
THE EFFECTS OF UNITARY SYMMETRY UPON MESON PRODUCTION IN PROTON -ANTIPROTON ANNIHILATION

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
Robert G. Ponzini
1967

This is to certify that the

thesis entitled

THE EFFECTS OF UNITARY SYMMETRY
UPON MESON PRODUCTION
IN PROTON-ANTIPROTON ANNIHILATION

presented by

Robert G. Ponzini

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Physics

Major protessor

Date January 20, 1967

THE EFFECTS OF UNITARY SYMMETRY UPON MESON PRODUCTION IN PROTON-ANTIPROTON ANNIHILATION

By

Robert G. Ponzini

AN ABSTRACT OF A THESIS

Submitted to

Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

ABSTRACT

THE EFFECTS OF UNITARY SYMMETRY UPON MESON PRODUCTION IN PROTON-ANTIPROTON ANNIHILATION

by Robert G. Ponzini

A theoretical investigation of meson production from proton-antiproton annihilation at total center-of-mass energies in the range 1.88 to 3.00 Bev is carried out. The Fermi Statistical Model is applied and is generalized, from an SU_2 invariant form, to include invariance under the transformations of the group SU_3 .

The calculations were done using the Control Data 3600 Computer. Phase space integrals were obtained with a relative error of less than 6% using a Monte Carlo technique. All combinations of mesons from the J=0-, 1-, and 2+ nonets, which are allowed by conservation laws, are included as possible final states. The calculation of the SU₃ statistical weights became increasingly complex with increasing particle multiplicity. It was therefore necessary to limit final state multiplicities to six or less particles under the assumption of SU₃ invariance. This placed an upper limit of approximately 2.5 Bev upon the energies which could be considered in this case. The SU₃ weights are tabulated. The SU₂ weights are much easier to calculate so that, in this case, final states of

up to ten particles and energies of up to 3.0 Bev are considered.

The results indicate that no substantial improvement is made by the generalization from SU₂ to SU₃ invariance or by the inclusion of the resonances comprising the vector and tensor nonets. Furthermore, it is still necessary to introduce unphysically large volume parameters into the model in order to obtain results consistent with experiment, a common difficulty in statistical model calculations. However, the theory adequately reproduces experimental results for pion distributions, kaon production rates and charged prong distributions at a number of energies.

THE EFFECTS OF UNITARY SYMMETRY UPON MESON PRODUCTION IN PROTON-ANTIPROTON ANNIHILATION

Ву

Robert G. Ponzini

A THESIS

Submitted to

Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

ACKNOWLEDGEMENTS

I am most grateful to Dr. J. S. Kovacs for his suggestion of the topic for this thesis, and for his support, guidance and encouragement throughout my graduate studies at Michigan State University.

My special thanks are extended to Dr. Richard
Yoder for his numerous suggestions and help throughout
the course of the calculation. I am also indebted to
Professor Peter Signell who graciously made available
his least squares search routine.

Finally, I wish to thank my wife, Moureen, for correcting and typing the manuscript and for her many years of patience.

TABLE OF CONTENTS

	P	age
I.	Introduction	1
II.	The Statistical Model	5
	A. Formulation of the model	
III.	The effects of Unitary Symmetry upon meson production in ρ - $\bar{\rho}$ annihilation	11
	A. Symmetry groups in physics	
	strong interactions	14
	C. The SU ₂ weight factors	19
	D. The SU_3^2 weight factors	28
IV.	Calculations	47
V.	Conclusions	76
	Appendix A	79
	Appendix B	85
	References	95

LIST OF TABLES

Table		Page
1.	Properties of the psuedoscalar (J=0-) meson nonet	16
2.	Properties of the vector (J=1-) meson nonet	16
3.	Properties of the tensor (J=2+) meson nonet	16
4.	SU ₃ weight factors for states of mesons from the 8-dimensional representation	40
5.	Important decay modes and branching ratios used in the calculation	49
6.	Values of phase space integrals for states of 2 to 10 pions	50
7.	Results for the statistical model with a single volume parameter	52
8.	Results for the statistical model with a separate volume parameter for each meson nonet.	53
9.	Results for the best fit to the experimental data for annihilation at rest	57
10.	data for a total center-of-mass energy of	
	2.5 Bev	58

LIST OF FIGURES

Figure	B	Pa ge
1.	Average number of pions accompanying 0 and 2 kaons under the assumption of SU ₃ invariance.	. 60
2.	Fraction of all annihilations producing states having one or more K-pairs under the assumption of SU ₃ invariance	
3.	The relative probability for the production of 0,2,4 and 6 charged prongs in the absence of kaon production, under the assumption of SU ₃ invariance	. 62
4.	The relative probability for the production of 0,2,4, and 6 charged prongs accompanied by a K-pair, under the assumption of SU ₃ invariance	• 63
5.	Fraction of annihilations to a K-pair resulting in the production of 1 pion under the assumption of SU ₃ invariance	• 64
6.	Fraction of annihilations to a K-pair resulting in the production of 2 pions under the assumption of SU ₃ invariance	• 65
7.	Fraction of annihilations to a K-pair resulting in the production of 3 pions under the assumption of SU_3 invariance	• 66
8.	Fraction of annihilations to a K-pair resulting in the production of 4 pions under the assumption of SU ₃ invariance	. 67
9.	Average number of pions accompanying 0 and 2 kaons under the assumption of SU ₂ invariance.	. 68
10.	Fraction of all annihilations producing states having one or more K-pairs under the assumption of SU ₂ invariance	• 69
11.	The relative probability for the production of 0,2,4 and 6 charged prongs in the absence of kaon production, under the assumption of SU ₂ invariance	• 70

Figur	:e	Page
12.	The relative probability for the production of 0,2,4 and 6 charged prongs accompanied by a K-pair, under the assumption of SU ₂ invariance	. 71
13.	Fraction of annihilations to a K-pair resulting in the production of 1 pion under the assumption of SU ₂ invariance	
14.	Fraction of annihilations to a K-pair resulting in the production of 2 pions under the assumption of SU ₂ invariance	
15.	Fraction of annihilations to a K-pair resulting in the production of 3 pions under the assumption of SU2 invariance	
16.	Fraction of annihilations to a K-pair resulting in the production of 4 pions under the assumption of SU ₂ invariance	

LIST OF APPENDICES

	Page
Appendix A	• 79
I. Proof that $P_{i_{z_i}i_{z_i}i_{z_n}}^{I}$ is independent	
of the order of $i_{Z_1}i_{Z_2}\cdots i_{Z_R}$	• 79
II. Proof that P, V, I is independent	
of the order of $\nu_1 \nu_2 \cdots \nu_k$. 81
Appendix B Outline of a Monte Carlo method of	
evaluating phase space integrals .	• 85

I. Introduction.

The proton-antiproton system and the myriad of decay modes to which it is strongly coupled, has been of considerable interest to experimentalists.

With the advent of high-energy accelerators, a variety of experimental data at various energies has been 1-11 obtained. The theoretical analysis of the system and attempts to predict experimental results have been incomplete. There appears to be little hope of developing, in the near future, a quantitative theory of multiple particle production in strong interactions. Hence, one is forced to resort to phenomenological models in order to deal with systems with three or more particles in the final state.

One such model, which has succeeded in predicting some of the experimental data, is the Fermi 12
Statistical Model. The model assumes that in a high energy collision of two baryons in their center-of-mass system, all the available energy is released into a small volume surrounding the initial particles. The energy is then redistributed in a statistical way.

That is, the relative probability for the formation of a particular final state can be calculated by assuming that all allowed final states have equal a priori probability of being formed. The single parameter in

the simple model is the volume Ω in which the interaction takes place. We would naturally expect this to be of the order of the cube of the range of the annihilation interaction.

The model, as proposed by Fermi, allows for refinements due to conservation laws in operation and hence, to consequences of symmetries which the system possesses. One of the first refinements, due to Fermi himself, was to build into the model the effects of 13 isotopic spin invariance. We have extended this by considering the effects of SU₃ invariance in applying the model to meson production in proton-antiproton annihilation.

The invariance of strong interactions under the transformations which are generated by the group SU; is currently being investigated. The main success of the theory has been in reproducing large segments of the mass spectrum of the hadrons, the strongly interacting particles. This spectacular success is only possible however in a "broken symmetry" scheme, that is, it is necessary to include in the strong interaction Hamiltonian a term which is not invariant under SU; transformations but transforms like one of the generators of SU; In a simple first-order perturbation calculation, this

term breaks the symmetry by splitting the degenerate SU₃ energy levels to obtain the experimentally measured masses.

When exact SU₃ invariance is applied to the dynamics of strong interactions, the theory meets only limited success. An obvious explanation for this failure is that the broken-symmetry term in the reaction Hamiltonian cannot be ignored in dynamical calculations. A suggested way of by-passing this obvious difficulty is to consider interactions in which the energy available to the reactants is much greater than the mass differences accounted for by the broken-symmetry term. Proton-antiproton annihilation into mesons is a reasonable candidate since, even when the annihilation occurs at rest, the energy available for meson production is large compared to the meson mass differences in an SU3 multiplet. It is also possible that the effects of symmetry-breaking upon a many-particle system may be masked by the higher-order pure SU, effects.

The purpose of this calculation is then twofold. First we wish to investigate the effect of

SU a invariance upon a dynamical system of the type
discussed above. The secondary aim is to carry out a

fairly complete calculation applying the Fermi Statistical Model to mesons produced in $\rho - \overline{\rho}$ annihilation emphasizing the effects of including recent experimental data on meson resonances. this vein, the following calculation differs from those done previously in that all allowable combinations of 27 mesons, including the Jp o-, 1and 2^+ nonets, have been included as possible final states. A Monte Carlo routine has been used to evaluate the phase space integrals. Final states of up to 6 particles have been included under the assumption of SU3 invariance and states of up to 10 particles under the assumption of SU₂ invariance. All calculations have been done at total energies of 1.9, 2.3 and 2.5 BeV in the center-of-mass system. assuming invariance under both SU_2 and SU_3 , and at 3.0 Bev for SU2 invariance only.

II. The Statistical Model

A. Formulation of the Model.

The Statistical Model was proposed by Fermi in 1950 as an order-of-magnitude method of dealing with multiple particle production resulting from collisions between nucleons. The model attempted to qive estimates of relative cross-sections for production of mesons and baryons from an initial twonucleon state. The model was quite crude in its original form, taking into account only energy conservation. Ordinary momentum was conserved only approximately by considering all particles to be either extremely relativistic (mesons) or non-relativistic (baryons) and then allowing the non-relativistic particles to carry off momentum. Subsequent to its introduction, the model was modified to include momentum isotopic spin conservation and finalconservation, state interactions. In 1960, Hagedorn reformulated the model in a rigorous framework starting from S-matrix An important result of this formulation is theory. Hagedorn's interpretation of the volume parameters. Under the assumption that the S-matrix dependence upon the isotopic spins, momenta and masses of the individual

particles may be neglected, the product of the volume parameters for a specified final state can be interpreted as the mean value of the square of the S-matrix element. This is a reasonable assumption since, in the statistical theory, the main dependence of the relative cross-section for the production of any state upon the individual masses and momenta is exhibited by the phase space integrals, and the dependence upon individual isotopic spins is exhibited by the weight factor. Hence, Hagedorn concludes, the product of the volume parameters should be dependent, at most, upon the total energy and the number of particles in the final state irrespective of their isotopic spins, masses or momenta. We shall refer to this conclusion later.

According to the modified statistical model, the unnormalized probability for the formation of a specific state consisting of n mesons from $\rho - \overline{\rho}$ annihilation at energy E, in the center-of-mass system, is:

$$S(m_{1} m_{2} ... m_{N}, E) = \begin{cases} \frac{h_{max}}{TT} \Omega_{R}^{q_{2}} (2 h_{2} + 1)^{q_{2}} \\ \frac{h_{21}}{R} \end{cases}$$

$$X\left(\frac{G_{SU_{N}}}{TT} N_{R}^{q_{2}}\right) \qquad P_{N}\left(\frac{m_{1} m_{2} ... m_{N}}{(2\pi)^{3} 1 - 3} E\right)$$

$$(2\pi)^{3} 1 - 3$$

where:

 \mathcal{M}_{λ} is the mass of the $i^{\pm b}$ particle. \mathcal{M}_{λ} is the number of (identical) particles of the $\lambda^{\pm b}$ kind so that $\lambda^{\pm b}$ $\mathcal{M}_{\lambda} = \mathcal{M}_{\lambda}$.

 S_k is the spin of the k^{th} kind of particle. Ω_k is the volume parameter associated with the k^{th} kind of particle.

 G_{SU_n} is a weight factor arising from the invariance of the interaction responsible for the production under the Unitary group SU_n .

In this calculation we shall consider invariance under the groups SU_2 and SU_3 . In the above formula, one must consider all the particles which fit into a single representation of SU_n as identical. We have assumed throughout that all particles which fit into a single irreducible representation of SU_2 , i.e., all members of the same isotopic spin multiplet, are identical. In the case of SU_3 invariance we consider the above assignment to be a consequence of

symmetry breaking.*

^{*}If Su₃ invariance were strictly true, all particles in an irreducible representation of Su₃ would have to be considered identical. However, the members of a given "SU₃ multiplet" are actually split into its isotopic spin (SU₂) multiplets by the symmetry-breaking term.

B. Successes and failures of the model.

The refined statistical model has had moderate success in reproducing experimental data on distributions for the production of pions and charged prongs from annihilation of antiprotons. Its most drastic failure has been that it predicts too large a rate of kaon production. This discrepancy, of course, can be minimized by introducing a volume parameter for kaons that is much smaller than those for other mesons. Also, in order to fit the experimental data, it has been necessary to introuce volume parameters of the order of the pion volume, * whereas general field theoretic arguments show the range of the annihilation potential to be of the order of the nucleon Compton wave-length. Assuming that the volume parameter must be of the order of magnitude of the interaction volume, we would expect it to be of the order of 1/350 Ω_{π} . As pointed out by Hagedorn, the requirement of unphysically large volume parameters may be due to the omission of possible final states, in particular, to those Therefore, we have included as containing resonances. possible final states all combinations of the 27 mesons

^{*}The pion volume is the volume of a sphere whose radius is the pion Compton wave-length $\Omega_{\pi} = \frac{4}{3}\pi \left(\frac{\pi}{m_{\pi}}c\right)^{3}$.

comprising the "so-called" psuedoscalar, vector and tensor nonets which are allowed by conservation of energy, charge, isotopic spin, baryon number and hypercharge. (The hypercharge Y is a quantity equivalent to the strangeness S and related to it and the baryon number B by Y = B + S. The isotopic spin projection quantum number is also conserved in strong interactions. Its conservation is guaranteed by the conservation of charge and hypercharge, the three quantities being related by Q = T + 1/2 Y.)

A major source of difficulty with the model has been the accurate evaluation of the phase space integrals. Except for special cases, the integrals become so complex for n greater than three that approximations are unavoidable and the use of a high speed computor is 24 necessitated. In this calculation, the phase space integrals were evaluated to within approximately 6% relative error by a Monte Carlo technique developed by Cerulus 19 and Hagedorn. This technique, together with an error analysis, is briefly outlined in Appendix B.

- III. The effects of Unitary Symmetry upon meson production in $\rho \overline{\rho}$ annihilation.
 - A. Symmetry groups in physics.

It has always been the hope of physicists to be able to describe matter as a composite of a few fundamental constituents. Thus, discovery of new particles frequently leads to attempts to explain their existence as a part of a general scheme or spectroscopy. With the development of high energy accelerators has come the discovery of a large number of new "particles". Among the many attempts to classify these, the most successful and fruitful has been the model known as the "8-fold way". The basic assumption of this model is the invariance of a thus-far undiscovered super-strong interaction under the symmetry group SU 2.

In the 1950's, experimental evidence for the charge independence of the two nucleon force led to the postulation of the conservation of isotopic spin in strong 25 interactions. In group theory language, this can be expressed as the invariance of the interaction under the special unitary group in two dimensions, SU 2. SU 2 is the group of all unitary, unimodular (determinant = 1) 2 by 2 matrices. This is, in a sense, a generalization of the rotation group, having representations of all even dimensions (corresponding to half-integral values of

angular momentum) in addition to the odd dimensional representations (corresponding to integral values of angular momentum), which it has in common with the rotation group.

In applying the theory of group representations to physical systems,* symmetry with respect to a particular group is meant to imply that the Hamiltonian of the system remains invariant under all transformations of the form:

$$R(\bullet_{i},\bullet_{k}\cdots\bullet_{m})=\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{M}}_{i}}_{i}}_{n!}}_{n!}\left(\underbrace{\underbrace{\underbrace{\underbrace{M}}_{i}}_{k!}}_{n!}\bullet_{k}J_{k}\right)^{n}}_{n!}=e^{i\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{M}}_{i}}_{i}}_{n!}}\bullet_{k}J_{k}$$

where:

JR are operators which are called generators of the group. These may be chosen Hermitian in which case they are related in the usual way to physical observables. Of course, only those generators which mutually commute may be simultaneously diagonalized, the number of which is called the rank of the group.

On are continuous parameters, the values of which specify the particular transformation.

^{*}In all that follows we limit ourselves to a consideration of irreducible representations of simple Lie groups.

An n-fold degenerate state of the system is represented by the basis states of an n-dimensional irreducible representation of the group, one basis state corresponding to one physical state.* There exists, for a group of rank & , & irreducible fundamental representations. These are fundamental in the sense that all irreducible representations of the group appear in the Kronecker products of the fundamental representations with themselves. An important aim of most models is to fit the basic constituents into the fundamental representations and then to form the structured physical systems from these according to the rules of group theory. For example, consider the isotopic spin group, SU2, as applied to nuclear physics. The single fundamental representation of the rank 1 group SU_2 is a doublet (I = 1/2), the two basis states of which represent the neutron and the proton. Nuclei, of all possible Z and N, fit into the higher dimensional irreducible representations which are formed by taking Kronecker products of the fundamental representation with itself.

^{*}We note that, in considering the theory of symmetry groups in physics, there is first the group invariance properties and then the correspondence of the mathematical quantities with the physical system which we shall call the model.

B. Application of SU₃ symmetry to strong interactions.

In 1953, Gell-Mann and Nishijima, on the basis of the empirical evidence then available, postulated a new additive quantum number called the strangeness which is 26 conserved in all strong interactions. This additional quantum number could not be accounted for by SU 2 invariance alone. SU2, being a rank 1 group, allows for only a single additive quantum number, this being identified with the i-spin projection \mathcal{I}_{z} . Hence, there could either be a product symmetry at work or the strong interaction could be invariant under a higher rank group which contains SU 2 as a subgroup. A rank 2 group, having two mutually commuting generators, could account for both the additive quantum numbers S and \mathcal{I}_{z} . An obvious candidate (among others) for this role is SU3, the group of 3 by 3 unitary, unimodular matrices.

