'1 is the inverse of the relationship matrix for

sires.

Let C be generalized inverse of the coefficient matrix:

Z'z + G"1

X'Z

 

Z'X

X'X

  

88 8X

 cxs Cxx

The generalized inverse of A.absorbed matrix from sample

data with the ratio L of 15 is the following:

.0590

0.0017

c’ - 0.0054

0.0003

-.0002

L1 =3 15.

0.0017

0.0649

0.00001

-.0005

0.0006

0.0054 0.0003 -.0002

0.00001 -0.005 .0006

0.0612 0.0002 -0.0003

0.0002 0.00009 -.0001

-.0003 -.0001 0.0002  
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The RHS are:

  

91.67

6.67

-98.33

1049.16

3245.83

The solutions are:

A

51 7.376

A

82 -3.463

A

52 -.546    

Where 31 corresponds to the random effects, sire effects,

and 5i are solutions for covariates. The REML estimates of

the variance components are:

9e - (y'yc - b'X'y - s'Zy - Ls's)/[n- r(x)]-

Because the absorption of some of the fixed effects HYSi

took place prior to solving the equations, no explicit

solutions of those absorbed.fixed classes are available.

The computation of residual variances required some

adjustments. During the absorption process, sums of

squares pertaining to the HYS were collected.

These sums of squares are to be subtracted from the

total sums of squares, y‘yc. Because the program was

designed to obtain the EYSi solutions with the back up

procedure previously illustrated, the appropriate sum of
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squares was calculated, therefore, with the HYS solutions;

both techniques give identical results.

The product of L ss'ss also had to be substracted for

the computation of the residual variance. This corresponds

to the L variance ratio added to the random portion of the

MME as demonstrated by Thompson (1969).

Because only one random factor is involved as in the

present model the sire variance is computed under the

assumption:

V(38) ' GVs’

Therefore:

68 3 [8.88.8 + (tress)] / qs

where:

trc is the trace of the c generalized inverse

corresponding to sires

qs is the number of classes in the random sire effects.

Let us continue with the numerical example.

Y'Yc a Y'Y " SSHys

where:

SSHYS is the sum of squares of absorbed EYS.
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y'yc - 4,616,600 - 25303 - 16802 - 22903

4 3 3

I 4,616,60 - 4,289,058

I 32,7582

b'x'y - (0.649) (10491.6) + (-.546) (3246)

I 5037

s'Z'y - (7.37) (91.67) + (-3.46) (6.67) + -3.91

1039

3'3 - 7.372 + -3.462 + -3.912

I 81.8

A

Ls'S - (15) (81.84) - 1228.

trC I 0.059 + 0.0649 + 0.0612 I 0.1851

Ge - (327,582 - 5037 - 1039 - 1228)/8

- 40,035

Gs - [81.84 + 90.1851) (40,035)]/3

- 2,497.

With the estimate of Va and Gs, a new ratio can be

computed.

L2 . Ge / Gs - 40,035/2497 - 16
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As one can see, 3 and 8 depend on L; Ve relies on a, Ve, and

L: 9e relies on Q, 5, and L; and 9e and 9s are needed to

compute a new estimate of L. These relationships lend REMI.

to iterative computation. The heritabilities in the

literature determined the first L. The process of solving

for 6 and 3, then computing Ve and Vs is continued by

replacing L with the new ratio of 9e,/ Vs and recomputing

the REML estimators until the current and new ratio converge

( convergence was defined by when the difference between the

current and new ratio was less than.2).

From the first round of iteration in our numerical

example, the new L ratio calculated with the variance esti-

mates was 16. This ratio was added to the sire portion of

the MME before inversion, and a new process then was

started. The statistics for the computation are:

.0755 .0015 .0047 .0002 -.002

.0015 .0603 .000 -.0005 .0005

C- .0047 .000 .0570 .0002 -.0003

-.0002 -.0005 .0002 .0000 -.0001

-.0002 0.0005 -.0003 -.0001 .0002   

L2 ‘ 16.
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The new solutions are

    

A

51 6.92

A

82 -3.22

A

83 = -3.70

52 -0544

y'yb - 32,7582 tress = .1928

b'xy - 5001 3'3 - 85.63

s'Zy - 976 LQ'S - 1370

Va - 40,029

A

Vs - 2,601

L3 - 15032’

If one were to continue the new ratio to be used would be

15.32. For the purpose of this example it was chosen to

stop here.
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III.5 Heritabity Estimates

With the estimates of residual and sire components of

variance an estimate of heritability for milk yield was

calculated. As defined by Lush (1945) heritability in the

"narrow sense" is the proportion of the total variance in a

trait that is attributed to the average of additive effects

of genes. Heritability in the "broad sense" is the fraction

of total variance attributable to genetic variance, which

not only contains the variance due to additive effects but

includes variance due to dominance and epistatic effect.

Heritability in the "narrow sense" is the one usually'

referred in the literature and in this study.

Genetic theory indicates that in a randomly mated popu-

lation the half-sibs Vs is equal to one-quarter of the

additive genetic variance (with zero epistatic variance),

and Vs + Ve expresses the total phenotypic variance.

Therefore, heritability in the narrow sense can be expressed

as:

h2 - 4 Vs /(Vs+Ve).

The denominator is the phenotypic variance after the

variance due to named fixed effects in the model have been
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removed.

The approximate standard error of the ratio of variance

components will be used to compute the standard errors of

heritability (Dickerson, 1969).

55(2/9) - 4/9 [ son V(fi) ].

III.6 Ranking 9; Sires

Sire solutions for each lactation were compared.

Spearman's rank correlation analysis was used (Gill, 1978).

Spearman's rs is defined as the sum of the squared

differences in the paired ranks for two variables over all

cases, divided by a quantity which can be described as what

the sum of the squared differences in ranks would have been

had the two sets of rankings been totally independent.

rs - 1 - [6 SUM{i-l,n} dizj / [ n3-n 1.

In animal breeding rank correlations are used to

compare methods of sire evaluations.
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111.7 Methods for the Analysis of the Error

Variance-Covariance Structure

Procedures to construct the variance-covariance matrix

of the three lactations are outlined in III.2.

Solutions for the model were stored on disk. Estimates

of Yij were obtained for milk yield of lactation it11 in jth

cow ( i.e., Yij ) from the stored solutions.

Individual residuals were estimated by subtracting the

estimates from the observations:

“:3 ’ Yij ' Yij

where:

uij is the estimated residual of lactation 1th in

the jth cow.

The estimated residuals for each lactation were stored

in vectors. The matrix ( a vector for each of the three

lactations) of residuals was squared and multiplied

directly to form a sum of squares and cross products matrix

(SSCP). The SSCP matrix was divided by degrees of freedom,

which is the number of observations minus the number of

fixed effects fitted into the model, that is, covariable

days in milk and corresponding herd-year-seasons. Once

divided the matrix SSCP becomes the variance-covariance
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matrix S. Direct multiplication and squaring was a shortcut

to avoid matrix multiplication of the three vectors of the

residuals matrix.

111.7.1 Test for Homogeneous Variance

A procedure to examine the assumption of homogeneous

variance and common covariance is described by Gill (1978).

This procedure was developed to study repeated measurement

designs. One can think of the three lactational milk yields

per cow as repeat measurements. To better understand the

procedure let's follow a formal explanation.

