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ABSTRACT

THE EFFECTS OF UNITARY SYMMETRY

UPON MESON PRODUCTION

IN PROTON-ANTIPROTON ANNIHILATION

by Robert G. Ponzini

A theoretical investigation of meson production

from proton-antiproton annihilation at total center-of-

mass energies in the range 1.88 to 3.00 Bev is carried

out. The Fermi Statistical Model is applied and is gen-

eralized, from an SU2 invariant form, to include invari-

ance under the transformations of the group SU3 .

The calculations were done using the Control Data

3600 Computer. Phase space integrals were obtained with a

relative error of less than 6% using a Monte Carlo tech-

nique. All combinations of mesons from the J=0-, l-, and

2+ nonets, which are allowed by conservation laws, are

included as possible final states. The calculation of the

SU3 statistical weights became increasingly complex with

increasing particle multiplicity. It was therefore

necessary to limit final state multiplicities to six or

less particles under the assumption of SU3 invariance.

This placed an upper limit of approximately 2.5 Bev upon

the energies which could be considered in this case. The

SU3 weights are tabulated. The 802 weights are much

easier to calculate so that, in this case, final states of



Robert G. Ponzini

up to ten particles and energies of up to 3.0 Bev are

considered.

The results indicate that no substantial improve-

ment is made by the generalization from SU2 to SU3

invariance or by the inclusion of the resonances comprising

the vector and tensor nonets. Furthermore, it is still

necessary to introduce unphysically large volume para-

meters into the model in order to obtain results consist-

ent with experiment, a common difficulty in statistical

model calculations. However, the theory adequately

reproduces experimental results for pion distributions,

kaon production rates and charged prong distributions at

a number of energies.
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I. Introduction.

The proton-antiproton system and the myriad

of decay modes to which it is strongly coupled, has

been of considerable interest to experimentalists.

With the advent of high-energy accelerators, a variety

of experimental data at various energies has been

obtained.l-1l The theoretical analysis of the system

and attempts to predict experimental results have

been incomplete. There appears to be little hOpe of

deve10ping, in the near future, a quantitative theory

of multiple particle production in strong interactions.

Hence, one is forced to resort to phenomenological

models in order to deal with systems with three or

more particles in the final state.

One such model, which has succeeded in pre-

dicting some of the experimental data, is the Fermi

Statistical Model.12 The model assumes that in a high

energy collision of two baryons in their center-of-

mass system, all the available energy is released into

a small volume surrounding the initial particles. The

energy is then redistributed in a statistical way.

That is, the relative probability for the formation of

a particular final state can be calculated by assuming

that all allowed final states have equal a priori

probability of being formed. The single parameter in

l



the simple model is the volume .0. in which the

interaction takes place. We would naturally expect

this to be of the order of the cube of the range of

the annihilation interaction.

The model, as prOposed by Fermi, allows for

refinements due to conservation laws in Operation and

hence, to consequences of symmetries which the system

possesses. One of the first refinements, due to Fermi

himself, was to build into the model the effects of

isotOpic spin invariance.13 We have extended this by

considering the effects of SU a invariance in apply-

ing the model to meson production in proton-antiproton

annihilation.

The invariance of strong interactions under

the transformations which are generated by the group

803 is currently being investigated. The main suc-

cess of the theory has been in reproducing large

segments of the mass spectrum of the hadrons, the

strongly interacting particles. This spectacular

success is only possible however in a "broken sym-

metry" scheme, that is, it is necessary to include

in the strong interaction Hamiltonian a term which

is not invariant under SUa transformations but

transforms like one of the generators of 803 . In

a simple first-order perturbation calculation, this



term breaks the symmetry by splitting the degenerate

SU3 energy levels to obtain the experimentally

measured masses.

When exact 8U, invariance is applied to the

dynamics of strong interactions, the theory meets

only limited success.l4-17 An obvious explanation

for this failure is that the broken-symmetry term

in the reaction Hamiltonian cannot be ignored in

dynamical calculations. A suggested way of by-passing

this obvious difficulty is to consider interactions

in which the energy available to the reactants is

much greater than the mass differences accounted for

by the broken-symmetry term.18 Proton-antiproton

annihilation into mesons is a reasonable candidate

since, even when the annihilation occurs at rest,

the energy available for meson production is large

compared to the meson mass differences in an $03

multiplet. It is also possible that the effects of

symmetry-breaking upon a many-particle system may

be masked by the higher-order pure 8U; effects.

The purpose of this calculation is then two-

fold. First we wish to investigate the effect of

SU3 invariance upon a dynamical system of the type

discussed above. The secondary aim is to carry out a



fairly complete calculation applying the Fermi

Statistical Model to mesons produced in p-‘F

annihilation emphasizing the effects of including

recent experimental data on meson resonances. In

this vein, the following calculation differs from

those done previously in that all allowable combina-

tions of 27 mesons, including the JP= 0", 1"

and 1+ nonets, have been included as possible

final states. A Monte Carlo routine has been used

to evaluate the phase space integrals. Final states

of up to 6 particles have been included under the

assumption of SUa,invariance and states of up to

10 particles under the assumption of SU1 invariance.

All calculations have been done at total energies of

1.9, 2.3 and 2.5 BeV in the center-of-mass system.

assuming invariance under both SU2 and $03 ,and at

3.0 Bev for SUzvinvariance only.



II. The Statistical Model

A. Formulation of the Model.

The Statistical Model was prOposed by Fermi

in l950 as an order-of-magnitude method of dealing

with multiple particle production resulting from

collisions between nucleons. The model attempted to

give estimates of relative cross-sections for pro-

duction of mesons and baryons from an initial two-

nucleon state.12 The model was quite crude in its

original form, taking into account only energy con-

servation. Ordinary momentum was conserved only ap-

proximately by considering all particles to be either

extremely relativistic (mesons) or non-relativistic

(baryons) and then allowing the non-relativistic

particles to carry off momentum. Subsequent to its

introduction, the model was modified to include momentum

conservation,19 isotOpic spin conservation13 and final-

state interactions.20 In 1960, Hagedorn reformulated the

model in a rigorous framework starting from S-matrix

theory.21 An important result of this formulation is

Hagedorn's interpretation of the volume parameters. Under

the assumption that the S-matrix dependence upon the

isotOpic spins, momenta and masses of the individual



particles may be neglected, the product of the

volume parameters for a specified final state can

be interpreted as the mean value of the square of

the S-matrix element. This is a reasonable assump-

tion since, in the statistical theory, the main

dependence of the relative cross-section for the

production of any state upon the individual masses

and momenta is exhibited by the phase space integrals,

and the dependence upon individual iSOtOpiC spins

is exhibited by the weight factor. Hence, Hagedorn

concludes, the product of the volume parameters

should be dependent, at most, upon the total energy

and the number of particles in the final state

irrespective of their isotopic spins, masses or

momenta. We shall refer to this conclusion later.

According to the modified statistical model,

the unnormalized probability for the formation of a

specific state consisting of n mesons from p- F

annihilation at energy E, in the center-of—mass

system, is:

‘na 4 fl
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where:

Vvtg, is the mass of the 5*! particle.

‘01. is the number of (identical) particles

“‘I
k

of the h‘i' kind so that t2 71L= Y?- .

II

~51; is the spin of' the it“ kind of particle.

at is the volume parameter associated with

the at” kind of particle.

Ggunis a weight factor arising from the in-

variance of the interaction responsible for

the production under the Unitary group SUn .

is; is the familiar phase space integral.

In this calculation we shall consider invariance under

the groups 80; and SD, . In the above formula, one

must consider all the particles which fit into a

single representation of SUn_ as identical. We have

assumed throughout that all particles which fit into

a single irreducible representation of SUz’, i.e.,

all members of the same isotOpic Spin multiplet, are

identical. In the case of SU3 invariance we con-

sider the above assignment to be a consequence of



symmetry breaking.*

 

*If Sua invariance were strictly true, all

particles in an irreducible representation of Su‘a

would have to be considered identical. However, the

members of a given ”SU3 multiplet' are actually split

into its isotOpic spin ($01,) multiplets by the

symmetry-breaking term.



B. Successes and failures of the model.

The refined statistical model has had moderate

success in reproducing experimental data on distributions

for the production of pions and charged prongs from

annihilation of antiprotons. Its most drastic failure

has been that it predicts too large a rate of kaon pro-

duction. This discrepancy, of course, can be minimized

by introducing a volume parameter for kaons that is much

smaller than those for other mesons. Also, in order to

fit the experimental data, it has been necessary to intro-

uce volume parameters of the order of the pion volume,*

whereas general field theoretic arguments show the range

of the annihilation potential to be of the order of the

nucleon Compton wave-length.23 Assuming that the volume

parameter must be of the order of magnitude of the inter-

action volume, we would expect it to be of the order of

7350 S11? . As pointed out by Hagedorn, the requirement

of unphysically large volume parameters may be due to the

omission of possible fépal states, in particular, to those

containing resonances. Therefore, we have included as

possible final states all combinations of the 27 mesons

 

*The pion volume is the volume of a sphere whose

3

radius is the pion Compton wave-length SI": §W(%g) ,
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comprising the "so-called” psuedoscalar, vector and tensor

Inonets which are allowed by conservation of energy, charge,

isotOpic spin, baryon number and hypercharge. (The hyper-

charge Y is a quantity equivalent to the strangeness S

and related to it and the baryon number B by Y = B + S.

