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ABSTRACT

INVISCID, COMPRESSIBLE FLUID FLOW IN

A CURVED MEMBRANE SHELL

BY

Robert J. Waldron, Jr.

A thin, membrane, cyclindrical shell of radius "a" is coiled

into a torus of radius "R". The shell is filled with a compressible,

inviscid fluid which is flowing axisymmetrically as it enters the coil.

The Navier Stokes equations are used to describe the fluid motion

while the dynamic form of Sanders' shell equations describes the

motion of the membrane shell. All variables are exPanded in a series

about 5 small, 5 = aR-l. Wave solutions are sought giving variables

the general form

x”), 9,130: {XO(¢», r)+ 5Xl(zp,r)+. . . )eXp {i(s 66-1- 30}

where '1’ and r form polar coordinates in any cross section of the

tube, 9 is the angle around the torus, 3 is the frequency and

+ 523+58 +...8:80

is the real valued wave number.

1 2.

The object of the analysis is to find the first non—zero

correction to the frequency equation so = f( 3) where we interpret

the zero order terms as representing the straight tube flow. The

work revealed that 81 = O forcing the determination of the second

order correction s2 = g(so,fl).

The correction, s2, has been determined in closed form for

the special cases of wave motion of a fluid in a rigid tube, the free

flowing jet of fluid, the vibrations of an empty tube, and the inter-

action problem of a fluid flowing in an elastic shell. The corrected

phase velocity is compared to the straight tube phase velocity for all

four cases with comments made on any significant differences.
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Robert J. Waldron, Jr.

A special case is examined in which the first correction, 31’

is not zero followed by a comparison of the present work with

exPerimental findings. Finally comments are made on further areas

of study.
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CHAPTER I

INTRODUCTION

In recent years there has been much work completed

relating the use of applied and engineering mathematics to

problems originating out of biological or medical situations.

Examples include the use of stress analysis in the study

of orth0pedic protheses, the development of artificial heart

valves and the design of electronic equipment for deter-

mining various parameters in the blood. All of these

develoPments signal the arrival of mathematics and engin-

eering in basic biomedical problems.

This thesis is concerned with a theoretical prdblem

which has its origin or motivation in a variety of bio-

logical situations, namely fluid flow in curved. elastic

tubes. In section 1.1 we will discuss the basic biological

facts which are pertinent to our prdblem. In section 1.2

we will concern ourselves with a description of the mathe-

matical analysis to be employed in the thesis.

Section 1.3 contains an outline of the development

of the present prdblem, tracing the improvement and vari-

ation of analyses employed in studying our situation.

Finally, in section 1.4 we will preview the analysis to be

used in the remaining chapters of the thesis.

1
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1;lb Biolggical Considerations

Our concern in this thesis is with a fundamental

problem common to a variety of biological fluid flows,

namely wave propagation in fluid-filled, elastic tubes.

An obvious example is the circulation of blood. Other

examples include the peristaltic motion of the urinary

tract (particularly in regard to reflux in small children)

as well as the movement of fluid in the semi—circular

canals of the inner ear.

Needless to say, there is a wealth of effort being

directed toward various aspects of these larger problems.

Since the physical situations are so complex, investigators

are forced to consider one or two pertinent situations

hoping to delineate their contribution to the total behavior

of the system. Our concern will be with the particular

prdblem of wave pr0pagation in a curved, fluid-filled

elastic tube. h0ping to gain some understanding as to the

importance of curvature in wave pr0pagation. The moti-

vation for this analysis springs from the circulatory

system. particularly that portion containing the aortic

arch.

We find in the mammalian circulation that blood is

collected and returned via the veins to the right side of

the heart. From here it is pumped into the lungs to have

carbon dioxide removed and oxygen added. From the lungs



riled is collecte:

:sjezted periodica

251:3: vessel to r

25:2:rves updard :

ism'ature is rat?-

aziting midday thr’

:2. called the ac

ifixlcm {:03 C

2' t0 4 cm. It 1

re: pronounced-

l'ost effort

transventional
e

“-‘E-een based on

iris apparent that

tier- of curvatu:|

Etaig‘nt tube model

.;

~e "ll. rved flOws .

The
physiC

Eiriilen are km"
tie-tailed in PaI
lesity of blood '

to 1.29/0m3 '
Early the same

1

Zileeit'wt
les

is
Oh

 

 



the blood is collected in the left chambers of the heart

and ejected periodically into the rest of the ciruclation.

The first vessel to receive the ejected blood is the aorta

which curves upward to the left and then downward again.

The curvature is rather pronounced and the aorta exhibits

branching midway through the curve. In this region of the

aorta, called the aortic arch, the diameter of the vessel

is from 1 cm. to 3 cm. and the radius of curvature is

3 cm. to 4 cm. It is apparent that the curvature here is

rather pronounced.

Most efforts at modeling blood flow have followed

fibre conventional engineering approaches, that is, the models

have been based on a variety of straight tube conditions.

It is apparent that some attention should be given to the

problem of curvature, if only to determine to what extent

straight tube models effectively forecast the behavior of

the curved flows.

The physical parameters essential to modeling such

a problem are known in physiological circles, but they will

be detailed in part for the sake of completeness. The

density of blood vessel walls is a variable ranging from

1.0 to 1.29/cm3. Since the density of blood itself is

nearly the same it is reasonable to conclude that the ratio

of desities is one.
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Elastic deformations take place at nearly constant

volume so Poisson's ratio can be taken as .5. In addition

the tube wall is composed of various fibers so that the

elastic modulus may vary, depending on the degree to which

the wall is stretched. Certain fibers are not stretched until

high internal pressure is applied 50 that in the femoral

artery of the dog the value of Young's modulus may vary from

6
1.2x10 to 20.4 x104 dynes/cmz.

The blood is also a composite, being a suspension

of various cells in plasma. The cells form 45$Q to 5034 of

the whole blood volume and contribute to the viscosity.

For flow in small diameter vessels, the viscosity is

variable, while in vessels which are larger, the viscosity

will not be altered significantly. For the prdblems we

will consider, the viscosity will be treated as a constant,

making the flow Newtonian.

There is still much discussion concerning the

sizes of these various parameters. The difficulties

accompanying experimental determination of these parameters

are manifold since excising a sample of tissure from the

living subject alters its condition. On the other hand,

examination within the subject restricts the experimenter

to only those vessels and tissues which are readily

accessible. As can be seen there is great need for exper-

imental techniques which can better cope with the prdblems

inherent to testing living subjects. Further information
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on the details of the circulation can be obtained from

a variety of sources. In particular, a review article by

Frasher [ 1] which deals with the physiology of the larger

blood vessels is especially helpful.
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1.2 wave Propagation Analyses

Since the intent of this work is to study the

propagation of waves in a curved, fluid filled tube, we

pause to consider some of the basic approaches to the study

of waves propagating through a medium. The first step is

to consider the prOpagation of waves in a medium.which is

vibrating freely. This means that we find the medium in a

state of motion without benefit of any external force to

maintain the vibration. We assume the movement of the

inbration waves in some direction and assume harmonic motion

in this direction. Hence we might write all our variables

in separated form, the wave portion denoted by exp[i[kz-wt]}

where Z is the direction of prOpagation, k is a wave

number related to the inverse of the wave length, u) is the

frequency of vibration and the ratio wyRe(k) [RE denoting

Real part] is called the phase velocity associated with

the‘wave.

The substitution of the wave form given above into

the equations of motion for the system results in an

equation k = f(uD which we call the frequency or dispersion

equation. From this relation we can tell the wave number,

wave length and phase velocity once we know at what frequency,

at the system is vibrating.

If the prdblem is such that the direction of

propagation, e.g. z, is not limited, we find that k = f(w)

gives a continuous representation for k in terms of w-
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It may develOp that under certain conditions, e.g. long

‘waves or small wall inertia, the relation k = f(w) re-

duces to a particular form.which we call a mode of vibration.

This mode characterizes the vibration we find under those

certain conditions, i.e. long waves or small wall inertia,

and is a special case of the larger situation given by

k = f(w).

Other problems associated with free vibrations

are concerned with situations in which the direction of

\dbration is finite, say along a string of length L.

Imposing boundary conditions at the ends of the string

leads to a situation where the relationship between k

and u) exists at an integral number of points. A solution

to a prdblem like this, e.g. = c 2y,tt with ends
Y'zz

L units apart and fixed, is given by

.

y(x,t) = 23[A cos(nncL-1t) + B sin(nncL-1t)] sin nnL-lz.

n21 n n

Fer each integer n the term inside the sum is a solution

and superposition allows us to say the sum is a solution

given the pr0per convergence.

If now we are to consider a system in which there is a

function forcing the vibration to continue, then we would

expand the forcing term in a Fourier series like that above

and solve a series of prdblems in which the solution also

has such an expansion.
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The problem under consideration in this work is that

associated with the free vibrations of a medium which is

unbounded in one direction. Here we find a continuous

dependence of the wave number on the frequency. If the

prdblem were to be altered later so as to have a finite

domain in the direction of propagation we find only minor

variations from the original problem. Love [.2] discusses

such a case in section 199 of his text. He finds the

frequency relation for the longitudinal vibrations of an

infinite circular cylinder. For the finite case the new

fkequency relation is satisfied by the original equation

tmder the assumption that the length of the tube is long

cmmpared to its radius. Hence it is possible to relate the

Ltdblem of an infinite medium to that of the finite case,

which in turn gives rise to solutions of forced vibrations

of the same system.
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1.3 History of the Problem

we begin the discussion by stating that the bulk of the

analysis centers on various prOblems associated with

vibrations of straight tubes. There are two basic approaches

to the straight tube problem as outlined by Rudinger [3 ].

In one approach the problem is treated as being non-linear,

but generally there is only one dimension studied. In the

other approach the equations are linearized and wave

solutions are sought. In general all three dimensions are

studied in this approach. Our analysis will follow the

latter procedure and so we leave the discussion of non-

linear theories to the article by Rudinger as well as one

'by Skalak [ 4].

There are good physiological reasons for assuming

a linear set of equations to describe the wave motion of a

fluid in a tube. For blood flow in the aorta the average

flow velocity is about 25 cm/Sec while the pulse wave

velocity may be 800 cm/sec. Next, the distension of the

arteries, as measured by Poiseuille, is not large, being

about 1.04 times normal values. Third, the blood, though

non-Newtonian at the low shear rates of the capillaries

can be treated as Newtonian in the faster motion associated

'with larger vessels. Finally, the tube wall, though non-

linear, can be approximated by a linear, visco-elastic

material if need be.
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So, we may conclude that a linear model although

not a perfect assumption, does not grossly distort the

system. The advantages are numerous as now we are able

to find closed form solutions as well as utilize superposition

of solutions which is essential to vibration analyses.

we begin our discussion of prior work with

Thomas Young [ 5] who made one of the first attempts at a

mathematical determination of the phase velocity associated

with fluid filled tubes. Young's phase velocity can be

written as

_ 1/2
Cp0 — (hE/2apo)

‘where h and E are the thickness and Young's modulus

for the tube respectively, a is the tube radius and p0

is the fluid density. Later, other investigators found

this velocity after assuming the fluid to be inviscid,

incompressible and the waves to have long wave length.

Korteweg [(5] considered a compressible fluid and

studied the velocity of sound in a fluid filled tube. He

found his phase velocity to be

c = iieifefl/Z
p1 hE I(

The new parameter, K, is the bulk modulus of the fluid and

1/2 is the velocity of sound in the fluid.the ratio (K/po)

Hence Korteweg found that the phase velocity was less than

the velocity of sound. For an incompressible fluid,
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(K/po) becomes infinite and Cpl is then equivalent to

c , Young's mode.

P0

Later, Lamb ['7] studied the modes of free vibration

for the linearized fluid in a membrane shell. He found

two modes, one being C , Young's mode, and the other
p0

given by

_ 2 1/2

cp2 — (E/P(l-v ))

where E is as before and p and v are the tube density

and Poisson's ratio for the tube respectively. This mode

was different from the earlier modes in that it was associated

with only tube parameters.

From this point the analyses became quite numerous

with others improving Lamb's work by the addition of

viscosity, tapering, branching, etc. Useful analogies were

drawn to better known electrical concepts such as resistance

and impedence. Electrical transmission line theory became

a tool for some investigators.

In the 1950's, several reports, collected in one

larger report, were written by J. R. Womersley [ 8 ]. His

work was extensive and one of the most complete treatments

of biological wave propagation. He examined an infinitely

long rigid tube which had a region of steady pressure. He

solved the linearized Navier Stokes equations and the

continuity equation under the conditions of fluid viscosity,

incompressibility and axial symmetry.
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Assuming traveling wave solutions WOmersley found

the pressure and two fluid velocities up to an arbitrary

constant. He computed average flow velocity, quantity of

flow and a phase velocity. His values for average flow

and quantity of flow compared quite well with experimental

results.

WOmersley then proceeded to study the elastic tube

filled with a viscous fluid. Under several simplifying

assumptions, WOmersley arrived at a frequency equation which

gave the phase velocity directly. When the assumptions of

Lamb were introduced, his value reduced to Lamb's mode

given by C Lamb's mode is independent of the frequency

p2'

of vibration but with viscous terms added, Wbmersley found

the phase Velocity of Lamb was altered significantly by

chances in frequency.

In addition to the work mentioned, Wbmersley con-

sidered other effects: a thin boundary layer: added mass to

the elastic tube; corrections for the non-linearity of the

tube; and corrections for the approximate boundary conditions

he used.

There were many aspects to Wbmersley's report and

so his work prompted many new investigations, dealing with

portions of the prdblems he discussed. Numerous refinements

‘were made to his models with allowance being made for the

pre-stressed condition of the tube and for its visco-elastic

nature.
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One of the more complete analyses of the infinite

fluid filled tube was advanced by Rubinow and Keller [9 ].

They considered a complex model involving a homogeneous,

isotropic, elastic tube filled with a viscous, compressible

fluid. The linearized elasticity equations and linearized

equations of motion were used for the tube and fluid

respectively and they allowed for a complex impedance matrix

to describe various boundary conditions at the outer wall.

The main effort of Rubinow and Keller was extended

to the discussion of axisymmetric vibrations of a thin

walled elastic tube containing an inviscid fluid. The

results we shall Obtain in latter chapters duplicate many

of their results, under slightly different conditions.

For this reason we will discuss a few of the Rubinow and

Keller results here.

For Poisson's ratio equal to zero Rubinow and Keller

found that the tube had a mode in which the non-dimensional

phase velocity was one. In dimensional terms it was found

to be C Lamb's mode. They also found for Poisson's

p2'

ratio equal to zero that there was another mode for the

tube which did not exist for non—dimensional frequencies

greater than one. This mode for small frequencies was merely

the mode found by Korteweg, Cpl' Since they assumed a

compressible fluid Rubinow and Keller foundrother modes

which depended on the acoustic speed of the fluid. For

small acoustic speeds these modes were similar to those of
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the tube. However, for large acoustic speeds the acoustic

modes were distinct from the tube modes of Lamb and Korteweg.

As larger values of the acoustic speed were considered only

the tube modes remained. Their paper considered various

other problems connected with viscoelasticity of the tube

‘wall as well as different boundary conditions.

we have presented a few of the many results which

have been Obtained in the study of linear theories. we

will find later in the study of curved flows that the

results of straight tube flows play an integral part. The

reader is referred to the articles by Rudinger and Skalak

(mentioned above) for further discussion of linear theories

in straight tubes.

A feature common to most of these models is the

assumption of a straight, cylindrical tube. However, it

is apparent that there are important regions of fluid flows

which are not straight. The situations of the aortic arch

and the semi-circular canals of the inner ear mentioned

earlier are particular examples. So we now discuss the

‘work which has been done on curved tube flows.

One of the first analyses directed to the prOblem of

curvature was put forth by Dean in two papers, [10], [11].

The Object of Dean's work, as well as those who followed

his lead, was to examine the secondary flow in the cross

section of the curved tube, determining what effects were

introduced by the curvature. This meant that the streame

lines and particle paths were examined in the cross section.
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Dean began by studying the steady motion of a

viscous, incompressible fluid flowing in a rigid torus.

He examined the non-linear equations of fluid motion by

expanding in a parameter D = 2(Re)2a/R where Re is the

Reynolds number, a is the tube radius and R is the

radius of the torus. Dean analyzed his prOblem for the

parameter D small. Subsequent investigations by McConalogue

and Srivastava [12] and Barua [13] considered the size of

D to be of moderate and large values respectively. A

feature common to all of these works was the assumption of

steady motion.

It was then the interest of others to investigate

the unsteady motion in the cross section of a curved

rigid tube. In the first work, by Lynne [14], we find an

analysis of the unsteady, secondary motion in a cross

section of a curved tube. The fluid is viscous, and subject

to an applied pressure gradient. The fluid is assumed

incompressible and the variables are all expanded in a

series about the ratio (a/R) small, a and R taken to

be the same as in Dean's analysis. Lynne utilized two

basic parameters

1/2
E = W(a/R) /a6 and RS = wza/VRB

where w is a typical velocity along the pipe, B is

the frequency of applied pressure and v is the kinematic

viscosity of the fluid. The parameter E is always small

and RS is a type of Reynolds number. Lynne found that

 E
.
.
.
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‘when 262/RS is small, the viscous effects are confined to

a boundary layer near the wall while the remainder of the

fluid is inviscid.

Lynne found in his analysis, which involves matched

asymptotic expansions between the boundary layer and core,

that another boundary layer is formed at the edge of the

first layer in addition to a free layer existing on the

horizontal diameter of the pipe. For unsteady motion

Lynne determined that the motion of the cross section is

opposite to that predicted by steady motion, i.e. unsteady

motion is from the outside of the curve to the inside.

In an analysis similar to Lynne's, Zalosh and Nelson [15]

also studied pulsating flow in the curved tube. This study

was part of the work done by Zalosh in his 1970 Ph.D.

dissertation at Northeastern University. This work solved

for the stream functions associated with the secondary flow

inaacross section of the tube, the fluid being under the in-

fluence of a sinusoidally varying pressure gradient. As

‘with Lynne's work, the tube was assumed to be rigid. All

variables are expanded in a power series for the ratio

(a/R). Then equations are found for the first term in the

stream function expansion and for the first two terms in

the expansion of the longitudinal velocity. Unfortunately,

there seems to be a lack of consistency in their expansion

of the differential operators, leaving one to suspect the

accuracy of their equations for higher order terms in the

expansion.
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The first term of the stream function expansion

had two parts, one steady, the other varying at twice the

frequency of the applied pressure gradient. The first term

of the longitudinal velocity is found and these two first

order terms together become inhomogeneous terms for the

differential equation for the second term in the expansion

of longitudinal velocity. As stated earlier some doubt is

placed on the accuracy of this expansion. It is also

unfortunate that the second term in the stream function was

not computed since the zero order system taken by itself

represents the straight tube, not the curved tube.

In all of the analysis for the curved tube presented

to date no information had been gathered as to the influence

of the wall on the motion, i.e. no work had been done to

include an elastic wall in the model. In addition, these

previous works concentrated on the streamlines and particle

paths, therefore excluding wave propagation analyses.

In 1971 Daras [16] investigated wave propagation in

a curved, fluid filled elastic tube. Acknowledging

the difficulty associated with wave prOpagation in toroidal

shells and flow in rigid tubes, Daras pr0posed to consider

several salient features of the problem, hoping to shed some

light on the essential aspects.

The first task Daras undertook was an expansion of

the wave number k as

_ 2 so. =

k—ko+6k1+6k2+ .6 a/R-

 

 

 



Daras conc

15C k for a

' 0

a. is the wave In

tiles and solvii

1:5 and a membr.

: Ls interpreted

:fnaras was abl

””c/«tu'
no». “OTIS for t

For F
I C'-. vi

He tl

ismtric ax:

tibiaiHEd son

Buskirk [17]

Daras t}

:15 fine-d our

23%" ..mt tube 11

35 introduCEd

«um equalti

"’"Qlated with

.. “Onsidered t

351:: '. in depth a



18

Daras concluded that the effort involved in deter-

mining kO for a general prOblem was too great, since

k0 is the wave number associated with the straight tube

prOblem and solving for kO involved equations for a

fluid and a membrane. The next term in the expansion of

k is interpreted as being a correction for the curvature

and Daras was able to conclude that k1 = 0 so that any

corrections for the straight tube wave number kO are of

order 52. He then found kO for some special cases

(axisymmetric axial and pressure waves plus flexural waves)

and Obtained some agreement with the experimental work of

Van Buskirk [l7].

Daras then reviewed work previously completed on

fluid filled curved tubes. He examined an axisymmetric

straight tube in which curvature effects are introduced

through a modified stress law, and effects of secondary flow

are introduced as an equivalent viscous stress in the axial

momentum equation. Finally, he considered basic prOblems

associated with entrance effects in a curved tube. In all,

he considered the highlights of several problems leaving

more in depth analysis for others.

 



 

figtilne 0f Pl"

 

The presen‘

is: problem whic‘

zzezination Of ‘5

:-zero correctiO 
red elastic tub

bearized Navier

:ifor the tube is

rations of Sande

‘aessary for non-

In Chapte:

Emations of 1

its: non-dimensi

xii. 3,1’, t) =
{



19

1.4 Outline of Present work

The present analysis proposes to investigate the

first prOblem which Daras only touched upon, namely a

determination of the zero order wave number and the first

non-zero correction for wave propagation in a fluid—filled,

curved elastic tube, coiled in a torus. we consider

linearized Navier StOkes equations for a compressible fluid

and for the tube we utilize the linear, membrane shell

equations of Sanders [18] augmented with acceleration terms

necessary for non-steady prOblems.

In Chapter 2 we begin by establishing the geometry

and equations of motion for the conditions stated above.

After non-dimensionalization we expand a typical variable

as

X(W.e,r,t) = {XO(¢.r) + oxl(w.r) + --- lexP{i[seb'l-6t]}

'where w and r are polar coordinates in a cross section

of the tube, 9 is a coordinate down the tube, t is the

time variable, 6 is a non-dimensional frequency, 6 = aR-l,

a is the tube radius, R is the radius of the torus and

s = s + 551 + 6252 + --° is the non-dimensional wave

0

number. we note that if exp{i[se - Bt]} is used instead

of the exponential mentioned above we Obtain for our

zero order prOblem a flow which is essentially two dimensional

and which exists only in a plane cross section of the tube.

This would be the expansion used, for example, by Lynne in

studying secondary flow patterns.
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Inserting the expansion in 6 for all variables and

differential Operators results in a series of prOblems labeled

zero, first and second order accordingly as 60, 61 or 62

is a common term to the equation. The zero order equations

are apprOpriate to straight tube flow and their solutions

are the inhomogeneous terms of higher order equations.

Chapter two contains all the equations and boundary

conditions for the zero, first and second order prOblems.

In chapter three we consider the situation in which

the tube is vibrating but without the fluid inside it.

‘we solve the equations of motion apprOpriate to such a

system and then determine a frequency equation written as

so = f(B). This equation is the condition necessary for

the existence of non-trivial displacements in the shell.

‘we examine this frequency equation and then proceed to

the determination of the first correction to so, namely

81' we find, as did Daras, that s1 5 0 and so we deter-

mine the next correction, 32.

A requisite for the value of $2 is the value

of all first order displacements. These we determine, as

‘well as their effect on the displacements found in the zero

order. we are then able to make some conclusions as to the

effectiveness of the straight tube model in predicting the

motion of a curved tube.

Chapter four contains an analysis of the system

in which the fluid is of prime importance. This situation
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reduces to two cases. In the first case we consider the

tube to be rigid and in the second case we consider the

fluid to be flowing without the tube. In each situation

'we find a frequency relation by satisfying boundary conditions

appropriate to the particular case. For the rigid tube we

require that the fluid velocities vanish at the fluid-

tube interface. For the fluid flowing without the container

we demand that the fluid stresses vanish at the outer edge

of the fluid medium.

Analysis of the two frequency equations indicates

that the acoustic speed of the fluid is essential to the

behavior of the waves. we find that as the acoustic speed

increases the vibrations propagate at only high frequencies

with the wave number being purely imaginary when the fluid

is incompressible.

The remainder of chapter four is concerned with

determining that 31 E O, with the solution to the first

order velocities and with the second order correction 32.

After determining each of these quantities we pause to

examine their effect on lower order terms, commenting on the

comparison between straight tube vibration and vibration

which has been corrected for curvature.

In chapter five we move to a more difficult prOblem,

namely the interaction prOblem in which the fluid and tube

vibrate together. Utilizing the zero order fluid terms

which we have found we solve for the shell displacements
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in terms of the fluid stresses acting of the shell. The

boundary conditions require that we match the fluid velocities

with the velocities of the shell. The result is a

set of homogeneous equations and for a non-trivial solution

leads to a frequency equation, s0 = f(5).

Analysis of this equation reveals that it is composed

of those equations we investigated earlier in the empty

tube, rigid tube and stress free cases. The new frequency

equation is a transcendental equation and so we analyze it

by expanding the wave number s in several power series
00

about the other frequency equations which we have previously

investigated.

The next step is determining sl, the first order

fluid velocities, and shell displacements, and the second

order correction, 52’ We examine the effects of these

higher order terms on their zero order counterparts and are

able to make some comments on straight tube and curved tube

vibrations.

The first portion of chapter 6 is devoted to a

special case which was not considered in the previous chap-

ters. we have found a non-dimensional parameter, m, which

appears in our equations and all our expansions about 6

small have been based on the assumption that m is of

order one compared to 6. we consider the very real poss-

ibility that m is 0(6) and then proceed to analyze the

resulting equations. We find that, contrary to the earlier
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situation, the first order wave number, 51' is not identically

zero. Using this fact we find the remaining first order

terms, i.e. fluid velocities and shell displacements,

pointing out differences and similarities with earlier

situations.

We conclude chapter six with some notes on recent

experimental works which have dealt expressly with wave

propagation in curved elastic tubes. we point out any

similarities with our current efforts, as well as the diff-

erences. we then close the discussion with some possibilities

for future consideration.
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CHAPTER II

MATHEMATICAL FORMULATION OF THE PROBLEM

2.1 Introduction

In this chapter the complete mathematical formulation

of the thesis problem is presented. We begin in section 2.2

with equations which describe the motion of a thin elastic

shell. These equations were originally derived by J.L.

Sanders, Jr. [18]. We formulate them in a curvilinear

coordinate system erected on the middle surface of the shell.

Section 2.3 contains the appropriate equations for a

viscous, compressible fluid again written in terms of a

curvilinear coordinate system. Section 2.4 is concerned with

the specific geometry apprOpriate for final formulation of

the equations. In section 2.5 the general shell and fluid

equations presented in sections 2.2 and 2.3 are stated in terms

of the specific geometry discussed in section 2.4. Concurrent

with this discussion is the introduction of non-dimensional

quantities for these equations.

