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ABSTRACT
THE EFFECTS OF UNITARY SYMMETRY
UPON MESON PRODUCTION
IN PROTON=-ANTIPROTON ANNIHILATION

by Robert G. Ponzini

A theoretical investigation of meson production
from proton-antiproton annihilation at total center-of-
mass energies in the range 1.88 to 3.00 Bev is carried
out. The Fermi Statistical Model is applied and is gen-
eralized, from an SU, invariant form, to include invari-
ance under the transformations of the group SU; .

The calculations were done using the Control Data
3600 Computer. Phase space integrals were obtained with a
relative error of less than 6% using a Monte Carlo tech-
nique. All combinations of mesons from the J=0-, 1l-, and
2+ nonets, which are allowed by conservation laws, are
included as possible final states. The calculation of the
SU; statistical weights became increasingly complex with
increasing particle multiplicity. It was therefore
necessary to limit final state multiplicities to six or
less particles under the assumption of SUj3 invariance.
This placed an upper limit of approximately 2.5 Bev upon
the energies which could be considered in this case. The
SU3 weights are tabulated. The SU; weights are much

easier to calculate so that, in this case, final states of



Robert G. Ponzini

up to ten particles'and energies of up to 3.0 Bev are
considered,

The results indicate that no substantial improve-
ment is made by the generalization from 302 to SU3
invariance or by the inclusion of the resonances comprising
the vector and tensor nonets. Furthermore, it is still
necessary to introduce unphysically large volume para=-
meters into the model in order to obtain results consist-
ent with experiment, a common difficulty in statistical
model calculations. However, the theory adequately
reproduces experimental results for pion distributions,

kaon production rates and charged prong distributions at

a number of energies.
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I. Introduction,

The proton-antiproton system and the myriad
of decay modes to which it is strongly coupled, has
been of considerable interest to experimentalists.,
With the advent of high-energy accelerators, a variety
of experimental data at various energies has been
obtained.l-ll The theoretical analysis of the system
and attempts to predict experimental results have
been incomplete. There appears to be little hope of
developing, in the near future, a quantitative theory
of multiple particle production in strong interactions.
Hence, one is forced to resort to phenomenological
models in order to deal with systems with three or
more particles in the final state.,

One such model, which has succeeded in pre-
dicting some of the experimental data, is the Fermi
Statistical M.odel.12 The model assumes that in a high
energy collision of two baryons in their center-of-
mass system, all the available energy is released into
a small volume surrounding the initial particles. The
energy is then redistributed in a statistical way.
That is, the relative probability for the formation of
a particular final state can be calculated by assuming

that all allowed final states have equal a priori

probability of being formed. The single parameter in
1



the simple model is the volume L in which the
interaction takes place. We would naturally expect
this to be of the order of the cube of the range of
the annihilation interaction,

The model, as proposed by Fermi, allows for
refinements due to conservation laws in operation and
hence, to consequences of symmetries which the system
possesses. One of the first refinements, due to Fermi
himself, was to build into the model the effects of
isotopic spin invariance.l3 We have extended this by
considering the effects of SU4 invariance in apply-
ing the model to meson production in proton-antiproton
annihilation,

The invariance of strong interactions under
the transformations which are generated by the group
SUs is currently being investigated. The main suc-
cess of the theory has been in reproducing large
segments of the mass spectrum of the hadrons, the
strongly interacting particles. This spectacular
success is only possible however in a "broken sym-
metry" scheme, that is, it is necessary to include
in the strong interaction Hamiltonian a term which
is not invariant under SU 4 transformations but
transforms like one of the generators of SUy ¢« In

a simple first-order perturbation calculation, this



term breaks the symmetry by splitting the degenerate
SUs energy levels to obtain the experimentally
measured masses,

When exact SU, invariance is applied to the
dynamics of strong interactions, the theory meets
only limited success.“”17 An obvious explanation
for this failure is that the broken-symmetry term
in the reaction Hamiltonian cannot be ignored in
dynamical calculations. A suggested way of by-passing
this obvious difficulty is to consider interactions
in which the energy available to the reactants is
much greater than the mass differences accounted for
by the broken-symmetry term.18 Proton-antiproton
annihilation into mesons is a reasonable candidate
since, even when the annihilation occurs at rest,
the energy available for meson production is large
compared to the meson mass differences in an SUj
multiplet. It is also possible that the effects of
symmetry-breaking upon a many-particle system may
be masked by the higher-order pure SU, effects.

The purpose of this calculation is then two-
fold. First we wish to investigate the effect of

8U , invariance upon a dynamical system of the type

discussed above. The secondary aim is to carry out a



fairly complete calculation applying the Fermi
Statistical Model to mesons produced in p- P
annihilation emphasizing the effects of including
recent experimental data on meson resonances. In
this vein, the following calculation differs from
those done previously in that all allowable combina-
tions of 27 mesons, including the JTP= o-, 1-

and 2% nonets, have been included as possible
final states. A Monte Carlo routine has been used
to evaluate the phase space integrals. Final states
of up to 6 particles have been included under the
assumption of SU, invariance and states of up to

10 particles under the assumption of SU, invariance.
All calculations have been done at total energies of
1.9, 2.3 and 2.5 BeV in the center-of-mass system
assuming invariance urder both SU, and SUj ,and at

3.0 Bev for SU, invariance only.



II. The Statistical Model

A, Formulation of the Model.

The Statistical Model was proposed by Fermi

in 1950 as an order-of-magnitude method of dealing
with multiple particle production resulting from
collisions between nucleons. The model attempted to
give estimates of relative cross-sections for pro-
duction of mesons and baryons from an initial two-
nucleon state.l2 The model was quite crude in its
original form, taking into account only energy con-
servation, Ordinary momentum was conserved only ap-
proximately by considering all particles to be either
extremely relativistic (mesons) or non-relativistic
(baryons) and then allowing the non-relativistic
particles to carry off momentum. Subsequent to its
introduction, the model was modified to include momentum
conservati.on,l9 isotopic spin conservation13 and final-
state interactions.zo In 1960, Hagedorn reformulated the
model in a rigorous framework starting from S-matrix
theory.z1 An important result of this formulation is
Hagedorn's interpretation of the volume parameters. Under

the assumption that the S-matrix dependence upon the

isotopic spins, momenta and masses of the individual



particles may be neglected, the product of the
volume parameters for a specified final state can
be interpreted as the mean value of the square of
the S-matrix element. This is a reasonable assump-
tion since, in the statistical theory, the main
dependence of the relative cross-section for the
production of any state upon the individual masses
and momenta is exhibited by the phase space integrals,
and the dependence upon individual isotopic spins
is exhibited by the weight factor. Hence, Hagedorn
concludes, the product of the volume parameters
should be dependent, at most, upon the total energy
and the number of particles in the final state
irrespective of their isotopic spins, masses or
momenta. We shall refer to this conclusion later.

According to the modified statistical model,
the unnormalized probability for the formation of a
specific state consisting of n mesons from p-—'F
annihilation at energy E, in the center-of-mass
system, is:

h'\l‘
Sm M, .. My E)= {Il' Q0 (z.s..-r')n‘j



where:
yn ¢ is the mass of the (* particle.
N A is the number of (identical) particles
wax

y
of the R* kind so that kz Naz= M.
-)

Sx is the spin of the &% kind of particle.
L)y is the volume parameter associated with
the k% kind of particle.
Ggunis a weight factor arising from the in-
variance of the interaction responsible for
the production under the Unitary group SU,, .
f’t is the familiar phase space integral.
In this calculation we shall consider invariance under
the groups SU, and SUs . In the above formula, one
must consider all the particles which fit into a
single representation of SU, as identical. We have
assumed throughout that all particles which fit into
a single irreducible representation of SU, , i.e.,
all members of the same isotopic spin multiplet, are
identical. In the case of SU3 invariance we con-

sider the above assignment to be a consequence of



symmetry breaking.*

*If Su, invariance were strictly true, all
particles in an irreducible representation of Su 3
would have to be considered identical, However, the
members of a given "SU, multiplet" are actually split
into its - isotopic spin (SUz ) multiplets by the

symmetry-breaking term.,



B. Successes and failures of the model,

The refined statistical model has had moderate
success in reproducing experimental data on distributions
for the production of pions and charged prongs from
annihilation of antiprotons.22 Its most drastic failure
has been that it predicts too large a rate of kaon pro-
duction., This discrepancy, of course, can be minimized
by introducing a volume parameter for kaons that is much
smaller than those for other mesons. Also, in order to
fit the experimental data, it has been necessary to intro-
uce volume parameters of the order of the pion wvolume,*
whereas general field theoretic arguments show the range
of the annihilation potential to be of the order of the
nucleon Compton wave-length.23 Assuming that the volume
parameter must be of the order of magnitude of the inter-
action volume, we would expect it to be of the order of
Vb!o‘sxw . As pointed out by Hagedorn, the requirement
of unphysically large volume parameters may be due to the
omission of possible fégal states, in particular, to those

containing resonances., Therefore, we have included as

possible final states all combinations of the 27 mesons

*The pion volume is the volume of a sphere whose
k)

radius is the pion Compton wave-length ) 5= %“’({E}Q
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comprising the "so=called" psuedoscalar, vector and tensor
-nonets which are allowed by conservation of energy, charge,
isotopic spin, baryon number and hypercharge. (The hyper-
charge Y is a quantity equivalent to the strangeness S

and related to it and the baryon number B by Y = B + S,

The isotopic spin projection quantum number is also con-
served in strong interactions. Its conservation is
guaranteed by the conservation of charge and hypercharge,
the three quantities being related by Q = T + 1/2 Y.)

A major source of difficulty with the model has
been the accurate evaluation of the phase space integrals.
Except for special cases, the integrals become so
complex for n greater than thnree that approximations are
unavoidable and the use of a high speed computor is
necessitated.24 In this calculation, the phase space
integrals were evaluated to within approximately 6% rela-
tive error bylg Monte Carlo technique developed by Cerulus

and Hagedorn. This technique, together with an error

analysis, is briefly outlined in Appendix B.



III. The effects of Unitary Symmetry upon meson
production in p- P annihilation.

A, Symmetry groups in physics.

It has always been the hope of physicists to be
able to describe matter as a composite of a few funda-
mental constituents. Thus, discovery of new particles
frequently leads to attempts to explain their existence
as a part of a general scheme or spectroscopy. With the
development of high energy accelerators has come the
discovery of a large number of new "particles". Among
the many attempts to classify these, the most successful
and fruitful has been the model known as the "8-fold way".
The basic assumption of this model is the invariance of
a thus-far undiscovered super-strong interaction under
the symmetry group SUg .

In the 1950's, experimental evidence for the
charge independence of the two nucleon force led to the
postulation of the conservation of isotopic spin in strong
interactions.25 In group theory language, this can be
expressed as the invariance of the interaction under the
special unitary group in two dimensions, SU, . SUg
is the group of all unitary, unimodular (determinant = 1)
2 by 2 matrices. This is, in a sense, a generalization
of the rotation group, having representations of all even

dimensions (corresponding to half-integral values of

11
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angular momentum) in addition to the odd dimensional
representations (corresponding to integral values of
angular momentum), which it has in common with the rota-
tion group.

In applying the theory of group representations
to physical systems,* symmetry with respect to a particu-
lar group is meant to imply that the Hamiltonian of the
system remains invariant under all transformations of the

form: y
o n ¢
Remon 0+ 2. & (0T ) ¢ B %%
Nro « “R=

where:
;I; are operators which are called generators of
the group. Th;;e may be chosen Hermitian in
which case they are related in the usual way to
physical observables. Of course, only those
generators which mutually commute may be
simultaneously diagonalized, the number of which
is called the rank of the group.

Eig are continuous parameters, the values of

which specify the particular transformation.

*In all that follows we limit ourselves to a con-
sideration of irreducible representations of simple Lie

groups.
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An n-fold degenerate state of the system is
represented by the basis states of an n-dimensional irre-
ducible representation of the group, one basis state
corresponding to one physical state.* There exists, for
a group of rank ,2 , ,ﬂ irreducible fundamental representa-
tions. These are fundamental in the sense that all irre-
ducible representations of the group appear in the Kronecker
products of the fundamental representations with themselves.
An important aim of most models is to fit the basic
constituents into the fundamental representations and then
to form the structured physical systems from these accord-
ing to the rules of group theory. For example, consider
the isotopic spin group, SU, , as applied to nuclear physics.,
The single fundamental representation of the rank 1 group
sU, is a doublet (I = VL», the two basis states of which
represent the neutron and the proton. Nuclei, of all
possible Z and N, fit into the higher dimensional irreducible
representations which are formed by taking Kronecker pro-

ducts of the fundamental representation with itself.

*We note that, in considering the theory of symmetry
groups in physics, there is first the group invariance
properties and then the correspondence of the mathematical
quantities with the physical system which we shall call the

model.
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B. Application of SU, symmetry to strong
interactions.

