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ABSTRACT

INTERACTION-INDUCED PROPERTIES

AND

PERTURBATION THEORY

By

I O 0

Jesus Juanos 1 Timoneda

The perturbation expansions obtained from Lowdin’s projection-operator

formalism are derived in a new way, using Kato’s formulation of

perturbation theory. This formulation does not involve the symbolic use

of the inverse of singular operators. Kato’s approach provides a

convenient algebraic alternative to diagrammatic techniques for obtaining

eigenvalues and eigenvectors. Different normalization criteria imposable

on the wave function are easily visualized in terms of the operator that

yields the perturbed state vector when it acts upon the unperturbed wave

function.

We use a label-free exchange perturbation method to calculate the

dipole moment of interacting Re and H atoms as function of internuclear

separation. In the label-free formalism, the unperturbed Hamiltonian and

perturbation terms are constructed so that each is invariant with respect

to exchange of electrons between the interacting atoms; then a Rayleigh-

Schrodinger perturbation expansion with a fully antisymmetrized set of

zeroth—order wave functions yields the interaction energy and collision-

induced properties. Good agreement with ab initio results for the He...H

dipole is obtained when a long-range dispersion contribution is added to

the first-order overlap and exchange contributions.



Jesus Juanos i Timoneda

We calculate the dipole moment for the quartet state of H3 in its

linear and right triangular configurations and we find that the first-

order overlap-exchange and the long-range contributions are about the same

order of magnitude at intermediate range. We prove that a system of n

atoms in any spatial configuration has zero dipole moment when the

electrons are described by s-type functions (Slater or Gaussian) and the

dipole moment is calculated as the expectation value of the corresponding

operator with an unperturbed, but fully antisymmetrized wave function.

An analytic expression for the damped pair dipole moment is calculated

in terms of Clebsch-Gordan coefficients and reduced matrix elements. We

show explicitly with the first nonlocal hyperpolarizability how

susceptibility densities may be cast in a form without secular

divergences. The theory of generalized functions is applied to calculate

the limits in the expressions for susceptibility densities and tensors.
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CHAPTER 1.

INTRODUCTION.

A major part of this work is devoted to the analysis of interactions

between atoms or molecules at separations such that the overlap is not

negligible. From this analysis we derive methods to calculate

interaction-induced properties. These properties allow us to predict the

behavior of matter interacting with radiation; alternatively the

calculated properties may be compared with those computed from

experimental data. We have also worked on several theoretical aspects of

the methods used in our study.

Perturbation theory is the framework within which most of our work has

been performed. The next chapter is devoted to a theoretical analysis of

perturbation theory. 0n the basis of an entirely algebraic formalism, we

present formulae to calculate corrections to the perturbed wave function

and eigenvalue to any order. Several normalization criteria are

associated with the way in which different projection operators are

manipulated. We use a reduced resolvent for which no problem about

singularities arises. This powerful technique allows us to establish

consistency with other formalisms and developments in perturbation theory.

We conclude the second chapter by presenting a unification of several

different formalisms, with common principles.

In chapter 3 we use a special form of perturbation theory, yi§.,

exchange perturbation theory in label-free form, to calculate interaction-

induced dipole moments. In particular, the collision-induced dipole

moment of a diaton is computed. We compare our method with other

perturbation theories and we analyze an approximation employing additive

long- and short-range contributions to the pair dipole moment. Since the



f
0

Hellmann—Feynman theorem is not satisfied at the level of approximation

used in our calculations, the dipole moment is calculated both as the

expectation value of the corresponding operator and as the field

derivative of the energy. The results that each strategy yields and

comparison with accurate ab initio calculations are used to assess the

reliability of different methods in computing pair dipoles. Our

computations have been performed with Gaussisan~ and Slater-type orbitals.

The work with Slater-type orbitals required us to augment the contents of

the standard tables in order to calculate one of the integrals over these

functions.

The same perturbation method as in Chapter 3 is used in Chapter 4. We

derive an expression for the overlap-exchange contribution to the triplet

dipole moment. The significance of the results of this chapter for

studies of many-body effects is twofold: We prove that some methods used

to calculate interaction-induced properties are not reliable. Second, we

show that the results for the three-body long-range and exchange-overlap

contributions to the pair dipole of quartet H3 are comparable in order of

magnitude at intermediate range. This result is known to hold also for

the energy.

The exchange—overlap dipole (upon which Chapters 3 and 4 focus)

vasishes when the separation becomes very large. The dispersion dipole

moment as calculated in the region where overlap and exchange effects are

negligible diverges when the separation approaches zero. In chapter 5 we

calculate the overlap damped dispersion dipole moment, which remains

finite. Also, we present a general treatment of susceptibility densities

and tensors of potential use in the study of nonlinear phenomena. We



treat the problem of secular divergencies, and we give an analytic

expression for the first nonlocal hyperpolarizability density, needed to

compute several damped properties, including the dispersion dipole.



CHAPTER 2

2.1. - INTRODUCTION

Perturbation techniques are widely used ([1,2] and refs. therein) in

the study of intermolecular interactions and their effects on super-

molecular system properties. The wave operator that generates the perturbed

state vector from the unperturbed wave function is important within this

context, and in a general treatment of self-consistent field theory [3].

Lowdin has developed a projection operator formalism [3,5] that gives

the wave operator in terms of a reduced resolvent operator T. Within

Lowdin’s formalism, proof of the existence of T hinges on proofs of operator

invertibility. Wilson and Sharma [6,7] have analysed the invertibility

requirements for one form of the T operator. By relating T to an ”outer

projection" of the Hamiltonian, Lowdin has recently shown that the operator

T remains regular as needed for the construction of perturbed eigenfunctions

[4]; he has also applied the partitioning method to derive rational

perturbation approximations [4].

An alternative derivation of Lowdin’s perturbation expansions is

presented in this chapter, based on Kato’s theory. This approach does not

involve manipulation of inverse operators, although it does require proper

manipulation of resolvents and consideration of their domains. In section

2.2 we review the aspects of Lawdin’s work necessary for comparisons [3,5],

with brief reference to other work in this field [8]. In section 2.3 the

calculation of the perturbed eigenvectors and eigenfunctions is treated from

the viewpoint of complex variable and Hilbert space theories [9-13].

Expansions are developed in section 2.3 for perturbed Hamiltonians with

arbitrary dependence on a perturbation parameter x. The Hamiltonians



considered by Lowdin (in Refs. 4, p. 79 and 5) can be understood as one-

parameter dependent expansions in which only the first-order correction term

is present. The results and conclusions from section 2.3 are discussed in

section 2.4, while section 2.5 contains a digression on the interrelation

among several perturbative treatments used in quantum mechanics.



2.2. ~ ON LOWDIN’S STUDIES IN PERTURBATION THEORY

The Hamiltonian H of the system under consideration is expressed in

terms of the Hamiltonian H0 for the unperturbed system and the correction

(1) Hm
term H as H = H0 + . The wave operator U relates the perturbed

eigenfunction w to the unperturbed eigenfunction $0:

w = uwo. (1)

When the operator t is constructed from the reduced resolvent T and the

perturbation term H(l) as

t = H(1) + H(1)TH(1) = H(1)U , (2)

where

U = 1 + mm (3)

the eigenvalue x associated with dimay be written as

x = x0 + <t>0 , (4)

where the brackets with subscript zero denote an expectation value in the

state vb.

It is useful to express T in terms of the projection operator P that

projects out the eigenfunction $0 of Ho from an arbitrary function. P

projects onto a one-dimensional subspace of 356, the separable Hilbert space

taken as the set of functions that are square-integrable and complex-valued

on the configuration space of the Hamiltonian operator H. The projector

onto the orthogonal complement with respect to the range of P is (l-P).

The reduced resolvent T in Eq. 3 is the operator

T(€) = [c — (1-r)u]’1 (l-P) (5)

evaluated at €=x (in general e is a complex variable). T(€) may be



expressed equivarently in terms of the resolvent R i (6—H)-1 of the outer

projection H = (l-P)H(l-P) of the Hamiltonian H:

T<c> = (1—p) (e—fi>’1 (1—P) . (6)

In general we may assume 3(x—H)—1 only when x¢o(H), where 0(H) is the

discrete or point spectrum of H, even though x may be a point of constancy

of E(x) or a point of continuity of E(x), where E(x) stands for a resolution

of the identity [14]. In deriving conventional perturbation theory

formulae, we may take T(€) with 6 in the spectrum of H, provided that € is

not in the spectrum of H; in particular, we may set €=x, because <w|¢b>x0

ensures that T(€) remains regular at x [4].

Series for t and U [5] may be derived by using the unperturbed reduced

resolvent To(€), defined as T0(€) = [€-(l-P)Ho]-1 (l-P), with appropriate

choice of € to obtain Brillouin-Wigner, Rayleigh-Schrodinger or

"intermediary" perturbation expansions [4].

With the reduced resolvent S = [xo-(l-P)H0]-1(l-P), if |<SV'>| < l,

where

v’ = n<1> - <wolt|wb> = H‘l) — <t> (7)o O

the following expansion is obtained for t:

t 2 H(l) + H(1)SH(1)+H(1)SV’SH(1) + H(1)SV’SV’SH(1) + . . . . (8)

Hence

V’=H(l)-<H(1)>o - <H(1)SH(1)>0 - <H(1)SH(1)SH(1)>0 +

1)>OSH(1)>0 + <H(1)S<H(1)SH(1)>OSH(1)>0 + . . . , (9)
(l)

+ (H S<H<

and so



t = [3(1)] + [n(l)sn(1)] + [H(1)S(H(1)-<H(3) > )SH(1)] +

[H(1)S(H(l) - <H(1)>O)S(H(l) - <H(1)>O)SH(1) —

- <H(1) SH(1) >OSSH(1)] + . - - 3 t1 + t2 + t3 + . - - (10)

u = 1 + [sn(1)] + [s(n(1) - <n(l)>o)sa(1)] +

+ [s(H(1) - <H(1)>0)S(H(l) - <H(l)>o)SH(1) (11)

_ (DU) 2(1) ...=(H SH >08 H ] + — 1 + 111 + 112 + 03 +

where the ith term in square brackets has been identified with ti in

expression (10) or with Ui in (11). The expansions for t and U given in

(10) and (11) let us calculate corrections to $0 and x0 consistently with

the choice of H.

A related perturbation formalism has been developed by Speisman [8],

using the operator

T =—élEEl . (12)

o >~o

We should emphasize, though, the essentially symbolic character of this

expression in his work. This character becomes evident when, after taking

x0 as an isolated eigenvalue of Ho, Speisman in fact equates (12) to the

reduced resolvent, i.§., I’(x - x0)-1 dE(x), where the prime in the

integration means that it is performed in the whole range of x except within

a properly defined neighbourhood of x0.



2.3. - THEORETICAL ANALYSIS

This section begins with a brief review of the aspects of Kate’s

perturbation theory that are central in this analysis. Rigorous treatments

of the perturbation methods, regular or asymptotic expansions and

convergence properties may be found in Kato’s original papers [9-12,15].

The derivation of the perturbation series is carried out and the connection

with Lowdin’s work [4,5] is established.

Following Kato, let us consider HK a self-adjoint or hypermaximal, but

not necessarily bounded operator such that

W

Hx = I xdEK(x) (13)

Q

where the system of projections EK (x) is the resolution of the identity

corresponding to HK and the sub-index x stands for the dependence on a

parameter xefli. For £€A(HK), the resolvent RK(R) is defined by

Rx(“) = (“K‘“)—1 = I <x-1)'1 dEx(*) . <14)
m

and it is a bounded analytic function of 1. [\(H‘) is the resolvent set of

Rx, 1.3., the set of real numbers not belonging to the spectrum of Ex, and

the non—real complex numbers.

When x0 is an isolated eigenvalue (in general with finite multiplicity

m) of H within a properly chosen closed curve F belonging to)A(Ho), we
0

shall write

Rx(n) = (x0 - n)’1 so + S.(“) . (15)

9
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where

l
SK(R) = I, (x—i)“ dEK(x)

(I stands for an integration except at the point x=x0, [12]).

(15)

SK(1) given by (16) is the reduced resolvent with respect to x0, and

E is the projection operator onto the space associated with x

0

be emphasized that SK(R) has a singularity at 1=x0.

(1)
Let x“ be a regular perturbation and

E =—:l— (j) R (i)di
x Zni x Or

Since

_ a n n (1) n

R (Q) - R (i) Z {-1) x [H R (1)] .
x 0 “:0 0

we obtain

where

(n) _ _ n—1_1__ (1) .n.A - ( 1) 2.1 gir Roma Roma

with H(1) appearing n times in the integrand.

(n)
We take from Kato’s papers the expression for A

k

1 card (L) k1 (1)5k2 ..9. 1) n+1
1‘") = (-1)"‘ z (s H

i=1

. H‘

where card(L) = number of elements in L, and

S )i

It should0.

(17)

(18)

(19)

(20)

(21)



ll

n+1

L : { (k1,...,kn+l) : jg] kJ ; n . kJ 2 0, V5 : 1 g j s n+1} (22)

s0 = -E s = s ( ) (23
‘ o ' ‘ ‘0 >‘0 )

(An explicit derivation is given in Appendix A.)

In the more general case

9)

ax = no + xn(1) + x2u(~' + - - - , (24)

we obtain

card (I) card (J) k (v ) k k (v ) k

A(") = - z (—1)p z (s 1H 1 s 2 - - - 5 PH P s p+1)i‘j ,

i=1 j=1 (25)

where card(I) = number of elements in

P vI = {(v1,-",vp)353vj=n A VJZI: JZISJSP}

and card(J) = number of elements in

2+1

J = {(k1,...,kp+1)3§3kj=p A kJ20,Vj:l$j$p+l}

It has been proven [10] that there exists a unitary operator UK such

that

a) U0 = l,

b) UK E0 is regular wherever EK is regular,

and c) E = U E0 U—l .
K K K

(n)
Let us now consider explicitly the terms A , for n = l and 2



12

(1) _ _ (1) _ (1)
A - EOH S SH E0

A(2) = E0H(1)SH(1)S + SH(1)EOH(1)S + SH<1)SH(1)E0 -

_ , (1) (1) 2_ (1) 2 (1) __ 2 (1) (1) _ (2) _
ECHO EOH S EOH S H E0 5 H EOH E0 EOH S

_ (2)
SH E0 . (25)

If we define

(1) - _ (1)
al ; SH E0

19> _ sows

(2)- (1) (1) _ 2(1) (1) _ (2)
a1 ; SH SH E0 S H EOH E0 SH Eo

aéz) 5 E0H(1)SH(1)S - E0H(1)E0H(1)S2 - E0H(2)S (27)

then from (26) and (27)

(1) _ (1) (1)
A — a1 + 82

A(2) 2 aiz) + aéz) + SH(1)EOH(1)S - E0H(1)SZH(1)E0 . (28)

Substitution of (28) into (19) yields

Eszo+ x[a§11 aé1)] + x2[a§2)+ aé2)] +...+x2[SH(1)E0H(1)S-
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+...+ {5(x“)Tr-—O} (29)

where the braces in (29) include all those terms whose order in x is equal

or greater than 2 and whose trace vanishes, the first of which is

(1) (1) _ (1) 2 (1)
SH EOH S EOH S H E0.

Let us denote by EK the operator obtained by removing from E all

K

those terms whose trace vanishes. We may take

EX 2 exl + e"2 (30)

where

_ (1) 2 (2)
exl - E0 + x81 + x 81 +

(1) 2 2) (3”,(

exZ ‘32 * “ d2

Rearrangement of the terms in the series (19) is justified by the fact

that the expansions (19) and (29) are absolutely convergent when Ix] is less

than a bound that must be determined in each particular case [12]. Also

ex2w0 = 0 and Exwo = ex (32)

Using for the unitary operator the same notation for removal of terms

with vanishing trace, we write

. _ - - -1 _ - - -1
Ex - UxEon - (UKE0)(E0UK ) . (33)

The following relationship is trivially fulfilled when
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co co

AiltZa. andB-I1+Zb.:

. 1 . 1
1:1 1:1

Q as

A - B 1 A + B + Z Z aib. -l (34)

1:1 3:1 J

provided that A and B are absolutely convergent.

Since

6 1 + KU(1) + x2fi(2) + . . (35)

E B E + E B '1 + [ z 2 x(1+J)U(1)EOU(J) ] — E0 (36)

i=1 3:1

as may easily be deduced by using (34).

Comparing (36) and (30), we identify

e = U E = E + xa(1) t x a + . . . (37)

x 1 1x1 0 0

The expansion for UK may be written from (37) and (27) as

“ 1 - xSH(1) + x2[SH(1)SH(1) — 52H(1)EOH(1) — sn‘2)] + .C

I
I

1 + [‘xS + x2(SH(1)S - SZH(1)E°) +...]H(1)+

+ [x2(—S)+...]H(2)+ . .

= 1 + f1(x)H(1) + {2(x)n(2) + . . . = 1 + E: f (x)H(n) , (38)

n=l n

where fn(x) stands for an expansion in powers of x, the first term being of

(1), H(2)
order n. It contains the operators H ,

According to (32),
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(39)

If the traceless terms in EK had not been omitted, a different U

K

would have been obtained, and it would yield (see (39)) a wave function that

would satisfy the normalization criterion (O lwx) = 1, rather than <¢b|$x) =

K

1 .