The isotopic Spin projection quantum number is also con-

served in strong interactions. Its conservation is

guaranteed by the conservation of charge and hypercharge,

the three quantities being related by Q a T + 1/2 Y.)

A major source of difficulty with the model has

been the accurate evaluation of the phase Space integrals.

Except for special cases, the integrals become so

complex for n greater than three that approximations are

unavoidable and the use of a high speed computor is

necessitated.24 In this calculation, the phase space

integrals were evaluated to within approximately 6% rela-

tive error bylg Monte Carlo technique develOped by Cerulus

and Hagedorn. This technique, together with an error

analysis, is briefly outlined in Appendix B.



III. The effects of Unitary Symmetry upon meson

production in p-P annihilation.

A. Symmetry groups in physics.

It has always been the hOpe of physicists to be

able to describe matter as a composite of a few funda-

mental constituents. Thus, discovery of new particles

frequently leads to attempts to explain their existence

as a part of a general scheme or Spectroscopy. With the

development of high energy accelerators has come the

discovery of a large number of new "particles". Among

the many attempts to classify these, the most successful

and fruitful has been the model known as the "8-fold way".

The basic assumption of this model is the invariance of

a thus-far undiscovered super-strong interaction under

the symmetry group SU3 .

In the 1950's, experimental evidence for the

charge independence of the two nucleon force led to the

postulation of the conservation of isotOpic Spin in strong

interactions.25 In group theory language, this can be

expressed as the invariance of the interaction under the

special unitary group in two dimensions, SU;Q . SUZJ

is the group of all unitary, unimodular (determinant = 1)

2 by 2 matrices. This is, in a sense, a generalization

of the rotation group, having representations of all even

dimensions (corresponding to half-integral values of

11
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angular momentum) in addition to the odd dimensional

representations (corresponding to integral values of

angular momentum), which it has in common with the rota-

tion group.

In applying the theory of group representations

to physical systems,* symmetry with respect to a particu-

lar group is meant to imply that the Hamiltonian of the

system remains invariant under all transformations of the

form:

M

00 M . n [2‘ 9 J;

R(".°a."' 9.021. -‘- ‘eaJA) = C M “h
”.0 YL'. In

where:

:1; are Operators which are called generators of

the group. ThSSe may be chosen Hermitian in

which case they are related in the usual way to

physical observables. Of course, only those

generators which mutually commute may be

simultaneously diagonalized, the number of which

is called the rank of the group.

€31,are continuous parameters, the values of

which Specify the particular transformation.

 

*In all that follows we limit ourselves to a con-

sideration of irreducible representations of simple Lie

groups.
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An n-fold degenerate state of the system is

represented by the basis states of an n-dimensional irre-

ducible representation of the group, one basis state

corresponding to one physical state.* There exists, for

a group of rank .2 l ,2 irreducible fundamental representa-

tions. These are fundamental in the sense that all irre-

ducible representations of the group appear in the Kronecker

products of the fundamental representations with themselves.

An important aim of most models is to fit the basic

constituents into the fundamental representations and then

to form the structured physical systems from these accord-

ing to the rules of group theory. For example, consider

the isotOpic Spin group, SU2 , as applied to nuclear physics.

The single fundamental representation of the rank 1 group

SUZ is a doublet (I ==VL9, the two basis states of which

represent the neutron and the proton. Nuclei, of all

possible 2 and N, fit into the higher dimensional irreducible

representations which are formed by taking Kronecker pro-

ducts of the fundamental representation with itself.

 

*We note that, in considering the theory of symmetry

groups in physics, there is first the group invariance

prOperties and then the correSpondence of the mathematical

quantities with the physical system which we shall call the

model.
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B. Application of $03, symmetry to strong

interactions.

In 1953, Gell-Mann and Nishijima, on the basis of

the empirical evidence then available, postulated a new

additive quantum number called the strangeness which is

conserved in all strong interactions.26 This additional

quantum.number could not be accounted for by SUg,

invariance alone. SU1,, being a rank 1 group, allows for

only a single additive quantum number, this being identi-

fied with the 6-Spin projection I; . Hence, there could

either be a product symmetry at work or the strong inter-

action could be invariant under a higher rank group which

contains 8U; as a subgroup. A rank 2 group, having two

mutually commuting generators, could account for both the

additive quantum numbers S and I; . An obvious candidate

(among others) for this role is SO; , the group of 3 by 3

unitary, unimodular matrices.

There were a number of different models suggested,

each corresponding to a particular way of fitting the

known particles into the representations of the group. The

most famous of these was the (IV- A.) triplet model of

Sakata.27 In l961, Gell-Mann and Ne'eman independently

prOposed the model which has come to be known as the

"eightfold-way".28'29 This model differed from that of

Sakata in that no attempt was made to fit observed
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particles into the fundamental representations of the

group. Instead, it was recognized that a large number of

the experimentally observed particles could be fit into

certain higher dimensional irreducible representations of

803 . The real strength of the model was that a simple

modification of the 803 symmetry could yield known mass

differences to a high degree of accuracy. It was later

postulated that, consistent with the eightfold-way and

the observed sprectrum of particles, three hypothetical

particles called ”quarks" and their antiparticles could

be associated with the fundamental representations of

SU3,.* The lower mass baryons are then formed by triplets

of quarks according to the prescription 6®3®38100q03h01

and mesons from a quark-antiquark pair according to

3&3“: 80.1. . This adequately describes the known

baryon decuplet, octet and singlet and the three meson

nonets ( see Tables 1. 2. 3 ). (However, a second baryon

octet has not yet been detected). In addition, the search

 

*SUa , being a rank 2 group, has two fundamental

representations. These are each of dimension 3 and are

conjugate to each other.
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Table l. Preperties of the psuedoscalar (J=0-) meson nonet.

 

Mesons Average mass IsotOpic Hypercharge Dimension

of the I-spin spin of $03 rep-

multiplet (Mev) resentation

TI 13? 1 Q

[(3 496 1/2 1 8

O

fif- 496 1/2 -1 8

V1. 549 o 0 a

Vt‘ 959 0 o 1
 

Table 2. Properties of the vector (Js1-) meson nonet.

  

Meson Average mass IsotOpic Hypercharge Dimension

of the I-Spin spin of 8U, rep-

multi let (Mev) resentation

r“ 1
K‘: 891 1/2 1 e

*2
K 391 1/2 -1 8

4? 1020 0 o 3*

u)’ 783 o 0 1+
 

Table 3. Properties of the tensor (J=2+) meson nonet.

  

 

Meson Average mass IsotOpic Hypercharge Dimension

of the I-Spin spin of $0 rep-

multi let (Mev) resen ation

A «g I a 1 T
‘-

K 3 1405 1/2 1 8

“:

K 1405 1/2 -1 8

’ :-
1253 0 0 8

I

‘ r
f. 1500 0 0 7 l

*

In order to fit the masses of the mesons in the

vector and tensor nonets within the framework of the eight-

fold way, it is necessary to introduce mixing between the

two isotOpic Spin singlets. Therefore, neither can be as-

signed tc a definite irrcmucible representation. For sim-

plicity, we assigned the particles as shown.
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for quarks, which in this model must be of non-integral

charge, has been fruitless.

In order to account for the mass splitting of the

particles fitting into an irreducible representation of

$03 , (with pure SU 3 invariance, all particles fitting

into a given irreducible representation have equal masses)

it is necessary to introduce a symmetry-breaking term

into the Hamiltonian. The term is chosen to transform like

one Of the generators of $03 . This choice is in analogy

to the breaking of SU,~ symmetry by the electromagnetic

force where a term transforming like the isotOpic spin

projection Operator 1:. splits a degenerate set of particles

Of a given isotopic Spin into their observed charge multi-

plets. With this choice, a perturbation calculation then

yields the mass Splittings of the mesons and baryons to

reasonable accuracy. Up to the present, this has been the

most impressive success of the "eightfold-way".

An obvious extension of this theory is to consider

the effects of SU3 invariance upon dynamical systems

undergoing strong interactions. Using the Simple rules

for the expanding of a Kronecker product in terms of

irreducible representations Of the group, with a table of

Clebsch-Gordan coefficients for 803 , one can predict rela-

tionships between various cross-sections. In.this crude
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analysis, the symmetry-breaking term is always neglected.

AS pointed out by Levinson, Lipkin and Meshkov, this is

reasonable only if the energy available to the system is

much greater than the mass splittings of the particles

18

involved in the interaction. This analysis has shown,

14-16

for the most part, poor agreement with experiment.
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C. The SU;_weight factors.

It is our objective to extend the statistical

theory to include the effects of invariance under the

unitary groups 80,. and SUa . As pointed out in the pre-

vous chapter, invariance under these groups give rise to

a multiplicative factor C;3oain the expression for the

relative production probability for a given final state:

he“ "

P(.q'...n")s {Tr fl‘h(2.5‘+l)“‘ (’50.. f“ ("n.wg°"“ln:E-)

Kat <1")3’l-5 11. “*1

where, in the :1 particle final state, there are ‘1).