In 1953, Gell-Mann and Nishijima, on the basis of
the empirical evidence then available, postulated a new
additive quantum number called the strangeness which is
conserved in all strong interactions.26 This additional
quantum number could not be accounted for by SU ,
invariance alone. SUga , being a rank 1 group, allows for
only a single additive gquantum number, this being identi-
fied with the ( -spin projection Iz . Hence, there could
either be a product symmetry at work or the strong inter-
action could be invariant under a higher rank group which
contains SU, as a subgroup. A rank 2 group, having two
mutually commuting generators, could account for both the
additive quantum numbers S and LIz . An obvious candidate
(among others) for this role is SU3 , the group of 3 by 3
unitary, unimodular matrices.

There were a number of different models suggested,
each corresponding to a particular way of fitting the
known particles into the representations of the group. The
most famous of these was the (N=- N\ ) triplet model of
Sakata.27 In 1961, Gell-Mann and Ne'eman independently
proposed the model which has come to be known as the
"e:lght:f.t‘.vld-way".28'29 This model differed from that of

Sakata in that no attempt was made to fit observed
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particles into the fundamental representations of the
group. Instead, it was recognized that a large number of
the experimentally observed particles could be fit into
certain higher dimensional irreducible representations of
SUas . The real strength of the model was that a simple
modification of the SU3 symmetry could yield known mass
differ;nces to a high degree of accuracy. It was later
postulated that, consistent with the eightfold-way and
the observed sprectrum of particles, three hypothetical
particles called "quarks" and their antiparticles could
be associated with the fundamental representations of

SU3 .* The lower mass baryons are then formed by triplets
of quarks according to the prescription 3®3Q® 9= 10080601
and mesons from a quark-antiquark pair according to
2®3" = 8®1 . This adequately describes the known
baryon decuplet, octet and singlet and the three meson

nonets ( see Tables 1, 2, 3 ). (However, a second baryon

octet has not yet been detected). 1In addition, the search

*SUa , being a rank 2 group, has two fundamental
representations. These are each of dimension 3 and are

conjugate to each other.
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Table 1. Properties of the psuedoscalar (J=0-) meson nonet.

Mesons Average mass Isotopic Hypercharge Dimension
of the I-spin spin of SUa rep-
multiplet (Mev) resentation

Tz' 138 1 0 8

K® 496 1/2 1 8
o

K= 496 1/2 -1 8

n° 549 0 0 8

we 959 0 0 1

Table 2, Properties of the vector (J=1-) meson nonet.

Meson Average mass Isotopic Hypercharge Dimension
of the I-spin spin of SUy rep-
multiplet (Mev) resentation

f-g 1 — 0

K* e 891 1/2 1 8
e

K 891 1/2 -1 8

é° 1020 0 0 gt

we 783 0 0 1Y

Table 3. Properties of the tensor (J=2+) meson nonet.

Meson Average mass Isotopic Hypercharge Dimension
of the I-spin spin of SUarep-
multiplet (Mev) resentation

AL3 1327 I 0
*-

K3 1405 1/2 1 8
LN )

K™= 1405 1/2 -1 8
g +

1253 0 0 8

/
® r

; 1500 0 0 1
1.

In order to fit the masses of the mesons in the
vector and tensor nonets within the framework of the eight-
fold way, it is necessary to introduce mixing between the
two isotopic spin singlets. Therefore, neither can be as-
signed tc a definite irr- wcible representation, For sim-
plicity, we assigned the particies as shown.
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for quarks, which in this model must be of non-integral
charge, has been fruitless.

In order to account for the mass splitting of the
particles fitting into an irreducible representation of
SUs , (with pure SU 3 invariance, all particles fitting
into a given irreducible representation have equq} masses)
it is necessary to introduce a symmetry-breaking term
into the Haﬁiltonian. The term is chosen to transform like
one of the generators of SUj . This choice is in analogy
to the breaking of SU9 symmetry by the electromagnetic
force where a term transforming like the isotopic spin
projection operator Iz splits a degenerate set of particles
of a given isotopic spin into their observed charge multi-
plets. With this choice, a perturbation calculation then
yields the mass splittings of the mesons and baryons to
reasonable accuracy. Up to the present, this has been the
most impressive success of the "eightfold-way".

An obvious extension of this theory is to consider
the effects of SU4 invariance upon dynamical systems
undergoing strong interactions. Using the simple rules
for the expanding of a Kronecker product in terms of
irreducible representations of the group, with a table of
Clebsch-Gordan coefficients for SU, , one can predict rela-

tionships between various cross-sections. In this crude
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analysis, the symmetry-breaking term is always neglected.
As pointed out by Levinson, Lipkin and Meshkov, this is
reasonable only if the energy available to the system is

much greater than the mass splittings of the particles
18
involved in the interaction. This analysis has shown,
14-16
for the most part, poor agreement with experiment.,
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C. The SU, weight factors.

It is our objective to extend the statistical
theory to include the effects of invariance under the
unitary groups SU, and SU, . As pointed out in the pre-
vous chapter, invariance under these groups give rise to
a multiplicative factor G’so. in the expression for the

relative production probability for a given final state:

Raax "
P(m,..ma)= {'ﬂ' g'k * (2.5.-0-!)“" Gs"-\ Fn (m, W W, E)
R=t (1")3'!-3 -‘;‘. “.h‘o

where, in the n particle final state, there are "y
wa x

identical particles of the A% xind with n = A:-: N .

We now proceed to derive an expression for G-‘ulusing

an approach very close to that of Cer:ulus.31
Starting from S-matrix theory, with a definite

initial state ‘P.‘.,the transition probability to a set

F of possible final states \P; is given by:

p= 3 |<¢;|sl\l«e>l°"

$EF
. 2 2 S dntneapIisislg)”

VaRIABLES VARIAGBLES
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We assume that the wave functions are eigenfunctions of
the momenta, masses, spins and isotopic spins of the
individual particles (two nucleons in the initial state,
N mesons in the final state), We represent all quantum
numbers, except those associated with the isotopic spin,
by a single parameter, e’ ., In what follows, we shall
represent the isotopic spin of a single particle by ¢
and its projection by (g .

For simplicity, we shall assume that the initial
state is a "pure" isotopic spin state (o= I T¢ Tei; AiD.
If it is an admixture of isotopic spin states, one merely

has to average over its components as follows:
= % Qp ITaTa, 340

where : % lahl"s 1.
The final state is to be made up of YL single particles
each of which has a definite value of isotopic spin
VG, Mg Lz, Yy | (w Lzo). We transform from the
set of product wave functions to those which are eigen-
functions of the total I-spin by a unitary transformation.
We choose a scheme where the intermediate isotopic spins:

, -\
f: (: + ()

n

Hb
v

n
~
-t"o

<+

(o
P

4+

-
(")
o’
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are also diagonal. The transformation is:

|To, Ty Do 3 I,I, 7 = 2 Q""* eIty

Ll Lz Iz I .
L L .. a 1, L2 Iz
L S L% 3

IR AT (1G> > o ) i iegy)

T2, tea Il

where the C's are the familiar SU, Clebsch-Gordan

coefficients, The above expression is generally written

as:

1L, T3 Tpa ; TI; Y = 57 T Ty Taay TI, | o O e,‘>

I,
tg, Lz L, htta f2a

X (lt*h>4t1¢zz "%Lln>)

where the term in brackets is called the recoupling
coefficient. We will make use of the fact that the re-
coupling coefficient is real since it is a product of

Clebsch=Gordan coefficients. We also note that

. . . %
Z <Iz-»Is»"'In.n y Iz | f~---.‘"“7 = 4,

(2, (2, 2
"l' ‘zb “'la_
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We want to calculate the transition probability to

a final state of M particles |, (g, > {, i.,_,p a2z
the admixture of which in the properly constructed

final state 'I,_I‘, Ty 3L Lz 1is given by the
square of the recoupling coefficient

2

. Ln i'1.. N ‘:n
<IL)IQ,”‘ In-| ) I IL il. "l,. LLQ

Assuming the initial state is a pure isotopic spin
state q»( = | T Tz 'L«Z) ) our n particle state

yields a contribution to the S-matrix element of:

el SI4eD> = <TuTy Tnoy T Tag | 2 o §:n>

l ng, Lln,

X T Ty Too, Ts Tzg 5 ods| S| TiTag 5 4i ).

Conservation of isotopic spin demands that the
S-matrix element be zero unless Lg= T( and
Tz5= Iz,

Therefore:

< q’; | S| bi > <I‘-I$“'I-n a3 Le Iz |u. :L,._

{2y, (29q

X (ILIA“'Iﬂ-l , Lo Tz, ',‘(4 ‘Slii Iz:¢ j‘(l'.).
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Of course, the final state consisting of particles
| <, Lz..) ) i-:.'ng) | 'L‘i.;_,\) contributing to a
total isotopic spin (Ig,Iz,; ) may be realized
through a number of sets of intermediate isotopic
spins (I&,I‘, ...In_,) . We must therefore sum

over these:

KHl8I¥Y = 5 Tty To Tl w0

I, Ty Ty

X Ty Ty Taet, T Tpg 545 1S TeTai 5 A0

In order to obtain the transition probability we must
take the absolute square of the term above. We now
make a statistical assumption and neglect all inter-
ference terms by taking the absolute square within
the summation.

\<¢&|S|\h>|’~ 2 LTIy T T Ly o e >zt.

Lz (l“
I,:I’---I“-. )

2
X 1(1,,::3---1,,-.,151,_; ks | S| TiIa, 3*(7'

The basis for this approximation is that if enough
states are considered, there will tend to be an

equal amount of positive and negative contributions
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to the square of the S—-matrix from the cross terms,
This is essentially a random phase approximation,
In order to completely isolate all isotopic
spin dependence into a single multiplicative factor,
we shall assume that any isotopic spin dependence
left in the S-matrix element is negligible
| €T.Ts Tae, T Tz; 55 | SITT2l; 4] % | 1S 14, >|

g8o that we have:

RN R AR CE ML E-R N

+Tw-

X k(.(;|15|1457>‘
PE . KslSIkiD]®

..l' LZg L1u

where, following the notation of Cerulus:

I o

8 - 2 <ILI . I T s ¢ ‘.l .o !-l.

4 . . - d n-l, L+Z, "2, L2 Lz

Lz, Lo, - L ' 2 R
1 "2 In X, Ty.. Ty

Finally, we must take into account the fact that the

expression above assumes a definite order of the

individual particles (as specified by their isotopic

spin variables i, C; ) in the final state.
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We want to find the transition probability to a final
state consisting of M, particles of the first kind, n,
of the second kind, etc. regardless of their order. We
must therefore sum up the contributions to the S-matrix
element due to final states which are distinct permuta-
tions of the state abové. In doing this we make use of
the fact that the value of P-I

tzhizz---fzn
independent of the order of the { tz} . (See Appendix A).

is

Hence all the contributions are the same and we simply
multiply the term above by the number of distinct permuta-
tions of the set |(, Lz, >l tatza > lis (23Dl Latznd.

This factor is:

Lmay
T n! » i max
Lol ¢ wl""[ ns= —g-lm.‘"k = Z_:" n,
Ty ! " e
A= X

where;

M ( is the number of particles with a given
value of isotopic spin.
N x is the number of identical particles of the
,k't'-" kind. Particles are considered identical if
they have the same quantum numbers ( d, (z ).
We now have the following expression for the
square of the S-matrix element from an initial state of

isotopic spin (I{,Tz{) to a final state consisting
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of Rmay Sets of N _p identical particles of isotopic

spin ( (x,(zx):

‘n‘ .
L (R I AN K
TR P EPZHIFRNE
éo\g‘ < ¢*l l 4“)\ TI YI* ‘. "Z| 2y Lz'l ‘
v':'n'?“u.ts

Substituting this into the expression for the transition

probability gives:

P Tw!l pT =, g jdn LIRS Jp.l(“flsl"cﬂ
‘ﬂ‘ﬂ*' tz) tzg o “i" sPIN
A g VARIABLES

We recall that the symbol A represents mass, momentum
and spin coordinates. It can be shown rigorously (see

21
the article by Hagedorn) that the terms

3. j..;/a,,-,-, Q5 dpy [KAg)SI&D]*

SPIN
UAR\ABLES

give rise in the statistical model to the factors

{Tr‘_a;’* (25x+1) "‘} La L0 ).
Ra
A comparison of the expression for the transition

probability given above to that given previously, allows

us to identify the SU 4, weight factor for transition to
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a final state consisting of individual particles

| ¢ iz, >]¢a ¢'l‘_>.../£.. Czna> from an initial state

of isotopic spin ( I¢ ,Zz, ) as:

.
Goues o Pz
\SU‘L- Tr ] l,‘ZL Zyl
" Mg
where:
I >

- T Golao ., tn

' . . - 2. <I&I3-n I'.-' ) I‘ rlc ‘z.' i;). ‘zn >.
Lli Lzl. "lﬂ- Ia' IJ" I“-|

For the case where the initial state is not a pure

isotopic spin state but an admixture of the form:

e = 2 a5 1 TsIz57>
J
where:
L
S la;17= 1
J
the SU, weight factor becomes
I.
T N ! L J
Sl T ong!l
R

In the case of p- p annihilation, the initial state

(consisting of a proton and antiproton) is an equal

admixture of isotopic spins 1 and 0 so that:

m 9 ! 4 I=0
Croy = A" Tt 4L .
Suk 2- cz.(z’_--cz. Zn ‘Z, ‘Z,t""z.'
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D. The SU; weight factors.