Among r animals measured, one may compute p different

variances (S2 =- Sii' i - 1, 2, ..., p), one for each of the

p periods of measurements. One also may compute a

covariance ($11., ifi') for any two periods. Because $12 =-

821, $13 - 831, there are only p(p-l)/2 different

covariances. The p variances must be estimates of a common

population variance "V” and the p(p-l)/2 covariances must

be estimates of a common population covariance "VV". If the

population variances are equal, any population covariance is

equal to the common correlation in the population "rho"

multiplied by the common variance, i.e., "rhoV". From the

sample of data, one may estimate V from the average sample

variance, 3 - SUM szi/p, and rhoV from the average sample

covariance, sij - SUM SUM sii./(p(p-1)/2). The p x p matrix
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of common variances and covariances of the population is an

"ideal" matrix SIGMO to which the real population variance-

covariance matrix 816)! may or may not conform to the

hypothesis Ho:SIGM=SIGMO. The sample variance-covariance

matrix S is an estimate of 8161!, and the matrix of averaged

sample variance- covariance So is an estimate of SIGMO if

the hypothesis is true:

   

V1 W12 0 e e Wlp V rhOV e e e rhOV

VVbl VVPZ V3 rhoV rhoV V

And the sample matrices would be:

81 512 e e o 31p Si Siil e e e Siil

S B 521 52 e e e 82p 50 a 811' Si 0 e e 811.

spl SP2 0 e 0 SP SiiI SiiI e e 0 Si   

The test for the Ho:SIGM - SIGMAO used in this study was

developed by Box (1949, 1950). The statistics for an

experiment with r subjects, each measured for y at p times
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are:

hl - tp<p+1)2 (2p-3)]/[6(r-1)(P-1)(P2+P-4]

53 - [-<r-1> loge (|S|/ISOI)

where |S| and |So| are determinants of the matrices S and

so. For p 5 the test statistics is q - (1-h1)h3 versus the

table Chi Square statistic with v degrees of freedom, v1 -

(192 + p-4)/2-

The hypothesis is rejected if this statistic exceeds

the critical value for alpha, value of the test.

III. 7. 2 Method to Test for the Hypothesis that Errors

53113; a—FI—§E OrderAutoregressiveMod31——_-

A maximum likelihood procedure was used to test the

hypothesis of Mansour, Nordheim, and Rutledge (1985). They

stated that the errors of consecutive lactation milk yields

follow a first order non-stationary autoregressive process.

The objective of the test is to obtain from the

variance-covariance matrix calculated from.data S, estimates

of ‘Va, Va, 0 the model parameters. The estimates were

used recalculate a matrix SIGMAT. This was used to test the

hypothesis ( i.e., Ho:SI<§Mu =- SIGMAT ) with Chi Square

procedure.

The estimate of a the autoregressive parameter and R s
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‘Ga/Ve were fitted with an iterative routine used to maximize

this three statistics simultaneously.

The derivation of the method is as follows; the

autoregressive model can be expressed:

Let the errors e1, e2, e3 be independent and each

normally'distributed with mean zero and variance Ve

~N(0,Ve).

Let the observed residuals be:

111-91‘1'3

u2 - 0 ul + e2 + a

where:

a is the random effect of the cow and is assumed

independently and identically distributed (iid).

N(o, Va),

Va variance attributed to genetic and permanent

environmental factor.

Ve ‘variance attributed to temporary environmental

factors.

then:

u - u2 ~ N(O,SIGHu).

  



101

The vector of residuals corresponding to the three lactation

periods is assumed to be.multivariate normally'distributed

with mean zero and variance SIGMu, the variance-covariance

assuming first order autoregression of error where:

 

Va+Ve Va+¢Ve Va+pZVe

srsuh - Va+pVe Va+Ve+pZVe Va+pVe+p3Ve

Va+¢2Ve Va+pVe+¢3Ve Va+pZVe+p4Ve . 

Let R - Va/Ve, then:

R + 1 R + p R + p?

SIGHu-VeR-bp R+02+1 R+p+p3 avup.

R + 02 R + p + p3 R + 02 + 04 +1   

The log of the likelihood function for n independent

observations “1' . ., un on u is

Under Ho: that Mansour model holds

log L a - l/2N log | sxcnul - 1/2 SUM ui SIGM'lui

a - l/2N [log |A¢| + 3 log Ve + {trmp-l S)}/Ve]
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This is maximized for Ve - 9e - 1/3 traifl,’l S), where: p

and R are chosen to maximize:

log L - -l/2N [loglAg | + 3 log {1/3 tr(A¢'l 8)} +3]

- -l/2N [loglAgl + 3 log tr (Afl’lsn - l/ZN [-3 16g3+3].

Then test with Chi square statistic:

0 - N [ 16ga lApl + 3 16ge tr(A¢'l 5) - (16ge |S| +

3 loge 3 ) ].

is asymptotically distributed as Chi Squaren,3 - Chi Square3

under the null hypothesis, Ho: SIG)!u - SIGMAT. The

hypothesis is rejected if the appropiate test statistics

exceeds the critical value for alpha value of the test.



IV RESULES AND DISCUSSION

1V.1 Basic Parameters of the Model for

each Lactation

 

 

The first results of this study were those from the

fitting of the model to each lactation. lResults, reported

in Table 4.1, indicate the characteristics of the model for

each lactation.

Table 4.1 Basic parameters of the model for each lactation.

 

 

 

Lactation

Parameter 1 2 3

Number of records 3989 3985 3990

Number of sires 193 193 193

Number of

herd-year-seasons 361 357 371

R2 .97 .97 .97

 

Numbers of records used in the analysis of the three

lactations differ because observations belonging to a sin-

gle herd-year-season group were deleted during the program

execution. This difference is small, therefore, numbers of

103
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observations were equal for the purpose of this study.

The number of sires in the analysis was the same in

each lactation. This indicates that the number of daughters

per sire was enough to make up for the loss of those single

herd-year-season observations. The number of herd-year-

seasons absorbed into the sire and covariate effect was also

similar for each lactation. Because the number of observa-

tions and classes are similar for each lactation, it was

assumed that there was not a major difference in the of the

analysis for each of the lactations. Similar size of

incidence matrices and equations to be absorbed seemed to

support this assumption.

The coefficient of determination R2 which measures the

proportion of reduction of the variation of milk yield

achieved by the model was high and identical for each lacta-

tion. This indicates the adequacy of the model in descri-

bing causes of variation for each lactation.

IV.2 Variance Components and Heritability Estimates

Means and coefficients of variation for milk.yield for

the three lactations as well as the iterative REMI.estimates

of variance components and heritability are in Table 4.2.
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Table 4.2 ‘Variance components, heritabilities, L ratios,

means and coefficients of variation for milk

yield in three lactations.

 

 

 

Lactation

1 2 3

Mean of unadjusted milk

yield (kg) 4,890 5,520 5,520

Coefficient of variation

for unadj. milk yield .27 .26 .34

Sire

Variance (Vs) 837 664 703

Error

Variance (Ve) 7,416 10,054 11,469

Final L ratio Ve/Vs 8.86 15.56 16.10

Heritability (hz) .40 .23 .23

Standard error h2 .04 .03 .03

 

Means for unadjusted milk.yields were 4,890 kg for

first lactation and 5,520 kg for second and third lactation;

this 12.5% increment in milk yield between first and later

lactation is expected from the normal rate of maturing of

the cows. Production is approximately the same for the

Holstein dairy herd in Mexico as reported by McDowell et

al. (1976b) and Cisneros et a1. (1980).

Variability of milk yield expressed as the coefficient

of variation was similar for the first and second lactation

and higher for the third: this also was expected because as
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a cow gets older the probability that environmental factors

affecting its performance is higher. Another explanation

could be that because of the relative higher cost of

registered cattle in Mexico, dairy breeders tend to retain

relatively lower producing cows in the herd for the purpose

of getting an extra valuable offspring out of them. The

latter would explain both the similarity of milk yield from

the second and third lactation, as well as the higher

variability for milk yield in the third one.

