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ABSTRACT

PART I
AN ELECTRON SPIN RESONANCE STUDY OF RADICALS
IN IRRADIATED SINGLE CRYSTALS
OF MANDELIC ACID
PART II

A GENERALIZATION OF METHODS FOR
DETERMINING g TENSORS

By

William George Waller

In Part I, the electron spin resonance spectra of
irradiated single crystals of mandelic acid, CGHGCHOHCOOH,
have been studied. Two radicals, a-hydroxybenzyl (CGHSéHOH)
and cyclohexadienyl-glycolic acid (CGHGCHOHCOOH), were
identified and the ESR parameters determined for each.

The a-hydrogen hyperfine splitting tensor of the
a-hydroxybenzyl radical is nearly isotropic with principal
values (-15.0,-15.3,-18.3) gauss and the g tensor is nearly
isotropic with principal values (2.0022,2,0033,2.0039).

The ESR data are those expected for a planar m-electron
radical and molecular orbital calculations (INDO method)
confirm this and provide detailed geometry. The benzene

rings appear to have reoriented upon irradiation.



William George Waller

The cyclohexadienyl-glycolic acid radical shows a
large hyperfine splitting by the methylene protons; the
tensor is nearly axially symmetric and quite anisotropic,
with principal values (-28.5,-52.5,-57.3) gauss.

In Part II, a generalization of the usual methods
for obtaining the principal values, and directions of the
principal axes, of the g tensor from single-crystal ESR
data has been derived. The formalism of Part II converts
the inherent overspecification of tensor elements into a
determination of three rotational misalignments, and so
improves the accuracy of the g-tensor parameters. The
procedures developed have been applied to the determi-
nation of g tensors from rotations about orthogonal axes,
monoclinic axes, coplanar axes, or general axes. The
coplanar and general cases should prove useful in
determining g tensors for needle-shaped crystals and for
crystals with inconvenient face development. The equations
have been cast in a convenient form for computer programming

and a program has been written.
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PART I

AN ELECTRON SPIN RESONANCE STUDY OF RADICALS

IN IRRADIATED SINGLE CRYSTALS

OF MANDELIC ACID



INTRODUCTION

One distinctive difference between gquantum mechani-
cal and classical properties of systems is that there are
sharply defined energy levels in the former as compared‘to
a continuous range in the latter. In situations where the
quantum mechanical energy levels are not too close together,
a resonance technique can sometimes allow an accurate
determination of energy differences between levels.

There are at least four "simple" types of resonance
phenomena--nuclear, paramagnetic, ferromagnetic, and
antiferromagnetic. The first is concerned with inter-
actions of the nuclear dipoles, while the last three deal
with electron dipoles. The last two phenomena deal with
magnetic systems where the electron dipoles are strongly
coupled by exchange forces. Paramagnetic resonance is
confined to loosely-coupled systems where the paramagnetic
units may be regarded as individuals.

Such loosely-coupled paramagnetic species some-
times can be formed in irradiated single crystals. The
damaged molecules can become trapped and oriented in the

crystal. The interaction of the odd electron with nuclei



in the damaged molecule would cause its energy levels to
change and divide. These effects can be determined by
electron spin resonance (ESR) spectroscopy and can be used
to identify the radical and its orientation. Molecular
information concerning the radical also can be deduced.

While there has been a lot of work done on ESR
studies of aliphatic radicals in organic single crystals,
the literature on ring compounds is small. There has been
an interest in discovering the benzyl radical or a simple
modification of it in single crystals. The nature of the
delocalization of the unpaired electron could provide
information concerning the structure of the radical. dl-
Mandelic acid was chosen because it is a relatively simple
ring system. On irradiation, two ring structures, the
alpha-hydroxybenzyl radical and the cyclohexadienyl-
glycolic acid radical, appear to be formed. The analysis
of the ESR spectra of these radicals has been carried out
and their geometrical and electronic structures are
discussed in Part I of this thesis.

Part II of this thesis consists of a theoretical
treatment of methods for determining g tensors. A gener-
alized procedure is derived that can be applied to any
symmetric second rank tensors such as the zero-field
splitting and hyperfine interaction tensors D and A,
respectively. The computer programs used for Part I and

Part II are also listed in the Appendices.



HISTORICAL BACKGROUND

I. Historx

Some important dates in the history of magnetic

reasonance are as follows:

1936--First prediction of magnetic resonance absorption by

Gorter.l

1938--First observation of magnetic resonance absorption
in molecular beams by Rabi, Zacharias, Millman and

Kusch.2

1945--First observation of the electron spin resonance

phenomenon in liquids by Zavoisky.3

1946--First report of nuclear magnetic resonance by
Purcell, Torrey and Pound4 and by Bloch, Hansen and
Packard.5

1947--First ESR free radical spectrum was observed by

6

Kozyrev and Salikhov.

1949--First report of ESR hyperfine structure by Penrose.7

1949--First evidence of quadrupole interaction by Ingram.8

1949--First ESR study of naturally occurring organic free

radicals by Holden, Kittel, Merritt and Yager.9



1951--First analysis of the hyperfine structure in the ESR

spectra of paramagnetic salts by Abragam and
Pryce.10
1951--First ESR study of free radicals formed by radiation
damage by Schneider, Day and Stein.11
1956--First ESR study of oriented organic radicals in a

single crystal by Uebersfeld and Erb.12

1956--First ENDOR experiment by Feher.13
1958--First ESR study of a triplet state by Hutchison and
Mangum.l4

1959--First complete analysis of the ESR spectrum of an

oriented organic radical in a single crystal matrix

by Cole, Heller and McConnell,15 by Ghosh and

16 17

Whiffen, and by Miyagawa and Gordy.

II. ESR Literature

There are many surveys of the ESR 1iterature18—31

including in particular an early review by Morton26 of

radicals in single crystals. Recent work on ESR of organic

radicals is discussed in a review by Kochi and Krusic.31

There are also frequent review articles in the Annual

Reviews of Physical Chemistry32 and in the Annual Reports

33 Other sources of information

34-38

of the Chemical Society.

include the proceedings of ESR symposia and col-

lections of ESR data.39'40



There are also a large number of books on ESR.

Textbooks giving a complete introduction to magnetic

41
resonance are those by Carrington and McLachlan and by

Wertz and Bolton.42 ESR theory is presented in a new book

by Poole and Farach.43 A more mathematical book with

emphasis on interaction mechanisms was written by Slichter.44
There is a comprehensive reference book by Abragam and
Bleaney45 that does not contain many formula derivations.

A textbook approach in deriving the necessary mathematics

for ESR theory has been used in a work by Griffith.46
Comprehensive books covering the experimental techniques

include those by Poole47 and by Alger.48

ITII. g and A Tensors

In ESR, the most commonly measured quantities are
the g and A tensors in crystals or their isotropic values
in liquids, powders, or glasses. These quantities are
defined by their contribution to the following spin

Hamiltonian.

> = 5> > == -»>
H = gii-g-3 + glp Ap S

where H is the magnetic field intensity vector, and fp and
S are the spin angular momentum vectors of the pth nucleus
and the unpaired electron, respectively. Given a specific
magnetic field direction, the value of the g tensor
describes the Zeeman contribution to the energy of the

system as a linear function of magnetic field strength.

The "shape" of the tensor describes the variation of this



Zeeman energy as a function of magnetic field direction
in the crystal. In a similar manner, the Ap tensor
describes the hyperfine energy contribution due to the
interaction of the unpaired electron with the magnetic
moment of the pth nucleus.

The g and Ap tensors each have three principal
values associated with three orthogonal directions. These
principal values can be equivalently specified by their
average isotropic part and their anisotropy.

From ESR studies of a variety of oriented radicals,
investigators have found patterns in the average values
and anisotropies of the g and A tensors. These are useful
in identifying the radical. The principal g values are
related to the orbitals occupied by the free electron. The
principal values of ip are related to the number of bonds
and the geometry between the pth nucleus and the site

where the electron is located.

IV. Pi-Electron Radicals

One of the common types of organic radicals,
concerning which there is a great deal of theoretical and
experimental literature, is the pi-electron radical. This
is a paramagnetic molecule containing a number of coplanar
atoms, usually carbon and hydrogen, such that the spin
paramagnetism is largely distributed in atomic orbitals
having a node in the molecular plane. The experimental

A_ tensors have been related to the interaction between



the unpaired electron and o protons (C—Ha), % protons
(C-C-HB) and 13C of the central carbon atom.
For the o protons, the theoretical relationship for

the isotropic part of A ig28. 49754

where Q is approximately a constant having a value of -22.5
gauss and p_ is the m-electron spin density on the carbon
atom. The anisotropic part has been found in general to
consist of the three principal values (+10,0,-10) gauss.
The first value corresponds to the H-C bond direction, the
second value to a direction perpendicular to the radical
plane, and the third value to a direction perpendicular to
the two previous directions.26' 35, 56
The A tensor for B protons is generally quite

isotropic and has been described by the equation57' 58

a = B. + B 0052 0

where BO is a constant with a value between 0 and 4 gauss,
B2 is about 50 gauss, and 6 is the angle between the
projections of the axis of the unpaired electron 7 orbital
and the C-Hg bond onto a plane perpendicular to the C-C
bond. Tables of a- and B-proton splittings have been

given in the Ph.D. theses of Kispert59 and Watson.60



THEORETICAL

I. Introduction

The theoretical development and the inherent
limitations of ESR are dependent upon the approximations

used to solve the nonrelativistic Schroedinger equation
Uy = EV. (1)

The problem is that Y is a function of the
positions, momenta, and spin states of all the particles
in the system. The Hamiltonian?‘ is a quantum mechanical
operator analogous to the classical mechanical formula for
the total energy of the system. This is complex in that
it includes all interactions between the particles. The
main approximation needed to solve Equation (1) is taken
from the following equation:

c:V.:, (2)
o 14

€
]
e 8

i
where wi are the functions which (as is postulated) span
the space. We assume that we can pick some set of
functions ¢i so that the infinity in the summation is

replaced by a finite reasonably small number.



If Equation (2) is applied in a perturbation

formalism where

U=Hy +H'  Hyoo ) = g0, (3)

and the effect of H' is small compared to that of7{, then
the coefficients =N of Equation (2) are of the order of
(E:o(k)-E:o(j))-n for the nth order perturbation where Eo(k)
and Eo(j) are the exact energies in Equation (3). So if
we order the functions ¢0(j) according to their energies
Eo(j), then we terminate the summation in Equation (2) when
Eo(j) becomes "large" since that corresponding coefficient
is "small." The functions ¢i that we choose form a manifold
in the infinite dimensional wi vector space.

Electron spin resonance is concerned with the
interaction of an electron with other electrons, nuclei,
and external magnetic fields. The number of functions
needed in the manifold to describe reasonably this inter-

action is determined by considering the time-reversal

operator and Kramers theorem.

II. Time Reversal and Kramers Degeneracy

The time-reversal operator 0 can be defined by its

effect on wave functions wi in

d(6y, (t)) Y, (t)
- ot~ st
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Thus 6 would have the effect of reversing every momentum
while not affecting the positions of the particles. We,

therefore, can define 6 by its effect on oEerators:61

(4)

We can apply this similarity transformation to the quantum
mechanical operators that correspond to the following

classical quantities:62

g -+ > > 1,»> = -+
L = Smrxv dt , = fgfrxJ(r') artr ,

> > >

where L is the angular momentum, and u and H are the
magnetic moment and magnetic field, respectively, of the
current distribution 3(;'). We can thus write in terms of

operators

oo™l = %, oo™l = %, efie™l = -F, 63071 = -8, (5

where the last relationship follows from the exact mathe-
matical analogue of the postulated intrinsic spin to the
angular momentum in guantum mechanics.

It can be seen then that the spin-spin and spin-
orbital interactions of the electrons are invariant with
respect to the time-reversal similarity transformation,
as is the kinetic energy and any time-independent potential

energy. If these are the only terms we allow in the
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Hamiltonian of the isolated system of the electron, then we
see that 6He™ ! =N, and © is a symmetry element.

Consider the following equations:

(i) ¥ = Y (6)
6 (i) y = (sHo™Hyou
0 () v =Hou . (7)

They can be taken to mean that the isolated system evolves
forwardly in time (Equation (6)) in the same way as it
would appear if viewed by someone going backwards in time
(Equation (7)). Continuing the physical reasoning, we
would deduce that the transition probabilities between
states is the same in the time-forward or time-backwards

view of the system. This gives us the mathematical

assumption that

lco,¥) 1% = | (89,0¥) |2
Using this equation, it is shown63 that
6fa. ¥, = Ja*ey, ; 62 = +1 (8)
{ i'i H i“ri ! -

and thus we call 6 an antilinear operator. From Equation
(4), 9 has been determined for a one-electron system in

the coordinate representation
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where we use the standard Pauli matrices
_ {01 _ {0 -i) _ /1 o
°x‘(1o) Oy‘(io °z‘(o—1)'
and we define
_ (10 _[01 -
E = (o 1) E ‘(—1 0) Rov=v*
which can be used to derive
e-l 2 2

= -Kgt = -CK, i 7 = 67 = -1

and the formulas for the many-electron system

n 1 n
8 = K n zc ; 6 =K II (-z) ,
0 P= 1 P Op: 1 P
2 _ . . even
6% = (#)1 if n is (Odd ).

If an isolated system has an odd number of

electrons, then 62=—1 from Equation (9), and it has been

shown64

another orthogonal eigenfunction of the same energy.

ground state of the isolated system of the electrons is

that if ¢ is an eigenfunction, then ¢ = 6¢y is

(9)

The

then at least two-fold degenerate and this two-dimensional

space is spanned by what is called the Kramers doublet.

If we now add to the Hamiltonian the interaction

> >
due to an external magnetic field u.Hext

invariant under the 8 similarity transformation because

> > -1 _ -> =1 . > -1
H )6 = (0ub ) (eHexte

)

, then 7-{ is not
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and ﬁext is not part of the isolated system under study.

Likewise, if the nucleus has a magnetic moment, than

_’ + . . 3
“I'Hel is not invariant because

(eu o™ hy - (el_jo7h) = (i ) (10)

where ﬁI is the magnetic moment of the nucleus (which is
not part of the system) and ﬁel is the magnetic field
produced by the electrons at the nucleus.

In ESR, these interactions are considered pertur-
bations which lift the degeneracy of the Kramers doublet
and thus we assume that the excited states of the electron
system are much higher in energy than either of the external

interactions.

III. g and A Tensors

The g tensor is developed by considering the
matrix elements of ﬁ. It has been shown64 that,since
636_1=-; from Equation (5), the expectation values of
uq(q=x,y,z) in the two Kramers-conjugate states add to
zero. The matrix representing uq in the Kramers manifold
must be Hermitian since uq is a physically measurable
quantity. So, in general, we can write

lv>  ley)
DY
q le@) xq+iyq ~2g .

= |
Il
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This can be written in terms of Pauli matrices as

= x 0 +y 0 +2 0 = .o. 11
a” g% ¥q vy %q°%2 %r(q)a j (11)

= |

and we can put this in terms of a 3X3 g "matrix"

_ _ 2
993 B T@j
_ Bo =
e Mg T T %gqj j

The basis functions y and 6y are arbitrary in that we can

choose two other states as in

y' = ay + b(6Y)
(6y') = a*(6y) - b* y,
where we have used the relations in Equation (8). We can

write that
= b = . = == =_l
D = (Lg* a*)l uq = D'Uq’D

represent the similarity-transformation matrix and uq' in

the new basis manifold. It can be shown65

that the change
to the new matrix iq' can also be represented by a proper
rotation of the vector ;q(j) in Equation (l11]). This is to

say

8

Bt = JRT)).5, = L RiTy104 = = = 1 (gL 5.
q § (@) "373 i i jiv(q)i~] 7_j i(R )iquicj
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After changing the basis set and obtaining the new matrices

ﬁq', we can also rotate the coordinate system by the

rotation matrix S to give new tq":

;n - ?.;l u" o= Zs u
" Fr rq q
q
"' ':' "o ES i ]
r
q rq q
and
B B
el R __e- 1 = - _ _g wo
Mo T 2 qgisrngi( )ij j 2 %grj Oj !
where
o =55F!-55%.

For the "matrix" g to be considered a second-rank (co-
variant) tensor, we must arbitrarily decide that for every
rotation E, we will change the Kramers basis functions so

that the equivalent mathematical rotation R is set equal

to E.
Now, if we consider the g2 matrix formed by setting

= =T =
G=g g, G =19 .9

(12)
T

G" = au 0"9—" = }_z.g .

Using the relationships

yT - 5757 ®l.g°

(A*B*C) = C *B -+
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we see that we need not put any restrictions on G, and that

it is a "true" symmetric tensor.

This tensor is useful when we consider the

eigenvalues of the Zeeman Hamiltonianﬂ{' = —ﬁ H
B H fz fx-ify
.._E.z 2 § =<V g = Z g =
= = g .0, = )f.0, = +3 _
2 q i 2 ai gq’qgi i i ii fx ify fZ ’
where
N BeH
Hq = p’qiﬂl ' fi = Tg‘q’ngi (g=x,y,2) ,
and the lq are the direction cosines of the magnetic field
The

with respect to the original coordinate system.

eigenvalues of77'€=EE are obtained by setting

£ -E foifyl
fx+1fy -fz-E
E =+ /£ %+£ 2+£ 2% = +(Zf 2)1/2
T Thy T2
B H

Bl 1/2 e % 1/2
e g g ) (12,9 )] =+ (12 2 ¢

= E[(g plpi! 4 a’ai 2" 'pq p q°pd’

Now, when G is diagonal, we have

B H B H
1/2 e
= .._ 2 =
E = +— (Z 2%pp’ tg—>—

so that a transition occurs when an incoming photon has

the energy
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= - : _ 22,2 2,,2 2
AE = hv gﬁeH with g = /&xgx+2ygy+lzgz

The diagonalization of G by the Jacobi method66 gives the
squares of the principal components (gi,g2

Y
eigenvectors give the direction cosines of the new principal

,gi) and the

axes with respect to the original coordinate system.

The other mentioned interaction, (Equation

> °ﬁ
M1 el
(10)), also lifts the degeneracy of the ground state.

Following the same procedure as used for the G tensor, we

can form a pseudotensor a and a "real" tensor A from

= _
(Hel)q - 29_B Zaqioi

nnaia
_— .=T =
A = . A = . .. (13
a "@ v Apq zaplaql )

Similarly, we may determine the energy levels of

the perturbation 4/' = _;I.ﬁel to obtain
<>
_ I|A > +_ >
Ei =+ l—%— (up = g B I -‘ﬁYnI)
with

A—/2A+2,Ay+2A2 ,

where Ax'Ay' and Az are the principal values of A after it
is diagonalized.
The simultaneous diagonalization of the G and A

tensors would require that the similarity transform R in

Equation (12) diagonalize A also or, in other words, that
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one choice of coordinate axes and basis states will lead
to a diagonal representation of 3 and a. It has been
determined67 that, if environmental interactions are small
with respect to the energy difference between the J
multiplets of the species, 3 and a can be diagonalized
simultaneously. This is also true for the species with
rhombic symmetry, but is not true for those with trigonal
symmetry.

Now, by using the relation

2 _1 T .1
5—501+50

j +
% ]

Ng—'
>

y

we can write two terms of a spin Hamiltonian
> = > > = >
‘H = - H-g-S + I-a-8, (14)

IV. Isotropic Interaction

The second operator in Equation (14) involves the
interaction of the electrons and the nuclei. The Hamil-

tonian for an electron in a magnetic field can be written

as
1l1,> K 2 > > >
—-— e .
W' =B+ =97+ V) + g B H S,

68 69

+ . . 3 3
where A is the vector potential. Fermi and Milford have
shown that the Hamiltonian has a singular part at r = 0

and a nonsingular part elsewhere. A careful evaluation of

"' gives



—>—>6+_—>+ > = > >
+ §_gegNBeBNI S6(r) = £IL + 1I+D°*S + a,. _1I-+S (15)

>
where 8 (r) is the Dirac delta function and the prime on the

second term indicates that evaluation takes place when

2

r # 0. The second-order term e2A2/2mc has been neglected

since it is small under any normal experimental conditions.
The third term is the Fermi contact interaction giving rise

to a,; the isotropic part of a. The 6(;) operator

is’
specifies the electron density at point r = 0 because the

evaluation of <6(;5> gives
(5(D)) = fyr(Bs@vnrdr = |v(0)]?

The derivation of the Fermi interaction part of
Equation (15) involves electromagnetic theory. It describes
the energy between the nuclear magnetic moment and the
magnetic field at the nucleus due to the magnetic moment of
the electron. There are other interactions though, and
these can give rise to non-classical results such as a
negative value for ajge

Consider the two structures of Figure 1,70 where
one pi electron occupies a 2pz carbon orbital (which is

perpendicular to the plane of three SspP, trigonal bonds).

Since the spacial interaction between the sigma and pi
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bonds is zero, there would be no energy preference between
(a) and (b). The spin interaction, however, would favor
(a) and this slight polarization of the sigma bond would
induce a reverse polarization of the hydrogen electron
spin. Now it is this electron spin on the hydrogen atom
which is interacting with the hydrogen I term. Since

-
S, = -8 . for configuration (b), we have a negative inter-

H C

. > = > +. .
action I*a*S (where S is the electron spin operator on the
carbon atom), which is imputed to a negative value of a; g

To be more exact, we can write a more complete contact

Hamiltonian, which is a function of all the electrons, as

_81[ —>_—> +.—>
7‘(C B §—ge6egN6N£6(rk rN)Sk I, (16)
where we sum over the different electrons k, and we can

define the unpaired electron density at the nucleus r,, as

N
> > >
= * -
plry) = J¥ Ez(sz)kurk r,) vat,
where 2(Sz)k = +1 or -1, depending on whether the spin is

a or B, respectively; V¥ is now the wave function of all the

electrons k over which the summation is taken. Then we can

write
all _ 4 >
3is ~ 3 geBegNBNp(rN)
7{ - ¥.§.§all ,
c
. Zall . .
where S is the complete spin operator for all the

electrons summed in Equation (16).
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V. Spin-Orbit Coupling

There is also an interaction between the intrinsic
spin of an electron and its own angular momentum. This
interaction and the angular momentum of the electron are
both "caused" by the rotation of the electron about the
nucleus. The general formalism that can be used to
describe the interaction is that of an effective magnetic
field.

The Hamiltonian in Equation (14) can be written as

Y =B -n_ =8 B3
(17)

*a ’

Hy

B' = -f-g + 5%
Be

where B' is a "real" vector, because the right-hand side of
Equation (17) has the transformation properties of a
vector. The revolving electron also experiences a magnetic
field caused by the electric field of the nucleus which, in
the electron's reference frame, is revolving in the
opposite direction. The field produced is thus B" =

>

v

->
-z X E, so we have an effective magnetic field

geff CB o4 Beoo B

aQj<y

B . (18)

This will produce a torque on the intrinsic angular

momentum, or the "spin" of the electron,

a (h3)
ac

¥

_)
= Ux eff ’ (19)
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where

> _e(] -»_]_
u—8e§—a-§and|5|—-2-°

C

It can be shown7l that if there is an equation of the form
of Equation (19), and geff is a constant with respect to
time, then the particle will rotate with an angular velocity

vector

D= - (-&)RA = & UxE o
w = (mc)Beff mep ¢ mc2 VXE (20)

We now can show that Eeff is constant. B is
constant because in Equation (17) H is the constant external
magnetic field, f is constant if there are no NMR tran-
sitions, and E and a are parameters of the species. 1In
considering the second part of Equation (18), we know that
the electric force can be written as eE = —§V(r,6,¢). We

now assume that V is spherically symmetric so that

_’
-).
eB = -V (x) =—-§-g—¥ , (21)
then
> > >
v xp = -¥yxrdv_ L dv
er dr mer dr

and we know that the gquantum number associated with T is
constant if the electron does not change orbits. Thus,

-)

Beff is constant and we obtain the result in Equation (20).

There is yet another correction to Equation (19)

and this comes from special relativity theory which states
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that a set of space axes that is both moving and being

accelerated has, as observed from an inertial reference

system, an angular velocity of precession72' 73
a x V 2
-> _a _
vr = T3 (1-Yy "2 _ g,
\Y/ 2
C
or
> V x a
w. o= 2 , when X((]..
T 2C2 C

The coordinates of the electron have the added motion

> +x F > >
by = LZ/M o e G« E,
2C 2mc

so that a corresponding ﬁT can be written with the same
ratio as in Equation (20):

w > >
B = T _ VX E _ _1lz,
T -(e/mc) 2c 55

This factor of one-half is called the Thomas factor.
Finally, we obtain a "corrected" effective magnetic field

and angular velocity,

> _-b - |_V >
Beorr = Begse * gT B e '
-> __eg, ey 1 L av
Yeorr = “me + )( 2c)(mer)dr
- - _e& 12 l Q!
- ch + ) e r dr
mc
by using Equations (20) and (21). The magnetic interaction

is



' — Q+ = i + .-> = e L]

4{ gCOIZL‘ H mc corr h wCOI‘I‘ S

= —e_ﬁ.ﬁ'cg + /ﬁ _I:o-é i Ei—\,-

mc 2mc2 r dr
_ eﬁ —>.= - > = > ,ﬁ > > 1 4dv
= me g + I+*a*S + m L*S T ar

'o' 7{! = Beﬁozng + -fozog + )\Eog ’

A 1 dv
where A = —> T a’

A is the spin-orbit coupling constant.

VI. Spin-Spin Coupling

There is a tensor form of coupling between any

. > >
nuclear spins Ii and Ij'
_ 2,2 > =
6)‘/D = gNBN I. DI I

which is derived in the same way as the second term in
Equation (15). This is caused by the interaction of the

dipole moments of the nuclei. The effect of this term in

liquids is proportional to the trace of EI‘ A simple

evaluation in any coordinate system shows the trace to be
74

zero.

There can also be an isotropic term

where Jij is an interaction not completely understood. One

important interaction mechanism is the correlation of



26

nuclear spins through the polarization of the intervening

75

electron spins, which is analogous to the mechanism

described above concerning Figure 1.

VII. Orbital Angular Momentum

There is also a classical energy term E = —ﬁ*i,
where L is the orbital angular momentum of the electron.
This is a first-order approximation, in contrast to the
exact energy of —ﬁ'f, because the former case does not
consist of an infinitesimally localized current distribution

as is postulated for the "spin."76

The higher-order terms
are neglected though, and we have the added quantum

mechanical analogue

> >

‘H' = H°L

operator ’

This term sometimes does not contribute much to the
expectation value of the Hamiltonian, or in other words,
to the energy of the system.77 This is because we can

evaluate (L) as
.y O . 9
<LZ> = <11Jl-lﬁ WlW) = -1ﬁfw*wll)d'l'
and, if ¢y = y*, then
(L) = -ifhl3 35 (W*h)at = iK .

Now K=0 because the expectation value must be real. So,
whenever the wavefunction for the system can be chosen to

be real, we have {L,) = 0. This can always be done in
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non-degenerate systems by multiplying by an appropriate
phase factor, which is always allowed.

Species which do not have orbitally degenerate
ground states would then have a "quenched" orbital angular
momentum interaction. This would also be true for the
radicals studied in this work since the Kramers degeneracy

is lifted by the magnetic field.

VIII. Nuclear g Tensor

The Hamiltonian can include a nuclear term78

4ﬂq= 'Bﬁ';(l)'f

similar to that of the electron in the first term of
Equation (14). The tensor quality would come about by
changes in the magnetic field felt by the nucleus that were
caused by changes in the electron wave function. The
distortion of the electronic cloud can be caused by, and be
approximately proportional to, the external magnetic field

H. This is not important in our studies.

IX. Electric Quadrupole Coupling

There is also a nuclear electric quadrupole
coupling. This comes about when the interaction energy of
a charge distribution and an electric potential V due to

external sources is expanded about the origin:79

o=

> >
Energy = q¢(0) - p-E(0) -

L Q.aV.. + oL,
iy 13743
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where
Q.. = [(3x.x.-8 r2)p dt
ij i™j "ij
JdE. (0)
Vi. = " .
] i

By using the Wigner-Eckart theorem,80 it can be
shown that the quadrupole term can be changed from an
expression involving integration over coordinates to an
equivalent form in Ix’Iy’ and Iz by multiplying the former

by a constant. This changes the form to

2

>
oI.

ol

ﬂH = eQ } V.. [3(I.I.+I.I.) - §..1%] = I~
Q 61(21-1) ij ijt2t ity 7371 ij

From the properties of second-order partial

derivatives, we have Vij=vji which implies P, .= Then

the symmetric real matrix P can be diagonalized by choosing

a new set of axes to give the form81
_ 2 2 2
ﬁHQ = P I +P T +P I

2_1 1 2 2
K+ P I -3T(I1+1)} + zn (I} - 101,
where

2
-1 _
K = 2(Ix+1y+Iz)[I(I+1) Iz]

_ 3 _ 3e _ 9V
Py =3I, = ‘—(‘93TT41 21 1=
YA
R S
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and we have K=0 because the Laplace equation V2V = ZVii=0
i
. . + - 0.
implies PX+Py Pz 0
We see that the n term is a second-order effect
compared to the other term in brackets, and when axial

symmetry is present, n = 0.

X. Spin Hamiltonians

The energy transitions observed in any type of
magnetic resonance experiment can generally be described in
terms of an appropriate spin Hamiltonian. The Schroedinger
equation to be solved is generally very complicated. The
various terms of a general spin Hamiltonian can be re-
written in terms of raising and lowering operators to give
expressions which are in a form suitable for a computer.82
Approximate formulas for the energy have been obtained from
some Hamiltonians by specifying simplifying conditions and
using first- and second-order perturbation theory.

We list below some of the spin Hamiltonians and
various formulas that have been derived. In the pertur-
bation cases, it is assumed that the first term has a much
greater contribution to the energy than the rest.

Let M be the quantum state of §,
Let m be the guantum state of f,

Let W be the energy of a gquantum state,

Let hv be the energy needed for an (M-1)<+—(M) transition.
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A. Electron Zeeman Hamiltonian

‘H = gH-g-3
Condition: H has direction cosines (Qx,zy,lz) with
. : == > -»> >
respect to the principal axes of g (gx,gy,gz).
The exact solution 1582' 83
W = gBHM
hv = gBH ,
where
(1) if 3 has different principal values,
_ 2,2 2,2 2,2
g = /gxlx gty 9t (22)
(2) if ; is axially symmetric, i.e., gx=gy=g”, 9,= 91
->
and H makes an angle 6 with 3” ’
.
g = /Qﬁ c0529 + gfsinze . (23)
B. Hamiltonian A Plus Hyperfine Interaction
2 - h-33 + 173
Conditions: H has direction cosines (lx,ly,lz) with
respect to the principal axes of 5. These
axes define the coordinate system.
(1) The First-Order Approximation:
W = gBHM + AmM
(24)

hv

gBfH + Am ,



31

where
(a) if 3 and A have different principal axes,84
A={(2.gA + 2 g A + 2 g A )2
X X XX Yy yx 27z zx
2
+(2ngAxy + lygyAYy + Rzngzy) (25)
2,1/2
L
+(Rxngxz + ygyAyz + ngzAzz) J /9 .
and g is given by Equation (22);
(b) if 3 and A have the same principal axes,
_ 2 2.2 2 2.2 2 2.2,1/2
A {lxngx + lygyAy + ngzAz} /9, (26)

with g given by Equation (22);

(c) if ; and A have the same principal axes, and
are axially symmetric with H making an angle 6

with g,
A = {gZafcos?0 + g2a%sin?6)/2 /g (27)

with g given by Equation (23).

