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ABSTRACT

a Particle Model of 160

BY

Bing W. Poon

16
The low lying even parity states of O are investi-

gated by the coupled-channel method in the weak-coupling

model of the a particle and 12C nucleus. Different

phenomenological a-a potentials are used in determining

the effective a- 12C potential. In calculating the effective

a- 12C potential, no intrinsic excited states of 12C are

considered, but their effects on different physical properties

are calculated. The problem of wave function symmetry is

considered. Correct binding energies of the bound states

can only be obtained when we use a deep o-a potential.

From our results we show that the a-a scattering data do

not sufficiently determine the interaction to make

predictions on the structure of more complicated nuclei.

The interactions with repulsive cores give a very smooth

structure to the states and tend to underbind the ground

state. Also the transition rates to the 0; state are too

large. The deep attractive interactions suffer from

Opposite defects. The states are now overbound, and differ
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from each other to such an extent that the transition rates

are an order of magnitude too small. Of the two types of

interaction, we prefer the deep potential, because the

structure of the states matches the more fundamental cluster

model.



a PARTICLE MODEL OF 160

By

. - \ x -‘-‘-.l I

Cbmt‘lBing—WicPoon

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

197”



ACKNOWLEDGEMENT

I would like to thank Professor George Bertsch for

his guidance and support during the time that this work

was performed.

Thanks is also due to Dr. K. Kolltveit for the

encouragement and support during the early period of my

Ph. D. program, to Professor B. H. Wildenthal for some

helpful suggestions.

Lastly, I would like to thank my wife, Viota,

without her patience and understanding this work would

not have been possible.

ii



ACKNOWLEDGEMENTS . . . . . . .

LIST OF TABLES . . . . . . . .

LIST OF FIGURES. . . . . . . .

INTRODUCTION. . . . . . . . .

Chapter

I

. II

III

IV

V

TABLE OF CONTENTS

Historical Review of the a Model .

Formalism. . . . . . . . .

Weak Coupling Model Wave Function.

Problem of Wave Function Symmetry.

Matrix Elements of Electromagnetic

Transition Operators . . . .

Quadrupole Rate with Full Exchange

Mean Square Radius with Full Exchange

Width of the Resonance . . . .

Numerical Details . . . . . .

Energy Spectra, Wave Functions and

Properties. . . . . . . .

Summary and Conclusion . . . .

REFERENCES . . . . . . . . . . .

APPENDIX

APPENDIX

A O O O O O C O O O O O

B O O O O O O O O O O 0

iii

Physical

Page

ii

iv

14

1”

17

20

22

27

30

31

3M

H3

US

H9

52



Table

5a

5b

10a

10b

11

LIST OF TABLES

Mixing ratios from TTM's calculation

and present calculation. . . .

Volume integrals of various potentials

(Vd being defined in (#8)). ‘

12

Ground stage properties of C and

from Brink . . . . . . .

Computation times for the CCE program .

Mixing ratios of various 1 in G.S. and 0;

state for Ali and Bodmer potential, also the

mixing ratios calculated by Noble and

Coelh031.. . . . . . .

Mixing ratios of various 1 in G.S. and 05

state for Vary and Dover's folded potential

Exchange matrix elements .

Ground state binding energies for different

potentials . . . . . . . .

Excitation energies for different

potentials . . . . . .

Root mean square radii . .

B(E2) transition rates

Comparison of Our B(E2) and Brown's B(E2)”

a decay width . . . . .

iv

16

Page

5”

55

56

56

57

57

58

58

58

59

60

51



LIST OF FIGURES

FIGURE Page

1 Spectra from experiment, TTM's calculation

and present calculation using TTM's

potential . . . . . . . . . . . . 62

2 Spectra from experiment, calculation using

Ali and Bodmer potential and calculation

using adjusted Ali and Bodmer potential . . 63

3 Spectra from experiment, calculation using

folded potential and calculation using

Neudatchin potential. . . . . . . . . 64

H Spectra from experiment and calculation using

adjusted folded potential . . . . . . . 65

5 Nodes of a+a system is ground state (both

particles are located along 2 axis). . . . 65

6 Nodes of the a+ 120 in ground state for

Neudatchin potential (the 12C are on the x—y

plane) . . . . . . . . . . . . . 67

7 Nodes of the a+ 12C in 0; state for Neudatchin

68potential . . . . . . . . . . . .

8 Nodes of the a+ 12C in ground state for the

adjusted folded potential . . . . . . . 59

9 Nodes of the 0+ 120 in 0: state for the adjusted

folded potential . . . . . . . . . . 70

10 The plots of P (6) for ground state versus

cos (9) for different potentials. . . . . 71

11 The plots of P (e) for 0: state versus

cos(e) for different potentials . . . . . 72

12 Ground state wave function for Ali and

Bodmer potential . . . . . . . . . . 73

13 0+ state wave function for Ali and Bodmer

pgtential . . . . . . . . . . . . 74



PageFIGURE

1% Ground state wave function for Folded

p0tentia1 o o o o o o o o o o o 75

15 0+ state wave function for Folded

patential . . . . . . . . . . . ' 76

vi



INTRODUCTION

The low lying even parity states of 160 have been

difficult to understand in the language of shell model since

their energies are much lower than expected on the basis of

single particle energies.l Also the electromagnetic pro-

perties of these states have further emphasized the complex

nature of this nucleus. For example, the existence of a

rotational band among these states requires strong deforma-

tionz’3 and the strong E2 transition from the 2+ state at

6.91 MeV requires states mixing in the ground state. A

16O at 6.06shell model representation of the 0+ state of

MeV is discussed by Brown and Green“ using mainly Hp-hh

state. This state has a particular mixture of shell config-

urations giving a triaxially deformed density distribution.

The number of configurations needed to describe this state is

very large, and an even greater number would be needed to

calculate the energy of the state?9 To obtain a wave function

usable for discussing the electromagnetic properties, mixing

is required between this state, a similar 2p-2h state, and

the closed shell state. Bertsch and Bertozzis, using a

particle model and making suitable approximations on the wave

function of four interacting particles, found the radius of

the ground state and the energies of the ground and first 0+

1



state agree very well with experimental values. Since the

a particle model provides a much more transparent description

of the structure of 16O, a more detailed investigation of

a particle model on 16O is desired.

We start by assuming the 16O is made up of a 120 core

plus an a particle. Since we know the realistic a-d potential

120,6,7,8
and the structure of the we.can calculate the

effective a- 12C potential. We put the wavefunction of the

9
system in a weak coupling model form, use the effective

d- 120 potential, and find a set of coupled channel equations

from the Schroedinger equation. After we solve these equa~

tions, we obtain the spectrum and the wave functions. We

use the wave functions to calculate the electromagnetic

transition rates and other physical properties of these

states.

