PART I
AN ELECTRON SPIN RESONANCE STUDY
OF RADICALS IN IRRADIATED SINGLE
CRYSTALS OF MANDELIC ACID

PART II A GENERALIZATION OF METHODS FOR DETERMINING g TENSORS

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
WILLIAM GEORGE WALLER
1973

LIBRARY
Michigan State
University

ABSTRACT

PART I

AN ELECTRON SPIN RESONANCE STUDY OF RADICALS
IN IRRADIATED SINGLE CRYSTALS
OF MANDELIC ACID

PART II

A GENERALIZATION OF METHODS FOR DETERMINING q TENSORS

By

William George Waller

In Part I, the electron spin resonance spectra of irradiated single crystals of mandelic acid, $C_6H_6CHOHCOOH$, have been studied. Two radicals, α -hydroxybenzyl (C_6H_5CHOH) and cyclohexadienyl-glycolic acid ($C_6H_6CHOHCOOH$), were identified and the ESR parameters determined for each.

The α -hydrogen hyperfine splitting tensor of the α -hydroxybenzyl radical is nearly isotropic with principal values (-15.0,-15.3,-18.3) gauss and the g tensor is nearly isotropic with principal values (2.0022,2.0033,2.0039). The ESR data are those expected for a planar π -electron radical and molecular orbital calculations (INDO method) confirm this and provide detailed geometry. The benzene rings appear to have reoriented upon irradiation.

The cyclohexadienyl-glycolic acid radical shows a large hyperfine splitting by the methylene protons; the tensor is nearly axially symmetric and quite anisotropic, with principal values (-28.5,-52.5,-57.3) gauss.

In Part II, a generalization of the usual methods for obtaining the principal values, and directions of the principal axes, of the g tensor from single-crystal ESR data has been derived. The formalism of Part II converts the inherent overspecification of tensor elements into a determination of three rotational misalignments, and so improves the accuracy of the g-tensor parameters. The procedures developed have been applied to the determination of g tensors from rotations about orthogonal axes, monoclinic axes, coplanar axes, or general axes. The coplanar and general cases should prove useful in determining g tensors for needle-shaped crystals and for crystals with inconvenient face development. The equations have been cast in a convenient form for computer programming and a program has been written.

PART I

AN ELECTRON SPIN RESONANCE STUDY OF RADICALS IN IRRADIATED SINGLE CRYSTALS OF MANDELIC ACID

Part II

A GENERALIZATION OF METHODS FOR DETERMINING g TENSORS

Ву

William George Waller

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics Program in Chemical Physics

То

My Parents

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Professor M. T. Rogers for his expert guidance and interest, and for the freedom allowed during this investigation. The author also wishes to thank Dr. S. Subramanian of the Indian Institute of Technology, Madras, India for helpful discussions and for obtaining the ENDOR spectra.

The aid of the following people is gratefully acknowledged: Mr. George Giddings for performing the y-irradiations, Dr. A. Tulinsky for use of the x-ray equipment, Dr. M. Neuman for guidance in the crystallographic interpretation, and Dr. R. Lloyd of the University of Connecticut for useful discussions.

The author would like to thank the Atomic Energy

Commission for financial support during the course of this
study.

TABLE OF CONTENTS

															Page
LIST OF	TABLES		•	•	•	•		•	•	•	•	•	•	•	vii
LIST OF	FIGURE	S.	•	•	•	•	•	•	•	•	•	•	•	•	ix
PART	I. AN	I ELE IN	IRR	ADI	ATE	ED S		LE	CRY			OF	RAI	OICA	LS
INTRODU	CTION.	•	•	•	•	•	•	•	•	•	•	•	•	•	1
HISTORI	CAL BAC	KGRC	OUND	•	•	•	•	•	•	•	•	•	•	•	3
III.	Histor ESR Li g and Pi-Ele	tera A Te	atur enso	rs	•	•	•	•	•	•	•	•	•	•	3 4 5
THEORET	ICAL .	•	•	•	•	•	•	•	•	•	•	•	•	•	8
I. II. III.		lever	sal	an	d F	(ran	ners	De	eger	nera	асу	•	•	•	8 9 13
IV. V.	Isotro	pic	Int	era	cti	on	•	•	•		•		•	•	18
VI. VII.	Spin-S	pin l Ar	Cou	pli ar	ng Mon	nent	·	•	•	•	•	•	•	•	25 26
	Nuclea Electr	ır g	Ten	sor	•	•	•	•	•	•	•	•	•	•	27 27
х.	Spin H	[ami]	lton	ian	S	•	•	•	•	•	•	•	•	•	29
		Elec												•	30
	С.		ctio	n	•	•	•	•	•	•	•	•	•	•	30
			olit	tin	g	•	•	•	•	•	•	•	• •	•	33
	D.		ig N								Qua	·	• Tho:	•	34

															Page
XI.	Dete	cmin	atior	of	ES	R F	aran	nete	rs	•	•		•	•	37
EXPERIME	ENTAL	•		•	•	•	•	•	•	•	•	•	•	•	43
ı.	Specti			•	•				•	•	•	•	•	•	43
II.	Crysta					anc			_		•	•	•	•	45
III.	ENDOR					•		•		•	•	•	•	•	46
IV.	X-ray							•		•	•	•	•	•	46
V.	Parame	eter	s fr	T mc	ens	or	Vari	lati	ons	•	•	•	•	•	49
RESULTS		•		•	•	•	•	•	•	•	•	•	•	•	54
I.	X-ray	Crv	stall	logr	aph	ıv.				•	•	•	•		5 4
II.	Irrad						1 .		_						54
III.	Alpha-							١.	:	•	•	•	•	•	60
	pa	, a.	2011, 2		1 -	114	Cu	•	•	•	•	•	•	•	
	Α.	Det	ermir	nati	on	of	Radi	cal					_		60
	В.		ensoi							•	_	_	_	_	61
	c.		ensoi					•	•	•	•	•	•	•	63
	D.		iable					C+1	.4.,	•	•	•	•	•	71
	υ.	var.	Table	= 16	шре	zrat	.ure	500	uy	•	•	•	•	•	, ,
IV.	Cyclol	nexa	dieny	/1-G	lyc	coli	c Ac	cid	Rac	lica	1	•	•	•	71
	Α.	Det	ermir	nati	οn	of	Radi	cal			_				71
	В.		alue							tio	'n	•	•	•	79
	c.		iable									•	•	•	80
	C.	vai.	Table	3-1E	шþе	lau	ure	Stt	luy	•	•	•	•	•	80
v.	Elect	ron	Irrad	liat	ion	at	: 77°	, K		•	•	•	•	•	80
VI.	d-Mand	deli	c Aci	id a	nd	1-N	lande	elic	: Ac	id					
			tion	•	•		•	•	•	•	•	•	•	•	81
DISCUSSI	ON .				•			•	•				•	•	83
		•							•	Ť					
I.	Alpha-								•	•	•	•	•	•	83
II.	Cyclol	nexa	dieny	/1-G	lyc	coli	c Ac	cid	Rad	lica	1	•	•	•	89
	Summa											•	•	•	91
REFERENC	CES .	•		•	•	•	•			•	•	•	•	•	92
	nine th											l to)		
Variat	TONE														0.0

																	Page
		PAR	RT :	II.		GEN TERM							OHT	S I	FOR		
INTRODU	JCT I	ON	•	•	•			•	•	•	•		•	•	•	•	107
DATA FO)R g	-TE	nso	OR I	DETI	ERMI	TAN	ION	Ι.	•	•	•	•	•	•	•	109
Exper Param	ime	nta riz	ıl at:	ion	of	the	• Da	ıta	•	•			•	•	•	•	109 109
GENERAI	TH	EOR	Υ	•	•	•	•	•	•	•	•	•	•	•	•	•	112
Nomer Gener Deter	cla al min	tur For	e mu: .on	lat: of	ion Sta	arti	.ng-	• •Ang	;le	Shi	fts	•	•	•	•	•	112 116 117
THEORY-	-DE	RIV	'TA'	ION	OF	FOR	MUI	AS	•	•	•	•	•	•	•	•	120
Preli Case Case Case Gener	of of of	Thr Thr Thr	ee	Cor Mor	plar noci thor	nar lini chom	Axe c A bic	es Axes : Ax	s.		•	•	•	•	•	•	120 123 124 125 127
DISCUSS	ION	i .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	131
Itera Exact										•			•	•	•		131 133
COLLECT	ED	FOR	UMU	LAS	•	•	•	•	•			•	•	•	•	•	135
Copla Monod Ortho Gener	lin orho	ic mbi	Cas .c (se	•	•	•	•		•	•	•	•		•	•	135 137 138 139
REFEREN	ICES		•	•	•	•	•	•				•	•	•	•	•	141
APENDIC	ES																
Appendi	.х																
Α.	Sol	uti	on:	s to	o a	Tri	.gor	ome	etri	ic E	Equa	tic	n	•	•	•	142
В.	Pro	per	tie	es d	of S	Seco	nd-	Ord	ler	Ter	sor	s	•	•		•	143
c.	C	alc	ula	atio	on d	ng c of g Orth	Te	ensc	ors	for	th:	e (lop]	lan	ar,		145

LIST OF TABLES

Table		Page
	PART I	
1.	Conditions limiting the possible reflections for dl-mandelic acid	55
2.	Values of the hyperfine splitting constants of the alpha-hydroxybenzyl radical in various solutions and in a single-crystal matrix	55
3.	The principal values and direction cosines for the g tensor and the alpha-hydrogen hyperfine splitting tensor of the alpha-hydroxybenzyl radical in dl-mandelic acid.	6 4
4.	Correlation between the individual sites and the resulting overlapped lines for the alpha-hydroxybenzyl radical	65
5.	Values of the hyperfine constants of the cyclohexadienyl-glycolic acid radical in various solutions and in a single-crystal matrix	72
6.	Correlation between the individual sites and the resulting overlapped lines for the cyclohexadienyl-glycolic acid radical	72
7.	The principal values and direction cosines for the CH2 hyperfine splitting tensor of the cyclohexadienyl-glycolic acid radical in dl-mandelic acid	73
8.	Unpaired electron spin and excess charge densities calculated for the alpha-hydroxybenzyl radical by the McLachlan method	73

Table		Page
	PART II	
1. W	coefficients and null functions with the necessary "theoretical" initial orientations	136

LIST OF FIGURES

Figure	Page
PART I	
l. Spin-polarization of the C-H bond in a π -electron radical	20
2. Orthographic projection of a crystal of dl-mandelic acid	48
3. A typical ESR spectrum at room temperature of dl-mandelic acid irradiated at 77°K	56
4. Plot of line positions for the alpha- hydroxybenzyl radical as a function of field orientation in the bc plane	57
5. Plot of line positions for the alpha- hydroxybenzyl radical as a function of field orientation in the ca plane	58
6. Plot of line positions for the alpha- hydroxybenzyl radical as a function of field orientation in the ab plane	59
7. Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical \underline{vs} . angle of rotation in the bc plane for lines A and D .	66
8. Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical vs. angle of rotation in the bc plane for lines B and C.	67
9. Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical vs. angle of rotation in the ca plane	68
10. Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical vs. angle of rotation in the ab plane	69

Figur	e	Page
11.	The wing lines of an ESR spectrum at room temperature of dl-mandelic acid irradiated at 77°K	74
12.	Plot of line positions for the cyclohexadienyl- glycolic acid radical as a function of field orientation in the ca plane	7 5
13.	The CH ₂ hyperfine splittings of the cyclohexadienyl-glycolic acid radical vs. angle of rotation in the bc plane	76
14.	The CH ₂ hyperfine splittings of the cyclohexadienyl-glycolic acid radical vs. angle of rotation in the ca plane	77
15.	The CH ₂ hyperfine splittings of the cyclohexadienyl-glycolic acid radical vs. angle of rotation in the ab plane	78
16.	The atom positions of the planar alpha- hydroxybenzyl radical as calculated by INDO .	84
17.	The relationship between the eigenvectors of the g and A tensors and the geometry of the planar alpha-hydroxybenzyl radical	85
18.	A possible scheme for the formation of the two radicals in the irradiation of dl-mandelic acid at 77°K	86
	PART II	
1	Systems of aves	115

PART I

AN ELECTRON SPIN RESONANCE STUDY OF RADICALS IN IRRADIATED SINGLE CRYSTALS OF MANDELIC ACID

INTRODUCTION

One distinctive difference between quantum mechanical and classical properties of systems is that there are sharply defined energy levels in the former as compared to a continuous range in the latter. In situations where the quantum mechanical energy levels are not too close together, a resonance technique can sometimes allow an accurate determination of energy differences between levels.

There are at least four "simple" types of resonance phenomena--nuclear, paramagnetic, ferromagnetic, and antiferromagnetic. The first is concerned with interactions of the nuclear dipoles, while the last three deal with electron dipoles. The last two phenomena deal with magnetic systems where the electron dipoles are strongly coupled by exchange forces. Paramagnetic resonance is confined to loosely-coupled systems where the paramagnetic units may be regarded as individuals.

Such loosely-coupled paramagnetic species sometimes can be formed in irradiated single crystals. The damaged molecules can become trapped and oriented in the crystal. The interaction of the odd electron with nuclei

in the damaged molecule would cause its energy levels to change and divide. These effects can be determined by electron spin resonance (ESR) spectroscopy and can be used to identify the radical and its orientation. Molecular information concerning the radical also can be deduced.

While there has been a lot of work done on ESR studies of aliphatic radicals in organic single crystals, the literature on ring compounds is small. There has been an interest in discovering the benzyl radical or a simple modification of it in single crystals. The nature of the delocalization of the unpaired electron could provide information concerning the structure of the radical. dl-Mandelic acid was chosen because it is a relatively simple ring system. On irradiation, two ring structures, the alpha-hydroxybenzyl radical and the cyclohexadienyl-glycolic acid radical, appear to be formed. The analysis of the ESR spectra of these radicals has been carried out and their geometrical and electronic structures are discussed in Part I of this thesis.

Part II of this thesis consists of a theoretical treatment of methods for determining g tensors. A generalized procedure is derived that can be applied to any symmetric second rank tensors such as the zero-field splitting and hyperfine interaction tensors \overline{D} and \overline{A} , respectively. The computer programs used for Part I and Part II are also listed in the Appendices.

HISTORICAL BACKGROUND

I. <u>History</u>

Some important dates in the history of magnetic reasonance are as follows:

- 1936--First prediction of magnetic resonance absorption by Gorter. 1
- 1938--First observation of magnetic resonance absorption in molecular beams by Rabi, Zacharias, Millman and Kusch. 2
- 1945--First observation of the electron spin resonance phenomenon in liquids by Zavoisky.
- 1946--First report of nuclear magnetic resonance by

 Purcell, Torrey and Pound⁴ and by Bloch, Hansen and

 Packard.⁵
- 1947--First ESR free radical spectrum was observed by Kozyrev and Salikhov.
- 1949--First report of ESR hyperfine structure by Penrose. 7
- 1949--First evidence of quadrupole interaction by Ingram. 8
- 1949--First ESR study of naturally occurring organic free radicals by Holden, Kittel, Merritt and Yager.

- 1951--First analysis of the hyperfine structure in the ESR spectra of paramagnetic salts by Abragam and Pryce. 10
- 1951--First ESR study of free radicals formed by radiation damage by Schneider, Day and Stein. 11
- 1956--First ESR study of oriented organic radicals in a single crystal by Uebersfeld and Erb. 12
- 1956--First ENDOR experiment by Feher. 13
- 1958--First ESR study of a triplet state by Hutchison and Mangum. 14
- 1959--First complete analysis of the ESR spectrum of an oriented organic radical in a single crystal matrix by Cole, Heller and McConnell, 15 by Ghosh and Whiffen, 16 and by Miyagawa and Gordy. 17

II. ESR Literature

There are many surveys of the ESR literature 18-31 including in particular an early review by Morton 26 of radicals in single crystals. Recent work on ESR of organic radicals is discussed in a review by Kochi and Krusic. 31 There are also frequent review articles in the Annual Reviews of Physical Chemistry 32 and in the Annual Reports of the Chemical Society. 33 Other sources of information include the proceedings of ESR symposia 34-38 and collections of ESR data. 39,40

There are also a large number of books on ESR.

Textbooks giving a complete introduction to magnetic resonance are those by Carrington and McLachlan 1 and by Wertz and Bolton. 2 ESR theory is presented in a new book by Poole and Farach. A more mathematical book with emphasis on interaction mechanisms was written by Slichter. 4 There is a comprehensive reference book by Abragam and Bleaney that does not contain many formula derivations. A textbook approach in deriving the necessary mathematics for ESR theory has been used in a work by Griffith. 6 Comprehensive books covering the experimental techniques include those by Poole 47 and by Alger. 48

III. g and A Tensors

In ESR, the most commonly measured quantities are the g and A tensors in crystals or their isotropic values in liquids, powders, or glasses. These quantities are defined by their contribution to the following spin Hamiltonian.

$$\mathcal{H} = \beta \vec{H} \cdot \vec{g} \cdot \vec{s} + \sum_{p} \vec{l}_{p} \cdot \vec{A}_{p} \cdot \vec{s}$$

where \vec{H} is the magnetic field intensity vector, and \vec{I}_p and \vec{S} are the spin angular momentum vectors of the p^{th} nucleus and the unpaired electron, respectively. Given a specific magnetic field direction, the value of the g tensor describes the Zeeman contribution to the energy of the system as a linear function of magnetic field strength. The "shape" of the tensor describes the variation of this

Zeeman energy as a function of magnetic field direction in the crystal. In a similar manner, the A_p tensor describes the hyperfine energy contribution due to the interaction of the unpaired electron with the magnetic moment of the p^{th} nucleus.

The g and Ap tensors each have three principal values associated with three orthogonal directions. These principal values can be equivalently specified by their average isotropic part and their anisotropy.

From ESR studies of a variety of oriented radicals, investigators have found patterns in the average values and anisotropies of the g and A tensors. These are useful in identifying the radical. The principal g values are related to the orbitals occupied by the free electron. The principal values of $\overline{\overline{A}}_p$ are related to the number of bonds and the geometry between the pth nucleus and the site where the electron is located.

IV. Pi-Electron Radicals

One of the common types of organic radicals, concerning which there is a great deal of theoretical and experimental literature, is the pi-electron radical. This is a paramagnetic molecule containing a number of coplanar atoms, usually carbon and hydrogen, such that the spin paramagnetism is largely distributed in atomic orbitals having a node in the molecular plane. The experimental AD tensors have been related to the interaction between

the unpaired electron and o protons ($\dot{C}-H_{\alpha}$), β protons ($\dot{C}-C-H_{\beta}$) and ^{13}C of the central carbon atom.

For the α protons, the theoretical relationship for the isotropic part of $\overline{\overline{A}}$ is $^{28},~^{49-54}$

$$a_{H_{\alpha}} = Q \rho_{\pi}$$

where Q is approximately a constant having a value of -22.5 gauss and ρ_{π} is the π -electron spin density on the carbon atom. The anisotropic part has been found in general to consist of the three principal values (+10,0,-10) gauss. The first value corresponds to the H-C bond direction, the second value to a direction perpendicular to the radical plane, and the third value to a direction perpendicular to the two previous directions. 26 , 55 , 56

The $\overline{\overline{A}}$ tensor for β protons is generally quite isotropic and has been described by the equation 57 , 58

$$a_{H_g} = B_O + B_2 \cos^2 \theta$$

where B_O is a constant with a value between 0 and 4 gauss, B_2 is about 50 gauss, and θ is the angle between the projections of the axis of the unpaired electron π orbital and the C-H $_{\beta}$ bond onto a plane perpendicular to the C-C bond. Tables of α - and β -proton splittings have been given in the Ph.D. theses of Kispert 59 and Watson. 60

THEORETICAL

I. Introduction

The theoretical development and the inherent limitations of ESR are dependent upon the approximations used to solve the nonrelativistic Schroedinger equation

$$\mathcal{H}\Psi = E\Psi.$$
 (1)

The problem is that Ψ is a function of the positions, momenta, and spin states of <u>all</u> the particles in the system. The Hamiltonian $\mathcal H$ is a quantum mechanical operator analogous to the classical mechanical formula for the total energy of the system. This is complex in that it includes all interactions between the particles. The main approximation needed to solve Equation (1) is taken from the following equation:

$$\Psi = \sum_{i=0}^{\infty} c_i \psi_i, \qquad (2)$$

where ψ_i are the functions which (as is postulated) span the space. We assume that we can pick some set of functions ϕ_i so that the infinity in the summation is replaced by a finite reasonably small number.

If Equation (2) is applied in a perturbation formalism where

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}' , \mathcal{H}_0 \phi_0^{(j)} = E_0 \phi_0^{(j)} , \qquad (3)$$

and the effect of \mathcal{H}' is small compared to that of \mathcal{H} , then the coefficients c_i of Equation (2) are of the order of $(E_0^{(k)}-E_0^{(j)})^{-n}$ for the n^{th} order perturbation where $E_0^{(k)}$ and $E_0^{(j)}$ are the exact energies in Equation (3). So if we order the functions $\phi_0^{(j)}$ according to their energies $E_0^{(j)}$, then we terminate the summation in Equation (2) when $E_0^{(j)}$ becomes "large" since that corresponding coefficient is "small." The functions ϕ_i that we choose form a manifold in the infinite dimensional ψ_i vector space.

Electron spin resonance is concerned with the interaction of an electron with other electrons, nuclei, and external magnetic fields. The number of functions needed in the manifold to describe reasonably this interaction is determined by considering the time-reversal operator and Kramers theorem.

II. Time Reversal and Kramers Degeneracy

The time-reversal operator θ can be defined by its effect on wave functions $\psi_{\bf i}$ in

$$\frac{\partial (\theta \psi_{\mathbf{i}}(t))}{\partial t} = -\frac{\partial \psi_{\mathbf{i}}(t)}{\partial t}.$$

Thus θ would have the effect of reversing every momentum while not affecting the positions of the particles. We, therefore, can define θ by its effect on operators: ⁶¹

$$\theta x \theta^{-1} = x ; \theta p_x \theta^{-1} = -p_x . \tag{4}$$

We can apply this similarity transformation to the quantum mechanical operators that correspond to the following classical quantities: ⁶²

$$\vec{L} = \int \vec{mr} \vec{x} \vec{v} \ d\tau \ , \qquad \qquad \vec{\mu} = \frac{1}{2c} \int \vec{r} \vec{x} \vec{J} (\vec{r}') \ d\tau \ ,$$

$$\vec{H} (\vec{r}) = \frac{1}{c} \nabla x \int \left| \frac{\vec{J} (\vec{r}')}{\vec{r} - \vec{r}'} \right| \ d\tau \ ,$$

where \vec{L} is the angular momentum, and $\vec{\mu}$ and \vec{H} are the magnetic moment and magnetic field, respectively, of the current distribution $\vec{J}(\vec{r}')$. We can thus write in terms of operators

$$\theta \stackrel{\rightarrow}{L} \theta^{-1} = -\stackrel{\rightarrow}{L}, \quad \theta \stackrel{\rightarrow}{\mu} \theta^{-1} = -\stackrel{\rightarrow}{\mu}, \quad \theta \stackrel{\rightarrow}{H} \theta^{-1} = -\stackrel{\rightarrow}{H}, \quad \theta \stackrel{\rightarrow}{S} \theta^{-1} = -\stackrel{\rightarrow}{S}, \quad (5)$$

where the last relationship follows from the exact mathematical analogue of the postulated intrinsic spin to the angular momentum in quantum mechanics.

It can be seen then that the spin-spin and spinorbital interactions of the electrons are invariant with
respect to the time-reversal similarity transformation,
as is the kinetic energy and any time-independent potential
energy. If these are the only terms we allow in the

Hamiltonian of the isolated system of the electron, then we see that $\theta \mathcal{H} \theta^{-1} = \mathcal{H}$, and θ is a symmetry element.

Consider the following equations:

$$(i\hbar \frac{\partial}{\partial t})\psi = \mathcal{H}\psi \tag{6}$$

$$\theta (i \hbar \frac{\partial}{\partial t}) \psi = (\theta H \theta^{-1}) \theta \psi$$

$$\theta \left(i \acute{\mathbf{h}} \frac{\partial}{\partial \mathbf{t}} \right) \psi = \mathcal{H} \theta \psi . \tag{7}$$

They can be taken to mean that the isolated system evolves forwardly in time (Equation (6)) in the same way as it would appear if viewed by someone going backwards in time (Equation (7)). Continuing the <u>physical</u> reasoning, we would deduce that the transition probabilities between states is the same in the time-forward or time-backwards view of the system. This gives us the <u>mathematical</u> assumption that

$$|(\Phi, \Psi)|^2 = |(\Theta\Phi, \Theta\Psi)|^2$$

Using this equation, it is shown 63 that

$$\theta \sum_{i} a_{i} \psi_{i} = \sum_{i} a_{i}^{*} \theta \psi_{i} ; \theta^{2} = \pm 1$$
 (8)

and thus we call θ an <u>antilinear</u> operator. From Equation (4), θ has been determined for a one-electron system in the coordinate representation

$$\theta = i\sigma_{\mathbf{v}} K_0 = \zeta K_0 = K_0 \zeta$$
,

where we use the standard Pauli matrices

$$\sigma_{\mathbf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_{\mathbf{y}} = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix} \quad \sigma_{\mathbf{z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
,

and we define

$$\mathbf{E} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \zeta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \kappa_0 \psi \, \bar{=} \, \psi^* \quad ,$$

which can be used to derive

$$\theta^{-1} = -\kappa_0 \zeta = -\zeta \kappa_0 ; \quad \zeta^2 = \theta^2 = -1$$

and the formulas for the many-electron system

$$\theta = K_0 \prod_{p=1}^{n} \zeta_p ; \theta^{-1} = K_0 \prod_{p=1}^{n} (-\zeta_p) ,$$

$$\theta^2 = (+)1 \text{ if n is } (\text{even}).$$
(9)

If an isolated system has an odd number of electrons, then θ^2 =-1 from Equation (9), and it has been shown 64 that if ψ is an eigenfunction, then $\Phi=\theta\psi$ is another orthogonal eigenfunction of the same energy. The ground state of the isolated system of the electrons is then at least two-fold degenerate and this two-dimensional space is spanned by what is called the Kramers doublet.

If we now add to the Hamiltonian the interaction due to an external magnetic field $\overset{\rightarrow}{\mu} \overset{\rightarrow}{\cdot} \vec{H}_{ext}$, then $\mathcal H$ is not invariant under the θ similarity transformation because

$$\theta(\stackrel{\rightarrow}{\mu} \stackrel{\rightarrow}{\bullet} \stackrel{\rightarrow}{H}_{ext}) \theta^{-1} = (\theta \stackrel{\rightarrow}{\mu} \theta^{-1}) \cdot (\theta \stackrel{\rightarrow}{H}_{ext} \theta^{-1})$$
$$= (-\stackrel{\rightarrow}{\mu}) \cdot (\stackrel{\rightarrow}{H}_{ext} \theta \theta^{-1}) = -\stackrel{\rightarrow}{\mu} \stackrel{\rightarrow}{H}_{ext}$$

and \vec{H}_{ext} is not part of the isolated system under study. Likewise, if the nucleus has a magnetic moment, than $\vec{\mu}_{I} \cdot \vec{H}_{el}$ is not invariant because

$$(\theta \overset{\rightarrow}{\mu}_{\mathbf{I}} \theta^{-1}) \cdot (\theta \vec{H}_{\mathbf{e}1} \theta^{-1}) = (\overset{\rightarrow}{\mu}_{\mathbf{I}}) \cdot (-\vec{H}_{\mathbf{e}1}) , \qquad (10)$$

where $\vec{\mu}_I$ is the magnetic moment of the nucleus (which is not part of the system) and \vec{H}_{el} is the magnetic field produced by the electrons at the nucleus.

In ESR, these interactions are considered perturbations which lift the degeneracy of the Kramers doublet and thus we assume that the excited states of the electron system are much higher in energy than either of the external interactions.

