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171BSTRACT

Ihe image paremeter method ior iilter design is not yet excelled

for its simplicity. Darlington's technique, although qaite straightfor—

ward, has the following restriCticns: (l) A special type 0; insertion—

loss requirement is Considered in tne blocs-band. (2) The determination

0: element values involves long calculations.

In recent years the image parameter method is being increasingly

exploited to overcome the above dirriculties. luttle has shown tr means

of image parameter techniques that in tne special case Ol two cascaded

Zobel sections, one can get Darlington's type 01 insertion—loss charac—

teristics. helevitch has pointed out that there is promise oi the two

apparently differing techniques coming closer to each other.

In this thesis, the image parameter method is studied in detail

with the specific purpose of eliminating the drawbacns which are with-

holding its Wider application in filter design. ihe results or this

study have yielded a derinite improvement over tne existing method. ihe

salient reatdres or the method delined in this theSis are:

(i) The difficulties of Zobel's decomposition formula are elimi-

nated by considering a new rormulation.

(ii) A method due to Feldtneller, greatly extended by nelevitch,

applies the image parameter method to the design in the pass-

hand. This iormulation is now extended to the blocx-oand and

a detail study or this is presented.

(iii) Exact requirements on the tranSier—loss funct-on in the blue;-

band are given. Consequently, the number of intermediate sec-

tions in the filter could be minimized. ihis important Cnnse-



(iv)

(v)

(vi)

-2”

quence or the new rsrmulation is demonstrated Ly means oi an

example.

Properties oi tne general terminating sectLons are c nsidereu.

oeneral iormulas are derived ior the calculation or the ele~

ment values of the terminating seCtions.

The rormulas ior tne insertion function valid itr the cut-oi;

Irequency are given. rhese general iormulas Cover ielevitcn's

formulas as a special case.

The eiiect or dissipation on the insertion fanction is deter~

mined by means or the electronic digital computer. A general

program is written ior this purpose.

The new results presented in this tneSis are a consequency -r a

angle.

detailed study UL the image parameter method, viewed iron more tnan one

It can be safely concluded that tne study has certainly raised

hopes of making use or image parameter method - witn the suggested in—

A

t

rovements - for a wider application in ii ter oesien.
&.L o
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I. INTRODUCTION

An image parameter filter is obtained by cascading sections (four-

terminal netwarx) with matched image impedances. The Image-transfer

function of this filter is the sum of the image-transfer functions of

the individual sections. If the filter contains L's and C's only and

operates between its image impedances, it will transmit without any loss

over a certain band (or bands) of frequency (pass—band) and attenuate

for all other frequencies (block—band).

In actual practice, we are interested in knowing either the opera~

tion loss* or insertion loss or the filter. In general, neither of

these loss functions is the same as the image transfer loss of the fil-

ter. Zobel has given an expression for insertion loss 01 the filter in

terms or image parameters. When the insertion loss is Speciiied and

the filter is to be found, the different factors in Zobel's expression

'1 1"

must be considered. ihe investigation oi Lobel' s ioimula shows that it

is possible to mane some approximations on the insertion loss of the

filter, and consequently the design procedures can be simplified.

bode has made further investigations on the image parameter filter

theory and has shown how the filter can be constructed by considering

only one image impedance and the poles or image transfer loss. his

matched cascaded sections generally differ from those of Zobel's, out

for the practical case, he arrives at Zobel's composite filter but with

more complicated terminating sections.

 

"Operation loss" is defined as the logarithm of the absolute value of

the ratio of two voltages or currents. One of these measurements is at

the output of the filter when it operates between the terminal resist-

ance; the other is measured wnen the source is connected directly toa

resistance equal in value to its intexnal 1esistance.;1e te ‘in '—

i-n 1:5 is de).ned.iIIfXeter II.
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Darlington and others have considered the cut-and~try method in-

volved in the image parameter filter design as cumberSome. Darlington‘s

method of filter design based on insertion loss is well-known. In this

method, a special type of insertion loss function is considered and

after finding a characteristic function, ¢, the problem is reduced to

finding the element values of the filter.

Darlington's special insertion loss function has been extended by

Fromageot and others. But, in the determination of the ¢ - function,

some approximations must be made, and after designing the filter, it

must be checked as to how good this approximation is. In spite of this

generalization, the inherent disadvantage of the method, viz., of deter-

mining the element values of the filter, still exists.

The above disadvantage of insertion loss filter design (Darlington)

compels the designer to loon for more practical methods. Classical

image parameter theory does not have this disadvantage of Darlington's

method, i.e., after the design parameters are chosen, the element values

of the filter can be determined very easily. futtle has shown that two

cascaded, matched Zobel sections can produce Darlington's type of in-

sertion loss function by proper choice of the design parameters. 'Iuttle's

method is based on image parameter theory. Consequently, the calcula-

tion of the element values, which is the difficult part of Darlington’s

method, is made extremely simple for this particular case.

Belevitch considers a new formulation for the insertion loss iunc-

tion. oased on this formulation, he discusses the insertion loss func-

tion in only the pass—band.

In this thesis:



-3-

(l) Belevitch's formulation is here generalized to include a dis—

cussion of the insertion function of the block-band. On the basis of

new properties obtained from this generalized formulation, procedures

for filter design are described.

(2) At the cut-off frequency, the general expression ior the in-

sertion Iunction is given.

(3) Low pass filter terminating half sections are considered in

general: general expressions are found for determining the element values

of the terminating half sections.

(4) After designing the filter, the effect of dissipation on inser-

tion loss and phase functions are inveStigated by using a digital computer.

II. SURVEY OF INSERTIOH-LOSS FILTER DESIGN TECHNIQUPS

2.1 IhSERfION FUNCTIOH

The insertion function, Ps’ of a four terminal networx is defined

in terms of two currents, IR and 15 (or two voltages V and Vé) of fig.
R

2.1.1 and by the ratio

 

If: V;

P = 2n —3 = in ‘n (2.l.l)

S a 1’?
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Fig. 2.l.l



Since in general the voltages or cuirents in eq. 2.1.1 are C-ILlex, then

PS is also complex and can be written as

P = A +313 (2.1.2)

where the insertion loss function Ac is in ncpers and the insertion phase

0

function B is in radians. Therefore, from eq. 2.l.l we also have,

S

2411 I ’ 2 V.I 2 ’ I I

S _ R _ H1: .1 _ WT R _- .~ 1‘ 1 Q

8 ~ ’1‘: °‘ VJ OS '— aLQ i”- ‘- arts V: (20+0J)

11 R ; [)1 h

The expression for insertin function in terms of the image Lari.etrrs

was first given by Zobel [1). In this thesis, we shall use the sane no-

tations as used in reference [2]. In terms of these notations,

a .4 ' IQ - P

e. = ,. -—~---«~- ~B———~~-~-~‘= 1 - xflxfle 2P1 e I
D I\

(2.1.h)

The terms within the parenthesis on the risht hand side of eq. 2.l.h are

designated, from left to right, as the: l) Transformer, 2) Input re-

flection, 3) Output reflection, h) Interaction, and 5) Image transfer.

The parameters KS and KR appearing in eq. 2.l.h are, respectively, the

input and output reflection Coefficients. The logarithms of the factors

1) through 5) correspond to certain functins whvse properties are well

known [2].

As may be seen from eq. 2.1.h, if 58 and ZR are equal respectively

to the image impedances, Z11 and Z12, of the four terminal network, then

P ZVZI11274]: P

2 I ,e z 7...“...z 8 2.1.5)

On the other hand, if only, say, Z0, is equal to the image ihpedance L11,

then
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P a1 dIa r A“ p

e S 2 T1 2.224.721 .1 (2.1.1-)

I2 I1 “R

For a symmetrical four terminal network, where 311 : 212 : Ll, eqs.

2.1.5 and 2.1.6 yield

Ps PI

e = e

or

P = P 2. .S I ( 17)

Therefore, for a symmetrical four terminal network, ’f there is a matching

at least at cne pair of terminals, the insertion function and the image

transfer function are identical. Also, P8 is independent 9f the load im—

pedance ZR.

The result in eq. 2.1.7 is also obvious from the delinition of P.‘

D

For consider a symmetrical four terminal network with 311 2 312 : ZS as in

fig. 2.1.lb. The replacement of the sub-network to the left of the terni~

nals 2 - 2’ by its Thévenin equivalent will yield the networh in fig.

2.l.la. The only difference is that such a netwo k will have a different

voltage source.

In practice, the terminating impedances, Z8 and ZR, of the filter are

mostly pure resistances. On the other hand, the image impedances of a

filter are real in the pass-band but not constant. Therefore, to provide

a matching in the pass—band, the image impedance must be as Constant as

possible in this region. This can be done to a certain degree of appr~xi~

nation by increasing the o der of image impedance (e.g., by use of hibel's

multiple-derived sections). If perfect matching is possible, then eq.

2.1.7 is valid and the design of the filter is reduced tn the design of

an unCorrected image parameter filter.



2.2 sexiest DISCLSSIONS or run IHSERTIOJ Loss OF srnnrriICAL REAerIvs

(LC) FILTERS

In this section we shall have a general look at the filter synthesis

technique on an insertion loss basis. Tle purpose of this thesis will

then be clarified.

The filter synthesis technique :n an insertion loss basis has two

main parts:

(A) To find an approximating function, ¢, which is related tw the

insertion loss function as [3].

e2 AS = .f\ [1 + ‘¢]2] (2.2.1)

such that ¢ must satisfy all the imposed conditions 4n the As-function.

(3) Find the element values of a lattice or ladder filter which is

to be obtained from the above approximating function, ¢.

These two parts are considered in the fallowing.

(A) Determination of the ¢-Function:

From the general theory of insertion loss filters, the insertion power

ratio for a symmetrical filter with equal terminations is oi the fo‘h [5]

2 A,

"e = 1 + ¢|2 (2.2.2)
 

where ¢ is an odd rational function of p (= 3w). The poles of ¢ are the

poles of the AS-function and the zeros of ¢ are the zeros of the An»func—

0

tion.

For example, let

while - (i=2) (0:112 - c122)

(1-Cfi%fi).n “-'@:%%
(82¢)

 

l¢i=fi

where H,<ni's and.afi's are arbitrary positive constants. In order to ob-

tain low-pass filter characteristics with a desired effective cut-eff at
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mo, it is necessary to take all aa’s less than db and all a.'s less than

F
J

l/w.. The insertion loss characteristics of this low-pass filter are of

o

the general form of fig. 2.3.1 ~-— poles of AS are all greater than a” and
J

zeros all less thantro.

  

A

s I

I I 'V

I I l

I I
I I I

I I

I ' .

I I I

I I I

I I I

I I I

O ‘r ‘ i 2 *— co

\. I .1 j‘x. \ ,/
U). (l) .

'1 0 1/011

Fig. 2.2.1

If ¢ is chosen as an odd degree polynomial of frequency [l5], then

the well-known characteristics [A] (Butterw rth and Tschebyscheff) in the

effective pass~band can be obtained by imposing the prvper requirements tn

the location of the zeros of the ¢~functien.

In addition, equal ripple characteristics in the pass-band can be ob-

tained if ¢ is defined by

I¢I = e 'p - l

 

Sinh Pll (2.2.u)

where PI is the image transfer function of any image parameter antimetrical

(sec. 3.3) filter (the so-called “reference filter"), andIa is an arbi-

"
d

21
. . . ) . ,

trary poSitive constant. The factor (e 1 - l) is thereby alwavs made

positive. Since the reference filter is antimetrical, P is an even func-

I



.'\
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v

tion of p in and Sinh P is an odd function of r.
I ¢

In the pass~band of the reference filter, PI = j R (A = 0), hence

eq. 2.2.k becomes

NJ 21

|¢| = e P - l ISin BI! (2,2,5)

Since BI is real, |¢I varies between zero and e p - l in the pass-band.

Therefore, from eq. 2.2.2 we can see that A" varies between zero and up.

D

In the block-sand of the reference filter, PI = AI + j k n (k-; 0,

+ l, + 2, ...) where A 2 0, hence
I

¢ = e P - 1 Sinh AI . (2.2.6)

which is always positive and has poles at the poles of the AI — function.

Therefore, AS is positive in the block-band and has poles at the same fre~

quencies at wiich AI has poles.

If the ¢ - function is chosen as

2 2 r2 2
n(n 91 ) ... (J on )

¢ ;._ H -- (2.2.7)

I ‘ (1-91202) ... (1-nn292)

 

where

cpl and U2 correSpond, respectively, to the cut-off and limit of the effec—

tive block-band. If As has equal ripple characteristics in the effective

pass-band (O - Q) then As will have equal valley heights in the effec~
l):

tive block—band (w2 ~ 00) as shown in fig. 2.2.2.

These characteristics can be obtained if the parameters Qi's are

chosen as follows:

El.==NG: sn [—~2lh- , k] (i = 1,2. ..., n) (2.2.8)

 



——.————_.—

F
-

1
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_
_

.

 
inn“.

f>
p
.

m
-

Figure 2.2.2

where k = di/w the modulus of the elliptic sine function and K is the

2

corresponding complete elliptic integral.

In a general case, in actual practice, the values of the insertion

loss As, is to be less than a given value an’ in the effective pass—band.

n the other hand, in the effective bloch-band, AS is not always neces~

sarily greater than a given value a .

a

If the contour of requirement for AS in the effective block-band is

not a horizontal line (flat), it is difficult to find a corresponding d —

functian satisfying this given non—flat requirement. In such a case, as

.2

is usually done, an equation similar to eq. 2.2.h can be used.

In the eerctive block-band, for frequencies of high A”, there is a

0

linear relation between A8 and AI [3]. Therefore, AI can apprwximately be

determined. The problem now is reduced to finding a reference filter

which will have an image attenuation in the block-band, approximated to

I

AI just determined.

Since the poles of A are known, poles of Am are identical. With

DI

this information the ¢ - function can be determined [3), [7).
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In a recent article [5], the deternination of ¢ - function is con-

sidered Corresponding to the requirements on As in the effective block—

hand as: (1) As will not be less than a given set of different values

of'aMi's in the corresponding frequency hands as shown for a low-pass fil-

ter in fig. 2.2.3, and (2) in the effective pass hand As SCI.
0‘

 

 

 

 

 
 

 
  

A i

/. /, f A
,, - , , 4,
// // K, I // // ‘/. /./ ."/ 1,. ,1

//, // ’ ' p, , ‘ / , I

C /7 /(

;/. .;,/' 7 (11.11 / ”I ' 1/, / I, , a1 W

l ' ///'//// /‘ '

I

am E //’ . l . __

‘ 0 fl f2

Fig. 2.2.3

Also, ¢ - functions for different types of filters (i.e., symmetrical,

antimetrical, and dissymetrical) which satisfy the imposed restrictions

are investigated. This investigation follows exactly the same procedures

stated earlier, i.e., of determining the approximate locations of the

poles of AS. Since the form of the ¢ - function is similar t, that as

in eq. 2.2.h, AS has equal-ripple characteristics in the effective pass-

hand.

Now, in conclusion, it can be summarized that in filter design on

the basis of insertion loss, the important part is that a ¢ — function

must be found which satisfies the imposed restrictions on the AS function.

(B) Determination of Element leues:
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After finding 3 ¢ - function, the next problem is to find the element

values of the filter, either with lattice or ladder configuration orres-

\
O

ponding to this ¢ — function. Explicit formulas for these elenent values

exist far some special cases such as: l) Butterwcrth or Esch‘yscheff he-

havior in the effective pass band, 2) Tschehyscheff behavior in both

(

effective hands (Darlington's filter) {C1, [5], L,j, [le, L11}, L12},

[13], [361.