When only one perturbative term is present in the Hamiltonian, U;

becomes

E : 1 + f1(x)H(1) (40)
K

and

E = E E w = 6 w = w + f (x)H(1)¢ (41)
x x 0 0 x 0 0 1 0

where

f1(x) = "KS + x2(SH(1)S — $2H(1)Eo) + . (42)

Let

T a f1(x=1) = —S+SH(1)S-SZH(1)E0+... = s’+sn(1)s-szu(1)so+ ... (43)

where S’ 5 -S. Now

w = (1 + TH(1))EO = (1 + w(1) + w(2) + ... ) E0 (44)

where w(1) = S’H(1)E

0



16

.I l f)

w(2) : su‘l’sn‘1)20 ~ s“H(1)E0HmE0 . (45)

Formulae (45) are exactly the same as those given by Lowdin, as may be

seen in a straightforward way, once (37) has been slightly transformed by

using

2 (1) (1) u 2 (1) (1) - 2 (1) (1) (46)
s H EOH E0 - s H EOH EOEO — s H <H >0E0 ’

(1)<H(1)>0 for SZH(1)E0H(1) in Ex.

Let us now compare our results with the expression for the energy

and by substituting 32H

given in ref. [5]. If x = 1,

>
’ ll x0 + <¢0|H(1)W|¢0> = x0 + <¢0|H(1)(1 + TH(1))I¢(0)>

(1) (1) (1)
x0 + <¢0|n |¢0> + <¢0|H TH |¢0>

x0 + [<¢0|H(1)|¢0>] + [<¢0|n(1)s’n(1)|wo>] +

[<¢0|n(1)sn(1)sn(1)|¢o> — <¢b|H(1)82H(1)E H(1)|¢0>] + .
0

x0 + (t1)0 + (t2)o + (t3)0 + . . . (47)

where <ti>0 has been identified with the ith term in square brackets.

According to (24) and (38), we may write in general

t = E an(n)[1 + in fm(x) H(m)] (48)

n=l m=l

and if, in particular, we take only n = l and x = 1



l7

(1) (1)[ (1) (l)
t = H(1)[l + fl(x=1)H 1 = H 1 + TH 1 : H u (49)

The last expression above is identical to the expression given by

Lowdin for the reaction operator t.

Kato [12] found the expansion of wx in a slightly different way. He

considered the adiabatic transformation Wx that allows us to obtain on from

¢

  

0 9

w = W W0 (50)

K K

where W is taken as U -E and

x x 0

dWK dEK

= - W

dx dx x (51)

The formulae to be substituted in an expansion of WK at x = 0 are

found by calculating the qth derivative of WK with respect to x at x = 0 and

by comparing with (19),

a q

W = Z -}— [ £1— 1:0q'Kq : E0 + KA(1)EO +

x q=0 q. dxq x x

+ K2{ E0 + % (4(1))230} + . . . (52)

where

 

[‘dE" ] “(1)dx x=0
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d2

E <2) (53)
 

, have been used.

The perturbed wave function is obtained from (50).

- _ (1) 2 (1) (1) _ , (1) 2 (1)
4x - 40 KSH 4b + x {SH SH *0 \H >05 R 4b

1 1 2 2
- 5 IISH( )woll 4:0 -— SH( >40} + . . . (54)

Derivations of the expressions equivalent to A(n) for the energy are

analogous (9:. [9,12]).



2.4. - DISCUSSION

Several authors ([16] and references therein) have formulated

diagrammatic representations of the Rayleigh-Schrodinger perturbation

theory. The use of the rules from such techniques is a convenient way to

write to any order the correction to both the energy and the wave function,

without requiring an explicit calculation when the expressions are needed.

A(“) and itsSimilarly we point out that the sum rules in expressions for

equivalent correction terms to x0 are not particularly complicated. Once

these expressions have been written, it is a straightforward matter to

(n)
obtain correction terms directly either by introducing A in the

expansion of WK to obtain the wave function or by calculating several

traces to obtain the eigenvalue.

The method has the advantage that we may keep consistency between the

order of the correction in our expansions for xx and w“ and the order in x

kept in the expansion for Hx, since we have formulae that are general

enough for both A(n) and its equivalent form for xx; i.g., the formulae are

not restricted to Hamiltonians like HK = H0 + xH(1), but Hx may be taken to

the desired order in x.

Another significant aspect within this context is that w; is obtained

from $0 as the result of an adiabatic transformation, WK or Ux'EO' The

operator that carries out this transformation acting on an arbitrary

function yields an eigenfunction of H“. The unitary operator, UK or Ux,

represents how the function describing the state of the system evolves as

the effects of the perturbation change it.

The relationship with the variational principle has been discussed by

Kato in his original papers. The degenerate case is also treated in the
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references given to Kato’s work.

Following Kate’s original work, the usual series in perturbation

theory have been deduced, with the same normalization criterion as in

Lowdin’s work [3-5]. The series have been written in terms of a reduced

resolvent, for which no problem about singularities arises. This work

establishes the consistency between results obtained from Ldein’s method

and expressions developed strictly within the framework of complex—variable

perturbation methods applicable for Hilbert spaces.

A different method from that used by Kato [12] has been given to

derive an expansion for the wave operator. It allows us to visualize

different ways to obtain the perturbed wave function and its different

normalization conditions.



2.5 - RELATIONSHIPS AMONG PERTURBATION METHODS.

This section should be regarded as a complement to the main contents of

this chapter. We include it here because we have seldom encountered

references to Kato’s work in the literature on perturbation theory; yet

Kato’s rigorous treatment of perturbation theory provides a reliable and

powerful algebraic language to deal with perturbative problems. The

diversity of perturbative treatments in textbooks and research papers and

their apparent independence and specialized character make it difficult to

develop a unified conception of several areas of nuclear, atomic and

molecular quantum mechanics because of an apparent lack of common

principles. We therefore present in this section the underlying

fundamentals, which interrelate different mathematical formalisms through a

common background.

It is customary to regard interactions as corrections to an

unperturbed Hamiltonian, H0. The total Hamiltonian HK is decomposed into

Ho and the perturbation xH(1) associated with the interaction. The limit x

= 0 correspondents to the unperturbed system whereas x = 1 corresponds to

the real system. In the study of atoms, for instance, H0 may include the

H(1) wouldkinetic energy, nuclear attraction and central potential terms;

include the Coulomb repulsion minus the central potential terms, and

perhaps magnetic interactions or interactions with an external field. The

whole Hamiltonian is thus split into two terms formulated according to the

independent-particle model.

Kato’s formalism, as formulated in the references given in this

chapter, yields expansions commonly called Ragleigh-Schrbdinger expansions

for the perturbed eigenvalues and eigenfunctions. Besides mathematical
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rigour, Kato’s treatment has the strength of dealing with projection

operators, EK or E0, which are uniquely determined, whereas eigenvectors

lack this property. Some of the results of this chapter have been

obtained because of this feature, g;g;, different normalization criteria

imposable on the wave function are easily visualized in terms of the

operator that yields the perturbed state vector when it acts upon the

unperturbed wave function. The exact energy, xx, does not appear explicity

in the expansions. This fact renders the expansions for the exact

eigenvalues and eigenfunctions very useful for calculations. Size

consistency is another interesting feature of the expansion for the exact

energy given by Eq. (47). Brueckner [17] considered the Rayleigh-

Schrodinger expansion and showed that the terms having a non-linear

(aphysical) dependence on the number of particles of the system cancel with

each other. The linked—cluster diagram theorem was later proven by time-

dependent [18] and time-independent [19] methods. This theorem states that

the aphysical terms cancel through all orders of diagrammatic perturbation

theory, only linked diagrams appear in the series for xx.

Although it is not conventional in the theory of operators on the

Hilbert space, we could consider the inverse (xx - Ho)- instead of the

resolvents of either HO or H“, as taken previously. We would thus generate

expansions analogous to those given in previous sections of this chapter,

but they would have xx instead of xb in the resolvents. The perturbation

expansions with explicit dependence on the perturbed eigenvalue xx are

known as the Brillouin-Wigner expansions. The analogue to Eq. (47) so

constructed is the Brillouin-Wigner expansion for the energy, and that of

Eq. (49) is designed the transition matrix or T-matrix [20-22] in
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scattering theory, whereas its expanded form is known as the Born (or

Newmann) series [20~22]. "Reaction matrix" or "K—matrix" replaces the term

"transition matrix" in studies on nuclear matter [23]. Eq. (47) with x0 in

the resolvents replaced by xx may provide a justification for the

terminology "effective interaction", as t is sometimes called.

The sum of the zeroth- and first-order correction energies is the

expectation value of HK in the state represented by the model function ¢b

in both the Brillouin-Wigner and the Rayleigh"Schrodinger perturbation

expansions (see Eq. (47)). When H0 is the central-field Hamiltonian and

Hm
includes at least the noncentral electrostatic interaction, the sum x0

+ («no I 11(1) I¢O> is called the Hartree—Fock energy because this is the

quantity minimized in a Hartree—Fock procedure [24-27]. The remaining part

of the energy is the correlation energy. Methods such as CI, MCSCF,

electron—pair theories,..., [28] are employed to obtain quantitative

information on the terms in Eq. (47) beyond the first two. The terms in

Eq. (47) of second order and beyond represent true many-body effects, for

the Hartree-Fock approximation only takes into account the effects on each

electron of the average field of the remaining electrons and nuclei. Thus,

the electrons move independently of each other and the instantaneous motion

of the electrons or the correlation between them in their mutual Coulomb

field is not taken into account as such [29].

Size consistency is a desirable property of any method used in

computations in chemistry because it is the differences between two

quantities what are often most interesting. In contrast to the Rayleigh-

Schrodinger perturbation expansion however, the Brillouin-Wigner expansion

for the energy is not size consistent. Nevertheless, we know [9] that the
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eigenvalue xx of the perturbed Hamiltonian is regular in x and power—series

expandable with a non-vanishing convergence radius. The eigenvalue is an

analytic function of x and xx * x0 as x + 0. Therefore, it is legitimate

to think of an expansion about xx = x0 of the resolvents in the Brillouin-

Wigner series. Such an expansion allows us to recast the Brillouin-Wigner

series in the Rayleigh-Schrodinger form. Furthermore, Brandow proved

[31,32] that this procedure allows for cancellation of all the unlinked

terms in the Brillouin-Wigner series, as should be expected because the

Rayleigh-Schrodinger series is size consistent.

Feshbach’s operator [34,35] in nuclear physics is an effective

operator that yields the exact energy when operating on a model function.

Lowdin’s [3,5] treatment of the partitioning technique may be considered a

development of Feshbach’s previous work.

Finally, the resolvent operator (14) may be written as

_ —-l_ . -1_ +

R.(“) - (HK-R) - — (c - Hx+1n) = — c (a) (55)

with t, n e]R,and £5£+in. The zeroth-order Green’s function operator or

propagator G; (C) is obtained from 6+ (t) by replacing Hx by H0. Now

(a-H +1.) = (E‘Hx+in) + “(1) (56)
0

from which it is a simple matter to obtain the Dyson equation

6+(z) = 63(c) + GS<£>H(1)G+(:) (57)

closely related to the wave-operator relationship (40). The limit of £+ xx

and n + 0 yields a distribution which establishes the connection between

the Green's function-opeator notation of the resolvent and the singular (or

Sochozki’s) generalized functions [36] of use in scattering theory.



CHAPTER 3.

3.1. INTRODUCTION

Interactions between colliding molecules in gases or liquids cause

shifts in the charge distributions of the collision partners. These shifts

result in differences between the net dipoles of colliding pairs (or

clusters) and the vector sums of the dipoles of the molecular constituents,

if unperturbed. Collision-induced changes in dipole moments are manifested

in the dielectric and spectroscopic properties of bulk samples. For

example, infrared and far infrared absorption processes that are single-

molecule forbidden may be observed in compressed gases and liquids as a

consequence of transient, collision-induced dipoles. Such pressure-induced

far IR absorption has been observed experimentally in inert-gas mixtures

[37-39], H2 [38], N2 [38,40-42], 02 [38,40,41], CH4 [43], and SF6 [44] and

forbidden near IR spectra have been studied for the diatomics, triatomics

such as CS2 [45], and other polyatomics. Useful information on dynamics in

dense gases and liquids can be obtained by analyzing the lineshapes for

single-molecule forbidden spectra (and for collision-induced contributions

to allowed spectra), if the collision-induced dipoles are known as functions

of intermolecular separation and relative orientation. In analyses to date,

collision—induced dipoles for small molecule pairs have often been

approximated as sums of classical multipolar contributions, with short-range

anisotropic overlap corrections represented by parametrized exponential

functions. At this stage, direct calculations of overlap effects on pair

dipoles are needed in spectroscopic applications. It is also of interest to

compare the calculated dipoles of van der Waals complexes in their

equilibrium configurations with the dipoles determined experimentally by
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molecular beam electric resonance studies of the Stark effect on rotational

transition frequencies characteristic of the complex [46,47]. Calculations

or measurements of collision—induced dipoles provide information on

molecular interactions complementary to that obtained from potential energy

surfaces, and may indicate the relative importance of classical

electrostatic interactions, charge transfer, and short-range overlap and

exchange effects [48].

For molecules interacting at long range, only classical-multipole

polarization (cf. [48]) and dispersion effects [49] contribute to the

collision—induced change in dipole moment. The net dipole for well

separated molecules can therefore be determined if values of the single-

molecule multipole moments, polarizabilities, and nonlinear response tensors

are known [50—55]. For molecules interacting at short range, definitive

results can only be obtained by ab initio calculation [56-62]. Calculations

including correlation effects have been performed for the pair dipoles of

He...H [57,59,60], He...Ar, He...H2, and H2...H2 [57], while calculations

restricted to self-consistent field level are available for the dipoles of

the inert~gas heterodiatoms Ne...Ar, Ne...Kr, and Ar...Kr [56,58], and for

the Ne...HF dipole [48]. Quite large basis sets are usually needed in pair

property calculations [61], with the consequence that the computational

requirements are substantial. This prompts interest in approximations that

yield good results in the region where overlap is small, but nonnegligible.

Since numerical precision is most difficult to attain in ab initio

calculations on molecules at intermediate and long range, approximations

applicable near the van der Waals minimum may be used to join the known

long-range forms of the interaction—induced dipole to ab initio results at
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short range. Additionally, quantum mechanical approximations for collision~

induced properties provide information on the effects of long-range

electrostatic interactions, overlap, exchange, hyperpolarization, and

dispersion, which may prove useful in selecting basis sets for subsequent

ab initio work.

To evaluate proposed approximations for pair properties, it is

necessary to compare the results with the accurate ab initio results

available for properties of small molecular pairs. Comparisons of ab initio

and approximate collision-induced polarizabilities of H...H in the triplet

state [62] and He...He [61] have been used to test electrostatic overlap

models [63], exchange perturbation methods [62,64—66], polarizability

density models [67~69], and exchange antisymmetrization approximations

[70,71].

In this chapter, we report a calculation of the collision-induced

dipole moment of He...H as a test of label—free exchange perturbation theory

[72—75] at lowest order. The label—free exchange perturbation method

constitutes a direct Rayleigh-Schrddinger perturbation theory with fully

antisymmetrized zeroth-order wavefunctions. By construction in terms of

projection operators, the unperturbed Hamiltonian and the perturbation term

are individually invariant with respect to exchange of electrons between the

interacting molecules. The label-free exchange perturbation formalism is

reviewed briefly in section 3.2, for application in Computing collision-

induced dipoles. In section 3.3 the label-free theory is related to other

exchange perturbation approximations, and the collision-induced dipole is

shown to separate into polarization and exchange contributions. It is also

shown that results for the pair dipole at zeroth-order in the label-free
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theory are identical to the results of an exchange-antisymmetrization

approximation developed by Lacey and Byers Brown [70].

We have calculated the He...H dipole moment in two ways: first, by

evaluating the expectation value of the dipole operator with the zeroth-

order pair wavefunction; and second, by computing the energy for He...H in

the presence of a uniform applied electric field and then differentiating

with respect to the field to obtain the dipole. Also, we have carried out

the calculations at two levels of approximation for the single-atom

wavefunctions. In the first, ls Slater orbitals are used on each center;

and in the second, an extended Gaussian basis is used at each center.

Evaluation of the dipole expectation value in the Slater basis has been

reported previously by Buckingham [49] and by Mahanty and Majumdar [76]; we

obtain identical results in this case and new results from the other three

calculations. The methods of calculation and the selection of basis sets

are described in section 3.4. Results are presented in section 3.5. We

find that closest agreement with accurate ab initio results [57] is obtained

from the Gaussian-basis calculations of the dipole as an energy derivative.

Errors in the overlap dipole are typically 20-30% at this level of

approximation. Significantly, the errors in this approximation appear to be

smaller than the discrepancies between the two reported ab initio

calculations of the He...H dipole [57,60].



3.2 EXCHANGE PERTURBATION THEORY IN LABEL-FREE FORM

For molecules interacting at short range, both polarization and

exchange effects contribute significantly to the interaction energy and to

interaction-induced changes in electric properties. The label—free exchange

perturbation theory developed by Jansen [72-75] treats these effects within

a direct Rayleigh-Schrodinger formalism. Projection operators are used to

define an unperturbed Hamiltonian and a perturbation term that are

separately invariant with respect to electron permutation. Also, within

this formalism the expectation value of any dynamical variable for a cluster

of interacting molecules can be separated into additive contributions from

each of the molecules in the cluster.

