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ABSTRACT

OPTIMAL DESIGN PROBLEMS IN THIN-FILM AND DIFFRACTIVE
OPTICS

By

Yuliang Wang

Optical components built from thin-film layered structures are technologically very im-

portant. Applications include but are not limited to energy conversion and conservation,

data transmission and conversion, space technology, imaging and so on. In practice these

structures are defined by various parameters such as the refractive-index profile, the layer

thickness and the period. The problem to find the combination of parameters which yield

the spectral response closest to a given target function is referred to as optimal design. This

dissertation considers several topics in the mathematical modeling and optimal design of

these structures through numerical optimization.

A key step in numerical optimization is to define an objective function the measures the

discrepancy between the target performance and that of the current solution. Our first topic

is the impact of the objective function, its metric in particular, on the optimal solution and

its performance. This is done by numerical experiments with different types of antireflection

coatings using two-material multilayers. The results confirm existing statements and provide

a few new findings, e.g. some specific metrics can yield particularly better solutions than

others.

Rugates are optical coatings presenting continuous refractive-index profiles. They have

received much attention recently due to technological advances and their potential better

optical performance and environmental properties. The Fourier transform method is a widely

used technique for the design of rugates. However, it is based on approximate expressions



with strict assumptions and has many practical limitations. Our second topic is the optimal

design of rugates through numerical optimization of objective functions with penalty terms.

We found solutions with similar performance and novel solutions by using different metrics

in the penalty term.

Existing methods used only local basis functions such as piece-wise constant or linear

functions for the discretization of the refractive-index profile. Our third topic is the use global

basis functions such as sinusoidal functions in the discretization. A simple transformation is

used to overcome the difficulty of bound constraints and the result is very promising. Both

multilayer and rugate coatings can be obtained using this method.

Diffraction gratings are thin-film structures whose optical properties vary periodically

along one or two directions. Our final topic is the optimal design of such structures in

the broadband case. The objective functions and their gradient are obtained by solving

variational problems and their adjoints with finite element method. Interesting phenomena

are observed in the numerical experiments. Limitations and future work in this direction are

pointed out.
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Chapter 1

Introduction

For almost any practical applications of optics we will encounter a situation when light

travels from one medium to another. In the optical community, one calls the input light the

incident light. The medium from which the incident light propagates is called the incident

medium and the other medium is called the substrate. The behavior of an incident light

is completely determined once the properties of the incident medium and the substrate are

given. An optical coating is defined as an additional layer of medium inserted between the

two media in order to alter the behavior of incident light and achieve certain optical effects,

such as reduction or enhancement of reflections. This work is concerned with the optimal

design of optical coatings by numerical methods. The coatings considered are divided into

two major types: classical thin-film coatings and diffraction gratings.

A thin-film coating consists of stratified media so that its optical properties vary in the

direction normal to the interface but are invariant in the plane parallel to the interface.

Probably the easiest way to obtain a thin-film optical coating is by putting a drop of oil on

the surface of water. The interference effects at the interfaces between air, the oil film and

water causes variation of reflectance with respect to wavelength and forms the colors as we

see. The non-uniformity of the color is due to the non-uniformity of the thickness of the

film and the fact that interference effects changes with the thickness. A similar example is

soap bubble, in which case the coating medium is soap water and air plays the role of both
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incident medium and substrate.

The coatings just mentioned have no practical application except producing beautiful

color patterns. For a coating to be useful, one need have control over its parameters. The

simplest possible coating would be consisting a single homogeneous layer. From the basic

optical theory for stratified media, such a coating will reduce the reflectance to zero if its

refractive index is
√
nans and its optical thickness is one fourth of the wavelength. Here

na, ns denotes the refractive indices of the incident medium and substrate respectively.

The optical effects which can be achieved by a single homogeneous layer is very simple and

limited. Mathematically speaking, this is because such a coating has only two parameters

that can be tuned: its refractive index and thickness1. To achieve more complex effects,

one need to increase the number of parameters of the coating. The most intuitive way to

accomplish this is to use a stack of homogeneous layers. The coatings obtained this way are

called multilayer coatings, often abbreviated “multilayers”.

Multilayers have been successfully designed and produced to fulfill a wide range of pur-

poses. Today multilayer coatings are employed in most antireflection coatings, dielectric

mirrors, bandpass filters and various other optical devices. These devices have wide appli-

cations in many scientific and industrial areas such as astronomy, biology, medicine, energy

conversion and conservation, data conversion and transmission, space technology, imaging,

photography and so on.

The determination of the optical properties of a given multilayer is regarded as a forward

problem. The optical properties just mentioned can refer to the relationship of the amplitude,

1The number of parameters will be three if permittivity and permeability can be tuned
independently. This may be achievable with modern technology, but it is out of the scope
of this work. Moreover we assume the real and imaginary parts of the refractive index can
not be changed independently.
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phase, angle, energy and polarization states of the reflected, transmitted and absorbed light

on those of the incident light. The forward problem is well-posed in the sense that the

solution is existent, unique and stable with respect to the input parameters. The theory and

techniques for solving the this forward problem is relatively complete. However, the accuracy

and efficiency of the solution methods are still very important issues since the optimal design

problems usually requires solving a large number forward problems. In chapter we shall

summarize the basic theory and techniques pertaining to the optimal design problems.

Conversely, the determination of multilayers that yield desired optical properties is re-

garded as an inverse problem. Unlike forward problems, inverse problems are usually ill-

posed, namely the solutions may not be existent, unique or stable with respect to the input

parameters. In particular, inverse problems for practical optical coatings usually have no

exact solution. Consequently we have the take the second best and look for approximate

solutions whose output are as close as possible to the desired ones. This is termed as optimal

design problems.

Optimal design problems can be considered as generalized inverse problems and share

some common properties with the latter, such as the non-uniqueness of solutions and their

high sensitivity with respect to the target performance. In general these properties are

considered as disadvantages for an inverse problem since its objective is to determine the

solution, and the solution should be as accurate as possible. However, they could be ad-

vantages for an optimal design problem since its objective is to find solutions yielding the

best performance. Non-uniqueness means we can have different designs giving the same

performance, which is beneficial since we have an opportunity to select the best feasible one.

High sensitivity of the solution with respect to the performance implies low sensitivity of the

performance with respect to the solution, an advantage in practice indeed.
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Before computers became powerful and cheaply available, multilayers are designed by

analytic techniques such as the vector method, the Herpin index, the method of effective

interfaces, the Smith’s chart and so on. A complete account of these and other similar

methods can be found in the books by Furman and Tikhonravov [1], Macleod [2] and the

references cited therein. The analytic methods are intrinsically limited to small number of

layers and simple target specifications. In addition, they can not be considered as optimal

design methods. However, they are still useful today since they can provide insight and

intuitive explanations which are generally lacking in numerical methods. In particular, the

solutions obtained by analytic methods can be used as initial guess for numerical optimization

methods.

The advances of modern computers boosts the development of numerical methods, nu-

merical optimization methods in particular. Baumeister [3] is probably the first one to

employ numerical optimization methods in the design of optical coatings. Since then many

standard algorithms have been investigated for their applications in the optimal design of

multilayers. For example, Dobrowolsk [4] applied and compared ten algorithms, including

both deterministic and stochastic types. There exist various algorithms developed specifi-

cally for multilayers, too. One of the most notable is the so called needle method, originally

proposed by Tikhonravov [5] and then developed and matured by himself and others. This

method has been shown effective in the design of multilayers for a wide range of applications.

However, none of the methods can claim to be the best for all cases due to the variety of the

applications. In this work we shall not consider the problem of finding or devising the best

algorithm for all design problems.

A key step in solving a practical problem by numerical optimization is to define an

objective function to be minimized. The objective function should measure the discrepancy
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between the target performance and that of the current solution. The metric in which the

discrepancy is measured will certainly affect the solutions and their performance. Chapter is

devoted to our study on this subject. We will demonstrate the impact of the metrics through

numerical examples and observe both anticipated and unanticipated phenomena. Practical

implication and value of the observations will be pointed out.

