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ABSTRACT
ON H-PROJECTIVE FG-MODULES

AND THE COMPLETE REDUCIBILITY
OF INDUCED FH-MODULES

By

Gloria Potter

Let H be a subgroup of an arbitrary group G and
let F be a field of characteristic p. Let (¢ denote the
class of proper subgroups H of G for which the induced
FG-module NG = N G?H FG 1is completely reducible for each
irreducible FH-module N. Our first result shows that if
H € ¢ then H must have finite index in G. Moreover, we
show that the index is a unit in the base field F, thus
proving that if H € C, then every FG-module is H-projective,

i.e. that (G,H) 1is a projective pairing in the sense of Khatri.

For finite groups and normal subgroups it is known that
these two properties are equivalent to a third property of the
Jacobson radical namely that Rad FG ¢ Rad FH-FG, Rad denoting
the Jacobson radical of the ring concerned. We will say that
H € R if this inclusion holds. Now the necessity of finite
index for projective pairing prevents such a theorem from holding
for algebras over infinite groups. However, we do give suffi-
cient conditions for the three classes of subgroups to coincide

for normal subgroups.



Gloria Potter

ii

Now suppose that we have a group G for which
HE€ECeoH €E€ER e (GH) 1is a projective pairing. Then we say
that G 1is a @RC-group. We begin chapter two by showing that
infinite @RC-groups do exist in the form of locally finite p-
groups. Then we show that we can construct more €KC-groups by
taking either extensions of locally finite p-groups by locally
finite #RC-groups or extensions of locally finite #RC-groups by
finite p’-groups. Next we show that quotients of infinite @KC-
groups by p-groups are @RC-groups. Finally we extend the list

of known &@RC~groups to include the dihedral and dicyclic groups.

Chapter three builds up machinery on induced modules for
finite dimensional group algebras and ends with a counterexample
to Khatri's conjecture that extensions of #RC-groups by &RC~

groups are #RC~groups.

In chapter four we investigate replacing the base field
F by a commutative ring R. In the main theorem of the chapter,
we give conditions under which Rad FG € Rad FH-FG implies

Rad RG € Rad RH'RG for an F-algebra R.
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CHAPTER I

PRELIMINARY RESULTS ON PROJECTIVE PAIRING AND
THE COMPLETE REDUCIBILITY OF INDUCED MODULES

§1. Introduction

Let F be a field and G a multiplicative group.
Then the group ring F[G] of G over F 1is an F-algebra
with the elements of G as a basis. To be more precise,
F[G] consists of all formal finite sums a = Z)agg with
g € G, ag € F. Then F[G] 1is a ring where the addition is
given componentwise and multiplication is defined distribu-

tively using the multiplication of the group G.

If G is a finite group then F[G] 1is a finite
dimensional F-algebra and there are fairly strong structure
theorems for studying such algebras. On the other hand, if G
is infinite, then these methods are no longer available and
the problems of studying the group ring are correspondingly
more difficult. For this reason the first papers (with a few
exceptions) on infinite group rings did not appear until the
early 1950's. We will be studying infinite group rings as

well as finite dimensional algebras.

A few simple but useful observations can be made

immediately. Suppose H is a subgroup of G. Then the inclusion



H S G gives rise to the obvious inclusion F[H] £ F[G]. 1In
fact, if {xi} is a set of right coset representatives for H
in G, then F[G] = Z}F[H]xi exhibits F[G] as a free left

F[H]-module.

Since group rings are rings after all, the questions
we ask about them must necessarily be ring theoretic although
the techniques involved often are strongly group theoretic in
nature. One of the questions that frequently arises in the
study of rings is "What does the radical of the ring look like?",
where by radical we shall mean Jacobson radical, abbreviated

Rad FG.

According to Passman, the semi-simplicity problem seems
to be the most difficult of all the group ring problems. It is
the problem of classifying all semi-simple group rings and it
is the problem of determining the structure of the radical of
a non-semi-simple group ring. The semi-simplicity problem for
infinite group rings has been studied for nearly 21 years. For

finite groups we do know:

Theorem 1l.1. (Maschke) If G 1is a finite group, then

F[G] 1is semi-simple if and only if char F = O or char F =

p /Y |G|.

But very little is known about Rad FG itself if |G|
is divisible by p. Therefore, if H < G it could be useful
to know when Rad FG € Rad FH-FG. We will be studying this

inclusion giving conditions under which it holds.



Since the radical is that ideal which annihilates
every irreducible FG-module we are led to consider the
irreducible FH-and irreducible FG-modules. This brings us
to the notion of an induced module. Throughout this paper,
by the way, all modules under consideration will be right
modules unless specified otherwise. Let W Dbe an irreducible
right FH-module. Then W can be made into a module for FG
by tensoring with FG. Namely, W ®ry FG 1is a right FG-module
called the induced module. Although W 1is irreducible, the
induced module W @y FG is rarely irreducible. But it is
often completely reducible as we will see later. For now it
will suffice to give the connection between these induced

modules and the inclusion Rad FG € Rad FH-FG.

Theorem 1.2. (Sinha and Srivastava [9]) If for every

irreducible FH-module W, the induced module W ®FH FG 1is

completely reducible, then Rad FG £ Rad FH-FG.

In keeping with Sinha's and Srivastava's terminology
we will say that the pair (FG,FH), or simply (G,H) if the
field is clear from the context, has property p whenever
Rad FG € Rad FH-FG. It is easy to see that property p is
equivalent to the following criterion: If [xili € I} is a
right transversal for H in G and if Z}pixi € Rad FG,
with Py € FH, then p; € Rad FH. ’

As a result of Theorem 1.2 it is clear that we need to

study induced modules. The following elementary results con-

cerning induced modules will be crucial: (See for example [2]).



Lemma 1.3. If W 1is an FH-module and W = wl e w

as FH-modules, then WG = wf ® Wg as FG-modules.

2

Lemma 1.4. Let (xili € I} be a set of right coset
representatives for H in G and let W be an FH-module.
Then WG =@ L W® x; as vector spaces, where, for any

iel
X €EG, W@x=(wa®x|wew.

Lemma 1.5. If H KK G and W is an FH-module

1

It is clear that W @ x is an F[x ~Hx]-module and that

dimF(w ® x) = dimFW. It is also clear from 1.4 that if H has
finite index in G and if dimFW < @ then dimFWG = [G:H]dimFW.

Hence for every FH-module W there is a corresponding
FG-module wG with the above properties. On occasion, however,
we will be starting with an FG-module, M say. In this case
if H 1is a subgroup of G, then M can be regarded naturally
as an FH-module by simply restricting the operators to FH.

The resulting FH-module will be denoted by MH. It is clear
that (Myp, =M, for HSK G and that dimM = dim (M)
and we shall use these properties of restricted modules freely

throughout the remainder of this paper.

Also we will often be called upon to refer to the well-
known theorem of Clifford (see [2]) concerning irreducible

modules:



Theorem 1.6. (Clifford) Let M be an irreducible

KG-module where K 1is an arbitrary field, and let H G
be a normal subgroup of G of finite index. Then MH is a
completely reducible KH-module and the irreducible KH-submodules

of MH are all conjugates of each other.