There were a number of different models suggested, each corresponding to a particular way of fitting the known particles into the representations of the group. The most famous of these was the $(N-\lambda)$ triplet model of 27 Sakata. In 1961, Gell-Mann and Ne'eman independently proposed the model which has come to be known as the 28,29 "eightfold-way". This model differed from that of Sakata in that no attempt was made to fit observed

particles into the fundamental representations of the group. Instead, it was recognized that a large number of the experimentally observed particles could be fit into certain higher dimensional irreducible representations of SU₂. The real strength of the model was that a simple modification of the SU 3 symmetry could yield known mass differences to a high degree of accuracy. It was later postulated that, consistent with the eightfold-way and the observed sprectrum of particles, three hypothetical particles called "quarks" and their antiparticles could be associated with the fundamental representations of SU₂.* The lower mass baryons are then formed by triplets of quarks according to the prescription 3@3@3=10@8@82=1 and mesons from a quark-antiquark pair according to 303 = 801 . This adequately describes the known baryon decuplet, octet and singlet and the three meson nonets (see Tables 1, 2, 3). (However, a second baryon octet has not yet been detected). In addition, the search

^{*}SU₃, being a rank 2 group, has two fundamental representations. These are each of dimension 3 and are conjugate to each other.

Table 1. Properties of the psuedoscalar (J=0-) meson nonet.

Mesons	Average mass of the I-spin multiplet (Mev)	Isotopic spin	Hypercharge	Dimension of SU ₃ representation
TI	138	1	0	8
κ [‡] κ•	496	1/2	1	8
Kº	496	1/2	-1	8
n.	549	0	0	8
 h'.	959	0	0	1

Table 2. Properties of the vector (J=1-) meson nonet.

Meson	Average mass of the I-spin multiplet (Mev)	Isotopic spin	Hypercharge	Dimension of SU, rep- resentation
P	765	1	0	8
K**	891	1/2	1	8
K*:	891	1/2	-1	8
• •	1020	0	0	8 †
ω•	783	0	0	1+

Table 3. Properties of the tensor (J=2+) meson nonet.

Meson	Average mass of the I-spin multiplet (Mev)	Isotopic spin	Hypercharge	Dimension of SU3rep-resentation
A2 t	1324	1	0	8
K* &	1405	1/2	1	8
K* =	1405	1/2	-1	8
5 *	1253	0	0	8 +
<u> </u>	1500	0	0	1*

In order to fit the masses of the mesons in the vector and tensor nonets within the framework of the eightfold way, it is necessary to introduce mixing between the two isotopic spin singlets. Therefore, neither can be assigned to a definite irreducible representation. For simplicity, we assigned the particles as shown.

for quarks, which in this model must be of non-integral charge, has been fruitless.

In order to account for the mass splitting of the particles fitting into an irreducible representation of SU₃, (with pure SU₃ invariance, all particles fitting into a given irreducible representation have equal masses) it is necessary to introduce a symmetry-breaking term into the Hamiltonian. The term is chosen to transform like one of the generators of SU₃. This choice is in analogy to the breaking of SU₂ symmetry by the electromagnetic force where a term transforming like the isotopic spin projection operator T_Z splits a degenerate set of particles of a given isotopic spin into their observed charge multiplets. With this choice, a perturbation calculation then yields the mass splittings of the mesons and baryons to reasonable accuracy. Up to the present, this has been the most impressive success of the "eightfold-way".

An obvious extension of this theory is to consider the effects of SU₃ invariance upon dynamical systems undergoing strong interactions. Using the simple rules for the expanding of a Kronecker product in terms of irreducible representations of the group, with a table of Clebsch-Gordan coefficients for SU₃, one can predict relationships between various cross-sections. In this crude

analysis, the symmetry-breaking term is always neglected. As pointed out by Levinson, Lipkin and Meshkov, this is reasonable only if the energy available to the system is much greater than the mass splittings of the particles 18 involved in the interaction. This analysis has shown, 14-16 for the most part, poor agreement with experiment.

C. The SU₂ weight factors.

It is our objective to extend the statistical theory to include the effects of invariance under the unitary groups SU_2 and SU_3 . As pointed out in the prevous chapter, invariance under these groups give rise to a multiplicative factor G_{SU_4} in the expression for the relative production probability for a given final state:

$$P(m_1...m_n) = \left\{ \frac{k_{max}}{TT} \Omega_{\frac{1}{K}} (2s_{\frac{1}{K}}+1)^{N_{\frac{1}{K}}} \right\} \frac{G_{SU_{\frac{1}{K}}} g_{\frac{1}{K}} (m_1, m_2...m_n, E)}{(2\pi)^{3N-3} \frac{TT}{K} N_{\frac{1}{K}}}$$

where, in the n particle final state, there are \mathcal{H}_{h} identical particles of the $\mathbb{A}^{\frac{t}{h}}$ kind with $\mathcal{H} = \mathbb{A}^{\frac{t}{h}}$.

We now proceed to derive an expression for G₅₀ using 31 an approach very close to that of Cerulus.

Starting from S-matrix theory, with a definite initial state ψ ; the transition probability to a set F of possible final states ψ ; is given by:

$$P = \sum_{\xi \in F} |\langle \psi_{\xi} | S | \psi_{i} \rangle|^{2}$$

=
$$\sum_{\text{ISOTOPIC SPIN URRIABLES}} \int ... \int d\rho_i d\rho_2 ... d\rho_n |\langle \psi_5 | S | \psi_i \rangle|^2$$

We assume that the wave functions are eigenfunctions of the momenta, masses, spins and isotopic spins of the individual particles (two nucleons in the initial state, $\mathcal M$ mesons in the final state). We represent all quantum numbers, except those associated with the isotopic spin, by a single parameter, $\mathcal A$. In what follows, we shall represent the isotopic spin of a single particle by $\dot{\mathcal L}$ and its projection by $\dot{\mathcal L}_{\mathcal L}$.

For simplicity, we shall assume that the initial state is a "pure" isotopic spin state $\psi_i = |I_i|I_{E_i}; \prec_i >$. If it is an admixture of isotopic spin states, one merely has to average over its components as follows:

$$\psi_i = \underbrace{2}_{A} a_{R} | I_{R} I_{Z_{R}}; \forall_i \rangle$$
where:
$$\underbrace{2}_{A} | a_{R} |^{2} = 1.$$

The final state is to be made up of n single particles each of which has a definite value of isotopic spin

|i, i₂ > |i₂ i₂ > | i_n i₂ > ... We transform from the set of product wave functions to those which are eigenfunctions of the total I-spin by a unitary transformation. We choose a scheme where the intermediate isotopic spins:

$$\vec{T}_{2}^{2} = (\vec{i}_{1} + \vec{i}_{2})^{2}$$

$$\vec{T}_{3}^{2} = (\vec{i}_{1} + \vec{i}_{2} + \vec{i}_{3})^{2}$$

$$\vdots$$

$$\vec{T}_{n-1}^{2} = (\vec{i}_{1} + \vec{i}_{2} + \cdots + \vec{i}_{n-1})^{2}$$

are also diagonal. The transformation is:

$$|I_{2,1_3}...I_{n-1};I_1I_2\rangle = \sum_{i_{Z_1}}^{i_1} C_{i_{Z_1}i_{Z_2}}^{i_1i_1}I_{Z_2} C_{I_{Z_1}i_{Z_3}I_{Z_3}}^{I_2}...$$

$$\cdots C_{I_{Z_{n-1}}i_{R}I_{Z}}^{I_{n-1}i_{N}I} \left(|i_{1}i_{Z_{1}}\rangle|i_{2}i_{Z_{2}}\rangle \cdots |i_{n}i_{Z_{n}}\rangle\right)$$

where the C's are the familiar SU₂ Clebsch-Gordan coefficients. The above expression is generally written as:

$$|I_{2}, I_{3} ... I_{n-1}; I, I_{z}\rangle = \sum_{i_{z_{1}} i_{z_{2}} ... i_{e_{n-1}}} \langle I_{1} I_{3} ... I_{n-1}; I, I_{z} | i_{1} i_{2} ... i_{n} \rangle$$

$$X \left(|i_1 i_{Z_1} > |i_2 i_{Z_2} > \cdots |i_n i_{Z_n} > \right)$$

where the term in brackets is called the recoupling coefficient. We will make use of the fact that the recoupling coefficient is real since it is a product of Clebsch-Gordan coefficients. We also note that

$$\sum_{i_{Z_{1}}, i_{Z_{2}} \dots i_{Z_{n}}} \langle I_{2}, I_{3}, \dots I_{n-1}; I_{n}I_{z} | i_{1} i_{2} \dots i_{n} i_{2} \rangle^{2} = 1.$$

We want to calculate the transition probability to a final state of n particles $|i_1i_2| > |i_2i_2| > |i_ni_{2n}>$, the admixture of which in the properly constructed final state $|I_2I_3...I_{n-1};II_2>$ is given by the square of the recoupling coefficient

$$\langle I_{2}, I_{3}, \dots I_{n-1} ; I I_{2} | i_{1} i_{2} \dots i_{n} \rangle^{2}$$

Assuming the initial state is a pure isotopic spin state $\psi_i = | I_i I_{Z_i}; \langle i \rangle$, our n particle state yields a contribution to the S-matrix element of:

$$\langle \psi_{f} | S | \psi_{i} \rangle = \langle I_{2} I_{3} ... I_{n-1}; I_{f} I_{2f} | i_{1} i_{2} ... i_{2n} \rangle$$

Conservation of isotopic spin demands that the S-matrix element be zero unless $I_{\varsigma} = I_{i}$ and $I_{z\varsigma} = I_{zi}$.

Therefore:

Of course, the final state consisting of particles $|i_1i_2\rangle \rangle |i_2i_2\rangle \cdots |i_ni_{2n}\rangle$ contributing to a total isotopic spin (T_i,T_{Z_i}) may be realized through a number of sets of intermediate isotopic spins $(T_2,T_3,...T_{n-1})$. We must therefore sum over these:

$$\langle \psi_{\varsigma} | S | \psi_{i} \rangle = \sum_{\mathbf{I}_{2}, \mathbf{I}_{3} \cdots \mathbf{I}_{N-1}} \langle \mathbf{I}_{2} \mathbf{I}_{3} \cdots \mathbf{I}_{N-1}; \mathbf{I}_{i} \mathbf{I}_{z_{i}} |_{iz_{i}}^{i_{1}} \cdots i_{n} \rangle$$

In order to obtain the transition probability we must take the absolute square of the term above. We now make a statistical assumption and neglect all interference terms by taking the absolute square within the summation.

$$|\langle \psi_{\varsigma}|S|\psi_{i}\rangle|^{2} \approx \sum_{\mathbf{I}_{\mathbf{x}}\mathbf{I}_{\mathbf{y}}\cdots\mathbf{I}_{\mathbf{n}-1}} \langle \mathbf{I}_{\mathbf{z}}\mathbf{I}_{\mathbf{y}}\cdots\mathbf{I}_{\mathbf{n}-1}; \mathbf{I}_{i}\mathbf{I}_{\mathbf{z}_{i}}|_{i_{\mathbf{z}_{i}}}^{i_{i_{1}}}\cdots_{i_{\mathbf{z}_{n}}}\rangle^{2}$$

The basis for this approximation is that if enough states are considered, there will tend to be an equal amount of positive and negative contributions

to the square of the S-matrix from the cross terms.

This is essentially a random phase approximation.

In order to completely isolate all isotopic spin dependence into a single multiplicative factor, we shall assume that any isotopic spin dependence left in the S-matrix element is negligible $|\langle I_{\lambda} I_{3} \cdots I_{n-1}, I_{i} I_{Zi}; d_{f} | S | I_{i} I_{Zi}; d_{i} \rangle|^{2} \approx |\langle d_{f} | S | d_{i} \rangle|^{2}$ so that we have:

$$|\{\psi_{f}|S|\psi_{i}\}|^{2} \approx \left\{ \underbrace{\sum_{\mathbf{I}_{x}\mathbf{I}_{3}\cdots\mathbf{I}_{n-1}}^{\mathbf{I}_{x}\mathbf{I}_{3}\cdots\mathbf{I}_{n-1}}^{\mathbf{I}_{i}\mathbf{I}_{2i}}_{\mathbf{I}_{x}\mathbf{I}$$

where, following the notation of Cerulus:

$$\rho_{i_{z_{1}}i_{z_{2}}\cdots i_{z_{n}}}^{I_{i}} \equiv \underbrace{\leq_{i_{z_{1}}I_{z_{1}}\cdots I_{n-1}}}_{I_{z_{1}}I_{z_{2}}\cdots I_{z_{n}}} |_{i_{z_{1}}i_{z_{2}}\cdots i_{z_{n}}}^{i_{n}} \rangle_{i_{z_{n}}}^{2}$$

Finally, we must take into account the fact that the expression above assumes a definite order of the individual particles (as specified by their isotopic spin variables i, i_{Z}) in the final state.

We want to find the transition probability to a final state consisting of n, particles of the first kind, n_2 of the second kind, etc. regardless of their order. We must therefore sum up the contributions to the S-matrix element due to final states which are distinct permutations of the state above. In doing this we make use of the fact that the value of $P_{i_1,i_2,\ldots,i_{2n}}^{\mathbf{I}}$ is independent of the order of the $\{i_2\}$. (See Appendix A). Hence all the contributions are the same and we simply multiply the term above by the number of distinct permutations of the set $\{i_1,i_2,>|i_2i_{2n}>|i_3i_{2n}>...|i_ni_{2n}>$. This factor is:

$$\frac{\prod_{i=1}^{l} \gamma_{i}!}{\prod_{k=1}^{l} \gamma_{k}!} \quad \omega_{i} + h \quad n = \sum_{k=1}^{l} \gamma_{k} = \sum_{i=1}^{l} \gamma_{i}$$
where:

Y i is the number of particles with a given value of isotopic spin.

 N_R is the number of identical particles of the h^{+h} kind. Particles are considered identical if they have the same quantum numbers (\dot{l} , \dot{l}_Z).

We now have the following expression for the square of the S-matrix element from an initial state of isotopic spin $(\mathbf{I}_{i}, \mathbf{I}_{\mathbf{Z}_{i}})$ to a final state consisting

of R_{max} sets of N_{A} identical particles of isotopic spin (i_{A} , i_{2A}):

$$\sum_{\text{ISOTOPIC}} |\langle \psi_{f} | S | \psi_{i} \rangle|^{2} = \frac{\prod_{i} \eta_{i}!}{\prod_{k} \eta_{k}!} P_{i_{Z_{1}} i_{Z_{2}} \cdots i_{Z_{n}}}^{\text{I}} |\langle d_{f} | S | d_{i} \rangle|^{2}.$$

Substituting this into the expression for the transition probability gives:

$$\sum_{\substack{\text{SPIN} \\ \text{UARIABLES}}} \int ... \int d\vec{p}_i \ d\vec{p}_2 ... \ d\vec{p}_n \ |\langle d\xi | 5 | d\xi \rangle|^2$$

give rise in the statistical model to the factors

$$\left\{ \frac{\prod_{k=1}^{N_{A}} \Omega_{k}^{N_{A}} (2S_{k}+1)^{N_{A}}}{(2\pi)^{3n-3} \prod_{k=1}^{N_{A}} N_{k}!} \right\}$$

A comparison of the expression for the transition probability given above to that given previously, allows us to identify the SU₂ weight factor for transition to

a final state consisting of individual particles $|i,i_{Z_1}\rangle/i_{1}i_{Z_2}\rangle.../i_{n}i_{Z_n}\rangle \qquad \text{from an initial state}$ of isotopic spin $(\mathcal{I}_{i},\mathcal{I}_{Z_{i}})$ as:

where:

$$\rho_{i_{Z_{1}}i_{Z_{2}}...i_{Z_{n}}}^{I_{i}} = \sum_{I_{2}I_{3}...I_{n-1}} \langle I_{2}I_{3}...I_{n-1}; I_{i}I_{z_{i}}|_{i_{Z_{1}}i_{Z_{2}}...i_{Z_{n}}}^{i_{1}i_{2}}...i_{n} \rangle_{i_{Z_{n}}}^{2}$$

For the case where the initial state is not a pure isotopic spin state but an admixture of the form:

where:

the SU₁ weight factor becomes

$$G_{SU_2} = \frac{\pi \kappa_i!}{\pi \kappa_k!} \stackrel{\text{Z}}{=} |a_j|^2 P_{i_{Z_1} i_{Z_2} \dots i_{Z_N}}^{I_j}.$$

In the case of $p - \overline{p}$ annihilation, the initial state (consisting of a proton and antiproton) is an equal admixture of isotopic spins 1 and 0 so that:

D. The SU3 weight factors.

We now proceed to generalize the preceeding discussion to obtain the weight factor for the case of invariance under the group SU₃ . SU₃ differs from SU₂ in that it is not a simply reducible group. This gives rise to two basic changes in the Racah algebra for the group:

- In general, an irreducible representation is not equal to its complex conjugate representation.
- 2. In a Kronecker product, a given irreducible representation may appear more than once.

We will represent the pair of eigenvalues of the Casimir operators of SU_3 by the single symbol* U and the basis states of the irreducible representation by $\phi_{II_2}^{UI_2} \gamma$. The symbol Y is necessary only if ϕ is a state belonging to a representation which appears more than once in a Kronecker product; I is the eigenvalue of the Casimir operator of the subgroup SU_2 (it is the isotopic spin); I_2 and Y are the two additive quantum numbers for SU_3

^{*}SU₃ is a rank two group and therefore has two Casimir operators. The eigenvalues of these, in a particular order, uniquely identify the irreducible representations.

and are respectively the eigenvalues of the operators representing the isotopic spin projection and the hypercharge.

We couple states in SU3 as follows:

$$\phi_{II_{Z}Y} = \sum_{iz, \ iz_{z}} \begin{pmatrix} M_{1} & M_{2} & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

where:
$$I_{Z} = i_{Z_1} + i_{Z_2}$$

 $Y = Y_1 + Y_2$.

where the term in parentheses is the SU₃ Clebsch-Gordan coefficient. We again start with the expression for the transition probability:

and, as before, we shall attempt to explicitly to perform the summation (approximately) over the SU₃ variables.

We assume that the wave functions are eigenfunctions of the momenta, masses, spins and of the SU3 variables of the individual particles filling the states.

The SU3 variables consist of the eigenfunctions of the SU3 Casimir operator 1.

(the isotopic spin), of its projection $i_{\mathbf{z}}$ and of the hypercharge y. We again represent all other eigenvalues by the single parameter \wedge .