The Hamiltonian H for interacting molecules A and B with a total of N

electrons is

2
. 7 Zb 1V .

( -z-—§-—Z-——)+2—~- (1)

2 a raj b '"bj k<j rkj

:
1
:

H

H
M
2

j l

where Z8 is the charge of nucleus a in molecule A, Zb is the charge of

nucleus b in B, j and k are electron indices and rq‘j is the distance from

electron j to nucleus q. Atomic units are used throughout this work, and

the nuclear positions are assumed to be fixed.

To carry out a Rayleigh-Schrbdinger perturbation expansion with a

fully antisymmetrized pair wavefunction as the unperturbed wavefunction, an

appropriate partitioning of the pair Hamiltonian into an unperturbed

operator and a perturbation term must be found--but the electron labels (j

l to N) are not assigned exclusively to molecule A or to molecule B, and the

antisymmetrized wavefunction is not an eigenfunction of the single-molecule
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Hamiltonian corresponding to any fixed electron assignment. Within the

label free exchange perturbation formalism, this problem is resolved by

splitting H into the unperturbed Hamiltonian

“ p " P (0) <0)
: ‘: "7

Ho .3: ”01 E: [HA1 ”'31 ]Ai’ ‘4
1-1 1—1

and the perturbation V due to molecular interactions,

A P

V 3 OZ Vi/Ki. (3)

i=1

In these equations Hg?) is the Hamiltonian for the isolated molecule A,

given that A has been assigned the ith possible set of NA electrons selected

from the total of N (and similarly for Hég); Vi represents the interaction-

energy operator for the ith assignment of electrons to molecules A and B.

The number of ways of assigning NA electrons to molecule A and NB to

+ N , ismolecule B, from a total of NA B

9
_ (NA+ NB).

P- v 0
NA' NB.

(4)

The operator/li projects out the simple product term for the ith electron

assignment, when applied to an antisymmetrized pair wavefunction. The

zeroth-order wavefunction 00 is constructed by antisymmetrizing the product

of the ground-state wavefunctions ¢A and $8 for isolated A and B molecules:

u
p
4
1
:

1% (8)
Q0 = f 2.0P.Pi[¢A¢B] = f

1 1 1
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where f is a normalization constant and 2 OP Pi is the intersystem

i i

antisymmetrizer. By definition the projection operator/i,i acting on QC

yields f¢i'

]f a uniform, static electric field E is applied to the A B pair, the

A

full Hamiltonian HF is

fiF = fi (5 = 0) + 8’ (g) (6)

where H (E20) is given by Eq. 1 and

A P

I! (E) - ’13 . E _ ..F . )2 Bi Ai - -E .i§1(gi + Bi) A1 (7)

The dipole operator Bi is the same for all electron assignments i, but the

dipole operators 2? and B? for A and B depend upon the electron assignment.

At self-consistent field (SCF) level, the wave function for molecules

A and B is given to first order in an applied field E and zeroth order in

the molecular interaction by

N

- -1/2 “(M -1/2 ~(1) _ l *3/2 ~(0)
Qb - C1 Q + E [ c1 151 91 2 gzcl Q ] - (3)

The constants c1 and 92 are

c1 = <$(°)| $(O)> (9)

c = 2 ; <$(°)|$(1)> (10)
2a i=1 in '

5(0)
is an antisymmetrized product of unperturbed orbitals centered on A and

B, and the tilde superscript indicates that the function has not been
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~(1)
normalized. “in is the antisymmetrized product with the unperturbed

orbital i replaced by the first order correction to orbital i in an

applied field Fu in the u direction. The vector égl) has components

"(1) "(1) ~(1)

(pix ' ’iy ’ and ’12 ‘

To lowest order in the interaction, the total energy E of the A—B pair

is

- - <0) <0) -1 ~(0) P ~(0)
E-<@0|H|¢o>—EA +13 +c <<I> [xvi/tile >+

B 1 i=1

—1 ~(0) ,. N ~(1) —2 ~(0> “ ~(0) -
+E-{2c1 <<I> IH(£=0)IJEIQ>‘j >-<,;2c1 <<I> IH(£=0)|§ >-g } (11)

where

§= awhile, jLI350)»;1 (12)
1:

Thus, to lowest order, the energy is the sum of three terms: first, the

(0) (0)

A I EB

the absence of the applied electric field; second, a field-independent term

total energy E for molecules A and B at infinite separation and in

equal to the A-B interaction energy to lowest order if exact wavefunctions

wk and “h are used to construct 0b [77,78]; and third, a term linear in the

applied field.

From the energy expression, the dipole moment may be obtained by

differentiating with respect to the applied field:

2%

B aF
- 19 «p Inn; > - -[<fl |H|~p > +
‘ a§ o 0 i=0 ’ aE 0

N{=0
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+

.811 gal:
(QOIaEI@O> + <¢0|H| 8E )]E = 0

A N

Q - 2c‘1<¢(°)|n(520)| z (1)) + c_2c
1 ~

1—l

§i 1 <5(°)|§(§=0)|$(°)>. (13)
2

In Eq. (13) g is the dipole moment calculated directly as the expectation

value of the dipole operator with the zeroth~order, zero-field wavefunction,

as in Eq. 12. The remaining terms in Eq. (13) represent the non-Hellmann-

Feynman contribution, which would vanish if Q0 were exact.

In the label-free perturbation formalism, the operators R0 and 7 are

not Hermitian individually, although the sum of the operators is Hermitian.

As a result, the pair energy at first order in the interaction formally

includes the correction term <¢0|H0|01>, which depends on the first-order

change Q1 in the pair wavefunction due to the perturbation V. Since this

term is expected to be substantially smaller than the standard first-order

energy shift (Q0|V|@b> included in Eq. 11, the correction <¢b|H0|@1> is

usually grouped with the leading second—order terms [72,73].

To second order, the interaction energy may be computed from Q1 in a

sum—over-states form [72], with contributions from the continuum generally

nonnegligible [79]. Alternatively Q1 may be approximated by finding the

stationary vector of the functional (cf. [80])

J[q,] = <m|H0—E0|\p> + <q;0|v —E1|q:> + (\IIlV-EIIKIJ0> (14)

subject to <Q|Q0> = 0. If SJ vanishes with an arbitrary variation 6% of Q

away from the stationary vector 31, then the expansion coefficients ak for

$1 satisfy
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l
<¢k|vnp0> + 2 31:30 kaa[<4’k'"o'%> + <¢Q|H0|¢k>1

8k: Ei— E ('5)
0 k

in the basis @k of orthogonalized, antisymmetrized product states for A and

B at infinite separation. In the approximation that the sum on the right-

hand side of Eq. 16 is negligible, $1 = @1. An equivalent approximation has

been made by Jansen in a direct expansion of 01 in the basis ¢k [72].

If $0 and @1 have been determined, then the sum of the unperturbed

energy E0, the full first-order energy E1 (including the correction term

<¢0|H0|¢1>), and an approximate second~order energy E for the A-B pair in

2

an external field can be obtained from

E0 4 E1 + E2 : <mO|H (g = 0) — e - g | ¢b> + <mllvl¢0> . (16)

The interaction~induced dipole may then be computed from the derivative of

Eq. 16 with respect to E, as in Eq. 13.

In this work, the calculation of exchange-overlap contributions to the

He...H pair dipole is based on Eqs. 11 and 12, which represent the lowest-

order effects. The exchange~overlap terms fall off exponentially with

increasing R. In contrast, the second-order dispersion contribution to the

He...H dipole (present in B derived from Eq. 16) varies as R".7 at long

range. This contribution originates in the correlations between the

fluctuating charge moments on the H and He atoms, and it dominates the

exchange-overlap contribution for sufficiently large R. Accordingly, in

calculating the He...H dipole for internuclear distances R > 4.0 a.u., we

have added the leading dispersion dipole to the lowest~order exchange-
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overlap dipole from Eq. 11 or 12. Higher-order polarization and exchange

effects are neglected at this level of approximation for the pair dipole;

overlap damping of the dispersion contribution and the effects of He—

electron correlation on the He-H correlation and exchange energies are also

neglected.



3.3. COMPARISON WITH OTHER EXCHANGE PERTURBATION METHODS

In this section the label-free exchange perturbation theory of

interaction-induced properties is related to other exchange perturbation

approaches. We show that the results from the label-free theory can be

separated into polarization and exchange contributions [2,81-83]. We also

show that the zeroth—order expression for the pair dipole in the label-free

theory is identical to the exchange-antisymmetrization approximation used by

Lacey and Byers Brown in calculations of inert—gas heterodiatom dipoles

[70].

3.3.1 Exchange perturbation theory: Polarization and exchange

contributions to interaction energies and pair properties

In one standard form of exchange-perturbation theory [81] the nth

approximation to the wavefunction On and the nth approximation to the

interaction energy En of an AeB pair are obtained iteratively from

@n ¢o l R0 (En " V1) @n—l (17)

and

E

n

l
l

<¢0|v1|¢n_1> , (18)

where ¢ is the simple product of the ground—state wavefunctions ¢ and w ,

0 A

V1 is the perturbation term for the assignment of the first NA electrons to

molecule A and the remainder to B, and R0 is the reduced resolvent

|¢k><¢kl

kxo Ek ’ Eo

R = Z (19)
0

‘Phe function ¢k is the kth simple—product excited state of A and B at

infinite separation and Ek is the corresponding energy. The intermediate
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normalization <¢OIQ> = 1 has been imposed. Symmetry forcing is accomplished

by choosing the normalized antisymmetrized product of ¢A and wB as the

zeroth-order approximation @0 [2,65,66]. At first order the A-B interaction

pol
energy is the sum of a polarization term E1 and an exchange term EeXCh:

l

<¢0|v1|r¢0> — <¢0|v1|¢0><¢olrl¢o>

1 + <¢0|P¢0>

_ pol exch _
E1 ~ E1 + E1 ~ <¢0|V1|¢0> +
 

<¢0|V1|¢0> + <¢0IV1|P¢0>

= , . (20)

1 + <¢0|P¢0>

 

where P is the intersystem antisymmetrizer (see Appendix B).

In the label-free exchange perturbation theory, the interaction energy

at first order is

p

E1 : «11021-21 ViAil‘I’o'i . (21)

This expression for E1 may be simplified by splitting the full

antisymmetrizer in @0 into terms that involve electron permutations within

A, within B, and between A and B. In Appendix B, the permutation invariance

of V is used to obtain

E-l[<¢w|vlww\+/¢¢|§:v1\|flfli: PAB{x }>l(2°)
1 ' s A B 1 A 3’ ‘ A 3 i=2 i i 'A BJ;1 OJ 5 1"‘XN ‘

The expressions for wA and $3 have been restricted to the self~consistent

field level, and the set {x1...xN} contains the orbitals occupied in the

ground states of isolated A and B molecules. The operators P23 acting on

{x1...xN} perform intersystem permutations only. In Eq. 22,.AA is the

antisymmetrizer for electrons assigned to molecule A,.AB is the
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antisymmetrizer for B, 01 is the parity of the ith permutation among the

total of 2, and

s ; l + <¢0|P¢0> . (23)

Thus the interaction energy at first order is given as the sum of the

polarization contribution <¢0|V1|¢0> and an exchange correction. Each of

the operators/l.i in the second term of Eq. 22 projects out the single term

from the ket for which the assignment of electrons to A and B is consistent

with the form Vi for the perturbation. In the product ¢A¢B the first NA

electrons are assigned to A and the remainder to B. Relabelling of dummy

indices suffices to show that Eqs. 20 and 22 are identical. At first order,

equivalent results are also obtained from variants of exchange—perturbation

theory with stronger symmetry forcing [2,84-87].

The one-particle density matrix [88~90] can also be separated into two

terms, one without electron exchange between A and B and a second with one

or more interchange contributions. Consequently the expectation value of

any single—particle operator decomposes into polarization contributions and

exchange-overlap contributions [2]. McWeeny and Sutcliffe [89] and

Magnasco, Musso, and McWeeny [91] have performed the separation explicitly

for the one-electron part of the Hamiltonian for two interacting molecules.

The analysis for the dipole moment operator is analogous.

3.3.2 Density-matrix perturbation theory

Lacey and Byers Brown have evaluated the dipole moments of several

diatoms by first finding the density matrix associated with the normalized,

—l/2 5(0)
antisymmetrized product c1 of the isolated atom wavefunctions [70].

The spinless electron density p(0)(r) in the absence of an applied field is
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obtained from

0 -1 ~

P( )(El) = Nc1 I ds1 I dxz...dx ¢(ON )(51’52"°§N)$(0)*(§1’§2’“§N) (24)

(0)
where o and c1 are defined as in section 3.2, and E, s, and x denote

spatial variables, spin variables, and collective space-spin variables,

respectively. The exchange—overlap dipole of the atom pair AB is then

r + Z r (25)B 2’ - IE p(0)(:) d3£ 't Z A B~B.

A

At lowest order in the label-free perturbation theory, the expectation

value of the dipole is identical to the Lacey-Byers Brown result. This

equivalence can be shown explicitly starting from

P

g=<~plzgiAinJ> (26)

121

with the pair wavefunction Q from Eq. 8. The operator Bi is the same for

each of the electron assignments i and

A. =1. (27)

L
E
M
”

i

Thus

t

H

/
\

'
6
'

(
C

H

'
6
‘

V

= - I 5 9(a) d E + Z 5 + Z 5 (28)

In terms of the applied field E

p(1;) = 9(0)“) + g-e‘llr; + 003) (29)
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(0)
The electron density p (r) for the AB pair in the absence of an applied

field (determined from Q) is identical to p(0)(r) from Eq. 24, so the field-

independent dipole is equal to B from Eq. 25.

It should be noted that this approach yields only the term i in Eq.

13. At this level of approximation the Hellmann-Feynman theorem is not

satisfied, and the pair dipole moment obtained by differentiating the energy

differs from E.

The lowest—order correction to the pair electron density in an applied

field satisfies

N

(1) - -1 ~(0) ~
8 (r1) — NcLE1 Ids1 Idxz...de [ é (51...xN) 9i (x1...xN)

*

+ §§1)(x ...x 5(0) (x ...xN) ]

_ —2 ~(0) ~
Ngzc1 Ids1 dez...de Q (x1...§ ) Q (§1°°'§ ) . (30)

N

Substitution of this result for 3(1)(r) into Eqs. 28 and 29 gives an

approximation for the exchange—overlap contribution to the pair

polarizability.



3.4. COMPUTATIONAL METHODS.

In this section the methods used to approximate the He...H

wavefunction and to calculate the pair dipole are described. In each of the

calculations we have employed a wavefunction of the form given in Eq. 8 for

the He-H pair in an applied field in the z direction

3

. ~(0) _ 1 , <0) <0 —<0
w1th Q —Jr§- E opxtxfl <1) Xfle 22) xhe 23)} (32)

prior to normalization. P runs over all the elements of the symmetric group

83 and oP = :1 depending on the parity of P. The functions 51 are defined

by

$§1> = x§1><1)w‘°)<2.3) — x§1)<2) w(°)(1.3) + xé1)(3) ¢(°)(1.2) <33.a)

(1‘
5%]i: x§°)<1) ¢[1)<2.3) — x;°)<2) w§1)(1.3) + x§°)<3) w, ’(1.2) (33 b)

~<1)_ <0) <1) _ (0) <1) <0) (1)
i3 - xH (1) wz (2,3) xfl (2) $2 (1.3) + x” (3) t2 (1.2) (33.c)

<0) . -__1_ <0 — (o _ — (o (o
a» (1..) -- J2- { xfle 21) xHe 22) xfle (1) 4,6 32) } <34.a)

(1)- _1 <1) ~(0), _ —(0) (1)
w, - J2 a,“ (1.) xfle (2) 4,8 <1) xHe (2)} <34.b)

<1)- _1 <0) —<1) _ —<1)' (0)
$2 — fl {xfle (1)xHe (2) xfle (1)><H,3 (2)} (34.62)

In each of the terms above, x(i) represents x(§i)u(i) and 2(i) represents

x(§i)B(i), where u and B denote spin states. xéo) is the lowest—energy

(1)
atomic orbital for an isolated atom q and xq

(0)

X9

is the first-order correction

to for a single q atom in an applied field in the z direction.
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Within the label-free exchange perturbation theory, the 2 component of

the He...H pair dipole can be expressed as a sum of H—atom and He-atom

. H He
:

Z + 0
‘~

dipoles (”2) (p2) (pz > (35)

To lowest order in the atomic interaction and to first order in the applied

field F ,
2

H ~(0) ~(0) 3 ~(0) ~(1)
(“2) r N2 (F‘z ) {<o I“bl > + F2 2 (é I“%|

23:1

l 0

+Fz: <<1>(.)Ip'z‘<'1'>>l()1 (36)
1:1

and

3

<He> - N2 (Fz ) {<¢(0)|“Ola(0)> + F2 2 <¢(°)|$%|$(1)> }

1:1

3 ~(1) “He ~(0)
+ F, 1: < <1. I.) |<1> >1 (37)

z ._ j z
le

2 _ —l -l . .
where N (F2) ~ c1 (1 * cmqzc1 ) and C02 is the z component of go given by

Eq. 10 with N=3. If the origin of the coordinate system coincides with the

H nucleus and the He nucleus is located at R on the +2 axis,

“H

“z 2 ‘2 ziAi (38)
1

and

11:8 = — [ (22+ 23- 2R)/\1+ (21 + 23- 2R)/\2+ (21+ 22— 2R)/\3 ]. (39)

The result for (pz> is then
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00
s
HHe oo oo 2 _ oo 01 10

(“2)“1_Soo 2 [22ZaneMsnne1+F 1_Soo 2 [ RSHHe(SHHe+SHHe)+

HHe HeH

oo 01 +810 )_Z;g

+zHeH( HeH HeH

10 00 10 00 2

+2zHHeSHeHzHeHe(2-SHHe )

800

10 00 HHe 00 00 01 10 00

+ZHeHSHHe+ 00 2 [2%flSHHe](SHeH+SHeH )SHeH } (40)
l--S

HHe

where

t. (t t t

S a;: (x 5 ix £5; and z ab: (x ; izlx (Si; t,s = 0 or 1; a,b = H or He .