Sire variances were lower for second and third lacta-

tions. The explanation that environmental variance

increases throughout the life of a cow overshadowing its

genetic makeup (sire variance), as suggested by Barker and

Robertson (1966) does not hold. Sire variance for the

second lactation is lower than that of third lactation. The

same authors indicated that analyses of Swedish data showed

a decline of sire variance from first to second lactation,

followed by an increase from second to third lactation

(Hansson and During, 1961), in exactly the same manner as in

this study. This would be expected if selection had been

based on factors having a higher environmental than genetic

connection with milk yield; for instance, accidents,

diseases, or low fertility. Another explanation for these

results could be increase of milk yield with age at calving.

Sire differences for rate of maturity and therefore, higher

milk yield in later lactations also could cause sire



107

variance to increase in later lactations. However, Hansson

and During (1961) suggested that environmental disturbances

may have a cumulative.effect over succeeding lactations

causing this difference in sire variances. Differences in

sire variance are believed to be caused by the cumulative

effect of environment over succeeding lactations.

Heritabilities of milk yield for first, second, and

third lactations agree with the literature. Table 4.3

summarizes the heritabilities for three lactations in

Holstein cattle. The similarity of heritabilities estimates

with those reported is not only in their magnitude but also

in their trend. Heritabilities for'milk.yield in first

lactation is higher than those of later lactations. Most

authors favor that environmental factors in the lifetime

of the cow, such as diseases and management, increase varia-

tion of later records. There are other'possible explana-

tions for the decline of heritability such as larger effect

of genes controlling first lactation than second lactation.

The presence of a genetic maternal effect that gradually'

decreases in importance also might explain the decline. Yet

another possible explanation is the presence of constant

genetic effect on second lactations which would lower

estimates of heritability of second lactations (Butcher and

Freeman, 1968).

Recent heritabilities are from maximum likelihood (ML)

Rothschild and Henderson (1979), Meyer (1983), and from res-
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tricted maximum likelihood (REML) Tong et al. (1979). The

study of Powell et al. (1981) uses a set of data similar to

that of the present study because the daughter-dam

regression procedure used required that both dam and

daughter have three lactations.

Heritabilities can not be compared because they are

drawn from different populations which are under different

climate, management, and selection practices. They also

vary in the analytical procedure used to estimate

heritabilities. And the trait, i.e., milk yield, was

sometimes actual and sometimes adjusted. Adjustments were

not always the same. McDowell et al. (1976b) using a subset

of the same data used in this study reported a heritability

estimate of.12 for milk yield. To estimate this heritabili-

ty, they used a sire component within herd from Henderson's

method 1 (an alternative analytical procedure)

Conclusion from this study is that because one is able

to observe an increase of environmental variation,

heritabilities would tend to be lower in later lactations.

Cumulative effects of injury or mastitis would be consistent

with this viewpoint.
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Table 423 IHeritabilities for milk yield of the first three

lactations in Holstein cattle.

 

 

 

Lactation

Source and Method 1 2 3

Freeman (1960) daugher-dam

regression .36 .24 .26

Molinuevo and Lush (1964)

daughter-dam regression .30 .09 .08

Barker and Robertson (1966)

paternal half sisters .35 .24 .23

Butcher and Freeman (1968)

intrasire regression of

daughter on dam' .37 .25 .35

Butcher and Freeman (1969)

Fiveprocedures .17 to .39 .11 to .35 .11 to .40

Maijala and Hanna (1974)

paternal half sisters .26 .20 .17

Rothschild and Henderson

(1979b) paternal half sisters .41 .35 --

Tong et a1. (1979) paternal

half sisters .26 .19 .17

Powell et a1. (1981) daughter-

dam regression on Modified

Contemporary deviations .36 .31 .26

Meyer (1983) paternal half

sisters .33 .34 .28

This study .40 .23 .23

paternal half sisters
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1V.3 Effect of Covariable Days in Milk

Data were not adjusted to the customary 305 days lacta-

tion but actual days in lactation were fit linearly as a

covariate with milk yield. Fitting one regression

coefficient per lactation to correct for the systematic

effect of lactation length allowed full expression of

variation.

Regression coefficients of days in milk.on:milk yield

for first, second, and third lactations were 1.36 i .06,

2.33 i .08 and 2.16 $.03. The magnitude of the coefficients

is associated with milk production in each lactation; the

coefficients for the second and third lactation are almost a

unit greater than that of the first lactation

Meyer (1983) also fitted linearly lactation length as one of

the regression coefficients in her model: however; she did not

report the regression coefficients.
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IV.4 Sire Solutions for Each Lactation

Solutions for the 193 sires were computed for each

lactation. Summary of these solutions is in Table 44L

The mean of BLUP sire solutions are zero by definition.

Table 4.4 Range and standard deviation of BLUP sire

solutions (n - 193) each lactation.

 

 

 

Lactation

1 2 3

Range -90 to 77 -46 to 42 ~46 to 45

Standard deviation 20.88 16.00 16.51

 

The range of the BLUP sire solutions is wider for first

lactation than for second and third. This variability also

could be appreciated through the standard deviations. The

standard deviation for the BLUPs for first lactation is

almost 25% higher than for the others. Lofgren et a1.

(1983) also reported a 5% higher standard deviation of BLUPs

for first lactation.

Results of the Spearman's Rank correlation for the sire

solutions are in Table 4.5. The range of rank correlations

between sires with daughters in different lactations, i.en

only first lactation or only second lactation, reported in

the literature goes from .64 (Tomaszewski et al., 1975) to
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.95 (Lofgren et al., 1983). Most of the estimates are in

the upper part of this range. Rank correlations from this

study are low (Table 4.5).

Schneeberger (1982) reported a low rank correlation

between first and second lactation BLUP sire values for

Holsteins in Venezuela. One of his explanations for this

was that when the environmental fluctuations are larger and

number of progeny per sire is low, variation of sire values

is high. McDowell (1983) also agreed with this explanation.

Because the primary objective of this study was not to

estimate sire values, sires with as few as six progeny re-

mained in the data. If the objective of this study had been

to estimate sire values accurately, a larger number of

progeny per sire would have been required. In the data set,

the majority of bulls had between 6 and 14 progeny. The low

number of progeny per sire is probably the explanation for

the low rank correlation and the large standard deviation

and range the sire values.
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Table 4.5 Rank correlation* of BLUP sire solutions for

the three lactations.

 

Lactation

First Second

 

Second Lactation .58

Third Lactation .53 .59

 

 

*Spearman's "r"
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IV.5 Analysis 2; the Variance-Covariance Matrix

The variance-covariance structure from this study is:

  

7,416 3,991 3,114

(3989) (3950) (3954)

s - 3,991 10,541 4,813

(3950) (3985) (3941)

3,114 4,813 11,469

(3985) (3941) (3990)

Numbers within parenthesis correspond to the number of

observations.

As explained earlier, not all cows were in each lacta-

tion because of elimination of single herd-year-seasons

during the program execution. Therefore, the degrees of

freedom were calculated from each model for each element of

the S matrix. For the case of diagonal elements, these are

the same as for the error variance component, that is, the

total number of observations minus the number of fixed

effects fitted into each model. In this case, fixed effects

are covariable days in milk, and number of herd-year-

seasons. For the off-diagonal elements, degrees of freedom

were calculated from the number of products minus the

average number of herd-year-seasons in the two involved

lactations. The difference of degrees of freedom was small.

The degrees of freedom were 3,627 for first and second

llactations and 3,618 for third lactations. For statistical
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testing purposes, it was decided to use 3,985 as the number

of observations because it represented a midpoint between

the several numbers of observations.

IV.5.1 Test for Homogeneous Variance

The purpose of this procedure was to test the null

hypothesis H:SIGM -SIGM° by the method of Box (1949, 1950),

or in this case H: S - so. The test consisted in obtaining

an estimate so by separately averaging variances and

covariances in S. Then the likelihood ratio criterion,i.e.,

of the ratio of the determinants of matrices S and 80,

L - |S| / |So|,was used.