We assume that the initial state is a pure SU₃ state of the form:

$$\psi_i = \phi_{\text{I}i, \text{I}zi, Yi}^{\text{U}i}$$

We shall later generalize to the general case of an initial state which is an admixture of various SU $_3$ states. The final state is to contain $_{1}^{n}$ single particle states each of which is an SU $_{3}$ eigenstate:

We recall that the final state is to consist of mesons which fit into either the 8 or the 1 dimensional irreducible representation of SU₃ each with a given value of isotopic spin i, projection iz and hypercharge q . (See Tables 1, 2, 3)

The final state is to be formed as an eigenstate of: $\bigcup_{\frac{1}{2}\gamma} = \mathcal{U}_1 \otimes \mathcal{U}_2 \otimes \mathcal{U}_3 \otimes \cdots \otimes \mathcal{U}_n$ $\overrightarrow{\mathbf{I}}_{5}^{2} = \left(\overrightarrow{\mathbf{I}}_1 + \overrightarrow{\mathbf{I}}_2 + \overrightarrow{\mathbf{I}}_3 + \cdots + \overrightarrow{\mathbf{I}}_n\right)^{2}$

which will be some linear combination of our product states above. We transform from the system of product states to those which are eigenfunctions of $U_{\mathfrak{f}}$ and $I_{\mathfrak{f}}$ by a unitary transformation. We choose a scheme in which:

$$\begin{array}{llll}
U_{\lambda_{Y}} &= & \mathcal{M}_{1} \otimes \mathcal{M}_{2} \\
\vec{\Gamma}_{2}^{2} &= & (\vec{i}_{1} + \vec{i}_{2})^{2} \\
U_{3Y} &= & \mathcal{M}_{1} \otimes \mathcal{M}_{2} \otimes \mathcal{M}_{3} \\
\vec{\Gamma}_{3}^{2} &= & (\vec{i}_{1} + \vec{i}_{2} + \vec{i}_{3})^{2} \\
\vdots \\
U_{n-1}_{Y} &= & \mathcal{M}_{1} \otimes \mathcal{M}_{2} \otimes \mathcal{M}_{3} \cdots \otimes \mathcal{M}_{n-1} \\
\vec{\Gamma}_{n-1}^{2} &= & (\vec{i}_{1} + \vec{i}_{2} + \vec{i}_{3} + \cdots + \vec{i}_{n-1})^{2}
\end{array}$$

are also diagonal. The transformation is:

$$\begin{vmatrix} U_{27} & U_{37} & \dots & U_{n-1} & U_{f_{1}} \\ I_{2} & I_{3} & \dots & I_{n-1} \end{vmatrix} \begin{vmatrix} U_{f_{1}} & \dots & U_{f_{n}} \\ I_{n-1} & I_{n-1} & I_{n-1} & I_{n-1} \end{vmatrix} = \\ \begin{vmatrix} U_{1} & U_{1} & \dots & U_{n-1} \\ I_{n-1} & I_{2} & \dots & I_{n-1} \end{vmatrix} \begin{vmatrix} U_{1} & \dots & U_{n-1} \\ I_{n-1} & I_{2} & \dots & I_{n-1} \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & I_{n-1} \\ I_{n-1} & I_{2} & \dots & I_{n-1} \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & I_{n-1} \\ I_{n-1} & I_{2} & \dots & I_{n-1} \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & I_{n-1} \\ I_{n-1} & I_{2} & \dots & I_{n-1} \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & I_{n-1} \\ I_{n-1} & \dots & \dots & I_{n-1} \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots & \dots \\ I_{n-1} & \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots \\ U_{n-1} & \dots & \dots & \dots & \dots$$

We again identify the product of Clebsch-Gordan

coefficients as the (real) recoupling coefficient and
write this as

$$\left\langle \begin{array}{c} U_{2\gamma}, U_{3\gamma}, \dots & U_{n-1\gamma} \\ I_{2}, I_{3} \end{array} \right\rangle \cdots \left\langle \begin{array}{c} U_{n-1\gamma} \\ I_{n-1} \end{array} \right\rangle \left\langle \begin{array}{c} U_{f_{\gamma}} \\ I_{\gamma}V_{1} \end{array} \right\rangle \left\langle \begin{array}{c} U_{1} \\ I_{1}V_{1} \end{array} \right\rangle \left\langle \begin{array}{c} U_{n} \\ I_{n}V_{n} \end{array} \right\rangle$$

where we have introduced the standard notation

$$\gamma = (i_2, y)$$

also

We now identify the recoupling coefficient above as the admixture of our product state

in the correctly constructed final state

Assuming the initial state to be of the form

$$\psi_i = \phi_{I_i V_i}^{U_i} \equiv I_{I_i V_i}^{U_i} >$$
, our n meson state

has an S-matrix element equal to:

$$X \left\langle \begin{array}{c} U_{2\gamma} & U_{3\gamma} & \dots & U_{f\gamma} \\ I_{2} & I_{3} & \dots & I_{5} V_{i} \end{array}; A_{5} \left| S \right| \begin{array}{c} U_{i} \\ I_{i} V_{i} \end{array}; A_{i} \right\rangle$$

Invariance of the interaction under SU₃ demands that the transition probability be zero unless:

$$U_{f_Y} = U_i$$
 $I_+ = I_i$
 $V_f = V_i$ (This implies the two equalities

 $I_{Z_f} = I_{Z_i}$ and $Y_f = Y_i$)

(Y may take on more than one value since U_i

may be contained Y times in the Kronecker

product $U_i \otimes U_1 \otimes \cdots \otimes U_n$)

Therefore:

$$\left\langle \psi_{f} \left| S \right| \psi_{i} \right\rangle = \left\langle \begin{array}{c} U_{2\gamma}, U_{3\gamma} \dots U_{n-1\gamma} \\ I_{2}, I_{3} \dots I_{n-1} \end{array}; \begin{array}{c} U_{i\gamma} \left| \begin{array}{c} \mathcal{U}_{i} \\ i, \mathcal{V}_{i} \end{array} \right| \dots \begin{array}{c} \mathcal{U}_{n} \\ i_{n} \mathcal{V}_{n} \end{array} \right\rangle$$

$$\times \left\langle \begin{array}{c} U_{2\gamma}, U_{3\gamma} \dots U_{n-1\gamma} \\ I_{2}, I_{3} \dots I_{n-1} \end{array}; \begin{array}{c} U_{i\gamma} \\ I_{i} \mathcal{V}_{i} \end{array}; \begin{array}{c} \mathcal{U}_{i} \\ \mathcal{I}_{i} \mathcal{V}_{i} \end{array}; \begin{array}{c} \mathcal{U}_{i} \\ \mathcal{I}_{i} \mathcal{V}_{i} \end{array} \right\rangle$$

Again, we must sum over intermediate states to obtain the transition probability to our $\mathcal N$ meson final state. However, in addition to summing over the intermediate SU 3 representations $U_{\mathcal X}$, we must sum over all intermediate isotopic spin states $\mathbb T$ which are contained in a given irreducible representation $U_{\mathcal X}$. We now have:

where the prime on the summation is meant to indicate that there is to be a sum over the γ associated with U_{ζ} if γ takes on more than one value.

We now take the absolute square of the S-matrix element and make the statistical assumption by neglecting the interference terms.

$$|\langle \psi_{f}|S|\psi_{i}\rangle|^{2} \approx \sum_{\substack{U_{2}_{1},U_{3}_{1},...U_{n-1}_{N}\\I_{2}}}^{\prime} \langle U_{2}_{1},U_{3}_{2},...U_{n-1}_{N}; U_{n-1}_{1}; I_{i}\nu_{i} \rangle_{i,\nu_{i}}^{\mu_{i}} \langle U_{2}_{1},...u_{n}\rangle_{i}^{\lambda_{i}}$$

In order to isolate all SU 3 dependence in a single term, we assume any further SU 3 dependence in the S-matrix element is negligible:

$$\left|\left\langle I_{2r}^{U_{2r}} ... U_{n-1r}^{U_{n-1r}}, U_{ir}^{U_{ir}} \right\rangle \right| \prec_{f} \left| S \left| I_{i} v_{i}^{i} \right\rangle \right|^{2} \approx \left|\left\langle A_{f} \left| S \right| A_{i} \right\rangle \right|^{2}$$

So that we have

$$\left| \left\langle \psi_{f} | S | \psi_{i} \right\rangle \right|^{2} \approx \left\{ \underbrace{\sum_{\substack{\text{Uay} \\ \text{Uay} \\ \text{I}_{A}}, \dots \sum_{\substack{\text{I}_{n-1} \\ \text{I}_{n-1}}}^{\text{Uay}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{I}_{i} \text{V}_{i}}}^{\text{Ui}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{I}_{i} \text{V}_{i}}}^{\text{II}_{i}} \dots \underbrace{\sum_{\substack{\text{I}_{n} \text{V}_{i} \\ \text{I}_{n} \text{V}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{I}_{i} \text{V}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i} \text{V}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i} \text{V}_{i}}^{\text{II}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i} \text{V}_{i}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \\ \text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}} : \underbrace{\sum_{\substack{\text{I}_{i} \text{V}_{i} \text{V}_{i}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{i}}}^{\text{II}_{$$

where we have defined a P-factor for SU₃ in analogy to that for SU₂.

Finally we must take into account the fact that a definite order has been assumed for the individual particles in the final state. Since we want the transition probability to a final state of n specified individual particles regardless of their order, we must sum the contributions due to states which are distinct permutations of the state above. It is shown in Appendix A that the sum over intermediate states of the recoupling coefficient is independent of the order of the constituents in the set $\{ \begin{array}{c} \mathcal{U}_i \\ ii \end{array} \}$. Therefore all the contributions are the same and we must multiply the expression above by the number of distinct permutations of the set $\{ \begin{array}{c} \mathcal{U}_i \\ in \end{array} \}$.

This factor is:

Amax Mx!

where:

 ${\cal N}$ is the number of particles in a given irreducible representation of SU $_3$. For the weights we have calculated, ${\cal N}$ is the total number of particles in the final state.

nais the number of identical particles of the Athkind.

In this case, particles are considered identical if they have the same quantum numbers (u, i, i_2, y) .

We therefore have the following expression for the square of the S-matrix element (summed over SU₃ variables) from an initial state specified by the quantum numbers (U_i , I_{z_i} , Y_i) to a final state consisting of k_{max} sets of \mathcal{N}_k identical particles with quantum numbers (\mathcal{N}_k , i_k , $i_$

$$\frac{2}{sus} |\langle \psi_{f}|S|\psi_{i}\rangle|^{2} = \frac{n!}{\pi n_{E}!} P_{v_{i}v_{2}v_{3}...v_{n}}^{U_{i},I_{i}}$$

$$\forall ARIABLES$$

$$\times |\langle \mathcal{A}_{f}|S|\mathcal{A}_{i}\rangle|^{2}$$

Substituting this into the expression for the transition probability gives:

$$P = \frac{N!}{\prod_{N} N_{R}!} \left\{ \underbrace{\sum_{U_{2\gamma} \dots U_{n-1\gamma}}^{U_{2\gamma} \dots U_{n-1\gamma}}}_{U_{2\gamma} \dots U_{n-1\gamma}}, \underbrace{U_{i\gamma}}_{I_{N-1}}, \underbrace{U_{i\gamma}}_{I_{N}} \dots \underbrace{U_{n}}_{i\gamma} \right\}_{i, \forall i} \underbrace{\sum_{U_{i} \forall i}^{i} \dots \sum_{i \in \mathcal{N}_{n}}^{i} \sum_{i \in \mathcal{N}_{n}}^{i} \underbrace{U_{2\gamma} \dots U_{n-1\gamma}}_{I_{N-1}}, \underbrace{U_{i\gamma}}_{I_{N-1}} \dots \underbrace{U_{i\gamma}}_{i\gamma} \dots \underbrace{U_{i\gamma}}_{i\gamma}$$

As in the previous section a comparison with the general expression for the transition probability allows us to identify the SU₃ weight factor G_{SU_3} . The following

weight factor is for a transition to a final state consisting of individual particles $|\phi_{i_1\nu_i}^{\mathcal{U}_i}\rangle|\phi_{i_2\nu_2}^{\mathcal{U}_i}\rangle\cdots|\phi_{i_n\nu_n}^{\mathcal{U}_n}\rangle$ from an initial state $|\phi_{\mathbf{I}_i\nu_i}^{\mathcal{U}_i}\rangle$.

$$G_{SU_3} = \frac{n!}{\prod n_k!} P_{\nu_1 \nu_2 \dots \nu_n}^{U_i, I_i}$$

It only remains to generalize this expression for the case where the initial state is a linear combination of "pure" SU_3 states. We construct our initial state by coupling the states representing the proton and the antiproton using SU_3 Clebsch-Gordan coefficients. We recall that the proton and the antiproton, respectively, fit into the $(I = \frac{1}{2}, I_2 = \frac{1}{2}, Y = 1)$ and the $(I = \frac{1}{2}, I_2 = \frac{1}{2}, Y = -1)$ slots of 8-dimensional irreducible representations of SU_3 . They therefore couple to I = 0 or I with $I_Z = Y = 0$. Our initial state is:

where $a_{\mathbf{k}}$ and $b_{\mathbf{k}}$ are SU₃ Clebsch-Gordon coefficients satisfying the relation $\begin{vmatrix} a_{\mathbf{k}} \end{vmatrix}^2 + |b_{\mathbf{k}}|^2 = 1$. The index \mathbf{k} runs over the 6 irreducible representations in the Kronecker product $\mathbf{8} \otimes \mathbf{8} = 27 \otimes 10 \otimes 10^{\circ} \oplus 8. \oplus 8. \oplus 1$. Substituting the Clebsch-Gordan coefficients into the

^{*}The 8-dimensional representation is equal to its complex conjugate, i.e. 8 = 8

expression above yields:

For simplicity we may combine the two terms and write:

While $U_{\mathbf{k}}$ runs over the set $\{21, 10, 10^{\circ}, 8, 8, 1\}$, $I_{\mathbf{k}}$ takes on each of the values 0 and 1. Using this initial state, the weight factor becomes:

$$G_{SO_{3}} = \frac{\forall v!}{\prod_{i} \eta_{i}!} \sum_{U_{i} \prod_{k} \frac{1}{U_{2} \gamma_{...} U_{n-1} \gamma_{...}} \sum_{j \neq k} |a_{j \downarrow k}|^{2}$$

$$\times \left\langle \begin{array}{c} U_{2\gamma} & U_{3\gamma} & ... & U_{n-1} \gamma_{...} & U_{k} \gamma_{i} & ... & ... & ... & ... \\ I_{1} & I_{3} & ... & I_{n-1} & ... & ... & ... & ... & ... & ... & ... \\ I_{1} & I_{3} & ... & I_{n-1} & ... & ... & ... & ... & ... & ... \\ I_{2} & ... & ... & ... & ... & ... & ... & ... & ... & ... \\ I_{2} & ... & ... & ... & ... & ... & ... & ... & ... \\ I_{3} & ... & ... & ... & ... & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... \\ I_{n} & ... & ... & ... & ... \\ I_{n} & ...$$

where the prime has been dropped. Also we must explicitly sum over both of the 8 dimensional representations in the set $\{U_k\}$. We express the final result in terms of the SU₃ P-factor:

$$Gsu_3 = \frac{\chi!}{\prod \gamma_k!} \sum_{\substack{U_k \\ U_k \\ I_k \\ I_{k-1}}} |a_{I_k}|^2 P_{\nu_1 \nu_2 \dots \nu_n}^{\nu_k I_k}$$

where we recall:

We also define the product of the P-factor and the permutation factor as:

The SU 3 weight factors and terms $P_{\nu_1 \nu_2 \dots \nu_n}^{*}$ used in the calculation are listed in table 4 for given values of $(\nu_1, \nu_2, \nu_3, \dots \nu_n)$). A check on these is obtained by noting that the sum $\sum_{\nu_1, \nu_2, \dots \nu_n}^{*} P_{\nu_1, \nu_2, \dots \nu_n}^{*}$ is equal to the number

of times that the irreducible representation U appears in the Kronecker product $M_1 \otimes M_2 \otimes \cdots \otimes M_m$. The sums agree with these values to within 1%. The discrepancy is annoying. It may be due to a misprint in the table of SU₃ Clebsch-Gordan coefficients* or, less likely, to computer round-off error.

^{*} The table of SU₃ Clebsch-Gordan coefficients that we have used is:

Kuriyan, Lurie' and Macfarlane, Jour. of Math. Phys. 6 722 (1965).

Table 4. SU3 weight factors for states of mesons from the 8-dimensional representation.

Totals Number of times U appears in	1/2 1) (1/2 1/2 1) (1-1 1/2 1) (1/2 1/2 1) (1-1	χ-1)	- ½ 1) (½½-1) (1 0	(2.1) (1/2-1/2-1) (1 0 (1/2-1) (1 0 (1/2-1) (1 0 (1/2-1) (1 0 (1/2-1) (1 0 (1 0 (1 0 (1 0 (1 0 (1 0 (1 0 (1	1 0) (1-1 0) (0 0	1 0) (1-1 0) (1 0	0 0) (0 0 0) (0 0	0 0) (0 0 0) (0 0	0 0) (1 0 0) (0 0	0 0) (1 0 0) (1 0	Number of cimes o appears in o	Totals	$(1/2^{-1/2}1)(1/2^{-1/2}1)$	4		0 0) (0 0	0 0) (0 0	0 0) (1 0	Ū=0	SU labels (i,i,y) of the This individual particles
80808	大・ スプ マロフ コー	ス・ス・ス・マ・	るいっての	スナスーコー	7 7 7 70	7+7-70	no no no	די אי אי	ποποηο	गुरुपार	0	•		スチント		న ం గ	ガ のカ。	по по	- mesons	is state lled with
6.00	1 4 4 t	31	2	1.318	21	S		0	4107	0		1,00	•T500		16	U	0	.0084	27	O.
8 . 00	6	ν Ο	w	1.200	1.000	.6000	.3000	0	• 5000	0	_	2,00	• 6000	.6000	.4000	.2000	0	2000	8	tors for U below
2.00 2	.3500		75	.1750 .2250	50	0	.0250	0	.0750	0	-	1.00	L.	.2500	(n	N	0	.1250	-	r SU ₃
6.04 6	19	.7286	623	28 28	80	42	0	.6429	0	.1095	F	1.00	. 2000	.2000	0	0	.6000	0		I=1 %
3.98 4	l unu	.4167 4506	21	21 16	00	64	0	2500		.0916	-	1,00	66	.1667	99	0	.5000	0	10	U below
3.98 4	24	.4167	47	47 16	8	64		2500	0	.0916	-	1,00	66	.1667	66	0	.5000	0	10.	Ĕ
8.01 8	1.086		09	5 0 3 0 3 0	00	18	0	.5000		.2967	_	2,00	6	.4667	6		.4000	0	8	
	02	.7537 8027	00	5 O	93	04	14	22	190	95			9	.3792	5	26	36	76	weight	Total

*Equal to the P-factors $P_{\nu_1, \nu_2, \nu_3, \dots, \nu_n}$ averaged over the initial state components.