(2) The Second-Order Approximation85

(a) If ; and A have the same principal axes, and
the direction of H is described in this
principal-axis coordinate system by the

standard polar angles 6 and ¢,
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A A A
X Z

2
2gBHA [S(S+1)-M"Im + ZM

=
1

gRHM + AmM -

A A A
X Z

hv 2gGHA

glfH + Am + (2M+1]m + z,

2 22,2 2
g.g_ (A_-A") 2 . 2
x°’y X 'y . 2 2,ym"sin“H6
cos“0 + 55 sin“ ¢cos ¢}"7EFE_

gpg A gpg A

2

} [I(I+1)-m?)
4gBH

2
X X coszesin2¢cosz¢
A

2,2 2 2.2 2,,1/2

A= (g Ap51n 6 + g A cos“6) /9,

sin2¢)l/2/g

>
!

(giAicosz¢ + g;Ai
2 26)1/2 , g = (gicosz¢ + gisin2¢)l<2

6 + gicos p

Q
]

(gzsin
P

(b) if g and A have the same principal axes, and
are axially symmetric with H making an angle 6

>
with gy -

=
]

gBHM + T,

hv gBH + Up 7

where
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T =M - ﬁiA" [S(S+1)-M?]m 28
A 2gBHA (28)
AiAN
UA = 2 + m [2M+l]m, (29)
2 2, 2 2,2 2,.2 2
gy 9 Ay A" 5, 2 Al (A%A) ) )
zZ = = 5 m“sin“f6cos“6 + > [T(I+1)-m"]
2g~BHA 4gBHA

and g and A are given by Equations (23) and (27),

respectively.

C. Hamiltonian B plus Zero-Field Splitting

> = > > = > > = >
‘H= BH*g*S + I*A*S + S°D*S

= >
,D have different principal axes. H has

>

Conditions: 3,
direction cosines (lx,ly,lz) with respect to
any arbitrary coordinate system (x,y,z).

;,i, and D are expressed in this coordinate

system.

The second-order approximation is86

hv

"

1
gBH + AM + 3980 (TxxTyy TxyTyx)(2M+1)m

T2 +T2 +T2 +T2 T2 +T2

XX "Yyy "Xy "yX _.2 XZ z 2
* 45PH (1(1+)-m"] + <= m

'2+D|2
Xz z
2gBH

[4S(S+1)-24M(M+1)-9]

1] L] 2
(DXx - Dyy) +4D

8gB8H

12
XY [2S(S+1)-6M(M+1)-3] ,
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where
T.. = )U .V _.A
1) mn ml nj mn
'
Dij = g;umiunijn
1/2
A= () K.K.A.,A.,) 7"“/qg
i3k 13771k jk
1/2
g= (1] 2:2.9.,9.,)7% K =]2g
i3k i"j371ik? 3k n m m°mn
K, /Y K,K,/9Y K,/9
U= [-K /Y K,K./gY K,/9g
0 -Y/g Ks/9
_ /2 2
Y = /K] + K

V is obtained from U by changing K. to Ki=szAji and g to
3

Ag.

D. Hamiltonian C plus Electric Quadrupole and Nuclear

Zeeman Terms

=y

3ol

> -»>
QS+ Ic

ol

> >
IS+S'

g

-
+ I

0y

‘H = sii-g- - gii-gD .1

Conditions: ;,X,D,F, and 3(1)

have the same principal

axes. ﬁ has direction cosines (2 ,ly,lz) with

X

respect to the principal axes of g, which

define the coordinate system.87
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(1) The First-Order Approximation:

=
I

gBHM + AmM + D"(M-%) + pim?-11(1+41)} - om

hv g8H + Am + D ,

where g and A are given by Equations (22) and (26),

respectively, and

"o 2 2 2 2 2 2 2
D = 3(2xngx + lygyDy + lzgzDz)/g
_3,,2.2.2 2 2.2 2 2.2 2.2
P = 5(2xngxPx + lygyAyPy + ngzAZPZ)/g A
_ 2 (1) 2 (1) 2 (1)
Gy BH(L g A g =~ + 2ygyAygy + % 9,A 9,7 ")/9A .

(2) If we also have axial symmetry for all the

tensors, we have the Second-Order Approxi-

mation:
W = gBHM + TA + TD + T, + Tg
hv = gBH + UA + UD + UP '
where TA'UA correspond only to the f’i'g term,
TD,UD correspond only to the §'3°§ term,
> = >
TP’UP correspond only to the I*P°I term,
> =(I) =
Tg corresponds only to the -fH-g I term,

so that any Hamiltonian made up of only some of the tensors
has only those corresponding terms in the equations for W

and hv.
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and UA are given by Equations (28) and (29), respectively.

= %D{(3gﬁ /g2)cosze—1}{M2-%S(s+1)}

+ (gﬁ gi/g4)(choszesinze/zx)M{8M2+1—4S(S+1)}
+ (g'/g" (p%sin®0/8x)M{25 (5+1) -2M°-1)

= D{Zgﬁ cosze—gisinze}/gz

+ (qﬁ gf/g4)(D2coszesin29/2x){24M(M-1)+9—4S(S+1)}

+ (379" (D%sin%6/8x) (25 (5+1) -6M(M-1) -3)

2,2

2

9, 9 A A

= P{mz-%I(I+l)} + ( [ J’) {Pﬁ sin226/8AM}m
g A

{8m2+l-4I(I+1)}
+ (gLAL/gA)4{Pﬁ sin%e/8aMIm{21 (1+1) -2m?-1}

= -(g, g,a, a,/9°a") %12} sin’26/8AM(M-1) Jm{8m2+1-41 (1+1) }

- (gLA¢/gA)4{Pﬁ sinf6/8AM(M-1) Im{21 (1+1) -2m?-1}

= -(BHm/gA)(g(I)g A cosze + g(I)

.2
I [l . 9.A sin ®)

3
=7 Dy

= gBH

_ 3,2 2 2 2.2 . 2..,22
f{g" A P cos 6 + g/A"P sin“0}/g“A“ |
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g and A are given by Equations (23) and (27), respectively.

XI. Determination of ESR Parameters

In general, the parameters of the ; and A tensors
are determined from isofrequency plots, where the frequency
v is constant and H is swept through a range for each of
several orientations of a crystal rotated about a specific
axis. To determine the values of the magnetic field at
which resonance occurs, we can use Equation (24) for a

first-order approximation:

h

where Ap is the hyperfine interaction with the pt nucleus

and has appropriate energy related units (usually MHz), Ap

corresponds to Ap but has units of gauss, and mp is the
quantum number of the pth nucleus with values from —Ip to
+Ip. Halfway between the outer lines of any hyperfine
multiplet would be the place where (perhaps only mathe-
matically) mp = 0. Choosing the midpoint between the
outermost lines of the whole spectrum will give HO =
hv/gB. By considering only these midpoints, we have a
"reciprocal g-value" plot for the crystal. The values of
Ap are determined by measuring the distance between the
outer lines of the corresponding multiplet and dividing

by 2Ip. By plotting these values versus the angle of
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rotation of the crystal, we obtain A-value plots. We thus
have two symmetric covariant second-rank tensors to
determine.

Since g is given by Equation (22), it can be

rewritten as

If we form the symmetric diagonalized g tensor as

where Gij is the Kronecker delta function, then we can

write
2 _ 2 - 2
g = E §91 ij 1613 z §G1] ji
j— 2 = .=' -— 2 o l¢= ='-=_lo=.='-=-1c=
= Zzi(c G);; = VA{(RT"*R G "R "*R*G "R "*R);,
i i
- 2 -1 =.=' .=_1 ] =.=' .=—l
- .z 1Rim[(R G *R ")(R°G )]mn ni
imn
= .z (le 1)(Rni£i)(G.G)mn
imn
21 "W (31)
mn mn’
where
w=¢2,Rt=Rr". (32)
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Here R is an orthogonal matrix which represents a proper
rotation to a new coordinate system, and l; and E' are the
direction cosines of H and the new representation of G in
this new coordinate system, respectively. Equation (31) is
of the same form as Equation (4) in Part II of this thesis,
so the values of the W matrix can be determined by any of
the methods presented there.

To solve for E, we can first diagonalize w by a

similarity transformation

= = = =1
SeW'ST = W (diagonalized) - (33)

Then, by forming a diagonal matrix whose diagonal elements

]
are the square roots of the corresponding ones in W , one
obtains
‘G =W , (34)
but, from Equation (33), we have

W=25 *W *S

ol

= =
ST.G -5)-(SF.

Ql
@l

.E) =

=l
]

(

= =1 =
§T°G *S is the solution to Equation (32).

so G =
We now want to determine A for the most general

case in which ; and A have different principal axes. If

we multiply the terms out and rearrange them in Equation

(25), and use primes to signify -the fact that the ; and A

terms are in the ; principal-value coordinate system, we get
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2.2 _ ! v ..
izjxijlilj » (1,3 = x,y,2)

where a typical term is

Xij (AleJx+Aiijy+AizAjz)

gigngikAjk .

Using Equation (30) and the fact that A is symmetric from

Equation (13), we can write

2.2 _
g°a® = 12.‘91" ) (g AJk) L
J
= ki (291611 lk)(zgmcmjAmk)zlgj
ij
= Z(ZG A )(ZA RIS
kij il71k km mj’ "ij
Z (,=| = ) ( ] ,.=|) ngn
= G °A A °G T
Kij ik kj i3
=t =1 =1 =1 ] ]
= 1 (G ‘R *A G ), % L,
ij J ]
. 2 2_ ] ] ]
.. gA—izjijip"j'
where
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Hence, in any coordinate system,
2.2
gAc = TX ..R.
i3 ijriT)
X = G*A*A-G

which again is of the same

We can solve for A by determining

we can write

form as Equation (4) of Part II.

X from angular variation

of the quantity gZA2 by any procedure in Part II, then

solving the equation
AR -

by the method mentioned for Equation

been stated elsewhere.88 If ; and A

>l

axes, then the principal values of

glx.571

(34). This result has
have the same principal

are found by diago-

= =1
nalizing X to give X and using the equation

] ' ]
A.. = VX../G.. .
ii ii’ Tid

If the relative anisotropy of g is much smaller than that

of A, we can treat A exactly as we did g, that is

if A AA
(g‘? )«(A. J (35)
1so0 1so0
then
1
A VQZAZ + QZAZ + 22A2
X YY z z
. 2 -
e AT = ] R W o,
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the largest anisotropy
the largest anisotropy
is the isotropic value

is the isotropic value

of
of
of

of

al »i «l
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EXPERIMENTAL

I. Spectrometers

Three ESR spectrometers were used, two of them X-
band systems and one a Q-band system. The X-band systems
were used with a magnetic field of about 3300 gauss and a
resonant frequency of about 9.5 GHz. while the Q-band
system was used with the corresponding values 12000 gauss
and 35 GHz., respectively.

One spectrometer was the Varian V-4502 X-band
system with a 12-inch magnet and 100 KHz. modulation.
First- or second-derivative spectra were taken on various
AXY-recorders. The appropriate derivative of the absorption
mode was plotted as a function of the magnetic field
intensity. The magnetic field was measured by accurately
determining the proton NMR resonance frequency of a water

sample and using the equation 89

H(gauss) = 0.2348682 vwater(MHz),

A homemade marginal oscillator90 was used to detect the
proton resonance and the frequency was measured with a
Hewlett-Packard Model 524C electronic counter. After each

spectrum was taken on the XY-recorder, two accurate

43
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magnetic field determinations were made on top of the
spectrum. From this, it was found that the linearity of

the magnetic field sweep and the stability of the absolute
magnetic field on the spectra were within the experimental
error of the NMR probe measurements. The klystron frequency
was measured using a TS-148/UP U.S. Navy spectrum analyzer
with a calibration chart; the accuracy was about 1 part in
10°.

For some preliminary spectra, a Varian E-4 X-band
spectrometer was used. This also had 100 KHz. modulation,
but the magnet had 4-inch diameter pole pieces. The
absolute magnetic field, the magnetic field sweep, and the
klystron frequency were read from the dials on the machine.

The Q-band spectrometer was a Varian V-4503 system
with a 12-inch magnet and 100 KHz. modulation. There was no
external probe to measure the magnetic field accurately.
The klystron frequency was determined by the wavemeter of
the Varian V-4561 35 GHz. Microwave Bridge. Repeated
measurements indicated that the stability of the klystron
frequency was only 1 part in 104.

The X-band spectrometers had provisions for keeping
samples immersed in liquid nitrogen and all three spectro-
meters could be used with a Varian V-4540 variable temper-
ature controller. This instrument regulates the sample
temperature by passing over it a stream of gaseous nitrogen

whose temperature is controlled by either being passed
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through a helical tube immersed in liquid nitrogen and/or
warmed by heating filaments.

\ A common sequence of measurements involves mounting
an irradiated crystal with a chosen axis vertical. When the
X-band system was used, magnetic field sweeps were made
with the crystal progressively rotated about that axis.
With the Q-band system, the magnetic field was instead
rotated about the sample. This is the more desirable
arrangement since moving the crystal in the cavity changes
the Q of the system which tends to change the klystron
frequency and the detector current leakage. The magnet on

the V-4502 was not rotated because the connecting hoses

were too short.

ITI. Crystal Irradiation and Mounting

. There are two methods for mounting crystals that
must be kept at liquid nitrogen temperature. One method is
to irradiate the crystal, then mount it between flexible
brass strips. This method, which is described in the thesis

by Watson,60

has problems associated with it. It is
difficult to align and ascertain the alignment of the
crystal. The lack of space caused by the presence of the
brass strips in the liquid nitrogen Dewar makes liquid
nitrogen bubbling more likely because of "hot spots" on
sharp edges of the brass. Also, any bubbling that occurs

tends to shake the crystal causing electronic stability

problems and creates a possibility of accidental realignment
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of the crystal. The metal in the cavity also lowers the
sensitivity of the instrument.

Another method is first to glue the crystal
(Pliobond cement, Goodyear Rubber Co., Akron, Ohio) onto
a copper wire which in turn is imbedded into a thin glass
rod. This allows one to adjust accurately the axis of
rotation. The whole assembly is then irradiated and used
in the same way as the crystal holder in the first method.
An extra signal at g = 2.0026 is introduced from the
irradiated glue.

There were two sources of irradiation used. One

60

was a Co y-ray source that had an intensity of 1.0 X 106

rad/hr. The other was a 1 Mev electron source (G.E. XRD-1
Resonant Transformer) that had a dose rate of 1.8 X 107

rad/hr.

III. ENDOR Measurements

Some electron-nuclear double-resonance (ENDOR)
measurements were made on crystals of dl-mandelic acid.
A Varian E-700 ENDOR system was used with the V-4502 X-band
spectrometer. A Monsanto Model 1100A counter-timer was

used to determine the rf pulse frequencies.

IV. X-ray Crystallography

dl-Mandelic acid, C_H_CHOHCOOH, in powdered form

66
was obtained from Matheson Coleman and Bell Co. Crystals

were grown from saturated aqueous solutions by slow
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evaporation. The morphology of the crystals was the same
as determined by Rose.91 He reported that the crystal
system was orthorhombic with cell dimensions a = 9.66+
0.05 A, b = 16.20 + 0.08 A, and c = 9.94 + 0.05 A, and that
the number of molecules per unit cell was eight. An
orthographic projection of dl-mandelic acid is shown in
Figure 2. Small crystals of about 0.1 mm. length were
grown in a shallow dish by slow evaporation from water.
The crystal chosen had a clear-cut morphology that allowed
us to mount it specifically about the a axis. This was
confirmed by taking oscillation photographs92 using a
Weissenberg Camera (Supper Co., Watertown, Mass.) with
filtered Cu (A, = 1.5418 A) radiation. The cell
dimensions were determined from these photographs and
compared with those reported by Rose.91 There was excellent
agreement within experimental error. The oscillation
photographs were used also to align the rotation axis of
the crystal accurately along the a axis. The zero-,
first-, and second-layer photographs were taken about the
a axis. By considering the symmetry of the missing
reflections, we were able to determine the limiting
conditions for reflection in terms of the hkl indices.
This uniquely determined the space group out of the 74

possible ones for the orthorhombic case.
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V. Parameters From Tensor Variations

The purpose of this section is to describe a way in
which the 3 and A tensor parameters can be determined when
there is restricted information from the isofrequency
plots. This was the case for mandelic acid when the normal

93 did not work. The

analysis utilizing Schonland's method
reason that Schonland's method, and the method outlined in
Part II for the orthogonal case, both tend to have diffi-
culty is because they depend heavily on the high accuracy
of the g-values for all three rotations. This is difficult
to achieve since three separate experiments are involved
with the spectrometer and each time the tuning character-
istics differ. Also, if there are broad, overlapping
lines, as was the case for mandelic acid, further un-
certainty is added.

It appears that some of the most accurate data that
can be gathered from an isofrequency plot are the g
variation (Ag) between the maximum and minimum values of g

for that plot, and the angle at which Ipax OCCurs (em ).

X ax

This gives six pieces of data from the three isofrequency
plots. We need formulas relating these quantities to the
principal values and eigenvectors of g.

At first we need to calculate the parameters B and
Y as defined by consideration of the value of g at a
specific magnetic orientation given by Equations (1) and

(4) in Part II:
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2 _ _ .
g = E%wijlilj = o + Bcos20 + ysin26 ,
where W = 3-3 and the Zi are direction cosines of the
magnetic field vector with respect to the coordinate
system. From Equation (29) of Part II, we have

-1 -
B =3 iijij(sisj M M)

(36)
Y = JW..S.M. ,

i i35i75
where Si and Mi are the direction cosines of the vectors

$ and ﬁ, which represent the magnetic field direction at
the start of the isofrequency plot (6 = 0°) and at the
middle of the isofrequency plot (6 = 90°).

There are two coordinate systems involved, one
associated with the crystal axes, which is left unprimed,
and one associated with the eigenvectors of the g tensor,
which is primed. Using Figure 1lb in Part II, we can write,
in the crystal-axis coordinate system, for the three

standard rotations about the orthogonal axes,
S. =6 , M. =6 , 2 =0, Qs = cosf , lm = sin® , (37)

where the subscripts n,s,m refer to the rotation; startings;
and middle-axis numbers. Putting Equation (37) into

Equation (36) gives



w™
]
N
=
'
=

SS mm

In the principal-axis coordinate system of the g tensor we

have

and to change into the unprimed system, we set

W =R W 'R
T 2
W = R W..R = . .8, :R.
Pq i%( 'pi%i3%iq 5% ip9i®i373q
2
W = .R. R
Pq §91 ip iq

o {71 is Tim
_ 2
Y = )9iRigRin
i
8 =1 arctan(y/8)
ex 2 ’
where eex is an angle associated with Inax °F Imin and the

principal g-value eigenvectors in terms of the unprimed co-
ordinate system are along the rows of R; or, likewise, the

crystal-axis eigenvectors in terms of the primed coordinate
system are along the columns of R. Since the arctangent

function has two solutions 180° apart, we see that emax and
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emin must be 90° apart. The two values for the extrema of

g are calculated from Equation (22):
2 2,'2
Jex ~ ggigi (Oex)

_ T
li(eex) - }Z((R )iklk(eex)

_ 2 1/2
g = {3;ginkili(eex)} ’

where zn(eex) =0 , ls(eex) = coseex ’ lm(eex) = 51n6ex .

The g-value difference Ag is then (g -g ).

max -min

It is impractical to determine the values of 95 and
the eigenvector matrix R from the values of Ag and emax.
Instead, the formulas calculate Ag and emax for the three
orthogonal rotations, given a specified g tensor. There
are three independent parameters describing the eigenvector
matrix, but there are nine elements in R. So instead of
varying the elements in R, it is best to vary some set of
three independent parameters and calculate R from them.

One such set is the Euler angles (a,B8,Y) as defined
by Rose.94 We can construct an orthogonal matrix by using

a formula by Rose.95
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ca*cb*cc-sa-*sc sa*cbe*cct+ca*sc -sbecc

R = | —ca*cb*sc-sa*cc -sascb-sc+carcc sbesc
car*sb sa-*sb cb
(38)
ca = cos(a) , cb = cos(B) , cc = cos(y)
sa = sin(a) , sb = sin(B) , sc = sin(y) P

A computer subroutine was written such that given
three Euler angles, three principal g values, the experi-
mental values for Ag and emax, and the corresponding
weighting factors, it calculated the theoretical values for

Ag and ema and determined a squared-difference-weighted

X
error. This subroutine was used with a general minimization
routine that varied the parameters to determine a minimum
error. These subroutines are listed in Appendix I.

The A tensor can likewise be calculated by using
this procedure for the quantity gA, or A, as was discussed

under Determination of ESR Parameters in the Theoretical

Section.



RESULTS

I. X-ray Crystallography

The limiting conditions for reflection in terms of
the hkl indices were determined as described in the
Experimental section. These are listed in Table 1. There
is a completely symmetric relationship among the hkl indices
in these rules. By comparing these conditions with those

96 it was determined

listed in the International Tables,
that the space group is Pbca. This space group has four
equivalent right-handed positions related by three screw
axes about the a,b, and c¢c axes. It also has four left-
handed positions which are similarly related. These eight
positions could be considered as corresponding with the

four gfmandelic acid and the four l-mandelic acid molecules

in the unit cell.

II. Irradiation and Spectra

The crystals generally were irradiated with a 60Co

6 rads. This treatment

Y-ray source at a dose of 3 X 10
caused the crystals to change from a colorless to a slightly
yellow appearance. When single crystals of dl-mandelic

acid were irradiated at 77°K, and the ESR spectrum was

54
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taken before the crystals were warmed up, it consisted of
one very broad line at the free-spin value for electrons.
Upon warming up, a "normal" spectrum resulted. When the
crystals were recooled to 77°K, the same type of broad line
resulted, but it was smaller in amplitude. A typical first-
derivative normal spectrum is shown in Figure 3.

This spectrum consists of a central portion with
large peaks, and two other portions on either side with
considerably smaller peaks. The central portion consists
of between seven and about twenty-two resonances over a
range of about 33 gauss, centered approximately about the
g free-spin value. The two groups of side peaks are
symmetrically placed on either side of the central portion
with a distance of about 92 gauss between the centers of
the two groups. Each side portion consists of three to

twelve resonances over a range of about 29 gauss.

III. Alpha-Hydroxybenzyl Radical

A. Determination of Radical

The central spectra can be analyzed as consisting
of two sets of lines for the rotations about the b and c
axes, and four sets of lines for the rotation about the a
axis (Figures 4-6). Each set of lines consists of two
groups of quartets which have one line overlapping to form

120 and 16O have no magnetic

seven lines (Figure 3). Since
moments, only the hydrogen nuclei produce hyperfine

splittings. The observed set of lines could be produced
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if one hydrogen caused a splitting of 16.0 gauss and three
equivalent hydrogens produced a splitting of 5.3 gauss each.
We postulate that the species is the alpha-
hydroxybenzyl radical, the alpha hydrogen causing the large
splitting, the nearly equivalent ortho and para hydrogens
the smaller splittings; the meta and hydroxyhydrogen
splittings are too small to be observed in the broad lines.
A comparison of the splittings for the alpha-hydroxybenzyl
radical as reported in solution and the average ESR values
of this investigation is shown in Table 2. The agreement
appears good. Also, in the Table is listed the value of
5.83 gauss obtained from an ENDOR experiment on dl-mandelic

acid consistent with the value for the para hydrogen.

B. g-Tensor Evaluation

We tried to use Schonland's method93 of deter-
mining the tensor parameters for ; and K, but it failed.
We then used the method described above in Parameters from
Tensor Variations in the Experimental section. There was
an ambiguity about which set of lines in each isofrequency
plot belonged to a specific site of the radical. Each
combination was tried in the six-parameter error-
minimization routine also described above. We forced one
of the principal values to remain the same during each
computer run of this routine. We would then change this
value independently to give the correct g-value average

and give the other five final parameters as starting values
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for another run of the program. This procedure stabilized
the search for an absolute error minimum in the six-
dimensional parameter space. At most four runs of the
program were needed to reach a stable minimum. Although
there was no guarantee that the minimum reached was not
just a relative minimum, the searching method of the
program was written to reduce this possibility.

One combination produced a considerably lower
fitting-error than any other one. According to the space
group of the undamaged crystal, there are four sites related
by three twofold screw axes. To determine the eigen-
vectors of a radical related by a twofold screw about any
axis, we need only change the signs of the direction
cosines associated with that axis. When we formed these
four theoretical isofrequency plots and put them together,
they overlapped quite perfectly to form half of the sets
of lines observed experimentally. Since the other half of
the sets of lines were caused by the same radical, we tried
to fit them by varying only the three Euler angles while
keeping the same principal g values determined previously.
Each remaining combination of lines was tried in a three-
parameter minimization routine and one combination fit much
better than the others. This second fit was not as good
as the one obtained in the previous procedure. We now
determined the remaining four sites required by the

symmetry of the undamaged crystal. When all eight
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theoretical plots were put together, they accounted for all
the_linés. The principal values, and direction cosines of
the radical, for all eight sites are shown in Table 3 and
the various site overlappings are shown in Table 4.

There are three causes for the large number of
overlapping isofrequency curves. First, all the iso-
frequency plots have a near-mirror symmetry about the 6 =
0° and 6 = 90° positions (which point along crystal axes).
This requires mathematically that sites must overlap in
pairs. Secondly, the isofrequency plot for the ab plane
shows that the extrema occur along the axes, which also
requires sites to overlap in pairs. Thirdly, there is an
accidental, experimental near-overlapping of lines for the

rotation in the ac plane.

C. A-Tensor Evaluation.

The alpha hydrogen splitting was the only one whose
anisotropy was large enough to be measured. Even in this
case, there was a large scatter of experimental A-value
points. This can be seen in Figures 7-10 where the A-value
plots are labelled according to the g-value lines with which
they are associated in Table 4. A rough calculation was
made of the ratio between the fractional changes of the g
and A tensors as defined in Equation (35). Since the ratio
was small (0.008), we treated the A plots as representing
a diagonalizable second-order tensor rather than the plots

of the quantity gA.
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Table 4.--Correlation between the individual sites and the
resulting overlapped lines for the alpha-
hydroxybenzyl radical.

Axis of Correlation of Center-of-Spectrum
Rotation Sites to Lines Lines
C 1go°
5 Site: 123456 7 8 A
Line: BCCBADDA 8
b q0°
¢
c L o°
_ a 190°
b Site: 1 2 3456 7 8 p
Line: BABABABA
c q0°
8
a o’
a 190°
c S%te: 12345678 b A B q0°
Line: A AAABBIBB
a o’
H —
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Using the experimental values for AA and emax for
the A-value plots, we again used the six-parameter mini-
mization routine on each combination of lines. One
combination of lines had a considerably smaller fitting-
error than the other ones. This set of A-value lines
corresponded to the same g-value lines (site 1) which had
given the best fit for the g tensor. Again using Equation
(38), we produced a matrix Xv representing the eigenvectors
of A for site 1.

Since the A and g tensors are for the same radical,
it was expected that the tensors were similarly related to
each other for all eight sites. Because of the similar
symmetry of the A and g plots, we could also produce half
of the A-value line sets by applying the same three screw-
axis-transformations to :v' This trivially guaranteed that
the g and A tensors were similarly related for sites 1,2,3,
and 4. For the g tensor, sites 5,6,7, and 8 were symme-
trically related to each other, and site 5 was related to
site 1 by some nonsymmetric similarity transformation
matrix which was calculated. By applying this transfor-
mation to Xv' we produced A-tensor eigenvectors for site 5
that had the proper relationshipAto the g tensor for site
5. We again derived the A-tensor eigenvectors for sites
6,7, and 8 from the one for site 5 by applying the screw-
axis operations. When all eight A tensors were considered

together, they accounted for all of the lines in the A
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plots. The principal A values and direction cosines of the
alpha-hydrogen splitting for all eight sites are shown in

Table 3.

D. Variable Temperature Study

A variable temperature ESR study of the alpha-
hydroxybenzyl radical was done. The Q-band instrument was
used and the temperature was varied from -150°C to +120°C.
There was no discernible difference in the spectra.

IV. Cyclohexadienyl-Glycolic
Acid Radical

A. Determination of Radical

From the spectrum shown in Figure 11, we see that
each set of peaks can be analyzed as consisting of a
triplet of triplets with splittings of 8.99 gauss and 2.65
gauss. The large 95.5 gauss separation would not normally
be caused by a hydrogen atom, so we can assume that there
is a triplet splitting of 47.7 gauss. The middle portion
of the spectrum would be lost in the larger peaks of the
alpha-hydroxybenzyl radical.

We postulate that the side peaks are caused by the
cyclohexadienyl-glycolic acid radical. A comparison of the
splittings for this radical as reported in solution with
the average ESR values of this work is shown in Table 5.
The agreement appears good. We attribute the largest

triplet splitting to the two para protons, the second
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Table 7.--The principal values and direction cosines for the CHj
hyperfine splitting tensor of the cyclohexadienyl-glycolic
acid radical in dl-mandelic acid.

Signs for the Various Sites

Principal Direction Cosines
Values site 1 site 2 site 3 site 4
a b c abc abec abec abc
All = -28.50 0.6323 0.5228 0.5717 -+ - -+ + - - - + + -
A22 = =52.48 0.7236 0.1350 0.6769 + + - + + + + - - -+ -
A33 = -57.26 0.2767 0.8417 0.4637 - - = - -+ -+ - + - -

Table 8.--Unpaired electron spin and excess charge densities calculated
for the alpha-hydroxybenzyl radical by the McLachlan

method.107
Atom P €
c 0.001 -0.053
' o
c, 0.159 -0.036 H\{;/ ~H
T

c, -0.053 0.034

C, 0.214 -0.145

g -0.065 0.054

Cg 0.187 -0.108

c, 0.489 0.028

o 0.067 -0.774
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largest triplet splitting to the two meta protons, and the
smallest triplet splitting to the two ortho protons.

This second radical is found under more stringent
conditions than the main radical. Irradiation of dl-
mandelic acid at room temperature gives the main radical
but not the second radical. Irradiation of d-mandelic or
l-mandelic acid at either 77°K or room temperature appear
to give the main radical. The lines of the side radical,
if formed, are considerably weaker than in the case of its

formation when dl-mandelic acid is irradiated at 77°K.

B. g-Value and A-Tensor Evaluation

In the ab plane, the isofrequency plot for the side
radical showed a clear pattern of twelve lines paired into
two sets of six lines. This is shown in Figure 12. The
ortho proton splitting was discernable only on some outer
lines for some orientations. The other planes had similar
isofrequency plots, but only the outer line positions could
be clearly followed throughout the rotation. The A-value
plots for the CH2 splitting are shown in Figures 13-15 where
the plots are labelled according to the scheme in Table 6.

The data from the isofrequency plots were not
precise enough to determine any g-tensor anisotropy. The
isotropic value for g was calculated to be 2.0026.

The anisotropy of the CH2 splitting was con-
siderable. We used the same procedure as described for

the alpha-hydroxybenzyl radical to determine the tensor
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parameters. There were two A-plot curves for each

rotation. This gave eight combinations of lines. One
combination gave a drastically lower fitting-error than

the others. The eigenvectors of this site were transformed
into the eigenvectors of the other three sites by performing
the three twofold screw axis operations on them. When

these theoretical plots were considered together, they

accounted for all of the A-value curves. The principal
values and direction cosines of the radical for all four
sites are shown in Table 7 and the various site overlappings

are shown in Table 6.

C. Variable-Temperature Study

A variable temperature ESR study of the
cyclohexadienyl-glycolic acid radical was made. The
Q-band instrument was used and the temperature was varied
from -150°C to +120°C. As in the case of the alpha-
hydroxybenzyl radical, no significant differences were

observed in the spectra with change in temperature.