“‘1

identical particles of the it" kind with n = *2. "a .

We now proceed to derive an expression for G‘ulusing

an approach very close to that of Cerulus.

Starting from S-matrix theory, with a definite

initial state qlé,the transition probability to a set

F of possible final states \p; is given by:

P: 2 |<¢;Iswa>n"

58F

._._ Z Z J-"j Jr.Jp.-~drnl<¢:|5'¢a)lz

U! “#5533 unsunsus
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We assume that the wave functions are eigenfunctions of

the momenta, masses, spins and isotOpic spins of the

individual particles (two nucleons in the initial state,

Vt mesons in the final state). We represent all quantum

numbers, except those associated with the isotOpic spin,

by a single parameter,aL . In what follows, we shall

represent the isotOpic Spin of a single particle by C

and its projection by it .

For simplicity, we shall assume that the initial

state is a “pure” isotOpic Spin state 4’“ l1; 19.; 3 41'). -

If it is an admixture of isotOpic spin states, one merely

has to average over its components as follows:

(Li: % a1. lIA Iz* 3‘L)

an... % lax)“ :L.

The final state is to be made up of YL single particles

each of which has a definite value of isotOpic spin

“1' LL.) “'1. Ll..>“" I i... £2“), We transform from the

set of product wave functions to those which are eigen-

functions of the total I-Spin by a unitary transformation.

We choose a scheme where the intermediate isotOpic spins:

. -9 L

f: = (I: “' La.)

A,“ A A A

( (II'LIX+ (3),.F
4

v
»

u

-h" '9 '9 t‘ l

In... a (l: + LLI '” + Ln-l)
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are also diagonal. The transformation is:

'3:in 111‘», I117" 2 C:‘1 91.1 013,93 I3

‘1: £41" ' l.‘ 1 II" ‘15123

Wyn-war hamlet.» Hum)
Ila-1 ‘t a Ii

where the C's are the familiar SU2_ Clebsch-Gordan

coefficients. The above expression is generally written

as:

'11,,13' ”In-4,111): Z (11;... 10")IIZlL' A in)L L7. “'41

Ll. up.L2,.-. 1‘ " "

X (It.‘z.>lt;¢zx> °°°° "10“?)

where the term in brackets is called the recoupling

coefficient. We will make use of the fact that the re-

coupling coefficient is real since it is a product of

Clebsch-Gordan coefficients. We also note that

. , ' 2.

Z (ILVIS:"I”... .) 1:11 t. it" 8"“) = '1 '‘1,Lz,_ L2.

L1! ‘22..” ‘13:.
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We want to calculate the transition probability to

a final state of 7» particles IL. L1.)I (1,1..11)‘ in (in)

the admixture of which in the preperly constructed

final state [116:3 MI,“ 31 I1) is given by the

square of the recoupling coefficient

' 2.
Ln

<I&,Ia’... In-‘3 I IL'L'i1. L:L LL51 .

Assuming the initial state is a pure isotOpic Spin

state qq‘ = II: ILC 3 0&2) J our n particle state

yields a contribution to the S-matrix element of:

(44‘ 5‘ ¢é> = (Iain”1,.-.) Iqllflu. .. §u>

I L11: L191,

<I.Ia-~In-.,IsI-uHASIIchc 3*: ).

Conservation of isotOpic spin demands that the

S-matrix element be zero unless I; = I; and

In; -’- Izg .

Therefore:

<45 ‘6' WI.) = <ILIJH'I-Yl-l.)Il:IZC|'L' EL ”ML'L)

‘1' ‘11. ‘1».

X (ILIQ'”I1D-I,I£Ili 34$ ‘5']:5 I102 5‘“)-
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Of course, the final state consisting of particles

‘ ("(1') | Ltiz‘) I fit“) contributing to a

total isotOpic spin (Ig’Izg ) may be realized

through a number of sets of intermediate isotopic

spins (Ih’I‘,...In_.) . We must therefore sum

over these:

<¢9IS‘WL>=
Z <Iz'I3"°I“-|°’-£~

, Ilc f;'mt¢>

(In

It. 113 Ifl—l

x (Law-Imus; a-k; \S‘Ich; r“).

In order to obtain the transition probability we must

take the absolute square of the term above. We now

make a statistical assumption and neglect all inter-

ference terms by taking the absolute square within

the summation.

‘<¢;|S|wc)l’“ z. z (ampulmfilclzdg. >2.
L1. £1.“

Itt)°”IV\-I '

a,

X‘<IL13"'In-',Icizc 3 4; lSlIiI-zi 3*c>l

The basis for this approximation is that if enough

states are considered, there will tend to be an

equal amount of positive and negative contributions



24

to the square of the S-matrix from the cross terms.

This is essentially a random phase approximation.

In order to completely isolate all isotopic

Spin dependence into a single multiplicative factor,

we shall assume that any isotOpic spin dependence

left in the S-matrix element is negligible

|<:r. 13.1..-.)1-115 34.15lIché; 4;)I~\<49|5H.;)‘

so that we have:

Kq’fifl‘
szz {é

(I1,--1“,;1‘ 11 ‘fl. i:._”°€iz
‘n)%}

MI“.

x Kdt|5‘fl(i>‘

PI? . |<4;|5\«La>lt
t1. czzm LG

where, following the notation of Cerulus:

IF i i L 1'

81.21;,“ Lln E 15.53:. I3 .“In-..’ Iirzé ‘2'. £13.." ‘1';

Finally, we must take into account the fact that the

expression above assumes a definite order of the

individual particles (as Specified by their isotOpic

spin variables c: C; ) in the final state.
I
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We want to find the transition probability to a final

state consisting of 10., particles of the first kind, ,4;

of the second kind, etc. regardless of their order. We

must therefore sum up the contributions to the S-matrix

element due to final states which are distinct permuta-

tions of the state above. In doing this we make use of

I

the fact that the value of P-
Lz.,Lz.,.-- LG 19

independent of the order of the {_iz) . (See Appendix A).

Hence all the contributions are the same and we simply

multiply the term above by the number of distinct permuta-

tions of the set Ii, iz,>| L;LZ;) l {.3 (za)--- , in tzn),

This factor is:

in...

11‘. m- '
L" all-H1, n2? "k = n;

*m; I 'l (I!

11:: n*'

where:

 

YZL is the number of particles with a given

value of isotopic spin.

)1), is the number of identical particles of the

3'93 kind. Particles are considered identical if

they have the same quantum numbers ( 5, (z; ).

We now have the following expression for the

square of the S-matrix element from an initial state of

isotopic spin (Ii, 11;) to a final state consisting
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of .R m, sets of YL‘g identical particles of isotopic

8p1n(£k,izh):

IT

Z. |<wswc>\"= 'L—-- P19 . KAHSHO“:
‘ L L O. L

6PM

UR I\ROL£$

Substituting this into the expression for the transition

probability gives:

 

rp= Tg’m'. ”PW-1.“. g j"dem’P‘Z'“4,0: I<“flS’4£>I.

T‘ ‘1 ‘14. t .

,h “kl. 1 ngR'iflBLEb

We recall that the symbol 4k represents mass, momentum

and spin coordinates. It can be shown rigorously (see

21

the article by Hagedorn) that the terms

2..

Z injapz 4,3... 4,3,, /<4;l$I-(£>/

33.3mm

give rise in the statistical model to the factors

1 wvvn “urn .E

{f‘kh‘A (asp i)"*} flingi..- .13....) .

'I

A comparison of the expression for the transition

probability given above to that given previously, allows

us to identify the 80‘, weight factor for transition to
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a final state consisting of individual particles

IL, £1,>/L" ‘.l.1>”'/‘.‘I (1") from an initial state

of isotopic spin ( Ih',1&[ ) as:

 

I' , . c L La

P ‘ . - 2' (12.13" Inn ; It 1'1; (7:,12L'” (1.. >

Lll LIL". tin. I; I’UIq...

For the case where the initial state is not a pure

isotOpic spin state but an admixture of the form:

¢:= 2. “J'IJIZJ>
J

where: 1‘

Z laJ-l - 1

a

the SUI, weight factor becomes

1.

FM! 14 d

L IQJ’ Pi-Z‘izz."'£2'! .

C754»: 1T u! 3
R

In the case of p- F annihilation, the initial state

 

(consisting of a proton and antiproton) is an equal

admixture of isotOpic Spins l and 0 so that:

T." We! ' I-1 I'°
I.

so» I 1. Lz.,11..¢zn 1. :1, 12;...Lz‘
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D. The $03 *weight factors.

We now proceed to generalize the preceeding

discussion to obtain the weight factor for the case of

invariance under the group SUJ . SU3 differs from SUJ’

in that it is not a simply reducible group. This gives

rise to two basic changes in the Racah algebra for the

group:

1. In general, an irreducible representation is not

equal to its complex conjugate representation.

2. In a Kronecker product, a given irreducible

representation may appear more than once.