Table 4. (Continued)

	32.00	20	20	33.01	8	32.00	33.96	080808	No. of times U appears in 8
		ł				*			
621	684	367	432	7	22	J	4) (士士 1) (士士-1) (士士-
. 45	.69	65	4	59	22	22	.02	ス・ス・ス・ス。	± 1) (±'±'1) (±'± 1) (± ±'
621	684	367	432	657	22	825	4	×	± 1) (± ± 1) (± ±-1) (± ±-
.07	.87	.46	.42	.65	\mathbf{a}	.70	.41	スナス・コーフ・	± 1)(± ±-1)(1-1 0)(0 0
. 80	.72	.47	.37	.07	33	. 86	33		士 1)(士士-1)(1-1 0)(1 0
.07	.87	.46	.42	.65	33	.70	.41	大- る。 コマッ。	一七一1) (七十 1) (1 1 0) (0 0
.80	.72	.47	.37	.07	\mathbf{a}	.86	.33	不	子二) (七元 1) (1 1 0) (1 0
2.312	3.069	1.552	1.661	2.342	.8222	2.806	1.989	징크	子 1) (士士-1) (1 1 0) (1-
.00	676	523	523	.06	00	. 45	. 34	짆	子 1)(+ 士-1)(0 0 0)(0 0
. 51	.87	.42	.46	. 65	99	35	. 70	70	子 1) (士 元-1) (1 0 0) (0 0
771	.01	530	530	908	77	936	660	7	子 1)(生生-1)(1 0 0)(1 0
.31	.06	. 55	.66	. 34	22	. 80	.98	7	± 1) (±-±-1) (1 1 0) (1-1
.00	676	523	523	.06	00	. 45	. 34	7	千 1) (子-1) (0 0 0) (0 0
. 51	.87	.42	46	5	99	σ	.70	_	士 1) (七元-1) (1 0 0) (0 0
771	.01	530	530	908	77	936	660	X+X-110118	4 1) (4 子-1) (1 0 0) (1 0
560	888	390	90	55	22	34	\vdash		1 0) (1 1 0) (1-1 0) (1-1
861	800	71	71	.09	50	02	. 73	חיח-ח"ח"	1 0) (1-1 0) (0 0 0) (0 0
.51	. 70	36	36	9	00	0	ഗ	•	1 0) (1-1 0) (1 0 0) (0 0
804	• 33	571	571	750	96	5	492	T+TTTOTO	1 0) (1-1 0) (1 0 0) (1 0
074	0	0	0	0	37	42	61		0 0) (0 0 0) (0 0 0) (0 0
203	.3429	.3571	.3571	.6348			0	דים אים אים אים	0 0) (0 0 0) (0 0 0) (0 0
235	0	0	0	0	1250	.5143	.8696	חים חים חים חים	0 0) (1 0 0) (0 0 0) (0 0
215	4228	.3477	.3477	.5872				To Ho Hole	0 0) (1 0 0) (1 0 0) (0 0
40	<u> </u>	0	0	0	.0371	.1057	.0537	To To To To	0 0) (1 0 0) (1 0
۱۳.	8	10*	10	27	-	8	27		
w s		below	=1 U k	- 2		U be	0=I	filled with	ndividual particles
Total				15 × 6	or su	1	p-fac	his stat	els (i.i.v

Table 4. (Continued)

(100) (100) (101) (11	SU labels (i,i2,y) of the individual particles
ベスススススススススススススススススススススススススススススススススススス	This state filled with J=0- mesons
. 4222 1.101 2.6607 3.6507 2.536 4.7256 4.7256 3.6523 3.6523 3.6523 3.188 3.188 3.188 3.188 3.188 3.188 3.188	P-fac I=0 27
. 3448 . 6696 . 1384 . 9365 2. 160 2. 160 2. 160 2. 968 2. 968 2. 1968 2. 1968 2. 1968 3. 248 5. 869	ctors i
10.00 10.00	for
67 67	su ₃
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U3 P.
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U3 P* U. I. 7 I=1 27 10
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U3 P* U.I. I=1 U belo 27 10 10

Table 4. (Continued)

Totals No. times U appears in 808080808	(ま土1) (ま土1) (110) (000) (000) (110) スナス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス	SU labels (i,iz,y) of the This state individual particles J=0- mesons
178.7 180	7.304 4.353 4.353 1.902 1.902 1.902 1.902 1.902 5.581 5.581 5.696	P-fac I=0 27
144.7 145	4.393 4.873 4.873 1.777 1.777 2.651 2.651 7.013 10.37 5.242 5.338	ctors 1 U bel 8
32.0 32	.8452 1.270 1.270 1.277 .4277 .5159 .5159 1.684 2.016 1.261 1.261 1.261	s for SU, below l
179.6 180	4.896 5.100 5.100 2.469 2.746 9.816 5.484 5.580	3 Py 4
100	2.373 2.373 3.124 3.124 1.535 1.450 1.450 5.721 5.534 3.088 3.088 3.323), ∓ 10
9		- K
5 99.39 100	2.439 2.439 3.298 1.345 1.345 1.370 1.370 5.692 3.316 3.136	U be
99		U below 10# 8

Table 4. (Continued)

(十十十年) (110) (110) (10	中 ((000) (000) (000) (011)	SU labels (i,iz,y) of the Thi individual particles J=0
	N TO	70 70 70 70 70 70 70 70 70 70 70 70 70 7	is state lled with 0- mesons
77229933	. 430 . 608 . 638 . 128 . 128 . 572	471748 2 1 1	P-fa I=0 27
			<u> </u>
90 80 80 80 80 80 80 80 80 80	3.857 7.167 3.952 1.167 1.073 1.073 3.116	1	ctors U be
.985 1.120 .985 1.120 .185 .5491 .185 .5491 .942 .3315 .942 .3315 4.98 3.636	.857 1.025 .167 1.405 .952 .7753 .167 .3125 .073 .2625 .073 .2625 .116 .6091	.0583 .0156 0 0 0 .6585 .1293 0 0 0 .6920 .1256 0 0 .0938 .0173 1.050 .2813 3.583 .7024 5.267 1.035 3.536 .6071 1.384 .2511	ctors U b
.985 1.120 8.16 .985 1.120 8.16 .185 .5491 7.65 .942 .3315 1.60 .942 .3315 1.60 4.98 3.636 20.6	.857 1.025 4. 167 1.405 11 .952 .7753 5. .167 .3125 1. .073 .2625 1. .073 .2625 1. .073 .2625 1. .116 .6091 6. .116 .6091 6.	.0583 .0156 0 0 0 .517 0 0 1.65 .6585 .1293 0 0 0 1.65 0 0 0 582 0 0 0 582 .0938 .0173 0 1.050 .2813 1.38 3.583 .7024 6.20 5.267 1.035 8.84 3.536 .6071 6.61 1.384 .2511 1.72	ctors for SU U below 8 1
.985 1.120 8.165 3.93 .985 1.120 8.165 3.93 .185 .5491 7.656 3.61 .185 .5491 7.656 3.61 .942 .3315 1.607 .732 .942 .3315 1.607 .732 4.98 3.636 20.60 12.2	.857 1.025 4.892 3. .167 1.405 11.38 6. .952 .7753 5.851 2. .167 .3125 1.352 .8 .073 .2625 1.332 .7 .073 .2625 1.332 .7 .116 .6091 6.578 3. .116 .6091 6.578 3.	.0583 .0156 0 0 0 .5173 .275 0 0 .5173 .275 0 0 1.655 .797 0 0 1.655 .797 0 0 .5824 .279 0 0 .5824 .279 0 0 .5824 .279 1.050 .2813 1.385 .859 3.583 .7024 6.206 3.30 5.267 1.035 8.840 4.32 1.384 .2511 1.728 .792	U below 1 27 10
.985 1.120 8.165 3.939 3.93 .985 1.120 8.165 3.939 3.93 .185 .5491 7.656 3.612 3.55 .185 .5491 7.656 3.612 3.55 .942 .3315 1.607 .7329 .732 .942 .3315 1.607 .7329 .732 4.98 3.636 20.60 12.29 11.7	.857 1.025 4.892 3.120 3167 1.405 11.38 6.045 6952 .7753 5.851 2.893 2167 .3125 1.352 .8673 .8 .073 .2625 1.332 .7708 .7 .073 .2625 1.332 .7708 .7 .116 .6091 6.578 3.441 3116 .6091 6.578 3.441 3.	.0583 .0156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ctors for SU3 P* UI U below 8 1 27 10 10*
.985 1.120 8.165 3.939 3.939 4.70 .985 1.120 8.165 3.939 3.939 4.70 .185 .5491 7.656 3.612 3.559 3.98 .185 .5491 7.656 3.612 3.559 3.98 .942 .3315 1.607 .7329 .7329 .796 .942 .3315 1.607 .7329 .7329 .796 4.98 3.636 20.60 12.29 11.75 18.9	.857 1.025 4.892 3.120 3.120 5167 1.405 11.38 6.045 6.045 7952 .7753 5.851 2.893 2.893 3167 .3125 1.352 .8673 .8673 1073 .2625 1.332 .7708 .7653 1073 .2625 1.332 .7708 .7653 1116 .6091 6.578 3.441 3.334 4116 .6091 6.578 3.441 3.334 4.	.0583 .0156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U below 1 27 10 10

Table 4. (Continued)

なけにはあずでになるでしてになるでになるととなるととなるととなるととととなるととととなるとととととととというないのものとろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろ	SU 1.
(4.4.4) (4.4.4) (110)	abels (i,iz,y) of the vidual particles
	This state filled with J=0- mesons
110.93 113.00.32 114.43 114.43 114.23 114.23 115.20 115.20 117.23 117	P-fa I=0 27
28.25 17.89 17.89 10.70 10.70 10.70 11.85 11	ctors U be 8
77000001110000114400	for SU
46.06 24.42 13.15 13.15 13.15 13.15 13.15 21.65 21.65 21.65 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04	27
	10 T T T T T T T T T T T T T T T T T T T
	below 10
833868997744 003388557722111188	∞
00000000000000000000000000000000000000	€ 13

Table 4. (Continued)

Totals No. times U appears in 8 • 8 • 8 • 8 • 8 • 8 • 8	(# # a) (# a	individual particles J=0- mes
8 989. 8 999	スススススススススススススススススススススススススススススススススススス	with I=0 sons 27
700.5 702	0 16.79 0 16.79 0 16.79 7 20.55 7 16.79 7 16.79 8 20.97 8 5.571 8 5.571 5 1.417 5 1.417 2 12.48	8 q n store
145.0 145	3.765 3.931 3.931 3.765 3.765 1.244 1.244 2.693	elow 1
995.2 999	24.46 24.46 24.46 24.46 24.40 27.13 27.13 1.635 14.635	27
525 . 2 525	13.34 13.34 13.30 13.78 13.78 13.78 13.77 13.77 13.77 13.77 13.77 13.77 13.731 8.081	f=ï-% _U 10
520 • 4 525	13.77 13.77 13.73 13.73 13.18 13.18 13.50 13.50 13.956 .7920 .7920 7.468	below 10*
701 70	19.64 19.64 16.63 19.64 19.64 19.64 16.77 16.77 16.77 16.77 16.221 1.221 10.83	8
21		we

IV. Calculations.

The relative production rates for all allowed states consisting of mesons (from those listed in tables 1, 2 and 3) produced in $\mathbf{p} \cdot \overline{\mathbf{p}}$ annihilation at a total center-of-mass energy E, were computed from:

$$S(m_1 m_2 \cdots m_n, E) = \begin{cases} \frac{k_{max}}{\Pi} \Omega^k (2S_k + 1)^{n_k} \end{cases} \frac{G su_n P_n(m_1 \cdots m_n, E)}{(2\pi)^{s_n - s} \Pi N_k!}.$$

The total rate (the sum of the individual relative rates) was normalized to unity.

The weight factors $G_{3}U_{n}$ were computed according to the technique set up in chapter III. The SU₃ weights are listed in table 5. The SU₂ weights have not been listed; a table listing some of these is included in the 31 paper by Cerulus. Because of the complexity of the numerical calculation, the SU₃ weights were obtained only for states containing up to a maximum of six particles; the SU₂ weights, which are more tractable, were obtained for states of up to ten particles. It was therefore not possible to carry out calculations, under the assumption of SU₃ invariance, at total energies exceeding approximately 2.5 Bev (in the center-of-mass). At center-of-mass energies above 2.5 Bev, the rate of production for final states of seven or more particles begins to become

appreciable. Reference to table 6 shows that the phase space integrals for states consisting of all pions are indeed negligible for x27 at 2.5 Bev but are not negligible at 3 Bev. From table 6 one also sees that it is reasonable to assume that rates of states consisting of more than 10 particles are negligible at 3 Bev. We have therefore limited ourselves to total center-of-mass energies less than or equal to 2.5 Bev involving final states of up to 6 particles (with resonances included) assuming SU a invariance and energies less than or equal to 3 Bev for final states of up to 10 particles assuming SU invariance. calculations presented in figures 1 to 16 have been carried out at total center-of-mass energies of 1.88, 2.29 and 2.50 Bev for SU₂ invariance and at energies of 1.88, 2.29, 2.50 and 3.00 Bev for SU2 invariance. The latter correspond to laboratory antiproton kinetic energies of 0, 0.92, 1.45 and 2.92 Bev respectively.

The phase space factors for were calculated with a relative error of less than or equal to 6% using a Monte Carlo technique outlined in Appendix B, (the method of estimating the relative error is also described there). Resonant particles had to be specially treated as they are not observed directly but decay rapidly into pions and kaons. These were treated by first calculating the production rate for the state containing the resonant particles and then "allowing it to decay". The rate for

Table 5. Important decay modes and branching ratios used in the calculation.

Particle	Mass (Mev)	Important decay Partial modes*	modes Fraction (%)
η	549	(ΥΥ) 3π° or π (2Υ) π ⁺ π ⁻ π° π ⁺ π ⁻ (Υ)	38.7 30.8 25.0 5.5
n '	959	η 2π π+π- (γ)	76.0 24.0
P	765	211	100
g K*	891	Κπ	100
ф	1020	K°R° K+K ⁻ πρ or 3π	38.0 30.0 32.0
ω	783	π+ππ °	100
A2	1324	πρ	100
Κ*	1405	Κπ Κ*π	50.0 50.0
5	1253	2π	100
f ′	1500	K ⁺ K ⁻ K° <u>K</u> ° K (891)	30.0 30.0 40.0

^{*}Branching ratios into charge states, if not explicitly shown, were obtained from isotopic spin invariance.

Table 6. Values of phase space integrals for states of 2 to 10 pions.

The integrals have been calculated from: $\int_{-\infty}^{\infty} \frac{1}{(2\pi)^{3N-3}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\rho_1 \, d\rho_2 \cdots d\rho_N \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\rho_i^2 + m_i^2 \right)^{N_2} \right)$

Those obtained from the Monte Carlo routine have errors attached.

Total energy R in CM. (Bev) o	inetic energy of p in lab (Bev)	N	Phase space integral p (in pion mass units with h = c = 1)
1.88 (annihilation	0 at rest)	2 3 4 5 6 7 8 9	1.16 1.98 \pm .08 .681 \pm .027 .0721 \pm .0029 .00266 \pm .00016 (3.36 \pm .20) \times 10 ⁻⁵ (1.87 \pm .11) \times 10 ⁻⁸ (2.54 \pm .15) \times 10 ⁻¹⁰ (7.94 \pm .48) \times 10 ⁻¹⁴
2.50	1.45	2 3 4 5 6 7 8 9	2.06 8.85 \pm .35 7.84 \pm .31 2.43 \pm .15 .314 \pm .019 .0172 \pm .0010 (5.77 \pm .35) \times 10 ⁻⁴ (6.97 \pm .42) \times 10 ⁻⁶ (4.42 \pm .27) \times 10 ⁻⁸
3.00	2.92	2 3 4 5 6 7 8 9	2.98 22.7 \pm .9 34.9 \pm 1.4 19.0 \pm 0.8 5.16 \pm .31 .665 \pm .040 .050 \pm .003 .00148 \pm .00009 (3.00 \pm .18) \times 10 ⁻⁵

this was then divided among the various final states according to the individual branching ratios. The branching ratios for the necessary decay modes are listed in table 5.

Two "models" were used in the calculations, each corresponding to a particular way of specifying the volume parameters. It was found that if the volume parameters are chosen to be the same for all particles and equal to the pion volume, the model predicts that the percentage of annihilations at rest in which a K-pair is produced (kaons from annihilation are always produced in pairs due to conservation of strangeness) is approximately 40%. Experiment shows it to be of the order of 4%. Furthermore, the theoretical value could not be substantially improved by varying the volume parameter (see table 7). Another obvious approach, consistent with SU, invariance, is to specify that all mesons in a given nonet have the same volume parameter. This leads to even more abundant kaon production (as shown in table 8). It was therefore deemed necessary to introduce something into the volume parameters which would suppress kaon production. One way to do this is to allow the volume parameter for a particular particle to vary as the reciprocal of the mass of the particle (in pion units) to some power. Hence, in this model, which was originally introduced by Kalbfleisch,

Table 7. Results for the statistical model with a single volume parameter.

Total CM energy (Bev)	CM Quantity	Exp. value*	Z _{DS}	f _{ns}	SU ₂	Sus Furnition	τος	SU ₃	Ωsu ₂	.001 Ω _π
1.88	of pions pro-	4.88±.24ª	4.27	4.40	3.94	4.34	3.87	4.33	3.87	4.33
1.88	Ave. no. of pion		1.52	1.68	1.39	1.66	1.38	1.67	1.38	1.67
1.88	Kaons (TIT 2K)	4.0±1.0ª	32.6	42.5	43.5	34.8	45.6	33.3	45.9	33.2
2.29	X (96 K)	5.2±.2b	5.01	5.09	4.55	4.83	4.41	4.79	4.40	4.79
2.29	를	2.4±.1b	2.25	2.36	1.77	2.01	1.63	1.93	1.61	1.92
2.29	8 ×	10.3±1.1b	36.4	57.2	42.3	40.5	44.1	35.5	44.3	34.9
2.50	إ≼ #	5.4±.35b	5.40	5.45	4.82	5.03	4.56	4.90	4.51	4.89
2.50	16 2×	2.6±.2b	2.66	2.74	2.17	2.28	1.98	2.13	1.95	2.11
2.50	z z	13±3b	40.3	64.1	49.0	48.6	53.0	42.6	53.6	41.8

*The experimental values listed at 2.50 Bev are actually for a total center-of-mass energy equal to $2.43~{\rm Bev}$.

Experimental values from: a Agnew et al, Phys. Rev. 118, 1371 (1960)

b G. R. Lynch, Rev. of Mod. Phys. 33, 395 (1961)

Table 8. Results for the statistical model with a separate volume parameter for each meson nonet.