V. Electron Irradiation at 77°K

A single crystal of dl-mandelic acid was irradi-
ated at 77°K with a dose of 6 X 107 rads using the 1 Mev
electron source described in the Experimental section. This
treatment caused the crystal to turn slightly yellow as was
the case on y-irradiation. The spectra were identical to

the ones obtained from y-irradiation at 77°K,
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VI. d-Mandelic Acid and 1-Mandelic
Acid Irradiation

d-Mandelic acid and l-mandelic acid in powdered
form were obtained from Aldrich Co. All crystals were
grown from saturated agqueous solutions by slow evaporation.
The crystal system of d-mandelic acid was reported to be

monoclinic103

104

while that of l-mandelic acid was orthor-
hombic. The morphology of the d-mandelic acid crystals
agreed with that reported in the literature and this was
similarly true for the l-mandelic acid crystals.

d-Mandelic acid crystals were y-irradiated at room
temperature and their spectra were taken on the Q-band
spectrometer at various orientations. These spectra had
the same type of seven-line pattern with no side peaks as
was found for the case of dl-mandelic acid irradiated at
room temperature. When d-mandelic acid was irradiated at
77°K, it still showed the same spectra with no side peaks
while the spectra of dl-mandelic acid irradiated at 77°K
would have the extra side peaks. This showed that the
alpha-hydroxybenzyl radical is formed in both the d- and
dl-mandelic acid crystals at either 77°K or room temperature,
but that the cyclohexadienyl-glycolic acid radical is
formed only in dl-mandelic acid at 77°K an never in d-
mandelic acid.

The same procedure was applied to l-mandelic acid

with the same results. Only the alpha-hydroxybenzyl
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radical is formed when l-mandelic acid is irradiated at

77°K or room temperature.



DISCUSSION

I. Alpha-Hydroxybenzyl Radical

The alpha-hydroxybenzyl radical appears to be formed
by the removal of a carboxyl group from a d- or l-mandelic
acid molecule. It is assumed that the hydrogen and hydroxy
groups would move from their original tetrahedral con-
figuration about the central carbon atom to give a planar
species.

To check the geometry of this radical, energy
calculations were made for various configurations using
INDO.105 At first, we varied the positions of the CHOH
atoms in the plane of the benzene ring using previously

106 until an

determined parameters for the benzyl radical
energy minimum was reached. It was then found that any
rotation of the CHOH group produced a higher energy.
Therefore, INDO calculations would predict a planar
radical. The final parameters which minimized the energy
are shown in Figure 16.

As was discussed in the section on Results, the
central isofrequency lines were accounted for by assuming

that there were two sets of four sites. In each group,

the four sites were related by the three twofold

83
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Ck§(:’£)H
H H
Mandelic acid
H H
H
+ C<)2 +
H H
H C%§c:,ADH
alpha-Hydroxybenzyl H I
radical = C ~OH
H H
H H
HH

Cyclohexarlienyl-glycolic acid radical

Figure 18. A possible scheme for the formation of the two
radicals in the irradiation of dl-mandelic
acid at 77°K.
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screw axes. The undamaged crystal had two sets of four
molecules per unit cell, one set being d-mandelic acid
molecules and the other being l-mandelic acid molecules.
We could deduce then that sites 1,2,3, and 4 of Table 3
correspond to the d-mandelic acid species and sites

5,6,7, and 8 correspond to the l-mandelic acid species, or
vice versa.

In the undamaged crystal, the d- and l-mandelic acid
molecules are related by a center of inversion. This would
require that the benzene ring plane of each of the four
sites of the d-mandelic acid molecules must be parallel to
the benzene ring plane of a corresponding l-mandelic acid
molecule. Because the alpha-hydroxybenzyl species ia a
pi-electron radical, we would expect that one of the
principal axes of the g tensor would be perpendicular to
the radical plane and thus to the benzene ring plane. Then,
if the benzene ring planes did not reorient when the
crystal was damaged, we would expect that one eigenvector
in each of the sites 1,2,3, and 4 would be parallel to the
eigenvectors in each of the sites 5,6,7, and 8. It is
evident from Table 3, that this is not the case. We would
conclude that the benzene ring planes change their orien-
tation significantly as a result of the radiation.

Previous calculations of the spin densities for

107

the alpha-hydroxybenzyl radical have been made by using

McLachlan's approximate self-consistent field method.108
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An "excess charge density" was also calculated by using the

relation proposed by Colpa and Bolton,log' 110

a = (Q + Ke)p,

where a is the isotropic proton hyperfine coupling constant,
€ the excess charge density, p the unpaired electron spin
density on the adjacent carbon atom, and Q and K are
constants that were chosen to be -30 gauss and -15 gauss,
respectively, to give the best fit to the values of a. This
relationship was used instead of McConnell's equation
because it produces better results for radicals in which
there is an appreciable excess charge, or considerably
different excess charges at various sites of the radical,
both conditions of which apply to the alpha-hydroxybenzyl

radical. The results are listed in Table 8.

It was found that the relationship between the
eigenvectors of the g and A tensors could be related to the
geometry of the molecule. This is shown in Figure 17,
where the principal g and A values correspond to those in
Table 3. In this figure, the eigenvectors of the g tensor
point so that 93, is perpendicular to the CHOH plane,
9119max points along the exocyclic carbon-carbon bond,
and 922"9min is orthogonal to 991 and 933- Assuming this,
it was then found that the eigenvectors of the A tensor of
the alpha hydrogen point so that A33=Amin is perpendicular

to the CHOH plane within 2°, points along the C-H bond

Ay)

. . o = 3
within 15°, and All Amax is orthogonal to All and A33.
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If we subtract the isotropic value of -16.21 gauss
from the principal values of A(H7) in Table 3, we obtain
(-2.12,+0.88,+1.24) gauss for the anisotropy of the
alpha-proton. The typical values for alpha-proton

26

anisotropy are (-10.0,+10) gauss. One theoretical

111 to calculating the anisotropy approximates it

approach
as a magnetic dipole interaction between the hydrogen and
the electron spin magnetization that is distributed in the
28 and 2p atomic orbitals on the neighboring carbon atom.
This treatment gives values of (-14,-2,+15) gauss for a
case of one pi electron on the adjacent carbon atom. If
we consider the dipole effect to be proportional to the
unpaired spin density on the carbon atom and use the value
of 0.489 from Table 8, we would still expect theoretically
an anisotropy of (-5,0,+5) gauss, which is considerably
greater than measured experimentally. Considering the
intransigence of the g and A tensors to normal analysis,
and the uncertainties in determining the parameters from
the experimental information used, we might expect that
the calculated anisotropy values have compounded un-
certainties associated with them.

II. Cyclohexadienyl-Glycolic
Acid Radical

The cyclohexadienyl-glycolic acid radical appears
to be formed by the addition of a hydrogen atom at the para

position of a d- or l-mandelic acid molecule. This extra
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hydrogen atom could come from the dissociation of a free
carboxyl group into CO2 and H, where the carboxyl group
was previously removed from a d- or l-mandelic acid mole-
cule in forming the alpha-hydroxybenzyl radical discussed
above.

There are eight possible sites in the undamaged
crystal, but only four sites are distinct in ESR spectra
for the cyclohexadienyl-glycolic acid radical as compared
to eight sites for the alpha-hydroxbenzyl radical. This
would imply that the A tensors for the former radical are
paired together while they are not for the latter radical.
The A tensor for the CH2 group would obviously be fixed
with respect to the benzene-ring plane. As discussed
previously, the d- and l-mandelic acid molecules are
related by a center of symmetry so that the A tensors
associated with these molecules would have the same
eigenvectors if the benzene rings did not reorient. So we
can conclude that the benzene rings did not significantly
reorient themselves upon irradiation to form the
cyclohexadienyl-glycolic acid radical. A possible scheme
for the formation of the alpha-hydroxybenzyl and
cyclohexadienyl-glycolic acid radicals is shown in

Figure 18.
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ITI. Summarx

The ESR spectra of the radicals produced in single
crystals of dl-mandelic acid by irradiation with y-rays
have been obtained and analyzed. The alpha-hydroxybenzyl
radical and the cyclohexadienyl-glycolic acid radical are
formed. The alpha-hydroxybenzyl radical appears to be
planar, its benzene ring having reoriented during the
radical formation process. The cyclohexadienyl-glycolic
acid radical appears to be formed only at 77°K and the
hyperfine splitting tensors of the d and 1 radicals are

parallel.



PART I

REFERENCES



10.

11.

12,
13.

14.

15.

REFERENCES

Gorter, Physica 3, 995 (1936).

Rabi, J. Zacharias, S. Millman, and P, Kusch,
Phys. Rev. 53, 318 (1938).

Zavoisky, J. Phys. USSR 9, 211 (1945).

Purcell, H. Torrey, and R. Pound, Phys. Rev. 69, 37
(1946) .

Bloch, W. Hansen, and M. Packard, Phys. Rev. 69,
127 (1946).

Kozyrev and S. Salikhov, Doklady Akad. Nau, SSSR
58, 1023 (1947).

Penrose, Nature (London) 163, 992 (1949).
Ingram, Proc. Phys. Soc. (London) A62, 664 (1949).

Holden, C. Kittel, R. Merritt, and W. Yager, Phys.
Rev. 75, 1614 (1949).

Abragam and M. Pryce, Proc. Roy. Soc. (London) A206,
164 (1951).

Schneider, M. Day, and G. Stein, Nature (London)
168, 644 (1951).

Uebersfeld and E. Erb, Compt. Rend. 242, 478 (1956).

Feher, Phys. Rev. 103, 834 (1956).

Hutchison Jr. and B. Mangum, J. Chem. Phys. 29,
952 (1958).

Cole, C. Heller, and H. McConnell, Proc. Natl.
Acad. Sci. U.S. 45, 525 (1959).

92



93

l6. D. Ghosh and D. Whiffen, Mol. Phys. 2, 285 (1959).

17. 1. Miyagawa and W. Gordy, J. Chem. Phys. 30, 1590
(1959). “

18. B. Bleaney and K. Stevens, Rep. Prog. Phys. 16, 108
(1953). —

19. K. Bowers and J. Owen, Rep. Prog. Phys. 18, 304 (1955).

20. B. Bleaney, Phil. Mag. 4

, 441 (1951).

2
21. D. Whiffen, Quart. Rev. 12, 250 (1958).
22. A. Carrington and H. Longuet-Higgins, Quart. Rev. 14,
427 (1960).

23, . Carrington, Quart. Rev. 17, 67 (1963).

25.

A

24, J. Wertz, Chem. Rev. 55, 829 (1955).
G. Russell, Science 161, 423 (1968).
J

26. . Morton, Chem. Rev. 64, 453 (1964).

27. D. Eargle, Analyt. Chem. 40, 303R (1968) .
28. K. Sales, Adv. in Free Rad. Chem. 3, 139 (1969).

29. M. C. R. Symons, Adv. Phys. Organic Chem. 1, 284
(1963).

30. R. Norman and B. Gilbert, Adv. Phys. Organic Chem. 5,
53 (1967).

31. J. Kochi and P. Krusic, "Electron Spin Resonance of
Free Radicals in Non—-aqueous Solutions," in
Chemical Society, Special Publication #24, London
(1970) .

32. Annuals Reviews of Physical Chemistry, 1955-1964,
1966-1969, 1972.

33. Annual Reports of the Chemical Society, 1957, 1960,
1962, 1964, 1966-1971.

34. Symposium on Electron Spin Resonance, East Lansing,
Michigan, 1-3 August, 1966. (Also contained in the
first issue of J. Phys. Chem. 71 (1967)).

35. Fifth Annual George H. Hudson Symposium, Plattsburg,
New York, 20-22 October, 1969.



36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

49,

50.

94

Second ESR Conference, Athens, Georgia, 7-9 December,

1970. (Also contained in the 22nd issue of J. Phys.
Chem. 75 (1971)).

Yen, "Electron Spin Resonance of Metal Complexes,"
(Symposium on ESR of Metal Chelates at the Pitts-
burgh Conference on Analytical Chemistry and Applied
Spectroscopy, Cleveland, Ohio, 4-8 March, 1968),
Plenum Press, New York (1969).

Coogan, N. Ham, S. Stuart, J. Pilbrow, and G.
Wilson, "Magnetic Resonance," (Proceedings of the
International Symposium on Electron and Nuclear
Magnetic Resonance, Melbourne, Australia, 11-15
August, 1969), Plenum Press, New York (1970).

Bielski and J. Gebicki, "Atlas of Electron Spin
Resonance Spectra," Academic Press, New York (1967).

Fisher, "Landolt-Bornstein, New Series Gp. II,"
Vol. 1, "Magnetic Properties of Free Radicals,"
Springer-Verlag, Berlin (1965).

Carrington and A. McLachlan, "Introduction to
Magnetic Resonance," Harper, New York (1967).

Wertz and J. Bolton, "Electron Spin Resonance,"
McGraw-Hill, New York (1972).

Poole Jr. and H. Farach, "Theory of Magnetic
Resonance," John Wiley, New York (1972).

Slichter, "Principles of Magnetic Resonance,"
Harper, New York (1963).

Abragam and B. Bleaney, "Electron Paramagnetic
Resonance of Transition Ions," Oxford University
Press, London (1970).

Griffith, "The Theory of Transition-Metal Ions,"
Cambridge University Press, London (1961).

Poole Jr., "Electron Spin Resonance," Interscience,

New York (1967).

Alger, "Electron Paramagnetic Resonance: Tech-
niques and Applications," Wiley, New York (1968).

McConnell and D. Chestnut, J. Chem. Phys. 28, 107
(1958).

McConnell, J. Chem. Phys. 28, 1188 (1958).



95

51. J. Colpa and J. Bolton, Mol. Phys. 6, 273 (1963).
52. J. Bolton, J. Chem. Phys. 43, 309 (1965).

53. G. Giacometti, P. Nordio, and M. Pavan, Theoret. Chim,
Acta 1, 404 (1963).

54. R. Moss and G. Fraenkel, J. Chem. Phys. 50, 252 (1969).

55. H. McConnell and J. Strathdee, Mol. Phys. 2, 129
(1959).

56. D. Ghosh and D. Whiffen, J. Chem. Soc., 1869 (1960).
57. E. Stone and A. Maki, J. Chem. Phys. 37, 1326 (1962).

58. A. Horsfield, J. Morton, and D. Whiffen, Mol. Phys. 4,
425 (1961).

59. L. Kispert, Ph. D. Thesis, Michigan State University,
East Lansing, Michigan (1966).

60. J. Watson, Ph. D. Thesis, Michigan State University,
East Lansing, Michigan (1970).

61. M. Hammermesh, "Group Theory and Its Application to
Physical Problems," Addison-Wesley, Reading, Mass.
(1962), pp. 86-87.

62. J. Jackson, "Classical Electrodynamics," John Wiley,
New York (1967), pp. 137, 146, 148.

63. E. Wigner, "Group Theory and Its Application to Quantum
Mechanics of Atomic Spectra," Academic Press, New
York (1959), pp. 326-327.

64. A. Abragam and B. Bleaney, op. cit., pp. 646-648.

65. E. Wigner, op. cit., pp. 158-161 (Note that the S and
Sz matrices are defined differently). Y

66. J. Greenstadt, "Mathematical Methods for Digital
Computers," (A. Ralston and H. Wilf, Eds.), John
Wiley, New York (1960), Vol. I, p. 84.

67. A. Abragam and B. Bleaney, op. cit., pp. 653-656.

68. E. Fermi, Z. Phys. 60, 320 (1930).

69. F. Milford, Am. J. Phys. 28, 521 (1960), (Note that
Je is assumed to be exactly 2).



70.
71.

72.

73.
74.
75.
76.
77.
78.
79.

80.

81.

82.

83.
84.

85.

86.

87.

88.

89.

96

Carrington and A. Mclachlan, op. cit., pp. 81-82,
Slichter, op. cit., pp. 10-12,

Mgller, "The Theory of Relativity," Oxford Uni-
versity Press, New York (1952), pp. 53-56.

Furry, Am. J. Phys. 23, 517 (1955).

Carrington and A. McLachlan, op. cit., pp. 29-30.
Carrington and A. McLachlan, op. cit., pp. 64-66.
Jackson, op. cit., pp. 148-150.

Slichter, op. cit., pp. 65-68.

Abragam and B. Bleaney, op. cit., p. 167.
Slichter, op. cit., pp. 161-171.

Rose, "Elementary Theory of Angular Momentum," John
Wiley, New York (1957), pp. 85-88.

Abragam and B. Bleaney, op. cit., p. 166 (Note we
have used I and I_ in place of I and I in
Equation (3.40c)). y

Swalen and H. Gladney, IBM J., 515 (1964), (Note
that there is a mistake in Equations (10) and (11)
where ¢ and 6 should be interchanged).

Abragam and B. Bleaney, op. cit., p. 135,

Abragam and B. Bleaney, op. cit., pp. 167-171.
McClung, Can. J. Phys. 46, 2271 (1968), (Note that
the relationships between our A and ¢ and his are
A(our) = MA(his) and ¢(our) = 180°-¢(his)).

Lin, Mol. Phys. 25, 247 (1973).

Abragam and B. Bleaney, op. cit., pp. 157, 171,
181, 182.

Lund and T. Vanngdrd, J. Chem. Phys. 42, 2979
(1965).

Taylor, W. Parker, and D. Langenberg, Rev. Mod.
Phys. 41, 375 (1969).



97

90. L. Buss and L. Bogart, Rev. Sci. Instr. 31, 204 (1960).
91. H. Rose, Analytical Chem. 24, 1680 (1952).

92, M. Woolfson, "X-ray Crystallography," Cambridge Uni-
versity Press, Cambridge (1970).

93. D. Schonland, Proc. Phys. Soc. (London) 73, 788 (1959).
94. M. Rose, op. cit., pp. 50-51.
95. M. Rose, op. cit., p. 65 (Equation (4.43)).
96. "International Tables for X-ray Crystallography,"
Kynoch Press, Birmingham, England (1969), Vol. I,
p. 150.
97. H. Fischer, Z. Naturforsch. 20, 488 (1965).

98. R. Livingston and H. Zeldes, J. Chem. Phys. 44, 1245
(1966) .

99, R. Wilson, J. Chem. Soc. (B), 528 (1968).

100. sS. Ohnishi, T. Tanei, and I. Nitta, J. Chem. Phys. 37,
2402 (1962).

101. R. Fessenden and R. Schuler, J. Chem. Phys. 38, 773
(1963) .

102. R. Fessenden and R. Schuler, J. Chem. Phys. 39, 2147
(1963).

103. P. Groth, "Chemische Krystallographie," Wilhelm
Engelmann, Leipzig (1917), Vol. IV, p. 559.

104. P. Groth, "Chemische Krystallographie," Wilhelm
Engelmann, Leipzig (1917), Vol. IV, p. 560.

105. J. Pople and D. Beveridge, "Approximate Molecular
Orbital Theory," McGraw-Hill, New York (1970);
QCPE #142 from Quantum Chemistry Program Exchange,
Department of Chemistry, Indiana University,
Bloomington, Ind. 47401.

106. H. Benson and A. Hudson, Mol. Phys. 20, 185 (1971).

107. R. Wilson, J. Chem. Soc.(B), 84 (1968).

108. A. McLachlan, Mol. Phys. 3, 233 (1960) .



98

109. J. Colpa and J. Bolton, Mol. Phys. 6, 273 (1963).
110. J. Bolton, J. Chem. Phys, 43, 309 (1965).

111. H. McConnell and J. Strathdee, Mol. Phys. 2, 129
(1959).



PART I

APPENDIX

COMPUTER LISTING OF SUBROUTINES USED TO
DETERMINE THE g AND A PARAMETERS FROM

TENSOR VARIATIONS



OO ANONOOONODOONOHOHOHONOOOHONO

APPENDIX

COMPUTER LISTING OF SUBROUTINES USED TO
DETERMINE THE g AND A PARAMETERS FROM
TENSOR VARIATIONS

SUBROITINE MIN%
NDIMENSION XX(10)Y+1. POS(10)+SOCOS(10)«IVECT(10)
COMMON/GRAD/ZIHPADVGRANGGCNS ()
COMMON/XREG/XREC (1) /SCALE/ZSCALF (1) ZLOCATE/VeX (1)
COMMON/PARAGEN/NDIMeKTINGKNUT «NISTeDISTMX e VM
CNMMON/MINN/KDFRV«NVDTHMeNGRAD .
COMMON/TIMF/TIMELIM«TREGSTEND«ANOWS IMP o IPPs VP IXP
COMMON/TITLIZITITLE (S)NDATE (D)
THIS SURRNUTIMF IS A GFNFRAL ROUTIMF FOR LOCATING THE MINIMUM OF A
FUNCTINN OF ANY NUMRER OF PARAMFTERS, ITS BASIC METHOD 1S TO USE THE
SURBRNIITINFE PARAGEN WHICH wILL SEARCH FOR A MINIMUM IN ANY GIVEN
DIRECTION BY FITTING THF CURVE TO A PARABOLA. THE MAIN PRNGRAM
CONSISTS OF METHODS OF DETERMINING IN WHICH DIRECTION PARAGEN SHOULD
SEARCH, B
THIS PROGRAM RFAUTRES?: PARAGEN.VALUFE + TIME «NARMGRD ¢ CALNDER,
LARFELLEN COMMONS USEDS /GRAND/ «/XBEG/ o /LOCATFE/ ¢ /SCAILE/ +/PARAGEN/ « /MINN/
o /TIMT /o /TITIF Y/,
PUT THF ROUTIMF=DETERMINING INSTRUCTIONS IN CENTRAL EVALUATION CENTER.
DISYT IS THE LENGTH OF A NORMAL STFP,
KDFRV = (0+1) WHFN THF SHRBRNNITINE VALUE (DNES NOT.NOES) CALCULATE
THF GRADIENT COMPONINTS,
LPOS(MVDIM) TELLS WHICH OF THE DIMENSION NUMBERS 1e2eveeetNDIM ARE TO
BFE VARTEN,
NDIM IS THE NUMBFR OF PARAMETERS JM THE SUBRNUTINE VALUE,
NGRAN IS THE NUMRER NOF TIMFS THF GRANIENT METHOD IS USED BEFORE THE
PROGRAM LISES THF UNTFNEM-RBASIC-NDIRECTINNS ROUTINF.
NVDIM IS THE NIMOFR OF THFE NDIM PARAMEFTERS WHICH ARE TD RE VARIED.
SCALF(NNIM) ARPF THE QA TMG FACTARS TN RBE 1ISF) 1IN THE FOUHATION IN
SUAROUTIMF VALUE: xB(1)1=XBEG(L)*SCALE(IV exXA(]I)s WHERE XA IS BROUGHT
IN HY MINN AND VALIE USES THFE VARIARLES xB,
TIMELIM IS THE NUMBFER OF CENTRAL=-MFMNRY SECONDS FOR THF JO08.
TBEG,TENN ARE THF NIMRPRFRS OF SECONDS OF HIGH=-OUTPUT FROM THE
BEGINNING NOR END OF THF PRNGRAM,
XBEG (MR IM) ARE THE BFAINMING VALUES OF THE NNDIM CNOMPONENTS OF X.
STOP NUVBFRS USFD: 101e102+103+91044105410A,4107,
DIMENSINNTZE XXeLPOSsSNCONSHIVFCTs AS (N7) WHERE NZ.GE.NDIM,
1000 FORPMAT(IHT «27XeRA10«T124eT1201Xe1A%.2 190,4124//)
1001 FORMAT(TS0eP00ee MINIMIZATION OF A FUNCTION ceee®9//
A T42+8NDIMeTHE NMIIMRFR OF VAR[ABLES:®e1144//
8 TIR+*NVDIM.THE MUMRER NOF VARIARLES WHICH ARF TO RE VARIED:e
C 1lav//e TI2«21.PNSeTHE VARIARBL E NIIMRERS TO BE VARIFN:®.]014)
1002 FORMAT( /o TSe®KDFRV=(0e1) 9o (NNyYES)«NDOFS SURRONTINE VALUE CALCULAT
AE THE GRADIENT:o .| A4 /77 TI0«eHARADONUMRER OF TIMES THAT T
BHFE GRADIENT ROUTIMNFE WILL RE USED:®s114e///
C T44,2XRFGeTHE RLGINNING VALUES OF THE PARAMETERS ARE:®#//(T23+6G1S
DISCRWARI
1003 FNPMAT (/e T3342GCAL EoTHE SCALING FACTNR InN THE FOUATINN=XH(1)=XREG
T(IVeXA(I)@g1H®ooSCALE(T) AREI®y //e (T23¢66)15e94/7))
1004 FORMAT( /e T434oNTSTLTHF DISTAMCE OF A NORMAL. STEP 1S:®41G15.9¢/
A/e¢ T4O0«®DISTMYGTHE MAXTMUM DISTANCF OF A SILP 1S:041015,94//
B TI9.OTIMFIL.IMeTHE TIMF LIMIT FAR THE PROGPAY [G2®,1G15.9¢//
C T6.2TBEG.THF NLi4RFR OF SECONDS OF HIGH=QUTPUT FROM BEGINNING OF
DTHE PRNGRAM [S:e.1G15.9 /7 TR«*TENND«THF NUMRER OF SECONDS O
EF HIGH=OUTPUT FRNM THF ENN OF THE PRNGRAM 1S3°.1615.94¢7/
FIXe27(SH )o/)

99



100

11RS FNARNAT (/42Xe®11RS-ANOWIVM 39, 10G15,9+T115+1615.9)
IMDEX=0 & I0FND=0 € JYN=4H NN
IF(RDERV.EQ 1) TYn=4MH YES
OISTMX=20,0°DIST
CALl. CAUNDER(NDATE)
see INITIAl 1ZF LPOS
ITT=0
NN 10 I=1.NDIM
IF(SCALFE(1).LE.O.N) GO TN 10
ITT=ITTel & LPOS(ITY)=]
10 CONT INUE
PRINT 1000+ITITLFE+NNATE
PRIANT 100)+NDTMNVYNTMe (1 POSIL) oL=1eNVDIM)
PRINT 1002+JYNNGRAD (XBEG(L) oL=1eNDIM)
PEINT 1003« (SCALE(L) oL =)eNDIM)
PRINT 1004 «DISTeDISTMYTIMFLIMeTREGsTEND
C seeee CHECK FOR BAD PARAMETERS sese
TF(NDTMLTe1leOR.NDIM.GT.10) STOP 101
TFINVDIM. LTl eORHYNDIM,GT 10,00, NVNTIM . NE.TTT) STOP 102
IF(RIST el TeleOF=1,0R . NIST,GT.100.,0) STOP 103
ITF(NGPAD.LT.0) STOP 104
TF(TIMELIM LT.0.0.0R.TIMFI IM,GT.500.0) STOP 10S
TF(THFGLT.0.0.0R. TREG.6T.500.0) STOP 106
IF(TENDLTe0.0.0R.TENN.GT,500.0) STOP 107
CALL TMINIT
C eeo INITIALIZE THE X VECTNR .ee
NO 2 T=1«NDIM
2 xX(Ir=0,0
IGRAD=0
T0C01 CAILL VALUE(XeV)
GO 10 300
C eecoee CRADIENT METHON ceeee
S0 CONTINUF
€n0nl CAl L. GRADNT (LPNS)
80001 CALL PARAGFN(XX)
IREN=IRFNe1 e
IF ((KOUT.,AND,.18) .NE,.1B) IRED=0
IFCIRFD.LT.2) GO YO S2
IREN=0 & DIST=NIST/2.0 & NDISTMX=20,0*DIST
G2 DO S& I=14NDIM
S6 X(I)=xX(I)
v=VvM
GO T0 300
 eees HUNIFORM RASIC-DIRFECTIONS RNUTIMNE oo
160 X1nz=0
DO 195 NNONFS=1eMVDI™M
RFN=1,0/90RT(FLNAT (MNONES))
D0 162 1Z2=1+NONES
162 TVFCT(17)=NONES+1-12
GNn 10 172
1664 10HJ=1 $ IFMND=NVOIM
166 TF(IVFCT(IORY) LLTL,TIEND) GN TN 1A8
IF(10QJ.GF NONES) GO YO 19S
INAJ=T0B 1e]l & TFNN=IFMN=]1 & GO TO 1AA
168 TVECT(IOR D) =TIVECT(INR.)) *]
IF(10BJ.EN.1) GO TN 172
10RJI=I0RY=1 & ISTAMND=IVECT(IORJY)+10RB)
DO 170 IUN=1+1NnBU1
170 IVECT (U =ISTAND=JN
172 00 173 IMN=]14NDIM
173 OCOS(INY=0.0
175 NANFSI=NONFS=1 § [7=IVECT(NONES) & NCOS(LPOS(12))=REN
JIND=SHIFT(JRWNNNFS])
DO 190 T=1+JIND
1I=1-1 & IF(NONES1.FQ.0) GO TO RO002
DO 180 IK=)+NOMFS]
Al =REN S TF((TT.A,1B).EQ.1B)Y AL=-RFM
1Z=IVFCT(IK) & NCOSLPOS([2))=AL
180 T1=11/2
80002 CALL PARAGEN(XX)
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PQINTY 118S4,ANOW,VM
NN 186 JY=1eNDIM
186 X (JY)=XX(JY)
V=vM § CALL TIMF
190 CONTINUFE
GN T0O 1h6
195 CONTINUF
teevaese CFNTRAL EVALUATION CENTER ccee
300 TNDEX=INDEXe]
IF(INDEX-NGRAD) S0+SG+160
FND

SHAROUT INE TIME
COMNMON/TIME/TIMEL IMeTREGeTEND«ANOWe TMP o IPP, IVPy IXP
GN TO (10,20+430) TARC
10 ANOW=SECOMD(A) & DIF1=ANOW=-REG
IF(NIF1.LT.THEG) RFTURN
T1ARC=2 § IMP=(0 <« [pPP==-]1 § IVP=0 $ RETURN
20 ANOW=SECOND(A) $& DIF2=TIMEL IM=ANOW
IF(DIF2.GT.TEND) RFTURN
1ARC=37 & IMP=]1 & [PP=1 % IVP=]1 ¢ RETURN
ENTRY TMINIT
TARC=1 & IMP=]1 ¢ IPP=1 ¢ IVP=]1 & BEG=SECOND(A)
30 PFTURMN
FND

SURROIITINE GRANNT (L POS)
COMMON/I OCATE/VeX (1) /ARAD/IGRAN.GRANLDCNS (1)
COMMON/PARAGEN/NDTMeKTNKOUT «NISTeNTSTMX e VM
COMMON/MINN/KDERV «MVDTMoNGRAD
NIMENSION LPOS(10)«XX(10)+SDCNS(1IN)
eee THIS SUBROUTINE CALCUL ATES THE NORMALIZED GRADIENT OF A FUNCTION 0O
OTHER WORNS, THE UNIT VECTOR POINTING IN THFE DIRECTION OF SIFCEPEST ASC
REQUIPES | ARELLFD COMMNOME JULNCATF /o /GRAN/ o /11TMN/ « /PARAGFN/
DCOS IS A VFCTOR CONTATINING THE RESHLTANT COMPONENTS OF THE NORMALIZED
GRPADIENT NR«IN NTHFR WNRNGe THE DIRFCTION CNSINES OF THE GRADIENT.
GRAD TS THF MAGNITIINE NF THF GRADNTEMT
NDTM OIS THE NMOYERER OF NIMFMNSTONS TN THF SPACC OF THF FUNCTION
X 1S A VECTOR CONTAIMTIMG THF INITIAL CNORPNINATFS OF THE FUNCTION
V IS THF vALHE OF THE FUNCTIOM AT THE INTTTIAL COORNINATFS
eeese NDIMENSIONIZES LPOS(N7) oXX(N7)«SDENS(MZ) WHERE NZ.GENDIM
IF(NDIMJLEL0.0RNVNIM LEL.D) GO TO 9l
IF(KDFRV.EN.1) GO 10 51
IGRAD=0 & GRAP=0.0 ¢ NERSTEP=0.01=NIST
NO 10 I=1.NDIM
NCOS(11)=0.0
In XX(U)=x(1)
NN 20 T=1.1YDIM
I1I=LPOS(])
XX(II)=X(IT)*DERSTFP