We will represent the pair of eigenvalues of the

Casimir Operators of 803 by the single symbol* U and the

basis states of the irreducible representation by 49:02, y

The symbol Y is necessary only if ¢ is a state belong-

ing to a representation which appears more than once in

a Kronecker product; I is the eigenvalue of the Casimir

Operator of the subgroup SUI, (it is the isotOpic spin);

11 and Y are the two additive quantum numbers for SU3

 

*SU; is a rank two group and therefore has two

Casimir Operators. The eigenvalues of these, in a

particular order, uniquely identify the irreducible

representations.
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and are respectively the eigenvalues of the Operators

representing the isotOpic spin projection and the hyper-

 

charge.

We couple states in SU3 as follows:

U‘ - ( M; . A; U, ) + A! + U,‘

IIlY 21“.(2..., M £2. j. ‘2. Luja. III Y ‘I 1:3! utzzfla.

H: H).

where: Ix .- L1H“ LIL

Y’- fl‘+ag.

where the term in parentheses is the SU 3 Clebsch-Gordan

coefficient. We again start with the expression for the

transition probability:

P: 2 Z jujagdfiu-JP} l<'~\*;|9\‘k>lz

503 Bfifl

ungmgggs ORR! ABLES

and, as before, we shall attempt to eXplicitly to perform the

summation (approximately) over the SUJ variables.

We assume that the wave functions are eigen-

functions of the momenta, masses, spins and of the SU3

variables of the individual particles filling the states.

The $03 variables consist of the eigenfunctions Of the

803 Casimir operator A , of the SU; Casimir Operator L.
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(the isotOpic spin), of its projection L1, and of the

hypercharge g . We again represent all other eigenvalues

by the single parameter A .

We assume that the initial state is a pure SU;

state of the form:

.-. Ui

*1 ¢IL,I1;)YC°

We shall later generalize to the general case of an

initial state which is an admixture of various SU;5

states. The final state is to contain 71 single particle

states each Of which is an SUa eigenstate:

‘ (rt.L1 3:7’ Cr";£13.31) 0‘ +°n°2n3n>

We recall that the final state is to consist of mesons

which fit into either the 8 or the 1 dimensional

irreducible representation of SUJ each with a given

value of isotOpic spin L , projection Cz and hypercharge

.3 . (See Tables 1, 2, 3)

The final state is to be formed as an eigenstate

f: .

o U-SY: M.OH&®H30-°-$Mn

- +
if; = (13.9.. .34.”... an)



31

which will be some linear combination of our product

states above. We transform from the system of product

states to those which are eigenfunctions of (J4. and 1;}

by a unitary transformation. We choose a scheme in

which:

LLLY== 11,!) AhL

11*: (C + 13)“

(J37‘3 .X‘ldb JLLGD’LQ

. .... 1.8
. 1" L

Ia = (L|+L1~+L3)

UM, = who 41.0 4, ® 44"-.

—A L if . :8 . L

I‘-' = (L'+ Li, + La + "‘ + Ln-|)

are also diagonal. The transformation is:

‘ U" 037 ...UVMY ~U¥y 7 = E (.f' (1.!"
L

It ’ Ia ) In-'Y ’I*I2;Y; I 2,3: «(£1131

3 \ Lb;

X LILY «1, L1; 213 I", Izfl,

O n.
. . Un-I ; 111 ‘V \¢£u'i1d> ”'\ +311“ in» .

In... Ila-IYHJ (‘ (In a” I;Iqu

‘1‘! ‘)

Iilksfl.

 

We again identify the product of Clebsch-Gordan
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coefficients as the (real) recoupling coefficient and

write this as

< U11 U3, ... Ufl-l Y U4, 1“A, ”L 11.1,

) ) . ooo .

I; I: I“... ’1‘?” ‘I I (JV-l. La ‘41.

where we have introduced the standard notation

7/ E (£1 I .7)

also

U47 U37 Un-‘r . Ufr 11' ’da' ..
2 | ) 2'" ‘V (V, t. V» (.an =1

was/rum. I" I3 1"" I; 4' ‘1

We now identify the recoupling coefficient above as the

admixture of our product state

H?>.l+::’:a «“3139
in the correctly constructed final state

Ulf U37)... Unqr _ U9),

I,_’ 1:, I.-. J 1.14 .

 

 

Assuming the initial state to be of the form

WC :: 43::ch E. ‘I\:M> , our n meson state

has an S-matrix element equal to:

Uix Uar Un-u, 0%} ‘31. ...An'>

<q’4‘s’¢t7= <11.Ll:3 ' In-u 31:;14 ("fl/n

U U U U; . .

X <1:1' :12"r"1&3A’F'S‘IM A”).
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Invariance of the interaction under SU;5 demands that the

transition probability be zero unless:

U-Fr= UC

I+ 3 1;

Vi-
]bf' (This implies the two equalities

Iz+-Iz¢ and Y4: Yc )

( Y' may take on more than one value since L);

may be contained 1' times in the Kronecker

product A,$Jl,_® u-oxxn)

Therefore:

<U l} (1" U- Ah ll

<wswe> = <5: I?11.: :41 all?

x U1): UJI'” Un-I' Ué‘. 45‘8‘ UL . o4.>

I; ’1, I.-. ’Iflf’ I‘d/4’ " .

Again, we must sum over intermediate states to obtain the

transition probability to our TL meson final state. How-

ever, in addition to summing over the intermediate 50:3

representations ‘Jy' , we must sum over all intermediate

isotOpic spin states I: which are contained in a given

irreducible representation [Jr . We now have:

<~Ms I w> z’< ‘42:: a 153% 151'. 51>
Uzi UZJIY _ Uri-Ir

IL I; 111-:

U U Ufl-l

x 1:): I?" I.-.“ 151/. "MS‘IU:1’. ’4>
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where the prime on the summation is meant to indicate that

there is to be a sum over the I associated with U" if X

takes on more than one value.

We now take the absolute square of the S-matrix element

and make the statistical assumption by neglecting the

interference terms.

U U-. ; 14.1.1 ...“ L

K4d5|¢c>i~ 21’ <::*» grit. f; .9.)

”gr. .U“" 3'

1&1; 7In--I

IJ In‘. )IL-V‘.

Xl<0:r Uar"Una, UL, .4;15|I£V3.(->’L.

In order to isolate all SU}3 dependence in a single term,

we assume any further SU~3 dependence in the S-matrix

element is negligible:

I<”:: g/~<.|S\11/,9I?|'<°‘¥|5'°“>lf

So that we have

I<+.Is|I».-)’“z if,”3”its.- ”f waif-3.7m?

x1<otelsHé>r

131:“. KAISHOV
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where we have defined a P-factor for SUa in analogy to

that for 9-50,. .

Finally we must take into account the fact that a definite

order has been assumed for the individual particles in

the final state. Since we want the transition probability

to a final state of n Specified individual particles

regardless of their order, we must sum the contributions

due to states which are distinct permutations of the state

above. It is shown in Appendix A that the sum over inter-

mediate states of the recoupling coefficient is independent

of the order of the constituents in the set. { :3i,¢ 5 ,

Therefore all the contributions are the same and we must

multiply the exPression above by the number of distinct

rmutations of th set ‘j>m/A 3?

pa e le,14>>/(J,_1/ inn/n

This factor is:

where:

'7b is the number of particles in a given

irreducible representation of SUJ . For the

weights we have calculated,fi¢ is the total number

of particles in the final state.

71* is the number of identical particles of the

At” kind.
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In this case, particles are considered identical if they

have the same quantum numbers (.a, 6, £1, .1):

We therefore have the following expression for

the square of the S-matrix element (summed over SU_3

variables) from an initial state Specified by the quantum

numbers ( U6, Ii, Iz£,.Y¢,' ) to a final state consist-

ing of km sets of 7L; identical particles with quantum

numbers (11)., £4" £11, 3); ):

. L ‘nl U£,I}

é.» |<¢4\S|\h7‘ = W “*1 13.4v,_:{,...¢~

Vau‘nues "

x KO‘AFIS' “OIL,

 

Substituting this into the expression for the transition

probability gives:

If) e ———YL! {21’ 0"” 0""! ”5r .‘u' ’d’” >1}

1T “.3! U4: ”.Un-.r IL .Ifl-l ’ 1‘7" ("7, H. (”f/n

‘R I). Ila-I

.5 .s a
1.

x Z j~~fWrwm Nassau»: .
‘OPIN

Osman.“

As in the previous section a comparison with the general

expression for the transition probability allows us to

identify the SUa weight factor 6-503 . The following



37

weight factor is for a transition to a final state con-

sisting of individual particles '4»?V )I? V7'WV)
Ln n

U .

from an initial state ¢IfVa

O.

._ n1 UgI;

GSU.’ .- I. ‘PZV‘H'VAJ

It only remains to generalize this expression for the

case where the initial state is a linear combination of

'pure' 503 states. We construct our initial state by

coupling the states representing the proton and the anti-

proton using SU3 Clebsch-Gordan coefficients. We recall

that the proton and the antiproton, respectively, fit into

the (I' 'la. , 1'1: V1,, Y3 4- ) and the (I:'/a.,Il=-'I&’ Yr-i)

slots of 8-dimensional irreducible representations of 50;.