The volume parameters are proportional to $4/\,\overline{m}^{\,3}$, where $\,\overline{m}\,$ is approximately equal to the average mass of the particles in the nonet. All calculations have been done under the assumption of SU3 invariance.

Do. = . 1 Do. = . 01 Do. = . 001

Total CM energy (Bev)	Quantity	Experimental* value	Ω ₁₋ =.125 Ω ₂₊ =.037	921-= .0125 92+=.0037	A1-= .00125	Ω ₁₋ =.0125 Ω ₁₋ =.000125 Ω ₁₋ =.000126 Ω ₂₊ =.0037 Ω ₂₊ =.00037 Ω ₂₊ =.000037
1.88	Ave. number of pions pro-	4.88±.24ª	4.02	3.93	3.94	3.94
1.88	Ave. number of pions pro-	i	1.40	. 848	.600	.561
1.88	Percent. of annihilations	4.0 ± 1.0a	59.8	37.6	29.2	28.1
2.29	Producing kaons (%κ)	5.2±.2b	4.58	4.16	4.12	4.12
2.29	지 기 기 기 기 기 기 기 기	2.4 ± .1b	2.07	1.40	1.10	1.04
2.29	%	10.3±1.1b	76.2	52.3	34.9	32.0
2.50	ざ	5.4 ± .35b	4.91	4.32	4.20	4.19
2.50	אַן דּאַ	2.6±.2b	2.42	1.63	1.25	1.15
2.50	2 ×	13 ± 3b	80.3	58.5	37.3	32.9

mass energy equal to 2.43 Bev. *The experimental values listed at 2.50 Bev are actually for a total center-of-

Experimental values from: Agnew et al, Phys. Rev. 118, 1371 (1960) b_G. R. Lynch, Rev. of Mod. Phys. 33, 395 (1961)

volume parameter is given by:

$$\Omega_i = \Omega_o(\frac{1}{m_i})^{\delta}$$

where Ω_{\bullet} is measured in units of the pion volume. The other model which we have used is one in which all the volume parameters are the same except the one which is associated with kaons and kaon resonances. The production of kaons may then be reduced by decreasing the kaon volume parameter.

The results of the calculations are shown in tables 9 and 10 and in figures 1 to 16. In all cases, the parameters were chosen to give the "best fit" to the experimental data.*

The results at rest and at a total center-of-mass energy of 2.5 Bev are shown in tables 9 and 10. The agreement appears to be quite good, with the values of the volume parameters under the assumptions of SU 3 invariance and of SU 2 invariance being roughly the same. A minor difference is that the value of the parameter B in the Kalbfleisch model is about 1 for invariance under SU 2 and

^{*}In doing this, use was made of a search program written by Professor Peter Signell which varies the parameters to minimize the value of X^2 for the experimental data to be fit.

about 2 for invariance under SU₃, resulting in smaller volume parameters for all particles (except the pions) under the assumption of an SU₃ invariant matrix element. The only general conclusion we draw from these results is that the volume parameters decrease with energy and that there appears to be no marked difference between the two assumptions (SU₂ or SU₃ invariance) as far as the present overall experimental data are concerned.

Also shown in tables 9 and 10 is the fraction of all annihilations resulting in the production of states containing certain resonances. These are, in most cases, consistent with experimental values.

Figures 1 to 14 show various quantities plotted as a function of energy. Since the results shown in tables 9 and 10 seem to indicate that the volume parameters decrease with energy, it was decided to modify the models above by including a multiplicative factor of $(2^{Mp}/E_{e.M.})$ in each volume parameter. This is the Lorentz contraction term introduced in the original theory by Fermi. It was found that this modification slightly improved the fit.

To sum up, one can vary the volume parameters to get very good agreement with experiment at a single energy and fairly good agreement at a number of energies. In general one has equal success assuming invariance under

SU₂ or SU₃. However, the values of the volume parameters necessary to fit the data are, in all cases, at least an order of magnitude greater than the "physical" value of approximately .001 Ω_{π} consistent with the size of the range of the annihilation potential.

Table 9. Results for the best fit to the experimental data for annihilation at rest.

Symmetry of Model Values of para	ameters 1	Kalt	Ω=5.56	Small K <u>Q</u> = 7.63	
Quantity	Exp. value		Theoreti	cal value	S
Average pion multiplicity	4.88±.24 ^a	4.67	4.70	4.93	4.83
Percent of annih. producing K-pair	4.0±1.0 ^a	4.6	4.6	4.6	4.9
Fraction of annih prongs (no kaons)					
0 prongs	.032 ± .005 ^k	.029	.024	.025	.019
2 prongs	.426±.011k	.432	.437	.439	.441
4 prongs	.458 ± .010 ^k	.466	.467	.462	.468
6 prongs	.038 ± .020 ^k	.028	.028	.040	.030
Production of res	onances:				
Fraction resulting in production		.083	.238	.422	•505
Fraction resulting in \(\omega\) production	g ≥.045 ^b	.015	.037	.098	.096
Fraction resulting in M production	g ≥.014 ^b	.086	.070	.300	.148

Experimental values from:

^aAgnew, Phys. Rev. <u>118</u>, 1371 (1960)

bc. Baltay, Phys. Rev. <u>145</u>, 1103 (1966)

Table 10. Results for the best fit to the experimental data at a total center-of-mass energy of 2.5 Rev.

Symmetry Mode Values of par	1	KαĬbf _Ω= 1.59	SU ₂ leisch Ω ₀ =1.78 B = 1.01	D=.509	5U2 paramete L=.479 Q _k =.148
Quantity	Exp. value*	Ţ	Theoretic	al value	s
Ave. pion multplc	ty				
without kaons Ave. pion multplc	5.4 ± .35 ^a	4.65	5.10	5.33	5.19
with K-pair	2.6 ± .20 ^a	2.59	2.59	2.73	2.63
Percent of annih. producing K-pair		13.8	13.7	19.3	14.5
Fraction of annih. producing pions with K-pair:					
0 pions	.01 ± .01 ^b	.0016	.0061	.0153	.0160
l pion	.05 ± .03	.068	.081	.075	.093
2 pions	$.41 \pm .17$.387	.365	.262	.313
3 pions	.45 ± .17	.429	.421	.491	.426
4 pions	.09 ± .09	.107	.116	.128	.131
5 pions	.01 ± .01	.006	.010	.023	.016
Fraction of annih. producing prongs with K-pair:		g (pion)			
prongs with K-pai 0 prongs	1106 + 02b	.059	.076	.060	.061
2 prongs	$.62 \pm .23$.533	.516	.388	.429
4 prongs	$.32 \pm .21$.395	.395	.536	.499
6 prongs	.005 ± .00!		.013	.015	.012
Production of res	onances:				
Fraction of annih in p production Fraction of annih	·	.182	.460	.619	. 7 39
in ω production		.032	.081	, 333	.225
Fraction of annih in N production	. resulting	.110	.105	.281	.200

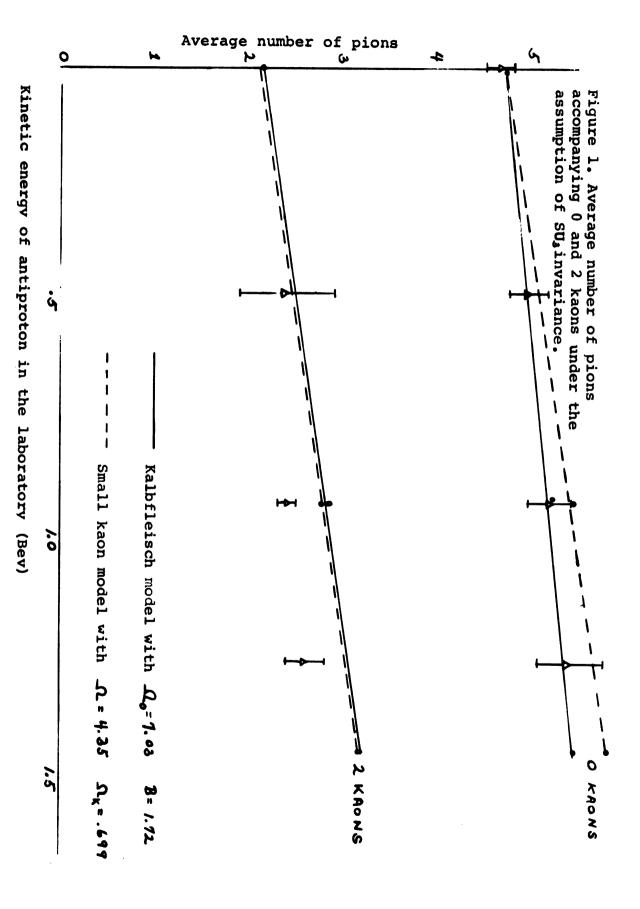
^{*}All experimental values are for a total CM energy of 2.43 Bev. The calculation was done at 2.50 Bev.

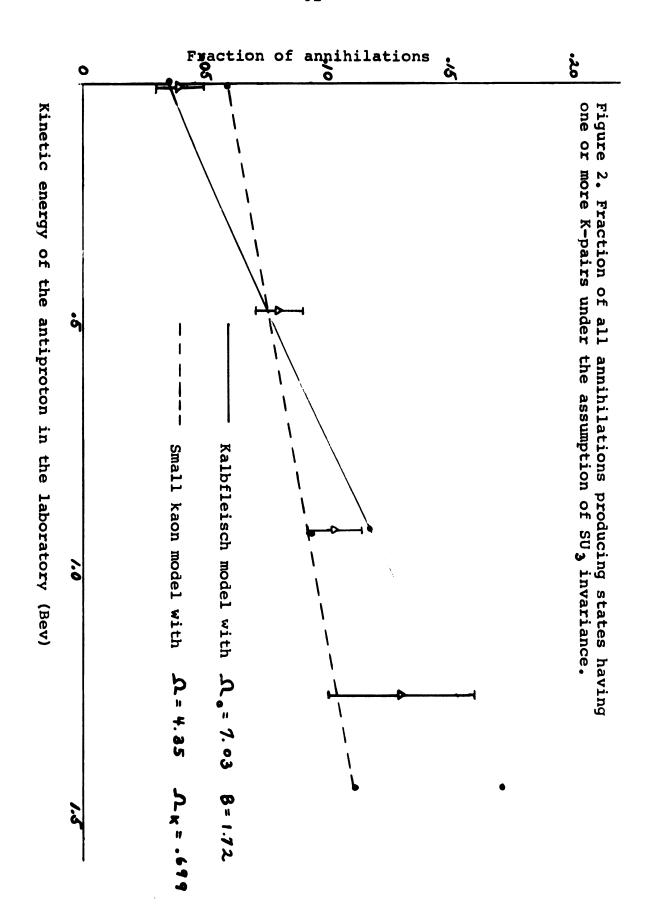
Experimental values from:

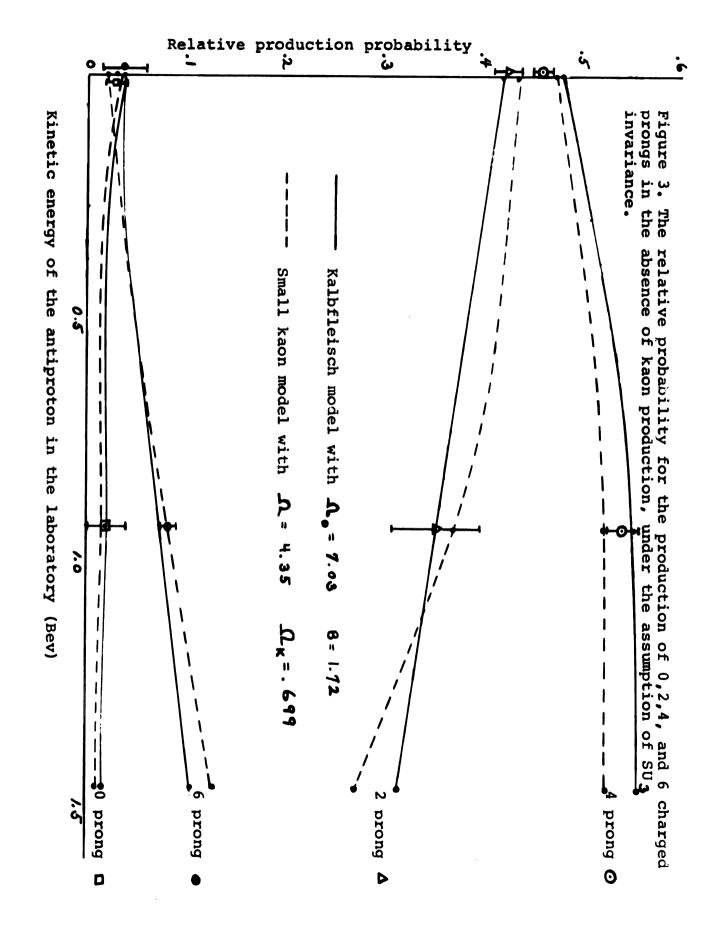
aG. R. Lynch, Rev. of Mod. Phys. 33, 395 (1961)

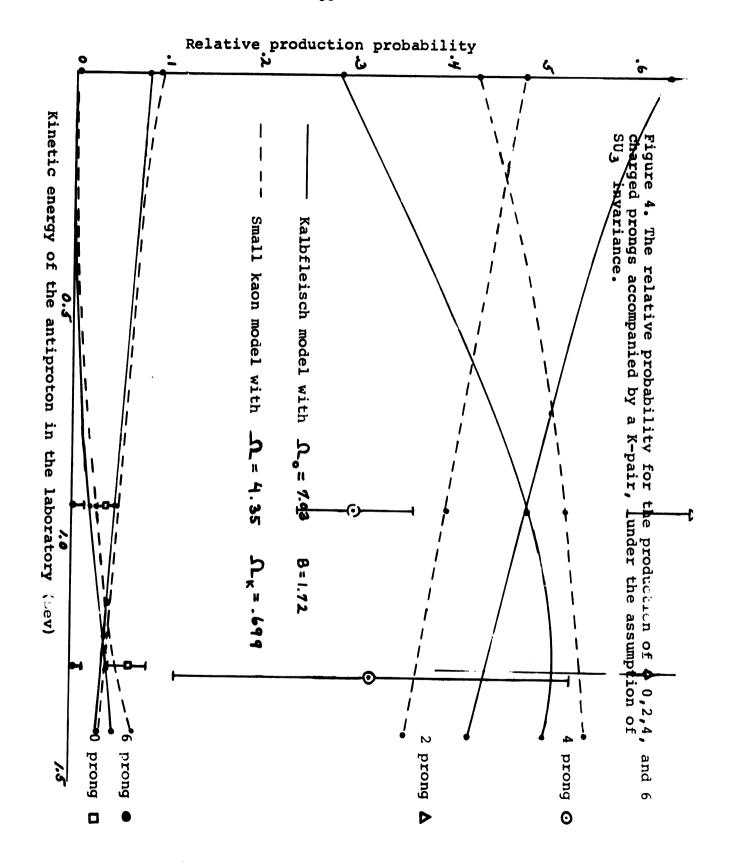
bG. R. Kalbfleisch, UCRL-9597 (1961)

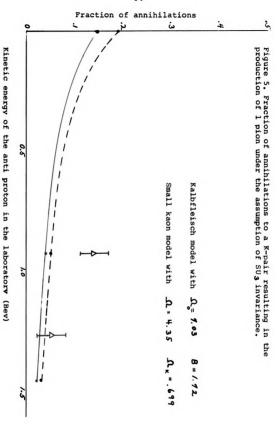
Reference to figures 1 to 16.

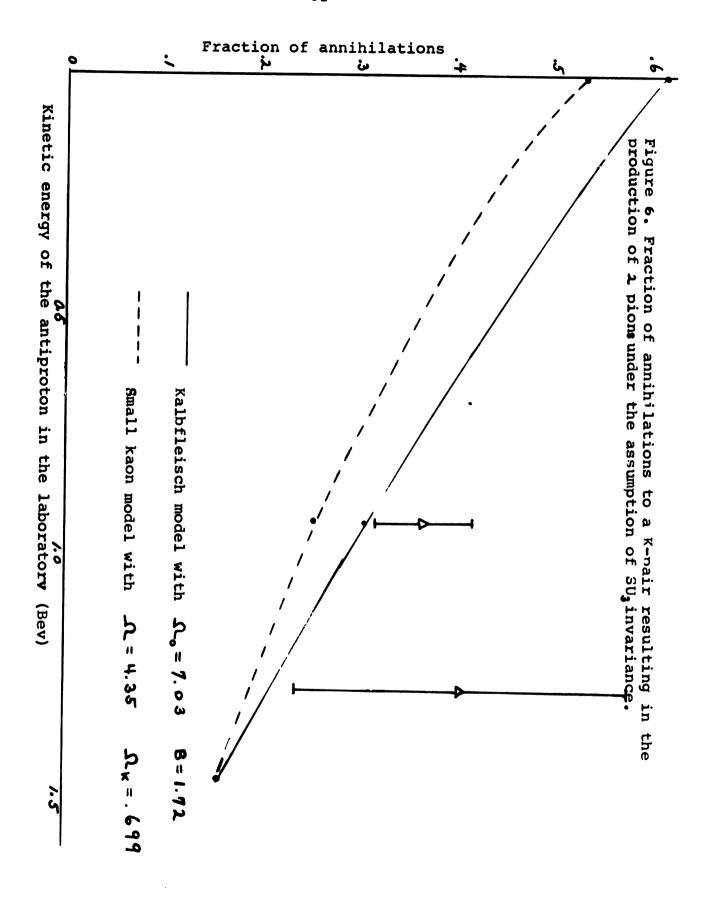

The experimental values appearing on the graphs are from the following sources:

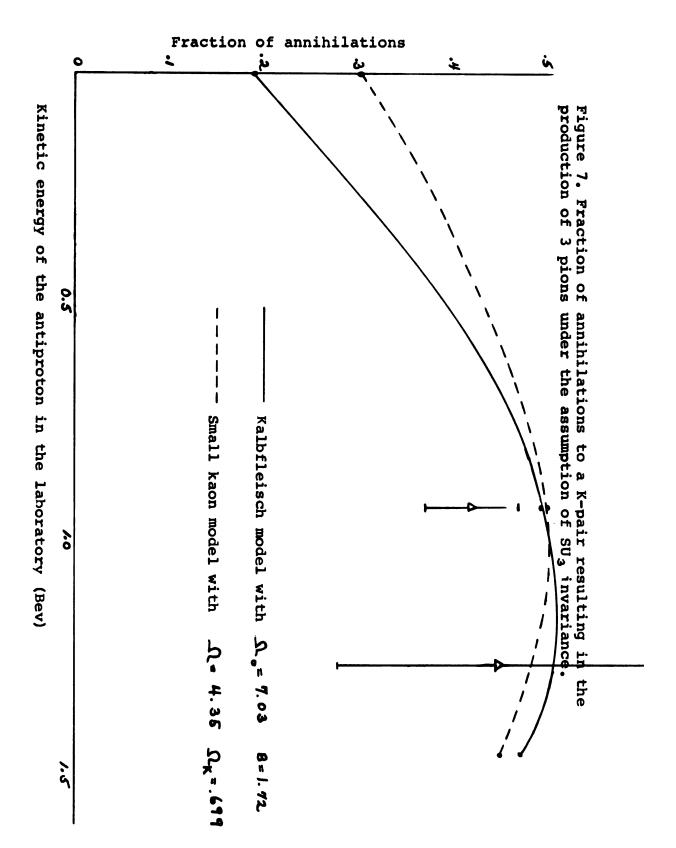

All experimental values for pion multiplicities and charged prongs accompanied by a kaon pair are from:

