SCINTILLATORCANDIDATECOMPOUNDS ByDavidMichaelSmiadak ATHESIS Submittedto MichiganStateUniversity inpartialfulÞllmentoftherequirements forthedegreeof MaterialsScienceandEngineering-MasterofScience 2015ABSTRACTSCINTILLATORCANDIDATECOMPOUNDS ByDavidMichaelSmiadak CrystalswithcompositionMgTa 2O6andCe:LuAGweresynthesizedusingthemicro-pulling-down method.Thecrystalswerepreparedfrompowderedoxidesandtheresultswerecharacterizedwith x-raypowderdiffraction,x-rayluminescence,scanningelectronmicroscopy,andenergy-dispersivex-ray spectroscopy. AnalysisconÞrmedsinglecrystalgrowthsofCe:LuAGwhiletwophaseswereidentiÞedinthe MgTa 2O6growths.Productionparametersforthesecrystalgrowthsaredetailed.Furtherdevelopmentis requiredinthecaseofMgTa 2O6asgrowthresultsdidnotproducedetectableemissionspectrarequired ofscintillators. ThegrowthofsinglecrystalCe:LuAGwasconÞrmedandthespectralanalysismatchedthoseof publishedvalues.Ce:LuAGwasconÞrmedtobeanappropriatescintillatormaterialthatcanbegrown within-houseequipmentatLawrenceBerkeleyNationalLaboratory.Scanningelectronmicroscopyand energy-dispersivex-rayspectroscopytestingwereperformedatMichiganStateUniversity. Copyrightby DAVIDMICHAELSMIADAK 2015FormywonderfulwifeSaeeda ivACKNOWLEDGEMENTSIwouldliketothankalloftheindividualsatbothMichiganStateUniversityandLawrenceBerkeley NationalLaboratorywhomassistedmeinmypursuitofaMasterofScienceDegreeinMaterialsSci- enceandEngineeringatMichiganStateUniversity.Dr.CarlBoehlerthasbeenbothgenerouswith histimeandßexiblewiththisprojectÕsscope,allowingmetheopportunitytoextendmyworkfrom LawrenceBerkeleyNationalLaboratorywithexperimentalanalysisatMichiganStateUniversity.His technicalassistancehasbeeninvaluablewithshapingthescopeofthisproject.Iwouldalsoliketo thankmythesiscommitteemembersDr.PhillipEisenlohrandDr.DonaldMorellifortheirtechnical assistanceandadvice.IwouldliketothankbothDr.EdithBourret-CourchesneandDr.DidierPerrodin atLawrenceBerkeleyNationalLaboratoryfortheirinvaluableassistanceandguidanceinthesynthesis andcharacterizationofthescintillatorcandidatecompounds.IwouldalsoliketothankDr.Gregory Bizarri,Dr.IvanKhodyuk,Dr.MartinGascon,andDr.TetianaShalapakaatLawrenceBerkeleyNational Laboratoryfortheirbrain-stormingandresearchsuggestionsaswellasDr.PaulLecoqfromCERN.I wouldliketothankChrisRosenforhisassistanceinpowdersynthesisandx-raypowderdiffraction testingatLawrenceBerkeleyNationalLaboratoryaswell.IwouldalsoliketoacknowledgetheÞnancial supportprovidedbytheDepartmentofHomelandSecurityÕsDomesticNuclearDetectionOfÞce.Finally, Iwouldliketoexpressmyverygreatappreciationtomyparents,PamandMattSmiadakfortheir unwaiveringloveandsupport. vTABLEOFCONTENTS LISTOFTABLES ixLISTOFFIGURES xiKEYTOABBREVIATIONS xixIntroduction:ScintillatorPrinciplesandProperties 1InorganicScintillator:Properties 3PhysicalDensity 3Transparency 4ProductionandMachinability 4LightYield 4LinearityofLightOutput 5DecayTime 5Afterglow 6InorganicScintillator:Mechanisms 6Freeandimpurity-boundexciton 6Self-trappedexciton 6Self-activated 7Activatorions 7Core-valenceluminescence 8Charge-transfer 8InorganicScintillator:Applications&Requirements 8HistoricalDevelopment 81896-193981940-198091980-Present 9Background:SelectedCompoundsandMethods 11ScintillatorCandidate:Ce:LuAG 11AnalysisoftheLu 2O3-Al2O3PhaseDiagram 12ScintillatorCandidate:MgTa 2O613AnalysisoftheMgO-Ta 2O5PhaseDiagram 13PowderSynthesis 15Micro-Pulling-DownMethod 16InductiveHeating 17CrucibleandAfter-Heater 18Melt18DiameterControl 19GrowthChamber 20X-rayPowderDiffraction 20X-rayLuminescence 21ScanningElectronMicroscopy 21Energy-DispersiveX-raySpectroscopy 21viExperimentalProcedures 23PowderSynthesis:Ce:LuAG 23HydraulicallyPressed:Sample 123 ManuallyPressed:Sample 223 PowderSynthesis:MgTa 2O624LoosePowder:Sample 124 ManuallyPressed:Sample 224 ManuallyPressed:Sample 325 ManuallyPressed:Sample 425 Micro-Pulling-DownMethod 26ChamberTemperatureCurve 26SoftwareDevelopment 29CrystalSynthesis:Ce:LuAG 29HydraulicallyPressedSample 1,Trial 129 HydraulicallyPressedSample 1,Trial 230 HydraulicallyPressedSample 1,Trial 330 HydraulicallyPressedSample 1,Trial 431 ManuallyPressedSample 2,Trial 132 ManuallyPressedSample 2,Trial 233 ManuallyPressedSample 2,Trial 333 CrystalSynthesis:MgTa 2O634LoosePowderSample 1,MeltCheck 34LoosePowderSample 1,Trial 135 LoosePowderSample 1,Trial 236 LoosePowderSample 1,Trial 336 ManuallyPressedSample 3,Trial 137 ManuallyPressedSample 3,Trial 238 ManuallyPressedSample 3,Trial 339 ManuallyPressedSample 4,Trial 141 ManuallyPressedSample 4,Trial 242 ManuallyPressedSample 4,Trial 342 ManuallyPressedSample 4,Trial 443 ManuallyPressedSample 4,Trial 544 X-rayPowderDiffraction 45X-rayLuminescence 45CrystalMounting 46CrystalPolishing 46LBNLSample 1468.7M48Ce:LuAGSample 2,Trial 348 Ce:LuAGSample 1,Trial 250 MgTa 2O6Sample4,Trial 551 CrystalCoating 52ScanningElectronMicroscopy 52Energy-dispersiveX-raySpectroscopy 54ResultsandDiscussion 56CrystalResults:Ce:LuAG 56viiPressedPowder:Sample 1,Trial 157 PressedPowder:Sample 1,Trial 258 PressedPowder:Sample 1,Trial 359 PressedPowder:Sample 1,Trial 459 PressedPowder:Sample 2,Trial 159 PressedPowder:Sample 2,Trial 360 Ce:LuAGCrystalDiscussion 62CrystalResults:MgTa 2O663LoosePowder:MeltCheck 63LoosePowder:Sample 1,Trial 164 LoosePowder:Sample 1,Trial 264 LoosePowder:Sample 1,Trial 365 PressedPowder:Sample 3,Trial 366 PressedPowder:Sample 4,Trial 167 PressedPowder:Sample 4,Trial 368 PressedPowder:Sample 4,Trial 468 PressedPowder:Sample 4,Trial 571 X-rayPowderDiffraction 73MgTa 2O6:Sample 1,Powder 73MgTa 2O6:Sample 1,MeltCheck 73MgTa 2O6:Sample 1,Trial 374 MgTa 2O6:Sample 3,Trial 374 X-rayLuminescence 76Ce:LuAG:Sample 1,Trial 1+276 Ce:LuAG:Sample 1,Trial 3+476 MgTa 2O6:Sample 1,Trial 380 MgTa 2O6:Sample 4,Trail 1+380 ScanningElectronMicroscopy 83Ce:LuAG:LBNLSample 1482.7M83Ce:LuAG:Sample 1,Trial 283 Ce:LuAG:Sample 2,Trial 385 Ce:LuAG:LBNLSample 1468.7M85MgTa 2O6:Sample 4,Trial 585 Energy-dispersiveX-raySpectroscopy 86Ce:LuAG:Sample 2,Trial 386 Ce:LuAG:LBNLSample 1482.7M88MgTa 2O6:Sample 4,Trial 589 Conclusions91APPENDIX92BIBLIOGRAPHY115viiiLISTOFTABLES Table 1Historicallyinßuentialscintillators. 10Table 2ConstitutivecompoundmeltingtemperaturesinMgTa 2O6.13Table 3Commonµ-PDcrucibleandafter-heatermaterials,meltingtemperatures,andgrowth atmospheres. 19Table 4CompoundmixturefortengramsampleofCe:LuAG. 23Table 5CompoundmixtureforÞvegramsampleofMgTa 2O6.24Table 6Grindingpapersusedforpolishingceramicsamples. 47Table 7Photonenergies(keV),ofprincipalK-,L-,andM-shellemissionlines.Boldvaluesare withinourdetectorrange.[ 35]55Table 8Electronbindingenergies,inelectronvolts,ofselectedelements.[ 35]55Table 9AdditionalCe:LuAGsamplessentfromLBNLfortesting. 56Table 10ResultssummaryforCe:LuAG µ-PDgrowths.Sampletypeisthemethodofprepara- tionwhichwaseitherhydraulically-pressed(HP)ormanually-pressed(MP). 56Table 11Ce:LuAGSample 1crystalcomparisonwithlength-to-weightratio. 62Table 12ResultssummaryforMgTa 2O6µ-PDgrowths.Sampletypeisthemethodofprepara- tionwhichwaseithernon-pressed(NP)ormanually-pressed(MP). 63Table 13PeakemissionvaluesfrompublicationscomparedtotheexperimentallygrownCe:LuAG crystals. 79Table 14eZAFSmartQuantitativeResultsfromTEAMsoftware.Area 1ofCe:LuAGSample 2,Trial 3growth. 86Table 15eZAFSmartQuantitativeResultsfromTEAMsoftware.Area 1ofLBNLCe:LuAGSam- ple1482.7M.88Table 16DarkphaseeZAFSmartQuantitativeResultsfromTEAMsoftware.Area 1ofMgTa 2O6Sample4,Trial 5growth. 90Table 17LightphaseeZAFSmartQuantitativeResultsfromTEAMsoftware.Area 1ofMgTa 2O6Sample4,Trial 5growth. 90Table 18eZAFSmartQuantitativeResultsfromTEAMsoftware.Area 2ofCe:LuAGSample 2,Trial 3growth. 99ixTable 19eZAFSmartQuantitativeResultsfromTEAMsoftware.Area 3ofCe:LuAGSample 2,Trial 3growth. 101Table 20eZAFSmartQuantitativeResultsfromTEAMsoftware.Area 2ofLBNLCe:LuAGSam- ple1468.7Mgrowth. 103Table 21eZAFSmartQuantitativeResultsfromTEAMsoftware.Area 3ofLBNLCe:LuAGSam- ple1468.7Mgrowth. 105Table 22DarkphaseeZAFSmartQuantitativeResultsfromTEAMsoftware.Area 2ofMgTa 2O6Sample4,Trial 5growth. 106Table 23LightphaseeZAFSmartQuantitativeResultsfromTEAMsoftware.Area 2ofMgTa 2O6Sample4,Trial 5growth. 106Table 24DarkphaseeZAFSmartQuantitativeResultsfromTEAMsoftware.Area 2ofMgTa 2O6Sample4,Trial 5growth. 108Table 25LightphaseeZAFSmartQuantitativeResultsfromTEAMsoftware.Area 3ofMgTa 2O6Sample4,Trial 5growth. 108xLISTOFFIGURES Figure 1Sketchofscintillatorconversionofahighenergy(HE)photon.[ 14]2Figure 2Theafterglowmechanismwhereeitheranexcitationeventcreatesafreeelectronand electron-hole.Theelectron-holeistrappedat T2whiletheelectronistrappedat T1,onlyar- rivingat T2afteradelay.[ 7]5Figure 3Frenkelexciton,aboundstateofattractionbetweenanelectronandelectron-hole. 6Figure 4Self-trappedexciton. 7Figure 5AcubicCe:LuAGlatticestructurewithatomicpositionsoflutetium(green),aluminum (brown),andoxygen(red)takenfromICDDÕsPDF- 4+database,CrystalStructureSource:LPF. 12Figure 6TheLu 2O3-Al2O3phasediagram.[ 62]12Figure 7AtetragonalMgTa 2O6latticestructurewithatomicpositionsofmagnesium(green), tantalum(blue),andoxygen(red)takenfromICDDÕsPDF- 4+database. 13Figure 8PreliminaryphasediagramofthesystemMgO-Ta 2O5.[4]14Figure 9Mortarandpestlemadefromagatestoneusedtomixpowdercompounds. 15Figure 10DensiÞcationwasaccomplishedwitha 12-tonforcemanualpress. 15Figure 11Schematicdiagramof µ-PDsystemwithexternalinductiveRFheating. 16Figure 12Sequentialimagesofphotoelectriceffectwithphotonabsorptionandphotoelectronejec- tion(top)followedbyßuorescentx-rayemission(bottom). 22Figure 13PressedsampleofMgTa 2O6,singlepressattemptwithsigniÞcantlossinprocess. 24Figure 14PressedsampleofMgTa 2O6,twodifferentpresseswereusedtobreakthesampleinto amoremanageablesize. 25Figure 15Translationspeedcontrolswithlocal(programmed)andremote(user)adjustment. 26Figure 16Fracturedceramicinsulatorcapremovedfromchamberafterhightemperaturecycling. 26Figure 17Thewater-cooled µ-PDtestchamberfromCyberstar. 27Figure 18MarathonMM 2MHpyrometer. 28Figure 19Set-pointtotemperaturecalibrationcurvefordoubleinsulated µ-PDexperimentsat thecruciblenozzle. 28Figure 20Applicationsplashscreen. 29Figure 21ImagecaptureapplicationwrittenforWindows. 29xiFigure 22Sampleoutputofaformattedsingleframe. 29Figure 23ContinuousbutunevenCe:LuAGcrystalgrowth(Sample 1,Trial 2).30Figure 24Ce:LuAGcrystalgrowthwithlargemoltenregionbetweenthecrucibleandordered crystal(Sample 1,Trial 2).30Figure 25SmoothandstableCe:LuAGcrystalgrowth(Sample 1,Trail 3).30Figure 26Ce:LuAGcrystalgrowthwithhorizontallinedefectsvisible(Sample 1,Trail 3).31Figure 27Ce:LuAGgrowthfailureshortlyaftersuccessfulseeding.Withanabrupttemperature increasethemeltpulledbackintothecapillarychannel(Sample 1,Trial 4).31Figure 28StableCe:LuAG crystalgrowth(Sample 1,Trial 4).31Figure 29TheCe:LuAGmeltattachedtotheseed,pullingitfromtheseedrodholderbelow(Sam- ple2,Trial 1).32Figure 30StableCe:LuAGcrystalgrowthwithlargercruciblenozzle(Sample 2,Trial 3).34Figure 31MeltcheckforMgTa 2O6.35Figure 32MgTa 2O6seedattempt(Sample 1,Trial 1).35Figure 33SecondMgTa 2O6seedattemptwithmoreemergingmelt(Sample 1,Trail 1).35Figure 34SeedusedforMgTa 2O6growthattempt,gluedtoceramicpostwiththermaladhesive. 35Figure 35MgTa 2O6seedattempt(Sample 1,Trial 2).36Figure 36SecondMgTa 2O6seedattemptafterseedtranslation(Sample 1,Trial 2).36Figure 37MgTa 2O6growthinitialization(Sample 1,Trail 3).36Figure 38IncreasingdiameterofMgTa 2O6growth(Sample 1,Trial 3).37Figure 39TheMgTa 2O6meltwouldnotadheretotheseedduetopoormaterialcompatibility (Sample3,Trial 1).38Figure 40TheseedrodpressedagainsttheMgTa 2O6meltwithsufÞcientforcetorotatetheafter- heaterandobstructviewing(Sample 3,Trial 2).38Figure 41TheMgTa 2O6meltdidnotattachtotheseedbutcontinuedtodischarge(Sample 3,Trial 3).39Figure 42TheMgTa 2O6dischargecoveredtheentireviewingwindow(Sample 3,Trial 3).39Figure 43TheendoftheMgTa 2O6dischargeemptiedthecrucible(Sample 3,Trial 3).40Figure 44TheMgTa 2O6dischargefromthelasttestmadeforacompatibleseed. 40Figure 45ThedriedMgTa 2O6seedneededtobesandeddownslightlypriortouse. 41xiiFigure 46VariablediameterMgTa 2O6growthseededonnewconstructedMgTa 2O6seed(Sam- ple4,Trial 1).41Figure 47MgTa 2O6growthinitiatedatasmalldiameterbeforegrowinglargerandcoolingquickly (Sample4,Trial 2).42Figure 48ThesmallinitialMgTa 2O6growthdiameterbrokeoncethemassaboveitwasseeded again,pluggingthecapillarychannelwithrelativelycoolMgTa 2O6(Sample4,Trial 2).42Figure 49VariablediameterMgTa 2O6growth(Sample 4,Trial 3).42Figure 50MgTa 2O6sampletobeseparatedafÞxedonrubberÞxture. 43Figure 51VariablediameterMgTa 2O6growth(Sample 4,Trial 4).43Figure 52VariablediameterMgTa 2O6growthafterseedingrestart(Sample 4,Trial 4).43Figure 53Wiresawusedtoseparatesamplegrowthfrombrokenseed. 44Figure 54VariablediameterMgTa 2O6growth(Sample 4,Trial 5).44Figure 55PreparedsampleforXRPDanalysis. 45Figure 56RawXRPDoutput,priortopost-processing. 45Figure 57BuehlerPneumetImountingpress. 46Figure 58Bottomsurfaceofthemountthatwillactasthetopofthesampletobepolished. 46Figure 59BuehlerEcometIVPolisher/Grinder. 46Figure 60ZeissStemiSV- 6stereomicroscopeusedforobservingpolishedsamples. 47Figure 61Ce:LuAG(< 0.5mol%Ce)- 10mmlengthcrystalafterÞrstpolish.MAG: 5.0x,AE: 1.5ms,AG: 4.0x.48Figure 62Ce:LuAG(< 0.5mol%Ce)- 10mmlengthcrystalpriortodiamondpastepolishing.MAG: 5.0x,AE: 1s,AG: 3.9x.48Figure 63Ce:LuAG( 1mol%Ce)from 3mmODcruciblenozzle.Initialcrystalstateaftermount- ing.MAG: 5.0x,AE: 300ms,AG: 2.8x49Figure 64Ce:LuAG( 1mol%Ce)from 3mmODcruciblenozzle.Crystalstateafterpolishwith 2400gritsandpaperfor 5minutesat 200rpm.MAG: 5.0x,AE: 150ms,AG: 4.0x49Figure 65Ce:LuAG( 1mol%Ce)from 3mmODcruciblenozzle.Crystalafterdiamondpastepol- ishing.MAG: 5.0x,AE: 300ms,AG: 4.8x49Figure 66Ce:LuAG( 1mol%Ce)from 1mmODcruciblenozzle.Crystalpriortopolishing.MAG: 5.0x,AE: 30ms,AG: 4.0x.50xiiiFigure 67Ce:LuAG( 1mol%Ce)from 1mmODcruciblenozzle.Crystalafter 320gritsandpa- per.MAG: 5.0x,AE: 200ms,AG: 5.6x.50Figure 68Ce:LuAG( 1mol%Ce)from 1mmODcruciblenozzle.Crystalafterdiamondpastepol- ishing.MAG: 5.0x,AE: 200ms,AG: 5.6x50Figure 69MgTa 2O6from 1mmODcruciblenozzle.Initialcrystalconditionaftermounting.MAG: 5.0x,AE: 30ms,AG: 4.0x.51Figure 70MgTa 2O6from 1mmODcruciblenozzle.Crystalaftersecondperpendicularpolish with4000gritpaper.MAG: 5.0x,AE: 200ms,AG: 5.6x.51Figure 71MgTa 2O6from 1mmODcruciblenozzle.Crystalafterrepeatedperpendicularpolishes. MAG:5.0x,AE: 200ms,AG: 5.6x.51Figure 72Ce:LuAG(< 0.5mol%Ce)- 10mmlengthcrystalaftercoating, 1nmthicknesstungsten coating.MAG: 5.0x,AE: 200ms,AG: 5.6x.52Figure 73LeicaEMMED 020modularhighvacuumcoater(ImagefromLeica). 53Figure 74MiraXMHelectronmicroscope(ImagefromTescan). 53Figure 75Compositeimageofthe 5mmCe:LuAGsamplessentfromLBNLforfurthertesting. 57Figure 76PositionofCe:LuAGcrystalseparationthatoccurredjustoutoftheviewingwindow ofthe µ-PDchamber(Sample 1,Trial 1).57Figure 77A25mmlongCe:LuAGcrystalwithanapproximatediameterof 1mm(Sample 1,Trial 1).57Figure 78RemainingCe:LuAGmeltcontainedinthecrucible(Sample 1,Trial 1).58Figure 79SmoothmoltenCe:LuAGwithincrucibleremainingaftercrystalgrowth(Sample 1,Trial 2).58Figure 80A100mmlongCe:LuAGcrystalwithanapproximatediameterof 1mm(Sample 1,Trial 2).58Figure 81A13mmlongCe:LuAGcrystalwithanapproximatediameterof 1mm(Sample 1,Trial 3).59Figure 82TheCe:LuAGcruciblemeltaftercrystalgrowth,contaminationisobservedonthetop surfacefromtheiridiumcrucible(Sample 1,Trial 4).59Figure 83CrystallizedCe:LuAGmeltwithinthecrucibleaftergrowthattempt(Sample 2,Trial 1).59Figure 84InitializationoftheCe:LuAGcrystalattherightwithcontaminationappearingasdark discolorationalongthecrystalexterior(Sample 2,Trial 3).60xivFigure 85Ce:LuAGcrystalgrowthwasapproximately 23mminlengthandwasbrokenduring after-heaterremoval(Sample 2,Trial 3).61Figure 86The100mmlongCe:LuAGcrystalpulledatarateof 0.5mmmin(Sample1,Trial 2)com- paredtotheshorterCe:LuAGcrystalgrownatarateof 0.1mmmin(Sample1,Trial 3).62Figure 87A103mmlongCe:LuAGcrystalgrownat 0.1mmmin(Sample1,Trial 4)comparedtoa 100mmlongCe:LuAGcrystalgrownat 0.5mmmin(Sample1,Trial 2).63Figure 88Topofcrucible,melttestforMgTa 2O6(Sample1).63Figure 89Semi-smoothmoltenMgTa 2O6withincrucibleafterthe µ-PDexperiment(Sample 1,Trial 1).64Figure 90Bluediscolorationonquartzpedestalafterseedattempt(Sample 1,Trial 1).64Figure 91SmoothmoltenMgTa 2O6meltwithincrucible(Sample 1,Trial 2).65Figure 92LoweredMgTa 2O6crystalwithintestchamber,belowinductioncoil(Sample 1,Trial 3).65Figure 93TheMgTa 2O6meltwithincrucibleafterthe µ-PDexperiment(Sample 1,Trial 3).65Figure 94MgTa 2O6crystalgrowth(Sample 1,Trial 3).66Figure 95MgTa 2O6dischargeattachedtotheseedrod,avoidingcontactwiththeseed(Sample 3,Trial 3).66Figure 96Compounddepositonsurroundingceramicinsulatorandlid(Sample 3,Trial 3).66Figure 97TheMgTa 2O6meltwithincrucibleafterthe µ-PDexperiment(Sample 4,Trial 1).67Figure 98The8mmMgTa 2O6growthattachedtothenewlyconstructedMgTa 2O6seed(Sam- ple4,Trial 1).68Figure 99TheMgTa 2O6meltinsidethecrucible(Sample 4,Trial 3).68Figure 100The12mmMgTa 2O6growthattachedtothenewlyconstructedMgTa 2O6seed(Sam- ple4,Trial 3).68Figure 101The136mmMgTa 2O6growthattachedtotheseedstillinthe µ-PDchamber(Sample 4,Trial 4).69Figure 102BrokenupMgTa 2O6growth,measuring 136mmtotal(Sample 4,Trial 4).70Figure 103MgTa 2O6meltwithinthecrucible,suspectedcontaminationfromtheiridiumcrucible (Sample4,Trial 5).71Figure 104Theexteriorofthecrucibleafterthe µ-PDexperiment,grainboundariesprominentaf- terhightemperaturecycling(Sample 4,Trial 5).71Figure 105BrokenupMgTa 2O6growth(Sample 4,Trial 5).72xvFigure 106DiffractionpatterntakenfromtheMgTa 2O6powdersamplepriortorunningthemelt checkcomparedagainstthepeakstandard(Sample 1).73Figure 107DiffractionpatterntakenfromtheMgTa 2O6meltaftercompletingthemeltcheck,com- paredagainstthepeakstandard(Sample 1).74Figure 108HighlightedregionsofMgTa 2O6growthwhereXRPDsamplesweretaken(Sample 1,Trial 3).74Figure 109DiffractionpatterntakenfromtheMgTa 2O6headregioncomparedagainstthepeak standard(Sample 1,Trial 3).75Figure 110DiffractionpatterntakenfromtheMgTa 2O6tailregioncomparedagainstthepeakstan- dard(Sample 1,Trial 3).75Figure 111DiffractionpatternstakenfromtheMgTa 2O6growthusedforasaseedcomparedagainst thepeakstandard.(Sample 3,Trial 3).75Figure 112Ce:LuAGcrystalspreparedforXRLtesting,Sample 1,Trial 3+4(top)andSample 1,Trial 1+2(bottom).76Figure 113XRLintensityforthecombinationofCe:LuAGcrystalgrowthsfromSample 1,Trial 1+2.77Figure 114XRLintensityforthecombinationofCe:LuAGcrystalgrowthsfromSample 1,Trial 3+4.78Figure 115XRLintensitycomparisonforthecombinationofCe:LuAGcrystalgrowthsfromSam- ple1,Trial 1+2andSample 1,Trial 3+4.79Figure 116XRLintensityforthetailportionoftheMgTa 2O6growth(Sample 1,Trial 3).80Figure 117XRLintensityforthecombinationofMgTa 2O6growthsfromSample 1,Trial 1+3.81Figure 118Four-waycomparisonofXRLresults.TheMgTa 2O6testresultsarebarelydiscernible alongthex-axiswhiletheCe:LuAGrelativeintensitiesdominate. 82Figure 119Ce:LuAGcrystal(LBNLSample 1482.7M).83Figure 120Ce:LuAGcrystal,MAG: 100x(Sample 1,Trial 2).83Figure 121Ce:LuAGcrystalundersecondaryelectrons(left)andback-scatterdetection(right),MAG: 2000x(LBNLSample 1482.7M).Bothimagesarefeaturelessoutsideofsomedustparticles. 84Figure 122Ce:LuAGcrystal,MAG: 100x(Sample 2,Trial 3).85Figure 123UncoatedCe:LuAGcrystal(LBNLSample 1468.7M).85Figure 124MgTa 2O6two-phasegrowth(Sample 4,Trial 5).85Figure 125HighlightedareaofEDSanalysis.Area 1ofCe:LuAGSample 2,Trial 3growth. 86xviFigure 126EDSoutputspectrumofArea 1ofCe:LuAGSample 2,Trial 3growth. 87Figure 127HighlightedareaofEDSanalysis.Area 1ofLBNLCe:LuAGSample 1482.7Mgrowth. 88Figure 128EDSanalysisofArea 1ofLBNLCe:LuAGSample 1482.7Mgrowth. 88Figure 129HighlightedareaofEDSanalysis.Area 1ofMgTa 2O6Sample4,Trial 5Growth. 89Figure 130EDSanalysisoflightphase(top)anddarkphase(bottom),notethediscrepancyinthe MgKpeaks. 89Figure 131Ce:LuAGcrystal,undervariousmagniÞcations(LBNLSample 1482.7M).93Figure 132Ce:LuAGcrystal,undervariousmagniÞcations(Sample 1,Trial 2).94Figure 133Ce:LuAGcrystal,undervariousmagniÞcations(Sample 2,Trial 3).95Figure 134Ce:LuAGcrystal,undervariousmagniÞcations(Sample 1,Trial 2).96Figure 135MgTa 2O6crystal,undervariousmagniÞcations(Sample 4,Trial 5).97Figure 136HighlightedregionofEDSanalysis.Area 2ofCe:LuAGSample 2,Trial 3growth. 98Figure 137EDSoutputspectrumofArea 2Ce:LuAGSample 2,Trial 3growth. 98Figure 138HighlightedregionofEDSanalysis.Area 3ofCe:LuAGSample 2,Trial 3growth. 100Figure 139EDSoutputspectrumofArea 3Ce:LuAGSample 2,Trial 3growth. 100Figure 140HighlightedregionofEDSanalysis.Area 2ofLBNLCe:LuAGSample 1468.7Mgrowth. 102Figure 141EDSoutputspectrumofArea 2ofLBNLCe:LuAGSample 1468.7Mgrowth. 102Figure 142HighlightedregionofEDSanalysis.Area 3ofLBNLCe:LuAGSample 1468.7MGrowth. 104Figure 143EDSoutputspectrumofArea 3ofLBNLCe:LuAGSample 1468.7Mgrowth. 104Figure 144HighlightedregionsofEDSanalysis.Area 2ofMgTa 2O6Sample4,Trial 5growth. 106Figure 145EDSoutputspectrumoflightphase(top)anddarkphase(bottom),notethediscrep- ancyintheMgKpeaks.Area 2ofMgTa 2O6Sample4,Trial 5growth. 107Figure 146HighlightedareaofEDSanalysis.Area 3ofMgTa 2O6Sample4,Trial 5growth. 108Figure 147EDSoutputspectrumoflightphase(top)anddarkphase(bottom),notethediscrep- ancyintheMgKpeaks.Area 3ofMgTa 2O6Sample4,Trial 5growth. 109Figure 148Pythonprogramminglanguage. 111Figure 149VisualBasicprogramminglanguage. 112xviiKEYTOABBREVIATIONS µ-PDmicro-pulling-down. ACalternatingcurrent. AEautoexposure. AGanaloggain. ATM atmosphere. BDBridgman.CBconductionband. CCDchargecoupleddetector. Ce:LuAGceriumdopedlutetiumaluminumgarnet. Ce:YAG ceriumdopedyttriumaluminumgarnet. Ce:YAP ceriumdopedyttriumaluminiumperovskite. CTx-raycomputedtomography. CVcore-valence. CXcharge-transfer. CZCzochralski.EDSenergy-dispersivex-rayspectroscopy. EFGedge-deÞned-Þlm-fed.FPSframes-per-second. FWHMfullwidthathalfmaximum. FZßoatingzone. HEhigh-energy. HEPhigh-energyphysics. HPhydraulically-pressed. ICDDInternationalCentreforDiffractionData. IDEintegrateddevelopmentenvironment. IDLEIntegratedDeveLopmentEnvironment. IRinfrared. LBNLLawrenceBerkeleyNationalLaboratory. xviiiLHCLargeHadronCollider. LPFLinusPaulingFile. LuAGlutetiumaluminumgarnet. LVSEM low-vacuumscanningelectronmicroscopy. LYlightyield. MAGmagniÞcation.MPmanually-pressed. NPnon-pressed. ODouterdiameter. OEopticalexcitation. OP-Soxidepolishingsuspension. PCpersonalcomputer. PETpositronemissiontomography. PMTphotomultipliertubes. PSIpoundspersquareinch. RErareearth. RFradio-frequency. RPMrotationsperminute. RTroomtemperature. SAself-activated. SEsecondaryelectrons. SEMscanningelectronmicroscopy. SPset-point.SSCSuperconductingSuperCollider. SXself-trappedexciton. TEAMTextureandElementalAnalyticalMicroscopy. UVultraviolet. VBVisualBasic. VBvalencebands. XRLx-rayluminescence. XRPDx-raypowderdiffraction. YAG yttriumaluminumgarnet. xixIntroduction:ScintillatorPrinciplesandProperties Theobjectiveofthisstudywastoproducesinglecrystalsofde- siredcompounds,evaluatethegrowth,anddrawconclusions abouttheirfeasibilityasascintillator.Acrystalisasolidconsist- ingofaregularperiodicarrangementofatoms. Ascintillatorisamaterialpossessingluminescentcentersthat absorbshigh-energyphotonsandemitslightinthevisibleor near-visiblespectrum.Theenergylevelsinvolvedinthisradiative transitionmustoccurintheenergygapsothattheemittedlightis notlostthroughreabsorption.Thistransitionhasprovenusefulfor detectingbothx-rayand !-rayphotons. 