We now proceed to generalize the preceeding
discussion to obtain the weight factor for the case of
invariance under the group SU; . SU4 differs from SU_
in that it is not a simply reducible group. This gives
rise to two basic changes in the Racah algebra for the
group:

l., 1In general, an irreducible representation is not
equal to its complex conjugate representation.

2, In a Kronecker product, a given irreducible
representation may appear more than once,

We will represent the pair of eigenvalues of the
Casimir operators of SU3; by the single symbol* U and the
basis states of the irreducible representation by ¢:ro§:, Y
The symbol ¥ is necessary only if f is a state belong-
ing to a representation which appears more than once in
a Kronecker product; I is the eigenvalue of the Casimir
operator of the subgroup SU,; (it is the isotopic spin);

Ii and Y are the two additive quantum numbers for SU 4

*SU3 is a rank two group and therefore has two
Casimir operators. The eigenvalues of these, in a
particular order, uniquely identify the irreducible

representations.
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and are respectively the eigenvalues of the operators
representing the isotopic spin projection and the hyper-
charge.

We couple states in SU3 as follows:

Ul’ - 2-' M, My, U' ) + M, *0,‘
IIzY iz G2y (L.(z.j. Ca iz;ja. II;Y Glz, Yo i,.éz‘ﬂ._
4 4=

where: T, = (2, *+lz,

Y’ H|+ﬂ:~.

where the term in parentheses is the SU 3 Clebsch-Gordan
coefficient., We again start with the expression for the

transition probability:

p- 3. 3 j...jag a5, . dB 1< 181>

SV, sPiw
VaARIABLES VARIABLES

and, as before, we shall attempt to explicitly to perfcrm the
summation (approximately) over the SUj3 variables.

We assume that the wave functions are eigen-
functions of the momenta, masses, spins and of the SU,
variables of the individual particles filling the states.
The SU 3 variables consist of the eigenfunctions of the

SU3 Casimir operator A4 , of the SU, Casimir operator L
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(the isotopic spin), of its projection (x and of the
hypercharge Yy o We again represent all other eigenvalues
by the single parameter & .

We assume that the initial state is a pure SUj,

state of the form:

= U¢
Lh ¢IL,I1(,Y( )

We shall later generalize to the general case of an
initial state which is an admixture of various SU »
states. The final state is to contain M single particle

states each of which is an SU 4 eigenstate:

| (*‘t (z, 107, cr"a. Lz, ﬂ l *"'l"ln _ﬂn>

We recall that the final state is to consist of mesons
which fit into either the 8 or the 1 dimensional
irreducible representation of SU 5 each with a given
value of isotopic spin { , projection (z and hypercharge

j . (See Tables 1, 2, 3)

The final state is to be formed as an eigenstate

of: U'S‘Y = M.QM,_Ddae"'QMn

-

- - -
I;: (—L“*'L‘*‘ L3+000+Ln)
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which will be some linear combination of our product
states above, We transform from the system of product
states to those which are eigenfunctions of Ug§ and Iy
by a unitary transformation. We choose a scheme in

which:

U.L-r = MO Uy

Tr= (L T)”
Ua,-’ A ® My @ Ay
i‘\;- = (L|+LL+L3)L

Un-iy, = M@ U © dy - ® dn

=, -~ = A = \2
I,\_' = ((+ly +Lt -t Ln-.)

are also diagonal. The transformation is:

Uclr ')J' . U“_| U';Y 7 E'
‘ IL ) Ie J) In-| I* Iz; L "zlj ‘4 ‘lajl.
’ \ UJ' o 0 o
x Q Ill. l;’ Lz, j’ I‘ IlaYa

V) "
N (VI v Mo % ‘#L '-z.j' ‘ +d:‘£1,, jn>,

TaTp, Yoo 0 i2nyn |T5T2g s

We again identify the product of Clebsch=Gordan
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coefficients as the (real) recoupling coefficient and

write this as

< u.lr) UJ, . Uﬂ-lY U.‘r l A’ IJL JJ.,,
) A,
Iy I, L I;'V.; LY LY [

where we have introduced the standard notation

7/ = ( ‘.1 ) y)
also
Vay Uay Un-u, : U;r M, 4y, .
) )t (Y, CaVy L,,'l/., i
1' V&ooo V,‘ IL I" I“-' I‘V; 2

We now identify the recoupling coefficient above as the

admixture of our product state

‘ #;,v,>“%ou/b ’ +if:/n,>

in the correctly constructed final state

UJ.( UJY ) e Un-,r . U'FY
I.' I, In-t "’ I;Vf .

Assuming the initial state to be of the form

\pé = 15;:,:1/: = 'I.ti"\/.> , our n meson state

has an S-matrix element equal to:

UJL ) U -1 . U; ‘Al “.Am>
<¢F‘S,4"~7 = Ia.x I:r ' I“v\-r ) Is{/f ] (Y

v v U Ue . L.
X < 7 ""'Isi}s;ékfls\lavc ’A°>.
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Invariance of the interaction under SU 5 demands that the

transition probability be zero unless:

'IKF = 7bf (This implies the two equalities

Tzg = Tz¢ anda Yg = Ye )
( ¥ may take on more than one value since U¢
may be contained ¥ times in the Kronecker
product U@ MU, ® - ® dn)

Therefore:

bl Sy = Yor oo Vg 120 2

X Vay Uar e Un.-, Ui "*G\S\ Ve | 4,>
I, 13 To- Ic'z{) I. v’ /.

Again, we must sum over intermediate states to obtain the
transition probability to our Y. meson final state. How-
ever, in addition to summing over the intermediate SU 3
representations L)r , We must sum over all intermediate
isotopic spin states I which are contained in a given
irreducible representation lJr . We now have:

v Unary T
<QL“E;|¢ :> Iiﬂ"’?fl-f "I T/""W ‘n:k>>

Uy Uar . Vnaiy
Ia. 13 I~

v U Un-i
" I:r Sy I:-r IJ/)’\‘S‘I'V"<>
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where the prime on the summation is meant to indicate that
there is to be a sum over the ¥ associated with U if Y
takes on more than one value.

We now take the absolute square of the S-matrix element
and make the statistical assumption by neglecting the

interference terms.

Usy Usp Une My | Ha \*

OB IR AT SRR AR,
lr 3, U'l-lx

I, Ty Tna

U:.( Uar Un—\, Ut( g{ S .(>’L
|< I., : ‘F' II..V ) AL .

V\—!

In order to isolate all SU , dependence in a single term
we assume any further SU 4 dependence in the S-matrix

element is negligible:

L
‘< Ua.r ‘iﬂ-lt , I" s(s_ l S‘ J‘L?l X |<°‘;|S'4‘->I.L
So that we have

[<pelslgf= |27 Lot di |- Y

u‘f . H-lr

.’ Iv\- Xl<d¢|8|°(c>\’“

= R [l SlAy]”

Y, NV, Y,
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where we have defined a P-factor for SU, in analogy to
that for SU, .

Finally we must take into account the fact that a definite
order has been assumed for the individual particles in

the final state. Since we want the transition probability
to a final state of N specified individual particles
regardless of their order, we must sum the contributions
due to states which are distinct permutations of the state
above. It is shown in Appendix A that the sum over inter-
mediate states of the recoupling coefficient is independent
of the order of the constituents in the set “'1/ 5
Therefore all the contributions are the same and we must

multiply the expression above by the number of distinct

ermutations of the set t> / :7
P /cw /QV Lm%t

This factor is:

w !

.&,—,,—-——‘% ,

A=l A .

where:
M is the number of particles in a given
irreducible representation of SU, . For the
weights we have calculated, M is the total number
of particles in the final state.

N is the number of identical particles of the
A? kxind,
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In this case, particles are considered identical if they
have the same quantum numbers ( «,c¢, ¢z, Y ).

We therefore have the following expression for
the square of the S-matrix element (summed over SU 4
variables) from an initial state specified by the gquantum
numbers ( U«.‘, I,;, Iz£,~Y¢,' ) to a final state consist-
ing of R wax sets of Y p identical particles with quantum

numbers ( Un, ca, 2, Y2 ):
S| n! - &
%-n ‘(‘l’-ﬁ-\s\‘h?\ = 4 M, ! /Py,v,_a{,...v/m

Vui‘nu.ee k
x K Lslsl4cp|*

Substituting this into the expression for the transition

probability gives:

? = v ! {Z‘/ Ua.;” Un-p‘, Ucr My My, >L}

ﬂ- Yl'_k ! U&r .Un-.r I"’ ‘ I"‘-l ) ILV" l:,‘V, " l:n'{n
I, In-i
- a= - 9
x 25 [oof BB 0B (<l S 14051
$SPIN

VARIABLES

As in the previous section a comparison with the general
expression for the transition probability allows us to

identify the SU, weight factor G'503 . The following
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weight factor is for a transition to a final state con-

sisting of individual particles l¢ V >|e b, "a. - \+ann

from an initial state ¢I 1/; .

v ! Vi, T
G.su,, T TTwy! E,w,,---v,,

It only remains to generalize this expression for the

case where the initial state is a linear combination of
"pure” SU, states. We construct our initial state by
coupling the states representing the proton and the anti-
proton using SUa, Clebsch-Gordan coefficients. We recall
that the proton and the antiproton, respectively, fit into
the ( I="a» ,Tz2=Ya,Y=2 ) and the (T="a,T;=-"h, Y=-1)
slots of 8-dimensional irreducible representations of su;.

They therefore couple to I =« Oor 1 with Iz=Y= 0 . oOur

initial state is:

R N N o N
where a,. an.d Ay are sU 4 slebsch-Gordon coefficients
satisfying the relation %' |a-J¢|~ + |1’)¢'x =

The index R runs over the g irreducible representations

in the Kronecker product 8® 8 = Q7@ /06 '8, & 8, &1,

Substituting the Clebsch-Gordan coefficients into the

*The 8-dimensional representation is equal to its

complex conjugate, (e. 8= 8%
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expression above yields:

3

8 8
q'i'z ‘021 ('I,,'Ia.i o -lp-2

Ux ) + Ux
00O 000

+ ('/:.e"‘l-l '/xe"'/s'ﬁ- lo.;) +loo .

For simplicity we may combine the two terms and write:

8 8 )
yo = 2, 2, (v,.m Vo th-2 Iu°°} 1>I;uw
Uh Ipn

2 2 a% 4

u‘k Ip Ik I*OO"

While U,Q, runs over the set {37, /0, 10", 8, 8’., 1} ) Ix
takes on each of the values 0 and 1., Using this initial

state, the weight factor becomes:

!
G s, ® _vn— z =2, 3 la™\*

<o-1¥ U-ﬁ' U“"I’ : U}yn .}1.,.‘.\,,‘" -“"7
X ' Ty Taer P IpVUa |6V Q% (9 A
where the prime has been dropped. Also we must explicitly
sum over both of the 8 dimensional representations in
the set {U,ﬁ,} o« We express the final result in terms
of the SU 4 P-factor:
|
n. Ua |2 Up Ix
Crsus = I yu'.. ZA 2 \O‘IA 'Pv,y;...v..,

o* u"r . dﬂ-'r

Te T, 1 wey
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where we recall:

P U* Ik 2’ < UJY U.gr Un-ur ; \)‘h( Jl, . A'L 2
Yo Ta' Iy Ty TIpVa [0y’ Gave
Var u’l‘ . Un., Y
Ta' Iy T

We also define the product of the P-factor and the permuta-

tion factor as:

|
AR
V.V&...’J“,-

]
Tl

The SU 3 weight factors and terms P

v Ya

U, I
oWy

.,/“) used in the

calculation are listed in table 4 for given values of

(Y, %avs - Yw ),

*
that the sum Z_. "p..,, .Z’ T
Y Vp-

A check on these is obtained by noting

Vo is equal to the number

of times that the irreducible representationé{) appears

in the Kronecker product i,® dy® -+ ® MUw .

sums agree with these values
ancy is annoying. It may be
table of SU3 Clebsch-Gordan

to computer round-off error.