The field-independent term yields the approximate zero-field pair dipole

(and the term linear in F2 approximates the exchange—overlap contribution to

the 22 component of the pair polarizability tensor.

It has been suggested [92] that calculating the energy of the He-H

pair in an applied field F2 and then differentiating with respect to F2 in

order to find the dipole (Eq. 13) should yield more accurate results than a

direct calculation as an expectation value (from the field—independent term

of Eq. 28). In general, though, no a pgigri choice between the two methods

is possible, and we have performed calculations to test each of the methods.

The explicit expression obtained from Eq. 11 for the He-H pair energy (to

first order in the atomic interaction and first order in the applied field

F2) is given in Appendix C.

We have obtained wave functions for the isolated atoms in an external

field at two levels of approximation. The A.0.’s x are constructed with



44

Slater bases in the first approximation and with Gaussian bases in the

(0)
second. In the Slater basis, X“ is the H~atom ls orbital, and the first

(1)
order correction to the hydrogenic wave function XH is found

analytically[93]. xél) can be expressed in terms of modified 2pz and 3pz

Slater orbitals:

iél) =-;% ’(1+§)r cos a (41)

In the first approximation for He [76], we use the optimal ls Slater-

(0 ) (0 )
orbital for‘xHe and the unperturbed wave function ¢HHe satisfies

W(O)
wHe "7? :expi-{(r1+r2) ][u(1)B(2)-B(1)u(2)] (42)

with § 2 27/16. The first order correction to the He wave function is

approximated variationally by minimizing

_ 3 3 l (l) . (l) _ (l) ¢(1) l _ l _ l 27 2 (l)2

I—Jd rld r2[4 Ylee lehe + 4 Y2¢HeV2¢H + (2r12 r1 r2+ 2(16) )whe

l

+<z+22”.if? 12.)] (43>

<1) __,H<1)(0)
using a trial wave function of the form wHe wHe

. (1) _
with H — (21+22)Fz'

(The subscripts l and 2 in the functional I refer to the electrons in the He

atom.) The value obtained for the variational parameter is t = —0.72231,

and
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32.2: = ...;3
In the calculations at this level of approximation, the matrix elements

appearing in Eqs. C.l-C.ll for the pair energy and in Eq. 40 for the pair

dipole were evaluated by use of standard formulas for integrals involving

Slater orbitals [94-102] (see Appendix D for a hybrid integral involving the

modified Slater orbital 3pz).

In the second approximation SCF calculations were performed for He and

H using uncontracted bases of ten 3 Gaussian functions to determine x(o).

The Gaussian orbital exponents [103] and the calculated coefficients for

each of the functions are given in the Table. The calculated ground state

energies are -2.8616692 a.u. for the He atom and -0.49999862 a.u. for the H

atom. As outlined below, xél) was determined from a series of SCF

calculations on the H atom, with a bare positive electric charge placed on

the z axis at a distance ranging from 45 a.u. to 60 a.u. from the H nucleus

[104]; xéi) was determined in the same way. An uncontracted Gaussian basis

set of six p functions was used for each atom, together with a single

contracted function x(o) formed from the ten 8 functions with contraction

coefficients from the Table. The orbital exponents of the p Gaussian

functions for hydrogen [105] and helium [62] are also listed in this Table.

The p function coefficients obtained directly from the SCF calculation

reflect linear and nonlinear polarization of the atoms by the field E and

(1)
field gradients E’, E"... of the point charge. To fix x , it is necessary

to determine the contribution to each coefficient that is first order in the

electric field Fz. This contribution was obtained by fitting each

contraction coefficient ci to the expansion
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C . = C(1)F + C€2) F3 + c (3) F F’ (45)
1 1 z 1 z i z 22'

(l)
The resulting Ci values are listed as the p contraction coefficients in

the Table .

As a check on the quality of the Gaussian bases, we have calculated

the atomic polarizabilities of H and He. For the H atom the Gaussian basis

yields a = 4.4989 a.u., while the exact value is a = 9/2. For He, in the

Gaussian basis a = 1.3087 a.u. More accurate values for the He

polarizability from near Hartree—Fock calculations differ by less than 2%

from this result [61,106,107].

The integrals needed in the Gaussian basis calculations were performed

using the program SOINTS, written by R. Pitzer (Ohio State University) and

maintained by the Argonne National Laboratory Theoretical Chemistry Group.



Function

10
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12

13

14

15

16

Type
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TABLE 1

Orbital exponents and contraction coefficients

of the Gaussian basis (lOs 6p) on each atom

 

Exponent H Coefficient

(Normalized)

1170.498 7.37776139.10'

173.5822 5.83581828-10‘

38.65163 3.18288336-10"

10.60720 1.38031549-10”

3.379649 4.89937724-10‘

1.202518 1.42487999-10’

0.463925 3.12524622-10'

0.190537 4.13000752-10‘

0.0812406 2.02671433-10’

0.0285649 7.74758325-10"

3.009711 —1.5993250-10‘

0.710128 —1.4338116-10‘

0.227763 —8.7766919-10’

0.0812406 -1.4154398

0.0356520 —1.3241078-10"

0.0154420 —3.0605474-1o‘

5

4

3

2

2

l

l

l

l

3

2

l

1

l

2

 

2

2

1

l

l

l

2

3

He

Exponent Coefficient

(Normalized)

3293.694 9.59977811-10

488.8941 7.61241309-10

108.772 4.11477457-10

30.1799 1.72174980-10’

9.789653 5.70398703-10’

3.522610 1.49210258-10”

1.35436 2.82269836-10“

0.5561 3.59695130-10’

0.2409 2.51503899-10’

0.10795 5.17599605-10'

6.6 -2.4617864-10‘

2.1957216 —1.9220719-10’

0.5693178 —1.4916053-10'

0.4223072 -2.4362999-10"

0.2007022 -3.4883846-10'

0.0799030 —1.0301889-10’

5

4

3

2

l

3

l

1



3.5. - RESULTS AND DISCUSSION

The He...H dipole obtained by differentiating the interaction energy

with respect to an applied field (Eq. 13) shows a roughly exponential

dependence on internuclear separation in the range 4 a.u. S R $ 8 a.u. This

range extends beyond the van der Waals minimum near 7 a.u. [60]. In the

Gaussian basis, the dipole from Eq. 13 reaches a local maximum at very short

range (R ~ 0.6 a.u.), and vanishes as R approaches zero, as expected. At

short range, where the dipole is determined primarily by overlap and

exchange effects, the polarity is He+H—, consistent with the rule that the

larger atom is negative [49]. At long range, the pair dipole results

entirely from dispersion effects, and its sign changes to He-H+.

Asymptotically [49,53,54]

p(R) = D7R—7 + DQR—9 + . . . (46)

As noted in section 3.3, we have approximated the pair dipole by adding the

leading dispersion term (with D7 = 120 a.u. [53,54]) to the exchange-overlap

dipole calculated from Eq. 13 or from Eq. 12 (i.e., by direct calculation of

; alone). In the Gaussian-basis calculations using Eq. 13, the dipole

changes sign at R ~ 8.7 a.u.

Ab initio calculations of the He...H dipole including correlation

effects have been reported by Bender and Davidson for the single

internuclear distance R = 3.0 a.u. [59], by Ulrich, Ford and Browne for the

R range from 0.5 to 20.0 a.u. [60]; and by Meyer for R between 5.0 and 11.0

a.u. [57]. At intermediate and long range, there are substantial

differences between the available ab initio results. The dipole calculated

by Ulrich gt gl. changes sign at R ~ 7 a.u., while the dipole obtained by

Meyer does not change sign until R reaches ~ 8.5 a.u. Between 9.5 and 11.0

48
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a.u., Meyer’s results approach the known long-range form of the dipole

closely. In contrast, the dipole calculated by Ulrich gt gt. exceeds the

leading dispersion dipole by a factor of ~ 6 in this R range. For He-H

distances between 6.0 a.u. and 11.0 a.u., Meyer’s results are used as the

basis for assessing our approximations, and the results of Ulrich gt gt. are

used at shorter range.

Our results for the He...H dipole are plotted for comparison with the

gb initio dipole in Figs. 1 and 2. The long-range form is also shown in

Fig. 1. Our approximation exhibits the same qualitative features as the gb

initio dipole. Fig. 1 shows that the results obtained by differentiating

the interaction energy with respect to the applied field to find the overlap

dipole (Eq. 13) and then adding the asymptotic dispersion correction agree

quite closely with Meyer’s results in the range from 4 a.u. to 11 a.u. In

fact, the discrepancies between Meyer’s results and this approximation are

smaller than the discrepancies between the two sets of gt tgitig results

[57,60]. Relative to Meyer’s values, our closest approximation is typically

in error by 20~30% over the range from 4 a.u. to 11 a.u. The remaining

differences result from neglect of the higher-order exchange, dispersion,

and orbital distortion effects, overlap damping of dispersion (gt. [108—

111]), and the effects of intra—atomic correlation in He on the He-H

exchange and dispersion dipole. Some cancellation of error occurs, since

the omitted effects are not all of the same sign. The error is g 5% at R

4.0 a.u., ~20% at R = 7.0 a.u. (the van der Waals minimum), and g 5% at R

11.0 a.u. It is large (roughly a factor of 2) at R ; 8.0 a.u., but near

this point large relative error can result from a slight displacement of the

zero of p(R) between the accurate and approximate analyses.
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Computing the expectation value of the dipole with the zeroth-order

antisymmetrized wavefunction (Eq. 12) gives a smaller exchange—overlap

dipole than that found by differentiating the energy with respect to an

applied field (Eq. 13). The latter approach yields better results. It is

interesting that the gb initio value of the pair dipole lies between the

Gaussianabasis values obtained from Eq. 12 and those obtained from Eq. 13

for exchange~over1ap effects, (with the dispersion correction added in each

case), when R<9.5a.u.

As R decreases from 5.0 to 1.0 a.u., the dipole moment increases

rapidly. Low-order perturbation theory breaks down at short range, and the

exchange—overlap contribution to the dipole is overestimated by Eq. 13. The

level of agreement between the results of Eq. 13, evaluated either with the

Slater basis or with the Gaussian basis, and the results of Ulrich gt gl.

for R < 4 a.u. is surprisingly high, as Fig. 2 shows. This agreement must

be fortuitous. The local maximum in p(R) occurs at larger R (near 1.0 a.u.)

in the g9 tgtttg calculations than in the approximate work, and the value of

p(R) from Eq. 13 is smaller at the maximum. In the Slater-basis

calculations with Eq. 13, we did not find a local maximum in p(R) over the

range of R values studied. At short range, the dipole computed from Eq. 12

is substantially smaller than the gg initio dipole. On the scale of Fig. 2,

results from Eq. 12 are essentially unaffected by the choice of the Slater

or Gaussian basis.

The dipole obtained by differentiating the energy with respect to an

applied field (Eq. 13) differs from the expectation value of the dipole

moment (Eq. 12) by the correction term Apz [112]
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at!

—-|Au 2 “ <¢ I
z E=0 0 322 o E=0 (39)

~

This term is nonvanishing because the Hellmann-Feynman theorem is not

satisfied at lowest order in label-free exchange perturbation theory. The

ratio of the correction term Apz to the total dipole calculated from Eq. 13

is plotted in Fig. 3 for both the Gaussian basis and for the Slater basis.

Comparison of the dipoles calculated with Eqs. 12 and 13 provides one

indicator of the uncertainty in the results. Calculations of Apz have been

used previously to indicate uncertainties in the correlation contributions

to molecular dipoles, in cases where the wavefunction at self-consistent

field level approaches the HartreeeFock limit. In this work, Apz is

definitely smaller for the Slater basis (see Fig. 3), but the results from

the Gaussian basis and Eq. 13 agree more closely with Meyer’s work.

At lowest order in the labe1~free exchange perturbation theory, for

the He...H dipole we have found better agreement with accurate gb initio

results when the dipole is determined by differentiating the pair energy

with respect to an applied field than when the dipole is computed directly

as an expectation value. The dipole calculated as an energy derivative is

significantly larger than the dipole calculated from the expectation value

(by factors as large as 4 for Gaussian—basis calculations in the range 4.0

a.u. < R < 7.0 a.u.). In this context, it is interesting to compare recent

self-consistent field (SCF) results [56] for inert-gas heterodiatom dipoles

with estimates based on the exchange-antisymmetrization approximation

developed by Lacey and Byers Brown, since the exchange-antisymmetrization

approximation is equivalent to a direct calculation of the dipole

expectation value with the zeroth-order wavefunction. The SCF results
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exceed the exchange—antisymmetrization estimates by ~ 60% for Ne...Ar for

internuclear distances between 4.0 and 6.0 a.u., and by ~ 50% for Ne...Hr

(with smaller differences for other pairs). Although the discrepancies are

significantly smaller than for He...H, they are of the same sign. Improved

agreement with SCF results might be obtained from exchange—perturbation

calculations that employ energy derivatives. Results for the He...H dipole

suggest that the label-free exchange perturbation method can provide a

useful approximation for collision-induced properties in the region of

charge overlap.



Fig. 1.
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Collision-induced dipole of He...H as a function of the

internuclear separation R in the range from 4.0 to 11.0 a.u.

Curve A shows the ab initio results obtained by Meyer, and Curve

B the ab initio results of Ulrich gt gt. Curves C and D have

been obtained by adding the long-range dispersion dipole to the

exchange-overlap dipole computed form the energy derivative (Eq.

13). Curve C shows the dipole in the Gaussian basis, and D the

dipole in the Slater basis. Curves E and F have been obtained

similarly, but the exchange-overlap dipole has been computed as

an expectation value from Eq. 12; Curve B shows results from the

Gaussian basis, F from the Slater basis. Curvg G is a plot on

the leading term of the dispersion dipole, D R . The ordinate

is scaled logarithmically and the dipole p(R3 is given in a.u.



Fig. 2.

ab initio results of Ulrich gt gt.
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Collision-induced dipole of He...H as a function of internuclear

separation R in the range from 0 to 4.0 a.u. Curve A shows the

Curve B and C show the

lowest-order exchange-overlap dipole, Obtained from Eq. 13, B in

Slater basis and C in Gaussian basis. Curve D shows the

exchange-overlap dipole computed as an expectation value with

the zeroth-order wavefunction; results from the Gaussian and

Slater bases superimpose on this scale. The dipole p(R) is

given in a.u.
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Fig. 3. Ratio of the correction term by to the exchange-overlap dipole

for He...H, plotted as a functign of the internuclear separation

R (in a.u.). The exchange-overlap dipole has been computed as

the derivative of the first-order interaction energy with

respect to an applied field. Curve A shows the results from the

Slater-basis calculation, and Curve B the results from the

Gaussian basis.



CHAPTER 4.

4.1. INTRODUCTION

Absorption in the IR region of the spectrum by non-polar fluids is a

collision-induced phenomenon [115], and a number of molecular properties

may be determined from the spectra [116]. Collision-induced IR spectra

have been studied for atoms and non-polar molecules [37-38, 40-41, 117—

119]. Furthermore, cooperative many-particle effects in polar fluids

affect the absorption line shape in this region of the spectrum.

Experiments have been performed [120] in order to ascertain the importance

of the collision-induced absorption relative to the absorption associated

with the permanent dipole.

Both the intermolecular potential and the interaction-induced dipole

are needed [121] as functions of the intermolecular separation and

relative orientation in the calculation of the absorption line shape.

Pairwise additivity of the potential is usually assumed [122] in the

simulation of collision dynamics, but higher order or nonadditive effects

[81,123-124] play an important rgle in many physical situations. For

example, the inclusion of three-body forces is known [125-126] to bring

results of molecular dynamics simulations into closer agreement with

experimental data. Molecular dynamics simulations with many-body

potential functions have been suggested [127]. Some calculations [73,128]

have been reported with long-range triple dipole potentials [129-130].

When the intermolecular interaction is expanded in a Taylor series, the

first nonadditive part of the third-order perturbation energy of three

nonoverlapping molecules is the triple-dipole potential. Nonpolar species

can have a triple-dipole potential; if we consider three indentical rare
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gas atoms a, b and c, an instantaneous dipole on atom a polarizes b, whose

dipolar field perturbs c, and the dipole on c interacts with a. The long-

range triple-dipole energy may be written as a sum-over-states expression

[129] or as an integral over imaginary frequencies [130]. Bounds to the

three-body long-range interaction coefficients have been obtained [131]

for a number of atoms. It was established [132c] in the Drude model

approximation that the triple-dipole energy term is a good approximation

to the long-range nonadditive energy for the rare gas crystals, for the

many-body terms that involve more than three bodies in the dipole

interaction approximately cancel the remaining three-body multiple

interaction terms. Nevertheless, the addition of higher order

contributions than the triple-dipole term was later claimed [133] to be

necessary for Xe. A combination of two-body Lennard-Jones and three-body

triple-dipole and experimental exchange-overlap potentials has been used

[134] in the study of atomic cluster growth. The relevance of nonadditive

interactions has prompted the generalization [135] of the correction to

the basis-set-superposition error for the calculation of many-body effects

[136-138]. Also, nonadditive effects in the potential have been studied

for hydrogen [129,139-140] and rare gases [73,135,137,141-153].