In Chapter I, we will outline a brief historical review

of the a model. In Chapter II, we will show the formalism we

needed in our calculation. In Chapter III, we will present

the numerical method we used in our calculation. The spectra,

wave functions and some physical properties will be shown in

Chapter IV. In Chapter V, we will present the summary and

conclusion of our calculation.



CHAPTER I

Historical Review of the a Model
 

The a particle model of the nuclei was first introduced

by Gamow in 193010 as a extension of his successful investi-

gation of a decay. At that time, nuclei were thought to be

composed almost entirely of c particles or protons and

electrons. The idea went out of favor when the neutron was

discovered and Heisenberg and Majorama had developed their

simple and satisfying theories of nuclear structure. However,

many physicists felt that the central field approximation

needed for the shell model was probably not valid for light

11
nuclei. In 1936 this feeling was augmented by Bohr who

showed that the binding energies for most nuclei could be

12
reproduced quite well with a liquid drop model. Subsequently

the a model was revived in three different forms:

1) The first approach was introduced by Margenau13 in 19ul,

1D
and initial investigations weremade by Brink and by Biel.15

In this approach, the wave function of the H N nucleons is

;
9
—
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where A __ l

—- 3 3
[J t lt/z

The N vectors Rl to RN are parameters representing the

center of the N a particles. The wave function ¢i describes

the motion of a single nucleon in a l s harmonic oscillator

orbit centered at the point Ri' A H—N nucleon state may be

constructed from these N orbital wave functions by requiring

that each orbit state should be occupied by 2 protons and

2 neutrons and then forming the corresponding u-N particle

normalized Slater—determinant wave function T(Rl,....RN).

Using the variational principle

3 <~llHli> I 0.

Gal?)

we can obtain the R and b.

1

Using this approach, Brink, et al.6 found the maximum

binding for 160 when R are at the corners of a regular

1

tetrahedron. The value of the binding energy they obtained

(Table l) is 9u.u MeV as compared to the experimental value

of 127.6 MeV. They also found that the excitation energies

of different a configurations is very sensitive to the

nature of the 2-body force. Because the forces they used

are not considered realistic enough, they could not get a

definite assignment of d configurations to observed levels.



This type of approach requires the center of each a

cluster to be fixed, and as a result the Slater determinant

states are not eigenstates of angular momentum and often

not eigenstates of parity either. Also a recent investiga—

tion by Irvine and Abulaffio16 found an c-cluster configura—

tion is more bound than the optimum regular tetrahedron and

there is nosharp minimum in the energy of the ground state

of 16O in this model. This suggests that the ground state

must be a mixture of c—clusters configurations, or that it

is important to treat the cluster coordinates as dynamical

variables.

2) A second c-particle model which considers the dynamical

17
motion to some extent was introduced by Wefelmeiser and

developed by Wheeler,18 Dennison,19 Kameny20 and Perry and

Skyrme.21 It is assumed that the N o nuclei may be treated

as a system of N alpha particles which obey Bose-Einstein

statistics (the a particle considered here has no internal

structure). This approach actually is the extension of

Wheeler's c-cluster model,22’23’2u’25 the added assumption

(c with no internal structure) is to simplify the anti-

symmetrization of the wave function in Wheeler's c-cluster

model.

In this model, the total Hamiltonian is written as

H=HM+HM



where H = vibrational Hamiltonian

vib

Hrot = rotational Hamiltonian.

By applying the results of molecular theory to determine the

allowed rotational and vibrational quantum states of the

nucleus, one can get for 16O:18

E = E; (%)(3(“°)+ mm, + Mug M. u, + e-

where E0 is the ground state binding energy of the

nucleus

I is the moment of inertia of the nucleus

nlhw2 is the single vibrational energy

nzhw2 is the doubly degenerate vibrational energy

njhw3 is the triply degenerate vibrational energy

a is the vibrational energy that one a going

through or going around the other 3a to form

a symmetric state.

By choosing suitable parameters, one can get a spectrum that

agrees very well with the experimental result. Unfortunately

16 +

l

(6.92 MeV) states are 15 to 20 times shorter than the experi-

20

they found for o the mean life of the 03 (6.06 MeV) and 2

mental result.

One may say that because this model has undetermined

parameters which are fitted to the data, the validity of

the a model is not really put to a test. But how bad it is

to represent the particle as a structureless particle?



In a recent research made by Abul-Magd,26 the lower

bound to the ground state energy of a system of Na particles

interacting via a potential determined by c—a scattering

experiments is compared with the energies of nuclei with 2 N

protons and 2 N neutrons. It is concluded that the Na

system can in principle be represented as systems of rigid

and structureless(xparticles. So now the remaining question

is how things will happen if we put the realistic c-d potential

into the a particle model and treat the a coordinates as

dynamical variables.

3) The third a-particle model which not only considers the

dynamical motion but also uses a real interaction is a

160. To solve this, there are threeA-particles problem for

different techniques. The first of these is by Bertsch and

Bertozzi.5 They approximated the N—particles wave function

of 16O to reduce the problem to a one dimensional Schroedinger

equation which they can solve. The second technique is by

Mendez and Seligman.27 They used the harmonic oscillator

wave functions as the basis of the system, and used the

method developed for A particles harmonic oscillator wave

function28 to solve the problem. The third technique is by

Terasawa, TanifuJi and Mikoshiba.9 They separated the A

particles into a core (120) plus an a particle. In other

words, they simplified the u-particles problem to a 2—particles

problem. Using the weak coupling model wave functions as

the basis of the system, they can find the spectrum and the

wave functions.



Now let us discuss these three different techniques a

little bit further.

a) Bertsch and Bertozzi5 approximate the ground state wave

function of 16O by

(a

- I? 49H“)

and the first excited state wave function by

t!) I Z I ‘-

‘ .. f6- .1' (““133 (Ian)

The Hamiltonian of the system is

‘3.

 

H=-— V+Zv(f.)
law

where V(riJ) is the interaction between a particles.

In terms of the internal coordinates, the intrinsic Hamiltonian

 

is

5 t? l a . a
. = — _ "'1 —— f —_ ._Ha Z; m, h a “s + Mp)

- £1- t?- £1. 14% a 9——

gal I

They considered the a—configuration of 16O as a tetrahedron

composed of 2 triangles lying on a common base with apices



Joined by the coordinate r13 and they used the angle 6

between the two triangles to describe the tetrahedron.