11B.C.Grabmaier,W.Rossner,and J.Leppert.Ceramicscintillatorsforx-ray computedtomography. PhysicaStatus Solidi(a) ,130(2):K183ÐK187,April 1992Scintillatorsexistasorganics,inorganics,glasses,liquids,and gases.Thisstudyfocusesoninorganicsinglecrystalscintillators forapplicationsintheÞeldofhigh-energyphysics(HEP)particle detection.Scintillatorsareusedinconjunctionwithphotosensitivedevices thatareabletoquantifytheemittedvisiblelight.Thesedevices includephoto-diodesandphotomultipliertubes(PMT). Inordertobetterunderstandtheprocessofscintillation,itis usefultoÞrstdescribethebandstructureofamaterial.Thisband structureisdividedintothreecriticalregions:conductionband (CB),valanceband(VB),andtheenergygap(E g)thatseparates them.TheCBconsistsofelectronsthathavesufÞcientenergytotravel throughoutthecrystalwhiletheVBconsistsofelectronsthatare boundtothelatticestructure.TheCBandtheVBareseparatedby theenergygapwherenoelectronstatesexist. ElectronscanbepromotedtotheCBbyabsorbingenergyfrom radiationinteractions.Thisisthedrivingmechanismbehind scintillation.Directde-excitationthroughphotonemissioncan beinefÞcient,withtheresultantphotoncarryingenergybeyond thevisiblespectrum.Thisexcessenergycannotbecountedby photo-detection.Hereiswheretheneedforscintillatorsarises,to shiftthewavelengthofthephotonintothevisibleornearvisible spectrum.Inordertoenhancephotonemission,asmallamountofimpu- ritycanbeintroducedintothelattice.Thisimpurityisreferredto asanactivatorordopant.Theseactivatorscreatespecialenergy siteswithinthelatticewherethenormalenergybandstructureis modiÞed.Thesespecialenergysitescanbewithinthetraditionally forbiddenenergygapwhereelectronscande-excitetotheVB. 1Figure 1:Sketchofscintillatorconver- sionofahighenergy(HE)photon.[ 14]2Duetothesmallerenergyoftheseactivatorsites,transitions betweenthesesitesandtheVBresultinphotonswithloweren- ergies.Thislowerenergybringsthesephotonsintothevisible ornear-visiblespectrumofemissions.Theseactivatorsitesare referredtoasluminescencecentersorrecombinationcenterswhen theyresideintheenergygap. Thistrappingofelectronsisusefulbecausetheselocalizeden- ergylevelsresideintheenergygapandavoidrecombinationwith thelattice,allowingforlighttoescapethescintillatormaterial. ElectronsinthisstatebecometemporarilyremovedfromtheCB. 22S.Kasap. PrinciplesofElectronic MaterialsandDevices .McGraw-Hill Education,thirdedition,March 2005Inorganicscintillationcanbedescribedinthreephases: 1.Ionizationeventthatcreatesaninnershellelectron-holeandan energeticprimaryelectron. 2.Whentheelectronenergybecomeslessthantheionization threshold,electronsandelectron-holesthermalize.Thisin turntransferselectronstoexcitetheluminescentcentersinthe energygap. 3.Excitedluminescentspeciesrelaxtothegroundstateand emissionofscintillationlightoccurs. Whileeachprocessoccurswithcharacteristictimeconstants. theemissionofscintillationlightvarieswidelyduetothequan- tumwave-functioncharacteristicsofthelevelsinvolvedinthese transitions.3Duetothesecomplexities.predictivecomputational 3P.Lecoq,A.Annenkov,A.Gektin, M.Korzhik,andC.Pedrini. Inorganic ScintillatorsforDetectorSystems:Physical PrinciplesandCrystalEngineering .Springer-Verlag,Þrstedition, 2006modelinghasproveddifÞcultindeÞningthesetimeconstants withexperimentalistsexploringwellaheadofwhatcomputational modelingcanreliablypredict. 44M.J.Weber.Inorganicscintillators: todayandtomorrow. JournalofLumines- cence,100(1-4):35Ð45,2002InorganicScintillator:Properties Inorganicscintillatorsarethefocusofthisstudy.Importantprop- ertiesthatareconsideredwhenevaluatingscintillatorcandidate materialsarephysicaldensity,transparency,productionand machinability,lightyield,linearityoflightoutput,decaytime,and afterglow. PhysicalDensity Highphysicaldensityiscriticallyimportantforhighenergy applicationsduetoitsinherentlyhigherstoppingpowerprovided bythehostlattice.ScintillatorsalsobeneÞtfromelementswith higheffectiveatomicnumbers(Z eff ),whichhavealargerphysical sizewithinthelatticetostophighenergyparticleswithinthe crystal.Additionally,ahigherdensityalsoreducesthephysical sizeofadetectorwhichisimportantforÞeldapplications. 3Transparency Thetransparencyofascintillatordirectlyrelatestoitsabilityto transportphotonscintillationtoacoupledphoto-detector.Scintil- latorstypicallyabsorbhigh-energyparticlesattheirentranceface andthisenergymakesittotheothersideofthecrystalthrough acombinationofreßectionsandscatteringbothatsurfacesand withinthematerial.Minimizingthisvisiblephotonpathlength iscritical.Longerphotonpathlengthscanbefurthersuscepti- bletoopticalabsorptionandefÞciencychangesduetoradiation damage.55C.GreskovichandS.Duclos.Ceramic scintillators.AnnualReviewofMaterials Science,27(1):69Ð88,August 1997ProductionandMachinability Easeofproductionandmachinabilityareimportantwhendeter- miningappropriatescintillatorcandidatematerials.SigniÞcant costcanbeaccruedthroughequipment,productionandtheacqui- sitionofrawmaterials. Enduseofcrystalstypicallyrequirethemtobeinstalledin detectorswithspeciÞcrepeatablecrystalgeometry.Cleavageof singlecrystalscanalsobeaconcern.Incorrectorientationduring machiningcanfractureasinglecrystalinunintendedways. Additionally,acrystalmusthaveappropriatechemical,me- chanical,andradiationhardness.Crystalsthatdonotundergo phasetransformationordecomposeintoconstitutivecompounds betweentheirmeltingtemperatureandRTarepreferredbecause theyareeasiertoproduce. LightYield Ahighlightyield(LY),measuredinphotons/MeV,isdesirablefor mostscintillatorapplications.Formedicalapplication,scintillators withhighLYcanreducetheamountoftimeapatientisexposed toradiation.ScintillatorLYislargelydrivenbytheprocessesthat excitetheluminescencecentersofthescintillatingions. Thenumberofvisible/UVphotons, Nph,producedperenergy canbeexpressedas, Nph=E"EgáSáQ(1)where Eisenergy, "representstheaverageenergyrequiredto produceonethermalizedelectron-holepair, Egistheenergy gap,SandQarethequantumefÞcienciesofthetransportand luminescencestages,respectively.Theaverageenergyrequired toproduceathermalizedelectron-holepair,relatestotheenergy suchthat, Ee-h="Eg(2)4with"!2"3.6TherelativeefÞciencyofascintillator, #,canbe 6C.W.E.vanEijk.Inorganic-scintillator development. NuclearInstrumentsand MethodsinPhysicsResearchSectionA: Accelerators,Spectrometers,Detectorsand AssociatedEquipment ,460(1):1Ð14,2001expressedas, #=EgenNphE(3)where EgenistheenergyoftheUV/visiblephoton.Oneofthe mostefÞcientscintillatorscurrentlyproducedisZnS:Agwithan efÞciencyof #!0.2.Anotherfactortoconsiderwhenevaluatingascintillatorcandi- dateistheenergyresolutionofthescintillatorandaccompanying photodetectorneeded.Conventionalsolidstatesemi-conductors orphotomultiplier-basedphotodetectorscandetectgeneratedvis- ibleorUVlightwithhighsensitivity. 7Energyresolutionismost 7G.Dhanaraj. SpringerHandbookof CrystalGrowth .Springer-Verlag,Þrst edition,2010commonlydeÞnedasasystemÕsabilitytodiscriminatebetween !-photonsofdifferentenergies.ThisenergyresolutionisdeÞned bythefullwidthathalfmaximum(FWHM)ofthephoto-peakata givenenergydividedbyitsenergy.Thisvalueisthusafunctionof LY. LinearityofLightOutput Theidealscintillatormaterialwouldbeabletoconverteach !-photontoaphotonofreducedenergyinthevisiblespectrum. Eachcandidatematerialpossesseslessthanidealconversiondue toaninhomogeneousscintillatormicro-structureandCompton scattering.Comptonscatteringisthescatteringofaphotonbya chargedparticle,typicallyanelectron.Thisdecreasestheenergy andincreasesthewavelengthoftheaffectedphoton. Additionally,discrepanciesinmicro-structurecanleadtospa- tialdifferencethatleadtouniqueconversionefÞciencieswhere Comptonscatteringproduceselectronsofvaryinglowerenergies. Proportionalityiscriticallyimportantwhenitcomestodeter- mineenergyresolutionsbecausenon-lineardeviationsinLYare detrimentaltoscintillatorperformance. DecayTime Figure 2:Theafterglowmechanism whereeitheranexcitationeventcreates afreeelectronandelectron-hole.The electron-holeistrappedat T2whilethe electronistrappedat T1,onlyarriving atT2afteradelay.[ 7]Decaytime,alsoreferredtoasscintillatorresponse,isanimpor- tantfactorindeterminingthetimeresolutionofascintillator.The fasterthedecaytimeoftheluminescention,thebetterthetiming resolution.Theradiativelifetime, $,oftheluminescentcenteris desiredtobeshortformedicalapplicationbecauseitcanlimitthe timenecessaryforanindividualtobeexposedtotheradiation. The4f-5dopticaltransitionproducedbyionssuchas Ce3+exhibitatypicaldecaytimeof 10-60nsrange. 5Afterglow Afterglowisthefractionofscintillatinglightpresentforagiven periodoftimeoncetheionizingradiationhasstopped.Itisoften desirableforthiseffecttobeminimizedoreliminatedcompletely. IfnotcontrolledforaspeciÞcapplicationitwilltakemoretimeto discriminatebetween !-photons,decreasingtimingresolution. 88C.R.RondaandA.M.Srivastava. Scintillators,chapter 5,pages 105Ð132.Wiley-VCHVerlagGmbHandCo. KGaA,2007AfterglowcanbesigniÞcantlylongerthantheradiativelifetime andoccursbecauseofdelayedradiantrecombinationofelectrons andelectron-holesduetothetrappingofeitherasshowninFigure 2.Figure 3:Frenkelexciton,aboundstate ofattractionbetweenanelectronand electron-hole. InorganicScintillator:Mechanisms Manyofthescintillationmechanismsarerelatedtoexcitonswhich canbedescribedasanelectricallyneutralquasiparticle.This excitonstateoccurswhereanelectronandanelectron-holeare attractedtoeachotherbyelectrostaticCoulombforcesasshownin Figure 3.ExamplesofÞnalstageluminescenceinscintillatorsincludes freeandimpurity-boundexcitons,andself-trappedexciton(SX). Somescintillatorsareconsideredself-activated(SA)whileothers useactivator/dopantions,core-valence(CV)luminescence,or charge-transfer(CX)emission. Intrinsicscintillatormaterialsareself-activatedandcaninvolve electronandelectron-holerecombination.Additionalmechanisms forself-activationinvolveexcitonluminescencebyeitherfree, self-trappedordefect-trappedexcitonstates. 99S.E.Derenzo,M.J.Weber,E.D.Bourret- Courchesne,andM.K.Klintenberg.The questfortheidealinorganicscintillator. NuclearInstrumentsandMethodsin PhysicsResearchSectionA:Accelerators, Spectrometers,DetectorsandAssociated Equipment,505(1-2):111Ð117,2003Extrinsicscintillatormaterialsareexternallyactivated,typically associatedwithadopantion.Examplesofthesedopantions includeTl +,Ce 3+,andEu 2+.1010M.J.Weber.Scintillation:mechanisms andnewcrystals. NuclearInstruments andMethodsinPhysicsResearchSectionA: Accelerators,Spectrometers,Detectorsand AssociatedEquipment ,527(1-2):9Ð14,2004Freeandimpurity-boundexciton Excitonsareformedwhenanionizationelectronandelectron- holeareboundintopairstates.Thisislargelyconsideredalow temperaturemechanismthatisboundasanentitytoanimpurity atomordefect.Atroomtemperature(RT)thisemissiontypeis weakbecausetheexcitonstateisquicklydisassociated. Self-trappedexciton TheSXcasedescribesanionizationelectron-holelocalizingonone ormoreatomswithassociatedlatticerelaxation.Theeffectresults fromthetrappingofaspatiallydiffuseelectronasshowninFigure 4.6Self-activatedInSAdrivenscintillatorstheluminescentspeciesisaconstituent ofthecrystal.Thismechanismtypicallyhasreduceddecaytime andluminosityatRT. Activatorions Figure 4:Self-trappedexciton. ThisextrinsicmechanismisdrivenbydopantionssuchasTl +,Ce3+,andEu 2+.Theionizationelectron-holesandelectronsare trappedonthesameluminescentionthatfallswithintheenergy gap.ThespeciÞcactivatorionexploredinthisstudyistheCe 3+5d#4ftransitionfortheCedopedCe:LuAGsinglecrystal.AtRT, the5d#4ftransitionofCe 3+centercanbeexploitedforfastand efÞcientscintillationinbothyttriumaluminumgarnet(YAG)and lutetiumaluminumgarnet(LuAG)matrices. RareearthionsarecharacterizedbyanincompletelyÞlled 4fshell.TheCe 3+iondealsspeciÞcallywithanelectronthatreturns fromthe 5dorbitaltothe 4forbital.Ofthetrivalentions,Ce 3+isthesimplestcasewithitssingleelectronwiththeexcited 5dconÞguration.1111G.BlasseandB.C.Grabmaier. Lu-minescentMaterials .Springer-Berlin Heidelberg,Þrstedition, 1994The5d#4ftransitionshowninCe 3+dopedscintillatorspro- ducesahighLYinthevisibleregionwithtimeresponsesinthe nanosecondrange. 1212C.W.E.vanEijk,J.Andriessen, P.Dorenbos,andR.Visser.Ce 3+dopedinorganicscintillators. NuclearInstrumentsandMethodsinPhysics ResearchSectionA:Accelerators,Spectrom- eters,DetectorsandAssociatedEquipment ,348(2-3):546Ð550,1994IonssuchasCe 3+andPr 3+areimportantdopantsinscintilla- torsbecausetheyoccurinmorethanonevalencestateandcan inducephotoionization.Theenergygapmustbelargeenoughto accommodatetheseadditionalenergytrapsforutilization.Itis importanttonotethattheenergygapcannotbetoolargebecause thisreducesthelightyieldofthescintillator. 1313M.Nikl,J.A.Mares,N.Solovieva, J.Hybler,A.Voloshinovskii,K.Nejezch- leb,andK.Blazek.Energytransferto theCe 3+centersinLu 3Al5O12:Cescin- tillator. Physicastatussolidi ,201(7):R41ÐR44,May 2004Animportantconsiderationinthesecrystalsisinhomogeneous distributionsofthedopant.Inhomogeneousdistributionsare associatedwiththedependenceofthesegregationcoefÞcient ofdopantonthecrystallizationrate.Asaresult,theactivator distributionisnotuniformthroughtheÞber.Thecoreofacrystal willhavealowerscintillationefÞciencyrelativetoitsperimeter. 1414A.V.Gektin. TrendsinScintillation Crystals,chapter 17,pages 299Ð312.Wiley-VCHVerlagGmbHandCo. KGaA,2010ThisefÞciencycanbeexpressedas, keff =k!k+(1"k)exp""V%D#$"1(4)where k=CS/CLinwhich CSandCLaretheactivatorconcen- trationincrystalsandmelt, DisthediffusioncoefÞcient, Visthe growthrate,and %isthedistanceofthesolidiÞcationinterface. 7Core-valenceluminescence TheCVmechanismoccurswhentheenergygapbetweentheVB andthetopcorebandislessthanthefundamentalenergygap. ThisCVtransitionisresponsibleforafastsub-nanosecondlumi- nescence,characteristicofCVluminescence. 15Thismechanismis 15P.Lecoq,A.Annenkov,A.Gektin, M.Korzhik,andC.Pedrini. Inorganic ScintillatorsforDetectorSystems:Physical PrinciplesandCrystalEngineering .Springer-Verlag,Þrstedition, 2006alsodepictedinFigure 1.Charge-transfer Lastly,theCXmechanismischaracterizedbytheexcitationof radiativecentersresultingfromanenergytransferfromexcited states.InorganicScintillator:Applications&Requirements Scintillatorshaveavarietyofapplicationsandconsequentlydiffer- entmaterialrequirements.Abroadercategoryofscintillatorsused withincountingtechniquedevicescanbegeneralized.Theseap- plicationsincludeHEPcalorimeterforSSC/LHC,nuclearphysics, astrophysics,PET,gammacameras,neutrons,andindustrialappli- cations.Theseapplicationsdemandhighlightyieldsbutvaryin requirementsforshortdecaytimes.Decaytimesforastrophysics andgammacamerasaretypicallylessimportant. Densitiesacrosstheseapplicationsarepreferredhighwiththe exceptionofneutroncounting.Ruggednessisalsoacriticalfactor fornon-laboratoryapplicationsinindustryanduseintheÞeld. Integratingtechniqueapplicationsincludex-raycomputed tomography(CT)andx-rayimaging.Bothoftheseapplications requirehighlightyields.Additionally,CThasstrictrequirements fordecaytimeandnoafterglowisideal.Decaytimeisconsidered lessimportantinx-rayimaging. 1616C.W.E.vanEijk,J.Andriessen, P.Dorenbos,andR.Visser.Ce 3+dopedinorganicscintillators. NuclearInstrumentsandMethodsinPhysics ResearchSectionA:Accelerators,Spectrom- eters,DetectorsandAssociatedEquipment ,348(2-3):546Ð550,1994HistoricalDevelopment Inorganicscintillatorshavebeenstudiedforwelloveracentury withthelastseventy-Þveyearshavingshownthemostproductive developmentandreÞnementofscintillatorsforbothmedicaland industrialapplication.Alistofinßuentialscintillatorsisshownin Table 1.1896-1939Theearliestscintillatorswerehighlightedbythediscoveryofcal- ciumtungstate(CaWO 4)andzincsulÞde(ZnS).Notableachieve- mentsincludedthediscoveryofx-raysbyWilhelmRıntgen, radioactivitybyHenriBecquerel,and &-particlescatteringby 8ErnestRutherford.Theobservationof &-particlesiswidelycon- sideringthestartingpointofmodernnuclearphysics.William CrookesthenusedZnStocountradioactiveparticles,markingthe beginningofscintillatorcommercialization. 1940-1980ApushofexplorationfueledbyWorldWarIIandtheColdWar yieldedscintillationpropertiesofmostpureandactivatedal- kalihalidecrystals.Thisperiodofscintillatordevelopmentwas highlightedwiththedevelopmentofthePMTandexperimental physicswherescintillatorsfoundacriticalroleinthedetectionof elementaryparticlesandtomeasuretheirfrequency. 1980-Present Moderndevelopmentofscintillatorshasfocusedonprecisionap- plicationsinHEPandhighlightoutputsdemandedfrommedical imagingapplications. 9CompoundMechanism Density%g/cm3&LightYield (phot /MeV )DecayTime (ns)Emissionmax (nm)EnergyResolution (%fwhm@662 keV )Reference BaF 2SX4.883 ,900-11,000340 -92031011 .4[29,37,44,66]BaF 2CV4.881 ,300-2,0000 .6-0.8220 [13,37,44,72]BiGe 3O12(BGO )Bi3+7.137 ,100-10,600300460 -5109 .05[8,63,66]CaF2:EuEu 2+3.1824 ,000[29]CaWO 4CX6.115 ,000-25,0008 ,0004256 .3-6.6[47,51,81]CdS :InIn 3+4.80.2520 [10]CdWO 4CX7.97,800-15,8005 ,000-20,0004808 -8.8[32,44,66]CeF 3Ce3+6.164 ,0002734020 [48]CsF CV4.1-4.641 ,900-2,0002 -4390 [50]CsI :NaNa +4.5138 ,000-49,0004257 .4[8,29,66]CsI :TlTl +4.5155 ,000-61,000980530 -5605 .7[8,24,29,53,66]Gd2SiO 5:Ce(GSO )Ce3+6.712 ,800-21,50056 -6004307 -9.2[2,45,66]LaBr 3:CeCe 3+5.161 ,00030356 ;3872 .9[74]LaCl 3:CeCe 3+3.849 ,00025330 ;3523 .1[75]LiL :EuEu 2+4.0815 ,0001 ,2004757 .5[54,69]Lu2SiO 5:Ce(LSO )Ce3+7.422 ,200-33,00040420 [45]Lu3Al5O12:Ce(LuAG )Ce3+6.75,606-12,50010 -70500 -510[41,43]Lu3Al5O12:PrPr 3+6.716 ,000-17,00021 -26308 ;3104 .6-5[16,17,57,60,68]LuAlO 3:Ce(LuAP )Ce3+8.349 ,600-20,50011 -835365 ;390[41,49]LuI 3:CeCe 3+5.676 ,000complex474;522;5403 .3[6,23,67]LuPO 4:CeCe 3+6.5317 ,20025360 [40]NaI :TlTl +3.6743 ,000-45,0004155 .6-7.1[29,61,66]PbWO 4CX8.23002 .5-98490 [11]Y3Al5O12:Ce(YAG )Ce3+4.5516 ,70085 -119300 ;550[46,53]YAlO 3:Ce(YAP )Ce3+5.3515 ,900-21,60024 .2-27347 ;365[3,9,41,43]ZnO :GaGa 3+5.70.36-0.82385 [13,39]Table 1:Historicallyinßuentialscintillators. 101010Background:SelectedCompoundsandMethods ScintillatorCandidate:Ce:LuAG TheÞrstscintillatorcandidatecompoundinvestigatediscerium dopedlutetiumaluminumgarnet(Ce:LuAG),molecularformula Ce:LuAG.TheundopedlatticeisshowninFigure 5.Lutetiumbelongstothelanthanidechemicalelementseries whichalongwithscandiumandyttriumformwhatisreferredto astherareearthelements.Thelanthanideserieshasfourdiffer- enttypesofelectronictransitionswithfourteenofthesehaving theabilitytoadoptthe 2+and 3+chargestates.Thesecanbein- tegratedintonumerouscompoundswheresmalldiscrepancies inthelocationofthelanthanideimpuritystatecandramatically effectscintillatorperformance. 1717P.Dorenbos.Electronicstructure engineeringoflanthanideactivated materials.JournalofMaterialsChemistry ,22(42):22344Ð22349,2012Whileseveralotherscintillatorsalsouseceriumasadopant, includingceriumdopedyttriumaluminumgarnet(Ce:YAG),and ceriumdopedyttriumaluminiumperovskite(Ce:YAP),Ce:LuAG hasbeenusedpreferablybecauseofitshigherdensity. 18This18Y.Zorenko,V.Gorbenko,I.Kon- stankevych,B.Grinev,andM.Globus. ScintillationpropertiesofLu 3Al5O12:Cesingle-crystallineÞlms. NuclearInstru- mentsandMethodsinPhysicsResearch SectionA:Accelerators,Spectrometers, DetectorsandAssociatedEquipment ,486(1-2):309Ð314,2002increaseddensityresultsinmorestoppingpowerforlikesized scintillators.Thisalsoallowsthescintillatortobemaderelatively thinner,increasingspatialresolution.Forthisreasonitsapplica- tionasathinÞlmhasalsobeeninvestigated.Foramoredetailed comparisonoftheirpropertiesreferenceTable 1.TheseceriumdopedscintillatorsbeneÞtfromthefastdecay timeofthe 5d#4fradiativetransitionoftheCe 3+luminescentcenterandhighquantumefÞciencyatRT. 1919S.Liu,X.Feng,M.Nikl,L.Wu, Z.Zhou,J.Li,H.Kou,Y.Zeng,Y.Shi, Y.Pan,andA.Setlur.Fabrication andScintillationPerformanceof NonstoichiometricLuAG:CeCeramics. JournaloftheAmericanCeramicSociety ,98(2):510Ð514,February 2015Ce:LuAGisamechanicallyandchemicallystablescintillation materialthatalsohashighhardness,higheffectiveZ( 62.9),short decaytime,andhighlightyield.Forthesereasonsithasfound applicationsinHEphysicsandmedicalapplicationswhereits abilitytodetectx-rayand !-rayemissionsisutilized. 20Withan 20E.Auffray,D.Abler,S.Brunner, B.Frisch,A.Knapitsch,P.Lecoq, G.Mavromanolakis,O.Poppe,and A.Petrosyan.LuAGmaterialfordual readoutcalorimetryatfuturehigh energyphysicsaccelerators. IEEENuclearScienceSymposiumConference Record,pages 2245Ð2249,2009emissionintherangeof 500-550nmitcanbecoupledwithpho- todetectors.ForthisreasonmanyfutureHEparticleaccelerators plantoemploythesecrystalsasscintillators. Severalmethodsofcrystalgrowthhaveusedtocreatesingle crystalsofthiscompoundfromameltofoxidepowdersincluding theCzochralski(CZ),Bridgman(BD)andmicro-pulling-down (µ-PD)method. 11AnalysisoftheLu 2O3-Al2O3PhaseDiagram Figure 5:AcubicCe:LuAGlattice structurewithatomicpositionsof lutetium(green),aluminum(brown), andoxygen(red)takenfromICDDÕs PDF-4+database,CrystalStructure Source:LPF. TheCe:LuAGcompoundbelongstotheLu 2O3-Al2O3phasediagramshowninFigure 6.Itisalsothemoststablecompound ofthosedevelopedfromthephasediagramandcanbeobtained fromsolid-statereaction.Thisiscriticallyimportantandallows ustopreparethedopedversionofthismaterialfromsynthesizing highpuritypowderedoxideswherewecanexpectcongruent meltingatapproximately 2060¡C.Thisphasediagramcanbereferencemoregenerallyasthe Al2O3-RE2O3systemforrareearthelements.Eachcontainsup tofourintermediatecompoundsofaluminatypethatarestable onlyforthelargerRE 3+,agarnettype(suchastheCe:LuAG investigatedhere),orthorhombicdistortedperovskitetypeand monoclinictypethatareofrecentdiscovery. 2121D.Klimm.Themeltingbehaviorof lutetiumaluminumperovskiteLuAlO 3.JournalofCrystalGrowth ,312:730Ð733,2010SinglecrystalscanbemadefrommanyoftheseREcompounds Þndingapplicationsaslasersandscintillators.Thesecrystalsalso beneÞtfromrelativelyeasydopingwithotheractivatorsofsimilar radiiastheRE 3+.Figure 6:TheLu 2O3-Al2O3phasediagram.[62]12ScintillatorCandidate:MgTa 2O6Figure 7:AtetragonalMgTa 2O6latticestructurewithatomicpositionsof magnesium(green),tantalum(blue), andoxygen(red)takenfromICDDÕs PDF-4+database. Whileseveralmagnesiumtantalatesexist,thefocusofthisstudy willbeonthealkalineearthtantalateMgTa 2O6.Thelatticestruc- tureofthiscompoundisshowninFigure 7.Thismagnesium tantalatewasselectedbecauseithadbeenprovenstableinprevi- ousstudies. 2222G.HalleandH.Mueller-Buschbaum. InvestigationsofZn( 1-x)M(x)Ta 2O6(M=Mg,andNi)withareÞnementofthe crystalstructureofMgTa 2O6.JournalofTheLess-CommonMetals ,142:263Ð268,September 1988ThegrowingofMgTa 2O6crystalsforscintillatorsisanex- ploratorystudyatthispointwithfewexamplesofgrowthbyany growthmethodwithnoknownexamplesof µ-PDmethodgrowths. Thistantalatehas,however,beensuccessfullygrownusingthe ßoatingzone(FZ)method. 2323M.Higuchi,K.Ando,J.Takahashi, andK.Kodaira.GrowthofMgTa 2O6singlecrystalsbyßoatingzonemethod andtheiropticalproperties. Journalofthe CeramicSocietyofJapan ,101(1):118Ð120,1993Otherapplicationsforthistantalatehavebeendiscoveredfor useasadielectricresonatorwhichhasledtoadditionalatomistic computersimulationresearchinanefforttobetterquantifyits defectandpossibledopantproperties. 2424C.Tealdi,M.S.Islam,L.Malavasi,and G.Flor.Defectanddopantpropertiesof MgTa2O6.JournalofSolidStateChemistry ,177(11):4359Ð4367,2004Magnesiumoxide(MgO),aconstitutivecompoundofMgTa 2O6hasfoundapplicationasaneasilypreparedscintillator.Here, theirrelativeinsensitivitycanbeabeneÞtinsomeapplication becausethelightoutputdoesnotsaturateevenunderintense radiation.ThisscintillatorhasfoundapplicationattheMichigan StateUniversityCyclotronforbeamfocusing.Theyhavealso foundadditionalapplicationsindirectviewingofnarrowbeam imagesinthefocalplaneinmagneticspectrography,andasa phasemeasuringprobe. 