The average variance-covariance matrix So from our data

was:

  

9,809 3,973 3,973

so - 3,973 9,809 3,973

3,973 3,973 9,809

- repeated measurements p - 3

- total of animals r - 3,985 measured

51 - [3 (42) (3)1/[6 (3984) 2 (8)]

n1 - .0004

h3 . [-3984 log 3 {I 5.59 x 1011 | / | 6.04 x 1011 |)

h3 - 308
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q I (1 - .0004) (308) I 307

q - 307 which by far exceeds

Chi square 0.01, 4 - 13.27.

Therefore, one should conclude that variance covariance

matrix s is heterogeneous.

Examining the estimated variance-covariance structure

one can note increasing values along'principal diagonal

(7416, 10541, 11469), increasing values on the first

diagonal (3991, 4813), and decreasing values in the first

row (7416, 3991, 3114). It appears that the error variance

increased with time and that the error covariances are

larger in adjacent lactations. This pattern is similar to

that of the error variance-covariance matrix of lactational

yield of milk fat reported by Butcher and Freeman (1968:

1969) and used by Mansour, Northeim, and Rutledge (1985) in

a first order autoregressive model. Other estimates of

error variance (Ve) for first, second, and third lactations

also show an increase for second and third lactations. 'Tong

et al. (1979) reported first, second, and third lactation

(REML) Ve estimates of 543,531; 715,826 and 824,750. This is

an increase of 30% for the second and of 50% increase for

the third with respect to the first. Rothschild.and

Henderson (1979a) reported (ML) Ve estimates of 900,581 and

1,032,391 for first and second lactation this 14% increase

is the smallest of those reported. Meyer (1983) reported

(REML) Ve estimates of 557.31, 928.51 and 1008.67: the
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percent increase in variance was 60% from first to second

and 80% from first to third. The percent Ve increase in

this study was 42% from first to second and 52% from first

to third. These increases are larger than those reported by

Tong et.aJ. (1979) and smaller than those reported by Meyer

(1983). The Ve increase from second to third lactation is

less than from first to second lactation. The percentage

increase from second lactation to third was 8% from Meyer

(1983) and this study, and 15% from Tong (1979). This

smaller difference in Ve between second and third lactation

compared to Ve between first and later lactations seems to

indicate that environment may have a different influence

in these lactations than in the first. Deaton and McGilliard

(1964) Mansour, Nordheim, and Rutledge (1985), and

Nicholson et a1. (1978) have suggested treating first lacta-

tions differently from later lactations.

The Box test for homogeneous variance was not used to test

the other estimates of variance-covariance matrices because

they involved different cows and different numbers of cows

at each lactation.

Because Rothschild and Henderson (1979a) did not study

third lactations and Tong et a1. (1979) assumed that no

error covariance existed in their’multiple trait model it

was not possible to compare their results with this study

directly. Results could be compared only with those of

Meyer(1983). The error covariance was highest between
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second and third lactation in both studies, and they are

almost the same between first and second, and first and

third for Meyer (1983). The present study error covariances

are greater for adjacent lactations.

The variance-covariance matrix estimated in this study

is heterogeneous. It also appears that other variance-

covariance matrices in the literature follow a similar

pattern, even those from studies in which the selection

effect has been removed (Tong et al., 1979: Rothschild and

Henderson, 1979a; Meyer, 1983). Implications of

heterogeneous variance-covariances for the three lactations

are several: (1) First lactations should be treated

differently from later lactations for example by the use of

an index weighting lactations by their heritabilities: (2)

Later lactations should be used in sire evaluation systems

to account fully for error variation of daughters: (3)

Transformation of the data to reduce the heterogeneity

should be used to be able to use all the records of

daughters of a sire. This is important for example, for

small populations such as in less developed countries where

all records available should be used to improve the accuracy

of the sire evaluations.

The pattern followed by the error variance-covariance

matrix from this study may induce one to think that the

errors follow a non-stationary autoregressive random process

as assumed by Mansour, Nordheim, and Rutledge (1985). One
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of the could be modeled after this pattern.

1V.5.2 Test for the Hypothesis That Errors Follow A First

Order Autoregressive Model

The purpose of this procedure is to test the hypothesis

that the errors of consecutive lactational milk yield

follow a first order non-stationary autoregressive process.

 

For:

7,416 3,991 3,114

8 I 3,991 10,541 4,813

3,114 4,813 11,469  

The tr (Ap'IS) is minimized for 9 =- 6 =- .414 and

R - Va/Ve - .14

being tr (Afi'IS) - 23,377.

Ge - l/3(tr(A¢'1S) a 7,792;

therefore,

9a - R 9e = (.14) (7,792) = 1,090.

R+1 R+p R+p2

sxcu - Ve R+p R+g+1 R+p+p3 = VeAp

 R+p2 R+¢+p3 R+02+p4+1  
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1.14 0.554 0.311

Ag I .554 1.3113 0.624

0.311 0.624 1.340 

|Afi| - 1.235.

In this case the estimate of SIGMu is SIGMAT - 9e A9.

 

8,883 4,317 2,426

sxsuam - 4,317' 10,218 4,869

2,426 4,869 10,447 

The best fit is the one that makes SIGMAT as close as

possible to S.

The Chi square test for our estimates 9e, 9a and a is

0 - N [loge|Ag| + 3 loge tr (Ag-18) - (loge |S| + 3 16ge3)]

N = 3985

I 3985 - [0.211 + 30.17 - (27.05 + 3.295)]

I 3985 [30.38 - 30.28] I 404.47

Q I 404.47 for 3 df.

Therefore, reject the Ho : SIGMu - SIGMAT at any reasonable

a1Pha.
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Before rejecting the assumption.that errors follow a

first order autoregressive process, one should compare the

error variance-covariance matrix from this study S with that

estimated with 9a, Ve, and 2 obtained from the likelihood

procedure SIGMAT. In general, SIGMAT resembles S because

elements of the main diagonal increase with time and

covariances from adjacent lactations are higher than those

from nonadjacent lactations. The difference between these

two matrices is that elements in SIGMAT corresponding to

first lactation seem to be higher and elements corresponding

to the third lactation are lower than in S. The test

statistic rejects the hypothesis that errors follow’a non-

stationary first order autoregressive process; however,

given the large number of observations it is expected to

reject statistically nearly any hypothesis.

One should look.for a model that could explain.better

the pattern for the estimated variance-covariance matrix S.

The reason the elements corresponding to the third lactation

were underestimated may have had something to do with a

change of the real ability of the cow in later lactations.

Age affects milk yield. The age or maturing effect usually'

is corrected in most sire evaluation programs to enable

comparisons of yields of cows at a common age. IIt is usual

to express the production of a cow in mature equivalent

units. For this reason, it was decided to incorporate an

adjustment parameter into the model. This parameter 9
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which accounts for 1 degree of freedom represents the

possible increment in Va caused by the maturing effect of

the cow.

The hypothesis to be tested was that errors follow a

first order non-stationary autoregressive model and that the

Va in later lactations is also affected by 0 or the maturing

effect of the cow.

Let the observed residuals be:

‘12 - ”111 + 32 ‘1' 6a

u-¢u+e+82a-pze+pe+82a+e
3 2 3 1 2 3

where:

8 - parameter associated to the cow effect,

representing the increase in milk yield in later

lactations or maturing parameter,

SIGMS will have this form:

 

Va+Ve pVe+eVa 02 Ve+e2 Va

sxsxe- Ve + 82 Va + 02 Ve p3 Ve + me + 93 Va

Sym Ve(l+,02 + 04) + 84Va

Let R = Va/Ve

 



smug-Va R 8 1+82

  
92 83 1+94
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92

83 +

 

o 9 92

9 92 9+93

92 9+93 ¢+¢4 

The tr (A'%GS) is maximized for €= 1.27, [3 - .23,

A A

Ve I 6,598, Va I 1,715.