Transforming the r13 in the Hamiltonian to 6 and simulating

the integrations over riJ by replacing r1,j by d-an average

separation distance, they found the Hamiltonian for the 6

variable becomes

 

  

IlmJ‘—— 110 + ‘1

where

‘ e

__ I d \+ ’w“‘03) .Q_ + EL

Ho — ”gig )4: A: be VLJZAMI

H, = -51. Mgfmg Ad 3

DM‘ mu ‘6 0‘ 3(3‘ 39

-E l

m n a: lj

By neglecting entirely the coupling of the potential energy

with the coordinates and treating the off diagonal matrix

elements of the coupling in the second order perturbation

theory, they found the effective Hamiltonian for the 9

coordinates becomes

H = H + Z (43(rnn) H, ¢,({nn)>z

”ll 0 on E ‘w EA’
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They treated ¢(rmn) as oscillator functions and got

_.£ 3 9 a .
Hm— m‘ be 3A‘(\+U)‘-g-) 30 +V(EAM%>

Using Ali and Bodmer's a-d potential,29 they found that

both the interaction energy of the c particles and the

root mean radii of 160 agree pretty well with the experimental

results except the <G.S|R2|6.O6>.5 They also found the peak

of the wave function for the ground state is at the regular

tetrahedron shape and the excited 0+ state (6.06 MeV) has

a peak at the shape of a plane diamond.

b) Mendez and Seligman27 also did a similar calculation on

120 and 160. They used harmonic oscillator wave function as

the basis of the system and the Hamiltonian is given by

H=H,+ H,

 

 

where

n 1 l

‘l. = Z 1:. + W“ ‘2', 1f

(3. AM‘ a isi‘l ‘1

V‘ M‘ 55‘ 9‘ 2

H. =- Z \l.. _ Z- {1"

£<i=| ‘1 3k ixisl 1

n is the total number of a.

Using some phenomenlogical a-a potentials for ViJ (later

they found the best results were those given by Ali and
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Bodmer potential) and applying the variational method on

 

the harmonic oscillator parameter e= hm 2 (m0 is the mass

m C
o

of e-), they found the form factors and the spacing of the

O+ states for 12C and 16O are reasonable. However, in both

cases the ground state binding energies are smaller than the

experimental results by a factor of three. They concluded

that the a—d potential determined by phase shift method is

not strong enough to give the right binding. We will come

back to this argument later in Chapter IV.

160 which was similar to the

30.31

c) An a-model calculation on

one given by Noble and Coelho was done by Terasawa,

Tanifuji and Mikoshibag (later we will refer to them as TTM).

They treated the 16O as a system of a 120 core plus an a

particle. They used the weak coupling model wave functions

as the basis of the system. Putting it into the Schroedinger

equation, they obtained a set of coupled channel equations.

By solving the equations, they found the spectrum and the

wave function. Because our calculation follows closely

this approach, we will describe it in more detail in the

coming chapters. In their calculation, instead of using a

realistic potential, they used a Woods-Saxon potential with

undetermined parameters. By choosing the right parameters,

they apparently obtained a spectrum in agreement with

experiment (Figure 2). In their paper, it is not clear to

us what is the Coulomb radius they used in their calculation.

So in duplicating their calculation, we use the Rc value
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(1.3 fm) used by Tatscheff and Brissand32 whose potential

we believe is the original form of TTM's potential. In

doing so, we found they used a slightly larger value of

Rc(l.75 fm). In Figure 2, we also show our result which is

supposed to be identical to TTM's. Although the spectrum

we found here does not agree completely with their results,

by looking at the mixing ratio of the configurations

(Table l) and the number of nodes for each wave function,

we believe these states are exactly those they got. By

looking at the wave functions, we found that they all peaked

at a very large radius (e.g. the bound 0: state peaked at

about 6 fm), which we believe is not realistic. The reason

why the wave functiomsbehave like this can easily be under—

stood if we look at the potential carefully. First of all,

this type of potential was first used in the a scattering

problem at very high energy (e.g. in Tatischeff and Brissand's

paper, they calculated a scattering at E=l66 MeV), so the

radius of potential can be very large and the amplitude of

the potential can be very weak. But in calculating the bound

states or those states close to a bound state, this type

of potential certainly will not give a satisfactory result.

Also we know that in considering the exclusion effect, the

'potential should either have a short range repulsive part29

or have a strong attractive core.33 But none of these appear

in TTM's potential. In Tatischeff and Brissand's paper,

the amplitude of the potential was chosen to be V=100.9 MeV
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compared to V=62.5 MeV used by TTM. We believe if we use

a larger value of V, the 0: state in TTM's calculation will

become the ground state and so the 2+ states they got will

become spurious. Also we believe a lot of states they got

will violate the Bose—Einstein statistics which the a particles

must obey and should be spurious. We will discuss this in

more detail in the next chapter.

In the literature, two similar but stronger potentials

33 and by Vary and Dover.3u Thewere suggested by Neudatchin

results of these potentials will be shown in later chapters.

One more remark is that since the wave functions in TTM's

calculation are peaked at the outside region, the spectrum

depends very much on the cut off radius (Rmax) we choose for

the wave function unless the Rmax is very large. In our

calculation here, we put Rmaxalo fm; that may be the reason

why the spectrum is slightly different from TTM's result.



CHAPTER II

Formalism
 

Weak qupling Model Wave Function

16
In our calculation we treat the O as a 120 core plus

an a particle. The Hamiltonian for the c+ 120 system is

given by

H = Ht +1” + V“,

where Ht is the Hamiltonian for the 120

T is the kinetic energy of the a particle

Va-lzc is the effective potential between the a

and the 120.

The Schroedinger equation can then be written as

where WJM is the total wave function of our system in

J state.

9
Let us use the weak coupling model wave function as our

basis, so the total wave function can be written as

I

K .

42m= E. I} (7,“ ‘29 §>h>ltt (l)

lu
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where YLn is the spherical harmonic function representing

the angular part of the a particle in the Ln

state

d is the internal wave function of the core in

the In state and satisfies

with on being the excitation energy of the

12 th
C 1 th t t . -n en sae Htéi."wn§1,\

Thus the center of mass energy of the 0 particles which

th
leaves the core in its n state is given by

Iin:= ii " Rim

Putting our wave function into the Schroedinger equation,

multi l in both sides b and inte ratin overp y s y (he ck)” s s

all coordinates except the r, we obtain

5: .93: _ L..(L.+\) 3 _ ' '

a. m w >+ El no field V.-u.l<t«+>..>

‘J

K K.I (v) (2)I

fi

where

(L, L),1 =‘= (1.0 32.“), M

u is the reduced mass of our system.

The effective potential V can be defined to be35

a-12C

3 (A) V“; An.<
1 “

d- c
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where ?(r) is the a density function of the 12C

' =

Va-a Va—d + Vcoul

Va-a is the phenomenological a-c potential

Vcoul is the Coulomb potential between the two a.

Now let us expand the potential in spherical harmonics

v,_.. 2 vim 7,3915) (3)
c Bun

H

m I

Z V, n) Dmgelclg.) 7330.49)
Junk

where

A m I I ’

V =

6’,¢’ refer to the body fixed system

e,¢ refer to the a coordinates in the space

fixed system

61,¢1 refer to the Euler angles between the body

fixed and the space fixed syStems.