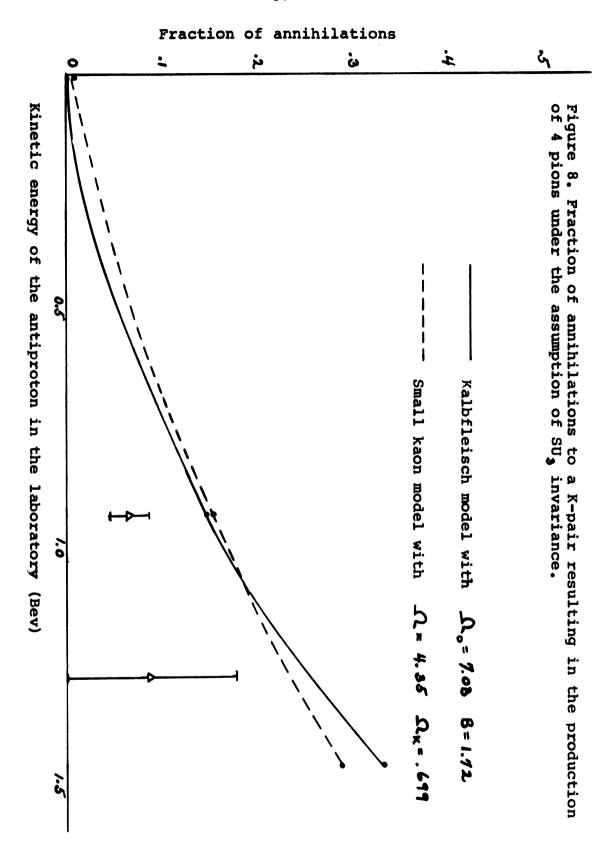

G. R. Kalbfleisch, UCRL-9597 (1961)

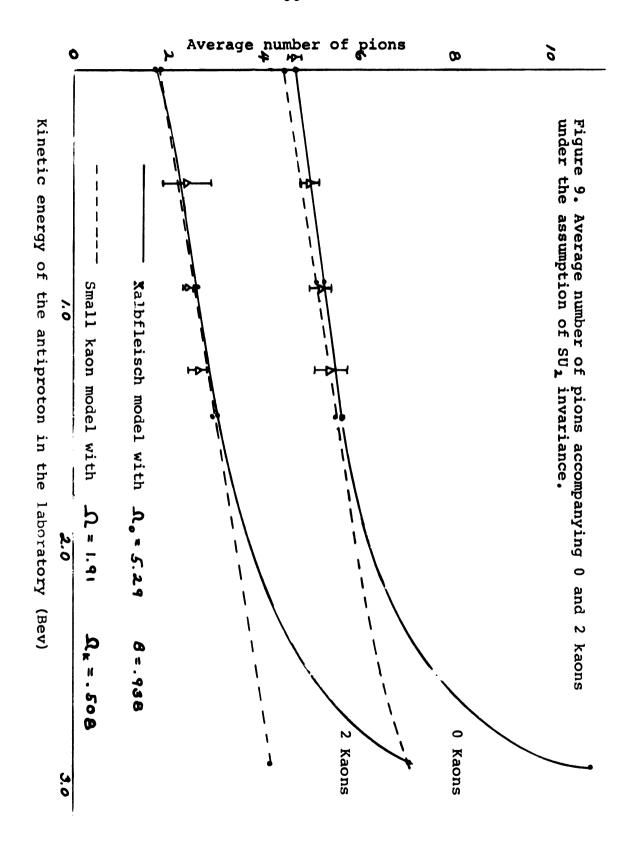

Other values used, listed by energy (kinetic energy of the antiproton in the laboratory), are:

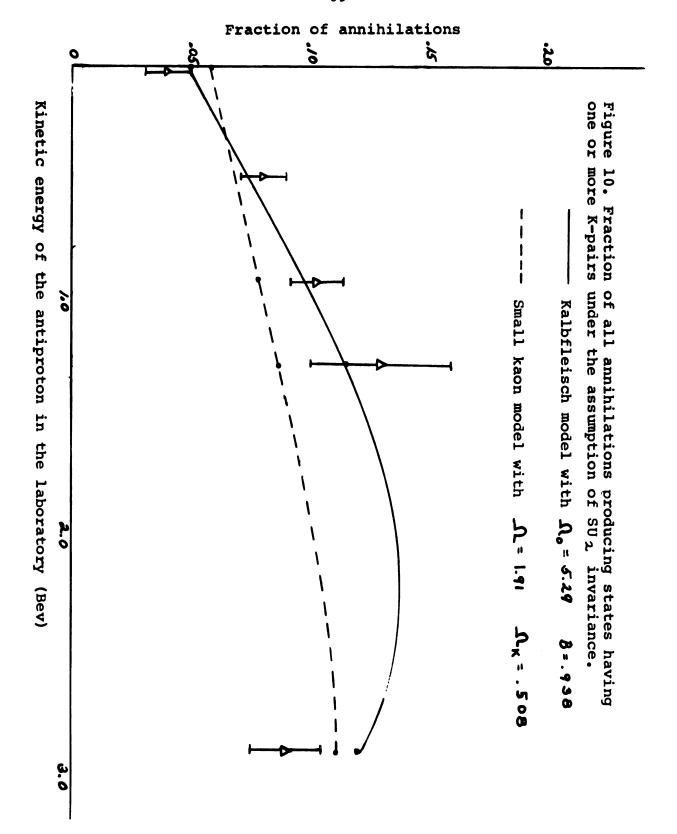

- O Bev C. Baltay, P. Franzini, G. Lutjens, J.C. Severiens, D. Tycko, and D. Zanello, Phys. Rev. 145, 1103 (1966)
- 0.47 Bev S. Goldhaber, G. Goldhaber, W. Powell, and R. Silberberg, Phys. Rev. 121, 1525 (1961)
- 0.92 Bev G. R. Lynch, Rev. of Mod. Phys. 33, 395 1.26 Bev (1961)
- 2.86 Bev T. Ferbel, A. Firestone, J. Sandweiss, H. Taft, M. Gailloud, T. Morris, W. Willis, A. Bachman, P. Baumel, and R. Lea, Phys. Rev. 143, 1096 (1966)
- 2.99 Bev C. Baltay, J. Lach, J. Sandweiss, H. Taft, N. Yeh, D. Stonehill, and R. Stump, Phys. Rev. 142, 932 (1966)

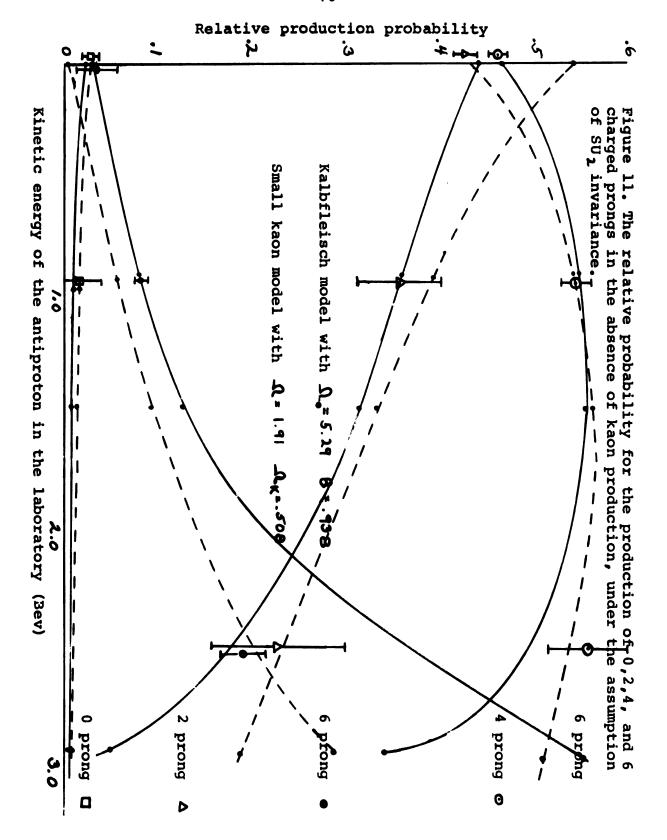


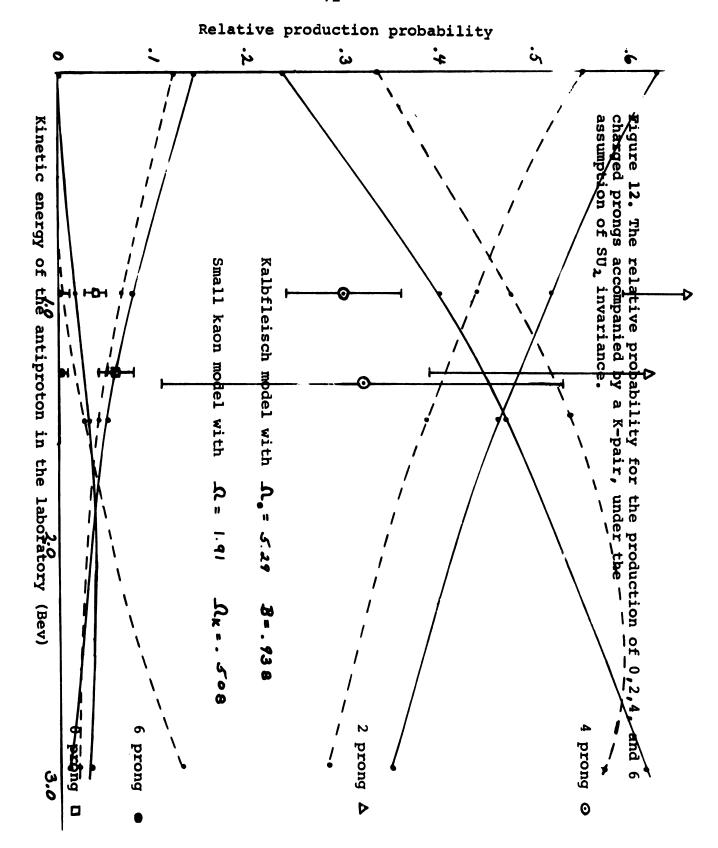


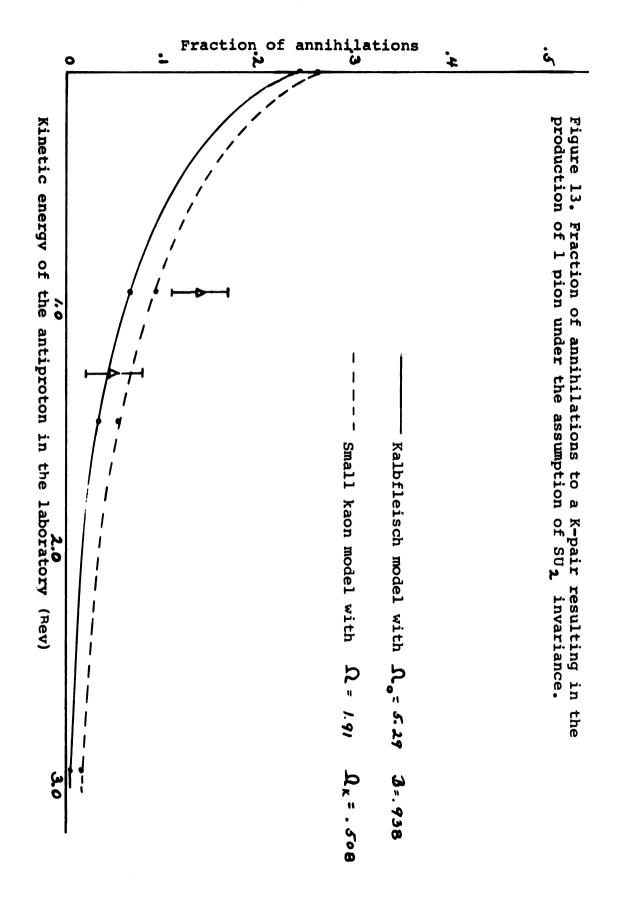


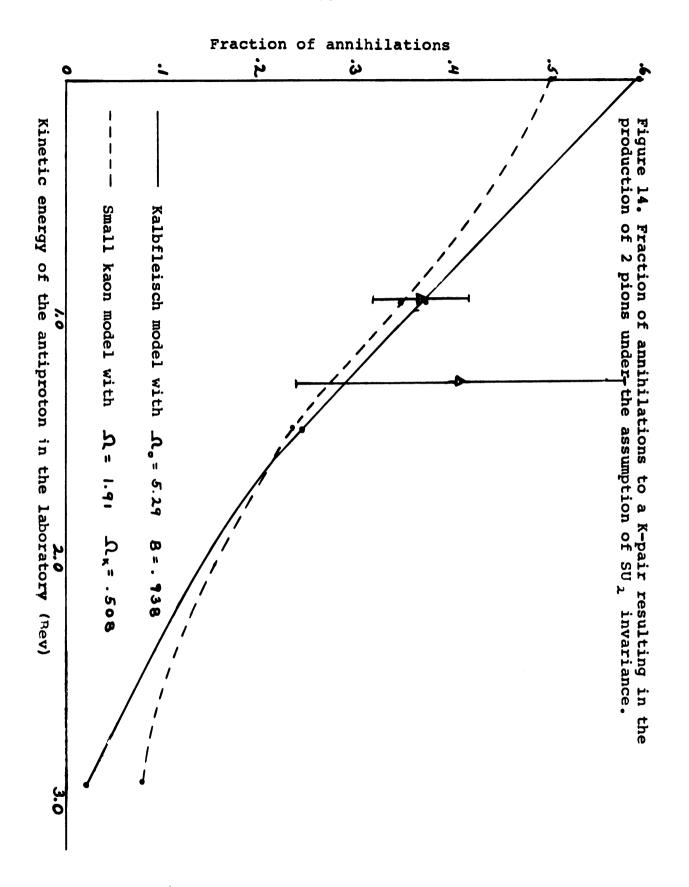


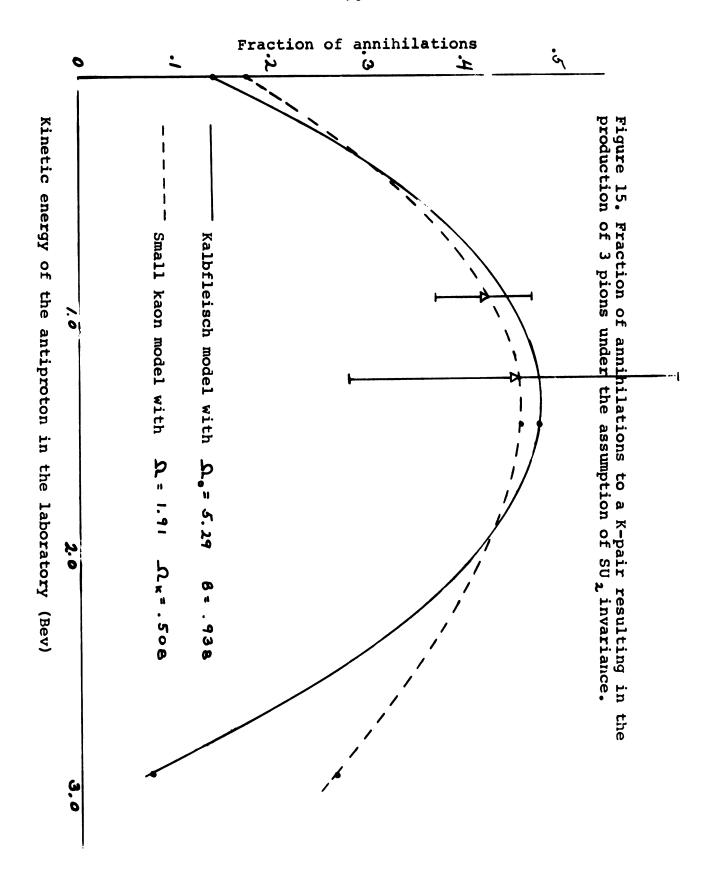


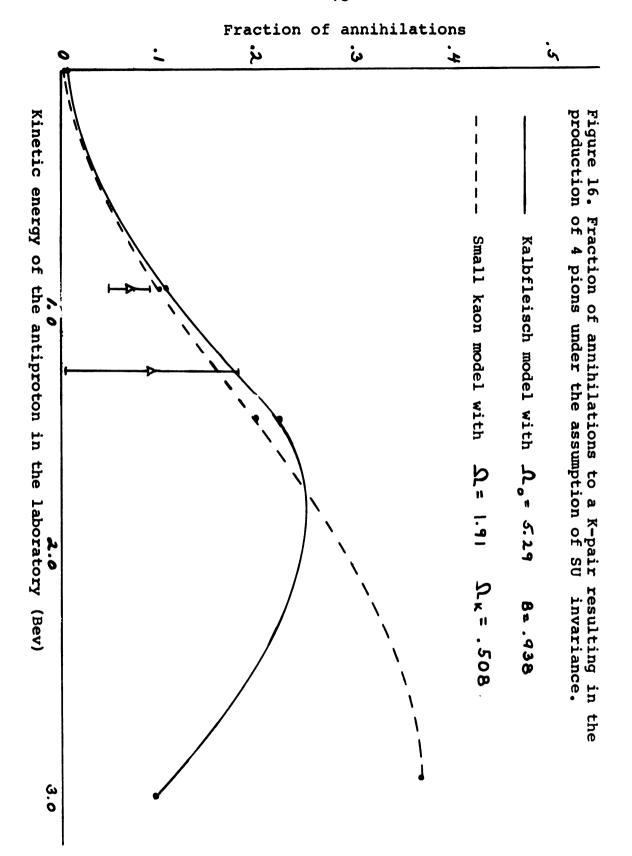












V. Conclusions.

We have attempted to reproduce experimental results for the production of kaons, pions and charged prongs from p-p annihilation using a simple statistical model with the modifications mentioned below. Previous statistical calculations were plagued with over copious production of kaons and required unphysically large volume parameters in order to obtain results consistent with experiment. It was hoped that the inclusion of a large number of resonances (which have been observed to appear quite frequently among the annihilation products) would alleviate these difficulties. Including the resonances seemed reasonably promising since, to get the same final answer, the volume parameters required can always be reduced by including more final states which are involved in the statistical process. The second modification consisted of building into the model the assumption of invariance under SU2. However, the results presented show that the improvement, based mainly upon whether the experimental values can be fit with "small" volume parameters, is slight. The fit to the experimental data is fairly good; however, this is achieved only after the introduction of modifications to suppress kaon production and still involves rather large volume parameters.

invariance upon the model. As might be expected, the differences between the results obtained under the assumption of SU₃ invariance and those obtained under SU₂ invariance show up predominately at low (2 and 3) particle multiplicities and are averaged out in a statistical calculation where multiplicities of up to six or more particles are considered. One can see from the results that no substantial difference is incurred in this calculation by the generalization from SU₂ to SU₃ invariance.