Finally in section 2.6 we apply the perturbation

expansion which is utilized in the remainder of the thesis.

The first three problems resulting from the expansion are

presented at this point also.

24
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2.2 Fieldégguations for the Thin Shell

gég;l_ Geometric Concepts

we assume the existence of a geometry on the middle

surface of the shell specified by coordinates 91,92 related

to Cartesian coordinates by

i i .

(2.2.1) X — X (91: 62) 1 — 1:203

or in terms of the position vector E by

(2.2.2) r = r(el.92)

where all quantities with a bar denote vectors.

An orthogonal triple of vectors is erected on the shell

mid-surface by defining

- _ -1_.a._ 2-_a§._.a.i
e1 ' 0‘1 591 “1 ‘ 391 691

- -1. a' 2 a- a'
(2.2.3) e = a -——- a = . .__.

2 2 662 2 662 692

en = el x e2.

The element of arc length on the midsurface is given by

2 _ 2 2 2 2
(2.2.4) ds _ a1 del + a2 d92 .

The principal radii of curvature, R1 and R2, can be

Obtained from

53 53
n _ -1 - n _ -1 -

(2.2.5) 61 — le1 e1 6 - 02R2 e2 .
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we let 2 denote a thickness variable with

direction along the normal en with -h/2'g z‘g h/2 where

h is the thickness of the shell. We say a shell is thin

if m§x(§) g l/2O where R is a radius of curvature. Having

described the geometry of the shell, we now proceed to the

equations of motion for the shell.

2.2.2 Sanders' Thin Shell Theory - Membranefgguations

Sanders linear theory is based on the following

three assumptions:

i) Straight fibers perpendicular to the middle

surface of the shell before deformation remain

perpendicular to the deformed middle surface.

ii) Nbrmal stresses acting on planes parallel to the

middle surface are neglected in comparison to

other stresses.

iii) Membrane forces are much larger than bending

forces.

With respect to our coordinates 91, we define

components of the stress resultant tensor to be Nij where

the stress vector is acting on the line 91 constant

and in the direction of ej.

we indicate the displacement vector 6 to have

components
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+U5 +UE(2.2.6) U = Ule1 2 2 3 n

while the body force vector q has components

uefl) a=q”)%+q”’g—q”’%.

Denoting af/aej by f,j, af/at by f,t and tube

density by p the membrane equations of motion are written

(2.2.8) +
(a2N11),1 + (a1N12),2 N12%,2 ’ N22°21

(l) _

+ alazq ‘ Phalaz U1,tt

(2.2-9) (02N12),1 + (alsz).2 + N12%.1 ' N11a1.2

(2) _
+ old q — phala2 U2,tt

-1 —1 _ (3) _

11R1 + N22R2 )alaz alazq ’ phaiaz U3,tt

2

(2.2.10) -(N

The stress resultants Nij can be written in terms of

strains 6.. , YOung's Modulus E, and Poisson's ratio v:

 

 

1]

as

_. Eh ,

‘V

1 = Eh
(2.2. 2) N22 1 2 (622 + Ve11)

-v

the

1 = 12(2.2. 3) N12 W

The strains are then formulated in terms of displace-

ments by

_ -1 - -1
(2.2.14) 611 - a1 U1 1 + (alaz) U2a1,2 + U3R1

 

 



 

 

1.2.15) 622
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_ -1 -1 -1

— -1

(2.2.16) e12 - (Zaldz) {QZUZ'I + a1U1,2 - UlOLl'2 — U202,l}'

The boundary conditions for this theory require that

for e. = constant on an edge of the membrane, N.. or U.
i ll 1

and Nij or Uj (i # j) be specified.

Substitution of the strain displacement relations

(2.2.14).(2.2.15) and (2.2.16) via the stress resultants Nij

into the shell equations of motion (2.2.8). (2.2.9) and (2.2.16)

produces three, coupled second order equations in terms of

the three shell displacements and the three components of the

body force q. The actual substitution described above will

be presented later,once non—dimensional variables and our

particular geometry have been introduced.

 1“..
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2.3 Fieldigguations for the Fluid

2.3.1 Geometric Concepts

The space occupied by the fluid will be described

with a three dimensional set of orthogonal curvature

coordinates (q?) j = 1,2,3. We assume there is a relation—

ship between the curvilinear coordinates and Cartesian

coordinates given by

(2.3.1) x1 = x1(cpk) k,i = 1,2,3

with the inverse relationship given by

(2.3.2) cpl = cpj(Xm) j,m = 1,2,3.

Denoting the position vector to a point in the fluid

by §(¢F) we define covariant base vectors gj by

(20303) .9... = J3- j= 1.2.3

3 am

and the element of arc length by

(2.3.4) d32 = dfi - dfi.

This in turn defines the covariant metric tensor gk‘ by

(2.3.5) as.2 = g“ dcpk dq,‘

where nOW’ k,1 = 1,2,3. Indices repeated across the diagonal

are summed over all values.

Contravariant base vectors 51 can be derived by

solving the equationsy

(2.3.6) 9 - g. = 5.
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5; being the Kronedker delta. Contravariant metric tensors

can be defined by

k‘-§k.§‘ orby

cofactor of 9

(2.3.8) 9]“ = g 1“

(2.3.7) L
G I

 

where g = Igij"

In order to formulate our equations we have need of

the Christoffel symbols of the first and second kind defined

respectively as

( 9) [130k] = 1/2(gij.j + gjk'i - gij,k)

2.3.

m mn .

{1:3} = 9 [kJm]

where as in section (2.2) f j denotes -—§£. This notation

I am

will prevail in the remainder of this work.

Finally we require covariant derivatives of tensors

Of the first and second orders, fl and flj. These deriva-

tives are given respectively as

i _ i i 11
f n. - f 'j + {nj}f

(203010)

i n i

nnk + {nk}fnm - [mk}f n

2.3.2 Field4§guatigns of the Eluid

The field equations which govern fluid motion at

c(Dordina-ite q;1 and time t are written in terms of the

Stress tensor tkm(¢3,t), the rate of deformation tensor

dlh(¢1.t). the velocity vector v(¢},t). the body force
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vector f(¢},t), the fluid pressure p(¢1,t), a scalar

quantity, and the fluid density p1(¢1,t), also a scalar.

The tensor component, tkm(¢§,t), denotes the

component of the stress vector acting on the surface qr

constant and in the direction of Sm at coordinate q} and

time t. The component vk(¢i,t) of vector v(¢é,t) is

that component acting in the direction of gF. The components

fk and dkm are described in the same fashion as J“ and tkm.

we are interested in those equations which constitute

an apprOpriate continuum theory for the study of a compressible,

viscous Newtonian fluid undergoing small amplitude motion.

Those equations are conservation of mass: balance of momenta.

both linear and angular; constitutive equations; equation of

state and.kinematic equations. For a complete problem we

require specification of boundary conditions on apprOpriate

surfaces.

we will list these equations and refer the reader

to Eringen [19] for their derivation. They are

Conservation of Mass

k _
(2.3.11) p1,t + (pov )3k - 0 *

Balance of Angular Momentum

(2.3.12) t = t’

*The notation f t has been defined previously.

I
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glance of Linear Momentum

k n

(2.3.13) t m;k + pogmn(fn-v 't) — o m .. 1,2,3.

Constitutive Equations (Linear)

 

k _ _ n k _
(2.3.14) 1: m — (p+)(d n)5 m + zudkm k,m — 1,2,3.

ggpation of State

2
(2.3.15) p = plc0 .

Kinematicflmtions (Rate of deformation/velocity relations)

k _ k kn i _
(2.3.16) 2d m - v ;m + g gimv :n k,m — 1.2.3.

The constants p0 and c0 are the constant density

and acoustic speed of the fluid while u and x are the

shear and dilatational viscosities of the fluid respectively.

To complete the boundary value problem we assume

that the bounding surface S may be written as S = St U SV

St ('1 Sv = (I where on St the fluid stresses are prescribed

While on Sv the fluid velocities are known. Denoting the

Surface coordinates by [mi] and the components of the

Ontward normal to S by nk(cp:) we write

. . k . . . .

(2.3.17) tjk(cp:.t)n (mi) = pug) 3 = 1,2,3

for all m; on St and

k i a: 1
(2.3.18) v (€93.19 = v (cps) k = 1,2,3

for all cp's on Sv. The t3 and x7" are known on their

respective surfaces .
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These fluid equations completely describe the fluid

motion, however other forms are often more useful in the

work to follow. For this reason we rework these equations

into a more desirable form.

To begin we make some preliminary remarks concerning

the components and base vectors utilized in the above formu-

lations. Since the base vectors 51 are not necessarily unit

vectors. we introduce physical components by normalizing the

base vectors. we define v‘k) to be a physical component

of 5 allowing 6 = vk 5k to be written as G = v‘k) 5k

where ;k = <'-;"k/'(gkk)1/2

(2.3.19) V“) = Vk(gkk)l/2

and

the notation gk.k indicating no sum on the index ‘k. Physical

components of the stress tensor tkm are given by

_ ' 1/2 k

(2.3.20) tO‘)(m) - WISE/913111) t m °

Enuations (2.3.13) now become

/23 1

(k)

(2.3.21) +1: (m)(g’-‘-]-‘-g‘l"i‘

_ tm)

)-1/2 -1/2

[(gm)

)‘1/2[ (9,“)1/2]

1,],

0‘) (9195993 'm

+ pogkm[f(k)-v(k)'t]] = o m = 1,2,3.

Another useful form is obtained when the stresses

in the linear momentum equation (2.3.13) are eliminated by

the constitutive equation (2.3.14) resulting in equations of
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motion written in terms of the velocities. These equations

are the Navier Stokes equations and have the form

k ik n

(2.3.22) (n+x)v {km.+ ugmng v :ik

n

- p'm + Pogm(f"-v 't) — o m _ 1,2,3.

In vector notation, denoting the gradient operator

by 3, we have for the Navier Stokes equations !&_

(2.3.23) (2u+;\)'v$('v°\7) - M?) x (3 x 3))

- vp + p0(f-v't) = o. ,1

 
The continuity equation or conservation of mass (2.3.11)

takes on the form

(2.3.24) pl't + pofim'r) = o.

Eliminating p1 from (2.3.24) by the equation of

state (2.3.15) and applying the divergence to the Navier Stokes

equation (2.3.23) we obtain the pressure equation involving

P alone and having the form

2 2 2 _.
(2.3.25) (x+2u)v (P.t’ + poco V P ‘ p09.1:1:
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3;2 Geometry of the System

Having specified the equations of motion as well

as the boundary conditions for both the membrane and the

fluid it is necessary to specify the coordinate system

appropriate to our problem and then determine the various

metric tensors needed for the specific formulation of our

equations.

we view the prOblem as one composed of a fluid

flowing in a curved membrane shell. The shell is circular

in cross section of outer radius a+h and inner radius a.

The shell itself is coiled on a larger circle of radius R

which is constant. The relation between the tube and a set

of Cartesian coordinates is shown in Figure la. A point in

the fluid satisfies the following relationship

(2.4.1) x = (R + r sin ¢)cos e

y = (R + r sin ¢)sin e

z = r cos W

O g_r g.a o‘g 9.3 2w 0.3 (‘3 2w.

we note that if R = 0 the coordinates are spherical

Ixfler while if R approaches infinity the tube appears

Straight. ‘we will utilize this last concept later in the

discussion.
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On the middle surface of the tube we establish a

coordinate system as seen in Figure lb. Using (2.4.1), a

point on this middle surface is given by

(2.4.2) x = (R + a sin ¢)cos e

y = (R + 2_sin ()sin 9

z =‘3 cos ¢

g=a+h/2 O__<_e_<_2'rr O_<_(y_<_27r.

From (2.2.3) to (2.2.5) we see

C11 C12

Rl =1; R2 (R +‘g sin ¢)/sin ¢

R +‘g sin WII

I
n
:

(2.4.3)

where we have identified 91 with w and 92 with e.

FTom (2.2.1) to (2.2.4) we find

ll '
1(2.4.4) 911 922 = (R + r sin ()2 933 = 1

gkj=o R?!)

where 1 corresponds to the y direction, 2 corresponds

to the 9 direction and 3 corresponds to the r direction.
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_2L§ ‘gluid Shell Problem - Complete gqgations

Having found the metric tensors and principal radii

of curvature we are now able to write the shell and fluid

equations in a form appropriate to our geometry. We first

introduce non-dimensional coordinates, velocities, displace-

ments, stresses and pressure which will allow us to isolate

an important parameter for our analysis.

we set

*

(2.5.1) r* = r/a t = ubt

where we define a frequency ”D by

(2.5.2) mg = E/p_a_2(l-v2) .

we also define

0* = CO/élu)O l/TI = (HM/Poazub

l/n1 = u/pOa2 (1b 13* = p/poazuf;

(2.5.3) um = v(a)/aub ‘wa = U(a)/é

_ (a) 2 2 * _ 2 2 _

m = ph/poa 5 = a/R .g = g/R

The ratio m. will prove to be a convenient parameter later in

‘the analysis.

As before we identify subscripts 1,2,3 on field

v’ariables‘with (,e,r respectively. Hence £12 is replaced

 EL
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by f *9. The fluid-shell interaction problem can now be

described in terms of our specific geometry. We begin

with the shell equations of motion in section 2.2 identifying

the body force components q (1' qe, qr respectively with the

v:

S . S evaluated at r = 1.flu1d stresses Sr)" re rr

Utilizing (2.5.1) to (2.5.3) in (2.2.3) to (2.2.5)

the shell equations of motion assume the form

  

  

 

* * *

' N -N

l+§31n¢ ‘W'W l+_gs:1n¢

a —

+ fia? Sr.) ‘r*=l ’ w¢,t*t*

* *

(2.5.5) 23 COS WNW + N* + A Name

1+_§sa.n¢ 9w”) 1+_§31n¢

a —

+ 75; Sr9|r4=l - we't4t.

, 'k

. w, 1 + _§ sin ¢ mg rr r*=1 r,t*t*

In like manner the stress—strain relations (2.2.6)

thilt<>ugh (2.2.8) and the strain-displacement relations (2.2.9)

thirough (2.2.11) become

(2-5.7) N¢¢*= ew+v€ee

(2-5-8) N9; = E99 + vew

(2°5~9) Ne; =(1-\))eM

(2°5°10) -w +w

6w' M r
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.9 .

(2.5.11) e99 = T3373T3_W [we'e + wwcos W + wt Sln w]

2 5 12) 2 - + ‘3 [ -( . . 66W —‘we'w ltfi sin W ww'e ‘we cos W]-

We are now able to apply (2.5.1) through (2.5.3) to

the fluid equations given in section 2.3. we assume there is

1m>body force on the fluid. we have then

Conservation of Mass

  

  

5 cos 1) _L L

1+5r*sTn .1. 11¢ + r* ‘14,”). + l+5r*sin e “9, 9 + ur,r*

(2.5.13)

1 5 sin W l *

+ [--+ Jur = - Pr* 1+5r*sin W (c*)2 ,t*

Balance of Angular Momentumgj2.3.12)

(2.5.14) SOLE3 = s a,B meaning w,e,r
Ba

Balance of Linear Momentum (2.3.13)

6 cos (#7 6

S¢¢,¢ + 1+6r*31n ¢ S¢w + 1+5r*sin ¢ Sye,e

H
A
P
,

 (2.5.15) + s * + [3;- + “grfignl’us”

5 cos [

-‘1+5r*sin e 899 —
uw't*

2 agcosgj S + S + _+ g sin
 

 

l+5r*sin e we er,r* 1+5r*sin ¢]

+ “T S + * ‘ S = u *

r elm) Mar 8111 4 96.6 e.t
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..L 5 Leos 1)

r* Sww + 1+5r-ksinwW Ser, 9 + 1+5r*sin ¢ S¢r

.1. .1. mini
(2'5’17) + r* Swr.w + Srr,r* + [r* + l+5r*sin 1)] Srr

5 Sin (I __. u
 

- 1+5r*sin V See r,t*

Constitutive Equations [(2.3.14), (2.3.16)]

 

 

 

 

(2.5.18a) SW = _p* + 35;;- [uw’w ur] + 0}] - fill-)1)

(2.5.18b) S99 = -p* + n1[l+ig;sin (I [ue'e + uw cos W + ur sin w]

+ (% --%:)D

(2.5.18c) srr = -p* +Ifii ur,r* + (% --%:)D

(2'5'18d) See = 71;; [1,}; “9.1) + 1+6rfsin (; (“(1. e ' “9 cos (0]

(2.5,19e) s¢r=-1:|]=i-[uw'r*+ *ur'w-fiuw]

(2.5.18f) Ser=-T%I[ue,r* +l+5rfsin w (“me-“9 sin (1)]

(2.5.189) D=fi;[lime-Fur]+1+(5r12s:'1n(I[‘19,9+ua1nccmW

‘ ++ ur sin w] ur,r*

It will be remembered that in addition to the above

equations, we obtained the Navier Stokes equation (2.3.23) and

the Pressure equation (2.3.25) through various manipulations.
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Applying the same non-dimensional changes as before we

have the Navier Stokes equation in component form.

Navier Stokes Equation (2.3.23)

1+ QCOUl 1

FE'{7;?77'[“(.11 ' “w + Zur.¢ r*(1+ar*§In )) [“(aw

 

 

 

 

 

 

 

 

 

62 2
+ u ] + [-u cos w + u

r (l+5r*sin ¢)2 W (:96

(2.5.19) - 2 cos ¢ ue'9 - sin w cos w ur]

;L_ 5 sin W

+ [r* + l+5r*sin W] u¢,r* + u¢,r*r*}

1 * 1 Fame)
wti. = _; [P '1‘ + — * 2 }

I r o T] (C)

1 u . L008 1!

?E'[7f%%% + r*(1+5r*51n w)“ e,¢ +

62

+ (1+5r*sin ()2 [2 c°s l ”(.9 + “6.69 ' “9

(2.5.20)
. _1_+ _£Lsin L

+ 2 Sln w ur,9] + [r*+ l+5r*sin VJU + ue,r*r*}

*

_ a * 11131::
“e.t* ‘ (1+er*sin () [P .e + n (c*,2 }

.1; ..l... _ _ 5 cos i

111 ( *)2 [umw “r New] + r*(1+5r*sm‘¢) [ “r4.

62

- u + u - cos sin u

( W] (1+5r*sin ()2 [ r'99 W W W

2~5.21)

_ . _ . 2 _};+ ‘gpsin (
2 Sln w ueie Sln w ur] + [r*+ l+5r*sin ¢]ur

*

) - u — * + l p ,r*t*
r,r*r* r,t* ’ P ,r* n (c*)2
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Finally we express the pressure equation as

Pressure Equation (2.3.25)

{l+-——7[
% +—]'_1]aa—.E""

'_-}[(13*)2p*I¢
W+-};p*’r*

(C ) r

 
 

'1’

(205.22) + P* + 6—T [c:: w p V4-

6 *

,r*r* 1+5r*51n W (1+5r*sin () p :99

+ sin w p* r*])= -?——;f p*t*t*

To complete the boundary value problem we specify the

boundary conditions appropriate to the complete fluid-shell

interaction problem as well as some special cases to be

examined for the fluid alone and for the shell alone.

_§1uid-Sh§11 Interaction Boundary Conditions

r =1 u¢=w¢'t*

(2.5.23) u9 = we 12*

I

u _
— w

r r,t*

* *

O p , u ,u ,u are finite.(2.5.24) r (I 9 r

Fluid Boundary Conditions

A~ 3191:: Shell
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B. NO Shell (stress free)

*

r = 1 s = s = s =

For both (A) and (B) (2.5.24) applies.

Empty_$h§11 Boundary Condition

Displacements have period Zn in ¢~
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2.6 Traveling_wave Solutions

2.6.1 Introductornyemarks

A careful examination of the complete mathematical

problem presented in section 2.5 reveals the enormous task

one has in solving these equations in their most general form.

The appearance of the parameters 6 and .2 suggest a method

of perturbation for the dependent variables allowing us to

pose a series of problems, each simpler than the original,

yet contributing to the solution of the original problem.

We recall that 6 and .5 are defined by

5 = a/R and '5 = (a+h/'2)R-1

and that from the thin shell theory h/a < .05. Hence the

ratios .5/5 and a/a are approximately 1. we also note

that when 5 is small we have the situation of a slightly

curved tube with R large. Conversely, the case of 5 large

can be interpreted as R very small, yielding the description

of a flow inside a sphere of radius nearly a.

Our choice is to examine the situation of 5 small

expanding all dependent variables in a perturbation about

small 5. Once this decision is made two possibilities present

themselves for our consideration.

If our tube were a straight cylinder, then a dependent

variable X would have a wave solution of the form
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(2.6.1) X(r. (1.431;) = X(r. ()explimC-th

Where r, ¢,c represent cylindrical coordinates C being

the coordinate along the axis of the cylinder. The parameters

k and u) are the wave number and frequency respectively.

Recognizing that in our curved tube Q could be

taken to be Re, an appropriate form for us to consider for

the field variable X is

A

(2 .6.2) X(r*.(. 9.5.1:) = X((:.r*. a5)eXp[i(§-6fl - BtH

Where 3 and B are the wave number and frequency respectively.

A

Since X depends on 5 which is small, it also seems appro-

A

priate to expand X as a series about 5 small, i.e.

* *

X(¢l ear Iblt) = [Xo()’lr) + 6X1(Wor) +'°'}E

(2.6.3) 9 2

E = exp{i[3 (30 + 5s1 + 5 32 +---) - at]]

The form (2.6.3) yields as its lowest terms the

f011‘m (2.6.1) while the form

X(¢.9.r*.5.t) = {x;(¢.r*) + 5X;(¢.r*) +---}E1

(2.6.4)

E1 = exz>[i[e(sao+zss1 +~--) - BtJ}

Yields as its lowest terms solutions apprOpriate to plane flow,

i-e., flow independent of distance down the tube. In this

8ituation curvature effects are found in second or higher

order terms. The form presented in (2.6.4) is utilized when

one is concerned with the secondary flow patterns in the cross

Section of the tube.
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2.6.2 Perturbation Expansion in Small _5

We expand all dependent variables in an expansion

suggested by (2.6.3) . We assume

s=s +6sl+523 +...

O 2

2_ . O O l l 2 2

(wa'ua) — 1((wa,ua) + 5(wa,ua) + 5 (wa,ua) +---)E

a meaning 4; or r

_ o o 1 1 2 u2
(wanna) — {(We'ue) + (Swan: 9) + 6 (WE, ue) + }E

* _ . o 1 2 2

New - J'{Ncm + was + 6 Nae +°'°)E

. o 1 2 2
S = 1 S + S + S 4"... E

e: I e: 5 55 5 5: }

a meaning 5 or 9, g being (he or r*

* _ 0 1 22
New — [New-l- 5N6) + 5N e¢+°”}E

So _ So 0 1 S2

(Saw W‘Hew'5)+5(sver)+°(sver)+ )E

*

All fluid quantities such as uka are functions of 5 and r

While all shell variables are functions of 5 only.

It now remains to substitute (2.6.4) into the equation

of section 2.5 collecting terms as coefficients of powers of

5 and equating these coefficients to zero. This allows us

to define zero, first and second order problems which are to

be solved in the following subsections. We will now present

the equations in the order we intend to solve them. We will

also drop the * from all variables realizing that all

quantities are non-dimensional.
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To facilitate the presentation of these equations

we choose to define the following differential Operators.

The L operators are associated with fluid velocities while

those designated with M Operate on fluid stresses.

k k k 1 k k 1 k
L1(u u u ) — E u W!) + sou 9 + E(ru r),r

1 a l a 2

(2.6.5)L = ——+- (r—- -s

2 r2 N2 r 5r 5r 0

1
L = L - _

3 2 r2

k 1 k k k

M1(s’;r,sw) = E[S(r + (rswr).r + 3W4]

k _ 1 k k
(2.6.6) M2(S:W.Ser) — #56116)" (r Sega]

)13(s.".s".sk )=3-L[sk -s’;w+(rs") 1
¢¢ rr r r¢,¢ rr ,r

k = 0'1'2'3'...

we also define

__.211
kO — 1 15/6 [n + “1)

(2.6.7)

k1 = 1 - iB/TICZ

2.6.3 gero Order Problems (straight cylinder)

Pressure Equation

2

(2.6.8) (L + L) (p ) = o
2 czkg o

 

 



f
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Navier StOkes Equations

 

 

-%:[L3(u0¢) +-fi% ug'w} + iBui =

(2.6.9) fili- L2 ((109) + 1(3qu = -sokipo

%[L3(uor) - :2-2- now, (I) + irsuor

Continuity_Equation

(2.6.10) Ll(u0¢,uoe,uor) =-:§;

Constitutive Equations

SoW = -po + (313-31? Doe-7%-

$086: -p0+ (51-711?) ”0 +712;

SOrr = -P0 + (% -'%:) DO +'%i

(2.6.11) 5°M = 711-1- [-souo¢ + i not“)

Sotr = 71;; (“Ow + 3'1: ”one '

Soar = "(if [noevr - 30.10:)

D0 = L1(uow,u0 ,uor)

H
I
H

1‘90, ‘1'

klpO,r

H
I
H



 

M

(1.6.1)



SO

Fluid Stress Equations of Motion

0 O O . O

wr,S W) + 80$ (9 ifiu W

o 0 o . o
0601 S I - S = '-(2 2) M2( 9)) 3 8r) so 88 1Bu e

M (S
1

o o o ___. o
M3(S “,5 ”,5 rr) + sos re’ iau r

Shell Stress - Displacement Equations

N0 w0 + w0 + vs W'0

W (1.)) r 0

(2.6.13) N0 3 WC + (,{w0 + wo}
96 0 e ¢.¢

0 -1- 0 -
New—2(1v)[w 90W Sow“.

Shell Equations of Motion

0 s N0 +

New-11+ 0 9)

a
n
s

a
n
s

I I
U
)

£

Boundary Conditions at r = l

A. Coupled PrOblem

u°¢(¢,1) = -iBw

(2.6.15) u°e(¢,1) = -iBw

uor(¢,1) = -iBw



‘
V
"
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If the fluid is inviscid then (2.6.15) becomes

-ifiwO (1)) 65.32.
0

(2.6.16) u r(5,1) r

B. Rigid Shell

(2.6.17) u0¢(¢,1) uog(¢,l) = uor(¢,l) = o O < w < 2v

If the fluid is inviscid we replace (2.6.17) by

(2.6.18) u°r((.,1) = o o 3 ¢ < 21r

C. Stress Free Fluid (No tube)

2v

V
\

o _ 0 _ 0 _
(2.6.19) Sr¢(‘l"l) —Sre(¢,l) —Srr(¢,l) —0 03 (1

D. No Fluid

Shell displacements are periodic in 5 with period 2v.

Boundary Conditions at r = 0

A11 fluid variables are finite at r = 0.