Barker gt g1. [154-158] have claimed with the support of experimental

data that overlap-dependent manyebody interactions in rare gases must be

irrelevant. However, the fact that the addition of long-range three-body

interactions to the pair potential brings calculated properties of rare

gases into agreement with experimental data does not in itself provide a

high degree of physical insight [159] into the nature of the interactions.

While the three-body exchange terms are considerably smaller than the two-
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body [132d] at distances corresponding to the minimum of the van der Waals

potentials, the three-body exchange contribution is significant [137,160-

161] when it is compared with the triple-dipole energy [129]. Although an

overlap-dependent modification of the long-range forces [1323,162-163] has

been used to explain the stability of the different rare gas solid

structures, three-body exchange energy had earlier been considered crucial

by Jansen gt gt. [164-171] in explaining the polymorphism of the rare gas

and another isoelectronic solids. In spite of points made [172] in reply

to criticisms [173], it has been suggested later [132a-b, 174] that Jansen

gt _t. overestimated the nonadditive exchange contributions. The

unavailability of reliable information on many body forces has prompted

their accurate quantum mechanical computation [156,174], consistently to

some specified order of magnitude [174]. Despite Barker’s remarks [157—

158] and the interpretive challenge posed [158] by the agreement of

experimental data and results of calculations that omit three-body

exchange effects, it is believed [127, 153, 174-177] that overlap~

dependent three-body forces cannot be fully disregarded and that they

alone or in combination with other many-body effects may be the cause of

discrepancies between experimental data and calculations of the dynamic

structure factor and other properties [127,178]. Furthermore, it does not

seem totally convincing to argue that overlap-dependent contributions are

made irrelevant by the small statistical weight of regions where overlap

is important, given that these contributions may be very large in those

regions (orders of magnitude larger than in the statistically favored

regions).

The moment induced in a group of three atoms or molecules introduces
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three-body effects in the ternary absorption coefficient [115,179]. This

coefficient has been calculated [180] from experimental data for C02.

Pair additivity in the dipole moment is usually assumed in dynamics

calculations [39,181], but it has been suggested that many-body effects

associated with the irreducible triplet dipole moment must be included in

order for the calculated collision-induced absorption to reproduce the

experimental line shapes [39,182]. Although binary collisions are the

most important [183] at sufficiently low densities, the irreducible

triplet dipole moment must make the leading contribution to absorption by

monatomic unicomponent gases. Buckingham stated [184] that a set of three

spherically symmetrical charge distributions should be polar due to

induced moments, hence capable of absorbing electromagnetic radiation in

the IR region of the spectrum. A model has been proposed [185] to

calculate the spectrum due to ternary collisions in pure rare gases.

Studies on the triplet dipole moment [186] have yielded the long range

contribution as a power series of the internuclear distances. The

coefficients of the leading terms have been calculated [187-188] for three

hydrogen and three helium atoms, and the dispersion triplet dipole moment

has been evaluated [189] for the Drude model. A variational method has

been used [190] in order to explore the dipole moment of a hypothetical

model neutral system with one electron in the field of three identical

nuclei with a fractional charge each. The effects of applied pressure

[191] and many-body effects [181,192-195] on interaction-induced

depolarized light scattering [196] have also been discussed and

calculations have been performed [197] to determine the triplet

polarizability of helium.
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A system of three hydrogen atoms in its quartet state is a good

candidate to study three-body effects on the dipole moment with no

interference from two-body contributions, and, in general to model

interaction-related properties or potentials for three closed shell atoms.

Nonadditivity in the potential energy has been studied [140,198-201] for

spin-polarized H3, and the potential energy curves [199,201-204] and the

Axilrod—Teller triple-dipole term [139,205] have been calculated at

different levels of approximation. Hecht [206] predicted that gas or

liquid completely spin polarized hydrogen would be endowed with superfluid

behavior, and that it would recombine at densities where the three-body

collisions became important unless an external magnetic field precluded

such recombination. Monte Carlo calculations of bulk properties showed

[207-208] that the system would exist as a gas (18,28) or liquid (3H), and

liquid-to-gas and solid-to-gas phase transitions were studied [209-211]

subsequently. Measurements on completely polarized atomic hydrogen at low

temperatures have been reported [212-218], transport properties [219-220]

have been determined, and the quantum Boltzmann equation [221] has been

established for the gas in a regime where only binary collisions are

important. Three-particle recombination has been considered [222] in the

kinetics studies of the polarized gas, and experimental evidence for such

a process has been reported [223-225]. In order to achieve Bose-Einstein

condensation, magnetic confinement of the gas is under investigation

[226].

Label—free exchange perturbation theory [74-75,]68,l72,227] has been

applied to the study of interaction energies [73,168,171-172],

interaction-induced molecular properties [76,228], and hyperfine structre
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spectral line shifts [75]. A reformulation of the label-free exchange

perturbation theory has been proposed [229] since model calculations for a

non-interacting system [230] suggested that the original formulation [227]

could not be satisfactory in practice. Further calculations [75,228] have

shown that this method can be useful in approximating interaction-induced

properties when overlap is non-negligible. We derive in Section 4.2 the

expression for the dipole moment of H3 in its quartet spin state.

Although the Hellmann-Feynman theorem is not satisfied at this level of

approximation, for this system it can be shown that the dipole moment

calculated as an energy derivative will be more accurate than the dipole

calculated as an expectation value (section 4.2). It has been established

[228] that the Lacey and Byers Brown method [70], which gives the lowest-

order expectation value, accounts for only a small part of the exchange-

overlap pair dipole moment. We conclude on the grounds of the treatment

given in Section 4.2 that the Lacey-Byers Brown method provides no

information at all about the dipole moment of certain triplets of

identical atoms. Furthermore, the Gaussian model yields in both its

original [164,166,231] and modified [232] forms an electron density which

renders the exchange-antisymmetrization dipole moment [70] equal to zero

for any cluster of identical atoms. The second-order dispersion triplet

dipole moment has already been calculated [187-188]; the question then

arises whether the total dipole can be approximated simply by adding the

first-order exchange contribution. The issue of approximating interaction

energies as the sum of second-order dispersion and first-order exchange

contribution has been addressed by Margenau [233]. The calculations that

he performed with a rather simple wave function showed that the
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approximation was not acceptable for hydrogen, but it was almost correct

for helium and it should be legitimate for heavier structures. Second-

order nonadditive overlap-dependent contributions to the energy have been

studied [166,170] in the Gaussian effective electron model, but it has

already been established [132a,l74] that this approximation overestimates

the second-order energies. The results of more accurate calculations

[234] on hydrogen have shown that the first-order exchange energy between

two ls atomic orbitals accounts for ~90% of the difference between the

energies of the lowest singlet and triplet states. Second-order

interaction energies involving exchange are considerably smaller than the

first-order exchange contribution in the He...He interactions [235].

Higher—order exchange energies are expected to be a small percentage of

the first-order exchange energy unless a strong bond is formed [132d].

Furthermore, it has been claimed that it is legitimate to calculate

induction and first-order exchange energies independently, and this

procedure has been used in the computation of interatomic interactions

[236]; the results seem to support the validity of the approximation

[236]. The same approximation for the second-order exchange contribution

to the triplet dipole moment is adopted here. The results of our

calculations discussed in Section 4.3 show that the exchange-overlap

contribution to the triplet dipole moment cannot be disregarded in

comparison with the long-range dispersion contribution.



4.2. DIPOLE MOMENT CALCULATIONS.

In this section, the dipole moment for a system of three interacting

hydrogen atoms in the lowest quartet state is obtained in the label-free

exchange perturbation formalism.

The Hamiltonian, H, for the system in a uniform static electric field

is

F {j (1)
A A

H = H(~=Q) + H(§) = HO+ V — ~

H(§) is associated with the interaction of the external electric field E

and the hydrogen triplet. H(§=Q) is the sum of the Hamiltonian operators

for the three non-interacting hydrogen atoms plus a term, 3, which

contains all the electrostatic interatomic electron- nucleus attractions,

and nucleus-nucleus as well as electron-electron repulsions.

Each term in the Hamiltonian may be written in a form which is

invariant with respect to assignment of the electrons to the interacting

atoms:

A p

1:].

A A A A

where 0 represents one of the operators HO, V or B in (1), and

" p
O :2 z OpiAi - . (3)

i=1 p

The subscript p=a, b, c labels each hydrogen nucleus in the triplet

system. The number of ways NP electrons from a total of N = §.NP may be

assigned to three different centers is
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p _ (Na+Nb+NC)!

' o
N82Nb3NC.

so in this case, p = 6.

 

(4)

When applied to an antisymmetrized triplet wave function 9.111

projects out the simple product term for the ith electron assignment. If

the zeroth order save function, Qb’ is constructed as an antisymmetrized

product of the ground-state save functions @a’ $5 and $6 for the isolated

atoms:

P [ 1 P .

‘I’o‘ ff: °p. Pi ‘I’a‘pb‘l’c ' 5:24“ ’ (5)
1- 1 1-1 p

where f is a normalization constant and Z 0 Pi

i=1 i

is the intersystem antisymmetrizer. Thus, [1i is not self-adjoint and

Ai‘l’o = “’1‘

The triplet wave function to first order in the applied field E and

zeroth order in the interatomic interaction is given by

3

_ -1/2 (0) , -1/2 (1)_ l -3/2 (0)
0b- c1 Q + 5 [Cl 151 g i 2 gzcl é ] (5)

The constants c1 and 92 are

c1 = <<1>(°)| <I>(°)> ('7)

and

c = 2 ‘32: <¢(°)| em> - (8)
2a 121 in

¢(0) is an antisymmetrized product of unperturbed orbitals x‘o) centered
p

(1)
in is the antisymmetrized product with the unperturbedon p = a,b,c and é

orbital i replaced by the first-order correction to orbital i in an

applied field Pa in the a direction. The vector 3:1) has components
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(l) (1) §(1)
Qix , Q1 , éiz . To lowest order in the interaction, the triplet energy

E is [228]

= <QO|H|¢0 > -3};(0)=c‘1'1 <<p(°)|z v.1A1 |<1>(0)> +

i=1

A _

+F -'1'1<<1>{2c<¢(°)|H(F=-0)|£ g<1>>——czc12<.<°>.u(§=0)..<°>>_,} , (9)

j:lJ

where

6

g = <¢‘°)| z piAi]§(0)>Cll (10)

i=1

With possible basis-set-dependent effects [81] confined to second and

higher orders [228], the energy is given by the sum of three terms: the

total energy of the three non-interacting atoms 3Eé0); the zero-field

triplet interaction energy to the lowest order, and a term linear in the

electric field.

The dipole moment may be obtained as a field derivative of the energy

(9):

(
C II

a“ a1:
A o

311%] = -81”.IHI~P0>+<FOZglqo>+<eo ~>}F=0 =
~:0 ...

(11)

w

= B - 2c;1 <<I>(°)|§(F=0)| 24315 + Cl2c2<<1>(°)m(§=-0)|q>(°)>
" " i=1Q1

For the three H—atom problem, if the term 7 were removed from the

Hamiltonian H in (1) at §=0, an exact eigenfunction could then be

calculated. Moreover, even if an external electric field were turned on,

an exact wave function could still be obtained to any desired order in the

electric field. The presence of 7 in the Hamiltonian introduces an error

8&0 in the zeroth—order wave function when 2:0. Therefore, when an

electric field is applied the error has the form 8Q0(§)=60b(1+g(§)) where

g(§) is some function of the electric field. The error in the dipole
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moment calculated as

A

- _ _ .81!

is first order in GO . Generally, the error in the field derivative of

0

the energy may be first or second order in 6&0' When 6wb(§) is of the

form considered above though, (aE/aE)F=0 is second order in SQb [237].

Hence, the dipole moment as given by F5. (11) is in this case more

accurate than the expectation value of the corresponding operator, as in

(12).

The AO’s x in the wave function 9 are constructed with Slater bases;

xéo) is the H—atom ls orbital and the first—order correction to the

hydrogenic wave function xél) is found analytically [93] and written in

terms of modified p—Slater orbitals. We find that 9259’ according to the

properties of overlap integrals with Slater orbitals on identical centers.

The exchange-overlap contribution [70] to the dipole moment given by

Eq. (12) may be analysed as follows. Let us consider a system of p

identical atoms with a total of N electrons. Let us assign the set

_ i ’

P1 - {xl, . . "XN/p} of A0 s to the first atom, the set

"
U

N

H

F
l
a
,

2
‘

'
3
‘

z
w

to the second atom, and so forth. The set

,nx } is assigned to the pjib atom. The atomicP: a

p {Km-m”
P

orbitals of the non-interacting atoms satisfy

i i i

1.8 n 6 ...-S o ; , ’ : 1, so. , o 13J J) PP J P P P ( )
i _

<(x )Pl(xj)P.> - (8

Thus, there are p2 (5 x3 )-dimensional blocks in the overlap matrix S.
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All the diagonal blocks are (3 x 2 )-unit matrices. Consequently, we

can decompose S as the sum of the unit matrix A and a matrix T which

contains p (g x g )-diagona1 blocks whose elements are identically equal

to zero. The inverse of the overlap matrix may be expanded in a power

series (below, the implicit summation convention applies to the contracted

covariant and contravariant indices, but Eq. 14c does not involve

summation over i values):

S-1=(A+T)-1=A‘T+T2-T3+. . . (14a)

-li__i ik_ik9.. . .
(S ) J— T 3+ T kT J T k? RT J , 1 t J (14b)

-li_ ik_ik 9.
(S ) i— 1 + T kT i T k1 l T i (14c)

k=k_k k n_
1 1- T n T an1* T menT 1 ... (14d)

All the contracted indices are distinct from i (diagonal and off-diagonal

matrix elements) and from 3 (off-diagonal matrix elements). If

p(1.1’) = lx5(1)>(S—1)ij<xd(1’)l (15)

is the first-order reduced density matrix, the urcomponent of the

el

electronic contribution to the dipole moment Ba [70] is given [228] by

;°1 = - I dv1 p(1,1') qa = - (s’1)ij<x?lqulxi> -(S’1)1J.(qu)ji . (16)
a 1’91

Hence

-e1__ 1 i k k 1 i _ _ i i _ i k 1 J

”a ’ [5 i+T RT 1 I 1T 1] ((111) i [T a” kaj T kT 1T j](qu) i .(17)

Now

i - i _ i p i _ i

(qu) i- (x Iqulxi> - (x Iqu lxi> + (x lxi>RuP- 0 +RuPS i , (18)
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where q: is referred to the p-nucleus and Rap is the coordinate of the p-

nucleus in a given reference frame. Then

Si.(q )i.= 2n 2 51.: 3 ER
1 a 1 P up iePP 1 p P up . (19)

The product of a component of the dipole moment and an atomic orbital in

Eq. (17) is expressed in terms of modified AO’s, and the spherical

harmonics are transformed to the forms referred to canonical axes by means

of the corresponding rotation matrices. The use of orthogonality

relationships and specialization to s-type atomic orbitals let us write

(see Appendix E)

-el _ :N

”a - E ( p) Rap (20)

The nuclear a—component is

N- nuc N l

p = Z " R -’ dv p(1,1’)‘-’ Z“ R ; (21)

0. pP upN [1,.4 1 pp up

so

— _ -e1 -nuc _

”u - pa + ”a - 0 . Va (22)

Therefore, the exchange-overlap contribution [70] to the dipole moment

given by Eq. (12) vanishes when a cluster of hydrogen atoms is described

by an approximate wave function such as @b° Furthermore, this result

applies to any spatial arrangement of any number of atoms whose electrons

are described by zeroth order s—orbitals, or by an effective 5 Gaussian

function [164,166,231-232,242]. Thus, the dipole moment is given by

-1 (0)“ 3 <1)
B = -201 <Q IH ( 20)] Q. > (23)

~ ~ ._ ~1
1-l

Further elementary consideration on the properties of integrals involving

Slater orbitals on identical atoms allow for additional simplification in



69

the expression of 2* namely, Eq. (23) becomes

B 3‘2cil P
1
0
3

¢.(1)> (24)

A

“MW, “1

li

where 6’ is the operator 6 after removal of the terms which involve

nucleus-nucleus repulsions. The constant c1 is given by

C1 ; 6[:1“Sib-Sic—slz)c+28absacsbc ] ’ (25)

where Spp, is the overlap integral between two 1s hydrogen orbitals on

p,p’ = a, b, or c. The explicit formula for pa is given in Appendix F.