Finally, it is worthwhile to mention a suggestion which may help to alleviate the difficulties mentioned above. If one uses a single parameter statistical model (with the volume parameter of the order of $0.1\ \Omega_{\pi}$) to calculate the fraction of annihilations at rest producing a kaon pair, one obtains a result which is approximately an order of magnitude larger than the experimental value. Furthermore, when the volume parameter is reduced to a value of the order of the "physical" range $(.ol\ \Omega_{\pi} + .ool\ \Omega_{\pi})$ the kaon production is not changed significantly while the average pion multiplicity falls well below the experimental value. Maglic' has suggested a model in which kaon pairs are still produced in abundance but, at low relative

energy for example, immediately annihilate into pions. This effect would not only reduce the kaon production, but would also substantially raise the average pion multiplicity so that reasonable results might be expected with small volume parameters. This line of thought can be investigated by including in the model a K-K final state interaction. The preliminary calculations made by Maglic' indicate that a reasonable modification along these lines give results which go in the direction of further improving the model.

APPENDIX A:

I. Proof that $P_{i_{\mathbf{Z}_1}\dots i_{\mathbf{Z}_n}}^{\mathbf{I}}$ is independent of the order of $i_{\mathbf{Z}_1}$, $i_{\mathbf{Z}_1}$... $i_{\mathbf{Z}_n}$.

We wish to interchange the to and (t+1) the particles going from a scheme in which:

$$\vec{T}_{i-1} + \vec{i}_{i} = \vec{T}_{i}$$

$$\vec{T}_{i} + \vec{i}_{i+1} = \vec{T}_{i+1}$$

to one in which:

$$\vec{\hat{I}}_{i-i} + \vec{i}_{i+j} = \vec{\hat{I}}$$

$$\vec{\hat{I}} + \vec{i}_{i} = \vec{\hat{I}}_{i+j}.$$

The basis states transform via the 6j symbol:

$$|I_{i+1}, M_{i+1}\rangle_{I_{i}} = \underbrace{Z}_{I} (2I_{i}+1)^{1/2} (2I+1)^{1/2}$$

$$\times \left\{ \begin{array}{ccc} I_{i-1} & i_{i} & I_{i} \\ I_{i+1} & i_{i+1} & I \end{array} \right\} |I_{i+1}, M_{i+1}\rangle_{I}$$

where $|I, M\rangle_{I}$ ' implies the final state (I, M) is formed via the intermediate value I'. We then introduce this change of basis into the recoupling coefficient in the P-factor $P_{i_2, i_2, \dots i_{Zn}}^{I}$.

In what follows we write the intermediate state in parentheses; \dot{i} , \dot{i} (T_2) implies \vec{i} , $+\vec{i}$ = \vec{T}_2 .

$$\rho_{i_{2_{1}}i_{2_{2}}...i_{2_{n}}}^{I_{f}} = \underbrace{\leq}_{I_{2}I_{3}...I_{n-1}} \left| \langle I_{2}, I_{3}...I_{n-1}, I_{f} I_{2_{f}} \right|_{i_{2_{1}}i_{2_{2}}...i_{2_{n}}}^{i_{1}i_{2}...i_{n}} \left| \right|^{2}$$

$$= \underbrace{\mathcal{I}}_{I_{2}I_{3}\cdots I_{n-1}} \left[\left| \underbrace{\mathcal{I}}_{I} \left(2I_{i}+1 \right)^{1/2} \left(2I+4 \right) \right|^{1/2} \right]$$

$$\times \left[\underbrace{I_{i-1}}_{I_{i+1}} \underbrace{i_{i}}_{i_{i+1}} \underbrace{I_{i}}_{I_{i+1}} \right] \left\langle i_{i}i_{2}(I_{2})_{,} I_{2}i_{3}(I_{3})\cdots I_{i-1}i_{i+1}(I)_{,} I_{i_{i}}(I_{i+1})\cdots I_{i+1}I_$$

We may write the above square as a sum over I and I' and isolate the sum over T_i :

$$= \underbrace{\sum_{\mathbf{I}_{2}\mathbf{I}_{3}\cdots\mathbf{I}_{i-1},\mathbf{I}_{i+1},\cdots\mathbf{I}_{n-1}}} \underbrace{\sum_{\mathbf{I}_{1}\mathbf{I}'} (2\mathbf{I}+1)^{1/2} (2\mathbf{I}+1)^{1/2}}$$

$$\mathbf{I}_{2}\mathbf{I}_{3}\cdots\mathbf{I}_{i-1},\mathbf{I}_{i+1},\cdots\mathbf{I}_{n-1}} \underbrace{\mathbf{I}_{1}\mathbf{I}'}$$

$$\mathbf{X} \stackrel{\downarrow}{\langle i_{1}i_{2}(\mathbf{I}_{2})\cdots\mathbf{I}_{i-1}i_{i+1}(\mathbf{I}),\mathbf{I}} \stackrel{\downarrow}{i_{i}} (\mathbf{I}_{i+1})\cdots \stackrel{\downarrow}{\langle i_{1},\cdots,i_{n}\rangle} \stackrel{\downarrow}{\langle i_{1},\cdots,i$$

From the unitarity condition on the 6j symbols we have:

$$\underbrace{\mathcal{I}}_{\mathsf{I}_{i}}\left(2\,\mathsf{I}_{i}+1\right)\left\{\begin{matrix}\mathsf{I}_{i-1} & i_{i} & \mathsf{I}_{i}\\ \mathsf{I}_{i+1} & i_{i+1} & I\end{matrix}\right\}\left\{\begin{matrix}\mathsf{I}_{i-1} & i_{i} & \mathsf{I}_{i}\\ \mathsf{I}_{i+1} & i_{i+1} & I\end{matrix}\right\}\left\{\begin{matrix}\mathsf{I}_{i-1} & i_{i} & \mathsf{I}_{i}\\ \mathsf{I}_{i+1} & i_{i+1} & I'\end{matrix}\right\} = \underbrace{\mathsf{I}}_{2\,\mathsf{I}+1}\,\delta_{\mathsf{I},\mathsf{I}'}.$$

After performing the sum over I' by using the 6 , we have:

$$\rho_{i_{Z_{1}}i_{Z_{2}}\cdots i_{Z_{n}}}^{\mathbf{I}_{f}} = \underbrace{Z}_{I_{2}\cdots I_{i-1},I_{i+1}\cdots I_{n-1}}_{I_{n-1}}\underbrace{Z}_{I_{n}}(i_{1},i_{2},I_{2})\cdots I_{i-1},i_{i+1},I_{i})_{i_{n-1}}$$

$$\cdots I i_{i}(I_{i+1}) \cdots I_{n-1} i_{n}(I_{f}) \Big|_{i_{Z_{1}}}^{i_{1}} \cdots \frac{i_{i_{j+1}}}{i_{Z_{i+1}}}, \frac{i_{i}}{i_{Z_{i}}}, \cdots \frac{i_{n}}{i_{Z_{n}}} \Big\rangle^{2}.$$

If we relabel I as I_{i} , it is clear that the right hand side is equal to ρ^{I_f} with $i \stackrel{th}{=}$ and $(i+i) \stackrel{th}{=}$ states interchanged. Therefore:

$$P_{i_{2_{1}}i_{2_{2}}...i_{Z_{i_{j_{1}}},i_{Z_{i_{2}}},...i_{Z_{n}}}^{\mathbf{If}} = P_{i_{2_{1}}i_{2_{2}}...i_{Z_{i_{j_{1}}},i_{Z_{i_{2}}}}^{\mathbf{If}}...i_{Z_{n}}$$

II. Proof that $P_{\nu_1\nu_2...\nu_n}^{U,I}$ is independent of the order of $\nu_1 \nu_2...\nu_n$.

We wish to prove that the sum over intermediate states of the recoupling coefficient for SU₃ is independent of the order of the individual states.

We wish to go from a basis in which:

$$U_{Y_{i-1}} \otimes \mu_{i} = U_{Y_{i}} \qquad \overrightarrow{T_{i-1}} + \overrightarrow{i_{i}} = \overrightarrow{T_{i}}$$

$$U_{Y_{i}} \otimes \mu_{i+1} = U_{Y_{i+1}} \qquad \overrightarrow{T_{i}} + \overrightarrow{i_{i+1}} = I_{i+1}$$

to one in which:

$$U_{Y_{i-1}} \otimes \mu_{i+1} = U_{Y} \qquad \overrightarrow{T}_{i-1} + \overrightarrow{i}_{i+1} = \overrightarrow{T}$$

$$U_{Y} \otimes \mu_{i} = U_{Y_{i+1}} \qquad \overrightarrow{T} + \overrightarrow{i}_{i} = \overrightarrow{T}_{i+1}.$$

In this case, the transformation will have both SU₃ and SU₂ 6j symbols. The notation used for the SU₃ transformation is according to Sharpe and Derome. We again write the intermediate states in parentheses. The SU₃ and SU₂ parts transform respectively as:

$$|U_{i-1}| M_{i} (U_{g_{i}}), U_{i}| M_{i+1} (U_{g_{i+1}}) > = \underbrace{Z_{i}}_{U} [U_{i}]^{1/2} [U_{i}]^{1/2}$$

$$\times \left\{ \begin{array}{ccc} U_{i-1} & M_{i} & U_{i}^{*} \\ U_{i+1}^{*} & M_{i+1} & U^{*} \end{array} \right\}_{g_{i+1}}^{g_{2}} \quad \left\{ \begin{array}{ccc} U_{i-1} & M_{i+1} (U_{g_{3}}), U_{M_{i}} (U_{i+1}|_{g_{3}}) \\ U_{i-1}^{*} & M_{i+1} & U^{*} \end{array} \right\}_{g_{i+1}}^{g_{2}} \quad \left\{ \begin{array}{ccc} U_{i-1} & M_{i+1} (U_{g_{3}}), U_{M_{i}} (U_{i+1}|_{g_{3}}) \\ U_{i+1}^{*} & M_{i+1} & U^{*} \end{array} \right\}_{g_{i+1}}^{g_{2}}$$

$$||\mathbf{I}_{i-1}i_i(\mathbf{I}_i), \mathbf{I}_i||_{i+1} (|\mathbf{I}_{i+1}|) \rangle = \sum_{\mathbf{I}} ||\mathbf{I}_i||_{i+1}^{1/2} ||\mathbf{I}_i||_{i+1}^{1/2}$$

$$X \left\{ \begin{array}{ccc} \mathbf{I}_{i-1} & i_i & \mathbf{I}_i \\ \mathbf{I}_{i+1} & i_{i+1} & \mathbf{I} \end{array} \right\} \left\{ \mathbf{I}_{i-1} & i_{i+1} & (\mathbf{I}), \mathbf{I} & i_i & (\mathbf{I}_{i+1}) \right\}$$

where summation is implied over repeated Y indices and [I] represents the dimension of the irreducible representation labeled by I.

The P-factor for SU₃ invariance is:

$$P_{\nu_1\nu_2...\nu_n}^{U_{\mathfrak{T}} I_{\mathfrak{T}}} = \underbrace{\mathbb{Z}}_{U_{\mathfrak{T}}}^{\prime} \underbrace{\langle U_{\mathfrak{T}}_{\mathfrak{T}}, ... U_{\mathfrak{R}-1}}_{U_{\mathfrak{T}}}, \underbrace{U_{\mathfrak{T}}_{\mathfrak{T}}}_{U_{\mathfrak{T}}-1}, \underbrace{U_{\mathfrak{T}}_{\mathfrak{T}}}_{U_{\mathfrak{T}}}, \underbrace{U_{\mathfrak{T}}_{\mathfrak{T}}}_{i_{\mathfrak{T}}\nu_{\mathfrak{T}}}, \underbrace{U_{\mathfrak{T}}_{\mathfrak{T}}\nu_{\mathfrak{T}}}, \underbrace{U_{\mathfrak{T}}_{\mathfrak{T}}}_{i_{\mathfrak{T}}\nu_{\mathfrak{T}}}, \underbrace{U_{\mathfrak{T$$

We suppress the indices on the Y's wherever possible; the Y's above are, in general, all different. The 'indicates a summation over the Y associated with U_f. We introduce the 6j symbols into the equation above:

and write the square as a double sum:

$$= \underbrace{\sum_{\substack{0 \geq y \ 0 \leq y \ 0 \leq$$

(where there is no sum over the χ_{i+1} 's and the χ_{i} 's).

First consider the SU₂ part. The sum over I_i is done first, yielding a term $//(I_i)$ $S_{I,I'}$ from the unitarity of the 6j symbols. This gives us, isolating the sum over U_i :

$$= \underbrace{\frac{1}{2}}_{\substack{0_{2}\gamma \dots 0_{i-1}\gamma \\ 1}} \underbrace{\frac{1}{2}}_{\substack{0_{i+1}\gamma \dots 0_{n-1}\gamma \\ 1}} \underbrace{\frac{$$

From the unitarity of the SU3 6j symbols, we can show

(see below) * that the sum over U_i yields: $\frac{1}{U} \delta U, U' \delta_i' \delta_i'$.

Hence, we have:

$$P_{\nu_1 \nu_2 \dots \nu_n}^{\nu_{f} I_{f}} = \underbrace{\sum_{j=1}^{\ell} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \sum_{j=1}^{\ell} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \sum_{j=1}^{\ell} \sum_{j=1}^{\ell} \sum_{i=1}^{\ell} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \sum_{i$$

$$\frac{U_{i-1}}{I_{i+1}} \underbrace{\mathcal{U}_{i+1}}_{(i+1)} \underbrace{U_{j}}_{j} \underbrace{U_{j}}_{i} \underbrace{U_{k+1}}_{(i+1)} \underbrace{U_{n-1}}_{j} \underbrace{\mathcal{U}_{n}}_{j} \underbrace{U_{k}}_{(i+1)} \underbrace{U_{i+1}}_{(i+1)} \underbrace{\mathcal{U}_{n}}_{(i+1)} \underbrace{U_{n}}_{(i+1)} \underbrace{U_{n}}_{(i+1)}$$

Relabeling $U \rightarrow U_i$ $I \rightarrow I_i$ $\chi_3 \rightarrow \chi_i$,

we see that the right hand side is the SU₃ P-factor with the $i \stackrel{th}{=} and$ the $(i+i) \stackrel{th}{=} states$ interchanged.

$$\underbrace{ \left\{ \begin{array}{c} U_{i-1} & \mathcal{M}_{i} & U_{i}^{*} \end{array} \right\}^{*} \left\{ \begin{array}{c} V_{i-1} & \mathcal{M}_{i} & U_{i}^{*} \end{array} \right\}^{*} \left\{ \begin{array}{c} V_{i-1} & \mathcal{M}_{i} & U_{i}^{*} \end{array} \right\}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & U^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & \mathcal{M}_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V_{i+1} & V^{*} \end{array} \right\}_{V_{i+1}}^{*} \left\{ \begin{array}{c} V_{i+1} & V$$

by unitarity of the 6j symbols.

^{*}The sum over $\mathcal{U}_{\mathcal{C}}$ is almost identical to the unitarity condition given by Sharpe and Derome. One can easily rewrite the summation above in the standard form by first lowering the δ indices using the A matrices and then switching the order of the indices using the λ 's . This gives:

APPENDIX B: Outline of a Monte Carlo method of evaluating phase space integrals.*

All calculations which follow are done in dimensionless units.

The phase space integral for n particles with total energy E and total momentum P is:

where p_i , e_i are respectively the individual particle momenta and energies. In what follows, we drop the $\frac{1}{(2\pi \hbar)^{3N-3}}$ and write the integral as p_N^+ (E, P) .

The directional part is isolated and related to the well-known "random walk" problem.

$$d\hat{p}_{i} = p_{i}^{2} dp_{i} d\epsilon_{i} \qquad d\epsilon_{i} = sin \theta_{i} d\theta_{i} d\theta_{i}$$

$$p_{n}^{*} (E, P) = \int ... \int p_{i}^{2} p_{2}^{2} ... p_{n}^{2} \int (E - \frac{1}{2}, \sqrt{p_{i}^{2} + m_{i}^{2}}) dp_{i} ... dp_{n}$$

$$\times \int ... \int \int (\hat{P} - \frac{1}{2}, p_{i} \hat{\epsilon}_{i}) d\epsilon_{i} d\epsilon_{j} d\epsilon_{j} ... d\epsilon_{n}$$

We separate the last integral as follows:

^{*}What follows is an outline of the paper:

F. Cerulus and R. Hagedorn: Nuovo Cimento Supplement 9,

646 (1951). This article is referred to throughout the

discussion as I.