They therefore couple to I r O or 1. with Iz-Y= 0 . Our

initial state is:

=% a‘kCI-o) +3; + J-‘(r-i) 4510

where 0* an.d ,5; are SU; Clebsch-Gordon coefficients

satisfying the relation %' lafilx 4' 'l’h'x =

The index 1 runs over the g irreducible representations

in the Kronecker product 80 8 I- 17 0 IO 0 “”98. 9 8‘61 .

Substituting the Clebsch-Gordan coefficients into the

 

*The 8-dimensional representation is equal to its

complex conjugate, Le. 8' 8‘
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expression above yields:

=‘U2‘ ($8'ltl :" "a. ‘1

U). ) +01:

00° 00°

U1...

8

+ "flak-1 '/i."/a.'1 loo) +Ioo.

For simplicity we may cOmbine the two terms and write:

a s \

q’t - a: Z ('lt'hl ‘lg-Vz'i ‘IBOO/ ¢lilac)

 

 

UR In

.. U U

- 2’ 2" at: I‘oor
tin 1;; “ .

While U; runs over the set {-77, ’0; ’0'. 5:, 82., 1} ; It

takes on each of the values 0 and 1. Using this initial

state, the weight factor becomes:

= __.. u 2,

65°: 1“ €40“ i lazy
1.. "

‘ 1‘- In-") it

2..

<14, 03'“ U“.., . U) y‘ .11. ,:u~ ’... .A‘ 7

X I Ia I“... ’Ifiv’h ‘Iv' (‘7‘ (“1"

where the prime has been dropped. Also we must eXplicitly

sum over both of the 8 dimensional representations in

the set {UL} . We express the final result in terms

of the SU; P-factor:

Y1.
U; l. 0)., I;

Cysu, "' 11'11124 2.. “11* 137, 1"...)40

A ”A 017 0,.-.

- I). I" ' '1‘:
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where we recall:

'PV Uh It a I <04? U31.”Un-|y. d1, ”1 “,Afl. 2“

my...v... 2 I“ I» I»: Ina. im’ am

We also define the product of the P-factor and the permuta-

tion factor as: '

*U,I - mo U)I

VI VI'“ in, = E ”*1 V, y" My .

The SU 3 weight factors and terms P:uV."IV") used in the

calculation are listed in table 4 for given values of

(1’, $34, Va) ). A check on these is obtained by noting

'6

that the sum 2‘ 33%;)" If , “m is equal to the number

-myk

of times that the irreducible representationéfi appears

in the Kronecker product 41,0 #;0- . - O A...» . The

sums agree with these values to within 1%. The discrep-

ancy is annoying. It may be due to a misprint in the

table of SUa, Clebsch-Gordan coefficients* or, less likely,

to computer round-off error.

 

* The table of SU3 Clebsch-Gordan coefficients

that we have used is:

Kuriyan, Lurie' and Macfarlane. Jour. of Math.

Phys. 9 722 (1955).
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IV. Calculations.

The relative production rates for all allowed states

consisting of mesons (from those listed in tables 1, 2 and

3) produced in 54-5 annihilation at a total center-of—mass

energy B, were computed from:

S ("nut-"Mg, E) =

has: 1 "A 68041 (”V m") E)
11- n 2.6 +1) -

i *3! c h } (.117) ‘-' 3K” "3.!

 

The total rate (the sum of the individual relative rates)

was normalized to unity.

The weight factors Great were computed according

to the technique set up in chapter III. The $03 weights

are listed in table 5. The SUzg‘weights have not been

listed; a table listing some«of these is included in the

paper by Cerulus.31 Because of the complexity of the

numerical calculation, the sub weights were obtained

only for states containing up to a maximum of six particles;

the 802' weights, which are more tractable, were obtained

for states of up to ten particles. It was therefore not

possible to carry out calculations, under the assumption

of 803, invariance, at total energies exceeding approxi-

mately 2.5 Bev (in the center-of-mass). At center-of-mass

energies above 2.5 Bev, the rate of production for final

states of seven or more particles begins to become
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appreciable. Reference to table 6 shows that the phase

space integrals for states consisting of all pions are

indeed negligible for 121 at 2.5 Bev but are not negligible

at 3 Bev. From table 6 one also sees that it is reasonable

to assume that rates of states consisting of more than 10

particles are negligible at 3 Bev. We have therefore

limited ourselves to total center-of-mass energies less than

or equal to 2.5 Bev involving final states of up to 6

particles (with resonances included) assuming S03 invari-

ance and energies less than or equal to 3 Bev for final

states of up to 10 particles assuming SU‘ invariance. The

calculations presented in figures 1 to 16 have been carried

out at total center-of-mass energies of 1.88, 2.29 and

2.50 Bev for $03 invariance and at energies of 1.88, 2.29,

2.50 and 3.00 Bev for $01, invariance. The latter corres-

pond to laboratory antiproton kinetic energies of 0, 0.92,

1.45 and 2.92 Bev respectively.

The phase space factors 39,. were calculated with a

relative error of less than or equal to 6% using a Monte

Carlo technique outlined in Appendix B, (the method of

estimating the relative error is also described there).

Resonant particles had to be specially treated as they are

not observed directly but decay rapidly into pions and

kaons. These were treated by first calculating the

production rate for the state containing the resonant

particles and then "allowing it to decay". The rate for
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Table 5. Important decay modes and branching ratios used

in the calculation.

 

Particle Mass (Mev) Important decay modes

Partial modes* Fraction %

T17) 35.7

Y). 549 arr‘ or Wu?) 30.8

17*11'1'1" 25.0

T1'"'11"(Y) 5.5

W’ 959 VI 11". 76.0

11'le (Y) 24.0

f 765 111’ 100

K“ 891 (GT 100

4: 1020 K’R° 38.0

K’K' 30.0

11'? or JV 32.0

(1) 783 W‘tf'fr" 100

A2. 1324 11"? 100

K' 1405 KT? 50.0

#1" 50.0

f 1253 217' 100

3" 1500 ' K‘E’ 30.0

K° K’ 30.0

K K‘ (891) 40.0

 

*Branching ratios into charge states, if not

explicitly shown, were obtained from isotOpic spin

invariance.
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Table 6. Values of phase space integrals for states of 2

to 10 pions.

The integrals have been calculated from:

. N .1 N ,‘ fi 11,.

f- éfl)3u.3 f‘“/ a'lJFI-mdfir {(21, PC)I(E'%.(P£+"£ ) )

Those obtained from the Monte Carlo routine have

errors attached.

 
 

ToEaI energy Kinetic energy N Phase Space integral f

 

in CM. (Bev) of F in lab (in pion mass units

(Bev) with‘h - c = l)

1.88 0

(annihilation at rest) 1.16

1.981 .08

.6811: .027

.0721: .0029

.002662. .00016

(3.361: .20)x10’5

(1.87:1: .11)x10"§0

(2.54: .15)x10"

(7.94 t.48)x10’14.
.
.
-
l

o
x
o
c
o
q
a
x
m
p
w
w

o
x
o
o
o
q
o
‘
m
b
u
w

0
1
0
0
0
9
0
1
1
1
1
.
w
a

2.50 1.45 2.06

8.851’ .35

7.841: .31

2.43: .15

.314: .019

.0172: .0010

(5.77: .35)x10‘4

(6.97:): .42)x10'5

(4.42: .271x10-83.
..
.

3.00 2.92 2.98

22.7: .9

34.9: 1.4

19.0: 0.8

5.161 .31

.6651 .040

.050:.003

.001481’ .00009

(3.001: .18)x10"5H

 



51

this was then divided among the various final states accord-

ing to the individual branching ratios. The branching

ratios for the necessary decay modes are listed in table 5.

Two ”models" were used in the calculations, each

corresponding to a particular way of specifying the volume

parameters. It was found that if the volume parameters

are chosen to be the same for all particles and equal to

the pion volume, the model predicts that the percentage

of annihilations at rest in which a.K-pair is produced

(kaons from annihilation are always produced in pairs due

to conservation of strangeness) is approximately 40%.

Experiment shows it to be of the order of 4%. Furthermore,

the theoretical value could not be substantially improved

by varying the volume parameter (see table 7). Another

obvious approach, consistent with SUa invariance, is to

specify that all mesons in a given nonet have the same

volume parameter. This leads to even more abundant kaon

production (as shown in table 8). It was therefore deemed

necessary to introduce something into the volume parameters

which would suppress kaon production. One way to do this

is to allow the volume parameter for a particular particle

to vary as the reciprocal of the mass of the particle

(in pion units) to some power. Hence, in this model,

32

which was originally introduced by Kalbfleisch, the
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volume parameter is given by:

--S\.L‘= SDL..($%&)"

where Q. is measured in units of the pion volume. The

other model which we have used is one in which all the

volume parameters are the same except the one which is

associated with kaons and kaon resonances. The production

of kaons may then be reduced by decreasing the kaon volume

parameter.