Remark: In [2], Curtis and Reiner prove Clifford's
theorem under the assumption that G 1is finite and the crucial
step is the existence of an irreducible submodule of MH. How-
ever, the added hypothesis of finite index on H makes MH a
finitely generated KH-module so we can prove the existence of
an irreducible submodule of MH. (I am grateful to Steven
Gagola for his observation of this fact.) His proof goes as
follows: Let H A G and [G:H] = n < e. Let M be an irredu-
cible KG-module. Since MH is a finitely generated KH-module
there exists a maximal submodule, N, of MH. Let V Dbe the
irreducible KH-module MH/N and let w:MH + V Dbe the natural
map. Since HomKH(MH'V) = HomKG(M,VG) there exists a non-zero
map f:M =+ VG. From the irreducibility of M we must have
ker £ =0, i.e. f 1is one-to-one and M can be considered

contained in the KG-module V°© = 22 V ®g since for any

g €G
g €G, V®g is a KH-module. 1In particular MH contains some

irreducible KH-submodule of the form V @ g.

Another concept which is closely related to property p
is that of H-projective FG-modules. Let H be a subgroup of G.
Then an FG-module M 1is said to be H-projective if every exact

sequence O + N+ L + M+ O of FG-modules for which the



associated sequence O - Ny = Ly MH + O splits over FH,
is itself split over FG. We observe that in a sense H-
projectivity is a generalization of the usual concept of pro-
jectivity. For if we take H = {1}, the trivial subgroup,
then M is H-projective if and only if M is projective in
the usual sense. Many people including Gustafson [3], Khatri
[5], Sinha [9], and Higman [4] have studied H-projective FG-
modules, but Sinha and Srivastava were the ones responsible

for noticing its connection with the radical. Higman [4] was

responsible for characterizing H-projective FG-modules in terms

of induced modules in the following theorem that bears his name:

Theorem 1.7. (Higman's Criteria) Let H be a subgroup

of G of finite index. Then the following statements for an
FG-module M are equivalent:

(i) M is H-projective;

(ii) M 1is a component (i.e. isomorphic to a direct

summand) of (MH)G

~e

(iii) there exists an FH-endomorphism n of M such
n
-1 _ .
that iZﬁ x;” nx; =1, where {(x;]i =1,...,n]
are coset representatives for H in G and lM

is the identity map on M.

Remark: When Higman originally proved the above theorem,

he did so in the more general setting of a group ring RG where

R is a commutative ring. We shall use this fact later on.



If H is a subgroup of G and R is a commutative
ring we say that the pair (RG,RH), or simply (G,H), is a
projective pairing if and only if every RG-module is H-
projective. Therefore, (G,H) 1is a projective pairing
over R 1if every exact sequence O + N+ L + M+ O of RG-
modules for which the exact sequence O - NH -+ LH -+ MH + 0
splits over FH, 1is itself split over RG. With this

definition Higman [4] and Gustafson [3] showed

Theorem 1.8. Let R be a commutative ring with

identity, G a group, and H a subgroup of finite index.
If [G:H] = n 1is a unit in R, then (RG,RH) is a projec-

tive pairing.

In the course of our investigations the notion of a

Frobenius group will come into play. Therefore we offer

Definition 1.9. A finite group G is called
Frobenius with kernel M and complement K if G = MK, M A K,

KAM=1, and KNK =1 for all x € G - K.

Finally we will make frequent use of the following
easy lemma concerning radicals, whose proof is essentially

that of Lemma 16.5 in [6].

Lemma 1.10. Let H be a subgroup of G and let R

be a ring with identity. Then Rad RG N RH c Rad RH.



§2. Relations between projective pairing,

property p, and the complete
reducibility of induced modules

Let R denote a commutative ring with identity. Let
© denote the class of proper subgroups H of G such that
(G,H) 1is a projective pairing over R. Let R denote the
class of proper subgroups H of G for which the pair (G,H)
has property p, and finally let (@ be the class of proper
subgroups H of G for which the induced modules NG are
completely reducible for every irreducible RH-module N. With
this notation, Theorem 1.2 says that ¢ € £ 1In this section,
we will show that if either H € ¢ or H € ¢ then H has

finite index in G and the index is a unit in the base ring.

This will yield as a corollary the inclusion C c &.

Theorem 1l.11l. Let R be a semi-simple artinian ring

and let G be a group with subgroup H. If H € ¢ (H € @)
then H has finite index in G. Furthermore, consider the
following three conditions:
a) HecC (H € @)
b) R L. RG = R® is a completely reducible RG-module
(the trivial module, R, is H-projective)
c¢) [G:H] 1is a unit in R.

Then a) =b) =c). Further, c¢) =a) if H A G.

Proof: a) = b) If H € & then all modules, including
the trivial module R, are H-projective and there is nothing

to prove. So suppose H € C. Since R is semi-simple artinian



it can be written as the direct sum of fields; R = Fl @...0 Fn.
Now each Fi is an irreducible RH-module and hence Fi Ghﬂ RG

is a completely reducible RG-module. Thus, R ®RH RG =
n

® F. @

i %Ry RG 1is completely reducible.
i=1

b) = ¢c) Since R - RG 1is completely reducible the

sequence
£
O -+ Ker f1 + R ®RH Rq:_?‘/R + 0
)
splits where fl is the RG-module epimorphism defined by
fl(x ® v) = x°y with the trivial action of G. Hence there

exists an RG-module homomorphism £,:R #+ R & H RG with

2

1° f2 = lR. (If H € ¢ then the trivial module is H-

projective and the sequence splits since it splits as RG-modules

f

using the map x + x @ 1.) Let {gili € I} be a right trans-
versal for H in G and assume that g, = 1. Then we can
write f£,(1) = Z)p.(l ® g,) where p. € RH. Writing p, =

2 lehjl with >‘31 € R we have f, (1) Z;[J lehjl ®9g; =

Z? le(l hlje 9, ) = L?Z )‘ji(l ®g;) = ‘.[,rl g; Wwhere we let

i

Z}k € R. since f; o f,(1) =1 there exists some i

for whlch r, # 0. Therefore, assume Iy is a coset representa-
-1, _ -1 _

tive for which ry # 0. Then f2(1) = f2(1-gk ) = f2(1)gk =

rk(l ® gl) + iZ)(ri ® gigil). Hence the coefficient of 1 ® g,

is non-zero. Now if g. 1is any coset representative for H

in G, we have fz(l) = fz(l-gj) = f2(l)gj = rl(l ® gj) +

2 r.(l @ g.9.). By uniqueness of representation of £,(1)

il *t 1]

we know ry =r, and hence the coefficient of 1 ® gj is
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non-zero. In this way we see that every coset representative
appears in the finite sum f2(l) = Z)ri(l ® gi) thus proving
H has finite index in G. Let this index be n. Then

n

f2(1) = iZi ri(l ® gi) where r, =r Vi. Applying ﬁl to

both sides of this equation we get 1 = £, 0° f2(1) = 72 r.-g; =
n i=1

r. = n- Hence n 1is a unit in R.

11 Ty*

.

i
It only remains now to prove c) = a) for H A G. By

virtue of Theorem 1.8 it suffices to prove & € ¢ for normal

subgroups. So let H € € and let Xyoeoos X be a set of

coset representatives for H in G. If M is an irreducible
n

RH-module then MG = 3, M® X where M ® X is an irreduc-

i=1
ible R[leHxi] = RH-module. Hence MG is completely reducible as

an RH-module. Now let N be any submodule of MG and form the
exact sequence

0~+NM 4 MG/N + 0.
Since MC is completely reducible as an RH-module the asso-

ciated exact sequence

0o~ NH -+ (MG)H -+ (MG/N)H + 0

splits as RH-modules. By projective pairing we have the original
sequence splitting as RG-modules. Hence N 1is a direct summand
of MG. Since N was arbitrary, MG is completely reducible.

This completes the proof of the theorem.

Remark: We remark that in proving a) = b) = c) for
H € & we did not use the hypothesis that R was semi-simple

artinian.
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Corollary 1.12. Let R be a commutative ring with

identity. Then (G,H) 1is a projective pairing if and only if

H has finite index equal to a unit in R.

corollary 1.13. C c @, RgZ e KR £C.