2525J.A.Nolen.Aneasilyprepared scintillatorforviewingacceleratorbeam spots.NuclearInstrumentsandMethods ,156(3):595Ð596,November 1978AnalysisoftheMgO-Ta 2O5PhaseDiagram TheMgTa 2O6compoundbelongstotheMgO-Ta 2O5phasedi- agramshowninFigure 8.Fromthephasediagramshownwe canidentifythreestablecompoundsformedbytheMgO-Ta 2O5system:Mg 4Ta2O9,Mg 3Ta2O8,andMgTa 2O6.BothMg 4Ta2O9andMgTa 2O6havebeenstudiedandappeartobestableupto theirmeltingpoints.ThestabilityofMg 3Ta2O8islimitedtothe 1475-1675¡Crange.Pertinentmeltingtemperaturesarelistedin Table 2.Thesetemperatureswillprovideausefulreferencewhen performingour µ-PDmethodexperiments. CompoundMeltingPoint(C) Ta2O51872MgO2852MgTa 2O61775Table 2:Constitutivecompoundmelting temperaturesinMgTa 2O6.13Figure 8:Preliminaryphasediagramof thesystemMgO-Ta 2O5.[4]14PowderSynthesis Powderpreparationandprocessingiscriticallyimportanttothe qualityofthecrystalgrowth.Constituentpowderoxideswere combinedalongmolarratiostoproducepowdersamplesofthe desiredcompound. Figure 9:Mortarandpestlemade fromagatestoneusedtomixpowder compounds.Itiscriticalthatthepowdercomponentsarehighpurity ($99.99%),approximately 100%phasepurity,havehigh-speciÞc surfacearea $5m2g"1,andpossessamedianparticle(agglomer- ate)sizelessthan3 µm,withnoparticlesgreaterthan7 µm.2626C.GreskovichandS.Duclos.Ceramic scintillators.AnnualReviewofMaterials Science,27(1):69Ð88,August 1997Thecompoundstestedinthisstudyarelimitedtoasingle dopantorassumedtobeself-activated.Additionalprecautions aretypicallyneededwhenmixingdopantsduetotheirsmall quantityrelativetotheotheroxides,requiringmolecularcontrol ofscintillationpropertieswheredopantsareessentiallysmall percentageimpurities.Nosinteringorhot-pressingwasconducted onsamples,however,theseareoptionsforfurtherreÞningthese powdercompoundsinfuturetrailsastheycanfurtherreduce samplecontaminationandimprovedensiÞcation. Figure 10:DensiÞcationwasaccom- plishedwitha 12-tonforcemanual press. Theconstitutivecompoundsmustbemixedthoroughlyin ordertoensurethatthecombinedsamplewillmeltcongruently inthecrucible.Constituentswerecarefullyweighedandinsome instancesmixedwithhighpurityethanol ($99.5%)anddried afterthoroughmixingwithamortarandpestle.Othersamples weremerelymixedthoroughlywithamortarandpestle.Samples wereweighedonananalyticalbalancefromMettlerToledo. Insomeinstancessamplesweremademoredensewitha 12-tonforcemanualbriquettingpressfromChemplex.Betweenuses, thecomponentsofthepresswerecleanedinaVWRModel 50Dultrasoniccleanertoremovecompactedpowderfromthehousing andcompressionrod. Inotherinstancesahydraulicpresswasusedtocompress powdersamples.Theseapproachesareexplicitlystatedforeach experimentconducted. 15Micro-Pulling-DownMethod Themicro-pulling-down( µ-PD)methodwasusedtoconductthin ÞbercrystalgrowthsandisillustratedinFigure 11.Theexperi- mentalsetuputilizesinductionheatingfromanelectromagnetic coiltoheatsamplespasttheirmeltingpoint.Thiscoilencircles acruciblecontainingthecompoundtobeformedintoacrystal. Thiscrucibleissupportedonanafter-heaterandsurroundedby thermalinsulation.Theinsulationisconstructedfromceramics, typicallyhighpurityAl 2O3.Thisisusedtobettercontrolthetem- peraturedistributionsurroundingthecrucible.Additionally,the insulationsavesRFpoweroverthecoarseofanexperiment. Figure 11:Schematicdiagramof µ-PDsystemwithexternalinductiveRF heating.Theµ-PDmethodworksbyphasetransformationfromtheliq- uidmelttoasolidcrystal.Thecompositionofthemeltisdirectly relatedtothecompositionoftheproducedcrystal.Itisassumed thatwhenthemeltiskeptabovetheliquidustemperature,itho- mogenizesandfurtherchangesinitspropertiesareprevented.The stabilityandhomogenizationofmeltareinßuencedbythephase interfaceswiththecrucible,atmosphere,andcrystal. 2727T.FukudaandV.I.Chani. ShapedCrystals:GrowthbyMicro-Pulling-Down Technique .Springer-Verlag,Þrstedition, 2007Themajorityofgrowthtechniquesproducecrystalsbycontin- uouslytransportingtheseedandtheas-growncrystalupwards awayfromthemelt.ThisistheprocessusedinCzochralski(CZ) andedge-deÞned-Þlm-fed(EFG)amongotherapplicationsthatare 16typicallyemployedtogrowcommerciallyproducedcrystals.Ben- eÞtsoftheseprocessesincludebettercontrolofsystemvibrations andtemperatureßuctuationswhencomparedtothe µ-PDmethod, makingtheseprocessesinherentlymorestablethanpulling-down. Amajoradvantageofthe µ-PDmethodoverpulling-upappli- cations,however,isthatitdramaticallyreducestheprobability ofincorporatingbubblesintothegrowncrystalwhichimproves thequalityofthegrow.Thesebubblesaredrawntothesurface ofthemeltbyconvection,awayfromtheformingcrystal.Con- sequentlyheaviersolidparticlesarealsomoreeasilyincluded intheas-growncrystal,suchasdopants.ThiscanbebeneÞcial ifthemeltincludestheseparticlesbutcanalsoincreasetheodd ofcontaminationfromthecrucibleasanyprecipitatedcrucible materialmaybegrownintothecrystalbecauseitsrelativelyhigher densitywhencomparedtothemelt.Anotheradvantageofthe µ-PDmethodisthatithasahigherutilizationrate,decreasing productioncosts. 2828X.Xu,K.Lebbou,F.Moretti, K.Pauwels,P.Lecoq,E.Auffray,and C.Dujardin.Ce-dopedLuAGsingle- crystalÞbersgrownfromthemeltfor high-energyphysics. ActaMaterialia ,67:232Ð238,April 2014InductiveHeating Theinductivecoilheatstheconductivecrucibleandafter-heater viaeddycurrents.Theafter-heaterheatsthemelt/crystalinterface andalsosupportstherimofthecrucible,holdingitupright.While systemheatingmayremainconstant,itseffectonthesystemisnot. Thisvariationisbasedofftheamountofmeltwithinthecrucible comparedtotheamountsolidiÞedinthepulledcrystal. Whileseveralmethodsofheatingareavailablefor µ-PDcham- bersthisstudywillfocusoninternalinductiveRFheating.Other heatingmethodologiessuchasinternalorexternalresistiveheat- inghavealsobeenused.Boththecrucibleandafter-heaterare heatedfromaninductioncoilsurroundingthem.Thiscoilissup- pliedwithanACcurrentwhichgeneratesamagneticÞeldthat subsequentlyformseddycurrents(alsocalledFoucaultcurrents) inboththecrucibleandafter-heater.Theseeddycurrentsacton theseconductingcomponentsandtransferheattothemeltand growthinterface. Thetemperaturegradientiscriticalforestablishingthemenis- cus,acrosswhichthemeltsolidiÞesintoasinglecrystal.This meniscusisthecriticalregionofcrystalgrowthandin-situob- servationofthemeniscusaredonethroughaviewingwindow inthechamberwhichisalignedwithholesdrilledinboththe insulationandafter-heater.Crystalprogresscanalsobemeasured byasensitiveloadcellthatweighstheformingcrystal. 2929T.FukudaandV.I.Chani. ShapedCrystals:GrowthbyMicro-Pulling-Down Technique .Springer-Verlag,Þrstedition, 2007Inductiveheatingcanalsobeimplementedexternallywhereby thesurroundingcylindricalinsulationisconstructedofconductive materials,inducingsecondaryeddycurrentsseparatefromthe primaryeddycurrentsproducedbythecrucibleandafter-heater 17toheatthemelt.TheseeddycurrentsarelessefÞcientduetotheir greaterdistancefromthemeltandincreasethecostofproduction. CrucibleandAfter-Heater Forthepurposesofthisanalysiswewillassumethatthecrucible andafter-heaterarecomprisedofthesamematerials,whichis beneÞcialforhightemperaturethermalexpansion.Theselection ofthismaterialiscriticallyimportanttothesuccessoftheexper- imentanditsrepeatability.Thecrucibletypicallyhasaconical bottomandgrowcrystalsinthe µ-PDmethodindiametersofa fewmillimeters. TheÞrstrequirementofacrucible/after-heatermaterialisthat itmusthaveanappreciablylargermeltingtemperaturethanthe meltcontainedwithin.Decompositionofthecrucibleintothemelt eveninsmallamountshasextremelydetrimentaleffectsoncrystal qualityandseedingcharacteristics. Additionallythemechanicalperformanceofthecrucible/after- heaterpairisimportantastheymustretaintheirgeometrybe- tweenRTandhightemperatures.Mechanicalpropertiesare importantatRTwhereitisfabricatedintothedesiredgeometry. Chemicalcompatibilitymustalsobeestablishedbetweenthe crucible,themeltandthesurroundingatmosphere.Compatibility alsoextendstothesolventsusedtocleanthemofremainingmelt aftertheexperimentsarecomplete.Thewettingpropertiesofthe meltalongtheexteriorandinteriorsurfacesofthecruciblemust alsobeconsidered. Ifthewettingpropertiesaretoostrong,themeltwilladhere aggressivelytotheexteriorofthecrucibleafterithasexitedthe cruciblenozzleratherthanseedingcorrectly.Ifthewettingproper- tiesaretooweakthemeltwillhavedifÞcultytravelingdownthe capillarychannel. Crucibleandafter-heatermaterialsareoftenmadeofpure metalsduetodiffusionconcernsbutsomecompoundshave alsobeenimplemented.Table 3showsalistofcommonlyused cruciblematerialsalongwithmeltingtemperaturesandgrowth atmospheres. Thecruciblenozzlealsodeterminestheshapeofthesubsequent crystalgrowth.Currentlythe µ-PDmethodisprimarilylimited tocylindricalorrectangularcrystalgrowthsasmorecomplex geometriesaredifÞculttomachinegiventhematerialconstraints ofthecrucible. MeltConvectionplaysanimportantroleatthemelt/crystalinterface. Themaincruciblereservoircontainingthemeltisstirredeffec- 18MaterialMeltingPoint (¡C)GrowthAtmosphereReference C(densegraphite) 3500Ar,Ar+CF[ 80]Re3180Ar+H2(3-4%)[ 52]Mo2617Ar,Ar+H 2(2%)[ 36]Ir2410Ar,N 2,N2+O2(1%)[ 59]Al2O32054Air[ 20]Rh1966[20]Pt1772Air,Ar+CF,[ 20]SiO21600[20]Au1064[20]Al660[34]Ir+2%ReAr[ 30]Table 3:Common µ-PDcrucibleand after-heatermaterials,meltingtempera- tures,andgrowthatmospheres. tivelybythermo-capillaryconvection.Thecapillarychannelis governedbydiffusivePoiseuilleßowandthemeniscusissub- jectedtoMarangoniconvection. 3030B.M.Epelbaum,G.Schierning, andA.Winnacker.ModiÞcationof themicro-pulling-downmethodfor high-temperaturesolutiongrowthof miniaturebulkcrystals. JournalofCrystal Growth ,275(1):867Ð870,December 2005MeltßowinthemoltenzoneislargelytheresultofMarangoni convection.Thisconvectioneffectshowthesteadystateofthe systemisevaluatedastheMarangonivelocityislargerthanthe growthrates,playinganinßuentialrolewhenmodelingthe µ-PDmethodcomputationally. 3131T.Fukuda,P.Rudolph,andS.Uda. FiberCrystalGrowthfromtheMelt ,volume 6.SpringerBerlinHeidelberg, 2004Themeltisfurtherinßuencedbytemperaturegradientspro- ducedbytheinductioncoil.Numericalstudieshavebeencon- ductedtomodelthesegradientsinordertobetterunderstand systemresponse. 3232H.S.Fang,Z.W.Yan,andE.D.Bourret- Courchesne.Numericalstudyof themicro-pulling-downprocessfor sapphireÞbercrystalgrowth. CrystalGrowth&Design ,11(1):121Ð129,2011Anotherconsiderationwhenevaluatingthemeltßowissegrega- tionattheendofthecapillarychannel.Singlecrystalsareformed byshortdistancedisplacementofparticlesintheliquidphase andre-orderinginthesolidcrystal.Thisorderingprocesstakes placewithinthemeniscusregionthatoccursbetweentheliquidus meltandthesolidcrystal.Thisre-orderingprocessismadeeasier whenthecompositionofthemeltandcrystalarethesame.Since thisisgenerallythecaseinthe µ-PDmethod,relativelyfastpull- downratescanbeusedwhencomparedagainstotherpulling-up methods.DiameterControl Diametercontrolcontinuestobeanareaofimprovementforthe relativelynew µ-PDmethod.Thisisstillprimarilydonethrough directvisualexaminationofthegrowthprocess.Thegrowthpa- rameterssuchaspulling-downrateandchambertemperatureare adjustedmanuallybasedontheseobservations.Someautoma- tiondoesexistthatusesvisionsoftwaretorelaytheappropriate adjustmentbutthesesystemresponsesaredeterminedÞrstby observationsofmeniscusstability. Inaddition,sensitiveloadcellscanbeusedtoadjustgrowth parametersbasedonthecurrentweightandpull-downdistanceof 19thegrowncrystal.Thissecondmethodislesspracticalasthesmall diametersofthecrystalimplyanextremelylightweight,requiring averypreciseloadcellthatincreasesproductioncosts. 3333T.FukudaandV.I.Chani. ShapedCrystals:GrowthbyMicro-Pulling-Down Technique .Springer-Verlag,Þrstedition, 2007GrowthChamber Thegrowthchamberusedfor µ-PDisimportantinestablishing theappropriateenvironmentandallowingtheoperatortoevaluate theprocess.Thisisespeciallycriticalwhentemperaturesneed tobeadjusteddynamicallytocompensateforreductioninmelt volume.TheviewingwindowistraditionallycomprisedofCaF 2whichistransparentandcantoleratehightemperatures. X-rayPowderDiffraction X-raypowderdiffraction(XRPD)isatechniqueemployedto analyzeÞnepowdersamples.Thistechniqueisbasedoffthere- peatingstructureofatomsinasolidmaterial.Itisalsodependent onthewavelengthofx-raysusedandthespacingbetweenlayers ofatomsintherepeatingstructuretobesimilar.Theserepeating structuresofatomsarecapableofscatteringtheincomingx-rays. Fromthesex-rays,energypeaksdevelopinmagnitudepropor- tionaltothefrequencyofeachlatticeplaneofthecrystal.The sizeandpositionofthesetofpeaksischaracteristicofthecrystal structureandchemicalcomposition. X-raysareusedbecausetheyhavehighenergiesandshort wavelengthsontheorderoftheatomicspacingofthesolidsbeing investigated. Thediffractedx-raybeamiscomposedofalargenumberof scatteredwavesthatconstructivelyanddestructivelyinterferewith eachother.Otherphaserelationshipsareacombinationofthese effects.Togethertheseeffectsformanx-raydiffractionpattern. ThedistancebetweentheseparallellatticeplanesisdeÞned as,d.BraggÕsLawdevelopsarelationshipbetweenx-raywave- lengthandthe d-spacingbetweenlatticeplanes.Thislawcanbe expressedas, n'=2dsin((5)where nisawholenumber,typicallyone, 'isthewavelengthof x-ray,whichisoperatordeÞnedand (istheanglebetweenthe directionofincomingx-raysandthelatticeplane. XRPDessentiallysolvesthisequationfortheunknownvalueof d.Diffractionenergiesarelowwhentheangleisdifferentforeach adjacentcrystalplaneandisnotawholelength.Thisisdueto theemittedwavebeingoutofphase.Consequentlyiftheemitted wavesareawholewavelengththenthewaveswillreinforceeach otherandproduceanenergypeak. 20Arecorderplotsthediffractedbeamintensityasafunction of2(.Thisiscalledthediffractionangle.Thisconstructedplot displayshigh-intensitypeaksthatsatisfytheBraggdiffraction condition.X-rayLuminescence X-rayluminescence(XRL)testingisusedtodeterminetheemis- sionspectraofscintillationcrystals.Theemissionspectraistypi- callyanoutputofrelativeintensitiesoverarangeofwavelengths. Themaximumofthisemissioncurveisconsideredthepeakofthe emissionband. 3434G.BlasseandB.C.Grabmaier. Lu-minescentMaterials .Springer-Berlin Heidelberg,Þrstedition, 1994Eachscintillatorhasacharacteristicemissionspectrumthatis correlatedtothetypescintillatormechanismdominantinthema- terial.Knowingtheemissionspectrumofaparticularmaterialis importantbecauseitcandetermineiftheemissionisinthevisible ornear-visiblerange.AlsobyknowingthespeciÞcwavelengths ofemissionfromthescintillatoritcanthenbecoupledwithan appropriatePMT. ScanningElectronMicroscopy Scanningelectronmicroscopy(SEM)utilizesascanningelectron microscopethatproducesimagesofasamplebyscanningina rasteringpatternwithafocusedbeamofelectrons.Inorderto preventaninsulatorsamplefromcharging,athinmetalcoating isoftenapplied.Amorecomplicatedmorphologywouldrequire thickercoatinginordertomaintainitscontinuity. Anothermethodtopreventcharginginasampleistoobserve thesampleunderlowaccelerating-voltage.Fundamentally,charg- ingoccursinasamplewhentheelectronsenteringthesample aredifferentfromthoseexiting.Thesamplecanalsobeviewed atatilt,wheretheelectronbeamentersasampleobliquely.This methodologyisemployedwhenaspecimenhaslesssurfaceirreg- ularities.Anon-conductivesamplecanalsobeobservedunder lowvacuum.Low-vacuumscanningelectronmicroscopy(LVSEM) ionizestheresidualgasmolecules,however,thisprocesstypically involvespressurizingthechamber. Energy-DispersiveX-raySpectroscopy Energy-dispersivex-rayspectroscopy(EDS)testingutilizesthe photoelectriceffecttoproduceaspectrumofcountsthatcan identifyelementswithinacompound.Thephotoelectriceffectis showninFigure 12.Thebasicphysicalprocesscanbedescribed 21withintheEinsteinequation, EB=hv"EK(6)where EBisthebindingenergy, hvistheenergyofthex-ray source,whichisoperatordeÞned,and EKisthekineticenergy oftheemittedelectronthatisthenmeasuredbytheEDSdetector. Thisanalysisdetectselementsthatarepresentintheouter 10nmofthesample.Inthecaseofcoatedsamplesthecoatingmay contributeadisproportionatelylargepercentageofthematerialÕs identity.Theimpactofthiscanbereducedbycoatingthesam- pleswithanelementthatisnotexpectedtobefoundwiththe compoundofinterest. Figure 12:Sequentialimagesofphoto- electriceffectwithphotonabsorption andphotoelectronejection(top)fol- lowedbyßuorescentx-rayemission (bottom).Fordataoutput,theareaunderneaththedetectedpeaksis relatedtotheamountofeachelementpresent.Percentagesofeach elementpresentaretypicallycalculatedwiththeexpression, Iij=KáT(EK)Lij(!))ij'ni(z)e"z/'(EK)cos(dz(7)where Iijistheareaofpeak jfromelement i,Kisaninstrument constant,T(EK)isthetransmissionfunctionoftheanalyzer, Lij(!)istheangularasymmetryfactorfororbital jofelement i,)ijisthe photoionizationcross-sectionofpeak jfromelement i,ni(z)isthe concentrationofelement iatadistance zbelowthesurface, '(EK)istheinelasticmeanfreepathlength,and (isthetake-offangleof thephotoelectronsmeasuredwithrespecttothesurfacenormal. X-rayßux,areaoftheirradiatedsampleandthesolidangleofthe photoelectronsacceptedbytheapparatusarecontainedwiththe instrumentconstant K.Fromthisequationitisalsoimportanttonotethatifasample isasinglecrystal,theoutgoingelectronscanhavepeakintensities thatdeviatefromthepredictedvalues.Thisiscriticallyimportant inourevaluationsasitisassumedthatweareevaluatingsingle crystals. 3535B.D.RatnerandD.G.Castner. Electron SpectroscopyforChemicalAnalysis ,pages 47Ð112.JohnWileyandSons,Ltd, 200922ExperimentalProcedures PowderSynthesis:Ce:LuAG LutetiumOxide(Lu 2O3),aluminumoxide(Al 2O3),andcerium (IV)oxide(CeO 2)weresynthesizedtoproduceLu 3Al5O12:Ce(Ce:LuAG)asdetailedinTable 4.36Powderedoxideswerepur- 36N.G.Nause.Powderx-raydiffraction dataforrareearthgarnets.MasterÕsthe- sis,StephenF.AustinStateUniversity, 2003chasedfromSigma-Aldrich. CompoundMoleratioDensity (gcm3)Mass(mg)%Purity Lu2O30.3659 .42689499 .99Al2O30.6253 .95302599 .997CeO20.0107 .658299 .995Lu3Al5O12:Ce16.68110000 Table 4:Compoundmixtureforten gramsampleofCe:LuAG. HydraulicallyPressed:Sample 1TheÞrstsamplepreparedwasahydraulically-pressed(HP) 10grampowdersynthesis.Thissamplewaspreparedpriortothe beginningofstudy. ManuallyPressed:Sample 2Thesecondsamplepreparedwasamanually-pressed(MP) 5grampowdersynthesis.Thepowdersynthesisprocedureisdetailed below, 1.Thethreeconstitutivecompoundswereweighedonananalyti- calbalanceandmixedwithamortarandpestle. 2.Ethanol( $99.5%)wasaddedandthecompoundsweremixed untiltheethanolhadevaporatedfromthoroughuseofmortar andpestle. 3.Thesamplewaspressedat 6000psifor 5minutes.Oncere- movedthesamplewasinspectedforanysignsofcontamination priortoloadingintothecruciblefor µ-PDexperiments. 23PowderSynthesis:MgTa 2O6Magnesiumoxide(MgO)andtantalumpentoxide(Ta 2O5)were mixedat 50/50mol%toproduceMgTa 2O6asdetailedinTable 5.PowderedoxideswerepurchasedfromSigma-Aldrich. CompoundMoleratioDensity (gcm3)Mass(mg)%Purity Ta2O50.5008 .2458299 .99MgO0.5003 .5841899 .999MgTa 2O617.575000 Table 5:CompoundmixtureforÞve gramsampleofMgTa 2O6.LoosePowder:Sample 1TheÞrstsamplepreparedwassimplymixedtogetherwitha mortarandpestleandnotdensiÞedinanymanner.Powder compoundsweremeasuredonananalyticalbalanceandloaded intothecrucibleinpreparationfor µ-PDexperiments. ManuallyPressed:Sample 2AÞvegramsampleofMgTa 2O6waspreparedfromTa 2O5andMgOcompoundsasoutlinedabove.Thepowdersynthesisproce- dureisdetailedbelow, 1.Bothpowdercompoundswereweighedoutonananalytical balanceandmixedtogetherwithamortarandpestle. 2.Bothpowdercompoundswereverysimilarinappearance,both chalkywhite,becauseofthisitwasmoredifÞculttodetermine whenthetwocompoundshadbeenthoroughlymixed. 3.Tobetterensurepropermixing,thetwocompoundswere mixedwithethanol( $99.5%).Thewettedsamplewasthen mixedthoroughlyuntiltheethanolhadevaporatedout. Figure 13:PressedsampleofMgTa 2O6,singlepressattemptwithsigniÞcant lossinprocess. 4.Thesamplewasthencompressedinthe 12tonmanualpressat 4000PSIfor 3minutes.Underpressure,aportionofthesample spilledfromthetopofthepress.Itwasdiscoveredthatthe ethanolhadnotcompletelydriedandsamplewaslostasit bubbledout. 5.Theapparatuswascleanedandthesamplewasrepackedand pressedagainat 5000PSIfor 5minutes.6.Thesamplewasweighedaftercompressing,measuring 3982mgdownfromtheoriginal 5000mg( 20.36%loss). Itwasdeterminedthatthesamplemustberemadeovercon- cernsthatwemayhavelostthetantalatestoichiometry.Thesam- plepreparedisshowninFigure 13.24ManuallyPressed:Sample 3AsecondÞvegramsamplewasprepared.Thepowdersynthesis procedureisdetailedbelow, 1.Bothpowdercompoundswereweighedoutonananalytical balanceandmixedwithamortarandpestle. 2.Ethanol( $99.5%)wasaddedandthecompoundsweremixed untiltheethanolhadevaporated.Thewaittimeforthisprocess wasincreasedandtheamountofethanoluseddecreased.This wasinanefforttopreventanotherspillofcompoundatthe press. Figure 14:PressedsampleofMgTa 2O6,twodifferentpresseswereusedto breakthesampleintoamoremanage- ablesize. 3.Thesamplewasdividedinhalfandpressedat 8000PSIfor 5minutes.Thesamplewasmadeslightlylargerat 5250mgandcameout to4977mg( 5.19%loss).ThesamplepreparedisshowninFigure 14.ManuallyPressed:Sample 4Atengramsamplewaspreparedfortesting.Samplewascold- pressedintofourseparatesamples.Thepowdersynthesisproce- dureisdetailedbelow, 1.Bothpowdercompoundswereweighedonananalyticalbal- anceandmixedwithamortarandpestle. 2.Ethanol( $99.5%)wasaddedandthecompoundsweremixed untiltheethanolhadevaporated.Thewaittimeforthisprocess wasincreasedandtheamountofethanoluseddecreased.This wasanefforttopreventanotherspillofcompoundatthepress. 3.Thesamplewasdividedintofourthsandpressedat 8000psifor5minutes.Oncethesamplewasremoved,contamination fromthepresswasobservedontheperimeterofthesample. 4.AttemptsweremadetoremovethiscontaminationwithMgO powderbutwereunsuccessful. 5.Arazorbladewasusedtoremovethecontaminationfromthe pelletsurface.Thisdramaticallyimprovedthequalityofthe samplebutsacriÞcedasmallportionofthesample. Thesamplewasweighedafterpressingwithlossesofapproxi- mately5%.25Micro-Pulling-DownMethod Theµ-PDtestchamberusedwasconstructedbyCyberstarandis showninFigure 17.Thechamberiscooledcontinuouslywitha waterchillerloopthroughthechamberwalls.In-situadjustments canbemadetotheseedrodinthexandydirections.Mitutoyo micrometerheadsareusedtotranslatetheseedrodwith 0.01mmaccuracymarkings.Verticaltravelcouldbeadjustedmanuallyor couldbeprogrammedataconstantrateasshowninFigure 15.Thechamberpossessesaninecoilinductionheaterthatcanheat samplesuptoapproximately 2300¡C.Figure 15:Translationspeedcontrols withlocal(programmed)andremote (user)adjustment. ThechambercouldalsobeevacuatedandÞlledwithareducing atmosphere.Forourexperiments,thereducingatmospherewas argon.Thispreventedcomponents,speciÞcallythecrucibleand after-heater,fromoxidizingatourultra-highexperimentaltemper- atures.Thechamberwasconnectedtoareservoirofargonthat wascirculatedcontinuouslybeforeandduringourexperiments. ThiscirculationwasadjustedwithapairofKeyInstrumentsglass tubeßowmetersthatregulateinputandoutputßow. ASylvacindicatorisusedtomeasuretheverticaltranslation distancesothecrystalcanbemeasuredinprocess.Thetestcham- beralsopossessedfourviewingwindows,oneofwhichwas equippedwithaSonyXCD-SX 90FireWirecamerathatstreamed imagestoanearbyPCformonitoringatarateofupto 30FPS.Thiscamerawasalignedtoviewthecruciblenozzlethroughsmall holesdrilledintotheinsulatorsandafter-heater. Figure 16:Fracturedceramicinsulator capremovedfromchamberafterhigh temperaturecycling. Doubleceramicinsulation,madeofhighpurityAl 2O3,was usedfortheCe:LuAGsamplesduetoitshighermeltingpoint.A singlelayerofinsulationwasusedfortheMgTa 2O6experiments.Thecylindricalceramicspacersandlidneededtobecutinhalf duetothermalexpansionduringtesting.Ifnotseparatedthecom- ponentswerepronetofracturingundertheintenseexperimental temperatures.Anexampleofthesefracturesfromthermalexpan- sionisshowninFigure 16.Viewingportsweredrilledintothe ceramicinsulatorwithadiamondtippedbit.Thisoperationwas performedataDremelworkstationthatactedasadrillpressfor thispurpose. ChamberTemperatureCurve Apryometerwasusedtoapproximatethetemperatureatthe cruciblenozzle.Thechambertemperatureisadjustedbyset-point (SP)ontheconnectedPC.Argonwascirculatedforanhourprior tothetemperaturecurvebeingconstructed. 