As mentioned earlier, using a stack of homogeneous layers is one way to increase the

degree of freedom of a thin-film structure so as to achieve complex and powerful optical

effects. Another approach to accomplish the goal is to use a single inhomogeneous, mostly

continuous layer. The coatings obtained this ways are called rugate coatings, often abbre-

viated “rugates”. Traditionally rugates refer to coatings whose refractive-index profiles are

constructed from sinusoidal and other elementary functions and which are much thicker than

their multilayer counterparts. Oftentimes this name is used interchangeably with “gradient-

index coatings” and “inhomogeneous coatings”, both of which refer to coatings with arbitrary

continuous refractive-index profiles and similar thickness compared to multilayers. We shall

pose no restrictions on the thickness of coatings and use “rugates” for all coatings with

continuous refractive-index profiles.

Rugates have received much attention recently due to their better environmental proper-

ties, less sensitivity to production errors and potential better optical performances in compli-

cated situations. The Fourier transform method is a widely used and powerful technique for

the design of rugates. However, it is based on approximate expressions with strict assump-

tions and is restricted to single incident angle and polarization state. Another approach is to

divide the coating into a large number of thin homogeneous layers and optimize an objective

function with respect to the refractive indices of all layers. Because of the maximum prin-

ciple of thin-film optics [6], the coatings obtained this ways generally resemble multilayers
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or possess many discontinuous points if the usual objective functions are applied. In order

to force smoothness to the solutions, we add penalty terms to the usual objective functions.

In chapter we study these methods and obtain similar solutions as other methods and new

ones never seen before by using different norms in the penalty terms.

Existing optimization methods for the optimal design of thin-film coatings have used only

local basis functions (step and hat functions) for the parameterization of the refractive-index

profile. Global basis functions such as sinusoidal functions have been used only in heuristic

design methods. In chapter we propose a method to use a global basis functions in the

design of optical coatings. The problem of using global basis functions in this context is

that there is no direct way to translate the bound constraints on the refractive-index profile

to its spectral coefficients. We overcome this difficulty by a simple transformation of the

bounded functions to unbounded ones. This way the truncated series expansion can be used

to approximate the coating profile and unconstrained optimization algorithms can be used

on the series coefficients. An interesting feature of this method is that we can obtain both

rugates and multilayers with very similar performances.

So far we considered only optical coatings built from layer structures. The refractive

index of such structures vary along one direction and is homogeneous over the other two.

By allowing the refractive index of the structure to vary periodically along one or both of

the other two directions one obtains singly or doubly periodic structures, often called 2D

or 3D diffraction gratings, respectively. Dobson studied the optimal design of wide-angle

antireflective diffraction gratings [7] and blazed diffraction gratings [8]. Following the spirit

of these work, we study the optimal design of broadband antireflective diffraction gratings

in chapter . The value and gradient of the objective function was obtained by solving a

2D PDE with nonlocal transparent boundary conditions [9] and the corresponding adjoint
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equation [7], respectively.

7



Chapter 2

Basic Theory for Thin-film Optics

The basic theory for thin-film optics can be found from a few texts, such as Born and

Wolf [10], Furman [1] and Macleod [2]. In this chapter we summarize the parts of the theory

that are essential and necessary for our work. We start from the Maxwell’s equations and

derive the formulas to compute the reflectance, transmittance and their derivatives with

respect to the layer thicknesses and refractive indices of a multilayer system.

2.1 Maxwell’s Equations

The behavior of light, and electromagnetic field in general, is described by the Maxwell’s

equations (in the Gaussian system of units):

∇×H− 1

c

∂D
∂t

=
4π

c
j, (2.1a)

∇× E +
1

c

∂B
∂t

= 0, (2.1b)

∇ · D = 4πρ, (2.1c)

∇ · B = 0, (2.1d)

where
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E electric vector

H magnetic vector

D electric displacement

B magnetic induction

j electric current density

ρ electric charge density

c speed of light in vacuum

In the field of thin-film coatings the source terms j and ρ are assumed to be zero. In addition,

the other four quantities E ,H,D,B must be supplemented by material equations for a unique

determination of the field vectors. They are rather complicated in general. In this work we

assume the body is moving at slow speed, the material is isotropic and linear, and the field

is time harmonic. Under these assumptions the material equations are give by

D = εE ,

B = µH.

where ε and µ are called the relative permittivity and permeability respectively.

We assume the field is time harmonic and write

E = E exp(−iωt),

H = H exp(−iωt),

where ω is the angular frequency of the field.
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Applying all the above assumptions to (2.1) we arrived at these equations

∇× E− ikµH = 0, (2.2a)

∇×H + ikεE = 0, (2.2b)

where k = ω/c is the wavenumber in vacuum. Notice k = 2π/λ if λ is the wavelength in

vacuum.

Finally we have the following boundary conditions at a surface of discontinuity:

n12 × (E2 − E1) = 0, (2.3a)

n12 × (H2 −H1) = 0, (2.3b)

where n12 is the normal vector of the surface from region 1 to region 2 and Ej,Hj are the

field vectors in region j respectively.

2.2 Model Equations for Layered Medium

For the sake of simplicity we also assume the material is nonmagnetic, namely the perme-

ability µ = 1 everywhere, so that the problem geometry is characterized completely by the

permittivity ε. A thin-film coating consists a layered medium of finite depth sandwiched
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between two homogeneous media of infinite depth. In other words, we have

ε(x, y, z) =



εa, z ≤ 0,

ε(z), 0 < z < L,

εs, z ≥ L.

The medium occupying the region z ≤ 0 is called the incident medium and the medium

occupying the region z ≥ L is called the substrate. The incident medium is where the source

light (incident light) comes from. We assume the incident light is a plane wave, namely

the field vectors E,H have spatial dependence exp(ik · r) where k is a wave vector with

|k| = k
√
εa and r = (x, y, z) is the spatial vector. Notice k is the direction of propagation of

the light. Due to the invariance of ε along the x, y axes, any plane wave solution of (2.2) can

be decomposed into two components called transverse-electric (TE) and transverse magnetic

(TM) modes, respectively.

The plane formed by the propagation direction k and the z-axis is termed the incident

plane. Since ε is invariant along both x and y axes, we assume the incident plane is the yz

plane without loss of generality. In the case of TE mode, the electric field is perpendicular

to the incident plane. So E has only the x-component different from zero. Let us write

E = (u, 0, 0) and substitute it into (2.2). Expanding the ∇× operators we find H lies in

the yz plane and is independent on x. Hence u is also independent on x and we can write

u = u(y, z). The resultant equation for u is the following:

(∆ + k2ε)u = 0, (2.4)

11



where ∆ = (∂yy + ∂zz). By the variable separation method we find

u(y, z) = u(z) exp(ikαy),

where α is a constant to be determined. Substituting this to (2.2) yields

H = (0,−v(z), αu(z)) exp(ikαy),

where v and u are solutions to the following system of linear ordinary differential equations:

du

dz
= ikv, (2.5a)

dv

dz
= ik(ε− α2)u. (2.5b)

To determine the value of α, consider the wave in the incident medium. If the incident angle

is θI , then the wavevector

k = k
√
εa(0, sin θI ,− cos θI)

and

u(y, z) = exp(ik
√
εa)(y sin θI − z cos θI).

Hence α =
√
εa sin θI .

In the case the TM mode, the H field is perpendicular to the incident plane and we can

write H = (u(z), 0, 0). Similar to the case of TE mode, we find

E =
(

0, v(z),−α
ε
u(z)

)
exp(ikαy),
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and u, v are solutions to the following system of linear ordinary differential equations

du

dz
= ikεv, (2.6a)

dv

dz
= ik

(
1− α2

ε

)
u. (2.6b)

2.3 Reflectance and Transmittance

Now we derive formulas for the reflectance and transmittance for a layered structure. Let us

assume TE mode for the time being. For the sake of convenience let us normalize the field

so that the electric field at the substrate interface u(L) = 1. Denote uI , vI , uR, vR to be the

field of the incident wave and reflected wave respectively. By (2.5) we obtain

vI(0) = qauI(0),

vR(0) = −qauR(0),

(2.7)

where qa =
√
εa − α2. By the jump conditions (2.3) we obtain the continuity of u, v at the

interface z = 0. As a result, we have

u(0) = uI(0) + uR(0),

v(0) = vI(0) + vR(0) = qa(uI(0)− uR(0)).