2.6.4 First Order Prdblem

Pressure Equation

2

(2.6.20) (1.2 + 2%.?“ = po{28081 - 2mg sin w}

1
- E PO.) cos W - p0.r sin 5



f‘ f a

('06!
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Navier StOkesnguations

 

 

1 1. 2 1. . 1 1 2
-—-[L (u ) + ——-u ) + ifiu = - k
n1 3 5 r2 r,5 W r 1 pl,¢

1 2 0 O .
-.fi; {(2rsO u W + u w'r) Sln 5

+ % cos ¢(u0¢'¢ + uor - 2rsouoe)}

1 1 . 1 __ _ 2 _ _1_ 2 0
(2.6621) 71-; L2 (u 9) + lfiu 9 — klsOpl n1[[2rso u 9

O O . 1 O
_ Zsou r + u 6']:,] Sin 5 + E cos ¢[u 60¢

- 2rs uO ]} - rs p sin V
o .1. o o

2 1 . 1 2
[L (u ) - u } + ifiu = k p

111 3 r :2- 5“) 1 1,r

l 2 0 O 0 .
-«fiI {[erO u r + u r,r - ZSOu ] Sin 5

1 0 0
+ E COS (it [u r0)” " 11 $1]

Continuity_Equation

' 1 1 1 _ £9 0 0
(2.6.22) L1(u ¢,u q,u r) — c2 p1 slu e + [rsou 9

O . O

- u r] s1n 5 — u W cos W

Constitutive Equations

1 1 1. 2 1 1 1

S = - + - --- D +-—— - u + u ]

WW P1 (n n1) 1 “1 r { (0? r



 

{2.5
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1. 1 1 2 l O

S = - + — - -—» +-—— +

O O O .

+ u W cos 5 + (u r — rsou e)31n 5]

1 _ _ 1 __1_ .2. 1
S rr — p1 + (a n1) D1 + n1 u r,r

1 1. 1 1 1 1

2.6.23) S = --[u + - u - u )]

( 5...- n1 (’1' r‘ raw (1

1 __1_ _ _ o _1_ 1 o .
S 9W - n1 ( sou Slu 9 + r u 90¢ + rsou Sln 5

- u0 cos 5]

1 __1_ 1 1 .
8 er - ”1 {u BII + sou r u 6 Sln 5

. O

+ (sl-rsO Sln 5)u r}

1 1

D1 - L1(u will ecu r)

Fluid Stress Equations of Motion

1 1 1 . 1 O O
M S ,S ) + s S = -1 u + S -S cos

1‘ 5r 55 O 58 B [ 99 (V) l

. O O 0

+ s1n 5 (rsOS (6 - S (r) - sls )9

(2.6.24) M2(Sl ,Sl ) - s S1 = -iBu1 - 280 cos 5
95 gr 0 99 9 9*

0 O . 0

[25 at + r308 99} 81!! 5+ 81$ 98

1 1 1 1 __. 1 _ o
M3(S r5'S ¢W'S rr) + SOS re — iflu r S (I cos 5

o o o . _ o
+ {rsos r9 + S 99 S rr} sin 5 318 re



Shell
 

12.5.25) ((3

 
(2.6.26)
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Shell Stress - Displacement _Fguations

_ l 1 _ . O 1

NJ'M—www+wr+()[(s]_5051n5)we+sowe

O 0 .

+wwcos5+wrs1n5}

(2.6.25) N166 = sowle + v{w1¢'¢ + wlr} + (sl-so sin 5)wo

O O .

+ w cos 5+ w r 8111 5

l __ l _ 1 _ l _ _ . O

N 94' -- -2-(l V)[w GM) sow ‘l' (81 SO Sin 5)w ll

‘5 - wO cos 5}

5 9

Shell Equations of Motion

1 1 1 1 2 1 0

N + N + - s = - - N

l W") 50 9‘) 1“ r5lr=1 (3 w l 81 9‘)

| o o o .
- N - N 0 + N 1n

1) { 55 66} c S 1 S0 95 8 l

l 1 l 1 2 1 0

0 0 - N + — = — +

(2 6 26) N 65.5 30 99 m S reln=l 6 w 9 slN 69

_ 2N0” cos 5 - soNoBe sin 5

l 1 1 _ _ 2 l 0 .
‘N55-msrr‘r=1_fiwr+N9931n¢

_
.
.
—
M

’

I
-
u
l
n
'

N

“
I
f

6



I
!
”

A. Cougled I

(2.6.27)

  

All



 

_
—

 
 

J
J
H
.
J
‘

.
_

55

Boundagy Conditions at r = l

 

A. Coupled Prdblem

u1¢(5,1) = -iBw1*(5)

(2.6.27) u19(5.1) = -iBwle(5) 0 _<_ 53 25

u1r(5.1) = -iew1r(()

If the fluid is inviscid (2.6.27) is replaced by

(2.6.28) u1 (5.1) = -iBw1 (5) 0 < 5 < 211'
r r -— -

B. Rigid Shell
 

(2.6.29) u1¢(5,1) = ule(5,l) = u1r(5,l) = 0 0 g 5 g 21r

If the fluid is inviscid we replace (2.6.29) by

 

(2.6.30) u1r(5,1) = 0 0 _g 55 Zr

C. Stress Free Fluid

(2 6 31) 31 ( 1) = s1 ( 1) = s1 ( 1) = o 0 < 25
° ' r5 III’ re II' rr III' S *—

D. Nougluid
 

Shell displacements are periodic in 5 with period 2v.

Boundary Conditions at r = 0

A11 fluid variables are finite at r = O.
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.g;§;§ Second Order Problem

For the second order problem it will not be necessary

to find exact values of the pressure and velocity terms since

the process for determining the second order correction

eliminates these variables. We need to describe only the

fluid stress equations of motion, the shell stress dis-

placement relations, the stress equations of motion for the

shell and the boundary conditions.

Eluid Stress Equations of Motion

(S2 2 ) + s 82 = -iBu2 - s 1 0

M1 (1"5 w 0 )9 (1 1S )6

l1

+ cos ¢ {S W9
l .

69 - S W} + Sln w [rsoS . 0 0
S } + r cos W Sln W [S ¢W S 96} 

. 2 1 0
206.32 p - = '-( ) M2(S 9W S 6r s08 69 ifiu 9 + 318 99 + s28 99 

 

_ Zslwe cos w - sin y] 2819r + rsoslGe

O 0
+ rsls 96} + 2r cos w sin W S We

. 2 O 2 O

+ +r sin ¢ {28 Gr r80 96]

2 2 2 2 _ . 2 l

M§(S wr.S W.S rr) + 308 re — -iBu r - 815 6r

. 1

2S 9r - S Wr cos w + Sin ¢ {rsoS



 

(2.6.33)
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+ rs so + 51 - s1 }

1 er 66 rr

+ r cos W sin ¢ S0 + r sin2 w [sorr
1y]:

- s0 + rs 2 so }

98 0 6r

Shell Stress - Displacement Relations

N2 = w2 + wzr + V{cos ¢(wl WOW sin :1.)

WW Wv¢ W

. 1 O . 2 1 0
+ Sln ¢(w rdw r Sin W) + sdw 9 + siw 9 + 52w 6

l O . O . 2

- (sdw 6 + Slw e)Sin W + sow 6 Sin w}

2 _ 2 2 2 1 .
(2 .6.33) N 99 — v(w w’w + w r) + sow 6 + w 6(51-30 s1n (y)

0 . . 2
+ we(sz-sl Sln w + 30 Sln w)

2 _ (1‘2) 2 2 1 _ .
N 9* 2 {w 90¢ + SOW’¢ + w¢(s1 so Sln w)

0 . . 2
+'w W 32-51 Sin ¢ + 30 Sin w)

- cos ¢(w1e -woe sin ¢)}

Shell Equations of Motion

2 s N2 + l S

m

2

NW)" 0 e)

_ 2 2 _ 1

ry‘r=1 “ —B w w SIN e¢

O 1 1
- $2N 9W cos w {N WW N 09]

+ sin (y [SON19¢+ [SlwsO sin HNOM}

+ sin W cos W [NoW — N099}



72.6.34) N2

  

 

 

1%

W635)



2 N2 1 2 2 2
o. - +" =-(2 634) N 6):) s0 99 ms 9r|r=l B w e

1 O

+ SlN 69 + s2N 96 - 2N 6) cos W

. 1 . O
- Sln w {SON 98 + [sl-sO Sln ¢]N 96}

+ 2 NO cos sin

e) ‘” q’

2 1 2 __2 2 . 1- N WW - a S rr'r=l — B w r + Sln w {N 69

- sin W N096}

Boundary Conditions at r = l

A- Coupled Problem

2

t

-iBw29(¢) 0.3 ('3 2w

u2¢((.1) = -if3w (1)

(2.6.35) u29(¢.l)

-iBw2 (1))

2

u r(¢01) r

If the fluid is inviscid (2.6.35) is replaced by

(2.6.36) u2r(¢.1) = 4sz (1)) o _<_ )3 2w
r

3. Rigid Shell

(2.6.37) u2¢(¢,1) = u28(y,1) = u2r(¢,l) 0 0 g .33 Zr

If the fluid is inviscid (2.6.37) is replaced by

(2 ~6638) “2:.(1101) = 0 O _<.. 1' < 277.
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C. Stress Free Fluid

(2.6.39) 5 (13.1) = s (¢,1)= SzrrW'l’ = o o _<_ q, < 277

D. No Fluid

Shell displacements are periodic in ¢ ‘with period 2?.

Boundary Conditions at r = O
 

All fluid variables are finite at r = O.
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CHAPTER III

CURVATURE CORRECTION FOR THE EMPTY SHELL

3.1 Introduction

In Chapter two we displayed those equations necessary

for the complete description of a fluid flowing in a thin,

curved. elastic membrane shell. The solutions we seek are

of the form of an amplitude function multiplied by a traveling

‘wave. The wave portion of our solution is common to every

solution and has the form exp i{396-1 - Bt] where B is a

non-dimensional frequency, t is the non-dimensional time.

5 is the ratio aR-l. 9 is the angle down the tube and s

is the non-dimensional wave number. we expanded s in the

fashion of

_ 2
(3.1.1) 5 — 50 + 531 + 5 32 +...

t

as we did for all our variables except 6.

we now assume that our fluid shell system.has been

.set in motion somehow and now vibrates in some fashion, there

being no outside forces interfering with the motion. Our task

is to characterize this system by describing the modes of

vibration. The modes are merely the various patterns which

60
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the vibration waves exhibit as they travel along the tube

and/or fluid.

It is our task to describe these modes by finding

the relationship between the frequency, B and the wave

number 3. Once this relationship is established we may then

indicate the frequency at which the tube and/or fluid is

vibrating and then know the wave number 3 corresponding to

the frequency indicated. From these two values we can

determine the speed of the waves traveling down the tube and/

or fluid. The relationship between the frequency and wave

number constitutes a characterization of our system and can

be utilized in other problems involving the same system.

If we study the same model under the influence of

outside forces during the vibration, we may utilize the modes

to describe the outside force and assist in the solution

of our new problem.

Our immediate concern is to find a relationship

between the wave number s and the frequency. we begin by

finding the relationship between s and 6 following that
O

with the corrections to 3 namely 31 and 82. This is
00

the procedure to be utilized in the remainder of the thesis.

we begin by considering the shell without the fluid,

establishing the displacement equations of motion for the
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empty shell in section 3.2. In the next section, 3.3. we

determine the relationships between and B for
s0'31'32

an arbitrary number of waves around the tube in the W

direction.

In the remainder of Chapter three we concentrate

on the fundamental case of axisymmetric motion for the zero

order motion with section 3.4 containing the relationship

between 50 and B. In section 3.5 we discuss the effects

of the first order corrections on the functions described in

the zero order. Finally, in section 3.6 we establish the

second order correction, s and relate it to the zero2'

order wave number so.
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3.2 Shell Displacement Equations of Motion

In section 2.6 we formulated the stress equations

of motion for the shell in the zero, first and second orders,

(2.6.14), (2.6.26) and (2.6.34) respectively. we also

derived the stress displacement relations for the same three

orders in equations (2.6.13), (2.6.25) and (2.6.33). we

now make the substitution of apprOpriate stress displacement

relations into the shell equations of motion (2.6.14), (2.6.26)

and (2.6.34). To facilitate the notation we define three

differential Operations on the displacement components as:

k k k _ k 2 _1 2 _ k
F1(w Wm 9M r) -w WW + [B 5 30(1 VHW')

+ % so(l+v)wke'¢ + wkr'w .

F2(wk¢,wke,wkr) = _ % so(l+v)w (v) + {Bz-sng'ke

(3.2.1)

+ %(1-v)wkenw - vsowkr o

k k k __k _ k 2_ k
F3(w V'w e.w r) — w W”) vsow 9 + (B l)w r .

k = 0'1'2'3'...o

we are now in a position to indicate the equations of

motion for the shell, written in terms of the shell displace-

ments. It should be repeated that the thin shell conditions

result in the shell displacements being independent of r.

Hence the wk 5 meaning 9.¢,r, 'will be functions of WE!

only.
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Zero Order Shell - Displacement

Eggations of Motion

0 o o 1 0
F (W ow lw ) = " "" S _ o

o o o _ l 0
(3.2.2) F2(w v.1” e.w r) _ — a S ‘r=l ,

r9

0 o o 1 O

F (W ow ow ) = + - S ‘ _ 0

3 ¢ 9 r m rr r—l

First Order Shell - Displacement

Equations of Motion

1 1 1 l 1 l o
Fl(w wyw e,w r) = - a Sr¢|r=1 - s1[§(1+v)w 9')

(3.2.3) _ (I'V)3Owo¢} + cos ¢{%(3-v)sdw°e - WOW ¢ - wor}

+ sin W[% 30(1+v)w°e'w +*w°w[v-sg(1-V)] - vwor.¢}'

1 1 1 _ 1 1 1 o
F2(W’¢,W'6,W’r) — - a Sre‘r=1 + sl[§(l+v)w WOW

+ Zso'woe + vwor} + % cos WIsO(3-v)w°¢

(3.2.4)

_ (1-V)w°e'¢} + % sin ¢{2so(l-v)wor

2 o o
- (1-V-4SO)W 9 ' (1+V)80W t' W}:

1 1 1 _ 1 .1 o o
F3(w w.W’exw r) — +.fi'srr‘r=1 + VSiW'B + vw V cos l

(3.2.5)

+ sin ¢[SO(1-V)Woe + 2w°r + wan”).



 

 

(3.2.6)

(3.2.7)
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Second Order Shell - Displacement

Equations of MOtion

2 2 2 _ _ _1_ 2 _ .1. 1F1(W’¢;w e’w r) — m Srw‘r=1 S1[2 (1+V)w 6v)

_ 30(1-v)wlw - .21- sl(l-v)w°w) - 32%- (1+v)W°6W

- 30(1-v>w°¢) + cos W[% (3-v)[sdwle + s1w° 1

_ wlw'w _ wlr} + $111 (H; (1+v)[SOwle,¢ + Slwog,‘)']

(3.2.6) + w1w[v-sg(l-v)] - er,¢ - Zsos1(1“’)"°)}

. O O O

+ Sln W cos ¢[w W'W - 80(3-V)W 9 +'w r}

l . 2 o 2 °+ 5 an m ([350 (l-v) - 2v) - so (1+vlw a.)

+ szor.w} + wow C052) ,

F(w2 w2 w2)'-152)
2 w' 9' r _ m r6 r=1

1 1 1 o 1
+ sl{§ (1+v)w W'W + ZSOW 8 + 81W 9 + VW r}

+ s2[% (1+v)w°¢ W + 2sow° + wor)

(3.2.7)

+ % cos =lr{(3-v)[sow1¢ + slwow] - (1‘V)wle.¢}

_ .2. gm (([(1+\))[sow 1M) + slw *4] + [1 Mso]w e

- asoslwoe - 2(1-v)[so‘w1r + Siwpr11

. l o o

+ COS I) 3111 *[2 (l‘V)w B") " 30(3-V)W w}



 

“l

K318)
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+ .1- sin2 ¢[sO(l+v)w°
2 O

2 + [1-v+6so]w

ll")

(l—\))w°e cos2¢ ,

N
H
"0

- 280(2-v)w r] +

2 2 1
F3(w ¢.w e.w r SrrIr=1 + v[slw 8 + 32w

1 . 1 '
+ vw W cos W + Sln ¢[(l-v)[sdw 9 + 31w 9

II +

B
I
H

(3.2.8)

+ \J[2wlr + w1 w]] + (1-v)w° cos (1 sin (I)

)II ‘)

- sinZMVwo + sO(Z—\J)w0e - (l-2v)w°r}.

1M)
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3.3 Corrections for Arbitrary n

In this section we deve10p the frequency equation

as well as the first and second order correction equations

for an arbitrary number of vibration waves around the tube.

In subsequent sections we analyze these results for the

fundamental case of axisymmetric flow in the zero order system.

In (2.5.3) we introduced the non-dimensional parameter

m = ph/boa. m being one-half the ratio of tube density per

unit length to fluid density per unit length. If there is

no fluid then poa = O and m-1 is zero. In this situation

. k k k _
the fluid stresses Sr)’ Srq and Srr (k - 0.1.2....)

evaluated on r = l have no influence on the shell displace-

ments. The situation of mfl = O is the case we are now

investigating. we refer to it as the empty tube case.

we expect all shell displacements to have period

2V in w and we further expect that in the case of axisym-

metric flow, displacement components are independent of t.

These criteria suggest the following form for zero order

displacements. It is

o w’0 sin(n¢)3 II

V ‘1!

(3.3.1) w°e = w°e cos(n¢) n = 0.1.2.3....

wor = W0r cos(n¢)

For axisymmetric motion. we merely set n = O and the

conditions mentioned previously are satisfied.
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Substitution of (3.3.1) into (3.2.2) gives the

following system in homogeneous form. It is

2 2 l 2 1 \

B - n - 5 so(l-v) - 5 nso(l+v) —n w

1 2 2 l 2
_ 5 nso(1+v) B - SO - 5 n (l-V) -VSO W0

-n -vs BZ—l W
‘ O

(3.3.2)

0

= O

O

In order that we have non-trivial solutions for this system

'we require that the determinant of the coefficient matrix

vanish. It should be noted that replacing n by -n does

not alter the value of the determinant. Vanishing of the

determinant leads to an equation of the form

(3.3.3) 50 = f(5.v.n)

which is known as the frequency equation. Given values of the

frequency. Poisson's ratio and n we can compute a value for

so. the zero order wave number. In the general case we find

that 30 can be Obtained from

__ 4 1-v 2 2 22 2_ l _ 2

O - so (—-2)(B -1+v) - B SOUB 1)§(3 v) + v

(3.3.4)

- n2(1-v)} + 64(52-1) - n262[§(32-1-n2)(1-v) + 62].
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‘we*will return to this equation when we investigate axisym-

metric motion for the zero order.

Having found the zero order wave number. we proceed

to our primary Objective: determination Of the first non-

zero correction for the wave number. We begin with the first

order shell equations. (3.2.3) through (3.2.5). since they

contain 81' the first correction to 3 Examination Of the0.

right sides of these three equations indicates that the

following forms are needed for our first order terms. They are

w1 = a cos(n+l)¢ +‘b cos(n-l)¢ + c

l l W i

+ d sin(n-l)¢ + e cos n) + h sin n)

l l l

sin(n+l)¢

‘w = a sin(n+1)¢ + b sin(n-l)w + c9 cos(n+l)l

(3.3.5)

+ (19 cos(n-l)¢ + ee sin n) + he cos n¢

w = a sin(n+l)¢ + b sin(n-l)¢ + cr cos(n+l)¢

+ d cos(n-l)¢ + e sin n) + hr cos n).

These forms will allow for all possible trigonometric terms

which might appear in the inhomogeneous terms of (3.2.3)

through (3.2.5). All coefficients of trigonometric terms

are constants.

Inserting (3.3.5) into (3.2.3) through (3.2.5) yields

six systems of equations. three Of which are homogeneous. The

three homogeneous systems contain the C(.)o 6‘.) and e(,)



, l

coefficient.
 

«efficient
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(3.3.6)
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coefficients separately as column vectors. If we denote the

coefficient matrix of (3.3.2) by ”(n) then we may write

the three homogeneous systems as

CW\ 0 \ dw ’O \

M(n+l) c9 = O ”(n-l) d9 = 0

cr 0 dr 0

(3.3.6) ‘

8W O

M(-n) e9 = 0

er 0

Our frequency equation is merely the result of det(M‘n)) = 0

where det is the determinant. Since the determinants of

the first two matrices in (3.3.6) are not identical to that

of "(n) Cramer's rule allows us to conclude that the c(.)

and d(.) coefficients are all zero. In the third system

Of (3.3.6) we conclude that the e(.) coefficients are arbi-

trary and set them tO zero.

The remaining systems are inhomogeneous and can be

written as

(3.3.7) M(_n_1) as = f9 M(-n+1) be = g
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and as

he kw

(3.3.8) Mkn) h9 = 31 k9

hr r

k) = % n(l+v)Wpe + so(l-v)'wow

(3.3.9) k8 = % n(l+v)W‘°w + ZsOW'Oe + v W'Or

_ O
kr — v W 9

In (3.3.7) the inhomogeneous terms are all known in terms

of zero order displacements. Again. the determinants of the

coefficient matrices are non-zero and so we can solve for

the a(.) and b(.) coefficients by Cramer's rule.

In (3.3.8) we cannot solve by Cramer's rule since the

determinant is zero. this being our frequency equation. we

adOpt a different approach and multiply both sides of (3.3.8)

by the row vector (w°¢.W°e.W°r) and take the transpose of the

left most pair of terms. Symmetry of M5 allows us to write

the result as

t

w° h k

wo‘) ) o o o V

(3.3.10) MO!) 6 he = sl(w WW 9.91 r) ke

w° h k
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where the superscript t indicates the transpose. The

quantity being transposed is the zero order homogeneous

system (3.3.2) and is zero. Our conclusion is then that

31 is zero as the product of the row and column vectors on

the right side Of (3.3.9) is not zero.

Knowing that 51 = O is of modest importance so

we continue with the same procedure to an analysis of the

second order equations. hOping to isolate 32 as we did 31'

but with a non-trivial result.

From (3.3.7) we can compute the first order dis-

placements involving the coefficients a(.) and b(.). Since

s1 = O 'we conclude that the h(.) coefficients are arbitrary

and set them zero since the relation among them is already

present in the zero order displacements. Having the first

order terms computed we can now determine all the inhomogeneous

terms in the second order shell equations. (3.2.6) through

(3.2.8).

For second order velocities we should have terms

involving cos(n:2)¢. cos(nil)¢. cos n¢ as well as the sines

of these same arguments. This gives rise to ten systems of

equations. one-half Of which are homogeneous. Our concern is

only with those equations involving cos(n¢) or sin(n¢)

since the second order correction. 32. appears only with
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these trigonometric functions. we designate these components

of in2 ‘by A sin n) + BW cos n). these components Of

W W

w2 by A cos n) + B sin n) and these components of 102

9 9 9 r

by Ar cos n) + Br sin n). Again. there are more components

for these second order displacements but our concern is only

'with these six.

We write our two systems as

A F 13 o
W W W

(3.3.11) Mm) A9 = Fe (_m Be - 0

Ar Fr Br 0

As before the B(.) coefficients are arbitrary and set equal

to zero. Our next task is to determine the F(.) coefficients.

This requires that products Of the form cos W cos(nil)t be

rewritten as % {cos(ni2)w + cos nw]. In fact we have to

rewrite all such products. sin W sin(n:l)$, sin) cos(nil)t

and cos W sin(n:l)W. in a similar fashion so we can identify

the coefficients of cos nt or sin n¢ in the inhomogeneous

terms. we find then that

Fe

n
sz[§(1+v)w‘°e + so(l-v)wp¢}

l 1

+ 2[2 so[(3—v)(ae+be) + (l+v)(b9(n-l) - ae(n+1))]

(3.3.12)

+ (n+1)a¢ + (n-1)bW - (ar+br) - v(ar¥br)

(v-s§(1-v))(a -b¢))
W



 

(3.3.13)

(3.3.14) 
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'
1
1

l

_ l O o O
32{§ n(1+v)W W + 230W 9 + vw r)

+ %[(3-v)so(a¢+b ) + sO(l+v)[(n+l)aw - (n-1)bW]

W

2
(3.3.13) - (1-v+4so)(aeébe) - (l-V)[(n+l)ae + (n-l)be]

1
— 2(l-v)so(ar-br)} + z[nso(l+v)w°¢

+ 2(1-v+3s(2))w°e - 250(2-v)w°r}

_ O l 1
Fr — vszw 9 + 5 v(a¢+bw) + 5 [v[(n-l)b¢ - (n+l)a¢]

(3.3.14) + (l-v)so(a9-b6) + 2v(ar-br)

_ vnwow - so(2--\))W°e + (1-2v)w°r}.

The process used in determining s1 is repeated in

this case and the result is

= o .(3.3.15) 0 w WFW + WOBFO + w°rFr

Since 82 is not a common factor as s1 was. it is

not identically zero and we are able to write an expression

of the form

(3.3.16) 32 = G(so.B.V.n)

which gives the second order correction to the zero order wave

number so.
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we are now in a position to analyze the results of

this section for the fundamental case Of axisymmetric flow

in the zero order tube motion. For this case we set n = O

and proceed to the next section. In all that follows. the

assumption of axisymmetric zero order flow will be made.
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3.4 Axisymmetric Frequency Equation

we are now considering axisymmetric vibration of

our empty tube. We must therefore return to the frequency

equation (3.3.4) and set n = O. The result can be factored

to give

2 2

(3.4.1) {sé(l-.}Y-) - BZNSg - %J%%1}(52-1+v2) = o.

- +v

Setting the first term to zero gives us a frequency

equation appropriate to torsion motion in which pr is

arbitrary and W0e and W0r are zero. Setting the second

factor zero is the frequency equation for axisymmetric flow.

0 O o I r O

In this instance W W 18 zero as can be seen from setting

n = O in the first equation Of (3.3.2). Hence

2 1 2
(3.4.2) so = M79597) /

B -l+v

is the frequency equation for the axisymmetric vibration of an

empty. thin. elastic membrane.

The equation (3.4.2) has been determined by Rubinow

and Keller [5)] in a slightly different setting. The following

analysis parallels theirs.

For frequencies in the range (1-\)2)1/2 S.B < l

s is pure imaginary and the waves do not propagate. For
0

frequencies outside this range the wave number so is real

and the waves move down the tube. When v = O the frequency

equation reduces to S0 = B.
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2)1/2 becomes arbitrarilyAs B approaches (l-v s
0

large. At B = l the wave number is zero but soon approaches

the value of B as B increases. A graph of (3.4.2) is

presented in Figure 2.