Although Darlington's method of determining element values includes

the general case, [3], [7}, [18], the technique entails long calculatigns

and hence is laborious for any practical application. However, the digital

computer overcomes this difficulty somewhat, LC], [37].

2.3 ADVAiTAGE OF IMAGE PARAMETER METHOD

The possible use of digital computers with the image parameter meth d

is mentioned only in passing. Alth ugh it is believ d that such a digita-

investigation holds a promise, it is not the gain idea of this thesis.

The key notion of this thesis, is the utilization of the image parame-

ter method to overcome the difficulty encountered in the calculation of

the element values for the general case, as given by Burlington. Tuttle

[1%] and others have emphasized the need for a fuller investigation of the

classical image parameter method.

Specifically, one of the main ad~antages of the image parameter method

is that once design parameters are found, the element values can easily he

determined since there exist simple rela ionships hetwecn the element

values and the design parameters. however, this method also suffers fron

a serious drawwbach, i.e., the cut-and~try method, necessitated because

of the fact that the design parameters are closely interrelated.
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‘aw-bach is a direct consequence of zohel's decamposition

formula on which the existing mage parameter method is based.

2.h SOME DISADVANTAGES OF ZOBEL'S DECOMPOSITION FORMJLA

zobel's decomposition formula is considered in section (2.1). This

formula is'rewritten here for convenience.

p .~ 24:: z z + 2.1 z~ + 2.1 -2P P
s s R s 2 H 2 , I Ie 2 :7- .73.... “.....- ___._..._.-._..- 1 Jonas. e (2.1+.l)

“s a 24:43le 24/413312 “’

The main disadvantages are:

(1)

(2)

In the block band, the interaction term is commonly

neglected.

It is not at all clear hJW eacn term affects the inser-

tion function. Specifically, consider the example of a

symmetrical filter with equal terminating resistances.

For this case, tne insertion loss function in the pass

band is zero at frequencies where the image impedance is

equal to the terminating resistance, i.e., when the second

and third factors within parantheses in eq. (2.#.l) are

equal to unity. But this fact, will not enable us to

conclude that these are the only frequencies at which AS

is zero. In fact, other frequencies do exist at which

A5 is zero in the pass band. However, these other fre-

quencies cannot be determined by considering conditions

at which the logarithm of the individual factors in eq.

2.h.l vanish. Any determination of these frequencies,

for this particular example, can only be accomplished by
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Considering the combined effect of the interaction and

reflection terms [2].

(3) Zobel's decomposition formula does not include the possi-

bility of considering tne case of degenerated four termi-

nal networks [l5].

(h) At cut-off frequency, the reflection function (factors 2,

3, h in eq. 2.h.l) tend to infinity while AI tends to zero.

Consequently, the As - function has an indeterminate form

{at cut-off frequency. However, it is well known that the

AS — function at the cut-off frequency has a finite value,

a fact which does not manifest in Zebel's formulation.

On the basis of Feldtxeller's study [lb], Belevitch has expressed the

insertion loss function in a different form than Zobel's decomposition

[IS], [17]. This new formulation of insertion loss, As, is used in in-

vestigating the As in only the pass-band of the filter. In Chapter III

of this thesis, Belevitch's formulation is derived for different types of

filters, i.e., symmetrical, antimetrical, and dissymmetrical including

lossy cases. For the symmetrical filter case, the factors which appear

in this new formulation are discussed in general, and new properties of

these factors obtained in both pass- and stop-band. Also, a design pro-

cedure on the basis of this new investigation is described in Chapter VI.

III. A NEW FORMULHTION FOR INSERTION JNCTION

OF IMAGE PARAMETER FILTERS

The insertion function is here first expressed in a different form

than Zobel's decomposition formula. This new form is derivable either by

starting from eq. 2.1.h, or from the definition of the insertion function.
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3.1 ‘l'ZiE TEEW FOPJJULWIOE‘I OF II‘JSERTIOEI FEWCTION

Consider a passive general four terminal network, N, as in fig. 3.1.

The input-output voltage and current relationships in terms of the image

parameters are [2].

L._..

7' 7

'~ - /.rr

.1.

1 . . 7 , 1
Cosn P Z11 oI2 Sinh PI V

 

= ... (3.1.1)
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l a 0—— —-0

Fig. 3.1.1

Eq. 3.1.1 in symbolic form can be written as

V A B V

l 2 2 (3.1.2)

Il C D 12

In addition, we have from the fig. 3.1.1,

v z , q
12 R2 12 (“1.2)

= E - 7. Jvl R1 11 4 (3 1 J.)

From Eqs. 3.1.2, 3.1.3 and 3.1.h, after eliminating V1, I1 and V2, a re-

lation for 12 in terms of E is given by

E 1

I2 CRP. +11? +D:izi’+B (31°?)
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On the ether hand, when the source E is directly connected to the load,

(N is taken away in fig. 3.1.1), we have

V‘

 

I 11;

I 2 Wm' (3.1.6)
2 n1 + R2

Therefore, the ratio which determines the insertion function is

 

I2_CR1R2+AH2+DRl~i-B ‘ (31.7)

——'- R + R J' "

2 1 2

Let the parameters,

_ Z 1
Z1 T11

_ (3.1.0)

L12

22 " .132

be the normalized image impedances with respect to the terminating re-

sistances. Substituting the values of A, P, C and D from eq. 3.1.1 into

eq. 3.1.7 and from eq. 3.1.6, we have

     

I 4,—— 77 I7 "’ + Z

Eg = ePS ~ 31 fig__ E—:~—l:g Sinh P +':l—~——g Cosh P (3 l 9)-- ’17 ’7 7 l O 0

I2 R1 + R2 4‘41 '2 4 I W1 Z2 I .

From eq. 2.1.3 and 2.1.10, we have

2.13 R1112 l + z. .4 z. + Z. 2

e =.—~ ~~"§ -;HTW::'Sinh PI-+-E;;::r Cosn PI (3.1.10)

1 I- ..4 Z Y; F ..J F

B :: are ~‘01r-:_;.:_:::_g Slim PI 1‘ *‘T:;*"7::—2. COSh PI (3.1.11)

5 ~141ng ”1‘42

‘fhe formulas (3.1.10) and (3.1.11) fzr insertion loss and inserti»n

phase are used throughout this thesis. In the following sections, dis-

cussions or these formulas either in general er in some special form are

presented.
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3.2 SYMMEIRICAL FIDTERS

For symmetrical filters, Z11 = 212, let us assume that equal termi-

*

nating resistances are always used , i.e.,

31 = R2 = R (3.2.1)

then

2.1 = 2.2 = 2 (3.2.2)

Substituting the relations (3.2.1) and (3.2.2) into the eqs. 3.1.10 and

3.1.11, yields the following

 

  

2A8 1 + Z2 . 2
e - T 811m PI + Cosh PI (3.2.3)

2
i _ 1 + Z . . . i .
as u arg [ 23 - Sinn PI + Cosn P£] (3.2.4)

(A) If N is a purely reactive four terminal network, then, in the

pass-band,

P = ‘ B =1.1103 0)

Therefore, eqs. 3.2.3 and 3.2.A take the forms

 

2A 2

e 5 z 1 + (L3Eve—Z) Sin2 13I (3.2.5)

2

1 + Z
' ’7 ::

B
’ ’ ‘

LS. arctan I: 22 tan 1]
(3 2 L)

respectively. In the block-band, since

2 is purely imaginary

PI:AI+31;I: (1:20,:1,+2,...)
o...-

 h-m-

 

J a 139

_ 441~ must be added to the insertion loss

H1 + R2

 

f}

in

N
I
H

* Otherwise the term

expression.



then

+ Sinh ASinh PI H I

Cosh PI II + Cosh A

- I

where if the plus (minus) sign is used in one expression it must also be

used in the other; therefore, eqs. 3.2.3 and 3.2.4 in this case take the

following forms:

2A" ,2 2

e = 1 - (24—) sinn A1 (5.2 7)

1 - Z2
38 = arctan [j-Zir-tan A1] + k n (n = 0, I 1, I 2, ...)

(3.2.o)

fherefore, in both cases, i.e., in the pass~band and blocx~band, for

insertion loss function we have from eqs. 3.2.) and 3.2.7,

2A5 ’1 4 Z2 2 .. 2 .
e a 1 — (i«§Z—— Slnh PI (3.2.7)

(B) If N is a lossy four ternanal networx, then we cannot distin-

guish between pass~ and stop-bands since 2 and P are complex quantities

I

for allcn. Let,

 

 

z z r + j x (3.2.10)

PI = AI + J BI (3.2.11)

then

-2 2

11-114 _ 1:: (r3291 .1: o 1 , _. 95 .1

2% _ 2 (r + JX) - 2 l k r2 + xé) + J 2 <} - r2 + xé)

= wl + Jw2 (3.2.12)

and

binh PI = oinh AI Cos BI + J Cosh AI Sin b1

_ _ , . (3.2.1:)
Cosh PI = Cosh A Cos B + j Sinh AI Sin 5

I I I
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Substituting eqs. 3.2.12 and 3.2.13 into eqs. 3.2.3 and 3.2.4, it can oe

shown that

s 1 J _ ‘ 2 , “.2 . 2 . 2 1
e - (t . 112 + 1) COon AI - (wl . W2 - 1) Cos s:

+ w Sinh (2A (3'4'14)1 _ w din (2sI) - 1
I) 2

W olnh AI Cos hI s #1 Cosn AI sin LI + alnh AI bin o1

w Sinh A Cos s - w Cosn A sin n + Sinh A Cos s
1 I , I 2 I I I

 .-.—— ...— 

BS 2 arctan

(3.2.15)

.3. AurinErRICAL FILTERS (Iivsnss IMPEDANCE FILTERS)

L
A
.
)

For an antimetrical filter, image impedances are the inverse of eacn

other with respect to the product R 2 i.e.,

1“2’

Z" Z r I 3.3.
11 12 R112 (a 3 1)

then

Zlue = l (3.j 2)

and let

1

= Z =‘~— 3.3.
Z l 22 (- J 3)

Substituting the eqs. 3.3.1 and 3.3.3 into eqs. 3.1.10 and 3.1.11, we have

  

 

2A 1 + 32 2 .
e S = Sinh PI + —-§Z—* CQSh PI (303-4)

1 + “2
BS = arctan [Sinh PI + ”“22 Cosh PI ] (3-3-2)

(A) If U is a purely reactive four terminal network, then in the

pass-band,

z is real

PI = 3 Bl (AI = O)

In this case, eqs. 3.3.h and 3.3.5 can be written as follows



 

2A. 92 2

e ° = 1 + l—£;=~ Case R (3.3.6)
54 I

L .

B = arctan 2-—~ tan 3 (3.3.7)

5 2 I
1+2.

In the block band

therefore, eqs. 3.3.4 and 3.3.5 can be written as

e2A5 - l + l 7-93 2 015‘s2 “ (- 2‘; J . AI

1 + Z . . 1

b ;‘ aI‘CtEI‘I [ . -----. ,— COtIl L) + l. K :- : O + l *- 2 o o o I o I. o k]
S ‘ ' J 214 I ( ‘ } _ .’ ___ ) ) ( .) .3 /

U
)

D
.
)

(
’
1

v

IEqs. 3.3.5 and 3.3.? can be given as one equation. Therefore, for anti—

metrical reactive filters, the expression for insertion loss is~3

2A 2 2

S l ' Z 12 a a
e - l + < 22*) 0001]. PI (3.4.10)

(B) If . is a lossy antimetrical four terminal networh, then the

image transfer 1583 function does not vanish in Some interval, i.e., there

is no pass-band. For all values ofch, z and PI are complex quantities.

Letting

PI : A1 + J 3I

and substituting eqs. 3.2.12 and 3.2.13 into eqs. 3.3.3, we have,

for a lessy antimetrical four terminal network,

2As 2 2 2 2 2 2
s t + ' + 1 ”i: J — ‘ + “ - “in Le (wl ”2 ) s 1h 11 (”1 mg 1) s I fl - 1

. ‘q (fl_a (a ) hr fi_. ( .I 2 x, 2
(;l..:.—l.l)

1 1 oinh XI + 2 bin 2B1) + («l + a2 )
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Cosh A Sin B + w Cosh A Cos h + w Sinh A Sin 3

r arctan l I 2 I I 1 ~ I 1 I

“s ” ‘ oinh A Cos D + W Cosh A Cos h — w Sinh A Sin 3

‘I I 1 I ° I 2 I ,1

(3.3.12)

3.h DISSYMUETRICAL LOSSLESS FILTERS

In this section, a general expression for insertion loss and p ase

for a general lossless filter is given.

In the pass-band:

Therefore, eqs. 3.1.10 and 3.1.11 give

  
 

 

,Y 1 7 2 , , 2 7

3 1 ~ h h -

2As » ‘1‘2 (1 ‘ 1Z2) , 2 D ( 1 * 42) 2 o 1
e ~ 2 Z Z Sin oI + £~;—*——-Cos II (3.h.1)

(Al + R2) 1 2 1 2

1 r LIL

B : arctan U —-r—-tan B (3.h.2)

S 1:11 + 2.2 I

In the block-band:

  

  

Zl Z2 are purely reactive

PI 2 AI - J h n (r = o, i 1, i 2, )

then in this case

. T a s 2 , 2
A? 4/4.: ’-

23s 1R2 (1 + 1’2) 1, .2 (31 * 42) .2 , q 1
e z 2 Z v binn AI - Z Z COSh AI (3.5.3)

(B + R ) 1“2 1 2
1 2

Z, +2.

B = arctan u j ——le~w§~ Cuth (2 A 2+)
s ‘ 1 + 5152 ‘ AI “' °

For all w's, insertion loss can be given in one equation as follows:

  

_ _ . 2 . 2
1 u 4- /

+ ”

2As 31“2 (1 ‘ ”152) n, .2 (31 “2) , 2 —| . -
e :: _._._._...m.—.2- ,7 /,""‘"“"‘ 13.1.1111 PI ' ...... 7;" .-, ‘- C'J 5h PI ( 3 ° 1" ' Z )

(R1 + R2) “1‘2 “1“2

01‘



 

IV. DISCU°SICTY OF TFE ¢ - FIT-1:231“): 01“ SFIEIEI‘RICAL FILTERS

' I)? ’1LEWIS C11 11.11.11. PUULLL1.115

In the preceding chanter, insertiun function is refriulatei d1:-

ferently from Zobel's decomposition. The inserticn less function, A”, :3

s

so reformulated, permits an ease cf nvestigaticn of As net possible with

Zobel's formulation. Belevitch [17] has used this fermulati n in studying

the AS function in rnly pass-band. In this chapter the complete discussi n

of this f; mulatien for svnmle:rica] filters is cDSILCred. ‘Fhe rezcra
b,I

......~ aura-»-

Beleritch'sp
.

(
.
1

properties ;Ut8129d fr:m this wider investi ’J'tiqn also incl: 0

results. These general esults are subsequently apslicd t. filter design.