Equation (2) can be rewritten as (Appendix A)
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‘k‘ A‘ Law“) I

\3—(17! _ Y‘ > + a] Run“)

= Z Z V“(v) A(L.1.L;1.:(V\KIKI)S. R (r)
\umk 1.11.: (5)

 

 

I I I ) 6‘3””Au"”bk‘laleXMIHMBLCH
)

A(t.l. 1.1.: n K «a = ) w; WNW”)

.( u. LL00}! o)(1.:l K’mll. K) U0. 1.1.111332) (5a)

where U(LI,L'I';J£) is the Racah U—coefficient

(J1J2M1M2IJM) is the Clebsch Gordon coefficient

Solving these coupled channel equations, we can find the

energy En and the wave function.

Problem of Wave Function Symmetry

The alphaparticles must obey Bose-Einstein statistics.

In an exact a theory, the Hamiltonian would be symmetric

with respect to d coordinates, and the wave functions would

have definite symmetries, so all that would be necessary

would be to select out the totally symmetric states. This

is obvious in the 2d problem, where all that is necessary

is to throw out the odd parity solutions. In our model with

c+ 12C, symmetries are no longer evident and there will be
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extra states that are not obviously spurious. However, we

can construct a model for the 12C as c+ 8Be, and calculate

the matrix element of the a exchange operator. Ideally,

this matrix element would be +1 for the true states, and

all other states could be rejected. The details of the

construction of this operator are as follows.

Let us define the exchange matrix elements as

I

EQ ._. (Jags agave,” qupeanan a.»

Here the notation\¥J(dl++02+c3+au) means the wave function of

the number 1 a particle moving relative to the core which

made up of the three a particles a2 a and on. P is the

3 12

exchange operator exchanging a1 and a2. Now let us decouple

the core into one a moving around a small core ( 8Be), so

the wave function becomes

Renew» = w, a. .. use.»

= Z MlYta.)®<}13w+ 854)]:

ll.I“

(t)Z 9n.

LL

7(a) e [Z 41(jta.)af‘t'3.))] .

I

Rkw) u flit)

“21-: Y. I1 7|...(9%) 6 [703) Qfltc]Sq)

1.11 n 3
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where r is the distance between the C.M. of 120 and

l
the a2

r2 is the distance between the C.M. of 8Be and

12

the a2 in C system.

Here RLnI (r1) represents the radial part of the wave function

n

when a is moving around the core 12C, and U (r ) represents
1 1112 2

the radial part of the wave function when d2 is moving around

8
the core Be. We can then express the wave function with

particle l and particle 2 interchanged as

Pu \Ckl (4‘9 d‘+‘8*)> = \qu (“’HU‘V" ‘B¢)>

 

R.;;(fi) K:'(fi)

= z. t: ‘2. ilk“®.l71:wz‘x;"fi«>
fl

Using the Racah Coefficient,36 we can recouple this wave

function into

Pu \ ‘13, (“'Bdlflgtv

K' 'Ul) (It)

=23, 4—,— L 2 util.’ 31.8110
“‘8

1: I;

x 171;“) a (7L: (4.) 697(1;(‘B.))i)3
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Now we can evaluate the overlap of this wave function with

a wave function in our standard representation by neglecting the

difference between the CM of the 88c and 120

EC: = <~PI<¢.~«.+‘3.>\ mwzxw ow 83.))

= Z' Z) R ’

ml. 1.1.. k1

1:1: L; 1.

,u.) “1.15““; R150 “111; (m M.

x ULLLICJI.’ 31.11)

To obtain this result, we require

(yd‘fl) 0 Q3 (‘;*33()‘ 71:. (“JG éafidz+83()> 5 g ’ SL1
Ln L.

where ¢§ng(a2+8Be) is the angular part of the core's wave

n

function with angular momentum equal to In.

By inspecting the exchange matrix element, we can find

the symmetric states of our system. We will come back to

this problem in Chapter IV.

Matrix Elements of Electromagnetic

Transition Qperators

To find the electric transition rate, we start with the

equation37

B(E1.L)=[Kfij_+—\) (433 “ Eje— Egg Y;— 7LH(91 4”) “‘ID]
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where n is the total number of a particlesin the nuclei

in our case n = N

eJ is the charge of the a particle (i.e. =2e).

J

Now let us separate the right hand side into two terms

3m, L) = “M“ 9% r

where

I

o. =W Hz. u mimic“ 9t)
 

and

| 4 L

0'1: Jill-4r t) (‘13: “ 11-7; T3 7.5% #3)“ ‘1’.)
 

Physically we can say the lec comes from the three a particles

in the core, and Qa comes from the extra a particle.

Using our form of the wave function (Eqn. 1), we can

get (Appendix B)

co *’ I

I L 3; In+LK+;I

Q“ = Z l [J Riff) ( Rl 1”(r) ark—I) f

uni“ o “

 

X (upomw)

w (413 ')

LLo)um: If; ; L 1.) (:1an
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Q = Z. POL” U133,- QU‘XW‘B
“c.

L11; 1"
(AU |) (M1? \) U (1‘1“ If J, 3 LL.)

i

3* 33 1

x1 RLLLU) RLLILM M1 Quc(1.."*1n)

where [Ql2 (In'+In)]2 is the electric transition rate

C

between the states In' and In of the core 120. In our

calculation, we use the experimental values and the values

predicted by the rotor model as our values of [Q12 (In'+In)]2.

C

Quadrupole Rate with Full Exchange

As we mentioned before, ideally the exchange matrix

elements would be +1 for the true states, but in our calcula-

tion we found all of them are very much smaller than +1

except the one for the ground state; the reason for this is

presumably because of the inadequacy of basis: no intrinsic

excited states of 120 are being considered. Because the

exchange matrix elements are smaller than one, we no longer

can rely on the formula mentioned in the previous section in

calculating the quadrupole rate (Eqn. (6) and Eqn. (6.a)).

A better approximation for the wave function is
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' PHIL) u .
6:...) = NVHP.+P.«PJZL “‘ f ”“)\7.“"WU.E°‘I>°M.)

I... . l n 3

Y;

E N: C” fiz*fifi‘fiw) \C‘JJ>

t J' v_

where NJ can be written as N =(14+12xECJ ) %

From Appendix B we can find

UP Hw.) 716+) R. \‘P>= 2 Z. Z 1 (239“me RIM]
1...}..[1 LM:1,

1‘ 1’

*1 S mu.) Rm: MAR] (131.3» "‘2. \3“) (11W; 1" WWW)

I I ’ ’ ’ M
M:

X U0“ 1"] 1‘ 31‘1“) (yhk(d')\ 7?“) \ 71,1 (01.))