III. g and A Tensors

The g tensor is developed by considering the matrix elements of $\dot{\mu}$. It has been shown that, since $\theta \dot{\mu} \theta^{-1} = -\dot{\mu}$ from Equation (5), the expectation values of $\mu_{\bf q}$ (q=x,y,z) in the two Kramers-conjugate states add to zero. The matrix representing $\mu_{\bf q}$ in the Kramers manifold must be Hermitian since $\mu_{\bf q}$ is a physically measurable quantity. So, in general, we can write

$$= \frac{|\psi\rangle}{\mu_{q}} = \frac{|\psi\rangle}{|\theta\psi\rangle} \begin{pmatrix} z_{q} & z_{q}^{-i}y_{q} \\ x_{q}^{+i}y_{q} & -z_{q} \end{pmatrix}$$

This can be written in terms of Pauli matrices as

$$\overline{\mu}_{q} = x_{q} \overline{\sigma}_{x} + y_{q} \overline{\sigma}_{y} + z_{q} \overline{\sigma}_{z} = \sum_{j} r_{(q)j} \overline{\sigma}_{j}$$
(11)

and we can put this in terms of a 3X3 g "matrix"

$$g_{qj} = -\frac{2}{\beta_e} r_{(q)j}$$

$$\therefore \quad \overline{\mu}_{q} = -\frac{\beta_{e}}{2} \sum_{j} g_{qj} \overline{g}_{j} .$$

The basis functions ψ and $\theta\psi$ are arbitrary in that we can choose two other states as in

$$\psi' = a\psi + b(\theta\psi)$$

$$(\theta \psi') = a*(\theta \psi) - b* \psi,$$

where we have used the relations in Equation (8). We can write that

$$\overline{\overline{D}} = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}, \overline{\overline{\mu}}_{q'} = \overline{\overline{D}} \cdot \overline{\overline{\mu}}_{q} \cdot \overline{\overline{D}}^{-1}$$

represent the similarity-transformation matrix and μ_q ' in the new basis manifold. It can be shown⁶⁵ that the change to the new matrix μ_q ' can also be represented by a proper rotation of the vector $\vec{r}_{q(j)}$ in Equation (11). This is to say

$$\overline{\overline{\mu}}_{\mathbf{q}'} = \sum_{\mathbf{j}} (\overline{R} \cdot \overrightarrow{r}_{(\mathbf{q})})_{\mathbf{j}} \overline{\overline{\sigma}}_{\mathbf{j}} = \sum_{\mathbf{j}} R_{\mathbf{j}i} r_{(\mathbf{q})i} \overline{\overline{\sigma}}_{\mathbf{j}} = -\frac{\beta_{\mathbf{e}}}{2} \sum_{\mathbf{j}} (R^{-1})_{ij} g_{\mathbf{q}i} \overline{\overline{\sigma}}_{\mathbf{j}}.$$

After changing the basis set and obtaining the new matrices $\overline{\mu}_{\bf q}$, we can also rotate the coordinate system by the rotation matrix $\overline{\overline{\bf S}}$ to give new $\overline{\overline{\mu}_{\bf q}}$ ":

$$\vec{\mu}'' = \vec{S} \cdot \vec{\mu}', \quad \mu_{\mathbf{r}}'' = \sum_{\mathbf{q}} \mathbf{s}_{\mathbf{r}\mathbf{q}} \mu_{\mathbf{q}}'$$

$$\therefore \qquad \vec{\mu}_{\mathbf{r}}'' = \sum_{\mathbf{q}} \mathbf{s}_{\mathbf{r}\mathbf{q}} \vec{\mu}_{\mathbf{q}}'$$

and

$$\overline{\overline{\mu}}_{\mathbf{r}}" = -\frac{\beta_{\mathbf{e}}}{2} \sum_{\mathbf{g} \neq \mathbf{i}} S_{\mathbf{r}\mathbf{q}} g_{\mathbf{q}\mathbf{i}} (\mathbf{R}^{-1}) \overline{\overline{g}}_{\mathbf{j}} = -\frac{\beta_{\mathbf{e}}}{2} \sum_{\mathbf{i}} g_{\mathbf{r}\mathbf{j}} \overline{\overline{g}}_{\mathbf{j}} ,$$

where

$$\bar{g}'' = \bar{S} \cdot \bar{g} \cdot \bar{R}^{-1} = \bar{S} \cdot \bar{g} \cdot \bar{R}^{T}$$
.

For the "matrix" g to be considered a second-rank (covariant) tensor, we must arbitrarily decide that for every rotation \overline{S} , we will change the Kramers basis functions so that the equivalent <u>mathematical</u> rotation \overline{R} is set equal to \overline{S} .

Now, if we consider the g^2 matrix formed by setting

$$\overline{\overline{G}} = \overline{g}^{T} \cdot \overline{g} , G_{pq} = \sum_{i} g_{pi} g_{qi}$$

$$\overline{\overline{G}}'' = \overline{g}^{T} \cdot \overline{g}'' = \overline{R} \cdot \overline{g}^{T} \cdot \overline{S}^{T} \cdot \overline{S} \cdot \overline{g} \cdot \overline{R}^{-1} = \overline{R} \cdot \overline{G} \cdot \overline{R}^{-1}.$$
(12)

Using the relationships

$$(\overline{A} \cdot \overline{B} \cdot \overline{C})^T = \overline{C}^T \cdot \overline{B}^T \cdot \overline{A}^T$$
, $\overline{R}^{-1} = \overline{R}^T$, $\overline{S}^{-1} = \overline{S}^T$.

we see that we need not put any restrictions on \overline{G} , and that it is a "true" symmetric tensor.

This tensor is useful when we consider the eigenvalues of the Zeeman Hamiltonian $\mathcal{H}^{\bullet} = -\overset{\rightarrow}{\mu} \cdot \vec{H}$:

$$\overline{\overline{\mathcal{H}}}^{\,\prime} = \frac{\frac{e}{2} \sum_{q} H_{q} (\sum_{i} q_{i} \overline{\overline{\sigma}_{i}}) = \frac{\frac{e}{2} H_{q}}{2} \sum_{q,i} \ell_{q} q_{i} \overline{\overline{\sigma}_{i}} = \sum_{i} f_{i} \overline{\overline{\sigma}_{i}} = \begin{pmatrix} f_{z} & f_{x} - ify \\ f_{x} + ify & -f_{z} \end{pmatrix},$$

where

$$H_q = \ell_q | \overrightarrow{H} |$$
, $f_i = \frac{\beta_e H}{q} \sum_q \ell_q q_{qi} (q=x,y,z)$,

and the ℓ_q are the direction cosines of the magnetic field with respect to the original coordinate system. The eigenvalues of $\vec{\mathcal{H}}$, $\vec{\xi} = \mathbf{E}\vec{\xi}$ are obtained by setting

$$\begin{vmatrix} f_z - E & f_x - ify \\ f_x + ify & -f_z - E \end{vmatrix} = 0$$

$$E = \pm \sqrt{f_x^2 + f_y^2 + f_z^2} = \pm (\sum_i f_i^2)^{1/2} =$$

$$\frac{\pm \frac{e^{H}}{2}}{\sum_{i} \left[\left(\sum_{p} \ell_{p} q_{pi} \right) \right]^{1/2} = \pm \frac{e^{H}}{2} \left(\sum_{pq} \ell_{pq} q_{qi} \right)^{1/2}.$$

Now, when G is diagonal, we have

$$E = \pm \frac{\beta_e H}{2} (\sum_{p} \ell_{pp}^2 G_{pp})^{1/2} = \pm g \frac{\beta_e H}{2}$$

so that a transition occurs when an incoming photon has the energy

$$\Delta E = hv = g\beta_e H \text{ with } g = \sqrt{\ell_x^2 g_x^2 + \ell_y^2 g_y^2 + \ell_z^2 g_z^2}$$
.

The diagonalization of $\overline{\mathbb{G}}$ by the Jacobi method⁶⁶ gives the squares of the principal components (g_x^2, g_y^2, g_z^2) and the eigenvectors give the direction cosines of the new principal axes with respect to the original coordinate system.

The other mentioned interaction, $\overset{\downarrow}{\mu_{\rm I}} \cdot \overset{\downarrow}{H}_{\rm el}$ (Equation (10)), also lifts the degeneracy of the ground state. Following the same procedure as used for the $\overset{\frown}{G}$ tensor, we can form a pseudotensor $\overset{\frown}{a}$ and a "real" tensor $\overset{\frown}{A}$ from

$$(\overline{H}_{el})_{q} = \frac{1}{2g_{n}\beta_{n}} \sum_{i} a_{qi} \overline{\sigma}_{i}$$

$$\overline{\overline{A}} = \overline{\overline{a}}^{T} \cdot \overline{\overline{a}} , A_{pq} = \sum_{i} a_{pi} a_{qi} .$$
(13)

Similarly, we may determine the energy levels of the perturbation $\mathcal{H}'=-\overset{\rightarrow}{\mu}_{\rm I}\overset{\rightarrow}{\cdot}\overset{\rightarrow}{\rm H}_{\rm el}$ to obtain

$$E_{+} = \pm \frac{|\vec{1}|A}{2} \qquad (\vec{\mu}_{I} = g_{n}\beta_{n}\vec{1} = \hbar \gamma_{n}\vec{1})$$

with

$$A = \sqrt{\ell_{x}^{2} A_{x}^{2} + \ell_{y}^{2} A_{y}^{2} + \ell_{z}^{2} A_{z}^{2}},$$

where A_x, A_y , and A_z are the principal values of \overline{A} after it is diagonalized.

The simultaneous diagonalization of the \overline{G} and \overline{A} tensors would require that the similarity transform \overline{R} in Equation (12) diagonalize \overline{A} also or, in other words, that

one choice of coordinate axes and basis states will lead to a diagonal representation of \bar{g} and \bar{a} . It has been determined that, if environmental interactions are small with respect to the energy difference between the J multiplets of the species, \bar{g} and \bar{a} can be diagonalized simultaneously. This is also true for the species with rhombic symmetry, but is not true for those with trigonal symmetry.

Now, by using the relation

$$\vec{S} = \frac{1}{2} \sigma_{x} \hat{i} + \frac{1}{2} \sigma_{y} \hat{j} + \frac{1}{2} \sigma_{z} \hat{k} ,$$

we can write two terms of a spin Hamiltonian

$$\mathcal{H} = -\beta_{e} \vec{H} \cdot \vec{g} \cdot \vec{S} + \vec{I} \cdot \vec{a} \cdot \vec{S}, \qquad (14)$$

IV. Isotropic Interaction

The second operator in Equation (14) involves the interaction of the electrons and the nuclei. The Hamiltonian for an electron in a magnetic field can be written as

$$\mathcal{H}' = \frac{1}{2m}(\vec{P} + \frac{\vec{eA}}{c})^2 + V(\vec{r}) + g_e \beta_e \vec{H} \cdot \vec{S} ,$$

where \vec{A} is the vector potential. Fermi⁶⁸ and Milford⁶⁹ have shown that the Hamiltonian has a singular part at r=0 and a nonsingular part elsewhere. A careful evaluation of \mathcal{H}' gives

$$\mathcal{H}' = \frac{g_{e}g_{N}\beta_{e}\beta_{N}\vec{1}\cdot\vec{L}}{\pi r^{3}} - g_{e}g_{N}\beta_{e}\beta_{N}\left\{\frac{\vec{1}\cdot\vec{S}}{r^{3}} - \frac{3(\vec{S}\cdot\vec{r})(\vec{1}\cdot\vec{r})}{r^{5}}\right\}'$$

$$+ \frac{8\pi}{3}g_{e}g_{N}\beta_{e}\beta_{N}\vec{1}\cdot\vec{S}\delta(\vec{r}) = \xi\vec{1}\cdot\vec{L} + \vec{1}\cdot\vec{D}\cdot\vec{S} + a_{is}\vec{1}\cdot\vec{S}$$

$$= \xi\vec{1}\cdot\vec{L} + \vec{1}\cdot\vec{A}\cdot\vec{S}, \qquad (15)$$

where $\delta(\vec{r})$ is the Dirac delta function and the prime on the second term indicates that evaluation takes place when $r \neq 0$. The second-order term $e^2A^2/2mc^2$ has been neglected since it is small under any normal experimental conditions. The third term is the Fermi contact interaction giving rise to a_{is} , the isotropic part of \overline{a} . The $\delta(\vec{r})$ operator specifies the electron density at point r=0 because the evaluation of $\langle \delta(\vec{r}) \rangle$ gives

$$\langle \delta(\vec{r}) \rangle = \int \psi \star (\vec{r}) \delta(\vec{r}) \psi(\vec{r}) d\tau = |\psi(0)|^2$$
.

The derivation of the Fermi interaction part of Equation (15) involves electromagnetic theory. It describes the energy between the nuclear magnetic moment and the magnetic field at the nucleus due to the magnetic moment of the electron. There are other interactions though, and these can give rise to non-classical results such as a negative value for a_{is}.

Consider the two structures of Figure 1, 70 where one pi electron occupies a $2p_z$ carbon orbital (which is perpendicular to the plane of three sp_2 trigonal bonds). Since the spacial interaction between the sigma and pi

bonds is zero, there would be no energy preference between (a) and (b). The <u>spin</u> interaction, however, would favor (a) and this slight polarization of the sigma bond would induce a reverse polarization of the hydrogen electron spin. Now it is <u>this</u> electron spin on the hydrogen atom which is interacting with the hydrogen \vec{I} term. Since $\vec{S}_H = -\vec{S}_C$ for configuration (b), we have a negative interaction $\vec{I} \cdot \vec{a} \cdot \vec{S}$ (where \vec{S} is the electron spin operator on the carbon atom), which is imputed to a negative value of \vec{a}_{is} . To be more exact, we can write a more complete contact Hamiltonian, which is a function of all the electrons, as

$$\mathcal{H}_{C} = \frac{8\pi}{3} g_{e} \beta_{e} g_{N} \beta_{N_{k}} \delta(\vec{r}_{k} - \vec{r}_{N}) \vec{S}_{k} \cdot \vec{I} , \qquad (16)$$

where we sum over the different electrons $k\,\text{,}$ and we can define the unpaired electron density at the nucleus $r_{N}^{}$ as

$$\rho(\vec{r}_{N}) = \int \psi * \sum_{k} 2(s_{z})_{k} \delta(\vec{r}_{k} - \vec{r}_{N}) \psi d\tau ,$$

where $2(S_z)_k = +1$ or -1, depending on whether the spin is α or β , respectively; ψ is now the wave function of <u>all</u> the electrons k over which the summation is taken. Then we can write

$$a_{is}^{all} = \frac{4\pi}{3} g_e^{\beta} g_N^{\beta} g_N^{\rho} (\mathring{r}_N)$$

$$\mathcal{H}_c = \mathring{\mathbf{I}} \cdot \overset{=}{\mathbf{a}} \cdot \mathring{\mathbf{s}}^{all} ,$$

where \hat{S}^{all} is the complete spin operator for all the electrons summed in Equation (16).

V. Spin-Orbit Coupling

There is also an interaction between the intrinsic spin of an electron and its own angular momentum. This interaction and the angular momentum of the electron are both "caused" by the rotation of the electron about the nucleus. The general formalism that can be used to describe the interaction is that of an effective magnetic field.

The Hamiltonian in Equation (14) can be written as

$$\mathcal{H}' = \vec{B}' \cdot \vec{\mu}_{e} = \beta_{e} \vec{B}' \cdot \vec{S}$$

$$\vec{B}' = -\vec{H} \cdot \vec{g} + \frac{1}{\beta_{e}} \vec{I} \cdot \vec{a} ,$$
(17)

where \vec{B} ' is a "real" vector, because the right-hand side of Equation (17) has the transformation properties of a vector. The revolving electron also experiences a magnetic field caused by the electric field of the nucleus which, in the electron's reference frame, is revolving in the opposite direction. The field produced is thus \vec{B} " = $-\frac{\vec{v}}{c} \times \vec{E}$, so we have an effective magnetic field

$$\vec{B}_{eff} = \vec{B}' + \vec{B}'' = \vec{B}' - \frac{\vec{v}}{c} \times \vec{E} . \tag{18}$$

This will produce a torque on the intrinsic angular momentum, or the "spin" of the electron,

$$\frac{d(\acute{h}\vec{s})}{dt} = \vec{\mu} \times \vec{B}_{eff} , \qquad (19)$$

where

$$\vec{\mu} = \beta_e \vec{S} = \frac{e h}{mc} \vec{S}$$
 and $|\vec{S}| = \frac{1}{2}$.

It can be shown 71 that if there is an equation of the form of Equation (19), and $\vec{B}_{\rm eff}$ is a constant with respect to time, then the particle will rotate with an angular velocity vector

$$\vec{\omega} = -\left(\frac{e}{mc}\right)\vec{B}_{eff} = -\frac{e\vec{p}}{mc} + \frac{e}{mc^2}\vec{V} \times \vec{E}$$
 (20)

We now can show that \vec{B}_{eff} is constant. \vec{B}' is constant because in Equation (17) \vec{H} is the constant external magnetic field, \vec{I} is constant if there are no NMR transitions, and \vec{g} and \vec{a} are parameters of the species. In considering the second part of Equation (18), we know that the electric force can be written as $e\vec{E} = -\vec{\nabla}V(r,\theta,\phi)$. We now assume that V is spherically symmetric so that

$$\overrightarrow{eE} = -\overrightarrow{\nabla}V(r) = -\overrightarrow{r}\frac{dV}{r}$$
, (21)

then

$$\vec{v} \times \vec{E} = -\frac{\vec{v} \times \vec{r}}{er} \frac{dV}{dr} = \frac{\vec{L}}{mer} \frac{dV}{dr}$$

and we know that the quantum number associated with \vec{L} is constant if the electron does not change orbits. Thus, \vec{B}_{eff} is constant and we obtain the result in Equation (20).

There is yet another correction to Equation (19) and this comes from special relativity theory which states

that a set of space axes that is both moving and being accelerated has, as observed from an inertial reference system, an angular velocity of precession 72, 73

$$\vec{\omega}_{\rm T} = \frac{\vec{a} \times \vec{V}}{V^2} \left[(1 - \frac{V^2}{C^2})^{-1/2} - 1 \right],$$

or

$$\vec{\omega}_{T} = -\frac{\vec{V} \times \vec{a}}{2C^{2}}$$
, when $\frac{\vec{V}}{C} \ll 1$.

The coordinates of the electron have the added motion

$$\vec{\omega}_{T} = \frac{-\vec{V} \times (\vec{F}/m)}{2C^{2}} = \frac{-e}{2mc^{2}} \vec{V} \times \vec{E} ,$$

so that a corresponding \vec{B}_T can be written with the same ratio as in Equation (20):

$$\vec{B}_{T} = \frac{\vec{\omega}_{T}}{-(e/mc)} = \frac{\vec{v} \times \vec{E}}{2c} = -\frac{1}{2}\vec{B}''.$$

This factor of one-half is called the Thomas factor.

Finally, we obtain a "corrected" effective magnetic field and angular velocity,

$$\vec{B}_{corr} = \vec{B}_{eff} + \vec{B}_{T} = \vec{B}' - \frac{\vec{V}}{2c} \times \vec{E} ,$$

$$\vec{\omega}_{corr} = -\frac{e\vec{B}}{mc}' + (-\frac{e}{mc})(-\frac{1}{2c})(\frac{\vec{L}}{mer})\frac{dV}{dr}$$

$$= -\frac{e\vec{B}}{mc}' + \frac{1}{2mc}\vec{L} \cdot \frac{1}{r} \cdot \frac{dV}{dr}$$

by using Equations (20) and (21). The magnetic interaction is

$$\mathcal{H}' = \vec{B}_{corr} \cdot \vec{\mu} = \frac{e\vec{h}}{mc} \vec{B}_{corr} \cdot \vec{S} = \vec{h} \vec{\omega}_{corr} \cdot \vec{S}$$

$$= -\frac{e\vec{h}}{mc} \vec{B} \cdot \vec{S} + \frac{\vec{h}}{2mc^2} \vec{L} \cdot \vec{S} \frac{1}{r} \frac{dV}{dr}$$

$$= \frac{e\vec{h}}{mc} \vec{H} \cdot \vec{g} \cdot \vec{S} + \vec{I} \cdot \vec{a} \cdot \vec{S} + \frac{\vec{h}}{2mc^2} \vec{L} \cdot \vec{S} \frac{1}{r} \frac{dV}{dr}$$

$$\therefore \mathcal{H}' = \beta_e \vec{H} \cdot \vec{g} \cdot \vec{S} + \vec{I} \cdot \vec{a} \cdot \vec{S} + \lambda \vec{L} \cdot \vec{S} ,$$

where
$$\lambda = \frac{\hbar}{2mc^2} \frac{1}{r} \frac{dV}{dr}$$
;

 λ is the spin-orbit coupling constant.

VI. Spin-Spin Coupling

There is a tensor form of coupling between any nuclear spins \vec{I}_i and \vec{I}_j ,

$$\mathcal{H}_{D} = g_{N}^{2} \beta_{N}^{2} \vec{1}_{i} \cdot \overline{D}_{I} \cdot \vec{1}_{i}$$

which is derived in the same way as the second term in Equation (15). This is caused by the interaction of the dipole moments of the nuclei. The effect of this term in liquids is proportional to the trace of $\overline{D}_{\rm I}$. A simple evaluation in any coordinate system shows the trace to be zero. ⁷⁴

There can also be an isotropic term

$$\mathcal{H}_{D} = J_{ij} \vec{i}_{i} \cdot \vec{i}_{j}$$
,

where J_{ij} is an interaction not completely understood. One important interaction mechanism is the correlation of

nuclear spins through the polarization of the intervening electron spins, ⁷⁵ which is analogous to the mechanism described above concerning Figure 1.

VII. Orbital Angular Momentum

There is also a classical energy term $E = -\vec{H} \cdot \vec{L}$, where \vec{L} is the orbital angular momentum of the electron. This is a first-order approximation, in contrast to the exact energy of $-\vec{H} \cdot \vec{I}$, because the former case does not consist of an infinitesimally localized current distribution as is postulated for the "spin." The higher-order terms are neglected though, and we have the added quantum mechanical analogue

$$\mathcal{H}' = \vec{H} \cdot \vec{L}_{operator}$$
.

This term sometimes does not contribute much to the expectation value of the Hamiltonian, or in other words, to the energy of the system. This is because we can evaluate $\langle L_z \rangle$ as

$$\langle L_z \rangle = \langle \psi | -i\hbar \frac{\partial}{\partial \phi} | \psi \rangle = -i\hbar \int \psi \star \frac{\partial}{\partial \phi} \psi d\tau$$

and, if $\psi = \psi^*$, then

$$\langle L_z \rangle = -i\hbar \int \frac{1}{2} \frac{\partial}{\partial \phi} (\psi^* \psi) d\tau = iK$$
.

Now K=0 because the expectation value must be real. So, whenever the wavefunction for the system can be chosen to be real, we have $\langle L_z \rangle = 0$. This can always be done in

non-degenerate systems by multiplying by an appropriate phase factor, which is always allowed.

Species which do not have orbitally degenerate ground states would then have a "quenched" orbital angular momentum interaction. This would also be true for the radicals studied in this work since the Kramers degeneracy is lifted by the magnetic field.

VIII. Nuclear g Tensor

The Hamiltonian can include a nuclear term 78

$$\mathcal{H}_{N} = -\beta \dot{H} \cdot \dot{g}^{(1)} \cdot \dot{I}$$

similar to that of the electron in the first term of Equation (14). The tensor quality would come about by changes in the magnetic field felt by the nucleus that were caused by changes in the electron wave function. The distortion of the electronic cloud can be caused by, and be approximately proportional to, the external magnetic field H. This is not important in our studies.

IX. Electric Quadrupole Coupling

There is also a nuclear electric quadrupole coupling. This comes about when the interaction energy of a charge distribution and an electric potential V due to external sources is expanded about the origin: 79

Energy =
$$q \Phi(0) - \overrightarrow{p} \cdot \overrightarrow{E}(0) - \frac{1}{6} \sum_{ij} Q_{ij} V_{ij} + \cdots$$

where

$$Q_{ij} = \int (3x_i x_j - \delta_{ij} r^2) \rho \, d\tau$$

$$V_{ij} = \frac{\partial E_j(0)}{\partial x_i} .$$

By using the Wigner-Eckart theorem, 80 it can be shown that the quadrupole term can be changed from an expression involving integration over coordinates to an equivalent form in I_x , I_y , and I_z by multiplying the former by a constant. This changes the form to

$$\mathcal{H}_{Q} = \frac{eQ}{6I(2I-1)} \sum_{ij} v_{ij} \left[\frac{3}{2} (I_{i}I_{j} + I_{j}I_{i}) - \delta_{ij}I^{2} \right] = \vec{I} \cdot \overline{\vec{P}} \cdot \vec{I}.$$

From the properties of second-order partial derivatives, we have $V_{ij}=V_{ji}$ which implies $P_{ij}=P_{ji}$. Then the symmetric real matrix \overline{P} can be diagonalized by choosing a new set of axes to give the form 81

$$\mathcal{H}_{Q} = P_{x}I_{x}^{2} + P_{y}I_{y}^{2} + P_{z}I_{z}^{2}$$

$$= K + P_{\parallel} \left[\left\{ I_{z}^{2} - \frac{1}{3}I(I+1) \right\} + \frac{1}{6} \eta \left(I_{+}^{2} - I_{-}^{2} \right) \right],$$

where

$$K = \frac{1}{2}(I_{x} + I_{y} + I_{z})[I(I+1) - I_{z}^{2}]$$

$$P_{\parallel} = \frac{3}{2}I_{z} = \frac{3eQq}{4I(2I-1)} \quad q = \frac{\partial^{2}V}{\partial z^{2}}$$

$$n = (I_{x} - I_{y})/I_{z} \qquad I_{\pm} = I_{x} \pm iI_{y}$$

and we have K=0 because the Laplace equation $\nabla^2 V = \sum_{i} V_{ii} = 0$ implies $P_x + P_v + P_z = 0$.

We see that the η term is a second-order effect compared to the other term in brackets, and when axial symmetry is present, η = 0.

X. Spin Hamiltonians

The energy transitions observed in any type of magnetic resonance experiment can generally be described in terms of an appropriate spin Hamiltonian. The Schroedinger equation to be solved is generally very complicated. The various terms of a general spin Hamiltonian can be rewritten in terms of raising and lowering operators to give expressions which are in a form suitable for a computer. Reproximate formulas for the energy have been obtained from some Hamiltonians by specifying simplifying conditions and using first— and second—order perturbation theory.

We list below some of the spin Hamiltonians and various formulas that have been derived. In the perturbation cases, it is assumed that the first term has a much greater contribution to the energy than the rest.

Let M be the quantum state of \vec{S} ,

Let m be the quantum state of \vec{I} ,

Let W be the energy of a quantum state,

Let hv be the energy needed for an $(M-1) \leftrightarrow (M)$ transition.

A. Electron Zeeman Hamiltonian

$$\mathcal{H} = \beta \vec{H} \cdot \vec{g} \cdot \vec{s}$$

Condition: \vec{H} has direction cosines (ℓ_x, ℓ_y, ℓ_z) with respect to the principal axes of \vec{g} : $(\vec{g}_x, \vec{g}_y, \vec{g}_z)$. The exact solution is 82 , 83

$$W = g\beta HM$$
$$h\nu = g\beta H ,$$

where

(1) if g has different principal values,

$$g = \sqrt{g_{x}^{2} \ell_{x}^{2} + g_{y}^{2} \ell_{y}^{2} + g_{z}^{2} \ell_{z}^{2}}$$
 (22)

(2) if \vec{g} is axially symmetric, i.e., $g_x = g_y = g_{||}$, $g_z = g_{\perp}$, and \vec{h} makes an angle θ with $\vec{g}_{||}$,

$$g = \sqrt{g_{\parallel}^2 \cos^2 \theta + g_{\perp}^2 \sin^2 \theta} . \qquad (23)$$

B. Hamiltonian A Plus Hyperfine Interaction

$$\mathcal{H} = \beta \vec{H} \cdot \vec{g} \cdot \vec{S} + \vec{I} \cdot \vec{A} \cdot \vec{S}$$

Conditions: \vec{H} has direction cosines (ℓ_x, ℓ_y, ℓ_z) with respect to the principal axes of \vec{g} . These axes define the coordinate system.