4.1 TILE ¢ - 1771031011 111111115 CF 13110.3 Burners3

Fir symmetrical, less ess filters w: th equal tezninating resistances

ecticn 3.2 that the insertign 1”c
3

(
'
1

U
:

at both terminal pairs, it is shown in

in either bands(pass or block) can be g1veri 0v the sinble ioimula

-~--—-—-— Sinh‘ P (1.1.1)

In inser ion loss theery, it has been fsund calvenient to let

$32 = - [Lg-f— 511.112 P (4.1.2)

The hyperbolic term in eq. 4.1.2 can be medified and expressed in terms

of a ratio function, H, of the filter. Letting

PI
I: =- Tanh ~2~ (4.1-7)

then,



2 D ....
.oi-.h il l _ "£2

Substituting eq. 4.1.h

¢ : (11.1.5)

- ‘2 1 . . . n
In eq. h.l.p, C has two Iactors which are reelprocals, each 01

which is expressed in a different variable.

it is sh wn that the first factor is effective in

the seccnd is effective in the blecn—bana enly.

h.2 A USEFUL COINORMAL MAPPING

q

AS

2H 2

<—-—-—--~>2 are recipr cal in mathematical fern but

}.
l .

ferent variables.

erties of the ether. In this section we Consider

in eq. h.l.5 and investigate its preperties.

Consider the following function of a conplex

w : (.1...1__Z.2. 2

22

If we let

I

(Z * E

1

k -- 2

W: 1,2

already noted, in eq. 4.l.5 the two factor

Therefore, the study of one of

In the following discussion

 

the pass-band only, and

,1-222 1
s y““‘ - and

z

are expressed in dif—

_ .-. ~...1 “,1,

then yields tne r111-

only the fi°st factor

variable 2

(k.2.l)

(h.2.2)

A

4
‘
-

[
‘
0

K
)

J

V

Therefore, we first consider the well—known functicn ef eq. h.2.2.

In eq. h.2.2, let

and

iv

(2.2.h)

(4.2.5



_2u._

If the variable 2 in eq. h.2.2 represents the normalized inure im-

pedance, the real part of 2 must be positive. Therefore; in the fallowing

discussion the open left half of z — plane is not considered.

 

 

   

 

Fig. h.2.l

.art of real axis in the z — plane is mapped into the
-—.

»

L

The positive

whole real axis of l - plane. But imaginary axis of the 2 ~ plane is

mapped into the same part of the imaginair axis of x — plane as shown

in fig. 4.2.2.

Once the x — function is determined; W is given by the simple rela-

tionship in eq. h.2.3. The mapping of the z - plane into the W - plane

is also shcwn in fig. h.2.2.

From eq. h.2.l and the fig. h.2.2 we can see that the positive real

axis of the z - plane is mapped into the positive real axis cf the N -

plane (but not in one-to-one correspondence) and the imaginary axis of

the z - p ane is hopped into a portion of the negative real axis of the

W a plane.



Substituting eqs. 4.2.u and u.2.> into eq. 4.2.2, we can obtain the iol~

lowing relations between the real and imaginary parts or z and l.

u=é~ (p-213) Cos‘c}

1 l ”I, a (4.2.3)

V : -2- (p + 5) OLD o

From eq. 4.2.6, the following properties of the A — function can be found:

”'1

I
.2

(l) The circles (p = constant) in the 2 ~ plane are napped int; the

ham focal ellipses in the X - plane. Their equations are given by

(
J q

[
H

.__.____7_____-_.__.. + ...—......“— : h (El-.2.7)

(0 ~ — (D + —

The common focii of these ellipses are the (i) and (~i) points of

the l ~ plane.

(2) Two circles with the radii pl and 92 respectively areonapped

into the same ellipse if pl 92 2 l. Therefere, the inverse funCtion,

i.e., z 2 f (i) is not single valued. The l - plane, actually is a

two-shoeted Riemann surface. The unit circle in the z — plane is

mapped into the section of straight line between the points (i) and

(~i) in the k ~ plane. Therefore, along this section cf straifiht

line a cut can he made and the two sheets of Bi mann surface can

be considered separately, each of which correSpends to either the

inside or the outside region of the unit circle in the 2 ~ plane.

(3) The straight lines passing through the origin in the z — plane

(8 = constant lines) are mapped into homofocal hyperbolas in the

l — plane. The focii of these hyperbolas are the same as those of

ellipses.

his mapping of eq. h.2.2 is illustrated in fig. h.2.l.



r
q

  
w - plane

 

Since 2 represents the normali e6 ”wage impedance of a lilter z is

real and positive in the pass—hand and du‘o imaginary in the bloc: hand.

- . . , l - ”
Therelore, the main properties of the iactor (___7;_)

, A c.

as

can be stated in

a theorem. Thus:

Theegfng. The factor (fmr an LC network)

2
l — 2

W (722*)

is real and is always positive in the passuband and always negltive
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and not greater than (-l) in the bl ch~band. At the cut—off fre-

'Q

D

quency, this factor increasis witnout limit.

fiuw, we can c nsider the second factor in eq. h.l.5, i.e.,

2H 2 /I "

1] ; (mm‘

{LP0203)

Since this factzr is th. seal of the first factor in eq. h.l.5 ex~{ H O O *
J

'
U a

cept for the difference in variables, the mapping in fig. h.2.l can be

extended once more by taking the inverse of the W - function. In this

case the napping from the H — plane into n « plane can be given as in fl'

-

. I
$

h.2.3.

q - plane

‘
~

:
»

 

fig. h.2.3

Fig. h.2.3 indicates that the positive real axis in the 1 ~ plane is

Inapped into the positive real axis of the n - plane. rhe imaginary axis

' 4.4..
_ q 7 p n 3 . a \ - ‘- .. n . ‘

(4 tne h — plane is mapped into the line segment (vl, O; on the nudgbwvbH
)

Ikeal axis of the q - plane.

’
7
-

I
.
.
.

U
!

V
1
} 9 (
8

*
4

L
4The properties of the h — function are well—known [2).
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Further properties cf the q - factor:

(1) At the ritical frequencies (poles and zeros) of E, q has zeros.

(2) At the cut-off frequenCV, q is zer;. .

J" .
i . i. . i .,. . , _ x

(3) At the iniinite frequency, n has a liniting value oi.

 

  

T __ _1_ 1. l

i - 1+ - “-H' M-”.-. ”.... ---...

11

'=1 l

where n is the number of sections in the filter and mi reprc~

sents the m- parameter of each individual section. As can be

seen from the expression for We» , if the filter contains at

least one constant—h Section, then “cw tends to infinity with

. (D (in this case H (00) = l).

(A) In the block-band, the intersection points of H - curve and the

. horizontal line H1 = l Correspond to the poles of q — function.

(5) In the pass-band, the abscissa of the intersection points Lf the

H - curve (H is imaginary) and the horizontal lines HI = + i

mw

correspond to the minimum peints of the q - curve. From -neorem

II; it is known that these minimums are the same and equal to

(~1).

(e) For the values of 51 and H2 of H, such that slug : i 1, the cor-

responding volues of q are the same.

 

4 . o .-.-..1 m — .' .. 1 f" .M, “,5 ',~ ~ 4'- - ‘ ., ' s ° .. ,3
ihis ; indie cdn be deiiwee i: the is ution between HI and n is conSideied

[2]. For an inage pe'ameter filter AI is the sum u: all ihsge attenuation

Lunctions oi the individual sections and at iniinite frequency these indi—

vidual lunctions have the 'dlue [2] or
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In the preceding chapter, general N— and n— runCtiens are considered

and the general properties or these twe functions are obtained. For the

Characteristic points or W« and q— curves such as, x1, x2, ..., x31, ha2, ...,

in Ii5.72.2, 0..., >111]- XI12, no.) X01, >182, 000} and X’I\1: X792; ...

A.

x21.

u.2.u and fig. u.2.5, it is difficult to obtain a mathematical eXpressi n.

But for particular z- and h- functions these rormulas exist and are given

in the fellewing [7], [2] (LC network).

A) z - function is in the form cf a gecmetric-mean variation

”(Eschebyscherf - approximation).

Let the number of critical frequencies of 2 be n. Then,

Critical Lrequencies (poles and zeros) of z recur at (bl ch

region)

1 . __ . A
Xi 1' *F-i—EE-T (l ‘ l) 2: .0.) n) (4'03-01.)

snt~.--
n+1

L. .1

Unit values of 2 occur at (pass band)

-- -_2.(.n-.‘.j.‘..) (:1 "* «I ._ . ) (3
X2, u Xu sn [ 2(nrl n (i — l, 2, ..., n + l) (4.).2)

A

Extremal points oi z uccur at (pass hanfl)

(Xe, L O, Xe n+l L x“)

L) H ~ functien is in the form sf a gceretric-mean variatien

(”schebvscheff - approximation).

Let the number of critical frequencies of H be n. Then,

Critical frequencies of H occur at (pass band)
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Fig. h.2.5

 

 
  

 

 
 
  



X: : an [:1._J-}.;..: :; (i :1 l) 2" ..." n) (4.3.);)

Poles cf Al (H = 1) occur at (blue; band)

= v l (i z 1, 2, ..., n + l (Q-B-D)
“Pi *un 2 1-1 i

an - “’~ A
2 n+l)

xtrenal paints vf H occur at (block band)
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FORMULAS FOR TEE lNoEfi"*' L058 AFD PHASE OF A SYMLETRICAL IMASE

PAAALjfiflR FILEER AT CUlv0FE FHE'QUEUCY

The two factors, w and q, appearin5iin the exrression for ¢I in eq.

. , - A . _ i 5 '2 _

4.1.2, 51ves an indeterminate :orm ior Q at cut-off frequency because

the factor W tends to infinity while the ‘iactor q ends to zero when the

frequency approaches the cut-off frequency. It is shown in this section

a 2 .5“ _- J— >n_q 3'13, o _s o q u

that ¢ has a iinite value at the cut‘OLL frequency. inis prOLLCL lS dis-

cussed by Belevitch [l9] and insertion loss and phase expressions at cut—

off are given but for only the Special case where the image impedance of

the filter is an m - derived tb'pe. In this section, we generalize Pele~

vitch' 8 results to a general iuage impedance case.

In anticipation cf a detailed discussion of file next chapter assune

now that terminatin5 sections are used in filter design. 'Sherefore, the

ima5e impedance of the terminating section is the ima5e impedance Cl the

filter. Using eqs. j.h.2O and 5.h.2l, and in those equatins letth"

'
U n

C
_
J
F §
< n

E
i
p

we have,
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(h.4.l)

On th other hand, the H functicn ef a syMnetrical image ; ranetcr

filter can be fuund as fullews:

including terminatingin the cempgsite filter,Each half section

sectians, has the fellewing h, functien

II 'I :I

‘- O‘Y‘o J

where Pr and H represent, respectively, the image transfer and rati:

a ‘ “

functions or a 2 filter secticn.

For the filter consists of n sections (includes terminating

since

Pn

P :- Z PIi and H = i‘anh ~5-

Frem eqs. M.A.3 and n.u.u, we find

:
5
:

A

H

I 5 5
'
4

D

v

n

77 (l + min”) -

H F
"

*
J

 

{
I

‘
O

.
3

r
;
-

:
5

II

A

TT

1.

(1 + mino) + "1(1 - mihl)

H F
}
.

But since, in general,

3
—
1

I
+ w
,

.
*

y
.

(
D |
+ .
L
.

A

l

H

\

5{Ti (1 : a1) ; '0

From eq. A.h.3, we have

A

1
-

C

p
.

.
9
-

. ‘
L
d

V

sections),

(4.h.p)





where

A1 2 a1 + a2 + ... T an

A2 = ala2 r ala3 + . . +

and if we let

H 5 :
1
1

a .

l l Q

then eq. h.h.§ can be written as follcws:

(l) n is even;

I," + 4A... + o o o o *- ix

L = £1

A r

a ; 2 . 11

(2) n is odd;

I 5

A1 + A3 + .... n

A-
u

+ :
~

 

+ A + .... + A

n-l

On the other hand

Therefore, as x appreaches the value cf

that H apprcaches the yellowing values:

(1) n is even

F.

H

, n-l l l , l
.5; z; 04’?“

3* :1".- ......
T ——-—~

1‘

n i ’ If] m

n ‘9 l 2

OT

unity, eqs.
L

‘1'.

(h.h.e)

(h.h.7)

(h.h.8)

(4.A.9)

h.5 and h.h.9 shun
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. An N 1
:1 l -..- 7.. H ......

A e) .1. , l

H" *' -‘ ‘f' I o o 'f' _-

New, c nsidcr the value of Q —

f)and h.h.2 fer normalized image impedance,

 

P7 ..

I .—

n4

5 F______

': V1.~ x2 P (x)

*,1

1.

and

L; ],_~_

JR:— 1 _. }'2

s. M.h.lO and h.h.ll can be written as,

”1353-; .13—... .__..

T3"

J""1

anC

" 2 _ x ,

1‘ 2:4 _ _' Q2(X) \/

with

where n is the number of

hating sections) while'v

terminating half sectiens. Therefere, n > y’.

For different number of n and ‘V , different types e

functiens are obtained. However, tnere

as follows:

Case 1 -

 

functinn at cut-eff. uron ego.

is the number cf half

' are enly feur such different cas-

(for V’ even) (4.h.lj)

(fer n even (4.4.lh)

(fer n add) (4.4.15)

(4.2+.lt)

full—sections in the filter (including the tcrui~

sectiens in ene cf the

,3 V3 2. ‘1
LithLL Al'—

7.3

,c 2—

.5

‘96

can)(V



Case 2 —

 

(n even)

()) even)

( n even)

(N) even)

i ’—'——

z — h. 'Jl - x2 Pl(:) (‘V

’ 3 __.3L.i; (

i Vrza — l “€2( )

Case 3 ~

. 1

z = S- ---‘-M— P (X)

‘fi? Jl.— x2 2

\l‘o l
I; -— ”rm-EM“ Q2(X)

Case A -

,; l
"' :1 ‘‘‘‘‘W P 1‘

b {D \(l — x2 2( )

n = --‘->-{~—--* C»; (X) ( 11 08:13.)

12'- l 2

and H are su'stituted int; the eq. h.l.h, i

¢2=*< >2(1‘?Hs)2
. 3 . -2

and when x tenns tr unity, ¢

1—33.
2s

  

. - s m w -+'»? ‘ « u
ts the Cases mensicned absve:

 

(for

. Q1 2

3

(Iur

 

06.,

will have the fellcwing values c rresgunding

case—l)

r: 35 .- 7
Ca». J)



but, fro:.: eq. 3+.«'+

fact, enly tne

(l) for }) add

(2) For t) even

I

‘2

9 (be)

The ’J’ Salue cf 0 i

h.
ZCZIi‘VJTI

we
Oahu.)

>
v
.

:
3

1:1

To calculate the value

h.4.l and h.h.2.

Since each

in

tends to unity, .8

lim (1 -

x-—+l

then

Therefore, substituting eqs. h.h.l9 and 4.h.20 with u.u.21

and h.h.l§ yield

Indeed, we have

factor in eqs. h.4.l and h.4.2 can be written, when
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A

fry

; 5 3 ,
-~-r 7* (lul case-4)
-‘LT 2 {Che

p. ' 2 1 a

ll ffur ‘i these 9 are not dijfcrcnt. In

fillewing twe cases exist:

(4.h.l7)
k

IT. 1:I

K , 2 . .

by" Pqu)
(~1- . 4 . 13)

‘i

($.4.19)

of P1 and P2 it is sufficient te cansider eqs.

for P and P the fellewiigz

l 2

\r

4 k

_2) 2

...