Modified Slater-type orbitals for xél) have been taken in the directions 2

and x for a = z, x, respectively. The total dipole moment has been

computed as the sum of the overlap-exhcange (Eq. (24)) and the long-range

dispersion [187*188] contributions. Overlap damping, orbital distortion

and higher—order effects are neglected. The calculations have been

carried out for several values of H and Q (or XC for the right triangle

configuration) between 3.0 a.u. and 10.0 a.u.; R, Q and KC are defined in

Fig. 1 in the linear and equilateral, isosceles and right triangular

configurations of the three hydrogen atoms a, b, c. This range of

internuclear separations includes the van der Waals minimum of 32: H2

[243-244] and it covers the region where the pair distribution function is

appreciably different from 0 and 1 [208].

All the integrals over Gaussian expansions [245] of the Slater-type

orbitals which appear in the expression for the triplet dipole moment have

been computed with the program ARGOS [246-248] maintained by R. Shepard

(Argonne National Laboratory).
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4.3. RESULTS AND DISCUSSION.

We have proven that the Lacey and Byers Brown [70] approximation

yields zero for the triplet dipole moment when the calculation is

performed for identical, spherically symmetric, neutral charge

distributions described by s-type functions. This result generalizes to

any number of such systems in any spatial configuration.

Overlap exchange (Eq. (11)) and dispersion [118] triplet dipole moment

calculations have been performed for the quartet H3 system in its right-

triangle (e=w/2 rads) and linear (a=n rads) spatial configurations, with 3

a.u. $8 $10 a.u. and 3 a.u. $XC $10 a.u. (right triangle) and 3 a.u. $0

$10 a.u. (linear). The results for the triplet dipole moment in a.u. are

plotted in Figs. 2-7.

The X-dispersion dipole moment points from the pair to the single atom

in most of the region XC > R (Fig. 2) whereas the reverse trend is

observed for the Z-component in most of the region XC (B (Fig. 3). The

behaviour of the X-overlap-exchange dipole moment (Fig. 4) is similar to

that of the X-dispersion dipole moment (Fig. 2), but the Z-overlap-

exchange dipole moment (Fig. 5) is directed form the pair to the single

atom in most of the region R) XC. The overlap-exchange dipole moment

(Fig. 6) for the linear configuration is directed from the single atom to

the pair whilst the dispersion contribution (Fig. 7) points in the

opposite direction, t.g., from the pair to the single atom. The order of

magnitude of both contributions is comparable for all the configurations

of Figs. 2—7. We do not present results for the isosceles-triangle

configuration, but a similar trend is observed for its dispersion and

overlap-exchange contributions. Therefore, the tiplet dipole moment is

70
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substantially affected by overlap-exchange effects in addition to the

dispersion contribution. An analogous result holds for the corresponding

contributions to the energy [174].

The controversy over the actual rgle that the overlap-exchange

contribution plays in the many-body interactions has been noted in the

introduction. We have found that short-range effects in a molecular

property are very important when they are compared with the long-range

contribution. This theoretical result may be checked against experimental

data by computing the dipole moment of a unicomponent triplet, as in

Section 4.2. The collision-induced absorption spectrum may thus be

calculated [182] and the importance of dispersion and overlap-exchange

contributions properly analysed. Further research along this line is

likely to shed some light on the relative weight of short- and long-range

contributions to the many—body effects on properties of systems for which

the leading terms are due to triplet and higher-order associations. The

behavior of the total dipole moment (taken as the sum of the different

contributions) may permit inferences [249] about the form of the triplet

dipole moment time-correlation function.
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Figure 1. Spatial configuration of three identical nuclei

(a, b, c). a=w, "/2, n/3 for the linear, right-triangle

and isosceles-triangle configurations.
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Figure 2. H3 dispersion dipole moment.

X component. Right-triangle configuration.
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Figure 3. H3 dispersion dipole moment.

Z component. Right-triangle configuration.
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Figure 4. H3 overlap-exchange dipole moment.

X component. Right-triangle configuration.
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Figure 5. H3 overlap-exchange dipole moment.

Z component. Right-triangle configuration.
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Figure 6. H3 overlap-exchange dipole

moment. Linear configuration.
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Figure 7. H3 dispersion dipole

moment. Linear configuration.



CHAPTER 5.

5.1. - INTRODUCTION.

The interaction between two non-overlapping spherical neutral charge

distributions is dominated by the London dispersion term [250-251]. When

the charge distributions are so far away from each other that retardation

effects must be taken into account, the interaction is still attractive,

but its functional form in terms of the internuclear separation is

slightly different. The use of the quantum theory of radiation [252]

yields an attractive interaction inversely proportional to the seventh

power of the separation. The retarded dispersion forces between

macroscopic bodies may be calculated within the framework of classical

electrodynamics [253], and the van der Waals forces between individual

atoms and molecules are obtained as a special case [254-255]. Other

treatments involving quatum electrodynamics have also been developed [256—

257] to account for retardation effects. The study of retarded dispersion

forces covers the interaction between molecules [258], effects in

dielectrics at finite temperatures [259], three-body dispersion forces

[130] and the interaction between an atom and a surface [260]. The

results of such theoretical studies have in common that the retarded and

unretarded dispersion forces between macroscopic and microscopic bodies

are given in terms of properties of the individual interacting species,

315;, in terms of susceptibilities. Therefore, dispersion forces may be

viewed from a unified standpoint gig susceptibility theory [261]. The

relationship among electromagnetic field fluctuations, susceptibilities,

zero-point energy and long-range forces is discussed by Boyer [262].

Whether retarded (t.g., proportional to “-7) or not (i.e., proportional to
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8.6), dispersion forces undergo a power-law divergence as the separation

between the interacting systems goes to zero. Effects due to overlap and

exchange should prevent this collapse by damping the power law which gives

the dispersion energy. Second-order perturbation theory yields the

dispersion contribution when the perturbation in the Hamiltonian is

associated with the intersystem interaction. The matrix elements which

involve the perturbation must be properly handled in order to include the

overlap effects. The multipole series (which indeed is not intrinsic

[88,263] to London’s theory) cannot be used to expand the perturbation,

for the series expansion require that the charge distributions do not

overlap. Matrix elements of operators such as er - rBI-l, where ru is

the position of a particle of system a = A, B have to be evaluated. Their

evaluation without use of a multipole expansion is usually carried out by

separating the coordinate rA and r8 first.

Several techniques (all relying on use of the convolution theorem)

allow for such a separation. The Fourier transform of the potential is

used by Koide [264]. His method has been developed and used to calculate

damping function for Hez, Bez, HeH [265], and (32:)H2 [266], and to

calculate interaction energy curves as well as dispersion damping

interaction functions for He2 [267], Ar2 [268], Xe2 [269], (32:)Li2[270]

and He...H2 and Ar...HCl [271]. An exchange correction term has been

incorporated into the damped dispersion energy for (32:)Li2, (32f)LiNa,

(32:)Li; and (22f)NaAr [272]. Other gt tgtttg computations of dispersion

energies and damping functions have been performed [273] for Ar2 and L12.

A universal, empirical damping function has been proposed and applied

[274] to the calculation of the van der Waals potentials of (323H2, Arz,
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(BZDNaK and Lng.

Nonlocal polarizability densities [275] and Coulomb interactions in k-

space have also been used to derive expressions for damped dispersion

energies [276].

In other work, the Fourier transform of the transition-density matrix

in the dispersion energy has been used [277] to provide a dispersion force

between closed-shell atoms finite at all distances. This method has been

extended [278] to represent the transition amplitudes in terms of Slater-

 

type ortitals. Damping effects for the first-order Coulomb molecule-

molecule interactions have been calculated on the basis of a two-centre or

bipolar expansion fo er — rBI-1 [279], and the damped second-order

Coulomb energy has been given in terms of response functions [280]. i;

The full Coulomb interacting potential is also used in a reaction-

field approach. A generalized form factor is related in this approach to

the charge-density susceptibility with which we may calculate the second—

order interaction energy. This method [281] is applied to the study of

the He2 [281-282] and Ne2 [283] potentials.

Damping in the dispersion energy has been treated empirically in

electron-gas calculations, applied to the potential energy of H2...He,

H2...Ne, H2...Ar [284] and N2...N2 [285]. Other procedures [286] are

based on fitting expressions involving exponential damping to reliable

results or experimental data.

The dispersion contribution to the dipole moment [53-54,287-290]; has

a power-law divergence (OCH-7) at zero internuclear separation.

Expressions for the damped dispersion dipole moment have been given [291—

292] in terms of properties of the isolated systems. Nonlocal
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polarizability densities [275] and the full Coulomb interaction have been

used to calculate damped molecular properties such as dipoles, quadrupoles

and polarizabilities [293-294] within a reaction-field theory. The damped

dispersion-pair dipole is given [293] in terms of the Fourier transforms

of the nonlocal frequency—dependent polarizability density of one system

and the first hyperpolarizability density of the other system. We present

in Section 2 of this chapter a general method to transform the nth-order

charge-susceptibility density as obtained from generalized susceptibility

theory [295] into a form which can easily be compared with the fully

contracted nth—order nonlocal hyperpolarizability. We derive an

expression for the nonlocal polarizability and hyperpolarizability densities

in Section 5.3 and we give in Section 5.4 the expression for the damped

dispersion pair dipole moment in terms of reduced matrix elements.



5.2.-GENERALIZED FUNCTIONS AND CHARGE-SUSCEPTIBILITY DENSITIES

The expression

1 ln6(w) , (1)
 

lim .[ = PV

{*0 u_1C

where PV stands for "principal value" and 8 is Dirac’s distribution, is

used without proof in most work involving charge-susceptibility densities.

Here we present a general method based on the theory of generalized

functions [36,296] to carry out the limit involved in the charge-

susceptibility density as obtained from perturbation theory. The method

is equally applicable to susceptibility tensors, for the nature of the

matrix elements in the numerators is irrelevant in this treatment. The

method is general because it may be used with susceptibilities of any

order - it is not restricted to the first order, to which Eq. (1)

corresponds. This feature makes the method of potential use in the study

of nonlinear phenomena, both in the nonresonant and resonant regions.

The third-order nonlocal charge susceptibility density is [292]

 

 

 

X(2)(£”a£’, E; w’, u) = [1 + P(£’,w’;£, (0)] 11!!! 75—2

£40

“40

. p0k(£”),pkn(£’).pnotg)

'Z Z{ (w +u’+ u-it in) ' (w +u- in) +
k n 0k 0n

90k(5’) , Pkn (5”),pn0 (5)

* («bk-out) - (no; O-in) "

p (5’), (5), (5")
+ 0k, . Pkn POn’ . _ } . (2)

(”OR'” +1£)°(ubn-uru +1: + 1n)

where u and u’ are the frequencies of the field due to an external source,
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”bk is the difference of the energies (in units of 8) of the ground and

excited (k) unperturbed states, p(£) is the charge-density operator and

the primes in the sums stand for k # 0 and n x 0. The variables t and n

are real and P(£’,w’;£,w) denotes the permutation of E, with E and of (u,

- it) with (u-in) simultaneously.

The matrix elements in the numerators of Eq. (2) are not relevant in

the analysis that we perform. Let us consider the representative term

 

lim 1

(*0 [(ubk’ u’ +i€)'(wbn+ w“ in)]

n40

Define uOk-m’ 5 x, won+u 5 y

Let l/(x.y) be a singular generalized function ( the terms

distribution and generalized function are considered synonymous in this

analysis).

Let C3(fl?2) be the space of test functions ¢ = ¢(x,y) required to be

infinitely differentiable and to vanish identically outside some finite

interval; ttgt, {¢} are a class of infinitely differentiable functions

with bounded support.

The test functions ¢ = ¢(x,y) may also be elements of 5( [17(2), the set

of infinitely differentiable functions such that

k +k

p a 1 2

sup llzll I—kk ¢(X.Y)| < .. . 5 5 (my) .

(5) ac 1 ay 2

1:92: the set of functions which belong to C” and (together with their

derivatives) vanish faster than any power when Igleta, although they do

not have bounded support. Also, there must be constants

K for all g and every k1, k2, p = 0, l, ..., such that

k1.k2.p



[a kl+k2

k
llgllp- 1 k2 ¢(X.y) l <x

ay

kikzp

We have O:(fl?2) CIj([R2). In this case, l/(x.y) is a tempered

singular distribution [296]. We now find an equivalent expression for the

singular distribution

 

SE _1_ : 11m+ 1 ,

xy {*0 (x:i£)'(ytin) (3)

p40

where o = 1 l, j = 1,2. For every o 6 C3 ([RZ), we have

¢<x.y) = o . V(x.y)s€[a.-a] x [b.—b1c Rz

<Sl¢ > 41”: .[bb (mit) (ragin)

n*0

(x-alit) (Y02in)

:11“...-gr“) 2 2 [¢(X,0)-¢(X,0)+¢(0,Y)-¢(0,Y) +

X2+€2) (Y +n )

¢(x.y) dxdy =
 

 

+¢(0.0)+¢(X.Y)-¢(0.Qfldxdy - (4)

The integrations in Eq. (4) are performed as follows

 

(X-o it) (Y‘Ozi n)
O 1

11m _ _ ¢(x,0) -—- dxdy =

¢(x.0)

=::: -02 21 arctg (b/n) [Ea87;:zigz)

n40

-_ - £1.21. -_ . , sigma).-
ozlfljfa x dx - 021" [Eb 8(y)dy PV ~a x

dx]=
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-olazuzfibfiadxdys(x,y).¢(x,y) . (5)

Analogously,

. (x-a i£)'(Y“o in)

11m a l 2 _

:40 [with “0’” 2 2 2 2 d“ d” ‘

n*0

 

(X +€ )‘(Y +n )

= - oliquadx 6(x) W [13315]?!) dy - °1°2"2EaJ1—)b¢(x’Y) 6(X.y)dxdy -(6)

(x-oli€)'(Y‘ozin)

(X2+£2)'(y2+n2)

 1m ¢(o,0)[_a _b dxdy :

= ¢(0.0) lim “-0121 arctg (a/£))'(-0221 arctg (b/n))] =

{40

- n2 «0.0) . (7)

(x-oli{)'(Y—ozin)

2)

 

(114; fiafib [ ¢<x.y> +¢<0.0)—¢<x.0)-¢<0.y)dedy =

“40

- ng.x) . a 95 . 12.. a.212.92 , gx
' PVJEAJEb xy dXdy1+ ¢(0’0) Pv -a x PvIEb y PV -a X dx PvJEb Y

(X2+€2)‘(Y2+n

-Fvfia-‘1“; -FvJ‘:bM%‘ll dy = Pvffibflfifl dxdy , (8)

For FvJEaQ—f = o in Eq. (8).

Equations (5), (6), (7) and (8) allow us to write Eq. (4) as

_ _ . a ggx,y) _ a ggx,y)
<S|¢> - oziwjgbdy 6(y) PV -a x dx al"l-adXS(x) PVJEb y dy -
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- zalazuzjfaijdxdys(x.y) ¢(x.y> +

 

2 a a x

+0102» [_aijs(x,y)¢(x,y) dxdy + PVI_8JEb$L;;Xl dxdy . (9)

Therefore,

. 1 _ _1 _ 2 _. 1
11m (x+a i£)'(y+a in) - PV xy alazn 6(x,y) 1n[018(x)PVy +

{*0 l 2

n*0

+0 5(y)Fvl ] (10)
2 x ’

where 6(x,y) is a two-dimensional Dirac distribution

The representative result given by Eq. (10) is used to perform the

limits in Eq. (2) to obtain

x(2)(£”o£’,£;w’.m) = [1+P(£,ou,;£.u] ‘5-2 '

. . 90k(§”),pkn(§’),pn0(§)

E W <~..+~'+~>-<~..+~>
 

+ Pou‘i')-"kn(5”)-Pno‘5) +

("Gk-w, ) . (”Onfi")

 

 

(r’) (r), (5”)
+ POk ~ 'Pkn ~ FDn }

(ubk‘u’)'(wbn-u-u’)

’"2{ °11°21P0k(5")'Pkn(5')'Pno(5)'““bk+“'+°'”bn+”)

+012°2290k(5'"'Pkn‘L"’)"’no(5)'““bk"""“bn*“’)
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Em}
' o

+"13"23"0k(E ) Pkn (5)

 

+ “{Pm‘i >‘Fk.<£ >°Pno<£><-°u$<~ok+w +w>PV.,On..,, -

‘0216(wbn+w) PV

 _ ’. H. _ _’

P0k(5) Pkn(5 ) Pno(5)( °125(“0k ” ) PV 0 +m

___l__.
-0228(w0n+u) PV ,)

l

 

_P0k(5 ) 'pkn(5)-p0n(§; )(‘0135(00k“m ) PV LOT-3;, -

*0 6(0 ‘u-u’) PV 1 ) }] (ll)

23 On “bk-u, '

where 012 and 021 are equivalent to al and 02 in Eq. (10) and l = 1, 2, 3

h term in the sum within brackets in Eq.(2).refers to the it

The procedure that we have followed here may be applied to a term with

n factors in the denominator, t.g., to the (n+l)-order nonlocal

susceptibility density. The analogue of Eq. (10) in such a case would

involve the principal value of the inverse of the product of n variables,

plus a combination of n, (n-l), (n-2),..., l-dimensional Dirac

distributions each multiplied by the principal value of the inverse of the

product of 0, l, 2,..., (n-l) variables (respectively) that are not

contained in the corresponding Dirac distribution.
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We obtain the expression for the linear (or second order) charge

susceptibility density given by Linder and Rabenold [295] when either Eq.