26Figure 17:Thewater-cooled µ-PDtest chamberfromCyberstar. 27Figure 18:MarathonMM 2MHpyrome- ter. TemperaturesweremeasuredwithaMarathonMM 2MHpry- ometerfromRaytekwithatemperaturerangeof 450-2250¡C,spectralresponseof 1.6µmandaresponsetime( 95%response) of2ms.Thisnon-contactIRreal-timetemperaturemonitorwas usedinconjunctionwiththeRaytekDataTempMultidropsoftware toevaluatetemperaturestabilityforagivenSP.Thetemperature curvecollectedisshowninFigure 19.OffsettingforRT,weareabletoapproximatethiscurveaccu- ratelyforhightemperaturereadings.Wecanalsooffsetthiscurve withknowledgethattheCe:LuAGcompoundhasameltingtem- peratureof 2000¡C.Meltingwasachievedataset-pointof 47.The governingSPtotemperaturerelationcanbeapproximatedwith theexpression, temperature =f(SP)=1742(SP)0.1287"859( 8)whichhasanR-squaredvalueof 0.9999.Figure 19:Set-pointtotemperature calibrationcurvefordoubleinsulated µ-PDexperimentsatthecrucible nozzle.28SoftwareDevelopment Figure 20:Applicationsplashscreen. Thecamerasoftwarewascapableofsavingscreenshotsandvideos foraspeciÞcnumberofframes,howeversavingtheseformats duringanexperimentwasfoundtobeprohibitivelytimecon- suming.Thisfunctionalitywasgreatlyimprovedwithsoftware improvementsIimplementedoverthecourseoftheexperiments performed. AMicrosoftWindowsapplicationwaswritteninVBthat streamlinedimagecapturestoasinglebuttonclick.Thesource codewaswritteninVisualStudiowhichisanIDEfromMicrosoft. SecondaryscriptswerewritteninPythontocropandappend texttoeachimage,detailingtheexperimentalparameters.The sourcecodewaswritteninIDLEforPython.Asampleoutput fromthesescriptsisshowninFigure 22.Figure 21:Imagecaptureapplication writtenforWindows. Lastlytheseimagesweresequencedandconvertedintoavideo Þleforbetterpresentation.ThesevideoÞlesareselfcontained aseachincludesthecrystaltype,timestamp(HH:MM:SS),spe- ciÞcimageoftotalimagesequence,productionsite,dateand temperature. CrystalSynthesis:Ce:LuAG Doubleceramicinsulationwasusedbecauseofthehighmelting temperature.TheCe:LuAGhasacubicstructureandgoodirid- iumcompatibilitywithameltingtemperatureofapproximately 2060¡C,whichisapproachingthemeltingtemperatureofiridium at2447¡C.Pullratesforthiscompoundhavebeensuccessfulbe- tween 0.32-0.75forCZgrowthand 0.25-0.75mm/minfor µ-PD.3737X.Xu,K.Lebbou,F.Moretti, K.Pauwels,P.Lecoq,E.Auffray,and C.Dujardin.Ce-dopedLuAGsingle- crystalÞbersgrownfromthemeltfor high-energyphysics. ActaMaterialia ,67:232Ð238,April 2014HydraulicallyPressedSample 1,Trial 1Aµ-PDtechniquecrystalgrowthattemptwasconducted.The crucibleusedhada 1mmODcapillarynozzle.The µ-PDexperi- mentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 2044¡C(SP:45)over 2.75hours.Figure 22:Sampleoutputofaformat- tedsingleframe. Noappreciablechangeobserved. 3.Temperaturewasincreasedto 2060¡C(SP:47)andtheseedwas leftincontact. Crystalseededandwaspulleddownatarateof 0.60mmmin.294.Afteraperiodofgrowthitwasnotedthatthemeltwasslanted andwasmovingbackandforthside-to-sidemorethanex- pected.TheCe:LuAGcrystalnolongerseemedtobegrowing downwardsataconstantrateanditwasdeterminedthatthe Ce:LuAGcrystalhadbrokensomewhereoutofview. 5.ChamberwascooledtoRTin 1hour. HydraulicallyPressedSample 1,Trial 2ItwasdeterminedthattheCe:LuAGcrystalgrownpreviously wastoosmallasampletoperformOEtesting.Inordertoincrease thisquantityanothergrowthattemptwasscheduled.The µ-PDexperimentalprocedureisdescribedbelow, Figure 23:Continuousbutuneven Ce:LuAGcrystalgrowth(Sample 1,Trial 2).1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 2044¡C(SP:45)over 2hours.Noappreciablechangeobserved. 3.Temperaturewasincreasedincrementallyto 2068¡C(SP:48)andtheseedwasleftincontactafterthemeltwasobserved emergingfromthecruciblenozzle. Crystalseededandwaspulleddownatarateof 0.50mmmin.4.ChamberwascooledtoRTin 1hour. Figure 24:Ce:LuAGcrystalgrowth withlargemoltenregionbetweenthe crucibleandorderedcrystal(Sample 1,Trial 2).HydraulicallyPressedSample 1,Trial 3Thefocusofthisgrowthwastoproducealargerandmoreconsis- tentCe:LuAGcrystal.Whilethepreviousattemptwasrelatively long,ithadasigniÞcantamountofdiametervariabilityandwas overallslightlyundersizedforthe 1mmdiametercapillaryopen- ing.The µ-PDexperimentalprocedureisdescribedbelow, Figure 25:SmoothandstableCe:LuAG crystalgrowth(Sample 1,Trail 3).1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 2044¡C(SP:45)over 2hours.Noappreciablechangeobserved. 3.Temperaturewasincreasedincrementallyto 2068¡C(SP:48)andtheseedwasleftincontactafterthemeltwasobserved emergingfromthecruciblenozzle. 304.Crystalseedingfailedshortlyafterstart. 5.Seedleftincontactwiththemeltfor 30minutes.6.Crystalseedingfailedshortlyafterstart. Figure 26:Ce:LuAGcrystalgrowth withhorizontallinedefectsvisible (Sample1,Trail 3).7.Temperaturewasincreasedto 2076¡C(SP:49)andtheseedwas leftincontactfor 30minutes.8.Crystalseedingfailedshortlyafterstart. 9.Temperaturewasincreasedincrementallyto 2083¡C(SP:50)andseedwasleftincontactfor 30minutes.10.Pulling-downratewasdecreasedto 0.10mmmin.11.Crystalseededandwaspulleddownatreducedspeedand increasedtemperaturecomparedtolastgrowthattemptfrom thissamemelt. 12.ChamberwascooledtoRTin 1hour. HydraulicallyPressedSample 1,Trial 4Thefocusofthisgrowthwastoproduceacrystalwithasimilar diameterandconsistencyofthecrystalgrowninTrial 3.Thistest isexpectedtogrowovernightduetotheslowanticipatedgrowth rateof 0.1mmmin.The µ-PDexperimentalprocedureisdescribed below, Figure 27:Ce:LuAGgrowthfailure shortlyaftersuccessfulseeding.With anabrupttemperatureincreasethemelt pulledbackintothecapillarychannel (Sample1,Trial 4).Figure 28:Stable Ce:LuAG crystal growth(Sample 1,Trial 4).1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 2044¡C(SP:45)over 2hours.Noappreciablechangeobserved. 3.Temperaturewasincreasedincrementallyto 2083¡C(SP:50)andtheseedwasleftincontactafterthemeltwasobserved emergingfromthecruciblenozzle. 4.Crystalseedingfailedshortlyafterstart. 5.Seedleftincontactwiththemeltfor 30minutes.6.Crystalseedingwassuccessfulbutdetachedfromtheseedafter approximately 1mmasshowninFigure 27.7.Temperaturewasincreasedto 2098¡C(SP:52)andthemelt pulledbackintothecapillary. 8.Seedleftincontactwiththemeltfor 90minutesat 2090¡C(SP:51).319.Temperaturereducedto 2083¡C(SP:50)andcrystalwassuc- cessfullyseededasshowninFigure ??.10.Chamberwasprogrammedfor 14.5hoursatapull-downrate of0.1mmmin.11.ChamberwascooledtoRTin 1hour. ManuallyPressedSample 2,Trial 1Thefocusofthisgrowthwastoproduceacrystalusingawider capillarychannelinanefforttogrowalargerdiameterCe:LuAG crystal.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 2044¡C(SP:45)over 2hours.Noappreciablechangeobserved. 3.Temperaturewasincreasedincrementallyto 2083¡C(SP:50)ata rateof 1SPevery 3minutes.Figure 29:TheCe:LuAGmeltattached totheseed,pullingitfromtheseedrod holderbelow(Sample 2,Trial 1).Noappreciablechangeobserved. 4.Temperaturewasleftat 2083¡C(SP:50)for 30minutes.5.Crystalseedingfailedandtemperatureincreasedincrementally to2098¡C(SP:52)whereitwasthenheldfor 60minutes.Slight meltshowwasvisiblefromtheendofthecapillarychannel. 6.Seedwasleftincontactfor 10minutesthenpulleddownafter themeltwasobservedspreadingacrossseedinterface. 7.Crystalseedingwassuccessfulandwaspulledataslower rateof 4mmhr.Afterapproximately 20minutestherewasno discernibleretractionoftheseed.Retractionwasswitchedover tomanualanditwasdiscoveredthattheseedrodwasnot sufÞcientlyclampedandnowstucktothemeltasshownin Figure 29.Effortsweremadetotryandreleasethemeltbutwereunsuc- cessful.Theverticalmotionoftheseedholdercouldbeob- servedfromtheviewingwindowalongwiththenowstationary rod. 8.ChamberwascooledtoRTin 2hours.32ManuallyPressedSample 2,Trial 2Thefocusofthisgrowthwastoproduceacrystalusingawider capillarychannelinanefforttogrowalargerdiameterCe:LuAG crystal.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 2044¡C(SP:45)over 2hours.Noappreciablechangeobserved. 3.Temperaturewasincreasedto 2060¡C(SP:47)in 6minutes.Noappreciablechangeobserved. 4.Temperaturewasincreasedto 2083¡C(SP:50)in 9minutes.5.Seedwasleftincontactwiththemeltfor 30minutes,after whichtherewasnoobservablechangeinthemelt. 6.Temperaturewasincreasedto 2098¡C(SP:52)in 6minutes.Noappreciablechangeobserved. 7.Temperaturewasincreasedto 2105¡C(SP:53)in 3minutes.8.Seedingattemptfailedafterlessthanamillimeteratarateof 0.1mmmin.Seedwasleftincontactfor 30minutes.9.Crystalseedingfailed. 10.Temperatureincreasedto 2112¡C(SP:54)instantly,seeding failed.11.Temperatureincreasedto 2119¡C(SP:55)instantly,seeding failed.12.ItwasdeterminedthatthebottomofthemelthadsolidiÞed andwaspreventingcrystalseeding.ChamberwascooledtoRT in1hour. ManuallyPressedSample 2,Trial 3Thefocusofthisgrowthwastoproduceacrystalusingawider capillarychannelinanefforttogrowalargerdiameterCe:LuAG crystal.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 332.TemperaturewasincreasedfromRTto 2068¡C(SP:48)over 2hours.Noappreciablechangeobserved. 3.Temperaturewasincreasedto 2083¡C(SP:50)in 6minutesand heldfor 10minutes.Noappreciablechangeobserved. 4.Temperaturewasincreasedto 2098¡C(SP:52)in 6minutesand heldfor 10minutes.Figure 30:StableCe:LuAGcrystal growthwithlargercruciblenozzle (Sample2,Trial 3).Noappreciablechangeobserved. 5.Temperaturewasincreasedto 2112¡C(SP:54)in 6minutesand heldfor 30minutes.Noappreciablechangeobserved. 6.Temperaturewasincreasedto 2119¡C(SP:55)in 3minutesand heldfor 30minutes.7.Seedingattemptfailed,withnodiscerniblemotionfromthe melt.8.Temperaturewasincreasedto 2132¡C(SP:57)in 6minutesand heldfor 10minutes.9.Seedingsuccessfulatapull-downrateof 0.1mmmin,temperature wasincreasedto 2142¡C(SP:57.5)towidendiameter. 10.Growthattemptwasallowedtorunovernightandcooledto RTin 1hour. CrystalSynthesis:MgTa 2O6Iridiumwasusedasthecrucibleandafter-heatermaterialbecause ofitshighresistancetohigh-temperatureoxidemelts,thislimits thechemicalinteractionbetweentheliquidandthecrucible. ThegrowthatmospherewasmodiÞedandÞlledwithapositive argonpressureof 5PSIsothatthecruciblewouldnotoxidize.A singlelayerofceramicinsulationwasusedtomaintainexperimen- taltemperaturesaroundthecrucibleandafter-heater. LoosePowderSample 1,MeltCheck Duetothelimitedamountofliteraturepresentforthismagnesium tantalate,ameltcheckwasusedtoanswersomeinitialquestions ofcompatibility.AmeltcheckwasperformedtoconÞrmcrucible compatibilityandgetanideaofthemeltbehaviorforagiven temperaturerange.ThistestwascompletedusingaÞvegram sample.ThissamplewasnotdensiÞedandÞlledthecruciblewith 34apowdermixture.Asampleofthemixedoxidepowderwastaken forXRPDtoconÞrmthatitwasformingthecorrectmagnesium tantalate,MgTa 2O6.Figure 31:MeltcheckforMgTa 2O6.Additionalprecautionsweretakenbecausetheviscosityofthe liquidmeltwasunknown.Ifthesurfacetensionofthemeltwas notsufÞcientitwouldsimplyfree-ßowfromthecrucibleonceit liqueÞed,movingundertheforceofgravity.Theexperimental procedureislistedbelow, 1.Chamberwasevacuatedtoavacuumof- 25psithenargonwas pumpedintoapressureof+ 7psiandleftcirculatingfor 1hourpriortothestartoftheheatingproÞle. 2.Inductionheaterwasprogrammedtoincreasefrom 0to27set-point.Figure 32:MgTa 2O6seedattempt (Sample1,Trial 1).3.HeatingproÞlewasstoppedat 26.5set-pointwhenthemelt wasseenemergingfromthecruciblenozzleasshowninFigure 31.4.Chamberwascooledfrom 26.5set-pointtoRTin 1hour. AsecondXRPDsamplewastakenfromthecrucibleafterthe melttestwascompletedtoconÞrmthatthecompoundwasstill presentandthataprinciplecompoundhadevaporated. LoosePowderSample 1,Trial 1Figure 33:SecondMgTa 2O6seedattemptwithmoreemergingmelt (Sample1,Trail 1).WithcompatibilityconÞrmedweinstalledourseedrod,shownin Figure 34.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1876¡C(SP:28)over 2hours.Oncecomplete,themeltwasseenemergingfromtheendofthe cruciblenozzle. Figure 34:SeedusedforMgTa 2O6growthattempt,gluedtoceramicpost withthermaladhesive. 3.Attemptstocontactthemeltwereunsuccessfulevenwithad- justmentstotheseedlocationinthey-direction.Theamountof misalignmentexceededthelengthoftravelforthisadjustment 4.Temperaturewasincreasedincrementallyto 1888¡C(SP:29)in 10minutes.Despitethemeltprotrudingmorefromthecruciblenozzle,seed attemptscontinuedtofailduetothismisalignment. 5.ChamberwascooledtoRTin 1hour. 35LoosePowderSample 1,Trial 2Werealignedtheseedwiththecrucibleandmadesurethatwe hadadjustabilityinx/ydirections.Oncethiswascompletewe assembledandalignedtheÞxtureandpreparedthechamber forourgrowthattempt.The µ-PDexperimentalprocedureis describedbelow, Figure 35:MgTa 2O6seedattempt (Sample1,Trial 2).1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1863¡C(SP:27)over 2hours.Noappreciablechangeobserved. 3.Temperaturewasincreasedto 1974¡C(SP:37)over 50minutes.Severalseedattemptsweretriedbuteachtimethedroplet appearedlargeritwouldshrinkawayfromtheseed. 4.WeconÞrmedthattheseedwasalignedwiththecapillary channelbutdespitecorrectalignmenttheseedwouldnotcatch. Figure 36:SecondMgTa 2O6seedattemptafterseedtranslation(Sample 1,Trial 2).5.Aftermakingseveralmoreattemptsat 1974¡C(SP:37)we determinedthattheapparatusneededtobecleanedandthe experimentretried. 6.ChamberwascooledtoRTin 1hour. LoosePowderSample 1,Trial 3Wewereabletoachievegrowthduringthistrial.The µ-PDexperi- mentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1863¡C(SP:27)over 30minutes.3.Temperaturewasincreasedto 1900¡C(SP:30)in 9minutes.Figure 37:MgTa 2O6growthinitializa- tion(Sample 1,Trail 3).Atthistimeitappearedthatasmallpartofthemeltwasat- tachedtotheseed.Webeganacontrolledpulldownatarateof 0.7mmmin.Afterasmalldistancethegrowthfailed. 4.Temperaturewasincreasedto 1922¡C(SP:32)in 6minutes.Weattemptedanotherseedingoncethetemperaturestabilized buttheattemptfailedsometimeshortlyafter.Thisgrowth, whilebrief,waslongerthantheÞrstseeding. 36ThemeltbecametransparentanddifÞculttoseeinanyfocus. Atsomepoint,contactwaslostandtheseedwasmovedback uptoestablishcontactagain. 5.Temperaturewasincreasedto 1933¡C(SP:33)in 3minutes.Noappreciablechangeinmeltshapedetected. 6.Temperaturewasincreasedto 1944¡C(SP:34)in 3minutes.Webeganacontrolledpulldownatarateof 0.7mmminandfailed quickly. 7.Temperaturewasincreasedto 1954¡C(SP:35)in 3minutes.Noappreciablechangeinmeltshapedetected. Figure 38:Increasingdiameterof MgTa 2O6growth(Sample 1,Trial 3).8.Temperaturewasincreasedto 1974¡C(SP:37)in 6minutes.Westoppedthetemperatureincreaseat 1972¡C(SP:36.8)aftera largechangewasobservedintheviscosityofthemelt. 9.Temperaturewasdecreasedto 1954¡C(SP:35)inlessthana minute.Weimmediatelybegantopullatarateof 0.7mmminwhichwe foundtobetoofastandtheseedseparatedfromthemelt.The meltbegantoßowrapidly,coveringtheseedandseedholder. 10.Temperaturewasincreasedto1964¡ C(SP:36).Themeltwasre-seededontopoftheßowthathadstucktothe seedandseedholder. 11.Crystalseededsuccessfullyandwaspulledatarateof 0.6mmmin.12.Crystalwasgrownatthisrateuntilseparationoccurredwhen themeltinthecruciblewasexhausted. 13.ChamberwascooledtoRTin 1hour. ManuallyPressedSample 3,Trial 1Thisattemptwasdonewiththepressedsample.Thisgrowth attemptwasconductedwithanewceramicinsulatorastheprevi- ousonewascontaminatedontheinside.The µ-PDexperimental procedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1933¡C(SP:33)in 1hour. HeatingproÞlewasstoppedat 1917¡C(SP:31.5)whenitwas observedthatthemeltwasvisiblefromtheendofthecrucible nozzle.Aseedattemptwasattemptedbutfailed. 373.Temperaturewasincreasedto 1922¡C(SP:32)Figure 39:TheMgTa 2O6meltwould notadheretotheseedduetopoor materialcompatibility(Sample 3,Trial 1).Noappreciablechangeobserved. 4.Temperaturewasincreasedto 1964¡C(SP:36)over 12minutes.Seedingattemptsoccurredwitheachset-pointincreaseat 1933¡C,1944¡C,1954¡Cand1964¡C.Eachattemptfailed. 5.Seedwasleftincontactwiththeexposedmeltfor 30minutes.Seedattemptfailed. 6.Temperaturewasincreasedto 1969¡C(SP:36.5)over 15min-utes.Seedattemptfailed. 7.Temperaturewasincreasedto 1988¡C(SP:38.5)over 15min-utes.Seedattemptfailed.Itwasobservedthatthemeltwasretreat- ingbackintothecapillarychannelastheseedwasplacedin contact.8.ChamberwascooledtoRTin 1hour. ManuallyPressedSample 3,Trial 2Thisattemptwasdonewiththepressedsample.The µ-PDexperi- mentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1900¡C(SP:30)in 1hour. Noappreciablechangeobserved. 3.Temperaturewasincreasedto 1911¡C(SP:31)in 3minutes.Noappreciablechangeobserved. Figure 40:Theseedrodpressedagainst theMgTa 2O6meltwithsufÞcientforce torotatetheafter-heaterandobstruct viewing(Sample 3,Trial 2).4.Temperaturewasincreasedto 1933¡C(SP:33)in 6minutes.Seedattemptfailed,meltobservedthinlyacrossthebottomof thecruciblenozzle. 5.Temperaturewasincreasedto 1944¡C(SP:34)in 3minutes.Noappreciablechangeobserved. 6.Temperaturewasincreasedto 1954¡C(SP:35)in 6minutes.Noappreciablechangeobserved. 7.Temperaturewasincreasedto 1959¡C(SP:35.5)in 3minutes.Noappreciablechangeobserved. 388.Temperaturewasincreasedto 1969¡C(SP:36.5)in 6minutes.Noappreciablechangeobserved. 9.Temperaturewasincreasedto 1974¡C(SP:37)in 3minutes.10.Seedwasleftincontactwiththemeltfor 30minutes.Seedingattemptfailed. 11.Seedwasleftincontactwithmeltforanother 30minutes.Seedingattemptfailed. 12.Temperaturewasincreasedto 1983¡C(SP:38)over 30minuteswithseedincontact. Seedingattemptfailed. 13.Seedwasleftincontactwithmeltfor 30minutes.Seedingattemptfailed. Figure 41:TheMgTa 2O6meltdidnot attachtotheseedbutcontinuedto discharge(Sample 3,Trial 3).14.Temperaturewasincreasedto 1992¡C(SP:39)in 6minutes.15.Seedleftincontactfor 30minutes.Seedingattemptfailed. 16.ChamberwascooledtoRTin 1hour. ManuallyPressedSample 3,Trial 3Thisattemptwasdonewiththepressedsample.The µ-PDexperi- mentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1922¡C(SP:32)overan hour. Seedwasraised,makingcontactwiththecrucible.Nomelt detected.3.Temperaturewasincreasedincrementallyto1954¡ C(SP:35).4.Seedwasleftincontactfor 30minutes.Figure 42:TheMgTa 2O6discharge coveredtheentireviewingwindow (Sample3,Trial 3).Seedwasdrawndownwardsandthemeltfolloweddownwards butfailedtoseed. 5.Temperaturewasincreasedto1969¡ C(SP:36.5).Seedwasmovedtotherightinordertocenteradefectonthe seedwiththelowestpointinthemelt.Theseedwasleftin contactwiththemeltfor 15minutes.Itwashypothesizedthat themeltwouldhavebettersuccessseedingonaroughsurface. Thishoweverwasunsuccessfulaswell.Theseedwasmoved backtoitsoriginalposition. 396.Temperaturewasincreasedincrementallyto1992¡ C(SP:39).Figure 43:TheendoftheMgTa 2O6dischargeemptiedthecrucible(Sample 3,Trial 3).7.Seedwasleftincontactfor 15minutes.Itwasobservedthattheseedwasphysicallysupportingthe melt.Adjustingtheseedinthex/ydirectionsmovedtheseed anddownwardsmotionletthemeltmovedownwards.Despite thisphysicalsupport,themeltfailedtoattachtotheseed. Meltwetseverelyalongtheentireoutsideofthenozzle,ßowing upwardsawayfromtheseedwhilestillincontact. 8.Seedwasdeceasedatarateof 0.50mmminandalargemassof materialßoweddownwardsafteritbutfailedtoseed. 9.Seedratewasadjustedto 0.10mmmin.10.Themassofmaterialdescended,takingwithitmeltthathad wetontheexteriorsurfaceofthecrucible. 11.AÞnalseedattemptoccurredafterthetopofthematerial masswasobservedbutthisfailed. 12.Temperaturewasincreasedto 2001¡C(SP:40)in 3minutes.Seedingwasattemptedagainbutwasonlyminimallysuccessful asthemeltseemedtobeexhausted. 13.ChamberwascooledtoRTin 1hour. Aseedwaspreparedfromthepreviousgrowth.Asevidenced fromthepastgrowthattemptstheMgTa 2O6melthadadifÞcult timeseedingagainsttheiridiumseed.Byproducingaseedofthe samematerialweeliminatethismaterialcompatibilityissue.Fur- therexperimentswiththiscompatibleseedwillneedtoproceed cautiouslyasthemeltingtemperatureoftheseedandthemelt isnowthesame.Theprocedureusedtoconstructanewseedis describedbelow, 1.Previousgrowthwasbrokeninhalf.Onehalfwaspulverized forXRPDtestingandtheotherhalfwouldbeusedasanew seedforfuturegrowthattempts. Figure 44:TheMgTa 2O6dischargefrom thelasttestmadeforacompatibleseed. 2.TheseedportionselectedwassandeddownsothatifwouldÞt withinthehollowceramicseedrodmadeofhighpurityAl 2O3.Thiswasaccomplishedusing 600/P1200gritgrindingpaper. 3.OncethegrowthwasabletoÞtinsidethehollowceramicseed rodthetwowereadheredtogetherwithaZirconiaadhesive producedbyCotronics. 4.Theseedandseedrodwereplacedinafurnaceat 60¡Covernighttoallowtimetosolidify. 40Duetogravitytheexcessadhesivecollectedontheonesideof theseedwhilesolidifyingandrequiredadditionalsandingso thatitcouldmovewithoutobstructionwheninstalledwithin theµ-PDchamber.Thelimitationwasthediameterofthe ceramicsupportatopthequartztube.Oncethisexcessadhesive wasremovedthenewseedwasreadytouseinsubsequent µ-PDexperiments. Figure 45:ThedriedMgTa 2O6seedneededtobesandeddownslightly priortouse. ManuallyPressedSample 4,Trial 1Thisattemptwasdonewiththenewtengrampressedsample. Theµ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1900¡C(SP:30)over 2hours.Themeltemergedreadilyfromthecruciblenozzle. 3.Temperaturewasdecreasedto 1876¡C(SP:28).Withthisdecreaseintemperaturethemeltstabilizedandno longerthreatenedtofree-ßowfromthecruciblenozzle. 4.Temperaturewasincreasedbackto 1900¡C(SP:30)in 6min-utes.Meltbegantodescendfromcruciblenozzleandseedingwas initiatedatapulldownrateof 0.10mmmin.Crystalseparated shortlyafterwiththediameterofthecrystaldecreasinguntil termination. Figure 46:VariablediameterMgTa 2O6growthseededonnewconstructed MgTa 2O6seed(Sample 4,Trial 1).5.Temperaturewasincreasedto 1906¡C(SP:30.5)in 6minutes.6.Seedwasleftincontactfor 30minutes.Seedingwasre-initialized.Pull-downratewasthesameat 0.10mmmin.Temperaturewasincreasedincrementallytocombat thedecreasingcrystaldiameterupto 1910¡C(SP:30.9)where separationÞnallyoccurred. 7.Seedwasleftincontactwiththemeltfor 15minutes.Seedattemptfailed. 8.Temperaturewasincreasedto 1911¡C(SP:31).9.Temperaturewasincreasedto 1917¡C(SP:31.5)in 6minutes.Seedingattemptwassuccessfulbutfailedafterashortdistance 10.ChamberwascooledtoRTin 1hour. 41ManuallyPressedSample 4,Trial 2Thisattemptwasdonewiththetengrampressedsample.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1876¡C(SP:28)in 2hours.Thistemperaturewasthenmaintainedfor 2hoursinanattempt tobetteracclimatethemelt. Figure 47:MgTa 2O6growthinitiatedat asmalldiameterbeforegrowinglarger andcoolingquickly(Sample 4,Trial 2).3.Temperaturewasincreasedto 1900¡C(SP:30)in 30minutes.Noappreciablechangeobserved. 4.Temperaturewasincreasedto 1911¡C(SP:31)in 6minutes.Seedinginitializedatapulldownrateof 0.10mmmin.Crystal seededandgrewlargerindiameterbeforeseparatingfromthe melt.Contactwasreestablishedbuttheexistingcrystalwaspulled intothemelt.Thebottomsideofthiswastoocoldtoreseed, preventingfurthercrystalgrowth. 5.ChamberwascooledtoRTin 1hour. Figure 48:ThesmallinitialMgTa 2O6growthdiameterbrokeoncethemass aboveitwasseededagain,pluggingthe capillarychannelwithrelativelycool MgTa 2O6(Sample4,Trial 2).ManuallyPressedSample 4,Trial 3Thisattemptwasdonewiththetengrampressedsample.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. Figure 49:VariablediameterMgTa 2O6growth(Sample 4,Trial 3).2.TemperaturewasincreasedfromRTto 1900¡C(SP:30)in 2hours.3.Seedwasbroughtintocontactwithmelt. 4.Temperaturewasincreasedto 1906¡C(SP:30.5)in 6minutes.Seedingwasinitializedwithapull-downrateof 0.10mmmin.Diam- eterdecreasedonformingcrystal. 5.Temperaturewasincreasedto 1910¡C(SP:30.9).Uncontrollableßowoccurred. 6.Temperaturewasimmediatelyreducedto 1906¡C(SP:30.5)as crystalformationcontinued. 427.Temperaturewasincreasedincrementallyto 1911¡C(SP:31).Thecrystalgrowthterminatedseveraltimesandwasre-seeded aftereachfailure. 