 

 

 

and

([5577"M 7, n P. <P)= .2 2:3: [[RL.1£*.)ulf1;(fl)
P. am]

1 I. 1. r.’

gumui
l 3 n ‘

x‘j “1.153) RLLI.’ (01%] (A)
(ignét‘j'):

x U(L..1"33'-,12 1.) U(L.’.1.’3'I.' 31.11)

x (LJOOILIO) X1.1; Sid—5
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To evaluate the quadrupole rate with full exchange, first

we have to determine

( *JCH Pu" PB" Pm)+ \\ (P172. (4‘) u (H, fit + F8 + YH') q): )

I
?

’ 3 z 3’ * z T,

W)M In 7.<~.>\|<P >+g<491m ma» M)

“ (qu “2 7:69!) (“I * “X + ‘7») H (F) + (*J“ “12*“? P's Y: 7J0") “ CF!)

». (cm i P.” v; m} \\P") + M {RH v3 7.6m} M")

* (4’3“ i Pu, {£71010} M75

where {A,B}E A+B + B+A

and use has been made of

(4?“ P? r.‘ 7. n.) P..- “4?) 2 («3“ PI r3 nu,» H P’)

a: (4’ |\ PI r: 7. u.) \l GP")

where i i J and i # 2, J # 2.
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From the previous section, we know

@f; (if: “ ti17’zé’t‘3) “ (Y!) = Q

 

 

mm, n .3 7. w n P.» =

and

scam) = [KL—1002\\-‘- 2e r,ymuP,)]

we can get

B(EQ, A) = “33'th ‘r 0.35%: (WW? 7’. (“3 WWI)

 

+ A Q“C <4): ‘ Rah}; ”1963—40 (4):“ 6Q“; 712(2) “CV3

+9 <¢J‘Yu‘¢3> Q“c]k
(5)

where use has been made Of

E. W): E. W) =2 P. PP’>
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(i.e., assuming the 12C core is totally symmetric)

and

_3~ q. 3 z ‘3, I, 3’

gm ,2},(<P 1H. 75d.) MP ) 2 0.,c<<P \MP >

Here <wJ|P wJ> is Just ECJ defined in the previous section,

12I

so we can write

15039.3) = {NINE [‘l’ o. + 40%». (15%quWe.) ml 6P”)

 + g Qucx 5cI + [$3 (43“ $1:an 7, cot.) My)

Z

+ 62sz $1..C 1}

where NJ is defined in the previous section.

Note that the matrix element reduces to the unsymmetrized

I

matrix element in the limits where Pl2|¢J > vanishes, i.e.,

B(ELD) " 10. +’ Que-ll
(6a)

and if we approximate

(43“ e P. HP") =2- (we nab") Ea"

(cm P..6|H>‘) 2 503 (+‘uew‘3/if 28'...“
,

'
1

we get B(Ec’a)1‘: {NTN‘J i‘r + IQ E6}x[9,+ Q“c]}

and

(6b)
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Mean Square Radius with Full Exchange

Using the same notations we used in the previous section,

.. .... f... _

<41, \.3m = .3.“ [$wa + E} <P3 \r? \P">

. o‘mm. n.) W; + <P’1mw5 €145

+ «PW { PM W3 + «>1 by} W,» <43: { P.,r:3\+">]

= N3." [of wl P") + :2 «P3 \n‘ PPS + 3 <6? w M 495

. 3 UP“ \ $13145 + 3(4’Pr.‘\+"><¢"m.\¢">

+ 3 (4’). fi.‘ if) <<P3\C1\<PII> (7)

where use has been made of

«PW ¢‘>= <¢’\r.‘\4>’> = <«Flr.‘\¢’>

 

and

<43 \ rim \+"> :2 «PW r: PF} <49. m \ 43>
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Since

PPS-=2, “y” WP>

2 RIM “11‘:%{1)

L v, ‘7..(°0(®(7'1(°>W}(1(8«))>

we can get

(41:PM)Z [SPLMN.m44]

111.111;

‘

I /
I

* l S Muff») 2131’ (K) At} U(L’1.:J I: 311 > 8L1,’

Note that Eqn. (7) reduces to the unsymmetrized matrix element

in the limits where P12|¢J'> vanishes, i.e.,

I Q, 2 I

emit)?- fluhn‘W» 35W. \¢‘>j ma)

and if we approximate

<4? w P... \+’> = «PW 3453 Ea:f

(*3, Pu {.2 ‘¢J'> = ECI'<¢J\{PI\+T’>

we can get
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1 ' J 3' q. 3 2 3'

<°rx\n‘\<ky> = N [<4 M4 >+ 3:“ 1n \4’ >

+3(<¢’N\¢’>+ <4‘\n’\¢">) a"

+3 84314445» (4’; r3 14>">) 53] (7,,

Here the ri should represent the distance between the center

of mass of the 16O and the iEll a particle. However, in our

calculation, we calculate the distance between the center

12
of mass of the C and the iELI a particle. In order to

transform the <r1> from the center of mass system to our

system, we need the following transformation,

.. 3
<Y'>¢H "' "ii: 4f.)

<Y‘>cn ZJC-ée; + ((2; ; 4‘ a; ‘

To include the finite size of the a particle, we use the

 

following equations,

2 ._ z 2

«42.4» - am.- \»> + «mo 8...,

where Rd is the radius of the a particle (1.7 fm).

In our calculation, we put the value of the radius of the

120 core as our value of <wJ|ri|wJ>, (i f l)
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Width of the Resonance

If the interior wave function is calculated and Joined

smoothly into the exterior solution at r=a, the phase shifts

can be expressed in terms of the logarithmic derivatives at

the boundary r=a:

.. (4.. AR:

where Hz is the interior wave function with angular

momentum 1.

If the exterior solution is the Coulomb wave, then we can

introduce the real parameter Si by

 

where F2 is the regular Coulomb wave

Gm is the irregular Coulomb wave

k is the wave number.

If the rapid change of the phase shift 82 in a small energy

range can be represented by a linear approximation:

flue) = u b E.

then the width of the resonance can be written as38

S

”4-6-



CHAPTER III

Numerical Details

The calculation of the potential matrix elements is

straight forward. We first project the effective potential

V 120 (Eqn. 3) onto the basis Y? and find each component

Va—(Eqn. h). In integrating Equation (N), we used

Simpson' 8 Rule with 20 points in.‘bdirection (from O to w)

and with #0 points in 6 direction (from O to g). The size

of basis that we require to give a good representation will

be discussed in the next chapter.