Proof: That C € ¢ is immediate from the theorem and
1.8. To see that R Z # and R £ let G be any infinite
group for which FG 1is semi-simple. (For example G could
be the additive group of integers.) Then the trivial subgroup

H= (1} € R but since [G:H] = o, H £ & and H £ C.

Remarks: 1) In the theorem we cannot have c¢) = a) in
general for then (¢ = @. But Khatri showed in [5] that for the
group Ag and a field F of characteristic 3, FAg has a
subgroup H = A, such that (AS,A4) is a projective pairing
but H £ C.

2) In chapter 3 we will give an example to show that

c) /A b) in Theorem 1.11.

As was shown in the above theorem if H A G and H € &,
then H € ¢. For purposes of future reference we shall give

this result a number:

Theorem 1.14. If H A G and H €¢, then H €C

where G is any group and R is a commutative ring with 1.
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§3. Normal subgroups

In [5], Khatri shows that the three classes of
subgroups C,R,# are equivalent for normal subgroups if all
groups considered are finite. From Corollary 1.13 it is clear
that such a statement is false in general for infinite groups.
Nevertheless, we can give sufficient conditions for the three
classes to coincide for normal subgroups and our result yields

Khatri's theorem as a corollary.

For the main result of this section we will need the

following definition and a lemma of Passman.

Definition 1.15. If G is a group, let AG = (X € G|

[G:CG(x)] < «»} where CG(x) is the centralizer of x in G.

Lemma 1.16. (Passman [6]) Let H be a torsion sub-

group contained in AG such that H A G. Then Rad FH ¢ Rad FG.

Let H Dbe a subgroup of G. We denote by MG(H) the
ideal in FG which is generated by the set {l1-h|h € H}. It
is well-known that if H A G and @:FG =+ F(G/H) is the map
obtained by extending the canonical map G + G/H to FG by
linearity, then Ker ¢ = ﬂG(H) = mH(H)'FG and so ﬁ;%%TTFE =
F(G/H). Therefore W%gT = F and (G) > Rad FG.

Lemma 1.17. Let H and Hy be subgroups of G. Then

%(H,)*FG N FH ¢ Y(H N H,) "FH.
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Proof: Let (g;|i € I} Dbe a set of right coset
representatives for H; in G, and let x ¢ m(Hl)-FG N FH.

Then we can write x = Z}pigi where Py € ﬂ(Hl). Let
i

Py = ngijhij where fij € F, hij € H;, and Z)fij = 0.

3

i
Since x € FH, hijgi €H Vi j. Nowwrite p, = jZi fijhij =

-1 -1
Firhan * BigPyp *ooe® By Pym = (B5*EiohioRg + FighysPyy +eo

-1 . -1 -1 -1
+ fin Pim Pi1)hyy - Since hyhiy o= hijgigilhil =
1 1

lgi) , the hijhil €H NH VY j and therefore

(h; .g.) (h.

ij i i

p: € UY(H N Hl)'FH VY i. This shows x € H(H N Hl)-FH as desired.

1

We can now state the main theorem of this section:

Theorem 1.18. Suppose H A G with [G:H] < @ and AG
a

periodic. Also suppose that whenever x € G - H and xP eHn,

a #0, then x € AG where char F = p. Then the following

are equivalent.

a) Hee
b) HeC
c) H €eR

Furthermore, none of the hypotheses can be dropped.

Proof. a) = b) is just Theorem 1.14 and b) = c) is

always true by Theorem 1.2. So it suffices to prove c) = a).

By Gustafson's result it suffices to show that G/H is a p’-
a

group. So let x € G - H with xP € H. Then by assumption

a
X € AG and (xp )n = 1 for some integer n. Since x has
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only a finite number of conjugates in G there exists a
finite group H’ A G which contains x. (Take H’ to be the
subgroup generated by x and its finitely many conjugates.)
Then
Rad FH’ ¢ Rad FG by 1.16

€ Rad FH'FG by hypothesis

< Y(FH) * FG.
Hence Rad FH’ ¢ U(FH)'FG N FH’ c A(F[H N H’])*FH’ by 1.17.
Therefore,

FH’

H‘
Flgnu? = u(F(E nE’]) -FH’

HNH’

is semi-simple since it is a homomorphic image of the finite

dimensional semi-simple algebra §g§§Eﬁ7 . By Maschke's Theorem
(1.1) ﬁ—%—§7 cannot contain any elements of order pa. But
x3 is a p-element of H’ where np> = qu and (q.,p) =1,

p

B > a. Hence x4 € H. Now 1 = ag + bp and therefore

p p
X = xaq-xbp = (xq)a(xp )b € H. Hence [G:H] is a unit in F

which was to be proved.

Now suppose the hypothesis of normality is dropped.
Then Khatri's example of G==A5,H==A4, F a field of character-
istic 3 gives a counterexample to & < ¢. Nor can we drop the
hypothesis that AG is periodic for in that case we could take
G = 2, the additive group of integers, and H the subgroup of
Z consisting of all integers divisible by p where char F = p.
Since FZ is semi-simple, O = Rad FZ c Rad FH-FG and H € R.

But [G:H] = p so that H £ &.



15

The hypothesis of finite index cannot be dropped.
Let char F = p and let G be an infinite locally finite
abelian g-group where q #¥ p. Then FG is semi-simple (see
[6]). So 1 =H € R trivially but H does not have finite
index in G so that H £ ¢&.

a
Finally, we cannot drop the hypothesis that xP €H =

X € AG. To see this let G be the wreath product Zq ?,2 Z,
Again from [6] (Theorem 21.2ii) we know that if F is a field

of characteristic p then FG is semi-simple so that (G,H)

has property p for any HS G. Let W= (2 ) . Then
qy
YGEZP
WAG and G/MW =1 Z_. Therefore there exists a one-to-one

o P
correspondence between the normal subgroups of G containing

W and the subgroups of E Zp. In particular, there exists a
normal subgroup H of G which has index p in G. Hence

H £ ¢ and therefore R £ ¢. On the other hand, G and H

do not satisfy the hypothesis "xpg €H =>x € AG." For let

x € E Zp - H. Then xP € H but x cannot be contained in AG.
Since G/W = I Zp acts on W, clearly cw(x) consists of
all those elements of W whose projections in the factors
(Zq)y are constant on the orbits of <x>. Since HZP is
infinite, [w:cw(x)] = w. Hence x has infinitely many dis-

tinct conjugates, i.e. x £ AG. This completes the proof of the

theorem.
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We have Khatri's result as a corollary:

Corollary 1.19. (Khatri) If G 1is a finite group

and HAG, then H€@eHeCoHE€R.



CHAPTER 11

@RC~GROUPS

§2.1. Extensions of @RC~groups

In the previous chapter we studied property p and
investigated its relationship to projective pairing and the
complete reducibility of induced modules. We saw how the
complete reducibility of induced modules implied both pro-
jective pairing and property p but that the reverse impli-
cations were false in general. However, there are many cases
when the reverse implications do hold and in this chapter
conditions will be given for which these three classes of

subgroups do coincide with each other.
Following Khatri [5] we make the definition:

Definition 2.1. A group G 1is called a #RC~group

over the field F if @ =C = R.

As Khatri pointed out, examples of @RC~groups do exist
for if F 1is a field of characteristic p and if p ) |G|
where G 1is a finite group, then trivially each class consists

of all the subgroups of G. We also have

Theorem 2.2. Let G be a locally finite p-group and

F a field of characteristic p. Then G is a @RC~-group.