8.ChamberwascooledtoRTin 1hour. Thecrystalfromtheprevious µ-PDexperimentwasextracted fromthechamberbutwhenanattempttoremovethegrowthfrom theseedwasmade,theseedbroke,withagoodportionofthe seedstillstucktothesamplegrowthasshowninFigure 50.The samplerequiredremovalfromtheseedusingawiresawshownin Figure 53.Theseparationprocedureisdescribedbelow, 1.RubberÞxturewasplacedonahotplatewithsolidglue.The gluewasallowedtomeltattherubberÞxturesurface. 2.Sampleandseedportiontobeseparatedwerethenplacedon therubberÞxtureoncethegluehadbeguntomelt. Figure 50:MgTa 2O6sampletobe separatedafÞxedonrubberÞxture. 3.RubberÞxturewascooledwiththesampleadheredtoits surface.4.Sampletobeseparatedwasthencutbythewiresaw. 5.RubberÞxturewasagainheatedonthehotplateuntiltheseed portionandsamplewereremovedfromthemeltedglue. Figure 51:VariablediameterMgTa 2O6growth(Sample 4,Trial 4).Figure 52:VariablediameterMgTa 2O6growthafterseedingrestart(Sample 4,Trial 4).Theportionoftheseedseparatedfromthesamplewasdiscarded andtheremainingseedwasusedforfuturetestingdespitebeing smaller.Thesmallerseedwasstillpreferabletousingtheiridium seed.Thetemperaturegradientacrosstheseedandthecrucible nozzleisnowmoresensitiveduetothesmallerseed.Sincethe meltandtheseedarebothmadeofthesamematerialitiscritical tokeepthemeltliqueÞedwithoutliquefyingtheseedbelowit. ManuallyPressedSample 4,Trial 4Thisattemptwasdonewiththetengrampressedsample.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. 2.TemperaturewasincreasedfromRTto 1888¡C(SP:29)set-point in2hours.3.Seedwasbroughtintocontactwiththeemergingmelt. 4.Temperaturewasincreasedto 1911¡C(SP:31)in 30minutes.43Figure 53:Wiresawusedtoseparate samplegrowthfrombrokenseed. Seedingwasinitializedwithapull-downrateof 0.50mmmin.Soonafterthecrystalseparatedfromthemelt.Thecrystal wasbroughtbackintocontact. 5.Temperaturewasincreasedto 1954¡C(SP:35).Seedingwassuccessfullyrestartedatthesamepull-downrate. Experimentwaslefttorunovernight. 6.ChamberwascooledtoRTin 1hour. ManuallyPressedSample 4,Trial 5Thisattemptwasdonewiththetengrampressedsample.The µ-PDexperimentalprocedureisdescribedbelow, 1.Chamberwasevacuatedtoavacuumof- 25PSI.Argonwas thenpumpedin,toapressureof+ 7PSI,andleftcirculatingfor 1hourpriortoinitializingtheheatingproÞle. Figure 54:VariablediameterMgTa 2O6growth(Sample 4,Trial 5).2.TemperaturewasincreasedfromRTto 1944¡C(SP:34)in 2hours.3.Seedwasbroughtintocontactwiththeemergingmelt. 4.Temperaturewasincreasedincrementallyto 1954¡C(SP:35).Meltßowwasobstructedbyseedbutwettheoutsideofthe cruciblenozzle.Seedingwasinitializedwithapull-downrate 44of0.50mmmin,removingthewettedmeltfromtheexteriorofthe crucible.5.Temperaturewasmaintainedandpull-downcontinuedbut withseveralrequiredrestarts. 6.ChamberwascooledtoRTin 1hour. X-rayPowderDiffraction X-raypowderdiffraction(XRPD)testingwasperformedat LawrenceBerkeleyNationalLaboratory(LBNL)usingaSiemens SMART-CCDdiffractometerequippedwithanormalfocus, 2.4kWsealedtubex-raysource(MoK &,'=0.71073†)operatingat 50kWand 40mA.SamplesweregroundintoÞnepowderswithamortarand pestleandmountedatthecenterofplasticringswithmasking tape.ApreparedsampleisshowninFigure 55.Figure 55:PreparedsampleforXRPD analysis.AndiffractionpatternexampleisshowninFigure 56.These ringsneedtobeconvertedintoanoutputspectrum,whichis accomplishedbyin-housesoftwareatLBNL.Theprocedurefor thisconversionisdescribedbelow, Figure 56:RawXRPDoutput,priorto post-processing. 1.Thesampleoutputiscalibratedagainstthesodiumchloride (NaCl)samplethatthatwasrunthatsameday. 2.Theuserselects 5-10pointsalongtheinnermostoftheNaCl sample.Thisringrepresentsthe 2(=32peakthatcorrespondsto thehighestpeakofthesample,registeringthe 200planes.3.Whenthiscalibrationisprocessedthesampleofinterestring patternisloaded.Fromthisaplotisproduced. 4.ThisplotisthensavedoffandloadedinMatch!,aphaseidenti- ÞcationprogramcreatedbyCrystalImpact. 5.Heretheplotisanalyzedandcomparedagainstadatabase ofcompoundsthatcorrectlyidentifypeaksinthesampleand giveÞgureofmeritvaluesthatdisplaytherelativeconÞdence ofitsselectionswithavalueofonebeingaperfectmatchtoa standardonrecord. X-rayLuminescence X-rayluminescence(XRL)testingwasperformedatLawrence BerkeleyNationalLaboratory(LBNL)usingaSpectraPro- 2150ispectrometermadebyPrincetonInstrumentscoupledtoathermo- electricallycooledPIXIS: 100Bchargecoupleddetector(CCD)also fromPrincetonInstruments.Thismeasuredtherelativeintensity ofthex-rayemissionspectra. 45CrystalMounting SamplemountswerepreparedinaBuehlerPneumetImounting press,showninFigure 57withBuehlerKonductometinprepa- rationforSEMtesting.BuehlerKonductometisagraphiteand silicondioxide(SiO 2)ÞlledphenolicthermosetusedspeciÞcally fornon-carbonbasedsamplesinSEManalysis.Thisallowsthe samplemounttobeconductiveduringtesting,however,thesam- plemuststillbecoated.Sampleswerepositionedverticallyinthe mountwiththeaidofplasticclipsfromMetLabCorporation.The procedureforproducingthesemountsislistedbelow, Figure 57:BuehlerPneumetImounting press. 1.Airsupplywasturnedonandtheplatformraisedonthepress. 2.Sampleswereplacedverticallyonthepressplatformwiththe assistanceofplasticclips.Thesectiontobepolishedwasplaced facingdownagainstthebase.Forpolishing,thiswillactasour topsurface. 3.Theplatformwasloweredintothecavityandthecavitywas ÞlledwithBuehlerKonductometthermoset. 4.Theplatformwasloweredfurtherandthesamplewascon- Þrmedtobeverticalbeforecoveringitwithmorethermoset. 5.Thetopwasscrewedintoplaceandtheheatingelementwas appliedaroundthecavityÕsexternalcircumference. 6.Oncesecuredandsealedthepresswasbroughttoapressureof 55-60PSIandmaintainedfortenminutes. Figure 58:Bottomsurfaceofthemount thatwillactasthetopofthesampleto bepolished. 7.Theheaterwasthenremovedandpressurewasdecreasedto ATM.Thesamplewasthenremovedandallowedtocool. 8.Betweeneachmountproduced,theapparatuswasthoroughly cleanedsothattheplatformwouldactuatesmoothly. 9.Oncesampleswerecompletedtheapparatuswascleanedand theairsupplywasturnedoff.Acompletedsampleisshownin Figure 58.CrystalPolishing Figure 59:BuehlerEcometIVPolisher/- Grinder. Aqualitypolishedsurfacemustbepresentinordertoeffectively conductSEMimaging.PolishingwasperformedwithaBuehler EcometIVPolisher/GrindershowninFigure 59.Standardgrit grindingpaperswereusedalongwithdiamondcompoundfrom Metlabin 10gramdispensingtubes. Thegrindingpapersusedasourabrasivedisksarelistedin Table 6.Eachpolishedsamplerequiredauniqueregimentbecause 46ofcrystalfractures.Thesefracturescreatedportionsofloose crystalthatneededtoberemoved.Onceremovedamorestable surfacefurtherintothesamplecouldbeusedforpolishing. Thediamondpastesarecharacterizedbythesizeofthepoly- crystallinediamondwithinthecompound.Thesepasteswere appliedtoaStruersMD-Nappolishingclothmadeofshortsyn- theticnap.Thediamondpastesusedwere 6,3,1,and 1/4micron. StandardANSIGritEuropean(P-Grade)Diameter( µm)320P36040 .5600P120015 .3800P24006 .51200P40002 .5Table 6:Grindingpapersusedfor polishingceramicsamples. Withthegrindingpapersinstalled,waterwasusedtolubricate andhelpmoveremovedmaterialawayfromthesamplesurface. Betweeneachiterationofpolishingthesamplewasdriedalong withthegrindingpaperandapparatus.Thisadditionalwork extendedthelifeofseveraloftheÞnergritgrindingpapers.If neglected,thepaperswouldabsorbtheadditionalwaterand wrinkleseverely,reducingtheireffectiveness. Thevariousdiamondpastesemployedwereusedonsinglenap polishingcloth.Duringprocessthiswaslubricatedwithethanol andafterwards,cleanedextensivelywithabrushandwatersothat theremainingdiamondpastewasremoved.Thepolishingcloth wasthendriedandthenextdiamondpastewasapplied. Inadditiontodiamondpastesanoxidepolishingsuspension (OP-S)wasused.OP-Susesacolloidalsilicasuspensionforabra- sion.Thetypeusedforthistestinghadanaveragegrainsizeof 0.05µ.Figure 60:ZeissStemiSV- 6stereomi- croscopeusedforobservingpolished samples.Alow-magniÞcationZeissStemiSV- 6stereomicroscope,shown inFigure 60,wasusedtoobservesamplesperiodicallybetween polishestoevaluatesurfacequality.Imageswerestreamedfroma NikonDS-Fi 2,5.0-megapixelcolorCCDcameraheadandstored withNISElements,imagingsoftwarefromNikon. AllimagesandobservationsweredoneatamagniÞcation (MAG)of 5.0x.Lightingconditionswerechangedduringtestingto improveimageclaritybyadjustingautoexposure(AE)andanalog gain(AG).Theseareseenmostnotablyasadjustingtheamountof lightperceivedintheimages. AReichertJungmicroscopelightfromCambridgeInstruments wasusedasanexternallightsourcetofurtherilluminatethe polishedsurfaceofthesamples.Thiswaskeptrelativelystaticin positionatitsfulloutputof150 W.47LBNLSample 1468.7MAnewCe:LuAGsamplewithreducedceriumcontent( <0.5mol%Ce)wassentfromLBNLforanalysis.Whiletheinitialcrystalwas smoothanduncracked,therewasperimeterdamagetothecrystal afterthemountingprocesswheretheclipmadecontactwiththe crystal.Itappearsthatthepressureusedtocreatethemountswas toohighforthesample. Speedwasvariedinanefforttogetabetterfeelofwhatwas appropriateforthismaterial.Thepolishingprocedureisdetailed below, 1.800/P2400for2minutesat 200RPM.Microscope:crackswerevisiblealongthecircumferenceof thecrystalwithscratchesacrossthetopsurfaceparalleltothe directionofpolishasshowninFigure 61.Figure 61:Ce:LuAG(< 0.5mol%Ce)- 10mmlengthcrystalafterÞrstpolish. MAG:5.0x,AE: 1.5ms,AG: 4.0x.2.800/P2400for2minutesat 300RPM.Microscope:crackswererelativelylargeandunaffectedby thepolishingprocess.Thesurfacescratcheswerereducedand paralleltothedirectionofpolish. 3.1200/P4000for2minutesat 100RPM.Microscope:scratcheswerereducedwiththeÞnerpolish, changesmoresubtle. Figure 62:Ce:LuAG(< 0.5mol%Ce)- 10mmlengthcrystalpriortodiamond pastepolishing.MAG: 5.0x,AE: 1s,AG:3.9x.4.1200/P4000for2minutesat 100RPM.Microscope:furtherreducedscratches,portionsofthecrystal haveacompletelysmoothsurfaceatthislow-magniÞcationas showninFigure 62.Withanacceptablesurface,diamondpastes ofdecreasingdiameterwereused. 5.6µfor12minutesat 200RPM.6.1µfor5minutesat 200RPM.7.0.05µOP-Sfor 5minutesat 200RPM.Microscope:OP-Swasnotcompletelyremovedandworked intothecracksofthecrystal,thisshouldnotbedetrimentalto studyingthepolishedsurfacebutitwillnotbeusedinfurther polishingforthisreason. Ce:LuAGSample 2,Trial 3Theprocedureforpolishingwasseparatedintotwophases:( 1)removematerialuntilaßat,relativelyunfracturedsurfaceis reached;( 2)polishtheßatsurface.Themountingprocesscreated fracturesinthecrystalduetotheclipthatwasholdingthesample verticalasshowninFigure 63.Thefracturedcrystalneededtobe 48removedpriortopolishinganacceptablesurface.Thepolishing procedureisdetailedbelow, Figure 63:Ce:LuAG( 1mol%Ce)from 3mmODcruciblenozzle.Initialcrystal stateaftermounting.MAG: 5.0x,AE: 300ms,AG: 2.8x1.1200/P4000for5minutesat 200RPM.Microscope:crystalfracturesincreasedinspread.Itisapparent thattheyareseparatedfromthemaincrystalbelowandneedto beremovedtoestablishasolidsurfaceforSEM. 2.800/P2400for5minutesat 200RPM.Microscope:noticeableimprovementinpolish,howeverthe crystalremainsfracturedasshowninFigure 64.3.600/P1200for2minutesat 200RPM.Microscope:piecesofcrystalhavebeenremoved,howevermore crystaldebrisispresent. 4.600/P1200for5minutesat 200RPM.Microscope:slightimprovementbutasigniÞcantaboutof debrisremains. 5.800/P2400for5minutesat 200RPM.Microscope:littletonoimprovementobserved. Figure 64:Ce:LuAG( 1mol%Ce)from 3mmODcruciblenozzle.Crystalstate afterpolishwith 2400gritsandpaper for5minutesat 200rpm.MAG: 5.0x,AE:150ms,AG: 4.0x6.320/P360for1minuteat 200RPM.Microscope:someremovalofloosecrystal. 7.800/P2400for2minutesat 200RPM.Figure 65:Ce:LuAG( 1mol%Ce)from 3mmODcruciblenozzle.Crystalafter diamondpastepolishing.MAG: 5.0x,AE:300ms,AG: 4.8xMicroscope:nosigniÞcantchange,coarsergritswillbeused untilthesurfaceimproves. 8.320/P360for1minuteat 200RPM.9.320/P360for1additionalminuteat 200RPM.10.320/P360for2minutesat 200RPM.Microscope:signiÞcantimprovement,ßatsolidsurfaceemerged andaccountedforhalfofthecrystaldiameter.Proceededmore cautiously,withmorevisualchecksduringpolishing. 11.600/P1200for2minutesat 200RPM.12.800/P2400for2minutesat 200RPM.Anewsandpaperwasusedastheotherwaswrinkledfrom waterabsorption. 13.1200/P4000for2minutesat 200RPM.Microscope:solidsurfaceshowedimprovedpolish. 4914.1200/P4000for2minutesat 200RPM.Polishwasperpendiculartothepreviouspolishtoensurethat thescratchesinthepreviousdirectionwereremovedfromthe sample.Withthemajorityofthesurfacescratchesremovedthe diamondpolishingprocesscouldbegin. Figure 66:Ce:LuAG( 1mol%Ce)from 1mmODcruciblenozzle.Crystalprior topolishing.MAG: 5.0x,AE: 30ms,AG:4.0x.15.6µfor12minutesat 200RPM.16.3µfor5minutesat 200RPM.17.1µfor5minutesat 200RPM.Microscope:Surfaceisnoticeablymoretransparentasshownin Figure 65.Ce:LuAGSample 1,Trial 2Thesampletestedwasextremelysmallwithadiameterof< 0.5mmandviewingunderamicroscoperevealedsurfacefractures andthermosetalongthetopsurfacethatneededtoberemovedas showninFigure 66.Thepolishingprocedureisdetailedbelow, 1.320/P360for20secondsat 200RPM.Figure 67:Ce:LuAG( 1mol%Ce)from 1mmODcruciblenozzle.Crystalafter 320gritsandpaper.MAG: 5.0x,AE: 200ms,AG: 5.6x.Microscope:surfacehadbeenpartiallyconcealedbythether- moset,afterthispolishafracturedsurfaceemerged. 2.320/P360for1minuteat 200RPM.Microscope:somefracturedcrystalremovedasshowninFigure 67.3.600/P1200for1minuteat 200RPM.Figure 68:Ce:LuAG( 1mol%Ce)from 1mmODcruciblenozzle.Crystalafter diamondpastepolishing.MAG: 5.0x,AE:200ms,AG: 5.6xMicroscope:incrementalimprovementinsurfacequalityspeciÞ- callyatthecenterofthecrystal. 4.600/P1200for2minuteat 200RPM.Microscope:furtherprogressonthecrystalisdifÞculttoob- serveduetothesmalldiameter.AsigniÞcantreductionof scratcheswasobservedonthemountitself.Itisassumedthat thecrystalsurfaceisnowlevelwiththesurfaceofthesurround- ingmountandclip. 5.800/P2400for2minutesat 200RPM.6.1200/P4000for2minutesat 200RPM.Microscope:littleobservablechangeatlow-MAG. 7.6µfor12minutesat 200RPM.8.3µfor5minutesat 200RPM.509.1/4µfor5minutesat 200RPM.Microscope:solidsurfacenearcenterofcrystalisnoticeably improvedwithrespecttoitstransparencyasshowninFigure 68.MgTa 2O6Sample4,Trial 5Thiscrystalpresentedafewchallengesbecauseofitsirregular geometryandthefracturescreatedinthemountingprocess.The Þrsttaskwastocreateanacceptablesurfaceasmuchofthecrystal wassubmergedinthermosetasshowninFigure 69.Figure 69:MgTa 2O6from 1mmOD cruciblenozzle.Initialcrystalcondition aftermounting.MAG: 5.0x,AE: 30ms,AG:4.0x.Figure 70:MgTa 2O6from 1mmOD cruciblenozzle.Crystalaftersecond perpendicularpolishwith 4000gritpaper.MAG: 5.0x,AE: 200ms,AG: 5.6x.1.320/P360for31/2minutesat 200RPM.Microscope:ßatsurfaceemerged,thecenteroftheirregularly shapedsurfaceisÞlledwiththermoset.Morematerialwas removedafterthisinanticipationofthesurfacecomingtogether underneaththethermoset. 2.320/P360for6minutesat 200RPM.Microscope:ßatsurfaceÞlledinatitscenter,thetopofthe crystalwasbrokenoffwiththermosetinthegap,implyingthat thecrackoccurredduringthemountingprocess. 3.800/P2400for2minutesat 200RPM.4.1200/P4000for2minutesat 200RPM.5.1200/P4000for2minutesat 200RPM.Polishwasperformedperpendiculartothepreviouspolishso thatscratchescouldberemoved.Scratchesremainedasshown inFigure 70.Figure 71:MgTa 2O6from 1mmOD cruciblenozzle.Crystalafterrepeated perpendicularpolishes.MAG: 5.0x,AE: 200ms,AG: 5.6x.6.800/P2400for5minutesat 200RPM.Despitethesepolishesbeingperpendiculartotheotherpolishes, theywereunabletoremovemanyofthescratches.Atthistime acoarsergritwasusedtoßattenthesurface. 7.800/P2400for6minutesat 200RPM.PolishhadÞnallyremovedthemajorscratchesobservedat low-MAGasshowninFigure 71.8.1200/P4000for2minutesat 200RPM.9.6µfor12minutesat 200RPM.10.3µfor5minutesat 200RPM.11.1/4µfor5minutesat 200RPM.51CrystalCoating Thepolishedsampleswerethencoatedwithathinlayeroftung- sten(W).ThiswasaccomplishedwithaLeicaEMMED 020modu-larhighvacuumcoatershowninFigure 73.Theprocedureusedto coatthesesamplesisoutlinedbelow, 1.Theargontankvalvewasopenedandfullspeedvacuumwas activatedontheLeicacontrolpanel.Pumpdowncontinuedto< 10"4bar. 2.Coaterwasprogrammedtodepositathin 1nmlayeroftung- stenonthesurfaceofthesamples.Thechamberwaslarge enoughtoaccommodateallfourofthesamplesinthesame cycle. 3.OnceatvacuumSPthecoaterwasplacedinstandbyandthe shutteropened. Figure 72:Ce:LuAG(< 0.5mol%Ce)- 10mmlengthcrystalaftercoating, 1nmthicknesstungstencoating.MAG: 5.0x,AE:200ms,AG: 5.6x.4.ArgonwasactivatedandthevacuumwasconÞrmedtobe stable.5.Coaterprocesswasactivatedandthesputterratewassetto 0.1nm/s.6.Oncecoatedtothedesiredthickness,argonwasstoppedand theshutterclosed.ThechamberwasthenbroughtbacktoATM andthecoatedsampleswereremoved. ScanningElectronMicroscopy PerformingSEMoninsulatorspresentsuniquechallengesasthe electron-beamradiationproducedinducesastrongelectricÞeld. ThiselectricÞeldisduetothetrappingofelectronswithinthe specimen.ThisÞeldaltersthetrajectoriesofthebeamofelec- tronsenteringthespecimenwhichseverelylimitsthepenetration depth.Additionally,thistrappingleadstosecondaryelectrons(SE) contrastdependenceonthechargedsample. 3838M.Belhaj,O.Jbara,S.Odof,K.Msel- lak,E.I.Rau,andM.V.Andrianov.An anomalouscontrastinscanningelectron microscopyofinsulators:Thepseudo- mirroreffect. Scanning,22(6):352Ð356,200052Figure 73:LeicaEMMED 020modularhighvacuumcoater(ImagefromLeica). Figure 74:MiraXMHelectronmicro- scope(ImagefromTescan). Duetotheseeffectstheceramiccrystalsampleswerecoated inaconductortoproperlygroundthem.Thisconductivelayer requiredaconductivemountandamirror-Þnishpolishedsample. SEMmeasurementswereperformedonaMira 3XMHelectron microscope,whichisahighvacuummodel(< 9%10"3Pa)for largerconductivesamples.ItisequippedwithaSchottkyField Emissionelectrongun. Theprocedureforacquiringimagesisdescribedbelow, 1.Samplesareloadedontothefullymotorizedstageandmoved intothechamber. 2.Chamberissealedandpumpeddowntovacuum.Theelectron gunisturnedonandthesampleislocatedbyadjustingthe stagepositionandviewingthroughwideÞeld. 3.Oncethedesiredpositionisnavigatedtotheelectrongunis changedtoresolutionmode. 4.ThesampleisbroughtintofocusbymakingÞneadjustmentsto theworkingdistance. 5.ImagesarecapturedatvariousmagniÞcationsafterfocusis achieved. 536.Oncecomplete,thechamberisbroughtbacktoATMandthe samplesremoved. Energy-dispersiveX-raySpectroscopy Energy-dispersivex-rayspectroscopy(EDS)testingwasperformed withintheMira 3XMHmicroscopefromanApolloXmodulewith anactiveareaof 10mm2.Imageswerecollectedandprocessed throughtheTextureandElementalAnalyticalMicroscopy(TEAM) softwarepackage.Samplesweremeasuredinthreedifferent locationstoreducetheoddsofafalsereading. Surfacechargingisalsoaconcernforinsulators.Forthisrea- sonsthesamplestestedwerecoatedintungstenandsetinconduc- tivemounts.Thesurfacepotentialcanrisequicklyonun-coated samplesduetotheinputofpositivechangeandtheemissionof secondaryelectrons. ThecharacteristicK,L,andMx-raylineenergiesarelistedin Table 7fortheelementsofinterestinourCe:LuAGandMgTa 2O6samples.3939J.B.KortrightandA.C.Thompson. X-raydatabooklet ,chapter 1,pages 8Ð13.LawrenceBerkeleyNationalLaboratory, 2009Thevalueslistedareonlythestrongestlines.Thewavelength, ',oftheemissioncanbeobtainedfromtheexpression, '=12398E(9)where EistheenergyoftheemissionineV.Thebindingenergies fortheselectedelementsareshowninTable 8.Abriefdescription oftheprocedureislisted, 1.SamplesareloadedintotheMira 3XMHmicroscope,pumped tovacuumandthemicroscopefocusedontheregionofinterest. 2.TheApolloXmodulewasactivatedandtheviewscanned withtheTEAMsoftware.Theremaininganalysiswasalso performedthroughthisapplication. 3.Fromthisscannedimage,areaswerehighlightedtoperform EDStesting. 4.Energy-dispersivex-rayspectroscopywasperformedonthe areaofinterestandtheoutputcountswerecomparedagainst theeZAFstandardlessmodelalgorithmforpeakidentiÞcation intheTEAMsoftware. 5.Testingwasrepeatedthreetimesondifferentregionsofthe samesampletoensurearepresentativeresult. 54ElementK &1K&2K"1L&1L&2L"1L"2L!1M&18O0.524912Mg1.253601.253601.3022 13Al1.486701.486271.55745 58Ce34.719734.278939.2573 4.84024.82305.26225.61346.0520.883 71Lu54.069852.965061.283 7.65557.60498.70909.048910.1434 1.581373Ta57.53256.27765.22381.461 8.08799.34319.651810.89521.710 74W59.3182457.981767.2443 8.39768.33529.672359.961511.28591.7754 77Ir64.895663.286773.56089.17519.099510.708310.920312.51261.9799 Table 7:Photonenergies(keV),ofprincipalK-,L-,andM-shellemissionlines.Boldvaluesarewithinourdetectorrange.[ 35]ElementK1sL 12sL 22p1/2 L32p3/2 M23sM 23p1/2 M33p3/2 M43d3/2 M53d5/2 N14sN 24p1/2 N34p3/2 8O543.141.6 12Mg1303.088.749.7849.50 13Al1559.6117.872.9572.55 58Ce40443654961645723143612741187902.4883.8291.0223.2206.5 71Lu633141087010349924424912264202416391589506.8412.4359.2 73Ta674161168211136988127082469219417931735563.4463.4359.2 74W6952512100115441020728202575228118721809594.1490.4423.6 77Ir7611113419128241121531742909255121162040691.1577.8495.8 ElementN 44d3/2 N54d5/2 N64f5/2 N74f7/2 O15sO 25p1/2 O35p3/2 O45d3/2 O55d5/2 P16sP 26p1/2 P36p3/2 58Ce109Ð0.10.137.819.817.0 71Lu206.1196.38.97.557.333.626.7 73Ta237.9226.423.521.669.742.232.7 74W255.9243.533.631.475.645.336.8 77Ir311.9296.363.860.895.263.048.0 Table 8:Electronbindingenergies,inelectronvolts,ofselectedelements.[ 35]555555ResultsandDiscussion ThissectionoutlinesthegrowthresultsofboththeCe:LuAGand MgTa 2O6compounds.TheMgTa 2O6growthcompositionwas conÞrmedthroughmultiplex-raypowderdiffractiontests.Both compoundsweretestedusingx-rayluminescencetodetermine theiremissionspectraandpotentialasascintillator.Samples ofbothcompoundswerethenmounted,polishedandcoated inpreparationforscanningelectronmicroscopyandenergy- dispersivex-rayspectroscopyanalysis.Theseresultsareshown anddiscussed. CrystalResults:Ce:LuAG GroupSampleLength(mm) 11460.3B51460.7M51460.10E521468.3B51468.7M531482.3E51482.10B51482.7M10 Table 9:AdditionalCe:LuAGsamples sentfromLBNLfortesting. ThegrowthresultsoftheCe:LuAGcrystalsaresummarized individuallyinthissectionalongwithdetailsandadditional observations.ResultsaresummarizedinTable 10.Experiments 1-4werecompletedonasamplethatwasinitially 10gramswhile experiments5-7werecompletedonasamplethatwas 5grams.Experimentsproceededsequentiallywiththelastexperiment havingthesmalleststartingmelt.Thissteadyreductioninhead pressurerequiredslightlydifferentadjustmentsfromexperiment toexperiment. ExperimentSampleTypeSample/TrialResultLength(mm) 1HP1/1+252HP1/2+1003HP1/3+134HP1/4+1025MP2/1-Ð6MP2/2-Ð7MP2/3+23Table 10:Resultssummaryfor Ce:LuAGµ-PDgrowths.Sample typeisthemethodofpreparation whichwaseitherhydraulically-pressed (HP)ormanually-pressed(MP). AdditionalsampleswerealsoreceivedfromLBNLforfurther testing.ThesesamplesarelistedinTable 9.Theamountofdopant inthesesampleswaslessthan 0.5mol%,whichislessthanhalf oftheceriumcontentastheexperimentallygrownsamples.The mostobviousdiscrepancy,outsideofthequality,istherelatively palercoloryellowcomparedtotheintenseyellowoftheexperi- mentallygrowncrystals.Allofthe 5mmcrystalssentfromLBNL areshowninFigure 75alongwiththeirinternallydesignated samplenumbers. 