Solving the above system for uI(0) and uR(0) we obtain the following

uI(0) =
qau(0) + v(0)

2qa
,

uR(0) =
qau(0)− v(0)

2qa
,
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The amplitude reflectance r is defined to be the ratio of the tangential component of the

electric field of the reflected wave and incident wave. Hence we obtain r in terms of the total

field at the incident interface z = 0:

r =
uR(0)

uI(0)
=
qau(0)− v(0)

qau(0) + v(0)
. (2.8)

Similarly we obtain the amplitude transmittance t in terms of the total field at the

substrate interface z = L:

t =
u(L)

uI(0)
=

2qa
qau(0) + v(0)

. (2.9)

Now consider the special case when the coating layer is homogeneous, namely we assume

ε(z) = ε, 0 < z < L. For the sake of convenience we introduce the refractive index n =
√
ε.

Eliminating v from (2.5) yield the Helmholtz equation for u:

d2u

dz2
+ k2(n2 − α2)u = 0. (2.10)

Denote β2 = k2(n2 − α2), then the general solution of the above equation is the following

u(z) = c1 exp(iβz) + c2 exp(−iβz).

From the first equation in (2.5) we obtain

v(z) = q(c1 exp(iβz)− c2 exp(−iβz)),

where we denote q =
β

k
. Substituting z = 0 and z = L in the above solutions respectively and

eliminating c1, c2, we obtain the following equation relating the field values at the substrate
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Figure 2.1: Problem geometry for multilayer coatings.

interface to those at the incident interface:

 u(0)

v(0)

 =

 cos(βL) − i
q

sin(βL)

−iq sin(βL) cos(βL)


 u(L)

v(L)

 (2.11)

Let u(L) = 1, then v(L) = qs =
√
εs − α2 from continuity. Plugging these into (2.11)

we obtain u(0), v(0). Together with (2.8) and (2.9) we can write the expressions for the

amplitude reflectance r and amplitude transmittance t.

Now consider a multilayer coating with layer thicknesses {t1, · · · , tn} and refractive in-

dices {n1, · · · , nN} (See Figure 2.1). Combining (2.11) for all layers we obtain

 u(0)

v(0)

 =

 N∏
j=1

Mj


 u(L)

v(L)

 , Mj =

 cos(βjtj) − i

qj
sin(βjtj)

−iqj sin(βjtj) cos(βjtj)

 , (2.12)

where L =
∑n
j=1 tj , βj =

√
n2
j − α2 and qj =

βj
k

. Then we can calculate r and t as in

the single layer case. This technique for the computation of reflectance and transmittance

of a multilayer is called the matrix method and will be used through out this work for the

15



computation of the objective functions.

In order to use gradient based optimization algorithms such as quasi-newton methods, one

need the gradient of the objective functions, which in turn are computed from the gradient

of r and t. From (2.8) and (2.9) we see the gradient of r and t can be expressed in terms of

the gradient of u(0) and v(0), which can be easily obtained from (2.12) since each parameter

tj0 and nj0 appears only in Mj0
. Therefore we have

d

dtj0

 u(0)

v(0)

 =

j0−1∏
j=1

Mj

 dMj0

dtj

 N∏
j=j0+1

Mj


 u(L)

v(L)

 , (2.13a)

d

dnj0

 u(0)

v(0)

 =

j0−1∏
j=1

Mj

 dMj0

dnj

 N∏
j=j0+1

Mj


 u(L)

v(L)

 . (2.13b)

The computational cost for r and t is O(N) due to multiplication of N 2 × 2 matrices.

The computational cost for each partial derivatives is also O(N) and the computational

cost for the gradient will be O(N2) if done straightforwardly using (2.13). The cost can be

reduced to O(N) once we notice the matrix products

j0−1∏
j=1

Mi,
N∏

j=j0+1

Mj .

can be computed progressively, once in forward direction and another in the backward direc-

tion, as noted by, e.g. Verly [11]. In addition, we utilized the Armadillo C++ linear algebra

library [12] for computation of matrix multiplications due to its exceptional efficiency in

handling small matrices.

Finally, in many practical situations we are concerned with only the energy carried in

the reflected and transmitted waves. The magnitude and direction of the energy carried by
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a time-harmonic EM wave is given by the time-averaged Poynting vector

S =
c

8π
<(EH).

Using out notations the energy carried by the wave along the z-axis is given by

Sz =
c

8π
<(uv).

From (2.7) we find the energy carried by the incident and reflected wave along the z-axis is

given by

c

8π
<(qa)|uI(0)|2, − c

8π
<(qa)|uR(0)|2,

respectively. The power reflectance R is defined by the ratio of the energy carried by the

reflected wave along the z-axis to that of the incident wave. Thus we have

R = |r|2. (2.14)

Similarly we can derive the formula for the power transmittance:

T =
<(qs)

<(qa)
|t|2. (2.15)

The gradient of R and T with respect to layer thicknesses and refractive indices are computed
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easily from those of r and t:

∇R = 2<(r∇r), (2.16a)

∇T = 2
<(qs)

<(qa)
<(t∇t). (2.16b)
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Chapter 3

Norm of Objective Functions

In this chapter we consider the optimal design of two-material multilayer AR coatings. The

most common approach to this problem is numerical optimization. Baumeister [3] seems

to be the first one to employ this approach. Since then people have investigated various

existing optimization algorithms and developed many new ones. For example, ten different

algorithms of deterministic and stochastic types were tested and compared in [4]. The needle

method proposed in [5] is one of the most powerful algorithms. It has been successfully used

in the design of not only antireflection but also other complicated optical coatings.

Besides the conventional stratified thin-film coatings, numerical methods have been stud-

ied and successfully applied to the optimal design of other thin-film structures, such as

diffraction gratings with specified diffraction patterns [13, 14, 15, 9, 8] and with omnidirec-

tional antireflection properties [7], guided-mode grating resonant structures [16, 17, 18] and

nonlinear diffraction gratings [19].

A key step in numerical optimization is to define a merit function that measures the

discrepancy between the target and and solution. The metric in which the discrepancy is

measured will certainly affect the optimal solution and its performance. The most commonly

used metric is of the least-square type. Others include the sum of residuals or the max of the

residuals. For broadband AR coatings, the merit functions corresponding to the previously
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mentioned metrics are given by

 1

M

M∑
i=1

[R(ki)]
2


1

2
,

1

M

M∑
i=1

R(ki), max
1≤i≤M

R(ki),

where R(ki) denotes the reflectance at wavenumber ki and {ki : 1 ≤ i ≤ M} is a set of

uniformly distributed sampling points in the spectral region of interest.

Mathematically speaking, these can be considered as discrete approximations of the

L2, L1 and L∞ norms of the function R(k) over the spectral region. Naturally we can

also consider using Lp norms for other positive integers p. It was mentioned in [20] that

greater p will force solutions which tend to equalize the residuals. However, no theoretical

or numerical substantiations have been made.

In this chapter we conduct quantitative studies on the impact of p on the optimal design

of antireflection coatings . This is accomplished by comparing the average and maximal

values of the reflected power over the spectral and/or angular regions of interest through

numerical experiments. These specific values are chosen because they are the most important

for many practical applications. The average value, up to a weight function, measures the

average power reflected by the interface. Thus it is more important than other quantities in

situations when maximal power absorption is mostly desired, e.g. solar cell panels. On the

other hand, imaging devices such as glasses and camera lenses should be designed so that

the reflected power is more evenly spread and the maximal value is as small as possible.
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3.1 Formulation and Algorithms

Without loss of generality, the AR coating will be assumed to be of broadband type in this

section. Formulations for omnidirectional and broadband-and-omnidirectional types are sim-

ilar. The spectral region of interest will be denoted by an interval [kL, kH ] of wavenumber or

an interval [λL, λH ] of wavelength. Wavenumber is better suited in mathematical formula-

tion while wavelength seems to be more natural in the description of practical applications.

Let {ki : 1 ≤ i ≤ M} be a set of uniformly distributed points in [kL, kH ] with k0 = kL and

kM = kH and define a class of merit functions {fp : 1 ≤ p ≤ ∞} by

fp =



 1

N

N∑
i=1

[R(ki)]
p


1

p
, if p <∞,

max
1≤i≤N

R(ki), if p =∞,

(3.1)

where R is reflectance as a function of wavenumber. Dispersion of all materials are

ignored in the calculation of fp and its gradient, although it can be incorporated into our

model through simple transformations as in [21].