17
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Proof: We will show that each of the three classes

of subgroups &,K,C is empty. First we claim that any sub-
group H of G of finite index must have index a power of
p. For suppose H < G has finite index. Then there exists
a normal subgroup H of finite index such that H < H. Since
[G:H] = [G:H][H:H] it suffices to prove that the index of H

is a power of p. But this is easy for if xH € G/H is an

element of order n = mp", say, with (m,p) =1 then x"H = &

a
or x" € H. Since H is a locally finite p-group (xn)p =
Qa a+yY
x™P =1 for some integer a. If m # 1, then (xp )m =1
a+y
and xF is an element of G which is not a p-element.

This contradiction proves the claim. Together with Theorem 1.11

this fact shows that the classes ¢ and (C are empty.

To see that the class & is also empty, suppose there
exists an H L= G with Rad FG ¢ Rad FH-FG. By Lemma 21.5 of
[6] we know that Rad FG = (3 agglz ay = 0}. If x € G - H,
then 1:1 - 1'x € Rad FG. But 1,x can be made part of a
transversal for H in G thereby putting 1 into the radical
of FH by property p. This contradiction shows that &£ 1is

also empty.
We can obtain further @RC~groups as follows

Theorem 2.3. An extension of a locally finite p-group

by a locally finite @RC-group is a &RC-group.

We need two lemmas
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Lemma 2.4. Let I Dbe a nil ideal in a ring R and
let 71:R + R/I Dbe the natural map. If Rad R and Rad R/I
are both nil ideals, then r(Rad R) = Rad R/I. Moreover, if

7(r) = r + I € Rad R/I, then r ¢ Rad R.

Proof: We always have r(Rad R) € Rad R/I. For the
reverse inclusion, suppose r, + I ¢ Rad R/I. Then for each

r, + I € R/I, (r1+I) (r2+1) = r.r. + I 1is nilpotent, i.e.

2 172

there exists an integer m such that (r +I)" = (rlrz)m+1 =1I.

172
Therefore, (1'11'2)m € I. But I is nil, hence ryr, is nil-
potent. Since r, was arbitrary, r, € Rad R and r, +1=

T(rl) € T(Rﬂd R).

Lemma 2.5. If F is a field and G 1is a locally

finite group, then Rad FG is nil.

Proof: Let x = a;9y +...+a g, € Rad FG and let H
be the finite subgroup of G generated by the g5 i=1...,n.

Then x € Rad FG N FH € Rad FH which is nilpotent.

Proof of Theorem: Let G be an extension of a locally

finite p-group P by a locally finite @RC-group. Since we
always have C € R by 1.2, we need only show that ¢ € C and
R ceé.

@ cC: Let (GH) be a projective pairing. Then since
[G:H] = n a unit in F, H must contain P as a normal subgroup.
Now we use a result due to Woods [12] which says if H § G and

G/H is locally finite, then Rad FH c Rad FG. Therefore,
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Rad FP = (T applz a, = 0} cRad FH. So if N is an irreducible
FH-module, then for every n ¢ N and p € P, n-l1 = n-p since

l - p € Rad FH € Annih N. This shows that we can regard N

as an irreducible F(H/P)-module. Now (G/P,H/P) is a projective
pairing and G/P is a @RC-group, so the induced F(G/P)-module

G/P is completely reducible, say NG/P = @ N..

N i
iel

G/P

Since P acts trivially on N we can make N and

the N; into FG-modules by defining (n @ Pg1)92 = (n @ Pgl)Pg2-

G/P becomes isomorphic to NG as an

With this definition N
FG-module via the correspondence n @ Pg » n ® g. Now the Ni

remain irreducible as FG-modules since if M ; Ni then M ; N,
also as an F(G/P)-module. This proves the complete reducibility

of NG over FG.

R € €. Suppose that (G,H) has property p and suppose
(x;|i € I) is a set of coset representatives for H in G.
Since P 5 G, Rad FP = (T apP|Z a, = 0} c Rad FG ¢ Rad FH-FG
using Woods' result again. Then p -1 = hxi - l.1 € Rad FH'FG

implying 1 € Rad FH unless p € H. Thus P A H.

Now let ZEiPxi € Rad F(G/P) where the Px, are right

i
coset representatives for H/P in G/P, and Bi € F(H/P). 1If
9:FG » F(G/P) is the natural map, then there exists P; € FH
such that o(p,) = Pj» and o(Lpix;) = = p;Px; € Rad F(G/P).
But F(G/P) = FG/?JG(P) and all groups in sight are locally
finite so that QIG(P) = Rad FP-FG, Rad F(G/P), and Rad FG

are nil by Lemma 2.5. Thus, we can apply Lemma 2.4 to conclude
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L pyx; € Rad FG € Rad FH-FG, i.e. p,

leR.aLdE‘H and Py =

q;(pi) € o(Rad FH) c Rad F(H/P). Since G/P is a @RC~group
and (G/P,H/P) has been shown to have property p,
[G/P:H/P] = [G:H] is a unit in F. This completes the proof

of the theorem.
We also have

Theorem 2.6. Let F be a field of characteristic p.

Then an extension G of a @RC~group L by a finite p‘-group

is a @RC~-group.
Proof: Again we need only show that ¢ € C and R € ¢.

€ ¢ C. Let (G,H) be a projective pairing and let N
be an irreducible FH-module. Since L A G, HNL AH and by
Clifford's theorem NH nL
ible F(H N L)-modules.

= @ Z‘,Ni where the Ni are irreduc-

Now observe that [G:H] = [G:LH][LH:H] = [G:LH][L:H N L]
and therefore [L:H N L] is a unit in F. By the hypothesis

on L, each (Ni)L is completely reducible over FL. Since

)G = (v ©

(G,L) is a projective pairing, (Ni (Ni are completely

reducible over FG for all i. Since (H,H N L) is also a

projective pairing, a result of Higman [4] gives that N 1is a

). This in turn implies that NC is a

)€ =

component of (NL nH

component of the completely reducible FG-module (NH AL

((NHnL)H)G. Hence NG is completely reducible over FG.
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Rc . Let H be a subgroup of G such that (G,H)
has property p. Then Rad FG ¢ Rad FH-FG. By Woods' result
Rad FL € Rad FG and therefore Rad FL ¢ Rad FH-FG N FL. Let
K=HNL and let {yi{i € I} be a set of coset representa-

tives for K in L, i.e. L= Ry, . Then the vy, also
iex

belong to a set of coset representatives for H in G. For

suppose Yy, = yjh for some h ¢ H. Thus y;

or y; = Yj k for some k € K, a contradiction. Thus, if

x € Rad FL € Rad FH-FG N FL, then x=2pnyn € FL with

Pn € FK € FH. Since the y; are coset representatives for H
in G, P, € Rad FH. Therefore, p € Rad FH N FK € Rad FK. We
have shown then that Rad FL ¢ Rad FH-FG N FL € Rad F(H N L) *FL,
i.e. (L,H NL) has property p. Since L is a @RC-group,
HNL has index a unit in L. Now [G:H NL]=[G:H][H:HNL] =
[G:L][L:H N L] which is a product of units in F. Thus [G:H]

is a unit in F and H € ¢.

We will show in the next chapter that it is not true in
general that extensions of #RC-groups by @RC-groups are @RC~

groups, so perhaps Theorems 2.3 and 2.6 are the best possible.

§2.2. Quotients of @RC-groups

It is not known whether subgroups of @RC-groups are
@RC~groups. Nor is it known in general if quotients of @RC~-
groups are ¢RC. However we do have some partial results in

this direction.
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Definition 2.7. If G is a group and p is a prime

then GP is the subgroup of G generated by the elements whose

order is a power of p.