.1-

D

k ) : mi

 

 

m m ... m 2 ‘

2 h 'V-l \
1‘." m 1- fl (LL01; o 20)

u 11:} o o 0 “Y

m m ..... m 2
O

r“ W“ fly (h.h.2l)
11 “‘3 o o o J: th

int'4“ w
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Eran the ah ye discussien, tne values ei A ane I are inrwn. he-eirre.

we can innediately attain the in
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0

Consider the Q — function in eq. %.1.2 in the blucL-bani, the emfressi

O

for Q“ is,

J- D-

where z is gurely imaginary. From Theorem I in sectian 4.2, the first rac—

ter in eq. #.5.1 with negative sign in frent »f it (3 real ani

. . , 2
pQSitive and net less than unity. Tneref re, the value a: the Q - func~

O

p

tivn is always greater than, or at least equal t7, the value mi 5 uh“ AI.
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21%. .2 , 2
e e l + Q > 1 + Uinh AI ; Cnsn Ar

M
H

‘ .' .E .3 ...‘fi

flC_thy ti

ln 2

ET“.
..1erop re, the insertitn loss can be less thanV .L ,

the hlnch~bend. n the symmetrical filter desi

restrictiuns en n” the last term in eq. 4.5 “
O

O . ‘v

4 ..4

'3

J
= 0.65 nepers or 6.02 decibels

.f‘

e; requirement fur As tlaex~ednd.

rm. . sq".-+ .: aw '~:~ - n , . e, ... p 1 C “
:cr syhmetiicsl iilters, the I Khula 4.3.3

in the bl;eh—

4s ,. . I)

transier

less is ad

hand, "he een then

¥
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\
I
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the image transfer lvs

5U, tn retain the ihgvsed

.0 ,' 1 ‘.
N . .1 ' ‘. 1 . —‘l8 altdys c nsldercu, 1°C

ded tc the g ven Centaur

_: ‘ . .. , - fl ..

.Lb 1'4*,1.l"..i.‘._1‘.;1 dim}. C(U‘,

he htnined frgn the a bel's decampusitieh f rmuld, eq. 2.1.h, i.e. ne—

glecting the interactien term and c Leidering the minimum cf an cf the

reflectign less which is very clsse to ~3

l 1...“, 3 o
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V. FILTER TEMHITAT 7}

General5.1

k
g

A low-pass ilter-terminating seeti:n is he

s m:3. It is a lww nal —f
)

a meresy

cf terminals,

c nstent-h, at the ether pair ef terminals,

9’"
‘ 1 " \ "c' '0 ,~D ? 'r\’- ""1, ‘n‘\ .

ordeal. lhe tree; \JJ. an ism-9e Lugeddjcehigher

unit values of z in the pass Land.

decibels, the fermula 4.5.J

the image impedance is of the simplest erer,

SECTIQJS

re represented symhrliCQLlr

LC diagram. ht sne fair

ioeo; X‘Iit‘il

- .. ° _, -2 - . .: . n

lanG lm§€uaHCC lb ML

.3 H on , . , - V

is deiiaed es a nu, er en





A sihple exuxtle ;f s TS is the Eobel's A~derived helf sectiwn snewn

.. ’._:_ : V, .—, . r .‘ ,- 7‘- ‘ . _, - 4 h” ',.

in 11;. y.l.l. At the pair vf t€“ulfl‘lo l—l , the cruel Vi tJC imabe 1e—

pedanee is equal t; two. The image ihpedenee at the terninels 2w2 is

’1

eenstant-L and s: erder one.

" L

12 2‘11? “77‘

(309+ 1*(5501) Leg?" ‘9' (L01)

..2’
l"; fl2’ 

To be able te increase the order or sne of the image inteddnces er a

(”‘7‘ '

lo, babel used a transfermation end ebtained a set a: new higher erder de—

1.]!

rived sections called MM', EH h ... types [20]. Each secti n i'U
‘

C C

I

tuined frem the previeus dne and has the fellewing preperties.

(a) An n—th erder derived seetien has enly one attenuntisn pole

which correspends tn the 'E_>;lr3...xt3t0;' ;;. -— ml :32 1.1%.

(b) The difference between the erders of the twe image inredences

t
J
.

S 1.11.;itl. o

(c) Bhere are two different sequences vf derived seetiens. lhe

image impedances of the secticns in one sequence are recipr eel

te the eerrespunding inege imneddnces ef the sectinns ef the~

.-

c

a

. ,2 .1

second sequence with respect t; a csnstant n : n — L\/t ,

where 0 'nd C_ represent, respectively, series inductance and

0

parallel capacitance of the eenstant—h half seetitn fr n whieh

derived seetiens are obtained.

J.

\ I O U ‘ Uh - Q 0 '1 F _ O

The prsperty in (h) indicates that any n DTQCT derived sezel sect; n
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can-st be used lUI e te-nineting secti n, is, elcegt ini bWC cast there

-.. - 1' . 0- - ‘ f) ' e x-.. -7 M -' fi- . ~~ ~‘ .— ~ . “ -.. ~‘ .-;
11 -~ 2. L GCJLUbLJ; l---r I". 2 L) 1.1. ”i1 .LS 9118 1145:;81 e -dLl 4.4-269 ..... l Clergy-1C; ,

.1.

then the erder of £12 is not a c nstant-h type image impedance.

It is possible, however, to sbtsin fer a To with n > 2. a c nstunt—k
r

cascud d Label seeti,ns in a

W

{
1
'

0
'
3

(
1
‘

c
f
-

}

‘ 't 1‘ 3 I" I 5 v -‘ ("V . , ‘ .

image inpegdnce by eensidexin

T A -‘ _n ,-. 3’ ’ , ‘ o .3 ‘ "-‘._ +‘ h «L " ’ .L, s ' _- r‘ _. .‘ 7J4. .‘n ‘.

matched baSls. The matching is seen that the last seet1;n an th see is

an h-derived half seetien fig. 5.1.2.
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l on. $1

‘1 n
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This new sectien is, then, s T5. In erder ts were the dis-

cussien clear, some of the higher srder derived seetiens are given in liq.

C l 1 As is seen iron fir. 5.1.3, each ‘erived section has two Lul-’._L_.J. 3

branches, namely, series and shunt.
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Procedure:

1.

k
2
)

It

7 w

x”12’

can be Shawn that, wx 2 Nb and w = W“. The expressi :

Find the correspondinc symmetrical lattice which has the same
C)

image impedance Z s with the ratio functi n gf 25.
ll 12)

Idultiply the series aims of this lattice by a canstant, s and

divide the cross arms bv the same 1actr. In this P390333: the

ratio funct£»n of the lattice tee-nes 25: but the itagc in yeance

(z. ).
Il ‘ 12

'
1
3

ind the lzidder eQLivalent t; this lattice. Ladder netw-rhs ex-

r.

ist i1. and enly if, 0 < s x l. ConSequently, consider the half
I

secticn which has one image i1.pedance eq11al t Z11 (ZI2), the

other having higher order, say, WV (NV) with thc rati; function 53.

A J

New consider the half section in 3 and find an ther symnetrical

lattice thich has WV (NV) as its image impedance with the ratic

“ J

nctin f 25H.

F
]

V

Multiply cross arms by the same factor as in 2; i.e., s (O a s x

and divide the series arms by s. The final lattice has the Sfime

into- imledanee, W" (fly), as in h, but the ratio function is new 23.
In

Find the ladder equivalent tv this lattice and cn5ie2r the half

section. This final ha'f‘ secti:n(3) will have the image it’

P
—
c

TN - ( IJI' z": ) "I ‘J ( 1" 1J ) Lilla ‘tlle lxa.c '. ~ :1 I‘lnctj‘ C11 ‘1. E

1'» y a b

H U
}

H
) \
.

and W" are given as follows:

J

 



“ (l - 32) + (.2
141

49

Ll (1 ~ 52) + L:

H . . - _ 'J.

Y z

t can be seen fr m the abcve fcrhulas thet.

F“,

.7]. '1": - ’-“- VJ W ; u, L

The sectiwns in :ifi. 9.2.lb and c are derived

what different vay and called h-derivatiens.

.3

do not resrlt r netwer; consLsting e1

res nater an; s erhs.

e1 that we want to ccnsiaer.

Since the transf: sectiens i

ihage impedances at bcth of the

these sectiens with one Ur mere sectigns

.btain a simple image imredance

consider that fig. 5.2.la is a half '4’Let us

with the parameter m. Theref re, Z1

and Z T18 transformed sectien,2 to a capacitor.

tained frem fig. 5.2.1 and given in fig. 5.2.2.

olnce

by fiude [

Hence,

{
)

at ene -f the terminal re

Currespenis t; a

h

d

whey simple L, C,

tjlcy

end C have

is necess

en a matched basis:

’
4
-

I"

herefore,

2j in

Higher qrder h~dcrivatigns

taraLler

7.18

111g;1ex‘ .1m; r

ary t cascaue

in ”:der te

3 th- f’nn

Hunt M~derived section,
I

i‘ O.

‘u_..‘ VJ.

resenatgr

can be oh-



there

msgLO (1-8

x

.2 \
I

l
l i

n
fl

g
!

 
 

*
2
] i .

~50 5.2.2

7". .‘

thD iriu the formulas (5.2.3) and (5.2.4), we have

'T

‘,-' "W- '- --. .— ' 2 _ 2 '0 'h (2’ P ' tpr‘)

 

‘

As we glow fr.n the ab ve discussipn; this sceti n has the same trensfer

functi.n as th uriginal sectien. In ereer ta reduce the erder _; W”; we

cannect an thcr section in cascade en a matched basis t- this secti n.

' .'. ' " ’3 . ‘ " ‘. ,.-," ‘ V .7 1“ ‘ '3 *r r 1': 4‘ ' 1* '. .~, '. " . - .~ “\r 4" n

lhls fLHal sect; n 1s blhy J an H~eeri ed Lull oCCtlmn with tne thiehetci

u; sn. If we let

(me < m1)

then the final T3 will be ehteined as in fig. .2. . Element values “5

this complete section are
‘0': - ,‘ .1 ‘3 -o g- . (A - .'~ -‘—‘ . ‘ ‘....'- -“

..ven en tne IlQhJC in terms ,i the Lazahete.s
v

. '. ‘ 1. —— . ~‘ -. r.‘ A - 1 u‘ ‘ .- ‘ "\ . - -' .- .L ‘ 7,‘ a . ‘ ' t ,. ‘4

ml aau m2. image lmye'ances are else lCdLCiuefl en the SlLC 1i are.
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Zia ‘ ‘ ' ‘h ' l»
“ Jl.— x2

“ 1; [l j» (l- - 4122) x2]

21“

.L

c H nk‘l -Lif) C

1 F 2 e

1.11 - 1.12

r‘ 1 n

”2 ”l we

mi (1 — meg)

C ;_ ' ___ ....... C“

a 1 , , a v
.112 (.31 1' 1.12)

C ; m C

Since this 26 is cbtaine‘ simply hv cascading two matched sectiens; its

transfer function is tne sum of the transfer functi ns cf the "ndivldnel

'1 "~ " " ‘y '~~ P ‘. "'1.Vr

each a: W}1.LCL1 hua «:le A-1--'dt..l-‘-v ed half

lhfis secti-n any be ebtained with a different preceQLre as QlTCJ eLsc—

where [2].

5.3 LADD“? TEPE TEMMIJATIEG SECIIOAS; $5.

In the full wing discussisn. we shell restrict .U“¢elves ts a s1 "»el
I

~, ~ ('1‘ - A .. :M-.- ,. .t.. n ..t.. '. .~~.- . " .- 1 "x "‘ .. "‘3‘

lelec" lo Vitn the can-ignratl1ns Diven ln rig. 5.3.la ani L. .rese lo

1- - .-. '~ ‘ "~ '. .M: , -1- , '1 .' - .: _,. " - —
are assnmcd ts 0e attained by cesca‘lng he u- Ute m1d‘0614Cu cl .-e-sntnt

‘ "1'? ‘p " I r“ ‘ 1 ' ‘4 ~, . t ‘ d ‘ nr’ fi R' r- x '1 fi‘~nv"":~ 1"- "wfi --.‘u " Y‘-'.) 99

La 1—s,CLiJns en 4 misfia cne alsls o “26 lac;eas-nb ELe u_h-r -1 .nc cl

. . a [I .’ ' I . u ‘. -. ,‘ ‘ FI-v .‘« ... fl . ‘-‘ f .< 4— » . ~\ «g - ‘ r

the 1139e impelances l3 ldgqoblble l- netcnej 08Cu;ins are mafia [23].
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(‘11 l

 

  

 

‘ . .. 4.3 , . . .. ,.-. ,. .7 I... .1. ,.,7. - r1 .: .; ., 4.1 . 7w .7,

rsr price eel phi Jses (e.g., m_nlmlu numuer l c ”ls In tn: lllte-)

rm> deafl inero 1fi‘*~ rf‘r'the rdx‘-=hn"r"t"re “vs ‘~~en+’ "1 Tixwee t" 1' sec-. .. it... - ....u-. ... 4.9. v ,.1 et .3; 11.1 v ”1.1., 1-L~.\..L o-_u kw. . 1J.....-k. th....) 9.. .

'.. \ '.' ‘ :A‘r fl . ' ." -'1‘. “ u. :1 7' "\‘fl Q ‘vtx. \ - ‘1 ‘ v '1'“ h... ," '

tusa ls tue dldl uf the other nil se.-es in; ence we “n,t the clehcnt

r. I

‘

-
values sf one cf then, these of the m her can be calculated easily L;J-

A cascaded cgnnecti n e: simsle hid-shunt half sectiens with the same
A

cut—vff frequency; as in fig. 5.5.lh, generally d1es net lead tr a low

I

pass filter. This prculem is already discussed in reIerence 1231.

In the tellewing discussisns, the T3 in fig. 5.3.1b us a unele is

analysed and Swme mure remarks are made on the yrcperties .f this 23.

‘

Finflly, we smell Calculate the elcnent leues of this lo.

.
I



  

~DO~

1- I \. ~ _ ‘v /\ \ ,“~ . “'7‘", , r , -‘-.‘ ‘vgr' ~er \-'(\

5.4 PhCPEfiT Ea e? HID-odLnl TlPE TEAMIuAJIQM SECTIU.Q

A hid-shunt tyye T3 is repeated in gig. 5.4.l, and the elements are

\ v

. q . _ _ . . _ -_ .- - ’

labelled. If a "wltdge driver, s1, is applied ts the ter inal pairs l—l

~ - o A‘ ~_ ~ _ 0“ o\ vr'u “ I \_

an“ a luafl resistance, R is Connected to the terminal gslis 2-2 , then
L)

the fellmving preyerties are Knevn [2h], [2].

  

Properties:

1- ‘rhe output voltage, E2, is sere at, and only at, the resonant

frequencies, di, or the parallel resonaters (i.e., at the peles

or transrer less).

2— At the resonance frequeneies er the resonators, “3’ the driving

. . , . . . I _. _.

psint impedance, Ad, seen at the terminal pairs l—l , l5 inde-

pendent uf R hereiere
L)

v =7. =3.
”11 ocl scl

and at w = d1, All, Zocl and Oscl have a pole.

 

lhlS property ls valid only under certain CQDdlulunS. Inese CuDULLLURS

are discussed in detail later in this Chapter.



-51-

3- 2001 and Zsel cannot be equal at other than the resonant frequen—

- . . 1 _ i.,_\-[. -

eies, m., of tie rcovuatwrfl.

l

a‘

h— All critical frequencies a: 211 occur at Some or all of the res»-

nant frequencies, a. of the resonators. inereforc, the number
i’

of the critical frequencies of ET is less than, or a must equal

L1

to, the number of resonat rs.