Estimate of SIGM is SIGMATG - Ve Age

8,313

SIGHATG - 3,696

3,116 

Q - 95.72 for 2 df.

3,696

9,714

5,112

3,116

5,112

11,428  

Reject the Ho: SIGMu -SIGMAT6 at any reasonable

alpha.

  
R==.26

The model that incorporates the 8 parameter to account

for the maturing effect of the cow seems to model the

pattern of the variance-covariance matrix better. The test

statistic to reject this hypothesis is much lower than that

to reject the first order autoregressive assumption(404.47

vs 95.72). This indicates that SIGMAT from the 8 models is

considerably closer to S (specially in the covariances),
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SIGMAT from 8 model has larger estimates for elements

corresponding to the third lactation. The matrices S and

SIGMAT from both models are in Table 4.6 .

Table 4.6 Sample S and Variance-Covariance matrices

from first order autoregressive plus cow's

maturing effect models. SIGMATp and SIGMATG.

  

7,416 3,991 3,114

8 I 3,991 10,541 4,813

3,114 4,813 11,469

8,883 4,317 2,426

SIGMA?” I 4,317 10,218 4,869

2,426 4,869 10,447

8,313 3,696 3,116

SIGHATG I 3,696 9,714 5,112

3,116 5,112 11,428  
Though, the 8 model is a better approximation to the

variance-covariance matrix from this study, it is not

possible to obtain a perfect fit without incorporating other

‘Parameters and saturating the model. These models fit the

llactation data better than a model assuming no correlations

Of errors.

A positive association of errors exists. A biological
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justification would be that if a cow produces an unusually'

good or bad yield initially, it would.be natural to think

that her manager would have a high or low expectation of her

ability and provide sequent care accordingly. Because Ve is

large relative to Va, the major impact of the differential

management would. be reflected by autoregression..Another

argument is that effects of accidents or diseases such as an

infection could be carried over from one lactation to the

next.

The two models presented in this study could be

considered adequate, the autoregressive process models the

effects for the different lactations: the arbitrary 9 model,

that included the maturing effect, models the data better

but has the disadvantage of the number of unknown parameter

(unknown variances and covariances) that would be added to

the model.



V’ SUMMARY AND CONCLUSIONS

Errors from each record of the same cow have been

treated as independent of each other when analyzing later

lactations. .Also a new and equal set of environmental

effects affected the performance of the cow during each

productive cycle or lactation.

Need to incorporate more flexibility to these relation

by allowing errors from each lactation to be correlated with

each other and to vary from lactation to lactation in

accordance with a first order non-stationary autoregressive

process has been suggested.

The potential to use recursive estimation techniques

later lactations would be possible if residual errors follow

a first order autoregressive pattern. :More accurate

estimates of parameters and real ability of the cow could be

obtained from these relationships.

Purposes of this study were to estimate the error

variance-covariance structure of first, second, and third

lactations; test the assumptions that there is homogeneous

error variance and constant covariance among each pair of

lactations: and to examine the hypothesis that errors might

follow a first order non-stationary autoregressive process.

Milkzyield records of cows with three consecutive

lactations were used to estimate the variance-covariance

126
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matrix S. Data were from registered Holstein cows in Mexican

DHI.

The model applied.to each lactation included variables

representing random effects of sire, fixed effect of herd-

year-season, and days in lactation fitted as a covariable.

Normal equations for sire and covariate days in milk were

set up while herd-year-seasons were absorbed by a looping

process. The normal equations then were transformed into

mixed model equations by incorporating the ratio L (Ve/Vs)

in the submatrix for sires. Solutions from the mixed model

equations were used to back solve for herd-year-season

solutions. Then all solutions were used to compute

residuals. Sire and fixed effects solutions, the trace of

the sire submatrix, the product of the ratio L times the

squared sire solutions, and the trace from the generalized

inverse were used to obtain restricted maximum.likelihood

(REML) variance components.The process was iterated until

the estimates converged. 4A FORTRAN program to perform this

task is in Appendix A.

With the REMI.estimates of sire and residual variance

components, milk yield heritabilities were computed.

Heritabilities and standard errors wer .40 i_.04, .23 i .03,

and .23 i .03 for first, second, and third lactations.

These results agree with those in the literature in

magnitude and trend. 'The decline of heritability is due to

the increasing environmental factors in the lifetime of a
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cow. This causes an increment in variation that reduces the

importance of the genetic make-up of a cow i.e., this

reduces heritabilities for later lactation.

Solutions for 193 sires were computed for each

lactation. The range and standard deviations of the

solutions were -90 to 77 (i 21), -46 to 42 (4_-_ 16), and -46

to 45 (i 16) for first, second, and third lactations.

Spearman's Rank correlations for sire solutions were

computed to compare the value of sires in each lactation.

The rank correlation was .58 for sire values in first and

second, .53 for sire values of first and third and..59 for

sire values of second and third lactations.

There is large variability in sire solutions and a low

rank correlation of sire values. This is due to the number

of progeny per sire.

The 8 matrix is not homogeneous (p < 0.01) according to

the Box test for homogeneous variance. In the S matrix,

increasing principal diagonal (7416, 10541, 11469), increa-

sing first diagonal (3991, 4813), and decreasing first row

(7416, 3991, 3114) are noted. It appears that the error

variance increases with time and that the error covariances

are higher in adjacent lactations. This pattern induces one

to conclude that the errors might follow a first order non-

stationary autoregressive process. A maximum likelihood

procedure was developed to test the hypothesis that errors

follow a first order autoregressive model. Estimates that
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maximized the Log likelihood were a - .414, 9e - 7,792, and

Va - 1,090. These estimates were used to recalculate a

matrix SIGMATg. The H: S - SIGMATfl was tested with a Chi

square statistic. The hypothesis that errors follow a first

order autoregressive process (Mansour, Nordheim, and

Rutledge, 1985) was rejected (p < .01). The autoregressive

model underestimated the error variance in later lactations.

A model that incorporated a parameter 8 representing the

possible increment in Va caused by the maturing effect of

the cow was tested. The test is that the errors follow a

first order non-stationary autoregressive model and that the

Va (genetic and permanent environmental contribution of the

cow) in later lactations is also affected by a or the

maturing effect of the cow.

The maximum likelihood estimates were 9 - .23 6 1.27,

Ve - 6,598, and Va - 1,715. The hypothesis ms :- SIGMATG

was also tested. Model was rejected (p < .01). SIGMATG has

larger estimates for the elements corresponding to the third

lactation. Though the 8 model is a better approximation to

the variance-covariance matrix 8, it is not possible to

obtain a perfect fit.

One may conclude that even though these models were

rejected statistically, they fitted 8 better than a model

with no correlation of errors i.e., 0:0. A biological

justification would be that if a cow produces an unusually

good or bad yield initially, it would be natural to think
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that her caretaker would.have a high or low expectation of

her ability and provide sequent husbandry accordingly.

Because Ve is large relative to Va, the major impact of the

different management would be reflected by autoregression.

Another argument is that cumulative effects of accidents or

diseases would.be carried over from one lactation to the

next. These two models could be considered adequate,

although not in compliance with the assumptions. The

autoregressive process models the effects for the different

lactations. The arbitrary 8 better describes the data but

has the disadvantage of the number of unknown parameters

(unknown variances and covariances) that would be added to

the model. A first order non-stationary process to model the

error structure should be used for analises of repeated

lactations to reduce variances of estimates of parameters.
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TABLE A . FORTRAN program for mixed model analysis.