70001 CALl. VALUE (XXeVV)

Xx(II)=x(11)
NDZ = (VV=V)/DERSTEP
NCOS(1IY=Nn7

20 GRAD=GRANDNZ®D?
GRAN=SNRT (GRAN)
IF(CRAN,FN.,0.0) 6N TO 91
NO 30 I=1.MDIM

30 DCOS(1)=NCOS(1)/6GRAD
QF TURN

S1 16RrAD=)

70002 CALL VALIF (XeV)

N0 G2 T=1e%N1U

SNCOS (1) =ncos(I)
S2 NrOS(11=0.0

NO S4 [=1+MVDIM
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Se DCOS(LPOS(1V)=SPCOSIT)
eevees PEMGRMAL IZE THE DCNS VECTOR ...
1GRAD=0 $ 727=0.0
D0 S6 I=1.NDIM
S6 22=22+NCOS([)oep
2Z=SQRT(22)
1F(22.£EQ.0.0) GO TO 91
DO S8 I1=1.,NDIM
S8 0COS(1)=DCOS(I1Y/22
RETURM
91 PRINT 191 ¢MDIMeNVDIMKDERY «IGRAD e ADe7ZeNISTDERSTEP Lo T1TeVeVVeN7
T (XL oL =1oMNDIM) « (L POS(L) oL =1eNVDT 1)
191 FORMAT(//+® CQARON 1M GRADNT=NNIM-NMVDIMKDERVs IGRAD«GRAD77 = o,
A 4]542Xe2615.9¢//¢ T16e2DISTeDERSTEPeI«114¢VeVVeDZ = ®4 2G1S.9e¢2X0
B21SelXe3G15.9¢/7¢T1600(X(L)L=1eNOIM) o (LPOS(L)oL=1eNVNIM) = @&,
C ‘15'!.“615.9'/"
STOP 246
FND

SUBROUTINE PARNAGEN (UU)Y
COMMON/GRAN/IGRAD«GRANDCNS (1) ZI.OCATE/VeX (1)
COMMON/PARAGFN/NDIMeKTIN«KNUT«NTISTDISTMX VM
COMMON/TIME/ZTIMELIMeTREGTEND«ANOWC IMP 4 [PP 4 VP4 IXP
PIMENSION STEP(10)¢XX(10)eYY(10)77(10),UU(10)
W.GC.WALIFR = CHEM NDEPe MICH STATE 112 9 JuL 1972 = 175 CARDS
REQUIRFS { ARELLFN COMMONS /TIME/Z+/LNCATF/Ze/GRAD/ +/PARAGENZ .
PEQUIRFS SULRRNUTINE VA[ UE,
INPUT?: XeVeNCOSNISTHNIM(DISTMXoKIN. OUTPUT: KOUTeUlJe VM
PARAGFN IS5 TO BFE USFD IN A PROGRAM THAT SFARCHFS FOR THE MINIMUM OF A
FUNCTION NF NDIM VARTARLFS, THFE FUNCTINN T11SELF ]S WRITTEN AS THE
SHRRNIITINFE VALUE(XAGANS) e WHERE XA(NDIM) ARF THIT VARIARLES AND ANS IS
THE FUNCTIOMAL VALVUF, PARAGFN IS GIVEN A STARTING SET OF PARAMFETERS IN
THE NNIM NDIMFNSIONAL SPACF AND A MORMALIZED VFCTOR WHICH MAY POINT
ALONG THE GRANDTENT. PARAGFN RFGINS &Y TAKING A STFP IN THF 0OPPOSITE
DIRECTICN OF THE VI'CTON, IT THEN TAKES A 2ND STEP ANDe IDEALLYe FITS
THF 3 POIMTS TO A PARARNLA, IT STERPS AT THE BOTTOM OF THE PARAROLA AND
RETUONS THFE VALUFE OF YHF FIINCTINN, DARAGEM 1S SET UP TN TAKE CARE OF
AL MOST ANY CONMCEIVIRLF SHAPE OF CURVE ALONG WHICH [T WALKS. IT WwILL
ONLY RFTURN A NEW POSITION IN THE NDIM DIMENSTONAL SPACF AND A NEW
FUNCTIONAY VALUE IF JYT IS LFSS THAM THF FULMCTIOMAL VALUF GIVEN 7O IT,

IF IT FINNS TTISFLF ON A PERFFCILY STRAIGHT LiNfie IT1 WILL PRINT EVERY-

THING AND STOP,

X(NDTIM) ARE THFE VALUIFS GIVING THC THITTIAL pPOSITION IN THE NNV
NDIMENSTOMNAL SPACE .

V IS TKE INITIAL VAL, OF THF FUNCTION AT THE INITIAL POSITION,

NDCOS(NNIM) ARF THE VaA: LIES NOF THE NORMALIZED VECTOR ALONG WHICH THE
SURRAUTINE PARAGEM WILL SEARCH FNR A MINMIMUM,

NDIST IS THF LENGIH OF THF STEP THAT PARAGFMN SHNULD TAKE,

NNDIV IS THF NUMRFR OF VAQTAR|I ES THAT DEFINF THE FUNCTION,

NISTMX 1S THE MAXIMUM REASNNARLE NDISTANCF TO HE TRAVELLEND IN 1 STEP,

KKIN = (1+0) IF THE VECTNAR DCOS(NDIMY (DOES+DQES NOT) POINT ALONG THE
POSITIVF GQADIENT OF THE FUNCTIOM.

KOUT IS A FLAG INTIFGFR WHICH IS OB INLFESS PARAGEN 1)SES SPECIAL
ROVNTINFS. RIT POSITINNG=1924¢344¢5e¢6 ARFE SET FQUAL TO 1 IF PARAGFN-
(1), TURNS AROUNDe (?2) FATLS AT FINAL CHFCKXeNR GOES TN THE (3).MINNLE
2 (6) JDNUBLE=VALLEY ¢ (S) HILL=WALKs NP (6) ,CUT=-0FF QNIJTINES,

M)(NDTM) OFPRFSFNTS THF FINAL MIMIMUM PNSTTINN ALONG THE VECTOR NCNS,

VM 1S THF FIMAL VALUF OF THF FUNCTION AT POSTTINM 1)),

PARAGFN USES OMLY THF VARARLF 1PP M THF |LARELLFD COMMON /TIME/,

IPP=(0es1) YHFN (MOTHENGFVFRTHING IS TN BF PRPINTFN, IF [PP=AMOTHER
NUMBER« THEN ONLY FORMATS 2041¢21104212042502+42A00 ARF PRIMNTED.

DIMENSTIONIZE: STEPeXXeYYeZZelUUJ AS (MZ) WHFRF MZ IS GREATER THAN OR

EQUALL TO THF LARGFST VALUF OF NDIM T0O RF 1SED,

2001 FOLNMAT(/eT100%0eee ENTERTING PARAGFNIS NIST = 8416G1A,94/4(T34,0DNCNS
1 = 2460616.9¢/))

2010 FOPHAT(® PARAGEM=V] ¢V eXXeYY = 84260]15,9¢/4(19:5G)15,9¢/))

2040 FORMAT(/4720e®,,0, NO LOWERP VALUE FOUND?: TTRYeV]1eV2eV3IeVM = @4112,
12X94616.947) . .
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2041 FORNAT(/.T10e®8es, ,,, AFTFR & TRIFS ANN USING A STEP SI?F OF o,
11G16.9¢ @, NO LOWFR VA)UES WERE FNIIND oe00ee LEAVING PARAGEN seeee€
2%ce, /)

2042 FORMAY (/+¢7309®,.0 LEAVING PARAGEN?: V]1eV2eVIeVY = ®46G16.94/)

2100 FORNAT (/40 MINNI E«PARAGFN?2I00=TDIVeDSTTeV]eV2eXXeYYSTEP = @415,
M2Xs3615.9¢7¢(T1445G15.9¢7)) !

2110 FNRMAT(//.T26he®, ., PONBLT VALLEY=-PARAGF'2115=V]1eV2eV3eXXeYYV0922 = o
NDe3IG15.94/e(TLeS5G1IS,9¢/))

2120 FORMAT (/e20Xe® e ca0aese FAILURF AT MIDNLY ROMTINE cocecece®e/)

2200 FORMAY (/2 HILLWALF=PARAGEN?200-1G1FPeV]eV2eVIeXXeYYe77 = #4]1542Xe
HIGIS e T e /e (T1965515.9+/))

2502 FORMAT (TS e®e0e CUTOFF =DARAGFHPS0.=X51M = 241016,9)

2600 FNUNMAT( //eT25e0,, .CARAGENP6O00-DIVIDER 1S ZERND SO PARAGEN STOPS H
PERE: V]I eV2eVIoVUMINGTT e XXeYYeZZsUUJ-DCNS = 84/:(TReSG1S5.9¢/))

ISTFP=0 ¢ TIRY=0 & KNIT=08
IF(IPP.EQ.1) PRINT 7001DISTH(DCOSIL) ol =14NDIM)
DSTT=D1IST
2 vVi=v
D0 3 I=1+NDIM
I Xx(1)=x(1)
S DO 10 I=1.NDIM
STEP (1) =DSTTeNCOS(])
10 YY(I)=XX(1)=STEP(I)
70001 CALL VALUE(YYWV?)
IF(V2.LT V1) 16,4115
115 IF(KINLEN.1) GO TO 100
Cee TURMN=ARNIIND,
12 DO 13 I=1+MDIM
VT=XX(1) & XX(U)=YY(]) & STEP(I)==STEF (1)
13 YY(lr)=vry
VTI=V]l ¢ Vv1=V2 & Vv2=VT & DSTT==DSTT ¢ KOU)T=KOUT.NR,.18B
14 DO 30 I=]1+NNDIM
A0 Z2(1)=YY(1)=STEP(])
70002 CALL VALUE(Z7ZeV3)
DIVIDFR = V1=V2=-V2+V]
IF(NIVINERY 2004600437
17 DELTA = 0,54DSTT2(3,00V]1=4.08V2+V3)/DIVIDER
IF(ABS(OEL.TA) (GT.DISTMX) GO TN SO0
3R DO 40 I=1.NDIM
40 UCT)=XX(T)=0OFLTA®DCNS<(])
70003 CALL VALUF (s VM)
Ceoees FINAL CHLCK,,
VMINSAMINL(V2eY34VH)
TF(UYMIN.LT.V) GO TN 42
TTRY=ITRY+«1 3 KOUT=XOUT.NOR.2R
I (IPP.EQ.1) FRINT 204041TRYeV]1eV2eV3IeV¥M
TFUITRY .G .6) GO TO 4)
DSTT = =0.29DSTT
G0 T0 2
4] IF(IPPNF.0) PRINT 204).DSTT
42 TF(IPP.ER.1) PPINT 2042+V1eV24V3IsUM
IF(VMIN.EQ.VM) RETURN
IF(VMIN,EQ.V2) GO TN S5
DO 50 I=1,MD]M
50 uu(I)=ZZ(1)
VM=V3 ¢ RFTURN
SS NN A0 [=1.MOIM
A0 L)Y =YY (D)
VM=V? § RFTURN
C eoe MIDNCLF PDIHINF XX
100 IDIvV=N & XNUT=KOUT ,NR,4R
TF(IPP.FN,1) PRINT 2100+IDNIVeDSTTeV1eV2e(XX(L)eL=1eNDIM)Q(YY(L)eL=
11oNDIVM) « (STERP (L) ol.=1«NDTHM)
105 vi=v2 $ DSTT=NSTT/2.0 $ IDIV=IDIVe]
NN 110 T=1«MDIM
STEP(T)=STEP(TII/2.0 & Z2Z(T1)=YY(])
110 YY(D)=XX([)=STFP(T)
70004 CALL VALUE(YYeV2)
IF(V2.LT.Vv2) GO TN 120
€C eececee DOUBLE=-VALLEY WARNING ceeee



120

C .o
200

2ns

210
220

C eee
S00

501
502

503
S04

S06

sng
509
520
S°S

530
70005
533
540
Sup

C eee
600

104

w«AIT=KOUT 0P 101

IF(IPONL.O) PRINT 2119eV1eV2oVIia(XXIL) eL=1NNDIM) o (YY(L)eL=1eNDIV)
1e (721 )elL=1eNNDIM)

[F(ve.lL T,vl) GO TN 37

TFCIDIVL.LTLY) 6N TN 105

IF(IPL.NE,.O) FRINT 2120

GO 70 12
esee HILL-WALK QnUTINE.o

ISTEP=[STFPel

TFUIPP.EQ.))Y PRIMT 22004 ISTEP VI «V2eVI¢ (XX (L) oL=1eNDIM) o (YY(L)eL=]
1eNDIMY e (ZZ (1) ol =1 eNDIN)

IF(MON(TSTFPL3) . £Q.0) GO TO 210

NN 205 1=)NDIM

XX(l)=yYY([)

YY) =2z«

V1=v2 % V2=V3 § KOUT=KOUT.OR.208 & GO YO 16

DN 220 I=1«NDIM

xXx(1)=22(1) )

VI=V3 ¢ DSTT=DSTT+NSTT & GO TO S

CHUTOFF ROUTINE ...

KOUT=KOUIT,NR,LOR

VMIN=AMIN] (V]1eV24V3)

TF(VMIN.EN.VI) GO TO 502

IF(VMIN.EQ.V]1) GO TO S04

NN SO1 T=1.NDIM

Xx(1)=yYvY(en

60 10 S06

DO 5071 1=1«NDNIM

Xx(1)=22(1)

160=1 $& XNUM=ARS(NFLTA/DISTMX) & V1=V3
TF(IPP.NF.0) PRINT 2502« NUM

IF(XNIM,6T,.3.0) GO TO S06

DST=DFLTA/?.0 § NTIMF=?2 . GO YO S20

TF(XNUM,GT.9) GO Tn S0R

NDST=DFLTA/3.0 $ NTIME=3 $ GO TO 520
NST=SIGM(DISTMX.NFLTA) § NTIME=? & 1G0=2 § GO TO S20
NTIME = TFIX(SORT (XNUUM=2.0))
NDST=DFLTA/(FLOAT(NTIME)) €« JGOH=Y € GO TO S20

NN 525 T=]NDIM

STFP (1) =NST&DCNS (1)

NN S40 J=1MNTIMM

D0 S30 [=1.NDI4

YY(I)=XX(1)=STFEP(])

CALL VALIIFIYY VD)

IF(V2.6T.Vv1) GO TN S42

NO S33 TA=1NDIM

XX(TA)Y=YY(]A)

vi=ve

CONT INUF

GN 10 (542.509) 160

DSTT=SIGM(NIST+DSTT) € GO TO S
e IF DIVINFR IS ZFPNe FVERYTHING IS PRINTEN AND PARAGEN STNPS.
PRINT 2600+4V1IeV2eVIeVMINSTTe (XX(L) o). SVeNDIM) o (YY (L) eL=1eNDIM) e (77
1AL oL =1eNDTIM) ¢ (UU(L) oL =1 oNDIM) ¢ (DCOS (L) eL=1eNN[M)
STOP 600

[AN]))

SURROUTINE VALNE (XA+ANS)

COMMON/VALUE/ZQANARGXMENT () « GMFMT () « G (V)

COMMON/XBEG/XBRFG(A) /SCALE/SCALF (6)

COMMOMN/GRAN/TIGOADGRANWNCNS (A)
COMMON/TIMF/TIMELTMeTREGeTENNGAMOW e IMP o TPPIVP TXP

DIMFMNSTION DFAMA(3) JNFAVAL(3)«0GX(2) eR(3eT) e XA(H) ¢ XAR(H) «DDFANG(6TI) o

DCDFGVAL (643) «DGX(2) ¢DR (Ve 1) sUG(I) sDXB(A) «N(3) +SAVE (243)

DATA RD/S7.2957795131/

C REQUIRES LARILLED COMMAON: /VAILUEZ «/XHBFG/ e /SCALE/e/GRED/e/TIME/ W

C ALL

VALUES IN THE LARFLLFN COMMONS MUST RE PRFVIOUSLY INITIALIZED

C EXCEPT FOR GRAD AND DCOS(6) IN /GRAD/,
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NN OTHER SUBROUTIANSSY AKE REOUIRED,

TnpuT: XA(AY, NUTPNIT: ANS,

STOP MIMIRFRS USFN: 1234,

THIS SHfeRAnTINF 15 TN AF YSED WITH A A PARAMETER MINIMIZATION PROGRAM
TO DFTFEMINF THE EORIMCIPLF G-VvALUFS AND s [R DIOFECTION COSINES FROM 3
ISOFOFALENMCY SLOTS, IT NETFRMIMNES OW will THE THEONRTTICAI CURVES
PRANUICEDN FROM THT Tr.PUT PARAMFTFOS FIT THI F(PFRIMFNTAL ISNFRFAUENCY
PLOTS, IT ALSO DETFRMINFS THE GOALTFNT OF THAY VALNE, THF DIRECTION
COSINFS OF THF GUANIFNT ARFE IN DCOS(6) AND GRAD CONTAINS THE MAGNITUNF
OF THF (RADIFNT,

IGRAND= (04 1) WILL THE AR TFMT BF CALCiit ATFNS (NDeYFS)

YR(A) VALUFS ARE GOTTFN FROM SCALIMNG AND OFPNSEITIONIMNG THE INPUT
XA(6) VALIIFS: AsBC=XA(1e2+¢3) ARE 3 FINNFP ANGLES THAT ARF USED 70
PRANDUCFE A ROTATION MATRIX R(3.3),

G(3) IS & VFCTN? COMNTAINMING YHE 3 PRINCIPIT G.-VALIIES,

XH(&Lete6) ARE THE 3 VARTARLF G-VALUE PARQAMITERS. THE 3 ELEMENTS OF
G(3) APE ENUATEDN TN XR(4«5.h),

R(343) IS THE I1IMITARY MATRIX THAT IS PRODUICEND FROM A.8,.C,

AMS 1S THMF RESHLTAMT ERPAR ACSNCTATEN WITH THF INRUT PARAMETFRS,

QA 1S THF STAMDARD NDFVIATION IN THFE ANGLF WHFRE G-MAXIMUM OCCURS.

QG 1S THF STANDARD DEVIATION OF THE G-VALUNE RANGE FROM G-MAXIMUM TO
G=MINIMUM, '

XMEMT IS A VECTNR CONTAINING THE FXPERIMFNTAL G-=MAX ANGLFS FOR THE 23
PLAMES OF ROTATION,

GMENT IS A VECTNR CONTAINING THF FXPERIMFMNTAL 6G-VALUE RANGES FOR THE
I 0) ANFS OF ROTATINN,

998/ FNPMAT (8 VAL'IF=QAR:GRADLDCNS = ®+7615,0)
999 FNOMAT (8 VAL HIF =00 A RCeGNFAMGINFLVAL «FRANGJEQGVAL 4 ANS =04//,
A2K0h (01SeDelY) /7027 eAIG1S5,De2X) 0//7eT0%Xe3(R]1S5,3e2X))

S4321 FNRMAT(® ERROR IN VALUF:94/4(T10+5615,94/))

c

N0 3 I=1e6

3 XB(I)=XREG(I)eXA(T)BSCALE(])
A=xXB(1) & R=XR(2) € C=xB(3) % G(1)=XP(4) % G(2)=XR(S) & G(3)=XB(hK)
CA=COS(A) ¢ SA=SIN(A) ¢ CB=COS(B) %SB=SIN(R) $CC=COS(C) $SC=SIN(C)

R(1s1) = CA®CHe(CC-gARG(C
R(142) = SA?CROCC+CAeSC
R(l1+¢3) = -SR«CC
R(2e¢1) ==CA®CRaeSQC=-SA®CC
R(2+2) ==SA2CReSC+CA*(CC
P(2+3) = SRag(C
R(3+1) = CA®SR
P(3,2) = SAaSB
R(3«3) = (82}

eeeee UNITARY CHFICK ...
FRROR- 0,0

NO 10 [=1e¢3 ¢ DO 10 J=147
T = R(Is1)1OR(Je1)eR(Te2)2R(Je2)¢R(I43)2R(Je3)
1F(1.€Q.J) T=T~-1.0
10 FRPCR=FRRNR*ARS(T)
1F(ERROR.GT.1.0F=-7) GN TO 12345
N(1)=] & N(2)=? % N(3)=)
NN 222 1P=1.43
MZ=N(1) & N(1)=N(2) 8 N(2)=N(3)% N(3)=M7 & F1=0.N & F2=0,0
NO 12 J=1+3
FI=F1eGIN(J))I®220Q(N(J)eN(1))IER(N(J)N(2))
12 F2=F2+G(N(J))®220(D(N(J)eN(1))0882=R(N(J)N(2))®a?2)
F2=F2/?.0
X = (ATAN(F1/F2)) /2.0 & Cx=COS(X) ¢ SX=GSIN(X)
00 20 11=1,2
GX(I11)=0.0
D0 18 U=1.3
SAVE(T1]e)) = GINENDINIRING ) 11 )BCXeR(N(J) «N(2)) ®SX)
18 GX(TI)=GX(11)+SAVF(11,.)) 80?2
GX(I1)=SORT(GX(I1)) $ 2Z=CX % CX==SX % SX=272
20 CONTIvF
Cx==Cy & §X=~SX,
XN = xeRND & [RFvV=Nn
IF(GX (1) «GF.GX(2)) 6O TN 2]
XN = XN=SIGN(90.0.XN) & TRFV=1
77 = GX(1) S GX(1) = GX(2) $ GX(2) = ZZ
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21 DFANG(IP)=ARS(XD)=-XMIENT(IP) & DFOGVAL(IPI=GX(1)=GX(2)=GMENT(IP)
IF(IGRAD . FQ.0) GO TO 222
C eee CALCULATE GRADIENT
Nno 30 1=146
30 PxR(I)=0.0
DO 100 TJUK=146
DxR(I X)=SCALF(IJUx) % DA=NXAR(1) & DR=LXAR(?) $ NC=NXR(])
NG =DXR (&) ¢ DG(2)=DXT(S) ¢ DGI3V=NXxR(H)
NCA==-< A°DA ¢ DSAz=CA2DA ¢ DCB=-SB°DP ¢ DHSH=CyeDB T NDCC:=-SCeDC
naer=CcenC
NQ(1+41)=NCACCROCC+CANCRACCeCASCRENCC-NSAESC-SASDSC
PR(142)=NSASCRACC+SAPNCR CC*+SA2CRNCC+DCARSC+CA2NSC
NO (12, ==LSRY(C-S[3eNCC
LR(2¢1)==NCARCROSC=CAPDCHSSC=CAPCRNS(-NSAECC--SASNCC
NR(2+2)==NSACRESC-SA2NCR2SC-SA#CReNSC+NCAaCCeCASNCC
DR (2+3) =NEHESC e GRENSC
PR (1) =NCABSRMASNCN
DR(Je2)=NSA®GRegARNGH
NR(3+3)=NCR
DF1=0.0 ¢ DF2=0.0
NO 40 J=1,3
GI=GINCDY)Y S DGU=DGINCIY)Y $ RIIZRIN(I)«N(L1)) % DRULI=DRIN(J)eN(1))
RJ2=R(INCII «N(2)) & DRJ2=DQ(N(J) +N(?))
PF1z0DF1+GJe(?2.09NG 18R J1 4R J2+6G.)* (DR 11ePJ2+RIL1¢NR.J2))
40 DF2=DF2+G )2 (?2.,020G 18 (D)) 0a2=P )2083) 4G )0 (2,0°RI1CNRIN=?,02RJ2®DR.I?)
D) & 0F2=00F2/2.0
DX=((CO5(2.G8X))1222/2, 01 ((DF1/F2V=-(F)/F2822)eDF2)
NCX==SXaNDX § NSX=CXeNX
NN €0 I1=142
Dy=0.0
NO S0 J=1.2
GJI=GIN(I)) $ DOIY=DG(MNEI) $ RII=RIN(IIN(1)) & DRII=DRIN(J)«N(]1))
RIUZ=RI(N(JINI(2)) & NRYP=DR(N(J)«N(?))
NY=0Y e (NGJE(RI1ACX4RIPESX) +GI® (DR JI2CX4RILI2NCX eNRY22SX R I22DSX) ) #
G2.0°SAVF (T11eJ)
S0 COMTINUEC
DGX(11)=NY/(2.00GX(T11))
77=0Cx ¢ NDCX==NSX ¢ NDSX=27 ¢ 7Z=CX & CX==-SX $ SX=72
60 ConvTINUFE
Cx=-Cxy % Qqy==-GX
ODFANGITIK S IPY=DXORD
IF(XDLTL.0.0) DDFANG(TUX«IP)==DDFANG(IIKsIP)
DOFCGVAL (T Ko IP)Y=DAX(1Y=NGX(?)
IF(TIREV.FN.1) ODNFGVAL (T1UKeIP)==DDFGVAL(IJKIP)
NPxR(1)x)=0.0
100 CaNTINMUE
222 COMNTINUE
CRANG:= (DFAMNG(1)10024DFANG(P2) 222 +DFANG () 0®D) /NA0E2
ERGVAL =(NDFGVAL (1) 222 +NFGVAL(2)922+DFGVAL(3)%"2)/QG®e2
AtIS={ RANGeFRGVAL
TF(IVEaFQa1) PRINT Q9Q¢AsBeCoehsDFANGDFAVAL ¢ ERANGCERGVAL « ANS
1F(IGPAD,FN,0) RFTHPN
GRAC=0.0
0O 300 1-1.6
DERANG = 2,02 (0FANG(1)ENDFANMG(141) *DFANG(2)2DNDFANG(T42) ¢
FOFANG () @DDFANG(T43)) /0Aa0?
DFRAVAL = 2.02(DFGVAL (1)°DODFGVAL (T4])eDFGVAL (2)eDNFGVAL(T42) ¢
FOFGVAL (3)eDNFGVAL(T143))/QGee?2
0COS (1) =DERANGeDERGVAL
300 GRAND=GRANDIICNS () ae?
GQAD=SQPT (LIPAD)
NOo 310 1=1.6
310 DCOS(1)=DCOS(T)/GRAD
IF(IVP.EQel) PRIMNT 998+GRADDCOS
R TURM
12345 PRINI 56321 ¢AsBeCoeGeCAsCReCCISA«SReSCeRyERROR
SYOP 1234
END




PART II

A GENERALIZATION OF METHODS FOR

DETERMINING g TENSORS

1T



INTRODUCTION

Several authors have derived procedures for
determining the principal values, and the directions of the
principal axes, of the g tensor from magnetic resonance
d.’:\ta.l-4 These involve measurements of g=hv/BH at orien-
tations provided by rotating the crystal about each of
three axes. Any symmetric second-rank tensor may be
evaluated by the same procedures, and examples include the
zero-field splitting and hyperfine interaction tensors D
and X, respectively.5 The necessary equations have been
reported only for the cases of rotation about three
orthogonal axes]'-5 and three monoclinic axes3 and contain
an overdetermination of some of the tensor elements. It
was suggested that additional information in the form of
rotational misalignments can also be obtained from the data
and a technique for so doing in the orthorhombic case was
presented.4

In this article a general formalism is developed
which converts the inherent over-specification of tensor

elements into a determination of the three rotational mis-

alignments. It is applied to the orthorhombic and
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monoclinic cases, the potentially useful case of three
coplanar axes, and the general case of rotation about any
three axes. The latter two cases have not been discussed
previously. Since it is frequently possible to mount a
crystal most precisely by choosing general or coplanar
rotation axes, these latter methods should prove useful in
experimental investigations. Also, the determination of
the three azimuthal misalignments in each case will serve
to make fullest use of data and to improve the accuracy of

the derived tensors.



DATA FOR g-TENSOR DETERMINATION

Experimental

Experimentally the crystal is mounted so it may be
rotated about a specific axis and ESR spectra are recorded
for various orientations of the magnetic field in the plane
perpendicular to that axis. The g values are plotted as a
function of rotation angle 6, which is taken as positive
when the crystal is rotated clockwise (or magnetic field
rotated counterclockwise) as viewed from above. Three such
plots for the three chosen rotation axes constitute the

experimental data.

Parameterization of the Data

Depending on the quality of the plots, three levels
of analysis may be employed. The first method (called the
aBYy method below) utilizes either all the data in a curve-
fitting procedure or only the g extrema with the corre-
sponding angles 6. In the second method (al method), only
the g extrema are used.

As will be shown below (Equation (28)), the g
values for rotation about any axis must obey the equation

(in the notation of reference 3)
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92 = o + Bcos28 + ysin29, (1)

The most accurate values of the parameters a, B8, Y would be
obtained by a least-squares fit of the data to Equation (1).
Alternatively, aBy may be evaluated from the equations for

the extrema:

2 .
a = (gf + gf)/Z, B = (gi - g_)c0529+/2, Y = (gf_ - 93)51n26+/2,

(2)

obtained by differentiation of Equation (1); g, 9_ are the
maximum and minimum g values in the given plot (or vice
versa) and 6+ is the angle corresponding to g, 6+ should
be taken from the best extremum.

For a rotation about any axis, each experimental
spectrum is associated with an angle 6 read on a protractor.
The numerical values of 6 then depend on the arbitrarily
chosen initial placement of the crystal. The position of
the crystal associated with 6 = 0° is called the "experi-
mental" initial orientation. Since 6' = 6 + 180° also
satisfied Equation (1), we see that the initial conditions
specified have a twofold ambiguity. In developing the
theory, it is necessary to specify the orientation of the
crystal in the cavity at the beginning of each rotation,
i.e., the orientation of the crystal axes a, b, c when
@ = 0° for each rotation is required. These are called
the three "theoretical" initial orientations. The main

error in orienting crystals is the azimuthal angle error,
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which is the rotation error §6; we neglect in these
calculations errors in the orientation of the vertical
axis. The aximuthal angle 66 from the actual "experimental"
to the "theoretical" initial orientation is called the
starting-angle shift. The three starting-angle shifts can
always be evaluated.

The data may also be analyzed using only the g

extrema by employing the parameters
2 2 2 2
a = (g +g)/2, x = lgi - gZl/2. (3)

The a, B, Y parameters are used below to solve the general,
coplanar, orthorhombic, and monoclinic cases while the
later two are also solved explicitly using the a, A
parameters. In addition, all cases may be treated using
only the a, A parameters by setting B = A and vy = 0 (which
is equivalent to introducing an unknown starting-angle

shift) and employing the aBy method.



