+ ) o R . .. R
- o 4o O aQ» Yy s
ar @ N ) . [] £
o o1 et 7 [l ) [ o d
“ ) ‘e S ) Lo
o) I a’ > «» ') 2
] ] .y [ X
¢ 15 <
ar a» . 4 Sy -y
' P « : L 7
v . v ' i T




ABSTRACT

A HIGH RESOLUTION STUDY OF PROTON INELASTIC SCATTERING

207 208 209

FROM Pb, Pb, and Bi

By

William Thomas Wagner

207 208

Angular distributions of states in Pb, Pb, and

209Bi excited by 35 MeV protons have been measured with a
resolution of 5 to 10 keV. Collective model calculations
enabled the f%-transfers of many transitions to be iden-

tified. 1In 208

Pb, calculations for a number of the observed
states were made with both phenomenologically determined and
theoretically calculated wave functions. Both central and
non-central two-body forces were used in the analysis and
the effects of knock-on exchange were accounted for. The
large number of observed unnatural parity states permitted
the role of non-central forces in these inelastic transitions
to be investigated. The states which are strongly populated
in both the (p,p') and (e,e') reactions were analyzed in

a microscopic theory using the electron scattering form
factors. The possibility of excitation of giant magnetic
dipole levels was also investigated.

In the nuclei 207Pb and 209

Bi the transitions to the
identified single particle levels were compared to calcula-
tions involving valence orbitals with both central and

non-central interactions. The effects of core polarization
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in excitation of these states were investigated with a
microscopic model using an expanded shell model basis.

In the framework of a weak coupling model, the transitions
to many levels in these odd mass nuclei were compared to

excitations in 208Pb.
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INTRODUCTION

The lead mass region has rightly been called an ideal
testing ground for nuclear models. Experimentally, the
isotopes in this region exhibit a wide range of nuclear
behavior. For example, levels corresponding to single
nucleon excitations have been identified; states which
exhibit properties associated with collective nuclear motion
have also been observed. Further, the doubly-closed shell
in 208Pb is of such purity that low-lying levels in this
nucleus are expected to have a simple theoretical descrip-
tion. These facts make a study of these nuclei of great
interest and importance.

This mass region has been examined previously in a
variety of ways. While each of the different reactions
and methods used to study nuclei gives a particular kind
of information, inelastic scattering probably is sensitive
to the broadest range of nuclear properties. Inelastic
scattering excites many different configurations including
states seen in decay studies, transfer reactions and
isobaric analog resonance work. Inelastic scattering can
excite large nuclear collective excitations not seen in
reactions involving nucleon transfer. Inelastic scattering

can initiate large multipolarity transitions and hence

1
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complements electromagnetic processes which are involved

primarily in dipole and quadrupole transitions.
Experimentally, (p,p') seems an ideal mechanism to

study the lead mass region. One search using 24.5 MeV

1,57,70 This study was performed

protons has been done.
with 25 keV resolution and at sufficiently high bombarding
energy so that collective model comparisons could be made.
Unfortunately, the theoretical tools for a microscopic
analysis were not well developed at the time that data was
taken. Theoretical analysis was limited to use of the
collective model for identification of angular momentum
transfer and to applications of the weak coupling model.

2,58,60,71,72 have examined single

Other (p,p') studies
nuclei in this region and have been limited by resolution
or low bombarding energy where compound and direct nuclear
effects may be present and where angular distributions
involving different angular momentum transfer may not have
distinct shapes.

Interest in proton inelastic scattering has been renewed
by the numerous, recent experimental improvements. Primary
among these is the development of ultra-high resolution

19,56 in particle reactions. Energy resolution

techniques
on the order of 1 part in 10000 has become possible and has

opened a new chapter in experimental study. With this reso-
lution, weakly excited states very close to other states may

be cleanly separated thus permitting analysis without fear of

anomalous contributions. Further, the availability of high
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purity, isotopic material for targets, stable and large
current accelerators, and particle detectors with high
signal to background ratio strongly suggests that excep-
tionally high quality (p,p') data can now be collected.
While experimental techniques have improved, the

solution to the nuclear problem has also progressed. The
knowledge of the nucleon-nucleon forces, the proper models
for structure calculations, and the theory of direct reac-

tions has increased greatly. The success of str'uctur*eSl_53

57,60,70,72

and scattering models in the lead mass region

makes testing and extension of these methods intriguing.