After we found the V?, we can use Equation (5a) to

calculate the right hand side of Equation (5). Let us

rewrite it to be

R

3'”

=2140:1; (0R:1
L“1“U

where RLnIn (r) is the second derivative of R: I (r) with

Luann “ "
respect to r, and we have combined the -———§———-and En terms

r
LnI

into QL.I,(r)

31
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Remember the matrix elements are functionsof r. So if we

have five channels for the wave function and we want to

calculate the wave function between 0 and 7 fm in the step

of 0.05 fm, we will have 5x5x6%6§-= 3,500 matrix elements

to calculate. For our Sigma 7 computer, it takes about H

minutes to calculate all these if V _120 is independent of

¢, otherwise it takes about 25 minuges to calculate. Once

all matrix elements are calculated, we put them in file for

later use in the coupled channels equations (CCE). To solve

the CCE, we first have the boundary conditions for each

channel wave function at r=0 and r=rmax (where rmax is the

outside limit of the wave function, in our calculation

rmaxg 7 fm). Let us symbolize these wave function as

Einner(r)

where the superscription "inner" denotes that they solve

the Schroedinger equation in the inner region with 0<r<rin

(we use the Noumerov method39 to solve the differential

equation), and the underlines denote that the wave function

at any given radial mesh point rM is a matrix in the space

of (initial values = n) x (channels = m). In a similar way

we can define _outer

from rmax' We wish to match the wave function at rmatch in

(r) for r1 <r<rmax integrating inward
n

each channel, so we perform a linear transformation on

outer outer inner

g (r), i.e. w (r) = g x g (r) with g =

I
I
:

outer( inner

r ))-1. The wave function u
(rmatch) x (2 match
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matchsgouter’ but do not Join smoothly, i.e. (

# (wouter

inner(

>>'

I
I
C

match

1

(r )) . If m - n+1, we can define an (m—l)
match

dimensional vector g from the following equation:

I t
inner ( ) _ outer (

(

I
”
:

rmatch)) x E = 0rmatch

Once g is found, the first (m-l) channel wave functions

nner nne

f = I: x u1 r

outer : B outer

and V x

"
2

will Join smoothly at the match point. The last channel

wave function usually will not Join smoothly unless En in

Eqn. (5) is indeed the eigenvalue. So in order to deter-

mine the eigenvalue En and solve the CCE, we have to vary

the En until this channel wave function Joins smoothly.

There are a few tricks we needed in using the program

in order that the En converge quickly to the eigenvalue.

First, we match the wavewhich contributes most to the total

wave function. Secondly, we choose the match point close

to the peak of the wave. The program usually searches H times

until it converges to within 10-“ MeV of the eigenstate.

In Table (R), we show the time needed for each search versus

different number of channels.



CHAPTER IV

Energy Spectra, Wave Functions
 

and Physical Properties
 

In Chapter II, we showed that if we know the structure

0 and the a-d potential, we can calculate the a-lZC

effective potential. The simplest d- model of 12C is a

6,7,8

of 12

static triangle formed by the 3d particles. Let us

choose the Z axis to be the symmetric axis of the triangle,140

then the 0(0) in Eqn. (3) becomes

((11) = C E: 3(9)») 4(9’ltg‘)§(<\?- ”(g—'3)
T

where C satifies S ‘07-) A-Q = 3

12
and r0 is the radius of the C in a—particle model

(we choose r0 = 1.85 fm).

Because of the structure of the 12 C, the sum over 1 and m in

Eqn. (u) is limited to those which satisfy the symmetry

0 ‘ m
properties of a triangle (i.e., YLseven or Y1, where

l+m = even; m=3xn and n is interger number). In determining

how many terms we needed in the summation to give a good

representation when we used the A11 & Bodmer potential, we

3”
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found that with Y (L = O, 2, u, 6, 8, 10, 12), Y

L,0 3,i3’

Y5 +3, and Y6 :6 terms, Eqn. (fl) gives a good representation

’- 3

of the effective potential (in a sense that the projected

potential differs from the actual potential by less than 10%

at the valley of the potential and less than 1% at other

point of the potential). Later when we used the stronger

33 3M

potential--Neudatchin potential and Vary & Dover potential,

we only used U (L = 0, 2, h, 6, 8, 10, 12) terms in
L,0

Eqn. (h).

For the a—d potential, we first used the Ali and Bodmer

potential.29 This potential has a short—range repulsion

and L-dependence which come from the exclusion effect. Because

, this potential is L-dependent, there will be some difficulties

in carrying out the calculation. First, in the expansion of

the potential (Eqn. (fl)), we expand it in the basis of Y
lm’

where l is the angular momentum of the relative motion between

the a particle and the center of mass of the 12C, not the

angular momentum of the relative motion between the individual

a—a pair. Secondly, we don't know the magnitude of each

component of the potential. For the first problem, we assume

12
the C core is rigid enough such that we can approximate the

Y1 m in Eqn. (h) to be the relative motion of the a-a pair.

3

For the second problem, we first calculate the wave function

of the system by assuming the relative motion is in the S

state only. After we find the wave function, we can find

the mixing of the potential. Using this information we can
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find a new potential and recalculate the wave function. In

principle we can do this repeatedly until we get a self-

consistent potential.

In Figure 2, we show the spectra for Ali-Bodmer potential

(only the states that have positive exchange matrix elements

(see Chapter II) are shown) and the experimental result. It

can be seen that although the states are in the right order,

the binding energy of the ground state is only about 71% of

the experimental value. The excitation 0+ state is unbound

by 1.7 MeV while in experiment it is bound by 1.N8 MeV. In

27 they also encounteredMendez and Seligram's calculations,

the underbound problem and they concluded that the a-a

potential determined by the phase shift methods is not

strong enough to give the right binding of the nucleus. To

investigate the potential, we first increased the depth of

the potential without changing other parameters and we show

the result in Figure 3. It can be seen the ground state now

becomes overbound if we want the first excited O+ state to

be bound at the right amount of energy. We also tried Benn

“1 and Chien's potential.”2 But these& Scharf‘s potential

two potentials are similar to the A11 and Bodmer's, they

give results similar to Ali and Bodmer's.

Since we believe the underbinding of the nucleus is due

to the fact that the potential is not strong enough, so in

the next step, we use the deep potentials suggested by

Neudatchin33 and by Vary and Dover.3'4 This type of potential
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is somewhat simpler for it is L—independent. But because

it does not include the exclusion effect explicitly, it

usually induces a lot of spurious states and we have to be

very careful in choosing the true states. In the resonating—

“3
group calculation on two alpha particles system, the wave

function for the lowest state that describes the relative

motion of the two alpha particles has two nodes. To show

that this argument is consistent with the shell model,u3’lu

first let us describe the spatial behavior of the two a

clusters by

4" Mr l-fiaé‘: {(42.32}

H S
.
7

r
-
M

I

~
\
—

5
:

:
2

I

3
"

“
N

1
.
.
.
!

Ch.

where R1 and R2 are the position vectors of the center

of mass of the two a clusters respectively and a is the

width of the oscillator well. Secondly, let us describe the

relative motion of the two alpha clusters by the function

P

'1.