(10) or Eq. (11) is particularized to the case n = 1. Furthermore, the

limits in the nth -order charge susceptibility tensor [297] and the nth

order conductivity tensor [298] are easily obtained when we take £=n in

Eq. (10), t.g., when we carry out the transition to purely real

frequencies by taking a common imaginary component of all frequencies

[297-298] to zero.



5.3.—NONLOCAL POLARIZABILITY AND HYPEHPOLARIZABILITY DENSITY

CALCULATION

Response tensors may be given as sum-over-all-states [293,299-300] or

as restricted sum-over-states expressions [293,300-303]. The expressions

given as sums over all states have apparent divergences (secular

divergences) which should be removable [300] because their origin is a

number of redundant terms coming from a phase factor in the wave function.

This phase factor is expanded in powers of the field. Here, we first

derive and expression for the first hyperpolarizability by removing the

secular divergences from a sum-over-all-states formula [300]. Secondly,

we calculate the reduced hyperpolarizability and polarizability which we

shall need in section 5.4 for the calculation fo the damped dispersion

dipole. The derivation is restricted to systems whose ground-state dipole

moment is zero.

The first nonlocal hyperpolarizability BuBY(5,§’,5”;iu,-iu,0) is

[304]

[F_(rnofltrawn“In[Pg9* >1 0

(um‘+iw)(mho+iu)

 

(r,r’, r’ ’;iu,-11.1.0): 132 Z[l+c.c. ]{—

m,n
8,3,

[Pu(r)]0m[PB(r’ )] manY(E”)]n0

(uw'+iu)qho

 

 

+

[P(r’)] [Pam)1 [P(r”)l
+ fl~ 0m mm I.” n0 } ’ (12)

(me-iu) Un0

 

where Pu(§) is the u—component of the polarization and c.c. indicates that

one must take the complex conjugate of the expression following it. We

now split the unrestricted sum in Eq. (12) and perform the integration
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over the g”-variable to obtain the reduced hyperpolarizability

 

 

 

 

 

 

 

A ’.o _o )

8187(5’!’ ,10, 1:.) .

.[P (1')] [p] [P (r’)]
A 9.- _- _ ‘2 u~ W1kfl“ n0

Bwr(r,[ ,1... 1...) — F. [l+c.c.]{m’n (”no+i“’)(“’no+i°) (13.1)

+ Z.[Pu(§)]om[PB(g’)lmnlurlno (13.2)

m,n (“ho+lw)“ho

.[P(1;’)] [P (5)] [ J

+ z B %‘9 E. )4" ”I “0 (13.3)

m,n ”hm 1” ”ho

ll] (uw+iu)im .

n iw(uno+iw) °

n 1:.) (duo

+_2:[PB(£’)]oo[Pu(§)]on[ur]no } (13 7)

n uh0(-iu) , O

0

Where 2: stands for the sum over m and n with the restriction

m,n

m s 0 and n t 0. In the integration to obtain Eq. (13) we have used

I dE"[PY(E”)loo = [urloo = o (14)

where pr is the recomponent of the dipole moment [293], t.g., the reduced

A _

hyperpolarizability BnBY(£,§’;iu,-iu) is specialized to a system without a

ground-state dipole. After partial-fraction decomposition of the terms

(13.4) and (13.5) above and some rearrangement in the sum [l+c.c.],
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cancellation occurs and we obtain the reduced hyperpolarizability as given

in Eq. (15)

. [P(r)]0m[uY]m[PB(§’)]no
(5.5:;iu.-iw>=2l1+° C 1 {5 (“Midway“)8&81

[Pn(r)10m[PB(r’)]mn [uran

(“ho+1°)”no

 

[PB(5’)JOmIPu(;)]mn[urlno

(”mo-i“) mn0

 

[Pu(E)]om[UY1molpfl(5’)]00

”mo(”ho+1”)

 

1 £3g(£)]00[PB(E’)JQE[”Y]m0 } O (15)

 

— Z w (u -io)
m m0 m0

Integration over the 5— and E’-variables in Eq. (15) yields the (fully

reduced) first hyperpolarizability in complete agreement with the

expression given by Buckingham [303]. This first hyperpolarizability,

BuBY(i°’-iu)’ gives the static nonlinear dipole in the presence of the

electric fields Hawk-‘1‘"t and Eé.°)ei°t. The static nonlocal

hyperpolarizability density obtained from Eq. (15) by taking w = 0 agrees

in full with the expression given by Hunt [293] in formula (2.37).

Now the first-order correction to the wave function for a system

perturbed by a uniform, static electric field in the u-direction is given

by
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(fllu '0) a [P lmo

(l) ’ u _ an
N )=£——N’>=ZI

a m ‘“mo m m m0

olm) . (15)

Reshuffling of indices in Eq. (15), the use of Eq. (16) and Fourier

transformation allow us to write the hyperpolarizability in k-space as

M(I)IP(k)|n><n|P(k’)|0>

7Kwno+11»)

A

88711

 

(15,15’;iu,-iu)- [1+C. c.
     

(1) a
“(4!“ IPLQS )Im)<m|PB(k) I0)

‘meO-iw)

 

+2

111

.[PB(5)]0m[uu]mn[PY(k’)]0
 

 

25:” (uno‘tiw) (umo'tiu) 1'12

n 0n0(wh0 +1”)

fin0(”hoSi”)

 “1} . (17)

where c.c.’ denotes the Fourier transform of the terms associated with

c.c. in Eq. (15).

We shall need later the doubly contracted hyperpolarizability in kf

space, gig., kek;§BYu(k,k’;iu,-iu), where the sum over repeated subscripts

is implied. The divergence of the polarization is proportional to the

charge density, and its Fourier transformation satisfies the condition

5 2(1) = -i.p(g). (18)

The use of Eq. (18) in Eq. (17) allows us to calculate the doubly

contracted hyperpolarizability



<¢;1’|p(5>|m><m|p(g*)|o>

fl(uh0‘iw)

 

A 9

kBk Yem(g,g :1w,’1w) = [l+c.c] {-5

.<wél)lp<5’)Im><mlp(g)10>
 

fl (who-iu)

.<0|P(E)|m><m|uu|n><nlp(h')|0>

51(who+iw)(who+iu)

 

n,m

<0|P(§)I0><0|uu|m><mlp(k')|0>

+iw)

 

+ 1:2 E":

m ”mo(“’mo

<0|p(5’)|0><0|uu|m><mlp(g)l0>
+ _. 1}. (19)

ull0(ulllo 1”)

The multipole moments Q:(k) are defined [264] by the equation

 

m _ 4n 1/2 §21+123 .

o,(k)i. 53Zu‘5iii) Y:(°a'¢e) , . JR(kru) (20)
a 2 1.

. . th .
J1 is the Q spherical

Bessel function, and (ra,eu,¢a) is the position vector of the particle a.

where Zn is the electric charge of particle d,

Then using the Rayleigh expansion of the plane wave exp(ig.£a)in the

Fourier transform of the charge density p(k), we may write

.. 9. , a "

pm: 2 X "(34)? W141 Y,”(e.¢)* 020:) . (21)
~ [=0 m=-k

  

With 5 = (k, 90 ¢)'

Let the function «I»: (k,u) be defined by

1 l

u + u

no

 q}; (k,u) a if 2’ |n><n|Q:(k)|0> . (22)

n
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We rewrite Eq. (19) with the aid of Eqns. (21) and (22) and we

specialize it to spherically symmetric systems. Thus,

a R 1’

(ng’iiwfiu) = [l+c.c.] Z Z Z GULF) .

t A

k k B

Y BY“ l’lizo m:_n m!:_1)B

[’Y'i'ke'.¢'>*¢E<e.¢>*<¢1mnIn?“"i:<“"iw>>5m~.m+m’ ‘M’fl

* ’ a y * m, ’ m —’
"YJ;(9,¢) YE,(9 9¢ ) < ¢1m19|01’(k )|Ql(k’ 1m)>6m”’m’+m6£,i’t1

’ , , t m _. m’ , .

‘Y';(99¢) YIE’(9,¢ ) <¢l(ka 1U)|Uu|§1!(k ’1w)>69_’1’:16m,m”+m,]

at H
-”4" m +1y3(e.¢)*Y'{' (e’.¢')<0|vu|9'i' ("”iw)><°'°3(")'°>+— :10 [(-—1>

I}
,

+YT”(9.¢)*Y3(6’.¢’)*<0|v¢'°lf’,(k”i“’)><o'Qg(k’)Im] } ‘23)

where

1 : 1+9~’

: o 1/2
(21)!(2£ )2 [(21+l)(21 +1)]

 

C(k,1’) 5

In Eq. (23) 5i j is Kronecker’s unit tensor, and the electric field has

been taken in the direction YT . We adopt the convention 3" E ~m

Eq. (23) and within this context.

9! in

The doubly contracted hyperpolarizability given by Eq. (23) is in a

suitable analytic form for computations, since the matrix elements can be

calculated [266].

The doubly contracted Fourier transform of the nonlocal polarizability

density is [276,293] the susceptibility x(§,-5’;iu) ; with the same



conventions and definitions as made for the hyperpolarizability

L

x(g,-g';iu) e 2 z: C(L)v:(e,¢)£:(e’,¢')*<olo¥(k)*|¢$(k’,ie)+

L=0 M=-L

+ §:(k’ ,‘iu))

and

L22L 2= _. 2L 4?!

C(L) ’ ( 1) [ (2L)! ] 2L+1

  

(25)

(26)



5.4.- DAMPED DISPERSION DIPOLE MOMENT CALCULATION

The u~component of the dispersion dipole on A in the A...B pair is

given in terms of properties of molecules A and B by [293]

A _ s ” _ _ ,.. _. B _ ,,.
(”disp)u- (2")7 IodeBABm( L": I}, 9109 10)-u6€( 11:15, ’1”).T86(1‘S).

 

.T (k’) dg dg' , (27)

-—kk . (28)

Let g be the vector from a center in A to a center in B and refer the

position of all the particles in grspace to the origin of 3. Then

2 REE
A ‘4“! g . - B S '

(”disp)u= ‘ (2")7 E®I83m(l£!]£ :1U9-10)k2ka2 (_1)X (E's—B, i1“)

.e-i(k+k’)'g dk dE" (29)

To analyze Eq. (29), the plane—wave exp(-ig.g) is written again as a

Rayleigh expansion

'E'B _ a x .x p p *.

e - Z 2' 1 4"Yx(e’¢)'yx(°R’¢R) Jx(kR) , (30)

x=0 p=rx

where g = (R’eR’¢R)' Let us define
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C(1.l’.L) 5 C(l.l’)-C(L) (31)

with C(l,1’) and C(L) defined by Eqns. (24) and (26), respectively.

The next step is to perform the angular integration in Eq. (29), where

the B-susceptibility and the doubly-contracted A—hyperpolarizability have

been written as in Eqns. (25) and (23), respectively. To do so, we make

extensive use of the properties of spherical harmonics and Clebsch—Gordan

coefficients, the Wigner-Eckart theorem, and the relationship

2 (abaB Ie€>(ed€ 6|cr><bd86l f¢> =

8.6.6

= [(2e+l)(2f+1)]1/2 W(abcd;ef)<afu¢lcr>, (32)

where <aba8le€> denotes a Clebsch—Gordan coefficient and W(abcd;ef) is the

Racah coefficient, closely related to the 6-j symbol. we obtain [305] the

damped dispersion dipole moment for a spherically symmetric system

A _' g_ I“ I“, , ” .x+x’. . , , .
(”disp)z' 1‘ "3 od‘I’Od-k dk xzx’=01 J)‘(kR)J)" (k R )

. 112w) sz'nnl/z
4" (xx 00|10> -

<LL00IOO><OIIQL(k)IIQL(k’,iu)+§L(k’,-iu)>[l+c.c’.]-

L=0



1/2

[. 15%— 11:.» cm mum.)- [<0l|00(k)||0><0llulld>1(k’.iu)>

+ <0||c)0(k')||o><<1>l(k,i..,)llulI0>]esL’x

+ E C(1,1’,L).A(L,n’,x’)[(2£+1)(2x’+1)]1/2 W(11’xL;nx’)

1,1’=0

.{h(X.L.1)[<¢lllQn(k)Iléh,(k’aiw)>+<¢llIQ£,(k’)II§£(k,-iu))]3%r +

+—1gLLL5%- <§1(k,-im)llull§ .(k’.iw) }]» (33)

(22+1)

where

A(a,b,c) H)” [QWEQMD 11/2 [a b c]

4w 0 o o ’ (34)

the double-bar matrix elements are the reduced matrix elements generated

AA

by the use of the Wigner-Rckart theorem, and we have taken R =

Notice that the Clebsch-Gordan coefficients involved in Eq. (33) imply

the existence of the factors 6£,£’:l and 62.x’il . Therefore, we may

rewrite Eq. (33) as

(u‘ )- E “L Ex 5(kmjdk’j (k mj'd... cw, k’ i... 9., >. 1.) (35)

d‘sP z1,L=0 x=l1-L| *1

(l+x+L=2)

where G(k,k’;iu;£,x,L) in Eq. (35) is defined by comparing this equation
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and Eq. (33).

An analysis analogous to Koide’s for the damped dispersion energy

[264] holds for Eq. (35) (or Eq. (33)). Consequently, we may say that

(pA. ) vanishes as R goes to O and as R goes to infinity. Computations

disp z

of (”disp)z and the dipole moment overlap-damping functions may be

performed with the analytic expression given by Eq. (33).



APPENDIX A.

A derivation of Eq. (21) is carried out in this Appendix. Let us

rewrite Eq. (20)

 

(n) _ _ “’1 _L (1) on.

A _ ( 1) Zni ér 90(9)H . . . 30(9)d9 (9.1)

R (9) - E + s + (9— )s2 + (9— >253 + (A 2)
0 - xo-l >~O x0 ’ ' ' '

30(9) 2 s + (9—90) 52 + (9—90)zs3+ . . . (9.3)

S E 80(xo) (A.4)

From (A.l) and (A.2), taking into account definitions (A.3) and

  

(9.4),

A‘“) - (-1)“"1 _1- § I E0 + s (9) J “(1) '“' [E 0 +
- Zni F xO-l 0 ' ° ' xo-R

+so(9)] d9 . (9.5)

In particular

E

(1) 1 (1) 1 o
A = . a (9)9 a (9)49 = . [ _ +

2w1§r0 o 2111i. N)“

+ 80(1)] d1:

E

(1) __Q_
+ 50(9)]H [ *0-1

10]
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1.

-— 80(1)H(1——Qd£ +

xo-D. xo-—Qd9. 2"1¢r))‘0-9‘

___. -.__ (1) _1_ (1)
+ . 4%. H 30(9)d9 + Zni §; 50 (9)H 30(9)d9

= -SH(1)E - E H<l>0 0 S (A.6)

E

(2)- _:l (1) (1) _ _:l 0
- 2.1 (fir 90(9):; 90(9)!) 90(9)d9 27:91 [W1 +

 

E

<1) 0 (1)
[ t—9+ So(l) ] H + 50(1) 1H 2 + S0(1) 1 d1

0

z _-_1§ _E_0 H (hi9 H(1)119)
2191 90—9 xo-D. xo-D.

1"

d9.-

E E
__Q (1) (1)__Q _

li.>O-9 H so”)H 90-9 d“

E

(1) 0 (1)
- . S (9.)H H

@1‘ 0 xo-R. xo-D.

E

(1) (1) 0
- . S (9.)H S (1)11 d9. -

g. 0 0 )0-

E E

- __l__ __9_ (1) __Q_

2111 § xo-B. H xo-D.

H(l)so(9.)d1—

r

E0

-§%§xo—o—9.-
F

H(1) SH(£)H(1)S (9)d9—
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E

(1) 0

xO-R

H(1)So(£)d1 -
_1_

’ 2ni 4i.so(n)"

(l) (1)
SO(Q)H So(l)dfl =

_1_
- 2ni éi'so(9)a

_ (1) 2 (1) _ 2 (1) (1)
30H 3 a 30 s H 80H 30 +

(1) (1) _ (1) (1) 2
+ SH SH E0 EOH EOH s +

+ EOH(1)SH(1)S + SH(1)E0H(1)S (A.7)

where Cauchy’s integral theorem has been used in both (A.6) and (A.7). It

should also be noted that 50(1) fulfills

_QE _ . 9+1

The generalization to obtain (21) is now straightforward.



APPENDIX B

Expectation values of operators in label-free form

In this Appendix, a decomposition of the antisymmetrizer for an N-

electron system is used to evaluate the expectation value of a permutation-

invariant operator 9 in the state 0. The function Q is assumed to be a

normalized, fully antisymmetrized product of N molecular orbitals on system

A

A and Ni on system B, with N=NA+NB.