GENERAL THEORY

The value of g at a specific orientation has been

shown to be given byl

L.2 (W,. = W..), (4)

where 21, 22, 23 are the direction cosines of the uniform
magnetic field with respect to a set of orthogonal axes 1,

2, 3 fixed with respect to the crystal. The relationship

between the W and g tensors is W = gz. When the symmetric
tensor W is diagonalized, the squares of the principal g
values, and their direction cosines, are determined. The
Jacobi method6 is a very good way to diagonalize the
matrix. The general problem is thus reduced to determining

the six coefficients (matrix elements) W W22, W W

11’ 33" 12’

Wozr W3-

Nomenclature

The three experimental rotation axes, fixed with
respect to the crystal, are labeled a, b, c¢c. Along these
>

. > -+
axes are placed three rotation vectors a, b, c¢ chosen so

that rotation of the magnetic field is in a right-handed
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sense about the vectors. Where appropriate, the letters

a, b, ¢ are used as subscripts to the parameters a, B, Y,
A, O+, 9ypr 9_v 5, M obtained from the respective rotations.
A coordinate system consisting of a specific arbitrary set
of three orthogonal axes labeled 1, 2, 3, also fixed with
respect to the crystal, is chosen for each of the cases
treated in this investigation. It must be remembered that
the direction cosines obtained by diagonalizing the W
matrix will be relative to the 1 2 3 coordinate system
chosen.

Considerable simplification of the equations was
found to result from choosing the 1 2 3 coordinate system
such that rotation vector a points along the positive 3 axis
and b lies in the 1 3 plane at an angle ¢ from 3 as shown
in Figure la. Here i 5 3 are three orthonormal vectors in
a right-handed relationship and a positive or negative sign
is given to ¢ according to whether it represents a right-
or left-handed screw sense rotation about 2 (Figure 1).
The four experimental cases considered--coplanar, mono-
clinic, orthorhombic and general--then correspond,
respectively, to the conditions (a) vector E in the 1 3
plane, (b) vector E along 3, (c) vector p along 2 and ¢ =

+90°, and (d) vector ¢ in none of the above relationships

. + . . (3 . .
(i.e., c points in an arbitrary direction).
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Figure 1., Systems gf axe§: (a) for_ the prelimi-
nary equations; a, b, Sa, Sp in 3 plane, My, Mp along
+2, a along + 3 (in this figure ¢ > 02); (b) for an arbi-
trary rotation: N axis of rotation, § starting vector
{6,= 0°), M middle vectox (6 = 90°), L magnetic field in
$ M plang at angle 6 to S; (c) fox coplanar_ case: a, b, c,
Sars Sps Sc in 1 3 plane, Ma, Mp, Mc along +2 (in this
gigu;e, $ > Q°, ¥ < 0°); (¢),for monoglinijc case: 3, R,
S$ar» Sbr Scr M~ ,are in the 1 3 plane, Sa, Mc along +1, c,
Ma, Mp along +2 (ip this figure >+0“%; (¢) for ortho-,
rhombic case: ,a, Sc, Mp along +3, b, Sg; Mg along +1, c,
%b Ma along +§1 (f) for gengral case: a, b, Sy, Sp in

3 plane, Ma, Mp along +2, c in arbitrary diregtion, (in
nong Qf the abgve special directions), Sc L c, Sg L c and
in 1 plane, M& not in 1 2 plane.




3
(a)
b ¢ 1°
Mg
My
SO
¢ b
1
c) 3
b ¢° ¥ c
M
a
AAb;
MC
3
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a
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S
M
b/S,
MC

Figure 1.
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General Formulation

There are nine parameters to determine the six W
coefficients and the three starting-angle errors in the
aBy method. The nine functions w11‘°aBaYa“bBbe“chYc)'
Wopleedy Wagleot), Woo(ail)y Woalenl)y Woglhol), gq(h.0),
ez(...), and £3(...) are set up, where the values of the
six W functions for any set of a, B, Y values represent the
approximate values of the W coefficients and the values of
the three € functions represent three measures of the
magnitude of the starting-angle shifts. The parameters a,
B, Y from Equation (1) are functions of the starting-angle

shifts Gea, 5eb, aec since a, B, Y depend on the choice of

the "theoretical" initial orientations. When the "true"

starting-angle shifts 682, aeg and 662 are used, the values
of a, B, Y become the "true" parameters ot = a(de:,aet,aez),

gt - e(aez,aet,ae';), vt = y(seg,cet,aez), while the ¢

tBthatBt t tBth)

functions become zero, el(aa a¥a% beac P 62(...) =

63(...) = 0, and

t.t
o BCYC), w22(...), etc.,

Ot

t t,t
wll(aasaY bBbY

become the "true" values of the components of the W tensor.
The el, € e3 functions are called null functions because
the condition that they all be simultaneously zero is used
to determine the true starting-angle shifts and thus the

true a, B, Y parameters and the W tensor.
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In the a)l method there are six parameters, the six
W coefficients, to determine. After W is diagonalized, the
values of 0+ with respect to any rotation and any arbitrary
initial orientation may be calculated by using the formulas
of Equation (29) with the relation 6, = (1/2)tan > (y/8)
obtained from Equation (2). The difference between the
calculated and the experimental 6+ (each with respect to
the same initial orientation chosen) is equal to the

starting-angle shift for that rotation.

Determination of Starting-Angle Shifts

In this section, formulas are derived giving the
dependence of a, B, Y on the starting-angle shifts Gea,
seb, dec and the original a, B, Y values. The formulas are
used, along with a condition on the null functions developed
here, to obtain the "true" starting-angle shifts. From the
latter, the "true" a, B, Y values are then obtained and the
"true" components of W computed.

If, in a certain rotation, the angle assigned to

each orientation is changed by an amount 86 so that 86 =

6' + 66, then Equation (1) becomes

o + Bcos(20' + 260) + Ysin(20' + 280)

Q
1

o + (Bcos286 + Ysin2660)cos26' + (Ycos288 - Bsin286)sin26’

a' + B'cos20' + Y'sin20', (5)



118
from which, using Equations (2) and (3), we see that
a' = a, B' = Acostg, Yy' = Asing, (6)

where ¢ = 28+ - 260, When the "true" Gei are used, we

obtain the "true" values for GE,BE,YE, and CE. The values

of the three null functions then become

tots tot ot tot ot _ _
Ei(aa 0LbBbeO‘cB Yc) B Ei(aaBaYaabBbeachYc) + Gei =0,
(7a)
Gei = -€; (i=1,2,3), (7b)

where 6ei is defined by Equation (7a). Also, from Equations

(6) we can rewrite this in terms of the variables Ci as

eSO AN Eiefel) =0 (i =1,2,3). (8)

In some cases the exact solution of the three
simultaneous equations (7) or (8) is prohibitively compli-
cated. It can then be determined by an iterative procedure
using simpler equations. It is, in general, more con-
venient to define the quantities Ai = 269i (i = a,b,c);

then, to first order in A,

Gai =0 a, = &,
]
8By = Y385, By = By + 0By,
]
§y. = -B.A Y. = Yv. + §Yy. (i = a,b,c). (9)
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These are substituted into Equations (7), which are then

A

solved for Aa’ Ab’ c*



THEORY--DERIVATION OF FORMULAS

Preliminary Equations

A general rotation may be expressed in the following
way. Let ﬁ, §, M be right-handed orthonormal vectors as
shown in Figure 1lb with N representing the axis of
rotation, $ the magnetic field direction at the start of
the rotation and M the magnetic field direction at the
"middle" of the rotation (6 = 90°). Let L be a unit vector
representing the direction of the magnetic field as it
sweeps the S M plane in a right-handed sense about N
(Figure 1b). Let 6 of Equation (1) be the angle between L
and S (rotating L by +6 is the same as rotating the crystal

by -6), then
- -> > > > >
M =NXxS and L = Scosf6 + Msin®, (10)

With respect to any axes 1, 2, 3 one has, from Equations

(4) and (10),
li = Sicose + Misine (i =1,2,3). (11)

Choosing the 1 2 3 coordinate system in Figure 1la,

one sees that for the rotation about the a axis, the
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arbitrary initial orientation (where 0 = 0°) is specified
to be along the 1 axis, so that ﬁa = 3, §a = I, and ﬁa = 5.
From Equation (11) one has li = Slcose + Mlsine = cos@,

22 = S2cose + M251n6 = sin® and 23 = 83cose + M351n6 =0,

which, when substituted into Equation (4), give

g2 = Wllcosze + szsinze + 2w12cosesin8
= Lw. .+ W) + Ew.. - W..)cos26 + W..sin26 (12)
Z2'"11 22 211 22 12

and, by comparison with Equation (1), it may be seen that

_ 1 _ 1 _ -
% = 3y ¥ Wpode B = 3Wyy = Wondy Yy =W, (A3
and, solving for the W coefficients, one obtains

W,, =o_ + B_, W,, =a_ - B8_, W., = Yv_. (14)

11 a a 22 a a 12 a

For the rotation about axis b we specify that the
initial orientation occurs when the magnetic field is in
the 1 3 plane. From Figure la we see that ﬁb = 3cos¢ +

> - > . > .
lsing, Sb = lcos¢$ - 381n¢, and Mb = 3. Again: 21 =

cos¢cose,£2 = sinB and 23 = -sin¢cosB, and substituting

these into Egquation (4) one obtains

2 2

2 cosdsingd)cos“6 + (sz)sin 0

g = (W110082¢ + W sin2¢ - 2W

33 13

+ 2(W12cos¢ - W23sin¢)cosesin8. (15)

Since Equation (15) is an exact analogue of Equation (12),

the solutions analogous to Equation (14) are written
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2 . 2 .
Wyjcos™¢ + Wi3sin®¢ - 2W,jcos¢sing = o + By, (16)
W12c0s¢ - W23sin¢ = Yp- (18)

Using Equations (14) in (18), the W23 coefficient may be

defined as
W23 = (Yacos¢ - Yb)/51n¢. (19)
Comparing Equations (14) and (17) leads to the relation
o - Bb -oa, t Ba =0, (20)

which may be used as a null function. Substituting from
Equation (14) into (16) and using Equation (20) to cancel

the o, term gives

sin2¢(w13) - sin2¢(w33 - aa) = Ba(l + cosz¢) - ZBb.
(21)

From the six parameters agr Bar Yyuo L Bpr Yp used

so far, four relationships involving wll' wzz, le, W23, one

relationship involving W3 and W and one null relation-

33’
ship have been defined. The third rotation, which differs
in each of the four cases, will be treated separately for

each individual case below.
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Case of Three Coplanar Axes

If the third rotation axis c lies in the 1 3 plane,
along with the a and b axes, we have the coplanar case.
Let ¢, y be the angles between 3 and b, ¢, respectively;
these have a positive or negative sign according to whether
they represent a right- or left-handed screw sense about 3,
and let the initial orientation vectors gb’ §c lie in the
1l 3 plane (Figure 1lc). From Equations (19)-(21), with ¢

and ¢ replacing ¢ and b, we obtain

Wyy = (y cosy - Yc)/sinw. (22)
a - Bc - o + Ba =0, (23)
sin2y (W ,) - sin2¢(w33 - a) = B_(1+ cos?y) - 28_. (24)

Equations (21) and (24) can now be solved to give W13 and
W33. Equations (20) and (23) provide two null functions
and the third is derived from a comparison of Equation (19)
with Equation (22). For the iterative solution, we apply

Equations (7) and (9) to the null function €y leading to

= dab - GBb - Gaa + GBa =0 - A, - 0 + YaAa = ~-¢

& bl 1’

Ab = (el/yb) + (Ya/Yb)Aa = B + B'Aa. (25)

Similarly, applying Equations (7) and (9) to the analogous

€, null function gives

= = '
Ac = (62/Yc) + (Ya/Yc)Aa C+ C'A_.
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Again, with €3 and the above relationships,

1]

Se

3 -:aAasin(w - ¢) + BbAbsinw - BcAcsin¢

(B, Bsiny - B Csin¢) - (B_sin(y - ¢) -B B'siny + BCC'sin¢]Aa
= _63,
which is solved for Aa' These results for the approximate
solution are listed in the Collected Formulas, as are some

properties of the exact solution of Equation (8).

Case of Three Monoclinic Axes

If the c axis, about which the magnetic field is
rotated in a right-handed sense, is perpendicular to the 1
3 plane, we have the monoclinic case. Let the ¢ axis point
along the +2axis (Figure 1d). Note, however, that if the
experimental c axis actually pointed along the -2 axis,
then one must change Gc > —ec (or equivalently Yc -+ -Yc) to
use the formulas. The initial orientation for this rotation
is selected so that the magnetic field is along the 3 axis
for 6 = 0° hence N = 3, gd=3anam-= I. Therefore, from
Equation (11), 21 = sinb, 22 =0, 23 = cosf, and from

Equation (4),

2 2

— 2
g = w33cos 0 + W

118in 0 + 2w1351n9cose,

which is the same form as Equation (12). So, according to

Equation (14),

W33 =a_  + SC, W =a_ - B, w =Y .. (26)
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Equations (14) and (26) are used to define wl3, W33 and

the null function

Then, equating Equations (14) and (17) gives an expression
for Ba which, when substituted in €,r gives €, = a_ - Bc +

Bb - 2aa. Substituting €, and all the relations of
Equation (26) in Equation (16) and dividing by two gives
€y = (ab - aa) + 51n¢(chos¢ - Bc51n¢).

Applying Equation (7) to the three null functions
gives 6e) = -€; = =Y B = Y By 88y = =€y = Y AL - Wby
and 6e3 = -5 = 51n¢(-BCAccos¢ - YCAc31n¢). From these the
Ai's are obtained directly for the formulas of the iterative

method. The exact solution has also been obtained from

Equation (8) and the formulas for the al method worked out.

Case of Three Orthorhombic Axes

The initial orientations are best chosen in a cyclic
manner (Figure le), because of the high symmetry of the a,
b, ¢ axes, i.e., for rotation about a, b or c¢ the 6 = 0°
orientation is chosen in the ab, bc or ca plane,
respectively. The problem is then set up so that there
is a cyclic relationship betweeen the three rotations.
The formulas in Equation (14) for a rotation about the a
axis can then be extended in a cyclic manner to the other

rotations by changing the subscripts of a, B, Y, and W as
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as follows: a -+ b + ¢, 11 » 22 + 33, 12 + 23 + 13, The

result of this is

Rotation a Rotation b Rotation ¢

Wip =9, * By Woz = % * By Wiz = oo + B
Woo =9, ~ B, Wiz = oy = By Wip = % - Bg
W2 = Y4 W3 = Yp Wy3 = Y (27)

The first and third rows of Equation (27) define the W
coefficients. Subtracting the first row of relationships
from the second row, dividing by two, and using the relation
-Bb -Bc = o - ay obtained from the two formulas for w33
gives €)i €,, €5 are then obtained by cyclic permutations
of €y

Using Equation (9) we obtain for the iterative
solution 681 = -YaAa = -€, so that Aa = el/Ya.

For the exact solution, we have from Equations (8),
a, = - Xacosca = 0 which is straightforwardly solved

for Ca. The solutions for Ab’ Ac'

cb’ Cc are obtained from
those of Aa and Ca by a cyclic permutation.
For the alA method, it is seen from € that the

"true" parameters obey the relation Ba =0, = Oy, which

2,1/2 _

c
gives wll = aa - oy + uc and Ya = + [Ai - (ac - ab)
w12' and cyclically the remaining W coefficients., All the

results are listed in the Collected Formulas.
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General Case

If the third axis of rotation does not satisfy the
conditions for any of the previous cases, we have the
general case (Figure 1f). The direction of the rotation
axis c¢ (about which the magnetic field rotates in a right-
handed sense) must be known, while the initial orientation
need only be determined within a twofold ambiguity.

Let

1 + 3 + N 3 § = S 1 + S 3 + 3 d ﬁ = ﬁ X §
1 N, 330 =5 2 S33, an =

be unit vectors representing the rotation axis, the initial
orientation (6 = 0°) and the 6 = 90° direction, respectively.
The three starting-angle errors, being a property of the
data, are independent of the coordinate system chosen to
solve for them; hence we are allowed to choose a more
convenient system to simplify the solution. One such
system is obtained by choosing a different initial unit

+>% > > ) *
vector S 1in the S M plane with the property that 83 = 0.

> >%* > % >

Let £ be the angle between S and S so that S = Scosf +
-+ >*% - > .
Msin{ and M = Mcosf - Ssinf. Then £ must satisfy the
relation tanf = —S3/M3. One such transformation that will

> > »>% >%
change S and M into S and M is

* *

Sy = (SlM3 - S3Ml)/A, M, = (SlS3 + M1M3)/A,
* A * A
S2 = (SZM3 - S3M2)/ ’ M2 = (8253 + M2M3)/ '
* * A
S3 - 0' M3 - ’
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where A = V(Sg + Mg). Similarly the corresponding

transformation between the old « B, Yoo Ac and the new

c! "¢
x* * *

*
@ Bc' Yc’ Ac parameters would be from Equations (3) and

(5)

* *
a, = o, A= Ac’
B* = B cos(2E) + v _sin(2f) = (8 (M2 - s2) - 2y M_S.]1/A%
c c c c '3 3 c 373 ’
y¥ = ¥ cos(26) - B sin(28) = [v_(M2 - 82) + 28 M.5.]/A2
c c c c''’3 3 c 33 ‘

Substituting Equation (11l) into Equation (4), remembering

that wij = wji, and noting the analogy with Equation (12),
we arrive at the result

3

g = 7 WL L
RIS ES

2 .2 _
(izjwijsisj)cos 6 + (izjwijMiMj)aln 6 + 2(izjwijsiuj)cosesme
’ ’ R

a_ + BCCOSZG + chin26 (28)

analogous to Equation (13), where

R
n

1

-1 -
B, = f.z_wij(sisj MiMj) ,
ij
Yo = Z_wijsimj. (29)
ij

fince Equations (28) and (29) hold for rotations about any

axis, they may be used as a check on the correctness of the
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W tensor by reproducing the original o, B, Y parameters.

*
For the case with S3 = 0, Equation (29) gives

* + B* _ *2 *2 2 * % 0
Gc * B = WppSy F WpoS,7 + 2W,,5:S,, (30)
* 6* _ *2 *2 + w *2 2 * % 2 * *%*
G = = WMy WMy 33M3 + 2W MMy 4 2W, MM,
® *
* * * * * * * * *
Yo = WppSiMy) + Wy SoMy + Wy, (S)M, + S,My)
* * * * 2
+ Wy3SoMy + Wy S M5 (32)
. ) ) *2 *2 * & * %
With the identities S1 + 82 = 1 and SlM1 + SZM2 =

0, we use Equations (14), (19), (32), and (16) to define
wll' sz, w12' w23, wl3, and W33, respectively. By
comparing Equations (14) and (17), the first null function
€1 = & - Bb -a 4+ Ba is derived. Using the formulas for
the W coefficients and Equation (30), the second null

function

€. = + B (2 2 2 *
= aa a( Sl - 1) + Y SlS

* *
-a_ -8B
2 a c c

*
2
is obtained. The third null function €30 listed in Table 1,
follows similarly from Equation (31). Considering the
approximate solution, we see that since 81 is the same as

in the coplanar case, Ab is given by Equation (25). Using
€, in Equations (7) and (9) leads to the relationship

Yy (252 - 1) - 28 5.8
_ * a 1 - - a l 2 - '
A = (CZ/YC) +{ }Aa =C+ C Aa.

c Y*
c
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In order to use the third null function €3 it is necessary

to obtain 6w23, 6w13, and 6w33; these are

5w _ —BaAacos¢ + BbAb _ -BaAacos¢ + BbB + BbB'Aa
23 sin¢ sin¢

(BbB ) BbB' - Bacos¢
sind + sin¢ Aa =P +P Aa’

8*c - ps M3

6w13 = c — 2 )
S1M,

B8 + 2y s*M" + 8 (s'M" + s*MY) - prs'Mt
N c Ya°2™M a'®1M2 M 273 | ,
* x a
S My

=Q+Q'Aal

€, + Qsin2¢
_ 1 2Q'cos¢ _ '
6W33 = ( sin2¢ ) + (Ya + =T ]Aa = R + R Aa.

Finally, putting €, into Equation (7) we obtain

&e € 2 M 2 M *2 + 2 *2 1 28 S* *
3 = (€, + 2PM M, + 20M M, + RMy7) + [y (2S," - 1) a~152
*2 *2 8 * & IR Lk w214
Y S = M) - 28 MM+ 2PTMOML 4 20'M M+ R'MSIA

= —63'

from which the formula for Aa given below (Collected

Formulas) is obtained.



DISCUSSION

A computer program has been written in Fortran IV
for the calculation of g tensors in any of the four cases
described. By employing this program with experimental g
tensors, the equations of this article were checked. =,

B, Y parameters were first obtained from Equations (29) and
these were used as input for the computer program. Agree-
ment of the g tensors derived by the program with the
original tensors provided a check on the internal con-

sistency of the equations for each of the four cases.

Iterative Solutions

The iterative procedures for the four cases
described above may not converge if a starting-angle error
is too large (as may happen in using the a) method of
Equation (3)), in which case the problem may be solved by

setting

(>
I

A, (calculated), if|Ai(ca1cd)|<Rc,

R_ * SIGNA, (calcd), ifIAi(calcd) |>Rc (i = a,b,c),

131
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where SIGNx = x/|x]|. R, should be chosen to be within the
range of stable convergence which is different for each of
the four cases considered below. A safe value for Rc is
~0.2.

From the approximate changes in angles Ai one may
proceed in two ways:

(1) Calculate exactly the new values of the parameters

from
]
a, = 04,
' .
Bi = BicosAi + YiSInAi'
' . .
Y; = YicosAi - 8151nAi (i = a,b,c) (33)

obtained from Equation (5) and use these again in the
equations for the iterative solution to obtain a new set
of Ai’s. This process is continued until either the
absolute fractional changes of the a, B, Y parameters are
below a certain low value (for the CDC 6500 computer this

11

was set at 1.0 x 10 ~7), or until the values of the null

functions are negligible. If the approximations for Aa'
Ab’ Ac, are continually summed, and the final values
divided by two, three starting-angle shifts éea, aeb, Gec

(i.e., the angles from the experimental alignments to the

"true" theoretical initial orientations) are obtained.
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(ii) Calculate approximately the new values of the

parameters from

and continue the process as in the first method. This
procedure will converge because the method is self-
correcting. The starting angle shifts can then be
determined by solving Equations (33), using Appendix A with

the initial parameters Bi' Y.

i Ai and the final parameters

B

[ ]
i Yy to obtain

56, = lcos 1(B./2,)-SIGNY, + cos T(85/A)1 (i = a,b,0).

From Equations (8) we can calculate the number of
solutions for the starting-angle shifts in each of the
four cases. The approximate methods will only give the

solution with the smallest starting-angle shifts.

Exact Solutions

The principal values of the g tensor are the square
roots of the equation Wﬁi = Eiii (i=1,2,3). The principal
values E; solely determine the "shape" of the tensor. The
eigenvectors ii determine the orientation of the principal
axes and thus the orientation of the tensor. The number
of eigenvalue solutions is the number of diagonalized W
tensors which are "shaped" differently. The number of
eigenvector solutions is the number of diagonalized W

tensors which are "shaped" or oriented differently. If we
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consider the degeneracy of the solutions to be the number
of eigenvector solutions per eigenvalue solution, we find
from Equations (8) that the degeneracies of the coplanar,
monoclinic, orthorhombic, and general cases to be 2, 2, 4,
and 1, respectively. If two of the possible W tensors have
the same principal values, and the eigenvectors of one
tensor become the eigenvectors of the second tensor when
rotated 180° about the axis i, then we call the axis i an
axis of degeneracy. The axes of degeneracy account for the

degeneracy of the solutions and are listed below.






COLLECTED FORMULAS

The o, B, Yy parameters depend on the choice of
initial orientations and, to use the formulas of this
article, they should be determined with the orientation
conventions of Table 1. The W coefficients and null
functions for each case are also given in Table 1. The

solutions are listed below.

Coplanar Case

Possible number of eigenvalue solutions: 0, 1,
2, 3, 4.

Possible number of eigenvector solutions: 0, 2,
4, 6, 8.

The one axis of degeneracy is the ¢ axis (the 2
axis).

The iterative solution is

€y + Bstinw - BcCsin¢

by = B_sin(V - 9 - B_B'siny + BC'sind ’

>
I

]
]

' !
B+ B'A, B=¢€/Y, B Y/ Ypr

= ' - '
A =C +C Aa’ C ez/Yc, C Ya/Yc.
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The exact solution to Equations (7) is complex and
thus it is more feasible to use an iterative procedure than
the closed form. Some relationships among the various
exact solutions of Equations (7) are: 1If (ca, Cb' cc) is
a solution, then (-ca, —cb, —cc) is another solution with
the properties that (a) its eigenvalues are the same as

those of (Ca, Cb’ cc), (b) the signs of W are

12 W23
changed, and (c) the eigenvectors are rotated 180° about

the 3 axis.

Monoclinic Case

Possible number of eigenvalue solutions: 0, 2, 4.

Possible number of eigenvector solutions: 0, 4, 8.

The one axis of degeneracy is the ¢ axis (the 3
axis).

The iterative solution is: Ac = 83/[sin¢(8ccos¢

+ Yc51n¢)],
by = (e, - YCAC)/Yb. A_ = (el - YCAC)/Ya-

a

The exact solution is

where
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€c = sin-l[(aa - ab)/kcsin¢]. Ea = cos-ll(ac -a - choscc)/la].

-1
Eb = cos (((Jb + ac - 2aa - choscc)/kb] .

For each of the two choices for Ce there are four solutions
for Ca and ;b corresponding to the four choices of sign for
these: (+§a,+£b), (--), (+-), (-+), where the first two
solutions represent one eigenvalue solution and the last
two represent another. Also a rotation of the eigenvectors
about the c axis will transform the solutions as follows:
(+4) > (==), (==)>(++), (+=)> (=), (=+)=>(+-).

The oA solution may be obtained by calculating Bi
and Y from Bi = Xicosci, Yy = Aisinci(i = a,b,c), using

the solutions given above for Ca' 4 Cc (which depend only

bl
on a, and Ai). These are then employed in the formulas for

the W coefficients.

Orthorhombic Case

Possible number of eigenvalue solutions: 0, 1, 2.
Possible number of eigenvector solutions: 0, 4, 8.
The three axes of degeneracy are the ;,-B, E axes
> > >
(the 3, 1, 2 axes).
The iterative solution is Aa = el/ya, Ab = ez/Yb,
b, = €3/

The exact solution is

1

L. =+ cos_ll(ac - o )/A ), gy =+ cos Mo, - a)/AT,

.= * cos Ly - a)/A ).
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The solutions may be ordered according to the eight
possible combinations of signs for the ci: (+Ca, +Cb. +Cc),
(+==), (=+-), (==+), (===), (=++), (+-+4), (++-). The first
four solutions represent one eigenvalue and the last four
solutions represent the other. A rotation of 180° about
axis a will transform the solutions as follows: (+++)~
(+#==), (+==)>(+++), (-==)+>(-++), (=++)>(---). Similarly,
for a rotation of 180° about axis b: (+++)*>(-+-), (-+-)~
(+++), (-=-=-)*>(+-+), (+-+)*(---). Finally, for a rotation
of 180° about axis c: (+++)>(--+), (-=#)>(+++), (--=)~
(++=), (++=)>(-=-).

The a) solution is

w11 B O’ w22 = ab ot w33 B TR, W

_ 2 _ _ 2 _ 2 _ _ 2
W,=2 /Tﬂa (@, - o)7l, W /- (o - a7,

23

_ 2 _ _ 2
iy = £ /07 - @ - a)®.

General Case

Possible number of eigenvalue solutions: 0, 1, 2,

Possible number of eigenvector solutions: 0, 1,
2' ® o o 16.
There are no axes of degeneracy.

The iterative solution is
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RM*z 2P * % 2 * %
A - “€3 “€p ~ RM3" - 2PM, M, - 20M M,
a 2 L sT2 _ Mi2 _ gT2) | o (MM, + S.S5)
Ya (M) 1 2 2 a MMy 152
+ R'M:2 4 2P'MIMT 4+ 20'M'MT
3 M3 QMM
p— L} — []
A =B +B'b, Bb_=C+C'b,
where

B =€ B' = = e /v ' = 2572 - 1 B s'sTint
= l/Yb' = Ya/Yb' C = Z/YC' C - [Ya( Sl ) aSlSZ]/YC.

P = BbB/sin¢, P' = (BbB' - Bacos¢)/sin¢,
_ 8* * * ® *
Q= (- cc - P52M3)/slM3,

*

*M*
2

. 8*' * *x B * * * '**
Q' = [~ cC + 2YaS2M2 + a(slM + sle) - P 52M3]/sl 37

R = (e + 0sin2¢) /sin’$, R' = Y, + (20'cosd/sind) .

The exact solution is obtained by substituting
Equations (6) into Equations (7) which gives the expressions
to be solved for Ca' Cb’ cc. Most of the sixteen possible

solutions will generally not be acceptable since they will

not be real.
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APPENDIX A

SOLUTIONS TO A TRIGONOMETRIC EQUATION

There are at least four different ways in which the

solution to
Acos6 + Bsinf = C (Al)

may be written. The most convenient for the present purpose
is derived below.

Equation (Al) may be written as Mcos(6 - A) = C,
where McosA = A and MsinA = B. The relative signs of A and
B determine the quadrant of the angle A. By setting M =

+ /(A2 + Bz) it is seen that A is uniquely determined by
_ -1 2 2
A = cos " [A//Y(A® + B”)] x SIGN(B), (A2)

B/|B| . Equation (Al) now becomes cos§ =

where SIGN (B)
C/v’(A2 + Bz), where £ = 06 - A. Since £ is double valued,

the two solutions to Equation (Al) are

6 = cos"l(a//(a? + B%)1-s16N(B) + costic//(a? + BY)).
(A3)
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APPENDIX B

PROPERTIES OF SECOND-ORDER TENSORS

If a second-order symmetric tensor W is diagonalized
by the similarity transformation E-lﬁﬁ, then the columns
of the unitary matrix R represent the eigenvectors of the
tensor. Changing the signs of any column of R does not
change the eigenvalues (the "shape" of the tensor), or the
orientation, of the corresponding diagonalized tensor W.
Changing all the signs of the i-th row of R does not change
the eigenvalues but rotates the eigenvectors 180° about
axis i, which is the same as reflecting the eigenvectors
through the jk plane (j,k # i). These results are
similarly accomplished by changing the signs of four of
the off-diagonal elements of the undiagonalized W tensor:
wij = wji, wik = Wki (3 # k). This can be shown by con-
sidering another matrix ﬁ* such that R;q = + qu[(p,q =
1,3), (+) sign if p(¥) i]. Applying this new similarity

transformation to W gives
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jk

]

+ 1

)} R. R, w_. _ _
344 3J17Im733 + (=R, ) (-R;

(le)(-Rim)w.. +

144

*—l * _ * *
LR SW R = }%lekawjk

1m)wii + 3#k lekawjk
3 k#1

L Ryp) Ry )Wy

. i .
j#k J j#k
k=i j=1i
from which we see that if the similarity transform matrix
R diagonalizes W, then R diagonalizes the matrix W with

the signs changed

W..

, Weo = W
ij i

k ki®

The eight
sign permutations
w13 are (+w
(+=+),

12’
(++-),

of eigenvalues and the last four a second set.