PROGRAM REML(TAPE6,TAPE3,TAPE4,TAPE5,TAPE7,OUTPUT,TAPE2IOUTPUT)

***RESTRICTED MAXIMUM LIKELIHOOD PROGRAM***

PROGRAM ABSORSB HYS EQUATIONS USING THE ROW LINE TECHNIQUE

VARIABLE LIST

VARIABLE NAME

SIRE

HYS

MY

CI

DIM

LHYS

NREC

TMYHYS

INDICE(I,J)

A(INDICE(I,J)

AINV(INDICE(I,J)

RHS(I)

RHSl(I)

VECT(I)

ms

NOHYS

WK ( I)

D(I)

C(I)

TOT(I)

DESCRIPTION

SIRE

HERD-YEAR-SEASON GROUP

MILK YIELD

CALVING INTERVAL

DIM

LAST HERD-YEAR-SEASON

DUMMY RECORD COUNTER

TOTAL MILK YIELD EACH HYS

FUNCTION THAT CONVERTS ROW, COLUMN

REFERENCES TO HALF-STORED VECTOR REFS

VECTOR CONTAINING HALE-STORED Z'Z MATRI

VECTOR CONTAINING HALE-STORED Z'Z INVER

RIGHT HAND SIDE

NON-ABSORBED OR ORIGINAL RIGHT HAND SID

VECTOR OP SIRE PROGENY AND

TOTAL COVARIATES

NUMBER OF RECORDS IN EACH HYS

NUMBER OF HERD-YEAR-SEASONS

WORKING AREA A VARIABLE NEEDED BY SUBRO

LINV4P. DIMENSION TO RANK OP MATRIX BE

INVERTED.

STANDARD ERRORS OP SIRE SOLUTIONS

SIRE SOLUTIONS

TOTALS VECTOR OE COVARIATES PLUS DEFEND

I.-READ VARIABLES

I.A -DECLARE AND DEFINE VARIABLES

INTEGER HERD,YEAR,SEA,SIRE,LHERD,LYEAR,LSEA,NREC,NHYS,EOREC

,COW

REAL MY,DIM,CI

DIMENSION C(3000,1),AINV(19110),A(19110),RHS(195,1),RH51(195,1),

+ VECT(195),WK(195),D(195),TOT(3),TOTBAR(3),CONT(3)

(MY,CONT(1)),(CI,CONT(3)),(DIM,CONT(2))

I.B -INITIALIZING TO ZERO

 



0
0

0
0
0

0
0

0
0
0

0
0
0
0
0

0
0
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DATA A/19110*0.0/

DATA RHS/l95*0.0/

DATA RHSl/195*0.0/

DATA C/3000*0.0/

DATA AINV/19110*0.0/

DATA VECT/195*0.0/

DATA D/195*0.0/

BOREC - 0

TMYHYS I 0.0

NHYS I 0

TYY I 0.0

NREC I 1

COREAC I 0.0

NOHYS I O

SUMSIR I 0.0

RSQ I 0.0

VARDEP I 0.0

RATIOl

SETDIF

NSIRES

NCOV I

15.6

00.2

193

H
I
I
I

xx - ucov + 1

Do 67 I-l,NN

TOT(I) - 0.0

CONTINUE

NRANR - NSIRES + ucov

LSIRE I NSIRES*(NSIRES+1)/2

LHALF I NRANK*(NRANK+1)/2

ACCUMULATOR OF TOTAL DEP OP FIXED

FACTORS BEING ABSORBED

TOTAL SUMS OP SQUARES FOR DEPEND

CORRECTION EACTOR USED TO CALCULA

HERD-YEAR’SEASON SUMS OP SQUARES

COEFFICIENT OP DETERMINATION

VARIANCE OP DEPENDENT VARIABLE

I.C -PARAMETERS TO BE SET

SET UP DUMMY VARIABLE EQUAL TO

NUMBER OF COV PLUS DEPENDENT

I.D -VARIABLES

READ(6,99,ENDISS)HERD,CID,MY,SIRE,CI,DIM,YEAR,SEA,COW

GO TO 22

I.E -READ INPUT

START OF INFINITE LOOP TO READ

ALL INPUT DATA



0
”
0
0
0
0
0

0
0
0
0
0

0
9
0
0
0

68

0
0
0
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READ(6,99,ENDI55)HERD,CID,MY,SIRE,CI,DIM,YEAR,SEA,COW

WRITE(2,99)HERD,MY,SIRE,CI,DIM,YEAR,SEA,COW

PORMAT(1X,I6,I4,9X,F5.0,I5,F4.0,P4.0,I3,I2,1X,I5)

NREC I NREC+1

IP(HERD.NE.LHERD)GO TO 5

IF(YEAR.NE.LYEAR)GO TO 5

IF(SEA.NE.LSEA)GO TO 5

II.-PORM INCIDENCE MATRIX

II.A -ACCUMULATE PROCESS

A(INDICE(SIRE,SIRE)) - A(INDICE(SIRE,SIRE))+1.0

A(INDICE(NSIRES+1,SIRE)) - A(INDICE(NSIRES+1,SIRE) )+DIM

A(INDICE(NSIRES+2,SIRE)) - A(INDICE(NSIRES+2,SIRE))+CI

A(INDICE(NSIRES+1,NSIR£S+1)) - A(INDICE(NSIRES+1,NSIRES+1))+

DIM**2

A(INDICE(NSIRES+2,NSIRES+2)) - A(INDICE(NSIRES+2,NSIRES+2))+

c1992

A(INDICE(NSIRES+2,NSIRES+1)) - A(INDICE(NSIRES+2,NSIRES+1))+

DIM*CI

RESl(SIRE,l) - msusmuwm

RESl(NSIRES+l,l) - RESl(NSIRES+l,l)+MY*DIM

RESl(NSIRES+2,l) - RHSl(NSIRES+2,l)+MY*CI

RES(SIRE,1) - RES(SIRE,1)+MY

RHS(NSIRES+1,1) - RHS(NSIRES+1,1)+MY*DIM

RES(NSIRES+2,1) - RES(NSIRES+2,1)+MY*CI

WRITE(2,70) A(INDICE(SIRE,SIRE)),A(INDICE(NSIRES+2,NSIRES+2))

,RES(SIRE,1)

FORMAT(1X,3£16.5)

VECT(NSIRES+1) - VECT(NSIRES+1)+DIM

VECT(NSIRES+2) - VECT(NSIRES+2)+CI

VECT(SIRE) - VECT(SIRE)+1.0

NEYS - NHYS+1

TMYEYS - TMYEYS+MY

SETTING FLAGS FOR NEXT READ

LEERD - HERD

LTSAR - YEAR

LSEA - SEA

TYY - MY**2+TYY

Do 68 I-1,NN

TOT(I) - TOT(I) + coNT(I)

CONTINUE

x - NOHYS + 1

WRITE(2,91)HERD,MY,SIRE,CI,DIM,YEAR,SEA,COW,K

WRITE(5,91)HERD,MY,SIRE,CI,DIM,YEAR,SEA,COW,K

FORMAT(lx,I6,6X,F6.0,1X,IS,1X,2(F5.0,lX),2(I4),2(IS))

so TO 100

II.B -ABSORBING HYS
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EOREC I 1

CONTINUE

PRINT*,' ABSORBING HYS INTO SIRE AND COVARIATES '

DO 1 I I 1,NRANR

DO 2 J I 1,I

A(INDICE(I,J)) I A(INDICE(I,J))-(VECT(I)*VECT(J))/NHYS

WRITE(2,98)A(INDICE(I,J))

FORMAT(1OX,E16.5)

CONTINUE

RHS(I,1) I RHS(I,1)-VECT(I) *TMYHYS/NHYS

CONTINUE

COREAC I CORPAC+((TMYHYS**2)/NHYS)

II.C ISAVE VECT NHYS AND TMYHYS T

COMPUTE SOLUTIONS FOR HYS

WRITE(3,*) NHYS,TMYHYS

FORMAT(3X,I8,1X,E15.5)

WRITE(3,*)(VECT(I),II1,NRANR)

FORMAT(1X,8E15.5)