(1) The First-Order Approximation:

$$W = g\beta HM + AmM$$

$$h\nu = g\beta H + Am$$
(24)

where

(a) if \bar{g} and \bar{A} have different principal axes, ⁸⁴

$$A = \{ (\ell_{x}g_{x}^{A}_{xx} + \ell_{y}g_{y}^{A}_{yx} + \ell_{z}g_{z}^{A}_{zx})^{2} + (\ell_{x}g_{x}^{A}_{xy} + \ell_{y}g_{y}^{A}_{yy} + \ell_{z}g_{z}^{A}_{zy})^{2} + (\ell_{x}g_{x}^{A}_{xz} + \ell_{y}g_{y}^{A}_{yz} + \ell_{z}g_{z}^{A}_{zz})^{2} \}^{1/2}/g ,$$
(25)

and g is given by Equation (22);

(b) if \overline{g} and \overline{A} have the same principal axes,

$$A = \{ \ell_x^2 g_x^2 A_x^2 + \ell_y^2 g_y^2 A_y^2 + \ell_z^2 g_z^2 A_z^2 \}^{1/2} / g, \qquad (26)$$

with g given by Equation (22);

(c) if \overline{g} and \overline{A} have the same principal axes, and are axially symmetric with \overline{H} making an angle θ with \overline{g}_{\parallel} ,

$$A = \{g_{\parallel}^2 A_{\parallel}^2 \cos^2 \theta + g_{\perp}^2 A_{\perp}^2 \sin^2 \theta\}^{1/2} /g$$
 (27)

with g given by Equation (23).

- (2) The Second-Order Approximation 85
 - (a) If \overline{g} and \overline{A} have the same principal axes, and the direction of H is described in this principal-axis coordinate system by the standard polar angles θ and ϕ ,

$$W = g\beta HM + AmM - \frac{A_x A_y A_z}{2g\beta HA} [S(S+1) - M^2]m + ZM$$

$$hv = g\beta H + Am + \frac{A_x A_y A_z}{2g\beta HA} [2M+1]m + Z,$$

where

$$z = \{ \frac{g_z^2 (g_p^2 A_p^2 - g_p^2 A_z^2)^2}{g_p^2 g_A^2} \cos^2 \theta + \frac{g_x^2 g_y^2 (A_x^2 - A_y^2)^2}{g_p^2 g_A^2} \sin^2 \phi \cos^2 \phi \} \frac{m^2 \sin^2 \theta}{2g\beta H}$$

$$+ \left\{ \frac{g^2 A_p^2 A_z^2}{g_p^2 A_z^2} + \frac{g_p^2 A_x^2 A_y^2}{g^2 A_p^2} \right\}$$

$$+ \frac{g_{x}^{2}g_{y}^{2}g_{z}^{2}A_{z}^{2}(A_{x}^{2}-A_{y}^{2})^{2}}{g_{p}^{2}g_{A}^{4}A_{p}^{2}}\cos^{2}\theta\sin^{2}\phi\cos^{2}\phi} \frac{[I(I+1)-m^{2}]}{4g\beta H}$$

$$A = (g^2 A_p^2 \sin^2 \theta + g_z^2 A_z^2 \cos^2 \theta)^{1/2} / g_z$$

$$A_p = (g_x^2 A_x^2 \cos^2 \phi + g_y^2 A_y^2 \sin^2 \phi)^{1/2} / g$$

$$g = (g_p^2 \sin^2 \theta + g_z^2 \cos^2 \theta)^{1/2}$$
, $g_p = (g_x^2 \cos^2 \phi + g_y^2 \sin^2 \phi)^{1/2}$.

(b) if \vec{g} and \vec{A} have the same principal axes, and are axially symmetric with \vec{H} making an angle θ with \vec{g}_{\parallel} ,

$$W = g\beta HM + T_A$$

$$hv = g\beta H + U_A$$

where

$$T_{A} = ZM - \frac{A_{\perp}^{2}A_{\parallel}}{2g\beta HA} [S(S+1)-M^{2}]m$$
 (28)

$$U_{A} = Z + \frac{A_{\perp}^{2}A_{\parallel}}{2g\beta HA} [2M+1]m, \qquad (29)$$

$$z = \frac{g_{\parallel}^{2} g_{\perp}^{2} (A_{\parallel}^{2} - A_{\perp}^{2})^{2}}{2g^{5} g_{HA}^{2}} m^{2} sin^{2} \theta cos^{2} \theta + \frac{A_{\perp}^{2} (A_{\uparrow}^{2} A_{\parallel}^{2})}{4g g_{HA}^{2}} [I(I+1) - m^{2}]$$

and g and A are given by Equations (23) and (27), respectively.

C. Hamiltonian B plus Zero-Field Splitting

$$\mathcal{H} = \beta \overrightarrow{H} \cdot \overrightarrow{q} \cdot \overrightarrow{S} + \overrightarrow{I} \cdot \overrightarrow{A} \cdot \overrightarrow{S} + \overrightarrow{S} \cdot \overrightarrow{D} \cdot \overrightarrow{S}$$

Conditions: $\overline{g}, \overline{A}, \overline{D}$ have different principal axes. \overline{H} has direction cosines (ℓ_x, ℓ_y, ℓ_z) with respect to any arbitrary coordinate system (x,y,z). $\overline{g}, \overline{A}$, and \overline{D} are expressed in this coordinate system.

The second-order approximation is 86

$$hv = g\beta H + AM + \frac{1}{2g\beta H} (T_{xx}T_{yy} - T_{xy}T_{yx}) (2M+1) m$$

$$+ \frac{T_{xx}^2 + T_{yy}^2 + T_{xy}^2 + T_{yx}^2}{4g\beta H} [I(I+1) - m^2] + \frac{T_{xz}^2 + T_{yz}^2}{2g\beta H} m^2$$

$$- \frac{D_{xz}^{'2} + D_{yz}^{'2}}{2g\beta H} [4S(S+1) - 24M(M+1) - 9]$$

$$+ \frac{(D_{xx}^{'} - D_{yy}^{'})^2 + 4D_{xy}^{'2}}{8g\beta H} [2S(S+1) - 6M(M+1) - 3] ,$$

where

$$T_{ij} = \sum_{mn} U_{mi} V_{nj} A_{mn}$$

$$D'_{ij} = \sum_{mn} U_{mi} U_{nj} D_{mn}$$

$$A = \left(\sum_{ijk} K_{i} K_{j} A_{ik} A_{jk}\right)^{1/2} / g$$

$$g = \left(\sum_{ijk} \ell_{i} \ell_{j} g_{ik} g_{jk}\right)^{1/2}, K_{n} = \sum_{m} \ell_{m} g_{mn}$$

$$\overline{U} = \begin{pmatrix} K_{2} / Y & K_{1} K_{3} / g Y & K_{1} / g \\ -K_{1} / Y & K_{2} K_{3} / g Y & K_{2} / g \\ 0 & -Y / g & K_{3} / g \end{pmatrix}$$

$$Y = \sqrt{K_{1}^{2} + K_{2}^{2}}.$$

 $\overline{\overline{V}}$ is obtained from $\overline{\overline{U}}$ by changing K_i to $K_i = \sum_j K_j A_{ji}$ and g to Ag.

D. <u>Hamiltonian C plus Electric Quadrupole and Nuclear</u> Zeeman Terms

$$\mathcal{H} = \beta \vec{h} \cdot \overline{g} \cdot \vec{s} + \vec{1} \cdot \overline{A} \cdot \vec{s} + \vec{s} \cdot \overline{D} \cdot \vec{s} + \vec{1} \cdot \overline{P} \cdot \vec{l} - \beta \vec{h} \cdot \overline{g}^{(1)} \cdot \vec{l}$$

Conditions: $\overline{g}, \overline{A}, \overline{D}, \overline{P}$, and $\overline{g}^{(I)}$ have the same principal axes. \overline{H} has direction cosines (ℓ_x, ℓ_y, ℓ_z) with respect to the principal axes of \overline{g} , which define the coordinate system. 87

(1) The First-Order Approximation:

$$W = g\beta HM + AmM + D''(M-\frac{1}{2}) + P\{m^2 - \frac{1}{3}I(I+1)\} - G_{I}^{m}$$

$$h\nu = g\beta H + Am + D'',$$

where g and A are given by Equations (22) and (26), respectively, and

$$D'' = 3(\ell_{x}^{2}g_{x}^{2}D_{x} + \ell_{y}^{2}g_{y}^{2}D_{y} + \ell_{z}^{2}g_{z}^{2}D_{z})/g^{2}$$

$$P = \frac{3}{2}(\ell_{x}^{2}g_{x}^{2}A_{x}^{2}P_{x} + \ell_{y}^{2}g_{y}^{2}A_{y}^{2}P_{y} + \ell_{z}^{2}g_{z}^{2}A_{z}^{2}P_{z})/g^{2}A^{2}$$

$$G_{I} = \beta H(\ell_{x}^{2}g_{x}A_{x}g_{x}^{(I)} + \ell_{y}^{2}g_{y}A_{y}g_{y}^{(I)} + \ell_{z}^{2}g_{z}A_{z}g_{z}^{(I)})/gA .$$

(2) If we also have axial symmetry for all the tensors, we have the Second-Order Approximation:

$$W = g\beta HM + T_{A} + T_{D} + T_{P} + T_{g}$$

$$h\nu = g\beta H + U_{A} + U_{D} + U_{P},$$

where T_A, U_A correspond only to the $\vec{I} \cdot \overline{A} \cdot \vec{S}$ term, T_D, U_D correspond only to the $\vec{S} \cdot \overline{D} \cdot \vec{S}$ term, T_p, U_p correspond only to the $\vec{I} \cdot \overline{P} \cdot \vec{I}$ term, T_g corresponds only to the $-\beta \vec{H} \cdot \overline{g}^{(I)} \cdot \vec{I}$ term, so that any Hamiltonian made up of only some of the tensors has only those corresponding terms in the equations for W and hv.

$$T_{A}$$
 and U_{A} are given by Equations (28) and (29), respectively.

$$T_D = \frac{1}{2}D\{(3g_{||}^2/g^2)\cos^2\theta - 1\}\{M^2 - \frac{1}{3}S(S+1)\}$$

+
$$(g_{\parallel}^2 g_{\perp}^2/g^4) (D^2 \cos^2 \theta \sin^2 \theta / 2X) M \{8M^2 + 1 - 4S(S+1)\}$$

+
$$(g_1^4/g^4) (D^2 \sin^4 \theta/8X) M\{2S(S+1) - 2M^2 - 1\}$$

$$U_{D} = D\{2g_{\parallel}^{2} \cos^{2}\theta - g_{\perp}^{2} \sin^{2}\theta\}/g^{2}$$

+
$$(g_{\parallel}^2 g_{\perp}^2/g^4) (D^2 \cos^2 \theta \sin^2 \theta/2X) \{24M(M-1)+9-4S(S+1)\}$$

+
$$(g_1^4/g^4)(D^2\sin^4\theta/8x)\{2S(S+1)-6M(M-1)-3\}$$

$$T_{p} = P\{m^{2} - \frac{1}{3}I(I+1)\} + \left(\frac{g_{\parallel} g_{\perp}^{A_{\parallel}} A_{\perp}}{g^{2}A^{2}}\right)^{2}\{p_{\parallel}^{2} \sin^{2}2\theta/8AM\}m$$

$$\{8m^{2} + 1 - 4I(I+1)\}$$

+
$$(g_A/gA)^4 \{P_B^2 \sin^4\theta/8AM\}m\{2I(I+1)-2m^2-1\}$$

$$U_{P} = -(g_{\parallel} g_{\perp}^{A} A_{\parallel} A_{\perp}/g^{2}A^{2})^{2} \{P_{\parallel}^{2} \sin^{2}2\theta/8AM(M-1)\} m\{8m^{2}+1-4I(I+1)\}$$

-
$$(g_A/gA)^4 \{P_{||}^2 \sin^4\theta/8AM(M-1)\}m\{2I(I+1)-2m^2-1\}$$

$$T_{g} = -(\beta Hm/gA) (g_{\parallel}^{(I)} g_{\parallel} A_{\parallel} \cos^{2}\theta + g_{\perp}^{(I)} g_{\perp} A_{\perp} \sin^{2}\theta)$$

$$D = \frac{3}{2} D_{\parallel}$$

$$X = g\beta H$$

$$P = \frac{3}{2} \{g_{||}^{2} A_{||}^{2} P_{||} \cos^{2}\theta + g_{\perp}^{2} A_{\perp}^{2} P_{\perp} \sin^{2}\theta \} / g^{2} A^{2}.$$

g and A are given by Equations (23) and (27), respectively.

XI. Determination of ESR Parameters

In general, the parameters of the g and A tensors are determined from isofrequency plots, where the frequency v is constant and H is swept through a range for each of several orientations of a crystal rotated about a specific axis. To determine the values of the magnetic field at which resonance occurs, we can use Equation (24) for a first-order approximation:

$$H = \frac{hv}{g\beta} - \sum_{p} m_{p} \left(\frac{A_{p}}{g\beta} \right) = H_{0} - \sum_{p} m_{p} A_{p},$$

where A_p is the hyperfine interaction with the p^{th} nucleus and has appropriate energy related units (usually MHz), A_p corresponds to A_p but has units of gauss, and m_p is the quantum number of the p^{th} nucleus with values from $-I_p$ to $+I_p$. Halfway between the outer lines of any hyperfine multiplet would be the place where (perhaps only mathematically) $m_p = 0$. Choosing the midpoint between the outermost lines of the whole spectrum will give $H_0 = hv/g\beta$. By considering only these midpoints, we have a "reciprocal g-value" plot for the crystal. The values of A_p are determined by measuring the distance between the outer lines of the corresponding multiplet and dividing by $2I_p$. By plotting these values versus the angle of

rotation of the crystal, we obtain A-value plots. We thus have two symmetric covariant second-rank tensors to determine.

Since g is given by Equation (22), it can be rewritten as

$$g^2 = \sum_{i} \ell_{i}^2 g_{i}^2 .$$

If we form the symmetric diagonalized g tensor as

$$G'_{ij} = g_i \delta_{ij} = G'_{ji}, \qquad (30)$$

where $\delta_{\mbox{ij}}$ is the Kronecker delta function, then we can write

$$g^{2} = \sum_{i} \ell_{ij}^{2} g_{i} \delta_{ij} g_{i} \delta_{ij} = \sum_{i} \ell_{ij}^{2} G_{ij}^{'} G_{ji}^{'}$$

$$= \sum_{i} \ell_{i}^{2} (\overline{G}' \cdot \overline{G}')_{ii} = \sum_{i} \ell_{i}^{2} (\overline{R}^{-1} \cdot \overline{R} \overline{G}' \cdot \overline{R}^{-1} \cdot \overline{R} \cdot \overline{G}' \cdot \overline{R}^{-1} \cdot \overline{R})_{ii}$$

$$= \sum_{imn} \ell_{i}^{2} R_{im}^{-1} [(\overline{R} \cdot \overline{G}' \cdot \overline{R}^{-1}) \cdot (\overline{R} \cdot \overline{G}' \cdot \overline{R}^{-1})]_{mn} R_{ni}$$

$$= \sum_{imn} (R_{mi} \ell_{i}) (R_{ni} \ell_{i}) (\overline{G} \cdot \overline{G})_{mn}$$

$$\therefore g^{2} = \sum_{mn} \ell_{m}^{n} \ell_{mn}^{n} \ell_{mn}^{n}, \qquad (31)$$

where

$$\overline{\overline{W}} = \overline{\overline{G}}^2 , \overline{\overline{R}}^{-1} = \overline{\overline{R}}^{T} . \tag{32}$$

Here \overline{R} is an orthogonal matrix which represents a proper rotation to a new coordinate system, and ℓ_m and \overline{G} are the direction cosines of \overline{H} and the new representation of \overline{G} in this new coordinate system, respectively. Equation (31) is of the same form as Equation (4) in Part II of this thesis, so the values of the W matrix can be determined by any of the methods presented there.

To solve for $\overline{\overline{G}}$, we can first diagonalize $\overline{\overline{W}}$ by a similarity transformation

$$\overline{\overline{S}} \cdot \overline{\overline{W}} \cdot \overline{\overline{S}}^{T} = \overline{\overline{W}}' \text{ (diagonalized)} \qquad (33)$$

Then, by forming a diagonal matrix whose diagonal elements are the square roots of the corresponding ones in W', one obtains

$$\mathbf{\bar{G}}' \cdot \mathbf{\bar{G}}' = \mathbf{\bar{W}}', \tag{34}$$

but, from Equation (33), we have

$$\overline{\overline{W}} = \overline{\overline{S}}^{T} \cdot \overline{\overline{W}}' \cdot \overline{\overline{S}}$$

$$\overline{\overline{W}} = (\overline{\overline{S}}^{\mathrm{T}} \cdot \overline{\overline{G}}' \cdot \overline{\overline{S}}) \cdot (\overline{\overline{S}}^{\mathrm{T}} \cdot \overline{\overline{G}}' \cdot \overline{\overline{S}}) = \overline{\overline{G}} \cdot \overline{\overline{G}} ,$$

so $\overline{\overline{G}} = \overline{\overline{S}}^T \cdot \overline{\overline{G}}' \cdot \overline{\overline{S}}$ is the solution to Equation (32).

We now want to determine \overline{A} for the most general case in which \overline{g} and \overline{A} have different principal axes. If we multiply the terms out and rearrange them in Equation (25), and use primes to signify the fact that the \overline{g} and \overline{A} terms are in the \overline{g} principal-value coordinate system, we get

$$g^{2}A^{2} = \sum_{ij} x'_{ij} l'_{i} l'_{j}$$
, (i,j = x,y,z)

where a typical term is

$$x'_{ij} = g_{i}g_{j}(A'_{ix}A'_{jx}+A'_{iy}A'_{jy}+A'_{iz}A'_{jz})$$

$$= g_{i}g_{jk}A'_{ik}A'_{jk}.$$

Using Equation (30) and the fact that $\overline{\overline{A}}$ is symmetric from Equation (13), we can write

$$g^{2}A^{2} = \sum_{i,j} (g_{i}A_{ik}) (g_{j}A_{jk}) \ell_{i}\ell_{j}$$

$$= \sum_{kij} (\sum_{l} g_{i}\delta_{i} l^{A}_{lk}) (\sum_{m} g_{m}\delta_{mj}A_{mk}) \ell_{i}\ell_{j}$$

$$= \sum_{kij} (\sum_{l} G_{i}A_{lk}) (\sum_{m} A_{km}G_{mj}) \ell_{i}\ell_{j}$$

$$= \sum_{kij} (\overline{G}' \cdot \overline{A}')_{ik} (\overline{A}' \cdot \overline{G}')_{kj}\ell_{i}\ell_{j}$$

$$= \sum_{ij} (\overline{G}' \cdot \overline{A}' \cdot \overline{A}' \cdot \overline{G}')_{ij}\ell_{i}\ell_{j}$$

$$\cdot \cdot \cdot g^{2}A^{2} = \sum_{i,j} \chi_{ij}^{i}\ell_{i}\ell_{j}^{i},$$

where

$$\overline{X}' = \overline{G}' \cdot \overline{A}' \cdot \overline{A}' \cdot \overline{G}'$$

Hence, in any coordinate system, we can write

$$g^2A^2 = \sum_{ij} x_{ij} \ell_i \ell_j$$

$$\overline{\overline{X}} = \overline{\overline{G}} \cdot \overline{\overline{A}} \cdot \overline{\overline{A}} \cdot \overline{\overline{G}} ,$$

which again is of the same form as Equation (4) of Part II. We can solve for \overline{A} by determining \overline{X} from angular variation of the quantity g^2A^2 by any procedure in Part II, then solving the equation

$$\overline{A} \cdot \overline{A} = \overline{G}^{-1} \cdot \overline{X} \cdot \overline{G}^{-1}$$

by the method mentioned for Equation (34). This result has been stated elsewhere. ⁸⁸ If \overline{g} and \overline{A} have the same principal axes, then the principal values of \overline{A} are found by diagonalizing \overline{X} to give \overline{X}' and using the equation

$$A_{ii}' = \sqrt{X_{ii}'}/G_{ii}'$$
.

If the relative anisotropy of g is much smaller than that of A, we can treat A exactly as we did g, that is

$$\left(\frac{\Delta g}{g_{iso}}\right) \ll \left(\frac{\Delta A}{A_{iso}}\right)$$
 (35)

then

$$A = \sqrt{\ell_{x}^{2} A_{x}^{2} + \ell_{y}^{2} A_{y}^{2} + \ell_{z}^{2} A_{z}^{2}}$$

$$\therefore A^2 = \sum_{mn} \ell_m \ell_n w_{mn} ,$$

where $\overline{\overline{W}} = \overline{\overline{A}} \cdot \overline{\overline{A}}$

 Δg is the largest anisotropy of \overline{g} ΔA is the largest anisotropy of \overline{A} g_{iso} is the isotropic value of \overline{g} A_{iso} is the isotropic value of \overline{A} .

EXPERIMENTAL

I. Spectrometers

Three ESR spectrometers were used, two of them X-band systems and one a Q-band system. The X-band systems were used with a magnetic field of about 3300 gauss and a resonant frequency of about 9.5 GHz. while the Q-band system was used with the corresponding values 12000 gauss and 35 GHz., respectively.

One spectrometer was the Varian V-4502 X-band system with a 12-inch magnet and 100 KHz. modulation. First- or second-derivative spectra were taken on various XY-recorders. The appropriate derivative of the absorption mode was plotted as a function of the magnetic field intensity. The magnetic field was measured by accurately determining the proton NMR resonance frequency of a water sample and using the equation ⁸⁹

$$H(gauss) = 0.2348682 v_{water}(MHz)$$
.

A homemade marginal oscillator 90 was used to detect the proton resonance and the frequency was measured with a Hewlett-Packard Model 524C electronic counter. After each spectrum was taken on the XY-recorder, two accurate

magnetic field determinations were made on top of the spectrum. From this, it was found that the linearity of the magnetic field sweep and the stability of the absolute magnetic field on the spectra were within the experimental error of the NMR probe measurements. The klystron frequency was measured using a TS-148/UP U.S. Navy spectrum analyzer with a calibration chart; the accuracy was about 1 part in 10^5 .

For some preliminary spectra, a Varian E-4 X-band spectrometer was used. This also had 100 KHz. modulation, but the magnet had 4-inch diameter pole pieces. The absolute magnetic field, the magnetic field sweep, and the klystron frequency were read from the dials on the machine.

The Q-band spectrometer was a Varian V-4503 system with a 12-inch magnet and 100 KHz. modulation. There was no external probe to measure the magnetic field accurately. The klystron frequency was determined by the wavemeter of the Varian V-4561 35 GHz. Microwave Bridge. Repeated measurements indicated that the stability of the klystron frequency was only 1 part in 10⁴.

The X-band spectrometers had provisions for keeping samples immersed in liquid nitrogen and all three spectrometers could be used with a Varian V-4540 variable temperature controller. This instrument regulates the sample temperature by passing over it a stream of gaseous nitrogen whose temperature is controlled by either being passed

through a helical tube immersed in liquid nitrogen and/or warmed by heating filaments.

A common sequence of measurements involves mounting an irradiated crystal with a chosen axis vertical. When the X-band system was used, magnetic field sweeps were made with the crystal progressively rotated about that axis. With the Q-band system, the magnetic field was instead rotated about the sample. This is the more desirable arrangement since moving the crystal in the cavity changes the Q of the system which tends to change the klystron frequency and the detector current leakage. The magnet on the V-4502 was not rotated because the connecting hoses were too short.

II. Crystal Irradiation and Mounting

There are two methods for mounting crystals that must be kept at liquid nitrogen temperature. One method is to irradiate the crystal, then mount it between flexible brass strips. This method, which is described in the thesis by Watson, 60 has problems associated with it. It is difficult to align and ascertain the alignment of the crystal. The lack of space caused by the presence of the brass strips in the liquid nitrogen Dewar makes liquid nitrogen bubbling more likely because of "hot spots" on sharp edges of the brass. Also, any bubbling that occurs tends to shake the crystal causing electronic stability problems and creates a possibility of accidental realignment

of the crystal. The metal in the cavity also lowers the sensitivity of the instrument.

Another method is first to glue the crystal (Pliobond cement, Goodyear Rubber Co., Akron, Ohio) onto a copper wire which in turn is imbedded into a thin glass rod. This allows one to adjust accurately the axis of rotation. The whole assembly is then irradiated and used in the same way as the crystal holder in the first method. An extra signal at g = 2.0026 is introduced from the irradiated glue.

There were two sources of irradiation used. One was a 60 Co γ -ray source that had an intensity of 1.0 X 10^6 rad/hr. The other was a 1 Mev electron source (G.E. XRD-1 Resonant Transformer) that had a dose rate of 1.8 X 10^7 rad/hr.

III. <u>ENDOR Measurements</u>

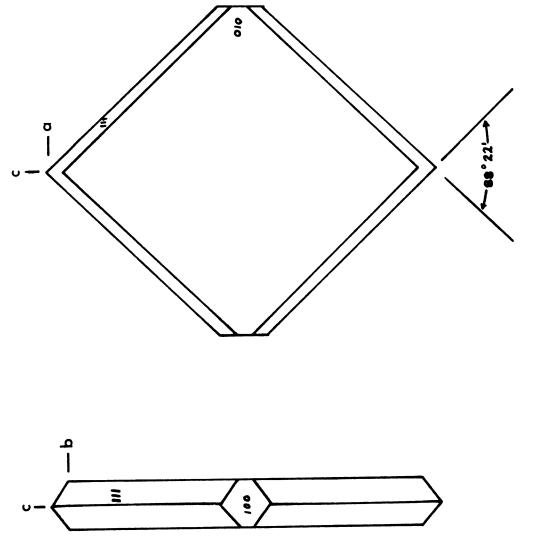
Some electron-nuclear double-resonance (ENDOR)
measurements were made on crystals of dl-mandelic acid.

A Varian E-700 ENDOR system was used with the V-4502 X-band spectrometer. A Monsanto Model 1100A counter-timer was used to determine the rf pulse frequencies.

IV. X-ray Crystallography

 $\underline{\text{dl-Mandelic}}$ acid, $C_6H_6\text{CHOHCOOH}$, in powdered form was obtained from Matheson Coleman and Bell Co. Crystals were grown from saturated aqueous solutions by slow

evaporation. The morphology of the crystals was the same as determined by Rose. 91 He reported that the crystal system was orthorhombic with cell dimensions a = 9.66+ 0.05 $\overset{\circ}{A}$, b = 16.20 + 0.08 $\overset{\circ}{A}$, and c = 9.94 + 0.05 $\overset{\circ}{A}$, and that the number of molecules per unit cell was eight. An orthographic projection of dl-mandelic acid is shown in Figure 2. Small crystals of about 0.1 mm. length were grown in a shallow dish by slow evaporation from water. The crystal chosen had a clear-cut morphology that allowed us to mount it specifically about the a axis. This was confirmed by taking oscillation photographs 92 using a Weissenberg Camera (Supper Co., Watertown, Mass.) with filtered Cu ($\lambda_{K\alpha} = 1.5418 \text{ Å}$) radiation. The cell dimensions were determined from these photographs and compared with those reported by Rose. 91 There was excellent agreement within experimental error. The oscillation photographs were used also to align the rotation axis of the crystal accurately along the a axis. The zero-, first-, and second-layer photographs were taken about the a axis. By considering the symmetry of the missing reflections, we were able to determine the limiting conditions for reflection in terms of the hkl indices. This uniquely determined the space group out of the 74 possible ones for the orthorhombic case.