* The table of SU 3

that we have used is:

The
to within 1%, The discrep-
due to a misprint in the

coefficients* or, less likely,

Clebsch=Gordan coefficients

Kuriyan, Lurie' and Macfarlane, Jour. of Math.,

Phys. 6 722 (1965).
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Table 4. SUg weight factors for states of mesons from the 8-dimensional representation.

30 labels (1,1i,,y) of the ﬂ_m.a state P-factors for SU, Py 0. /o Total
individual particles illed with I=0 U below I=1 U below SUs
=0~ mesons 27 8 1 27 10 10" 8 weight
(1 0 0)(1 0 0) weTre .0084 .2000 .1250 O 0 0 0 .0763
(10 0)(0 0 0) e ne 0 0 0 .6000 .5000 .5000 .4000} .2367
(0 0 0)(0 0 0) ne n° .6750 .2000 .1250 O 0 (] (] .1263
(1 1 0)(1-1 0) m+w- .0167 .4000 .2500 O .1667 .1667 .6667] .3358
(%' 1) (Ya-"a-1) K* K- .1500 .6000 ,2500 ,2000 .1667 .1667 .4667]| .3792
(Yo-%1) (2 Ya-1) Ke K° .1500 .6000 .2500 .2000 .1667 .1667 .4667| .3792
Totals 1.00 2.00 1.00 1.00 1.00 1.00 2.00

Number of times U appears in 8®8 1 2 1 1 1 1 2
(1 00)(1L00)(L 0 0) Tetreme ) 0 0 .1095 .0916 .0916 .2967| .0954
(1 0 0)(L O 0)(0 0 0) mewen® .4107 .5000 .0750 O 0 0 0 .1902
(1 00)(00 0)(0 0 0) we NeNe 0 0 0 .6429 ,2500 .2500 .5000| .2226
(0 0 0)(0 0 0)(0 0 0) ne ,Po.qﬁa .2893 .3000 .0250 O 0 0 0 .1148
(1L 10)(1-1 0)(1 0 0) ™ 7 .1500 .6000 .2500 .4429 .3642 .3642 1.188| .6046
(L1 0)(1-1 0)(0 0 0) mrr-n° .8214 1,000 .1500 .9000 .5000 .5000 .6000}] .6937
(Y2 ¥a.1) (Ya-'h-1) (1 0 0) K* kK-me |.2821 .5333 .1750 .6238 .5216 .4475 1.091] .6008
(Y2 /2.1) (h-'A-1) (0 0 0) K"K Nn°® |1.318 1.200 .2250 .7286 .4167 .4167 .5333| .7537
(%a-t%1) (Ya'a-1) (1 0 0) K® K°me |,2821 .5333 .1750 .6238 .5216 .4475 1,091}| .6008
(Ya-'21) (¥a%-1) (0 O 0) Ke R u. 1.318 1.200 .2250 .7286 .4167 .4167 .5333] .7537
(%-'%-1) (a-a 1) (1 1 0) K-kernw* |.5643 1,067 .3500 .6190 .4506 .5247 1.086] .8027
(72 Y21) (A 'h-1) (1-1 0) K*k°mwr~ |.5643 1.067 .3500 .6190 .4506 .5247 1.086] .8027

QOﬂmHm ml . P . e Y e

Number of times U appears in 8®8®8 6 8 2 6 4 4 8

\—vt Uzl

wmacmw to the P-factors Vy, v, 3, --- 34, averaged over the initial state components.
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Table 4, (Continued)
SU labels (i1,1_,y) of the |This state P-factors for SU, PLYE Total
individual partfcles filled with | I=0 U below 'T=1" U below SU4
J=0- mesons 27 8 1 27 10 10* 8 weight
(1 00)(1 00)(100)(1 o0 0) memememe .0537 .1057 .0371 0 0 0 0 .0404
(1 00)(1 00)(100)(0O0 O0) :.c:.o:.ooﬂo 0 0 0 «5872 .3477 .3477 .4228) .2153
(L 00)(100)(0 O0O0)(0O0 0) LIAd LA (G (N «8696 .5143 1250 0 0 0 0 «2351
(1, 00)(0OOO)(0O O0O0)(0 0 O0) qﬂoﬁoﬁoﬂo 0 0 0 .6348 .3571 .3571 .,3429}| .2030
(0 0 0)(O O 0O0)(0O O 0)(O O 0) #e#on_ﬂoﬁo «3616 .,1429 ,0375 0 0 0 0 .0747
(1 10)(1-1 0)(1 00)(1 0 0) wHwwen® |.4928 .8451 .2969 .7500 .5714 .5714 1.333| .8042
(1 10)(1-1 0)(1 0 0)(0O O 0) d.+:\404fo 1.757 1.600 ,3000 2.395 1.365 1.365 1,702} 1,513
(110)(1-1 0)(0 0 0)(0 O 0) :....:.-Ao: 1.739 1.029 .2500 1.093 .5714 .,5714 .8000] .8611
(L10)(11 0)(1-1 0)(1-1 0) Tt |.3214 .6349 .2222 .4554 .3909 .3909 .8889 ) .5604
(4% 1)(+-1)(1 0 0)(1 0 0) K*k-mwem® |.6607 .9365 .2778 .8063 .5309 .5305 1.016}] .7714
(£ + 1)(£-¢-1)(1 0 0)(0 0 0) .n....n':.o;o 1.707 1.352 .2667 2,654 1.467 1.425 1.870] 1.510
(++ 1)(£-4£-1)(0 0 0)(0 0 0)] K'k'\°n° |2.346 1.457 .3000 1.063 .5238 ,5238 .6762| 1.002
(+ + 1)(£-¢-1)(1 1 0)(1-1 0) Kreemhrm 1.989 2,806 .8222 2.342 1.661 1.552 3.069| 2.312
(-t 1)(£L £-1)(1 0 0)(1 0 0) Kexkem°n® .6607 .,9365 .2778 .8063 ,.,5309 ,5305 1.016}{ .7714
(£ 1)(t +-1)(1 0 0) (0 0 0) xoﬂozoﬁo 1.707 1.352 .2667 2.654 1.467 1.425 1,870} 1.510
(-4 1) (£ £-1) (0 0 0) (0 O 0) xoﬂo./oﬁo 2.346 1,457 .3000 1.063 .5238 .,5238 ,6762] 1.002
G+ 1) +-1)(1 1 0)(1-1 0) Keken*w- |1.989 2.806 .8222 2,342 1.661 1.552 3.069| 2.312
(F-+-1)(L%1)(110)(1 0 0) K-k°w*nw® |1.336 1.867 .5333 2.070 1.379 1.479 2.725] 1.808
(+-+-1) (£% 1) (1 1 0)(0 0 0)] K K°W*n® |3.414 2.705 .5333 2.655 1.422 1.464 1.870| 2.076
(£ % 1)(££-1)(1-1 0)(1 0 0) _A..moﬂma.. 1.336 1.867 .5333 2,070 1.379 1.479 2.725] 1.808
(£ %+ 1)(¥%-1)(1-1 0)(0 0 0)|] K*®Renm"n°® |3.,414 2,705 .5333 2.655 1.422 1.464 1.870|] 2.076
(£ % 1)(£% 1) (£-3-1)(£4-1)| K'xPK K- |.7143 .8254 ,2222 .6577 .4321 .3679 .6843| .6211
( # D (£%°1) (¢ D (+ £-1)| xTAxk°k° [3.029 3.225 .8222 2,595 1.549 1.657 2.695] 2.453
A&-& 1)(# 3 1) (£ £-1) (£ £-1) KoK°K°R® |.7143 .8254 .2222 ,6577 .4321 .3679 .6843] .6211
mo.ﬂ“Hm . o . ° . ° .
No. of times U appears in 8 ©808®8 33 32 8 33 20 20 32
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Table 4., (Continued)