The results of the calculations are shown in

tables 9 and 10 and in figures 1 to 16. In all cases,

the parameters were chosen to give the ”best fit" to the

experimental data.*

The results at rest and at a total center-of-mass

energy of 2.5 Bev are shown in tables 9 and 10. The

agreement appears to be quite good, with the values of the

volume parameters under the assumptions of SU’a invariance

and of $01 invariance being roughly the same. A minor

difference is that the value of the parameter B in the

Kalbfleisch model is about 1 for invariance under SUz'and

 

*In doing this, use was made of a search program

written by Professor Peter Signell which varies the

parameters to minimize the value of )L1 for the experi-

mental data to be fit.
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about 2 for invariance under SU3 , resulting in smaller

volume parameters for all particles (except the pions)

under the assumption of an SU45 invariant matrix element.

The only general conclusion we draw from these results

is that the volume parameters decrease with energy and

that there appears to be no marked difference between the

two assumptions (S0 1, or SUg. invariance) as far as the

present overall experimental data are concerned.

4 Also shown in tables 9 and 10 is the fraction of

all annihilations resulting in the production of states

containing certain resonances. These are, in most cases,

consistent with experimental values.

Figures 1 to 14 show various quantities plotted as

a function of energy. Since the results shown in tables

9 and 10 seem to indicate that the volume parameters

decrease with energy, it was decided to modify the models

above by including a multiplicative factor of (zup/Ech, )

in each volume parameter. This is the Lorentz contraction

term introduced in the original theory by Fermi. It was

found that this modification slightly improved the fit.

To sum up, one can vary the volume parameters to

get very good agreement with experiment at a single energy

and fairly good agreement at a number of energies. In

general one has equal success assuming invariance under
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80; or SU3 . However, the values of the volume para-

meters necessary to fit the data are, in all cases, at

least an order of magnitude greater than the ”physical“

value of approximately .001.51“.consistent with the size

of the range of the annihilation potential.



57

Table 9. Results for the best fit to the experimental data

for annihilation at rest.

Symmetry group 5U 3 5U; 5 U3 5 0,,

Model Kalbflueeh 8111a" K pan-endu-

Values of parameters 51.. 5,45 (1:31“, 11. o 7.53 J), c 5, 57

3- 1.68 s e .96 .12.“: 1.1.4 5.1.61.2}

Quantity Exp. Theoretical values

value

Average pion

multiplicity 4.88.12.243 4.67 4.70 4.93 4.83

Percent of annih. a

producing K-pair 4.0.11.0 4.6 4.6 4.6 4.9

Fraction of annih. producing

prongs (no kaons):

0 prongs .032: .005b .029 .024 .025 .019

2 prongs .4261- .011b .432 .437 .439 .441

4 prongs .4581” .0101:> .466 .467 .462 .468

6 prongs .038:'.'.020b .028 .028 .040 .030

Production of resonances:

Fraction resulting

inf production 2 .250b .083 .238 .422 .505

Fraction resulting b

in» production 2.045 .015 .037 .098 .096

Fraction resulting b

in Vt production 2,.014 .086 .070 .300 .148

 

Experimental values from:

aAgnew, Phys. Rev. 118, 1371 (1960)

b
c. Baltay, Phys. Rev. 145, 1103 (1966)



58

Table 10. Results for the best fit to the experimental data

at a total center-of-mass energy of 2.5 Pev.

deflussh SWQ“ K parameter

.11.: 1.59 31,-1.78 .0.- .564 1).: .1178

‘B s 1-80 8 81.01 .9." .105 .Q; .148

Symmetry group

Model

Values of parameters

 

Quantity Exp. Theoretical values

value*

Ave. pion multplcty

without kaons 5.4 1’- .35a 4.65 5.10 5.33 5.19

Ave. pion multplcty

with K-pair 2.6: .20":1 2.59 2.59 2.73 2.63

Percent of annih.

producing K-pair 131 3a 13.8 13.7 19.3 14.5

Fraction of annih. producing

pions with K-pair: b

0 pions .01 t .01 .0016 .0061 .0153 .0160

1 pion .051:.03 .068 .081 .075 .093

2 pions .41 t .17 .387 .365 .262 .313

3 pions .453: .17 .429 .421 .491 .426

4 pions .091 .09 .107 .116 .128 .131

5 pions .01 t .01 .006 .010 .023 .016

Fraction of annih. producing (pion)

prongs with K-pair: b

0 prongs .063: .02 .059 .076 .060 .061

2 prongs .62 t .23 .533 .516 .388 .429

4 prongs .321: .21 .395 .395 .536 .499

6 prongs .0051: .005 .001 .013 .015 .012

Production of resonances:

Fraction of annih. resulting

in 9 production .182 .460 .619 .739

Fraction of annih. resulting

into production .032 .081 .333 .225

Fraction of annih. resulting

in \_ production .110 .105 .281 .200

 
'ru-‘I w" rum“- ‘5 .1

*All experimental values are for a total CM energy

of 2.43 Bev. The calculation was done at 2.50 Bev.

Experimental values from:

as. R. Lynch, Rev. of Mod. Phys. 33, 395 (1961)

' bG. R. Kalbfleisch, UCRL-9597 (1961)
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Reference to figures 1 to 16.

The experimental values appearing on the graphs are

from the following sources:

All experimental values for pion multiplicities and

charged prongs accompanied by a kaon pair are from:

G. R. Kalbfleisch, UCRL-9597 (1961)

Other values used, listed by energy (kinetic energy

of the antiproton in the laboratory), are:

0 Bev

0.47 Bev

0.92 Bev

1.26 Bev

2.86 Bev

2.99 Bev

C. Baltay, P. Franzini, G. Lutjens, J.C.

Severiens, D. Tycko, and D. Zanello,

Phys. Rev. 145, 1103 (1966)

S. Goldhaber, G. Goldhaber, W. Powell,

and R. Silberberg, Phys. Rev. 121, 1525

(1961)

G. R. Lynch, Rev. of Mod. Phys. 33, 395

(1961)

T. Ferbel, A. Firestone, J. Sandweiss,

H. Taft, M. Gailloud, T. Morris, W. Willis,

A. Bachman, P. Baumel, and R. Lea,

Phys. Rev. 113, 1096 (1966)

C. Baltay, J. Lach, J. Sandweiss, H. Taft,

N. Yeh, D. Stonehill, and R. Stump,

Phys. Rev. 142, 932 (1966)
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Relative production probability
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Fraction of annihilations
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Fraction of annihilations
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Fraction of annihilations
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Fraction of annihilations
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V. Conclusions.

We have attempted to reproduce experimental

results for the production of kaons, pions and charged

prongs from p-F annihilation using a simple statistical

model with the modifications mentioned below. Previous

statistical calculations were plagued with over copious

production of kaons and required unphysically large volume

parameters in order to obtain results consistent with

experiment. It was hoped that the inclusion of a large

number of resonances (which have been observed to appear

quite frequently among the annihilation products) would

alleviate these difficulties. Including the resonances

seemed reasonably promising since,to get the same final

answer, the volume parameters required can always be

reduced by including more final states which are involved

in the statistical process. The second modification

consisted of building into the model the assumption of

invariance under SU3 . However, the results presented

show that the improvement, based mainly upon whether the

experimental values can be fit with ”small" volume para-

meters, is slight. The fit to the experimental data is

fairly good: however, this is achieved only after the

introduction of modifications to suppress kaon production

and still involves rather large volume parameters.
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It is difficult to isolate the effects of $03

invariance upon the model. As might be expected, the

differences between the results obtained under the

assumption of SUa, invariance and those obtained under

$01, invariance show up predominately at low (2 and 3)

particle multiplicities and are averaged out in a

statistical calculation where multiplicities of up to

six or more particles are considered. One can see from

the results that no substantial difference is incurred in

this calculation by the generalization from 80; to $0 3

invariance.

Finally, it is worthwhile to mention a suggestion

which may help to alleviate the difficulties mentioned

above. If one uses a single parameter statistical model

(with the volume parameter of the order of 0.1.Slw- ) to

calculate the fraction of annihilations at rest producing

a kaon pair, one obtains a result which is approximately

an order of magnitude larger than the experimental value.

Furthermore, when the volume parameter is reduced to a

value of the order of the "physical” range (.Olg.‘ 45.00104)

the kaon production is not changed significantly while

the average pion multiplicity falls well below the experi-

mental value. Maglic' has suggested a model in which kaon

pairs are still produced in abundance but, at low relative
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33

energy for example, immediately annihilate into pions.

This effect would not only reduce the kaon production, but

would also substantially raise the average pion multiplic-

ity so that reasonable results might be expected with

small volume parameters. This line of thought can be

investigated by including in the model a K- E final

state interaction. The preliminary calculations made

by Maglic' indicate that a reasonable modification along

these lines give results which go in the direction of

further improving the model.



APPENDIX A:

1. Proof that Pain“. is independent of the

order of £1“ 5“. in. ‘

We wish to interchange the it” and ((+1)"-"

particles going from a scheme in which:

15 ..x
A

Ii-’ + L" a: I"

It + (in : I¢'+I

to one in which:

...L A ..h

..s. .9- ..s

I 4' Li. = Iifil .

The basis states transform via the éJ symbol:

'IL+I,ML+I>I.
= Z (11‘.+,)’/’- (114.1)V1

I.