II.D- ZEROING VECT,NHYS,TMYHYS

BEFORE START READING NEW

HYS GROUP

NHYS I O

TMYHYS I 0.0

DO 10 I I 1,NRANK

VECT(I) I 0.0

CONTINUE

II.E- COUNTING THE NUMBER OP HERD

YEAR SEASONS

NOHYS I NOHYS+1

IF(EOREC.NE.1)GO TO 22

PRINT*,' END OP THE ABSORBING PHASE '

ppINTe,0eeeeeeeeeeeeeeseeeeeeeeeaeeeaseeeeeeeeeeeeeeeeeeeeee0

II.P- END OF ABSORBING PHASE WRIT

A AND RES

PRINT*,'*****NO. OE RECORDS*‘*RECORDS USED***COUNT HYS***‘

WRITE(2,702) NREC,K

PRINT*,’********NUMBER OE HERD-YEAR-SEASONS*****'

WRITE(2,702)NOHYS

FORMAT(5X,18)

TOTBAR(1) I TOT(1)/NREC

VARDEP I (TYY-TOT(1)*TOT(1)/NREC)/(NREC-l)

PRINT*,' ROW VARIANCE '
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WRITE(2,*)VARDEP

Do 59 I-2,NN

TOTBAR(I)ITOT(I)/NREC

CONTINUE

PRINT*,' MEANS or DEEEND AND COVAR"S '

WRITE(2,70) (TOTEAR(I),I-I,NN)

PRINT*,' FINAL z"z MATRIX AFTER ABSORBING HYS '

DO 3 I - 1,NRANK

NEITE(2,94)(A(INDICE(I,II)).II-I,NEANE)

FORMAT(1X,8£15.5)

CONTINUE

PRINT*,' FINAL Ens AFTER ABSORBING Eys '

Do 410 I - 1,NRANK

NEITE(2,97) REE(I,I),REs1(I,1)

PORNAT<3X,2E16.5)

CONTINUE

III.-START REML PROCESS

III.AI OBTAIN SOLUTIONS ADD

RATIO TO SIRE DIAGONALS

NDIAG I 0

ITERA I 0

PRINT*,‘ SIRE DIAGONALS + RATIO '

DO 150 I I 1,NSIRES

IF(A(INDICE(I,I)).EQ.0.0) THEN

NDIAG I NDIAG+1

END IF

A(INDICE(I,I)) I A(INDICE(I,I))+RATI01

WRITE(2,70) A(INDICE(I,I))

CONTINUE

PRINT*,'**** MUM OF SIEEs NO PRESENT** ',NDIAG

CONTINUE

III.E- INVEET A INTO AINv

PRINT*,' VECTOR OE SYMETRIC MATRIX '

DO 401 I - 1,LHALF

WRITE(2,104)A(I)

FORMAT(10X,EIG.5)

CONTINUE

x - 1

DO 735 I - 1,NRANK

J - I*(I+1)/2

PRINT*,' ROW ',I

PRINT 1004,(A(L),L - K,J)

K - 3+1

FORMAT(1X,6216.5)

CONTINUE

N - NRANK

CALL LINV4P(A,N,AINv,wx,IEE)
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PRINT*,' ZZ +RATIO INVERTED MATRIX HALF STORED. '

DO 134 I I 1,LHALF .

WRITE (2,34)AINV(I)

FORMAT (1X,E16.5) '

CONTINUE

III.B- RESTORE ORIGINAL A MATRIX

0
0
0
0
U
0
0
0

P
fi

U a
b

DO 151 I I 1,NSIRES

A(INDICE(I,I)) I A(INDICE(I,I))-RATI01

151 CONTINUE

C

C III.C- NULTIPLY AINV BY RES AND

C OBTAIN SOLUTIONS

C

N I 1

IE I NRANK

IC I NRANK

C

CALL VNULSF(AINV,N,RES,N,IE,C,IC)

C

C PRINT*,' SOLUTIONS '

C DO 5001 I I 1,NRANK

C NRITE(2,34)C(I,1)

C5001 CONTINUE

C

C IV.A- CALCULATE ERROR VARIANCE

C

C CALCULATE UPU

C

UPU I 0.0

DO 1290 I I 1,NSIRES

UPU I UPU+C(I,1)**2

1290 CONTINUE

PRINT*,' U PRIME U '

WRITE(2,290)UPU

290 FORNAT(1X,E16.5)

CALCULATE TKONPSON

FACTOR

THOFACIRATI01*UPU

0
0
0
0
0

PRINT*,' THOMPSON FACTOR '

WRITE(2,290)THOFAC

IV.A.1- NULTIPLY SOLUTIONS BY RHS

0
0
0
0

BPXY I 0.0

BPXYl I 0.0

DO 1950 I I 1,NRANK
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EPXY I BPXY+RHS(I,1)*C(I,1)

BPXYl I BPXY1+RHSI(I,1)*C(I,1)

CONTINUE

PRINT*,' SOLUTIONS TIMES RHS BPXY AND BPXYI '

WRITE (2,950)BPXY,BPXY1

FORMAT(1X,2E16.5)

ERRVAR I TYY-CORFAC-EPXY-TROEAC

DFERR I NREC-NCOV-NOHYS

ERRVAR I ERRVAR/DFERR

PRINT*,'ERRVAR,TOTSS,BPXY,CORFAC'

WRITE(2,750)ERRVAR,TYY,EPXY,COREAC

FORMAT(1X,4E16.5)

RSQI(CORFAC+EPXY+TROFAC)/TYY

PRINT*,' RSQ '

WRITE(2,*)RSQ

IV.A.2- CALCULATE SIRE VARIANCE

IV.A.3- CALCULATE TRACE

TRACE I 0.0

II I 1

I I 0

I I I+II

TRACE I TRACE+AINV(I)

II I II+1

IF(I.EQ.LSIRE)GO TO 890

GO TO 600

CONTINUE

PRINT*,' TRACE '

WRITE(2,290)TRACE

IV.A.4- CALCULATE SIRE VARIANCE

SIRVAR - TRACE*ERRVAR

EIRVAR - SIRVAR+UPU

SIRVAR - SIRVAR/NSIREE

PRINT*,' SIRE VARIANCE ERROR VARIANCE '

WRITE(2,292)SIRVAR,ERRVAR

FORNAT(5X.216.5,5X,£16.5)

EER - (4*SIRVAR)/(SIRVAR+ERRVAR)

wRITE(2,291) MER

PRINT.’ 'fifiitiiiiittiiifii*i '

FORMAT ( ' HERITABILITY ' ,P9.4)

IV.A.5- CALCULATE NEW RATIO

RATIO2 I ERRVAR/SIRVAR

IV.A.6- CALCULATE RATIO DIFFERENC

RATDIF I ABS(RATI01-RATI02)

PRINT*,' RATIOI NEW RATIO RATIO DIFFERENCE '
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WRITE(2,768)RATI01,RATIOZ,RATDIP

FORMAT(1X,3E16.5)

IF(RATDIF.LE.SETDIF)GO TO 999

ITERA I ITERA+1

PRINT*,'******* END OF ITERATION *** ',ITERA

RATIOl I RATI02

GO TO 130

CONTINUE

PRINT*,'* *'

PRINTi,'itittiiiiit*iititiittttttiiiiitiitiittttifl'

PRINT*,' TEE ITERATIVE PROCESS HAS ENDED '

PRINTi,Uit.t*tiittttitittti*iiitttiiitititttittiii'

PRINT*,' '

PRINT*,'** TEE RATIO DIFFERENCE IS LESS TEAN** ',SETDIF

PRINT*,' '

PRINT*,' THERE WERE ',ITERA,' ROUNDS 0F ITERATION '

PRINT*,' '

PRINT*, 'SIRE VARIANCE '