Although the property as stated in (A) is or value, rurther clariii-

cation is necessary. Such a clarirication is given in the following sec-

ti on .

3.9 LEEFTEIWJ DISCUSSION OF 2:13:11 LOCAi‘IOZTS Or" ThE CnITICAL FREQUEr-CIES OF

ILE RAGE IHPEDAHCES OF A IS

ansider the IS in 11g. j.4.l. The mesn system or equatiens is written

to include the voltage E , across the element R rather than H itselr. ihe

 

     

a L _ ‘L

system 91 equations is given by,

P. 1 — 0..
...—PI .1 PE 7

51 Z2 42 U 0 O l 1

-'7 a Z W]. ~53 ‘ I

“2 2+ 3+ 4 4 O O 2 O

-3 A L-+Z O I OO 4 4+ 5 C 0 j

o

. -

o
- Z

1214-2 0 ; V~l O
.

1

Z " z; —' 'I O

2v—2+"2>’-f 2? 52V: V

-4 " iI -‘ -E“O O O 000 2
AeyLv;-L — 2

where
(9.? 1)

Z - iii.

2L p C21

‘ 2i-l
Z ..-..-4...

2i—l 2
'l + -2-

(7-9-2)

w12

. 2 _ '

“i 1/ L214 C2i-l

p = 3a) , i s 1,2, ..., 3) .
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The image parameters for this is can be written in terms or the de-

terminants or the coefiicient matrix or its sub—matrices in eq. j.y.l as

follows [2].

 

by 1 7‘1 A
211 = ,;-—~§e~~'~~**— (9.9.3)

15‘- ll V+l,Y-‘-l

 

_, A

AV+l,V+l ll,v+l,v l

 

 

A A _

n = tanh PI L A ligy+ljvtl

ll V+l,V+l

From eqs. 5.5.3, 3.7.4 and p.).j, we can obtain a relation among the image

parameters:

Z A 2

12 “2 1 V+l - i
.3.— . o - H. > = 2,—me (MC)

11 7+1,V+l

In the following discussion, eq. 5.5.o plays an important role. Eor a

symmetrical determinant, since

2 .
A - = A

All Y+l,v+l Al,V+l “ii,V+1,v 1

then, iron eq. 9.9.), we have

_ I = ......_..’_.._.i.'_.--.—. ‘\ h1 j A_ A , (5-,.1)

ll 7®1,V+l

Let us calculate the determinants in eq. p.j.7. From eq. j.p.l, we

have
V— y 7 ' -. , 2V

A1,‘V+1 ’ ('1) ("“2)('54) "' (Zev) ‘ ('1) 33; gel

1'y i4’ 1
'

z l in»- . .8
‘9) i=1 021

(5 9 )

Ch the other hand, A , and A are the Special types o3 determi~

li Y+l,V+l



«v v ’v (‘1 H - f ~ 4- " (”‘1‘ v- r'~- ‘~" ‘,\ “‘V ’ .‘ ' I » ‘ f' ‘

hants Called c,nthuano. iheg Can be -eaueed, by dSlnfi sflme useiul

-‘ 4"" 0"] l I- ' ‘N N J ‘ . I ‘ , D -v- a‘ 1 r“ .~ '9 »- ‘ ‘ 4 ~ ~.‘ 4- h .. .r '— 7 ‘ ..

traHDLQLMJLkwub lfltu a Simpler loin called simple Cgfit nuants L23]. r;

... ‘- L. ..- --.,: .4. V n “.1.“ - be ; , . '. x.-. i-q‘-,1r;

use oi the pri,erties oi continuahts, all and A .1 A can ie in QSbmgwth‘;
L _ .

.. , . ...-’-,- -. ~...:. _-: .1

‘Ub" lam-530:, 31‘ 391 V185 ELLE Iluo Ilfikt‘ufo’x...but for our fqr'
'
m

The iia -nal entries of L and A contain all rf ttc otter en»t ‘ U )Ll 9+l,\)+1 l c u i

tries in these respective determinants. By definition, a determinant, A,

of :rder n is the sum or all possible products or its entries taken n at a

time with a proper sign. Therefore, in the expansion or A, tne term which

. -- o c I 2 0

has the highest ordered denominator-polynomial in p 18 the product of all

the diagonal entries of this determinant, e.g., for A/'1‘V l’ we have

\T q i"-

/ p L

..-. ......_-._.l_.é + Fl.._c__. \' T... + 2 , _ C .

1+3“ p2/132 1“» pa

2 2

CD1

 

r
d
!

0 D2”

1 i'—l (l + '22)

l

2 . r. . . . . 2 . .
where, p (p ) indicates a polynomial runction of p oi order ‘V. There-

Iore A and A can be exnressed in the following forms:

’ ll V+l,v+l ‘ ‘

 

Av+l,V+l :

'X' " ° '.-" .- an 4 . “ .. Y'- 1-. r ‘r r. - 'r \

PTlnCl:L€o oi Circuit syntheSJS oy a. o. zun and J. v. ie\ers n, thTflV—

. - I1 1 .41“.". 'l ~; '1‘. [.' n ‘1' I“ .‘Q. ' . “ n‘fi'. _: r- -.

filll blag to labs. ihis bOUn e-nta ns an appendix n the as licotiins

simple continuants to ladder networks.



n r‘

v‘r . wax ' - ‘ ‘ ~ ~C ‘ v > y'\ I“ J I --2 r‘ 'i-‘ ~e -- r ..' 1‘ V 7‘, - - . - 3‘ . aw - d ~~ ~-~.

where ajaiu a},(p a.u m (9 ) ale u l nomial iinctiuhs in p oi oi-

ders l) and ‘V — l respectively. Cancellations may occur tetween tne

‘ {1‘

numerato‘ and denominator polynomials in eqs. 3.4.0 and j.h.y. “his is

considered later.

Substituting eqs. 5.5.8, 5.5.; and 5.5.10 into eq. 5.5.{, we notain

the followin; relation:

2 ‘{ 2

2 (J31 1:2

‘1 = i-_ (5.).11)
(A ~-.2 1 v2

C2 C2y 1).)(lv ) 3y_l (i) )

 

H

l

- . ,. . . . 2 ..

In 5.5.11, Since the denominator is a Simple polynomial in p , then

"2 . .
(l - n ) can have only zeros at w = a:, 1:1,2 ..., v). On the other

hand, wi's are the poles of transfer loss :unctien, a and since [2],
I}

l w H
...—..-

AI' 1—1:

I

.a 772 .4- ‘ ‘ ‘3 " ~

then, (1 - n ) must have a zero at, and only at, these irequencies, e,.
L

From this snort discussi n we have the following conclusions:

9

(I) - moth Q»,(p2) and my (p‘) cannot have a factor of the form

‘52

(l + 4‘6) .

(Ill_

-1

, . . . p 2 ‘ 2 , .

. . p ‘ 7. J n2 W}

both hare a Simple Iactor kl the iorm (l T ~é). e, cgurse:

LL)"-

f
.
)

. 2 . .

nd RY l (p ) may have common lactors other than

" ‘ r""“v ‘1 1 ~. . " I v., -‘*'. v "r . ”‘ ." ‘ " ’h‘ ‘ P‘ T: r ‘

On the other Lane, a is purely lmCOanr& in the pass band and n has

i s poles and zeros only in this region (pass band critical frequencies).

1

Since the poles of h also appear in the denominator of (l - H

doubled, iron eq. 5.5.11 we have another Conclusion:



\
Z

" E ‘ . v I ' 1 . f“ v/ 2 ~

(111) - fne piles c1 n ire stne ml tne zercs a; qx’\p ) or a

'“. i (11’) . '-' . . . .\ '. ,:_. ,. .-‘ .. ‘ -. ‘H ' .. .- a? .',. .L“- -.

:rr 3 in SCCLlun, one Vi tne requLCmCuto nere VElDQ 1c: an is uhab

-’ ' 1 7‘ r‘" f ;‘ ‘ ‘t . ' . ‘ “ T. . “yr“ r~ .vr -,_ . .Sw

n12 must nave ~ simple 1.rm, i.e., is a cnnstsnt-n image 1m)ednnce.

 

2

On the ctner nanc, Since LI als: nas the Inctcr \ 1 +‘c~5 in its numera-

L.

‘5 .", '- ‘ 1, ': ywr‘z", a th ir_qr-() i, Q';r) a an -_‘ 'I’ I" ~- '3‘? a 1 -r —7- ,—-'

L ‘Jr \11 (.181; lI-‘J---‘-.J ~41 ) e *AliLnby ...la; jvl.&w;’1Cw l Glut—L 2." (J10 {—JT 3 “LA. 3' ‘.'l th;‘\ I10 [I

C.

have tne :sctsr (l + 4.1) in its denominator.

 

this case is ccnsidered later.

Let us substitute eqs. 5.5.11, 5.3.3 and 9.5.; intc eq. 3.5.c. After

making necessary simpliricaticnS; we obtain

2 2. V I» 2 V v

A (l -r .1.-.) 7T (1 + —-—--2) 77 (1 1 «~7-

IZ’. _.__-_. [:1 i=2 “i H 1-.-1 “1d (5 5 13)

v - '
-- "‘ " ""“"‘—-"—HQ' ~~ . 0

K thC')

)2

 

 

where K H
.

U
)

c
a

'
d

(
I
)

}
.
.

d k
:

6 Q a m C
+

11
‘.
)

:
3

(
J
.
-

JTnc; e". 5.9.13 must be satisfied for the c nsidered 18, then we can

0 ’npeunnce when 212 is given 0? eq. 5.5.12.I ’
J

.
“
5

p 9
;

p
—
J

(
D

H (
D

m d H 0 2 S

a

\
)

:
5

S
:

6 [
\

H
i
_
)

I
.
.
.

A

C

A

..,_ _ _ . . . c , . . .

rpm tn“ conclusiun (I), Since :1 (p ) and my (p ) cc nut 031.3313



..‘\ .-

ractcr with purer equal tc uni y. Since 310 is CDKSUn as in eq. 5.9.1

K.

then tnis lactnr must appear in tne denominat r 01 41 . i.e.,

(a) 411 has a pole at w e Kl

Q;nce lar a :8, 411 is TEQUIIQQ Bu be a higher ardered inage inneuance.

.L

we neXt investigate th maximun passitle order ior Lll' Frcm Cunclusisn

(III), 11 my l(p ) nas a zero (tnat snculd me Simple) at any a&, tnen

f‘ 2 . ..L. 1 . 4. ’ - ~. .. '..- " ‘2 ‘. . ,, -,-

e\)(p ) can flflb nave a zera at tnls irequency, er, ll Q‘VKP ) nas a selc

2 . .
at any'ufi} (P ) can not have a zera at tnis irequency. rnereicre,“Vol

2 2
x \ -\ "' ‘y I ,x ‘l , :A’ "‘ f: \ V‘ ‘U' ' ‘ ‘f ' O yassume tnat ncne c1 tne polynsmlals, n l (p ) anu §”Y(y ) “are a zexa at

y-

w = au's. uhen, loaning at eq. 5.5.11.
1 :1 we can conclude tnat (ale/AIL)

can, in general, ne equal to a rational function with the sane degree,

say n, or nunerat:r and denominator p0 gnomials. i.e., either

2 2 2
p. ‘ -3.” >,. -a-O-p —.‘(1+~-2)(1 . X”2) (1 .2 )

“12 (n X2n—1 (- )

7~~ = --~"“* "*“**‘* ‘t***"**"““‘ 5.5.14
s . 2 2 /IL ‘0 ‘32 T3

(1 + ---~)(1 + -5») (1+ --)

2
.Ll , t. ’32

- ..

(1 + ff—)(1 +1“ (i ~+ ...g---.._,) (9.9.13)

' ' 7' O - a u - ‘ 2

where, Since 912 15 a Simple luage impedance, tne l‘ ’s, are tne :ercs

.1.

nd poles or L“l whicn are all real and positive numbers. lne ractprs

n _ . q . . .. _. . . ,

(l + 25*) dc HUB appear eitner an tne leit nana Slue c; eq. p.;.lg or on

its right nand sine; therefure, necessarily, these racturs in eqs. 5.5.14

and 5.5.1) cancel Such tnat the cegree or numerat r and den;;;nat;r FCmaln

, 1:2

equal ta unity, Since (sIfi/nll) must centain the Iactar (l + wvé). ncnce,
C. .

(ul

he have eitner,



 

P2

212 l :72 _
_’.—.. '. ~—--°—’-°‘~‘—

( j ' ) 0 1L.)

*1 i + .2...

K22

OI‘
: l . E2

+ .. -.....

“12 ““12 (~ - 1")1..--.. 9-7. 5

‘11 l .112,

(LL/2

2 fi2 0

For these cases, (1 +~Ilé) and (l + 42?) must be containeu in Q),(p‘).
u.

k2

inereiorc, considering eqs. 5.5.12, we have for 211 either

 

 

2311 = (27-9010)

)

01‘

 
(p2) has a zero at w = m. (A = 2:

V—l i

3, ..., y’) then because 212 is as in eq. 5.5.12, the order or 311 cannot

. . . . - 2

‘lnererore, ir neither Qy (p ) nor R

be increased beyond that indicated by eqs. 5.5.13 and 5.5.ly.

Since the roots or 1 — h e O Oni's) and¢no are Known, rr>n a theorem

whicn is stated 0y node [22], the n lunctlon can be determined uniqUely.

Shererore, the two iorms of 311 in eqs. 5.5.10 and 5.5.ly canoct exist

I 2
n - ‘ 1 i' o . D . -

Simultaneo sly. I1 n contains the iactor l + 2.? in its numerator,

02-0

tnen ZIl as in eq. 5.5.18 is possible. In the ether case where the fac—

  

tor does ppear in the denominator or n function, then ZII

as in eq. 5.5.19 is possible.

From the foregoing discussiin, finally we can see that in order t;



.. )x' ..

increase the order or All, keeping 212 as in eq. 5.5.12, Some or the sim-

;. ... - 2 p 2 . q, . , J- -
ple zeros oi eitner Rp l(p ) or'sgy(p ) (out not both - see CGDClUSlUn lI)

must coincide With Some or the poles or tne transfer less ”unctlon, i.e.,

with the ai's. then we nave tWo p SSibllitleS:

I h. 2 ‘ .. " '

A) ouppwset C5R(p ) has Simple zeros at Someco, s.
J-

. . _ p2 -

n this case, one er the rectors, (l + wwé) on the numerator or the

w_.

.1.

right hand side in eq. 5.5.15, dqes n;t appear; but this ractsr still

.‘x

. I.
' 4 2 '

w ~ , ’ C

appears in tne numerator oi l - n as double zergs. blncef'fiy 1 (p ) can

not Contain tne iactor (1 +‘l£{): this faCtor must be in the denominatwr

w-2

i

‘ '2 .° ,— ‘ \
-. 1 ‘

V - "

Oi tne ratio (512/211). In other words, it must present a zero oL all.

unereiore:

O

(h) Conclusmon: Ii Q))(p‘) has simple zeros at sgne c: the wp's,

then these zeros are also the zercs or the ZIl image impedance.

Suppose: R
L L Y"]_

2
x n . , ' a . _

this ase, tne iactor (l +.JL§) c~es not appear in the numerator

w,

:
fl
V

2 . ,

(p ) has a Simple zero at any m 2:31.

l
4

D o

.2 , . _ , , . , . .,

or 1 — n . out this iact r still appears on the right hand Side or eq.