56Figure 75:Compositeimageofthe 5mmCe:LuAGsamplessentfromLBNL forfurthertesting. PressedPowder:Sample 1,Trial 1A25mmlongCe:LuAGcrystalwassuccessfullygrownand pulled-downatarateof 0.60mmmin.Duringthiscrystalgrowththe crystalseparatedatapositionoutsideoftheviewingarea,ending theexperiment.Oncethesystemwasventeditwasdiscovered thatthecrystalhadseparatedapproximately 2-3mmfromthe bottomofthecrucibleasshowninFigure 76withthemajorityof thecrystalstillattachedtotheLu 3Al5O12seed.Figure 76:PositionofCe:LuAGcrystal separationthatoccurredjustoutofthe viewingwindowofthe µ-PDchamber (Sample1,Trial 1).Thecrystalwasremovedbyhandfromtheseedandisshown inFigure 77.Asmallportionofthecrystalattachedtothecrucible wasrecoveredwiththeremainingcrystalremovedwithgrinding paper. Thecrystalremovedfromtheseedmeasuresapproximately 25mm.Smallvariationsindiameterwereobservedalongthegrowth axis.Thepulsesofmaterialcouldbearesultofsystemvibration orinconsistencyinthemeltitselfthateffectedtheßowofthe compoundthroughthethincapillarychannelofthecrucible. Figure 77:A25mmlongCe:LuAG crystalwithanapproximatediameterof 1mm(Sample 1,Trial 1).Vibrationsarehypothesizedtobetheprimarysourcebecause theycouldbefeltsubtlyalongtheweldmentofthe µ-PDchamber baseandtherewasaslightvibrationofthecamerapositionwhich wasmountedtothechamberlid. Themeltstillcontainedwithinthecruciblewasalsoinspected andisshowninFigure 78.Alargecrystalhadformedinthe crucibleandshowsevidenceofhomogeneousmixing.Fromthis weareabletoconcludethatourexperimentaltemperaturewas appropriateforthecompound.Theyellow/greenappearancewas 57dramaticallydifferentfromthewhitepowderstheexperiment startedwith.Asmallportionofiridiumalsoappearedtohave precipitatedontothesurfaceofthemelt. PressedPowder:Sample 1,Trial 2A100mmlongCe:LuAGcrystalwasgrownatarateof 0.5mmminandisshownstillattachedtotheseedinFigure 80.Discrepancies ofthecrystaldiametercanbeobserved,similartothoseobserved inTrial 1.Theseundulationsappeartocomeinatnearlyregular intervals,smoothingoutbetweeneachpulseofcrystal. Figure 78:RemainingCe:LuAGmelt containedinthecrucible(Sample 1,Trial 1).Figure 79:SmoothmoltenCe:LuAG withincrucibleremainingaftercrystal growth(Sample 1,Trial 2).TheCe:LuAGcrystalwasinitiatedonthesameportionofthe Lu3Al5O12seedasTrial 1.ThetopportionoftheCe:LuAGcrystal separatedfromthecrucibleduringcool-down,makingremoval easier. Temperaturewasheldsteadyfortheentiretyofthegrowthwith theexceptionoftheveryendsoanyvariabilityalongitslengthis mostlikelynotduetodifferencesintemperature. TheleftovermeltisshowninFigure 79.TheCe:LuAGcrystal formedwithinthecrucibleissmootherthanafterTrail 1andappearstobehomogeneouslymixed. Figure 80:A100mmlongCe:LuAG crystalwithanapproximatediameterof 1mm(Sample 1,Trial 2).58PressedPowder:Sample 1,Trial 3A13mmlongCe:LuAGcrystalwasgrownatarateof 0.1mmminandisshownstillattachedtotheseedinFigure 81.Themost signiÞcantprocesschangewasareductioninpull-downratefrom 0.5-0.6mmminofpreviousgrowths. Itisimmediatelyapparentthatthediameteroftheslower drawncrystalislargerandmoreconsistent.Anotherfactorthat mayhaveattributedtothisdiscrepancyingrowthwasaslight increaseintemperaturefrom 2068¡C(SP:48)to 2083¡C(SP:50).Figure 81:A13mmlongCe:LuAG crystalwithanapproximatediameterof 1mm(Sample 1,Trial 3).Vibrationsintheapparatuswerealsoobserved.Thiswasevi- dentintheslightmovementoftheseedandseedrodduringthe µ-PDexperiment.Oncetheexperimentwascompletedtheseed holdercollarthatclampstheseedrodintoplacewascleanedthor- oughly.Thiscleaning,however,wasonlyslightlybeneÞcialasthe clampingresistancewasstillinsufÞcientatpreventingrotationof therodintheholder. PressedPowder:Sample 1,Trial 4Figure 82:TheCe:LuAGcruciblemelt aftercrystalgrowth,contaminationis observedonthetopsurfacefromthe iridiumcrucible(Sample 1,Trial 4).A102mmlongCe:LuAGcrystalwasgrownatarateof 0.1mmmin.Wewerenotabletoexhaustthemeltsupply.Itwasalsoobserved thatthemeltwascontaminatedwithwhatappearstobeiridium thatprecipitatedfromthecruciblewalls.Themeltheightonly decreasedbyapproximately 1mmsoitisassumedthatthemelt withinthecruciblecontainsbubbleorispossiblyhollow.Theleft overmeltisshownin 82.Itwasalsoobservedthatthepreviouslystainedquartzholder wasnowcleanafterapproximately 16.5hoursattemperatures greaterthan 2000¡C.Thisprolongedexperimentalongwiththe previousonesconductedwiththismeltandcruciblecausedthe iridiumtocontaminatethemeltinsigniÞcantquantities.Forthis reasonthiscruciblewasabandonedforfuturegrowths.Itwas cycledagainathighertemperaturesupside-downinaneffortto removethecrystalpriortochemicalcleaning. PressedPowder:Sample 2,Trial 1Figure 83:CrystallizedCe:LuAGmelt withinthecrucibleaftergrowthattempt (Sample2,Trial 1).Thiscrystalattemptwasconductedonanewcruciblewithalarger capillarychannel,measuring 3mmODatthenozzlewiththe capillarychannelmeasuring 1.5mm.Thiscrystalhadamuch moredifÞculttimeseedingwiththelargernozzle,likelydueto thetemperaturegradientacrosstheincreaseddiameterofthe attemptedgrowth.Thecrystalwasmomentarilygrownataslower pull-downrateof 4mmhrbeforetheliquidmeltpulledtheseedrod outoftheholder. OncecooledbacktoRTtheseedwassuccessfullyseparated fromthecrucible.Theseedhadinitiatedatamuchlargerdiameter 59thanthepreviousgrowths.Themelthadcrystallizedwithinthe crucibleasshowninFigure 83.Thenewiridiumcruciblewasalso slightlydeformedaftertheexperiment. PressedPowder:Sample 2,Trial 3A23mmCe:LuAGcrystalwassuccessfullygrownatarateof 0.1mmminandisshowninFigure 85.Thesecondexperimentconducted onthissamplewasunsuccessfulduetothebottomofthemelt solidifyingpriortoinitiatingtheseed.Thisthirdattemptwasthe ÞrstsuccessfulCe:LuAGcrystalgrowthwiththelargerdiameter capillarychannel.Thelargersizehadpresentedchallengesbe- causethetemperaturegradientacrossthethicksamplewasmore difÞculttocontrol,leavinglesstimetoseedandagreaterriskto separatefromthemeltprematurely. Figure 84:InitializationoftheCe:LuAG crystalattherightwithcontamination appearingasdarkdiscolorationalong thecrystalexterior(Sample 2,Trial 3).Crystaldiscolorationwasobservedinallbutneartheinitial seedingsurface.Thisdiscolorationisnotpresentintheothersam- plesandisconsideredtobecontaminationintroducedsomewhere inprocess.ThiscontaminationishighlightedinFigure 84.Itis hypothesizedthatthecontaminationoccurredduringthemanual pressingofthesampleandthatthedarkdiscolorationisdueto carboninclusionthatwascompactedintothesampleunderthe highpressureofthepress. Duetothehightemperaturesandtherepeatedcyclingon theafter-heaterandcrucible,thetwocomponentsweredifÞcult toseparateaftertheexperiment.Thiswaslargelyduetothe deformationinducedbythehightemperatureswheretheiridium wasnotabletoproperlymaintainitsgeometry.Thecrucibleand after-heaterwereseparatedbutbrokesuddenlyapartwiththe after-heaterstrikingthecrystalstillattachedtothebottomofthe crucible.Thecrystalbrokebuttheotherportionofcrystalwas recoveredandisshowninFigure 85.Futurecrystalgrowthswiththislargerdiametercapillary channelwillneedtobecontrolledcarefully.Thetemperatureof thechamberwasalsohigherforthiscrystalwhencomparedtothe smallerdiametercrystalsgrown. Thetemperaturehadtobeincreasedfurtheroncethecrystal begantogrowbecausethediameterwassteadilydecreasing.The compensationseemedtostabilizethegrowthasobservationsfrom theÞnishedcrystalshowaveryconsistentdiameterthereafter. WhiledifÞculttogrow,thesecrystalsmaybeaboveacriticaldi- ameterwheretheyareabletoremainunaffectedbythevibrations duetotheiradditionalmass. 60Figure 85:Ce:LuAGcrystalgrowthwas approximately 23mminlengthand wasbrokenduringafter-heaterremoval (Sample2,Trial 3).61Ce:LuAGCrystalDiscussion ThelengthsandweightsofeachCe:LuAGcrystalgrowthfrom Sample1arecomparedinTable 11.CrystalPull-downRate( mmmin)Length(mm)Weight(mg)Ratio Trial 10.602531 .40.80Trial 20.50100114 .10.88Trial 30.101337 .70.34Trial 40.10102330 .00.31Table 11:Ce:LuAGSample 1crystal comparisonwithlength-to-weightratio. Figure 86:The 100mmlongCe:LuAG crystalpulledatarateof 0.5mmmin(Sample1,Trial 2)comparedtothe shorterCe:LuAGcrystalgrownatarate of0.1mmmin(Sample1,Trial 3).Allfourofthesesamplesweredrawnfromthesamemeltand crucible/after-heaterpair.Whileheadpressureofremainingmelt undoubtedlyplayedaroleinhoweasilythemeltisseeded,the pull-downratewasfoundtobethemostinßuentialparameter toadjusttoimprovecrystalquality.Whilethesamplehadbeen hydraulicallypressedpriortothegrowthsthesamplecouldhave beneÞtedfrompossiblesinteringathighertemperaturebelowthe meltingtemperature.Thistypeofsinteringhasbeenoutlinedin previousstudies. 4040B.C.Grabmaier,W.Rossner,and J.Leppert.Ceramicscintillatorsforx-ray computedtomography. PhysicaStatus Solidi(a) ,130(2):K183ÐK187,April 1992ThediscrepancyinrelativethicknessisevidentinFigure 86.ThetwoCe:LuAGcrystalsintheimageweregrownback-to-back undersimilartemperatures.TheshorterCe:LuAGcrystalhas asigniÞcantlylargerdiameterandismoreconsistentwithits diameterthanthelonger,thinnerCe:LuAGcrystal. ThelongestCe:LuAGcrystalsgrownatfastandslowpull- downratesarecomparedinFigure 87.Theslowerpull-downrate grewalargerdiametercrystalthatwasrelativelyconsistentwhen comparedtothefastergrowncrystal.Theslowpull-downrate crystalfromTrial 4displayedwhatappearedtobeabubbleafter approximately 75mmofgrowth.Bubblesaretypicallyrarein µ-PDexperimentsbecausetheytendtorisetothetopofthemelt. ThiswastheÞrstexampleofabubbleinanyofourgrowthsand theywerenotseeninourlargerdiametergrowswithSample 2usingthelargercruciblenozzlediameter. 62Figure 87:A103mmlongCe:LuAG crystalgrownat 0.1mmmin(Sample1,Trial 4)comparedtoa 100mmlong Ce:LuAGcrystalgrownat 0.5mmmin(Sample1,Trial 2).CrystalResults:MgTa 2O6ThegrowthresultsoftheMgTa 2O6crystalsaresummarized individuallyinthissectionalongwithdetailsandadditional observations.ResultsaresummarizedinTable 12.ExperimentSampleTypeSample/TrialInitialSizeLength(mm) 1NP1/Ð5gÐ2NP1/1Ð3NP1/2Ð4NP1/315 ÐMP 2/Ð&5gÐ5MP3/15gÐ6MP3/2Ð7MP3/3328MP4/110g89MP4/2Ð10MP4/31211MP4/413612MP4/547Table 12:Resultssummaryfor MgTa 2O6µ-PDgrowths.Sample typeisthemethodofpreparation whichwaseithernon-pressed(NP)or manually-pressed(MP). NoexperimentswereconductedwithSample 2becauseof concernsoverexcessivesamplelosswhilemanuallypressingthe sample.Sample 3wasmadeshortlyafterandthepowderproce- durewasadjustedtopreventexcessivesamplelossagain.This sampleretainedmuchofitsmassandwasusedinsubsequent µ-PDexperiments.Trial LoosePowder:MeltCheck AmeltcheckwasperformedontheMgTa 2O6compoundbefore attemptingany µ-PDexperiments.Thischeckwastoensurethat thecompoundwasrelativelycompatiblewiththeiridiumcrucible. Figure 88:Topofcrucible,melttestfor MgTa 2O6(Sample1).Thiscompatibilityiscriticalatthecapillarychannelleading downtothecruciblenozzle.IfthemeltresiststheiridiumsufÞ- cientlyitwillnottraveldownthechannel,ifthechannelistoo wideweriskedfreeßowofthemeltfromthecrucibleonceit liqueÞes.63FromthemeltcheckwewereabletoconÞrmthatthemelt ßoweddownthecapillarychannelandemergedfromthenozzle whereitwasheldinplaceforaperiodoftimewithoutinteraction fromtheseed.OncethemeltcompoundwasconÞrmedtobesta- bleinthispositionthechamberwascooledtoRT.Afterthecheck wascompletetheremainingmeltinthecruciblewasinspected andisshowninFigure 88.Thepowdersampleusedwasuncom- pressedandthetopofthemeltwithinthecrucibleappearedto benotcompletelymeltedandappearedorange-brownincolor. Themeltthathademergedfromthecruciblenozzleslightlywas whiteandsmoothinappearance.Thischangeincolorimpliesa signiÞcanttemperaturegradientacrossthesampleandwillbe monitoredinfuturegrowthattempts. LoosePowder:Sample 1,Trial 1Figure 89:Semi-smoothmolten MgTa 2O6withincrucibleafterthe µ-PDexperiment(Sample 1,Trial 1).ThisÞrst µ-PDexperimentfailedduetoamisalignmentbetween theseedandthecruciblenozzle.Despitethelackofgrowthat- temptseveralobservationsweremadepost-experiment. Afterthe µ-PDexperimentwasperformeditwasobservedthat thequartzpedestalhadabluediscoloration.Thiswasbelievedto befromthenotcompletelydriedaluminaadhesivethatwasused toconstructtheseedrod.ThisdiscolorationisshowninFigure 90.Anotherpossiblesourceofthisdiscolorationcouldhavebeen fromtheMgOevaporatingoffofthemeltandfallingasprecipitate ontothequartztube.Thisphenomenahasbeenobservedin similarµ-PDexperimentswhenmagnesiaceramicsareused insteadofalumina. 41Thealuminapasteseemsmorelikelyas 41T.FukudaandV.I.Chani. ShapedCrystals:GrowthbyMicro-Pulling-Down Technique .Springer-Verlag,Þrstedition, 2007themeltingtemperatureofMgOissigniÞcantlyhigherthanour desiredcompoundandtheconstitutivecompound. Themeltleftinsidethecrucibleafterthe µ-PDexperimentwas inspected.Nosinglecrystalsformedinthemeltandthemelt appearedtotaketwodifferentcolors,itschalkywhiteappearance wassimilartothatofthepowderenteringthechamberandthe orangeportionsofthesampleseemedtohavechangedcolordue toexcessiveheat.itdidshowimprovementsoverthestillpowdery surfaceofthemeltafterthemeltcheck. Figure 90:Bluediscolorationonquartz pedestalafterseedattempt(Sample 1,Trial 1).LoosePowder:Sample 1,Trial 2Thissecond µ-PDexperimentwasproperlyalignedbutdidnot produceanygrowth.ThemelthaddifÞcultyinteractingwiththe seedandwouldnotattachtoinitiategrowth. Aftertheexperimentitwasobservedthattheentiretyofthe compoundhadbeenmoreuniformlyheatedandappearedmolten asshowninFigure 91.Theseedwasremovedandsandedwith 600/P1200gritgrind- 64ingpapertocreateamoreuniformtip,howeverthegrooveinthe middleoftheseedwasdeepandwasonlypartiallycompensated. Thiswasdoneinanefforttoimprovetheinteractionsbetweenthe emergingmeltandseedsurface. Figure 91:SmoothmoltenMgTa 2O6meltwithincrucible(Sample 1,Trial 2).Thecruciblewasalsosandedwith 600/P1200gritgrinding papersothatallexcesscompounddirectlyoutsideofthecapillary channelwasremoved.Thecruciblenozzlewassandedsuchthat theiridiumcircumferencewasvisible.Someofthemeltwasalso removedfromtheoutsideofthecapillarychannel. LoosePowder:Sample 1,Trial 3Figure 92:LoweredMgTa 2O6crystal withintestchamber,belowinduction coil(Sample 1,Trial 3).ThisattemptmarkedtheÞrstsuccessfulgrowthofMgTa 2O6.The MgTa 2O6crystalwithinthe µ-PDchamberisshowninFigure 92.Thetemperaturegradientislargelyresponsibleforthecolor gradient.Acriticalscintillatorpropertyistransparencyandwhile themajorityofthisgrowthrangedincolorfromdarkbrownto lightorangetheveryendofthegrowthwaswhiteandslightly transparent.Itwasthegoalofsubsequent µ-PDexperimentsto reproducethetransparentwhiteportionofthecrystal. ThisgrowthmarkedthethirdandÞnaltestfromtheÞvegram, powdersample.Thissamplewasnotpressedandwasplaced withinthecrucibleinitspowderedform.Thepreviousgrowth attemptswiththissamplefailedtoseed. Thecrystalwassuccessfullyremovedfromtheapparatusand isshowninFigure 94.Thisportionofthegrowthwasthefocusof furthertestingasitpossessedamoreuniformandorderedgrowth whencomparedtootherexperimentstofollow. Theinitialdischargeofthemeltfreeßowedfromthecapillary channelandwasofadarkercolorwhichcorrelatedtothehigher experimentaltemperatures.Thislargemassfreeßowedfromthe crucibleatatemperatureof 1972¡C(SP:36.8).Thetemperatureof thechamberwasreducedandthecolorlightenedtowhite.This yellow-browncolorwasalsoobservedonthemeltsurfacethatwas stillwithinthecrucibleaftertheexperiment. Figure 93:TheMgTa 2O6meltwithin crucibleafterthe µ-PDexperiment (Sample1,Trial 3).Whilesomesampleremainedwithinthecruciblenofurther testingwascompletedusingthissample.Intheinterestoftime anothersamplewaspreparedthatwaspelletpressedwiththe thoughtthatthiswouldimprovethebondsinthepowderpriorto µ-PD,leadingtoamoreorganizedandimprovedgrowthwhen comparedtothesetrialsofsimplyexperimentingwithloose powder. 65Figure 94:MgTa 2O6crystalgrowth (Sample1,Trial 3).PressedPowder:Sample 3,Trial 3Sample2wasnotusedfor µ-PDexperimentsduetoasigniÞcant lossofcompoundduringthemanuallypressprocess.Forthis reason µ-PDbeganagainwithSample 3.Trial 1and2withthis samplecontinuedtohavethecompatibilityissueswehaveseen previouslybetweentheseedandtheemergingmelt.Trial 3withthissampledidproduceagrowththatwaslargelyuncontrolled butcouldbeusedasaseedinsubsequent µ-PDexperiments. Figure 95:MgTa 2O6dischargeattached totheseedrod,avoidingcontactwith theseed(Sample 3,Trial 3).TheMgTa 2O6growthisshowninFigure 95.Thisdischargewas largelyunorganizedandfreeßowedfromthecapillarychannel. Thisgrowth,aswiththelast,didnotseedeasilywiththeiridium seed.Instead,themeltavoidedcontactandgrewarounditafter solidiÞcationinitiatedontheceramicseedrodbelow.BothTrial 1and2withthissamplefailedtoseedandthiswastheÞrst actionablegrowthachievedfromthissample. Figure 96:Compounddepositon surroundingceramicinsulatorandlid (Sample3,Trial 3).Thisfreeßowalsoexhaustedthemeltandwasthereforethe lasttrialwiththissample.Sincethegrowthwasnotorderlyand arrangedstoichiometricallyitisnotbeingcharacterizedasa singlecrystal,alsolackingtheanticipatedtransparencythatwas visibleslightlyattheendofour µ-PDexperimentonSample 1,Trail 3.Itwasalsoobservedthattheceramicinsulatorandlid weredarkenedaftertheexperiment,implyingthatoneofthe 66compoundsmayhaveevaporatedoffduringthegrowthattempt. Withthesampleexhaustedthereisnoconcernofthiseffectingthe qualityofsubsequentcrystalgrowths. Thecrucibleandafter-heaterweresubjectedto 2hoursatexper- imentaltemperaturesinanefforttocleanthepairofanyresidual compound.Theseblackenedceramicswerealsoaddedwith thelidslightlyaskewwiththehopethatthecompoundwould burnoffsimilartowhatwesawwiththebluediscolorationof thequartztube.Thiseffortdidnotyieldanappreciableimprove- mentandnewceramicinsulatorswereusedinsubsequent µ-PDexperimentsasaprecaution. PressedPowder:Sample 4,Trial 1Anewtengrampressedpowdersamplewaspreparedandused fortheÞrsttimeinthis µ-PDexperiment.Anewseedhadbeen constructedfromthepreviousgrowthanddramaticallyimproved compatibilityoveritsiridiumcounterpartusedpreviously. Figure 97:TheMgTa 2O6meltwithin crucibleafterthe µ-PDexperiment (Sample4,Trial 1).ThelargersampleandthefactthatitwasdensiÞedpriortothe experimentseemedtomakegrowtheasierthanpreviousattempts. Theremainingmeltinthecruciblewaswhiteatthecenterand discoloredyellowalongtheperimeterasshowninFigure 97.This appearancewasdifferentfromthedarkerdiscolorationwehad observedwiththeloosepowdersample. AnotherimprovementwasusingMgTa 2O6astheseedmaterial ratherthanpureiridium.Theonlygrowththatwascompleted withtheiridiumseedwasfreeßowthatfortunatelyenoughat- tacheditselftotheseedrodandZirconiaadhesive.Thisgrowth markedtheÞrstthatseededcorrectlytotheseedandproceeded toformonthatsurfacelargelyduetothisimprovedcompatibility. ThegrowthisshowninFigure 98.The8mmlonggrowthdidnotappeartobeoverheatedand wasevenlywhitethroughout,however,thegrowthformationwas ratherunorganizedandrequiredrestartatseveralpointswhere thediameterofthecrystalreduceduntilseparationoccurred.The temperaturehadbeenincreasedtocompensatebutthisriskedfree ßowofthecompoundfromthecapillarychannel. Toavoidthis,webegantoholdtheseedagainstthecrucible nozzleandletthetwoacclimateforanextendedperiodoftime beforetheseedwasbroughtdown.Thisallowedustoincrease thetemperaturefurtherandensurethatthecapillarychannelwas Þlledwithcompoundpriortopull-down.Adrawbackofthiswas thatthesurfaceoftheseedwasvisiblymeltingattimes,beingthe samematerial,itwassubjecttothesametemperatures. Anothersourceofthediameterßuctuationswasthevibrations fromthesystem.Thiscompoundwasmuchmoreßuidthanthe Ce:LuAGcrystalstestedsotheimpactonthesolidifyingcrystal 67wasmostlikelymoresigniÞcant.Thiscoupledwithtemperature adjustmentswhilethecrystalwasgrowingcompoundedmore diametervariability. Figure 98:The 8mmMgTa 2O6growth attachedtothenewlyconstructed MgTa 2O6seed(Sample 4,Trial 1).PressedPowder:Sample 4,Trial 3Thisattemptmarkedthethird µ-PDexperimentonthissample. Trial 1,hadproducedasmallgrowthmeasuringapproximately 8mmandTrial 2hadseededataverysmalldiameterandquickly expanded.Whenthegrowthrequiredreseedingthemeltpulled thesmallalreadyformedgrowthfromtheseed.Duetothelow temperatureoftheundersideofthisgrowthreseedingfailed. Onthisattemptaslightlylargergrowthwasachievedandis showninFigure 100.Thisgrowthmeasuredapproximately 12mm,slightlylongerthantheÞrstgrowth.Thisgrowthexperienced momentsoffreeßowfromthecruciblenozzlethatcoatedthe seedandseedrod.Thesefreeßoweventswerecorrectedwith reductionintemperatures. Figure 99:TheMgTa 2O6meltinsidethe crucible(Sample 4,Trial 3).Temperatureadjustmentwerealsoneededwhilegrowthwasin progressandtheresultinggrowthshowsthesamevariablediam- eterthatTrial 1displayed.Thetemperatureswerenearlyidentical withmanyofthesameproblemscontributingtovariabilityinboth experiments.Pull-downrateswerekeptrelativelyslowat 0.10mmmin,adjust- mentfromthisvalueineitherdirectionwasmetwithdifÞculty. Iftherateofpull-downwasslowedfurtherthegrowthwould solidifyafterashorterandshorterdistancebelowthecrucible nozzleresultingineventualterminationofthegrowth.Iftherate wasincreased,theseedwouldoutpacetheemergingmelt,the meniscuswouldbeextendedandwouldeventuallyseparate.Due toprocesssensitivityanyadjustmentinpull-downrateneeded tobecoupledwithanadjustmentintemperaturetomaintainan appropriatelylargemeniscus. Figure 100:The 12mmMgTa 2O6growthattachedtothenewlycon- structedMgTa 2O6seed(Sample 4,Trial 3).ThemeltremaininginthecrucibleisshowninFigure 99.The appearanceissimilartothatofTrial 1withtheinteriorthewhite coloroftheoriginalpowdersandtheperimeterdiscoloredyellow. Twospotsinthemeltwereadarkerorangeandmayhavebeen precipitatedcontaminationfromtheexperimentalapparatus. PressedPowder:Sample 4,Trial 4Thisµ-PDexperimentproducedthelongestsinglegrowthofany experiment,measuring 136mm.Thegrowthinitsentiretyis showninFigure 101priortoremoval.Thisgrowthhadbeenleftto runovernightatapull-downrateof 0.50mmmin.Severalpointsalongthegrowthlengthwereextremelysmall andthegrowthwasbrokenuppriortoremovingitfromthe 68chamberasitwasunlikelythegrowthcouldtolerateanyhandling initsfullform.Despitethiscontrolledbreakup,anotherportion ofthegrowthbrokefreeandfracturedintoseveralpieces.These pieceswerecollectedandareshowninFigure 102.Figure 101:The 136mmMgTa 2O6growthattachedtotheseedstillinthe µ-PDchamber(Sample 4,Trial 4).Thisexperimentmarkedanimportantstepforwardinthe process.Amajorityofthegrowthgrewunsupervisedandcon- sequentlygrewwithoutparameteradjustment.This µ-PDexper- imentdifferedfrompreviousattemptsbyrunningatahigher temperatureandahigherpulldownrate.Themajorityofthis growthexperimentwasrunatatemperatureof 1954¡C(SP:35)wheretheotherexperimentswererunatamaximumtemperature of1911¡C(SP:31).Thisincreaseintemperatureneededtobecou- pledwithanincreaseinpull-downrate.Thepull-downratewas increasedto 0.50mmminwhilepreviousattemptsusedarateof 0.10mmmin.Thegrowthexperienceddiameterßuctuationssimilartopre- viousgrowthattemptsdespitetheparameteradjustments.This lendsmoreevidencetothe µ-PDchamberexperiencingvibra- tionissuesthathavebeenseeninbothMgTa 2O6andCe:LuAG experiments.Priorgrowthshadrequiredseveraltemperatureadjustments duringthegrowingprocessmakingitdifÞculttodeterminewhat eventswerecausingthechangesindiameterandincolor.For thisgrowththetemperaturewaskeptconstantandthisisevident bythemoreuniformcolorofthegrowth.Therewasagradient acrossthediameterofthegrowthwherepartsofthegrowthhad brokethecolorappearedwhiterontheinterior.Thisimpliesa temperaturegradientacrossthediameterofthegrowthwherethe exteriortemperaturesofthegrowthwerehotterthantheinterior. Whilethismakesintuitivesenseitisaconcernattheapparent severityofthisgradient,implyingthatgrowthofthiscompound couldremaindifÞcultwiththecurrentcapillarychanneldiameter, whichisalreadysmall(> 1mm).69Figure 102:BrokenupMgTa 2O6growth,measuring 136mmtotal (Sample4,Trial 4).70PressedPowder:Sample 4,Trial 5Thisµ-PDexperimentproducedagrowthof 47mm.Thegrowth initsentiretyisshowninFigure 105.Likethepreviousattempt thechambertemperaturewasincreasedto 1954¡C(SP:35)andthe pull-downratewassetto 0.50mmmin.Oneimportantexperimental differencewasthatthesetwoexperimentswereconductedfrom thesamesample.Thisgrowthhadtheleastamountofhead pressureofanyoftheexperimentsonthissampleforthatreason. ThegrowthismeasuredandshowningreaterdetailinFigure 105.Figure 103:MgTa 2O6meltwithinthe crucible,suspectedcontaminationfrom theiridiumcrucible(Sample 4,Trial 5).Figure 104:Theexteriorofthecrucible afterthe µ-PDexperiment,grain boundariesprominentafterhigh temperaturecycling(Sample 4,Trial 5).Asimilargrowthstrategyofobstructingthecruciblenozzle withtheseedwasemployedforthisexperiment.SomedifÞculty wasencounteredwhenthemeltbegantowetseverelyonthe