These facts have motivated an extensive study of

inelastic proton scattering from the three nuclei: 207Pb,

208Pb, and 209Bi. Both macroscopic and microscopic models

will be used in analyzing the data. Emphasis will be placed
on analysis of the unnatural parity states.
The study divides naturally into two sections: Part A,

2Ost, and Part B, dealing with the other two

208

dealing with
Nuclei. In the first section, the Pb nucleus is examined
in the light of collective and shell models. Part B deals
With the odd mass systems and the influence of the 208Pb
Core upon the odd particle or hole. Both weak coupling and
COre polarization calculations will be presented.

Five Appendices have been included. The first two
deal with experimental problems and procedure. The last

three contain lists of all the measured cross sections,

glven in the center-of-momentum coordinate system.



PART A

208Pb
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I. INTRODUCTION

Nuclei in the mass region about 208py, have been

1-17

extensively studied both experimentally and theo-

retically51-55. Inelastic scat‘ceringl-9 and Coulomb
excitation10 have given information about the strongly
populated states of many of these nuclei. Decay studies

11-13

and transfer reactions together with isobaric analog

1417 pave provided information about

resonance experiments
the microscopic structure of many of the low-lying states.
The level properties and the microscopic configurations
have been intensively studied in nuclear structure calcula-
tions., This mass region therefore provides an attractive
place where recent developments in inelastic scattering can
be applied.

The microscopic description of nucleon-nucleus scatter-
ing has progressed greatly. After the initial success of
the collective model in fitting the angular distributions
of the strongly excited states, inelastic scattering was used
primarily to obtain g-transfer information. More recently,
since knock-on exchange and the central portion of the
nucleon-nucleon interaction are better understood, microscopic
inelastic reaction theory can more sensitively probe nuclear
properties.18 Normal parity transitions permit the testing

of wave functions and transition densities of the target
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nucleus since such transitions apparently depend little
on the non-central two-body interactions. Non-normal parity
transitions to levels with well determined wave functions
allow the two-body spin-orbit and tensor forces to be studied.
Recently, experiments with charged particle reactions at
energies of 30 to 50 MeV and resolution better than 10 keV
have become possible. This permits the extraction of cross
sections and excitation energies for weakly excited states
which can be reliably compared with theoretical predictions.
A (p,p') study of nuclei neighboring 20851 a110ws
examination of the nucleon-core interaction. For these
nuclei, the effects of core polarization and the applica-
bility of the weak coupling model can be determined only

after study of 208

Pb has provided a basis for these models.
A relatively high resolution proton inelastic scattering
experimentl has been performed at 24.5 MeV bombarding energy
with energy resolution of <25 keV full-width-at-half-maximum
(FWHM). Spin and parity assignments for the most strongly
excited states below 4.7 MeV of excitation energy were made.
Lately, analysisz of the (p,p') reaction at 54 MeV has
extended g-transfer assignments to states below about 7
MeV of excitation where 208Pb becomes particle unstable.
The resolution was about 35-40 keV FWHM. 1In both studies,
experimental angular distributions were compared primarily
with the collective model predictions. To date, these
represent the most extensive and highest resolution (p,p')

studies of 208Pb.
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208p4(p,p")

This paper reports a high resolution study of
performed at 35 MeV with energy resolution on the order of
1 part in 5000. Angular distributions at this bombarding
energy have more distinguishing features than those at lower
energies yet are not so forward-angle peaked as to make
identification of small f-transfers difficult. About 150
states with excitation energies up to 7.5 MeV have been
experimentally resolved and their angular distributions are
presented. Determinations of f#-assignments and deformation
parameters as well as comparison with previous measurements
are made. Microscopic model inelastic scattering predictions
are compared with the data for normal and non-normal parity