5.5.13 as a double factor. hence, (ZIE/le) must contain this ractcr, i.e.,

a2

(1 + 1;?) must he a zero or this image impedance ratio or we can state

i

the iollowing:

'S,
. 2 . .

(c) Conclusion: Ir Ry’l(p ) has Simple zeros at some or there.

then these zeros are the poles or 211 image impedance.

From the above results, (b) and (c), we can see that to we able to

increase the order or Z11, i.e., to be able to increase the number or zeros

. . ,_ . . 2 - 2 .
.ana poles ior 211, the polynomials Q~v(p ) and Ry l(p ) must have as many

zeros as possible at the wl's. From a property or the image impedance [2],

. , , . _ . , . . . 2

the degrees 01 numerator and denoninatcr polynomials in p , excluding the



‘)j"

-.i, , . 2

factor . can diiier only by unity. rhereiore, only the Qw,(p )

 

o

2 . . ., . .

or R l(p ) cannot have all the ”1'5 for its zeros. 'rnereiore. maximum

Y

obtainable order for 311 occurs if all zeros and poles or 211 (bloc: band

critical irequenCies) occur at the poles of transfer loss. lo prove this,

the above argument can be used, i.e., assuming that Z11 has more zeros

and poles. In other words, the number 0i critical frequencies 0i 511 is

larger than 1) . 'rhen, in (Ale/LII), we Will have some factors as (l + ~~§).

Since these lactors do Hut appear either on the right hand side of eq.

5.5.13 or in the numerator or denominator of l - 12, they must cancel.

Hence, the haximum obtainable order for tne LIL function is that one whicn

will have allcbi's as its critical frequencies. The conclusion of this

discussion follows:

Let the ZI2 image impedance have a simple form (ctnstant-k type)

‘I

as in eq. 5.5.12. In order to increase the order ci 211, it is

[
\
1

be located atr
)
;
.

necessary that the critical frequencies 11

the poles of transfer loss. Otherwise, the order of 311 cannot

be increased.

From the above discussion, because of 212 as in eq. 5.5.12, the simplest

form of Z? is either as in eq. 5.5.13 or eq. 5.5.19, depending upon whether

*1

t2

the factor 1 + A“? is in the numerator or denominator of the K — func-

mo

tion respectively. On the other hand, the form of the highest ordered 811,

  

not only depends on the location of the factor 1 + £8" in H. but aISo

on the oddness or evenness of the number ‘V. So far, no restrictions on

the wi's are imposed. however, there is a reStriction an these<ri's as

the following preperty shows: From a property of the image impedance L2],

we know that its poles and zeros must alternate. Hence, since some of the
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fi. > - ~, .“ 4:1 and some other ai's are the poles or 271. then

.L
* _ .

there should he some orders oetween these wi's. I! we now imp;se that

(but it is not necessary)

LU > CD > o o o > CO

1 2 V

. o . o o _ I . .y:

then two pQSsinilities :or all ex;st :

If V is odd:

 

}

I I\ C ‘

“'0 . .12 ‘03....1 ( .
~— I. —.—--.—--—~ -~—.——

\
I
‘

O

\
J
‘

O 7
9

\
4
/

 

2

(l +:P:'é) ... (l +-p-

‘ \

1 '9

L" V is even:

 

These two f rms a; image impedances are used in the following discussions.

Now, let us consider other simplest rurm IO? 312: i-€-:

(5.5.22)

 

Ir the foregoing discussion is repeated for this case, it can Le seen iron

  

  
r ' I

eq. 5.5.13 that 311 cannot have the factor 1 + $¥~ in its denuLlDaLOF.

therefore, Z11 has the form of eq. 5.5.20. In addition to this, the rol—

lowing conditions must hold:

Ezker [24] has Studied different types or low pass sections including tne

TS which we are considering here, wits the assumption w > up > ...)cbv

and indicated that maximdm ordered image impedance can be dosaiaed if all

the critical frequencies or this image inpedance occur at<n.’s. Darlingt n

[3] has also hentiyned these properties ior mid-series types or ladder Jil-

ters.

*



«.1 ’l—
V

a

V. " .0'. . .»+‘ M ,4. 1,1 . — W" 4-,». 9‘ _ -7
(1) fine n lunation oi the CUHSLaGIEJ is has tne lactor 1 a -1; in

a 4

its denominator.

(2) For the niqhest ordered £11, 1’ is sad.

(3) The degrees or the numerator and denominator polynomials :i the

image impedance ratio, nIE/Lll, must be the same.

It is seen from eqs. 5.5.20 and 5.5.22 that the ratio or 512/311 does

I o - -~c o ['5 my _-_t_ __ Av :7‘1 a" ,n . '.

not satisfy the condition \3). Lhereicre, iur the 1b as in 11%. 5.4.1,

212 cannot be taken as in eq. 5.5.22.

The image impedances in eqs. 5.5.20 and 5.5.21 give t.e iollawing se-
1 I

quence:

Z. . '- ... . Z :3 |

02 ~ Lou ’ ' ohm ( V dd)

7 -/ , 7 (1) even)
4003 ’ “005 ’ “com-l

Another sequence, i.e.,

Z Z ... Z odd

Z , . Z . ... Z even
05 . OS . ) O,V+l (V )

can be obtained from the dual ladder (mid-series type) to the Considered

TS.

If 212 is not restricted (constant-k) to a simple iorm, then le and

212 will have critical Irequencies that occur other than the poles of

transrer loss. But from eq. 5.5.13, it is clear that these critical ire-

quencies 211 and Z12 must be the same. In a recent article [26], this

problem is considered such that a section as in fig. 5.4.1 (not a‘iS any

....

.lr “7 I ’7

J col} “00 2” “003

more must rave Z Z Z . ... ,
U ) o ‘ Ol) 02) 0.5) (

impedances at both its terminal pairs, but the poles of transfer lySS

function must not coincide with the critical frequencies (reflection

poles) of the image impedances. helevitch gives some low pass iilter



sections ior inly the $02 or a types or mid-Shunt ladder netw>r s and

s not known wheth ;H
o

their element values, but also indicates that it

such ladder sections exist if the order of image impedances is hi her

than 202 or 2002. this problem is not discussed in this thesis, since

we are concerned with the ES. Sut “einaps a disc1531 on six lar to the

one above c uld be used to clariiy the many points in this proulem. With

a given set of image impedance and attenuatitn poles, it is possitle to

rind symmetrical LC lattice networks out txeir ladder eo“v“leis nay

not »xist. hs Ielevitch indicated in his article L26}, the existence

or a ladder equivalent to this lattice can be eneeked oy the Fmtjis=ta [27]

criteri:n. This critericn is ei eided cy he:?ngvet and Selevitch L20}.

It is wortnwnile to note that. for the ex::stenee o1 ladder mid-so Les

tvpe lLW pass i'ilsers (i.e., ior postive element values) D.rlington gave

two suificient conditions [3]. rhese two enndi ions are actually the

sane conditions that we wanted to impose ior our T5. Thererore, the con-

sidered is will exist (i.e., all elements have positive value) if is212

a constant—«1 type image impedance or 311 has the highest vbtainable order.

In this c nneetion, a general existence theorem ior ladder mid~series low

pass networks is given by Fujiawa [2(J and these conditions are eXtended

for band-pass 1a;der filters by Watanate [23].

Our pr;olei is now alniost clariiied. All Ie have to as now is to

determine the element values of the TS as in fir. 5.3.1. ihis problem

is considered next.

C
D

5.C E WEE T VALUES CF T

In this section we consider the 93 as in iig. 3.1.1 with the fullawiny

restrictions.
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With the above restrictions, the eqrivalent Foster forms of bh'

circuit and (pen circuit impedances oi this T3 are given as in fig. 9.o.l.

Where )1 is tahen as an odd numh-r. If'v is even: similar tw. terminal

LC Foster forms for Z,C3 end Zsc and the reactance pattern can be given.

1

;he imp dances Zocl and Zscl can he expressed in terms or Z11 and K

as [2]:

J

:
J
h
J

:

/- ,«

\b.‘.3)

Since the w.‘s andcs) are kncwn, H can be unicu ly determined, and since

L

x:

Zocl Del can he found ir,L eq. 3.3.5. In

fifi. 9.0.lb, the only unknowns are the wa.'s (31-1 in nunher}. idese

H

‘ . - .-‘r ‘ - -'.~',-~ \ ‘ ‘Q ' W ‘P‘l

equenCies mt: ne inane as lullDMo.
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”' 3 W2 ~ " ‘ 7 t‘ f '= "' * 6 lb h *oincc L — “sol / JOCl, nen irom rig. ). . ,: we ave

2

  

2 2

p2 (l + _p___)2 (l + ’2'“)2 (l + ‘32“)2
w 2 (L. ,2 we.2 31 a3 u-l -, xI, :_ h -_ ......é. -- 2 - 2 -..—- (we;

(1 -+- 23) (1+ 13F (l + —-——g-~—)2

(13;: (409.2 way-2

. .2 ._ . , , -

Since n muSt nave a unit value for my: «a, then irom eq. 5.6.6 we have

the following W’ relation

  

2 73.2 p.2 n 0.2
‘ ‘ *1 2

(1+23)(1+ 12')2. 0 (1+ 2 )2—hpc' (l+—°’-"2‘) ...

(A; wa2 way-2 Gal

0.2

(i T mg» (i = 1,2, ..., V) (5.6.7)

(Day—l

where, as mentioned before, pi = jcbi.

Actually, to be able to determine the H - function, the set of rela-

tions 5.6.7 must be solved and.aéi's and h must be found. If )2 is a

small number, e.g., 1) I 2 or 3, an attempt can be made to solve this

system, but in general this is difficult since the system is nonulinear.

Bode [22], has proved that H is unique. Therefore, there should be one

solution to this system of relations 5.6.7.

Now, suppose that we have found the H function, therefore from eq.

.; . .7 v; r‘ 1- ") _. ,_ 1' q . JR! -

5.L.5 we can determine uOCl or ”sol since all is also nnown. one can con

sider Darlington's method [3] of determining the element values of the

mid-shunt ladder TS by use of either Zocl or Zscl. By this method, we

can reall“ find all the element values if we know the H function. Eut
J

we only know that it has a unit value at w = d1. Therefore, L1 can be

calculated without any difficulty. But to find the values of the other

elements, we need the derivatives of H function since Darlinpton's method
.3

requires a knowledge of the derivatives of Zocl or Zscl. Unfortunately,



-66-

as mentioned ab ve, although the H function is unique, it is difficult to

. . . y, -0 .2 _ . . i .

determine 1t iron the zeros o1 l - h and.mb. Obv1ously, if n cannot be

determined, neither can its derivatives.

Before starting to calculate the element values, we introduce a new

parameter, 3 , as follows [3]: let

p2=-..2=---1;— (968)
j

and then

w,2 = “L" (5.6 9)
.J. 5i

n2 l
'1+_L.é.=_-—-(3i- 5) (5.6.10)

”1

2 l - a>o2‘;

1 1 2.2. e - ”.-.—59.... v (5.6.11)

mo (no _]

Equations 5.6.3 and 5.6. h, then, can be rewritten in terms cf ;3 as

i‘Vw‘we2} (32 2) ”‘(5v—1"97)

741$!) = ~~~~~~ (5.6.12)

(:5 (11.. g) (5,, — ;)

gem/7 (,72—2)...<,Iv -5>

1-010; (,Pl— ,2) (gm-,7)

A new set of parameters, mi, are introduced in the foiledinb way: At

“
J

(
I

  

and

 

leQ)
(5.6.13)

0) = wi, the factor 41 - 0302 appears in the expression of 215;) is des-

ignated by

 

I 2

21 J (DO 2 r

\[l - (.00 J i = l - (1:5 = mi 2 mi (5.0.110

Therefore, the LOCI and ZSCl functions of the TS in fig. 5.6.la can be

written in terxns of the j; - variable as follows:



 

                         

' 1
Zoc1(é FV/:__—§ l

‘ + --“~.WWWW-~--_ ....-.-.....

(5.6.15)

L
4

L
A
)

.
.
.
:

 

L212—1 . 1
w...“— . —--— ”—..—.-

.3 _,Z ' C2)»

Zscl has the same form in which only the last term (l / C

 
2v)does not appear.

For 212, we have

030mi'L/-j' .

212: (5.6.16)

' \Il - w

0

Since at w = w. (or;; == 5i), 212 = LL = Zscg’ then eq. 5.6.16 wives

1

ka-Ji moi/‘V-ji

2

  ....

O

'1 )—~9 - . (5.6.17)

2(15 All-mo g1 mi

On the other hand, at“; == jfl, from fig. 5.6.la, we have
1

, l _ __ U -111” g

Toercfore, equating equations 5.6.17 and 5.6.18 yields

2V di &

. . , .2 .

or, finally, Since “62 = l / LOCK and n = LO / C3, we have the general ex-
V I

pression for C , whether 1) is odd or even, that
2))

:

" '1,”

021) InvCO (5.6.19)

In order to calculate Ll’ consider the relation

W2 ” 7 i

“11 ’ ”ocl ' wscl

Let t) be an odd number, then from eqs. 3.5.12 and 3.5.15, we have



.;3.

12,32 (1 -woenge -:7)2 (97.2-1 - g>2

~cou2! (; ~7’> )2 («IV " gr?

 

l

 

.7 L1
- gl"! . . Z.-\S '

  

  
Lev—1 1 ° _.3;.

4'Erw' C2w>

‘2” "~; 2le __|

Multiplying; both sides of this equation by the factcr (Zl - 3 )2 and

then taxing; the limit as j ——-> J 1" we have

7 _ 2

k2 (l—wo2gl)(!2~/l)2... (912—1. 97) 2

V --.. L (5.6.20)

(1502(3 3 '- 51)?‘ °"°° (XV — 11)2 1

But, from eq. 5.6.lk, since

  

 

 

 

2 . 2

Z __ 1 (D0 0‘0 _. 1 2 _ 2 ,f

ji " “,3 — LL ‘2 (13.2 " w.2 " w 2 (“.3 " Lni ) (50LJ021)

o 1 ,3. o

and

- 2 V 2

J. - u) f . —- 11

o 1 1

eq. 5.6.20 can finally be put into the form

2 2 2 2 2 2

ml (m.-L - m2 ) (ml - 1112+ ) ... (ml - 11194) -

L = ~ 0 (5.5.22)
1 (I? C. - m 2)(Y‘_ 2 _ M 2) ("I 2 - ... 2)

A1]- 3 .1]. LAD: 00. All My

(For V odd)

In a similar way, if V is even, we can find

2 2 2 2

(PT. " 1.1 ) o o o (l) " I“ )

" V

L. = l d 11 ~-—--------—— L. (5.6.23)

m.I (1. 2 - 1.2,.2) (I; - m
.1. 11 Q 11 V“)-

and the definition of mi, we have



o. «4‘...—
C II.

m1 > m2 > ....... > m}, (5.6.24)

For the following special cases, frcm eqs. 5.6.22 and 5.6.23, we can

find that

 

If V = 1 (taking me = 33 = ... = m3} = O)

= . .6.2“L1 ml L (5 2)

If r): 2 (taki g m3 2 m4 = ...==*1v - O)

n 2 - m 2

1 m1 3

If 1): 3 (takin31m+= m5::... =zny = O)

r (“12 — m 2)

L = 1 2 - (5 0:27)
l 2 2

(m1 - mQ )

At .2 = 2 , in either case, i.e., )) odd or even, 311 ; Zoel ~ 25C1 =

... ’ .1.