(—++) .

on the four off-diagonal elements wji =

tensors resulting from the eight possible

of the off-diagonal elements w12’ W23,

+w23l +W13), (-+-)r ('“+)r (+'—)r (--_)l

The first four of these have one set

A rotation

of 180° about axis 1 changes (+++)+(-+-) and (=-=)>(+-+),

about axis 2 changes (+++)~+(--+) and (---)+(++-), and about

axis 3 changes (+++)~>(+--) and (---)~>(-++).
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APPENDIX C

COMPUTER LISTING OF SUBROUTINES USED FOR THE
CALCULATION OF G TENSORS FOR THE COPLANAR.
MONOCL INICe ORTHORHOMBIC. AND
GENERAL CASE

PROGRAM GTENSOR (INPUT,OUTPUT) GTNSR
REAL NN1sNN24NN3 OTNSR
COMMON/PARAM/ALA+BEAGAAIALBBEB+GAB+ALC+BEC,8AC GTNSR
COMMON/W/W11eW22+W33eW129W230W13 GTNSR

99 FORMAT(I1) GYNSR
98 FORMAT(3F10.8) GTNSR
READ 99, INDEX GTNSR
READ 98+ALAIREA+GAAIALBIBEBGABIALCIBECBAC GTNSR

GO TO (10+209304+40) INDEX GTNSR
THIS IS A SAMPLE PROGRAM SHOWING HOW ONE MAY WRITE A PROCEDURE THAY GTNSR
WOULD CALL ANY OF THE FOUR SUBROUTINES. ONLY THE SUBROUTINE OF ) GTNSR
INTEREST NEED BE LOADEO INTO THE COMPUTER, GTNSR
ALASALBoALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES AsReC. GTNSR
BEABEB'BEC ARE THF. BETA PARAMETERS FOR ROTATIONS ABOUT AXES AsBsC. GTNSR
GAA+GAB+GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES Ae¢BeC. GTNSR
THESE PARAMETERS ARE TRANSMITTED THROUGH THE LABELLED COMMON /PARAM/, GTNSR
THE W~COEFFICIENTS W1l1loW22+sW3JoW12+W239W13 ARE CALCULATED RY EACH OF GTNSR
THE SUBROUTINES AND ARE LOCATED IN THE LABELLED COMMON /wW/. EACH GTNSR
SUBROUTINE CALLS DISPLAY AND PASSES THE W-COEFFTCIENTS THROUGH /VW/. ‘GTNSR
SUBROUTINE DTSPLAY CALLS DIAG! WHICH IS A STANDARD DIAGONALIZATION GTNSR
SUBROUTINE. OTHER SURROUTINES ARE INCLUDEDe BUT ARE NEVER CALLED. GTNSR
THESE SUBROUTINES CAN RE USED TO TEST OR NOUBLE-CHECX THE RESULTYS OF GTNSR
THIS PROGRAM, THE COMMENT CARDS IN EACH SURROUTINE DESCRIBE THE GTNSR
QUANTITIES CALCULATED. GTNSR
eseee COPLANAR CASE cecee (INDEX = 1) GTNSR
10 PEAD 98¢PHIsPSI GTNSR
CALL COPLANR(PHIPSI) GTNSR
STOP 1111 GTNSR
eesecee MONOCLINIC CASE cecee (INDEX = 2) GTNSR
20 READ 98.PNHI GTNSR
CALL MONOCLN(PHI) GTNSR
STOP 2222 GTNSR
eeceoe ORTHORHOMBIC CASE .ccee (INDEX = 3) GTNSR
30 CALL RHOMBIC GTNSR
STOP 3313 GTNSR

(XX XX GENERAL CASE ceoee (INDEX = &) GTYNSR
40 READ 98,4PHI GTNSR
READ 989NN1oNN2+NN39SS1+5S2+SS3 GTNSR
CALL GENERAL (PHIo«NN1+NN2+NN39SS1+5S52¢SS3) GTNSR
STOP &&b4 GTNSR
END GTNSR
SUBROUTINE COPLANR(PHIPSI) COPLN
eecsee PHI AND PS1 ARE IN OEGREES. COPLN
DIMENSION ANGDEG(3) COPLN
COMMON/PARAM/ALABEAGAAALB+BEBGABsALCBECsBAC COPLN
COMMON/W/W11eW22+eW33sW12+W23,W13 COPLN
DATA P1/3.14159265359/4+TODFEG2/28.64788976/+TORAD/0.01745329252/+ COPLN
ONSTEPS/180/+NTRIFS/23/ COPLN
ALAJALB+ALC ARE THE ALPHA PARAMETERS FOR ROTATINNS ABOUY AXES A.ReC. COPLN
BFA'BEB+BEC ARE THF BETA PARAMETERS FOR ROTATIONS ABOUT AXES AsRsC. COPLN
GAA,GAB+sGAC ARE THE GAMMA PARAMETERS FOR ROTATINNS AROUT AXES A¢ReC. COPLN
TONEG2 = S7.,29577951/2.0 = (180/P1)/2. TORAD = Pl/180. COPLN
600 FORMAT (1H1¢41Xe 23Heeee COPLANAR CASE cecev10XeAHPHI = ¢1F9.443Xe COPLN
AGHPST = 1F9,4¢//+39%Xe2BHTHE ORIGINAL PARAMETERS ARFt, /) COPLN

601 FORMAT (37X eSHALPHA»11Xe4HBETAG 12X sSHGAMMAC//424X e THAXIS Ate1F16.8.COPLN
B2E16.9/7/724X e THAXIS B o1lF1A.B842E16,9/7/7206XeTHAXIS C14F16,8¢2E16,9//)COPLN

602 FORMAT (22Xs 3BHTHE STARTING=-ANGLE ERRORS (IN DEGRFES)e /e 22X COPLN
C29HABOUY THE THREE ROTATION AXESe/123Xe6HAXIS Ag6X96HAXIS BebHXo COPLN
D6HAXIS C) COPLN

603 FORMAT (3X+12HSOLUTION NOes I294Heee oF9.493XeF9.493XeF9,4) COPLN
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606 FORMAT (/+38Xe 4BHTHIS SOLUTION HAS THE FOLLOWING ALPHA+BETA9GAMMA,COPLN

E/s 38Xe6)1HPARAMETERS FOR THE THREE AXES OF ROTATION)

605 FORMAT(/+2T(SH ® )o//¢69%Xe27Hees END OF CALCULATIONS oee)
700 FORMAT(//e 6SH THERE IS AN ERROR. AN ITERATIVE PRNCESS DIND NOT CONCOPLN
FVERGE WITHIN o l4esllH ITERATINNSe/e36H THE VALUE OF THE NULL FUNCTCOPLN

701

10

BGIONS AREe/e 6H E1 = 4E1S.9¢HH F2 5 oF15.9¢hH E3 ®» 4E15.9¢/0
H18H ANGACANGRANGC = o JF15.94/)

FORMAT (1RH FRROR IN COPLANRS®s /9 (39X43EL15.9:/))
FE = PHI®TORAD

ST = PSI®TORAD

SNFEsSSIN(FE)

SN2FE=SIN(2.0°FE)

SNFE2=SNFE®®?2

SNSI=SIN(SI)

SN2SI=SIN(2.0°SI)

SNSI2=SNS[®e2

CSSI=CoS(SI)

CSSI2=CSSI®e?

CSFE=COS(FE)

CSFE2=CSFE®®?2

SNSIFE=SIN(SI-FE)

DEN=2,0°SNFE*SNSI®SNSIFE

ABSTEP s PI/FLOAT(NSTEPS)

ACCUR = ABSTEP/1000.0

PRINT 600+PHIPSI

PRINT 601 +sALAREAIGAA+ALBBEBsGABoALCBECIBAC
ILMDAA=SQRT (REA®®2eGAAR®?)

ILMDAB=SQRT (RER®®2+GAB®®2)

ZLMOAC=SNRT (REC®®2¢GAC**2)

DPLUSA = SIGN(ACOS(REA/ZLMDAA) «GAA)

OPLUSB = SIGN(ACOS(BEB/ZLMDAR) +GAB)

OPLUSC = SIGN(ACOS(BEC/ZLMDAC) +GAC)

NSOL=0

STEP = SIGN(ABSTEPDPLUSA)

X1l = (-2UMDAR-ALB*ALA)/ZLMDAA

X2 = (=21 MDAC-ALC*ALA)/ZLMDAA

XX1s (eZULMDAR-ALBeALA)/ZLMDAA

XX2= (¢ZLMDAC=-ALCeALA)/ZLMDAA

XLOWERSAMAX] (X1eX20=1,0)

XUPPER=AMINL (XX]1eXX29¢1,0)

IF (XUPPER=-XLOWER) 299,4299,10

ITAMAX=ACOS (XLOWFR)

ZTAMIN=ACNS (XUPPER)

IBEG = IFIX(ZTAMIN/ABS(STEP)) )

JEND = IFIX(ZTAMAX/ABS(STEP)) 1

PNB = 1,0

PNC = =1,0

DO 201 LMN=1,4

T=PNB

PNB==PNC

PNC=T

KLL=0

KSCH=0

INDEX=0

CROSS=e1,0

D0 200 I=IBEG.IEND

eee INNEX = NUMBRER OF STEPS IN ALLOWED RESION,
eee KLL = 0 FORBINDEN RFEGION

eee KLL = 1 ALLOWED REGION

eee KLLSY = VALUE OF KLL FOR PREVINUS STEP, ENTERING THE DO LOOP
eee XSCH = (04s1) IF SEARCH FOR CRNSSOVER (DOES NOT+DOFS) OCCUR,
eee KSCHSYV = VALUE OF KSCH FOR PREVINUS STEP,.

FOR THE FIRSY TIME CAUSES KLLSV T0 BE SET TO o,
eeeee CROSS IS LESS THAN OR EQUAL TO 0.0 ONLY IF A CROSSOVER IS TO

RE

SEARCHED FOR,

eeeee FUNC = TEST FUNCTION = E£3, WE SEARCH FOR THE ZERO VALUES.
eevee SFUNC = LAST VALUE OF FUNC
eesee SSFUNC = SECOND TO THE LAST VALUE OF FUNC

ITA=FLOAT(T)®STEP
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CSZTA=COS (2TA)
KLLSV=KLL
KSCHSV=KSCH
KSCH=0
SSFUNC=SFUNC
SFUNC=FUNC
CS2TB = (ALB-ALA+ZLMDAA®CSZTA)/ZLMOAB
IF(ABS(CSZTR)=1.0) 38+38+190

38 CSZTC = (ALC=ALA*ZLMDAA®CSZTA) /ZLMDAC
IF(ABS(CSZTC)=1.0) 39¢39+190

(A X NN N X ) ‘LLOHED ZONE [ X XN X ]

39 KLL=1
INDEX=INDEX*1

essee CALCULATE FUNC <o
SNZTA = SIN(ZTA)
SNZTB = SIGN((SORT(1.,0-CSZTB#e2)) ,PNB)
SNZTC = SIGN((SORT(1.,0-CSZTC®##2)) PNC)
FUNC 3 ZLMDAA®SNZTA®SNSIFE=ZLMDAB®*SNZTBO®SNST¢ZLMDAC®*SNZTCSSNFE

esecee IF LAST STEP WAS IN THE FORBIDDEN REBIONes CHECK FOR CROSSOVER.

IF (XLLSV) S0.100
escee IF INDEX=1e THIS IS THE FIRST STEP AND ANOTHER STEP IS TAKEN,
IF FUNC=0,0s THEN THIS WILL BE DETERMINED BY THE PRODUCT SFUNC®FUNC
S0 IF (INDEX=1) 200+200+52
S2 CROSS = SFUNC®FUNC
eesee IF CRNSS IS NEGATIVE OR ZEROs» A CROSSOVER HWAS OCCURED.
IF (CROSS) 100,100,564
eveee INDEX MUST BE AT LEAST 3 FOR THE FOLLOWING CHECK TO BE VALID
S& IF (INDEX=3) 200+56+56
eeeee WE TEST TO SEE IF THE FUNCTION HAS APPROACHED TOWARD AND THEN
RETREATED FROM THE FUNC=0.,0 AXIS. THERE ARE TWO CONDITIONS THAY
MUST BE MET FOR THIS TO HAVE O0OCCURED.
(1)e (FUNC=SFUNC)®(SFUNC=SSFIUINC) MUST BE LESS THAN OR EGUAL' TO ZERO
(2) ¢ FUNC®(FUNC=-SFUNC) MUST BE GREATER THAN OR EBUAL TO ZERO.
S6 CHECK = (FUNC=-SFUNC)® (SFUNC=SSFUNC)
IF (CHECK) SRA.58+200
S8 CHECK = FUNC® (FUNC=SFUNC)
IF (CHECK) 20001004100
[ X R R XN J ROUTlNE FOR SE‘RCHING FOR CQOSSOVER POINTS [ F XN NN NN
CALCULATE THE THREE ANGLES ABOUT WHICH THE SEARCH IS TO BEGIN
100 KSCH=]}
ecose ANGA9ANGB+ANGC ARE THE (DOURLE)=STARTING=-ANGLE-SHIFTS FOR
ROTATIONS ABOUT AXES AsBsC RESPECTIVELY.
ANGA = DPLUSA=-ZTA
ANGB = DPLUSB=-SIGN(ACOS(CSZTB) +PNB)
ANGC = DPLUSC-SIGN(ACOS(CSZTC) +PNC)
JFLAG=0
GO T0 112
110 ANGASANGADELA
ANGR=ANGB+DELB
ANGC=ANGC +DELC
112 CSA=COS (ANGA)
CSB8=C0S (ANGB)
CSC=C0S (ANGC)
SNA=SIN (ANGA)
SNB=SIN(ANGB)
SNC=S TN (ANGC)
BEAK=BEA®CSA+GAA®SNA
BEBK=REB*CSB+GAB2SNB
BECK=BFCeCSC+GAC®SNC
GAAK=GAA®CSA-REA®SNA
GABK=GAB*CSB~REB®SNR
GACK=GAC*CSC-BEC®SNC
El = ALB-BEBK-ALA*BEAK
€2 = ALC-RECK-ALA*BEAK
E3 = GAAK®SNSIFE-GABK®SNSI*GACK®*SNFE
8 = E1/GABK
8P = GAAK/GARK
C = E2/GACK
CP = GAAK/GACK
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Fl = EJ+BEBK®BoSNSI-BECK®C#*SNFE COPLN1S8

F2 = BEAK®SNSIFE-BEBK®BP®SNSI+BECK®*CP#SNFE COPLN1S9
OELAsSF1/F2 COPLN160
DELB=B+BP*DELA COPLNI161
DELC=C+CP*DELA COPLN162

XXA = ABS (DELA) COPLN163
IF(JUFLAG) 299+1144119 COPLN164

114 IF(XXA-ABSTEP) 11991199115 COPLN16S
115 IF(CROSS) 119+119,200 COPLN166
119 JFLAG = JFLAG+1 COPLN167
IF (UFLAG-NTRIES) 12001204195 COPLN168

120 XXB = ABS (DELB) COPLN169
XXC = ABS(DELC) COPLN170

XX = AMAX]1 (XXA¢XXBoXXC) COPLN171
JF(XX-ACCUR) 130,130,123 COPLN172
123 IF(XXA=-AASTEP) 125+125+124 COPLN173
126 DELA = SIGN(ABSTEPDELA) COPLN174
125 IF(XXB-ABSTEP) 127+127.126 COPLN17S
126 DELB = SIGN(ABSTEP,DELB) COPLN176
127 IF(XXC=-ABSTEP) 11051104128 COPLN177
128 DELC = SIGN(ABSTEPDELC) COPLN178
130 00 180 KABC=1.2 COPLN179
C ocecee FIRST TIME THROUGH THE DO LOOP ANGA=ANGBAETC. AND BAAK=GAAK+ETCCOPLNI1ARO
C eocee NEXT TIME, ANGA = 2°0PLUSA-ANGASETC. AND BAAK=-GAAK/HETC. COPLMIARL
ANGA = FLOAT (2-KABC)®ANGA+FLOAT(KARC=1)®(2.0*DPLUSA=-ANAA) COPLN182
ANGB = FLOAT (2-KABC)®ANGB+FLNAT (KARC=1)*(2.0°0PLI)SR-ANGBS) COPLN1A3
ANGC = FLOAT (2=-KARC)®ANGC+FLOAT (KABC=1)®*(2.0°DPLUSC=-ANGC) COPLN184
GAAK = FLNAT (3-2¢KARC) ®*GAAK COPLN1AS
GABK = FLOAT(3-2*KABC)*GABK COPLN186
GACK = FLOAT (3-22KARC)*GACK COPLNI1AT7
ANGDEG (1) = ANGA®TODEG2 COPLN188
ANGDEG(2) = ANGB®TODEGZ2 COPLN189
ANGDEG(3) = ANGC®TODEG2 COPLN190

C CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS MAGNITUDE IS LESS TWAN 90 COPLNI19I
C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION, COPLN192

DO 140 K=1.3 COPLN193

136 X2 = ABS(ANGDEG(K))=90.0 COPLN194
IF(XZ) 140+140+137 COPLN19S

137 ANGOEG(K) = ANGDEG(K)=SIGN(180.0+ANGDEG (K)) COPLN196
GO Y0 136 COPLN197

140 CONTINUE COPLN198
NSOL=NSOL ¢} COPLN199
PRINT 602 COPLN200
PRINT 603+NSOL »ANGDEG COPLN201
PRINT 604 COPLNZ202
PRINT 601 ¢ALA+BEA+GAAIALB+REB+GAB+ALCIRECI6AC COPLN203

W1l = ALABEAK COPLN204
W22 = ALA-BEAK COPLNZ20S
W12 = GAAK COPLNZ206
W23 = (GAAK®CSFE-GABK)/SNFE COPLNZ207

Ql = REAK®(1,04CSFE2)~-2.0*REBK COPLNZ20A

Q2 = REAK®(1.0¢CSSI12)-2.0%RECK COPLN209

W33 = ALAC(QL®SN2S1-02#SN2FE) /DEN CoPLM210
Wil = (Q19SNSI2-Q2®SNFE2) /DEN COPLN211
CALL DISPLAY (1) COPLN212

180 CONTINUE COPLN213
GO 10 200 COPLN214

C eecee FORBINDEN ZONE oee IF LAST STEP WAS IN ALLOWED ZONFE AND A COPLN21S
C CROSSOVER SEARCH WAS NOT PERFORMENe THEN CHECX FOR CROSSOVER POINT COPLN216
C AFTER RESETTING THE PREVIOUS VALUES OF ZTA+CSZTA+CSZTR.CSZTC, COPLN217
190 INDEX=0 COPLNZ18
KLL=0 COPLN219

IF (KLLSV) 192.,200 COPLN220

192 IF(XSCHSV) 2004193 COPLNZ221
193 ZTA=ZTA-STEP COPLN222
CSZTA=COS(ZTA) COPLNZ2?3
CSZTB = (ALB-ALA*ZLMDAA®CSZTA)/ZLMDAB COPLNZ2?4
CSZTC = (ALC~ALA+ZLMDAA®CSZTA)/ZLMDAC COPLNZ?S

GO TO 100 COPLNZ?26
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C evecee NO CROSSOVER HAS BEEN FOUND. IF CROSS IS LESS THAN 0.0+ ERROR COPLN227
195 IF(CROSS) 19741974200 COPLN228
197 CROSS=+1,0 COPLN229

PRINT TOOSNTRIES+E19E2+E3+ANGA+ANGBYANGC COPLNZ230

200 CONTINUE COPLN231
201 CONTINUE COPLN232
PRINT 60S . COPLN233
RETURN COPLN236

299 PRINT T701¢ZLMOAAsZLMDABZLMDAC+ALAsALBIALCoX19X2eXX19XX29XLOWERe COPLN23S
XXUPPER COPLN236
RETURN COPLN237
END COPLN238
SUBROUT INE MONOCLN(PHI) MONOC 1

C ceceee PHI IS IN DEGREES. MONOC 2
DIMENSION ANGDEG(3) MONOC 3
COMMON/PARAM/ALABEA+GAAVALBIBEBsGAB+ALC+BEC.8AC MONOC &
COMMON/W/W1]14W22+W33osW129W239W13 MONOC S
DATA PI1/3.14159265359/4TODEG2/28,64788976/+¢TORAD/0.01745329252/¢ MONOC 6
ONTRIES/23/ MONOC 7

C ALAJALBALC ARE THE ALPHA PARAMETFRS FOR ROTATIONS ABOUT AXES A+BsC, MONOC 8

C BEABEBBEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A¢BeCe MONOC 9

C GAAyGAB+GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES AsReC. MONOC 10

C TODEG2 = S7.29577951/2.0 = (180/P1)/2. TORAD = P1/180. MONOC 11
600 FORMAT (1H19 37X 925Heeee MONOCLINIC CASE ceeevl0Xs6HPHI = ,1F9,49 MONOC 12

A//7+39X+2AHTHE ORIGINAL PARAMETERS AREt. 7) MONOC 13
601 FORMAT(J7X+sSHALPHA» 11X e 4HBETA412X+SHGAMMA /7 /24X e THAXTS A391F16.8:MONOC 14
B2E16:9//724X s THAXIS Bt olF16.8¢2F16.9//726XeTHAXIS C89F16.8¢2E16.9//)MONOC 15
602 FORMAT (22Xs 3BHTHE STARTING=ANGLE ERRORS (IN DEGREES)e /e 22X MONOC 16
C29HABOUT THE THREE ROTATION AXESe/923Xe6HAXIS Aes6Xe6HAXIS BebXy MONOC 17
D6HAXIS C) MONOC 18
603 FORMAT (3Xe12HSOLUTION NOes» 1294Heae 9F9:493XeF9,493XeF9,4) MONOC 19
604 FORMAT(/+38Xe 4BHTHIS SOLUTION HAS THE FOLLOWING ALPHA+SBETAsGAMMA+MONOC 20
E/+ 3BXs41HPARAMETERS FOR THE THREE AXES OF ROTATION) MONOC 21
605 FORMAT (/927T(SH @ ) e//949X92THeoe END OF CALCULATIONS oeo) MONOC 22
700 FORMAT(//¢ 65H THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONMONOC 23
FVERGE WITHIN o I4911H ITERATIONSe/+36H THE VALUE OF THE NULL FUNCTMONOC 24
GIONS AREo/¢ 6H E1l = 4E1S.9¢6H E2 = 9E15.996H E3 = 4E15.9¢/0 MONOC 2S
H18H ANGAJANGR¢ANGC = o 3E1S.94/) MONOC 26
1999 FORMAT(17H ERROR IN MONOCLNe/» (9X9s6E15.9¢/)) MONOC 27
FE = PHI®TORAD MONOC 28
PRINT 600+PHI MONOC 29
PRINT 601+ALA+BEA+GAA9ALBIBEB+GABsALCyBECIGAC MONOC 30
NSOL = 0 MONOC 31
SNFE = SIN(FE) MONOC 32
CSFE = COS(FE) MONOC 33
ACCUR = P1/18000.0 MONOC 34
NTRIES=30 MONOC 3S
ZLMDAA=SQRT (REA®e2eGAA®R2) MONOC 36
ZLMDAB=SQRT (RER®®#2¢GABO#2) MONOC 137
ZLMDAC=SQRT (BEC®®2+GAC®*?2) MONOC 38
DPLUSA = SIGN(ACOS(BEA/ZLMNAA) +GAA) MONOC 39
DPLUSB = SIGN(ACOS(BEB/ZLMNDAR) +GAB) MONOC 40
DPLUSC = SIGN(ACOS(BEC/ZLNDAC)OGAC) MONOC 41
SNCHIC = (ALA-ALB)/ (ZLMDAC®SNFE) MONOC 42
IF(ARS(SNCHIC)=1,0) 8+¢8+999 MONOC 43

8 CHIC = ASIN(SNCHIC) MONOC 44
00 80 KK=1l.2 MONOC 45
ZETAC = FLOAT(2-KK)® (CHIC+FE) *FLOAT(KK=1)®(PTI=CHIC*FE) MONOC 46
CSZTAC = COS(ZETAC) MONOC 47
CSCHIB = (ALR*ALC-2.0*ALA=-ZLMDAC®CSZTAC)/ZLMDASB MONOC 48
IF(ABS(CSCHIR)=1,0) 10¢10+999 MONOC 49

10 CHIB = ACOS(CSCHIB) MONOC SO
CSCHIA = (ALC-ALA=-ZLMDAC®CSZTAC)/ZLMDAA MONOC S1

IF (ABS(CSCHIA)=1,0) 12+12¢999 MONOC S2

12 CHIA = ACOS(CSCHIA) MONOC S3
DO 80 LL=1.+2 MONOC S&
2ETAA = CHIA MONOC SS
ZETAB = FLOAT(3=-2*LL)*CHIB MONOC S6

C eecee ANGAJANGB,ANGC ARE THE (DOUBLE)=-STARTING-ANGLE-SHIFTS FOR MONOC S7




150

C ROTATIONS ABOUT AXES AeBsC RESPECTIVELY. MONOC S8
ANGA = DPLUSA-ZETAA MONOC S9
ANGB = DPLUSR-ZETAB MONOC 60
ANGC = DPLUSC=-2ETAC MONOC 61
JFLAG=0 MONOC 62
GO 10 17 MONOC 63

1S ANGA = ANGA*DELA MONOC 64
ANGB. = ANGB+DELB MONOC 6S
ANGC = ANGC+DELC MONOC 66

17 CSA = COS (ANGA) MONOC 67
CS8 = COS (ANGB) MONOC 68
CSC = COS (ANGC) MONOC 69
SNA = SIN(ANGA) MONOC 70
SNB = SIN(ANGB) MONOC 71
SNC = SIN(ANGC) MONOC 72
BEAK=BEA®CSA+GAA®SNA MONOC 73
BEBK=BEB*CSB+GAB®SNB MONOC 74
BECK=BEC®*CSC+GAC®SNC MONOC 7S
GAAK=GAA®CSA-BEA®SNA MONOC 76
GABK=GAB*CSB-BEB®*SNB MONOC 77
GACK=GAC*CSC-BEC®SNC MONOC 78
El s ALC-BRECK-ALA=-BEAK MONOC 79
E2 = ALC-BECK+ALR-BEBK=2.0%ALA MONOC 80
E3 = ALB-ALACSNFE® (GACK®CSFE=-BECK®SNFE) MONOC 81
DELC = EJ/(SNFE® (BECK®CSFE*GACK®*SNFE) ) MONOC 82
DELB = (E2-GACK*DELC)/GABK MONOC 83
DELA = (E1-GACK®DELC)/GAAK MONOC 84
JFLAG=UFLAG*1 MONOC 8S
IF (JFLAG-NTRIES) 20419419 MONOC 86

19 PRINT 700eNTRIES+ELsE2+E3+ANGA+ANGBsANGC MONOC 87
GO T0 25 MONOC 88

20 XXA = ARS(DELA) MONOC 89
XX8 s ABS(DELB) MONOC 90
XXC = ARS(DELC) MONOC 91
XX = AMAX] (XXA+XXBoXXC) MONOC 92
IF (XX=ACCUR) 25+25¢15 MONOC 93

25 DO 80 MM=1,2 MONOC 94

C eecee FIRST TIME THROUGH THE DO LOOP ANGB=ANGS.ETC. AND GABK=GABK+ETCMONOC 95

C eeeee NEXT TIMEs ANGB = 290PLUSB-ANGB+ETC. AND GABK==GABK+ETC. MONOC 96
ANGB = FLOAT (2-MM)®ANGB*FLOAT (MM=-1)®(2.,0*0PL1)SB-ANGB) MONOC 97
ANGA = FLOAT (2-MM) ®*ANGA*FLOAT (MM=])*(2,09DPLUSA~-ANGA) MONOC 98
GABK = FLOAT (3-2%MM) *GABK MONOC 99
GAAK = FLOAT (3=-2%MM)*GAAK MONOC100
ANGDEG(1) = ANGA®TODEG2 MONOC101
ANGDEG(2) = ANGB*TODEG2 MONOC102
ANGDEG(3) = ANGC*TODEG2 MONOC103

C CHANGE THE STARTING=-ANGLE SHIFT SO THAT ITS MAGNITUDE IS LESS THAN 90 MONNC104

C DEGREES. TO ADD NOR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION., MONOCL10S
00 S0 K=1,43 MONOC106

46 X2 = ABS (ANGNEG(K))=90,0 MONNC107
IF (X2) S0450447 MONOC108

47 ANGDEG(K) = ANGOEG(K)=SIGN(180.0+ANGDEG(K)) MONOC109

. GO TO &6 MONOC110

50 CONTINUE MONOC111
NSOL=NSOL ¢1 MONOC112
PRINT 602 MONOC113
PRINT 603+NSOL +ANGDEG MONOC114
PRINT 604 MONOC115
PRINT 601+ALA+BEAKIGAAKALBIBEBKsGABKyALCoBECK»GACK MONOC116
Wll = ALA+BEAK MONOC117
W22 = ALA-BEAK MONOC118
W33 = ALCeBECK MONOC119
W12 = GAAK MONOC120
W13 = GACK MONOC121
W23 = (GAAK®*CSFE-GABK)/SNFE MONOC122
CALL DISPLAY(2) MONOC123

80 CONTINUE MONOC124
PRINT 60S MONOC125

RETURN MONOC126
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999 PRINT 1999¢ALABEA+GAA+ALB«BEBsCABIALC+BEC+GAC+BEAKsGAAK+BEBK GABKMONOCL27
KoeBECKsGACKoEL1+E2+EIVDELAVDELBIDELCoANGA9ANGB o ANGCsDPLUSASDPLUSBe MONOC128

BOPLUSCoZETAACZETABIZETACHACCUR MONOC129
RETURN MONOC130

ENO MONOC131
SUBROUTINE RHOMBIC RHOMB 1
DIMENSION ANGLES(3+¢8) oLL(3)eLSIGN(3+8)¢LS@(3+3+8)9¢NSOL(B) RHOMB 2
COMMON/PARAM/ALABEAIGAAYALB+BEBsGABYALC+BEC,BAC RHOMB 3
COMMON/W/W114W22eW330sW12+W23eW13 RHOMB &
DATA P1/3,14159265359/+TODEG2/28.,64788976/+NTRIES/30/KHA/LHAYZ, RHOMB S
DKHB/1HB/ oKHC/IHC/o1Y1/1/01Y2/2/791Y3/3/01Y6/74/01Y5/5/701Y6/6/ RHOMR 6
DIYT/7/+1vA/8/ RHOMB 7

C ALAJALBALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES AsBeC, RHOMB 8
C BEAIBEBBEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES AsBsC., RHOMB 9
C GAAGABsGAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A+BeC. RHOMBR 10
C TODEG2 = S7.29577951/2.0 = (180/P1)/2. RHOMB 11
600 FORMAT(1Hle 37X927Heeee ORTHORHOMBIC CASE sece9 //939Xe 28HTHE ORIRHOMB 12
AGINAL PARAMETERS AREt+/) RHOMB 13
601 FORMAT (37X eSHALPHA 11X e4HBETA912XsSHGAMMA 9/ /424X s THAXIS A291F16.8,RHOMRB 16
BRE1669//724Xe THAXITIS Bt olF16.8+2E16,9//24XeTHAXIS C1eF16.892E16.9//7)RHOMB 1S
602 FORMAT (22Xe JIBHTHE STARTING=ANGLE ERRORS (IN DEGREES)e /9 22X RHOMB 16
C29HABOUY THE THREE ROTATION AXES+/923Xe6HAXIS Ae6X96HAXIS BebXo RHOMB 17
D6HAXIS C) RHOMB 18
603 FORMAT (3Xe12HSOLUTION NOes I204Heoe 9F9:403XeF9,403XeF9,.4) RHOMB 19
606 FORMAT (/¢ 27TX+62HTHESE 8 SOLUTIONS HAVE THE SAME ALPHA AND BETA RARHOMR 20
ERAMETERS. THEe /9o 27X9e62HSIGNS OF THE GAMMA PARAMETERS ARE DIFFERRHOMR 21
FENT FOR EACH SOLUTIONes/9¢ 8S5Xe B(6HSOLTN ) e/e3B8XsSHALPHAS10X, . RHOMB 22
GAHBETA91SXeSHGAMMASTX 9B (4H NOoeI2)e/9 (21XeSHAXIS o1ALls1HEsF16.8, RHOMB 23
HLXsEL1Se9eSH (¢=) sE14.9¢3Xs 8(2H (s1ALe3H) ) s/)) RHOMB 24
605 FORMAT (/e 17Xs16HTHE W TENSOR IS3e 2XeJ(E15.992X)9//35X93(E1S.9¢ RHOMB 2S5
I12X) ¢//35Xe3(E1S5.992X) ¢/) RHOMB 26
606 FORMAT( 7Xe129HTHE SIGNS TO BE ASSOCIATED WITH THE ELEMENTS OF THERHOMB 27
J W=TENSOR GIVEN ABOVE ARE ARRANGED IN A CORRESPONDING MATRIX FOR ERHOMB 28
KACH SOLUTIONs //s 2Xs 8(S5Xe9HSOLTN NO.912)e/e 3I(9Xe B(3Xs1AlelXe RHOMB 29
LIALolXolAlee8X)e /)) RHOMB 30
607 FORMAT( 2X+26HTHE RESULTS FOR SOLUTIONS eIlelHeIlelHeIlelHeIly RHOMB 31
M16H ARE GIVEN BELOWes/e 27(SH ¢ )) RHOMB 32
608 FORMAT( /o 19Xs41HABOVE ARE THE RESULTS FOR SOLUTION NUMBERe 12 RHOMBR 33
NlHeo/9 19Xe82HTO OBTAIN THE OTHER SOLUTIONSs CHANGE THE SIGNS OF ORHOMR 34
ONE COLUMN OF DIRECTION COSINES+/s 19X+73HAND CHANGE THE CORRESPONDRHOMA 1S
PING COLUMN OF ANGLES B8Y SUBTRACTING 180 DEGREES.s //9 (19Xe19HFOR RHOMB 36
QSOLUTION NUMRERs 12+ 29H CHANGE THE COLUMN UNDER AXISe 124/)) RHOMBR 137
609 FORMAT(27(SH * )4/) RHOMB 38
610 FORMAT (49X 92THeee END OF CALCULATIONS ooe) RHOMB 139
611 FORMAT(//934Xe24Heee ERROR IN RHOMBICS XZs1AlellH = COS(ZETAs1Als RHOMR 40
R4H) = 41F10.6) RHOMB 41
612 FORMAT (SSXe20HHAS BEEN CHANGED TO ¢1F10464/) RHOMB &2
700 FORMAT(//+ 6SH THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONRHOMB 43
SVERGE WITHIN ¢ I4911H ITERATIONSs/936H THE VALUE OF THE NULL FUNCTRHOMR 44
TIONS ARE+/9e 6H El = 4E15.9¢6H E2 3 9sE1S5.996H E3 3 sE15.90/0 RHOMB 4S
ULBH ANGA+ANGByANGC = ¢ 3E1S.94/) RHOMB 46
PRINT 600 RHOMB 47
PRINT 601+ALAREAYGAAVALBIREBYGABIALC+BECIBAC RHOMR 48
ACCUR = P1/18000.0 RHOMB 49
ZLMDAA=SQRT (REA®®2+GAAR®2) RHOMB SO
ZLMDAB=SQRT (BER®#2+GAB®®2) RHOMB §1
ZLMDAC=SQRT (REC®®2+GAC#*2?2) RHOMR §2
DPLUSA = SIGN(ACNS(BEA/ZLMDAA) 4GAA) RHOMB S§3
DPLUSB = SIGN(ACOS(BEB/ZLMDAB) +GAB) RHOMB S&
DPLUSC = SIGN(ACOS(BEC/ZLMDAC) sGAC) RHOMB §S
XZA= (ALC=-ALB)/7Z2LMDAA RHOMB 56
XZB=(ALA-ALC)/72LMDAB RHOMB S7
XZC= (ALB-ALA) /ZLMDAC RHOMR S8
KERROR = 0 RHOMR S9

C KERROR = (0+1) IF EITHER XZAeXZBsOR XZC (HAS NOT.HAS) BEEN CHANGED TO RHOMR 60
C TO ALLOW A SOLUTION TO EXIST. RHOMB 61
YY 3 ABS(XZA) RHOMR 62
IF(YY=1.0) 44442 RHOMR 63

2 KERROR = 1 RHOMB 64

'FF
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12

PRINT 611 .KHAKHA9XZA
XIA = SIGN(1.,0¢XZA)
PRINT 612.X2A

YY = ABS(XxZ8B)
EF(YY=1,0) B8+846
KERROR = |

PRINT 611 ¢KHBsXHRX2B
XZ8 ® SIGN(1.,0eX28)
PRINT 612.%X28

YY = ABS(XZC)
IF(YY=1,0) 12+,12,10
KERROR = |

PRINT 611+sKHCsKMHCoXZC
XZC = SIGN(1.0+X2C)
PRINTY 612,X2C

ZETAA = ACOS(XZA)
ZETAB = ACOS(X2ZB)
ZETAC = ACOS(X2C)

PM 3 =1,0

DO 25 1I=1.2

PM=-PM
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€C ecoee ANGA9ANGB.ANGC ARE THE (DOUBLE)=STARTING-ANGLE-SHIFTS FOR
€ ROTATIONS ARQUT AXES AsBeC RESPECTIVELY.

ANGA = DPLUSA=SIGN(ZETAAPM)
ANGB = DPLUSB=-SIGN(ZETAB.PM)
ANGC = DPLUSC=-SIGN(ZETAC,PM)

1S

C IF KERROR = ],

JFLAG=0

CSA=COS (ANGA)
CSB8=COS (ANGS)
CSC=CO0S (ANGC)
SNA=SIN (ANGA)
SNB=SIN (ANGS)
SNC=SIN (ANGC)
BEAK=BEA®CSA+GAA®SNA
BEBK=BEB*CSB+GAB#SNB
BECK=BEC®CSC+GAC®SNC
GAAK=GAA®CSA-REA®SNA
GABK=GAB*CSB-REB®SNB
GACK=GAC*CSC-BEC®SNC
€]l = ALC-ALB-BEAK

€2 = ALA-ALC-BEBK

€3 = ALB-ALA-BECK
DELA = E1/GAAK

DELB = E2/GARK

DELC = E3/GACK

THEN WE CAN NOT

FIND A

SELF-CONSISTENT SOLUTIONe SO WE

C ALLOW THIS APPROXIMATION TO BYPASS THE CHECKING OF DELA+DELS.DELC.

17

18
19

ra!

25

IF (KERROR) 21417921
ANGA=ANGA+DELA
ANGB=ANGR+DELR
ANGCrANGC+DELC
JFLAG=JFLAG*]

IF (JFLAG=NTRTES) 19+19,18

PRINT 700eNTRIES+E1+E2+EI9ANGA+ANGB¢ANGC

GO 70 21

XXA = ABS(DELA)
XX8 = ARS(NELR)
XXC = ABS (DFELC)

XX = AMAX] (XXA+XXBoXXC)

IF (XX=ACCUR) 21915415
[J=4e]]=1

ANGLES (1+1J)=ANGA
ANGLES (24 1J)=ANGR
ANGLES (34 1J)=ANGC
CONT INUE

XA=(ANGLES(1+5)=-ANGLES(1+1))/2.0
XB= (ANGLES(2¢5)=ANGLES(2+1))/2.0
XC=(ANGLES(3+¢5)=ANGLES(3+1))/2.0

BEAK=ZLMDAA®COS (XA)

RHOMB 6S
RHOMB 66
RHOMB 67
RHOMB 68
RHOMA 69
RHOMA 70
RHOMB 71
RHOMB 72
RHOMB 73
RHOMB 76
RHOMB 7S
RHOMB 76
RHOMB 77
RHOMB 78
RHOMB 79
RHOMB 80
RHOMB 81
RHOMB 82
RHOMB 8)
RHOMB 84
RHOMB 8S
RHOMB 86
RHOMAR 87
RHOMB 88
RHOMB B9
RHOMB 90
RHOMB 91
RHOMB 92
RHOMB 93
RHOMB 94
RHOMB 9S
RHOMR 96
RHOMB 97
RHOMB 98
RHOMB 99
RHOMB100
RHOMB1O01
RHOMB102
RHOMB103
RHOMB1 04
RHOMB10S
RHOMR106
RHOMB107
RHOMR108
RHOMBR109
RHOMAL110
RHOMAL11
RHOMB112
RHOMBI113
RHOMRB] 14
RHOMB11S
RHOMB116
RHOMR117
RHOMAR118
RHOMR119
RHOMB120
RHOMRB121
RHOMAB122
RHOMR123
RHOMB124
RHOMR] 2S
RHOMB126
RHOMR127
RHOMR] 28
RHOMB129
RHOMB130
RHOMB131
RHOMR132
RHNMB133




C CHANGE THE STARTING=-ANGLE SHIFT SO THAT ITS MAGNITUDE IS LESS THAN 90

C OEGREESe. TO ADD NR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION.

27
28
30

42

S

S0

60
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GAAK=Z| MNDAA®SIN(XA)
BEBK=ZL MDAB®COS (XB)
GABK=Z|MDAB®*SIN(X3)
BECK=Z_MDAC®COS (XC)
GACK=ZLMDAC*SIN(XC)
GAAB = ABS (GAAK)
GABB = ABS (GABK)
GACB = ABS(GACK)

DO 30 K=31,+Se4

DO 30 U=1,3

XX ® ANGLES(JsK)*TODEG2
XZ = ABS(XX)=90.0
IF(XZ) 30.30,28

XX = XX=SIGN(180,00XX)
GO 70 27

ANGLES (JeK) = XX

00 32 I=]1,3

LSIGN(Ie]l) = 1He
LSIGN(I+5) = ]He

IF (GAAK) 33¢74434
LSIGN(le¢l) = 1H=-

IF (GABK) 3S+36036
LSIGN(2s1) = 1H~

IF (GACK) 37+38+38
LSIGN(3s1) = lH-

DO 40 I=1,3

MM 3 LSIGN(Ies1)=1He
IF(MM) 40+39.40
LSIGN(1¢5) = ]H-
CONTINUE

LL(1)=e2

LL(2)==2

LL(J)=e2

DO 4S IB=2.4

D0 42 IA=1,3
ANGLES(IA,I8) = ANGLES(IA¢3eLL(IA))
ANGLES (IA,1Re4) = ANGLES(IAs3=LL(IA))

LSIGN(IA,1IB) = LSIGN(IAes3eLL(IA))
LSIGN(IA.IBe4) = LSIGN(IA«3=LL(IA))
IT=LL ()

LL(Ir=LL(2)

LL2r=LL ()

LL()=IT

CONTINUE

DO S0 I=1.8
LSQ(lelsI)=1NHe
LSQ(2+201) 1Mo
LSQ(3e391)m]lHe
LSO(1+2s1) = LSIGN(1,I)
LSQ(2¢191) = LSIGN(1sI)
LSQ(1+391) = LSIGN(3s1)
LSO(3el9l) = LSIGN(3s1])
LSQ(2¢3s1) = LSIGN(241)
LSO(3+291) = LSIGN(2+s1)
CONTINUE

Wil = ALA+BEAK

W22 = ALR+BERK

W33 = ALCe+BECK

W12 = GAAK

W23 = GARK

W13 = GACK

DO 60 I=1,8

NSOL (1) = |

PRINT 602

PRINT 603¢((Te (ANGLES(Js1)9J=1+3))0I=1,8)

PRINT 604 ¢NSOLsKHAIALAIBEAKsGAABs (LSIGN(19K) ¢Xm]14eB)

IKHB o ALBsREBK +GABRy (LSIGN(29K) sK=198)

sKHCoALCoBECK+BACB,

RHOMB1 34
RHOMRI1 3S
RHOMB] 36
RHOMB137
RHOMR1138
RHOMB139
RHOMB1640
RHOMR141
RHOMB142
RHOMB143.
RHOMR 144
RHOMB14S
RHOMB146
RHOMB147
RHOMB148
RHOMB149
RHOMR1S50
RHOMB1S1
RHOMB1S52
RHOMA1S3
RHOMB1S4
RHOMB1SS
RHOMB156
RHOMBR1S?
RHOMBR1S8
RHOMB]S9
RHOMB160
RHOMB161
RHOMB162
RHOMR163
RHOMB164
RHOMB16S
RHOMR166
RHOMB167
RHOMBR168
RHOMBR169
RHOMBR170
RHOMR1 71
RHOMB172
RHOMR173
RHOMB1 74
RHOMR17S
RHOMB1 76
RHOMB177
RHOMR1 78
RHOMR1 79
RHOMR18R0
RHOMAR1R]
RHOMB1R2
RHOMR183
RHOMB184
RHOMRB18S
RHOMB186
RHOMB18R7
RHOMB188
RHOMR189
RHOMB190
RHOMR191
RHOMR192
RHOMB193
RHOMR194
RHOMBR195
RHOMA196
RHOMR197
RHOMR198
RHOMAR199
RHOMR200
RHOMRZ201
RHOMRZ202
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2(LSIGN(3+K) eK=108) RHOMB203
PRINT 60SeW11+GAAB+GACBsGAABIW22+GABB+GACBGABB,W33 RHOMB204
PRINT 606¢NSOLe (((LSQ(IeJeK) eJ=193)9K=]148)eImle]) RHOMB205
PRINT 607+IY1eIY201Y301Y4 RHOMB206
CALL DISPLAY(3) RHOMR207
PRINT 608¢eIV101Y2+IY10IV301Y201Y4,01Y3 RHOMR208
PRINT 609 RHOMB209
Wl2=-¥w]12 RHOMAB210
W23==¥23 RHOMB211
W1l3==y13 RHOMRZ212
PRINT 607+1YSe1Y601Y74o1Y8 RHOMB213
CALL OISPLAY(3) RHOMB2146
PRINT 60801YSeIY6eIV1oIYTeIY2,1YBs1Y3 RHOMBZ21S
PRINT 609 RHOMR216
PRINT 610 RHOMB217
RETURN RHOMB218

END RHOMB219
SUBROUTINE GENERAL (PHIoNN19sNN29sNN39SS1¢5S52+853) GENER 1
eeccee PHI IS IN DEGREES. GENER 2
NN1oNN2+NN3 ARE THE DIRECTION COSINES WITH RESPECT TO AXES 14203 GENER 3
RESPECTIVELY OF THE ARBITRARY ROTATION AXIS C. GENER &
$§S19552¢5S5S3 ARE THE DIRECTION COSINES WITH RESPECT TO AXES 14243 GENER S
RESPECTIVELY OF THE STARTING DIRECTION FOR THE ROTATION ABOUT AXIS C GENER 6
NEITHER (NN oeNN2+sNN3J) NOR (SS1¢SS2¢SS3) NEED BE NORMALIZED, GENER 7
REAL M1 oM2oMIoMM] sMM2 yMMIoN]1 sN2+NIoNNL1 osNN2+NN39ANGDEG(3) GENER 8
COMMON/PARAM/ALAIBEA+GAAALB+BEB+GABsALCeBEC.BAC GENER 9
COMMON/W/W11eW22+W33,W12+W234W13 GENER 10
DATA P1/3.14159265359/eTONEG/ST7.29577951/+TODEG2/28.64788976/ GENER 11
OTORAD/0.01745329252/+NSTEP/360/+NTRIES/1S5/ GENER 12
ALAJALBIALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A+BeC. GENER 13
BEAJBEB.BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES AsReC. GENER 14
GAAsGAB+GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS AROUT AXES A+R¢C. GENER 1S
600 FORMAT (1Hle 40X922Heoee GENERAL CASE ceeetlOXeO6HPHI = o1F9,4e//9y GENER 16
AJ9X+28HTHE ORIGINAL PARAMETERS ARESs/) GENER 17
601 FORMAT (37X eSHALPHAS ) 1Xe4HRETA9 12X eSHGAMMA G/ /724X e THAXIS AS91F16.,8+GENER 18
B2E16.9//726X s THAXIS B1e1F16.8+2E16.9//24X9THAXIS C3¢F16.8¢2€E16.9/7/)GENER 19
602 FORMAT (28Xse 72HTHE VECTOR (N1eN2sN3) REPRESENTING THE NDIRECTION OFGENER 20
C AXIS C 1S GIVEN AS (o1F9.6¢1He1F9.601HelF9.601H)9/9 69Xe3IHTHIS IGENER 21

0S NORMALIZED TO PRODUCE (e1F9.691He1F9,6¢1Hes1F9,691MH)) GENER 22
603 FORMAT(100H THE VECTOR (S1+S2+53) REPRESENTINS THE STARTING DIRECTGENER 23
EION FOR A ROTATION ABOUT AXIS C IS GIVEN AS (91F9.691Hs1F9,641Hs GENER 264
F1F9.691H)) GENER 2S5
604 FORMAT (B4H THIS VECTOR IS PROJECTED ONTO THE PLANE PERPENDICULAR TGENER 26
GO (N1oN2eN3) AND NORMALIZED.e/e76Xs 24HTHESE CORRECTIONS GIVE (¢ GENER 27
HIF9e¢691Ho1F9.601Hs1F9,601H) s/9 40Xs60HTHE STARTING-DIRECTION VECTOGENER 28

IR (S1¢S2¢S3) IS NOW CHANGFED TO (s1F9:691Hs1F9.641He1F9,691H)) GENER 2?9
60S FORMAT (40Xe17HRY A ROTATION 0OF F9.,4+25H DEGREES ABOUT (N1eN2eN3)/)GENER 30
606 FORMAT (43H THIS CHANGES THE FOLLOWING TWO PARAMETERSSe/¢ 3SH RETAGENER 31
J FOR ROTATION ABOUT AXIS C = 41E15.99/0¢35H GAMMA FOR ROTATION AROUGENER 32

KT AXIS C = 41E15.9+//) GENER 33
€07 FOQMAT (22Xes IBHTHE STARTING=ANGLE ERRORS (IN DEGREES)s /¢ 22X» GENER 34
L29HABOUT THE THREE ROTATION AXESe/923Xe6HAXIS As6Xe6HAXIS Be6Xo GENER 35
M6HAXIS C) GENER 36
608 FORMAT (3X ¢ 12HSOLUTION NOee I2¢4Heee 9F9:.443XsF9,493XeF9,.4) GENER 137
609 FORMAT (/+36Xe 48HTHIS SOLUTION HAS THF FOLLOWING ALPHABETA+GAMMAGENER 38
N/e 36X+41HPARAMETERS FOR THE THREE AXES OF ROTATION) GENER 139
610 FORMAT (/¢2T(SH ® ) ¢//049%e2THeee END OF CALCULATIONS cee) GENER 40
700 FORMAT(//s 65H THERE 1S AN ERROR., AN ITERATIVE PROCESS DID NOT CONGENER 41
OVERGE WITHIN o T4s11H ITERATIONS+/936H THE VALUE OF THE NULL FUNCTGENER 42
PIONS AREes/e 6H El = JE1S.996H E2 = 4E1S.9¢6H E3 = 4E15.90/0 GENER 43
Q@18H ANGAJANGR+ANGC = ¢ 3E15.9./) GENER 44
1999 FORMAT (19H ERROR IN GENERALS 9216979 (39Xe3E1S5e94/7) ) GENER 4S5
FE = PHI®*TORAD GENER 46
NSOL = 0 GENER 47
ARSTEP=P I /FLOAT(NSTEP) GENER 48
STEP=ABSTEP GENER 49
ACCUR=STEP/10000,.0 GENER S0
CONV = 3,0®ABSTEP GENER S1
PRINT 600.PHI GENER S2
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PRINT 601 ¢ALAIBEAVGAAALBBEB+GAB+ALCsBEC+8AC
eeoee NORMALTIZE (NN1oNN2eNN3) TO FORM (N1eN2eN3) eee
RENORM ® SQRT (NN]1®NN] ¢NN2*NN2+NN3®NN3J)
IF (RENORM) 4,999
& N1=NN1/RFNORM
N2=NN2/RENORM
N3aNN3I/RENORMN
PRINT 602¢NN1oNN2+NN3eN1eN2eN3
PRINT 603¢SS1¢552+SS3
eseee PROJECT (SS195529SS3) ONTO THE PLANE PERPENDICULAR TO THE
VECTOR (N1eN2+N3) cee
DCSN = SS1®N1¢SS2®N2+SS3I*NJ
SS13SS1=-DCSNeN1
SS23SS2-DCSNeN2
S$S3=SS3-DCSNeN3
essee NORMALIZE THE NEW (SS19¢SS2+SS3)
RENORM = SQRT(SS1®SS1¢5520552¢553%5S3)
IF (RENORM) S+999
S SS1=SS1/RENORM
SS23SS2/RENORM
$S3I=SSI/RENORM
eeeee FORM (MMl oMM2sMM3) FROM (N1+sN2¢N3) CROSS (SS195S2¢8S3) cee
MM1aN2®#SS3-N3*SS2
MM2=NI®SS])=N]*SS]
MM3aN]l@SS2=-N2®SS1

eseee CHANGE TO A NEW STARTING DIRECTION (S1¢%2+S3) WHERE S3=0.0 AND

A CORRESPONDING NEW MIDOLE DIRECTION (M1oeM2eM3) ..o
IF(MM3) 6499946
6 IF(SS3) 8.7
T MlaMM]
M2mMM2
M3aMM3
S1=SS1
S2=S5S2
S$3=SS3
BECS=BEC
GACS=GAC
Xl = 0,0
GO 70 18
8 ALMDA = SQRT(SS3#SS3eMMI®MM3)
Sl = (SS19MMI=SS3®MM]) /ALMDA

S2 = (SS20MM3-SS3*MM2) /ALMDA
S3 & 0.0

Ml = (SS18SS)eMM]1®MM3) /ALMDA
M2 = (SS29SS3eMM2®MM3) /ALMDA

M3 = ALMDA
TANXI s =SS3/MM3
XI = ATAN(TANXI)®TODEG
IFAMM3) 10010415
10 XI = XI-SIGN(180,0¢553)

XI IS THE ANGLE OF ROTAT{ON ABOUT (N1sN2sN3) TO PRODUCE (S1+S2+S3),

seeee NEW BETA AND GAMMA PARAMETERS FOR ROTATION ABOUT AXIS C.
OLD VALUES BEC+sGAC ARE ASSOCIATED WITH (55145S52¢SS3)eee
NEW VALUES BECS+GACS ARE ASSOCIATEN WITH (S1+4S2+S3).
1S BECS = (REC® (MM3#e2-5S53e802)-2, 0%GAC®MM3I®SSY) / (ALMDA®ALMDA)
GACS = (GAC® (MM3*02-553082)+2,0°BEC*MMI®SSI) /7 (ALMDA®ALMDA)
18 PRINT 604¢5S51955295S539S51¢S2¢S3
PRINT 60S.x1
PRINT 606+BECS+GACS
ILMDAA=SORT (BEA®®2+GAARSD)
ILMDAB=SQRT (REA®e2+GAROe2)
ZLMDAC=SQRT (RECS®®2+¢GACS®*?2)
DPLUSA = SIGN(ACNS(BEA/ZLMDAA) +GAA)
DPLUSB s SIGN(ACOS(BEB/ZLMNDAR) +GAB)
OPLUSC = SIGN(ACNS(BECS/ZLMDAC) sGACS)
SNFE = SIN(FE)
CSFE = COS(FE)
SN2FE = SIN(2.0°FE)
SNFEZ2aSNFE®®2

GENER S3
GENER S4
GENER SS
GENER S6
GENER S7
GENER S8
GENER S9
GENER 60
GENER 61
GENER 62
GENER 63
GENER 64
GENER 6S
GENER 66
GENER 67
GENER 68
GENER 69
GENER 70
GENER 71
GENER 72
GENER 73
GENER 74
GENER 75
GENER 76
GENER 77
GENER 78
GENER 79
GENER B0
GENER B1
GENER 82
GENER 83
GENER 84
GENER 8S
GENER 86
GENER 87
GENER 88
GENER B89
GENER 90
GENER 91
GENER 92
GENER 93
GENER 94
GENER 9S
GENER 96
GENER 97
GENER 98
GENER 99
GENER100
GENERI1O01
GENER102
GENERIO3
GENER104
GENER10S
GENER106
GENER1O07
GENER10A
GENER109
GENER110
GENERI111
GENER112
GENER113
GENER114
GENER11S
GENER116
GENER117
GENER118
GENER119
GENER120
GENER121
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CSFE2=CSFE®®?2 GENER122
BEAK=BEA GENER123
BEBK=BEB GENER126
BECK=BECS GENER12S
GAAK=GAA GENER126
GABKX=GAB GENER127
GACK=GACS GENER128

CMIN = (ALA-ALB-ZLMDAB)/ZLMDAA GENER129

CMAX = (ALA-ALB*ZLMDAB)/ZLMDAA GENER130

CMIN = AMAX1(CMINs=1,0) GENER131

CMAX = AMIN] (CMAXs+l,0) GENER132

XMAX = ACOS(CMIN) GENER133

XMIN = ACOS (CMAX) GENER136

IBEG = IFIX(XMIN/STEP) GENER13S

IEND = [FIX(XMAX/STEP) 1 GENER136

IF (IEND=TBEG) 999+¢999+20 GENER1137

20 00 201 I11=1,2 GENER1238
STEP = =STEP GENER139

PNB = ¢],0 GENER140

PNC = =]1,0 GENER141

00 201 LMN=1,4 GENER162

T=aPNB GENER14J
PNB==PNC GENER144

PNCaY GENER14S

KLL=0 GENER146
KSCH=0 GENER147
INDEX=0 GENER148
CROSS=e1,0 GENER149

00 200 I=IBEG.IEND GENER1SO

C eeocee INDEX = NUMBER OF STEPS IN ALLOWED REGION. GENER1S]
€C eecee KLL = 0 FORRIDDEN REGION GENER1S2
€ eeeee KLL = ) ALLOWED REGION GENER1S3
€C eecee KLLSV = VALUE OF KLL FOR PREVIOUS STEP. ENTERING THE DO LOOP GENERI1SG
C eecee KSCH = (0,1) IF SEARCH FOR CROSSOVER (DOES NOT.DOES) OCCUR. GENERI1SS
C eecee KSCHSV = VALUF OF KSCH FOR PREVIOUS STEP, GENER1S6
C FOR THE FIRST TIME CAUSES KLLSV T0 BE SET TO 0. GENER1S7
€C oceeee CROSS IS LESS THAN OR EQUAL T0O 0.0 ONLY IF A CROSSOVER IS TO GENERI1SS
C BE SEARCHED FOR, GENER1S9
C oeeeee FUNC = TEST FUNCTION = E3, WE SEARCH FOR THE ZERO VALUES. GENER160
€C eeeee SFUNC = LAST VALUE OF FUNC GENER161
€C eceee SSFUNC ® SECOND TO THE LAST VALUE OF FUNC GENER162
ZTA=FLOAT (1) ®STEP GENER163
CSZTA=COS(ZTA) GENER164
KLLSV=KLL GENER16S
KSCHSV=KSCH GENER166
KSCH=0 GENER167
SSFUNC=SFUNC GENER16A8
SFUNC=FUNC GENER169
CSZTB=(ZLMDAA®CSZTA*ALB=ALA) /ZLMDAB GENER170
IF(ABS(CSZTB)~-1.0) 384384190 GENER1T71

38 SNZTA = SIN(ZTA) GENER172
CSZTC=(ZLMDAA® ((2.9519S1=1,)9CSZTA*2,%S]1®S2#SNZTA) ¢ALA-ALC)/ZLMDACGENER]173

IE (ABS(CSZTC)=1.0) 399394190 GENER1 74

C eocceee ALLOWED ZONE oseeee GENERI1TS
39 KLL=1 GENER176
INDEX=INDEX*1) GENER1T7

C eecee CALCULATE FUNC a0 GENER178
SNZTB = SIGN((SQRT(1,0-CSZTB##2)),PNB) GENER179

SN2TC = SIGN((SORT(1,0=-CS2TCe®e2)),PNC) GENER180

BEAK = ZLMDAA®CSZTA GENERI1A1]

BEBK = ZLMDAR®CSZTH GENER182

BECK = ZLMDAC®CSZTC GENER1R]

GAAK = ZLMDAA®SNZTA GENER184

GABK = ZILMDAR®SNZTB GENER18S

GACK = ZLMDAC®SNZTC GENFR18R6
W23=(GAAK*CSFE-GABK) /SNFE GENER187
W133(GACK+2.0%BEAK®S20M2-GAAK? (S]18M2eS20M])-y238S528M3)/(S1%M3) GENER1ARS8
W33=(ALB+REBK=(ALA*BEAK) ®*CSFE2+W132SN2FE) /SNFE2 GENER189

FUNC=ALA® (1 ,0-M3#22) +BEAK® (M]1232-M2082) +2 ,09GAAKSM] ®M2+2,0*W23°M2*GENER]90
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FM3e2,0%W13°M1*M3eW33oM30e2- AL C+BECK

eseee IF LAST STEP WAS IN THE FORBIDOEN REGIONe CHECK FOR CROSSOVER.