excitations., The existence of magnetic dipole states 1is

also discussed.
IJI. EXPERIMENTAL PROCEDURE

The experiment used the 35 MeV proton beam from the
Michigan State University sector-focussed cyclotron and the
scattered protons were detected using the Enge split-pole
spectrometer. The high resolution data was recorded on
Kodak NTB 25 pym nuclear emulsions in the spectrometer focal
plane. A thin, stainless steel absorber immediately before
the emulsion stopped all particles other than protons. The
10 to 15 mil absorber did not significantly broaden the
line-width. However, tracks in the emulsions did show slight

departures from parallel trajectories. The absorber also
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decreased the particle energy thus enhancing track brightness.
On-line determination of the focal plane line-width using
the "speculator" technique of Blosser gz;gl.lg was used
to optimize the resolution initially and to monitor it
during data collection. Targets of about 100 ug/cm2 thick-
ness were used throughout the high resolution study and were
prepared by vacuum evaporation on a 15-20 ug/cm2 carbon foil
with a substrate of 1 or 2 layers of formvar. The effects
of target thickness on resolution are discussed in Appendix
I. The plate data resolution ranged from 5 to 8 keV (FWHM)
and a typical spectrum is displayed in Figure 1. Exposures
on the plates were scanned in steps of 4 mils.

To complement the high resolution data, states strongly
excited in inelastic scattering were first studied using

20

a single-wire proportional counter in the spectrometer

focal plane. A 6.0 mg/cm2 self-supporting foil, made by
rolling, served as the target. The lead used in all target

fabrication was isotopically enriched to 99.1u4% 208

Pb and
was obtained from the Oak Ridge National Laboratory. Resolu-

tion of about 45 keV allowed cross sections for the first
- + + +

+ -
3,2 , 4,6 , and 8 1levels as well as the first two 5
states to be measured. Both plate and counter data were
measured relative to elastic events monitored at a scattering

angle of 90° with a NaI(Tl) detector. This angle was chosen

since 90° lies near a relative maximum of the elastic cross

208

section for Pb and also gives good separation of protons
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10

elastically scattered from lead and light mass contaminants
in the target. The beam current was monitored with a
Faraday cup and microampere current integrator. There was
generally good agreement between the two monitoring methods.

Absolute normalization of the counter data was done by
comparison of the optical model using Becchetti-Greenlees21
best-fit parameters with the measured elastic angular dis-
tribution. Comparing the plate data with the counter results
thus determined the normalization of the plate data. Absolute
normalization of the counter and plate data is believed good
to about 5 and 10 percent, respectively.

Whenever possible, the more extensive counter results
are displayed although both sets of data were measured in
the range of 10 to 100 degrees. The counter data was taken
with a 1.2 msteradian (2°x2°) solid angle while all plate
data was collected with a 0.30 msteradian (1°x1°) defining
aperture. Because nuclei in the lead region have large
forward angle elastic cross sections, slit scattering from
the entrance slit of the spectrometer can produce high
particle backgrounds. For this reason, a narrow edge was
machined around the opening of the defining aperture. This
thinner portion sufficiently degraded 35 MeV protons to
place them well out of the region of interest of the focal

plane and also reduced slit scattering.
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ITI. DATA

A. Excitation Energies

Average excitation energies were extracted for the
approximately 150 resolved states. For each exposure the
spectrometer focal plane momentum dispersion was determined22
by using the positions, as determined from the plate scan,

of reaction products. Clearly resolved states of 208Pb

16 12

s
0, and C with well-known excitation energies were used
in the energy calibration. A few iterations were performed
until the input calibration energies agreed with the average
predicted energies. The methods used in analyzing the

data are sketched in Appendix II. The results for all
observed states are tabulated in Table I and the energies
used for the calibration are indicated. For comparison the
excitation energies determined by previous work are also
given. The energies listed are from the results of a

23

Nuclear Data compilation, the recent 54 MeV (p,p') experi-

ment,2 and an intensive study by Heusler et al.2L+ of states

below about 4.5 MeV. As may be seen the final values for
the calibration reference levels are in excellent agreement
with prior measurements involving (d,py) and (n,n'y) high
resolution work. The general agreement with previous deter-
minations is good and appears to extend up to about 7 MeV
of excitation.