Orthographic projection of a crystal of dl-mandelic acid. Figure 2.

V. Parameters From Tensor Variations

The purpose of this section is to describe a way in which the \overline{g} and \overline{A} tensor parameters can be determined when there is restricted information from the isofrequency plots. This was the case for mandelic acid when the normal analysis utilizing Schonland's method 93 did not work. The reason that Schonland's method, and the method outlined in Part II for the orthogonal case, both tend to have difficulty is because they depend heavily on the high accuracy of the g-values for all three rotations. This is difficult to achieve since three separate experiments are involved with the spectrometer and each time the tuning characteristics differ. Also, if there are broad, overlapping lines, as was the case for mandelic acid, further uncertainty is added.

It appears that some of the most accurate data that can be gathered from an isofrequency plot are the g variation (Δg) between the maximum and minimum values of g for that plot, and the angle at which g_{max} occurs (θ_{max}). This gives six pieces of data from the three isofrequency plots. We need formulas relating these quantities to the principal values and eigenvectors of \overline{g} .

At first we need to calculate the parameters β and γ as defined by consideration of the value of g at a specific magnetic orientation given by Equations (1) and (4) in Part II:

$$g^2 = \sum_{ij} W_{ij} l_i l_j = \alpha + \beta \cos 2\theta + \gamma \sin 2\theta$$
,

where $\overline{\overline{W}} = \overline{g} \cdot \overline{g}$ and the ℓ_i are direction cosines of the magnetic field vector with respect to the coordinate system. From Equation (29) of Part II, we have

$$\beta = \frac{1}{2} \sum_{ij} W_{ij} (S_i S_j - M_i M_j)$$

$$\gamma = \sum_{ij} W_{ij} S_i M_j , \qquad (36)$$

where S_i and M_i are the direction cosines of the vectors \vec{S} and \vec{M} , which represent the magnetic field direction at the start of the isofrequency plot ($\theta = 0^{\circ}$) and at the middle of the isofrequency plot ($\theta = 90^{\circ}$).

There are two coordinate systems involved, one associated with the crystal axes, which is left unprimed, and one associated with the eigenvectors of the g tensor, which is primed. Using Figure 1b in Part II, we can write, in the crystal-axis coordinate system, for the three standard rotations about the orthogonal axes,

$$S_i = \delta_{is}$$
 , $M_i = \delta_{im}$, $\ell_n = 0$, $\ell_s = \cos\theta$, $\ell_m = \sin\theta$, (37)

where the subscripts n,s,m refer to the rotation; starting; and middle-axis numbers. Putting Equation (37) into Equation (36) gives

$$\beta = \frac{1}{2} (W_{SS} - W_{mm})$$

$$\gamma = W_{Sm}.$$

In the principal-axis coordinate system of the g tensor we have

$$W'_{ii} = g_i^2$$
,

and to change into the unprimed system, we set

$$\overline{w} = \overline{R}^{T} \cdot \overline{w}' \cdot \overline{R}$$

$$W_{pq} = \sum_{ij} (R^{T})_{pi} W_{ij} R_{jq} = \sum_{ij} R_{ip} g_{i}^{2} \delta_{ij} R_{jq}$$

$$W_{pq} = \sum_{i} g_{i}^{2} R_{ip} R_{iq}$$

$$\beta = \frac{1}{2} \sum_{i} g_{i}^{2} (R_{is}^{2} - R_{im}^{2})$$

$$\gamma = \sum_{i} g_{i}^{2} R_{is} R_{im}$$

$$\theta_{ex} = \frac{1}{2} \arctan(\gamma/\beta) ,$$

where θ_{ex} is an angle associated with g_{max} or g_{min} and the principal g-value eigenvectors in terms of the unprimed coordinate system are along the rows of \overline{R} ; or, likewise, the crystal-axis eigenvectors in terms of the primed coordinate system are along the columns of \overline{R} . Since the arctangent function has two solutions 180° apart, we see that θ_{max} and

 θ_{\min} must be 90° apart. The two values for the extrema of g are calculated from Equation (22):

$$g_{ex}^2 = \sum_{i} g_i^2 l_i^2 (\theta_{ex})$$

$$\ell_{i}'(\theta_{ex}) = \sum_{k} (R^{T})_{ik} \ell_{k}(\theta_{ex})$$

$$g = \left\{ \sum_{ik} g_i^2 R_{ki} \ell_i (\theta_{ex}) \right\}^{1/2}$$

where $l_n(\theta_{ex}) = 0$, $l_s(\theta_{ex}) = \cos\theta_{ex}$, $l_m(\theta_{ex}) = \sin\theta_{ex}$.

The g-value difference Δg is then $(g_{max} - g_{min})$.

It is impractical to determine the values of g_i and the eigenvector matrix \overline{R} from the values of Δg and θ_{max} . Instead, the formulas calculate Δg and θ_{max} for the three orthogonal rotations, given a specified g tensor. There are three independent parameters describing the eigenvector matrix, but there are nine elements in \overline{R} . So instead of varying the elements in R, it is best to vary some set of three independent parameters and calculate R from them.

One such set is the Euler angles (α,β,γ) as defined by Rose. ⁹⁴ We can construct an orthogonal matrix by using a formula by Rose.

$$\frac{1}{R} = \begin{pmatrix}
ca \cdot cb \cdot cc - sa \cdot sc & sa \cdot cb \cdot cc + ca \cdot sc & -sb \cdot cc \\
-ca \cdot cb \cdot sc - sa \cdot cc & -sa \cdot cb \cdot sc + ca \cdot cc & sb \cdot sc \\
ca \cdot sb & sa \cdot sb & cb
\end{pmatrix}$$
(38)

ca =
$$cos(\alpha)$$
 , cb = $cos(\beta)$, cc = $cos(\gamma)$
sa = $sin(\alpha)$, sb = $sin(\beta)$, sc = $sin(\gamma)$

A computer subroutine was written such that given three Euler angles, three principal g values, the experimental values for Δg and θ_{max} , and the corresponding weighting factors, it calculated the theoretical values for Δg and θ_{max} and determined a squared-difference-weighted error. This subroutine was used with a general minimization routine that varied the parameters to determine a minimum error. These subroutines are listed in Appendix I.

The \overline{A} tensor can likewise be calculated by using this procedure for the quantity gA, or A, as was discussed under Determination of ESR Parameters in the Theoretical Section.

RESULTS

I. X-ray Crystallography

The limiting conditions for reflection in terms of the hkl indices were determined as described in the Experimental section. These are listed in Table 1. There is a completely symmetric relationship among the hkl indices in these rules. By comparing these conditions with those listed in the International Tables, ⁹⁶ it was determined that the space group is Pbca. This space group has four equivalent right-handed positions related by three screw axes about the a,b, and c axes. It also has four left-handed positions which are similarly related. These eight positions could be considered as corresponding with the four <u>d</u>-mandelic acid and the four <u>l</u>-mandelic acid molecules in the unit cell.

II. Irradiation and Spectra

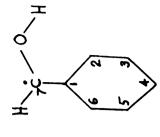
The crystals generally were irradiated with a ⁶⁰Co γ-ray source at a dose of 3 X 10⁶ rads. This treatment caused the crystals to change from a colorless to a slightly yellow appearance. When single crystals of dl-mandelic acid were irradiated at 77°K, and the ESR spectrum was

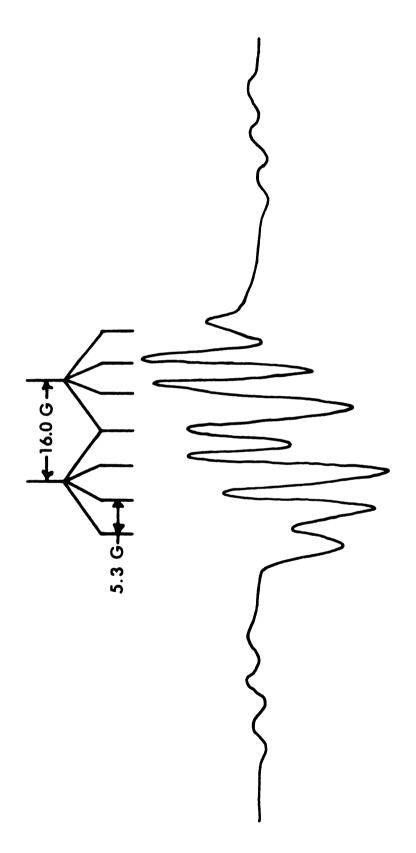
Table 1.--Conditions limiting the possible reflections for dl-mandelic acid.

Conditions	o conditions	k = 2n	1 = 2n	h = 2n	(h = 2n)	(k = 2n)	(1 = 2n)
Ŭ	••	••	••,	••	••	••	••
m	_	Н	Н	0	0	0	Н
ăi l							
Indices	×	*	0	ᅩ	0	ᅩ	0

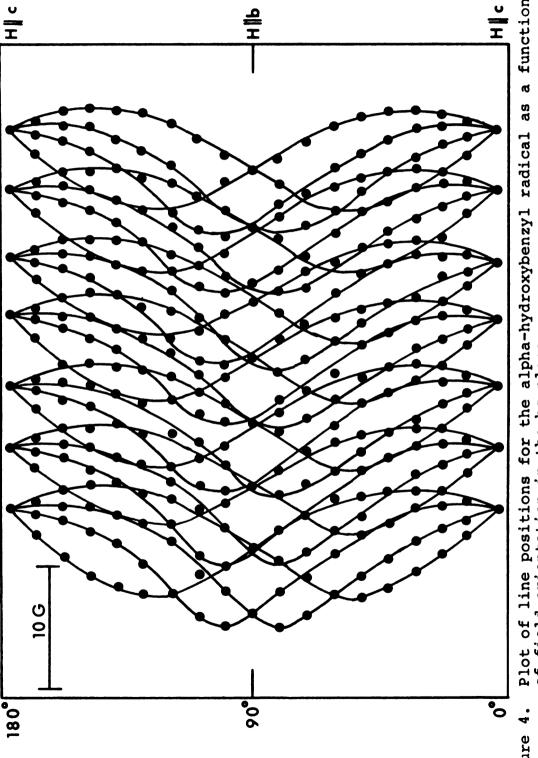
Table 2. -- Values of the hyperfine splitting constants of the alpha-hydroxybenzyl radical in various solutions and in a single crystal matrix.

Environment	A(H ₇)	A(H ₂)	A(H ₄)	A(H ₆)	A(H ₃)	A(H ₅)	A(H ₈)	$A(H_7)$ $A(H_2)$ $A(H_4)$ $A(H_6)$ $A(H_3)$ $A(H_5)$ $A(H_8)$ Reference
Benzyl alcohol soln	15.17	4.62	5.88	5.17	1.63	1.63	<0.47	97
Benzyl alcohol soln	14.97	4.58	5.93	5.16	1.56	1.67	0.58	86
Ethanol soln	14.93	4.56	5.92	5.14	1.56	1.67	0.64	66
Isopropyl alcohol soln	14.95	4.61	5.94	5.17	1.57	1.70	0.65	66
Tetrahydrofuran soln	14.93	4.64	5.95	5.17	1.54	1.65	09.0	66
Ethanol soln	14.89	4.59	5.92	5.15	1.55	1.66	1.18	66
Average ESR	16.21	(5.	(5.04 - 5.56)	56)				This work
ENDOR			5.83					This work

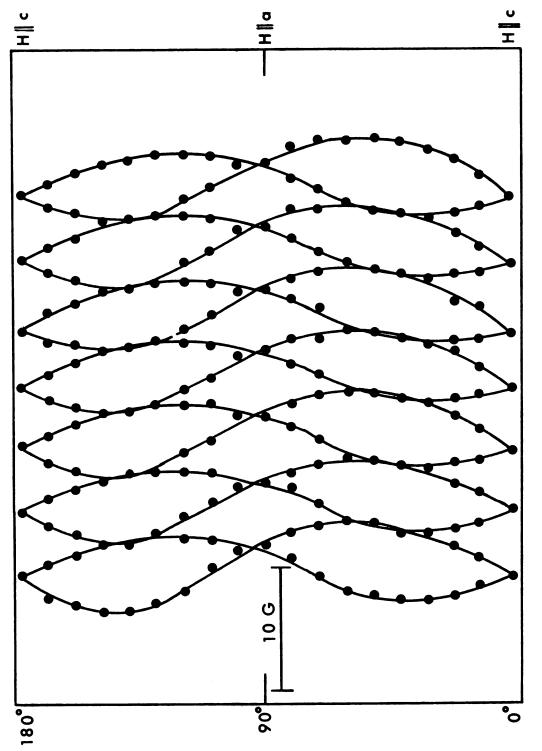




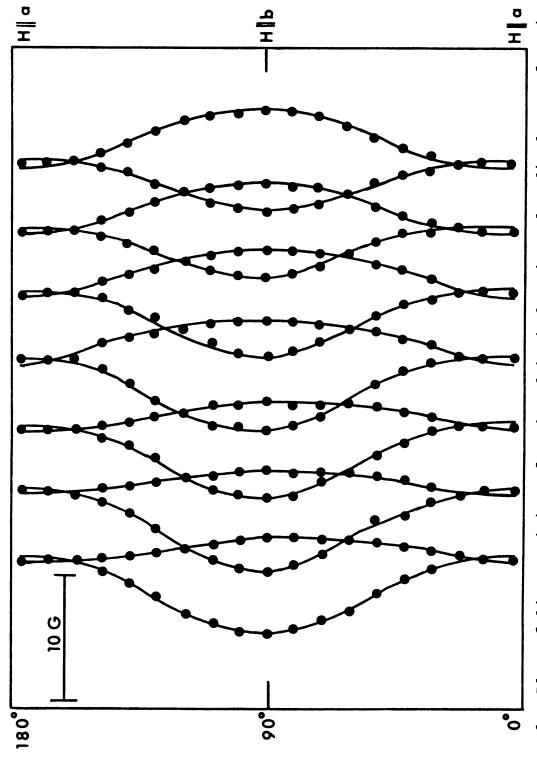
A typical ESR spectrum at room temperature of dI-mandelic acid irradiated at 77°K. Figure 3.



Plot of line positions for the alpha-hydroxybenzyl radical as a function of field orientation in the bc plane. Figure 4.



Plot of line positions for the alpha-hydroxybenzyl radical as a function of field orientation in the ca plane. Figure 5.



Plot of line positions for the alpha-hydroxybenzyl radical as a function of field orientation in the ab plane. Figure 6.

taken before the crystals were warmed up, it consisted of one very broad line at the free-spin value for electrons. Upon warming up, a "normal" spectrum resulted. When the crystals were recooled to 77°K, the same type of broad line resulted, but it was smaller in amplitude. A typical first-derivative normal spectrum is shown in Figure 3.

This spectrum consists of a central portion with large peaks, and two other portions on either side with considerably smaller peaks. The central portion consists of between seven and about twenty-two resonances over a range of about 33 gauss, centered approximately about the g free-spin value. The two groups of side peaks are symmetrically placed on either side of the central portion with a distance of about 92 gauss between the centers of the two groups. Each side portion consists of three to twelve resonances over a range of about 29 gauss.

III. Alpha-Hydroxybenzyl Radical

A. Determination of Radical

The central spectra can be analyzed as consisting of two sets of lines for the rotations about the b and c axes, and four sets of lines for the rotation about the a axis (Figures 4-6). Each set of lines consists of two groups of quartets which have one line overlapping to form seven lines (Figure 3). Since ¹²C and ¹⁶O have no magnetic moments, only the hydrogen nuclei produce hyperfine splittings. The observed set of lines could be produced

if one hydrogen caused a splitting of 16.0 gauss and three equivalent hydrogens produced a splitting of 5.3 gauss each.

We postulate that the species is the alphahydroxybenzyl radical, the alpha hydrogen causing the large
splitting, the nearly equivalent ortho and para hydrogens
the smaller splittings; the meta and hydroxyhydrogen
splittings are too small to be observed in the broad lines.
A comparison of the splittings for the alpha-hydroxybenzyl
radical as reported in solution and the average ESR values
of this investigation is shown in Table 2. The agreement
appears good. Also, in the Table is listed the value of
5.83 gauss obtained from an ENDOR experiment on dl-mandelic
acid consistent with the value for the para hydrogen.

B. g-Tensor Evaluation

We tried to use Schonland's method 93 of determining the tensor parameters for g and A, but it failed. We then used the method described above in Parameters from Tensor Variations in the Experimental section. There was an ambiguity about which set of lines in each isofrequency plot belonged to a specific site of the radical. Each combination was tried in the six-parameter errorminimization routine also described above. We forced one of the principal values to remain the same during each computer run of this routine. We would then change this value independently to give the correct g-value average and give the other five final parameters as starting values

for another run of the program. This procedure stabilized the search for an absolute error minimum in the six-dimensional parameter space. At most four runs of the program were needed to reach a stable minimum. Although there was no guarantee that the minimum reached was not just a relative minimum, the searching method of the program was written to reduce this possibility.

One combination produced a considerably lower fitting-error than any other one. According to the space group of the undamaged crystal, there are four sites related by three twofold screw axes. To determine the eigenvectors of a radical related by a twofold screw about any axis, we need only change the signs of the direction cosines associated with that axis. When we formed these four theoretical isofrequency plots and put them together, they overlapped quite perfectly to form half of the sets of lines observed experimentally. Since the other half of the sets of lines were caused by the same radical, we tried to fit them by varying only the three Euler angles while keeping the same principal g values determined previously. Each remaining combination of lines was tried in a threeparameter minimization routine and one combination fit much better than the others. This second fit was not as good as the one obtained in the previous procedure. We now determined the remaining four sites required by the symmetry of the undamaged crystal. When all eight

theoretical plots were put together, they accounted for all the lines. The principal values, and direction cosines of the radical, for all eight sites are shown in Table 3 and the various site overlappings are shown in Table 4.

There are three causes for the large number of overlapping isofrequency curves. First, all the isofrequency plots have a near-mirror symmetry about the θ = 0° and θ = 90° positions (which point along crystal axes). This requires mathematically that sites must overlap in pairs. Secondly, the isofrequency plot for the ab plane shows that the extrema occur along the axes, which also requires sites to overlap in pairs. Thirdly, there is an accidental, experimental near-overlapping of lines for the rotation in the ac plane.

C. A-Tensor Evaluation.

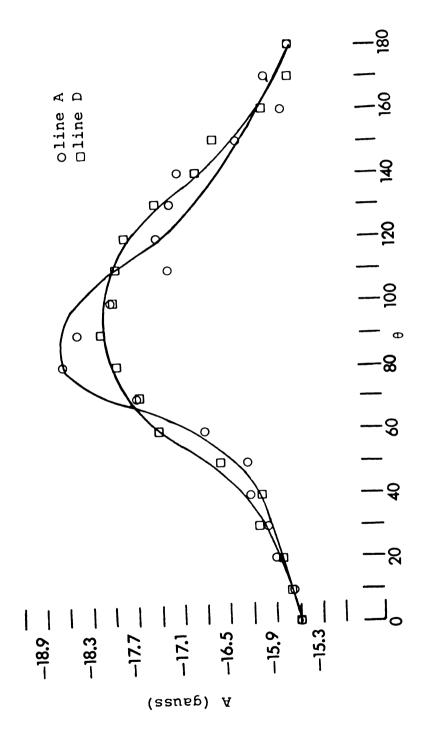
The alpha hydrogen splitting was the only one whose anisotropy was large enough to be measured. Even in this case, there was a large scatter of experimental A-value points. This can be seen in Figures 7-10 where the A-value plots are labelled according to the g-value lines with which they are associated in Table 4. A rough calculation was made of the ratio between the fractional changes of the g and A tensors as defined in Equation (35). Since the ratio was small (0.008), we treated the A plots as representing a diagonalizable second-order tensor rather than the plots of the quantity gA.

Table 3.--The principal values and direction cosines for the g tensor and the alpha-hydrogen hyperfine splitting tensor of the alpha-hydroxybenzyl radical in dl-mandelic acid.

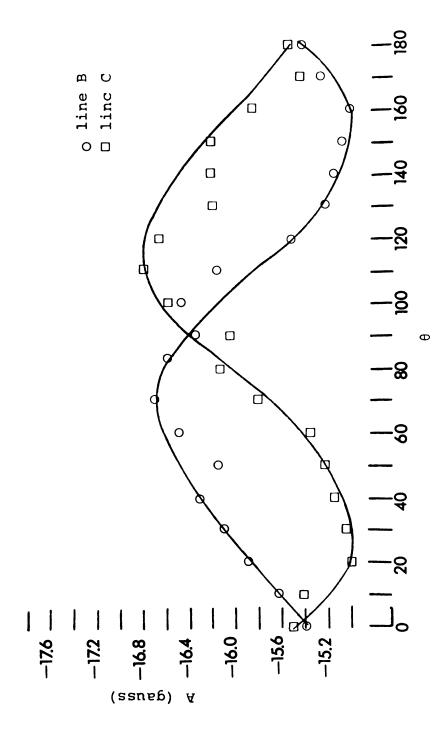
Principal Values	Dir	rection Cosine	ines	Sig	gns for the	Various	Sites
				te te	te	te fe	te
	๙	Д	O	ี้ส	ಹ	Ø	מ
$g_{11} = 2.0039$	0.1867	0.9238	0.3342	+	ı	+	ı
$g_{22} = 2.0022$	0.4224	0.2317	0.8763	 + 	 +	++++	+ 1 1
$g_{33} = 2.0033$	0.8870	0.3048	0.3469	1 + +	1 1 1	+ +	+ +
				te	te	te	te
				a b c	a b c	a b	a b
$g_{11} = 2.0039$	0.9016	0.1608	0.4015	+	ı	+	
$g_{22} = 2.0022$	0.2169	0.6349	0.7415	 - 	1 1 +	++++	+ 1
$g_{33} = 2.0033$	0.3742	0.7557	0.5376	+++++	+ 1	1 + 1	1 1 +
				site 1	site 2	site 3	site 4
				Д	Д	Д	a b
$A_{11} = -18.33$	9000.0	0.8137	0.5813	1		+ 1	+
$A_{22} = -15.33$	0.4587	0.5164	0.7232	+ 1 +	·+ +	1	1 + +
$A_{33} = -14.97$	0.8886	0.2670	0.3729	+ 1 1	+ + +	1 1 +	 +
				te	te	te	
				a b	a b c	a b c	a b c
$A_{11} = -18.33$	0.5571	0.2181	0.8013	+	1	+	+ 1
$A_{22} = -15.33$	0.6708	0.4506	0.5890	+ + 1	+ 1 +	++	1
$A_{33} = -14.97$	0.4896	0.8657	0.1047	1 + +	1 1 1	+ +	+ + +

Table 4.--Correlation between the individual sites and the resulting overlapped lines for the alphahydroxybenzyl radical.

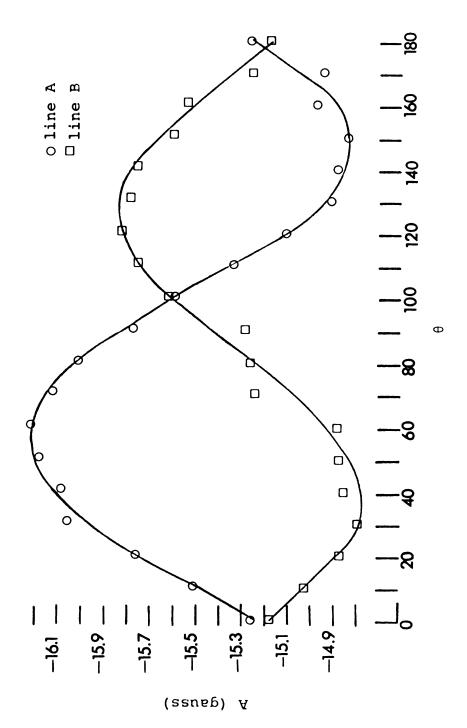
Axis of Rotation		relation of es to Lines	Center-of-Spectrum Lines
a	Site: Line:	1 2 3 4 5 6 7 8 B C C B A D D A	b c 9 90°
b	Site: Line:	1 2 3 4 5 6 7 8 B A B A B A B A	a A 90°
С	Site: Line:	1 2 3 4 5 6 7 8 A A A A B B B B	a 180°



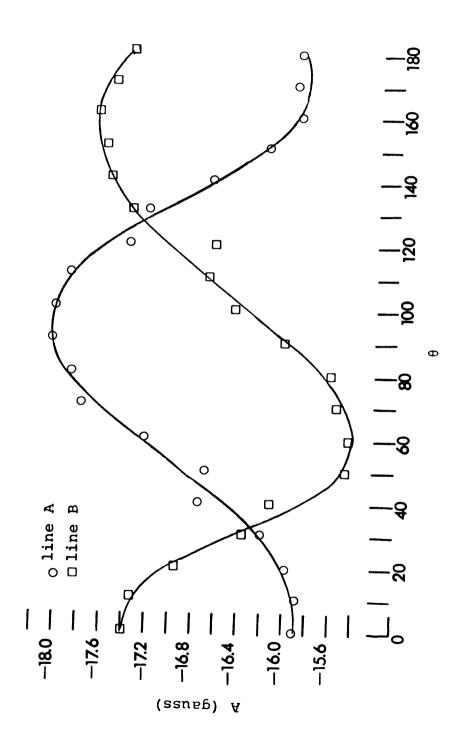
Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical vs. angle of rotation in the bc plane for lines A and D. Figure 7.



Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical vs. angle of rotation in the bc plane for lines B and C. Figure 8.



Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical vs. angle of rotation in the ca plane. Figure 9.



Hyperfine splitting of the alpha proton of the alpha-hydroxybenzyl radical vs. angle of rotation in the ab plane. Figure 10.

Using the experimental values for ΔA and θ_{max} for the A-value plots, we again used the six-parameter minimization routine on each combination of lines. One combination of lines had a considerably smaller fitting-error than the other ones. This set of A-value lines corresponded to the same g-value lines (site 1) which had given the best fit for the g tensor. Again using Equation (38), we produced a matrix \overline{A}_{v} representing the eigenvectors of A for site 1.

Since the A and g tensors are for the same radical, it was expected that the tensors were similarly related to each other for all eight sites. Because of the similar symmetry of the A and g plots, we could also produce half of the A-value line sets by applying the same three screwaxis-transformations to $\overline{\overline{A}}_{v}$. This trivially guaranteed that the g and A tensors were similarly related for sites 1,2,3, and 4. For the g tensor, sites 5,6,7, and 8 were symmetrically related to each other, and site 5 was related to site 1 by some nonsymmetric similarity transformation matrix which was calculated. By applying this transformation to $\overline{\overline{A}}_{v}$, we produced A-tensor eigenvectors for site 5 that had the proper relationship to the g tensor for site 5. We again derived the A-tensor eigenvectors for sites 6,7, and 8 from the one for site 5 by applying the screwaxis operations. When all eight A tensors were considered together, they accounted for all of the lines in the A

plots. The principal A values and direction cosines of the alpha-hydrogen splitting for all eight sites are shown in Table 3.

D. Variable Temperature Study

A variable temperature ESR study of the alphahydroxybenzyl radical was done. The Q-band instrument was used and the temperature was varied from -150°C to +120°C. There was no discernible difference in the spectra.

IV. Cyclohexadienyl-Glycolic Acid Radical

A. Determination of Radical

From the spectrum shown in Figure 11, we see that each set of peaks can be analyzed as consisting of a triplet of triplets with splittings of 8.99 gauss and 2.65 gauss. The large 95.5 gauss separation would not normally be caused by a hydrogen atom, so we can assume that there is a triplet splitting of 47.7 gauss. The middle portion of the spectrum would be lost in the larger peaks of the alpha-hydroxybenzyl radical.