I- é- I'

X L4 .L t ‘15“, Min):

IL-H Lei-H I

where II, M>I' implies the final state (I) M) is formed

via the intermediate value I'. We then introduce this

change of basis into the recoupling coefficient in the

I .
P‘faCtor PLZ. 11).... (.2 II. o

In what follows we write the intermediate state in

, . + 9* -"

parentheses; L, a; (13.) implies t, + ‘1, = I". .
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I4 .. 4- I I ...I I I " L" 1pint“..- it... Qfiml‘nf i, 3 n-n f 1f In.“L1,” Czn>‘

-2. [u 2..
I1,.1,..1

I '- «1' I- . . .

X [1‘ ' (if I‘} <5: ‘L(Ii), In ‘2: (1:5)” Ii-I ‘c'fl (1’))1‘} “(H)“

in H:

. .. Ifl'l L" (I?) "2. £164., I :l‘ ’ ‘1nn> I 1.]

We may write the above square as a sum over I and I' and

isolate the sum over Ii:

= 2" 2. (aI+1)"’~ (1141)";

12.13" ’IC-I , Ic'fl, "In-a I) I,

X (Loni-3.0;.) "' Iii-I (MCI); it (IQ!) ml”,9" mfg")<"1 (1‘)”

I
‘0'! € 0.. L

. I“-_I ‘Lfl (I ) ILzo (1.1”)”In I ‘0! (If),(.z, . (.Zul’ :2" (1")n

I..g l: I; IL-I £6 1'
IIL +1 L L . C

X g: ( ) {IIi-H Law-TI}{IC+: LCM II}

From the unitarity condition on the 6j symbols we have:

I 5' 1M 5' .I' ...L. J
2.1-4-1 “" ‘ ‘ ‘ = 1'1".

2 ~ 4 i}{:;.- MIt“ ("WI ‘61-: 1’

After performing the sum over I' by using the 6° , we have:

PI? . 3 25 §<95(1).) 17.11"”: (I),°"

t1. LZL... LG Iz'°’ Ii-"IC+| .00 In-'

' 2.

”I" (rim-H) 14.: ‘n‘Ifll
‘c-H H ,... .0»: >

L1: ‘1‘“ +1 ‘1‘“ ‘1»: '
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If we relabel I as I") it is clear that the right hand

side is equal to P1? with ifl’ and (oi-Ufl' states inter-

changed. Therefore:

I: - p1;

L‘l ”‘1'” ‘1‘: ‘16” Lin ‘1: ‘.l:."' ‘Z¢'+/I‘Z¢,' "° 41’! .

11. Proof that Pfl‘fijd‘ is independent of the

order of 3’, Va. 1’", .

We wish to prove that the sum over intermediate

states of the recoupling coefficient for SU 3 is independ-

ent of the order of the individual states.

We wish to go from a basis in which:

Uri-1 a At: UrL

...L f5

to one in which:

A ...}.

Ufcfl 0 Ac}: 3 U1 It'd + ((+1 3

L
H
t

Ur <9 A; = Ur“, I + i; = In...

In this case, the transformation will have both 503 and

(SUz 6j symbols. The notation used for the SU 3 transforma-

tion is according to Sharpe and Derome.34 We again write

the intermediate states in parentheses. The SH 3 and 80 L

parts transform respectively as:
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‘0‘” ‘4‘ Wu), Ui “6+: (Urc+.)> .-.-. %‘ CUJ'I" [Utl'h

x {32" j :1} =- ’ |U”'u“'w’a).U/‘«'(
U‘*'63>

' 6+: («H 1
in Va

Va. '1.

‘ 1'1"“ (It); I‘ Lin (Ln)? a % [Ii] LI] I

It“ HZ-H

X {Ii-u id I} ‘1.“ (6+: (I), I (‘- (Ian) >

where summation is implied over repeated 3’ indices and [.1]

represents the dimension of the irreducible representation

labeled by I.

The P-factor for $03 invariance is:

L

U431? - I 0:: ”,UI-lr 0‘? l’u' ....An

E’c’im’fi E: $033}, I“ ’3"? "‘4 ‘~"“ -

I; I"...

We suppress the indices on thex's wherever possible; the

T's above are, in general,all different. The ’ indicates

a summation over the T associated with U; . We introduce

the 6j symbols into the equation above:
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=2 [‘ 2 [M] [u1"" 1111"" [I1""
0" On“,

It. .. In-c ‘ a". 4". 06* x '3 It}: ‘1' If

U(+0 duh-a U' I"... Y‘ If“ (in I

x (“a “‘(u‘r)“ . 0‘..Ir 4",, (”Y’)’ I)” I": (”Oi/r)

l'I '4 (1;) If. I ‘c-H (I) I ‘O'¢ (Inn) ,4! a,

097-! J U; ) 1‘: J“. . . "

1m: tn" ((1.?) “VI, (‘16, ° in“, >'

and write the square as a double sum:

I

=- u 2‘ Z EUJ "‘- E 0’] ""Lu.-J £13 ”" [IT/4 11;]

‘1' ”Jr... 0m, u u!

II. I", Ifl-n I II

fi

Um A: an m a. a: an} z... :,

0“" ”(fin U.‘ yd. g?{0:3, “(flu{1}" K It?» ‘H11 1'”, ‘m-I}

' :‘H

x <MIout-7d(w (01).”, .. 3:,»WWw, Al“, ((1:1). “('1'

It-l ((+0 (I) I".-, ‘L+I (I, "ll“!

(where there is no sum over the rm '5 and the X‘- ’3 ).

First consider the SD), part. The sum over I; is

done first, yielding a term 7sz J13." from the unitar-

ity of the 6j symbols. This gives us, isolating the sum

over U; :

z z: 2. mmIra-(... Ms);.3.)

03V ... UP')‘ Ucwr”04-a, U U,
n

1" I"! 1”; In-l

..(u' ) M 0:} m
..HIC ’m‘u(3'3")>°I[Uq, UV." "“3” u‘ r“. Y‘.

UH dc c): ‘} 6’ ”a 1
x 1

vii}, ANN UN (in n. J

From the unitarity of.the 803 6j symbols, we can show



84

I

J’ a

(see below)* that the sum over U; yields: {5- ‘UN’ ‘1 J? .

Hence, we have:

[>VU5]:M :3 ‘ézzl

day .. Js-I r U¢+Iru ”'1‘! r

13., IL-I In” Ifl-l

2.

06-1, 1’54, (Ur) I)” ll, (1):”) . Hun-o, A... (U;”[1: ... ”6+! ,5" “#5)

It-I ‘1'1H (I) I t (Ii-H) In-n in (15'" cu""”“v ‘0’)

Relabeling U-' U: I +1, (3 —r n ,

J, J(:4) ,

2“ <0” 6:41;)”

H
o
t
“

we see that the right hand side is the 803 P-factor with

the ("M and the (in) fl states interchanged.

 

*The sum over LN is almost identical to the

unitarity condition given by Sharpe and Derome. One can

easily rewrite the summation above in the standard form

by first lowering the K indices using the A matrices and

then switching the order of the indices using the X's .

This gives: * .. ' ’ r! I; I

2 [JJ {31..."(6u063 Y '3 { Up” In" a 'j . .5

c , I .

m", 4!”;’ ((+1 X6 U13” 41:” u n.“ ’7‘.

2: [U] { 06: ”5“, u}* {Ma": '4‘.” U,

c

u‘. ”(H 4”: U‘ r Yin Y; t, 0“" (j‘ ("31 Ii ’3’

.L J S ’J t.’
= Lu] u,u’ r r.

by unitarity of the 6j symbols.



APPENDIX B: Outline of a Monte Carlo method of

evaluating phase space integrals.*

All calculations which follow are

done in dimensionless units.

The phase space integral for n particles with total

energy E and total momentum P is:

g. (5.9) = fix?“ 1'43» JAN Jpn orb-é. Pr) J (Eng: e‘-)

where f; , e; are respectively the individual particle

momenta and energies. In what follows, we dr0p the yu-rfi)""

and write the integral as f: ( E, P) .

The directional part is isolated and related to the

well-known 'random.walk' problem.

a?” P‘I'Jf‘ Jég 6'5' = 3’” 9" J9! 4*i

5’: (a m-j--.:]nr.
fls- :5. mspnush

('I

x}...f{(p 2, F‘é‘. ) dance :16.
C“

We separate the last integral as follows:

wn(P;P.p,,-vPwl‘uJJrnJfar 2. as? He mcfen,

 

*What follows is an outline of the paper:

P. Cerulus and R. Hagedorn: Nuovo Cimento Supplement 3,

646 (1951). This article is referred to throughout the

discussion as I.
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The function U44 is the probability that, for fixed

magnitudes of the momenta p,,P¢---Fn but random directions

A A a A

€. ,€,-'- C." the total momentum (g; P; 6.; lies in the
'I

neighborhood JP of P . For given arguments ( P; I’: P»),

no“, may be calculated using the theory of random walk.

We note that uh. is a function only of the magnitude of

the momenta. We have now reduced the phase space integral

t0: .0 .o n.

as 1' t... 1' ..

race,» = (”r-Lin a n. H5 747, PM»)

X a)“ C P; F. P‘oooPn) aP. aPa"'aPn .