The value of fp can be computed directly from the values of R(ki) for all p. The partial

derivatives of fp can be computed directly from the values of R(ki) and their partial deriva-

tives for p < ∞. The function f∞, on the other hand, is not differentiable. In order to use

gradient-based optimization algorithms, we transform the original optimization problem

min
L

max
1≤i≤N

R(L, ki)
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into an equivalent form:

min
L
s subject to R(L, ki)− s ≤ 0 ∀i, (3.2)

where L = {t1, · · · , tN} is the design variable. The equivalence of these two problems is

shown in e.g. [22] and it is the approach adopted in [23]. Note that the objective function

and all the constraint functions in (3.2) are differentiable. Different approaches have been

proposed in [24, 25]. They are more complicated but can be used to design other types of

coatings.

Now that the optimization problems are completely setup, we need to choose algorithms.

Although the needle method could be the best candidate, it is rather complicated compared

with straightforward optimization algorithms. Since our objective is not to find the best

algorithm but to study the impact of the metrics, we choose to utilize existing algorithms in

the open source library NLopt [26]. All the local gradient-based algorithms in this library

can handle cases for p <∞. Among them we find the low-storage BFGS algorithm described

in [27] to be particularly efficient for our test problems. If it fails to converge, we can always

turn to more robust but less efficient ones. The only algorithm in this library that can

handle nonlinear constraints is a sequential quadratic programming method based on the

implementation in [28], so it is the one we shall use for the case p =∞.

For two-material coatings, the refractive indices ni take a low and high value alternatively.

They are fixed up to the value of the first layer. Thus the design variables on which we do

optimization are layer thicknesses ti. For both practical and computational considerations,

we need define lower and upper bounds for the design variables. First of all, we need set a

lower bound, which must be non-negative in order to avoid nonphysical solutions. In fact, it
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will be set to 0 in our numerical experiments. However, zero-thickness and thin layers could

occur in the solution. Due to limited accuracy of equipment and sensitivity to manufacturing

errors, thin layers should be avoided in the design. This can be achieved by specifying a

positive value for the lower bound in the beginning or by a process named “consolidation” [29,

11], which eliminates thin layers during or after the optimization. There exist two possible

approaches for this process: erase thin layers or merge them with neighboring thicker layers.

Existing works did not mention which method is better and which one was used in their

works. We tested both approaches and found the latter usually yields better results than

the former. Our algorithm for the consolidation process is the following:

set thresholds Ti for 1 ≤ i ≤ N ;
for i = 2 to M do

if ti < Ti then
ni ← ni−1;

end
if t1 < T1 then

n1 = n2;
end

end
combine neighboring layers with the same refractive index

Algorithm 1: Consolidation of multilayer coatings.

The procedure “optimization → consolidation” is iterated until no thin layers remain.

The thresholds ti are user input values that specify the least thicknesses to be present in the

coating and can be chosen independently for each layer. Obviously they should not be too

large, since otherwise the obtained solution will be far from optimal. They can be very small

so that only the layers with zero thicknesses are consolidated. Interestingly, by using suitable

values we obtain coatings with much less layers but similar or even better performances.

An upper bound is not needed unless it is a required feature of the coating since our

algorithms always generate solutions without too thick layers.
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3.2 Numerical Experiments and Discussion

Besides the merit functions, the lowest achievable residual reflectance of an antireflection

coating depends on many other parameters such as

• refractive indices of the coating material and the ambient media

• total number of layers

• total optical thickness

• spectral and/or angular regions

• state of polarization

An explicit formula for this dependence is not available, but some empirical expressions

have been proposed in [30, 31, 32, 33]. For the purpose of our numerical experiments, these

parameters will be held fixed when p is varied.

In all the following experiments, the refractive indices of the incident and substrate media

are 1.0 and 1.52, corresponding to air and glass, while the low and high refractive indices of

the two materials used in the coating are 1.45 and 2.35, respectively. The number of layers is

set to 20 in the beginning and will be reduced in the final solutions due to the consolidation

process.

Initial guesses play an important role for local optimization methods. We use a quarter-

wave stack at a fixed wavelength λc. That is, we set ti = λc/(4ni) for each i. In the case

of broadband AR coatings, good results can be obtained if λc is slightly less than λL as

suggested in [34]. According to our numerical experiments, smaller λc will cause more layers

to have zero thicknesses during the optimization. This leads to less number of layers and
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worse performance in the final solution. If λc is too small, all layers with refractive index nH

will be eliminated and the final solution consists of a single layer with refractive index nL.

On the other hand, the solution will be far from optimal if λc > λL. The best choice should

be made by a trial-and-error method and is dependent on the specific problem. However, our

numerical experience shows that the choice λc = 0.8λL can produce good results consistently

for many different combinations of parameters.

The above observations are true not only for the broadband type but also for the om-

nidirectional (with λ0 playing the role of λL) and broadband-and-omnidirectional types. In

all the results shown in the sequel we used the initial guesses with λc = 0.8λL.

As mentioned in section 3.1, the thickness thresholds ti controls a balance between the

performance and the minimal layer thickness of the final coating. We used ti = λL/(60ni)

for all the experiments.

We now present results for the following three AR coatings

(a) broadband: normal incidence over spectral region [λL, λU ] = [400, 1200]

(b) omnidirectional: at fixed wavelength λ0 = 100 over angular region [θL, θH ] = [0◦, 90◦]

(c) broadband-and-omnidirectional: over the spectral region [λL, λU ] = [400, 1200] and an-

gular region [θL, θH ] = [0◦, 90◦].

The merit functions for the three cases are defined as the following respectively:

fp =



 1

M

M∑
i=1

[R(ki)]
p


1

p
, if p <∞,

max
1≤i≤M

R(ki)I(ki), if p =∞,
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fp =



 1

N

N∑
i=1

[R(θi) cos(θi)]
p


1

p
, if p <∞,

max
1≤i≤N

R(θi) cos(θi), if p =∞,

fp =



 1

MN

M∑
i=1

N∑
j=1

[R(ki, θj) cos(θj)]
p


1

p
, if p <∞,

max
1≤i≤M,1≤j≤N

R(ki, θj) cos(θj), if p =∞,

where {k1, · · · , kM} and {θ1, · · · , θN} are uniformly distributed sampling points in [kL, kU ]

and [θL, θU ], respectively. Notice our definitions of merit functions for the omnidirectional

and broadband-and-omnidirectional cases are different from conventional ones by a factor

of cos(θi). This factor is included so that the merit functions represent the reflection in

the sense of total power. This difference is not essential for our discussion since it can be

regarded as a weight function. The observations and conclusions in the sequel are still valid

if this term is dropped out.

Notice that the average and maximal power of reflection Pave and Pmax are approximated

by f1 and f∞ respectively. In fact, they are computed by the same formula except with with

a larger number of sampling points in our experiments. Intuitively the values of Pave, Pmax

should be the lowest when f1, f∞ are used as the merit functions and should increase and

decrease as p increases when fp are used as merit functions. These are generally the case as

seen from Figure 3.1, where these values are plotted against p for 1 ≤ p ≤ 100.

There are several other interesting phenomena associated with Pave and Pmax in Fig-

ure 3.1:

• The increase and decrease of the two values slows down quickly as p increases.
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Figure 3.1: (For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation.) Dependence of the average
and maximal power reflectance on the norm of objective functions for three types of AR
coatings. Top to bottom: broadband, omnidirectional and broadband-and-omnidirectional.
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• The two values becomes rather close at large p in the broadband case but not the other

two. This implies the power of reflection will be more evenly spread over the region of

interest in the broadband case than the other two (compare Figures 3.3-3.5).

• The best achievable average and maximal power of reflection are much higher ( 10

times) in the broadband-and-omnidirectional case than the other two.

• There exist specific values of p at which both values experience abrupt changes in the

omnidirectional case. However, this phenomenon is less evident in the broadband and

broadband-and-omnidirectional cases. We believe it is because the merit functions are

smoother in these cases but do not have a theoretical or numerical proof.

The last observation worthies more investigation since it is not as expected as the others.

First we would like to point out the abrupt changes are not caused by the consolidation

process. Our other experiments show they exist even if consolidations are not performed,

although at possibly different values of p. At first glance it is against the intuition since the

dependence of fp on p is smooth. A small change in p can cause only a small change in fp.