Two auxiliary functions which are Of benefit to our

discussion are the phase velocity cP and group velocity cg.

defined as

(3.4.3) o B/Re(so)

P

(3.4.4) cg dB/d Re(so).

The phase velocity gives an indication Of the speed

of a traveling wave as it travels down the tube. The group

velocity denotes the speed at which the energy is prOpagated.

It is the velocity at which a packet of waves is prOpagated.

all waves having similar wave length. [Kolsky. 20]

we find that

 

2 2

(3.4.5) o = (5 '1“ ))1/2, 0 < f3 < (1-v2)1/2.
P 52_1

1 < B

and that it is undefined outside these frequency ranges.

Differentiation Of (3.4.2) with respect to Re 30

gives

(3.4.6) = op [1 + (J—V

cg cp (l-B2 )
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1/2
This function is zero at B = (l-vz) and at

B = l and has no poles for real values Of B. Graphs of

c and c9 are given in Figure 3. If v = 0 then both

P

c and c are 1. If the frequency is zero then the phase

P 9

velocity is (l-v2)1/2. decaying to zero as the frequency

2)1/2. The same is true for the groupapproaches (l-v

velocity. For' B ==l the group velocity is zero while the

phase velocity is infinite. Both approach the value one

asymptotically as the frequency increases beyond one.

Let us now consider the ratio Of radial displacements

to longitudinal displacement. Solving (3.3.2) for wp and

 

6

W'or ‘when WOW = O = n we find

.3... .3... = __..
WOe (B2-1)1/2(B2-1+v2)172

When the frequency is near (l-\)2)1/2 or 1 we see

that the displacement ratio becomes large indicating primarily

radial motion. while for small or large frequencies the motion

is mainly longitudinal. i.e. in the direction of 9 changing.

The graph of (3.4.7) is presented in Figure 4 and demonstrates

the behavior mentioned. All curves have a vertical asymptote

at B = 1 while each has a separate asymptote at B = (l-\)2)1/2

which is just to the left of B = 1.
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3.5 First Order Displacements

In section 3.3 we demonstrated that for any value

Of n. 51 = 0. but 32 #'0. TO determine the correction

s 2 ‘we must first obtain the first order displacements.

we do so now.

For axisymmetric flow we set n = O in (3.3.7) and

arrive at one inhomogeneous system in cos W and sin W.

It is

\ . .
2 l 2 l

B -l— 550 (l-v) 530(1+v) l 3W f¢

l 2 2 l _
(3.5.1) 530(1+v) B -s0 - 5(1-v) -vso ae — f6

2

1 -\)80 B -1 ar fr

From (3.3.2). with n = O. we write

0 _ 2 -l 0

We sz(B -sO ) Wk v # 0

(3.5.2)

W0 = O V = O

r

Utilizing these relations we find

_ O l 2 2 2 -1
fW -‘Wi[§ vso (3—V)(B -so ) - l}.

_ l 2 2 2 -1

(3.5.3) fe - Wilson-v) - iszU-Mso )(B "'30 ) 3.

_ O 2 2 2 -1

fr - Wr \J[2+sO (1-V)(B -so ) 3.

when v #'0 and when v = O

_ O
f — 3dee/2,

_ 1 2 0
(3.5.4) f —- 2(430 -1)w9 .

_ 0

fr - sowe
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Knowing the values of f . f9 and fr given in

W

(3.5.3). (3.5.4) we now solve (3.5.1) for a a and a

W' 6 r

by Cramer's rule. This procedure utilizes the determinant

of the coefficient matrix in (3.5.1).

we find that the determinant does not vanish

identically when S0 satisfies (3.4.2). however for v

in the range 0 < v'g 3 - (8)1/2 there are two values of

the frequency. B. which cause the determinant to vanish.

They are found as the solution to

2
(3.5.5) o = (v—l){v — 3 .1; [v2-6v+1]1/2}.

N
I
H

If we allow the frequencies determined by (3.5.5)

to occur. consistency requires that we set the zero order

arbitrary constant. WE. equal to zero. In this situation

the zero order system is replaced by the first order system

as being fundamental. Thus. allowing the determinant of the

coefficient matrix in (3.5.1) to vanish is merely defining

a frequency equation for the case of vibrations exhibiting one

wave around the tube in the W direction. we thus restrict

our frequencies to those for which the determinant of the

coefficient matrix in (3.5.1) is non-zero.

Denoting the cofactors of elements aij in the

coefficient matrix of (3.5.1) by Aij we write



(3.5.6)

where the

and fr  
cient ma
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O

Wr ~ ~ ~

aw = BEE {A11f¢ + Alzfe + Aler}'

W: ~ ~ ~

(3.5.6) a6 = Fé-E {15.1sz + 1122fe + A23fr), V 32’ 0

W3 ~ 2 2

ar = Det [Al3f¢ + A23f9 + A33fr]'

where the tildas reflect division Of the functions fW' f9

and fr by We and Det is the determinant of the coeffi-

cient matrix Of (3.5.1). When v = O we designate the

a . a and a by tildas and find that

W 9 r

SW = -wg [(62-1)(1+252)-13/B(2-B2).

(3.5.7) 59 = 2w? [64-462+2}/(2-62).

~ _ o 2 2
ar — We (5 +2)/B(2-B ).

Before we proceed to the determination of the second

order correction. 52. it is beneficial to examine the

corrected displacement ratio.

((Wg + oar sin ¢)/(wg + 5a sin W)(.
8

as a function of the frequency for fixed values of W. 6 and

v. Specifically. we choose W = 30° and f = -60° where

both angles are measured from the north pole. Remembering

that 5 has value .15 to .3 in the human aorta. we

choose for 6 the values .005. .OS and .5 as being
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representative. Poisson's ratio for biological materials

is nearly .5 but we consider v over the range [0..5]

by considering various sub-intervals for v.

Case I. v = 0

When v = O we find the corrected displacement ratio

has the fOllowing value

  (3.5.8) Gar Sln W = 1 6(B2+2)sin (

“3+6ge sin W 5 2'324'26 sin W(B4-4BZ+2)

In the zero order case the displacement ratio is

zero for all frequencies. However. for the corrected displace-

ment ratio we see some new behavior. When W is an integer

multiple of n the motion is completely longitudinal. the

ratio being zero. However. for other values of W the ratio

exhibits both radial and longitudinal components. When the

denominator is zero the motion is purely radial. If we

designate 5 sin W by e in (3.5.8) we find the zeroes of

the denominator at frequencies given by

(3.5.9) 52 = (4e)'1(1+se ¢_[1+3262]1/2}.

The approximate values are given by

1/2
(3.5.10) 5 a [(1+4€)/2e) and e a (2-2e)1/2.

When the sin W is negative the first root exists

only for imaginary frequencies and hence the only real zero

Of the denominator occurs at frequencies slightly greater
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1/2 . . . . .
than 2 . If the Sln W is positive. then one root 18

slightly less than 21/2 and the other is given by the

first approximation in (3.5.10).

The graphs of the ratio in (3.5.8) are given for the

two cases Of W = -60° and W = 30° in Figures 5 and 6

respectively. In Figure 5 we see two frequency ranges for

which the motion is primarily radial. one near B = 0 and

the other between B = 21/2 and B = 2. At other frequencies

especially those greater than B = 3. the displacement is

nearly zero though not exactly zero. In these regions we can

be satisfied with the straight tube model which predicts only

longitudinal motion for v = 0. At the two frequencies

mentioned above we see that there is a marked difference

between the zero order theory and the corrected one. For

frequencies less than 2 the 5 = .5 exhibits large quanti-

tative differences from the smaller 5 values. even though

the general behavior is the same. For frequencies greater than

two the 5 = .5 curves are very close to the smaller 0

value curves.

In Figure 6‘we see the effect of the extra zero in

the denominator Of the displacement ratio. Now there are

three verticle asymptotes for our curves. One is at B = O.

1/2 1/2
one is near B = 2 and the third is near B = {(1+4e)/2€)

where e = 5 sin W. For small 5 values this asymptote
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occurs at a rather large frequency. For larger values of 5

the asymptote moves to the left approaching the frequency

1/2.
3 = 2 The change in abscissa at B = 2 was incorporated

to show the radial motion present for B = O and B near

21/2. The curves for 5 = .005 and 5 = .05 are almost

identical especially at the asymptotes. The 5 = .5 curves

is again different from the other 5 values in degree

though it too exhibit the three regions Of radial motion.

SO we have stated before near those frequencies at which the

motion is primarily radial the zero order straight tube

model is insufficient and higher order terms are required.

For large frequencies the two models give essentially the same

results.

Case II. v # 0

From an examination of the displacement ratio using

(3.5.6) we see that the ratio of radial to longitudinal dis-

placement is like 8- and so at B = O and B = l the
0

ratio becomes unbounded indicating primarily radial motion.

The same holds true for B = (1-v2)1/2. However. fOr large

frequencies the corrected displacement ratio is like B'-1

and hence becomes nearly zero for large frequencies. Again

we find that the motion is longitudinal at high frequencies

with radial motion predominating at selected smaller frequencies.



91

In Figures 7 and 8‘we present graphs of the corrected

displacement ratio for v = .25 and the two W values used

previously. W = -30° and W = 60°. In Figures 9 and 10

the value Of Poisson's ratio is increased to .5. In neither

case do we intend these curves to be representative of the

entire spectrum Of W and v values. Instead. they are

meant to shed some light on the nature of this corrected

ratio of displacements.

It should be noted that the zeroes of the determinant

(Det) are not the dominant influence in the ratio as the

determinant is present in both numerator and denominator.

In comparing Figures 7 and 9 we notice little difference

between the two graphs. Both approach zero as the frequency

grows large indicating longitudinal motion. For v = .25

there are two regions for 5 = .5 which are off scale. Both

are "parabolic” shaped. the first situated between B = 1

and B = 1.02. while the second occurs between 1.02 and

1.28. These portions of the 5 = .5 curve in Figure 7 are

another indication of the differences between curves with

5 = .5 and those with lesser values of 5. The radial motion

exhibited near B = (l-\)2)1/2 and B = l is predicted by

the zero order displacement ratio. Hence. the straight tube

model is a rather accurate representation of the curved tube

except for very small frequencies.
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When W = -60° ‘we again notice little difference

between v values of .25 and .5. as seen in Figures

8 and 10. Both curves exhibit a section for 5 = .5 ‘which

is off scale in the frequency range 0 < B < .3. FOr both

of these cases the 5 = .005 curve rapidly approaches zero

for frequencies larger than one. All curves approach zero

for frequencies greater than two but for 5 = .05 and 5 = .5

we see one frequency region for each in which radial motion

is predominate. These values are not found in the zero order

case. indicating the unsuitability of the straight tube model

in which it is assumed that the flow is axially symmetric.

Indeed. from an examination of equations (3.5.1) and (3.3.2).

one notices that if one were to set n = -l in (3.3.2) we would

Obtain the same matrix in (3.5.1) and (3.3.2). This suggests

that the motion predicted by our corrected system (3.5.1) is

essentially the same that one would Obtain in a straight tube

model if one were to assume motion with one circumferential

wave (n = 1).

In summary we might say that on the whole the straight

tube model can be used in some curved tube situations if the

ratio 5 = a/R is not too great and if certain select fre-

quencies are avoided. In these last instances the need for

higher order terms becomes apparent.
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3.6 Second Order Correction - Axisymmetric Case

we know from the first order displacements that they

have the following form for axisymmetric flow up through

the first order

w = a cos 3.

w 5 w

_ o 2 2 -1 .
(3.6.1) we - Wr sz(B --sO ) + 5ae Sln w, v # 0,

w = W0 + a sin W
r r 6 r '

where a , a and a are given by (3.5.6). For v = 0

w e r

we have

w = 63' cos 3.

W W

(3.6.2) we = w: + 555 sin w, v = o,

wr = 5ar Sln W,

where 3*. 39 and a} are given by (3.5.7). In either case

we can proceed to the determination of the second order

correction, 32, as a function of so. B, and v.

For axisymmetric flow W0 = O, and the correction

W

can be found from (3.3.15).

saesiil v = o.

In this case W? = o and the correction can be found

by setting Fe = 0 along with n, W% and W3. In addition,

80 = B, and so we Obtain

(3.6.3) 32 - 1 {456 - 7B4 - 662 - 4]. v = o.

- 46(2-fi2)
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As 6 nears zero or the value 21/2 32 becomes

unbounded but when the frequency grows large the correction

behaves like B3 becoming larger than the zero order term

it corrects. When the correction becomes larger than 5-2

we find we should include higher order terms.

We propose to present the corrected phase velocity

8% which is given by

~_ 2-1
(3.6.5) cp — B(so+5 52) .

It is instructive to compare this value to the zero

order phase velocity which is 1 when v = O. for v # O

we will also consider the ratio (so+5232)/so ‘which gives

some idea of where the corrected wave number varies from the

zero order wave number. When v = 0 this ratio is merely

Ep-l and so it will not be discussed.

We present the corrected phase velocity for v = 0

in Figure 11. The reader should note the change in scale

which allows us to examine the region 0 < B < 2 in more

detail. For the area designated by A in the lower left

corner the curve for 5 = .005 is nearly a vertical line

coinciding with the axis. In the upper portion B the curve

for 5 = .5 is off scale though of the same shape as the

other two curves. This is a further indication that 5 = .5

is much too large a parameter for our expansion. The curves
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for 5 = .05 and 5 = .005 are almost always near one in

value which is the zero order phase velocity. At selected

frequencies the corrected phase velocity differs from one

up to B = 2. After a frequency of two the corrected phase

velocities approach zero. The curve for 5 = .005 will

gradually become zero, but at much higher frequencies. It

is in this region that the zero order predictions are in-

adequate especially if 5 .OS or .5. However, for

frequencies less than two, the straight tube model is quite

accurate.

Case II. 0 < v < 3 — (8)1/2

When v #'0 we have the correction coming from the

 

expression

_ 0

(3.6.5) 0 — w: Fe + Wf Fr

which is merely (3.3.15) with W? = 0 for axisymmetric

vibrations. In solving (3.6.5) for 52 we find that 32 has

the following value

(62"5‘02)2 2 2 2 -1
s2 = - 2 2 O {szo (B -so ) a‘

4v sofi Wk

2 2 -l 2
+ soae[l-v-V(B -sO ) (2sO +l-v)]

2 2 2 -1 0

(3.6.6) + v[2+sO (l-v)(B -so ) ]ar + Wr[1-2v

+ Vs (vs -4s +v)(Bz-s 2)-1
O O O O

2 2 2 2 2 -2
+ v S0 (350 +l-V)(5 -30 ) 1}

in which we have used (3.5.2).
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For v in the range 0 < v < {3-(8)1/2} the

determinant of the matrix in (3.5.1) has two real zeroes,

the positive zeroes being near B = l and B = (2)1/2. Since

the determinant appears in the denominator of the a , a and

w 9

becomes unbounded at thesear terms. the correction, $2,

. . -1 .

zeroes. Fer s0 small, 32 is like 50 while for 50

large 32 acts like 503. Hence, at some point the correction

5232 becomes larger than the term it is correcting, so. At

this point we must bring in higher order terms for additional

correction.

In Figure 12 we present the corrected phase velocity

8? = B/(so+5252). In the zero order the phase velocity was

nearly one in value except in the neighborhood of B = (l-\)2)l/2

and B = 1. For the corrected phase velocity in the range

0 < v < 3 - (8)1/2 we see in addition to the two frequencies

B = (1-\)2)1/2 and B = l, the corrected phase velocity differs

from one for very small frequencies and also near two other

frequencies, B «21.03 and B ~ 1.14. . The reader

should note the change in scale at B = l and B = 1.04. This

'was done so that more of the behavior near B = 1 could be

determined. In the regions marked A and B the curve for 5 = .005

is not plotted as it would appear only as a straight vertical

line in this graph. In B, 5 = .05 is also not plotted for the

same reason .
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In Figure 13 we exhibit the behavior of the corrected

wave number (30+5252)/so. Again note the change of scale at

B = 1. It should be noted that the correction is nearly one

with exceptions occurring in the neighborhoods of B = 0,

B = (l-v2)1/2, B = l and the two zeroes of the determinant.

In these regions one would expect that the zero order wave

number alone is in adequate and higher order terms are required.

In summary, we have shown that the corrected phase

velocity agrees closely with the phase velocity predicted by

the straight tube model in the regions 0 < B <./{-v2,

1 < B < 1.14, 1.15 < B. for 5 = .005, and .05. When 5 = .5

there is virtually no agreement at all.

The corrected wave number and the straight tube wave

number show good agreement in the frequency ranges 0 < B < l,

1.04 < B < 1.15, and 1.2 < B.

In Figure 12 all curves eventually become zero while

in the zero order situation the phase velocity approaches one

for all v values as the frequency increases. Conversely,

the corrected wave number goes to infinity as the frequency

increases in Figure 13. For this reason the straight tube model

is inadequate for large frequencies and as the corrected wave

number gets larger, higher order terms would be needed to add

to those already computed.
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Case II. v = 3 - (§)l/2

When Poisson's ratio takes on the value 3 - (8)1/2,

which is approximately .172, then the determinant (Det)

has only one zero. We see then the situation of a more orderly

behavior of the phase velocity and corrected wave number in

the region of B = 1. From Figure 14 we see the behavior of

the corrected phase velocity. In general the corrected phase

velocity is near one for most values of the frequency, B.

Again, for very small frequencies and for those near one.

behavior foreign to the zero order phase velocity (Figure 3)

is introduced. There are select values introduced for very

limited frequency ranges. These are represented by the vertical

asymptotes near B = 0, B = l and B = 1.1. The curve for

5 = .005 has not been plotted in the group of curves labeled

A, B and C, nor has the curve for 5 = .05 for the C set. In

each case these segments were off scale and they could not be

accurately represented. Note also that there is a scale change

at B = 1.

As before we see that the 5 value of .5 gives

results which vary significantly from smaller values of 5.

This value gives a good indication of the general nature of

the curves behavior and is included for this reason. In this

case, it indicates that the corrected phase velocity approaches

zero from above which is true regardless of the 5 value.

This is contrary to the zero order phase velocity which approach-

es one from above.
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The corrected wave number presented in Figure 15

eXhibits the same general character found when v = .15.

Agreement with the zero order wave number is good in the

frequency range 0 < B < 1, 1 < B < 1.1 and 1.2 < B.

The analysis for the corrected wave number (1+52s2/s0)

follows that of the corrected phase velocity. There are

portions of the curves in Figure 14 which have been omitted

because of their existence in select frequency range nature.

They correspond to the A, B and C portions of Figure 17 and

are mostly off scale.

Case III. v) 3 - (8)1/2

For v > 3 - (8)1/2 'we have a less segmented behavior

for the correction, the corrected phase velocity and corrected

wave number. Since the determinant does not have a real zero

we do not obtain the great variation in behavior for our

variables for frequencies between 1 and./§. The rapidly

changing nature of the curve present near B = 0 is still

apparent for v > 3 -./§. Except for 5 = .5 the behavior

of all curves settles down rather quickly and follows that of

the zero order system rather closely. This feature indicates

that the straight tube model is farily accurate except for

frequencies near zero. Here we find rather large values for

our curves indicating use of higher order terms is required.
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The differences between the straight tube and curved tube

expressions would become significant if large order scale

factors were brought into play, thus accenting the differences.

Hewever, for frequency values less than two and away from zero

the straight tube and curved tube models have good agreement.

For 5 = .5 we notice a strange behavior for B near (l-v2)1/2.

There is a vertical asymptote not present for the smaller

values of 5 which is further proof of the unacceptable size

of 5 at this value. It should also be noted that in Figure

19 the .005 curve for the a section of the curve is omitted

due to its existence for only small frequencies. In both

Figure 19 and Figure 20 the curves for 5 = .005 and 5 = .05

are nearly identical for B values larger than one. Although

the curve for 5 = .5 differs greatly from the other two

curves, it does indicate the general behavior of the curves for

B > 1. we see that as the frequency becomes very large the

phase velocity approaches zero and consequently the wave number

grows large.

In conclusion we can say that except for narrow regions

in the frequency spectrum, the corrected variables we've

observed vary only slightly from the straight tube variables

in the frequency range we've been considering. From our

various figures we can conclude that the discrepency between

the straight and curved models is slight until large frequencies

are Obtained. This information results from observing the
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behavior of 5 = .5 curves which are indicative of the general

trend of the functions we are graphing. It is in these larger

frequency ranges that one should resort to the curved tube

mdel to gain some appreciation of the behavior of our tube.



CHAPTER IV

VIBRATIONS OF THE FLUID

4.1 Introduction
 

In Chapter three we investigated the free vibrations

of an empty curved shell. We found and thoroughly examined

a frequency equation relating s to B as well as the
O

correction expressions for 5 namely 31 and s
0' 2'

We are now going to undertake a similar process for

two prOblems in which the fluid is the primary factor. we

begin in section 4.2 by solving the zero order pressure and

Navier-Stokes equations. Section 4.3 contains a discussion

which develops the necessary equations to find s1 and 32

in the general situation. In section 4.4 we analyze the

fundamental prOblems of axisymmetric, inviscid flow in the

zero order system by determining two frequency equations and

investigating their properties.

Section 4.5 contains the first order terms associated

with our fundamental prOblems and it develops the effect of

these terms on zero order quantities. Finally in section 4.6

'we find the second order correction for our two prOblems and

make some comments on its effects and behavior.
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4.2 Z250 Order Pressure and Velocity Equations

4.2.1 Pressure Equation

Examination of the Navier-StOkes Equations (2.5.19)

through (2.5.21) indicates the presence of the pressure

on the right side of all equations. This requires our

determining the pressure explicitly before we proceed to

the velocity equations. We do this by solving the pressure

equation (2.3.25).

We begin the zero order problem then with the zero

order pressure equation (2.6.8) written as

2
l 1 2

-—— p + —(rp ) - (s - )p = O
( r2 0,¢¢ r 0,r ,r 0 c2k2 0

4.2.1)

2 l l . 2

[11 n1] B/

We expect that our solutions all have period 2? in

W and so we separate variables for pO as

(4.2.2) p0(¢,r) = f(r)cos n3 n = 0,1,2,3,...

Use of (4.2.2) in (4.2.1) leads to the following equation

for f(r) where the primes denote ordinary derivatives with

respect to r.

2 2

(4.2.3) f”(r) + l f'(r) - (9— + s 2 _ Ji—nzm = o,
r 2 0 2 2

r c k

2 2 2
Denoting s - by a we can write as

0 C2k2

our solution to (4.2.3),



 
(4.2.4)

where A a

Hm) are
n

second kind

Knim) 18

us to write

(4.2.5)

when n =

in the V

fulfill th

In

with l‘eSpe

while .
In (5

functiOnS.

written 0U 1
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(4.2.4) f(r) = AIn(ra) + BKn(ra)

where A and B are arbitrary constants and In(ra) and

Kn(ra) are the modified Bessel functions of the first and

second kinds respectively of order n. [Watson, 21]. since

Kn(ra) is not finite when r = 0 we set B = 0 allowing

us to write

(4.2.5) po(w,r) = AIn(ra)cos nw.

4.2.2 Navier-Stokes Equations

we now turn our attention to the zero order Navier-

Stdkes equations (2.6.9). we separate variables as follows

ui(¢.r) = 33(r)sin n) + 32(r)cos nv

(4.2.6) ug(w,r) = 53(r)cos nw + 3%(r)sin nw

ug(w,r) = 52(r)cos n3 + 92(r)sin nw

When n = 0 we have axisymmetric flow and there is no velocity

in the W direction. Hence 90(r) must be zero in order to

4:

fulfill this condition.

In what follows the primes indicate differentiation

with respect to the argument. Hence f’(r) indicates g%-f(r)

. , d .

while In(ra) means 57:57'In(ra)' we now drop the tildas

from all variables as well as delete the arguments of the

functions. All functions have r as the argument except when

written out.

 

 

 



In

results ir.

T‘r.

(4.2.7)

Hhi Ie the

(4.2.8)
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Insertion of (4.2.5) and (4.2.6) into (2.6.9)

results in the following systems of equations.

The first system is

2nr vr — 0,

-1 O, ’ 2 -2 2 . O _

(4.2.7) r (rve ) — [n r + 30 - 1B'n1}v9 — 0

"1 O"_ 2 -2 2_. O:

r (rvr ) {(n +1)r + 30 1B'nl}vr 0.

while the second system assumes the form'below,

-1 O; p 2 -2 2 o 0 -2 O

r (ruw ) - [(n +1)r + 30 — an1}uW - 2nr ur

-1 I 2

= - Anr n1{l-1B/nc )In(ra),

-1 O ’ ' 2 -2 2 0 0

(4.2.8) r (rue ) - [n r +50 -1B'n1}u9

_ _- 2

r (rur ) - [(n +1)r +so -1Bn1}ur + 2nr “W

= Aan1{1-iB/nc2}I;(ra).

The first equation of (4.2.7) indicates v3 = 0

unless n = 0. If n = O, the last equation of (4.2.7)

. o_ 2_ 2_.
yields vr — A1I1(rY) + B1K1(rY) where Y — so 1Bn1.

and, A1 and B1 are arbitrary constants. Finiteness

at r = 0 requires B1 = 0. [Note: The argument of finite-

ness for all variables at r = 0 ‘will automatically be made

in the remainder of this work. Hence only modified Bessel

functions of the first kind, In(ra), or In(rY) ‘will be

given in our solutions.] From the second equation of (4.2.7)



we write

(4.2.9)

'I‘)

first and

indePende:

as

(4.2.10)
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we'write

(4.2.9) vg(r) = A21n(rv).

The system (4.2.8) exhibits coupling between the

first and third equations while the second is completely

independent. The coupled pair of equations can be written

as

0

L33 -2n uw 2 ~ann(ra)

(4.2.10) 0 = Anlu-iB/nc } 2 ,

-2n L33 ur ar In(ra)

_ .2. _d_ _ 2 2 2
where L33 — r dr(r dr) (n +l+r Y ).

Since L33 and Zn are operators which commute we

apply L33 to the first equation and Zn to the second and

subtract. The result is

(4.2.11) {(L33)2 — 4n2}u$ = -An(a2-Y2)r3fl1[i-iB/nc2}1n(ra)

The Operator in (4.2.11) can be factored as [L33-2n}[L33+2n}.