Theorem 2.8. Let F be a field of characteristic p >0

and let G Dbe a locally finite @Kc~group. Let A AG. If either

A is a p-group or A D GP, then G/A is a @RC-group.

Proof: The case A D 6P is clear; for if G is a eRC-

group then GP must have finite index a unit in F since
Rad FG ¢ Rad FGP.FG (see (6]). Thus G/A 1is a finite p’-group

which is trivially a @RC-group.

Now suppose A 1is a p-group. We first show & < C.
Let H/A be a subgroup of G/A such that (G/A,H/A) is a
projective pairing and let N be an irreducible H/A-module.
Note that N is also an irreducible FH-module for n-h = n(ha)
for n €N and h € H. But (G,H) is a projective pairing
and G 1is a @RC~group, hence NG is completely reducible over

FG. As in the proof of Theorem 2.3 NG is isomorphic to NG/A

G/A

as FG-modules. Hence N is completely reducible.

To show R £ C, let H/A be a subgroup of G/A such
that Rad F(G/A) < Rad F(H/A) ‘F(G/A). We will show that (G, H)
also has property p. Let {xi!i € I} be a right transversal
for H in G and let Z}pixi € Rad FG with p; € FH. Let
:FG + F(G/A) Dbe the canonical mapping. Then ¢(Z}pixi) =
Z o(p;)Ax; € Rad F(G/A) c Rad F(H/A)-F(G/A). Thus,
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»(p;) € Rad F(H/A) = Rad(;i%)-) and by Lemma 2.4, p; € Rad FH.
Hence (G,H) has property p and therefore is a projective

pairing, i.e. [G/A:H/A] = [G:H] is a unit in F.

We have two corollaries, the first of which follows

immediately from the proof of the theorem.

Corollary 2.9. If G 1is a @RC-group and H A G, then

G/H has the property that ¢ c C.

Corollary 2.10. Let G be a finite group with H A G.

Let F be a field of characteristic p and assume |G/H| is
divisible by p® with O £ a < 1l. Then R(G/H) £ @(G/H) and

hence G/H is a @RC-group.

Proof: If p [ !G/H| then G/H is a p’-group and there
is nothing to prove. Suppose p | !G/H| but no higher power of
p divides |G/H| then Rad F(G/H) is non-zero by Maschke's
theorem. So if Rad F(G/H) c Rad F(A/H)-F(G/H) then Rad F(A/H)
# O. Hence (A/H) 1is divisible by p and A/H contains a p-
Sylow subgroup of G/H. This proves R € ¢ and the second

assertion follows immediately from Corollary 2.9.

Example 2.11. Let F be a field of characteristic 3

and let G be the linear group SL(2,5): then G 1is not a

@RC~group.

Proof: Recall that if char F = 3, then FAS is not a

SL(2,5)
5 Z(G)

Corollary 2.10, SL(2,5) 1is not a @RC-group.

#RC-group. But PSL(2,5) =A. and PSL = so by
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§2.3. Dihedral and dicyclic groups

Besides observing that finite p’-groups and finite
p-groups were #RC~groups, Khatri was able to prove in [5]
that p-nilpotent Frobenius groups are gRC-groups. Using this
result we will extend the list of known @KC-groups to include

the dihedral and dicyclic groups.

Theorem 2.12. Dihedral groups are @#RC-groups over any

field F.
Proof: Write G = {a,blam =1 = b2. bab = am_l}. We
first suppose that char F # 2. Let H = {1,a,a2,...,am-l].

Then H is an abelian group (and therefore a @RC-group by
Corollary 1.19) and G is an extension of H by a group of

order 2. Therefore by Theorem 2.6 G is a @RC-group.

Hence we can assume char F = 2.

case I: G| =2m, m odd.
. . 2 m-1
In this case, if we let M = {1,a,a“,...,a } and

P = (1,b}] then we easily have G =PM and P N M= (1}. More-
over, since conjugation of b by powers of a yield elements of
the form bak, k # m, each conjugate of P by an element out-
side of P intersects P trivially. This makes G a 2-
nilpotent Frobenius group with kernel M. By Khatri's result,

then, G 1is a @KCG-group.
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Case II: !G' = 2%m’, m’ odd, a > 1.

td d

In this case consider the subgroup H = {a" ,a2m v

a = 1}). H is a normal 2-group and G/H is a dihedral
group of order 2m’. Hence by Case I, G/H is a @#RC-group.
Therefore, by Theorem 2.3, we again have that G 1is a &RC~

group.

One may then ask if the infinite dihedral group is a

@RC~group. The answer is no.

Theorem 2.13. The infinite dihedral group is not a

@RC~group over any field F.

Proof: Write G = {x,y!y2 =1, yxy = x—l]. Let A
be the torsion-free abelian subgroup generated by the element
Xx. Then A A G and CG(A) = A. Hence, by Theorem 21.2(iii)
of [6], FG is semi-simple. By 1.1l it is clear that G cannot

be a @¢RC-group. (Take H = (1}, then H € R, but H £ ¢.)

Theorem 2.14. Dicyclic groups are @RC~-groups over any

field F.

2 1

Proof: We can write G= {a,b|a2m=1,am=b ,b Taba =1}

where |G| = 4m. If char F # 2, let H be the subgroup

[l,az,a4,...,a2m-2}.

Then H 1is a normal abelian subgroup of
G and G/H 1is a group of order 4. Hence by Theorem 2.6 we

are done.
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If char F =2, 1let H = [l,am}. Then H is a
normal 2-group and G/H 1is isomorphic to a dihedral group
of order 2m. By Theorem 2.12 and Theorem 2.3 G 1is a

@RC~group. This proves the theorem.



CHAPTER III

ANSWERS TO TWO QUESTIONS OF KHATRI

Let F be a field of characteristic p. Then in
[5] Khatri asks whether extensions of @KCG-groups by @RC-groups
are @RG~groups and in particular if extensions of p “-groups
by p-groups are €RC~groups. We will answer both of Khatri's
questions with a counterexample. 1In the following, then, let
G Dbe a finite p-nilpotent group with p-Sylow subgroup P
isomorphic to a cyclic group of order p. Let P have normal
p-complement K. Notice that G is an extension of a p’-group
and hence falls into the category of groups under discussion.
We will also be assuming throughout this chapter that F is a

finite splitting field for the group G.

Next we observe that the trivial module F is the
unique (up to isomorphism) irreducible FP-module. We shall

study FG under the assumption that it is completely reducible.

Let T be a fixed irreducible FG-module such that Ty
is also irreducible and G-invariant, i.e. for any g € G, the

FK-module TK QFK g 1is isomorphic to TK'

Definition 3.1. Let G be a group and H a subgroup

of G. If L 1is an FH-module, we say that the FG-module M

is an extension of L if MH = L.

28
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Lemma 3.2. FG = FK as FK-modules.

Proof: Let K = {1,k .k3,....k‘]. Then, since G = PK

2
the ki form a set of coset representatives for P in G.
. G
Define )\:FK =+ F by

) =

Therefore, FG =F®1l+...+ F ® k‘.
Ak) =1 ® k and extend linearly. Since x(kilki2
1@ kilki2 = (1 ® kil)kiz = x(kil)kiz, A 1s an FK-module

homomorphism which is easily seen to be one-to-one and onto.

The next lemma is a well-known fact about irreducible

modules and we refer the reader to [10] for a proof.

Lemma 3.3. Let H A G and let [G:H] = p*. Let N

be an irreducible FH-module such that N =N @ g for all
g € G. Then N can be extended uniquely to an irreducible

FG-module M.