In what follows, we restrict ourselves to the

C.M. system so that 5' O . Let us change the variables

I

of integration from momenta to energies by:

Pia. 1' Ci," “1“

Our intejral beecMQS:

.9 .o

P: (E)°) = (*W)“’J ”.Jm 8' 53‘”. “.1. c‘. JQL " m: as.

M. n

n

.cnm: %(P=°; e...) {(E-&e¢-)&e.---&en

where:

‘U'nLPs'O; e. era-eus wn,(P=O; P.‘Je.’-+m."--Pn).

 

Let: J1£(e): 3531:-”1“ 82%;

fl
* ‘

f“ (5,0) = (1417)“"J‘ ... A. (3.) #1‘ (64)”‘fln(en\

I lay;

x 11:,l go; e....e.‘)J (5- 28;) ac, &¢L kn .
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A transformation to kinetic energies is made:

*6: e£-mL.o

Let: I (t3 ta.” ta.) " 11(t1" ml)a1(t2.+m'a.) "' Jul tn+"3n)

... 9:2,. (E) O) 3 (4fl)nj.?°13(t,mtn)J(T-'2ftd) "ti ... gt”-

We now order the kinetic energies:

T-I 3 ti

T2,: tl+t1

‘Tm.’ ‘t:*"t1'*""p'tna

The inverse transformation is:

t,* 17

£41.: Til-'7:

{4:3 'Th-‘Th-u

. *- W. p at- .0

.. fit— (Mr) a MIA team/Taft!

x I (T. , Ta-T. WT" - Tm.) J ( T- m)

where, it is clear that

057-157; 5 "' .4. Tno/ 5T"...

We carry out the integration over :2 Tm making use of the

6' function. The above relation then applies that the

upper limits on all the integrals may be changed to 1’ .

T

T 7'

f3: (wr‘j ant/T av; jam, 30573-77, ---T- TM)

9 o Tn-L.
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and we have: 0 6 T, 4. T; e 5 Tm: s T.

We are now ready to apply simple Monte Carlo

theory to the integral above. For integrals of the form:

‘I ‘3, bn.

I: a, c1771“; 47; ...L ’ &'r;‘ {(7:71...7;_)f(‘n73...Tu)

where fflt‘rruTn) is an )1) dimensional density function

defined, in the usual way, by:

1) POTWT") 20 over the allowed range of("T,‘71---Tn)

19 ba. 5.
2 '

... ‘1’
0.0 -)d.d1:j%a7; jhamfmj "m- 1

and f (T. , Tana-73': ) i335 a weight function.

It can be shown that,

N . .

1'” ..L, (c) u)”. (n

1:101,» Né‘FCT‘ )T") T" )

where the set(1}--VTk)is chosen randomly but weighted

according to the distribution function fir Ta. mTw) .

We may rewrite our integral as:

f;(z,o) = (4w3”13".[j:atj;ar,_ IT NM

 

(Vt-I). Tm.

I
(31,-!) .

x Bun-11, “'T’Tn-I —-—-—-—TM]

we make the correspondence:

(n-n)!

fvr‘ 1" ...Tnd) = Constant = .1— n—I

This represents a uniform distribution in ( u-t) dimen-

sions where the intervals for each variable are chosen as:

[0,7'3 for T.

LT..TJ tor Ti

LT'a'le $0? Tn-l
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It is clear that the variables satisfy the relation:

Oé-néTabé"' :T‘-,§ TO

We must show that f> ,integrated over the limits of our

integral, yields unity.

v.

f../f(T,--7’.,-1)"7170.3, jg‘fi/ZTA":197ml 72-!I

If we allow all the lower limits to be replaced by C), we

introduce a factor'z;£3! into the integral above. (It is

clear that a set chosen randomly has a probability {7&331

of being in increasing order). Therefore, the integral

over the density function is equal to:

‘T T, 7 .JL. -

If!” ’TN'JTn—I =jo d’TI/a ’7;- ”A find 711-! “ ‘1 '

Hence, simple Monte Carlo calculations give

N (i) TtlT (a)

5’:(E.O)= (waft. #LIWJ ‘ T. 7'73- 1

A

(.8!

where the set CIT-NT“) is generated by choosing n-I random.

numbers uniformly from the interval LO,T] and relabeling

them so that:

'17“; Tf’e .4. Taf.”

In order to actually calculate the phase space

integrals, it is convenient to express all quantities in

terms of the individual energies. We have:

I(T|)T1’T|""T'Tn-I)= e. 56.1-m "an Kent—m: 1r". (0; 6‘" en.)

We recall that the function“U1u is evaluated using the
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theory of the random walk. Refering to I, the result is:

1
fl.

_ - —L— n+a '

- (mourns refit-me W

nrb

. 6“”) FW)
:45)216;;”‘6. [33(14‘.“ 1(U'

0"!

where: all 52 (except €T:-+a.) take on the values 4.asJ-n1.

51“); +1 ‘f'or X>o

. 1 +9? X60-

Hence, we get: ) .

c: m“”'cm'" ”9;: £2, 5b,.(et‘e cg”)
 *

Yn(E,O)= \n-')l (n-3)! L'I

where

. _ . 5'0- .4712”

wnugfnen) - .— 9.9,,£{éanfin-‘fiT5j<f~ due:— ’1,)

x [2.0: may3

The method of calculation is:

1) Generate a set of kinetic energy variables {T}

by obtaining m4 random numbers in the interval

0 to T.

2) From these calculate the individual energies

8. g 7;- Tm +m, an, m (7;: o, 'T..=7').

3) Knowing the energies and masses, the function

(figs, e,"- e...) is calculated.

4) Steps l-3 are donehl times, and the phase Space

integral is obtained by multiplying the average
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(E_“)n-l (11211-1

(Vt-n)! (rt-.5)!
value of these by the factor

We now proceed with a brief outline of the error

analysis.

It is clear that, as one increases the value of hJ ,

the value calculated for the integral approaches the true

value. The error analysis has been done in reference I and

is quite lengthy. The method used for estimating the

error is briefly outlined below.

Before starting the calculation, one chooses an

integer ”Jo which is much greater than one but small

enough so that No contributions are not expected to give

a good approximation to the integral. We then do the .

calculation, checking the convergence after successive sets

of N. terms.

Let us consider a calculation done in >\ steps of No

contributions each, so that N = >‘Ng . We define the

partial sums as follows:

5 = 2““ +(Ln(0"'a:“'” emf“)

4 c-(uq)N.+1

where A = I, 2.) A.

We then have:

X .

?>= .5. 2" 3A fem-tar a iii"; 5,).

x 14:!

where: A: £E_M)n-I (2.11-W“

m—a)‘. m-WTNo'
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We want to approximate the integral by some value

,2; calculated with >s>>1 so that N: XN. contributions

yields a good approximation to the true value f .

At this point a problem is encountered that is a

consequence of the Monte Carlo method. We want to

approximate the exact phase space integral by the average

of A partial sums P" and hope to obtain some information

about the error in fix . The straight-forward approach to

this is to calculate ‘5‘ many times independently and

from these values calculate an RMS error. Yet we calculate

F) but one time and do not wish to do so again; indeed,

if we did so we would use the value .1) as a new A, and

get a more accurate approximation ’3}! . Hence, we work

toward obtaining an estimate of the (probable) error in

without having to calculate it more than once for a given

value of X .

We assume that for fixed, large enough )\ , the

approximate values ,3“ are normally distributed about the

exact value j: . The error analysis yields the result

that the standard deviation (5?) xdivided by the mean value

,3 is:

1.
- X

S) ( - ~ 'I " a swig)
(ean 9 ~ *(F‘J ( K

 

 



93

where — (5) _|_ 4* S

S = ‘k (17“. A 0

We note that the expression above is easily calculated,

along with fix , for successive values of A . It is also

expected that, as X increases, the standard deviation

(89))\ and therefore (i); will decrease.

We now make use if the following prOperty of the

Gaussian distribution. If fx is normally distributed

about F with a standard deviation (593mm, for an

arbitrary value f)‘ , the probability that:

‘f'fi | é (J?)A Is a: .68

‘f-f)‘$ 1({r))~ I6 '3. ‘75

‘F- F“ 5 59?),
Is 2:. .999!

We can now arrive at a solution to the problem

above. The particular value we calculate for Pl is assumed

to be one of a set of values {9):} which are normally

distributed about the true value f . Using the formula

above, we calculate the approximate (JF))_/f and use this

to obtain limits on the relative error in our calculated

value Pk . Let us define:

2» Himr
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then:

. Exr- El 5 Zx wH-L, a: 681; Car+aun+j

I FX -f ‘ é Z’ZX usl‘i'h z 96" certamt-y

F

|‘)‘-i_‘ 562% wc+k=~¢ 99.95%

V ¢€rt11n£j

In our calculation, we chose No3 lo and varied >~

in increments of .1 starting with NI! until the value of z)

became 5:. 06 . Hence, with N = )~ No terms, we obtained

phase space integrals with a relative error less than

6% with 68% certainty or less than 12% with 95% certainty.
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