The homogeneous solutions for the first portion of the Operator

are I (rv) and K (rY). while the homogeneous solutions
n+1

for the second part of the Operator are In_1(rY) and Kn_1(rY).

n+1

we utilize these four functions through variation of

parameters to find a particular solution for (4.2.11). we

designate the particular solution by u$p(r) and find
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u$p(r) = % An1{1-iB/:c2](a2-Y2){In_1(rY)I2r21n(ra)Kn_l(ry)dr

- K-n_1_(r)()‘for2In (rc1)In_1(rY)dr

r 2
(4.2.12) - In+1(rv)jor In(ra)Kn+1(rY)dr

r 2

+ Kn+l(rY)IOr In(ra)In+l(rY)dr}

-1
= -Ar'1n(az-v2) n1{1-iB/nc2)xn(ra)

we finally have as our general solution to (4.2.11)

the velocity

0
uw(r) = A3In+l(rY) + A4In_1(rY)

(4.2.13)
_

— Anr'1 n1{1-iB/nc2}(a2-Y2) l In(ra)

where A3 and A4 are arbitrary constants.

Substitution of (4.2.13) into the first equation of

(4.2.10) gives us ug(r) as

u0(r) = A 1 (rY) - A 1 (rY)
r 3 n+1 4 n-l

(4.2.14)

+ Aanl[1-iB/nc2 )(a2"14(2) Ig(ra)

The second equation of (4.2.8) can be solved directly

by variation of parameters. we have then

-1
(4.2.15) ug(r) = A51n(ry) - Ason1[1-iB/nc2](a2-Y2) In(ra)

where A5 is arbitrary.
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4.2.3 ‘Continuitnyguation

we now have solutions for the velocity components

and pressure for the zero order. Quick observation reveals

the presence of six arbitrary constants. In a free vibra-

tions problem in which we search for vibration modes there

will always be one arbitrary constant. So we must determine

the others remaining after designating A to be arbitrary.

It should be noted that we have solved the pressure

equation and the Navier-Stokes equations without dealing

'with the continuity equation directly. Our first step in

determining arbitrary constants will be to require that all

velocities satisfy the zero order continuity equation (2.6.10).

This gives rise to a pair of equations

-1 0 0 -l 0 , _ . 2
(4.2.16) nr uw + soue + r (rur) — (1B/c )AIn(ra)

o —1 o , _
(4.2.17) sOve + r (rvr) — 0.

When n # 0 then v2 5 O and by (4.2.9) and (4.2.17) we

find A = 0. If n = 0 then by (4.2.6) the v components
2

disappear and (4.2.17) is satisfied identically. substitution

of (4.2.13) through (4.2.15) into (4.2.16) reveals that

_ —1

The three zero order velocities and pressure are

given by



(4.2.18)

whe

If the flu:

(4.2.18) 1 
(41.19)
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po(¢,r) = AIn(ra)cos n3

0 AMnIn(ra) .

u¢(¢,r) = [A3In+1(rY) + A4In_1(rY) - r(a2-Y2) } s1n n).

AMs I (ra)
0 Y 0 n

(4.2.18) u (¢,r) = {——-(A -A )I (rY) - ] cos n3
9 s0 3 4 n (Oz-Y2)

0 Abnlrflra)

ur(¢,r) = {A3In+1(rY) - A4In_1(rY) + w} COS n3:

where M = n1[1-iB/nc2}.

If the fluid is inviscid then n ’1 = n‘1 = o, k2 = 1 and
1

(4.2.18) reduces to

P0(r.¢) AIn(ra)cos n) .

uo(¢,r) = {-An1n(ra)/riB} sin n).

(4.2.19) 0

ue(w,r) = {-AsOIn(ra)/iB] cos nW.

ug().r) {AaI£(ra)/iB} cos n) .



 

 

We Should
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4.3 Discussion for Arbitrary n

As in Chapter three we present the procedures for

determining the frequency equation and the higher order

corrections for arbitrary n. In subsequent sections the

analysis of these equations is restricted to the fundamental

case of inviscid, axisymmetric flow. For the present, we

‘will make no such assumptions while proceeding to detail the

process for solving our prOblem.

4.3.1 Two Frequency Equations

The primary concern of this chapter is to discuss

two problems which feature the fluid component of our model.

In the first of these prOblems we postulate that the fluid

is flowing in a tube which exhibits no movement of its own.

we will refer to this as the "rigid tube" case. In the second

prOblem we state that the fluid is flowing in a curved path

without benefit of a container. we designate this situation

as being "stress free" since no stresses are exerted on the

boundary of the fluid.

In the rigid tube case we say that at the boundary

of the fluid, which is the tube, the fluid velocities are all

zero. Since the tube is not moving it is reasonable to expect

that the fluid immediately next to the tube is also stationary.

we should note that for inviscid flows there can be slippage

at the wall so that only the radial velocity is zero.



 
Tr

I= 1. gi

arbitrary  
is written

(4.3.1)

from (4.2
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The vanishing of all three velocities at the boundary.

r = 1, gives us three homogeneous equations in the three

arbitrary constants A,A3 and A4. This system of equations

is written

 

 

MnIn(a) .

In+l(Y) In-1(Y) ' (0242; A3 0 _

YI (Y) y: (Y) Ms I (a) 3

O 0 (a -Y ) I

, l

Maln(a) ) /

Ina”) -In-1(Y) W A \0 /

for viscous fluids. For inviscid fluids we set ug(1) = 0

from (4.2.19) to get

(4.3.2) aIg(a)/iB = O.

In the viscous case we seek non—trivial solutions

and so require that the determinant of the coefficient matrix

in (4.3.1) vanish. Since both y and a involve s and B
0

the vanishing of the determinant leads to a complex transcendental

relationship between 50 and B which we have called the

frequency equation.

In general it is quite difficult to find all the

possible relationships between 3 and B analytically.
0

Normally, assumptions are made which simplify the Bessel

functions using only one or two terms of an expansion. Doing

this reduces the frequency equation from a transcendental

equation to an algebraic one.



Our

equations 1

 (4.3.2) cor

This equati

for S an

0

For

set all fin

to zero. .1

to (2.6.11)

flnd after

(4.33)

-
+
l

(4.3.4)
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Our concern, however, is to present the various

equations for the general case. For inviscid flow equation

(4.3.2) contains the relationship between s and B.
O

This equation is simpler and a relationship can be established

for s0 and B once the zeroes of 15(a) are known.

For the stress free case we find that we must

set all fluid stresses acting at the fluid boundary equal

0 O O .

to zero. These stresses are Sr¢ . Sre and Srr' Returning

to (2.6.11) and inserting (4.2.18) in those equations, we

find after many algebraic manipulations that at r = l

 

1 2AMn
-{A YI (v) +Av1 (y) .-
n 3 n+2 4 n—2 2 2

(4.3.3) 1 (a “Y )

[(n-1)In(a) + aIn+1(a)]} = O.

—1
Eli-(151380 [nYIn(Y) + (Y2‘302)1n+1(Y)]

2AMs

(4.3.4) + A4s0'1[ny1n(v) - (Y2-802)In_1(Y)] - ——2-9-—a1r;(a)

(0 -Y2)

= 0'

2A 2A .
3 4 l 1 1

(4.3.5)

+ .E-g-M—E-i- ((nz-le-n)In(a) - aln+1(a)] = 0.

a -Y

when the fluid is viscous. If the fluid is inviscid, then only

the normal fluid stress, Sgr(l), is zero, and we have then

(4.3.6) AIn(a) = 0.
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As in the system (4.3.1) we require the determinant

of the coefficient matrix for the undetermined constants,

A,A3 and A4, to vanish so as to have non-trivial solutions.

As before, the viscous case leads to a complex, transcendental

equation involving 30 and B which in general is difficult

to solve. For the inviscid case we merely prescribe the value

of n we are considering and then we are able to find the

zeroes of In(a). From this the frequency equation is written

as

(4 3 7) s 2 - 23-- z2
' ' O _ 2 nm ’

c

where Jh(znm) = 0, m = 1,2,3,4,..., and Jn is the Bessel

function of the first kind of order n.

4.3.2 First Order Correction

After determining the frequency equation apprOpriate

to the zero order fluid equations, i.e., the straight

cylinder case, we attempt now to find the first order correction,

51'

We begin with the first order written in terms of the

stresses rather than the Navier-StOkes equations. The proce-

dure is straightforward. we multiply the stress equations by

the zero order fluid velocities and integrate over the cross-

sectional area occupied by the fluid. By an integration by

parts we are able to eliminate the first order stresses,.

velocities and pressure in the region except for boundary

integrals which will involve these terms. In this way we can

isolate the contribution due to sl.
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From (2.6.2A) we write the first order stress

equations of motion for the fluid without benefit of the

operators 1M1, M and M3. They are
2

—1S1 1 -1S1 -l 1 __ . l
Sww W + SOS¢9 + r Swr + r (raw),r — iBuw

(4.3.8) 0 0 . O O
_ Slswe + cos ¢[See-S¢¢} + Sln ¢[rSOS¢e-S¢r}

-1S 1 -1 1 1 _ . 1 0
89¢ W + r (r891),r - sOS99 — -1Bue + 31886

(4.3.9)
0

O O
— 289$ cos W - sin W[2$er+rsosee}

-1 1 S1 1 l _ . l

(srw W_SWW} + rHrs”),r + Sosre — -16ur

(4.3.10)
0 O . O 0 O

- Slsrg - SWr cos W + Sin ¢[rsoSre+See-Srr}

We multiply (4.3.8) by ui,

(4.3.10) by u: and add all three together while integrating

(4.3.9) by u: and

over the cross section of the tube. The result is an expression

of the form

S +u S

1 0 +110 1 o 1 2W

I [u 81WW“9 gw r r¢|o
dr

2w 1

+ I r{u031 +uoslr+uOS1 dw
0 ¢ ¢r r rr'o

2w 1 -1 1 u0 l O 1 O

' Io Io r [511“w w“Sweue.¢+swrrvw}rdrd¢

81 O l O
- I:My0(8WruW'r+S 9ru9,r+srrur r)rdrd1t

—uOSl ) + s (u0S1 ~uosl +u01S )]rdrd¢

2w 1 -1 O 1
(4.3.11)+ IO I0{r (uWSWr rWW o W8 we 9 99 r 9r
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2w M01 O
+ 15 I; I? ueue+ururl}rdrd¢

+ f:wfl{sl-rsO sin ¢}[uOSO -uOSO+ OSO )rdrdW

o 1 we 9 99+urs er

2w 0 O O O O O

+ I0 I: sin W{u¢S¢r+2ueSer+ur(Srr-Sen))rdrdt

2w 1 O 0 SO 0 O uOSO
+ cos w u S e) + 2n 8 + rdrd¢ = O

I I0 { w‘ 11See e 91 “rSrv]

For the general case ufi is odd in ¢ (sin nW) while ug,

u: and p0 involve cos n¢ and are even functions of W.

Examination of the fluid stresses reveals that S0 . SO . S0

0 $1 99 rr

and S are even functions of W ‘which 80 and S0 are

9r 9W r¢

odd functions of w. Utilizing the fact that the integral of

an odd function over its period gives zero, the last two inte-

grals in (4.3.11) are zero as well as the term involving sor sin 1

in the third from the last integral in (4.3.11).

Our purpose is to eliminate all first order terms

except 31 by replacing them with known expressions involving

zero order terms. To do so we replace the first order stresses

by the first order constitutive equations (2.6.23) and integrate

by parts any derivatives of first order velocities. The

resulting expressions are written so as to have the first

order fluid velocities multiplied by the zero order Navier-

Stokes equations which are zero. We finally arrange the

equation in the form
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2F 01 01_u10 10 101
r u s +u Besrr+uSr 5 u s -u s dW

I0 [¢¢r u¢¢r99rrrr‘o

1 01 1 1o 10 1021T
+ +u S +u S S S u S -u S d

IOW%¢ 9¢ r¢ ¢ ¢ WW 9 9* r r¢ 0

2W1. 2 -1 1 1
+ IO IO{1BpOp1/c -pO[r (u¢'¢+[rur]' ) + sou

(4.3.12)

+ (3 -rs sin MuO + u0 cos W + u0 sin ¢]]rdrd¢
1 0 e V r

150 o o o
_ I:VI 9{(s l-rsO sin \11)ue + uw cos W + ur sin ¢]rdrd¢

+ 51 I:”f0 [2u WOSew-uOSOe+2uOSOr}rdrdw=

Due to the periodicity of all variables in ¢, the

second integral of (4.3.12) is zero. In the third integral

the terms in brackets, multiplying pb, constitute the first

order continuity equation (2.6.22) and can be replaced by

inl/c2 thus making the entire integral zero. Finally in the

fourth integral the only non-zero term multiplies sl so that

(4.3.12) assumes the form

2? 1
I r{uo l O l O l l 0 1 O 1 0 ‘

O wS¢r+ueser+ursrr-uys¢r-9u S er-ursrr o dw

(4.3.13) 2 1

W 08O 0 O O

+ 231 f0 [0 [u WS 91-u eeS eH1383r}rdrd¢=

The first integral in the above equation will make

some non-trivial contribution to the general interaction

problem. However, for the rigid tube all velocities are zero

at r = 1 and for the stress free case all stresses are zero

at r = 1. In either of these special cases the first integral
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is zero. Since the second integral is not zero, we conclude

that = 0s1 in the stress free and rigid tube cases.

As in the empty tube problem we are not satisfied

‘with this result so we proceed to a determination of the next

correction, 52. This procedure involves second order

equations which require in turn the solution of the first

order fluid velocities and pressure.

4.3.3 First Order Terms for Arbitrary_ n

we begin to determine the first order velocity fluid

by seeking the solution of the first order pressure equation

which we repeat here for convenience. we have that pl

satisfies

-2 _1 2 2 2 2

r p1.W + r (rp1,r),r - (so -B /c‘k )pl

(4.3.14)

_ -l . 2
— -r PO'W cos W - Sln W[po'r+2rso po]

2
with k defined by 04.2.1)and with d2 defined by

a2 = (soz-dz/ezkz). The left hand side of (4.3.14) is of

the same form as the left side of the zero order pressure

equation (4.2.1). Substituting for pb(r,¢) from the (4.2.5)

the inhomogeneous terms may be written

. 1 -1 2 ' _ 1 ,
A 31n(n+1)¢[§ r nIn(rc)-rsO In(ra) 2 aIn(ra)]

(4 3 15)+ A sin(n—1)W[} r-lnI (ra)+rs 21 (ra) + 1 aI’(ra)}
' ' 2 n O n 2 n

+ 2AsoslIn(ra)cos nW
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Assuming that the first order pressure has the form

P1(r.¢) = f1(r)cos nw + f2(r)sin(n+l)¢

(4.3.16) .

+ f3 (r) sin (n-l) w,

as its particular solution, we substitute (4.3.16) into (4.3.14)

and arrive at three sets of equations. Designating an operator

Lm to have the form

_ -1 _c'1_d __ 2 -2
(4.3.17) L — r --(r dr) - {mrm +a2] m an integer

we can write the three equations as

(4.3.18) Ln{fl(r)] = 2A30511n(ra)

(4.3.19) Ln+1{f2 (r)] = - % A[aIn+1(ra)+2rsozln(ra)}

(4.3.20) Ln_l{f3(r)} = %‘A{aIn_1(ra)+2rsozln(ra)}

To find the general solution for each of these

equations we combine the homogeneous solution with a parti-

cular solution which can be determined through the variation

of parameters. The particular solutions are

f1(r) = Cn1n(ra) + Asoslra1In+1(rd)

f2(r) = Dn+lln+1(ra)- % Asozrza-1{In+1(ra)

(4.3.21) + 2n(ra)-1In(ra)}

_ 1 2 2 -1
f3(r) — Dn_lIn_1(ra) + 4 Aso r a [In_1(ra)

- 2n(ra)—11n(ra)]
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For inviscid flows we set k2 = 1 changing the value of

a2 to (sOZ-Bzc-Z).

To solve for the first order velocities we consider

the first order fluid equations given in (2.6.21) and examine

the inhomogeneous terms which are written in terms of the

known zero order velocities and the first order pressure

which is known up to the arbitrary constants Cn.C and
n+1

Dn-l' plus the arbitrary constants arising from the homo-

geneous solutions, namely DnIn(ra)sin nW, Cn+11n+l(ra)cos(n+l)w,

c 1(ra)cos(n-l)¢.

n-lIn-

Knowing the first order pressure we can now establish

the procedure for determining the first order velocities.

The inhomogeneous terms for our system are composed of the

first order pressure, its derivatives, the zero order velocities

and pressure and their derivatives. Denoting the partial

differential operators to be used by

2 2

L =r2L-+r-a-+-h—--(l+r2Y2)
ll 2 ar 2

5r 6‘)

2 2

(4.3.22) L22 = r2 §—§-+ r-§% +-h—§ - rzyz

er a1:

= .JL

L13 2 a)

we write the first order system as

1

L L w F

(4.3.23) 11 13 i = 1

’L13 L11 ‘wr F2
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(4.3.24) L w: = P

where

_ . 2 o 2 o 0
F1 — rn1(l+iB/nc )p1'¢ - [rww'w-Zr sowe+rwr]cos W

- sin W[2r3s 2wO+r2wO ]
O W ¢,r

(4.3.25) F2 = r2n1(1+iB/nc2)p1'r + COS W[rW$-rwg'w]

+ sin W[ZIZSOW%-2r3SOZWg-rzwg'r]

F3 = —r2n1(1+iS/nc2)sopl + COS n[2rzsdw$-rw:]

+ sin ¢[2rzsdwg-r2w:'r-2r3sozwg .

The inhomogeneous terms contained in the functions

F F and F are composed of the trigonometric terms
1' 2 3

cos(n i_1)¢, sin(n i_1)¢, cos nw and sin n). we must

therefore write the first order velocities in such a fashion

as to give us all the trigonometric possibilities. The result

is six systems of coupled second order ordinary differential

equations containing both the wl and w1 components. In
w r

addition there are six second order equations involving only

the w: velocity components. One half of these equations

have inhomogeneous terms which are multiplied by the three

arbitrary constants found in pl(r.¢). The other equations

involve these arbitrary constants with other known constants

which make it possible to determine some of the arbitrary

constants through the boundary conditions.
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'We will see later in the next section that only

certain trigonometric functions give a non-zero value when

integrated in the correction equation. we will see that

only the cos m) portions of wk and the sin m¢ portions

of ‘w1.‘w1 and p1 give a non-zero value for the correction.
9 r

Here we allow m = (n-l), n or (n+1).

In each system of coupled equations we find the same

pattern as in the zero order system. By operating on one

equation of the system with a differential operator and

subtracting from it the other equations multiplied by a

constant we arrive at a fourth order system which can be

solved just as in section 4.2. The actual steps will not be

produced here as they are cumbersome though of the same nature

as those in section 4.2.

4.3.4 Second Order Correction

To find an expression for 32 we begin with the

second order stress equations of motion (2.6.32) for the

fluid. They are

S2 S2
- -iBu2 - s S0

fiiswrsww ¢+(rswr :r] + 303 we ' v 2 we

81 1

+ cos W(S: MW} + sin $[rsOS )9-S *r}

+ r cos W sin ¢[S¢¢-SSO 9} + r sin2V[Szr-rsO 8*8)

(4.3.26)

—12 2 2= 2 o
{$9¢.¢+(rser)r,r ] - sOS99 —i6ue+ $2899

1 l

— 288$ cos W - sin $[286r+rsoSL }

+ 2r cos w sin V S0 + r sin2){280 +rs 280 I
*9 er 0
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-1 2 2 2 _ . 2
{Srw.¢—S¢¢+(rsrr) ,r} + SOSrr9 — 1f3ur

O l 1 1 1
_ SZSer - SWr cos W + sin W[rsOSer+See-Srr}

+ rsir cos W sin W + r sinZMSOM—S:e+rs2S0 i

It should be noted that in the three preceding

equations we have set 31 = O. The remaining procedure is

exactly the same as that used in determining s1. Rather

than dup1icate the derivation, the final expression is

presented below. It is

—u 1rdr

O 2 O 2 u2SO 2 SO

Io{“¢s¢¢+uesnw+“rSrr1”w 11 eSew“rzsrw‘o

2w 1

f r{u°32 mos2r+u°s2r-uzs0 -uzsO -uzs°

o 1 1r 1 «r 9 er I rr‘o d'

2v 1

+ 232$ I {uosO -uOSO +uOSor)rdrdw

O 0 w 91 9 99

cos ¢{u S +u (S -S )+2u S +u Sr -2u Se e)rdrdw
ZWII 1 o o 1 1 o 1 o 1 1 0

IO 0 e 91 w vw ee 9 91 r r1 #9

2 1

- I ”I r cos w sin W[3uOSO +u0(So -280 e)+uOSO

o 0 SW W ¢¢ I IV

uOS

u¢See}rdrdW

(4.3.27)

2w 1 . O 1 1

+ (0 f0 s1n w[u¢(s:r-rsos¢9)+uO (“08994-289r)

O 1 1 1 1 O O

+ ur(Srr 868-rsosre) -rsoutse¢+u: (SoBr+2r80899)

:(rs 50 +250e)}rdrd¢
0 9r

2w 1

+ I I sin21(uwO(2r2s So- Sor) -u0(3r2 8 So +3rSOr )
o 0 0 H1 1 0 ea er

2 o _
S -rSrr+3rSBe))rdrdV - O.+ ur(2r sO er
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Since all variables have period 2v in W the

first integral of (4.3.27) is zero. Evaluation of the

remaining integrals is simplified if we note that all the

integrals involve products of trigonometric functions.

Hence, only integrals involving coszmw or sinzmw, m an

2v

integer, are non-zero. In fact the value of I cosZdew

2v

or I sinszdw is W unless m = O in which case the

O

integrals have value 2F and zero respectively. we can

1 l

. S

V 9*

and Sit are non—zero when integrated over W. In a similar

conclude that only the cos(n i_l)¢ portions of u

fashion only the sin(n i_1)¢ terms in the remaining velocities

and stresses are non-zero when integrated. Since each of the

first order terms contributes two terms which will be non-zero

when integrated, it is more convenient to leave first order

terms as they are and comment only that the fifth integral

in (4.3.27) is also zero since the trigonometric functions

for each term can be written as % [cosz(n-1)¢ - cosz(n+l)$}

which is zero when integrated on ¢ over 0 g.¢ g_2w.

we finally write the correction as

O 0
u S +u S rdrd

Riff: uwseweeerer] “

02 02 20 20 201

x {f:v r[u%$r+ueSer+ursrr-uws¢r-ueser- rSrr‘o dt

81 O 1 O l 1 O
+I:Ff: cos ¢[uesew+ug(swwfl err)+2ueSe¢+uSrt—2utseg]rdrd$
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N

71'

(4.3.28) + I I 1 1)+uO (rs S +28 )s1 5
Sin ““3 ( "rs e 0 ea eryr 0

o

,
.
o

:
4

1

W

l l 1501 O 0

Srr-S —r S -r u +u S +2r S

( 99 SO re) 80 $5 aw 9( 9r 80 99)

0

BWH
a
l
-
0

H
G
O

l

u(rsOS9r+23: e)]rdrd¢ + I:Wfo sin2¢{u:(2rzsos

O O 2 O O O 2 0 O
- rswr)-ue(3r sosee+3rser)+ur(2r SOser-rsrr

+ 3rsze)}rdrd¢.

In the rigid tube case the first integral in the

numerator of (4.3.28) is zero since all velocities are zero

at r = 1, while in the stress free case this same integral

vanishes since the stresses do. For inviscid flows all the

shear stresses are identically zero and the normal stresses

can be replaced by the negative of the pressure for that

order. Hence, Sk = Sk = Sk = O for all k and

9 r 9r

k k k W W
S rr = S 96 = S WW = -pk [Note that in this case, the integral

vanishes.]

Now that we have determined the correction equation

for the general case we turn to the discussion of the two

cases we are most interested in, the stress free and rigid

tube cases.
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4.4 Frequency Equation For Inviscid Axisymmetric Flows

Having seen the general procedure for determining

the pressures and velocities required to find the correction

s we propose to examine the situations of primary interest2'

in this chapter. These situations are the stress free and

rigid tube cases of an inviscid fluid exhibiting axisymmetric

motion in the zero order.

Since the fluid is inviscid the non-dimensional

viscosities. l/fl and l/nl, are taken to be zero. The

axisymmetric condition allows us to set n = O in our zero

order system. From (4.2.19) we see that

p0(r) = AIO(ra) ugh) = —AsOIO(ra)/i6

(4.4.1) 0 O .

u¢(r) = 0 ur(r) = Ad11(ra)/&B

For the rigid tube boundary condition, ug(l) = 0

so

(4.4.2) a11(a) = O.

Designating the zeroes of J1(z) by 21m m = 1,2,3.... we

find that a = --iz1 is a root of (4.4.2). From the definition
m

of a in (4.2.3) we see that the frequency equation correspon-

ding to (4.4.2) is written

2_22 2
(4.4.3) 30 — 6 /c - 21m.
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For the stress free boundary we have (4.3.6) which

is

(4.4.4) IO(0L) = O.

Designating the zeroes of Jb(z) by 20m m = 1.2.3,...

we find the frequency equation for (4.4.4) to be

2=62/c2- 2 .
(4.4.5) 20m

So

Since the zeroes of both J1(z) and Jb(z) are well

known we are able to compute s easily in either case. If
0

the ratio B/c is less than the zero 21m or 20m ‘we have

no prOpagation as S0 is imaginary. However, for frequencies

greater than cz1m or czOm 'we have propagation of waves

in the 6 direction.

As the frequency increases the value of 80 approaches

B/c asymptotically from below. This is true regardless of

the boundary condition. To allow for the many possible values

of the acoustic speed, c, we present the graph of the zero

order wave number as a function of B/c for the first few

modes of both cases. This is done in Figure 18.

Recalling the definition of the phase velocity cp

and group velocity cg. as,

c9 = dB/d Re 80.
(4.4.6)
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we find immediately

C

(4.4.7) fl = (l-czzimB-2)-l/2 and

C C

(4.4.8) —-‘l = ——
C Cp

for the rigid tube case. For stress free conditions we

insert 20m for 21m and then perform the needed compu-

tations. From these equations we observe that for B < czOm

or B < cz1m there is no propagation in the respective cases.

At B = czOm or B = cz1m the value of s0 and cg/c is

zero while cp/c is unbounded at the same value. As 6

increases 50 approaches B/c and both the group and phase

velocity approach C in value.

The graphs of cp/c and cg/c are given in Figure 19

for three modes. We should note that the first zero in the

series 21m 18 O and when 21m = O we have so = B/c so

that cp/c = cg/c = 1. This can also be seen in Figure 19.

Due to the interlacing of the zeroes of Jb(z) and

Jl(z) we can easily assess the behavior of the velocity

ratio (4.4.9). For example, consider the rigid tube case

which corresponds to a = -iz1m where m is the mth zero.

Since the numerator will vanish at r = 1, it will also

vanish at positions rén) < 1, corresponding to

(4.4.9) rémz1m = z1n n = 1,2,...,m—l.
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Furthermore, at a zero of Jl(z), Jo(z) has a maximum or

minimum value there and is nonzero. Thus at these points,

(4.4.9) . the ratio of velocities is longitudinal. Conti-

nuing, since the zeroes of J1(z) and Jo(z) are inter-

laced, we find that the denominator vanishes m-l times, or,

between the locations (4.4.9) and, hence the motion is radial

at these stations.