We also need some results on homogeneous modules.
An FG-module V 1is said to be homogeneous if it is a direct
sum of, say, d copies of an irreducible FG-module W. Still
assuming that F 1is a splitting field for G, let
a = (al,az....,ad) €F xF %x...x F where not all of the a;

are zero. Define Wé, a submodule of V, by Wé =

[(alw,azw,...,adwlw € W}.
With this notation we have

Lemma 3.4. Every irreducible submodule of V has the
form W, for some a, and W, = W_. if and only if a = j)a’

for some )\ # O in F.
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Proof: Let W be an irreducible FG-module and wa

as defined above. We must first show that Wa is an irreduc-
ible submodule of V. It is clear that Wé is a submodule so it
suffices to prove W_ is irreducible. Let N cW_ be a
submodule and let O # (alwl....,adwl) € N. Since O # Wy

and since W is irreducible, FG'w, = W, i.e. for any w € W,
there exists x € FG such that xw, = W. Therefore
x(alwl,azwl,...,adwl) = (aiw,azw,...,adw) € N. Since w was

arbitrary, N = W, and L is irreducible.

Next we show that any irreducible submodule N of V
occurs in the form wa. Let N Dbe an irreducible submodule of
vV and let O # (wl,...,wd) € N. We need to show that:wl.wz....,

W, € W are in the same one-dimensional subspace of W. With-

d
out loss of generality assume Wy # 0. Let wj:W @ ..OW-+W
denote the projection onto the jth coordinate. Then since

. . . -1
Wy # 0, wllN.N + W is an isomorphism. Therefore vj°[v11N] :
W+ W Dbelongs to EndFG(W) = F.1, since F 1is a splitting
field, i.e. Wj ° [WllN]_l is scalar multiplication. But

Wj ° [wllu]'l(wl) =w: € Fw,, i.e. there exists a_., € F such

J ]
that ajw1 = wj. We have shown, then, that there exists
l-= aj,a,,...,24 €F such that (wl,..., d) = (aiwl,azwl,...,
Now suppose W_ = W_., where a = (al,...,ad) and

a’ = (ai,ai,...,aé). Since W_ = W, . for any w €W there

exists w’ €W such that (aiw,azw,...,adw)==(afw',aéW',...,aéw').
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. - L o _ ’ -
So if O # a;w., then aw=aw’=w’= (ai/ai)w = bw, say.

Choose )\ = Db.

On the other hand, if a = )a’ for some A\ € F and

if (alw,a w,...,adw) € Wa, then (Xalw,Xazw,...,Xadw) =

2
L4 ' d 4

(alw,azw,...,adw) € W . But (al(xw),az(xw),...,ad(xw))e W .

Therefore, W SW ., By the irreducibility of Woeo W, =W ..

This completes the proof of the theorem.
As an easy consequence of this we get

Corollary 3.5. If F 1is a finite splitting field for

G and V is a homogeneous FG-module containing d isomorphic

constituents of an irreducible submodule W, then there are

1 'd_
exactly g _i distinct irreducible submodules of V.
i

Lemma 3.6. (Green) Let N A G and let V be an
irreducible FG-module. Assume also that G/N 1is a p-group and

V|N is homogeneous. Then V|, is irreducible.

Proof: Since V is irreducible and N A G, Vg is

completely reducible into (conjugate) F[N]-modules by Clifford's

theorem. Let Vﬁ = Wl D...0 Wa where all the Wi are isomor-

phic as F[N]-modules, and W, =W, g for some g € G. Since

Vg = b LI X (not necessarily a direct sum), G acts on
g€G :

the irreducible submodules of Vﬁ. But all the irreducible

submodules of vy are F[N]-modules, so that G/N acts on the

set of all irreducible submodules of VN' Suppose that under

this action no orbit is of size 1. Then, since the size of an
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orbit divides the order of the group and since G/N is a p-
group, all orbits will have size a power of p. This implies
that the number of irreducible submodules of VN is divisible
by p, contradicting Corollary 3.5. Therefore some orbit has
size 1 and some irreducible submodule, W, is fixed by G.

Thus, wa is an irreducible FG-module contained in V. Thus

W, = V by the irreducibility of V. This proves the lemma.

Lemma 3.7. The multiplicity of T as a composition
factor of FG equals the multiplicity of TK as a composition
factor of (FG)

K

= _ G ‘s
Proof: Let O = Vl ; V2 ; . % VN = F be a composition
. G _ _ 4G
series for F and let O = Ul ; U2 ;;‘, Um = (F )K be a

composition series for (FG)K refined from the composition

U. V. U.
series for FC°. Then either ;+l = 3+1 |K for j or —%il
Vi i j i
is a direct summand of -%—— |K by Clifford's theorem. Suppose
3

V. V.

i+l = T for some 1i. Then by hypothesis —itl | =T remains
Vi Vi K K

irreducible so that for each T which occurs as a composition

factor of FG, there exists a composition factor of (FG)K

isomorphic to TK. We now show that this is the only way TK

can occur as a composition factor of (FG)K.

V.
SO suppose i+l # T. Then there are two cases to

Vi
V. V.
consider; either —*L | ig irreducible or —2ii ., is
Vi 'K Vi K

completely reducible into more than one constituent. First of
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all if Z%%l !K is irreducible then it cannot be isomorphic
to Ty bylLemma 3.3. Secondly, if X%#l }K is completely
reducible into more than one constituent then X%?l :K cannot
be homogeneous by Lemma 3.6. Thus there are at léast two non-
isomorphic conjugate constituents of X%?l K* Hence, TK
cannot be one of the constituents since lTK is invariant
under G and the constituents are not. This shows that TK

occurs as a composition factor of (FG)K precisely the same

number of times as T occurs in FG, which was to be proved.

Lemma 3.8. (Frobenius, see [2]) Let HK G, W an

G
FH-module, and V and FG-module. Then HomFG (w,V) EFHomFH(W,VH) .

Theorem 3.9. DlmFT = DlmF(HomFP(F,TP)).

Proof: By the Frobenius relation we know HomFP(F,TP)

F
: G . G _
dlmF(HomFG(F ,T)). By Lemma 3.7 we have dlmF(HomFG(F ,T)) =

=S HomFG(FG,T). Hence it suffices to prove d4im_T =

dimF(HomFK(FG| ,T,)). But K 1is a p’-group and by assumption

‘K" 7K
F is a splitting field of characteristic p for G, so that
. G‘ _ a: . as
dlmF(HomFK(F IK,TK)) = dlm(HomFK(FK.TK)) = dlmFTK by Lemma 3.2

and the fact that in the regular representation of a semi-simple
group algebra each constituent occurs as often as its dimension.

Hence dlmFT = dim = dlmF(HomFP(F,TP)) which proves the

FTK
theorem.
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Now we arrived at Theorem 3.9 under the assumptions
that FG was completely reducible as an FG-module, that T
was an irreducible F[g]-module, and that TK was an irreduc-
ible, G-invariant FK-module. 1In the following example we
will have all of these hypotheses holding except we will
not know whether FG is completely reducible or not. We will
then show that Theorem 3.9 cannot hold in our example thus

proving FG is not completely reducible.

Theorem 3.10. An extension of a @RC-group by a @RkC~

group is not necessarily a @RC~group.

Proof: Let Q Dbe the group of quaternions generated
by 1i,j,k. Then Q 1is a group of order 8 and there exists a
cyclic group of order 3 acting on Q by permuting i, j,k.
That is, there exists <g> = [l,g,gz} such that g-lig = j,

g “jg =k, g-lkg = 1 in the holomorph if Q.