The function ω_n is the probability that, for fixed magnitudes of the momenta $\rho_1, \rho_2 \cdots \rho_n$ but random directions $\hat{\mathcal{E}}_1, \hat{\mathcal{E}}_2 \cdots \hat{\mathcal{E}}_n$, the total momentum $\sum_{i=1}^n P_i \hat{\mathcal{E}}_i$ lies in the neighborhood dP of P. For given arguments $(P, P, \cdots P_n)$, ω_n may be calculated using the theory of random walk. We note that ω_n is a function only of the magnitude of the momenta. We have now reduced the phase space integral to:

$$P_{n}^{*}(E,P) = (4\pi)^{n} \int_{0}^{\infty} ... \int_{0}^{\infty} P_{n}^{2} ... P_{n}^{2} \int (E - \underbrace{4\pi}_{i+1}^{n} \underbrace{\sqrt{P_{i}^{2} + m_{i}^{2}}}_{P_{i}^{2} + m_{i}^{2}})$$

$$\times \omega_{n} (P; p_{i}, p_{3} ... p_{n}) dp_{i} dp_{4} ... dp_{n}.$$

In what follows, we restrict ourselves to the C.M. system so that $\vec{P} = 0$. Let us change the variables of integration from momenta to energies by:

Our integral becomes:

$$P_{n}^{*}(E,0) = (4\pi)^{n} \int_{m_{1}}^{\infty} \cdots \int_{m_{n}}^{\infty} e_{1} \int_{e_{1}^{2}-m_{1}^{2}}^{2} e_{2} \int_{e_{1}^{2}-m_{2}^{2}}^{2} \cdots$$

$$\cdots e_{n} \int_{e_{n}^{2}-m_{n}^{2}}^{2} \int_{m_{1}^{2}}^{\infty} \cdots \int_{m_{n}^{2}-m_{n}^{2}}^{\infty} e_{1} \int_{e_{1}^{2}-m_{n}^{2}}^{\infty} e_{2} \int_{e_{1}^{2}-m_{n}^{2}}^{\infty} e_{2} \int_{e_{1}^{2}-m_{n}^{2}}^{\infty} \cdots$$

$$\cdots e_{n} \int_{e_{n}^{2}-m_{n}^{2}}^{\infty} \int_{m_{1}^{2}-m_{n}^{2}}^{\infty} e_{1} \int_{e_{1}^{2}-m_{n}^{2}-m_{n}^{2}}^{\infty} e_{2} \int_{e_{1}^{2}-m_{n}^{2}-m_{n}^{2}-m_{n}^{2}}^{\infty} e_{2} \int_{e_{1}^{2}-m_{n}$$

where: $\nabla_n (P=0; e_1 e_2 \cdots e_n) = \omega_n (P=0; P_1 = \sqrt{e_1^2 + m_1^2} \cdot P_n).$

Let:
$$\mu_{i}(e) = e \sqrt{e^{2} - m_{i}^{2}} e^{2} m_{i}$$

 $P_{n}^{*}(E,0) = (4\pi)^{n} \int_{m_{1}}^{\infty} ... \int_{m_{n}}^{\infty} \mu_{i}(e_{i}) \mu_{2}(e_{2}) ... \mu_{n}(e_{n})$
 $\times U_{n}(O; e_{1}...e_{n}) \delta(E - \xi_{i}e_{i}) de_{i} de_{2} ... de_{n}.$

A transformation to kinetic energies is made: $t_{i'} = e_{i'} - m_{i'}.$

Let: $\underline{\mathbf{T}}(t_1 t_2 \cdots t_n) = \underline{\mathbf{M}}_1(t_1 + m_1) \, \underline{\mathbf{M}}_2(t_2 + m_2) \cdots \, \underline{\mathbf{M}}_n(t_n + m_n)$... $\rho_n^*(\mathbf{E}, 0) = (4\pi)^n \int_0^{\infty} \underline{\mathbf{T}}(t_1 \cdots t_n) \, \delta(T - 2t_i) \, \delta t_1 \cdots \, dt_n$

We now order the kinetic energies:

$$T_1 = t_1$$
 $T_2 = t_1 + t_2$
 \vdots
 $T_m = t_1 + t_2 + \cdots + t_m$

The inverse transformation is:

$$t_1 = T_1$$
 $t_2 = T_2 - T_1$
 \vdots
 $t_n = T_n - T_{n-1}$

$$P_{n}^{*} = (4\pi)^{n} \left\{ \int_{0}^{\infty} dT_{1} \int_{T_{1}}^{\infty} dT_{2} ... \int_{T_{n-1}}^{\infty} dT_{n} \right\}$$

$$\times \mathbf{I}(T_{1}, T_{2} - T_{1} ... T_{n} - T_{n-1}) \delta(T - T_{n})$$

where, it is clear that

We carry out the integration over $d T_n$ making use of the δ function. The above relation then applies that the upper limits on all the integrals may be changed to T.

$$p_n^* = (4\pi)^n \int_0^T d\tau_i \int_{\tau_i}^{\tau} d\tau_i \dots \int_{\tau_{n-1}}^{\tau} d\tau_{n-1} \ \underline{T} (\tau_i, \tau_i - \tau_i, \dots \tau - \tau_{n-1})$$

and we have: $0 \le T_1 \le T_2 \le \cdots \le T_{n-1} \le T_0$

We are now ready to apply simple Monte Carlo theory to the integral above. For integrals of the form:

$$I = \int_{a_1}^{b_1} d\tau_1 \int_{a_2}^{b_2} d\tau_2 \cdots \int_{a_{n_i}}^{b_n} d\tau_n \ f(\tau_1 \tau_2 \cdots \tau_n) \, \rho(\tau_1 \tau_2 \cdots \tau_n)$$

where $p(T_1T_2...T_m)$ is an m dimensional density function defined, in the usual way, by:

1) $\rho(T_1 \cdots T_n) \ge 0$ over the allowed range of $(T_1 T_2 \cdots T_n)$

2)
$$\int_{a_1}^{b_1} dT_1 \int_{a_2}^{b_2} dT_2 \cdots \int_{a_n}^{b_n} dT_n \rho(T_1 \cdots T_n) = 1$$

and $f(T_1, T_2, ... T_n)$ is a weight function.

It can be shown that,

$$I = \lim_{N \to \infty} \frac{1}{N} \underbrace{\stackrel{N}{\neq}}_{i=1} f(T_i^{(i)}, T_{a_i}^{(i)}, \dots, T_{n_i}^{(i)})$$

where the set $(T_1 \cdots T_n)$ is chosen randomly but weighted according to the distribution function $f(T_1 T_2 \cdots T_n)$.

We may rewrite our integral as:

$$\beta_{n}^{*}(E, 0) = (4\pi)^{n} \frac{T^{n-1}}{(n-1)!} \left[\int_{0}^{T} dT_{1} \int_{T_{1}}^{T} dT_{2} \dots \int_{T_{n-2}}^{T} iT_{n-1} \right] \\
\times \left[(T_{1}, T_{2} - T_{1}, \dots T - T_{n-1}) \frac{(n-1)!}{T^{n-1}} \right]$$

we make the correspondence:

$$\beta(T_1 T_2 ... T_{N-1}) = Constant = \frac{(N-1)!}{T_{N-1}}$$

This represents a uniform distribution in $(\ \ \ \ \)$ dimensions where the intervals for each variable are chosen as:

It is clear that the variables satisfy the relation: $0 \le T_1 \le T_2 \le \cdots \le T_{R-1} \le T$.

We must show that ρ ,integrated over the limits of our integral, yields unity.

$$\int ... \int P(T_1 ... T_{n-1}) dT_1 ... dT_{n-1} = \int_0^T dT_1 \int_0^T dT_2 ... \int_{T_{n-2}}^T dT_{n-1} \frac{(n-1)!}{T_{n-1}}$$

If we allow all the lower limits to be replaced by O, we introduce a factor $\frac{1}{(n-l)!}$ into the integral above. (It is clear that a set chosen randomly has a probability $\frac{1}{(n-l)!}$ of being in increasing order). Therefore, the integral over the density function is equal to:

$$\int ... \int \rho \, dT_{n-1} = \int_{0}^{T} dT_{1} \int_{0}^{T} dT_{2} \dots \int_{0}^{T} dT_{n-1} \frac{1}{T^{n-1}} = 1.$$

Hence, simple Monte Carlo calculations give

$$p_{n}^{*}(E,o) = (4\pi)^{n} \lim_{N \to \infty} \frac{1}{N} \underbrace{I}_{(x)}^{N} \underbrace{I}_{(x)}^{(i)} T_{2}^{(i)} - T_{i}^{(i)} ... T - T_{n-i}^{(i)})$$

where the set $(T_1 \cdots T_{n-1})$ is generated by choosing n-1 random numbers uniformly from the interval [0,T] and relabeling them so that:

$$T_1^{(i)} \le T_2^{(i)} \le ... \le T_{n-1}^{(i)}$$

In order to actually calculate the phase space integrals, it is convenient to express all quantities in terms of the individual energies. We have:

We recall that the function un is evaluated using the

theory of the random walk. Referring to I, the result is:

$$\nabla_{n} = -\frac{1}{(n-3)!} \pi 2^{n+1} \int_{e_{1}^{2}-m_{1}^{2}} \cdots \int_{e_{n}^{2}-m_{n}^{2}} \frac{1}{(n-3)!} \pi 2^{n+1} \int_{e_{1}^{2}-m_{1}^{2}} \cdots \int_{e_{n}^{2}-m_{n}^{2}} \frac{1}{(n-3)!} \pi 2^{n+1} \int_{e_{n}^{2}-m_{1}^{2}} \frac{1}{(n-3)!} \frac{1}{(n-3)!} \pi 2^{n+1} \int_{e_{n}^{2}-m_{1}^{2}} \frac{1}{(n-3)!} \frac{1}{(n-3)!} \pi 2^{n+1} \int_{e_{n}^{2}-m_{1}^{2}} \frac{1}{(n-3)!} \frac{1}{$$

where: all G_i (except $G_i = +1$) take on the values 1 = -1.

$$S_{q}(x) = +1$$
 for $x > 0$
-1 for $x \le 0$.

Hence, we get:

Hence, we get:
$$f_{n}^{*}(E_{1}0) = \frac{(E-M)^{n-1}(2\pi)^{n-1}}{(n-1)!(n-3)!} \xrightarrow{k/m} \sqrt{\sum_{i=1}^{N} \psi_{n}(e_{1}^{(i)}e_{2}^{(i)}...e_{n}^{(i)})}$$

where

$$\psi_{n}(\epsilon_{1}e_{2}...e_{n}) = -e_{1}e_{2}...e_{n} \left\{ \underbrace{\leq}_{\tau_{2}\tau_{3}...\tau_{n}} \underbrace{\leq}_{\tau_{n}} \underbrace{\sigma_{n} \sigma_{2} ..\sigma_{n}}_{s} \underbrace{\leq}_{i} \underbrace{\sigma_{i} \sigma_{i} \sigma_{i}^{2}...\sigma_{n}^{2}}_{s} \right\}$$

$$\times \left[\underbrace{\leq}_{\tau_{i}} \underbrace{\sigma_{i} \sigma_{i} \sigma_{i}^{2}...\sigma_{n}^{2}}_{s} \right]^{n-3} \right\}$$

The method of calculation is:

- 1) Generate a set of kinetic energy variables { T} by obtaining n-/ random numbers in the interval O to T.
- 2) From these calculate the individual energies e:= Ti-Ti-, +m; i.1, n (To=0, Tn=T).
- 3) Knowing the energies and masses, the function $\Psi_n(e,e_1\cdots e_n)$ is calculated.
- 4) Steps 1-3 are done N times, and the phase space integral is obtained by multiplying the average

value of these by the factor
$$\frac{(E-M)^{n-1}(2\pi)^{n-1}}{(n-1)!(n-3)!}$$

we now proceed with a brief outline of the error analysis.

It is clear that, as one increases the value of N, the value calculated for the integral approaches the true value. The error analysis has been done in reference I and is quite lengthy. The method used for estimating the error is briefly outlined below.

Before starting the calculation, one chooses an integer No which is much greater than one but small enough so that No contributions are not expected to give a good approximation to the integral. We then do the calculation, checking the convergence after successive sets of No terms.

Let us consider a calculation done in λ steps of N_o contributions each, so that $N = \lambda N_o$. We define the partial sums as follows:

$$S_{i} = \sum_{i=(M-1)}^{MN_0} \psi(e_i^{(i)} e_2^{(i)} \cdots e_n^{(i)})$$

where $M = 1, 2, \dots \lambda$.

We then have:

where:
$$A = \frac{(E-M)^{n-1}(2\pi)^{n-1}}{(n-1)!(n-3)!N_0}$$
.

We want to approximate the integral by some value ρ_{λ} calculated with $\lambda >>1$ so that $N=\lambda N_{\circ}$ contributions yields a good approximation to the true value ρ .

At this point a problem is encountered that is a consequence of the Monte Carlo method. We want to approximate the exact phase space integral by the average of λ partial sums ρ_{λ} and hope to obtain some information about the error in ρ_{λ} . The straight-forward approach to this is to calculate ρ_{λ} many times independently and from these values calculate an RMS error. Yet we calculate ρ_{λ} but one time and do not wish to do so again; indeed, if we did so we would use the value 2λ as a new λ' and get a more accurate approximation $\rho_{\lambda'}$. Hence, we work toward obtaining an estimate of the (probable) error in without having to calculate it more than once for a given value of λ .

We assume that for fixed, large enough λ , the approximate values ρ_{λ} are normally distributed about the exact value ρ . The error analysis yields the result that the standard deviation $(\delta\rho)_{\lambda}$ divided by the mean value ρ is:

$$\frac{(\delta \rho)_{\lambda}}{\rho} = \frac{(\rho_{\lambda} - \rho)^{2}}{\rho} \approx \left\{ \frac{1}{\lambda} \left(\frac{1}{5} (\mu_{\lambda})^{2} \frac{\lambda}{2} \frac{\lambda}{4} \frac{(5 (\mu_{\lambda})^{2} + 5 (\mu_{\lambda})^{2})}{\lambda} \right\}^{1/2}$$

where
$$5^{(k)} = \frac{1}{k} \sum_{\mu=1}^{k} S_{\mu}$$
.

We note that the expression above is easily calculated, along with β_{λ} , for successive values of λ . It is also expected that, as λ increases, the standard deviation $(\delta\rho)_{\lambda}$ and therefore $\frac{(\delta\rho)_{\lambda}}{\rho}$ will decrease.

We now make use of the following property of the Gaussian distribution. If β_{λ} is normally distributed about β with a standard deviation $(\delta \beta)_{\lambda}$ then, for an arbitrary value β_{λ} , the probability that:

$$|P-P_{\lambda}| \leq (\delta P)_{\lambda}$$
 is $\approx .68$
 $|P-P_{\lambda}| \leq 2(\delta P)_{\lambda}$ is $\approx .95$
 $|P-P_{\lambda}| \leq 3(\delta P)_{\lambda}$ is $\approx .9995$

We can now arrive at a solution to the problem above. The particular value we calculate for ρ_{λ} is assumed to be one of a set of values $\{\rho_{\lambda}\}$ which are normally distributed about the true value ρ . Using the formula above, we calculate the approximate $(\delta\rho)_{\lambda}/\rho$ and use this to obtain limits on the relative error in our calculated value ρ_{λ} . Let us define:

$$Z_{\lambda} \equiv \left| \frac{(\delta \rho)_{\lambda}}{\rho} \right|$$

then:

$$|\frac{\rho_{\lambda}-\rho|}{\rho}| \le Z_{\lambda}$$
 with $\approx 68\%$ certainty
$$|\frac{\rho_{\lambda}-\rho|}{\rho}| \le 2Z_{\lambda}$$
 with $\approx 95\%$ certainty
$$|\frac{\rho_{\lambda}-\rho|}{\rho}| \le 3Z_{\lambda}$$
 with $\approx 99.95\%$ certainty

In our calculation, we chose $N_o=10$ and varied λ in increments of 1 starting with $\lambda=5$ until the value of Z_λ became $\leq .06$. Hence, with $N=\lambda N_o$ terms, we obtained phase space integrals with a relative error less than 6% with 68% certainty or less than 12% with 95% certainty.

References.

- 1. T. E. Kalgeropoulos, UCRL 8677 (1959).
- 2. G. R. Kalbfleisch, UCRL 9597 (1961)
- 3. S. Goldhaber, G. Goldhaber, W. Powell and R. Silberberg, Phys. Rev. 121, 1525 (1961).
- 4. G. R. Lynch, Rev. of Mod. Phys. 33, 395 (1961).
- 5. N. Barash, P. Franzini, L. Kirsch, D. Miller,
 J. Steinberger, T. H. Tan, R. Plano, and P. Yaeger,
 Phys. Rev. 139, B1659 (1965).
- 6. C. Baltay, P. Franzini, N. Gelfand, G. Lutjens, J. C. Severiens, J. Steinberger, D. Tycko, and D. Zanello, Phys. Rev. 140, B1039 (1965).
- 7. C. Baltay, P. Franzini, G. Lutjens, J. C. Severiens, J. Steinberger, D. Tycko, and D. Zanello, Phys. Rev. 140, B1042 (1965).
- 8. N. Barash, L Kirsch, D. Miller, and T. H. Tan, Phys. Rev. <u>145</u>, 1095 (1966).
- 9. C. Baltay, P. Franzini, G. Lutjens, J. C. Severiens.
 D. Tycko, and D. Zanello,
 Phys. Rev. 145, 1103 (1966).
- 10. C. Baltay, J. Lach, J. Sandweiss, H. D. Taft, N. Yeh, D. L. Stonehill, and R. Stump, Phys. Rev. 142, 932 (1966).
- 11. T. Ferbel, A. Firestone, J. Sandweiss, H. D. Taft, M. Gailloud, T. W. Morris, W. J. Willis, A. H. Bachman, P. Baumel, and R. M. Lea, Phys. Rev. 143, 1096 (1966).
- 12. E. Fermi, Prog. Theor. Phys. 5 570 (1950).
- 13. E. Fermi, Phys. Rev. 92, 452 (1953).
- 14. S. Meshkov, G. A. Snow and G. B. Yodh, Phys. Rev. Let. <u>12</u>, 87 (1964).
- 15. M. Konuma and Y. Tomozawa, Phys. Rev. Let. 12, 425 (1964)
- 16. H. Harari and H. J. Lipkin, Phys. Rev. Let. <u>13</u>, 208 (1964).

- 17. M. Goldberg, J. Leitner, R. Musto and L. O'Raifeartaigh, Nuovo Cimento 45, 169 (1966).
- 18. C. A. Levinson, J. J. Lipkin and S. Meshkov, Phys. Let. 1, 44 (1962).
- 19. F. Cerulus and R. Hagedorn,
 Nuovo Cimento Supp. 9, 646 (1958).
- 20. J. S. Kovacs, Phys. Rev. <u>101</u>, 397 (1956).
- 21. R. Hagedorn, Nuovo Cimento 15, 434 (1960).
- 22. J. S. Kovacs, Prog. Theor. Phys. 28, 1065 (1962).
- 23. A. Martin, Phys. Rev. 124, 614 (1961).
- 24. M. M. Block, Phys. Rev. 101, 796 (1956).
- 25. K. Watson, Phys. Rev. 85, 852 (1952).
- 26. M. Gell-Mann, Phys. Rev. 92, 833 (1953).
- 27. S. Sakata, Prog. Theor. Phys. (Kyoto) 16, 686 (1956).
- 28. M. Gell-Mann, California Institute of Technology Synchrotron Laboratory Report CTSL-20 (1961) unpublished.
- 29. Y. Ne'eman, Nuclear Physics 26, 222 (1961).
- 30. H. Kasha, L. B. Leipuner and R. K. Adair, Phys. Rev. 150, 1140 (1966).
- 31. F. Cerulus, Nuovo Cimento Supp. 15, 402 (1960).
- 32. G. R. Kalbfleisch, Phys. Rev. <u>127</u>, 971 (1962).
- 33. B. Maglic', Lawrence Radiation Laboratory Notes UCID-1361.
- 34. Jean-Robert Derome and W. T. Sharp, Journal of Math. Phys. 6, 1584 (1965).
- 35. H. Kahn, Rand Corporation Research Report RM-1237-AEC, pg. 87 (1956).