exteriorofthecruciblenozzle,thiswasfollowedbyaperiodof freeßowthatremovedthemeltfromtheexteriorofthenozzle completelyandresultedinalargemassdepositingaroundand overtheMgTa 2O6seed.Itwasonthisnewsurfacethatthegrowth beganwhichprovidedalargesmoothsurfaceinwhichtoinitiate growth.Aswiththepreviousgrowththebeginningwasnoticeably largerindiameterbeforetaperingoff.Uponremovalthesample appearednoticeablywhiterthanourpreviousgrowthatthis temperatureandpull-downratewhichmaybeaproductofthe slightlyundersizedaveragediameter. ThemeltremaininginthecrucibleisshowninFigure 103.Here itisobservedwhatappearstobeiridiumcontaminationfromthe crucibleitselfwhichappearsassilverspotsonthetopsurfaceof themelt.Thisalongwiththegenerallychangedappearanceofthe crucibleexteriorimpliesthatthecruciblemayhavecontaminated thecrystalformation. Duetothenumerousexperimentalcyclesandextendedtimeat elevatedtemperaturesthegrainstructureoftheiridiumcrucible becamemorepronouncedandisshowninFigure 104.Inaddition tothegrainstructureobservationsonecanalsoobservethewet- tingpropertiesoftheMgTa 2O6compoundontheexteriorofthe crucible,wherethemelthastraveledupwardsalongthecrucible exterior.Thisremainedevenafterthemajorityofthiswettedcom- poundhadjoinedthegrowthoncethepull-downprogramwas initiated.71Figure 105:BrokenupMgTa 2O6growth (Sample4,Trial 5).72X-rayPowderDiffraction MultipleMgTa 2O6sampleswerepreparedperiodicallyduring testingtoensurethatwewereworkingwiththecorrectphase ofthecompound.NoCe:LuAGsamplesweretestedusingthis method,insteadXRLwasusedtocharacterizeandcomparethe crystalstopublishedvalues.XRPDtestingwasperformedonthe looseMgTa 2O6powder,afterthemeltcheck,andonsubsequent growths.Theseresultsareoutlinedbelowandcomparedagainst theMgTa 2O6standardpeaksprovidedbytheMatch!,aphase identiÞcationprogramcreatedbyCrystalImpact. MgTa 2O6:Sample 1,Powder Inorderensurethatwewerestartingwiththecorrectcompound asampleoftheloosepowderwastakentoperformXRPD.This testwasdonepriortorunningthemeltcheckwiththesynthesized compound.TheresultsofthistestareshowninFigure 106,against thestandardMgTa 2O6samplepeaks. Figure 106:Diffractionpatterntaken fromtheMgTa 2O6powdersampleprior torunningthemeltcheckcompared againstthepeakstandard(Sample 1).Thesamplepeaksshowgoodcorrelationtothestandardand wecanconcludethatourpowdersynthesiswassuccessful.The resultsdidhaveasigniÞcantamountofnoiseforthelowervalues. Aftersomeinvestigationitwasdeterminedthatthesamplesimply usedadifferenttypeoftapetoadherethepowdertowhencom- paredagainsttheNaClstandardusedtocalibratetheresulting diffractionpattern.ThiswascorrectedinsubsequentXRPDtests. MgTa 2O6:Sample 1,MeltCheck Ameltcheckwasperformedtoensurethattheiridiumcrucible andtheMgTa 2O6compoundwerecompatibleenoughtoproduce conditionsinwhichacrystalcouldbeformed.Fromin-situobser- vationswewereabletoconÞrmthiscapabilityasmeltemerged fromtheendofthecruciblenozzle.Afterthetest,asampleofthe 73powderwastakenfromthecrucibleandtested.Theresultsofthis testareshowninFigure 107.Figure 107:Diffractionpatterntaken fromtheMgTa 2O6meltaftercomplet- ingthemeltcheck,comparedagainst thepeakstandard(Sample 1).Thecompoundhasgoodcorrelationtothestandardpeaksand thenoisefromthelowervalueshasbeenreducedbyrunninga moreappropriatecalibration. MgTa 2O6:Sample 1,Trial 3TwosamplesweretakenandpulverizedforXRPDtestingonSam- ple1,Trial 3.TheseregionsarehighlightedinFigure 108.Two samplesweretakebecausethecolorofthemeltchangedsigniÞ- cantlyasitsolidiÞedandthetemperaturegradientstabilizedtoa lowertemperature.Thedarkbrownmass,labeledtheheadregion becauseitwasÞrsttoexitthecrucible,wasofinterestbecause ofitscolor.Weneededtoensurethatmultiplephasesdidnot existinthesampleandthatwewerenotloosingaconstitutive compoundathightemperature.Thesecondregion,labeledthetail waslighterinappearanceandtransparentattheend.Thissample wasnottakenfromtheorderedgrowthatthefarleftofFigure 108becausethiswouldbetestedlaterwithXRL. TheseoutputproÞlesareshowninFigure 109andFigure 110.Oncephotographedthetwocomponentswereseparatedand groundforx-raydiffractiontesting. Figure 108:Highlightedregionsof MgTa 2O6growthwhereXRPDsamples weretaken(Sample 1,Trial 3).Eachofthesampleddiffractionmatchcloselywiththatofthe standardsamplepattern. MgTa 2O6:Sample 3,Trial 3AfterSample 3,Trial 3afreeßowgrowthofconsistwhiteappear- ancewasformed.Thisdischargewaslargeenoughtoproducea newseedoutofandaXRPDwastakenfromtheunusedportion toconÞrmthattheseedusedinsubsequentexperimentswasin factidenticaltothecompoundwewerewishingtogrow.This wouldensurecompatibilitywiththemeltinfuturegrowths. 74Figure 109:Diffractionpatterntaken fromtheMgTa 2O6headregioncom- paredagainstthepeakstandard (Sample1,Trial 3).Figure 110:Diffractionpatterntaken fromtheMgTa 2O6tailregioncompared againstthepeakstandard(Sample 1,Trial 3).Figure 111:Diffractionpatternstaken fromtheMgTa 2O6growthusedfor asaseedcomparedagainstthepeak standard.(Sample 3,Trial 3).75TheseedshowedgoodcorrelationwiththestandardMgTa 2O6peaksandweconcludedthatwehadaseedmadeofthedesired compound.WiththisconÞrmationwemovedforwardwithother µ-PDexperiments. X-rayLuminescence X-rayluminescence(XRL)testingwasperformedonboththe Ce:LuAGandMgTa 2O6growths.Thistestrequiredlargersample sizestobebrokenupandstackedinglassvialssolikegrowths werecombinedfortestingtheCe:LuAGsamples.TheMgTa 2O6growthswerealsocombinedinonecaseandthetailgrowth highlightedinSample 1,Trial 3wastestedbyitself. Ce:LuAG:Sample 1,Trial 1+2Figure 112:Ce:LuAGcrystalsprepared forXRLtesting,Sample 1,Trial 3+4(top)andSample 1,Trial 1+2(bottom).ThesamplespreparedforXRLtestingareshowninFigure 112.Trial 1and2werecombinedbecausetheyweregrownatsim- ilarpull-downratesof 0.6mmminand0.5mmminrespectively.These twocrystalgrowthsweresigniÞcantlydifferentlengths,there generalstructureanddiameterswerenearlyidentical.Forthis reasonthesesampleswerecombinedtoperformx-raylumines- cencetesting.Theresultingoutputspectrumisshownforthese smallerdiametergrowthsinFigure 113.Thesevaluesforthepeak emissionspectramatchpublishedvaluesforthiscompound. 4242T.Yanagida,Y.Fujimoto,Y.Yokota, K.Kamada,S.Yanagida,A.Yoshikawa, H.Yagi,andT.Yanagitani.Comparative studyoftransparentceramicandsingle crystalCedopedLuAGscintillators. RadiationMeasurements ,46(12):1503Ð1505,2011Thepeakemissionofthiscombinedsamplewasat 547nm,well intothevisiblerangeandwouldbegreen-yellowinappearance. Thesegrowthswerealsocharacterizedbyrelativelyfastpull-down ratesintherangeof 0.5-0.7mmmin.Itwasdeterminedthatthiswas themostinßuentialfactorthatdeterminedoverallcrystalgrowth diameter.Therelativelyfasterpull-downrateresultedinsmaller diametercrystalswhencomparedtoaslowerpull-downrate. Ce:LuAG:Sample 1,Trial 3+4DuetotherelativelysmallsizesandsimilarappearanceofTrial 3and4,thesesampleswerecombinedtoperformXRLtesting. ThesetwocrystalsweregrowtosigniÞcantlydifferentlengthsbut sharedsimilardiametersandappearanceduetotheiridentically slowerpull-downratesof 0.1mmmin.Theresultingoutputspectrum isshowninFigure 114.Thepeakemissionofthiscombinedsamplewasat 547nm,well intothevisiblerangeandwouldbegreen-yellowinappearance. Therelativeintensitiestakenfromeachtestgrouparecomparedin Figure 115.76Figure 113:XRLintensityforthe combinationofCe:LuAGcrystal growthsfromSample 1,Trial 1+2.77Figure 114:XRLintensityforthe combinationofCe:LuAGcrystal growthsfromSample 1,Trial 3+4.78SourcePeakEmission(nm) [38]520[56]500-550[65]520[71]510[73]530Trial 1+2547 Trial 3+4550 Table 13:Peakemissionvaluesfrom publicationscomparedtotheexperi- mentallygrownCe:LuAGcrystals. Asexpectedtherelativeintensitypeaksaroundthesamewave- length.Thethickerdiametersampleshadastrongerintensity whencomparedtothethinnerdiameterssamples.Thismost likelyhasmoretoduewiththelargercrystalvolumeusedinthe testratherthanthedensityoftheindividualcrystalsbeingsig- niÞcantlydifferent.Thepeakemissionvaluesfrombothsample groupsarethencomparedtopublishedvaluesinTable 13.Publicationvalueseitherexplicitlystatedthedopant,Ce,con- centrationat 1mol%oromittedtheconcentrationentirely.The measuredvaluesareonthehighendofthespectrumforCe:LuAG buttheyarewithintheexpectedvisiblerange. Figure 115:XRLintensitycomparison forthecombinationofCe:LuAGcrystal growthsfromSample 1,Trial 1+2andSample1,Trial 3+4.79MgTa 2O6:Sample 1,Trial 3ThetailportionoftheMgTa 2O6growthfromSample 1,Trial 3was analyzedbecauseofitsorderedappearanceandwasnotmixed withanyotherXRLsamples.TheXRLresultsareshowninFigure 116.Figure 116:XRLintensityforthetail portionoftheMgTa 2O6growth(Sample 1,Trial 3).Therelativeintensityvaluesfromthissampleareextremelylow. Whilethereappearstobeanemissionpeakaround 850nmand 980nm,bothintheinfraredspectrum,theintensitycountsarenot abovethelevelofbackgroundnoiseoftheapparatus. MgTa 2O6:Sample 4,Trail 1+3FromSample 4,twotrialswerecombinedtotestinXRLbecause oftheirsimilardisorderedappearance,pull-downrateand µ-PDexperimentaltemperature.TheXRLresultsfromthistestare showninFigure 117.Againtherelativeintensityvaluesfromthissampleareex- tremelylow.Whilethereappearstobeanemissionpeakaround 850nmand 980nm,bothintheinfraredspectrum,theintensity 80Figure 117:XRLintensityforthe combinationofMgTa 2O6growthsfrom Sample1,Trial 1+3.81countsarenotabovethelevelofbackgroundnoiseoftheappara- tus.WhiletheMgTa 2O6emissionresultsmaylookencouraging withthererepeatableemissionpeakstheyarenothingabove backgroundnoisewhencomparedtotherelativeintensityofthe Ce:LuAGsamples.ThiscomparisonisshowninFigure 118.Figure 118:Four-waycomparisonof XRLresults.TheMgTa 2O6testresults arebarelydiscerniblealongthex-axis whiletheCe:LuAGrelativeintensities dominate.82ScanningElectronMicroscopy Scanningelectronmicroscopy(SEM)wasperformedonfour Ce:LuAGandasingleMgTa 2O6growth.Allofthesampleswith theexceptionofLBNLSample 1468.7Mwerecoatedwithtung- stenpriortoanalysisbecauseoftheinsulatingpropertiesofthe growths.Thiscoatedgroundedthesamplesproperlyandallowed imagingtooccuratgreatermagniÞcation.LBNLSample 1468.7MwasleftuncoatedtodeterminetherelativeeffectivenessofSEMon aninsulatingsample. Ce:LuAG:LBNLSample 1482.7MFigure 119:Ce:LuAGcrystal(LBNL Sample1482.7M).AnewCe:LuAGsamplewithreducedceriumcontent(< 0.5mol%Ce)wassentfromLBNLforanalysis,measuring 10mminlength. ThissamplewascoatedintungstenpriortoSEMtesting. Figure 120:Ce:LuAGcrystal,MAG: 100x(Sample 1,Trial 2).Thiscrystal,priortocoating,wasnoticeablymoretransparent thanthehigherceriumcontentcrystalsgrownexperimentallyin thisstudy.Itsuniformtransparencyimpliedthatitwasasingle crystal,SEManalysiswasconductedtoconÞrmthis.Imageswere takenat 200,400,800,1600and2000xmagniÞcationat 20kVacceleratingvoltage. Thecrystaldidnotpossessanygrainstructureatanyofthe magniÞcationsorlocationsinvestigatedatthesamplesurface. Thesurfacewascrackedseverelyinsomeregionsduetothe highpressuremountingprocedure.AthighermagniÞcationsthe surfaceremainedfeaturelessfromagrainboundaryperspective asshowninFigure 121.AdditionalSEMimagesofthisCe:LuAG crystalcanbefoundintheAppendix. Ce:LuAG:Sample 1,Trial 2ThisCe:LuAGcrystalwasproducedfromthe 1mmODcrucible nozzle.Itwasthesmallestsampleinvestigatedastherewere concernsaboutperimeterdamagefromthemountingprocess. Thisdamagewasevidentwhenthesamplewasexaminedunder lowmagniÞcationasshowninFigure.Imagesweretakenat 100,200,400,600,800and1000xmagniÞcationat 20kVaccelerating voltage. Asmallßatsurfaceexistedontheleftsideofthecrystal.This areawasinvestigatedforgrainboundariesbutnonewerefound. AdditionalSEMimagesofthisCe:LuAGcrystalcanbefoundin theAppendix. 83Figure 121:Ce:LuAGcrystalunder secondaryelectrons(left)andback- scatterdetection(right),MAG: 2000x(LBNLSample 1482.7M).Bothimages arefeaturelessoutsideofsomedust particles.84Ce:LuAG:Sample 2,Trial 3Figure 122:Ce:LuAGcrystal,MAG: 100x(Sample 2,Trial 3).ThisCe:LuAGcrystalwasproducedfromthe 3mmODcrucible nozzle.ItwasalargerdiametersamplethantheCe:LuAGcrystal analyzedinSample 1,Trial 2.Duetothelargerdiameterandmass thiscrystalwasnotdamagedasseverelyinthemountingprocess asshowninFigure 122.Imagesweretakenat 100,200,400,800,1600and2000xmagni- Þcationat 20kVacceleratingvoltage.AdditionalSEMimagesof thisCe:LuAGcrystalcanbefoundintheAppendix. Ce:LuAG:LBNLSample 1468.7MThisCe:LuAGsamplewasleftuncoatedandtapedtotheplatform withcarbontapesoitwouldnotbemovedwhenvacuumwas appliedtothechamber.Thiswasdonetodetermineifdetailedim- agescouldbeacquiredonaninsulatingmaterialwhenprovided withasufÞcientlylowacceleratingvoltage. LowermagniÞcationsoflessthan 200xappearedtobedisplay- ingproperlywithacceleratingvoltagesloweredtobetween 3-5kV. AthighermagniÞcationstheimagesbecameseverelydistorted, changingappearanceinwavesevenatlowervoltages,anexample ofthisdistortionisshowninFigure 123.Figure 123:UncoatedCe:LuAGcrystal (LBNLSample 1468.7M).Astheinvestigationofthesamplecontinuedtheresultssteadily decreasedinquality.Itwasdiscoveredthatthemicroscopewas notcapableofacceleratingvoltageslowerthan 3kV,laterin- creasingto 3.5kV.Belowthesevaluesthedetectorwouldsimply returnstaticthatcouldnotbefocusedoradjustedmeaningfully. Athigheracceleratingvoltageschargescouldbeseencoursing throughthesample,distortingtheimagewhenfocusedon.Ad- justingtheworkingdistanceresultedinseverelocaldistortion.For thesereasonsitwasdeterminedthatfuturesampleswillneedto becoatedforhighmagniÞcationworkbutlowmagniÞcationwork coupledwithaloweracceleratingvoltagemayprovidesufÞcient results.AdditionalSEMimagesofthisCe:LuAGcrystalcanbe foundintheAppendix. MgTa 2O6:Sample 4,Trial 5Figure 124:MgTa 2O6two-phasegrowth (Sample4,Trial 5).ThisMgTa 2O6crystalwasproducedfromthe 3mmODcrucible nozzleandlikeallofthegrowthsproducedontopoftheMgTa 2O6seeditpossessedpoordiametercontrolandnotransparency. WhiletheCe:LuAGcrystalgrownexperimentallyandthose analyzedfromLBNLhadbeenfeaturelesswithrespecttograin boundariestheMgTa 2O6showedclearevidenceofatleasttwo phasespresent.ThesephasesareshownindetailinFigure 124.AdditionalSEMimagesofthisMgTa 2O6crystalcanbefoundin theAppendix. 85Energy-dispersiveX-raySpectroscopy TheEDSspectrumoutputsforthetestedsamplesarelistedbelow. EachplotdisplaysthenumberofcountsagainstthespeciÞed energyrange.Thesecountsareshowninred.Thetestingautomat- icallyappliesbackgrounddeterminationandpeakdeconvolution beforedeterminingtheelements.Elementsarecomparedagainst databaseentriesandlabeledwiththeirelementandK,LorM energylinesbythesoftware. Thespectrumbackgroundnoiseisoutlinedinblue,conse- quentlythepeakdeconvolutioncalculationisplotincyan,follow- ingtheproÞleofthecollectedspectrum. Ce:LuAG:Sample 2,Trial 3TheinvestigatedsampleofCe:LuAGgrowthhadbeenpreviously coatedwithathinlayeroftungstenandhadalreadyundergone SEMtesting.TheEDStestingwasconductedonthreedifferent locationsalongthesamplesurfaceinregionsdevoidofvisible surfacedefectsordebrisatamagniÞcationof 4000x.TheÞrst locationanalyzedisshowninFigure 125wherethehighlighted regionwastheareaanalyzed. Figure 125:HighlightedareaofEDS analysis.Area 1ofCe:LuAGSample 2,Trial 3growth. Thethreespectrumoutputsshowedgoodcorrelation,theÞrst isdisplayedinFigure 128.Iridiumcontaminationwasdetected withthecruciblebeingthelikelysource.Thisiridiumprecipitation inthemeltwasobservedinpost-experimentimageryandwith ahigherdensitythanthemeltitwouldreasonthatitwouldfall downintothecrystalÕsformation.Themagnesiumpeakdetected mayhavebeenfromthechamberorceramicsupportsusedinthe MgTa 2O6growthattempts.Thesecondandthirdlocationand spectrumoutputsareshownintheAppendix. Spectrumanalysisoccurredatanacceleratingvoltageof 20kV, MAG:2000,livetimeof 30s,amptimeof 0.8µsandaresolution of133.7eV.SummarystatisticsforthisanalysisareshowninTable 15.ElementWeight%Atomic%NetIntensityNetIntensityError OK20.4357.971440.240.01 MgK0.250.4767.110.16 AlL14.9225.114788.830.00 CeL0.240.0816.220.53 LuL50.6913.151976.040.01 WL3.090.7681.20.26 IrL10.382.45212.960.14 Table 14:eZAFSmartQuantitative ResultsfromTEAMsoftware.Area 1ofCe:LuAGSample 2,Trial 3growth. 86Figure 126:EDSoutputspectrumof Area 1ofCe:LuAGSample 2,Trial 3growth. 87Ce:LuAG:LBNLSample 1482.7MFigure 127:HighlightedareaofEDS analysis.Area 1ofLBNLCe:LuAG Sample1482.7Mgrowth. TheinvestigatedsampleofCe:LuAGgrowthhadbeenpreviously coatedwithathinlayeroftungstenandhadalreadyundergone SEMtesting.TheEDStestingwasconductedonthreedifferent locationsalongthesamplesurfaceinregionsdevoidofvisible surfacedefectsordebrisatamagniÞcationof 4000x.TheÞrst locationanalyzedisshowninFigure 127wherethehighlighted regionwastheareaanalyzed. Thethreespectrumoutputsshowedgoodcorrelation,theÞrst isdisplayedinFigure 128.Iridiumcontaminationwasdetected withthecruciblebeingthelikelysource.Thisiridiumprecipitation inthemeltwasobservedinpost-experimentimageryandwith ahigherdensitythanthemeltitwouldreasonthatitwouldfall downintothecrystalÕsformation.Themagnesiumpeakdetected mayhavebeenfromthechamberorceramicsupportsusedinthe MgTa 2O6growthattempts.Thesecondandthirdlocationand spectrumoutputsareshownintheappendix. Figure 128:EDSanalysisofArea 1ofLBNLCe:LuAGSample 1482.7Mgrowth. ElementWeight%Atomic%NetIntensityNetIntensityError OK18.7455.341553.580.01 MgK0.521.02170.360.06 AlL14.9426.175740.850.00 CeL0.140.0511.000.53 LuL51.0413.782389.970.01 WL3.590.92113.270.22 IrL11.032.71271.970.12 Table 15:eZAFSmartQuantitative ResultsfromTEAMsoftware.Area 1ofLBNLCe:LuAGSample 1482.7M.88MgTa 2O6:Sample 4,Trial 5Figure 129:HighlightedareaofEDS analysis.Area 1ofMgTa 2O6Sample4,Trial 5Growth. TheinvestigatedsampleofMgTa 2O6growthhadbeenpreviously coatedwithathinlayeroftungsten.Thetwophaseswereinves- tigatedandcompared.Duetotheirregularshapeofthephases formedafreedrawregionwascreatedforanalysisasshownin Figure 129.EachphasewasthenanalyzedusingEDS.Theresultsforthe darkandlightphasesareshowninFigure 130.Whenthedark phasesareanalyzedacrossthesampletheyshowasigniÞcant increaseinMgcontent.Toensurethatthesereadingswereaccu- rate,threedifferentregionsofthecrystalwereselectedatrandom wherethesetwophasesexistednexttoeachother.Eachdark phasemeasuredsigniÞcantlyhighermagnesiumcontent.The secondandthirdlocationandspectrumoutputsareshowninthe appendix.Figure 130:EDSanalysisoflightphase (top)anddarkphase(bottom),notethe discrepancyintheMgKpeaks. 89ElementWeight%Atomic%NetIntensityNetIntensityError OK19.0065.28964.980.01 MgK5.2411.84979.280.01 TaL51.1515.531244.690.02 WL24.377.28491.610.05 IrL0.240.073.760.53 Table 16:DarkphaseeZAFSmart QuantitativeResultsfromTEAM software.Area 1ofMgTa 2O6Sample4,Trial 5growth. ElementWeight%Atomic%NetIntensityNetIntensityError OK18.8072.02928.260.01 MgK0.280.7050.960.16 TaL55.5318.811364.130.02 WL25.318.44515.860.05 IrL0.080.031.330.55 Table 17:LightphaseeZAFSmart QuantitativeResultsfromTEAM software.Area 1ofMgTa 2O6Sample4,Trial 5growth. 90ConclusionsSinglecrystalCe:LuAGandmulti-phaseMgTa 2O6growthswere synthesizedusingthe µ-PDmethodandwerepreparedfrom powderoxides.Samplepreparationtechniquesand µ-PDmethods wereoutlinedandreÞned. ThesinglecrystalCe:LuAGmatchedpublicationimageryand wasconÞrmedtobecorrectlysynthesizedwhenx-raylumines- cencewasperformedwheretheemissionpeakwaswithinthe publishedemissionrange.Scanningelectronmicroscopyimagery alsoconÞrmedtheabsenceofgrainboundarieswithinthegrown crystalsaswellasthosesentlaterfromLBNL.Energy-dispersive x-rayspectroscopywasperformed,conÞrmingtheappropriate compoundsofthecrystalbutalsocontaminationfrombothmag- nesiumandiridium.Itwashypothesizedthatthemagnesiumwas fromsomeoftheceramicinsulationbutthequantityinwhichit wasdetectedwassurprisinghigh.Iridiuminclusionwastheresult ofthebreakdownoftheiridiumcruciblecontainingthemolten melt.Thiswassupportedwithpost-experimentalimageryof iridiumprecipitatedonthetopsurfaceofthemelt,withahigher densitythanthemeltitundoubtedlymoveddownwardsandinto thecrystal. Afteranextensiveliteraturesearchtherewasnoevidenceof MgTa 2O6growthsfrom µ-PD.X-raypowderdiffractionanalysis showedsuccessfulformationoftheMgTa 2O6compoundfrom theµ-PDexperiments.X-rayluminescencetestingshowedno emissionsabovebackgroundnoise,fromthisitwasconcluded thatthecompoundcouldnotbeusedasascintillatorinitspresent formation.Scanningelectronmicroscopyrevealedadetailed two-phasestructurethatwasundoubtedlyafactorinitspoor scintillationproperties.Thesetwophaseswerecomparedusing EDS.HereitwasdiscoveredthatthedarkerphasefromtheSEM imageryhadastatisticallysigniÞcanthighermagnesiumcontent. Thiswastrueacrossallsampleareas. 91APPENDIX92SEMResults:LBNLCe:LuAGSample 1482.7MFigure 131:Ce:LuAGcrystal,under variousmagniÞcations(LBNLSample 1482.7M).93SEMResults:Ce:LuAGSample 1,Trial 2Figure 132:Ce:LuAGcrystal,under variousmagniÞcations(Sample 1,Trial 2).94SEMResults:Ce:LuAGSample 2,Trial 3Figure 133:Ce:LuAGcrystal,under variousmagniÞcations(Sample 2,Trial 3).95SEMResults:UncoatedLBNLCe:LuAGSample 1468.7MFigure 134:Ce:LuAGcrystal,under variousmagniÞcations(Sample 1,Trial 2).96SEMResults:MgTa 2O6Sample4,Trial 5Figure 135:MgTa 2O6crystal,under variousmagniÞcations(Sample 4,Trial 5).97EDSResults:Ce:LuAGSample 2,Trial 3Area2Figure 136:HighlightedregionofEDS analysis.Area 2ofCe:LuAGSample 2,Trial 3growth. Figure 137:EDSoutputspectrumof Area 2Ce:LuAGSample 2,Trial 3growth. 98ElementWeight%Atomic%NetIntensityNetIntensityError OK20.4557.951442.180.01 MgK0.330.6290.210.10 AlK14.9125.054795.170.00 PbM0.110.027.810.31 CeL0.070.024.780.54 LuL50.2113.011961.960.01 WL3.420.8490.030.26 IrL10.502.48216.000.13 Table 18:eZAFSmartQuantitative ResultsfromTEAMsoftware.Area 2ofCe:LuAGSample 2,Trial 3growth. 99Area3Figure 138:HighlightedregionofEDS analysis.Area 3ofCe:LuAGSample 2,Trial 3growth. Figure 139:EDSoutputspectrumof Area 3Ce:LuAGSample 2,Trial 3growth. 100ElementWeight%Atomic%NetIntensityNetIntensityError OK20.8858.381476.980.01 MgK0.300.5579.890.11 AlK15.0825.014791.000.00 CeL0.620.2041.240.41 LuL49.5012.661920.990.01 WL3.180.7883.240.26 IrL10.442.43213.210.14 Table 19:eZAFSmartQuantitative ResultsfromTEAMsoftware.Area 3ofCe:LuAGSample 2,Trial 3growth. 101EDSResults:LBNLCe:LuAGSample 1482.7Area2Figure 140:HighlightedregionofEDS analysis.Area 2ofLBNLCe:LuAG Sample1468.7Mgrowth. Figure 141:EDSoutputspectrumof Area 2ofLBNLCe:LuAGSample 1468.7Mgrowth. 102ElementWeight%Atomic%NetIntensityNetIntensityError OK18.7555.201577.220.01 MgK0.611.18200.70.05 AlK15.0526.275857.560.00 CeL0.130.0510.950.53 LuL50.8213.682411.790.01 WL3.710.95118.690.22 IrL10.922.68272.830.13 Table 20:eZAFSmartQuantitative ResultsfromTEAMsoftware.Area 2ofLBNLCe:LuAGSample 1468.7Mgrowth. 103Area3Figure 142:HighlightedregionofEDS analysis.Area 3ofLBNLCe:LuAG Sample1468.7MGrowth. Figure 143:EDSoutputspectrumof Area 3ofLBNLCe:LuAGSample 1468.7Mgrowth. 104ElementWeight%Atomic%NetIntensityNetIntensityError OK18.7455.231572.990.01 MgK0.601.17198.30.05 AlK15.0026.215824.040.00 CeL0.160.0613.300.54 LuL50.6713.662402.550.01 WL3.560.91113.530.23 IrL11.272.77281.450.13 Table 21:eZAFSmartQuantitative ResultsfromTEAMsoftware.Area 3ofLBNLCe:LuAGSample 1468.7Mgrowth. 105MgTa 2O6:Sample 4,Trial 5Area2Figure 144:HighlightedregionsofEDS analysis.Area 2ofMgTa 2O6Sample4,Trial 5growth. ElementWeight%Atomic%NetIntensityNetIntensityError OK19.0365.27981.580.01 MgK5.2711.901000.870.01 TaL51.1615.511263.790.02 WL24.137.20494.260.05 IrL0.400.116.390.52 Table 22:DarkphaseeZAFSmart QuantitativeResultsfromTEAM software.Area 2ofMgTa 2O6Sample4,Trial 5growth. ElementWeight%Atomic%NetIntensityNetIntensityError OK18.9272.01940.030.01 MgK0.390.9770.570.10 TaL55.4118.651366.90.02 WL25.208.35515.630.05 IrL0.090.031.390.53 Table 23:LightphaseeZAFSmart QuantitativeResultsfromTEAM software.Area 2ofMgTa 2O6Sample4,Trial 5growth. 106Figure 145:EDSoutputspectrum oflightphase(top)anddarkphase (bottom),notethediscrepancyin theMgKpeaks.Area 2ofMgTa 2O6Sample4,Trial 5growth. 