[|’
» X

SU labels 1Y) of the | This state P-factors for SUs Pz X Total
filled with I=0 U below ¥=1 " U below SU
individual particles J=0- mesons 27 8 1 27 10 10* 8 weight
(100) (100) (100) (100) (100) | mememrem°rr® 0 0 0 .0939 .0624 .0624 .1250 ] .0490
(100) (100) (100) (100) (000) | Tememomen® | .4222 .3448 .0661 0O 0 0 0 .1434
(100) (100) (100) (000) (000) :...q.a._n:. 0 0 0 1.067 .5155 .5155 .6896 | .3535
(100) (100) (000) (000) (000) | T°wn°A®n°® | 1,101 .6696 .1071 O 0 0 0 .2969
(100) (000) (000) (000) (000) | Ten°R°nN°N°® 0 0 0 .6362 .2679 .2679 .3348 | .1864
(000) (000) (000) (000) (000) A.ﬁo:.ﬁ;o .2411 .1384 .0179 O 0 0 0 .0618
(110) (1-10) (100) (100) (100) | rHr-wemrr® | .6607 .9365 .2778 1.127 .7489 .7489 1.501 { .9529
(110) (1-10) (100) (100) (000) | w'w wemwen® | 3,377 2.760 .5282 3,991 2,188 2,188 2,810 | 2.566
(110) (1-10) (100) (000) (000) | T*m weq°n° |3.911 2.429 .5000 4.272 2,060 2.060 2,760 | 2.499
(110) (1-10) (000) (000) (000) | Trwn°nene |2.202 1.339 .2143 1.527 .7292 .7292 .8095 | 1.057
(110) (110) (1-10) (1-10) (100) w*w*m-mw-/°}1.321 1.873 .5556 2,055 1,380 1.380 2.746 | 1.807
(110) (110) (1-10) (1-10) (oooY w*m*mrmr-n° | 2.536 2.068 .3968 2.689 1,452 1.452 1.873 | 1.808
(£4 1) (3%-1) (100) (100) (100 x+m.=..=. ° ].7256 .8121 ,2117 1.279 .8396 .7662 1.384 | .9092:
(£4 1) (£+-1) (100) (100) (100) K°K®mwememe | ,7256 .8121 .2117 1.279 .8396 .7662 1.384 | .9092
(£41) &-1) (100) (100) (000} K¥K-mewen® | 4.063 2.986 .5853 3.601 1.900 1.900 2.436 | 2.519
(4% 1) (k% -1) (100) (100) (000) K°K®*wemw®n°® | 4.063 2.968 .5853 3.601 1.900 1.900 2.436 | 2.519
(£ £ 1) (£ %-1) (100) (000) (000) K*K~w°n°n° |3.652 2,196 .4226 4.901 2.438 2.372 2.971 | 2.570
(1) (4 £-1) (100) (000) (000 Ko K*T° n°n°® | 3.652 2.196 .4226 4.901 2.438 2.372 2,971 | 2.570
(£ £1) @&%-1) (000) (000) (000) K*K™ n°n°n° |3.188 1.768 .3036 1.377 .6548 .6548 ,.7321 | 1.225
(+7+1) (x+-1) (000) (000) (000 xox.._un:.:. 3.188 1.768 .3036 1.377 .6548 .6548 .7321 | 1.225
(£ £1) (£%-1) (110) (¥10) (100§ K*K"m*7m-m° | 6,545 7.344 1.930 9.027 5.678 5.465 9.633 | 7.022
(£7% 1) (£1-1) (110) (>10) (100} K°KR°w*m m® | 6.545 7.344 1.930 9.027 5.678 5,465 9.633 | 7.022
(4 1) &&-1) (110) (110) (000) K*w-m*7 N°® |12.15 8.907 1.754 10.82 5.751 5.648 7.323 | 7.543
¢c~£1) (%-1) (110) (140) (000} KeEem*n n° | 12.15 8.907 1.754 10.82 5.751.5.648 7.323 | 7.543
&3-1) (74 1) (110) (100) (L00) K-k°m?rmem® | 2,901 3.250 .8452 3.825 2.353 2.471 4.124 | 3.045
(£+1)(xt-1)(120) (100) (100Y K*&E°m-7°h° | 2,903 3.248 .8470 3.833 2,351 2.466 4.126 | 3.046
(%) &4 1) (110) (100) (000§ K- #°mr*mr°N®|8.045 5.869 1.167 9.596 5.018 5.090 6.503 | 5.829
(£41) (4#-1) (110) (100) (000} k*Kk°m~ wen°|8.045 5.869 1.167 9.596 5.018 5.090 6.503 | 5.829
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Table 4., (Continued)
S0 Iabels (i,i,,y) of the [Ihis state | P-factors for su, p~ 0.x Total
individual particles filled with I=0 U below Viva o 'fiT® U below SU s
J=0- mesons 27 8 1 27 10 10* 8 weight
%41) (k1) (110) (000) (000) .ﬁx wt ¢ n® |7.304 4,393 .8452 4.896 2.373 2.439 2.967 |3.554
(£%1) (k441) (110) (000) (000) *Rew v |7.304 4.393 ,8452 4,896 2,373 2.439 2,976 |3.554
(4-4-1) (4% 1) (110) (110) (110) x-x cwtwtw 4,353 4,873 1,270 5.100 3.124 3,298 5.506 |4.277
& £1) & £-1) (10) (H0) (110) | K*Kem-ww¥l4,353 4,873 1.270 5.100 3.124 3.298 5.506 |4.277
(£%1) (£41) (14-1) (54-1) (100)] KYkT K- T° 11,902 1,777 .4277 2,469 1,535 1,345 2,255 1,742
A.w.w: (33 1) (2£1) & 4-1) (100)| K°K®K°E°m°l1,902 1.777 .4277 2.469 1.535 1.345 2,255 {1,742
(F41) (£41) E4-1) %-1) (000) ﬁn*xi\a 3.857 2.651 .5159 2,746 1.450 1,370 1,777 }2.073
@ 1) 34 1) (x+1) & 4-1) (000)] KoK°E°k® a 3.857 2.651 .5159 2,746 1.450 1,370 1.777 |2.073
(+1) (35-1) (3%1) (£%1) (100)] K*)"k°K°*7°|7.493 7.013 1.684 9.816 5,721 5,720 8.930 [6.895
(¢ 4%1) (£-31) 2%1) (%) (000) k{\hom.u 15.43 10.37 2.016 10.92 5.534 5,692 7.054 ]8.193
4-31) (£731) (3%1) (A%4) (110)] k" K°Kk°E°n? 5,581 5,242 1.261 5.484 3.088 3.316 5.019 }4.402
T41)(X11) (3-12) (X%-1) (110) x_»x‘u..hoﬁ 5.581 5,242 1.261 5.484 3.088 3.316 5.019 }4.402
(£11) G-4-1) (%1) (441) (110)| K'x ¥ ¥°7” |5.696 5.338 1.288 5.580 3.323 3,132 5.040 {4.461
(£+1) (A~%1) ($&-1) (X %4) (120) KTk°Z°k°7 |5.738 5.314 1.270 5.581 3.278 3.169 5.010 |4.448
Totals 178, . .0 .6 99,66 . 45.
No. times U appears in 8®8©8® 860 8 180 145 32 180 100 100 145
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Table 4, (Continued)
SU labels (i,1,,y) of the This state P-factors for Su, P* ..wﬂﬁ. .A otal
individual wmnmwnwmm filled with I=0 U below Yi1Y2T=1% U below SU3
J=0- mesons 27 8 1 27 10 10* 8 +eight
(100) (100) (100) (100) (100) (100)|Wemwere e’ L0519 .0583 .0156 O 0 0 0 .0233
(100) (100) (100) (100) (100) (000) 4:......33:..;“ 0 (] 0 .5173 .2751 .2751 .3500}.1792
(100) (100) (100) (100) (000) (000)| Wemw°w e n®N° P.012 .6585 .1293 O 0 0 o0 [.2963
(100) (100) (100) (000) (000) (000)| W N°N°N° 0 0 0 1.655 .7977 .7977 .8779].5033
(100) (100) (000) (000) (000) (000)] T W n°A°N°® B.423 .6920 .1256 O 0 0 o |.3300
(100) (000) (000) (000) (000) (000)] T N°A°N°n°N° 0 0 0 .5824 ,2790 .2790 .2768]|.1693
(000) (000) (000) (000) (000) (000)] N°N°A°A°°N°® L2131 .0938 .0173 O 0 0 0 |.0463
(110) (110) (100) (100) (100) (100)] W*w-Twemwemew°l. 9341 1.050 .2813 1.385 .8590 .8590 1.500]1.052
(110) (110) (100) (100) (100) (000)| Trw wemem°N°K.875 3.583 .7024 6.206 3.302 3.302 4.199]3.679
(110) (110) (100) (100) (000) (000)] w*nw werr*n°n° B.816 5.267 1,035 8,840 4.326 4.326 5.375]5.230
(110) (210) (100) (000) (000) (000)| w*m T°N°N°N°® .375 3.536 .6071 6.615 3.193 3.193 3.511|3.628
(110) (}¥10) (000) (000) (000) (000) d+=,.~.;3.u. .847 1,384 .2511 1.728 .7924 ,.7924 .8839}1.171
(110) (110) (¥10) (310) (100) (L00)| W w " wew® B.430 3.857 1.025 4.892 3.120 3.120 5.393]3.810
(110) (110) (3+10) (10) (100) (000)| W*w*m " 7°N° P.752 7.167 1.405 11.38 6.045 6.045 7.703}7.000
(110) (110) (¥10) (1410) (000) (000)| M*¥n- 7" n“ﬁ .608 3.952 .7753 5.851 2.893 2.893 3.583)3.682
(110) (110) (110) (120) (H0) (120)| wrorwrer*™r~ h.,038 1.167 .3125 1.352 .8673 .8673 1.500|1.097
(£%1) (49 (100) (100) (100) (100)| K* k" wewrem°m®h.128 1.073 .2625 1.332 .7708 .7653 1.208|.9825
(A~%1) &% (100) (100) (100) (100)| k°K°mew°M>T* h.128 1,073 .2625 1.332 .7708 .7653 1.208}.9825
(® 19 (£*%4) (100) (100) (100) (000)] K* k"WwewWem*p* B.572 3,116 .6091 6.578 3.441 3.334 4.270]3.572
&%) (£4-9 (100) (100) (100) (000)] K°K®wemwem*N® U.572 3.116 .6091 6.578 3.441 3.334 4.270|3.572
e 44) (4-19 (100) (100) (000) (000)| K*'®R-W°wW°n°h°® 10.30 5.985 1.120 8,165 3.939 3.939 4.702|5.278
(%9 (£ £9 (100) (100) (000) (000)] K°K°mem*rPn® [10.30 5.985 1.120 8.165 3.939 3.939 4.702}5.278
(19 (4£=t9 (100) (000) (000) (000) x+x-=..ﬁ;.:. 5.998 3,185 .5491 7.656 3.612 3.559 3.984]3.767
d~x1) (£ 19 (100) (000) (000) (000)] K°K°mwonR®>N°N® |5.998 3.185 .5491 7.656 3.612 3.559 3,984]3.767
1 1% &4 (000) (000) (000) (000) x+x-ﬁ.:3.é. .925 1,942 ,3315 1.607 .7329 .7329 ,.7961}1.387
&~%%) (£4-9 (000) (000) (000) (000)f K°R®N°N®N°N° |3.925 1.942 .3315 1.607 .7329 .7329 .7961}1.387
( 43) ("9 (110) (110) (100) (100)| K*K-n*n W w2 15,72 14.98 3.636 20.60 12.29 11.75 18.93|14.61
(k-%3) (k4 (110) (110) (100) (100)] K R°w*nw" n°W° 15,72 14,98 3.636 20.60 12.29 11,75 18.93|14.61
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Table 4. (Continued)

SU labels (i1,iz,y) of the "This state P-factors for SUs Py DT - Total
individual particles filled with | I=0 U below " P21 *0" below SUs
J=0- mesons 27 8 1 27 10 10" 8 |Jweight
. - - ©
& 41) @ty (110) (110) (100) (000) | K*e T N° 41,43 28.25 5.508 46.06 23.91 23.48 29,85 |27.70
12 &+-9 (110) (120) (100) (000) | kKeR°TT*n n”"Nn® |41.43 28,25 5.508 46.06 23,91 23.48 29,85 ]27.79
£441) &3-9) (110) (110) (000) (000) | k* k" wtm-n°n°® [30.76 17.89 3.340 24.42 11.91 11.74 14.12|15.80
@49 -9 (110) (110) (000) (000) | K°R°wW' n°n° }30.76 17.89 3.340 24.42 11.91 11.74 14.12[15.88
441 @&+9 (110) (110) (110) (110) | k* w*ntrw~ 11.23 10.70 2.598 13,15 7.900 7.527 12.14 |9.811
(-+1) (£ 1-9 (110) (110) (110) (110) | k°K°w*r*v r” j11.23 10.70 2.598 13.15 7.900 7.527 12,14 }9.811
G449 ¢-49) (110) (100) (100) (100) | k-k°mw* r°m°w® |4.468 4.262 1.024 6.292 3.646 3,755 5.820 |4.346
G14) @49 (110) (100) (100) (100) | K*K°m TT°w°T® |4.468 4.262 1.024 6.292 3.646 3.755 5.820 |4.346
@49 & 49 (110) (100) (100) (000) |} K-K*mw*mer°n® |18.28 12.45 2.438 19.68 10.06 10.20 12.78 |12.05
@&14) G4-9 (110) (100) (100) (000) ] k*K°m-merrevy® |18.28 12.45 2.438 19.68 10.06 10.20 12.78 |12.05
49 (£49) (110) (100) (000) (000) | K"K°m*men°ne |20.32 11,85 2,201 21.65 10.42 10.56 12.53}12.19
11) 49 (310) (100) (000) (000) | K*K°T-w°n°n° |20.32 11.85 2.201 21.65 10.42 10.56 12,53 12,19
(339 (4-49) (110) (000) (000) (000) | K- K°m*neviene [12.00 6.369 1.098 7.657 3.556 3.609 3.982|5.240
442 &4-9 (110) (000) (000) (000) x+ﬂod-d;.;. 12,00 6.369 1,098 7.657 3.556 3.609 3.982|5.240
h34) (¥+9 (110) (110) (110) (100) | k-xkem*wtw we }17.87 17.05 4.095 23,04 13.35 13,78 21.35]16.51
(11 (%19 (110) (110) (110) (100) xﬁ.:u:u:.:. 17.87 17.05 4.095 23.04 13.35 13.78 21.35}16.51
(5F9 (749 (110) (110) (1H0) (000) | KIKe W AT ﬁ. 27.43 18.69 3.655 26.23 13.40 13.61 17.03}16.97
t41) 49 (110) (310) (140) (000) | x*¥°w*n 1 n®|27.43 18.69 3.655 26.23 13.40 13,61 17.03|16.97
G 1) (£44) 3 G449 (100) (100) | K ke K- WOW® |4,484 3,786 .8677 5.247 3.036 2.750 4,240 |3.578
d-t1) 449 &+-9 d£-9 (100) (100) | K°k°K°K°WeW® |4.484 3.785 .8677 5.247 3.036 2.750 4.240 |3.578
1y (49 & 19 ¢4 (100) (000) | k*k* kK" WN® 10,93 6.982 1.333 12.08 6.225 5.924 7.479|7.046
A4 @49 &1-9 &4 (100) (000) | ke°K°E°T°N° [10.93 6.982 1.333 12.08 6.225 5.924 7.479]7.046
12) 11) 49 @+ (000) (000) | x* K" R°R® [9.671 5.452 .9940 6.294 3.058 2.938 3.490 |4.429
€% ($749) (149 (19 (000) (000) | K°K°E°K° R°R® [9.671 5.452 .9948 6.294 3.058 2.938 3.490 [4.429
G40 &394 (119 (100) (100) | K*k-Kk°E® wowe |17.84 14.69 3.318 20.74 11.42 11,53 16.80 |14.07
41 &9 a4 E1-9 (100) (000) | K*e~"x*X* 7o N° |43.00 27.51 5.260 47.94 24.08 24.15 29.68 |27.87
(21) 49 (t%1) G4-1) (000) (000) | K*K-k°Z°n°n® |38.60 21.52 3.887 25.08 11.84 12.05 13.88|17.58
(1 11) (:12) ¢49) (Ki9) (110) (110) x+n+m.m.=u4.. 13.44 11.31 2.584 13.93 8,150 7.279 11.33]10.05
k1) G%1) 19 (49 (110) (110) | K°K°K°K°T'T 113,44 11.31 2.584 13.93 8,150 7.279 11.33}10.05
G119 19 19 19 (110) (110) | k¥ k°R°m*n~ |53.09 44.02 9.977 55.01 30.43 30.59 44.81)39.48
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Table 4. (Continued)
50 Iabels (i,i,,y) of the “This state | P-factors for SUsz P9I Trotal
individual particles filled wi I=0 U below lm.r. “U below SU,
J=0- mesons| 27 8 1 27 10 10* 8 eight
(0 (-1 (k) @i (110) (200)| K- KR bo 50 16,79 3.765 24.46 13.34 13.77 19.64 116.33
(£14) (144) 1) (49 (120) (100)|K*KTK"K°M 7° R0.50 16.79 3.765 24.46 13.34 13.77 19.64 116.33
(i) @14) (-41) (34-9) (110) (000)| K" KK T’ B2,07 20,55 3.931 26.82 13.30 13.73 16.63 [17.88
d41) (£42) &+ (349 (110) (000)] x*¥*K"k°n n® B2.07 20.55 3.931 26.82 13.30 13.73 16.63 [17.88
(19 (9 (%) (242) (110) (100)] KKK~ kea*we P0.47 16.79 3.765 24.40 13,78 13.18 19.64 [16.31
1) (249 G329 (349 (140) (100)]| K*k°K°E°wT°P0,.47 16.79 3.765 24.40 13.78 13.18 19.64 [16.31
111 (Tie) dia @d-t9) (110) (000)| k¥ -k ke ne B2,78 20,97 4.004 27.13 13,77 13,50 16.77 18,15
@11 (E-42) @19 G419 (3120) (000)] K K°R°R°F Qe B2,78 20.97 4.004 27.13 13.77 13.50 16.77 f8.15
G449 &4 1Y (349 (110) (110)] K-K-K°K® 1t .838 5.571 1.244 6.959 3.731 3.956 5.608 4.985
141 (142 G149 (349 (110) (1H0)] k*re*E°Rerw .838 5.571 1.244 6.959 3.731 3.956 5.608 |4.985
G4 ($41) G11) (-39 G4 1] k'R KK 1,795 1,417 .3125 1.635 ,9843 ,7920 1.221 1,192
(Fh1) G50 @1 (1) (54 G4 0)| Koo ke kk*R° P, 795 1,417 ,3125 1.635 .9843 ,7920 1.221 1.192
(E11) (19 ) 19 E31) Gi9] k't K-K°K°l6.42 12,48 2,693 14,63 8.081 7.468 10.83 [10.60
G11) (349 G4 (%9 (39 Gd-0] KT KoKeKK°L6.42 12.48 2.693 14.63 8.081 7.468 10.83 [10.60
Totals . . . 0.4 701.1
No. times U appears in 8®80©8®8® 8®8 | 999 702 145 999 525 525 702




Iv. Calculations,

The relative production rates for all allowed states
consisting of mesons (from those listed in tables 1, 2 and
3) produced in p-p annihilation at a total center-of-mass

energy E, were computed from:

S (mlmz“'mn) E) s

Reax 0 LY G sva Pn(m."’"n,s)
28p+1)" .
{1[; (28 } (am) -3 T "N

The total rate (the sum of the individual relative rates)
was normalized to unity.