.. 9 > 1 2 "“V
3(0- CYP- EM + 1%“ “3‘6

where C is the normalization factor.
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Using these notations, we found the usual shell model wave

function describing the lowest configuration (ls)u(lp)u can

be written as

t = A 14:42 1‘? gar/n]
(*0

where A is the antisymmetrization operator and'§(o,r)

denotes the appropriate charge-spin function.

It is clear the function g(r) has two nodes and we have shown

the argument is consistent with the shell model.

Since we know in c-particle model the a configuration

of 16O in ground state is a regular tetrahedron,5

c+120 system if we put the 120 on the x—y plane, the extra

so in the

a particle should be peaked along the Z axis. If we consider

12
the C as a static triangle formed by the 3d particles, the

12
wave function describing the relative motion of the c+ C

should have M nodes along the Z axis. This is how we identify

the ground state of 160.

To identify the 0; state, we follow the argument given

2
by Terasawa, et al.9 In the 0Ne(d,6Li) 160 reaction, both

the 0: and 0: states are strongly excited. This can be inter—

preted as the pick up of four particles from the 2s-1d shell

for the 0; state, and the pick up of four particles from the

lp shell for the 0: state. Since our model describes 16O as

an a particle plus a 120, the a-particle in the 0;

consist of four nucleons in the 2s-ld shell. This four-

state will

particle excitation gives four for the number of nodes of the
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a-particle wave function in this state. Also we know that

the a—configuration of 16O in the 0: state is a plane diamond.5

If the 12 C is lying on the x-y plane, the extra a particle

should be peaked on the x-y plane and the number of nodes of

the wave function describing the relative motion of the

a+ 120 should be four along the x-y plane. This is how we

identify the 0: state of 160.

To project our wave function into the coordinate space,

we approximate the internal wave function of the 120 as the

rotor model wave function. Because we put the 120 core on

the x—y plane, the wave function in coordinate space can be

written as

R (r)

43:0“ 0) 7:; .JiSY— YLO (006)

where r,6 refer to the a coordinates in the space fixed

system.

and the probability of the a particle located along 9 degree

is

12(6) = \l>(r,e)\l Y‘dv

where

Hts) == \ QMUMV

No attempt has been made to identify the 2+ and N+ states,

because we no longer have enough basis to describe the internal



U0

wave function of the 120. But by looking at the B(E2)

transition rates and the a decay widths, we can identify

the physical 2+ and h+ states.

In Figure 3, we show the spectrum we got for the

Neudatchin potential33 and the folded potential by Vary

3H
and Dover. We can see the bound states in both spectra

are overbound. For the folded potential, the depth of the

potential was originally adjusted to fit the a+ l6O elastic

scattering data, therefore it is very likely that the potential

is too deep for the a-a potential. We adjust the potential's

depth to fit the binding energy of the ground state and get

the spectrum shown in Figure h. The over all fit of the

spectrum is good. We plot the probability of the a particle

versus the angle between the a particle and the 12 C core in

Figure 10 and Figure 11 (in these figures, solid lines

represent the folded potential by Vary and Dover, dashed

lines represent the A11 and Bodmer potential and dotted-dashed

lines represent the Heudatchin potential). Figure 10 shows

that the a configuration of the 16O in ground state is a

tetrahedron. Figure 11 shows that the a configuration of

16O in the first excited 0+ state tends to be a planethe

diamond for the deep potential, but tends to be a mixture

between the plane diamond and the tetrahedron for the All

and Bodmer potential. This is because the Ali and Bodmer

potential is too weak to produce a bound 0: state. This is

another evidence that the A11 and Bodmer potential is not

suitable in the structure calculation.
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The ground state wave function and the 0: state wave

function for Ali and Bodmer potential are shown in Fig. 12

and Fig. 13. The ground state wave function and the 0: state

wave function for the Folded potential are shown in Fig. lu

and Fig. 15. In these figures, only the two most important

components of the wave function are shown.

In Table 5 we show the probabilities of the wave function

for different potentials and the probabilities calculated

by Noble and Coelho.31 In Table 6 we show the exchange

matrix elements for the states of different potentials.

Here we only show those with positive sign, those with

negative sign that violate the symmetric property of the

nucleus are not shown in the table.

The mean square radii (Eqn. 7) (Eqn. 7a) (Eqn. 7b) and

the B(E2) transition rates (Eqn. 6) (Eqn. 6a) (Eqn. 6b) are

shown in Table 9 and Table lOa. All mean square radii agree

very well with experimental results. The mean square radii

for the repulsive core potential are larger than those for

the deep potentials. That is because the different shapes

of the two potentials. The B(E2) transitions for the

repulsive core potentials are larger than those for the deep

potentials. The repulsive core potential predicts an

excessively large transition strength to the 0: state, while

the deep potentials predict too small a transition rate as

expected. We compare the B(E2) predicted by the deep potential

and the B(E2) from Brown's shell model calculation in Table
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10b. The shell model predicts an excessively large B(E2),

while the a model with a deep d-a potential predicts too

small a B(E2)

We use the formalism mentioned in Chapter II to

calculate the width of resonance. To check the result, we

also calculate the width by using the R-matrix formalism by

Arima and Yoshida.”6 It turns out that both results agree

within 10%. Since the width is very sensitive to the energy

of the state, in order to compare the width with the experi-

mental value,u7 we have to adjust the a-c potential by the

method we mentioned before to get the energy of the state

close to the experimental value. We list our results

together with the experimental results in Table 11. The

width we got for the N+ state is only about 50% of the

experimental value,“7 while the width for the 2+ state is

almost three times bigger than the experimental result. But

considering the crude calculation we had for the decay width,

it is quite satisfactory that the results are in the right

order of magnitude.



CHAPTER V

Summary and Conclusion

We start by assuming the l60 is made up of a 12C core

plus an a particle. We use different realistic a-a

potentials to determine the effective a- 120 potential. In

determining the effective a- 120 potential, we only consider

the pair wise a-c potential and neglect all the higher order

interactions (e.g., three-body interaction). For the

structure of the 120, we assume the 3d particles are in a

triangular configuration. The size of the triangle is deter—

mined by electron scattering. No intrinsic excited states

of 120 are being considered. Knowing the structure of the

12C and the d—a potential, we can find the effective a- 12C

potential.

We put the wave function of the system in a weak coupling

model form, use the effective a-lzc potential, and find a

set of coupled-channel equations from the Schroedinger

equation. By solving the coupled-channel equation, we find

that the bound states of the nuclei are underbound for the

weak 0—0 potentials and become overbound when we use the

deep a-c potentials. By adjusting the depth of the folded

potential of Vary and Dover, we can find the correct binding

of the nuclei and still get a spectrum that fits the experi-

mental reSult reasonably well. Therefore, the deep potential

M3
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is qualitatively more realistic than the weak potential for

structure calculations in 0- particle model.