107Area3Figure 146:HighlightedareaofEDS analysis.Area 3ofMgTa 2O6Sample4,Trial 5growth. ElementWeight%Atomic%NetIntensityNetIntensityError OK19.1165.36981.280.01 MgK5.2911.90998.40.01 TaL50.8115.361248.370.02 WL24.527.30499.450.05 IrL0.270.084.280.53 Table 24:DarkphaseeZAFSmart QuantitativeResultsfromTEAM software.Area 2ofMgTa 2O6Sample4,Trial 5growth. ElementWeight%Atomic%NetIntensityNetIntensityError OK18.7771.83919.700.01 MgK0.370.9366.970.12 TaL55.7818.881359.150.02 WL25.048.34506.160.05 IrL0.040.010.640.58 Table 25:LightphaseeZAFSmart QuantitativeResultsfromTEAM software.Area 3ofMgTa 2O6Sample4,Trial 5growth. 108Figure 147:EDSoutputspectrum oflightphase(top)anddarkphase (bottom),notethediscrepancyin theMgKpeaks.Area 3ofMgTa 2O6Sample4,Trial 5growth. 109Softwaresourcecode Sourcecodeforprogramsandscriptsareshown.TheWindows applicationthattheuserusedtocaptureimageswaswritteninVB whilethepost-processingscriptswerewritteninPython. 110Figure 148:Pythonprogramming language.import osimport math from PIL import Image from PIL import ImageFont from PIL import ImageDraw def Cropper (directory ):for filename inos.listdir (directory ):print (filename )img =Image .open (directory +filename )#Define the crop region inpixels left =300 top =125 right =left +375 bottom =top +360 box =(left ,top,right ,bottom )area =img .crop (box )#Save off cropped image area .save (directory +filename ,Õpng Õ)def TextAdder (directory ):#Write crystal being grown oneach images crystal =ÕMgTa2O6 Õ#ÕLuAG :CeÕ#Write date ofexperiment oneach image date =Õ2015.08.11 Õ#Write the location ofthe experiment oneach image site =ÕLBNL Õ#Define font used onappended image text font _used =Õ/usr /share /fonts /truetype /ttf -dejavu /DejaVuSans .ttf Õpath ,dirs ,files =os.walk (directory ).next ()file _count =len(files )i=1for filename insorted (os.listdir (directory )):setpoint =filename [20:] setpoint =setpoint [:-4] temperature =1742 *(math .pow (float (setpoint ),0.1287))-859 print (filename )img =Image .open (directory +Õ/Õ+filename )draw =ImageDraw .Draw (img )font =ImageFont .truetype (font _used ,16) draw .text ((20,15), crystal +""+filename [11]+ filename [12] \+":"+filename [14]+ filename [15]+ filename [16]+ filename [17]+\ filename [18]+ ""+str(i)+\"/"+str (file _count ),(255,255,255), font =font )draw .text ((20,315), site ,(255,255,255), font =font )draw .text ((20,340), date +"Temp :~"+str (int (temperature ))+ \"C(SP:"+setpoint +")",(255,255,255), font =font )img .save (directory +Õ/Õ+filename )i=i+1#Renaming files isrequired for post -processing images into avideo #insome third party programs def Renamer (directory ):i=1for filename insorted (os.listdir (directory )):print (filename )os.rename (directory +filename ,directory +str (i)+Õ.png Õ)i=i+1#Start ofprogram #Directory where raw image captures have been stored directory =Õ/home /citadel /Codes /LBNL /Image /Õ#Calls the image cropping function Cropper (directory )#Calls the append text toimages function TextAdder (directory )#Calls image renamer function Renamer (directory )111Figure 149:VisualBasicprogramming language.Public Class Form1 Public Sub SaveScreen (filename AsString )Dim screenSize =SystemInformation .PrimaryMonitorSize Dim bitmap =New Bitmap (screenSize .Width ,screenSize .Height )Using gAsGraphics =Graphics .FromImage (bitmap )g.CopyFromScreen (New Point (0,0), New Point (0,0), screenSize )End Using bitmap .Save (filename ,Imaging .ImageFormat .Png )End Sub Private Sub btnStart _Click (sender AsObject ,eAsEventArgs )Handles btnStart .Click Dim Opacity AsDouble =Me.Opacity Dim origDate AsDateTime =DateTime .Now Dim timeStamp AsString =origDate .ToString ("yyyy .MM.dd_hh.mm.ss")Me.Opacity =0IftxtSetpoint .Text =""Then SaveScreen (timeStamp &".png ")Else SaveScreen (timeStamp &"_"&txtSetpoint .Text &".png ")End IfMe.Opacity =1End Sub End Class 112GlossaryActivatorSmallamountofimpuritiesintroducedtothelatticeto enhancephotonemission. 1Afterglow Fractionofscintillatinglightpresentforagivenperiod oftimeoncetheionizingradiationhasstopped. 6BraggÕsLaw DiffractionrelationshipthatdeÞnestheconditions presentedbyasetofcrystallographicplanes. 20Comptonscattering Scatteringofaphotonbyachargedparticle, typicallyanelectron. 5Conductionband ConsistsofelectronsthathavesufÞcientenergyto travelthroughoutamaterial.Thisbandisgenerallyempty. 1ConvectionHeattransferbymassmotionofaßuidsuchasairor waterwhentheheatedßuidiscausedtomoveawayfromthe sourceofheat,carryingenergywithit. 18Eddycurrents Thealternatingcurrentinducedinaconductor whenitissubjectedtoatime-varyingmagneticÞeldinaccor- dancewithLenzÕslaw. 17Energygap Alsoreferredtoasthebandgap,thisregionisthe forbiddengapwherenoelectronstatesexist.Thisgapislocated betweenthetopofthevalencebandandthebottomofthe conductionband. 1Energy-dispersivex-rayspectroscopy Utilizesthephotoelectriceffect toproduceaspectrumofcountsthatcanidentifyelements withinacompound. 21ExcitonAnelectricallyneutralquasiparticlethatoccurswhere anelectronandanelectron-holeareattractedtoeachotherby electrostaticCoulombforces. 6Fullwidthathalfmaximum Describesthewidthofafunctionwhere thedistancebetweenextremepointsonthecurvereacheshalf itsmaximumvalue. 5Lightyield Ameasureoflightoutputfromascintillator,typically measuredinphotons/MeV,thatisanimportantcharacteristicin determininganappropriatescintillatorforanapplication. 4113Marangoniconvection Thiseffect(alsocalledtheGibbs-Marangoni effect)isthemasstransferalonganinterfacebetweentwoßuids duetosurfacetensiongradient.Inthecaseoftemperature dependence,thisphenomenonmaybecalledthermo-capillary convection(orBenard-Marangoniconvection). 19Poiseuilleßow Steadyviscousßuidßowdrivenbyaneffective pressuregradientestablishedbetweenthetwoendsofalong straightpipeofuniformcircularcross-section.Firststudied experimentallybyJ.L.M.Poiseuillein 1838.19Pyrometer Apyrometerisatypeofremote-sensingthermometer usedtomeasurethetemperatureofasurface. 26,28Scanningelectronmicroscope Amicroscopethatusesafocused electronbeamtoimagesamples.. 21ScintillatorAmaterialpossessingluminescentcentersthatabsorbs high-energyphotonsandemitslightinthevisibleornear- visiblespectrum. 1Valenceband Highestrangeofelectronenergiesinwhichelectrons aretypicallypresentandareboundtothelatticestructure. 1X-rayluminescence Techniqueusedtoanalyzeemissionspectraof scintillatorcrystalsanddeterminethepeakofitsemissionband. 21X-raypowderdiffraction TechniqueusedtoanalyzeÞnepowder samplesbasedofftherepeatinglatticestructureofasoliditcan accuratelydeterminecompositionsofcompounds. 20114BIBLIOGRAPHY115BIBLIOGRAPHY[1]E.Auffray,D.Abler,S.Brunner,B.Frisch,A.Knapitsch, P.Lecoq,G.Mavromanolakis,O.Poppe,andA.Petrosyan. LuAGmaterialfordualreadoutcalorimetryatfuturehigh energyphysicsaccelerators. IEEENuclearScienceSymposium ConferenceRecord ,pages 2245Ð2249,2009.[2]M.Balcerzyk,M.Moszy«nski,M.Kapusta,D.Wolski, J.Pawelke,andC.L.Melcher.Yso,lso,gsoandlgso.astudy ofenergyresolutionandnonproportionality. IEEETransactions onNuclearScience ,47(4):1319Ð1323,2000.[3]V.G.Baryshevsky,M.V.Korzhik,V.I.Moroz,V.B.Pavlenko, A.A.Fyodorov,S.A.Smirnova,O.A.Egorycheva,andV.A. Kachanov.YAlO 3:Ce-fast-actingscintillatorsfordetectionof ionizingradiation. NuclearInstrumentsandMethodsinPhysics ResearchSectionB:BeamInteractionswithMaterialsandAtoms ,58(2):291Ð293,1991.[4]Y.BaskinandD.C.Schell.Phasestudiesinthebinarysystem MgO-Ta2O5.JournaloftheAmericanCeramicSociety ,46(4):174Ð177,1963.[5]M.Belhaj,O.Jbara,S.Odof,K.Msellak,E.I.Rau,andM.V. Andrianov.Ananomalouscontrastinscanningelectron microscopyofinsulators:Thepseudo-mirroreffect. Scanning,22(6):352Ð356,2000.[6]M.D.Birowosuto,P.Dorenbos,C.W.E.vanEijk,K.W.Kr−mer, andH.U.High-light-outputscintillatorforphotodiode readout:LuI 3:Ce3.JournalofAppliedPhysics[H.W.Wilson- AST],99(12):123520,2006.[7]G.BlasseandB.C.Grabmaier. LuminescentMaterials .Springer- BerlinHeidelberg,Þrstedition, 1994.[8]J.T.M.deHaasandP.Dorenbos.Advancesinyieldcalibration ofscintillators. IEEETransactionsonNuclearScience ,55(3):860Ð864,June 2008.[9]J.T.M.deHaas,P.Dorenbos,andC.W.E.vanEijk.Measuring theabsolutelightyieldofscintillators. NuclearInstruments andMethodsinPhysicsResearchSectionA:Accelerators,Spec- trometers,DetectorsandAssociatedEquipment ,537(1-2):97Ð100,2005.[10]S.E.Derenzo,E.D.Bourret-Courchesne,M.J.Weber,andM.K. Klintenberg.ScintillationstudiesofCdS(In):effectsofvarious semiconductordopingstrategies. NuclearInstrumentsandMeth- odsinPhysicsResearchSectionA:Accelerators,Spectrometers, DetectorsandAssociatedEquipment ,537(1-2):261Ð265,2005.116[11]S.E.Derenzo,W.W.Moses,J.L.Cahoon,R.C.C.Perera,and J.E.Litton.Prospectsfornewinorganicscintillators. IEEETransactionsonNuclearScience ,37(2):203Ð208,1990.[12]S.E.Derenzo,M.J.Weber,E.D.Bourret-Courchesne,andM.K. Klintenberg.Thequestfortheidealinorganicscintillator. NuclearInstrumentsandMethodsinPhysicsResearchSectionA: Accelerators,Spectrometers,DetectorsandAssociatedEquipment ,505(1-2):111Ð117,2003.[13]S.E.Derenzo,M.J.Weber,W.W.Moses,andC.Dujardin. Measurementsoftheintrinsicrisetimesofcommoninorganic scintillators.IEEETransactionsonNuclearScience ,47(3):860Ð864,2000.[14]G.Dhanaraj. SpringerHandbookofCrystalGrowth .Springer- Verlag,Þrstedition, 2010.[15]P.Dorenbos.Electronicstructureengineeringoflanthanide activatedmaterials. JournalofMaterialsChemistry ,22(42):22344Ð22349,2012.[16]W.Drozdowski,P.Dorenbos,andJ.T.M.deHaas.Scintillation propertiesofpraseodymiumactivatedLu 3Al5O12singlecrystals. IEEETransactionsonNuclearScience[H.W.Wilson- AST],55(4):2420,2008.[17]C.Dujardin,C.Mancini,D.Amans,G.Ledoux,D.Abler, E.Auffray,P.Lecoq,D.Perrodin,A.Petrosyan,andK.L. Ovanesyan.LuAG:CeÞbersforhighenergycalorimetry. JournalofAppliedPhysics ,108(1),2010.[18]B.M.Epelbaum,G.Schierning,andA.Winnacker.ModiÞca- tionofthemicro-pulling-downmethodforhigh-temperature solutiongrowthofminiaturebulkcrystals. JournalofCrystal Growth ,275(1):867Ð870,December 2005.[19]H.S.Fang,Z.W.Yan,andE.D.Bourret-Courchesne.Numerical studyofthemicro-pulling-downprocessforsapphireÞber crystalgrowth. CrystalGrowth&Design ,11(1):121Ð129,2011.[20]T.FukudaandV.I.Chani. ShapedCrystals:GrowthbyMicro- Pulling-DownTechnique .Springer-Verlag,Þrstedition, 2007.[21]T.Fukuda,P.Rudolph,andS.Uda. FiberCrystalGrowthfrom theMelt ,volume 6.SpringerBerlinHeidelberg, 2004.[22]A.V.Gektin. TrendsinScintillationCrystals ,chapter 17,pages 299Ð312.Wiley-VCHVerlagGmbHandCo.KGaA, 2010.[23]J.Glodo,E.V.D.vanLoef,W.M.Higgins,andK.S.Shah.Mixed lutetiumiodidecompounds. IEEETransactionsonNuclear Science,55(3):1496Ð1500,2008.117[24]B.C.Grabmaier.Crystalscintillators. IEEETransactionson NuclearScience ,31(1):372Ð376,1984.[25]B.C.Grabmaier,W.Rossner,andJ.Leppert.Ceramicscintilla- torsforx-raycomputedtomography. PhysicaStatusSolidi(a) ,130(2):K183ÐK187,April 1992.[26]C.GreskovichandS.Duclos.Ceramicscintillators. AnnualReviewofMaterialsScience ,27(1):69Ð88,August 1997.[27]G.HalleandH.Mueller-Buschbaum.InvestigationsofZn( 1-x)M(x)Ta2O6(M=Mg,andNi)withareÞnementofthecrystal structureofMgTa 2O6.JournalofTheLess-CommonMetals ,142:263Ð268,September 1988.[28]M.Higuchi,K.Ando,J.Takahashi,andK.Kodaira.Growth ofMgTa 2O6singlecrystalsbyßoatingzonemethodand theiropticalproperties. JournaloftheCeramicSocietyofJapan ,101(1):118Ð120,1993.[29]I.Holl,E.Lorenz,andG.Mageras.Ameasurementofthelight yieldofcommoninorganicscintillators. IEEETransactionson NuclearScience ,35(1):105Ð109,1988.[30]A.Jouini,H.Sato,A.Yoshikawa,T.Fukuda,G.Boulon, K.Kato,andE.Hanamura.Crystalgrowthandoptical absorptionofpureandTi,Mn-dopedMgAl 2O4spinel.JournalofCrystalGrowth ,287(2):313Ð317,2006.[31]S.Kasap. PrinciplesofElectronicMaterialsandDevices .McGraw- HillEducation,thirdedition,March 2005.[32]W.Klamra,T.Szczesniak,M.Moszynski,J.Iwanowska, L.Swiderski,A.Syntfeld-Kazuch,V.N.Shlegel,Y.V.Vasiliev, andE.N.Galashov.PropertiesofCdWO 4andZnWO 4atliquidnitrogentemperature. IEEENuclearScienceSymposium ConferenceRecord ,pages 1561Ð1565,2009.[33]D.Klimm.Themeltingbehavioroflutetiumaluminum perovskiteLuAlO 3.JournalofCrystalGrowth ,312:730Ð733,2010.[34]H.J.Koh,Y.Furukawa,P.Rudolph,andT.Fukuda.Oxide mixedcrystalsgrownbyheater-immersedzonemelting methodwithmulti-capillaryholes. JournalofCrystalGrowth ,149(3):236Ð240,1995.[35]J.B.KortrightandA.C.Thompson. X-raydatabooklet ,chapter 1,pages8Ð13.LawrenceBerkeleyNationalLaboratory, 2009.[36]V.N.KurlovandB.M.Epelbaum.EFGgrowthofsapphire tubesupto 85mmindiameter. JournalofCrystalGrowth ,187(1):107Ð110,1998.118[37]M.Laval,M.Moszy«nski,R.Allemand,E.Cormoreche, P.Guinet,R.Odru,andJ.Vacher.Bariumßuoride› ùAÿTInorganicscintillatorforsubnanosecondtiming. NuclearInstrumentsandMethodsInPhysicsResearch ,206(1):169Ð176,1983.[38]P.Lecoq,A.Annenkov,A.Gektin,M.Korzhik,andC.Pedrini. InorganicScintillatorsforDetectorSystems:PhysicalPrinciples andCrystalEngineering .Springer-Verlag,Þrstedition, 2006.[39]W.Lehmann.Edgeemissionofn-typeconductingZnOand CdS.Solid-StateElectronics ,9(11):1107Ð1110,1966.[40]A.Lempicki,E.Berman,A.J.Wojtowicz,M.Balcerzyk,and L.A.Boatner.Cerium-dopedorthophosphates:newpromising scintillators.IEEETransactionsonNuclearScience ,40(4):384Ð387,1993.[41]A.Lempicki,M.H.Randles,D.Wisniewski,M.Balcerzyk, C.Brecher,andA.J.Wojtowicz.LuAlO 3:Ceandotheralumi- natescintillators. IEEETransactionsonNuclearScience ,42(4):280,1995.[42]S.Liu,X.Feng,M.Nikl,L.Wu,Z.Zhou,J.Li,H.Kou, Y.Zeng,Y.Shi,Y.Pan,andA.Setlur.FabricationandScintil- lationPerformanceofNonstoichiometricLuAG:CeCeramics. JournaloftheAmericanCeramicSociety ,98(2):510Ð514,Febru- ary 2015.[43]J.A.Mares,A.Beitlerova,M.Nikl,N.Solovieva, C.DÕAmbrosio,K.Blazek,P.Maly,K.Nejezchleb,and F.deNotaristefani.Scintillationresponseofce-dopedor intrinsicscintillatingcrystalsintherangeupto 1mev. Radia-tionMeasurements ,38(4):353Ð357,2004.[44]C.L.Melcher,R.A.Manente,andJ.S.Schweitzer.Applicability ofbariumßuorideandcadmiumtungstatescintillatorsfor welllogging. IEEETransactionsonNuclearScience ,36(1):1188Ð1192,1989.[45]C.L.Melcher,J.S.Schweitzer,C.A.Peterson,R.A.Manente, andH.Suzuki.Crystalgrowthandscintillationproperties oftherareearthoxyorthosilicates. DelftUnviersityPress ,SCINT95:309Ð316,1996.[46]E.MihŠkov⁄,M.Nikl,J.A.Mare ùs,A.Beitlerov⁄,A.Vedda, K.Nejezchleb,K.Bla ùzek,andC.DÕAmbrosio.Luminescence andscintillationpropertiesofYAG:Cesinglecrystaland opticalceramics. JournalofLuminescence ,126(1):77Ð80,2007.119[47]V.B.Mikhailik,H.Kraus,S.Henry,andA.J.B.Tolhurst.Scintil- lationstudiesofCaWO 4inthemillikelvintemperaturerange. PhysicalReviewB ,75(18):184308,May 2007.[48]W.W.MosesandS.E.Derenzo.Ceriumßuoride,anew fast,heavyscintillator. IEEETransactionsonNuclearScience ,36(1):173Ð176,1989.[49]W.W.Moses,S.E.Derenzo,A.Fyodorov,M.Korzhik,A.Gek- tin,B.Minkov,andV.Aslanov.LuAlO 3:Ce-ahighdensity,high speedscintillatorforgammadetection. NuclearScience,IEEE Transactionson ,42(4):275Ð279,August 1995.[50]M.Moszy«nski,R.Allemand,M.Laval,R.Odru,andJ.Vacher. RecentprogressinfasttimingwithCsFscintillatorsinap- plicationtotime-of-ßightpositrontomographyinmedicine. NuclearInstrumentsandMethodsinPhysicsResearch ,205(1-2):239Ð249,1983.[51]M.Moszynski,M.Balcerzyk,andM.Kapusta.CdWO 4crystal ingamma-rayspectrometry. IEEETransactionsonNuclear Science[H.W.Wilson-AST] ,52(6):3124,2005.[52]M.Moszynski,M.Balcerzyk,andM.Kapusta.Growthof Yb3+-dopedY 2O3singlecrystalrodsbythemicro-pulling- downmethod. MaterialsResearchBulletin ,40(8):1235Ð1243,2005.[53]M.Moszynski,M.Kapusta,M.Mayhugh,D.Wolski,andS.O. Flyckt.Absolutelightoutputofscintillators. IEEETransactions onNuclearScience ,44(3):1052Ð1061,1997.[54]R.B.Murray.UseofLi 6I(Eu)asascintillationdetectorand spectrometerforfastneutrons. NuclearInstruments ,2(3):237Ð248,1958.[55]N.G.Nause.Powderx-raydiffractiondataforrareearth garnets.MasterÕsthesis,StephenF.AustinStateUniversity, 2003.[56]M.Nikl,J.A.Mares,N.Solovieva,J.Hybler,A.Voloshi- novskii,K.Nejezchleb,andK.Blazek.Energytransfertothe Ce3+centersinLu 3Al5O12:Cescintillator. Physicastatussolidi ,201(7):R41ÐR44,May 2004.[57]M.Nikl,J.A.Mares,N.Solovieva,H.Li,X.Liu,L.Huang, I.Fontana,M.Fasoli,A.Vedda,andC.DAmbrosio.Scintilla- tioncharacteristicsofLu 3Al5O12:Ceopticalceramics. JournalofAppliedPhysics ,104(3):033515Ð033515Ð5,2005.120[58]J.A.Nolen.Aneasilypreparedscintillatorforviewing acceleratorbeamspots. NuclearInstrumentsandMethods ,156(3):595Ð596,November 1978.[59]A.Novoselov,H.Ogino,A.Yoshikawa,M.Nikl,J.Pejchal,J.A. Mares,A.Beitlerova,C.DÕAmbrosio,andT.Fukuda.Study oncrystalgrowthandluminescencepropertiesofPr-doped RE2SiO5(RE=Y,Lu). JournalofCrystalGrowth ,287(2):309Ð312,2006.[60]H.Ogino,A.Yoshikawa,M.Nikl,A.Krasnikov,K.Kamada, andT.Fukuda.GrowthandscintillationpropertiesofPr- dopedLu 3Al5O12crystals. JournalofCrystalGrowth ,287(2):335Ð338,2006.[61]D.E.PersykandT.E.Moi.State-of-the-artphotomultipliersfor angercameras. IEEETransactionsonNuclearScience ,25(1):615Ð619,1978.[62]A.G.Petrosyan,V.F.Popova,V.V.Gusarov,G.O.Shirinyan, C.Pedrini,andP.Lecoq.TheLu 2O3-Al2O3system,relation- shipsforequilibrium-phaseandsupercooledstates. Journalof CrystalGrowth ,293(1):74Ð77,2006.[63]Y.D.Porter-Chapman,E.D.Bourret-Courchesne,andS.E. Derenzo.Bi 3+luminescenceinabio 2cl(a=sr,ba)and babio2br. JournalofLuminescence ,128(1):87Ð91,2008.[64]B.D.RatnerandD.G.Castner. ElectronSpectroscopyforChemical Analysis,pages 47Ð112.JohnWileyandSons,Ltd, 2009.[65]C.R.RondaandA.M.Srivastava. Scintillators,chapter 5,pages 105Ð132.Wiley-VCHVerlagGmbHandCo.KGaA, 2007.[66]E.Sakai.Recentmeasurementsonscintillator-photodetector systems.IEEETransactionsonNuclearScience ,34(1):418Ð422,1987.[67]K.S.G.Shah,P.Wong,M.Klugerman,M.J.Weber,P.Doren- bos,W.W.Moses,T.Gupta,S.E.Derenzo,andW.Higgins. Lui3:ceÐanewscintillatorforgammarayspectroscopy. IEEETransactionsonNuclearScience ,51(5):2302,2004.[68]L.Swiderski,M.Moszynski,A.Nassalski,A.Syntfeld- Kazuch,T.Szczesniak,K.Kamada,K.Tsutsumi,Y.Usuki, T.Yanagida,andA.Yoshikawa.Lightyieldnon- proportionalityandenergyresolutionofpraseodymium dopedLuAGscintillator. IEEETransactionsonNuclearScience ,56(3):934Ð938,2009.121[69]A.Syntfeld,M.Moszynski,R.Arlt,M.Balcerzyk,M.Kapusta, M.Majorov,R.Marcinkowski,P.Schotanus,M.Swoboda,and D.Wolski.[sup. 6]liiinneutronand[gamma]-rayspectrometryÐ ahighlysensitivethermalneutrondetector. IEEETransactions onNuclearScience ,52(6):3151Ð3156,2005.[70]C.Tealdi,M.S.Islam,L.Malavasi,andG.Flor.Defectand dopantpropertiesofMgTa 2O6.JournalofSolidStateChemistry ,177(11):4359Ð4367,2004.[71]C.W.E.vanEijk.Inorganic-scintillatordevelopment. Nu-clearInstrumentsandMethodsinPhysicsResearchSectionA: Accelerators,Spectrometers,DetectorsandAssociatedEquipment ,460(1):1Ð14,2001.[72]C.W.E.vanEijk,J.Andriessen,P.Dorenbos,J.Jansons, N.Khaidukov,Z.Rachko,andJ.Valbis. Experimentaland theoreticalstudiesofcrossluminescence ,pages 161Ð166.Editions Frontieres(Crystal 2000],1993.[73]C.W.E.vanEijk,J.Andriessen,P.Dorenbos,andR.Visser.Ce 3+dopedinorganicscintillators. NuclearInstrumentsandMeth- odsinPhysicsResearchSectionA:Accelerators,Spectrometers, DetectorsandAssociatedEquipment ,348(2-3):546Ð550,1994.[74]E.V.D.vanLoef.ScintillationpropertiesofLaBr 3:Ce3+crys- tals:fast,efÞcientandhigh-energy-resolutionscintillators. NuclearInstrumentsandMethodsinPhysicsResearchSectionA: Accelerators,Spectrometers,DetectorsandAssociatedEquipment ,486(1-2):254Ð258,2002.[75]E.V.D.vanLoef,L.P.Dorenbos,C.W.E.vanEijk,K.Kramer, andH.U.Gudel.ScintillationpropertiesofLaCl 3:Ce3+crystals: fast,efÞcient,andhigh-energyresolutionscintillators. IEEETransactionsonNuclearScience ,48(3):341,2001.[76]M.J.Weber.Inorganicscintillators:todayandtomorrow. JournalofLuminescence ,100(1-4):35Ð45,2002.[77]M.J.Weber.Scintillation:mechanismsandnewcrystals. NuclearInstrumentsandMethodsinPhysicsResearchSectionA: Accelerators,Spectrometers,DetectorsandAssociatedEquipment ,527(1-2):9Ð14,2004.[78]X.Xu,K.Lebbou,F.Moretti,K.Pauwels,P.Lecoq,E.Auffray, andC.Dujardin.Ce-dopedLuAGsingle-crystalÞbersgrown fromthemeltforhigh-energyphysics. ActaMaterialia ,67:232Ð238,April 2014.[79]T.Yanagida,Y.Fujimoto,Y.Yokota,K.Kamada,S.Yanagida, A.Yoshikawa,H.Yagi,andT.Yanagitani.Comparativestudy 122oftransparentceramicandsinglecrystalCedopedLuAG scintillators.RadiationMeasurements ,46(12):1503Ð1505,2011.[80]A.Yoshikawa,M.Nikl,G.Boulon,andT.Fukuda.Growthand luminescentpropertiesofpr:ky 3f10singlecrystal. Journalof CrystalGrowth ,285(4):445Ð449,2005.[81]Y.G.Zdesenko,F.T.Avignone,V.B.Brudanin,F.A.Danevich, S.S.Nagorny,I.M.Solsky,andV.I.Tretyak.Scintillation propertiesandradioactivecontaminationofCaWO 4crystal scintillators.NuclearInstrumentsandMethodsinPhysicsResearch SectionA:AcceleratorsSpectrometersDetectorsandAssociated Equipment,538(1):657Ð667,2005.[82]Y.Zorenko,V.Gorbenko,I.Konstankevych,B.Grinev,and M.Globus.ScintillationpropertiesofLu 3Al5O12:Cesingle- crystallineÞlms. NuclearInstrumentsandMethodsinPhysics ResearchSectionA:Accelerators,Spectrometers,Detectorsand AssociatedEquipment ,486(1-2):309Ð314,2002.123Indexµ-PDmethod, 16after-heater, 18crucible,18growthchamber, 20,26inductionheating, 17insulation,26melt,18softwaredevelopment, 29temperaturecurve, 26Ce:LuAG, 11EDSresults sample1482.7M,88sample2,trial 3,86SEMresults sample1,trial 2,83sample1468.7M,85sample1482.7M,83sample2,trial 3,85XRLresults sample1,trial 1+2,76sample1,trial 3+4,76crystalresults sample1,trial 1,57sample1,trial 2,58sample1,trial 3,59sample1,trial 4,59sample2,trial 1,59sample2,trial 3,60crystalsynthesis sample1,trial 1,29sample1,trial 2,30sample1,trial 3,30sample1,trial 4,31sample2,trial 1,32sample2,trial 2,33sample2,trial 3,33experimentalprocedure, 29phasediagram, 12polishLBNLsample 1468.7M,48sample1,trial 2,50sample2,trial 3,48powderpreparation, 23processing sample1(HP),23sample2(MP),23MgTa 2O6,13EDSresults sample4,trial 5,89SEMresults sample4,trial 5,85XRLresults sample1,trial 3,80sample4,trial 1+3,80XRPDresults, 73sample1,meltcheck, 73sample1,powder, 73sample1,trial 3,74sample3,trial 3,74crystalresults sample1,meltcheck, 63sample1,trial 1,64sample1,trial 2,64sample1,trial 3,65sample3,trial 3,66sample4,trial 1,67sample4,trial 3,68sample4,trial 4,68sample4,trial 5,71crystalsynthesis sample1,meltcheck, 34sample1,trial 1,35sample1,trial 2,36sample1,trial 3,36sample3,trial 1,37sample3,trial 2,38sample3,trial 3,39sample4,trial 1,41sample4,trial 2,42sample4,trial 3,42sample4,trial 4,43sample4,trial 5,44experimentalprocedure, 34phasediagram, 13polishSample4,Trial 5,51powderpreparation, 24processing sample1(NP),24sample2(MP),24sample3(MP),25sample4(MP),25sample/seedseparation, 43seedconstruction, 40Activator, 1,7Appendix,92Background, 11Bibliography, 115Charge-transfer, 8Coating,52Conclusions,91Convection, 18Core-valenceluminescence, 7Diamondpaste, 47Discussion,56Energy-DispersiveX-raySpec- troscopy, 21Exciton,6free, 6impurity-bound,6self-trapped,6ExperimentalProcedure, 23Energy-dispersivex-rayspec- troscopy, 54Scanningelectronmicroscopy, 52x-rayluminescence, 45x-raypowderdiffraction, 45Grindingpapers, 46InorganicScintillators, 3afterglow, 6applications,8decaytime, 5extrinsic,6historicaldevelopment, 8intrinsic,6lightyield, 4linearityoflightoutput, 5machinability, 4mechanisms,6physicaldensity, 3production, 4124requirements, 8self-activated, 6transparency, 4Introduction, 1Microscope, 47Microscopelight, 47Mountingclips, 46Mountingpress, 46OP-S,47Polishing,46Powdersynthesis, 15Pyrometer, 26Rareearthions, 7Results,56Scanningelectronmicroscopy, 21insulators,52samplepreparation, 46Scintillator, 1Software, 110Python,111VisualBasic, 112Tungsten, 52Wiresaw, 43X-rayluminescence, 21X-raypowderdiffraction, 20125