Due to kinematic broadening and to the displacements

of the focal planes of protons scattered from different mass
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nuclei the oxygen and carbon contaminant peaks appear wide

in the lead spectra and these centroids are somewhat poorly

208

determined. Also, the highest-lying Pb state used in

the calibration was the 4.423 MeV level. Thus the energies
above 4.5 MeV are obtained by extrapolation. The errors

in Table I reflect this since for states lying below 4.5

MeV the standard deviation in the measured energy is given

as the error. Above 4.5 MeV, however, the given error
includes an addition to the statistical error of 1.0 keV

for each MeV of excitation to account for extrapolation as
well as the uncertainties due to the increasing level density
and the smaller cross sections.

Most states below 5 MeV of excitation appear to be
completely resolved. Many states have been observed corres-
ponding to levels identified previously in a variety of experi-
ments, The 3.73 and 3.76 MeV levels reported in early
207Pb(d,p) experiments11 were not seen here and an upper
limit of about 40 ub/sr can be set for excitation of these
States by proton scattering at this energy. These states
have not heen observed in subsequent studies with either
transfer or inelastic scattering reactions.

A peak at 4.256 MeV with a comparatively large spectral
width jis apparently an unresolved multiplet. A 4.251 MeV
level has been seen in a (p,t) and (t,p) study at 20 MeV

with 17 keV resolution performed by Igo et al.;2

13

A state
at 4.253 has been observed in (d,py) studies. Neither
WOork indicated the possibility of multiplet structure. A

Possibie doublet at about this excitation has been seen in
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. . 14
isobaric resonance work

with 9-13 keV resolution. Using

the energy corrections of Reference 23 the members of the
doublet lie at 4.253 and 4.259 MeV. Heusler et al.’’, using
shell model systematics and a global compilation of experimental
results, have concluded this multiplet to be a 4.255, 4.256,

and 4.261 MeV triplet with J" = 37, 47, and 5, respectively.
The angular distribution for the 4.256 MeV multiplet, seen

in Figure 2, is fairly well structured but can not be fit

with a single f-transfer again suggesting an unresolved
multiplet at this energy.

The density of states above 5 MeV of excitation becomes
increasingly large. Most of the states appear to be com-
pletely resolved but those states whose widths indicate
possible multiplet structure have been indicated in Table
I. In general, the poor statistics and narrow line shape
prohibit reliable fitting with numerical techniques. The
level at 5.194 MeV was revealed as a doublet at several
angles. The previously reported12 5.236=5.245 MeV doublet
was not resolved. The level seen here at 5.242 MeV has no
apparent doublet structure suggesting that the 5.236 MeV
level (reported in Reference 12 as a 0" 2p-2h excitation)
is not populated here. A level near 5.5 MeV of excitation
has been identified in many different experiments but the
uncertainty in energy and spin-parity assignments suggests

strongly that two states were separately observed. (See

Section III-D-1).
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Interestingly, eight states that had been previously
reported were not found in the spectra: the 4.859, 4.968,
5.550, 5.629, 5.801, and 5.862, 5.937, and 5.973 MeV levels.
These states were seen in two neutron transfer by Igo gg;gi.lz
and have been identified as configurations with predominant
2p-2h admixtures. That these states are not excited in
(p,p') is consistent with viewing inelastic proton scattering
as mediated by a one body operator. A level at 5.236 MeV has
been identified as a 0+ 2p-2h level as well as a 3~
state12’13’l7. We were unable to identify the 2-transfer
for the observed 5.242 MeV level.

Above 6 MeV many states were also observed. At these
excitation energies, states excited by inelastic scattering
and levels seen with other reactions may not correspond to
the same nuclear state. Due to the uncertainty in excitation

energy and the increased level density comparison other

than in Table I will not be made.
B. Inelastic Angular Distributions

The angular distributions for all resolved peaks result-
ing from inelastic scattering are shown in Figures 2 through
5. The cross sections are displayed with their corresponding
excitation energies. The error bars indicate statistical
errors and were drawn only when greater than the symbol size.
It should be emphasized that the curves passing through the

data in these figures have been drawn merely as a guide and
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FIGURE 2.--Measured 1inelastic cross sections for 208Pb.

The lines drawn through the points are
merely to guide the eye and do not represent
fits to the data. The excitation energy of
the levels is given in MeV.
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