Let G Dbe the extension of Q by <g> in the holomorph
of Q and let F be a finite splitting field for G of
characteristic 3. (E.g. F could be the field of 9 elements
containing a fourth root of unity./~1.) Then Q is equivalent
to K in the above discussion and <g> 1is equivalent to the

p-Sylow P.

We construct a representation p of G by defining

J-I O o1l ~/-1+1 +/-T-1
p(i) = . P(3) = ). p(g) =

0 ~/~1 ~/-1+1 J-T+1].

10
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One can easily check that p(i)4 = p(j)4 = p(g)3 = (é g) and
that p(g-lig) = p(j). Moreover, we have det p(g) = 1 and
tr p(g) = -1. Hence, 1 is the only eigenvalue of the matrix

for g. Therefore there is a non-singular matrix M such that

M= (

I+l T+ 01

and it can be checked that a # O. Hence there is only one

)

eigenvector corresponding to the eigenvalue 1.

Now let )\ € HomFP(F,TP) where T is the irreducible
module corresponding to p. Since 1\ is an FP-map, (1) =
A(l-g) = A(l)-g so that there is a correspondence between
N € HomFP(F,TP) and the eigenvectors corresponding to the
eigenvalue 1. Therefore, 1 = dimF(HomFP(F,TP)) # 2 = dim_T.

F
This shows that Theorem 3.9 fails to hold.

To see that p and pl|, are indeed irreducible

representations we observe that if p were reducible then there

would be a non-singular matrix A = (2 g) such that Ap(i) =
e, O
p(i)A and A—lp(j) A= (O1 ). But
€2

o) 1 o
b Y AV I LR
-1 o -1

ab k/-1
(c d) o

e o
Then A~ Tp(3)a = (léa I?d)(_? DECY = (—dga N 4 s e,)”
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Finally, we must verify that TK is a G-invariant module.

. 2 _
That is, we must show that TK G?K g _.TK and TK QFK g” = TK.

In terms of representations we must show that Pk is equivalent

2
to the representations pg and pg where pg(x) = pK(g_lxg).

To prove that Pk and pg are equivalent we must

produce a matrix T such that pi(k) = pK(g-lkg) = T-lpK(k)T

A/l +1 /-1 -1

for all kX € K. We claim that T = makes

/-1 +1 J-IT+1

Px and pz equivalent, and we omit all the tedious matrix

multiplications involved in the proof of this fact. Similarly

2 1 +,/-1 1+,-1

and pa are equivalent using T =
-1 +/-1 1-,/-T

We have shown, then, that T and TK are FG and FK

modules respectively with all of the required properties. Hence

Pr

by the remark prior to this theorem, FG cannot be completely
reducible and therefore P =<g> £ ¢ But P is a p-Sylow

subgroup, so clearly P € #. Thus G 1is not a @RC-group.
We have actually shown

Corollary 3.11l. An extension of a p’-group by a p-

group is not necessarily a &RC~group.

Remark: The above example also shows that c¢) # b) in

Theorem 1.11 by taking H = P = <g>.



CHAPTER IV

FURTHER RESULTS ON PROPERTY p

§4.1. Introduction

In this chapter we would like to give some results
concerning group algebras over arbitrary rings. In Chapter
One we saw that projective pairing depended on the group
rather than the coefficients, i.e. the coefficients could
come from an arbitrary commutative ring R with 1. Also
it seems likely that when talking about the complete reduci-
bility of induced modules N &H RG the most general ring we
will be able to use will have to be semi-simple artinian.
However, the picture is not so clear with property p. For
instance, it is not even known when Rad FG € Rad FH:‘FG implies
Rad KG € Rad KH'KG for an arbitrary field extension K of F.
Therefore, we would like to give conditions under which we do
have property p with the coefficients coming from commutative

rings.

In [11], wallace proves that if F is a field of
characteristic p and G 1is an abelian group with p-Sylow
subgroup P, then Rad FG £ Rad FP-FG. Assuming G is a
locally finite group, we will generalize Wallace's result to

the cases where the coefficients come from a principal ideal

37
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domain, a semi-perfect commutative ring, a semi-local commu-

tative ring, and then finally an arbitrary F-algebra.

In [7] Passman shows that if F is a field of
characteristic p, if G 1is a locally finite group, and if
H is a normal subgroup of G with Rad FG ¢ Rad FH-FG then

H D IP(G) [see page 43]. 1In this direction we shall prove:

Theorem. Let G be a locally finite group satisfying
op(G) = 1 for all primes p and let [(G) < H A G. Then if
Rad FG c Rad FI(G)-FG for all prime fields F, Rad RG ¢

Rad RH-RG for any commutative semi-simple ring R.
We will need the following five known results.

Theorem 4.1. (Connell [1]) If R 1is a ring with

identity then Rad RG N R € Rad R with equality if either
i) R 1is artinian, or

ii) G 1is locally finite.

Theorem 4.2. (Woods [12]) Let R be a ring, G a

group, and H a normal subgroup of G. If G/H is locally

finite, then Rad RH £ Rad RG.

Theorem 4.3. (Passman [6]) Let A be an algebra

over a field K and let F be a field extension of K of
finite degree, say (F:K) = n. Then (Rad(F ®A))n c

F ® Rad A € Rad(F ® A).
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Theorem 4.4. (Passman [6]) Let A be an algebra

over a field K and let F be a field extension of K.

Then Rad(F ® A) N A € Rad A.

Theorem 4.5. (Passman [6]) Let A be an algebra

over a field K and let F be a purely transcendental field
extension of K. Then Rad(F By A) = F ek(Rad(F @y A) NA).
If in addition F # K, then Rad(F W A) NA is a nil ideal
of A.

§4.2. Property p and locally
finite abelian groups

We begin this section with the following theorem

Theorem 4.6. Let G be a locally finite abelian group

and R a commutative ring with Jacobson radical J such that
R = R/J has the descending chain condition. Let H < G and

suppose Rad RG € Rad RH'RG, then Rad RG = Rad RH'RG.

Proof: Let x € Rad RG. We can write x = pl-l +

Po9, +...+ P9, where the 95 belong to a set of coset re-
presentatives for H in G. Let W be the finite group gener-
ated by supp p;. Let @:RG - RG Dbe the natural map. Then

@(x) € Rad RG € Rad RH'RG, and o(p;) € Rad RH-RG N RW c Rad Rw.
Now !'W! =m < @ and R has the descending chain condition

so that Rad RW is nilpotent. Hence (pl)m € ker ® = JG. But
by Theorem 4.1, J € Rad RG since G is locally finite. Hence

JG < Rad RG.
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Now pT € Rad RG or p? is in every maximal ideal of
RG. But maximal ideals are prime ideals in commutative rings
and therefore Pq is in every maximal ideal. Thus, Py €
Rad RG N RH c Rad RH. Similarly we can show all the p; €Rad RH.
This proves Rad RG € Rad RH:RG. The reverse inclusion holds

by 4.2.

Remark: In the above theorem the only place we used
the fact that G was abelian was in the claim that in commuta-
tive rings, maximal ideals are prime. If RG was a ring for
which this condition is satisfied, then we can drop the hypo-

thesis that G is abelian.

Using the same notation for R as above we get the

immediate corollary:

Corollary 4.7. Let R Dbe either a principal ideal

domain, a commutative semi-perfect ring, or a commutative semi-
local ring, and let G be a locally finite abelian group. If

for any H < G, Rad RG € Rad RH-RG, then Rad RG = Rad RH-RG.

The next theorem not only plays an important role in
the proof of our final result but also yields as a corollary

the desired generalization of Wallace's theorem.