However, fp usually possess a large number of minima and our algorithms are local, so a

small change in fp could drive the solution to a different local minimum. For example, the

two values experience abrupt changes from p = 98 to p = 99 and back to their normal values

at p = 100. Figure 3.2 shows the refractive-index profiles and distribution of reflected power

at p = 98, 99.

Comparing these with the result at p = 100 in Figure 3.4 reveals that the solutions

at p = 98, 100 are the same local minimum but the solution at p = 99 is a different one.

The existence of these different solutions at specific values of p is a good thing for coating

designers. This is because one solution may be less sensitive to manufacture errors, possesses
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Figure 3.2: Refractive-index profiles and power of reflection in the omnidirectional case for
p = 98 (top) and p = 99 (bottom).

better mechanical properties, or be easier to produce than another depending on the available

deposition technology [35]. For example, the solution at p = 99 can be considered better

than those at p = 98 and p = 100 due to its better optical performance and absence of thin

layers.

Figures 3.3-3.5 show the refractive-index profiles and power of reflection at p = 1, 100 and

∞. Clearly the power distribution becomes more evenly spread as p increases in all three

cases, confirming the statements in [20]. The solutions for p = 100 and p =∞ could be very

close, as in the broadband and broadband-and-omnidirectional cases, or rather different, as

in the omnidirectional case, where the solution at p =∞ contains much less layers and has

a small decrease in performance than the solution at p = 100. This can be explained by the

existence of neighboring local minima and the the use of different algorithms. Hence it is

worthwhile to study the p =∞ case since it may lead to different, possibly better solutions

than finite values.

3.3 Conclusion

We have studied the problem of designing AR coatings by numerical optimization methods

with different metrics. The merit functions in our approach are discrete approximations of
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Figure 3.3: Refractive-index profiles and reflected power for the broadband case at p = 1, 100
and p =∞ (top to bottom).
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Figure 3.4: Refractive-index profiles and reflected power for the omnidirectional case at
p = 1, 100 and p =∞ (top to bottom).
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the Lp norm of the reflected power over the region of interest. The impact of p on the optimal

solutions are investigated by comparing the average and maximal power of reflection, which

are important factors for practical applications. Based on our numerical experiments with

three types of AR coatings, one should set p to 1 if one wishes to minimize the average value

and to∞ or a large value (e.g. 100) if one wishes to minimize the maximal value. Moreover,

abrupt changes to the solutions can happen at specific values of p. This provides coating

designers new opportunities in the search of better solutions.

Finally we would like to point out that the observed effect of metrics on the objective

functions are not limited to multilayers or AR coatings. Similar effects are observed for

rugates and other types of coatings during our numerical investigations.
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Chapter 4

Rugate Coatings

Rugate coatings have been studied actively by scientists and engineers for more than 50

years. They have received considerable attention recently due to their outstanding optical,

physical and feasibility properties.

4.1 Introduction

Based on the shape of the refractive-index profile, thin-film optical coatings are generally

divided into two categories: multilayer coatings and rugate coatings. A multilayer coating

consists of a stack of limited number of homogeneous layers. The refractive-index profile

of such a coating is a step function taking a few number of fixed values. The most com-

mon coatings of this type are two-component multilayers, which consist of two materials.

Rugate coatings were initially defined as optical coatings whose refractive-index profiles are

constructed from sine and other known functions with explicit expressions. Now they are

usually referred as optical coatings presenting any continuous refractive-index profiles. In

this respect the term “rugate” may be used interchangeably with “gradient-index” or “in-

homogeneous”. Figure 4.1 shows the geometry for rugate coatings.

Since a continuous function can be approximated by step functions up to any given

accuracy and the practical computation of rugate coatings are commonly conducted through

subdivision of the film into a large number of homogeneous layers, the boundaries that
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Figure 4.1: Problem geometry for rugate coatings.

define multilayer and rugate coatings can become unclear. Those in the intermediate region

can be called quasi-rugate coatings, which include multilayers with intermediate refractive

indices, two-component multilayers with a large number of layers, and coatings possessing

both homogeneous and inhomogeneous layers.

Multilayer coatings have been successfully designed and produced to fulfill a wide range

of desired optical properties. But it is still desirable to study rugate coatings because they

are advantageous to multilayers in three aspects [36, 35]. Firstly, rugate coatings can have

better optical properties. In the case of nonabsorbing dielectric coatings at s-polarization

or p-polarization at small incident angles, the maximum principle of thin-film optics [6] pre-

dicts that the optimal refractive-index profile is a step function taking the lowest and highest

permissible values, i.e. the optimal design is a two-component multilayer. However, the con-

clusion of this principle becomes unclear or invalid if the coating materials are absorbing,

or if the design target is specified at wide incident angles and/or both polarization. Under

those circumstances the rugate and quasi-rugate coatings can have superior optical perfor-

mance comparing with multilayers. Secondly, rugate coatings can have better feasibility

properties. Some multilayer designs are very sensitive to manufacturing errors, especially
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when there are many thin layers and the total number of layers is large. It has been demon-

strated experimentally that many rugate coatings possess better feasibility properties than

their multilayer correspondence. Thirdly, rugate coatings have better physical properties,

including mechanical and thermal stability.

The Fourier transform method [37] is a powerful and widely used method for the design

of rugate coatings. It is based on the approximate expression:

1

2

∫ ∞
−∞

[lnn(x)]′eikxdx = Q(k)eiφ(k)

where

• n(x) is the refractive-index profile

• Q(k) is an suitable even function of the target transmittance T (k)

• φ(k) is an odd function to ensure n(x) is real (Note: φ(k) is NOT the phase change of

reflection or transmission)

• x is twice the optical thickness: x = 2
∫ z

0 n(s)ds

• k is the wavenumber: k = 2π/λ

The Fourier transform method is very fast when it works. However it has the following

disadvantages and limitations:

• based on approximate equations assuming the following conditions

– low reflection

– no absorption (real refractive index)

35



– no dispersion (refractive index is independent of wavelength)

• infinitely thick coating

• difficult to implement constraints on the refractive index

• can not handle the cases when more than one incident angle or polarization is specified

• can not handle phase specifications

4.2 Smooth by Penalty Terms

Straightforward optimization of the merit functions ‖R(n, k) − R̃(k)‖ will lead to solutions

which resemble multilayers or contain many discontinuities. One method to force smoothness

of the solutions is by adding penalty terms. This is the approach adopted in [21], where the

the refractive-index profile n(z) is parameterized as polylines {(zi, ni) : 1 ≤ i ≤ N} and the

objective function is defined as

f(X) =
1

L

L∑
j=1

[
R(X,λj)− R̃(λj)

∆j

]2

+ α
N−1∑
j=1

(
nj+1 − nj
zj+1 − zj

)2

.

where X = (z1, · · · , zN , n1, · · · , nN ). Our approach is similar except n(z) is parameterized

as step functions {(ti, ni) : 1 ≤ i ≤ N} and use of different metrics in the objective functions:

f(X) =

 1

L

L∑
j=1

[
R(X, kj)− R̃(kj)

∆j

]p
1

p
+ α

 1

N − 1

N−1∑
j=1

[
2(nj+1 − nj)
ti + ti+1

]q
1

q
.

where p, q are even natural numbers (p can be odd if R̃(kj) ≡ 0), ∆j are design tolerances

and α is a weight factor controlling balance between the performance and smoothness of the
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Figure 4.2: Refractive-index profiles (left) and reflectance curves (right) of optimal solutions
for a ramp filter. Top to bottom: α = 0, 0.01, 0.1.

resultant refractive-index profiles. Notice that the penalty term is a discretization of the

Lq norm of the n′(z). The gradient of f(X) can be computed easily using the derivative

formulas for R derived in chapter 1.

My approach differs from [21] in three aspects. First, n(z) is parameterized by step

functions instead of polylines. Using step functions simplifies the calculation and the results

are similar to those using polylines. Second, effect of different metrics in both the merit

(controlled by p) and penalty functions (controlled by q) will be investigated. In particular,

the use of high values for q yield interesting solutions never seen before. Third, the penalty

term is normalized with respect to the number of parameters so that the choice of the value

for α will be independent of the level of discretization.

Figure 4.2 shows the refractive-index profiles (left) and reflectance curves (right) of opti-

mal solutions for a ramp filter with different values of α. We have set p = q = 2 in this test.