We note that the behavior just described for the

rigid tube case holds as well for the stress free case if

one interchanges z1m w1th 20m in (4.4.9)-

As in the case of the empty tube, we find it instructive

to examine the ratio of velocities as r increases from the

center to the outer edge of the fluid. In the shell we

considered a displacement ratio over a certain frequency range.

For the fluid we have the additional variation of the variable

r. We write

 
 

uO(r) a11(ra)

(4°4°10) 5 = 2 2 21/2
ue(r) (5 /b +a ) Io(ra)

where a = 'izlm for rigid tube flow and a = -1zOm for

stress free flow. When we have the rigid tube case the

numerator will be zero at r = 1 while the denominator will

be zero at some intermediate value of r. Just the Opposite

will occur in the stress free situation when the denominator

is zero at r = 1 and the numerator is zero someWhere else.
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All of this takes place for some fixed value of B,c and

or 2 When 6 = cz or cz then the denominator
21m 0m' 1m Om

is zero regardless of value of r.

Graphs of the velocity ratio for various values of

B,c and zjm, j = 0,1 are presented in Figures 20 and 21

for r between 0 and 1. We see that in the rigid tube

case for the second mode r 2 2.40/3.83 is the value at

which the ratio becomes unbounded, indicating radial motion.

For small values of B/c the velocity ratio is nearly always

large. However, as the value of B/c increases the motion

is mostly longitudinal except near the value of r mentioned

beforehand.

As we consider higher modes for the rigid tube case,

we find there are more values of r, O g_r 3.1 such that

rz1m is equal to a zero of the denominator, namely 20k

k = 1,2,...,m—l. In Figure 20 a we indicate the behavior of

the velocity ratio for the second mode = 3.83171. [Note:
"312

We are considering 211 = O and for this value the velocity

ratio is always zero.] In Figure 20 b ‘we exhibit the velocity

ratio for the next mode, 213 = 7.01559. Here we see the

presence of two regions exhibiting primarily radial motion.

From this it is easy to imagine that for very large modes the

velocity ratio would be a series of verticle "spikes" indi-

cating radial motion nearly everywhere. There are also (m—2)

zeroes since these are (m-l) places where rz1m = zlj
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j = l,2,...,m—l. Hence there are (m-l) + l = m places

where the velocity ratio is zero and m-l places where

it is infinity for the rigid tube case. In general we might

say that the motion is more often longitudinal, but that at

higher modes this motion is fragmented by regions of radial

motion.

In the stress free case we see that at r = 1 the

denominator of the velocity ratio is zero, it being a

multiple of the pressure. At r = O the ratio is zero as

in the rigid tube case. If we consider a higher mode, say

2 we have (m—l) points at which the denominator is zero
Om'

in addition to the value r = 0. There are also (m—l)

points at which the numerator is zero in addition to r = 0.

Hence for 20m, we find that in the stress free case there

are as many points where the motion is purely radial as there

are places where it is purely longitudinal. Thus we find

that the motion becomes more longitudinal as the frequency

increases. This suggests that at very high frequencies the

motion is nearly longitudinal except at a finite number of

discrete points, these points being the zeroes of the denominator.
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4.5 Determination of First Order_§unctions

In 4.3 we indicated how one proceeds to the deter-

mination of the pressure and velocities of the first order

system which are needed in the second order correction

equation.

In the case of inviscid axisymmetric flow we set

n = O, % = ?%-= O, and k2 = 1. In this case, by (4.3.16)

1

and (4.3.21) we find

P1(r:W) = COIO(ra) + 11(ra)[C cos V + D sin V}

(4.5.1)

- l A sin ¢IrstZa-12 11(ra) + rIo(ra)}

where C = C1-C_1 and D = Dl-D-l'

Returning now to (2.6.21) and inserting (4.5.1) as

well as the inviscid assumptions mentioned above we find

1 _ .

u‘b — p1,¢/r1B

(4.5.2) u: = so(rp0 sin W - p1)/iB

u: = p1,r/iB

we now proceed to the boundary conditions noting

that the continuity equation (2.6.22) is satisfied identically.

For the rigid tube case, (2.6.30), the radial velocity

component must vanish at r = 1. Hence, by (4.5.2),

(4.5.3) p1(r.‘))' = O.
r'r=1
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and inserting (4.5.1) we obtain,

 

f _
Codll(a) - 0,

(4.5.4) Ca1i(a) = o.

Dali(a) - % A[(2302d-1+a)11(a) + soin(a) + Io(a)]

L =0.

Recall now that a must satisfy (4.4.2),

aIl(a) = 0.

Although a = O is a root satisfying (4.4.2). it

is easy to see that in this case that (4.4.1), (4.5.1) and

(4.5.4) would lead to the conclusion

u0 = u0 = u0 = p0 s O

and our first order system would become the fundamental

system. Hence we conclude a # O, and proceed to the non-

zero roots of (4.4.2), i.e., Il(a) = O, a = -121m.

From (4.5.4) to (4.5.6) we find C arbitrary,
0

(4.5.5) C = O:

and

_ l -1 2
(4.5.6) D - 5 Ad [80 +1].

Knowing the value of the arbitrary constants we are now in

a position to completely describe the first order pressure

and velocities for the rigid tube case.
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For stress free flow (2.6.19) requires pl(l,¢) = 0.

Inserting (4.5.1) gives

’

COIO(a) = 0

 

(4.5.7) < CIl(d) = O

1 2 l
K{D - 5 Aso /d}Il(a) - 5 AIO(a) — o

where now a satisfies (4.4.4), 10(a) = 0. As before we

find CO is arbitrary, that C = O, and

_ 1 2
(4.5.8) D — 5 A80 /C1.

In summary we have, for zero and first order,

po(r) = AI0(ra) u:(r) = 0

(4.5.9) 0 O

ue(r) = -AsOIO(ra)/iB ur(r) = AdIl(ra)/ifi

p (r w) = l sin ([(ZDd-Arzs 2)I (ra)/c - ArI (ra)}
1 ' 2 O 1 O

ut(r.¢) (;%§) % cos ¢[(2Da-Arzsoz)11(ra)/b - ArIO(ra)}

(4.5.10) u:(r,W) = (§%0 % 50 cos ({3Ar10(ra) — (2Da-Arzsoz)

11(ra)/o]

u:(r,¢) = % sin ((10(ra)[2na - A(r2302+l)]

- 11(ra)[2Da + Ar2(sOZ—zz)]/ra}/i5

where Da = % A302 for stress free flow, Da = % A(302+1)

for rigid tube flow and z is a zero of J1(z) or Jb(z)

depending on the boundary conditions. Note that since CO

is arbitrary it has been incorporated into the arbitrary

constant A.
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Let us now consider the first order functions on

the velocity ratio for various modes and frequencies within

the two cases. we write the ratio as

ug(r) + 6n:(¢.r)

 

O 1

ue(r) + bueWm)

and examine it for the cases presented in Figures 22 through

29. These curves are not meant to be an exhaustive display

of the velocity ratio's behavior, but only indicative

of the behavior as various parameters are changed.

The graphs are given as r varies from O to 1

each graph being for a fixed frequency and mode. In Figures

22 through 25 we present the stress free condition. The

addition of the lower case "a" to a figure number will denote

the upper graph for each figure will the lower case "b"

will denote the lower graph.

In the zero order stress free case for the first

mode (201 = 2.4048) the velocity ratio is zero at r = O

gradually growing large as the boundary is approached. This

indicates that the motion becomes radial as we approach the

boundary. Increasing the frequency merely delayed the onset

of the radial motion to larger r values. [See Figure 21a].

Examination of Figures 22a and b reveals the same behavior

‘with the addition of their being more radial motion at r = 0
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in the corrected ratio. For r in the range .3 < r < 1.0

the zero order and first order ratios are quite close. Near

the center we see that the first order ratio displays behavior

not found in the zero order, indicating a need for higher

order terms. We also see a greater variation for the

largest value of 5 indicating even more descrepency between

the straight tube model and those which are highly curved.

In Figure 21 b we showed the behavior for the zero

order ratio for the next mode (20 = 5.52007). The zero

order indicated two regions which contained primarily radial

motion. Examination of Figures 23a and b reveals the same

behavior at approximately the same r values, .5 and 1.

As in the zero order case the corrected ratios tended to

become unbounded more abruptly as the frequency increased for

a given mode. Again the 5 = .5 curves showed their

variance with the zero order and smaller value delta curves

near r = 0.

When we consider the case of W = -60° 'we find that

there is more variation from the zero order cases than when

w = 30°. In the smaller frequencies, Figure 24 a, the 5 =’.5

curve is the only one to offer significant difference from

the zero order curve in Figure 21 a. However, increasing

the frequency, as in Figure 24 b, caused the 5 = .05 to

adOpt the pattern of the larger 5 value, exhibiting a new

region of radial motion for r < .4.
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When we increase the mode to 20 = 5.52007 as

in Figures 21 a, 25 a and 25 b we see the presence of two

regions of radial motion. When ¢ = 30° the corrected

ratio is nearly the same as the zero order. However, for

w = -60° we see new behavior especially for 5 = .5. In

Figure 25 a, the higher frequency curve, the 5 = .5

curve introduces a third region of radial motion near r = .1.

This behavior is not found at all in the zero order curves

of Figure 21 b.

Hence, when w = -60° we find that the zero order

model is less suitable for curved flow than when t = 30°.

For the value of 6 = .05 the curves of t = -60° in the

corrected ratio are differing from the zero order more so

than those of W = 30° do.

FOr the rigid tube case the w = 30° curves of

Figures 26 and 27 do not differ substantially from the zero

order system in Figure 20. Both curves tend to reach points

of radial motion more abruptly as the frequency is increased.

Both systems introduce new regions of radial motion as higher

order zeroes are used. Only the 5 = .5 curves show marked

differences from the zero order motion, these differences

being present primarily for small values of r. Again, this

merely suggests the unsuitability of the straight tube axially-

symmetric model for tightly curved shells.
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When I = -60° the 5 = .5 curve for small

frequencies. Figure 28 a, differs remarkably from the

zero order case, Figure 20 a. When the frequency is increased

as in Figure 28 b, then even the 5 = .05 curve has altered

its behavior significantly from the zero order system. Only

5 = .005 retains the true behavior of the zero order system.

As the mode is increased as in Figure 20 b and

Figure 29, the 5 = .5 curve is quite different from the

zero order system. In this case of the higher mode number,

the increase in frequency does not alter the 5 = .05 curve

of Figure 29 b nearly as much as increasing the frequency

did in 28 b, the lower mode. However, other data suggest

that as the higher frequencies are reached for the second

mode of Figure 29 the curve for 5 = .05 ‘will change from

the zero order case in greater degree.

Our conclusions from all of this indicate that the

zero order model is a reasonable representation for the curved

tube on the outside of the tube and for small values of 5.

However, on the inside the straight tube becomes unsatisfactory

for all but the smallest 5 values and for all but the lowest

frequencies. It is in this region that one must necessarily

include higher order terms if the true velocity pattern is

to be seen.
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4.6 §econd Order Correction

we turn our attention to the correction equation

(4.3.28) for 52 developed in section 4.3. For inviscid

k k k

flows, the shear stresses. S rW' S re and S *9 are all

zero since they depend on viscosity. The normal stresses

are all that remain, being equal to the negative of the

pressure for their respective order. For axisymmetric flows

we know that now = 0 = uoe'* = uor,¢ = po'¢. Utilizing

these facts in (4.3.28) we see that now 82 has the value

1 2w 1 0 O -1 2V 1 l O
s = - - - u S rdrd cos -2u S2 ZIIO I0 9 99 I} {I0 jo( II w 69]

. 0 l l O 1 0
(4.6.1) + Sln $[rsou BS 88 + 2rsou GS 99 - 2u rS ee]

. 2 0 2 O 0 0 O

+ Sin w[—u e3r 50S 99 + ru r(38 ee-S rr)errdI).

In (4.3.28)‘we have set the boundary integral zero since

both stress free and rigid tube cases lead to this result.

Only the cos w terms of ul¢ and the sin V portions of

u1 ,u1 and S1 will make a non-zero contribution to the

9 r 99

total.

Our first task is to perform the integration required

in (4.6.1). In the first integral the V integration gives

2? as the value while in all of the others the result is v

since we have non-zero results from the sinzt or coszt

'terms. In order to integrate the remaining terms which are



fun

 

(4.6 

Afte

(4.6.

 

>
1
3

I
I

(4.6.4

where



161

functions of r we require the following integrals

I: rIg(ra)dr = % r2{Ig(ra) - Ii(ra)}

fr rZIO(ra)Il(rd)dr = % r21i(ra)/d

0

(4.6.2) I: rBIg(ra)dr = r4{315(rd) - 21i(rd) - I§(ra)}/12

fr r31i(rd)dr r4{Ii(rd) - I§(ra)}/6

Ir r411(ra)IO(ra)dr = r4[21§(ra) + I§(ra)}/6a

After utilizing these results in (4.6.1) and dividing all terms

by wAZ/iB ‘we find
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_ 1 2 2 -l 2 Da _ _ O

2 2

3s 8

2 Da 0 2 5 l. 0 1

1 A 202 O 4 (1: 2a.: 2

2

So1 2 5 2

+ Z 12(a)[§ _ 23130]

In the rigid tube case we set 11(a) = O and

 

Da _ 1 2 . _ . .
7?" §(so +1). we also flnd 12(a) - 10(a) glVlng

2 4

S = — l {380 + l. 4" fig")

2 25 4 2 2
0 4a

(4.6.4)
_ l 4 2 2

0 1m

Where as before Jl(zlm) = 0 m = l,2,°°-.
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For the stress free case we set 10(0) = O and

22-= l s 2 we find I (a) = 21 (a)/c This allows us
.A 2 0 ° 2 1 °

to write

_ 1 4 2 2 2 2
52 — g;—;-—Zj{so [zom +4] + 330 20m (2 20m )

(4.6.5) 0 0m + 22 4)

0m

We can see from (4.6.4) and (4.6.5) that for the

situation of small values of 30

free corrections behave like - 1/4 80-1 and + 1/4 80-

the rigid tube and stress

1

respectively. For large values of s

3
0 .

become larger than s

0 they are both of

order 3 At some point then the value of 52s2 ‘will

0 indicating that we need to consider

some higher order terms in the expansion. The same is true

for values of 30 which are very small.

In Figure 30 we show the corrected phase velocity,

normalized by the non-dimensional acoustic speed, fOr both

the rigid tube and stress free cases. Their behaviors are

0quite similar, both being zero at the point where 80

and both indicating an asymptote very near this same point.

After this initial behavior the phase velocity quickly

approaches one. Eventually it becomes zero with large values

of B/c. For 5 = .5 we see that in both cases the phase

velocity becomes zero much faster than for smaller values of

5. For small delta the straight tube is an accurate
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representation for the curved tube since its phase velocity

approaches one from.above. Only when the frequency becomes

quite large or the value of 5 grows large does the straight

tube mode cease to be an effective predictor of phase velocity.

The curves for the corrected wave number,

(so+5232)/s0, have been omitted since they are essentially

the reflection of the phase velocity about the line 85/8 = l.

The correspondence is not exact but the behavior can be

determined by noting that as the phase velocity approaches

zero the wave number becomes infinite and as the phase

velocity becomes unbounded the wave number approaches zero.



CHAPTER V

GENERAL INTERACTION PROBLEM

5.1 Introduction

We have presented analyses dealing with the vibration

of the empty tube in Chapter 3 and with the vibration of the

fluid in Chapter 4. It is now our task to analyze the inter—

action problem in which the fluid and membrane are allowed

to vibrate together.

In section 5.2 we begin by establishing the frequency

equation for an arbitrary number, n, of waves around the

tube. we also discuss the correction equations apprOpriate

and sto Section 5.3 deals with the frequency equation51 2.

appropriate to the fundamental case of axisymmetric inviscid

flow which is the concern of following sections.

Section 5.4 contains the determination of first order

velocity and displacement components for the fluid and shell

respectively. As before we examine their effect on correspond-

ing zero order terms. Finally in section 5.5 we examine the

correction, s and determine its effects on the zero order2'

wave number so.
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_543 Discussion for Arbitrary n

In section 4.2 we established the zero order values

for the fluid pressure and velocities for the viscous fluid

flowing with n waves in the ¢ direction. They are given

by (4.2.18). Knowing the fluid velocities it is possible

to write out the fluid stresses which are inhomogeneous terms

of the shell equations.

The shell displacements can be written from (3.2.2)

as

62_n2_ % 302(l-V) _ % nso(l+v)-n -n W?

- % nso(1+v) Bz—soz- % n2(l-v) -vso W2

-n -VSO 52-1 W2

(5.2.1)

g3.

= —$ ggr

-§Er r=1

where the tildas reflect division by the apprOpriate trigono-

metric functions and where the three shell displacements

have been written as

(5.2.2) w? = W? sin nw w% = w° cos m) w: = w: cos n)
8
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Unlike the empty tube case the mass ratio

m(= ph/poa) is no longer zero and a solution of (5.2.1)

is given by the three relationships

0 _ 1 go “0
(5.2.3) WW — - a (net)1(A118rI + Alzsre’ A13 Srr}r_

o _ 1 So ~o “0
(5.2.4) We — " El (Det)_ 1.8[A121") + Azzsre - A23Srrlr=1

o _ 1 -1 “o Mo “0

(5°2°5) wr ’ ' a (pet) [A13Sr¢ + A23Sre ' A33Srr}r=l

where Det represents the determinant of the coefficient matrix

in (5.2.1) and the Aij are cofactors of elements aij in

the same coefficient matrix.

5.2.1 Frequency Equation

The boundary conditions require that at r = l the

fluid velocities match the shell velocities which are time

derivatives of shell displacements. we see then

0 0
(5.2.6) ..iawg = u§(r=1 g = I.e.r

Inserting the fluid velocities (4.2.18) into the fluid

constitutive equations (2.6.11) we find from (5.2.6) that

C11 C12 C13 A3 0

(5.2.7) c21 c22 c23 A4 = 0

C31 C32 C33 A 0

where
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c -- 2 -1-[A +2(Y) +A ‘1[v21'(v) 2:: (V)
11 - m Det n1 llYI 12 50 n - SO n+1 ]

" 2A13YII:+1(Y)} ' In+1W)’

C _ 2 ‘1 (A. (Y) - A s -1 YZI'(Y) - 21 ( )
12 _ - m Det n1 11YIn 12 0 [ n SO n-l Y ]

+ 2A13Y1n_-1(Y)] I__n_lH).

_ M {-321

C13 — - a2-Y2)m Det n1 [2nA11[Q'In (a) - In(a)

2 .

-20IsOA121n(o.)} + 595?: {A13[l + $9— ($1 - 7‘11.) ]In(o)

C

2 . "“15“”
_ A13MO' In(a)] — T?— .

a —

2

_ -1 . 2

C21 ’ " 31%‘1375? [A12 YIn+2(Y) + A22so [YZIn‘Y’ ’ so In+l(Y)]

(5.2.8) + 2A23YII;+1(Y)} — Yso'11n(Y).

2
_ 2

C22 -- - TEE—DE {A12Y1n (Y) - SO 1A2112[Y21 (Y) - so In_1(Y)]

+ 2A23Y1n_1(Y)} + Yso1In(Y),

2

C = - [- (aI'(a) - I (a))
23 m Det n1(:%_Y2)nA12 n n

+ soA221n(a)] +A231n(a)[l +l9 (. -—)]

C2

_ MoII”(oI)A

(aZ-Vz)A

2
_ -1 . 2

s31 ' " fia—Ifis—t23”‘13“ +2”) + so A23H21n”) ‘ so In+1(Y)]

- 2A33Y1n+l(Y)} - In+1(y)'
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2

_ Q -l 2 o 2

C32 “ - mnl Det {A13Y1n(y) - So A23[Y In(Y) ’ so In_1(Y)]

+ 2YA33In_1(Y)} + In_1(Y).

2

_ _é___, 2M 0
C — - [- (a1 (a) - I (a))
33 m Det n1(a2-Y2)[ nA13 n n

+ sOA2311.’(a)] + A33[(1 + :13 [% - all-mum)

_ Ma213(a) Maln(a)]

77—1“*72“

In order that we have non-trivial solutions for our

prOblem we require that the determinant of the coefficient

matrix in (5.2.7) vanish. This defines an implicit relation—

ship between s and fl which we designate as the frequency
0

equation.

5.2.2 First Order Correction

In Chapter 4 we found the first order equation for

s1 and were able to verify that in the stress free and rigid

tube cases. 31 = 0. We now consider this equation (4.3.13)

for the interaction prdblem. The line integral of (4.3.13)

is repeated here as it is no longer zero. It is

= 2W 0 1 O 1 ul50

I0 u$Sfr + ueser + urSrr - uws (r

(5.2.9) 1 O 1 O

uGser - ursrr}dw

where all arguments are evaluated at r = l. The first order

fluid stresses at r = 1 may be replaced by the first order
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shell terms with which they appear, (2.6.26). we replace

zero order fluid stresses in a similar fashion using

(2.6.14) and replace the fluid velocities at r = l by

the shell displacements. Shell stresses are then replaced

by the shell displacements using (2.6.13) and (2.6.25).

NOting that the integral of an odd function in W is zero

over the interval we are considering we write

_ . 27 1 WO 0 ON0 O 0
I — ifimsljo {— wwNow- 'woN 69 + “”¢”90*

1 (1_ 02
- -2- so \a)(wo)2 sows) - -(1--v)w9w°t)

00 . 21r 1wo WW01
(5.2.10) - wo}d(: - 16m Io {w (Ww'w- wwot W

l 0 WO1 l

-1-(1v)(wow (MW- we9 W) +5 so (1+v)(w°w9w)

0 1wowo)

‘wwwe’.w"" ‘ MW

Examination of (5.2.10) indicates that the second

integral of (5.2.10) contains two basic terms. The first

has the form

2w

(5-2-11> 12 = Io Ift¢)g<w>,¢¢ - g<¢>f<w>,*,3dw

which when integrated twice by parts in the first term yields

2n

= {f(WJW) - 9H)f(¢) \
0‘” I“, o

w

+ I: {9(¢)f())'¢o - g(¢)f(¢)'**}dg,
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The first term is zero by periodicity and the integral is

identically zero.

The second term to be found in (5.2.10) is

2

(5.2.12) I3 = In [:2ngan = f(WsW) I07r = 0

O

by periodicity. Hence (5.2.10) reduces to

_ . 2v 1 o o O o O 0
I — lamsl‘ro {'2' W¢N9¢ - WQNGB + WVWGM)

1 O 2 O 2 1 0 0(5.2.13) _ 2 30(1-V) (ww) - 50(We) " '2' (l-V)Weww'¢

O O
_ wrwe}dw.

Using (5.2.12) as the boundary integral in (4.3.13) we find

the equation (4.3.13) can be written as

since F(sO,B) g 0, we conclude that = 0.
31

If we are to have any sort of correction we must

find 32 and this requires the solution to first order

velocities and displacements. The first order pressure and

velocities can be found as in section 4.3. Using the boundary

conditions we match first order fluid velocities with first

order shell velocities at r = l. The result is a determination

of the arbitrary constants acquired in solving the first order

problem. This having been done our next step is the solution

of the second order correction.
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5.2.3 Second Order Correction for Arbitrary n

The second order correction equation for 82.

(4.3.27) developed for the fluid alone must be modified to

account for the fluid-shell interaction. we begin with

the boundary terms in (4.3.26) and repeat here those

integrals which are not identically zero at r = 1. due

to periodicity in W- The integrals just mentioned, in

(4.3.26). are designated as

_21r 02 02 02 20
11 — f6 [uwsrw + uGSrG + ursrr - “vsrt

20 20
- ueSre — ursrr]d¢

where the integrand has argument r = l.

we eliminate the fluid stresses by means of (2.6.14)

and (2.6.34), and we eliminate the fluid velocities by the

boundary conditions (2.6.15), (2.6.35).

After some simple algebraic manipulations it is easy

to show that only certain components of the integrand will

make a non-zero contribution. we designate by tilda, ~. the

sin(n+1)¢ components of Ni) and Nte and the cos(n+l)¢

term of Nt)’ we use a hat. A, to designate the sin(n-l)w

portions of Ni) and Née as well as the cos(n-l)t term

in NGW' Denoting the constant portion of the zero order

terms by * ‘we write
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. 2" oo
11 = leSZIO [WWNGW - weNee}d¢

2
+ iBm‘fow {w3[Ni¢.) + 3CNN]

wO 2 W2 00 2 2

+w9[N8¢.¢—SON66] - wrN¢¢+ WINWW

2 O W2 NO 0

' ww[N)).w + SoNew] e[N e) w SoNee]}dN
(5.2.14) "1 A

. ~1N1
-1Bm H[W[NW+NW-Nee- N66

 

A
“’1 l * O

+ SONNGN - New) + 50 Ne w]

A
O O “1A1 ”l 1

+ w9[s (Nee - N69 + Nee) - 2m“ + N9*)]

.1 A

+ wr0[ *N0 N N19]}

The second order shell terms are now eliminated by means

of (2.6.33) and we finally achieve

_. 2” quoo 00
Il — 16m52f6{w¢N 9W - weNeehiw

A ~ A

+iBm12T wO[-nv(\::'+wt+w +w1+w

O "1

+ 252We - so('we - w9) + dee)

1 *1 A1 0 o ~1
(5.2.15) + 5 sO(l-v)(so[w¢ - WW + WV] + 282W+ - +twt)}

W 1 Al ~1 O
+ ifim - we{§ (1-v)[nso(w* -‘w*) + 2n82W~ + nsowg

—n(G1-$1)]+sz(&’1-$1+wh+2ssw°)
9 9 O 9 9

. 1r 0 ~1 A1 ”1 Al

-1f3m§WV{w¢+w¢+wr_
r9 - so(w9 - W’e)



174 ‘

 

0 A1
-wr+(232+so)w3% H[W[N*:+ NW

~1 A1 A1
_Nee-Nee+so(Né¢-

New) 3*]

~ A ~ A

+w%[s0*(Nee- Nte-i-Nte) -2(:C1;:+Nle¢)]

~ A

+ Wg[*N%e' N199 1]}

. 277 o 2 2 o

' 13me “’me " ”w”WNW + 5 ‘1‘”) [wee w

_ wnge'w] + 1 (1w) [w29 - Wew¢]'¢

2 0 WoW2
+ (waw- “W W}d N.

we recognize the integrand of the last integral above is zero

due to terms of the form found in (5.2.11) and (5.2.12).