IF (KLLSV) S0,100
eeese IF INDEX=19 THIS IS THE FIRST STEP AND ANNTHER STEP IS TAKEN.
IF FUNC=0.0¢s THEN THIS WILL BRE DETERMINED 8Y THE PRODUCT SFUNC®FUNC
SO0 IF(INDEX=1) 200+200+S2
52 CROSS = SFUNC®FUNC
eesee IF CROSS 1S NEGATIVE OR ZEROs A CROSSOVER HAS OCCURED,
EF(CROSS) 100100454
eeeece INDEX MUST RE AT LEAST 3 FOR THE FOLLOWING CHECK TO BE VALID
S&4 IF (INDEX=3) 200+56+56
escee WE TEST TO SEE IF THE FUNCTION HAS APPROACHED TOWARD AND THEN
RETREATED FROM THE FUNC=0.0 AXIS., THERE ARE TwO CONDITIONS THAT
MUST BE MET FOR THIS TO HAVE OCCURED.
(1)e (FUNC=SFUNC)® (SFUNC=SSFUNC) MUST BE LESS THAN OR EQUAL TO ZERO
(2) ¢ FUNC® (FUNC-SFUNC) MUST BE GREATER THAN OR EQUAL TO ZERO.
$6 CHECK = (FUNC=-SFUNC)® (SFUNC=SSFUNC)
IF (CHECK) S58,+58.200
$8 CHECK = FIINCe® (FUNC=SFUNC)
IF (CHECK) 200+100+100
eseseee ROUTINE FOR SEARCHING FOR CROSSOVER POINTS ccccccee
CALCULATE THE THREE ANGLES ABOUT WHICH THE SEARCH IS TO BEGIN
eveee ANGA+ANGB,ANGC ARE THE (DOUBLE)=-STARTING-ANGLE-SHIFTS FOR
ROTATIONS ABOUT AXES AsBsC RESPECTIVELY.
100 KSCH=]
ANGA = DPLUSA-2TA
ANGB = DPLUSB=SIGN(ACOS(CSZTB) +PNB)
ANGC = DPLUSC=-SIGN(ACOS(CSZTC) +PNC)
JFLAG=0
GO TO 112
110 ANGA=ANGADELA
ANGB=ANGR+DELB
ANGC=ANGC+DELC
112 CSA=COS (ANGA)
CSB8=C0S (ANGB)
CSC=CO0S (ANGC)
SNA=SIN (ANGA)
SNB=SIN(ANGSB)
SNC=SIN (ANGC)
BEAK=RBEA®CSA+GAASSNA
BEBK=BEB*CSB+GAB®*SNB
BECK=BECS*CSC+GACS*SNC
GAAK=GAA®CSA-BEA®SNA
GABK=GAB*CSR-BEB*SNB
GACK=GACS*CSC~-BECS®SNC
W1l1sALA+REAK
W22sALA-REAK
W12=GAAK
W2I=(GAAK*CSFE~-GABK) /SNFE
W133(GACK¢2.09BEAK®S20M2-GAAK® (S]1#M2¢G28M ] ) =W239S2eM3) /(S128M3)
W33=(ALB+HEBK=-(ALA*BEAK)®*CSFE2+W139SN2FE) /SNFE2
E1=ALB-BERK=ALA*REAK
E2=ALACBEAK® (2,0#S5]1922-]1,0)+2,0*GAAK®S]*S2~-A C-BECK

GENER191
GENER192
GENER19)
GENER194
GENER19S
GENER196
GENER197
GENER198
GENER199
GENERZ200
GENERZ201
GENERZ202
GENERZ203
GENER204
GENER20S
GENERZ206
GENER207
GENER208
GENER209
GENER210
GENERZ211
GENER212
GENER213
GENER216
GENER21S
GENER216
GENER217
GENER218
GENER219
GENER220
GENER221
GENER222
GENERZ223
GENERZ224
GENERZ225
GENER226
GENER227
GENERZ228
GENERZ229
GENER230
GENER231
GENERZ232
GENER233
GENER236
GENERZ23S
GENERZ236
GENERZ237
GENERZ238
GENERZ239
GENER240
GENERZ241
GENER242
GENER243

E32ALA®(],0-M39%2) +REAK® (M1 #82-M2082) +2,0*BAAXOM] ®*M2+2,0°W2I*M29MIGENER24G

Ee2.0°W]l3oMl@eM3eWI3OMIea2-AL C+BECK

88=E1/GARK

88P=GAAK/GABK

CC=E2/GACK

CCP=(GAAK® (2,0%S]®®2-],0)-2.0*BEAK*S]1#S2) /8ACK
PP=BEBK®*RB/SNFE

PPP= (BEBK*BBP~-BEAK®CSFE) /SNFE

Q0=~ (BECK®*CCePP®S22M3) /7 (S1%M])

GENER24S
GENER246
GENERZ247
GENER24A
GENER249
GENER2S0
GENER2S1
GENER2S2

QAP=(=BECK®CCP*2,°GAAK®S2#M2+BEAK® (S19M2+S2%M] ) -PPP®S20\43) /(S1*M3) GENER2S3

RR=(E1+QQ®SN2FE) /SNFE2

RRP=GAAK+ (2.0*0QP*CSFE/SNFE)

Fl = «E3-E£2-RR®M3ea2-2,02PPeM2eM3-2,02QA M1 *M]

F2 = GAAK® (M]#02¢5)0082-M2082-G2002)=2,0*BEAK® (M]1®M2+S5]#52) ¢
F RRP®M3e#2¢2 0*PPP*M20M3¢2,0%QQP*M] *M3

DELA=F1/fF2

GENERZ2SG
GENER2S5S
GEMER2S6
GENER2S7
GENERZ2SH
GENER2S9
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DELB=BR+RBP*NELA GENER260
DELC=CC+CCP*DELA GENER261
XXA = ABS (DELA) GENER262
IF(JFLAG) 1141144119 GENER263
1146 IF(XXA=CONV) 119,119,115 GENER264
11S IF(CROSS) 119,119,200 GENER26S
119 JFLAG=JFLAG*] GENER266
IF (JFLAG=NTRIES) 12041204195 GENER267
120 XxB = ABS (DELB) GENER268
XXC = ABS(DELC) GENER269
XX = AMAX] (XXAo¢XXBoXXC) GENER270
IF (XX=ACCUR) 130,130,123 GENER271
123 IF(XXA=ABSTEP) 12541254124 GENER272
126 DELA = SIGN(ABSTEPDELA) GENERZ273
125 IF(XXB=-ABSTEP) 127+127,126 GENER274
126 DELB = SIGN(ABSTEP.DELB) GENER27S
127 IF(XXC=ABSTEP) 110+110.128 GENER276
128 DELC = SIGN(ABSTEPsDELC) GENER277
GO0 70 110 GENER278
130 ANGDEG(1) = ANGA®TODEG2 GENER279
ANGDEG(2) = ANGB®TODEG2 GENER280
ANGDEG(3) = ANGC®TODEG2 GENER2A1

CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS MASNITUDE IS LESS THAN 90 GENER282
DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION. GENER283

DO 140 K=1,3 GENER28&

136 X2 = ARS (ANGDEG(K))=-90,0 GENER28S
IF(XZ) 14001404137 GENER286

137 ANGDEG(K) = ANGDEG(K)=SIGN(180.0+ANGDEG(K)) GENER287
GO TO 136 GENER288

140 CONTINUE GENER28R9
NSOL=NSOL »1 GENER290
PRINT 607 GENER291
PRINT 60R,NSOL » ANGDEG GENER292
PRINT 609 GENER293
PRINT 601 +ALABEAK9GAAK¢ALBBEBK yGABKoALC+BECK»BACK GENER294
CALL DISPLAY(4) GENER29S

GO TO 200 GENER296
eesee FORBIDDEN ZONE eee IF LAST STEP WAS IN ALLOWED ZONE AND A GENER297
CROSSOVER SEARCH WAS NOT PERFORMEDs THEN CHECK FOR CROSSOVER POINT GENER29R
AFTER RESETTING THE PREVIOUS VALUES OF ZTA+CSZTA»CSZTB+CSZTC. GENER299
190 INDEX=0 GENER300
KLL=0 GENER301

IF (KLLSV) 192.200 GENER302

192 IF(KSCHSV) 200+193 GENERJ03
193 ZTA=ZTA=-STEP GENER304
CSZTA=COS(2TA) GENER30S
SNZTA = SIN(2TA) GENER3J06
CSZTB= (2L MDAASCSZTA*ALB=ALA) /ZLMDAB GENER307
CSZTCa(ZLMDAA® ((2.2S198S51=1,)*CSZTA*2.2S519820GNZTA)+ALA=ALC)/ZLMDACGENER308

GO TO 100 GENER309
eeeses NO CROSSOVER HAS BEEN FOUND. IF CRNSS IS LESS THAN 0.0, ERROR GENER310
195 IF (CROSS) 19741974200 GENER311
197 CROSS=+1,0 GENER3J12
PRINT T0O0WNTRIES+ELeE2+EI¢ANGA+ANGB ¢ ANGC GENER313

200 CONTINUE GENER314
201 CONTINUE GENER31S
PRINT 610 GENERJ16
RETURN GENER317

999 PRINT 1999+ IREGs IENDsRENORMoNNL sNN2oNN3+SS195S52¢SS3eMM]yMM29MM3s GENER3]S8
PXMINeXMAXsCMINyCMAXsSTEP ¢ ZLMDAA»ZLMDAB+ZLMDAC»OPLUSADPLUSBOPLUSCGENER319

RETURN GENER320
END GENER321
SUBROUTINE DISPLAY(INDEX) oIsPL 1
DIMENSION W(3+3)9sR(3+3)eRA(3+¢I)+EIG(I) oIsSPL 2
COMMON/W/W114W22eW33eW12sW23eW13 oIsPL 3
DATA TORAD/S7.295779S1/ DISPL &
100 FORMAT(20Xe16HTHE W TENSOR ISts2Xe3(E16e9¢1X)0//938Xe3(E16.9¢1X)e DISPL S
A//7+38Xe3(E16.941X) /) DISPL 6
101 FORMAT(13Xe 117THEACH OF THE PRINCIPAL VALUES (WHICH ARE THE SAQUAREDISPL 7

S
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B ROOTS OF THE EIGENVALUES) HAS A PRINCIPAL AXIS ASSOCIATED WITH 1ITOISPL
Ces /9 13X9118HTHE DIRECTIONS OF EACH PRINCIPAL AXIS ARE GIVEN BY TDISPL
DHE PROJECTIONS OF THIS AXIS (I.E., OIRECTION COSINES) ON THE 3 AXESDISPL
Ee /9 13X9110HOF THE ORIGINAL CNORDINATE SYSTEMs AND THE ANGLE BETWDISPL
FEEN THIS PRINCIPAL AXIS AND THE 3 COORDINATE SYSTEM AXES.e /) DISPL

102 FORMAT( 69X+2SHDIRECTION COSINES BETWEENs BXe27HANGLES (IN DEGREESDISPL

G) BETWEEN, /9 SO6Xe9HPRINCIPAL 94Xs22HTHE PRINCIPAL AXIS ANDellXs DISPL
H22HTHE PRINCIPAL AXIS ANDs/+S6X9s6HVALUES+BXeHAHAXIS 1+4X9s6HAXIS 29 DISPL

TOXo6HAXIS 39 7Xe6HAXIS 1¢SXe6HAXIS 29SXe6HAXIS 3 )

DISPL

103 FORMAT (3(/¢28X922HPRINCIPAL AXIS NUMBER o11+2H 34F13.9¢2X¢FB8.6+2X+DISPL

JFB6e2XoFB.646H ®  oFBeleIXeFB.493XsFBelos/) /) DISPL
Wilel) = will DISPL
W(le2) = wl2 DISPL
W(le3) = w13 DISPL
W(2+1) = wl2 DISPL
W(2e2) = Y22 DISPL
W(2¢3) = y23 DISPL
W(3el) = w13 DISPL
W(3es2) = w23 DISPL
W(3e3) = w33 DISPL
IF CINDEX=3) 1+2+1 DISPL

1 PRINT 1000 ((W(TsJ)eUmle3)eIm],]) DISPL
eesee DIAG]l RETURNS THE EIGENVECTORS IN THE COLUMNS OF R oee DISPL
2 CALL DIAG1(39191,0E=8+WeRIEIG) DISPL
00 3 I=1.3 OISPL

3 EIG(I) = SQRT(EIG(IN) DISPL
00 10 I=1,3 DISPL

00 10 U=1,3 DISPL

XX = R(IoJ) DISPL

YY s ABS (XX) DISPL
IF(YY=1.0) 10+10,8 DISPL

8 XX = SIGN(1409XX) DISPL

10 RA(I+J) = ACOS(XX)®*TORAD DISPL
PRINT 101 DISPL

PRINT 102 DISPL

eeseeTHE EIGENVECTORS ARE PRINTED OUT IN ROWS .. OISPL
PRINT 1039 ((I+EIGI(IN o (R(JoI)oU=103)9(RA(IsI)eJm]193))eI=],s3) DISPL

RETURN DISPL

ENO DISPL
SUBROUTINE DIAGLl(NSIZE.IFLAGsERRORsAIRIEIS) DIAG
DIMENSION A(343)eR(343)eTT(343)+EIG(3) DIAG
INPUTE NSIZEJIFLAGsERRORCA(NZINZ), QUTPUTSE RINZWNZ)+EIBINZ), DIAG
NEED ONLY THE TOP HALF AND OIAGONAL OF MATRIX A(NSIZENSIZE),. DIAG
DIAGl DIAGONALIZES REAL SYMMETRIC MATRICES WHNSE DIMENSIONS ARE LESS DOIAG
THAN OR EQUAL TO THOSE IN THE DIMENSION STATEMEMT. IT DOES NOT DESTROYDIAG
INPUT, IT USES THE JUACOBI METHND WITH A 4=SQUARE ROOT METHOD FOR DIAG
EVALUATING COS AND SINe A SINGLE=-PRECISION SQUARE RNOT IS USEDN. DIAG
SEARCHES FOR ABRSOLUTE VALUES LESS THAN RHN WHICH IS PROGRESSIVELY DIAG
REDUCED. IF IT IS TOLD TO DOUBLE-CHECK THE ANSWERs IT DOES SO 8Y DIAG
SEEING IF THE ABSOLUTE VALUE OF ANY OFF-DIAGONAL ELEMENT IS BREATER DIAG
THAN ERROR. IF SO+ DIAG] CONTINUES THE JACO®I PROCESS. DIAG
NSIZEs THE SIZE OF THE MATRIX WHICH MUST BE .LE. NZs WHERE NZ IS THE DIAG
DIMENSION USED IN A(NZoNZ) +sRINZeNZ) e TT(NZINZ)+EIG(NZ) . DIAG
IFLAG=(0sl)e (NOSYES) THE DIAGONALIZATION SHOULD RE DOUBLE-CHECKED. DIAG
ERRORe THE LARGEST ALLOWED ARSOULUTE VALUE OF AN OFF-DIAGONAL ELEMENTODIAG
IN THE MATRIX FORMED BY MULTIPLYING RAR(-1). . DIAG
A(NZ+NZ)e THE INPUT MATRIX CONTAIMNING A(NSIZEWNSIZE) WHICH IS THE DIAG
REAL SYMMETRIC MATRIX TO BE OIAGONALIZED. DIAG
R(NZ+N2) CONTAINS R(NSIZENSIZE) WHICH IS THE OUTPUT UNITARY MATRIX DIAG
WITH THE EIGENVECTORS IN THE ROWS. DIAG
EIG(NZ) CONTAINS EIG(NSIZE) WHICH IS THE OUTPUT EIGENVALUES. DIAG
EIGENVALUE IN EIG HAS ITS EIGENVECTOR IN THE NTH ROW OF R, DIAG
MATRIX TY ONLY NEENED IF THE DIAGONALIZATION IS TO BE DOURLE-CHECKED, DIAG
eeooe DIMENSINNIZE AsReTT AS (NZwNZ) AND EIG AS (NZ) WHERE NZ.BKE.NSIZE DIAG
BIG=ABS(A(1+2)) $ NSZ1=NSIZE-1 $ ERRI=0.8%ERROR DIAG
DO 10 JU=1«NSIZE DIAG
IBEG=Je]l 8 R(JeJ)=21,0 € EIG(I)=A(J0J) DIAG
IF(J=NSIZF) S.12412 DIAG
S DO 10 I=IBEGWNSIZE DIAG

]‘m L4 2
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C TAKE THE UPPER-MALF ELEMENTS AND PUT THEM IN THE LOWER HWALF. THE LOWERDIAG

C HALF IS DESTROYED B8Y BEING DIAGONALIZED. SET UP R AS A UNIT MATRIX
ATMEA(JsI) $ A(loJ)=ATM S R(I19J)=0.0 $ R(JeI)*0,0
BIG=AMAX) (BIGsABS(A(JeI)))

10 CONTINUE

12 IF(BI6=ERROR) 13414916
13 RETURN

14 RHO = BIG

1S RHO = 0.1°RMHO

20 IND = 0

C SEARCH FOR THE ELEMENTS GREATER THAN RHO
D0 300 IPs=]1yNS21
IBEG=IPe])

DO 300 1Q=IBEGINSIZE
XX = A(IQ.IP)
YY = ABS(XX)
IF(YY=RHO) 300¢40¢40
C CALCULATE CX AND SX BY THE ALGEBRAIC 4=-SQUARE ROOT METHOD
40 APQ = XX
U= 0,S5*(EIG(IP)=-EIG(IQ))
W = <APQ/SQRT (APQ®®2.yse2)
IF(U) 41442042
Al W s -y
42 SX = W/ (SQRT(2.0%(1,0°SQRT(]1,0=-W®®2))))
CX = SORT(1.0-SXee2)
L=0
90 L=Lel
IF (L=NSIZE) 92+92+200
92 IF(L=10) 94490494
96 IF(L-1IP) 100,904110
100 T1=A(IPsL) $ GO TO 120
110 Ti=A(LeIP)
120 IF(L-10) 130,140,140
130 T2=A(1QeL) $ A(IQeL)=T1I®SXeT24CX $ GO TO 150
140 T2=A(L+IQ) $ A(LeIQ)ST1O®SXeT28CX
150 IF(L=-IP) 160,1R0,180
160 A(IPoL)=T18CXx~-T2%SX $ GO TO 90
180 A(L+sIP)=T1®Cx=~T29SX"$ GO TO 90
200 APP=EIG(IP) $ AQQ=EIG(IQ) S A(IQ.IP)=0,0
EIGUIP)=APPOCX2CX*AQQ*SX*SX=2,0%APQ®*SX*CX
EIG(IQ)=APP®*SX®SX+AQQ®*CX®CX*2,0*APQ®*SX*CX
D0 250 I=1¢NSIZE
T1aR(IeIP) S T2=R(I,1Q)
R(I+sIP)mT)®CxX=-T2#SX
250 R(IsIQ)=T]®8SXT28CX
IND=INDe 1]
300 CONTINUE
IF(IND) 305¢305+20
305 IF (RHO=-ERR]1) 307.307+1S
C IF FLAG=1 DOUBLE-CHECK BY MULTIPLYING RAR(-1)
307 IF(IFLAG-1) 308+309.308
308 RETURN
309 DO 330 I=1eNSIZE $ DO 330 U=]yNSIZE
T0T=0.0
DO 320 L=1sNSIZE
IF(L=1) 310+315¢315
310 EL=A(LsI) $ GO TO 320
315 EL=A(I.L)
320 TOT=TOT*EL®*R(LJ)
330 TT(leU)=TOT
DO 350 I=1eNSIZE $ DO 350 J=1,NSIZE
VALUE=0.0
DO 340 L=1sNSIZE
340 VALUE=VALUVE*R(LeII®TT(LJ)
IF(I.EQ.J) 3454349
345 EIG(I)=VALUE $ GO TO 350
349 IF (ABS(VALUE) «GT.ERROR) GO T0O 355
350 CONTINUE
RETURN
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IF OFF=DIAGONAL ELEMENTS ARE TOO LARGEe CALCULATE A AND CONTINUE
35S DO 370 J=1eNSIZE $ DO 370 Is=JeNSIZE
T0T=0.0
00 360 L=1sNSI1ZE
360 TOT=TOTeR(LsyI)®TT (L)
IF(I=J) 364+362¢364
362 EIG(J)=TOT 8 GO TO 370
364 A(lsJ)=TOTY
370 CONTINUE

ERR]l = 0,S®ERR]
GO0 7O 20
END

SUBROUTINE PARAM(INDEXsGsRsFE9SIoN1oN2+NIsKSTART+S1052¢53+ARG)
REAL G(3)eR(393)¢GG(2) ¢ THETA(2)9N(3)eS(3)eN19N2sN3+ABBI(9)
THIS SUBROUTINE CALCULATES THE ALPHABETA,GAMMA PARAMETERS FOR THREE
ROTATIONS OF A G-TENSOR.

DIAG
DIAG
DIAG
DIAG
DIAG
DIAG
DIAG
DIAG
DIAG
DIAG
DIAG
DIAG
PARAM
PARAM
PARAM
PARAM

IT DOES THIS FOR THE COPLANARsMONOCLINIC+sORTHORHOMBICsAND GENERAL CASEPARAM

INPUTS INDEX+G(3)sR(3¢3)

OPTIONAL INPUTS FE+SIsNL1eN2sNIsKSTARTeS1+S2+S3

OUTPUTS ABG(9) WHICH CONTAINS 9 VALUES IN THE FOLLOWING ORDERS ALA,
BEAsGAAIALBIBEBeGABIALC+BECHGAC

ALAJALBIALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A+B.C.

BEABEBBEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES AeB.C.

GAA+GAB+GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A+B.C.

INDEX=(192¢304) FOR THE (COPLANARIMONOCLINICeORTHORHOMBICoBENERAL)
CASES RESPECTIVELY.

G(3) CONTAINS THE 3 PRINCIPLE G-VALUES.

R(3+3) CONTAINS THE 3 EIGENVECTORS IN ROWSe IT IS THE UNITARY MATRIX
IN R(=1)*G(DIAGONAL)®*R = w,

FE IS THE ANGLE PHI(IN RADIANS) ABOUT AXIS 3 WHICH DETERMINES THE
DIRECTION OF THE 2ND ROTATION(AXIS B) IN THE COPLANARIMONOCLINIC,
AND GENERAL CASES,

SI IS THE ANGLE PSI(IN RADIANS) ABOUT AXIS 3 WHICH DETERMINES THE
DIRECTION OF THE 3RD ROTATION (AXIS C) IN THE COPLANAR CASE.

PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM

N1eN2eN3 ARE THE 3 COMPONENTS OF A VECTOR SPECIFYING THE DIRECTINN OF PARAM
THE 3RD AXIS OF ROTATION(AXIS C) FOR THE GENERAL CASE. THIS VECTORPARAM

NEEO NOT BE OF UNIT LENGTH,

S1l9S2+¢S3 ARE THE 3 COMPONENTS OF A VECTOR SPECIFYING THE STARTING
OIRECTION (WHEN THETA=ZERO OEGREES) FOR THE 3RD AXIS OF ROTATION
(AXIS C) FOR THE GENERAL CASE.

THESE VALUES NEED NOT RE SPECIFIED.

KSTART = (1¢0) WHENOFOR THE GENERAL CASEs S1¢S2+S3 (AREARE NOT)
SPECIFIEN,

N(3) IS A UNIT VECTOR ABOUT WHICH THE MAGNETIC FIELD IS ROTATED.

S(3) IS A UNIT VECTOR THAT INDICATES THE STARTIMNG DIRECTION (WHEN
THETA=ZERO DFGREES).

M(3) IS A UNIT VECTOR INDICATING THE MIDNDLE DIRECTION (WHEN THETA =
90 DEGREES) .

GG(2) AND THETA(2) ARE NOT USED BUT ARE NEEDED AS F.P.S IN ALBEGA.
ABG(9) CONTAIMS THE 9 ALPHAWRFTA,GAMMA PARAMETERS IN THE ORDER?S
ALA'BEA+GAAALRIBEB'GABsALCsHBECsGAC

eseoe SUBROUTINE REQUIRES THE SUBROUTINE ALREGA cceccccccsce

999 FORMAT(//¢17TH ERROR IN PARAMS 421649 (3Xe6E1S.84/))

ICHECK = (INDEX=1)®(4~INDEX)

IF (LICHECK) 1994545
S IADD = 1

KEY = ]

JZGO = 2 (INDEX-1)

N(1) = 0,0

N(2) = 0,0

N(3) = 1.0

Stl) = 1.0

S(2) = 0.0

S(3) = 0.0

G0 TO 100
eeese COPLANAR CASE se0ee
11 SNFE = SIN(FE)

CSFE = COS(FF)

SNSI = SIN(SI)
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PARAM
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PARAM
PARAM
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104
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CSSI = COS(SI)
N(l) = SNFE
N(2) = 0,0
N(3) = CSFE
S(1) = CSFE
S(2) = 0,0
S(3) = =SNFE
GO TO 100

12 N(1) = SNSI
N(2) = 0,0
N(3) = CsSI
S(1) = CssI
S(2) = 0,0
S(3) = =SNSI
GO TO 100

eseee MONOCLINIC CASE cocoe
21 SNFE = SIN(FE)

CSFE = COS(FE)
N(1) = SNFE
N(2) = 0,0
N(3) = CSFE
S(1) = CSFE
S$(2) = 0,0
S(3) = =SNFE
GO 7O 100

22 N(1) = 0,0
N(2) = 1,0
N(3) = 0,0
S(1) = 0,0
S(2) = 0,0
S(3) = 1,0
GO T0 100

eecese ORTHORHOMBIC CASE cecee

31 N(1) = 1,0
N(2) = 0,0
N(3) = 0,0
S(1) = 0,0
S(2) = 1,0
S(3) = 0,0
GO 7O 100

32 N(1) = 0,0
N(2) = 1,0
N(3) = 0,0
S(1) = 0,0
S(2) = 0,0
S(3) = 1,0
GO 70 100

esoee GENERAL CASE ocecee
41 SNFE = SIN(FE)

CSFE = COS(FE)
N(1) = SNFE
N(2) = 0,0
N(3) = CSFE
S(1) = CSFE
S(2) = 0,0
S(3) = =SNFE
GO TO 100

42 RN = SQRT(N1e®2eN20®e2eN]es2)
IF(RN) 1994199443
43 N(1) = N1/RN
N(2) = N2/RN
N(3) = N3/RN
IF (KSTART=1) 44+¢50+40
44 DN = SQRT(N(1)e®2+N(2)@a2)
IF (DN) 1994199445
45 S(1) = N(2)/DN
S(2) = =N(1)/0N
S(3) = 0.0
G0 TO 100

PARAM S8
PARAM S9
PARAM 60
PARAM 61
PARAM 62
PARAM 63
PARAM 64
PARAM 6S
PARAM 66
PARAM 67
PARAM 68
PARAM 69
PARAM 70
PARAM 71
PARAM T2
PARAM 73
PARAM 74
PARAM 7S
PARAM 76
PARAM 77
PARAM 78
PARAM 79
PARAM RO
PARAM A1
PARAM 82
PARAM 83
PARAM 84
PARAM B85S
PARAM 86
PARAM 87
PARAM 88
PARAM 89
PARAM 90
PARAM 9]
PARAM 92
PARAM 93
PARAM 94
PARAM 95
PARAM 96
PARAM 97
PARAM 98
PARAM 99
PARAM1INO
PARAMIN]
PARANM]02
PARAMIO3]
PARAM] 04
PARAM]0NS
PARAM106
PARAM]O7
PARAM108
PARAM] 09
PARAMI10
PARAMI 1
PARAM] )2
PARAMI 1]
PARAM] 14
PARAM]1S
PARAM] 16
PARAM117
PARAM]18
PARAM119
PARAM120
PARAM] 21
PARAM] 22
PARAM]23
PARAM]24
PARAM]2S
PARAM126
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S0 RN=SQRT(S1#S1+S29S52+S3S3)
IF(RN) 199+199,5S
S§S S(1) = S1/RN
S(2) = S2/RN
S(3) = S3/RN
100 CALL ALBEGA(GeRINeSsALIBE+GA+GGITHETA)
ABG(KEY) = AL
ABG(KEYel) = BE
ABG(KEYe*2) = GA
IF(IADD=3) 102+1049104
102 KEY = KEY+3
IADD = IADD-1
JZGO = JZ2GOe1
GO TO (11612+21022+31+32941442) J2GO
106 RETURN
199 PRINT 999, INDEXsKSTARTsNL1eN2e¢N39S10S5S2¢S3eFE+SIsRNIDNsN9sSeBeR+GGoe
PTHETAABG
ENO
SUBROUTINE ALBEGA(GeRsNesSeALBE+GA+sGGeTHETA)
REAL G(3)eR(F93)eNI(3)eS(I)eM(3)9sGG(2) ¢ THETA(2) oW (393)
DATA TORAD/.0174532925199/
THIS SUBROUTINE CALCULATES THE ALPHACBETA,GAMMA PARAMETERS FOR A
SPECIFIC ROTATION OF A G=TENSOR ABOUT AN ARBITRARY AXIS.
G(3) CONTAINS THE 3 PRINCIPLE G-VALUES.
INPUTS GeReNsS OUTPUT?: AL BE+GA+GGeTHETA
R(393) CONTAINS THE 3 EIGENVECTORS IN ROWSe. IT IS THE UNITARY MATRIX
IN R(=]1)*G(DIAGONAL)®*R = W,
S(3) IS A UNIT VECTOR THAT INDICATES THE STARTING DIRECTION (WHEN
THETA=ZERO DEGREES) .
M(3) IS A UNIT VECTOR INDICATING THE MIDOLE DIRECTION (WHEN THETA =
90 DEGREES) .
GG(2) CONTAINS RESPECTIVELY THE MAXIMUM AND MINIMUM VALUES OF 6.
THETA(2) CONTAINS THE ANGLES (IN NDEGREES) WHICH CORRESPOND T0O THE
VALUES IN GG(2) RESPECTIVELY.

THEIR VALUES OF THE 1ST CALCULATION. IF THE FRACTIONAL CHANGE OF ANY
OF THE 3 PARAMETERS IS GREATER THAN 1.0E-9, IT WILL PRINT EVERYTHING,
199 FORMAT (174 ERROR IN ALREGASs /o (2X96E1S5.94/))
M(1) = N(2)®S(J)=-N(3)eS(2)
M(2) = N(3)*S(1)=-N(1)®S(])
M(3) = N(1)®S5(2)=-N(2)®S(])
00 10 I=1,3
00 10 JU=1,3
W(lesJ) = 0.0
D0 10 K=1,3
10 W(leJ) = W(leJ)*(G(K)®®82)OR(Ko])®R(KeJ)
AL = 0.0
B8E = 0.0
GA = 0,0
DO 20 I=1,3
00 20 J=1,3
AL = AL*0.S®(W(TeJ)®(S(I)OS(J)eM(T)I®M(U)))
BE = RE*0.S®(W(leU)®(S(I)OS(I)=M(])®M(J)))
GA = GAew(IeJ)eS(I)®M(D)
20 CONTINUE
IF(BE) 30425
25 IF(GA) 99,28
C IF BE=0.0 AND GA=0.0+ THEN GG(1)=GG(2)=AL AND THETA=ANYTHING
28 GG(1) = AL
GG(2) = AL
THE = 0.0
GO TO 40
30 THE=0.S®*ATAN(GA/BE)
35S CS = COS(2.0°THE)
SN = SIN(2.,0*THE)
ADD = BE®CSe*GA®SN
GG(1) = SQRT(AL*ADD)

OO OOOOOHOHOOHOHOHNNHO

PARAM]27
PARAM]28
PARAM] 29
PARAM] 30
PARAM] 31
PARAM] 32
PARAM] 33
PARAM] 34
PARAM] IS
PARAM] 36
PARAM137
PARAM] 38
PARAM] 39
PARAM]14O
PARAMIGI]
PARAM] G2
PARAM143
PARAM] 44
ALSBEG
ALBEG
ALBEG
ALBEG
ALBEG
ALBEG
ALBEG
ALBEG
ALBEG
ALBEG 10
ALBEG 11
ALBEG 12
ALBEG 13
ALBEG 14
ALBEG 1S
ALBEG 16

VDN NSH WN =

AL9BE+GA ARF THE ALPHABETA+GAMMA VALUES CALCULATED FOR THIS ROTATTIONALREG 17
THEY ARE THEN USED TO CALCILATE GMAX+GMIN AND THE CORRESPONDIMG ANGLESALBEG 18
WITH THESE VALUESs ALPHA+BETAsGAMMA ARE RECALCULATED AND CNMYPARED WITHALBEG 19

ALBEG 20
ALBEG 21
ALBEG 22
ALBEG 23
ALBEG 24
ALBEG 2S
ALBEG 26
ALBEG 27
ALBEG 28
ALBEG 29
ALBEG 30
ALBEG 31
ALBEG 32
ALBEG 33
ALBEG 34
ALBEG 35
ALBEG 36
ALBEG 37
ALBEG 38
ALBEG 39
ALBEG 40
ALBEG 41
ALBEG 42
ALBEG 43
ALBEG 44
ALBEG 45
ALBEG 46
ALBEG 47
ALBEG 48
ALBEG 49
ALBEG S0
ALBEG SI1
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k1

40

42
43

99

GG(2) = SQRT(AL=-ADD)

ALl = 0.S5%(GG(1)*82+GG(2)#e2)
WIK = GO(])%e2-GG(2)e#82

BE1 = 0.S*WIK*CS

GAl = 0.SewWIK®SN

EAL = ABS((AL=-AL1)/AL)

EBE = ABS((BE-BE1)/BE)
EGA=0,0

IF(GA) 37,38

EGA=( (GA=GAl/GA))
EE=AMAX] (EALEBELIEGA)
IF(EE=1.0E=9) 40:40499
THETA(1) = THE®TORAD
THETA(2) = THETA(1)+90,.0
XX = GG(1)=GG(2)
IF(XX) 43442442

RETURN

T = GO(])

GG(1l) = GG(2)

GG(2) = 7

T = THETA(])

THETA(1) = THETA(2)
THETA(2) = T

RETURN

PRINT 1999GoRoNeSsALIBEsGAsGGy THETA9AL1+BE1,GAlL

RETURN
END

l64

ALBEG
ALBEG
ALBEG
ALBEG
ALBEG
ALBEG
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