Observe how the refractive-index profile becomes smoother as α increases. As expected, the

performance deteriorates as α increases. Remarkably, a small value of α can smooth the

solution effectively with little effect on the performance.

The effect of p on the solutions are similar to multilayer cases as explained in the previous

37



0 1 2 3 4 5 6 7 8 9 10
Thickness

1.45

2.25
Refractive index

4 5 6 7 8
Wavelength

0.0

0.5

1.0
Reflected Power

Figure 4.3: Refractive-index profile (left) and reflectance curve (right) of the optimal solution
for a ramp filter with α = 0.01, p = 2, q = 10.
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Figure 4.4: Dependence of the solution on N . Top to bottom: N = 64, 128, 256.

section. The effect of q is more interesting.

Figure 4.3 shows the solutions of the same problem but with α = 0.01 and q = 10. Notice

the solution is qualitatively similar to the q = 2 but the curved parts are straightened up.

On the other hand, the difference in performance is negligible. Again, this is beneficial since

different solutions are always desirable.

Next we investigate the impact of the level of discretization on the performance of the

design. In principle, the finer the discretization the better performance is expected since we

have more degrees of freedom. In practice, however, the impact becomes negligible at rather

rough discretization. Figure 4.4 shows the refractive-index profiles and the corresponding

reflectance curves for the same problem but with different level of discretization. Notice

the performance of these designs are almost indistinguishable from each other although the
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refractive-index profiles are very different. There are two heuristic explanations for this

phenomenon. First, it is a well known fact that small features of a structure has little

effect on waves with large wavelength. Thus refinement of the refractive-index in fine scale

has little impact on its optical performance. This is confirmed from the numerical results,

where we see the refractive-index profiles obtained with finer discretization are generally

the interpolations of those obtained with rough discretization. Second, the number of local

minima increases fast as the number of variables increases. So it is more likely to get stuck

in a bad local minimum with finer discretization.

We are motivated by the fact that the refractive-index profiles obtained with finer dis-

cretization are generally the interpolations of those obtained with rough discretization and

devised a method to speed up the convergence:

1. set N to a small number, e.g. 8

2. optimize until convergence is reached

3. divide each layer into two sub-layers of equal thickness

4. set refractive index of the sub-layers by interpolation from neighbor layers

5. go to step 2 and repeat until desired number of layers is reached

This simple algorithm can increase convergence speed about three fold for most experiments

we conducted. Further improvements are achieved if we increase the convergence tolerance

progressively in step 2.
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Chapter 5

Global Basis Functions

Existing optimization methods for the optimal design of thin-film coatings have used only

local basis functions (step and hat functions) for the parameterization of the refractive-

index profile. Global basis functions such as sinusoidal functions have been used only in

heuristic design methods, where there are only a few design parameters such as the amplitude,

frequency and shifting. The coatings that can be designed by heuristic methods are very

limited.

The Fourier transform method finds the refractive-index profiles as an inverse Fourier

transform of an appropriate function. However, it is not an optimization method and has

many limitations.

5.1 Formulation

The problem of using global basis functions is that there is no direct way to translate the

bound constraints on the refractive-index profile to its spectral coefficients. This is also the

major difficulty and limitation of the Fourier transform method.

To overcome this difficulty, we transform the set of bounded functions {n(z) ∈ L∞(0, L) :

nL ≤ n(z) ≤ nH} to the set of unbounded functions {m(z) : m(z) ∈ L∞(0, L)} through the
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mapping

m(z) =
w(n(z)− c)√
w2 − (n(z)− c)2

, (5.1)

where w = (nH −nL)/2 and c = (nH +nL)/2. This transformation is obtained by mapping

the line segment (nL, nH) to (−∞,∞) through a half circle. This mapping can be inverted

to get an expression of n(z) in terms of m(z):

n(z) = c+
wm(z)√
m(z)2 + w2

. (5.2)

This particular choice of mapping is picked by intuition and is not necessarily the best.

In fact, there are infinitely many choices out there, e.g. the tangent function

m(z) = tan
( π
w

(x− c)
)
.

Now there is no bound constraints on m(z), let us approximate it by truncated Fourier

series

m(z) ≈
N∑
j=0

aj cos

(
jπ

L
x

)
+

N∑
j=1

bj sin

(
jπ

L
x

)
. (5.3)

It is certainly possible to use other global basis functions such as Chebyshev or Hermite

polynomials.

Given a vector of coefficients {a0, · · · , aN , b1, · · · , bN} we have a function m(z) from (5.3)

and a refractive-index profile n(z) by solving (5.1). The reflectance curve corresponding to

n(z) can be then computed from the matrix method. Thus we have a function mapping

the Fourier coefficients to reflectance and the unconstrained optimization problem for a
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broadband coating:

min
a0,··· ,aN ,b1,··· ,bN

‖R(k; a0, · · · , aN , b1, · · · , bN )− R̃(k)‖Lp(kL,kH ), (5.4)

where R(k; a0, · · · , aN , b1, · · · , bN ) is the reflectance at wavenumber k of a refractive-index

profile n(z) obtained from the coefficients {a0, · · · , aN , b1, · · · , bN} and R̃(k) is the target

reflectance function.

To compute the reflectance and its gradient, we discretize n(z) and m(z) by piece-wise

constant functions. Divide the coating into D sub-layers of equal thickness. Denote zi the

center of the i − th layer and ni = n(zi),mi = m(zi), Then the reflectance R is computed

from the matrix method and the partial derivatives of R is given by

∂R

∂aj
=

D∑
i=1

∂R

∂ni

∂ni
∂mi

∂mi

∂aj
(5.5a)

=
D∑
i=1

∂R

∂ni
w3(m2

i + w2)
−

3

2 cos

(
jπ

L
zi

)
, 0 ≤ j ≤ N, (5.5b)

∂R

∂bj
=

D∑
i=1

∂R

∂ni

∂ni
∂mi

∂mi

∂aj
(5.5c)

=
D∑
i=1

∂R

∂ni
w3(m2

i + w2)
−

3

2 sin

(
jπ

L
zi

)
, 1 ≤ j ≤ N, (5.5d)

where ∂R/∂ni is also computed from the matrix method.

5.2 Numerical Experiments

Consider a broadband antireflection coating over the wavelength range [λL, λH ] = [400, 1200]

at TE polarization and normal incident angle. The refractive indices of the incident medium
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Figure 5.1: Snapshots of the refractive-index profile (left) and reflectance (right) at 10, 50,
and 200 iterations (top to bottom) during the optimization of a broadband AR coating
parameterized by sinusoidal functions.

and substrate are na = 1.0 and ns = 1.52 respectively. The lower and upper bound of the

refractive index of the coating is nL = 1.45 and nH = 2.35 respectively. The total thickness

of the coating is L = 900. The number of terms in the Fourier series is N = 20 and the

initial guess is {a0, · · · , aN , b1, · · · , bN} = {1, · · · , 0, 0, · · · , 0}, corresponding to m(z) = 1

and n(z) = (nL + nH)/2. The Matlab function “fmincon” is used to run the optimization.

Figure 5.1 shows the snapshots of the refractive-index profile n(z) and the corresponding

reflectance curves R(λ) at 10, 50, and 200 iteration steps during the optimization.

We have a number of observations from this example.

First, it is interesting to see how n(z) evolves from a smooth function to an almost-

step function taking only two values, namely the lower and upper bounds nL, nH . This is

consistent with the maximum principle of thin-film optics [38].

Second, n(z) varies much more significant than R(λ) does during the iterations. This is

due to the ill-posedness of the corresponding inverse problem of recovering n(z) from R(λ).

While ill-posedness is generally considered to be a disadvantage of inverse problems, it is

the opposite in this case since we can have very different designs with similar performance.

43



For example, the rugate (2nd) and multilayer (3rd) designs in Figure 5.1 are qualitatively

different but their performance are almost identical.

Third, the reflectance curves are uniformly distributed in the spectral region even if p = 1

is used in the objective function (5.4). In contrast, the reflectance curves obtained by using

local basis functions with small values of p possess a peak at the upper bound of the spectral

region.