Coupling this equation, which has no second order terms

except 32, with that develoPed in section 4.3, for the fluid

we have an equation for the second order correction in terms

of known zero and first order quantities.
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5.3 pgrequencyEguation for Inviscid. Axisymmetric Flow

we repeat. for convenience, from (4.4.1), the pres-

sure and velocities in the inviscid, axisymmetric case:

p0(r) = AIO(ra). u3(r) = 0,

(5.3.1) u%(r) = -AsOIO(rd)/iB, ug(r) = Aa11(ra)/iB,

a2 = s: - BZ/cz,

where A is arbitrary.

In the inviscid case only the normal fluid stresses

are non-zero and hence the only body force on the shell is

Sorr r=1 = -po(l). The shell displacements then satisfy the

following

(5.3.2) [52 - %{1-\flsg]w% = o

t
o

H
O
G
:

2 2

(5.3.3) 5 ~30 -\so 0

3
‘
?

10(a)
2

-\)so B -l w 1

Solving for displacements we see that for axisymmetric

flow w?” = 0 and

w% = -szAIO(a)m-1{(l-vz-Bfi)sg - 52(1-52)}'1

(5.3.4)

w: = -(Bz-sg)AI (a)m'1[(l-V2—Bz)sg - 62(1-BZ)}-1

0

where m = ph/poa. In the inviscid prOblem we match velocities

in the radial direction giving us the frequency equation

for the interaction problem. It is
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2

(5.3.5) m11(a)[(BZ-1+v2)sg—fi2 (62-1)} —62(a -s§>10(a) = o

This equation has been determined by Rubinow and Keller [9 ]

in a different situation. As before we utilize portions of

their analysis as the basis for our discussion.

Our first task is to recognize those portions of

(5.3.5) which have appeared before in special cases. We

shall refer to those modes which reduce to the empty tube

frequency equation (3.4.2) as §2bg_mggg§. Those modes which

reduce to either of the two modes associated with the fluid

will be called acoustic modes. due to their dependence on

the non-dimensional acoustic speed.

When m approaches zero we may interpret this as

meaning that tube density is small as in the stress free

case. In fact setting m = 0 produces three possible

equations: 10(d) = 0, s0 = B or B = O. The first equation

is the stress free boundary condition (4.4.4). However, the

next mode is a new mode which results from the interaction.

It is the tube mode (3.4.2) when x»: O. The last equation,

B = O, is of no interest since 30 is undefined. Hence

letting m approach zero gives us a mode which we recognized

from'before. the stress free mode. It also produced a new

mode, 3 = 6, not normally associated with small tube
0

density.

If we let m grow unbounded in (5.3.5) we find that

a11(d) = O or 38 = 62(l-Bz)(l-\?-Bz)-1. The first mode
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is the rigid tube mode (4.4.2) which we could associate with

ph growing large (and hence m also). The second mode we

found to be the empty tube mode (3.4.2) which we could assoc-

iate with poa becoming small (and hence m ‘becoming

1
large.) In this situation setting m7 = 0 results in two

modes, both recognizable from before.

5.3.1 Frequency Equation for v = 0

If we set \)= O in (5.3.5) we see that the

equation can be written as

(5.3.6) (Bz-sg)[mall(a)(32-l) + 6210(a)} = 0

we see that 50 = B is a frequency equation for all values

of m ‘when \)= O (and for all values of \9 when m.= O

as in (5.3.5)). Let us now examine the term in.braces in

(5.3.5) utilizing an interesting and informative approach of

Rubinow and Keller [ 9 ].

Case I: d2 < O

We set a ix where x is real. we then write

J (x) 2

1 _
(5.3.7) -XW—;‘—(1§;-B—2-)- .

If we differentiate the left side of (5.3.6) with

respect to x 'we find

2

J (x) J (8)

1 —x l + 1(5.3.8) 3- —x—— =
JO(X) J30”dx
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Hence for positive x the left side of (5.3.7) is always

a decreasing function of x. If B > 1 then the right

side of (5.3.7) is an increasing function of m. If 6 < 1

then the same expression is decreasing in m. Since the

left side of (5.3.7) exhibits the same behavior as the right

side we can say that for B > 1, x is a decreasing function

of m and for B < 1, x is an increasing function of m.

Since

(5.3.9) 38 = Bz/c2 — x2

we have that for real values of so. 30 is a decreasing

function of m when 6 < l and ana increasing function

of m 'when 6 > 1. If 50 is imaginary the conclusions

are just the Opposite.

Knowing the qualitative behavior of so we are

now in a position to understand the behavior of the compu-

tations we are about to make. we know how the acoustic

modes behave in the extremes of m = O and m = o. Hence

‘we expand in a MacLauren series about 5 small where

e = m or m-l. We say

+ e 95- + . . .(5.3.10) 8 dc|€=0
o = So )e=o

‘we see then that when m is small we have

_ n)1/2 22 /2

(5.3.11) so _ (a 22-/c +szn (52-"’1)/5 (BM/c011}

where JO(zOn) = O n=l,2,3." If we rewrite the term in

braces of (5.3.6) so that e is m-1 then we find
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(53°12) S = (132/3413”” + Bz/Imu-aznez/cZ-zl 2W2}
0 n

where J = O. n = 1,2,3.

1(zln)

We plot the frequency equation for these acoustic

modes by using (5.3.11) and (5.3.12). we know that the

curves for m = O or l/m = O are the extremes for any

intermediate values and we know that at B = 1 there is a

change in s from a decreasing function in m for B < l.
O

to an increasing function of m for B > 1.

These curves are presented in Figure 31 for c = 0.1.

These curves are the lower set of curves which exhibit an

abrupt change at B = 1. Real values of sO dictate that

B 2 cz1n or B 2 czOn depending on the mode. Hence if c

is large enough, cz or cz will be larger than one and

In On

the acoustic curves will start further to the right, dis-

playing no switch from decreasing to increasing functions of

m. In fact, if the fluid is incompressible (c very large)

the acoustic modes exist only for extremely high frequencies.

If we examine the phase velocity cp = B/So in

Figure 32 we see the obvious sort of behavior for the curves

near B = 1. These curves are plotted for c = $1 and if

c is large enough the acoustic modes exist only when 6 > 1

and hence do not exhibit the switch from increasing to

decreasing functions of m. [Note: Since cp = B/so. c is

P

increasing in m when s is decreasing and vice versa.]

0
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Case 11 a2 > 0 (Tube Modes)

If we return to the expression in braces in (5.3.6)

we may rewrite it as

2 2
(5.3.13) maIl(d)(l-B ) = B Io(d)

or as

(5.3.14) m(l—BZ) = 10‘0"

B2 dIl(a)

When a is real the right side of (5.3.13) is a

positive decreasing function of a which behaves like

2
2/a for small a, i.e. 50 near B/c, and like l/d for

a large. If we replace the right side of (5.3.14) by

 

2/a2 then we see for small a that

(5.3.15) .3- 2_2—5. .25
m(l-B ) c

while for a large we find

2 2 52 1
(5.3.16) 80 = B 2 2 2 + -3- .

In (1-5 ) c

In plotting the curve for this mode we utilized

(5.3.15) until B2 = 2m(2m-)-l)-1 at.which point.both repre-

sentations are equal. Then we plotted (5.3.16) for the re-

mainder of the B values. Since the right side of (5.3.14)

is positive. B is restricted to values less than or equal

to l. we also see that the left side of (5.3.13) is

increasing in m (B _<_ l) and that the right side of the

Same equation is decreasing in (1. Hence a must be
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decreasing in m and therefore sg(= a2+B2/c2) is also

decreasing in m.

The curves for this mode are plotted in Figure 31,

and are labeled with t. We see that the first acoustic

modes are close to the m large tube modes for B < 1.

When the acoustic modes exist only for B > 1 then there is

no similarity.

The phase velocity associated with the mode of (5.3.15)

and (5.3.16) is given in Figure 32 and it exhibits the

 

behavior we expect from looking at the frequency equation.

If one returns all variables Undimensional form in (5.3.15)

and sets B = 0, the resulting phase velocity is that of

Korteweg mentioned in the introduction as c At B = O1.

the phase velocity for this mode has value fch/[2c2+m])l/2.

If the acoustic speed is small then the phase velocity starts

near zero and becomes zero at B = 1. If the fluid is nearly

incompressible. c ~ m, then the phase velocity begins near

(m/2)1/2. If instead we allow m to become large then the

phase velocity starts near the acoustic speed c.

Having examined the two acoustic modes (5.3.11)

and (5.3.12) as well as the tube mode given by (5.3.15) and

(5.3.16) we examine the displacement and velocity ratios

associated with these modes.

From (5.3.1) we have

(5.3.17) (ug(r)/u%(r)) = )-aIl(ra)/s010(ra)| .



184

Case I Acoustic Modes

The velocity ratio (5.3.17) for the acoustic mOdes is

plotted in Figures 38 and 40. The curves labeled 5 = O

in these figures represent the behavior of (5.3.17). When

m = 100 (Figure 38) we are near the rigid tube mode and find

that the 6 = 0 curve of Figure 38 is very nearly the same

as the rigid tube case of Figure 26. Increasing the mode

number to the second mode for the interaction gives us similar

behavior to the second mode of the rigid tube case. i.e. the

presence of a second region of radial motion as in Figure 27.

Thus examination of the interaction prOblem near the rigid

tube case indicates that there is little change from the

rigid tube itself.

The acoustic mode for m small given in Figure 40

eXhibits behavior nearly the same as the stress free mode

of Figure.22. As for the stress free case further computations

for the interaction prOblem show that increasing the order of

the mode increases the number of regions of radial motion.

In examining the displacement ratio (wg/w31 for

these two acoustic modes we see from (5.3.4) that ‘wo = O

9

and the tube dispacements are purely radial.

Case 11 Tube Modes

Having examined the acoustic modes and their effect

on the velocity and displacement ratios we turn to the tube

nodes associated with v = O. The first mode is so = B
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2).and the argument of the Bessel functions is d2 = B2(l—c-

'we note that if c > 1, then a is real and 10(a), 11(a)

are real. However if c < 1, then Io(a), 11(c) must be

replaced by Jb(a), Jl(a) which are, of course, oscillatory.

Hence if c < 1 then the v locity ratio (5.3.17) will have

zeroes when rd = z1n and will be unbounded when ra = 20“.

Therefore for any fixed c < 1 increasing B increases la)

and hence rd is equal to more of the zeroes z1n or 2
On

as r increases from zero to one.

0
For 30 = B we find that the displacement wr is

determined in (5.3.4) but that ‘w% is arbitrary. Examination

of the next order displacement equations indicates that both

w% and the arbitrary constant A are present. Since A

is the arbitrary constant for this problem,'we set 'w% = O

Obtaining only radial motion in the shell.

Finally we examine the ratios for the tube mode given

in (5.3.15) and (5.3.16). we approximate the modified Bessel

functions for re large and re small finding that the

velocity ratio is like I-raz/Zsol for (re) small and it

is like i-a/501 for (re) large. The velocity ratio is

then zero at the center of the tube growing to some value

)-a/so| at an intermediate point.

we note that since so # B (from (5.3.15) or (5.3.16))

we find that (5.3.4) yields 'w% E 0 so that the motion is

purely radial in the tube.
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§;§;3_ Poisson's Ratio is Non-Zero

To examine the frequency equation when Poisson's

ratio is non-zero we expand so in a series about m small

or m"1 small using (5.3.10). In this section only we shall

denote 80 as a function of m by the symbol g0 and we shall

reserve the symbol S0 to designate the value of so corres-

ponding to m = 0 or m-1 = 0 where appropriate.

For m small we find from (5.3.5) and (5.3.10)

for the acoustic mode 10(d) = 0. we have

m zOn2[(1-V2-32)Sg-Bz(1-52)3
 

(5.3.18) E’ = s +
O 0 2 2 2

B (B -so)sO

where

2 2 2 2 _
s0 2 B /c -zOn , J0(20n) - 0.

The expansion about the tube mode. 30 = B, is from (5.3.5)

and (5.3.10)

~ _ 2
(5.3.19) 50 — B-mv a11(a)/2B10(a)

where

a2 = B2(l-l/c2)

For m large we have the acoustic mode, I1(d) = 0.

and we obtain

62(s3-62)
(5.3.20) §' = s + 

° ° msoi(1-v2-62)s§-62(1-62))

Where
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2 _ 2 2 2 _
so — B /b -zln , J1(zln) — 0.

For m large we have the tube mode

2 2 2
~ 3 (S -B )I ((1)

(5.3.21) 5 ° ° = s +

0 2mso(1-v2-B2)a11(d)

where

s3 = 62(1-BZ)(1-v2-62)'1

and

a2 = sz-B2/b2.
0

We now analyse the behavior of go for the cases we have given.

Case 1. Acoustic Modes (5.3.18) and (5.3.20).

For v = O we found a change in the behavior of the

acoustic modes as B changed from less than one to greater

then one. we expect a similar behavior for §'0 when v #’0.

‘We write the acoustic mode (5.3.18) for m small as

 

2 2 2 2
~ _ mZOn (l-v -B ) so 1_ 2

(5.3.22) 80 - so - 2 2 -§-- -—-§i—§'

80(80 -fi ) B l-v -B

2 _ 2 2 2 _ _ ._.
where so - B /c -20n, Jo(20n) — 0 n — 1,2. . In what

~

follows we will assess the behavior of 80 given in (5.3.22)

as a function of m. i.e., we will determine the regions in

which go is an increasing (or decreasing) function of m.

For this purpose we examine the sign of the three terms which

form the coefficient of m in (5.3.22) - the curly bracket term,
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Starting with the curly bracket term in (5.3.22)

and noting that for c = 0.1, czOn < 1 for n=l,2,3, define

Y1 83/62 .

(5.3.23)

y2 = (1-B2)(1-v2-Bz)'1.

The functions y1.y2 are given in Figure 33 and we

note that yl-y2 can be > O, = O, or < 0 depending upon

the value of czOn. If czOn < l, as in Figure 33a It is

easy to show that y1 = Y2 at two frequencies, say a1

and a2. It is found that yl-y2 > 0 for a1<B<a2 and is

negative otherwise.

< 1.In the same manner the term. 53 - B2, for czOn

vanishes at a value B = b1 = czOn(l-c2)"1/2 and is negative

in the interval c20n<16<ib1 and positive otherwise.

Simple computation shows that

2 l 2
czOn < b1 < al < a2 < (l-v ) / . for n = 1,2.

Utilizing this information we conclude that for

/ /

cz0n \ B \ bl ~

(5.3.24) so

a1<f3<a2

is decreasing in m

and is an increasing function of m otherwise.

When n = 3 we find b1 > (l-\32)l/2 and y1--y2

is never zero fOr real values of B. Hence for czo3 < B < b1
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~

so is decreasing in m and increasing in m for B >‘b.

Finally for n‘Z 4 CZOn > 1 for c = .l and we

find a1 < CZOn < a2 < b1 as in Figure 33b. Hence so

is decreasing in m for a2 < B < b1 and increasing for

CZOn < B < a2 and for B > bl'

Let us now rewrite the acoustic mode, 11(a) = O.

for m large, (5.3.19) in the form

(56‘52) $6 1 -1
s + ——_—_:L

2

 

U
) II

o o msO(l-v2-BZ) 62 l-vZ—Bz

(5.3.25)

2

2 - E..- 2 _

s0 — C2 zln ' Jl(zln) — 0'

It is easy to note the similarity between (5.3.22)

and (5.3.25), the major difference being the root z1n rather

than zOn' For the smallgst root, 210 = 0, s0 is decrea31ng

in In 'when b2 < l + and increasing when the inequality 

v

c2-1

is reversed.

Since the roots z1n satisfy the inequality

cz1n < 1, if n=l,2, the behavior of so given in (5.3.25)

is the same as that indicated by (5.3.22) if z1n replaces

2 there. and a1,a2,b retain their meaning with respect
On 1

to the functions 33 - B2 and yl,y2 defined in (5.3.23).

When n 2_3, we find that in the intervals czln<B<a2,

and B>b1 §' is an increasing function of m and is a
O

decreasing function of In when a2<B<bl.
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Although we have shown that the behavior of £0

given by (5.3.22) and (5.3.25) changes from increasing to

decreasing functions in the intervals determined by the

points al,a2.b1 their actual locations are different for

the two formulas due to the expansions used. In general,

 

the locations a , and b are near the value cz or
1 1 On “a

cz1n depending on whether (5.3.22) or (5.3.25) is used, and

in both cases a2 is near (l-V2)1/2. However it is Obvious

that czOn 7! cz1n and these very small intervals are difficult J ‘

to show in our graphs of the frequency expansions. In gen-

eral we state that g0 is decreasing in m for B < a2

and increasing for B > a2. When czjn > 1, j=O,l, then

~

so is increasing in m for B > b1 and decreasing in the

interval czjn < B < b1, 3:0,1.

We present the graphs of the frequency equation for

m large, (5.3.25), in Figure 34w Only one situation in which

the so changes from decreasing to an increasing function

of m is presented. This is due to the fact that the other

changes occur very close together on the frequencyaxis..

we have designated these regions by an asterisk, *, and give

as an example of the behavior of so in these regions the

curves in Figure 35. This set of curves shows the behavior

of the second acoustic mode for m large near the starting

Here we see the function s is a decreasing
12' 0

function of m for c212<<B<(b1, Bj>a1 and increasing in

frequency cz

m elsewhere.
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Case II. Tube Modes

N

we have examined the behavior of so for the acoustic

modes, noting their similarities. We now turn our attention

to the tube modes (5.3.19) and (5.3.21). In all that follows

z1n ‘Wlll be a zero of J1(z) while ZOn Will be a zero

of Jo(z).

Examination of (5.3.19) indicates that for c > 1

the modified Bessel functions, Io(a) and 11(d), have

real argument and are themselves real. We find then that for

c > 1 so

hand c < l the arguments of the Bessel functions are imag-

is a decreasing function of m. If,<n1the other

inary and they behave like Bessel functions of the first

. . 2_2
kind. These Bessel functions, Jo(a1), J1(dl), (a1 — -a )

oscillate between positive and negative values. ‘We find that

Io(d) = Jo(a1) and that a11(d) = -a1Jl(a1). Making these

changes in (5.3.19) we find that for

so

values of al. The value of so,

dashed line in Figure 36. To utilize the graph for other

z1n < “1 < z0(n+1)

is an increasing function of m and decreasing for other

(5.3.19) . is plotted as the

values of m small one merely picks a frequency and a value

of c. From these values one can determine the value of

a and hence a1. Once d1 is determined its location

between the zeroes of the Bessel functions can be ascertained.

One then knows if the function §'
0

in m at that point which in turn determines whether

is increasing or decreasing

g0 lies above or below the curve given in Figure 36 for

m = .01.
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Further examination of (5.3.19) in more detail reveals

that when B = czln(l-c2)-1/2, so = B, while at

B = czOn(l-c2)-1/2, go is unbounded. We find that when

c < l the fluid is compressible and we have the vertical

asymptotes given in the graph.

The second tube mode is given by (5.3.21) for m

large. For the frequency range (l-vz) < 62 < l we find

that so and so are pure imaginary and there is no wave

 

propogation. Examination of a2 indicates that of the

frequencies for which 5 is real, d2 is positive only
0

in the regions

1 - vz/(l-cz) < 62 < l-vz c < 1

or

1 < 62 < 1 + vz/(cz-l) c > 1 .

In either case d2 is positive in only a limited

frequency range so that in general the modified Bessel

functions have imaginary argument and therefore behave like

2 . 2 ~

Jo and J1. When B is near (1-v ), so and so both

become unbounded. When B approaches 1 then so is

near zero and 56 is arbitrarily large. When a2 = -zln2

then go, given by (5.3.21), becomes unbounded while when

2 _ 2 ~ _ . . .
d - -20n then so - B. Utilizing the values of so and

a2 given with (5.3.21) we find that there are two possible

. 2 _ 2 2 _ _ 2
frequencies when a - —z1n or a — zOn .
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The graph of s is presented in Figure 36 as the
0

solid line for one value of m, namely 100. Defining

2 _ 2 .
do — -d we find from (5.3.21) that for zln<:a0<:zO(n+l)’

s0 is increasing in m while it is decreasing in m for other

values of do. Hence, if one is to determine the behavior

of so as given by (5.3.21) for some m large other than _m“

100 , one would have to find the relationship of the frequency

to the zeroes and determine then whether the curve were above

or below that given for m = 100.

The phase velocities for these two modes, (5.3.19)

and (5.3.21) are given in Figure 37 over a larger frequency

range. we must indicate that no comparison between the m

large and m small curves regarding increasing or decreasing

prOperties has been made.

Let us now consider the velocity ratio, ug/ug, and

the displacement ratio, wg/wg, obtained from (5.3.1) and

(5.3.4). respectively. The behavior of these ratios is

determined by the solution so of the frequency equation

(5.3.5). To show how the various modes, acoustic and

tube, alter the amplitude ratios we present the ratios

using 3' found in (5.3.18) to (5.3.21).
0

The velocity ratio for the acoustic mode, (5.3.20),

is presented in Figures 38 and 39, and for the mode (5.3.18),

in Figures 40 and 41. The apprOpriate curves are the 6==O

curves in each figure.
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A comparison of Figure 38 with 39 or 40 with 41 shows that

the effect of V is insignificant for these modes.

Furthermore, comparing the velocity ratio found here with

the ratio found for the rigid tube or stress free tube

(in Chapter 4) shows that the fluid behavior is only

slightly altered. Hence, the elasticity of the tube wall

is insignificant if the motion of the fluid is governed by

an acoustic mode.

Let us now consider the velocity ratio for the

tube modes, (5.3.19), (5.3.21). The ratio is presented in

Figures 42 through 44. The velocity ratio for

this case is now almost a linear function of the radial dis-

tance becoming very radial in character at the edge of

the tube. Note that the two expansions in m yield

almost the same ratio values. for 6==0.

The graphs of the displacement ratios are given in

Figures 45 through 48 where again the 6 = 0 curves are

the zero order curves. In Figures 45 and 46 we present

the first two displacement ratios for the acoustic modes.

We see that for both modes the displacement ratio grows

larger as the frequency is increased, indicating that the

displacements in the tube become more radial at higher

frequencies when the frequency relation is near the acoustic

modes.

In Figure 47 we present the displacement ratio for

the tube mode (5.3.19). This ratio exhibits behavior
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radically different from the empty tube mode and demon-

strates the effect of the compressibility of the fluid.

  

O

The displacement ratio wS/we Obtained from (5.3.4) is

given by

2 ~2

B - so

VSO

Since c = 0.1, (5.3.19) becomes

mvzzJ (z)

S' = B + 1

O 2BJo(z)

 

if we use 2 = id there. Thus when J1(z) = O, z = zim'

the ratio is zero whereas when Jo(z) = 0, the ratio is

infinite. It is apparent that for c > 1, the behavior

is altered since Il(d) and Io(d) do not vanish.

When we examine the displacement ratio for the

tube mode associated with the empty tube case (5.3.21)

we find the displacement ratio behaving nearly identically

to the displacement ratio for the empty tube. Figure 48

gives the displacement ratio for the interaction prOblem,

near the empty tube mode. There is no ratio given for

(l—\)2)1/2 g B < 1. Near these values of B[=(l—\)2)1/2 and l]

the displacement ratio indicates primarily radial motion,

while for other values of B the motion is longitudinal.
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§;g_ First Order PressureL_Velocities and Displacements

From (4.5.1) and (4.5.2) we have the first order

pressure and velocities, determined up to their arbitrary

constants. The first order pressure influences the first

order displacements so we write our displacements in the

shell as

w1 = a cosw + b sinw + c

‘1' ‘) )1) 1)

(5.4.1) w1 = a sin) + b cosw + c

9 8 6 9

w1 = a sin¢ + b cosw + c
r r r r

If we designate the matrix of (5.2.1) by ”4(n) then the

first order displacement system, upon using (5.4.1),

(4.5.1) and (4.5.2), becomes

(5.4.2) 'bw o

M(_1) ‘be 0 ,

(5.4.3) f)

M(+1) = fe .

r fr

(5.4.4) [52 - %sg(l-v)}c¢ = o,

2 2
(5.4.5) B -sO —vso ce 1 O

2 _ - C010 (0') 1 o

-vso B -1 cr

where
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f) = 550(k)”): " "(13 '

(5.4.6) f9 = -%(l-v+4sg)w% + 50(1—v)wg .

fr = 2vwg - fiIDIl(a) - %A[sga-lll(a) + IO(G)])

+ so(l-v)w% .

The constants Co. D and C are to be determined

by matching the radial velocities at r = 1. Hence, we

have, in addition to (5.4.2) to (5.4.6), the boundary

conditions

-chr = coa11(a)/iB.

-iBbr CaIi(d)/iB,

(5.4.7)

. I 1 2"]. 2|

-1631' {Dd1103)— §A[ZSOQ I1(d) + soll(a)

+ Io(d) + aIl(a)]}/iB.

The procedure is rather straightforward. Recognizing that

so is related to B by means of (5.3.5), the frequency

equation, we have the determinant M(_1) is non zero so

that

(5.4.8) b = b = b = 0.

Since the determinant of (5.4.3) is the same as

the determinant of (5.4.2) we can solve for aw. a9.

and ar. Finally,(5.4.4) and (5.4.5) yield cw. 6c and c

r
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Substituting cr into the first of (5.4.7) reveals Co

is arbitrary provided (5.3.5) is satisfied. We take

(5.4.9) C = c = 0.

The second of (5.4.7), using (5.4.8), yields

(5.4.10) C = 0.

A solution ar of (5.4.3) involves D, and so the third

of (5.4.7) may be used to determine D. we write this

symbolically,

n[aIO(a) - 11(4) + m‘16243311(a)/bet)

i
= Det{A13f(( + A23£8 + 1133“!va + so (1-v-)wo

(5.4.11)

1 -l 2 -l

+-2-m A(soa 11(0)) + Io(a))]]

l -l 2 2 2 1
+ §A{a (Zso+d )Il(d) + soIl(a) + 10(0)}

where Det is the determinant of M(+1)' Aij is the

cofactor of the element a.. in M , and the

13 (+1)

f)’ fo, fr are defined in (5.4.6).

Incorporating all of this, (5.4.8) to (5.4.11),

determines the first order fluid velocities, pressure and

shell displacements subject to the relation (5.3.5)

Let us now examine the corrected velocity and

displacement ratios, )ur/uo) and )wr/wol, respectively,
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for the effect created by 6, Poisson's ratio v, and the

polar angle 6. We concentrate our attention on v = 0.5

as representative of biological materials and we allow 6

to be 0.005, 0.05 or 0.5 again banding the situation

presented in the aortic arch. Two angles, 6 = 30°,

6 = —60°, have been chosen so that their effect can be I'

measured as well.

 The graphs of the velocity ratio for the different

6

modes of motion are presented in Figures 38 to 43, and u

the displacement ratio is graphed in Figures 44 to 48.