We postulate that the side peaks are caused by the cyclohexadienyl-glycolic acid radical. A comparison of the splittings for this radical as reported in solution with the average ESR values of this work is shown in Table 5. The agreement appears good. We attribute the largest triplet splitting to the two para protons, the second

Table 5. -- Values of the hyperfine constants of the cyclohexadienyl-glycolic

Table 5Values of the hyperfine constants of the cyclohexadienyl-glycolic acid radical in various solutions and in a single-crystal matrix.	e constan s solutio	ts of thes and i	ne cyclo in a sin	ine constants of the cyclohexadienyl-glycolic ous solutions and in a single-crystal matrix.
Environment	A	A ₂	A ₃	Reference
(I) in benzene soln	47.5	10.4	2.5	100
(I) in 1,4-cyclohexadiene soln	47.71	8,99	2.65	101,102
Average ESR of (II) (Single-Crystal)	46.4	8.56	3.0	This work

Table 6.--Correlation between the individual sites and the resulting overlapped lines for the cyclohexadienyl-glycolic acid radical.

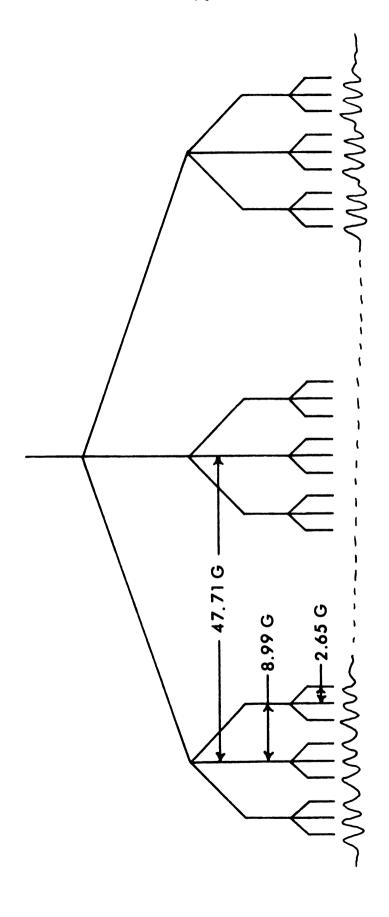
Axis of Rotation	Correlation of Sites to Lines	A-value Plots
		و لم الاص
ď	Site: 1234 Line: 2YYZ	2 0°
Q	Site: 1234 Line: YZYZ	2 2 0°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
U	Site: 1234 Line: 22 Y Y	a

Table 7.--The principal values and direction cosines for the CH₂ hyperfine splitting tensor of the cyclohexadienyl-glycolic acid radical in <u>dl</u>-mandelic acid.

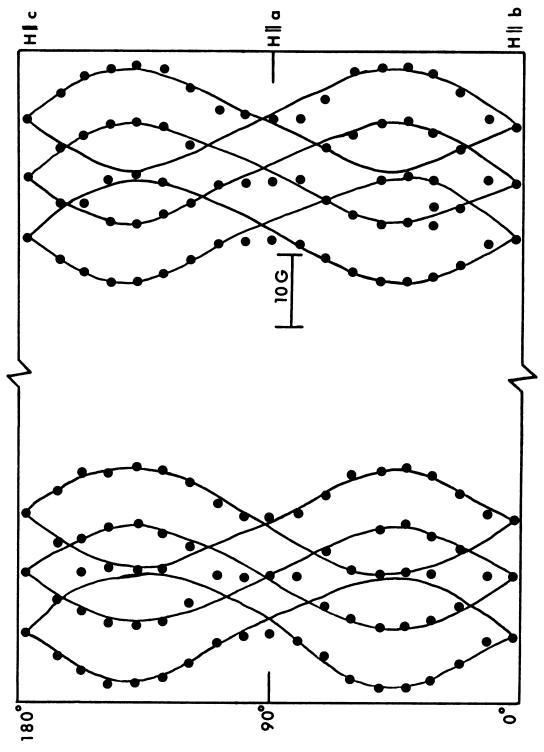
Duincinal	Dire	ction Co	ainaa	Signs	for the	Various	Sites
Principal Values	DIFE	ction co	sines	site l	site 2	site 3	site 4
A ₁₁ = -28.50	a 0.6323	b 0.5228	c 0.5717	a b c	a b c	a b c	a b c + + -
$A_{22} = -52.48$						+	
$A_{33} = -57.26$					+	- + -	+

Table 8.--Unpaired electron spin and excess charge densities calculated for the alpha-hydroxybenzyl radical by the McLachlan method. 107

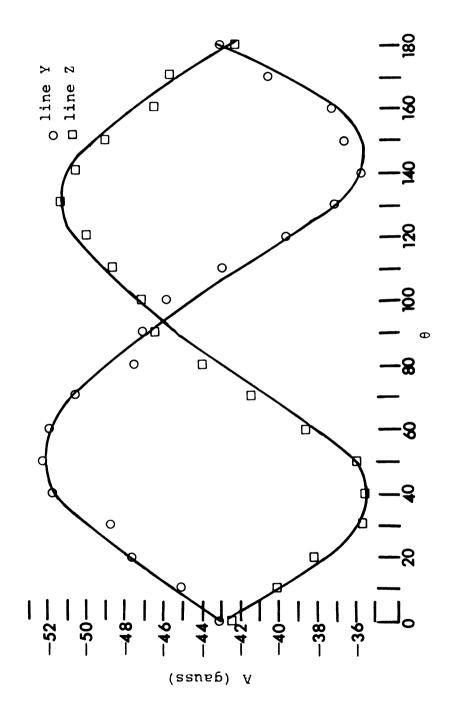
Atom	ρ	ε	
c_1	0.001	-0.053	
c ₂	0.159	-0.036	H 7¢ / H
С ₃	-0.053	0.034	
C ₄	0.214	-0.145	6 2
c ₅	-0.065	0.054	5 3
с ₆	0.187	-0.108	~
c ₇	0.489	0.028	
0	0.067	-0.774	



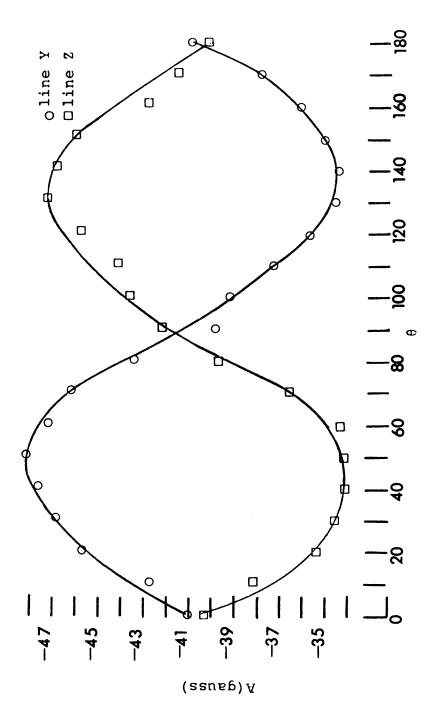
The wing lines of an ESR spectrum at room temperature of dl-mandelic acid irradiated at 77°K. Figure 11.



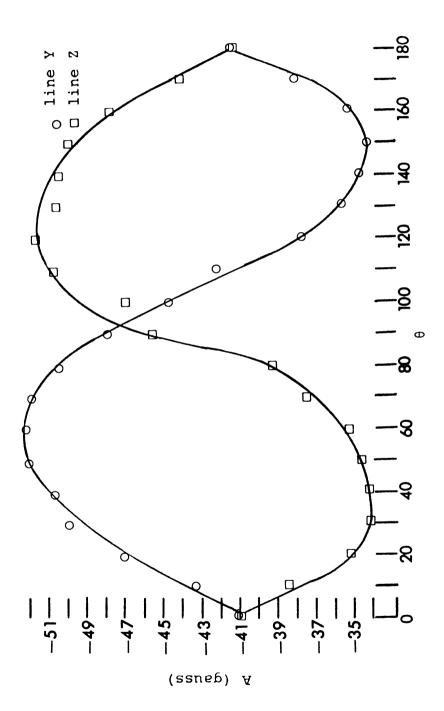
Plot of line positions for the cyclohexadienyl-glycolic acid radical as a function of field orientation in the ca plane. Figure 12.



The CH₂ hyperfine splittings of the cyclohexadienyl-glycolic acid radical vs. angle of rotation in the bc plane. Figure 13.



The CH_2 hyperfine splittings of the cyclohexadienyl-glycolic acid radical $\overline{\text{vs.}}$ angle of rotation in the ca plane. Figure 14.



The CH₂ hyperfine splittings of the cyclohexadienyl-glycolic acid radical vs. angle of rotation in the ab plane. Figure 15.

largest triplet splitting to the two meta protons, and the smallest triplet splitting to the two ortho protons.

This second radical is found under more stringent conditions than the main radical. Irradiation of <u>dl</u>-mandelic acid at room temperature gives the main radical but not the second radical. Irradiation of <u>d</u>-mandelic or <u>l</u>-mandelic acid at either 77°K or room temperature appear to give the main radical. The lines of the side radical, if formed, are considerably weaker than in the case of its formation when <u>dl</u>-mandelic acid is irradiated at 77°K.

B. g-Value and A-Tensor Evaluation

In the ab plane, the isofrequency plot for the side radical showed a clear pattern of twelve lines paired into two sets of six lines. This is shown in Figure 12. The ortho proton splitting was discernable only on some outer lines for some orientations. The other planes had similar isofrequency plots, but only the outer line positions could be clearly followed throughout the rotation. The A-value plots for the CH₂ splitting are shown in Figures 13-15 where the plots are labelled according to the scheme in Table 6.

The data from the isofrequency plots were not precise enough to determine any g-tensor anisotropy. The isotropic value for g was calculated to be 2.0026.

The anisotropy of the CH₂ splitting was considerable. We used the same procedure as described for the alpha-hydroxybenzyl radical to determine the tensor

parameters. There were two A-plot curves for each rotation. This gave eight combinations of lines. One combination gave a drastically lower fitting-error than the others. The eigenvectors of this site were transformed into the eigenvectors of the other three sites by performing the three twofold screw axis operations on them. When these theoretical plots were considered together, they accounted for all of the A-value curves. The principal values and direction cosines of the radical for all four sites are shown in Table 7 and the various site overlappings are shown in Table 6.

C. Variable-Temperature Study

A variable temperature ESR study of the cyclohexadienyl-glycolic acid radical was made. The Q-band instrument was used and the temperature was varied from -150°C to +120°C. As in the case of the alpha-hydroxybenzyl radical, no significant differences were observed in the spectra with change in temperature.

V. Electron Irradiation at 77°K

A single crystal of <u>dl</u>-mandelic acid was irradiated at 77°K with a dose of 6 X 10^7 rads using the 1 Mev electron source described in the Experimental section. This treatment caused the crystal to turn slightly yellow as was the case on γ -irradiation. The spectra were identical to the ones obtained from γ -irradiation at 77°K.

VI. d-Mandelic Acid and l-Mandelic Acid Irradiation

d-Mandelic acid and 1-mandelic acid in powdered form were obtained from Aldrich Co. All crystals were grown from saturated aqueous solutions by slow evaporation. The crystal system of d-mandelic acid was reported to be monoclinic while that of 1-mandelic acid was orthorhombic. The morphology of the d-mandelic acid crystals agreed with that reported in the literature and this was similarly true for the 1-mandelic acid crystals.

d-Mandelic acid crystals were γ-irradiated at room temperature and their spectra were taken on the Q-band spectrometer at various orientations. These spectra had the same type of seven-line pattern with no side peaks as was found for the case of dl-mandelic acid irradiated at room temperature. When d-mandelic acid was irradiated at 77°K, it still showed the same spectra with no side peaks while the spectra of dl-mandelic acid irradiated at 77°K would have the extra side peaks. This showed that the alpha-hydroxybenzyl radical is formed in both the d- and dl-mandelic acid crystals at either 77°K or room temperature, but that the cyclohexadienyl-glycolic acid radical is formed only in dl-mandelic acid at 77°K an never in d-mandelic acid.

The same procedure was applied to $\underline{1}$ -mandelic acid with the same results. Only the alpha-hydroxybenzyl

radical is formed when $\underline{1}$ -mandelic acid is irradiated at 77°K or room temperature.

DISCUSSION

I. Alpha-Hydroxybenzyl Radical

The alpha-hydroxybenzyl radical appears to be formed by the removal of a carboxyl group from a <u>d</u>- or <u>l</u>-mandelic acid molecule. It is assumed that the hydrogen and hydroxy groups would move from their original tetrahedral configuration about the central carbon atom to give a planar species.

To check the geometry of this radical, energy calculations were made for various configurations using INDO. 105 At first, we varied the positions of the CHOH atoms in the plane of the benzene ring using previously determined parameters for the benzyl radical 106 until an energy minimum was reached. It was then found that any rotation of the CHOH group produced a higher energy. Therefore, INDO calculations would predict a planar radical. The final parameters which minimized the energy are shown in Figure 16.

As was discussed in the section on Results, the central isofrequency lines were accounted for by assuming that there were two sets of four sites. In each group, the four sites were related by the three twofold

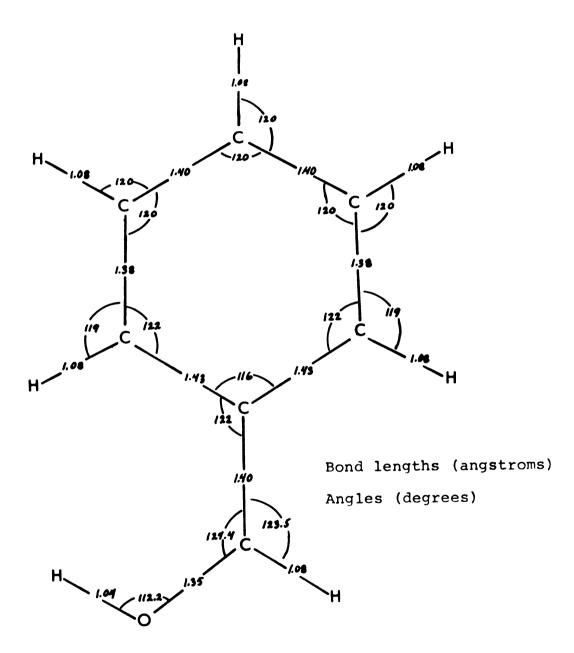
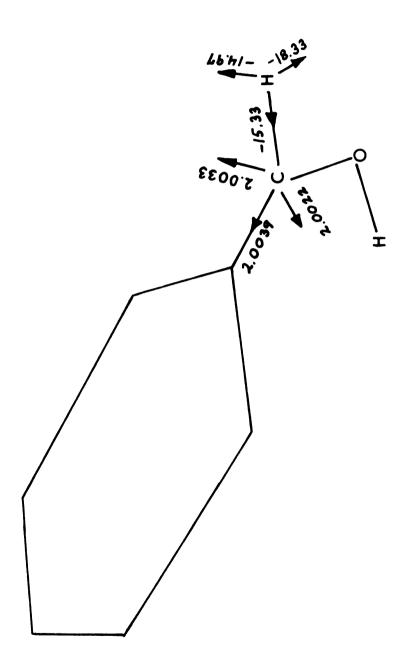


Figure 16. The atom positions of the planar alphahydroxybenzyl radical as calculated by INDO.



The relationship between the eigenvectors of the g and A tensors and the geometry of the planar alpha-hydroxybenzyl radical. The g = 2.0033 and A(H $_{\alpha}$) = -14.97 directions are perpendicular to the plane of the radical and the remaining eigenvectors are in the plane (the geometry of the radical is assumed to be as in Figure 16). Figure 17.

Cyclohexadienyl-glycolic acid radical

Figure 18. A possible scheme for the formation of the two radicals in the irradiation of $\underline{\text{dl}}$ -mandelic acid at 77°K.

screw axes. The undamaged crystal had two sets of four molecules per unit cell, one set being <u>d</u>-mandelic acid molecules and the other being <u>l</u>-mandelic acid molecules. We could deduce then that sites 1,2,3, and 4 of Table 3 correspond to the <u>d</u>-mandelic acid species and sites 5,6,7, and 8 correspond to the <u>l</u>-mandelic acid species, or vice versa.

In the undamaged crystal, the d- and l-mandelic acid molecules are related by a center of inversion. This would require that the benzene ring plane of each of the four sites of the d-mandelic acid molecules must be parallel to the benzene ring plane of a corresponding 1-mandelic acid molecule. Because the alpha-hydroxybenzyl species ia a pi-electron radical, we would expect that one of the principal axes of the g tensor would be perpendicular to the radical plane and thus to the benzene ring plane. if the benzene ring planes did not reorient when the crystal was damaged, we would expect that one eigenvector in each of the sites 1,2,3, and 4 would be parallel to the eigenvectors in each of the sites 5,6,7, and 8. evident from Table 3, that this is not the case. We would conclude that the benzene ring planes change their orientation significantly as a result of the radiation.

Previous calculations of the spin densities for the alpha-hydroxybenzyl radical have been made 107 by using McLachlan's approximate self-consistent field method. 108

An "excess charge density" was also calculated by using the relation proposed by Colpa and Bolton, 109, 110

$$a = (Q + K\varepsilon)\rho$$
,

where a is the isotropic proton hyperfine coupling constant, E the excess charge density, p the unpaired electron spin density on the adjacent carbon atom, and Q and K are constants that were chosen to be -30 gauss and -15 gauss, respectively, to give the best fit to the values of a. This relationship was used instead of McConnell's equation because it produces better results for radicals in which there is an appreciable excess charge, or considerably different excess charges at various sites of the radical, both conditions of which apply to the alpha-hydroxybenzyl radical. The results are listed in Table 8.

It was found that the relationship between the eigenvectors of the g and A tensors could be related to the geometry of the molecule. This is shown in Figure 17, where the principal g and A values correspond to those in Table 3. In this figure, the eigenvectors of the g tensor point so that g_{33} is perpendicular to the CHOH plane, $g_{11}=g_{\max}$ points along the exocyclic carbon-carbon bond, and $g_{22}=g_{\min}$ is orthogonal to g_{11} and g_{33} . Assuming this, it was then found that the eigenvectors of the A tensor of the alpha hydrogen point so that $A_{33}=A_{\min}$ is perpendicular to the CHOH plane within 2°, A_{22} points along the C-H bond within 15°, and $A_{11}=A_{\max}$ is orthogonal to A_{11} and A_{33} .

If we subtract the isotropic value of -16.21 gauss from the principal values of A(H₂) in Table 3, we obtain (-2.12,+0.88,+1.24) gauss for the anisotropy of the alpha-proton. The typical values for alpha-proton anisotropy are (-10.0,+10) gauss. 26 One theoretical approach 111 to calculating the anisotropy approximates it as a magnetic dipole interaction between the hydrogen and the electron spin magnetization that is distributed in the 2s and 2p atomic orbitals on the neighboring carbon atom. This treatment gives values of (-14,-2,+15) gauss for a case of one pi electron on the adjacent carbon atom. we consider the dipole effect to be proportional to the unpaired spin density on the carbon atom and use the value of 0.489 from Table 8, we would still expect theoretically an anisotropy of (-5,0,+5) gauss, which is considerably greater than measured experimentally. Considering the intransigence of the g and A tensors to normal analysis, and the uncertainties in determining the parameters from the experimental information used, we might expect that the calculated anisotropy values have compounded uncertainties associated with them.

II. Cyclohexadienyl-Glycolic Acid Radical

The cyclohexadienyl-glycolic acid radical appears
to be formed by the addition of a hydrogen atom at the para
position of a d- or l-mandelic acid molecule. This extra

hydrogen atom could come from the dissociation of a free carboxyl group into CO₂ and H, where the carboxyl group was previously removed from a <u>d</u>- or <u>l</u>-mandelic acid molecule in forming the alpha-hydroxybenzyl radical discussed above.

There are eight possible sites in the undamaged crystal, but only four sites are distinct in ESR spectra for the cyclohexadienyl-glycolic acid radical as compared to eight sites for the alpha-hydroxbenzyl radical. would imply that the A tensors for the former radical are paired together while they are not for the latter radical. The A tensor for the CH2 group would obviously be fixed with respect to the benzene-ring plane. As discussed previously, the d- and l-mandelic acid molecules are related by a center of symmetry so that the A tensors associated with these molecules would have the same eigenvectors if the benzene rings did not reorient. can conclude that the benzene rings did not significantly reorient themselves upon irradiation to form the cyclohexadienyl-glycolic acid radical. A possible scheme for the formation of the alpha-hydroxybenzyl and cyclohexadienyl-glycolic acid radicals is shown in Figure 18.

III. Summary

The ESR spectra of the radicals produced in single crystals of $\underline{d1}$ -mandelic acid by irradiation with γ -rays have been obtained and analyzed. The alpha-hydroxybenzyl radical and the cyclohexadienyl-glycolic acid radical are formed. The alpha-hydroxybenzyl radical appears to be planar, its benzene ring having reoriented during the radical formation process. The cyclohexadienyl-glycolic acid radical appears to be formed only at 77°K and the hyperfine splitting tensors of the \underline{d} and $\underline{1}$ radicals are parallel.

PART I

REFERENCES

REFERENCES

- 1. C. Gorter, Physica 3, 995 (1936).
- I. Rabi, J. Zacharias, S. Millman, and P. Kusch, Phys. Rev. 53, 318 (1938).
- 3. E. Zavoisky, J. Phys. USSR 9, 211 (1945).
- 4. E. Purcell, H. Torrey, and R. Pound, Phys. Rev. <u>69</u>, 37 (1946).
- 5. F. Bloch, W. Hansen, and M. Packard, Phys. Rev. 69, 127 (1946).
- 6. B. Kozyrev and S. Salikhov, Doklady Akad. Nau, SSSR 58, 1023 (1947).
- 7. R. Penrose, Nature (London) 163, 992 (1949).
- 8. D. Ingram, Proc. Phys. Soc. (London) A62, 664 (1949).
- A. Holden, C. Kittel, R. Merritt, and W. Yager, Phys. Rev. <u>75</u>, 1614 (1949).
- 10. A. Abragam and M. Pryce, Proc. Roy. Soc. (London) A206, 164 (1951).
- 11. E. Schneider, M. Day, and G. Stein, Nature (London) 168, 644 (1951).
- 12. J. Uebersfeld and E. Erb, Compt. Rend. 242, 478 (1956).
- 13. G. Feher, Phys. Rev. 103, 834 (1956).
- 14. C. Hutchison Jr. and B. Mangum, J. Chem. Phys. 29, 952 (1958).
- 15. T. Cole, C. Heller, and H. McConnell, Proc. Natl. Acad. Sci. U.S. 45, 525 (1959).

- 16. D. Ghosh and D. Whiffen, Mol. Phys. 2, 285 (1959).
- 17. I. Miyagawa and W. Gordy, J. Chem. Phys. <u>30</u>, 1590 (1959).
- 18. B. Bleaney and K. Stevens, Rep. Prog. Phys. <u>16</u>, 108 (1953).
- 19. K. Bowers and J. Owen, Rep. Prog. Phys. 18, 304 (1955).
- 20. B. Bleaney, Phil. Mag. 42, 441 (1951).
- 21. D. Whiffen, Quart. Rev. 12, 250 (1958).
- 22. A. Carrington and H. Longuet-Higgins, Quart. Rev. 14, 427 (1960).
- 23. A. Carrington, Quart. Rev. 17, 67 (1963).
- 24. J. Wertz, Chem. Rev. 55, 829 (1955).
- 25. G. Russell, Science 161, 423 (1968).
- 26. J. Morton, Chem. Rev. 64, 453 (1964).
- 27. D. Eargle, Analyt. Chem. 40, 303R (1968).
- K. Sales, Adv. in Free Rad. Chem. 3, 139 (1969).
- 29. M. C. R. Symons, Adv. Phys. Organic Chem. <u>1</u>, 284 (1963).
- 30. R. Norman and B. Gilbert, Adv. Phys. Organic Chem. 5, 53 (1967).
- 31. J. Kochi and P. Krusic, "Electron Spin Resonance of Free Radicals in Non-aqueous Solutions," in Chemical Society, Special Publication #24, London (1970).
- 32. Annuals Reviews of Physical Chemistry, 1955-1964, 1966-1969, 1972.
- 33. Annual Reports of the Chemical Society, 1957, 1960, 1962, 1964, 1966-1971.
- 34. Symposium on Electron Spin Resonance, East Lansing, Michigan, 1-3 August, 1966. (Also contained in the first issue of J. Phys. Chem. 71 (1967)).
- 35. Fifth Annual George H. Hudson Symposium, Plattsburg, New York, 20-22 October, 1969.

- 36. Second ESR Conference, Athens, Georgia, 7-9 December, 1970. (Also contained in the 22nd issue of J. Phys. Chem. 75 (1971)).
- 37. T. Yen, "Electron Spin Resonance of Metal Complexes,"
 (Symposium on ESR of Metal Chelates at the Pittsburgh Conference on Analytical Chemistry and Applied
 Spectroscopy, Cleveland, Ohio, 4-8 March, 1968),
 Plenum Press, New York (1969).
- 38. C. Coogan, N. Ham, S. Stuart, J. Pilbrow, and G. Wilson, "Magnetic Resonance," (Proceedings of the International Symposium on Electron and Nuclear Magnetic Resonance, Melbourne, Australia, 11-15 August, 1969), Plenum Press, New York (1970).
- 39. B. Bielski and J. Gebicki, "Atlas of Electron Spin Resonance Spectra," Academic Press, New York (1967).
- 40. H. Fisher, "Landolt-Börnstein, New Series Gp. II," Vol. 1, "Magnetic Properties of Free Radicals," Springer-Verlag, Berlin (1965).
- 41. A. Carrington and A. McLachlan, "Introduction to Magnetic Resonance," Harper, New York (1967).
- 42. J. Wertz and J. Bolton, "Electron Spin Resonance," McGraw-Hill, New York (1972).
- 43. C. Poole Jr. and H. Farach, "Theory of Magnetic Resonance," John Wiley, New York (1972).
- 44. C. Slichter, "Principles of Magnetic Resonance," Harper, New York (1963).
- 45. A. Abragam and B. Bleaney, "Electron Paramagnetic Resonance of Transition Ions," Oxford University Press, London (1970).
- 46. J. Griffith, "The Theory of Transition-Metal Ions," Cambridge University Press, London (1961).
- 47. C. Poole Jr., "Electron Spin Resonance," Interscience, New York (1967).
- 48. R. Alger, "Electron Paramagnetic Resonance: Techniques and Applications," Wiley, New York (1968).
- 49. H. McConnell and D. Chestnut, J. Chem. Phys. 28, 107 (1958).
- 50. H. McConnell, J. Chem. Phys. 28, 1188 (1958).

- 51. J. Colpa and J. Bolton, Mol. Phys. 6, 273 (1963).
- 52. J. Bolton, J. Chem. Phys. 43, 309 (1965).
- 53. G. Giacometti, P. Nordio, and M. Pavan, Theoret. Chim. Acta 1, 404 (1963).
- 54. R. Moss and G. Fraenkel, J. Chem. Phys. 50, 252 (1969).
- 55. H. McConnell and J. Strathdee, Mol. Phys. 2, 129 (1959).
- 56. D. Ghosh and D. Whiffen, J. Chem. Soc., 1869 (1960).
- 57. E. Stone and A. Maki, J. Chem. Phys. 37, 1326 (1962).
- 58. A. Horsfield, J. Morton, and D. Whiffen, Mol. Phys. $\underline{4}$, 425 (1961).
- 59. L. Kispert, Ph. D. Thesis, Michigan State University, East Lansing, Michigan (1966).
- 60. J. Watson, Ph. D. Thesis, Michigan State University, East Lansing, Michigan (1970).
- 61. M. Hammermesh, "Group Theory and Its Application to Physical Problems," Addison-Wesley, Reading, Mass. (1962), pp. 86-87.
- 62. J. Jackson, "Classical Electrodynamics," John Wiley, New York (1967), pp. 137, 146, 148.
- 63. E. Wigner, "Group Theory and Its Application to Quantum Mechanics of Atomic Spectra," Academic Press, New York (1959), pp. 326-327.
- 64. A. Abragam and B. Bleaney, op. cit., pp. 646-648.
- 65. E. Wigner, op. cit., pp. 158-161 (Note that the S and S_z matrices are defined differently).
- 66. J. Greenstadt, "Mathematical Methods for Digital Computers," (A. Ralston and H. Wilf, Eds.), John Wiley, New York (1960), Vol. I, p. 84.
- 67. A. Abragam and B. Bleaney, op. cit., pp. 653-656.
- 68. E. Fermi, Z. Phys. 60, 320 (1930).
- 69. F. Milford, Am. J. Phys. 28, 521 (1960), (Note that g_e is assumed to be exactly 2).