Ongoing and future works in this topic include the possibilities to use other transforma-

tions and basis functions, determine the appropriate value for the number of terms N or

how to increase it progressively to obtain better solutions or increase convergence speed. We

shall also consider the use of penalty or constraint functions to force smoothness of n(z) as

we did in chapter 4.
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Chapter 6

Diffraction Gratings

So far we considered only optical coatings built from layer structures. The refractive index

of such structures vary along one direction and is homogeneous over the other two. By

allowing the refractive index of the structure to vary periodically along one or both of

the other two directions one obtains singly or doubly periodic structures, often called 2D

or 3D diffraction gratings, respectively. Dobson studied the optimal design of wide-angle

antireflective diffraction gratings [7] and blazed diffraction gratings [8]. Following the spirit

of these work, we study the optimal design of broadband optical coatings by the use of

diffraction gratings. The value and gradient of the objective function will be obtained by

solving a 2D PDE with nonlocal transparent boundary conditions [9] and the corresponding

adjoint equation [7], respectively.

6.1 Model and Forward Solver

Consider a 1D diffraction grating so that µ = 1 and ε is invariant along y-axis with

ε(x, z) =



ε1, z ≥ b− δ,

ε(x+ Λ, z), −b+ δ < z < b− δ,

ε2, z ≤ −b+ δ
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Figure 6.1: Problem geometry for 1D diffraction gratings.

where b > 0, δ > 0 are a constants with b− δ > 0. Figure 6.1 summarizes the geometry for

1D diffraction gratings.

Given a time harmonic plane incident wave, we will determine the reflectance and trans-

mittance by the variational approach with transparent boundary conditions [9]. The Maxwell’s

equations for a time harmonic wave with frequency ω reduce to the following coupled system

of linear equations

∇× E− ikH = 0, (6.1a)

∇×H + ikεE = 0, (6.1b)

where k = ω/c is the wavenumber in vacuum. We also have the following boundary condi-

tions at a surface of discontinuity:

n12 × (E2 − E1) = 0, (6.2a)

n12 × (H2 −H1) = 0, (6.2b)
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In the case of TE polarization, the system of linear equations reduces to the Helmholtz

equation

(∆ + k2ε)u = 0,

where u is the tangential component of E. For the sake of uniqueness, we only look for quasi

periodic solutions u such that

uα = u exp(−iαx)

is Λ periodic, where α = kε1 sin θ and θ is the angle of incidence.

Denote

Ω = {(x, z) : −b < z < b}, (6.3a)

Ω1 = {(x, z) : z ≥ b}, (6.3b)

Ω2 = {(x, z) : z ≤ −b}, (6.3c)

Γ1 = {(x, z) : z = b}, (6.3d)

Γ2 = {(x, z) : z = −b}. (6.3e)

(6.3f)

For each n ∈ Z denote αn = 2πn/Λ. By expanding uα into its Fourier series along the

x-axis:

uα(x, z) =
∑
n∈Z

u
(n)
α (z) exp(iαnx), (6.4a)

u
(n)
α (z) =

1

Λ

∫ Λ

0
uα(x, z) exp(−iαnx)dx, (6.4b)
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the fact that uα is a sum of plane waves in Ω1,Ω2:

uα(x, z)|Ωj =
∑
n∈Z

a
(n)
j exp[±iβ(n)

j z + iαnx], (6.5)

and the continuity of u and ∂u/∂ν across Γ1,Γ2, we obtain the following boundary value

problem for uα

(∆α + k2ε)u = 0, in Ω, (6.6a)

(
∂

∂ν
− T1)uα = −2iβ exp(−iβb), on Γ1, (6.6b)

(
∂

∂ν
− T2)uα = 0, on Γ2, (6.6c)

where

∆α = ∆ + 2iα∂x − |α|2,

Tjf =
∑
n∈Z

iβ
(n)
j f (n) exp(iαnx),

f (n) =
1

Λ

∫ Λ

0
f(x) exp(−iαnx)dx,

β
(n)
j =

√
k2εj − (αn + α)2 s.t. arg(β

(n)
j ) ∈ [0, π),

β = kε1 cos θ

(6.7)

Here and in the sequel the domain and boundary will be restricted into one periodic cell

{(x, z) : 0 < x < Λ}.

Denote H(Ω) = {v : v ∈ H1(Ω), v(0) = v(L)} where H1(Ω) is the standard Sobolev

space. Multiplying the PDE in (6.6a) by the conjugate of a test function φ ∈ H(Ω) and

applying Green’s formula with the given boundary conditions, we obtain the variational, or
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weak, formulation of the boundary value problem (6.6a):

−
∫

Ω
∇uα · ∇φ+

∫
Ω

(k2ε− α2)uαφ+ 2iα

∫
Ω

(∂xuα)φ

+

∫
Γ1

(T1uα)φ+

∫
Γ2

(T2uα)φ

= 2iβ

∫
Γ1

exp(−iβb)φ.

This variational formulation will be discretized and solved by the finite element method.

The layered structures studied in the previous chapters have the property that the re-

flected light propagates in a single direction, so is the transmitted light. On the other hand,

diffraction gratings can have light reflected and transmitted in multiple directions. This can

be seen from (6.5) and the definition of β
(n)
j in (6.7). Each real value of β

(n)
j corresponds to

a propagating mode and each complex value corresponds to an evanescent mode (propagates

along the x-axis and decreases exponentially along z-axis).

For real values of εj , j = 1, 2, the set of values of n such that β
(n)
j is real is given by

Λj = {n ∈ Z : |αn + α| < k2εj}. (6.8)

Once the solution uα is obtained, we can determine for each order n ∈ Λj the amplitude

reflectance rn and amplitude transmittance tn from (6.4a) and (6.5):

r0 = u
(0)
α (b) exp(−iβ(0)

1 b)− exp(−2iβ
(0)
1 b), (6.9a)

rn = u
(n)
α (b) exp(−iβ(n)

1 b), n ∈ Λ1, (6.9b)

tn = u
(n)
α (−b) exp(−iβ(n)

2 b), n ∈ Λ2. (6.9c)
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As for the layered structures, we then use Poynting vector to determine the corresponding

power reflectance Rn and power transmittance Tn and obtain the following:

Rn = |rn|2
cos θ

(n)
1

cos θ
, (6.10a)

Tn = |tn|2
cos θ

(n)
2

cos θ

√
ε2

ε1
, (6.10b)

(6.10c)

where θ
(n)
j , j = 1, 2 is the angle of propagation for mode of order n and is given by

θ
(n)
j = arctan

αn + α

β
(n)
j

 .

6.2 Adjoint Problem and Gradient

As in the layered structures, we need to find a method to compute the gradient of the

reflectance and transmittance if we would like to use gradient based optimization algorithms.

Unlike the layered structures, we do not have a explicit expression relating the reflectance

Rn to the permittivity ε. We derive the formula for the gradient by extending the formal

argument as in [7].

Let ε be fixed and δε be a small perturbation. By (6.4a) and (6.9a) we obtain the

directional derivative

Dεrn(δε) = k2 exp(−iβ(n)
1 b)

Λ

∫
Γ1

δuα exp(−iαnx)dx, (6.11)
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where δuα is the solution for the following boundary value problem:

(∆α + k2ε)δuα = −k2δεuα, (6.12a)(
Tj −

∂

∂ν

)
δuα|Γj = 0, j = 1, 2. (6.12b)

Let wα be the solution of the following “adjoint problem”:

(∆α + k2ε)wα = 0, (6.13a)(
T ∗1 −

∂

∂ν

)
wα|Γ1

= −φ(x), (6.13b)(
T ∗2 −

∂

∂ν

)
wα|Γ2

= 0, (6.13c)

(6.13d)

where φ(x) = rn exp(iαnx) and

T ∗j f =
∑
n∈N
−iβ(n)

j f (n) exp(iαnx).

Multiplying the first equation in (6.12a) by wα and applying Green’s formula yields

∫
Ω
δεuαwα =

∫
Γ1

δuαφ

= rn

∫
Γ1

δuα exp(−iαnx)

=
Λ

k2 exp(−iβ(n)
1 )b

rnDεrn(δε).

(6.14)

Hence

DεRn(δε) = 2k2 exp(−iβ(n)
1 )b

Λ

∫
Ω
δεuαwα. (6.15)
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This implies the L2-gradient of Rn with respect to ε is given by

∇εRn = 2k2
exp(−iβ(n)

1 )b

Λ

∫
Ω
uαwα = 2k2 exp(iβ

(n)
1 )b

Λ

∫
Ω
uαwα, (6.16)

The expressions for ∇εTn can be obtained in a similar fashion.