WRITE(2,290) SIRVAR

PRIflTt,'tiiiitiflttiittiiitiflt'

PRINT*,' '

PRINT*, 'ERROR VARIANCE'

WRITE(2,290) ERRVAR

PRINTC"ttttiitfliitittfititifiifi'

PRINT*,' '

PRINT*,'EERITAEILITY'

NRITE(2,290) HER

PfiIRTi"ifitiiittttittflitttfiii'

PRINT*,‘ '

PRINT*,' '

DO 728 I I 1,NCOV

WRITE(2,827) I,A(INDICE(NSIRES+I,NSIRES+I))

FORMAT(5X,'SSCOV ',IS,'I ',E16.5)

vfirflTt"*iititttttififiiitiiiiiitt0

CONTINUE

WRITE(2,729) A(INDICE(NSIRES+2,NSIRES+1))

FORMAT(5X,'SCPCOV1 COV2 I ',216.5)

pnINTO,I*OOOOOOOOOOOOOOOOOOOOOOO0

IV.E- CALCULATE STANDARD ERRORS

0F SOLUTIONS

IV.B.1- CREATE A VECTORS WITH

INVERSE DIAGONALS

J I 0

DO 7355 I I 1,NRANK

J I J+I

D(I) I AINV(J)

IV.B.2- MULTIPLY DIAG * ERROR VAR
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D(I) I D(I)*ERRVAR

IV.E.3- CALCULATE STANDARDS ERROR

0(1) - SORT(D(I))

CONTINUE

V.- PRINT FINAL RESULTS

PRINT*, ' SOLUTIONS AND STANDARD ERRORS '

PRIM'. I ' *fiitiiiiiiiiii*ii*iiifiiflflitiiitiiifiifiii '

DO 5002 I - 1,NSIRES

SUMSIR - SUMSIR . SUMSIR+C(I,1)

WRITE(2,2005)I,C(I,1),D(I)

E0RMAT(Sx,' SIRE',IS,‘I ',E9.4,sx,E9.4)

CONTINUE

DO 5003 I - NSIRES+1,NSIRES+NCOV

WRITE(2,3005)I,C(I,1),D(I)

FORMAT(5X, 'COVAR',I5, '- ',29.4,sx.r9.4)

CONTINUE

WRITE(2,9090) SUMSIR

FORMAT(SX,'THE SIRE SOLUTIONS SUM TO ',r12.4)

IV.- START THE BACK UP PROCESS TO

OBTAIN EYS SOLUTIONS

REWIND 3

SUM I 0.0

NSOL I NOEYS+NRANR

HERE I 0.0

DO 1001 J I NRANK+1,NSOL

READ(3,*) NMYS,TMYHYS

READ(3,*)(VECT(I),II1,NRANR)

WRITE(2,3000) NHYS,TMYHYS

WRITE(2,3001)(VECT(I),II1,NRANK)

DO 567 I I 1,NRANK

SUM I SUM+(C(I,1)*(I1.0*VECT(I)))

WRITE(2,404)C(I,1),VECT(I)

FORMAT(2X,2E15.5)

CONTINUE

C(J,1) I (TMYHYS+SUM)/NEYS

WRITE(2,66)SUM,TMYHYS,C(J,1)

FORMAT(SX.3E15.5)

SUM I 0.0

BPKY I EPHY+(TMYHYS*C(J,1))

CONTINUE

ERRVARZ I TYY-BPHY-BPXYl-THOFAC

ERRVAR2 I ERRVARZ/DFERR

ERRDIFIERRVARZIERRVAR

PRINT*,' ERROR VAR HYS SOLUTIONS AND ERROR VAR CORR FACTOR '
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WRITE(2,750) ERRVAR2 ,ERRVAR,ERRDIF

C

8081 PRINT*,' ** ALL SOLUTIONS INCLUDING THE EYS ** '

PRINT*,' ** WERE WRITEN IN TAPE 4 ** '

D0 76 I I 1,NSOL '

C WRITE(2,34)C(I,1)

WRITE(4,*)C(I,1)

76 CONTINUE

STOP

END

c *fltti END op REML pggcnnnitaaittt

Ci‘tfi'ktiflfiitifiiifismomns**O****i********i**

SUEROUTINE VMULSE(A,N,E,M,IE,C,IC)

DIMENSION A(I), E(IE,M), C(IC,M)

DO 51 J - 1,M

Do 51 I - I,N

C(I,J) - 0.

INDEX - I*(I-1)/2

D0 52 x - 1,:

INDEX - INDEX+1

52 C(I,J) I C(I,J)+A(INDEX)*B(K,J)

IF (I.EQ.N) GOTO 51

K I 1+1

INDEX I INDEX+I

DO 53 RE I R,N

C(I,J) I C(I,J)+A(INDEX)*B(RR,J)

53 INDEX I INDEX+NR

51 CONTINUE

RETURN

END

C ALGORITHM AS7---J. APPL. STAT. 17,199---EEALY

SUEROUTINE LINV4P(A,N,AINV,W,IER)

DIMENSION A(1),AINV(1),U(1)

NRow - N

IER - 130

IF(NROW.LE.O)GOTO 100

IER - 0

CALL LUDECP(A,AINV,NROW,DI,DZ,IER)

IF(IER.NE.O)GOTO 100

NN - NR0w*(NRON+1)/2

IROW - NROW

NDIAC - NN

16 IE(AINV(NDIAC).EQ.0)OOTO 11

L - NDIAG

DO 10 I - IRON,NROW

N(I) - AINV(L)

L - L+I

10 CONTINUE

ICOL - NRow

JCOL - NN

MDIAC - NN

15 L - JCOL
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X I 0. -

IF(W(IROW).EQ.0)GOTO 99

IF(ICOL.EQ.IROW) X I 1./W(IROW)

KINROW

IF(X.EQ.IROW)GOTO 12

X I X-W(K)*AINV(L)

K I XII

L I L-1

IF(L.GT.MDIAG)L I LIK+1

GOTO 13

IF(W(IROW).EQ.0)GOTO 99

AINV(L) I X/W(IROW)

IF(ICOL.EQ.IROW)GOTO 14

MDIAG I MDIAG-ICOL

ICOL I ICOL-1

JCOL I JCOL-l

GOTO 15

L I NDIAG

DO 17 J I IROW,NROW

AINV(L) I 0.

L I L+J

NDIAG I NDIAG-IROW

IROW I IROW-l

IF(IROW.NE.0)GOTO 16

RETURN

IER I 129

END

III-IALGORITHM ASG-I-J. APPL. STAT 17,195-I-HEALY

SUEROUTINE LUDECP(A,UL,N,DI,D2,IER)

-----01,D2 NOT CURRENTLY IMPLEMENTED

DIMENSION A(1),UL(1)

DATA ETA/1.E-9/

IER I 1

IF(N.LE.0)GOTO 100

IER I 129

J I 1

K I 0

DO 10 ICOL I 1,N

L I 0

DO 11 IROW I 1,ICOL

R I K+1

W I A(K)

M I J

DO 12 I I 1,IROW

L I L+1

IF(I.EQ.IROW)GOTO 13

W I W-UL(L)*UL(M)

M I M+1

IF(IROW.EQ.ICOL)GOTO 14

IF(UL(L).EQ.0)GOTO 21

UL(K) I W/UL(L)

GOTO 11
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21 UL(K) I 0.

11 CONTINUE

14 IF(AES(W).LT.AES(ETA*A(K)))GOTO 20

IF(W.LT.0.)GOTO 100

UL(K) I SQRT(W)

GOTO 15

20 UL(K) I 0.

15 J I J+ICOL

10 CONTINUE

IER I 0

100 RETURN

END

FUNCTION INDICE(IROW,ICOL)

INDICE I IROW*(IROW-1)/2+ICOL

RETURN

END

*Eosoo Linc-584 Soc-1

OK-