The weight factors G'au"_ were computed according
to the technique set up in chapter III. The SU 4 weights
are listed in table 5. The SU, weights have not been
listed; a table listing some of these is included in the
paper by Cerulus.31 Because of the complexity of the
numerical calculation, the SU o weights were obtained
only for states containing up to a maximum of six particles;
the SU o weights, which are more tractable, were obtained
for states of up to ten particles., It was therefore not
possible to carry out calculations, under the assumption
of SU, invariance, at total energies exceeding approxi-
mately 2.5 Bev (in the center-of-mass). At center-of-mass

energies above 2.5 Bev, the rate of production for final

states of seven or more particles begins to become

47
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appreciable. Reference to table 6 shows that the phase
space integrals for states consisting of all pions are
indeed negligible for w27 at 2.5 Bev but are not negligible
at 3 Bev. From table 6 one also sees that it is reasonable
to assume that rates of states consisting of more than 10
particles are negligible at 3 Bev., We have therefore
limited ourselves to total center-of-mass energies less than
or equal to 2.5 Bev involving final states of up to 6
particles (with resonances included) assuming SU 49 invari-
ance and energies less than or equal to 3 Bev for final
states of up to 10 particles assuming SUy invariance. The
calculations presented in figures 1 to 16 have been carried
out at total center-of-mass energies of 1.88, 2.29 and

2.50 Bev for SUg4 invariance and at energies of 1.88, 2.29,
2,50 and 3.00 Bev for SU, invariance. The latter corres-
pond to laboratory antiproton kinetic energies of 0, 0.92,
1.45 and 2.92 Bev respectively.

The phase space factors f,‘ were calculated with a
relative error of less than or equal to 6% using a Monte
Carlo technique outlined in Appendix B, (the method of
estimating the relative error is also described there).
Resonant particles had to be specially treated as they are
not observed directly but decay rapidly into pions and
kaons. These were treated by first calculating the
production rate for the state containing the resonant

particles and then "allowing it to decay". The rate for
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Table 5. Important decay modes and branching ratios used

in the calculation,

Particle Mass (Mev)

Important decay modes

Partial modes*

Fraction (%)

n

549

959

765
891
1020

783
1324
1405

1253
1500

(v
3mr® orm(ar)

Tr*ﬂ"' n‘
e (Y)

N ar
™ (Y)
AT
KT
K°K°
K+ K~
Trf or 3T
T we
e
KT
K*mT

2T

K¥K-
Ke° K®

K K* (891)

30.8
25.0
5.5

76.0
24.0

100
100
38.0
30.0
32,0
100
100

50,0
50.0

100
30,0

30.0
40,0

*Branching ratios into charge states, if not
explicitly shown, were obtained from isotopic spin

invariance.
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Table 6. Values of phase space integrals for states of 2

to 10 pions,

The integrals have been calculated from:

A N a N a avh
P Fmpn-s S f o0 dprdp S (% R)S(E-3 (p2em)")

Those obtained from the Monte Carlo routine have

errors attached,

Total energy Rinetic energy N Phase space integral‘f

in CM. (Bev) of p in lab
(Bev)

(in pion mass units
with h = ¢ = 1)

1.88 0
(annihilation at rest)

-

2,50 1.45

[

3.00 2,92

OOV WN oW~ &WN oCwoNONUT&WN

[

1.16

1.98% ,08

.681% .027
.0721 % 0029
.00266 * .00016
(3.36 % ,20)x10™>
(1,87 £ ,11)x1078
(2.54 2 ,15)x10
(7.94 & .48)x10~14

2.06

8.85% .35

7.84% .31

2.43% .15

.314 ¢ ,019
.01722% ,0010
(5.77 & .35)x10"4
(6,97 % .42)x10~6
(4.42 % ,27)x10-8

2,98

22,7t .9

34,9 1.4

19.0% 0.8

5,162 .31

.665% ,040
.050 £ ,003
.00148 £ .00009
(3.00% .18)x10™°
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this was then divided among the various final states accord-
ing to the individual branching ratios. The branching
ratios for the necessary decay modes are listed in table 5,
Two "models" were used in the calculations, each
corresponding to a particular way of specifying the volume
parameters., It was found that if the volume parameters
are chosen to be the same for all particles and equal to
the pion volume, the model predicts that the percentage
of annihilations at rest in which a K-pair is produced
(kaons from annihilation are always produced in pairs due
to conservation of strangeness) is approximately 40%.
Experiment shows it to be of the order of 4%. Furthermore,
the theoretical value could not be substantially improved
by varying the volume parameter (see table 7). Another
obvious approach, consistent with SU, invariance, is to
specify that all mesons in a given nonet have the same
volume parameter. This leads to even more abundant kaon
production (as shown in table 8). It was therefore deemed
necessary to introduce something into the volume parameters
which would suppress kaon production., One way to do this
is to allow the volume parameter for a particular particle
to vary as the reciprocal of the mass of the particle
(in pion units) to some power. Hence, in this model,

32
which was originally introduced by Kalbfleisch, the
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Table 7. Results for the statistical model with a single volume parameter.

Total CM Quantity EXp. N = Mo N=.1 0w Nv .ot Ny N =.001 Qy
energy value*  SU, SU, SU, SU, SU, SU, SUz SU,4
(Bev)
Average no.
1.88 hmb_ouwﬁn??mmu.ﬁm 4,27 4.40 3.94 4.34 3.87 4.33  3.87 4.33
kaons (W)
1.88  B¥00%.°080% - 1.52 1.68 1.39 1.66 1.38 1.67 1.38 1.67

Kaons (R 3x)

1.88 % of anwh.”  4,0%1,0% 32.6 42,5 43.5 34.8 45.6 33.3 45.9 33.2

2,29 W 5.22.2 5,01 5,09  4.55  4.83  4.41  4.79 4.40  4.79
2,20 Mg, 2.4¢1° 2,25 2,36 1.77 2.01  1.63  1.93 1.61  1.92
2.29 %o K 10.3%1.1P 36.4  57.2  42.3  40.5  44.1  35.5 44.3  34.9
2.50 Y 5.4¢.35P 5,40  5.45  4.82  5.03  4.56  4.90 4.51  4.89
2.50 Vor o¢  2.6%.2P  2.66  2.74  2.17  2.28  1.98  2.13 1.95 2.1l
2.50 Z K 13¢3P 40.3  64.1  49.0  48.6  53.0 42,6 53.6  41.8

*The experimental values listed at 2.50 Bev are actually for a total center-of-
mass energy equal to 2.43 Bev.

Experimental values from: 2 Agnew et al, Phys. Rev. 118, 1371 (1960)

b G, R. Lynch, Rev. of Mod. Phys. 33, 395 (1961)
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Table 8. Results for the statistical model with a separate volume parameter for each
meson nonet.

The volume parameters are proportional to 2/m?, where “® is approximately
equal to the average mass of the particles in the nonet. All calculations have
been done under the assumption of SUj invariance.

O, =1 Do =.4 Q=010 L,=.001

Total CM Quantity Experimental* o . /25 Q. =.0a5r QL =.00125 Q) =.000128
energy value = _ -
(Bev) N ,,.=.087 .p».va.oowﬂ Ipb+u.ooo.uﬂ Q 24 + 000037
1.88 Ave. number of pions pro- 4.88% ,242 4,02 3.93 3.94 3.94
duced without kaons ()
1.88 Ave. number of pions pro- - 1.40 .848 .600 561
duced with 2 kaons (Aw 14)
1.88 Percent. of annihilations 4.0%1.02 59.8 37.6 29,2 28.1
producing kaons (% K)
2.29 o 5.2% .2b 4.58 4,16 4.12 4.12
2.29 Nrr ax 2.4¢ .1b 2.07 1.40 1.10 1.04
2.29 Yo K 10.3*1.1P 76.2 52.3 34.9 32.0
2.50 Now 5.4% .35P 4.91 4.32 4.20 4.19
2.50 Nx 2k 2.6% 2P 2.42 1.63 1.25 1.15
2.50 % K 13% 3b 80.3 58.5 37.3 32.9

*The experimental values listed at 2.50 Bev are actually for a total center-of-
mass energy equal to 2.43 Bev.

Experimental values from: m?uams et al, Phys. Rev, 118, 1371 (1960)

bG. R. Lynch, Rev. of Mod. Phys. 33, 395 (1961)
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volume parameter is given by:

'-£1~L== S)-o (7k})£’
where.fl. is measured in units of the pion volume. The
other model which we have used is one in which all the
volume parameters are the same except the one which is
associated with kaons and kaon resonances. The production
of kaons may then be reduced by decreasing the kaon volume
parameter.

The results of the calculations are shown in
tables 9 and 10 and in figures 1 to 16. In all cases,
the parameters were chosen to give the "best fit" to the
experimental data.*

The results at rest and at a total center-of-mass
energy of 2.5 Bev are shown in tables 9 and 10. The
agreement appears to be quite good, with the values of the
volume parameters under the assumptions of SU s invariance
and of SU4 invariance being roughly the same. A minor
difference is that the value of the parameter B in the

Kalbfleisch model is about 1 for invariance under SUz'and

*In doing this, use was made of a search program
written by Professor Peter Signell which varies the
parameters to minimize the value of )L* for the experi-

mental data to be fit.
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about 2 for invariance under SU3 , resulting in smaller
volume parameters for all particles (except the pions)
under the assumption of an SU 4 invariant matrix element,
The only general conclusion we draw from these results
is that the volume parameters decrease with energy and
that there appears to be no marked difference between the
two assumptions (SU 2, or SU s invariance) as far as the
present overall experimental data are concerned.
| Also shown in tables 9 and 10 is the fraction of

all annihilations resulting in the production of states
containing certain resonances. These are, in most cases,
consistent with experimental values.

Figures 1 to 14 show various quantities plotted as
a function of energy. Since the results shown in tables
9 and 10 seem to indicate that the volume parameters
decrease with energy, it was decided to modify the models
above by including a multiplicative factor of (2Mp/E e )
in each volume parameter. This is the Lorentz contraction
term introduced in the original theory by Fermi. It was
found that this modification slightly improved the fit.

To sum up, one can vary the volume parameters to
get very good agreement with experiment at a single energy
and fairly good &greement at a number of energies. 1In

general one has equal success assuming invariance under
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SU, or SU3 . However, the values of the volume para-
meters necessary to fit the data are, in all cases, at
least an order of magnitude greater than the "physical"®
value of approximately .OOI.Slﬂ.consistent with the size

of the range of the annihilation potential.
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Table 9. Results for the best fit to the experimental data
for annihilation at rest.