6.3 Numerical Experiments

In order to solve the optimization problem numerically, we need first discretize the functional

space L∞(Ω) for ε. We are going to use finite element method with rectangular bilinear

elements, so it is most natural here to discretize ε by piece-wise constant functions over

rectangular mesh. For real ε we define

εi,j = χ[(j−1)∆x,j∆x]×[(i−1)∆y,i∆y ],

where χ is the standard characteristic function. For complex valued ε we can consider the

real and imaginary parts separately. For the sake of convenience, the mesh size ∆x,∆y are

chosen to be integer multiples of the mesh size for the finite element space. By (6.16) we

obtained the discrete version of the gradient

∇i,jRn = <

2k2 exp(iβ
(n)
1 )b

Λ

∫
Ω
uαwαεi,j

 . (6.17)

Let us consider the design of a diffraction grating with broadband antireflection proper-
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ties. The objective function is a normalized discretization of ‖R0‖1:

f(ε) =
1

N

N∑
i=1

R(ε; ki),

where ε = {εi,j} are design variables and {ki} is a uniform set of sampling points in the

spectral region of interest.

The refractive indices of the incident medium and substrate are 1.0 and 1.52 respec-

tively. The lower and upper bound of the refractive index of the coating are 1.45 and 2.35

respectively. We assume normal incidence and TE polarization. The range of wavelength is

[λL, λH ] = [1, 3]. The depth of the grating is 2b = 2 and the period Λ = 0.99λL
√
ε1. Notice

this value of Λ will guarantee only the zero-th reflecting order is propagating so that only R0

is nonzero for all wavelength by (6.8). By increasing Λ we will introduce more propagating

orders and it is up to the user to minimize one of the orders or the combination of them.

The domain Ω is divided into 32 × 64 uniform rectangular mesh and ε is discretized by

16 × 32 uniform rectangular mesh. The minimization of the objective function is done by

the “fmincon” command in Matlab, and the algorithm is chosen to be “active-set”. The

maximal iteration step is set to 300.

In the first experiment we choose the initial guess to be the homogeneous profile ε =

√
ε1ε2. Figure 6.2 shows the refractive-index profiles and reflectance curves for the initial

guess and optimized solution. The refractive index is normalized from [nL, nH ] to [0, 64]

so that it can be represented as a gray scale image. This transformation is used in all the

following figures.

A notable feature of the optimized profile it resembles a multilayer structure, i.e the

refractive index in invariant along the x-axis and is mostly piece-wise constants along the
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Figure 6.2: Refractive-index profiles and reflectance curves for a broadband antireflection
coating with the homogeneous profile as the initial guess. Top: initial guess; Bottom: opti-
mized.
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z-axis. This is expected and proofs the validity of our computation of the gradient and the

algorithm. The initial guess is a layered structure, therefore the gradient of R0 should be

the same as if we are solving a layered problem. So the gradient will be zero along the x-axis

and the next iteration will stay as a layered structure. This implies we can never achieve

better performance if the initial guess is a multilayer structure. Indeed, the reflectance curve

in Figure 6.2 is similar to and no better than those obtained from the optimization of a pure

multilayer coating with similar physical parameters.

Therefore to obtain a solution that is not a multilayer, we need select the initial guess to

be non-multilayer. In the next example, we choose the initial guess to be have a rectangular

profile, i.e.

ε(x, z) =


εL, x ∈ (0,Λ/2),

εH , x ∈ (Λ/2,Λ).

The refractive-index profiles and reflectance curves for the initial guess and optimized

solution are shown in Figure 6.3. First of all, notice the distinct feature of the reflectance

curve for the initial guess, i.e. the sharp peaks. The existence of these peaks is due to

the resonance effect of diffraction gratings. The interested reader is referred to Bao and

Ramdani [18], Bao and Huang [16, 17] and the references cited therein for the theoretical

justification and applications of this effect. The references just mentioned also considered

the optimal design of the resonance effect, i.e. find a grating profile so that the peaks appear

at desired locations and whose width are as small as possible.

Notice the peaks are not present in the reflectance curves when the profile is homogeneous.

This is because a diffraction grating with a homogeneous profile is indeed not a periodic but

layered structure, so the resonance effect will not occur.
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Figure 6.3: Refractive-index profiles and reflectance curves for a broadband antireflection
coating with the rectangular profile as the initial guess. Top: initial guess; Bottom: opti-
mized.
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For the purpose of antireflection coatings, the peaks should be suppressed as much as

possible. This is indeed the case in the for the optimized profile in Figure 6.3, where not only

the peaks are suppressed but also the average reflectance is reduced significantly. In fact,

the reflectance curve is pretty much on the same level as that obtained with a homogeneous

initial guess. On the other hand, the refractive-index profile is not a multilayer and very

different from that obtained with a homogeneous initial guess.

Next we choose the initial guess to be a triangular profile, i.e.

ε(x, z) =


εL, z >

4b

Λ

(
x− Λ

4

)
or z > −4b

Λ

(
x− 3Λ

4

)
,

εH , else.

Figure 6.4 shows the refractive-index profiles and reflectance curves for the initial guess and

optimized solution. Like the case when the initial guess is rectangular, the reflectance curve

in this case also possesses sharp peaks. They are suppressed in the optimized solution, but

not as well as in the previous experiment. The average reflectance, however, is pretty much

the same as other examples.
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Figure 6.4: Refractive-index profiles and reflectance curves for a broadband antireflection
coating with the triangular profile as the initial guess. Top: initial guess; Bottom: optimized.
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Chapter 7

Future Work

Much of the work in this dissertation is not completely finished and there are quite a few

open problems and new directions that I would like to consider in the future. The topics

include but are not limited to the following

• Theoretical justification of the observations made on the effect of the objective func-

tions. We shall investigate in depth the properties of the objective functions in the

context of optical coatings. We hope the investigations not only help us understand the

effect but also provide guidelines and even new algorithms for numerical computations.

• Extend the study on the effect of objective functions to other types of coatings such as

mirrors, bandpass filters and edge filters. We believe similar effects will be observed.

• Use of different metrics in different parts of the spectral or angular region of interest.

In the experiments with broadband AR coatings, for example, the reflectance is usually

larger towards the longer wavelength region if p is small. By using larger value for p,

the reflectance is more evenly spread out, at the cost of higher reflectance in the shorter

wavelength region and a higher average value. We propose using smaller values for p

in the shorter wavelength region and larger values in the longer wavelength region. We

hope this will suppress the heightening and keep the average low at the same time.

• In the design of rugate coatings by penalty terms, I would like to derive theoretical
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or empirical expressions relating the performance to the parameters, especially the

weight factor α. Such expressions enable users to determine the best value of α for

their practical needs.

• In the design of rugate coatings by penalty terms, we found the optimization algorithm

converges faster as the weight factor α increases. Since the convergence is faster for

larger α, I also plan to devise algorithms in which α is gradually decreased during the

optimization in order to increase the speed of convergence for small α or find better

solutions.

• We have already seen that good rugate coatings can be obtained by stopping the

iteration prematurely when we use global basis functions to discretize the refractive-

index profile. We shall consider adding a penalty term to see what solutions we can

obtain as in the case where the profile is discretized by local basis functions.

• The diffraction gratings considered in this dissertation have the most general profile,

i.e a 2D function. This poses difficulties in terms of both feasibility and numerical com-

putations. It seems more practical to consider diffraction gratings defined by interface,

i.e. a 1D function. The optimal design of such type of gratings have been considered

in [15, 8, 14, 13] but only at a single frequency. We shall consider the broadband,

omnidirectional and other more complicated situations.

• Optimal design problems are closely related to inverse problems. Recently a study [36]

showed the methods for inverse problems can be successfully applied for the optimal

design of layered structures. I will consider extending them to the optimal design of

diffraction gratings.
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• Recently it has been shown the methods of recursive linearization are very effective

for inverse problems in diffractive optics [39, 40]. The problems considered there use

input data at multiple frequencies, thus it is similar to the optimal design of broadband

coatings. I plan to adopt this idea to the optimal design of not only diffraction gratings

but also layered structures.

• Optimal design of 3D diffraction gratings. The computational cost will increase dra-

matically and we shall investigate numerical tricks such as increasing the discretization

level and convergence tolerance progressively.
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