Therefore, from eq. 5.6.15, we have

.3:L. - l — 0 (5.6.28).. .9- + C

31-52 2

 

".
,

Substituting the values of L1 from eqs. 5.6.22 and 5.6.23 intc eq. 5.6.23,

and considering eq. 5.6.21, we have

 

 

  

(m12 _ m32) (ml2 — m-2) ..... (m12 - m1?)

0 z _WV1. 2 2 5 2 2 (for 1)cdd) (5.6.29)

In]. (”11 " mu ) no... (EJ1- " I3.1))”1)

and

2 2 2 2

u (.1 "’ 1.3.: ) o o o 0 (U " I.“ )

C2 = lfinm:32f...si§-- X12 'fléi (for 1/ even) (5-6-30)

For the following special cases, from eqs. 5.6.29 and 5.6.30, we find

.J

If >’= 1 (taking me = m? = shy = O)

.-: r :1
02 ml 00 (5.6.,1)



If ‘V=:3 (takimgxq‘2 m5 = ...==ldv = O)

11112-1112,

C = ~~—~-————a¢—- C~ (5.6.35)

[
‘
0

etc...

If )J== l, the element values are determined by the foregoing, since

L1 and C2 are given by eqs. 5.6.26 and 5.6.31 which corresponds to an M—

derived simple half section.

If ‘V = 2, we have only to calculate L3. This can be done by con-

J

4 . '\ a . « (V "-.. ‘j ‘1, l' .. w I ’ ‘ 'I, " '-’

sidering the exp1e851ons cl all , “eel , ascl and the relation, all ~ “ocl .

Zscl. but the following alternate argument nakes this calculation simple.

From the eqs. 5.6.3 and 5.6.h, when p approaches zero, we find that

L

.-2 2 o ,- ,,

C)

n 1., ,-

‘Téilad see that{'
3

On the other hand, zhen p approaches zero, from i5. 3.5.1

is inductive and apnrnaches the value of (L1 + L3 + ... + Loy 1) p,
L _

and Z. is capacitive and approaches to the value of l / (C2 + C, + ... +
1

“g’

C ) p. Therefore, tie product Zocl . 25C} approaches to a constant value

and by use of eq. 5.6.3h we finally have

 

- + L + . . . . + L L

CiL + C + a C2V«l : 69 (5.6.35)

2 h ° ° ° ° ' 2v 0

2, L can be found from eq. 5.6.35 as

3

I!Therefore, if >’

m2 ,

L3 = E; (m1 + m2) LO (D-O-JO)

This section, i.e., 1} : 2, is the saw as in fig. 5.2.3.

In order to calculate Cl for a BS, in toth cases, i.e., X) is odd er



even, we can use the relation

2 __ n

(1.1 — l/Ll bl

Therefore, cansidering the value of L we have
1)

 

(for v odd)

 

2 2 2 2 2

"ll (1 " I‘ll )(Hll "‘ 171:) ) o o o o (“11‘ " 111))—l) r. V,‘

c:l ' -~~--2-—\ 2 - — L (y. a . 3,)

(fur )2 even)

83 far we were able to calculate only four elements of the general 15.

In order to calculate the rest of the element values of the lo, unfortunately.

we can not Continue this p‘ocess, i.e., considering only the relation

“ocl z‘scl

or Z from the Z: and hinis method actually pernits calculation or “ocl scl 1

function, and all the element values can be calculate from LL31 [3]. There~

fore, at this point, we have to change our techniques. A formal calculation

technique of the element values for a T8 is described by applying to a I”

with 'v’= 2, the method considered by need [2]. This technique gives a set

of non-linear equations relating the element values of the T8, the latter of

which are to be calculated. Even for ‘V = 2, too much algebra is involved;

therefore, for )) = 3 it is more difficult since systems of non-linear equa-

ions containing 6 unknowns are forued. But this technique can still be

used little higher ‘9 '5 since in the previous discussion we have already

calculated some of the element values. This will reduce the number cf un-

knowns in the system of non-linear equations. Element values of TS ctrres-

“ ‘ f ‘ '— “ A ‘-- ‘ r“ .’-‘r‘ h- s v \ .“'. -.~ -~ rA“

pending ‘V ~ 1, 2 agd 3 are given oz iaole 1. Hal practical pui.oses
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Taole can be employed. brow Table I we notice that the following relations

>3 1).-

7

53: L , = L V. Kn
.
.
.
!

H

H

m [.
.. I

H O

H

l
‘
r

}
_
1

r

EL

'
4 l'

t
,

H
M O

R
)

1.
.-
“.

l
l

0

L
)

H
. II

K

.4
M

'
,
-

hold for )J = l, 2, an( 3. If we have shown the validity of this relation,

the element values of T5 for ll: 3 could be calculated easily since the

system of non-linear equations wguld only contain two unknowns. Io easy

method has been found that eqs. 5.6.39 hold for ‘J > 3.

In practice, the use of a terminating section with L): l, mostly gives

satisfactory results. Hence, we end our discussion on filter terminating

half sections here since more complicated sections have no general use in

practice.

mpedances at the terminalH
.

Note that the TS given in iable I have image

pair 1 - 1’ of the form
L

7 . z , z . 2 etc. (5.6.h ).102 I w3 0)." I wS) .00.

Ihe other forms, i.e..
I

I'} [:7

002 , 203 ,Auub_, “05 , .... etc. (5.6.ui)Z

as mentioned before, can be obtained if we consider the dual ladder to the

‘

TS considered here [3}. But dual the TS contain more inductances and on

the other hand, as it is seen in Chapter II, the insertion function will

be the same whether the image impedan‘e of the filter is in the form of

('7

Z .

0’2 I (400) 29"}-

has-the image impedance of the form as in eq. 5.6.h1 is of

or its recinrocal Z Z .

L‘ &:29 ’ 0'92\J"l

cal importance.



  



 

 

 

 

 
 

l

'7 ' .

'z—T Cl C3 T C5 T ( )K ‘ I ‘ C Z , _ 1';

I I ' .3- .

1 C” 42 l + 2
(no

, 2 T. 2 ., 2 , 2 , 2
‘fll(ml .312”)- _ .nl (ml . .112)(.32 - m3 )
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VI. A DESIGN PROCEDURE FOR SIMuEfRICAL LOW~PASS IXAGU

PARAMEfEA FILEER

6.1 GB:EAAL“" EV OF IMAGE PARAMEPER FILTERS

If cascaded four terminal LC networks an a matched basis c nstitute a

filter, then it is well-knawn that this filter has an iLaage trawl “ r func—

tion equal tc the sum of the transfer functi:ns of the individual sectiens

constituting the filter. Also, the image impedances of this filter are

the same as the image impedances of the end sections.

In filter design, generally, the insertion loss functien, AS, is given.

In the effective pass-Land, usaallv it is desired that AS must be less

than a given ccnstant value Acn' In the effective bch Len , Ac must be
UL s)

greater than a given contour of requirement which is generally ngt a her-

izontal strais t line.

If the filter works between its image impedances, insertiLn lvss and

image transfer less are identical. hence; in the pass~hand, the insertien

less is identically zero. Under such an operating conditicn, the design

f imaee parameter filter is simple. In this case, when the transfer loss

is desired tJ be flat in the LIQCA-hand, Caner [7; has given eXplicit

farmulss fer the lwcation of the pcles (f transfer less fUflCtiJD. 0n the

other hand, for the case of arbitrary transf I los s functizwn . the loca—

tiens cf these pwles has ta be determined Ly cut-and—try metheds. The

cut-and~try method invelved is 0425;CeiaL13; simplified Ly use Cf scme
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+1‘Liylul- - “mi/--‘jno’ e. 0/ \‘AthvJ-‘L it}- 1;..LCJ I (Ce--1 L [17} l 0,. "\,~ L. MA 1' 8-

In n.rnul greetice, when a filter u rks betWecn tfir pure resistances,

un1 th tveteen twe image impedances, the inserti,n less is hit identicel

to the Lnece tra231e: loss. utncl s QCC‘IQstiJn fImula is an expressicn

the iqsetinn ftrcticn fer the gcneral mperating c«niiti»n. From this

I
’
“
\

'crmnla, it is cle'rdnnt in the 1‘ss band. if the image impedances of the

filter can be made t» aptr-ximite the terminatin3 resistances, the inser—

tion less will net differ much from the image trez.sfer less functitn in

this region, i.e., A can be made as sxall as pcssihle, since Al is chn—

(
i
:

ticully acre in the pass-bend. Because of tzis idea, hotel intrcdnced the

f

c npcsite filters L31] which are actually image parameter filters but

having two extra end sections called terminating half sectians, each if

which has lijher order image impedences.

" ‘ ‘ ': ‘ ‘t ‘0‘ I ‘ f‘ ‘. . ‘ 1“ fl ":1 ‘ ~.- : 1 ‘ n‘‘ V, I 1 0‘ ~q . I ‘- " r:

:y int; cicinx the teiminating n11- sectlJns, lo, Mthh ere ciscus5ec

in detail in Chapter V, the A“ function can be made very cl se ta AI in
Q

-q I I. ~- . x q n .

the pass-bara KAI = 0). cut, in the blcC4-pand, it may net be p ssiole ts

mahe Ac and AI very clcse ta each ether, since, generally, at the critical

0

requencies cfthe imare impedance of the ternineting half sectim3, AS

has pcles but may net AI. As is shown in section 4.5, regardless cf the

image impedance cf the symmetrical fil‘er, subtracting $.02 db. less Eran

the inage trensferrless, 1.111 yield a lever bcund ta A, in the hleck-

D

A
I)

hand. The 11ma“:e transie losses :3 terminating half sections are else in-

Cluded in AI. 31is approximatic is alwa7;s Lune since it censidcrwllr

_~
--‘~-..-‘_o.--—.oq . .m—'_~o--~~ov-—

"IW , n" .. A «. fl 1 _ -. , 3 , ... .

Humpe°t, L., Uber cen hntxnzr- electriscner Jelleniilter nit

chrescarleenem Letrieosverhalten,‘ Docturai dissertatin, rechnische

Hechschule, hunich, Germany, 1347.
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simplifies the image parameter filter design.

In general, the commonly used approximate design procedure just de-

scribed, although simple, necessitates the use of more sections than is

necessary. This fact is demonstrated by a “precise design procedure" re-

sulting in an economy of the sections to be used. Ehis precise design

procedure is demonstrated in the following discussions.

o.2 THE DESIGU PROCEDURE

A low-pass filter operates between two resistances of value RT' The

insertion loss is not to be greater than A between the frequencies 0 ~ f

Os 1

(effective pass-band). It is not to be less than a given contour CS ror

frequencies larger than 12 (effective block-band). rhese requirements on

the AS - function are indicated in fig. 6.2.1.
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(A) CHOICE Arm CALCULATION OF Tam-113111111211: HALF SECTIOI‘IS

A cut-off frequency, i“, must be chosen. The difriculties in choosing

\

f0 are well-known {2]. If f0 is close to L complicated terminating half
1}

sections must be used. In this case, critical Lrequencies oi the image



impedance or the terminating nal; section become numerous and are crowded

very close to 10, in the block-hand. These critical frequencies produce

some poles of As.

On the other hand, it r0 is close to :2, then simpler terminating sec-

tions can he used, with rewer critical irequencies or the image impedance.

Correspondingly, only a few locations or poles or A” are iixed. rhis

D

‘

gives more flexibility on the location or poles or us. But, if i.) is

L

really very close to L , then to pr vide a sharp cut-Orr, we may have

2

to use more intermediate sections than are saved by using simpler termi-

nating sections.

Since A? is given, we may checn Lirst from the Graph-l (at the end

(
I
)

oi this Chapter) to determine wnetner one, two, ... critical frequencies

are required to assure that fl will correspond to Xuz, and from which the

location or is is determined. After iixing the location of f0 and the

type of IS, the critical frequencies or the image impedance or this ter-

minating half section can be calculated irom the iormula (4.3.1).

With the above information, the element values or T8 can be calculated

completely. Fecause from the Graph—I, U is Known, i.e.,

fr]. (k2

u- .. k/RT = L /c ) (63.2.1)

then k is determined. Also, since 10 is chosen

 

L, c = 1/ w. 1' 2 (0.2.2)
o o o

Thereiore, a knowledge or the values or k, f0 and U yields

"1-1.,

k 1“'1‘ -

L ~“-~ = —--—-- (3.2.?
0 21:1? 211: I‘ ( J)

o o

l 1 . .

C :; —--—.-_.... = fl --_1.._..-...... (00204)

O 21‘ hiO 2;: 3' “.LI’
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From the fable-I in Chapter V, element values or 15 can easily be round.

(*7) mammals: CF IZYI‘EIh-IEDIATE SECTIONS‘

Since the expressian of insertion loss, in the lecL-band, is given

by

2A5 1 ‘ 212 2 fl. .2
e z _ (-—~:-—) oinn Al

the image attenuation, AI, can be round as

A

2A 2 .

AI v argsinh — (w—gE—é)2 e S (5-2-9)

1 - z

The ES, already designed, determines z. Thereiore, the Lactcr

 

22 2 ,

- (...—- é) (L\O2OL')

l - z

E 2

is shown. fhis factor, in the blocs-band, is positive and varies between

zero and unity. On the other hand, the requirement on As in the block~

. . . . . 245
band is also given oy Cs or rig. o.2.l. hence, e is known. rhererore,

eq. 0.2.) gives the requirement on the AI — function in the block oand.

Calculation to meet the requirement on AI can be simpliiied ii a digital

computer is used. Indeed, first by Choosing a set or points on the given

contour of requirement, Cs’ and using the Least-square routine, we can Lind

an approximate polynomial for the equation of this antour. Since 2 is

known, a program can also be written for the Lactor in eq. 0.2.0. Hence,

in the blochiband, the whole expression, i.e., eq. o.2.j,can be found by

including additional routines for argsinn and square root.

An example is shown in fig. 6.2.2 to illustrate the requirement on nI.

The requirement on the AI - function is indicated by tne solid line on this

rigure. This AI ~ curve is ootained by calculation from eq. 6.2.l.



    
 
 

\ 2'1. 2
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X

 

ow the problem is reduced to find the necessary number o: intermediate

sections and the location of their transfer loss poles. ihis part of the

design is considerably simplified if one uses Rumpelt's templet method.

rhe description of this methfid can be found elsewhere [IT], [32], [33].

Ey using Relevitch's notations [17], on the transformed T—axis, the re-

9

quirement on AI is shown in fig. 6.2.3. Ncw, since the TS is known, the

correSponding poles of A1 are given. These attenuation curves are drawn

by using a templet. The symmetry axis of the templet curves, Ti, coincide

with the critical points of the image impedance of the T’ on the new Y-

axis (r1). In fig. 6.2.2, since we assume that the image impedance of

the TS has only one critical frequency, there is only one such curve, Ti;
..-

in fig. 6.2.3. Subtracting the curve T. from A the remaininq curve A

1 I’ L 11

is next to be obtained from the intermediate m - derived secti ns.

It may happen that, when a complicated T5 is used, the All curve would

be under the Y-axis. In such a case, we do not need to use intermediate

sections and the filter ’ill consist of only the terminating halfusections.