Symmetry group SV, SU, SV, SV,
Model Kalb§leisch Small K parameter
Values of parameters Ng 646 Q=556 O.v7063 N=507
Pelbq B8:=.96 Q=124 LL"2.28

Quantity Exp. Theoretical values
value

Average pion
multiplicity 4.88%.242 4,67 4.70 4,93 4.83

Percent of annih. a
producing K-pair 4,0%1,0 4.6 4.6 4,6 4.9

Fraction of annih. producing
prongs (no kaons):

0 prongs .032¢ ,005° ,029  ,024  ,025  .019
2 prongs .426* ,011° ,432  ,437  .439 441
4 prongs .458% ,010P 466 .467 .462 .468
6 prongs .038%,020° ,028  .028  .040  .030

Production of resonances:

Fraction resulting

in p production 2 .250P ,083 .238 422 .505
Fraction resulting b
in w production 2 .045° ,015 .037 .098 .096
Fraction resulting b
in n production 2 .014" ,086 .070 .300 .148

Experimental values from:
8agnew, Phys. Rev. 118, 1371 (1960)

b .
C., Baltay, Phys. Rev, 145, 1103 (1966)
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Table 10. Results for the best fit to the experimental data
at a total center-of-mass energy of 2.5 Plev,

SU, SU,  SUy  SUy

Symm;ggzlgroup Kjkﬂelseh Swall K paranmeter
Values of parameters L= 159 Q178 SLs.509 Dx.419
B=z190 Bsl.o1 N x.1056 =.148

Quantity Exp. Theoretical values
value¥*

Ave., pion multplcty

without kaons 5.4% ,35%8 4,65 5.10 5.33 5.19
Ave. pion multplcty

with K-pair 2.6t .20 2.59 2,59 2.73 2.63
Percent of annih.

producing K-pair 13%* 32 13.8 13.7 19.3 14.5

Fraction of annih. producing
pions with K-pair:

0 pions 01% .Olb «0016 .0061 .0153 .0160
1l pion .05%,03 .068 .081 .075 .093
2 pions 412,17 «387 «365 262 313
3 pions .45 .17 .429 421 491 .426
4 pions .09 ,09 <107 .116 128 131
5 pions .01%,01 .006 .010 .023 .016

Fraction of annih. producing (pion)
prongs with K-pair:

0 prongs .06 .02b .059 .076 .060 .061
2 prongs .62 % ,23 «533 «516 .388 «429
4 prongs «32% .21 «395 . 395 536 .499
6 prongs .005% ,005 ,001 .013 .015 .012

Production of resonances:

Fraction of annih. resulting

in production .182 .460 .619 «739
Fraction of annih. resulting
in W production .032 .081 <333 225
Fraction of annih. resulting
in | production .110 .105 .281 «200

*All experimental values are for a total CM energy
of 2,43 Bev. The calculation was done at 2.50 Bev,

Experimental values from:
4G, R. Lynch, Rev. of Mod. Phys. 33, 395 (1961)

B, R. Kalbfleisch, UCRL-9597 (1961)
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Reference to figures 1 to 1l6.

The experimental values appearing on the graphs are
from the following sources:

All experimental values for pion multiplicities and
charged prongs accompanied by a kaon pair are from:

G. R. Kalbfleisch, UCRL-9597 (1961)

Other values used, listed by energy (kinetic energy
of the antiproton in the laboratory), are:

0 Bev

0.47 Bev

0.92 Bev
l.26 Bev

2.86 Bev

2.99 Bev

C. Baltay, P. Franzini, G. Lutjens, J.C,
Severiens, D. Tycko, and D. Zanello,
Phys. Rev., 145, 1103 (1966)

S. Goldhaber, G. Goldhaber, W. Powell,
and R, Silberberg, Phys. Rev., 121, 1525
(1961)

G. R. Lynch, Rev., of Mod. Phys. 33, 395
(1961)

T, Ferbel, A. Firestone, J. Sandweiss,

H, Taft, M, Gailloud, T. Morris, W. Willis,
A, Bachman, P. Baumel, and R. Lea,

Phys. Rev. 143, 1096 (1966)

C. Baltay, J. Lach, J. Sandweiss, H. Taft,
N. Yeh, D. Stonehill, and R. Stump,
Phys. Rev, 142, 932 (1966)
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Figure l. Average number of pions
accompanying 0 and 2 kaons under the
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Figure 2, Fraction of all annihilations producing states having

one or more K-pairs under the assumption of SU, invariance.
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Figure 3. The relative probability for the production of 0,2,4, and 6 charged
prongs in the absence of kaon production, under the assumption of SU 3

invariance. W -

Kalbfleisch model with £\ = 7.08 8= I1.72

— —==—=—= Small kaon model with JfL= 4.3§ Qy=- 699

Kinetic energy of the antiproton in the laboratory (Bev)
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Fraction of annihilations

o5 Figure 5. Fraction of annihilations to a K-pair resulting in the

production of 1 pion under the assumption of SUg invariance.

Kalbfleisch model with L= 7.03 8=/72

-3 Small kaon model with Q= %4.35 L, =.699

0.8 7.0 7.3

Kinetic energy of the anti proton in the laboratory (Bev)
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Figure 6. Fraction of annihilations to a K-nair resulting in the
production of a pionsunder the assumption of 5U; w=<mnwm=nﬂ.

———————ne.

Kalbfleisch model with L =7.03 B8=101.92

Small kaon model with _(U = 4.3§ N=. 699

. adé 7.0 7.3
Kinetic energy of the antiproton in the laboratorv (Bev)
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Figure 7. Fraction of annihilations to a K-pair resulting wu the
production of 3 pions under the assumption of SU, invariancg.

Kalbfleisch model with S\ = 7.03 8=).72
llllll Small kaon model with Q= 4.3§ b.rn.r.-.—
00“ \.o \Qﬁ

Kinetic energy of the antiproton in the laboratory (Bev)
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Fraction of annihilations

Figure 8. Fraction of annihilations to a K=-pair resulting in the production
of 4 pions under the assumption of SUy invariance.

Kalbfleisch model with _{\, = 7.08 8=1.72

llllll Small kaon model with L= #.835 Sg=.619

0.5 /.0 ’S
Kinetic energy of the antiproton in the laboratory (Bev)
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Figure 9. Average number of pions accompanying 0 and 2 kaons
under the assumption of SU, invariance,
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Fraction of annihilations
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Figure 10. Fraction of all annihilations producing states having
one or more K-pairs under the assumption of SU, invariance,

Kalbfleisch model with \,= $.29 8=.93%8

= — —-<= Small kaon model with _fL= L1 N =.508

\Qo Po m.°
Kinetic energy of the antiproton in the laboratory (Bev)
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Figure 11, The relative probability for the production of;0,2,4, and 6
charged prongs in the absence of kaon production, under the assumption
of SU, invariance.
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Figure 13, Fraction of annihilations to a K-pair resulting in the
production of 1 pion under the assumption of SU, invariance.

Kalbfleisch model with b.On s.29 3B-.938

IIIII Small kaon model with fUL= ,q; N, =.508

/.0 2.0
Kinetic energv of the antiproton in the laboratory (Rev)
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Fraction of annihilations

b Figure 1l4. Fraction of annihilations to a K-pair resulting in the
production of 2 pions sammJ.nwm assumption of SU, invariance.
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Figure 15. Fraction of annihilations to a K-pair resulting in the
production of 3 pions under| the assumption of SU, invariance.

Kalbfleisch model with Q. .= $.29 6= .938

Small kaon model with Su= 1.91 lg=.508
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Kinetic energy of the antiproton in the laboratory (Bev)
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Figure 16. Fraction of annihilations to a K-pair resulting in the
production of 4 pions under the assumption of SU invariance.

Kalbfleisch model with fl_ = 529 8= .938

llllll Small kaon model with L= 1.91 Q= .508.

/.0 2.0 3.0
Kinetic energy of the antiproton in the laboratory (Bev)



V. Conclusions.

We have attempted to reproduce experimental
results for the production of kaons, pions and charged
prongs from p-p annihilation using a simple statistical
model with the modifications mentioned below. Previous
statistical calculations were plagued with over copious
production of kaons and required unphysically large volume
parameters in order to obtain results consistent with
experiment. It was hoped that the inclusion of a large
number of resonances (which have been observed to appear
quite frequently among the annihilation products) would
alleviate these difficulties. Including the resonances
seemed reasonably promising since,to get the same final
answer, the volume parameters required can always be
reduced by including more final states which are involved
in the statistical process. The second modification
consisted of building into the model the assumption of
invariance under SUy . However, the results presented
show that the improvement, based mainly upon whether the
experimental values can be fit with "small" volume para-
meters, is slight. The fit to the experimental data is
fairly good; however, this is achieved only after the
introduction of modifications to suppress kaon production

and still involves rather large volume parameters.

76
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It is difficult to isolate the effects of SU,
invariance upon the model. As might be expected, the
differences between the results obtained under the
assumption of SU, invariance and those obtained under
SU, invariance show up predominately at low (2 and 3)
particle multiplicities and are averaged out in a
statistical calculation where multiplicities of up to
six or more particles are considered. One can see from
the results that no substantial difference is incurred in
this calculation by the generalization from SU, to SU 3
invariance.

Finally, it is worthwhile to mention a suggestion
which may help to alleviate the difficulties mentioned
above. If one uses a single parameter statistical model
(with the volume parameter of the order of 0.1 Q+ ) to
calculate the fraction of annihilations at rest producing
a kaon pair, one obtains a result which is approximately
an order of magnitude larger than the experimental value.
Furthermore, when the volume parameter is reduced to a
value of the order of the "physical"™ range (.on.ﬂ.‘ ﬁ.oolﬂq)
the kaon production is not changed significantly while
the average pion multiplicity falls well below the experi-
mental value. Maglic' has suggested a model in which kaon

pairs are still produced in abundance but, at low relative
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33
energy for example, immediately annihilate into pions.

This effect would not only reduce the kaon production, but
would also substantially raise the avérage pion multiplic-
ity so that reasonable results might be expected with
small volume parameters. This line of thought can be
investigated by including in the model a K- K final

state interaction. The preliminary calculations made

by Maglic' indicate that a reasonable modification along
these lines give results which go in the direction of

further improving the model.



APPENDIX A:
T

I. Proof that P‘-l....g“ is independent of the
order of (z,, Cz, -+ lzp-

We wish to interchange the ¢t and (¢'+1)"—"
particles going from a scheme in which:

- + -

Il:"l + te = 3
= _.L -—
It'. + ‘(,'4/: I¢'+I

to one in which:
- - -

I‘{-, + Cvr = L
— - —
I + L(; = I"+/ .

The basis states transform via the 6 symbol:

| Tiar, Min 7 = 2, (2z,1)"* (ax+2)"
¢ I

I., ¢ I

X .
I+ 4 T

lIi“", Min):

where |I,M> 1’ implies the final state (I, M) is formed
via the intermediate value I'. We then introduce this
change of basis into the recoupling coefficient in the

I . .

P=factor Pil, ‘2""' Lza .

In what follows we write the intermediate state in

- b

-l
parentheses; ¢, (T,) implies G + (y = Iz, .
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We may write the above square as a sum over I and I' and

isolate the sum over I;:
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l.fl "c.'H

From the unitarity condition on the 6j symbols we have:
" . T ¢ .
Z ey (Tl T [2e & L o dna
I Tiwr tevr I Teor Lew T
After performing the sum over I' by using the § , we have:

pd < 2 %(g,ga(_zz)..._-[‘._' (yy (T) oo

tz, Lz 0 lzg I Ii_" I(.... ces Tt

; 2
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If we relabel I as I, , it is clear that the right hand
side is equal to PIs with ¢ and (‘-“)ﬂr states inter-

changed. Therefore:
I5 L .= ps ,
L‘. ‘la... L“-’ ‘z",, coe LG ‘ll ‘zl”' ‘z“*,’tz‘. PR ‘z".

v
II. Proof that R”,Z?",“_ is independent of the

order of v, ¥y .- V.

We wish to prove that the sum over intermediate
states of the recoupling coefficient for SU 5 is independ-
ent of the order of the individual states.

We wish to go from a basis in which:

a— - —
U"d-l ® u; = Ufc’ I+ ‘-c' =T,
= Y
ch ® My = U‘(:-Ol Ic' * Ln T I‘:""
to one in which:
— S

Ul’c_. QUi ® UU I(-l + L.c'-H =

| Hi

Uy ® a¢ = Up,,, T+ o= Tia,

In this case, the transformation will have both SU, and
SU g 6j symbols. The notation used for the SU 3 transforma-
tion is according to Sharpe and Derome.34 We again write

the intermediate states in parentheses. The SU 3 and SU ,

parts transform respectively as:



82
|UC-0 A \U‘C)) Uo iy, (Un'.p.)) = %.n CUJ"l [U(J”z
Ul;'l .d,,‘ U'“ x& (‘ u
X : | Uiy i V), Ui (U )
i Y¢

‘ U‘C-H Misy U‘

', a
‘ I, Gn), I i, (Iiﬁ)? = % [T:] ™ LI] /

X {Ii-' “ } \I,_ - Ciwa (I) I (Tiw) >

Iiu "t-H

where summation is implied over repeated ¥ indices and [I7]
represents the dimension of the irreducible representation

labeled by I.