Unfortunately, one problem of the deep potential is

that it induces a lot of spurious states. We find the

physical states by choosing the states that have the right

number of nodes in their wave functions and satisfy the Bose-

Einstein statistics. In considering the problem of wave

function symmetry, we find the exchange matrix elements

(see Chapter II) are smaller than +1; the reason for this

is presumably because of the inadequacy of basis: no

intrinsic excited states of 12 C are being considered. To

remedy this defect, we derive some formulas in Chapter II

to calculate different physical properties (except the

a-Width). From our results we show that the a-a scattering

data do not sufficiently determine the interaction to make

predictions on the structure of more complicated nuclei.

The interactions with repulsive cores give a very smooth

structure to the states and tend to underbind the ground

state. Also the transition rates to the 0: state are too

large. The deep attractive interactions suffer from

opposite defects. The states are now overbound, and differ

from each other to such an extent that the transition rates

are an order of magnitude too small. Of the two types of

interaction, we prefer the deep potential, because the

structure of the states matches the more fundamental cluster

model.
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APPENDIX A
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Represent the \IH) wave function by a rotational matrix
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Normalize the wave > (i e D1 ‘9 D“ )
‘1“ . . I “X ‘WI

and make use of the following relation (31H)

\ \ , I I

\ . ~ 1+1” +834 +(+M‘tM+M+M‘+M/+M
1‘ ‘1 on = Z (.‘)\ i l t 3 l 3 1 3

I. ‘1 ‘3 “9“)“,

M‘th;

x (1! )‘jl)(lx 1‘14: ll 3‘13)((\ {‘ 73)

fi‘ "'2 ”I 4‘; M; 'M; “A; 'm‘ “’3 mt! “M1,, ”M5
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TABLE l.--M1x1ng ratios from TTM's calculation and present

 

  

 

calculation.

Terasawa's Results Present Results

n + + + + + + + +
J 02 21 22 23 02 21 22 23

sao+ 85.3 8n

du0+ 88.6 0.03 N.A. 8a 0.02 o.u

81:2+ 1.7 29 N.A. 3 31 28

duz+ 1a 3.3 61.6u N.A. 16 5 61 5

4.

gn2 6.3 9 N.A. 8 8 6.7
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TABLE 2.-—Volume integrals of various potentials (Vd being

defined in (#8)).

 

Type of Potential Vd (MeV-fm3)

A.B.* (L=0) —2o.25

A.B.* (L=2) 162.38

A.B.‘ (L34) u87.06

A.B.' (L=sc)+ 79.3

Chien (L=SC)+ 117.13

Folded 318.2

Neudatchin “37-38

Folded (adjusted) 260.9

 

§

AB 8 Ali and Bodmer

+sc - Self-consistent
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TABLE 3.--Ground state properties of 120 and 160 from Brink.6

Nucleus B Bhf Bexp R fihf Rexp

(MeV) (NeV) (MeV) (fm) (fm) (fm)

12
C (triangle) 62 92.2 2.62 2.37

16o (tetrahedron) 9u.u 92.9 127.6 2.62 2.71 2.6M

 

TABLE u.--Computation times for the CCE program.

Number of channels 2 h

Time for Each Search .0“ sec .17 sec .27 sec

 



57

+

for Ali and Bodmer potential, also the

ratios calculated by Noble and Coelho.

TABLE 5a.--Probabilities of various 1 in G.S. and $5 state

xing

 

  

 

:1 11 _______

N.C. A.B. Potential

J1T G.S. G.S. 0;

sno+ N.A.+ 0.u33 0.831

da2+ 0.375 0.511 0.125

guu+ 0.15 0.036 0.021

fu3‘ 0.075 0.011 0.022

has“ N.A.+ 0.008 0.0008

 

. 31

N.C. = Noble and Coelho

+N.A. - not available

TABLE 5b.--Probabilities of various 1 in G.S. and 0; state

for Vary and Dover's folded potential.

--.——-.. -. -_... _—

Folded Potential

n +

 

 

J G.S. 02

.9110+ 0.0856 0.698

du2+ 0.357 0.23

gah+ 0.50u 0.063

11:6+ 0.052 0.008

ka8+ 0.0016 0.000u
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TABLE 6.—-Exchange matrix elements.

 

 

Potential State G.S. 0: 2:

Ali and Bodmer 0.828 0.25 0.11

Neudatchen 0.126 0.12 0.283

Folded (Adjusted) 0.27 0-245 0-0“"

 

TABLE 7.--Ground state binding energies for different

 

 

potentials.

E(MeV)

Experiment —7.16

A11 and Bodmer -5.l

Neudatchen -22.

Vary (adjusted) -7.2

 

TABLE 8.--Excitation energies for different potentials.

 

 

+ +

02 21

Experiment -l.1l MeV -0-1N2 MeV

-0.8 Nev 1.2 MeV. Vary (adjusted)
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TABLE 10b.--Comparison of our B(E2) amd Brown's B(E2)4.

 

 

 

* +
2 4 50 Folded A+B 4

B(E2)(e fm ) exp (Eqn.(6b) (Eqn.(6b) Brown

214G.S. 811 0.94 0.53 5.3

2140; 40115 68. 39.6 103.

 

*

Folded (adjusted)

+Ali and Bodmer (adjusted) (see figure.2)

TABLE 11.-- cc decay width.

 

State Exp50 Vary(adjusted)

 

2 1 Rev 2.6 kev

4 33 kev 16.3 kev

 



62

  

 

 

 

 

 

 

 

  

  

23 _ ..

5 - \

(2‘)

4 - a: J!”

3 - “~

2 b

E I P

2,‘ x’

-| -

02

-2- \\ #//

EXP TERESAWA PRESENT

FIG.l.--Spectra from experiment, TTM's calculation and

present calculation using TTM's potential.
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FIG.2.--Spectra from experiment, calculation using Ali and

Bodmer potential and calculation using adjusted Ali

and Bodmer potential.
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FIG.3.--Spectra from experiment and calculation using

Neudatchin potential.
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FIG. 4.--Spectra from experiment and calculation using

adjusted folded potential.
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FIG.5. --Nodes of a+d system in ground state, dashed line

represents the region' where the two K particles

overlap.
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+The place where the wave function most concentrates on.

FIG. 6.——Nodes of the 0+ 120 in ground state for Neudatchin

potential, the dashed lines represent the locations

of the 0( particles in the"C core



   \

FIG.7.--Nodes of the a+ 120 in 05 state for

Neudatchin potential.



69

 

 

 

12

adjusted folded potential.

FIG.8.--Nodes of the a+ C in ground state for the
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folded potential.

FIG.9.—-Nodes of the a+ C in 0: state for the adjusted
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