- 70. A. Carrington and A. McLachlan, op. cit., pp. 81-82.
- 71. C. Slichter, op. cit., pp. 10-12.
- 72. C. Møller, "The Theory of Relativity," Oxford University Press, New York (1952), pp. 53-56.
- 73. W. Furry, Am. J. Phys. 23, 517 (1955).
- 74. A. Carrington and A. McLachlan, op. cit., pp. 29-30.
- 75. A. Carrington and A. McLachlan, op. cit., pp. 64-66.
- 76. J. Jackson, op. cit., pp. 148-150.
- 77. C. Slichter, op. cit., pp. 65-68.
- 78. A. Abragam and B. Bleaney, op. cit., p. 167.
- 79. C. Slichter, op. cit., pp. 161-171.
- 80. M. Rose, "Elementary Theory of Angular Momentum," John Wiley, New York (1957), pp. 85-88.
- 81. A. Abragam and B. Bleaney, op. cit., p. 166 (Note we have used I and I in place of Ix and I in Equation (3.40c)).
- 82. J. Swalen and H. Gladney, IBM J., 515 (1964), (Note that there is a mistake in Equations (10) and (11) where ϕ and θ should be interchanged).
- 83. A. Abragam and B. Bleaney, op. cit., p. 135.
- 84. A. Abragam and B. Bleaney, op. cit., pp. 167-171.
- 85. R. McClung, Can. J. Phys. $\underline{46}$, 2271 (1968), (Note that the relationships between our A and ϕ and his are A(our) = \cancel{A} (his) and ϕ (our) = 180° - ϕ (his)).
- 86. W. Lin, Mol. Phys. <u>25</u>, 247 (1973).
- 87. A. Abragam and B. Bleaney, op. cit., pp. 157, 171, 181, 182.
- 88. A. Lund and T. Vänngård, J. Chem. Phys. <u>42</u>, 2979 (1965).
- 89. B. Taylor, W. Parker, and D. Langenberg, Rev. Mod. Phys. <u>41</u>, 375 (1969).

- 90. L. Buss and L. Bogart, Rev. Sci. Instr. 31, 204 (1960).
- 91. H. Rose, Analytical Chem. 24, 1680 (1952).
- 92. M. Woolfson, "X-ray Crystallography," Cambridge University Press, Cambridge (1970).
- 93. D. Schonland, Proc. Phys. Soc. (London) 73, 788 (1959).
- 94. M. Rose, op. cit., pp. 50-51.
- 95. M. Rose, op. cit., p. 65 (Equation (4.43)).
- 96. "International Tables for X-ray Crystallography,"
 Kynoch Press, Birmingham, England (1969), Vol. I,
 p. 150.
- 97. H. Fischer, Z. Naturforsch. 20, 488 (1965).
- 98. R. Livingston and H. Zeldes, J. Chem. Phys. <u>44</u>, 1245 (1966).
- 99. R. Wilson, J. Chem. Soc. (B), 528 (1968).
- 100. S. Ohnishi, T. Tanei, and I. Nitta, J. Chem. Phys. <u>37</u>, 2402 (1962).
- 101. R. Fessenden and R. Schuler, J. Chem. Phys. <u>38</u>, 773 (1963).
- 102. R. Fessenden and R. Schuler, J. Chem. Phys. <u>39</u>, 2147 (1963).
- 103. P. Groth, "Chemische Krystallographie," Wilhelm Engelmann, Leipzig (1917), Vol. IV, p. 559.
- 104. P. Groth, "Chemische Krystallographie," Wilhelm Engelmann, Leipzig (1917), Vol. IV, p. 560.
- 105. J. Pople and D. Beveridge, "Approximate Molecular Orbital Theory," McGraw-Hill, New York (1970); QCPE #142 from Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, Ind. 47401.
- 106. H. Benson and A. Hudson, Mol. Phys. 20, 185 (1971).
- 107. R. Wilson, J. Chem. Soc. (B), 84 (1968).
- 108. A. McLachlan, Mol. Phys. 3, 233 (1960).

- 109. J. Colpa and J. Bolton, Mol. Phys. <u>6</u>, 273 (1963).
- 110. J. Bolton, J. Chem. Phys, <u>43</u>, 309 (1965).
- 111. H. McConnell and J. Strathdee, Mol. Phys. 2, 129 (1959).

PART I

APPENDIX

COMPUTER LISTING OF SUBROUTINES USED TO

DETERMINE THE g AND A PARAMETERS FROM

TENSOR VARIATIONS

APPENDIX

COMPUTER LISTING OF SUBROUTINES USED TO DETERMINE THE g AND A PARAMETERS FROM TENSOR VARIATIONS

```
SUBROUTINE MINN
      DIMENSION XX(10)+LPOS(10)+SDCQS(10)+IVECT(10)
      COMMONZGRADZIGRAD, GRAD, GCOS (1)
      COMMON/XREG/XREG(1)/SCALE/SCALE(1)/LOCATE/V+X(1)
      COMMON/PARAGEN/NDIM+KIN+KOUT+DIST+DISTMX+VM
      COMMON/MINN/KDERV.NVDTH.NGRAD
      COMMON/TIME/TIMELIM.TREG.TEND.ANOW.IMP.IPP.IVP.IXP
      COMMON/TITLE/ITITLE (%) *NDATE (3)
C THIS SUPROUTINE IS A GENERAL POUTINE FOR LOCATING THE MINIMUM OF A
C FUNCTION OF ANY NUMBER OF PARAMETERS. ITS BASIC METHOD IS TO USE THE
C SUBROUTINE PARAGEN WHICH WILL SEARCH FOR A MINIMUM IN ANY GIVEN
C DIRECTION BY FITTING THE CURVE TO A PARABOLA. THE MAIN PROGRAM
C CONSISTS OF METHODS OF DETERMINING IN WHICH DIRECTION PARAGEN SHOULD
C SEARCH.
C THIS PROGRAM REQUIRES: PARAGEN. VALUE. TIME . NORMGRD. CALNDER.
C LABELLED COMMONS USED: /GRAD/+/X8EG/+/LOCATE/+/SCALE/+/PARAGEN/+/MINN/
 */TIME/*/TITLE/*
C PUT THE ROUTINE-DETERMINING INSTRUCTIONS IN CENTRAL EVALUATION CENTER.
   DIST IS THE LENGTH OF A NORMAL STEP.
   KDERV = (0.1) WHEN THE SUBROUTINE VALUE (DOES NOT.DOES) CALCULATE
C
     THE GRADIENT COMPONENTS.
C
C
   LPOS(NVDIM) TELLS WHICH OF THE DIMENSION NUMBERS 1.2.....NDIM ARE TO
     BE VARIED.
C
   NDIM IS THE NUMBER OF PARAMETERS IN THE SUBROUTINE VALUE.
   NGRAD IS THE NUMBER OF TIMES THE GRADIENT METHOD IS USED BEFORE THE
     PROGRAM USES THE UNIFORM-BASIC-DIRECTIONS POUTINE.
C
   NVDIM IS THE NUMBER OF THE NDIM PARAMETERS WHICH ARE TO BE VARIED.
   SCALE (NDIM) APE THE SCALING FACTORS TO BE USED IN THE FOURTION IN
C
     SUBPOUTINE VALUE: XB(1)=XBEG(1)+SCALE(1)+XA(1)+ WHERE XA IS BROUGHT
     IN BY MINN AND VALUE USES THE VARIABLES XB.
  TIMELIM IS THE NUMBER OF CENTRAL-MEMORY SECONDS FOR THE JOB.
C
   TBEG. TEND ARE THE NUMBERS OF SECONDS OF HIGH-OUTPUT FROM THE
     BEGINNING OF END OF THE PROGRAM.
   XBEG(NOIM) ARE THE BEGINNING VALUES OF THE NOIM COMPONENTS OF X.
C STOP NUMBERS USED: 101-102-103-104-105-106-107.
C DIMENSIONIZE XX+LPOS+SDCOS+IVFCT+ AS (NZ) WHERE NZ.GE.NDIM.
 1000 FORMAT (1H1.27X.8A10.T124.T2.1X.1A3.# 194.T2.//)
 1001 FORMATITSO. ... MINIMIZATION OF A FUNCTION .... ...
         142. *NOIM. THE NUMBER OF VARIABLES: *. 114.//
     В
         TIA+*NVDIM+THE NUMBER OF VARIABLES WHICH ARE TO BE VARIED:*
     C 114.//. T32.*LPOS.THE VARIABLE NUMBERS TO BE VARIED:*.1014)
 1002 FORMAT( /. T5.*KDERV=(0.1).(NO.YES).DOFS SUBROUTINE VALUE CALCULAT
                                       TID. WHIGHAD . NUMBER OF TIMES THAT T
     AE THE GRADIENT: 4.144 //
     BHE GRADIENT ROUTINE WILL BE USED: *+114+///
     C 144. *XREG. THE REGINNING VALUES OF THE PARAMETERS ARE: *//(123.6615
     D.9./11
 1003 FORMAT(/* T33**SCALE*THE SCALING FACTOR IN THE FOUATION-XH(I)=XBEG
     1(T)+XA(I)#+1H*+*SCALE(I) ARE:#+ //+ (T23+6G15+9+/))
 1004 FORMAT( /. T43. ODIST. THE DISTANCE OF A NORMAL STEP IS: *.1615.9./
     A/. T40. DISTMX. THE MAXIMUM DISTANCE OF A SIEP 15: . 1615.9.//
     B T39. *TIMFLIM. THE TIME LIMIT FOR THE PROGPAY IS: *. IG15.9.//
     C T6.0 TBEG. THE NUMBER OF SECONDS OF HIGH-OUTPUT FROM BEGINNING OF
     DTHE PROGRAM IS: * 1615.9
                                11.
                                        TR. TEND. THE NUMBER OF SECONDS O
     EF HIGH-OUTPUT FROM THE END OF THE PROGRAM IS: . 1615.9.//.
     F1X+27(5H . )+/)
```

```
1185 FORMAT (/.2x.+1185-ANOW.VM =+.1615.9.T115.1615.9)
      INDEX=0 & IPED=0 & IYN=4H NO
      IF (KDERV.EQ.1) IYN=4H YES
      DISTMX=20.0*DIST
      CALL CALNDER (NDATE)
   ... INITIALIZE LPOS
      ITT=0
      DO 10 I=1.NDIM
      IF (SCALE (I) . LE.O.O) GO TO 10
      ITT=ITT+1 % LPOS(ITT)=1
   10 CONTINUE
      PRINT 1000.ITITLE.NDATE
      PRINT 1001.NDIM.NVOIM. (LPOS(L).L=1.NVDIM)
      PRINT 1002.IYN.NGRAD. (XBEG(L).L=1.NDIM)
      PPINT 1003 . (SCALE (L) .L=1 .NDIM)
      PRINT 1004.DIST.DISTMX.TIMFLIM.TREG.TEND
C .... CHECK FOR BAD PARAMETERS ....
      IF (NDIM.LT.1.OR.NDIM.GT.10) STOP 101
      IF (NVDIM.LT.1.OR.NVDIM.GT.10.OR.NVDIM.NE-ITT) STOP 102
      IF (DIST.LT.1.0F-3.0R.DIST.GT.100.0) STOP 103
      IF (NGPAD.L1.0) STOP 104
      IF (TIMELIM.LT.0.0.0R.TIMELIM.GT.500.0) STOP 105
      IF (THEG.LT.0.0.0R.THEG.GT.500.0) STOP 106
      IF (TEND.LT.0.0.OR.TEND.GT.500.0) STOP 107
      CALL THINIT
C ... INITIALIZE THE X VECTOR ...
      DO S 1=1.NDIM
    2 X(1)=0.0
      IGRAD=0
70001 CALL VALUE (X+V)
      GO TO 300
C ..... GRADIENT METHOD ....
   50 CONTINUE
60001 CALL GRADNT (LPOS)
80001 CALL PARAGEN(XX)
      IRED=IRED+1
      IF ((KOUT.AND.1B).NE.1B) IRED=0
      TE (IRED.LT.2) GO TO 52
      IREC=0 % DIST=DIST/2.0 % DISTMX=20.0*DIST
   52 DO 54 I=1.NDIM
   54 X(I)=XX(I)
      V=VP
      GO TO 300
C .... UNIFORM BASIC-DIRECTIONS ROUTINE ...
  160 KIN=0
      DO 195 NONES=1.NVD14
      REN=1.0/SORT (FLOAT (NONES))
      DO 162 IZ=1.NONES
  162 IVFCT(17)=NONES+1-12
      GO TO 172
  164 IOHJ=1 $ IFND=NVDIM
  166 IF (IVECT (IOBJ) .LT. IEND) GO TO 168
      IF (IO9J.GE.NONES) GO TO 195
      INBJ=10B +1 & IFND=IEND-1 & GO TO 166
  168 IVECT(IORJ) = IVECT(JORJ) +1
      IF (IOBJ.E0.1) GO TO 172
      IOBJ1=IOBJ-1 % ISTAND=IVECT(IOBJ)+IOBJ
      DO 170 JN=1+10BJ1
  170 IVECT (JN) = TSTAND-JN
  172 DO 173 IN=1.NOIM
  173 DCOS (JN) = 0.0
  175 NONEST=NONES-1 & T7=IVECT(NONES) & DCOS(LPOS(IZ))=REN
      JIND=SHIFT (IR.NONFS1)
      DO 190 [=1.JIND
      II=I-1 $ [F(NONES1.EQ.0) GO TO 80002
      DO 180 IK=1.NONES1
      AL =REN & IF ((TI.A.1B).EQ.1B) AL =-REN
      IZ=IVECT(IK) & DCOS(LPOS(IZ))=AL
  180 11=11/2
80002 CALL PARAGEN(XX)
```

```
PRINT 1195. ANOW. VM
      DO 186 JY=1.NDIM
  186 X(JY) = XX(JY)
      V=VM $ CALL TIME
  190 CONTINUE
      GO TO 164
  195 CONTINUE
 .... CFNTRAL EVALUATION CENTER ....
  300 INDEX=INDEX+1
      IF (INDEX-NGRAD) 50.50.160
      FND
      SUPROLITINE TIME
      COMMON/TIME/TIMEL IM. TREG. TEND. ANOW. IMP. IPP. IVP. IXP
      GO TO (10.20.30) TARC
   10 ANOW=SECOND(A) & DIF1=ANOW-REG
      IF (DIFL.LT.TBEG) RETURN
      IARC=2 $ IMP=0 $ IPP=-1 $ IVP=0 $ RETURN
   20 ANOW=SECOND(A) & DIFZ=TIMELIM-ANOW
      IF (DIF2.GT.TEND) RETURN
      IARC=3 $ IMP=1 $ IPP=1 $ IVP=1 $ RETURN
      ENTRY TMINIT
      IARC=1 % IMP=1 % IPP=1 % IVP=1 % REG=SECOND(A)
   30 PETURN
      END
      SUBROUTINE GRADNE (1 POS)
      COMMON/LOCATE/V.X(1)/GRAD/IGRAD.GRAD.DCOS(1)
      COMMON/PAPAGEN/NDIM.KIN.KOUT.DIST.DISTMX.VM
      COMMON/MINN/KDERV.NVDIM.NGRAD
      DIMENSION LPOS(10) . XX(10) . SDCOS(10)
C ... THIS SUPPOUTINE CALCULATES THE NORMALIZED GRADIENT OF A FUNCTION O
C OTHER WORDS. THE UNIT VECTOR POINTING IN THE DIRECTION OF STEEPEST ASC
C PEQUIPES I ABELLED COMMON: /LOCATE/*/GRAD/*/MINN/*/PARAGEN/*
C DOOS IS A VECTOR CONTAINING THE RESULTANT COMPONENTS OF THE NORMALIZED
C GRADIENT OR-IN OTHER WORDS. THE DIRECTION COSINES OF THE GRADIENT.
C GRAD IS THE MAGNITHDE OF THE GRAPIENT
C NOTH IS THE NUMBER OF DIMENSIONS IN THE SPACE OF THE FUNCTION
C X IS A VECTOR CONTAINING THE INITIAL COOPDINATES OF THE FUNCTION
C V IS THE VALUE OF THE FUNCTION AT THE INITIAL COORDINATES
C .... DIMENSIONIZE: LPOS(NZ).XX(NZ).SDCOS(NZ) WHERE NZ.GE.NDIM
      IF (NDIM.LE.O.OR.NVDIM.LE.O) GO TO 91
      IF (KDERV.ED.1) GO TO 51
      IGRAD=0 & GPAD=0.0 & DERSTEP=0.01*DIST
      DO 10 I=1.NDIM
      DCOS(1)=0.0
   In XX([)=X([)
      DO 20 I=1.41VDIM
      II=LPOS(1)
      XX(II)=X(II)+DERSTEP
70001 CALL VALUE (XX+VV)
      X \times (II) = X (II)
      DZ = (VV-V)/DERSTEP
      ncos (11) =07
   20 GRAD=GRAD+DZ#DZ
      GRAD=SOPT (GRAD)
      IF (GRAD.FO.O.O) GO TO 91
      DO 30 I=1.NDIM
   30 DCOS(I)=DCOS(I)/GRAD
      RETURN
   51 IGRAD=1
70002 CALL VALUE (X.V)
      00 52 T=1.40T4
      SDCOS(I) = DCOS(I)
   52 DCOS(1)=0.0
```

DO 54 I=1.NVDIM

```
54 DCOS (LPOS (1)) = SDCOS (1)
C ..... RENGRMALIZE THE DOOS VECTOR ...
      IGRAD=0 $ 77=0.0
      DO 56 I=1.NDI4
   56 ZZ=ZZ+DCOS(I) **2
      ZZ=SQRT(ZZ)
      IF (ZZ.EQ.0.0) GO TO 91
      DO 58 I=1.NDIM
   58 DCOS(1)=DCOS(1)/2Z
      RETURN
   91 PRINT 191.ND1M.NVD1M.KDERV.IGRAD.G4AD.7Z.PIST.DERSTEP.I.II.V.V.VV.D7
     1 \cdot (X(L) \cdot L = 1 \cdot N(L) \cdot M(L) \cdot L = 1 \cdot N(L) \cdot M(L)
  191 FORMAT(//.+ ERROR IN GRADNT-NDIM:NVDIM:KDERV:IGRAD:GRAD:7Z = +.
     A 415.2x.2G15.9.//. T16.*DIST.DERSTEP.I.11.V.VV.DZ = *. 2G15.9.2X.
     B215+2x+3615.9+//+T16+*(X(L)+L=1+NDIM)+(LPOS(L)+L=1+NVDIM) = *+
     C (156,4615,9,/))
      STOP 246
      FND
      SUBROUTINE PARAGEN (UU)
      COMMON/GRAD/IGRAD.GRAD.DCOS(1)/LOCATE/V.X(1)
      COMMON/PARAGEN/NDIM.KIN.KOUT.DIST.DISTMX.VM
      COMMON/TIME/IIMELIM.TREG.TEND.ANOW.IMP.IPP.IVP.IXP
      PIMENSION STEP(10) . XX(10) . YY(10) . ZZ(10) . UU(10)
      W.G. WALLER - CHEM DEP. MICH STATE U: 9 JUL 1972 - 175 CARDS
C REQUIRES LARELLED COMMON: /TIME/./LOCATE/./GRAD/./PARAGEN/.
C PENUTPES SUBROUTINE VALUE.
 INPUT: X+V+DCOS+DIST+DDIM+DISTMX+KIN. OUTPUT: KOUT+UU+VM
C PARAGEN IS TO BE USED IN A PROGRAM THAT SEARCHES FOR THE MINIMUM OF A
C FUNCTION OF NOTM VARIABLES. THE FUNCTION LISELE IS WRITTEN AS THE
C SUBROUTINE VALUE (XA.ANS). WHERE XA (NOIM) ARE THE VARIABLES AND ANS IS
C THE FUNCTIONAL VALUE. PARAGEN IS GIVEN A STARTING SET OF PARAMETERS IN C THE NOIM DIMENSIONAL SPACE AND A HORMALIZED VECTOR WHICH MAY POINT
C ALONG THE GRADIENT. PAPAGEN BEGINS BY TAKING A STEP IN THE OPPOSITE
C DIRECTION OF THE VICTOR. IT THEN TAKES A 2ND STEP AND. IDEALLY. FITS
C THE 3 POINTS TO A PAPAROLA. IT STEPS AT THE BOTTOM OF THE PARAROLA AND
C RETURNS THE VALUE OF THE FUNCTION. PARAGEN IS SET UP TO TAKE CARE OF
C ALMOST ANY CONCEIVIBLE SHAPE OF CURVE ALONG WHICH IT WALKS. IT WILL
  ONLY RETURN A NEW POSITION IN THE NDIM DIMENSIONAL SPACE AND A NEW
C FUNCTIONAL VALUE IF IT IS LESS THAN THE FUNCTIONAL VALUE GIVEN TO IT.
C IF IT FINDS TISELE ON A PERFECTLY STRAIGHT LINE. IT WILL PRINT EVERY-
C THING AND STOP.
   XINDIM) ARE THE VALUES GIVING THE INITIAL POSITION IN THE NOIM
     DIMENSIONAL SPACE.
   V IS THE INITIAL VALUE OF THE FUNCTION AT THE INITIAL POSITION.
  DCOS (NDIM) ARE THE VALUES OF THE NORMALIZED VECTOR ALONG WHICH THE
  SUBPOUTINE PARAGEN WILL SEARCH FOR A MINIMUM.
DIST IS THE LENGTH OF THE STEP THAT PARAGEN SHOULD TAKE.
  NDIM IS THE NUMBER OF VARIABLES THAT DEFINE THE FUNCTION.
C
  DISTMX IS THE MAXIMUM REASONABLE DISTANCE TO BE TRAVELLED IN 1 STEP.
   KKIN = (1.0) IF THE VECTOR DOOS(NDIM) (DOES-DOES NOT) POINT ALONG THE
    POSITIVE GRADIENT OF THE FUNCTION.
  KOUT IS A FLAG INTEGER WHICH IS OB UNLESS PARAGEN USES SPECIAL
C
C
     ROUTINES. BIT POSITIONS-1-2-3-4-5-6 APE SET EQUAL TO 1 IF PARAGEN-
     (1).TURNS AROUND.(2).FAILS AT FINAL CHECK-OR GOES TO THE (3).MIDDLE
     +(4).DOUBLE-VALLEY+(5).HILL-WALK. OP (6).CUT-OFF ROUTINES.
  UU(NDIM) REPRESENTS THE FINAL MINIMUM POSITION ALONG THE VECTOR DOOS.
  VM IS THE FINAL VALUE OF THE FUNCTION AT POSITION DU.
C PARAGEN USES ONLY THE VARABLE TPP IN THE LABELLED COMMON /TIME/.
   IPP=(0.1) WHEN (NOTHING.EVERTHING IS TO BE PRINTED. IF IPP=AMOTHER
     NUMBER. THEN ONLY FORMATS 2041-2110-2120-2502-2600 ARE PRINTED.
C DIMENSIONIZE: STEP+XX+YY+77+UU AS (NZ) WHERE NZ IS GREATER THAN OR
C EQUAL TO THE LARGEST VALUE OF NOTM TO BE USED.
 2001 FORMAT (/+T10++.... ENTERING PARAGEN: DIST = +.1G16.9+/+(T34++DCOS
     1 = 0.6616.9./))
 2010 FORMAT(* PARAGEN-V]+V2+XX+YY = *+2615.9+/+(19+5615.9+/))
 2040 FORMAT(/+120++... NO LOWEP VALUE FOUND: ITRY+V1+V2+V3+VM = *+112+
     12x,4G16.9./)
```

```
2041 FORMAT ( /- T10 + GRES .... AFTER & TRIFS AND USING A STEP SIZE OF ...
     11616.9. .. NO LOWER VALUES WERE FOUND .... LEAVING PARAGEN .....
     2550./1
 2042 FORMAT (/. 130.... LEAVING PAPAGEN: V1.V2.V3.V4 = *.4616.9./)
 2100 FORMAT(/.. MIDDIE.PARAGEN2100-IDIV.DSTT.V1.V2.XX.YY.STEP = 4.IS.
     M2x+3G15.9+/+(T14+5G15.9+/))
 2110 FORMAT(//+T26++... POHBLE VALLEY-PARAGEN2119-V1+V2+V3+XX+YY+ZZ = +
     D.3615.9./.(T4.5615.9./))
 2120 FORMAT (/+20X++..... FAILURE AT MIDDLE ROUTINE .....++/)
 2200 FORMAT(/* HILLWALK-PARAGEN2200-ISIFP.V1.V2.V3.XX.YY.77 = *.I5.2X.
     H3615.0./.(T19.5615.9./))
 2502 FORMAT (TS.e... CUTOFF-PARAGEN2502-XSUM = *.1616.9)
 2600 FOUNATIO //-T25....PARAGEN2600-DIVIDER IS ZERO. SO PARAGEN STOPS H
     PERE: V1.V2.V3.VM.DSTT.XX.YY.ZZ.UU.DCOS = 0./.(T8.5G15.9./))
      ISTEP=0 & TIRY=0 & KOUT=08
      IF (TPP.EQ.1) PPINT 2001-DIST. (DCOS(L).L=1.NDIM)
      DSTT=DIST
    2 V1=V
      DO 3 I=1.NDIM
    3 \times (1) = \times (1)
    5 DO 10 I=1.ND[4
      STEP(1) =DSTT*DCOS(1)
   10 YY(I) = XX(I) - STEP(I)
70001 CALL VALUE (YY+V2)
      IF(V2.LT.V1) 16.115
  115 IF (KIN.FO.1) GO TO 100
C.. TURN-AROUND ..
   12 DO 13 I=1.MDIM
      VT=XX(I) $ XX(I)=YY(I) $ STEP(I)=-STEP(I)
   13 YY(I)=VI
      VT=V1 % V1=V2 % V2=VT % DSTT=-DSTT % KOUT=KOUT.OR.18
   16 DO 30 I=1.NDIM
   30 ZZ(I)=YY(I)-STEP(1)
70002 CALL VALUE (77.4V3)
      DIVIDER = VI-V2-V2+V3
      IF (DIVIDER) 200+600+37
   37 DELTA = 0.5*DSTT*(3.0*V1-4.0*V2+V3)/DIVIDER
      IF (ABS (DELTA) . GT. DISTMX) GO TO 500
   38 DO 40 I=1.ND[M
   40 UU(I)=XX(I)+DFLTA+DCOS(I)
70003 CALL VALUE (UU+VM)
C.... FINAL CHECK ..
      (MV+EV+SV) INTHA=ATMV
      TF (VMIN.LT.V) GO TO 42
      TTRY=ITRY+1 3 KOUT=KOUT.OR.28
      IF (IPP.EQ.1) FRINT 2040.ITRY.V1.V2.V3.VM
      IF (ITRY.GE.4) GO TO 41
      DSTT = -0.2°DSTT
      S OT OD
   41 IF (IPP.NE.O) PRINT 2041.DSTT
   42 IF (IPP.EQ.1) PPINT 2042-V1.V2.V3.VM
      IF (VMIN.EQ.VM) RETURN
      IF (VMIN.EQ.V2) GO TO 55
      DO 50 1=1.NOIM
   50 UU(1) = 72(1)
      VM=V3 $ RETURN
   55 DO 60 [=1.NDIM
   60 UU(1)=YY(1)
      VM=V2 & RETURN
C ... MIDDLE ROUTINE ...
  100 IDIV=0 $ KOUT=KOUT.OR.48
      IF(IPP.FO.)) PRINT 2100.IDIV.DSTT.V1.V2.(XX(L).L=1.NDIM).(YY(L).L=
     11.NOIM) . (STEP(L) .L=1.NOIM)
  105 V3=V2 $ DSTT=DSTT/2.0 $ IDIV=IDIV+1
      NIGN+[=] 011 00
      STEP(1)=STEP(1)/2.0 % ZZ(1)=YY(1)
  110 YY([)=XX([)-STFP([)
70004 CALL VALUE (YY+V2)
      IF(V2.LT.V3) GO TO 120
C ..... DOUBLE-VALLEY WARNING .....
```

```
KOUT=KOUT.OP.10H
      IF(IPP.NE.0) PYINT Z110.V1.VZ.V3.(XX(L).L=1.NDIM).(YY(L).L=1.NDIM)
     1 . (77(| ) .L=1 .NDIM)
  120 IF(V2.LT.V1) GO TO 37
      TE(IDIV.LT.3) OF TO 105
      IF (IPP.NE.O) PRINT 2120
      GO TO 12
   ..... HILL-WALK ROUTINE..
  200 ISTEP=ISTEP+1
      IF(IPP.EQ.1) PRINT 2200, ISTEP.V1.V2.V3.(XX(L).L=1.NDIM).(YY(L).L=1
     1 . NDIM) . (ZZ(L) .1. = 1 . NDIM)
      IF (MOD) (ISTEP+3) . EQ. 0) GO TO 210
      MICH-[=] 205 OU
      XX([)=YY([)
  205 YY(1)=ZZ(1)
      V1=V2 $ V2=V3 $ KOUT=KOUT.OR.20B $ GO TO 16
  210 DO 220 I=1.NDIM
  220 \times (1) = 77(1)
      V1=V3 & DSTT=DSTT+DSTT & GO TO 5
C ... CUTOFF POUTINE ...
  500 KOUT=KOUT.OR.40B
      VMIN=AMIN1 (V1+V2+V3)
      IF (VMIN.EQ. V3) GO TO 502
      IF (VMIN.EQ.V1) GO TO 504
      NO 501 [=].ND[M
  501 \times (I) = YY(I)
      GO TO 504
  502 DO 503 1=1.NDIM
  503 \times (1) = 22(1)
  504 IGO=1 $ XNUM=ARS(DFLTA/DISTMX) $ V1=V3
      IF (IPP.NE.O) PRINT 2502."NUM
      IF (XNIM.GT.3.0) GO TO 506
      DST=DFLTA/2.0 % NTIME=2 .. GO TO 520
  506 IF (XNUM.GT.9) GO TO 508
      DST=DFLTA/3.0 $ NTIME=3 $ GO TO 520
  508 DST=SIGN(DISTMX+DFLTA) $ NTIME=2 $ IGO=2 $ GO TO 520
  509 NTIME = IFIX(SORT(XNUM-2.0))
      DST=DFLTA/(FLOAT(NTIME)) & IGO=1 & GO TO 520
  520 NO 525 T=1.NDIM
  525 STEP([)=DST*DCOS([)
      DO 540 J=1.NTIME
      DO 530 [=1.ND[4
  530 YY(1)=XX(1)-STEP(1)
70005 CALL VALUE (YY+V2)
      IF(V2.GT.V1) GO TO 542
      DO 533 IA=1.NDIM
  533 \times (IA) = YY(IA)
      V1=V2
  540 CONTINUE
      GO TO (542+509) IGO
  542 DSTT=SIGN(DIST+DSTT) $ GO TO 5
C .... IF DIVIDER IS ZERD. EVERYTHING IS PRINTED AND PARAGEN STORS.
  600 PRINT 2600.V1.V2.V3.V4.DSTT.(XX(L).L=1.NDIM).(YY(L).L=1.NDIM).(77
     1(L) +L=1 + NOIM) + (UU(L) +L=1 + NOIM) + (DCOS(L) +L=1 + NOIM)
      STOP 600
      END
      SUBPOUTINE VALUE (XA.ANS)
      COMMON/VALUE/QA.OG. XMENT (3) . GMENT (3) . G (3)
      COMMUNIXBEGIXBEG(6)/SCALE/SCALE(6)
      COMMON/GRAD/IGPAD.GRAD.DCOS(6)
      COMMON/TIME/TIMELIM.TREG.TEND.ANOW.IMP.TPP.IVP.TXP
      DIMENSION DEANG(3) . DEGVAL (3) . GX (2) . R (3.3) . XA (6) . XB (6) . DDEANG (6.3) .
     DDDFGVAL (6.3) . DGX (2) . DR (3.3) . DG(3) . DXH(6) . N(3) . SAVE (2.3)
      DATA RD/57.2957795131/
C REQUIRES LAHELLED COMMON: /VALUE/*/XBFG/*/SCALE/*/GRAD/*/TIME/*
```