The P-factor for SU 3 invariance is:

a
U.@ I-‘ - Uly . Ul-l r U‘Fr l .
E’,-/&... Va Uu < Un-1 ,, L I‘?“/‘F ""n
Ia I,

We suppress the indices on the ¥'s wherever possible; the
Y's above are,in general,all different. The / indicates
a summation over the ¥ associated with U; o« We introduce

the 6j symbols into the equation above:
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(where there is no sum over the ¥ ‘s and the ¥;'s ).
First consider the SU_, part. The sum over I, is

done first, yielding a term '/LIJ JI,I’ from the unitar-

ity of the 6j symbols. This gives us, isolating the sum

over Ui:

. 2 Z, rork g G0y
037 ore U“"‘ o&*lr UQ g U U
I i’ I¢+) In-l

(V). o U:} "
. (I‘:) l tn'Vn [Uc U"' Mive U )G W

N ‘)} g
U*c.'-n M+ U” Yot I J

From the unitarity of.the SUy 6j symbols, we can show
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¥, 9
(see below)* that the sum over U, yields: LJJ. ‘u,u' ‘; Jr .

Hence, we have:
/
PU{I; = 2,
4" ‘)gy Jl.-lr dc-ﬂr ol‘l'lr
I Tia g Ty In-t

2
. u“’t s (‘)f) Uy, 4¢ (UJ".,,) . .Un-n, M (Us )l 1 Ve ‘d ‘:;)
Ty o (I) I ( (I‘,H) Tn- (L) Civr u/tv (aYy

Relabeling U=+ Ui I —>I, ¥ — ¥,

HcM

4, d,( .
2" <h ‘L(;‘%
3

we see that the right hand side is the SU3; P-factor with

the (th and the (¢+/) ) states interchanged.

*The sum over U¢ is almost identical to the
unitarity condition given by Sharpe and Derome. One can
easily rewrite the summation above in the standard form
by first lowering the ¢ indices using the A matrices and
then switching the order of the indices using the )\'s .

This gives: . ,
[ ..7 { (-1 ¢'*}* Yrs { uc'-l dc Z)‘ '} . e
*
2 ‘ 'd”’ * Yoo X Uler diw V' Yoo ¢
[_U] { U('-‘: Uiy U}* {(j‘-: Ay U
‘ .
()‘ UL'+I M ng Y Y‘-ﬁ Y‘- ‘3 d¢'+/ AU dt' y'&-,, "- 63,

. dj].fuul '™ J,,

by unitarity of the 6j symbols.



APPENDIX B: Outline of a Monte Carlo method of
evaluating phase space integrals.*

All calculations which follow are
done in dimensionless units.
The phase space integral for n particles with total

energy E and total momentum P is:

R CER) = Gark)™™ J-Jdn dp, - ap, J(P"%. ) (E-Z e, )

where pPc, €c are respectively the individual particle
momenta and energies. In what follows, we drop the y(.nﬁ )""‘
and write the integral as f: (g, P .,

The directional part is isolated and related to the

well-known "random walk" problem.
dpi = prdp: de de;, = siwe Jo, 44,

F:(s.m-j S pi St 3 SATTw) 4h - 4pn

(£4/

XJ]:( Z: f’t" ) de, A€, d€n

(ll

We separate the last integral as follows:

W P; ppaeo) = o JICP- z. P &) de, .. e,

*What follows is an outline of the paper:
F. Cerulus and R. Hagedorn: Nuovo Cimento Supplement 9,
646 (1951)., This article is referred tec throughout the

discussion as I.
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The function W, is the probability that, for fixed
magnitudes of the momenta p,, P : - Pr but random directions
g. ,gg'- 3n, the total momentum (2'}... P é\,; lies in the
neighborhood 4P of P . For given arguments ( P; A - Pn),
W+, may be calculated using the theory of random walk.,
We note that Wy is a function only of the magnitude of
the momenta. We have now reduced the phase space integral
to:
F:(E'p) - (4")"1:‘-’"/0‘/’,"/’..*”'/’: I (€- ‘2"', Jp,;*d-m‘-"')
X Wy (P p poerpn) 9P dpardpn.

In what follows, we restrict ourselves to the

C.M. system so that p- O ., Let us change the variables

-

of integration from momenta to energies by:
Pta' = C,;h- m.*

(3

Oour in{:cjro.l become s :

o oD
prg,o)e pm* [Tof e TEE et ey JEE Y
m, “
. c.Je.e--mf; W(P:O; e, e, .- C,\_) {(E- %e‘-’ﬂq.uaen

where:
Un(Pz0; € € req) 5 Wy (P20 p=Jersmp “Pn) .

Let: u;(e)= eexom > ez m;

¢

- <
f: (E,O): (‘H‘r)"—}n j AL, (eg)#;(€¢L)"'Mn(e*\
! '"»:_

¥

X Va (O] e,---e.‘)é (e- S,e ) de, de, - de,
¢
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A transformation to kinetic energies is made:
‘é(,’ S € -y,

Let: T (t,ty-tu)= s, (E3m,) dy (tatmy) oo da(Tntitn)
s % (g0 = (m*f °j° “F (o te)d(T-2¢,) 1o Dby
We now order the kinetic energies:

T ='t|
T2.= t,"'t‘l

Tng -t‘.'-t&-‘-... +tf‘b

The inverse transformation is:
t =T
‘!’-z.= Ta-T,

‘tn.‘ -r;l- T‘\'l

. - oy 0 «® [
L) YQ‘ ("'TT) u dﬂﬁ; JE“‘/T-'!.'C'T,‘

R EC BT Ty Tao) 4 (7-T0) |

where, it is clear that

0T, 27, £ :ev & Tney £ Tn.,
We carry out the integration over &€ 7o making use of the
J function. The above relation then applies that the
upper limits on all the integrals may be changed to T .

r
T T
pas om™ J 47:/7_ I7 --/om., (T, %7, o T=Tnar)
° ’

Tp-2
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and we have: O 3 T, « Ty = -+ £ T,., = T,
We are now ready to apply simple Monte Carlo

theory to the integral above. For integrals of the form:
‘0 b; bw
I-= a, d7,‘j% AT, ...Au #T, f(7;7;....7;)f(1-;13...T,‘)

where r(T.T.,mT.‘,) is an w dimensional density function
defined, in the usual way, by:
) ’;(‘l}...‘r,‘) Z 0 over the allowed range of (T, T.---Ty)

i b" o b:v -
2, d-r'jd-:, Jv;' . /d-n. JT"' f(-n"'-rq) - i

and §£(7,7a,.-Tn) 1335 a weight function.

It can be shown that,

I- 2im 'J-Z‘F(T“) (c).“-rn(())

N -» «© Lo
where the set (T, ‘- Ty) is chosen randomly but weighted

according to the distribution function f(T. Ta o Tw) -

We may rewrite our integral as:

fu (€,0) = wm® I 'UTa-r.JTJT,_ jT $Ta-y

(S o T, Tr-a,
|
¢ n-t) .
X I(";;Ta. “’T Tn-l) —T“"]
we make the correspondence:
(n-n!

f(‘l“ Ty T ) = Constant = - !

This represents a uniform distribution in ( v-! ) dimen-

sions where the intervals for each variable are chosen as:
[o,T] for T
L1—l )TJ ‘F.f TL

[Tas T1 for To-
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It is clear that the variables satisfy the relation:
Oé-’:ﬁThé o oo fT‘-,ﬁ 7..
We must show that ¢ yintegrated over the limits of our

integral, yields unity,

/
/
//f(r Ts) AT 47, E /m/;e-r j’_":h;,_, 7

If we allow all the lower limits to be replaced by O , we
introduce a factor E;ﬁ;! into the integral above. (It is
clear that a set chosen randomly has a probability thT)j
of being in increasing order). Therefore, the integral

over the density function is equal to:

Sfper-ar., =/°7a-l’7,'/°T473. --%Tdrn-, T

Hence, simple Monte Carlo calculations give

N W) u ey
fh e, s m i b 2 FOT BT T T

A

(s/

where the set (T.---T-,) is generated by choosing n-! random
numbers uniformly from the interval [O,T ] and relabeling
them so that:
7% 7% e
In order to actually calculate the phase space
integrals, it is convenient to express all quantities in

terms of the individual energies. We have:
I(T‘ )Tz-T‘)-uT-T“ﬂ ) - e. ;e.i_m|a'u. en SC""_ m: 1r“ (O; e' veo en).

We recall that the function 'V, is evaluated using the
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theory of the random walk. Refering to I, the result is:
1

o |
Ve "Gl ™ Serome o dem-ma

(Znane [sg (£ & Temm)] (L6 02 )}

Ois |l
where: all 0 (except (= +1) take on the values 4 and -1,

Sq )= +2 For x>o0
"1 +°r x‘o.

Hence, we get: ’
. n-t f « u.) u.')
(E-M)""cam) N-": 'Lé.r Pnlee es’)

*
yn(E;°)= w-n! (n-3)! Cer
where
oo q 0 - .
Polee,en) = - €€, e“{%.-'q a, Sj(«-s, we n, *)

x [ % remme]

The method of calculation is:

1) Generate a set of kinetic energy variables {'r}
by obtaining n-/ random numbers in the interval
O to T,

2) From these calculate the individual energies
€= To-Te, +m; 4w (Toz0, Ta=7),

3) Knowing the energies and masses, the function
Yo (e, € e,) is calculated.

4) Steps 1-3 are done N times, and the phase space

integral is obtained by multiplyiag the average
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CeE-M)"! (am™!
n-1! (n-3)!

value of these by the factor

ive now proceed with a brief outline of the error
analysis.

It is clear that, as one increases the value of N ,
the value calculated for the integral approaches the true
value. The error analysis has been done in reference I and
is quite lengthy. The method used for estimating the
error is briefly outlined below.

Before starting the calculation, one chooses an
integer No which is much greater than one but small
enough so that No contributions are not expected to give
a good approximation to the integral. We then do the .
calculation, checking the convergence after successive sets
of No terms,

Let us consider a calculation done in A steps of No
contributions each, so that N = ANy . we define the
partial sums as follows:

Y/ : . .
Sy = Z‘t T (T ent)
o

(s (U=1)No+1

where A=/, 2 - X

We then have:

A .
?;: Aﬁ_, Su fcamcr" 2im f)\

A M= A-’ ~

where : A-—- (E-M)*“ (.‘L‘lr)n"
(n-1)! (n-3)° No '
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We want to approximate the integral by some value
P calculated with A>>4 so that N= A No contributions
yields a good approximation to the true value f .

At this point a problem is encountered that is a
consequence of the Monte Carlo method. We want to
approximate the exact phase space integral by the average
of N partial sums Px and hope to obtain some information
about the error in f,‘ « The straight-forward approach to
this is to calculate f}‘ many times independently and
from these values calculate an RMS error. Yet we calculate
F; but one time and do not wish to do so again; indeed,
if we did so we would use the value 2\ as a new N and
get a more accurate approximation f,/ . Hence, we work
toward obtaining an estimate of the (probable) error in
without having to calculate it more than once for a given
value of X\ .

We assume that for fixed, large enough X\ , the
approximate values f,\ are normally distributed about the
exact value f « The error analysis yields the result

that the standard deviation (Jf) A divided by the mean value

P is:

. )
Se)s _ (en-p)" . 1 £ (S™sy)
£e—f-i‘ Qf—ﬁ ~ ';L(F&\) a2 _i
=, A
e X
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where = (k) 1 24 S
S —3 ‘& (_F’_ M o

We note that the expression above is easily calculated,
along with f) , for successive values of A , It is also
expected that, as A increases, the standard deviation
(8?))\ and therefore (.f‘_?_)* will decrease.

We now make use {:f the following property of the
Gaussian distribution. If f’h is normally distributed
about ? with a standard deviation (ég)xthen, for an

arbitrary value F)‘ , the probability that:
‘fhfx'é (;F)A s = .68

‘f'ﬁ\ﬁ ‘1("’)* e ¥ o 95

~d

| - Pl £ 5 (Sp)y 18 = . 999%

We can now arrive at a solution to the problem
above. The particular value we calculate for ?x is assumed
to be one of a set of values {(’)} which are normally
distributed about the true value f « Using the formula
above, we calculate the approximate (Jf’))/r and use this
to obtain limits on the relative error in our calculated

value e - Let us define:

z)= | S

r
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then:
'Ml s ZX with =x= 68 4 C‘er“’q.“v{-j

|M‘ & Z.Z)\ with = 9% certamtj

ch_-_e.-‘-ﬁézx Wwith ~ 99.25Z
r Cerfmnfj

In our calculation, we chose N°= lo and varied X
in increments of i starting with A=$ until the value of Z,
became <.06 . Hence, with N =) Ny terms, we obtained
phase space integrals with a relative error less than

6% with 68% certainty or less than 12% with 95% certainty.
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