In the general case, the AI curve will have some positive portion in

f'"~rv - n r‘ -. .... ~ -. ' ’7 ’ 7“} —" . RV , ~7 r '- ...--
some interValo of T as seen in fig. o.2.5. inereiore, L, using the temples,
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it is easy to determine graphically how many curves, Ti’ must be used and

where the critical frequencies of the Ti's are located (vi). If we con-

sider the example in fig. o.2.3, the probable locations cf critical points,

ri’ of curves, Ti’ must be very close to the abscissa of the maximum

points of the All curve. After locating the necessary number of Ti curves

on the Y—axis by this templet of Graph—II, we can directly find from ri

the xi er mi. Hence, on finding the m,'s, the design procedure is com—

pleted; because the element values of intermediate sections can be found

in tenns of L , C and m. in Table-I.
o o 1

6. 3 EXAMPLE

A symmetrical, reactive (LC) low—pass filter is to satisfy the follow-

ing insertion loss requirements

AS 5 Aps = 0.0% db (0 5 x S xuz)

A > A‘ = 32 db (XUA S X)

with
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q

Ihe above requirements are also indicated in fig. t.3.i.

From Graph-I (at the end of this chapter), it is evident that a ter—

half—section with only one critical frequency could be selected.minating
x.)

this terminating half—section is the iirst one in Table-I. The approximate

‘alue of U can be found from Graph—I. On the ether hand, a more yrec se

value may he obtained by the fellowing calculations.

ch 1 's‘ a 'e . . a: . .a o‘ e refer ,; La , t hateFriw tie tatul ti n h lh l n1d h 1M 2 f the ’ ence 2] 'e r>

“i“sn g ' 0891)

2

and since

x 2

"h l ‘3
(l-‘J )2=~“—.+‘

"i

then

x.) .1.
I;
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Ehe ngrnalised image impedance of the filter is



x l - x

x - x

[‘1‘

inerefcre. the fact¢r

5 given in fig. C.3.2.1
:
.

can be calculated easily. The correspondin' E curve

From eq. 6.2.1. AI can be found. This has been dcne and the A - curve

I" q q

is given in fig. v.3.3. Now, by using the tehplet method. it is round tlat

two intermediate sections having the parameters

32 e 0.21;

m -, '--' O . .33

J

rare, the filter contains two internediate secti-ns.
- -.....—

must he used. There

If the approximate in the classical method discussed in sectien h.5 is

Hused for this example, A: 32 db, hence the image transfer loss in the

black-band is taken as

AI ‘ Abs + b = 33 db.

From fig. h.lj.2 of reference {2}, more than 3 sectiins total are re-

quired (terminating half secticns are included). Since the nethed pre-

sented in this thesis requires exactly three sectiuns total to meet the
 

requirements, the apprexinatien stated above certainly leads to at least

one superfluous secticn.

In this oarticular example, the image transfer l;ss, AI, is c nsidered

as “flat-loss" in the block-band. “is. h.13.2 in reference [2] is then

used te determine the necessary number of sections in this law-pass LC-

filter. Tc satisfy the flat—lass pr per y, the 13C&tivn3 of the poles of



L
)

A

A re determined. On the other hand, we have alreac{
a

I

yhalf sections to meet the given requirements fer the pass-band. Since

these terminating half sections fix certain poles of AI, we have to check

the following:

I) It has to be verified whether one of the poles of flat—l‘ss A

determined in the foregoing, is als; the required transfer pole :I the

terminating half sections. In general, it will not be.

If the AI-pole for the terminating section is not also a flat-loss hole,

we may proceed as follows:

2) Shift the image transfer tcle closest t; the A «pale int; c inci-

I

dence. Since now the flat—loss property will nzt be valid, we have to

check whether the blochnband requirement is still satisfied or Hot.

In general, the block—band requirement an image transfer loss is riven

by an arbitrary contour. Therefore, fig. 4.l5.2 in [2] cann t be used

directly in this case. It can be emrlgyed if one replaces the given con—

taur of requirement on AI by a horiz ntal line which is drawn at the maxi—

mum point of this requirement. Although this can be done, the result is

not so satisfactory since the number of necessary sections is unnecessarily

increased.

It is, of course, possible to avoid the unnecessary sections used.

The f llewing remedies are ugicsted.

I) By using a templet method a 330d approximation can be made and

the number of necessary intermediate sections can be found from the block"

band requirement. On the other hand, the terminating half sections will

also produce soue additional transfer less in the blue -band cver that Prv"

duced by the inte"mediate sections. Therefoie, the extra transfer l;ss
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6.1+ SOME REE-NUS 01‘: THE IMAGE EMA: uL'l‘ER ZILEI‘ETOD

On a close investigation or the fig. 6.2.2, we can see that at the

critical frequency, XI, of the image impedance of TS, AI —

of image attenuation of TS occurs at this frequency. This is a disad-

vantage, since we are unnecessarily locating one of the largest values

of AI at which the requirement on Al is zero. This always happens since

We are using a particular type of £8: In Chapter V a class of TS is

- 0. But a pale
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considered and it is found there that if one or the image impedances of

this TS is a Constant-k type, to increase the order of the other image

impedance of this T5, the critical frequencies of the latter image impe—

dance must occur at the poles of transfer loss function.

The above property of the location of the critical frequencies of the

image impedance of terminating alr section indicates that no other termi-

nating half sections with the mid-series or mid—shunt type of configura-

tion could be found, such that its critical frequencies do not occur at

the locations or the attenuation poles of these half sections.

Let us keep the configuration of filter terminating half sections as

mid~series or mid-shunt form and impose the condition that the critical

frequencies of one cf the image impedances do not occur at the transfer

poles of this section. This implies that the other image impedance cannot

be taken as conStant-k type. Hence, this violates the definition of ter-

minating section, i.e., the section will not be a terminating section as

it is defined in Chapter V.

fhe above problem was recently considered for only m - derived type

of image impedance case [26], where Rowland's equivalent network trans-

formations [341 are applied mostly to the mid~shunt type configurations.

“rhese configurations constitute filter, whereas our discussion pertains

to terminating sections. Since the procedure in {26} is not the exact

answer to our problem, it will not he considered here.

Returning to the earlier discussicn on terminating half secti ns, the

disadvantage results in the increase of the number of elements in the

filter. this disadvantage could be overcome by adopting a different de-

sign procedure. However, the simplicity of the image parameter method is
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thereby lost. In practice, in most 01 the cases, only one critical Ire-

quency for the image impedance or terminatinfl half section gives satis—

factory results. Consequently, the aoove disadvantage or terminating half

seetiuns is not so serious.

If the disadvantage is considered formidable, some alternate methods

are available:

(l) Use of Darlington‘s method. ‘rhis method imposes a special con-

tour or requirements on Ah in the olocn-oand. In this case, the following
s

can be done:

Find the maximum point of the given Contour, Cs, and draw a horizontal

line at this point. Choose this horizontal straight line as the centour

of requirement. then apply the classical method.

But in this case, necessarily more elehents in the filter will be

used, since the degree or the Iilter is increased.

(2) Use of Fromageot's method [5]. As indicated in the foregoing,

this method involves searcning ror a ¢ - function which contains approxi~

mate requirements on the As — function. It is more general than Darlington's

method, but does not differ from it when the element values are to be cal-

culated.

6. '9 mama's momma

It is considered of interest here to mention in this section iuttle's

two mid-shunt type Zobel's sections which gives a ischebySCheri type of

insertion loss charaCteristic in both eiieCtive pass— and blocn-band [35].

An explanation is given as to 'hy the extension or this problem to more

than two sections does not give the same type of insertion loss charac-

teristics.



Consider 12m - derived mid-Shunt sections in cascade witn dirrerent

parameters mi. the corresponding 9 ~ function will be round irom

2 l - 32 2 i.‘_2 ;
9 — - 2z ) binh PI (c./.l)

where

a .' . , x
z = j:——--- With a 2 11/111m (0.9.2)

41.— x2 ‘

and -

v i i
PI 2: PIi (0.9.3)

1=l

  

P- P .

L H - I: e Il ~ l

111 ~ ianh —--2- - P"- — ml ‘o

e Ii + 1

hence,

PI 1 + mi 11‘

i _ .. .--...‘5. '4 '
e — i b. .4

l - m. h ( ) )

l o

where H0 is the ratio runction oi the nal: prototype seeticn, i.e.,

Po y

Ho T°nn “5 = *:——————”:'”" (Lao)

x2 - 1

Consider

PI 'PI. , ’ I, _

Sinh P = 5 (e - e ) \t.;.o)

I

and substitute eqs. 6.5.5 and 6.5.4 in eq. 6.5.6, we have

 

 

V l + m n y l - n X

s I“) P = .1. 77 ...‘f.___._i __ TT m... C

’ I 2 iel 1 -1m n =1 l +r‘ d,
l 1) ‘ 4. \.,

or

0
2n

2 E)

2 [1+5 H + I +... r H ’ d +r an...

-, 2v Ulw‘ ’ 2:,v o 01») 0 “3w 0 .v :
binh — — - — -*-- —- ~---~--4—~——-

I v 2 2
77 (l - r Ho )

ltl (c.5.7)

where, if 1) is even, then 2n = 3), s = - l,'V

if a) is odd, then 2n = V-i, s = 1) ,
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o :
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o
,

a is the symmetrical function of'v variables, i.e.,

O'i’v ; :____-_- 3131 H132 no. IIIJV (LD'B'k‘j)

23132. ’ .JV

‘i,V

On the other hand, from eqs. 6.5.2 and 6.5.5, we have

 

hence,

f') I

‘2 [(1 - a2) + a2 11 ‘] a

(laJLiii)2 : O (L. .\
22.4 1+ '12 (l - II 2) /

“0

Substituting eqs. 6.5.7 and 6. 5. 9 intC: eq. 6. 3.1 yields

42 2 :2 2[ .2 gig-[01,61 3 ,s]2
2 - [(1 --. ) + a he] 1+ 02-2510 rooo:U2n1v-;10()Cj+f3vi.c

+....Uva‘CI

>3 = ,7

2(1-5?) 77—(l-m2 1-2“)2

   --...-

Q

If 3) = 2, then substitutin: eq. 6.5.5 into eq. 6.5.10, we obtain

(m1 + m )‘2 X2[(101- “2] [l-( + m m ) X2 2
2 _ 2 1 2 C ,

Q) — 9 2 2 2...2.__...____- (“5'1")
a“ [l — (l — m_ ) :;]2 [l— (l - ”2 ) x ]

Tuttle compared eq. 6.5.1 with the CD — function of a two section

 

Darlingtonii‘ilttr and showed theat the paraneters ml, mg, a, f'c can be
L 3

determined uni’uely in terzs oi the oiia.eteis of 9D - function, (where

‘l

f, is a iactor wish which the frequency scale to be multiplied). Indeed,

the c:mpariszn 2f the C - and ¢D — functions gives four non-linear equa-

tions of four variaoles (parameters) from which the parameters can be he»

termined uniouclf.

If V > 2, the mill:er of n:.2.rameters is "C“,liere‘o-r incre?oeCi tut the; now--

ber of non~linear equatiins increases :aster. i.e.. if“V u k > 2, the

number of ungn wns is k + 2. but number of n n-linear equations is 2:

which is greater than R + 2 when h > 2.
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It can be shown that if a > 2, the nonlinear system or equatiuns is

inconsistent. ihis implies that with the cascaded m — derived seetions,

if ‘V > 2, it is not possible to attain Darlington's type cf insertion

loss filter characteristics - "flat" in both pass and bloc? regions.

VII. EFFECT OF DISSIPATION CY INSERTION LOSS AID

PflASE O: A SIHHETRICAL IMAGE PARAMETER FILPER

7.1 G XERAL

In actual practice, where the L and C elements in the filter are

lossy, the insertion loss and phase oi the filter are slightly dirierent

Iron the lossless form.

In this chapter, the effect tr dissipation is considered and ‘iscussed

thraugh the use of an example. This discussion is simplified by us= of a

digital computer. rhe program which is written and used fur the example

is general; that is, it can be used for any symmetrical low-pass image

parameter filter.

In the lossy case, tne formulas gar AS and ES functions are given by

eqs. 3.2.1h and 3.2.1) in Chapter III. A "flow diagram" for the computer

program is Shawn in fig. 7.1.1 at the end of this chapter.

7.2 EXAMPLE

The example considered here is taken iron Reed's boah*.

Data: A lew- ass filter cperates between two pure resistances, each

of which is 75 ohms. ihe following are its design details:

”h--—.¢— .... .—- A ...-o- -—.——-‘—_-- -

* Reference [2], pp. 197 - 207.
LA.



we have

 

_\/=l_

= 555 he (to = 3.4;? x 10“ rad/sec)

e 0.9940ph 1

= 1.1957288 ;

i

= 1.0137155 for terminating half secti3ns

= 0.5u32568

= 0.1639233

' \

: 0.13y7kt3657 g

l

= 0.137036383

fer intermediate sections

= 0.27525272.)

= 0.37805352h5 ;
2

kn [2]) L7]

'Jl ~ U~4 L . 2 » x h
a ’ l

= 1.06733063

Since the image impedance is of the 5cm? form, in eqs. 0.2.13 and 0-2-14,

J

the negative power for U must be used. Therefore,

L
o

C
o

On the.data tape

H
H

0.201u12322s5 X 10'” henry

0.u03295h5 X 10-0 farad

the following parameters appear:

75 ohms

0.20141232269 x 10'”

0.40s293u; x 10”d

3.40716764 X 100

(1/ QL)

(1/ QC)
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/

n = (Number of divisions)

Xfi a (Frequency interval) 2 1.3

; 0.5us2500j9ml

0.37006355h5m

0

where QL and QC are the Q-factors or the L and C elements 01 the filter.

In this example, QC is taken as infinity (dC = O) and for different values

of 0L (= 50, 100, 200, 500, 20,000, 100,000,000) a set of insertion loss

curves is obtained as shown in figs. 7.2.1-3.
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GRAPE; I

(U - l) 100'], AD” (db)

20 142, x: 10"1+

1 A -31

10 .3/, i 1-0

\

‘\
\

\‘ ,

1

2 18.9 .r 10”“

\ 2 4

l \ 1+.) X 10

\

\

\

\ ‘\\

\

\ 3 \

\ \

-1}.

0-2 0.113. x 10

1.01 1.03 1.05 1.07 1.09 1.11 1.13.

» 1 n 1.
AIDS :: 8.686 .011 ’2‘ (.1 + U)
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A new formulation for inserticn loss and phase KL a filter is con-

sidered. The design procedure of lossless image parameter filters is

described by using this new formulation. The discussion is focused an

Othe symmetrical low-pass filter. For hirh-pass and band—pass filter de—9

J.

sign, the well—finawn frequency trans? snations can be used and the prob—

lem reduced to the low-pass filter design.

Formulas for insertion f ncti a of a symmetrical image parameter
\a

‘5

filter at cut-off frequency with a general terminating hall secti n are

given.

The terminating half sections are also considered in detail and Some

formulas for the element values of terminating half sections are derived.

In the classical procedures, the block-sand requirements on insertion

loss function are reduced to the transfer-loss function by means or

approximation 10 mules. lhis procedure results in allowing tolerances

which, although sufficient, are by no means necessary. In this thesis,

precise formulas are developed for reducing the insertion loss function

to the transfer~loss function: Consequently, it is possiole to minimize

the number of sections to be used in filter design. This new procedure

is demonstrated through the use of an example.

After designing the filter in which losses are not considered, the

effect of dissipation on the filter elements is considered. A digital

computer program is written for determining the insertion loss and phase

characteristics for various values of QL and Q ‘Ihis computer programC.

simplifies the investigation on insertion loss and phase characteristics.
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