Theorem 4.8. Let R be any ring and let H be a

locally finite normal subgroup of a group G. Let {Iv!v €T}

be a family of ideals of R such that
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i) N Iv = 0,
ii) R/Iv = Rv has the descending chain condition
Vv erT,
iii) Rad R G € Rad R H°'R G.
v - v AV}

Then Rad RG = Rad RH'RG.

Proof: Let {gj}j €J} be a set of coset representatives
for H in G. Then for any xXx € RG we can write x = Z)pjgj
where pj € RH. Let 7:RG + RH be the projection map, i.e.
T(x) = Py where we are assuming gy = 1. Then w(Rad RG) is
an ideal of RH. We'll show that w(Rad RG) 1is in fact a nil
ideal of RH. Let x € Rad RG and let W be the finite group
generated by supp m(x) in H. Let ¢v:RG -+ RVG be the
canonical map. Since ¢v(x) € Rad RG c Rad R H'R G we have
o, (T(x)) € Rad R H'R G N R W c Rad R W. But W] = n <®» and
Rv has the descending chain condition so that Rad va is
nilpotent. Hence [Tr(x)]n € Ker o, YV v. Therefore [1r(x)]n €
n IVG = 0 and T(Rad RG) 1is a nil ideal in RH. Hence
Py € Rad RH. Now suppose p, occurs in the sum Z}pjgj = X.
Then xg}l is another element of Rad RG and repeating the
above argument with x replaced by xgzl we get w(xg}l) =

Py € Rad RH. Thus Rad RG € Rad RH*RG which was to be proved.

The reverse inclusion follows from Theorem 4.2.

Corollary 4.9. Let G be a locally finite abelian

group with p-Sylow subgroup P. Also assume R 1is either a
principal ideal domain, a commutative semi-perfect ring, or a
commutative semi-local ring of characteristic p. Then Rad RG=

Rad RP°RG.
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Proof: Let R = R/Rad R and let {Iv] be the
collection of maximal ideals of R. Then hypotheses (i) and
(ii) of the theorem are easily satisfied. Since R/Iv are
fields of characteristic p, hypothesis (iii) is satisfied by
Wallace's theorem. Hence the theorem yields Rad RG & Rad RP-RG,
and therefore Rad RG € Rad RP‘RG by Theorem 4.6. The reverse

inclusion holds by Theorem 4.2 again.
More generally we have

Theorem 4.10. Let G be a locally finite group and

H a normal subgroup of G such that G/H has no elements
of order pa if char F = p. Let R be an arbitrary commuta-

tive K-algebra. Then Rad RG = Rad RH‘RG.

Proof: Let x = .g) rigi € Rad RG where r, € R and
9; € G. Let K be the suggioup of G generated by H and the
g i=1...,n. Then x € Rad RG N RK = Rad RK. But K/H
is finite since G is locally finite and [K:H] is not divisible
by p since G/H has no elements of order pg. Therefore, by
Theorem 1.8, (RK,RH) is a projective pairing. Applying
Theorem 3.3 of [9], (RK,RH) has property p; i.e. Rad RK
Rad RH*RK € Rad RH*'RG. Hence x € Rad RH-RG as desired.

Conversely, Rad RH°‘RG € Rad RG by Woods' result.

Thus we have the promised generalization of Wallace's

theorem:
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Ccorollary 4.11. Let F Dbe a field of characteristic

P and let G be a locally finite abelian group with p-Sylow

subgroup P. Then for any commutative F-algebra R, Rad RG =
Rad RP°'RG.

§4.3. Property p and the subgroup IP(G)

In this section we would like to consider the case
where the group G is not necessarily abelian. We first need

a few preliminary definitions.

Definition 4.12. If G is a group then OP(G) is

the maximal normal p-subgroup of G.

Definition 4.13. If G 1is a locally finite group and

A 1is a subgroup of G, then A is locally subnormal in G
if
i) A 1is finite, and
ii) A is subnormal in all finite subgroups of G

containing it.

In [7] Passman defines the characteristic subgroups

J(G) = <aA is locally subnormal in G> and
IP(G) =<<hlA is locally subnormal in G and
A is generated by elements of order p
These subgroups turned out to have many interesting
properties in the study of the radical of a group ring over a

locally finite group. For instance, in [7] Passman proved
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Theorem 4.14. If K 1is a field of characteristic

P >0 and if G 1is a locally finite group with Op(G) =1,

then Rad K[fp(G)]-KG is a semi-prime ideal.
He also showed

Theorem 4.15. If G 1is a locally finite group and if

H A G such that Rad FG  Rad FH'FG, then H D IP(G) where

char F = p > O.

Moreover, there are no known examples of locally finite
groups G and normal subgroups H where Rad FG ¢ FH-FG and
H does not contain IP(G). Therefore, it makes sense to study
subgroups H containing Ip(G). With this background we are

ready to prove the main result of this section.

Theorem 4.16. Let K be a field of characteristic

p > 0. Let G be a locally finite group and IP(G).g H A G.
AlsO assume OP(G) = 1 and Rad KG c Rad KIP(G)-KG. If R

is a semi-simple K-algebra, then Rad RG = Rad RH'RG.

Proof: First note that it suffices to show that
Rad RG c Rad R[fp(G)]-RG. This is so by virtue of Theorem 4.2
and the fact that IP(G) is a characteristic subgroup of G

and therefore a normal subgroup of H.

Let F Dbe a field extension of K of degree n. By
Theorem 4.3 we have (Rad FG) " € Feg Rad kG E F & Rad K[J‘p (G) ]-KG

< Rad F[IP(G)]-FG. Since F[fP(G)]~FG is a semi-prime
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FG
Rad F[j‘p (G) ]-FG

ideal, has no nilpotent ideals. Therefore

Rad FG < Rad F[j‘p(G)]-FG.

Now let F be a purely transcendental extension of K.
By Theorems 4.4 and 4.5, Rad FG = F @, Rad FG NKG) CF @ Rad KG.
Now by hypothesis Rad KG ¢ Rad K[IP(G)]-KG sO again we have

Rad FG ¢ F @, Rad K[J‘p(G),]-KG < Rad F[J‘p(c)]-FG.

Finally, let F be an arbitrary field extension of K.
If x € Rad FG, then there exists a field L with KcL cF
such that L 1is finitely generated over K, and x € LG.
Using Theorem 4.4 again we have x € Rad FG N LG ¢ Rad LG. But
L is a finite extension of a purely transcendental extension
of K so that the first two steps yield x € Rad LG <
Rad L[j'p(G)]-LG S F & Rad L[J'p(G)]°LG < Rad F[jp(c)]-FG.

KG

Rad K[‘[Ir(c) ]-KG

algebra. Since R 1is assumed to be semi-simple

R Gk KG

Rad K[jp(G) ]-KG

Thus,

is a classically separable K-

is semi-simple. Therefore, Rad RG &

R & Rad K[ J‘p (G) ]'KG € Rad R| ‘['p(G) ]*RG and this completes the

proof of the theorem.

Corollary 4.17. Let G Dbe a locally finite group with

Op(G) = 1 for all primes p and let [(G) < H A G. Suppose
that for all prime fields K of characteristic p >0. RadkGc
Rad K[IP(G)]°KG. Then for any semi-simple commutative ring R,

Rad RG = Rad RH:RG.
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Proof: First note that [(G) contains J‘p(G) for
any prime p by definition. Therefore by the proof of the
theorem we have Rad FG ¢ Rad FH'FG for any field F of
characteristic p > 0. If F 1is a field of characteristic
zero then FG 1is semi-simple by 18.7 of [6] so trivially
Rad FG € Rad FH-FG. Now take [IV}v € T}] to be the collection
of all the maximal ideals of R. Then all the hypotheses of

Theorem 5.8 are satisfied and the result follows.
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