C ALL VALUES IN THE LARELLED COMMONS MUST BE PREVIOUSLY INITIALIZED

C EXCEPT FOR GRAD AND DOOS (6) IN /GRAD/.

```
C NO OTHER SUBROUTINES ARE PEOUTRED.
C THPUT: XA(6). OUTPUT: ANS.
C STOP NUMBERS USED: 1234.
  THIS SUPPOUTINE IS TO BE USED WITH A 6 PARAMETER MINIMIZATION PROGRAM
C TO DETERMINE THE PRINCIPLE G-VALUES AND THE IR DIRECTION COSINES FROM 3
C ISOFPENDENCY PLOIS. IT DETERMENTS HOW WELL THE THEORETICAL CURVES
C PRODUCED FROM THE INPUT PARAMETERS FIT THE EXPERIMENTAL ISOFREQUENCY
C PLOTS. IT ALSO DETERMINES THE GRADIENT OF THAT VALUE. THE DIRECTION
  COSINES OF THE GUADIENT ARE IN DCOS(6) AND GRAD CONTAINS THE MAGNITUDE
C OF THE CRADIENT.
   IGRAD=(0.1) WILL THE GRACTENT BE CALCULATED: (NO.YES).
   *B(K) VALUES ARE GOTTEN FROM SCALING AND PEPOSITIONING THE INPUT
     XA(6) VALUES. A.B.C=XR(1.2.3) APE 3 FULFP ANGLES THAT ARE USED TO
     PRODUCE A POTATION MATRIX R(3.3).
   G(3) IS A VECTOR CONTAINING THE 3 PRINCIPLE G. VALUES.
   XH (4.1.6) APE THE 3 VARTARIE G-VALUE PARAMETERS. THE 3 ELEMENTS OF
     G(3) APE EQUATED TO XB(4.5.6).
   R(3.3) IS THE UNITARY MATRIX THAT IS PRODUCED FROM A.B.C.
   ANS IS THE RESULTANT EPPOP ASSOCIATED WITH THE INPUT PARAMETERS.
   QA IS THE STANDARD DEVIATION IN THE ANGLE WHERE G-MAXIMUM OCCURS.
   QG IS THE STANDARD DEVIATION OF THE G-VALUE RANGE FROM G-MAXIMUM TO
    G-HINIMUM.
   XMENT IS A VECTOR CONTAINING THE EXPERIMENTAL G-MAX ANGLES FOR THE 3
     PLAMES OF ROTATION.
   GMENT IS A VECTOR CONTAINING THE EXPERIMENTAL G-VALUE RANGES FOR THE
     3 PLANES OF ROTATION.
  998 FORMAT (* VALUE-998:GRAD.DCOS = *.7615.9)
  999 FORMATIO VALUE-999. A.R.C.G.DEANG. DEGVAL FRANG. ERGVAL ANS =0.//.
     A2x+6(615.9+2*)+//+2*+6(615.9+2x)+//+70X+3(615.9+2X))
54321 FORMAT (* EPROR IN VALUE: *./. (T10.5615.9./))
      DO 3 1=1.6
    3 XB(1) = XREG(1) + XA(1) + SCALE(1)
      A=XB(1) $ B=XB(2) $ C=XB(3) $ G(1)=XP(4) $ G(2)=XB(5) $ G(3)=XB(6)
      CA=COS(A) $ $A=$IN(A) $ CB=COS(B) $$B=$IN(B) $CC=COS(C) $$C=$IN(C)
      R(1+1) = CA+CH+CC-SA+SC
      R(1+2) = SA4CB4CC+CA4SC
      R(1\cdot 3) =
                 -SB#CC
      R(2+1) =-CA*CB*SC-SA*CC
      R(2,2) =-SA&CB&SC+CA&CC
      P(2,3) =
                  SB#SC
      R(3:1) = CA*SR
      P(3.2) = SA#SB
      R(3.3) =
                 CH
C .... UNITARY CHECK ...
      ERROR-0.0
       no 10 (=1.3 $ no 10 J=1.3
      T = R(I \cdot I) \cdot R(J \cdot I) \cdot R(I \cdot 2) \cdot R(J \cdot 2) \cdot R(I \cdot 3) \cdot R(J \cdot 3)
      IF (I.FQ.J) T=T-1.0
   10 ERPOR=ERROR+ABS(T)
      IF (ERROR.GT.1.0F-7) GO TO 12345
      N(1)=1 + N(2)=2 + N(3)=3
      DO 222 TP=1.3
      MZ=N(1) $ N(1)=N(2) $ N(2)=N(3)$ N(3)=N7 $ F1=0.0 $ F2=0.0
      no 12 J=1.3
      F1=F1+G(N(J)) **2*P(N(J)+N(1)) *R(N(J)+N(?))
   12 F2=F2+G(N(J)) ##2*(P(N(J)+N(1)) ##2-R(N(J)+N(2)) ##?)
      F2=F2/2.0
      X = (\Delta T \Lambda N(F1/F2))/2.0  S CX=COS(X)  S SX=SIN(X)
      00 20 11=1.2
      GX(II) = 0.0
      DO 18 J=1.3
      SAVE(11 \cdot J) = G(N(J)) \cdot G(N(J) \cdot G(N(J)) \cdot G(N(J)) \cdot G(J) \cdot G(J) \cdot G(J)
   18 GX(II)=GX(II)+SAVF(II+J)*02
      SO CONTINUE
      CX=-CX & SX=-SX,
      XD = XPRD S IREV=0
      IF (GX(1).GF.GX(2)) GO TO 21
      XD = XD-SIGN(90.0.XD)    IREV=1
      77 = GX(1) + GX(1) = GX(2) + GX(2) = ZZ
```

```
21 DEANG(IP) = ARS(XD) - YMENT(IP) & DEGVAL(IP) = GX(1) - GX(2) - GMENT(IP)
      $55 01 00 (0.03.CA91) 41
C ... CALCULATE GRADIENT
      nn 30 [=1.6
   30 DXR(I)=0.0
      DO 100 IJK=1.6
      DxR(I IK) =SCALE(IJK) & DA=DxR(1) & DR=DxR(2) & DC=DXR(3)
      DG(1)=DYB(4) $ DG(2)=DXB(5) $ DG(3)=DXR(6)
      DCA=-CAPDA & DSA=CAPDA & DCB=-SBPDB & DSH=CBPDB & DCC=-SCPDC
      DSC=CC+DC
      DR(1+1)=DCA+CB+CC+CA+DCR+CC+CA+CB+DCC-DSA+SC+SA+DSC
      PR(1+2)=PSA@CR@CC+SA@DCR@CC+SA@CR@DCC+DCA@SC+CA@DSC
      DP (1 + 3) = - DSB + ( C - SB + DCC
      LR (2+1) =-DCA*CR*SC-CA*DCH*SC-CA*CR*DSC-DSA*CC-SA*DCC
      DR(2+2) =-DSA@CB@SC-SA@DCB@SC-SA@CB@DSC+DCA@CC+CA@DCC
      DR (2+3) =DSH+SC+SR+DSC
      DR (3+1) =DCA+SR+CA+DSR
      DR (3+2) = DSA4SB+SA4DSB
      DR (3+3) = DCB
      DF1=0.0 $ DF2=0.0
      DO 40 J=1.3
      G_{J}=G(N(J)) $ DG_{J}=DG(N(J)) $ R_{J}1=R(N(J)*N(1)) $ DR_{J}1=DR(N(J)*N(1))
      RJ2=R(N(J)+N(Z)) + DRJ2=DR(N(J)+N(Z))
      DF1=DF1+GJ@(2.0@DGJ@RJ1@RJ2+GJ@(DRJ1@PJ2+RJ1@DRJ2))
   40 DF2=DF2+GJ@(2.0@DGJ@(PJ1@@2=PJ2@@2)+GJ@(2.0@RJ1@DRJ1=2.0@RJ2@DRJ2)
     D) & D(2=DF2/2.0
      Dx=((COS(2.G*X))**2/2.0)*((DF1/F2)-(F1/F2**2)*DF2)
      DCX=-SX*DX & DSX=CX*DX
      no 60 II=1.2
      DY=0.0
      Do 50 J=1.3
      GJ = G(N(J)) + DGJ = DG(N(J)) + RJ = R(N(J) + N(1)) + RJ = DRJ = DR(N(J) + N(1))
      RJZ=R(N(J)+N(Z)) $ DRJZ=DR(N(J)+N(Z))
      TY=DY+(DGJ*(RJ]*CX+RJ2*SX)+GJ*(DRJ]*CX+RJ1*DCX+DRJ2*SX+RJ2*DSX))*
     G2.0°SAVF([II.J)
   50 CONTINUE
      DGX([[])=DY/(2.0*GX([[))
      77=0Cx $ DCx=-DSX $ DSX=Z7 $ ZZ=CX $ CX=-SX $ SX=ZZ
   60 COUTINUE
      Cx=-Cx & SX=-SX
      DDFANG (IJK . IP) = DX . RD
      IF (XI).LT.0.0) DDFAMG(IUK.IP) =-DDFAMG(IUK.IP)
      DDFGVAL (IJK . IP) = DGX(1) - DGX(2)
      IF (IREV.EQ.1) DDFGVAL(IJK.IP) =-DDFGVAL(IJK.IP)
      DxB(IJK)=0.0
  100 CONTINUE
  222 CONTINUE
      ERANG= (DFANG(1) **2+DFANG(2) **2+DFANG(3) **2)/0A**2
      ERGVAL = (DFGVAL (1) **2 *DFGVAL (2) **2 *DFGVAL (3) **2)/QG**2
      AMS=ERANG+FRGVAL
      TF(TVP.FQ.1) PRINT 999.A.B.C.G.DFANG.DFGVAL.ERANG.ERGVAL.ANS
      IF (IGPAD.EQ.O) RETURN
      GRAC=0.0
      DO 300 1-1.6
      DEPANG = 2.0 \circ (DFANG(1) \circ DDFANG(1.1) \circ DFANG(2) \circ DDFANG(1.2) \circ
     EDFANG(3) *DDFAMG(1.3))/QA**2
      DERGVAL = 2.0*(DEGVAL(1)*DDEGVAL(1.))*DEGVAL(2)*DDEGVAL(1.2)*
     FDFGVAL (3) *DDFGVAL (1.3))/QG**2
      DCOS (I) = DERANG + DERGVAL
  300 GRAD=GRAD+DCOS(1) 442
      GRAD=SOPT (GRAD)
      DO 310 T=1.6
  310 DCOS(1)=DCQS(1)/GRAD
      IF (IVP.EQ.1) PRINT 998+GPAD+DCOS
      RETURN
12345 PRINI 54321+A+B+C+G+CA+CR+CC+SA+SR+SC+R+ERROR
      STOP 1234
      END
```

PART II

A GENERALIZATION OF METHODS FOR DETERMINING g TENSORS

INTRODUCTION

Several authors have derived procedures for determining the principal values, and the directions of the principal axes, of the g tensor from magnetic resonance data. 1-4 These involve measurements of $g=hv/\beta H$ at orientations provided by rotating the crystal about each of three axes. Any symmetric second-rank tensor may be evaluated by the same procedures, and examples include the zero-field splitting and hyperfine interaction tensors $\overline{\overline{D}}$ and \overline{A} , respectively. The necessary equations have been reported only for the cases of rotation about three orthogonal axes¹⁻⁵ and three monoclinic axes³ and contain an overdetermination of some of the tensor elements. was suggested that additional information in the form of rotational misalignments can also be obtained from the data and a technique for so doing in the orthorhombic case was presented.4

In this article a general formalism is developed which converts the inherent over-specification of tensor elements into a determination of the three rotational misalignments. It is applied to the orthorhombic and

monoclinic cases, the potentially useful case of three coplanar axes, and the general case of rotation about any three axes. The latter two cases have not been discussed previously. Since it is frequently possible to mount a crystal most precisely by choosing general or coplanar rotation axes, these latter methods should prove useful in experimental investigations. Also, the determination of the three azimuthal misalignments in each case will serve to make fullest use of data and to improve the accuracy of the derived tensors.

DATA FOR q-TENSOR DETERMINATION

Experimental

Experimentally the crystal is mounted so it may be rotated about a specific axis and ESR spectra are recorded for various orientations of the magnetic field in the plane perpendicular to that axis. The g values are plotted as a function of rotation angle θ , which is taken as positive when the crystal is rotated clockwise (or magnetic field rotated counterclockwise) as viewed from above. Three such plots for the three chosen rotation axes constitute the experimental data.

Parameterization of the Data

Depending on the quality of the plots, three levels of analysis may be employed. The first method (called the $\alpha\beta\gamma$ method below) utilizes either all the data in a curvefitting procedure or only the g extrema with the corresponding angles θ . In the second method ($\alpha\lambda$ method), only the g extrema are used.

As will be shown below (Equation (28)), the g values for rotation about any axis must obey the equation (in the notation of reference 3)

$$g^2 = \alpha + \beta \cos 2\theta + \gamma \sin 2\theta. \tag{1}$$

The most accurate values of the parameters α , β , γ would be obtained by a least-squares fit of the data to Equation (1). Alternatively, $\alpha\beta\gamma$ may be evaluated from the equations for the extrema:

$$\alpha = (g_{+}^{2} + g_{-}^{2})/2, \quad \beta = (g_{+}^{2} - g_{-}^{2})\cos 2\theta_{+}/2, \quad \gamma = (g_{+}^{2} - g_{-}^{2})\sin 2\theta_{+}/2,$$
(2)

obtained by differentiation of Equation (1); g_+ , g_- are the maximum and minimum g values in the given plot (or vice versa) and θ_+ is the angle corresponding to g_+ ; θ_+ should be taken from the best extremum.

For a rotation about any axis, each experimental spectrum is associated with an angle θ read on a protractor. The numerical values of θ then depend on the arbitrarily chosen initial placement of the crystal. The position of the crystal associated with $\theta=0^\circ$ is called the "experimental" initial orientation. Since $\theta'=\theta+180^\circ$ also satisfied Equation (1), we see that the initial conditions specified have a twofold ambiguity. In developing the theory, it is necessary to specify the orientation of the crystal in the cavity at the beginning of each rotation, i.e., the orientation of the crystal axes a, b, c when $\theta=0^\circ$ for each rotation is required. These are called the three "theoretical" initial orientations. The main error in orienting crystals is the azimuthal angle error,

which is the rotation error $\delta\theta$; we neglect in these calculations errors in the orientation of the vertical axis. The aximuthal angle $\delta\theta$ from the actual "experimental" to the "theoretical" initial orientation is called the starting-angle shift. The three starting-angle shifts can always be evaluated.

The data may also be analyzed using only the g extrema by employing the parameters

$$\alpha = (g_{+}^{2} + g_{-}^{2})/2, \qquad \lambda = |g_{+}^{2} - g_{-}^{2}|/2.$$
 (3)

The α , β , γ parameters are used below to solve the general, coplanar, orthorhombic, and monoclinic cases while the later two are also solved explicitly using the α , λ parameters. In addition, all cases may be treated using only the α , λ parameters by setting $\beta = \lambda$ and $\gamma = 0$ (which is equivalent to introducing an unknown starting-angle shift) and employing the $\alpha\beta\gamma$ method.

GENERAL THEORY

The value of g at a specific orientation has been shown to be given by $^{\mbox{\scriptsize l}}$

$$g^2 = \sum_{i,j=1}^{3} W_{ij} l_i l_j \qquad (W_{ij} = W_{ji}),$$
 (4)

where ℓ_1 , ℓ_2 , ℓ_3 are the direction cosines of the uniform magnetic field with respect to a set of orthogonal axes 1, 2, 3 fixed with respect to the crystal. The relationship between the W and g tensors is $\overline{W} = \overline{g}^2$. When the symmetric tensor \overline{W} is diagonalized, the squares of the principal g values, and their direction cosines, are determined. The Jacobi method is a very good way to diagonalize the matrix. The general problem is thus reduced to determining the six coefficients (matrix elements) W_{11} , W_{22} , W_{33} , W_{12} , W_{23} , W_{13} .

Nomenclature

The three experimental rotation axes, fixed with respect to the crystal, are labeled a, b, c. Along these axes are placed three rotation vectors \vec{a} , \vec{b} , \vec{c} chosen so that rotation of the magnetic field is in a right-handed

sense about the vectors. Where appropriate, the letters a, b, c are used as subscripts to the parameters α , β , γ , λ , θ_+ , g_+ , g_- , \vec{S} , \vec{M} obtained from the respective rotations. A coordinate system consisting of a specific arbitrary set of three orthogonal axes labeled 1, 2, 3, also fixed with respect to the crystal, is chosen for each of the cases treated in this investigation. It must be remembered that the direction cosines obtained by diagonalizing the W matrix will be relative to the 1 2 3 coordinate system chosen.

Considerable simplification of the equations was found to result from choosing the 1 2 3 coordinate system such that rotation vector \vec{a} points along the positive $\vec{3}$ axis and \vec{b} lies in the $\vec{1}$ $\vec{3}$ plane at an angle ϕ from $\vec{3}$ as shown in Figure 1a. Here $\vec{1}$ $\vec{2}$ $\vec{3}$ are three orthonormal vectors in a right-handed relationship and a positive or negative sign is given to ϕ according to whether it represents a right-or left-handed screw sense rotation about $\vec{2}$ (Figure 1). The four experimental cases considered—coplanar, monoclinic, orthorhombic and general—then correspond, respectively, to the conditions (a) vector \vec{c} in the $\vec{1}$ $\vec{3}$ plane, (b) vector \vec{c} along $\vec{2}$, (c) vector \vec{c} along $\vec{2}$ and ϕ = +90°, and (d) vector \vec{c} in none of the above relationships (i.e., \vec{c} points in an arbitrary direction).

Figure 1. Systems of axes: (a) for the preliminary equations: a, b, Sa, Sb in 1 3 plane, Ma, Mb along +2, a along + 3 (in this figure $\phi > 0^{\circ}$); (b) for an arbitrary rotation: N axis of rotation, S starting vector ($\theta = 0^{\circ}$), M middle vector ($\theta = 90^{\circ}$), L magnetic field in SM plane at angle θ to S; (c) for coplanar case: a, b, c, Sa, Sb, Sc in 1 3 plane, Ma, Mb, Mc along +2 (in this figure, $\phi > 0^{\circ}$, $\psi < 0^{\circ}$); (d) for monoclinic case: a, b, Sa, Sb, Sc, Mc are in the 1 3 plane, Sa, Mc along +1, c, Ma, Mb along +2 (in this figure $\phi > 0^{\circ}$); (e) for orthorhombic case: a, Sc, Mb along +3, b, Sa, Mc along +1, c, Sb, Ma along +2; (f) for general case: a, b, Sa, Sb in 1 3 plane, Ma, Mb along +2, c in arbitrary direction (in none of the above special directions), Sc \perp c, St \perp c and in 1 2 plane, Mt not in 1 2 plane.

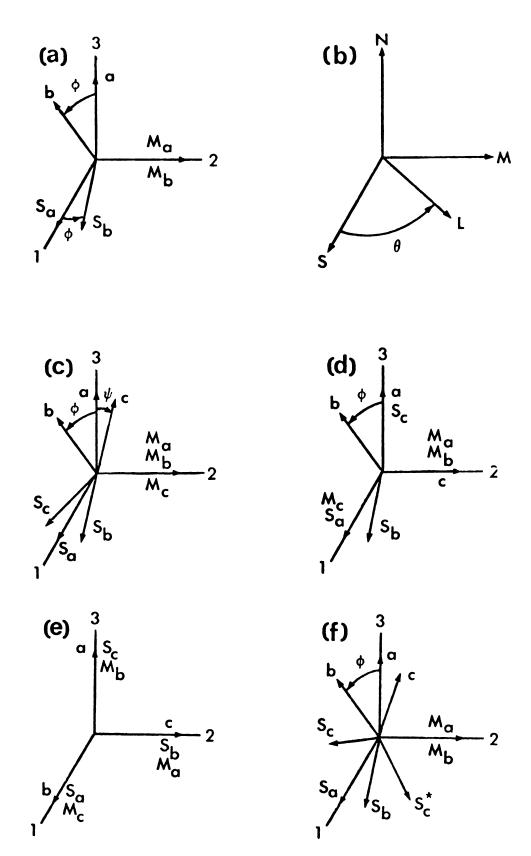


Figure 1.

General Formulation

There are nine parameters to determine the six W coefficients and the three starting-angle errors in the $\alpha\beta\gamma$ method. The nine functions $W_{11}(\alpha_a\beta_a\gamma_a\alpha_b\beta_b\gamma_b\alpha_c\beta_c\gamma_c)$, $W_{22}(...), W_{33}(...), W_{12}(...), W_{23}(...), W_{13}(...), \varepsilon_1(...),$ $\epsilon_2(...)$, and $\epsilon_3(...)$ are set up, where the <u>values</u> of the six W functions for any set of α , β , γ values represent the approximate values of the W coefficients and the values of the three ϵ functions represent three measures of the magnitude of the starting-angle shifts. The parameters α , β , γ from Equation (1) are functions of the starting-angle shifts $\delta\theta_a$, $\delta\theta_b$, $\delta\theta_c$ since α , β , γ depend on the choice of the "theoretical" initial orientations. When the "true" starting-angle shifts $\delta\theta_a^t$, $\delta\theta_b^t$ and $\delta\theta_c^t$ are used, the values of α , β , γ become the "true" parameters $\alpha^t \equiv \alpha(\delta\theta_a^t, \delta\theta_b^t, \delta\theta_c^t)$, $\beta^{t} \equiv \beta(\delta\theta_{a}^{t}, \delta\theta_{b}^{t}, \delta\theta_{c}^{t}), \gamma^{t} \equiv \gamma(\delta\theta_{a}^{t}, \delta\theta_{b}^{t}, \delta\theta_{c}^{t}), \text{ while the } \epsilon$ functions become zero, $\epsilon_1(\alpha_a^t \beta_a^t \gamma_a^t \alpha_b^t \beta_b^t \gamma_b^t \alpha_c^t \beta_c^t \gamma_c^t) = \epsilon_2(...) =$ $\varepsilon_3(\ldots) = 0$, and

$$W_{11}(\alpha_a^{\dagger}\beta_a^{\dagger}\gamma_a^{\dagger}\alpha_b^{\dagger}\beta_b^{\dagger}\gamma_b^{\dagger}\alpha_c^{\dagger}\beta_c^{\dagger}\gamma_c^{\dagger}), W_{22}(...), \text{ etc.,}$$

become the "true" values of the components of the W tensor. The ϵ_1 , ϵ_2 , ϵ_3 functions are called null functions because the condition that they all be simultaneously zero is used to determine the true starting-angle shifts and thus the true α , β , γ parameters and the W tensor.

In the $\alpha\lambda$ method there are six parameters, the six W coefficients, to determine. After $\overline{\mathbb{W}}$ is diagonalized, the values of θ_+ with respect to any rotation and any arbitrary initial orientation may be calculated by using the formulas of Equation (29) with the relation $\theta_+ = (1/2) \tan^{-1} (\gamma/\beta)$ obtained from Equation (2). The difference between the calculated and the experimental θ_+ (each with respect to the same initial orientation chosen) is equal to the starting-angle shift for that rotation.

Determination of Starting-Angle Shifts

In this section, formulas are derived giving the dependence of α , β , γ on the starting-angle shifts $\delta\theta_a$, $\delta\theta_b$, $\delta\theta_c$ and the original α , β , γ values. The formulas are used, along with a condition on the null functions developed here, to obtain the "true" starting-angle shifts. From the latter, the "true" α , β , γ values are then obtained and the "true" components of \overline{W} computed.