The N-electron antisymmetrizer.fl is related to an idempotent

projection operator 0 by

,4 "1%: zapszN‘efl (3.1)

P

N’ and GP =

11, depending upon the parity of the permutation P. The operator 0 commutes

where the sum runs over the permutations in the symmetric group S

with any operator 9 that is invariant with respect to each of the

permutations. In particular

[0.11] = 0 (3.2)

where H is the full N-electron Hamiltonian for the "supermolecule" AB; and

if the unperturbed Hamiltonian H0 and the perturbation V due to A-B

interaction are written in label-free form (Eqs. 2 and 30f chapter 3.2),

[0,190] = [ON] = 0 ‘ (8.3)

The operator 0 may be decomposed into terms that perform the

antisymmetrization within systems A and B and terms that perform the

antisymmetrization between systems. Lagrange’s theorem applied to the

symmetric group S and its subgroup SN ® SN ensures that 0 may be split in
N

this way [113,114]:
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N !N ! R

1 A 3 AB

= __, Z a P = —, O 0 (ll + Z o.P. ) (8.4)

(NA+NB)‘ P P (NA+NB). A B i=1 1 1

In Eq. 8.4, Ci is the antisymmetrizing projection operator for molecule A

with NA electrons, defined by analogy tattlfor the full N-electron system,

and.cg_is the corresponding operator for molecule B. n.denotes the identity

operator. PiAB exchanges one or more particle labels assigned to A with

labels assigned to B; it does not involve permutations within the set of

electrons assigned to A or to B. The number 1 of operators PiAB is

n

9 = Z (NA) ("3) . (3.5)

5:1 J .5

Since the upper limit n on the number of electrons exchanged is min (NA’NB)’

N!

9 o
NA'NE'

l = - l. (B.6)

It is convenient to define P by

9

P = 2 0.3.“ . (3.7)
. 1 1

i=1

Then the expectation value of Q in the state 0 is

«FIRM» = N! <6{xl...xN} |n| 00%...pr / s (3.8)

where the xi’s are orbitals located on A or B and
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N! (UD‘I"'XN} |O{x1...xN}>

(MA!)2 (NB!)2
8 = N! < 5A 03 (1+3) {x1"'xN} |OAOB (1+3) alum”) > 

NA! NB! < 0A OB {x1...xN} '09 GB (1+3) {xlmxfl} >

< ¢A¢B l (1 + P) ¢A¢B > . (8.9)

In Eq. 8.9 wk is the normalized antisymmetrized product wavefunction for

system A (and *3 for B). An analysis similar to that for 5 shows

_ l
<q9|nlxp> - s <¢A¢B|n|flAflB (1+3) alum”) > . (3.10)

Substituting the form 2 QiAi for 0 yields

_ 1
<~9|n|w> - S [<¢A¢B|nllwAwB> +

p 9
93

+ (wAwBIifzniAilflAflB {:1 0ij {x1'"xn}>]’ (3.11)

where/l1 is the projection operator that assigns the first NA electrons to

molecule A and the remainder to B. Each of the operators Ai in the second

matrix element projects out a single P‘jAB term from the ket. Eq. 22 in

section 3.3.1 is obtained by identifying n with V.



Appendix C

Pair energy of He...H

The first-order pair energy E for the He...H system

_ (0) (0) _ _-
E - EH + EHe + V(Fz-0) + F2 {T1 + T2 + T3} ”ze (C.l)

from Eq. 11, with

-1 —1 -1

{-2<xu'rneIXa>+2<xnlxae><xae'raeixn>‘2<xnelru lxue>a
n
u
s

m
h
—
a

V(Fz:0) : +

+<xn'xne>[<xuelr§1'xn>+<xa|xue><xue'rfilwe”

-1 -1

-<xnxuelrlzlxaexu>+ 2<xnxaeir12 Max":

—<xHexHe'r-lélxflxfle)<xflixfle>} ’ (C.2)

T = .2.
(M)1 . <xn|xae><3§°’<xneIX§>-<xue"In”; >>’

T2 =5 - <xue'hue'mexs'xn;[<3;'%.>+<><§|xne>1-<m"meWexalflma

- <41'hn.|><§.><>3|xne>-<xnxae|riélxuexaexxililxug

-1 1 —1 1

- <xn><ue|r12|xnexue><xn|xue> - <xuxnelrlz|xaexae><xa|xne>

+ 3&3)<xu|xae>[<xu.IX§> + “9'31...” ] 9 “W

__2_ _ -1 1 _ —1 1 -1 1

T3 - s 2<XB'rHelxh> 2<x3e"n IxBe) + 2<xhxhelr12|xhxfle>

+ 2<xnxne|riilxuée> ’ 9% <xuelxu><<xnebé> + Whig)
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-1 1 -1 1

+ 2<XHeIrHe|xll><xlllxfle> + 2<xfle|rfle'xfl)<xfl|xfle>

+

<xa'rfillxue><xae|x;> + <xu'rél'xiiexxne'xm

<xue'rfillxue><xu|xue><<xuelx;> + “uni.”

+
+

—1 1 2 -1 1 -1 1

<3).er Ixne><xa|xne> - <xnexu|r12|xuxae> - <xnexa|r12|xnxue>

<xn|xue><<sexaelriéul>3e> + <xaexue|riélxn><§e>>

- Quasar}:Ime><><n'><§e>+m‘z=°> “me”? + <xrl(e'xu>><xuelxu>]’

(0.5)

and

_ < I >

p2 = ffl_§fl§_ 2<xH|z|xhe> - 2R<xh|xhe) J . (C.6)

The notation

_ v2 -1
hq — - E - quq (C.7)

- 2
s - l - (Xfllxfle> (C.8)

_ 3

<qu3|xr> - [d rlxq(1)g(1)xr(1) (c.9)

<qu§|riélxmxu> = I d3r1d3r2x§(l)xv(2) r1; xh(1)xu(2) (C.10)

_ 3
(WV _ Id rlxq(l))%(l) (0.11)



109

is used in Eqs. C.1-C.6. Also, the internuclear distance is R, r12 is the

interelectronic distance, and rq is the distance from an electron to nucleus

q; g is any one—particle operator and q, v, m, u = H or He. The functions

(1) (0) . . 1
xh and Xq from the main text are abbrev1ated as xq and xq,

respectively. Zq is the atomic number of nucleus q.



APPENDIX D

. . -1 H .
The hybrid integral (lsflelsflelr12|gpzlsfle> needed for the calculations

in Chapter 13 is not one of the 79 hybrid integrals in terms of auxiliary

functions compiled in Ref. 67. If we adopt the same conventions and

symbology as in Ref. 67, the calculation proceeds in the following way.

. . . . = H =
Define the charge d1str1butions Ra - lsflelsHe and nab - lsHe 3pz where a -

He and b E H. Q is a E —type distribution according to the standard
ab

two-centre charge distributions given in Table III of Ref. 67.

Furthermore,

fl = k w(£.n)exp(-m£)exp(-Bn) (D.1)

4“ _1_______ 22
E152‘n2)w(£.n) - 2’ Z onfitnJ: 4Jr§a (C‘n)(1‘{n)({ “n ) (D-Z)

n=0 j:—0

w(€an) = 5%;F§3~ (c-n)(1-:n) (3.3)

k = 32(:1:)3/2(::pz)”2 (v.4)

(§)2(z—n)n = §;§r§5 (11:)3/2(:?2) 1/2; 8XP(‘P£-PTn)(€ -n)2 (1—(n) (n. 5)

and M = 0 = q. The expression (0.5) expands by one the number of terms

given in Table III of Ref. 67.

The one-centre distribution is ”He = [ISHe], and

l-exp(-Sa(z-n))[1+% ;a(€-n)l = g “+3)U“ae (v.6)

Therefore, u0 = 1, 111 = 1/2
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_ (5‘3) 1
3 Is 3/2 z-1/2 4 .. 1 File

[ISHellsHe3pz]: (:H8) (:HP) pH [0 dcj;ldn[1—e 9E3

“933: ((+3 ) kleP“*"“’4rl—~ (z-“)2 (1—an):

_ 1 ls 3/2 3pz —1/2 4 .. 1 _ _
- HJHH (:He) (:H ) P3 jldsj_1dn{<c n)2(1 an)

-; (z—)

-e He n [(z-n)2(1—cn) —

-%; Hét+“)(€-n)2(1‘€n)l}
e-P(£+1")=

4 3p 1
_2___ 1s 3/.2 z)—1/2 _ 001 _4__1010_ 43—6 ((He) (:H [002° (150“(2“) “€2,2(P3e ,pH)]-.5?) 102 (3,7)

H _ M/H-l/z _ X _ *

[lsnellsneapz] "' HHe {H0 (9H8 99H) H0(PHe!PH) pH1(PHe!PH)} (D08)

From (0.7) and (0.8),

4 010 (3.9)

JB—CUZ =Hu

Thus, the number of monopole integrals given in Table VI of Ref. 67

may be increased by adding the term

 

 

[Q a I Q ab ] H 0 H 1 cf

H 010 010

[1sHe | lsHe3pz ] c02 ’ c12 4/ J30



APPENDIX E.

We outline here the proof that leads to Eq. (20) from Eq. (17) in

chapter 4. We give first the expressions for the spherical-tensor dipole

moment, the product of two spherical harmonics on one center, the product

of a component of the dipole moment and a Slater-type orbital, and the

transformation of spherical harmonics under rotations. We then write the

u-component of the dipole moment from which Eq. (20) is derived. We refer

to standard books [238-241] as the source of the mathematical

relationships used in this appendix.

8.1. Spherical-tensor dipole moment.

r0 = 2 (El)

rt1 = ; (2) _1/2(x:iy) (E?)

or = ( 43) /2rY1m(e,¢) , with m = o, 1 1. (33)

E.2. Product of two spherical harmonics on the same centre.

(9. ¢) and Y (e,¢).

9‘1‘“1 12m2

The product is given by the following expansion in terms of the Clebsch-

Let the spherical harmonics be Y

Gordan coefficients C(1,£’,R”;m,m’,m”)

(29.1+1) (2112+1)

4n(2£+1)

(3.9). Y (e, 9) =2m[ 11/2C(11121;000) .
 

Y1 m

1 1 92m2

. C(91129;m1m2m) YHIll (e,¢). (E4)

When we take A = 1, the properties of the Clebsch-Gordan coefficients let

1

us write
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3(212+l) 1/2

Y (9.¢).Y (e.¢) = Z [———-—————— ] c<11 1;ooo>.
1m1 lzmz 1:112:11 4w(2£+l) 2

. C (llzl;m1,m2,m1+ m2) Yfi,m + m2(6.¢) (E5)

1

where 2 stands for the sum over at most two possible values

1=|1211|

for 1, gig., i + 1 and [£2 — 1|.
2

E.3. Product of a component of the dipole moment and a Slater-type

orbital.

Let the normalized complex Slater-type orbital on centre a be

1

(n.1.m>a= (zza)"*’[<2n)sl‘l/Zrn’le"a’ Ylm(ea’¢a) . (E6)

Then 1

- fl! 1/2 n+- , ‘1/2 n -{ r _

rnl.(n.R2.m2)a — ( 3) (2(8) 2[(2n)-] r e a Ylm1(ea.¢h)Y£2méea.¢h) -

_ 2 [2124-1 11/2

1=Il211I _Ei:l— C(1121;000).C(112£;m1,m2,m1+m2) .

[2n+2)(§p+ll 1/2
2{a (n+l,9.,m1+m2)a , (E7)

where Eqns. (E3, ES, ES) have been used and (n+1, k, m1+m2)a’ is a

modified Slater-type orbital on a defined by

3

_1 ..

(n+1,£,ml+m2); = (2:8)“+5[(2n+2)s] /2rne ‘a’Yl,ml+m2(ea,¢h). (as)

0.4. Transformation of spherical harmonics under rotations.

Let (X’, Y’, 2’) be the canonical reference frame. 0 denotes the

rotation (passive interpretation) carrying the system (X, Y, 2) into

coincidence with (X’,Y’,Z’). The transformation law is
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t o _ X
YXLJ(6 ,¢ ) — E Dmu(fl).Ym(e,¢), (89)

where 0;” (Q) is the rotation matrix [241] defined by the convention given

by Rose [238] and Messiah [239].

E.5. u—component of the electronic contribution to the dipole moment.

The use of 8.1 through 8.4 let us write Eq. (17) in chapter 4 as

e1__'ik_ik9. i_

”a“ [611+TkTi T117931] (‘11) i

_ _ i i _ i k 1 j _
[ T 3* T kaJ T k? llT 3 ] (r ) i _

k k 1
=3; (_12 )-212 z (1711*

P up p21 up l€Pp k

i k l

P . . .

+ z z 2 [T1.- T113".- 14".“

p=1 iEPp jGPp J J

(i#J)

1 J

p . . .

- z z z z [411 .- T113“.- le-rk

p=1 iEPP jGPp 1=|1i21| 9

(1:3)

A

[ 21i+1

21 + 1

(2ni+2)(2ni+l)J1/z

2(i

[ ((1131319) [(Biifiiw +

p . . .

+ Z Z Z [T1 .41ka .+T1kwlen .] Ru

p=1 iePp j¢PP 3' J J P

J J J. . _
. <(n 1 m )|(nillimi )>

- T1 w T .) +
1

T1.] -

9.
T J.]

1/2

] . C(l 111:000)C(1Ril;m1,mi, m1+ mi) .

J _ 1- _

x: Z 11“., .(n1)n} ml).
’ ' J J m- m.

1111 mJ’ m m 1 1

(E.10.l.l)

(E.10.1.2)

(E.10.2.l)

(E.10.2.2)

(E.lO.2.3)

(8.10.2.4)



115

p . . .

— Z 2 z [7T1.+T1ka.-T1kwknTn.] -

p21 iePp j¢Pp J J J

21.+1 1/2

 

 

Z 2., z - ‘ C(11.i;000)

m; mJ n=|£itll[ 2Q+1 ] 1

L(2ni+2)(2ni+1)]1/2

. C(liil;m1,mi,ml+mi) 2:1 .

J J J — - It” -1 “i '1. < (n R m ’)l(n.1 m.)’> . D ., .(Q )'0 , (fl ), (8.10.2.5)

1 1 mJ mJ mimi '

where n.5 n.+1 ; m.E m +m. , and m.’ E m +m 3
1 1 1 l 1 1 l 1

The terms in (8.10.2.1) come from the sum (8.10.1.1). The sums

(8.10.2.2) and(8.10.2.3) include the terms in (8.10.1.2) with the orbitals

i and j on the same nucleus. The sums (8.10.2.4) and(8.10.2.5) include

the terms in (8.10.1.2) with orbitals i and j on different nuclei. 8g.

(87) has been used in (8.10.2.3) and (8.10.2.5). The inverse of Eq. (89)

has been used in (8.10.2.4) and (8.10.2.5).

Two spherical harmonics in the canonical reference frame on i and j

satisfy

(Y IY . .> = 6 j . (811)

“imi iJmJ ”1”

Furthermore,

<Y1.m.'Y . .)+<Ynjm.|Y1.m.> = 0 , (812)

1 1 1 m1 1 1 1

when 1i = IlJtll. The use of 8qns. (811), (812) and some orthogonality
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relationships in Eq. (810) and its specialization to s—orbitals (i.e., 1i

= 0, Vi) yield

P p . . . .

11:" = E z (-Ru ) - z Ru 2 z [T1.TJi—T1k-rk.TJi] +
P p=1 P p=1 Pie? j¢P J

p . . . .

+ Z .Z X l?.,_p-['1".'rJ.-T1 7k.TJ.] =

p=1 1€Pp j¢Pp J l R J 1

N P

- p Z (-Rup) , q. e. d. (813)

9:1



APPENDIX F

The dipole moment for the H3 system in its lowest quartet state is given

by Eq. (24) in Section 4.2. The explicit expression for the transition

element in Eq. (24) is

3
(0) A, (1) -

1 2 _ 2

<¢ |v ligl Qiu >-6{<xalrfi Ixua>(SbCS8C2)<Xg|rc1|xua)(8bc Sab) +

+<xcrb1|xuc>(S2-SZL) +

—1 1 -1 1
+ (Sab~SaCSbC)((xb|rc 'xfia>+<xalrc Ixub)) +

+ (58ac-sabsbc)(<xC|rb'1Ixia>+<xa|rgllxic>) +

+ (Sbc—Sacsab)(<xb|ra l|xhc>+<Xt'ra1lxub» +

+5 (< 1 -1| 1 >—< | ‘1; 1 >+< l '1 | 1 > —
ab xcxb r12 “taxi xbxc r12 x'uaxc xaxb r12 Xucxs

—2< Ir-ll 1 >—< lr-ll 1 >) +
J‘c’Sa 12 xuc’ia xcxb 12 Xaxuc

-+< |r_1| 1 >-< I ’ll 1 >) +
JTBS: 12 Xc’ina cha r12 xcxub

+s (< '1 >-2< '1 1 >+< "1 1 >+
ch xbxa'rlzb‘aaxc m'rm'xuaxc xcxlrm'xuaa.

+ < Ir-ll 1 >-< | ’1| 1 >+< | ’II 1 >—< | -1| 1 >) +
xbxa 12 xaxhc Xaxs r12 xaxuc chs r12 xaxab xsxc r12 Xaxub

+s (< | ’II 1 >—< | ”1| 1 >+< | ’1| 1 > -
ac xbxb r12 xhaxb “ext r12 Xuaxb xbxa r12 xficxb

- < Ir-ll 1 >+< |r‘1| 1 >—2< Ir—ll 1 >+
xaxb 12 xucxs “bxc 12 Xaxub thb 12 thhb

+ magma.»
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The notation

<quglxir> =I33F1X§(1)8(1)Xfi: (1) (F2)

-1 _ 3 3 —1
(qurlrlzlxnxu> _ Id rld r2x§(l)xv(1)r12xh(l)xb(2) (23)

is used in Eq. (81). r12 is the interelectronic distance; g is the

electron-nucleus distance; q, r, v, m, and u label the different nuclei a,

1
b, and c. xéo) and x(1) from the main text are abbreviated as xh and xh.

The remaining symbols retain the same meaning as in Section 4.2.
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