Case I Acoustic Modes

We first examine the corrected ratios for the acoustic

modes. The acoustic mode for m small is given by

(5.3.11) for v = 0‘ and by (5.3.18) for v #'0 and the

velocity ratio evaluated for this mode is graphed in

Figures 40 and 41 respectively. First, um: notice that

changing v from 0.0 to 0.5 does not alter the

behavior significantly. Second, Mme see that the behavior

of the zero order case (6 = 0) and the corrected value for

6 = .05 are quite close, with the 6 = .5 curve showing

significant differences from the lower 6 values,

especially for W = -60°. The behavior of this ratio is

remarkably similar to the stress free velocity ratio

presented in Figures 22 through 25.

When we consider the acoustic mode for m large

given by (5.3.12) for v = 0 and by (5.3.20) for v # O
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we find the corrected velocity ratios given in Figures 38

and 39. As before, little change is introduced by allowing

v to be 0.0 or 0.5; the 6 = .05 curve is similar to

the zero order case (6 = 0); as we change angle we can

expect to introduce even more significant deviation of the

6 = .5 curve from the zero order curve. !

The displacement ratios corresponding to these

acoustic modes are given in Figures 45 and 46 for v = .5. 3.» 1'

In general the corrected ratios follow the zero order El

ratios rather closely except for the asymptote in the

m = .01 curve. In general the motion in the tube becomes

more radial as higher frequencies are encountered.

For v = 0 the corrected ratio is not given. In

the zero order the motion is purely radial for these modes

when v = 0. The corrected ratios are quite large indi-

cating generally radial motion.

Case II Tube Modes

The tube mode for m small is given by the so

expansion (5.3.19) and the velocity ratio for this mode

is graphed in Figure 42. Note that the 6 = 0 curve in

this figure is the plot of the straight tube velocity

ratio and we have already remarked upon its increasing

radial character. The character of the ratio for 6 = 0.005

and 0.05 is also radial from the point r = 0.2 to r = 1

and is more radial than the straight tube case. However



210

Velocity

Ratios

Tube Mode

m=.01

v=.5

B/c=l.

c=.l

=O(—-)

6=.05(——)

6=.5(--o)

Eh

  

6=.5

off scale

Ei

 



211

when 6 = 0.5, the ratio, apparently, reverses the trend

for small 6 and goes from predominantly radial at r ==1. to

almost longitudinal there. It is felt that this is probably

a spurious result due to the size of 6.

If we examine the velocity ratios for the m large

tube modes given by (5.3.21) given in Figures 43 and 44

we see that for v = 0 all 6 values are rather close,

the velocities being mostly longitudinal near the center

and more radial near the outer edge. When v = 0 ‘we

have essentially that so = B.

For v = .5 the 6 = .05 curves in Figure 44

behave much differently from the 6 s 0 curves, indicating

further restrictions on the use of the straight tube to

model the curved tube for this flow.

To examine the displacement ratios for these two

tube modes we turn to Figures 47 and 48. Figure 47

represents the m small mode displacement ratio plotted

for v = 0.5. The figure contains the results for 6 = 0

and 6 = 0.05 and they are almost identical. Plotted

against B we note several regions of radial motions and

this is due primarily to the compressibility of the fluid.

If c > 1.0, then go

and the regions of radial motion do not exist.

of (5.3.19) does not become infinite
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Velocity
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Figure 48 gives a representation of the displacement

 ratio for the tube mode of m large (5.3.21). This

mode is nearly the same as the empty tube mode so we

expect that the displacement ratio will behave like the

empty tube displacement ratio examined previously. Note

that the ratio evaluated at V = 30° and at w = —60°

is given on the same graph and indicates little sensitivity

to the 6 location.
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5.5 Second Order Correction

In section 5.2.3 we gave, in integral form, the

expression that allows us to determine the s2 correction

to the wave number. Equation (5.2.15) when substituted

into (4.3.27) and (4.3.28) yields the equation for 32.

For the inviscid fluid this equation is simplified since

the shear stresses Sr) and Sro vanish. Further, in

the case of zero order axisymmetric flow, u? = n? W = u: 6 = 0.

Employing these restrictions we obtain

2 O O O 2 2

s2[—4mB [sowo + vwr]wo + 2A so[Io(a)

2 0
- ao[ (2so + l-v)w

2 2 O

11(Q)]} = mg [zsoawwe e

O 0 0

so(l-v)wr] + ar[so(l—v)wo + 2Wr]

o 2 V o o 0
(5.5.1) + wo[ (350 + l- )we - so(2-\J)wr + so(\)—2)wo]

 

o o 2 2 D01. 153(2)
+ wrwo(l-2V)) + A {10(0) [T - 1 - 8 ]

2 2

33 s

2 Da 0 l o 1 2

+11(O"[A(22‘1)'2‘ 2(1+2So)
a a

2 2

S S

+ (5/4)sg] + I§(a)-49-[% - 423]}
a

where a2 = S: — B2/c2

.and

w
‘
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O

we = -szAIO(a)m 1{(1-v2-Bz)s§ - B2(1-f32)}'1

(5.5.2)

0 2 2 -1 2 2 2 2 2 -
wr = ..(s -so)AIo(a)m [(l-v -6 )s0 - B (1-6 )1 1

The aw, ao and ar terms are those of the first order I

shell displacements which are solutions of (5.4.3). _-

Eventually we are able to write the entire expression in

terms of the modified Bessel functions 10(a) and 11(a). r3

 
we should note that m = ph/poa where ph is

associated with the tube and poa is connected with the

fluid. When there is no tube, ph is zero, and since

there are no shell displacements we interpret (5.5.2)

so as to have w% = 0 = w?. This necessarily means that

Io(a) = O, which is the stress free boundary condition.

Examination of (5.5.1) shows that we arrive at the stress

. . 0 _ 0 _ _ 2g_= l 2
free correction if we — wr — Io (a) — O and A 530.

-1
For the case when poa = 0 'we see that m = 0

and so if we interpret (5.5.2) so that

{(l-vz-B2)sg - B2(1-B2)} 4»0 as m"1 410 then ‘W3

'WE are not zero. Understanding that A must.be zero if

and

there is no fluid we find that we have

[(l-vZ-B2)sg - B2(l-B2)} = 0 as the frequency equation

and we have found the correction for the empty tube.
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Finally if ph grows infinite in size we interpret

l 0 and w0 = w0 = 0.

e r

Understanding that I1(a) = 0 ‘we find the correction for

this case as the rigid tube. Then m-

the rigid tube.

Hence the correction (5.5.1) contains within it F

all the special cases we have been considering and is

therefore a composite of all those situations we considered

earlier.

 
To measure the effect of 32 we now concentrate

our attention on the phase velocity

(5.5.3) o - ———é———-.

Equation (5.5.3) has been evaluated for the four main

modes considered previously. For example, using the

acoustic mode for m small, i.e., (5.3.18), we obtain the

corresponding value for s from (5.5.1). New choosing a
2

6 value and a v value, we evaluate (5.5.3) versus B

where we have standardized c at 0.1. Our results are given

in Figures 49 through 53.

Case I Acoustic Modes

In Figure 49 we present the phase velocity (5.5.3)

in which we have used the acoustic mode expansion (5.3.18)

for so for m = 0.01. we have plotted the curves for

(5.5.3) for the first two zeros of Jo(20n); n =l,2 and

labeled the curves corresponding to n as l or 2.
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The curves for 6 = 0.005 and 0.05 were

extremely close together and their distinction on the

plot was not possible. Thus we show only the 6 = 0.05

curves as the solid lines.

A comparison of the phase velocity obtained from

(5.5.3) and that corresponding to 6 = 0 (previously

plotted in Figure 31) shows extremely good agreement over

the interval in B to about B = 1.5 at which point

(5.5.3) starts to rise monotonically. The agreement range 1

between the 6 = 0 cp and the corrected cp expands in B

to 2.0 for the second mode n = 2, and it is expected

that a larger interval of agreement would be Obtained

for higher modes.

For the sake of comparison we include the results

predicted for 6 = 0.5 and for this value of 6 ‘we

find no agreement with the straight tube case (6 = 0).

Let us now consider the phase velocity for the

second acoustic mode using (5.3.20) and n = 1,2. This

case has been plotted in Figure 50 wherein the two modes

corresponding to n = 1,2 are labeled as such and where

6 = 0.05 is the solid curve. we note that the two 6

curves for n = l are close until B reaches 1.1 and

the 6 curves for n = 2 agree until B is near 2.0.

However, and more importantly, the agreement between the

6 = 0.0 curves of Figure 31 (m 100, there) and those in

Figure 50 is very good for B nearly 2.0.
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Case II Tube Modes

The phase velocity of the straight cylinder

interaction problem is given by the tube mode so = B

or, cp = l, in the case where Poisson's ratio is 0.0.

For v nonzero, however, we have found that cp, predicted

by (5.3.19) and (5.3.21), exhibits asymptotes due to the k...

compressibility of the fluid. Figure 37 is a graph of

c for v = 0.5 and for m large and small, 100.0,

P

0.01, respectively. While the m small mode exhibits  

(‘
4:

the general behavior pattern, cp 1.0, except for the

asymptotes, the cp curve for m = 100.0 shows a cutoff

in the interval \/l-v2 < B < l. The character of this

mode is much more akin to the empty tube mode previously

examined.

Let us now examine the effect of curvature on cp

by inserting (5.3.19) or (5.3.21) into (5.3.3) for

v = 0.5. The results are illustrated in Figure 51 for the

value 6 = 0.05.

A direct comparison with the zero order empty

tube mode, m = a, Figure 3, shows remarkable agreement

with the cP value Obtained from (5.5.3) using (5.3.21)

with m = 100.0. The agreement is good over the entire

frequency range B > 0, except near B = 0. In the interval

0 g_B g_0.02, the cp obtained from (5.5.3) becomes

negative and approaches zero through negative values due
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to the asymptote at about 0.02. The corrected velocity

differs from the velocity, Figure 37, in that the com-

pressibility of the fluid is suppressed now when m is

large.

Turning our attention to the m. small case we

note good agreement with the straight cylinder phase “46

velocity plotted in Figure 37. Compressibility of the

_
_
.
“

|
_
.

 

fluid is responsible for the asymptotes and in general 5;?

cp is near 1.0 in value as in Figure 37.

We present further results concerning the m small

mode in Figures 52 and 53. The pertinent data for these

cases is v = 0.0 and 6 = 0.05 (Figure 52) and 6 = 0.005

(Figure 53). Drastic behavior changes in cp are found

in these cases and especially in the 6 = 0.05 curve.

The phase velocity is influenced primarily by the fluid

compressibility especially in the neighborhood of B = 1.

For the smaller curvature, cp is again near 1.0.
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CHAPTER VI

COMMENTS AND CONSIDERATIONS

6.1 Introduction

In this chapter we conclude the present work with

some comments on what has been presented in the preceeding

chapters. In section 6.2 we consider the situation in

 which the mass parameter, m, is the same size as the

perturbation parameter 6.

In section 6.3 we present sane restricted results

and make a comparison to available experimental data.

Finally in section 6.4 we summarize the present

contributions and indicate what further studies are

contemplated. We are also able to make some statements

regarding areas of analysis which must be mastered before

further generalizations can be contemplated.
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§;g_ Comments on the Size 9E1 m

Implicit in the development of all the equations

in Chapter II is the assumption that the mass parameter,

m, is of order 1 in comparison to the perturbation

parameter, 6. We recall that m = ph/boa and that in

biological cases p/bo is nearly one. We also note that

h/a is required to be small in the thin shell theory so

that it is possible for m to be small. we therefore

choose to consider m = Q6/boa where Q and (poa) are

of order one compared to 6. If we examine typical terms

from the shell equations (2.2.8) we find that there are

three basic terms written as

2 2 2 2 2 2 2
phé-uszB' poa éfibSaB' ph§_bi w

where we have non-dimensionalized using (2.5.3) and set

qg = Sr§)r=l' Here N35 is a typical shell stress resultant,

S is a typical fluid stress evaluated at r = 1 and w

GB

is a typical shell displacement. If we replace ph by

06 then the zero order shell equations are reduced to

setting the fluid stresses (at r = 1) equal to zero.

we see then that if we are to consider the shell displacements

of order k (k21) then the fluid stresses are of order

(k+l) in these equations.

For the zero order inviscid fluid the axisymmetric

velocities and pressure are given in (4.4.1). Setting

the fluid stress equal to zero at r=1 gives
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(6.2.1) sgr(1) = -po(l) = AIo(d) = o

where

a = $3 - Bz/c2

 

We proceed to the first correction equation (4.3.13) l

written as follows in the inviscid case. '41

2w 1 0 0 -

(6.2.2) fou°(1)slr(1)d(= 251 jojouo(r)soo(r)rdrd¢. 9.3

We replace s:r(l) by the remainder of the first order

shell equation (3.2.2). i.e.,

Q
1 _ _ _ O _ O

S r(l) — +5-63{(B21)w0 W4“)! vsowo}.

Since only radial velocities must match at the boundary

we assume that w? and w% are not necessarily axisymmetric

as are their counterparts in the velocity field of the

fluid. We assume

w? = aocosw + bwsinw + co

0 _ .
(6.2.3) wo —- aoSinw + bocosw + ce

0

w = c
r r

where the a's, b's and c's are constants. The

correction is written as
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AQI ((21) Q
1 2 O O

" “TB" 90a IONS ’1) ”r " WM

(6.2-4) —sz[aesin¢ + b ecos); + ce]}d¢

2

—IOSOI3(ra)rdr.

_4Ws1A

The integral offiw? W is zero by periodicity as is true

of the sinw and cosw terms. Hence we have

 

AGII(QJ Q 2

" 1B poa [(B ‘1)Cr - VSOCe]

(6.2.5)

S0S1 A2
= 13 {10(a) - 121(a)}.

We must solve for cr and c6 if we are to evaluate the

correction. The equations for the zero order shell

displacements involve p1(1). we find the first order

pressure from equation (2.6.20) and determine

P1(ro¢) = C010(ra) + I l(rd)[C cosw + D sinw}

(6.2.6) - %A sin¢{rzsga111(ra) + rIo(ra)}

-1
+ Asosla rIl(ra).

We should note that for our earlier work in chapter IV

81 = 0 so that the last term in (6.2.6) was not present.

[cf. (4.5.1)].

L.
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Substitution of (6.2.3) into the first order shell

equations (3.2.3) through (3.2.5) gives

 

 

 

62-1-%s§(1-v) %_-So(l+v) a ¢ 0

(6.2.7)
=

-so(l+v) Bz-sg~%(l-v) a9 0

52-1-%sg(1—v) - -%-so(l+v) 19‘y 0

(6.2.8) =

-—SO(1+V) 62-53%(1-V) be 0

2 1 2 _
(6.2.9) [B - —so(l-v)}cw — O

2

B - s0 0
poa Asos1

(6.2.10) = - ~6—' a 11(a)

-v50 1

_ pOa
-b¢ - vsObe — - Q CI1(a)

(6.2.11) P

_ 0a 1 2
a11’ - vsoae — - Q“[D- EASO/o}11(a)

By (6.2.1) the frequency equation is 10(a) = O, i.e.,

J0(ia) = 0. Since the determinants of the coefficient

matrices in (6.2.7) through (6.2.10) are not identically

b b and c are all

‘1' 9 W
zero we can conclude aw, as,

zero and that
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2

 

 

c _ - Avsosll}}g)poa

6 — aQ Det '

(6.2.12) 2 2

C = — A(B -so)sos}11(a)p0a

r aQ Det '

_ 2 2 2 2 2
Det - (B -sO) (B -1) v so . .

“~n

From (6.2.11) we find C = O and D = %Asg/o which is

the value of D for the stress free condition. Matching

 radial velocities we find that i1

and therefore

(6.2.13) - “291)“

we have then found 31 by matching velocities, but we

also have the correction equation (6.2.5). Substitution

of (6.2.13) into (6.2.5) satisfies the latter relationship

exactly.

When m = 0, as in the stress free case. we

interpret this to mean that Q is zero and hence = O.
31

Therefore the situation in which m is small reduces to

the case m = O with 31 becoming zero just as in the

stress free case.
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Use of (6.2.13) in (6.2.12) leads to the following

relations for the zero order shell displacements:

w? = 0,

(6.2.14) w% = Avsoa11(a)/BZ(B2-Sé)o

w: = AoIl(a)/BZ.

We are also able to write

P1(r.W) = C I (ra) + 1A sin([s
2 -1 2

O O 2 a (l-r )Il(ra)
O

a(Det)rIl(ra)

 - rI (ra)}——A—Q- v W

O pOa 62(52—53)

For inviscid flow we have from (4.5.2) that

Ufi(rl ‘1‘) = Pl'w/rifi:

(6.2.15) ué(r,¢) = so[rpo sinw-pl}/iB.

l .

ur(ro W) = p1,r/IB °

We see that u; does not depend on Q and hence 31

since the derivative with respect to ¢ eliminates the

Q term from p1(r. 1b) . One can note then that the first

order correction has no influence on the circumferential

velocity, its effects being felt in the pressure and other

velocities.
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§;§_ Comparison with Experimental work

There has been some experimental work reported

in the literature regarding the wave prOpagation char-

acteristics of fluid filled curved elastic tubes. This

'work was performed at Stanford University and is summar-

ized in a report by Anliker and Van Buskirk [22].

In general a fluid filled flexible tube was coiled

in a semi-circle and suspended by flexible strips from

another rigid tube. A disc was inserted in one end of

the tube and vibrated in a controlled manner. Three

separate types of waves were generated during the course

of the experiments. The three waves were denoted by the

terms axial, pressure and flexural respectively.

Daras, in his thesis, compares his analytical

results with those reported by Anliker and Van Buskirk.

All investigations assume an incompressible fluid so that

2
a = sg-Bz/c2 reduces to a = so.

Case I. Flexural Waves (one wave around the tube)

Daras assumed in this case that B < < 1 and that

the zero order terms have the form

0 _ O . O = O =
WW — W¢51n¢, we chcosw, wr wgcost

(6.3.1)

po(r,¢) = A11(rso)cos¢
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Inserting these expressions into the shell equations

(5.2.1) with n = 1 results in a system of equations

in W0 W0 W? and A. If we ignore the 62 terms we
WI 8'

find

1 2 1 O

-l--2—so(1-v) #580 (1+v) -1 Ww 0 A

1 2 1 _ A “1
(6.3.2) —§so(l+v) -s07§(1-v) -vso wg —-m1l(so) o

_ l _ V30 _1 w: 1 JV)—

6 
Solving for w: and matching velocities at r = 1 gives

1.18

(6.3.3) -ing = ug(l) = po(r,¢),r/iBlr=l .

The result of (6.3.3) is a frequency equation of the form

2 4 2 _ 2 5 '
(6.3.4) B Il(so){so+250+l] — m(l-v )soll(so)

If we make the further restriction that s0 is small, writing

11(30) arsO/Z and 10(50) 2 1, then the result takes the

form

(6.3.5) 33(62-m(l-v2)} + 26288 + 52 = 0.

we present the graph of the phase velocity,

cp(=B/so), in Figure 54. We converted the data of the

Stanford experiments into our notation using h/a = .0967.

p = 1, Q) = 1.248 and v = 0 or v = .5. These curves

compare well with the experimental data presented in the
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Stanford reports and indicated by crosses on the graph.

Daras solved (6.3.5) by the quadratic formula,

expanding the denominator in a geometric series. Taking

the lowest order term he finds

(6.3.6) 33 = 6[m(1-v2)}"1/2

Computing cp from this value also gives reasonable

agreement with experimental data.

 

Case II. Axial waves.

The second situation Daras considers is that of

axisymmetric axial waves. In this situation the flow in

the zero order system is assumed to be inviscid and

axisymmetric. Daras set w0 = 0, WC = 0 and w0 = 0.
(l; r,¢ 60*

If one makes a long wave length assumption, i.e., so is

small and m < < 1, then the zero order shell equations

take the form

B2-52 -vs w0 0

0 O 9 A

~vs0 B -1 wr l

Daras notes that under these conditions Anliker and

Maxwell [23] have found w: small for small B. Setting

w: = 0 forces us to conclude that

30 = B

0 _
we - A/vsom

where we have replaced 10(30) by 1.
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If we now pursue this prOblem further by searching

for the correction s we find that the first order system

 

 

2

assumes the form

3 2 3
-1-+Zso 250 1 aw f)

3 1 _
(6.3.8) 450 -4 —sO/2 ae - fe '

“‘1

2

l —sO/2 sO-l ar fr

r1I

where we have utilized the fact that i] i

1 _ 1 _ . 1 _ . _
WW — awcosw, we — a951nw, 'wr arSinw, v .5,

and

f) = 5A/2m.

_ 2

(6.3.9) fe — -A(l+8sO)/2som,

Ds

_ o A 2
fr — A/m - ( 2 - 2[so/2+l]]/m.

Using Cramer's rule we solve for ar and set it equal

to fii(l)/B2, with the tilda denoting the sinw portion of

~1
u .
r

If we keep only those terms which involve m-1

we find that

0 '
q

»

.3..- __.

and from that we find

pl(r,w) = 3Ar sinv.
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This value for p1 corresponds to that found by Daras.

S .

Solving for ar by setting a = -l‘£- we
r 62

we find for the lowest order terms in so that ar = 3A/B2

which also corresponds to the value obtained by Daras.

Returning to the shell equations of first order ILfi

we find by Cramer's rule that

a =35- '
6 mB ._

which agrees with Daras. Finally we solve for a

 

Cramer's rule again, obtaining

a -17A

W — 8m '

. 2 . . . _ 61!
Daras obtains 3A/B 'Wthh he finds by setting at - 2.

B

i.e. from matching velocities in the ¢ direction. This

procedure is not applicable in the inviscid fluid since

there are no shear stresses in the fluid and hence no

coupling of the fluid and shell velocities in the circum-

ferential direction.

Utilizing the values we have found for a a ar,t. 90

O by takingwe and D we examine (5.5.1) and find 52

those terms which are of lowest order in B. ‘We find

(6.3.10) 82 = -3m/16B

so that the corrected phase velocity is given by
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(6.3.11) cp = {1 — 3m62/16B2}_1

Daras finds a different value for cp although it is of

the same form. He expands the right side in a geometric

series which is not correct as the expression 3m62/16B2

is not less than one for B near zero. In fact there is

a vertical asymptote for B = 6V/3m74. The graph of cp

is given in Figure 55. We have utilized the following

values for the parameters appearing in (6.3.11):

m = 0.075, 62 = 0.01 and 0.0 < B < 0.1. The agreement

between our theoretical values and the experimental results

are quite good.

Case III Pressure waves
 

In this case v = .5 and the acceleration terms

are neglected in comparison to other terms. As in the

axial waves the flow is inviscid, incompressible and

axisymmetric in the zero order. The wave lengths are long

so that 50 is small.

The shell terms are written as

2 0
--s0 -vso W6 A 0

(6.3.12) 0 = "H 10(50) I

-vs0 -l wr 1

while the fluid velocity in the radial direction is

u: = 5011(sO)/iB ,

and the boundary condition takes the form

. 0 _ 0
-1Bwr - ur .
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Solving for ‘WS and satisfying the boundary condition

 

we find

so = B\/8/3m,

w0=4é W0=_2A [3m w0=0

r 3m' 9 3mB £3 ' W '

The first order displacement equations satisfy I.

1 2 3 “

‘1 ’ 250 280 1 a) f)

3 2 1 _
(6.3.13) 2'50 --s.O — 4 -sO/2 a9 — f6 J;

l - 0/2 1 r fr

where the first order displacements are the same as those

in the axial waves, and

 

W

w? 353 1

(6.3.14) f9 = g—[— + g}

0 2

Ds

_ 3 0 l_ 0 _ §_ 2

fr " Zwr ' m[ 2 2(30/2+1)]

Solving for ar and satisfying the boundary conditions

DsO

we find A = -l and that

_ 2

ar — -A/B

(6.3.15) a9 = -5A/3som

a = -A/msg .
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As before we have some disagreement with Daras due to his

use of boundary conditions to determine other than the

radial velocity.

Utilizing these values for the zero and first

order velocities we find from (5.5.1) that keeping only

terms of order (ms(2))"1 we find

(6.3.16) 32 = 3/l6sO

and the corrected phase velocity is given by

(6.3.17) c = «gm-[1 + 2

P 8 128B

The corrected phase velocity is plotted in

Figure 56 and the comparison with experimental data is

rather close.

All of the above cases have shown close agreement

between theoretical and experimentally predicted phase

velocities. The results plotted by Daras are different

analytically from those presented here yet they also agree

fairly well with experimental data. As can be seen the

experimental data exists only for a limited frequency

range and the values given are essentially the first term

of the phase velocity.

Further experimental work needs to be done on the very

small frequencies in order to determine the exact behavior

in this region of small frequencies.
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6.4 Final Considerations

We are now in a position to reflect on what has

gone before in this treatise. We established the equations

for a fluid flowing in a curved membrane shell. we attacked

the problem through the use of a power series expansion in

a small parameter for all our variables. The result of

this procedure was a series of problems starting with a

prOblem apprOpriate to a straight tube flow. we analysed

the frequency equation resulting from the straight tube

prOblem and then proceeded to find corrections for our

zero order variables.

We found for a particular variable, the wave

number, that the first correction was zero and that the

second order correction was required. We interpreted

this correction as accounting for curvature effects not

found in the straight tube. Various ratios of velocities

and displacements were calculated and these values com-

pared to those of the straight tube. we found some regions

where there were differences between the straight and

curved tubes. In other frequency ranges the straight

and curved results are nearly identical.

‘We have also found that.when the parameter m is

of order 5. then the first correction. U: the zero

order wave number is not zero. This fact has not been

noticed by previous investigators and therefore deserves

fluflmrshfly.
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Finally we should comment on the basic prOblem

present in such an analysis as we have presented. The

fundamental prOblem is analysis of the frequency or

dispersion relation deve10ped for the zero order system.

This equation is transcendental in nature and in general

quite difficult to solve. A recent paper by Scarton and I

Rouleau [24] presents a computer analysis of a frequency -—m

equation similar to ours. In this analysis the complex

roots are sketched. Unfortunately it is difficult to find ,2

 
an analytic relationship among these roots which could be gJ

used in computing corrections for lower order terms.

In conjunction with the last comments we should

point out that there are further problems which require

solution. For example the bending terms might be intro-

duced into the shell equations or the shell might be

described as anisotropic. Another problem would involve

the introduction of viscous terms into the solutions.

we have pmesented the solutions but the complete analysis

of the frequency equation for these more general models

is lacking.

What we have been able to do is solve a basic

prdblem, fundamental to the field of biological fluid flows.

we have analysed the zero order situation and then pro-

ceeded to write an expression which accounts for curvature

corrections. In addition to demonstrating the existence

of such a correction we have also computed it and shown its

effect on lower order terms.
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