If, in a certain rotation, the angle assigned to each orientation is changed by an amount $\delta\theta$ so that θ = θ' + $\delta\theta$, then Equation (1) becomes

$$g^{2} = \alpha + \beta \cos(2\theta' + 2\delta\theta) + \gamma \sin(2\theta' + 2\delta\theta)$$

$$= \alpha + (\beta \cos 2\delta\theta + \gamma \sin 2\delta\theta) \cos 2\theta' + (\gamma \cos 2\delta\theta - \beta \sin 2\delta\theta) \sin 2\theta'$$

$$= \alpha' + \beta' \cos 2\theta' + \gamma' \sin 2\theta',$$
(5)

from which, using Equations (2) and (3), we see that

$$\alpha' = \alpha, \quad \beta' = \lambda \cos \zeta, \quad \gamma' = \lambda \sin \zeta,$$
 (6)

where $\zeta = 2\theta_+ - 2\delta\theta$. When the "true" $\delta\theta_i$ are used, we obtain the "true" values for $\alpha_i^t, \beta_i^t, \gamma_i^t$, and ζ_i^t . The values of the three null functions then become

$$\varepsilon_{\mathbf{i}}^{\mathsf{t}}(\alpha_{\mathbf{a}}^{\mathsf{t}}\beta_{\mathbf{a}}^{\mathsf{t}}\gamma_{\mathbf{a}}^{\mathsf{t}}\alpha_{\mathbf{b}}^{\mathsf{t}}\beta_{\mathbf{b}}^{\mathsf{t}}\gamma_{\mathbf{c}}^{\mathsf{t}}\alpha_{\mathbf{c}}^{\mathsf{t}}\beta_{\mathbf{c}}^{\mathsf{t}}\gamma_{\mathbf{c}}^{\mathsf{t}}) = \varepsilon_{\mathbf{i}}(\alpha_{\mathbf{a}}\beta_{\mathbf{a}}\gamma_{\mathbf{a}}\alpha_{\mathbf{b}}\beta_{\mathbf{b}}\gamma_{\mathbf{b}}\alpha_{\mathbf{c}}\beta_{\mathbf{c}}\gamma_{\mathbf{c}}) + \delta\varepsilon_{\mathbf{i}} = 0,$$
(7a)

$$\delta \varepsilon_{i} = -\varepsilon_{i} \qquad (i = 1, 2, 3), \qquad (7b)$$

where $\delta \epsilon_i$ is defined by Equation (7a). Also, from Equations (6) we can rewrite this in terms of the variables ζ_i as

$$\varepsilon_{i}^{t}(\lambda_{a}\lambda_{b}\lambda_{c},\zeta_{a}^{t}\zeta_{b}^{t}\zeta_{c}^{t}) = 0 \quad (i = 1,2,3).$$
 (8)

In some cases the exact solution of the three simultaneous equations (7) or (8) is prohibitively complicated. It can then be determined by an iterative procedure using simpler equations. It is, in general, more convenient to define the quantities $\Delta_{\bf i} = 2\delta\theta_{\bf i}$ (i = a,b,c); then, to first order in Δ ,

$$\delta \alpha_{i} = 0 \qquad \alpha'_{i} = \alpha_{i},$$

$$\delta \beta_{i} = \gamma_{i} \Delta_{i}, \qquad \beta'_{i} = \beta_{i} + \delta \beta_{i},$$

$$\delta \gamma_{i} = -\beta_{i} \Delta_{i}, \qquad \gamma'_{i} = \gamma_{i} + \delta \gamma_{i} \qquad (i = a,b,c). \qquad (9)$$

These are substituted into Equations (7), which are then solved for $\Delta_{\rm a},~\Delta_{\rm b},~\Delta_{\rm c}.$

THEORY--DERIVATION OF FORMULAS

Preliminary Equations

A general rotation may be expressed in the following way. Let \vec{N} , \vec{S} , \vec{M} be right-handed orthonormal vectors as shown in Figure 1b with \vec{N} representing the axis of rotation, \vec{S} the magnetic field direction at the start of the rotation and \vec{M} the magnetic field direction at the "middle" of the rotation ($\theta = 90^{\circ}$). Let \vec{L} be a unit vector representing the direction of the magnetic field as it sweeps the \vec{S} \vec{M} plane in a right-handed sense about \vec{N} (Figure 1b). Let θ of Equation (1) be the angle between \vec{L} and \vec{S} (rotating \vec{L} by $+\theta$ is the same as rotating the crystal by $-\theta$), then

$$\vec{M} = \vec{N} \times \vec{S} \text{ and } \vec{L} = \vec{S}\cos\theta + \vec{M}\sin\theta.$$
 (10)

With respect to any axes 1, 2, 3 one has, from Equations (4) and (10),

$$\ell_{i} = S_{i}\cos\theta + M_{i}\sin\theta \qquad (i = 1,2,3). \tag{11}$$

Choosing the 1 2 3 coordinate system in Figure 1a, one sees that for the rotation about the a axis, the

arbitrary initial orientation (where $\theta = 0^{\circ}$) is specified to be along the \vec{l} axis, so that $\vec{N}_a = \vec{3}$, $\vec{S}_a = \vec{l}$, and $\vec{M}_a = \vec{2}$. From Equation (11) one has $\ell_i = S_1 \cos \theta + M_1 \sin \theta = \cos \theta$, $\ell_2 = S_2 \cos \theta + M_2 \sin \theta = \sin \theta$ and $\ell_3 = S_3 \cos \theta + M_3 \sin \theta = 0$, which, when substituted into Equation (4), give

$$g^{2} = W_{11}\cos^{2}\theta + W_{22}\sin^{2}\theta + 2W_{12}\cos\theta\sin\theta$$

$$= \frac{1}{2}(W_{11} + W_{22}) + \frac{1}{2}(W_{11} - W_{22})\cos2\theta + W_{12}\sin2\theta$$
 (12)

and, by comparison with Equation (1), it may be seen that

$$\alpha_a = \frac{1}{2}(W_{11} + W_{22}), \quad \beta_a = \frac{1}{2}(W_{11} - W_{22}), \quad \gamma_a = W_{12}$$
 (13)

and, solving for the W coefficients, one obtains

$$W_{11} = \alpha_a + \beta_a, \quad W_{22} = \alpha_a - \beta_a, \quad W_{12} = \gamma_a.$$
 (14)

For the rotation about axis b we specify that the initial orientation occurs when the magnetic field is in the 1 3 plane. From Figure 1a we see that $\vec{N}_b = \vec{3}\cos\phi + \vec{1}\sin\phi$, $\vec{S}_b = \vec{1}\cos\phi - \vec{3}\sin\phi$, and $\vec{M}_b = \vec{2}$. Again: $\ell_1 = \cos\phi\cos\theta$, $\ell_2 = \sin\theta$ and $\ell_3 = -\sin\phi\cos\theta$, and substituting these into Equation (4) one obtains

$$g^{2} = (W_{11}\cos^{2}\phi + W_{33}\sin^{2}\phi - 2W_{13}\cos\phi\sin\phi)\cos^{2}\theta + (W_{22})\sin^{2}\theta + 2(W_{12}\cos\phi - W_{23}\sin\phi)\cos\theta\sin\theta.$$
 (15)

Since Equation (15) is an exact analogue of Equation (12), the solutions analogous to Equation (14) are written

$$W_{11}\cos^2\phi + W_{33}\sin^2\phi - 2W_{13}\cos\phi\sin\phi = \alpha_b + \beta_b$$
, (16)

$$W_{22} = \alpha_b - \beta_b, \qquad (17)$$

$$W_{12}\cos\phi - W_{23}\sin\phi = \gamma_b. \tag{18}$$

Using Equations (14) in (18), the W_{23} coefficient may be defined as

$$W_{23} = (\gamma_a \cos \phi - \gamma_b) / \sin \phi. \tag{19}$$

Comparing Equations (14) and (17) leads to the relation

$$\alpha_{\mathbf{b}} - \beta_{\mathbf{b}} - \alpha_{\mathbf{a}} + \beta_{\mathbf{a}} = 0, \tag{20}$$

which may be used as a null function. Substituting from Equation (14) into (16) and using Equation (20) to cancel the $\alpha_{\mbox{\scriptsize h}}$ term gives

$$\sin 2\phi (W_{13}) - \sin^2 \phi (W_{33} - \alpha_a) = \beta_a (1 + \cos^2 \phi) - 2\beta_b.$$
 (21)

From the six parameters α_a , β_a , γ_a , α_b , β_b , γ_b used so far, four relationships involving W_{11} , W_{22} , W_{12} , W_{23} , one relationship involving W_{13} and W_{33} , and one null relationship have been defined. The third rotation, which differs in each of the four cases, will be treated separately for each individual case below.

Case of Three Coplanar Axes

If the third rotation axis c lies in the 1 3 plane, along with the a and b axes, we have the coplanar case. Let ϕ , ψ be the angles between 3 and b, c, respectively; these have a positive or negative sign according to whether they represent a right- or left-handed screw sense about $\vec{2}$, and let the initial orientation vectors \vec{S}_b , \vec{S}_c lie in the 1 3 plane (Figure 1c). From Equations (19)-(21), with ψ and c replacing ϕ and b, we obtain

$$W_{23} = (\gamma_a \cos \psi - \gamma_c) / \sin \psi, \qquad (22)$$

$$\alpha_{C} - \beta_{C} - \alpha_{a} + \beta_{a} = 0, \qquad (23)$$

$$\sin 2\psi (W_{13}) - \sin^2 \psi (W_{33} - \alpha_a) = \beta_a (1 + \cos^2 \psi) - 2\beta_c.$$
 (24)

Equations (21) and (24) can now be solved to give W_{13} and W_{33} . Equations (20) and (23) provide two null functions and the third is derived from a comparison of Equation (19) with Equation (22). For the iterative solution, we apply Equations (7) and (9) to the null function ε_1 leading to

$$\delta_{1} = \delta \alpha_{b} - \delta \beta_{b} - \delta \alpha_{a} + \delta \beta_{a} = 0 - \gamma_{b} \Delta_{b} - 0 + \gamma_{a} \Delta_{a} = -\epsilon_{1},$$

$$\Delta_{b} = (\epsilon_{1}/\gamma_{b}) + (\gamma_{a}/\gamma_{b}) \Delta_{a} = B + B' \Delta_{a}.$$
(25)

Similarly, applying Equations (7) and (9) to the analogous ϵ_2 null function gives

$$\Delta_{c} = (\epsilon_{2}/\gamma_{c}) + (\gamma_{a}/\gamma_{c})\Delta_{a} = C + C'\Delta_{a}$$

Again, with ϵ_3 and the above relationships,

$$\begin{split} \delta \epsilon_{3} &= -\beta_{a} \Delta_{a} \sin(\psi - \phi) + \beta_{b} \Delta_{b} \sin\psi - \beta_{c} \Delta_{c} \sin\phi \\ &= (\beta_{b} B \sin\psi - \beta_{c} C \sin\phi) - [\beta_{a} \sin(\psi - \phi) - \beta_{b} B' \sin\psi + \beta_{c} C' \sin\phi] \Delta_{a} \end{split}$$

$$= -\epsilon_3$$
,

which is solved for Δ_a . These results for the approximate solution are listed in the Collected Formulas, as are some properties of the exact solution of Equation (8).

Case of Three Monoclinic Axes

If the c axis, about which the magnetic field is rotated in a right-handed sense, is perpendicular to the 1 3 plane, we have the monoclinic case. Let the c axis point along the +2axis (Figure 1d). Note, however, that if the experimental c axis actually pointed along the -2 axis, then one must change $\theta_{\rm C}$ + - $\theta_{\rm C}$ (or equivalently $\gamma_{\rm C}$ + - $\gamma_{\rm C}$) to use the formulas. The initial orientation for this rotation is selected so that the magnetic field is along the 3 axis for θ = 0° hence \vec{N} = \vec{Z} , \vec{S} = $\vec{3}$ and \vec{M} = $\vec{1}$. Therefore, from Equation (11), ℓ_1 = $\sin\theta$, ℓ_2 = 0, ℓ_3 = $\cos\theta$, and from Equation (4),

$$g^2 = W_{33}\cos^2\theta + W_{11}\sin^2\theta + 2W_{13}\sin\theta\cos\theta$$
,

which is the same form as Equation (12). So, according to Equation (14),

$$W_{33} = \alpha_{c} + \beta_{c}, \quad W_{11} = \alpha_{c} - \beta_{c}, \quad W_{13} = \gamma_{c}.$$
 (26)

Equations (14) and (26) are used to define W_{13} , W_{33} and the null function

$$\varepsilon_1 = \alpha_c - \beta_c - \alpha_a - \beta_a$$
.

Then, equating Equations (14) and (17) gives an expression for β_a which, when substituted in ϵ_1 , gives $\epsilon_2 = \alpha_c - \beta_c + \beta_b - 2\alpha_a$. Substituting ϵ_2 and all the relations of Equation (26) in Equation (16) and dividing by two gives $\epsilon_3 = (\alpha_b - \alpha_a) + \sin\phi(\gamma_c \cos\phi - \beta_c \sin\phi)$.

Applying Equation (7) to the three null functions gives $\delta \varepsilon_1 = -\varepsilon_1 = -\gamma_c \Delta_c - \gamma_a \Delta_a$, $\delta \varepsilon_2 = -\varepsilon_2 = -\gamma_c \Delta_c - \gamma_b \Delta_b$ and $\delta \varepsilon_3 = -\varepsilon_3 = \sin \phi (-\beta_c \Delta_c \cos \phi - \gamma_c \Delta_c \sin \phi)$. From these the Δ_i 's are obtained directly for the formulas of the iterative method. The exact solution has also been obtained from Equation (8) and the formulas for the $\alpha \lambda$ method worked out.

Case of Three Orthorhombic Axes

The initial orientations are best chosen in a cyclic manner (Figure le), because of the high symmetry of the a, b, c axes, i.e., for rotation about a, b or c the $\theta=0^{\circ}$ orientation is chosen in the ab, bc or ca plane, respectively. The problem is then set up so that there is a cyclic relationship betweeen the three rotations. The formulas in Equation (14) for a rotation about the a axis can then be extended in a cyclic manner to the other rotations by changing the subscripts of α , β , γ , and W as

as follows: $a \rightarrow b \rightarrow c$, $11 \rightarrow 22 \rightarrow 33$, $12 \rightarrow 23 \rightarrow 13$. The result of this is

Rotation a Rotation b Rotation c
$$W_{11} = \alpha_{a} + \beta_{a} \qquad W_{22} = \alpha_{b} + \beta_{b} \qquad W_{33} = \alpha_{c} + \beta_{c}$$

$$W_{22} = \alpha_{a} - \beta_{a} \qquad W_{33} = \alpha_{b} - \beta_{b} \qquad W_{11} = \alpha_{c} - \beta_{c}$$

$$W_{12} = \gamma_{a} \qquad W_{23} = \gamma_{b} \qquad W_{13} = \gamma_{c} \qquad (27)$$

The first and third rows of Equation (27) define the W coefficients. Subtracting the first row of relationships from the second row, dividing by two, and using the relation $-\beta_b - \beta_c = \alpha_c - \alpha_b$ obtained from the two formulas for W₃₃ gives ϵ_1 ; ϵ_2 , ϵ_3 are then obtained by cyclic permutations of ϵ_1 .

Using Equation (9) we obtain for the iterative solution $\delta \epsilon_1 = -\gamma_a \Delta_a = -\epsilon_1$ so that $\Delta_a = \epsilon_1/\gamma_a$.

For the exact solution, we have from Equations (8), $\alpha_{c} - \alpha_{b} - \lambda_{a} \cos \zeta_{a} = 0 \text{ which is straightforwardly solved}$ for ζ_{a} . The solutions for Δ_{b} , Δ_{c} , ζ_{b} , ζ_{c} are obtained from those of Δ_{a} and ζ_{a} by a cyclic permutation.

For the $\alpha\lambda$ method, it is seen from ϵ_1 that the "true" parameters obey the relation $\beta_a = \alpha_c - \alpha_b$, which gives $W_{11} = \alpha_a - \alpha_b + \alpha_c$ and $\gamma_a = \pm \left[\lambda_a^2 - (\alpha_c - \alpha_b)^2\right]^{1/2} = W_{12}$, and cyclically the remaining W coefficients. All the results are listed in the Collected Formulas.

General Case

If the third axis of rotation does not satisfy the conditions for any of the previous cases, we have the general case (Figure 1f). The direction of the rotation axis c (about which the magnetic field rotates in a right-handed sense) must be known, while the initial orientation need only be determined within a twofold ambiguity.

Let

$$\vec{N} = N_1 \vec{1} + N_2 \vec{2} + N_3 \vec{3}$$
, $\vec{S} = S_1 \vec{1} + S_2 \vec{2} + S_3 \vec{3}$, and $\vec{M} = \vec{N} \times \vec{S}$

be unit vectors representing the rotation axis, the initial orientation ($\theta = 0^{\circ}$) and the $\theta = 90^{\circ}$ direction, respectively. The three starting-angle errors, being a property of the data, are independent of the coordinate system chosen to solve for them; hence we are allowed to choose a more convenient system to simplify the solution. One such system is obtained by choosing a different initial unit vector \vec{s}^* in the \vec{s} \vec{m} plane with the property that $\vec{s}_3^* = 0$. Let ξ be the angle between \vec{s} and \vec{s}^* so that $\vec{s}^* = \vec{s}\cos\xi + \vec{m}\sin\xi$ and $\vec{m}^* = \vec{m}\cos\xi - \vec{s}\sin\xi$. Then ξ must satisfy the relation $\tan\xi = -s_3/m_3$. One such transformation that will change \vec{s} and \vec{m} into \vec{s}^* and \vec{m}^* is

$$s_{1}^{\star} = (s_{1}M_{3} - s_{3}M_{1})/\Lambda, \quad M_{1}^{\star} = (s_{1}s_{3} + M_{1}M_{3})/\Lambda,$$
 $s_{2}^{\star} = (s_{2}M_{3} - s_{3}M_{2})/\Lambda, \quad M_{2}^{\star} = (s_{2}s_{3} + M_{2}M_{3})/\Lambda,$
 $s_{3}^{\star} = 0, \quad M_{3}^{\star} = \Lambda,$

where $\Lambda = \sqrt{(s_3^2 + M_3^2)}$. Similarly the corresponding transformation between the old α_c , β_c , γ_c , λ_c and the new α_c^* , β_c^* , γ_c^* , λ_c^* parameters would be from Equations (3) and (5)

$$\alpha_{c}^{*} = \alpha_{c}, \qquad \lambda_{c}^{*} = \lambda_{c},$$

$$\beta_{c}^{*} = \beta_{c}\cos(2\xi) + \gamma_{c}\sin(2\xi) = [\beta_{c}(M_{3}^{2} - S_{3}^{2}) - 2\gamma_{c}M_{3}S_{3}]/\Lambda^{2},$$

$$\gamma_{c}^{*} = \gamma_{c}\cos(2\xi) - \beta_{c}\sin(2\xi) = [\gamma_{c}(M_{3}^{2} - S_{3}^{2}) + 2\beta_{c}M_{3}S_{3}]/\Lambda^{2}.$$

Substituting Equation (11) into Equation (4), remembering that $W_{ij} = W_{ji}$, and noting the analogy with Equation (12), we arrive at the result

$$g^{2} = \sum_{i,j=1}^{3} w_{ij} \ell_{i} \ell_{j}$$

$$= (\sum_{i,j=1}^{3} w_{ij} s_{i} s_{j}) \cos^{2}\theta + (\sum_{i,j=1}^{3} w_{ij} s_{i} s_{j}) \sin^{2}\theta + 2(\sum_{i,j=1}^{3} w_{ij} s_{i} s_{j}) \cos^{2}\theta + \sum_{i,j=1}^{3} w_{ij} s_{i} s_{j} s_{i} s_{i} s_{j} s_{i} s_{i} s_{j} s_{i} s_{$$

analogous to Equation (13), where

$$\alpha_{c} = \frac{1}{2} \sum_{ij} W_{ij} (S_{i}S_{j} + M_{i}M_{j}),$$

$$\beta_{c} = \frac{1}{2} \sum_{ij} W_{ij} (S_{i}S_{j} - M_{i}M_{j}),$$

$$\gamma_{C} = \sum_{ij} W_{ij}S_{i}M_{j}.$$
(29)

Since Equations (28) and (29) hold for rotations about any axis, they may be used as a check on the correctness of the

W tensor by reproducing the original α , β , γ parameters. For the case with S_3^{\star} = 0, Equation (29) gives

$$\alpha_{c}^{*} + \beta_{c}^{*} = W_{11}S_{1}^{*2} + W_{22}S_{2}^{*2} + 2W_{12}S_{1}^{*}S_{2}^{*}, \qquad (30)$$

$$\alpha_{c}^{*} - \beta_{c}^{*} = W_{11}M_{1}^{*2} + W_{22}M_{2}^{*2} + W_{33}M_{3}^{*2} + 2W_{12}M_{1}^{*}M_{2}^{*} + 2W_{23}M_{2}^{*}M_{3}^{*}$$

$$+ 2W_{13}M_{1}^{*}M_{3}^{*}, \qquad (31)$$

$$\gamma_{c}^{*} = W_{11}S_{1}^{*}M_{1}^{*} + W_{22}S_{2}^{*}M_{2}^{*} + W_{12}(S_{1}^{*}M_{2}^{*} + S_{2}^{*}M_{1}^{*})$$

$$+ W_{23}S_{2}^{*}M_{3}^{*} + W_{13}S_{1}^{*}M_{3}^{*}. \qquad (32)$$

With the identities $S_1^{*2} + S_2^{*2} = 1$ and $S_1^*M_1^* + S_2^*M_2^* = 0$, we use Equations (14), (19), (32), and (16) to define W_{11} , W_{22} , W_{12} , W_{23} , W_{13} , and W_{33} , respectively. By comparing Equations (14) and (17), the first null function $\varepsilon_1 = \alpha_b - \beta_b - \alpha_a + \beta_a$ is derived. Using the formulas for the W coefficients and Equation (30), the second null function

$$\epsilon_2 = \alpha_a + \beta_a (2S_1^{*2} - 1) + 2\gamma_a S_1^* S_2^* - \alpha_c^* - \beta_c^*$$

is obtained. The third null function ε_3 , listed in Table 1, follows similarly from Equation (31). Considering the approximate solution, we see that since ε_1 is the same as in the coplanar case, Δ_b is given by Equation (25). Using ε_2 in Equations (7) and (9) leads to the relationship

$$\Delta_{c} = (\epsilon_{2}/\gamma_{c}^{*}) + \left\{ \frac{\gamma_{a}(2s_{1}^{*2} - 1) - 2\beta_{a}s_{1}^{*}s_{2}^{*}}{\gamma_{c}^{*}} \right\} \Delta_{a} = C + C'\Delta_{a}.$$

In order to use the third null function ϵ_3 it is necessary to obtain δW_{23} , δW_{13} , and δW_{33} ; these are

$$\begin{split} \delta w_{23} &= \frac{-\beta_a \Delta_a \cos\phi + \beta_b \Delta_b}{\sin\phi} = \frac{-\beta_a \Delta_a \cos\phi + \beta_b B + \beta_b B' \Delta_a}{\sin\phi} \\ &= \left(\frac{\beta_b B}{\sin\phi}\right) + \left(\frac{\beta_b B' - \beta_a \cos\phi}{\sin\phi}\right) \Delta_a = P + P' \Delta_a, \\ \delta w_{13} &= \left(\frac{-\beta_c^* C - PS_2^* M_3^*}{S_1^* M_3^*}\right) \\ &+ \left(\frac{-\beta_c^* C' + 2\gamma_a S_2^* M_2^* + \beta_a (S_1^* M_2^* + S_2^* M_1^*) - P' S_2^* M_3^*}{S_1^* M_3^*}\right) \Delta_a \\ &= Q + Q' \Delta_a, \\ \delta w_{33} &= \left(\frac{\varepsilon_1 + Q \sin 2\phi}{\sin^2 \phi}\right) + \left(\gamma_a + \frac{2Q' \cos\phi}{\sin\phi}\right) \Delta_a = R + R' \Delta_a. \end{split}$$

Finally, putting ϵ_3 into Equation (7) we obtain

$$\begin{split} \delta \varepsilon_3 &= (\varepsilon_2 + 2 \text{PM}_2^{\star} \text{M}_3^{\star} + 2 \text{QM}_1^{\star} \text{M}_3^{\star} + \text{RM}_3^{\star 2}) + [\gamma_a (2 \text{S}_1^{\star 2} - 1) - 2 \beta_a \text{S}_1^{\star} \text{S}_2^{\star} \\ &+ \gamma_a (\text{M}_1^{\star 2} - \text{M}_2^{\star 2}) - 2 \beta_a \text{M}_1^{\star} \text{M}_2^{\star} + 2 \text{P'M}_2^{\star} \text{M}_3^{\star} + 2 \text{Q'M}_1^{\star} \text{M}_3^{\star} + \text{R'M}_3^{\star 2}] \Delta_a \\ &= -\varepsilon_3, \end{split}$$

from which the formula for Δ_a given below (Collected Formulas) is obtained.

DISCUSSION

A computer program has been written in Fortran IV for the calculation of g tensors in any of the four cases described. By employing this program with experimental g tensors, the equations of this article were checked. α , β , γ parameters were first obtained from Equations (29) and these were used as input for the computer program. Agreement of the g tensors derived by the program with the original tensors provided a check on the internal consistency of the equations for each of the four cases.

Iterative Solutions

The iterative procedures for the four cases described above may not converge if a starting-angle error is too large (as may happen in using the $\alpha\lambda$ method of Equation (3)), in which case the problem may be solved by setting

$$\begin{split} &\Delta_{i} = \Delta_{i} \text{(calculated),} & \text{if } |\Delta_{i} \text{(calcd)}| < R_{c}, \\ &= R_{c} \times \text{SIGN} \Delta_{i} \text{(calcd),} & \text{if } |\Delta_{i} \text{(calcd)}| > R_{c} \text{ (i = a,b,c),} \end{split}$$

where SIGNx = x/|x|. R_c should be chosen to be within the range of stable convergence which is different for each of the four cases considered below. A safe value for R_c is ~0.2.

From the approximate changes in angles $\Delta_{\mathbf{i}}$ one may proceed in two ways:

(i) Calculate exactly the new values of the parameters from

$$\alpha_{i}' = \alpha_{i}',$$

$$\beta_{i}' = \beta_{i} \cos \Delta_{i} + \gamma_{i} \sin \Delta_{i}',$$

$$\gamma_{i}' = \gamma_{i} \cos \Delta_{i} - \beta_{i} \sin \Delta_{i} \quad (i = a,b,c)$$
(33)

obtained from Equation (5) and use these again in the equations for the iterative solution to obtain a new set of $\Delta_{\bf i}$'s. This process is continued until either the absolute fractional changes of the α , β , γ parameters are below a certain low value (for the CDC 6500 computer this was set at 1.0 χ 10^{-11}), or until the values of the null functions are negligible. If the approximations for $\Delta_{\bf a}$, $\Delta_{\bf b}$, $\Delta_{\bf c}$, are continually summed, and the final values divided by two, three starting-angle shifts $\delta\theta_{\bf a}$, $\delta\theta_{\bf b}$, $\delta\theta_{\bf c}$ (i.e., the angles from the experimental alignments to the "true" theoretical initial orientations) are obtained.

(ii) Calculate approximately the new values of the parameters from

$$\alpha'_{i} = \alpha_{i}$$
, $\beta'_{i} = \beta_{i} + \gamma_{i} \Delta_{i}$, $\gamma'_{i} = \gamma_{i} - \beta_{i} \Delta_{i}$ (i = a,b,c)

and continue the process as in the first method. This procedure will converge because the method is self-correcting. The starting angle shifts can then be determined by solving Equations (33), using Appendix A with the initial parameters β_i , γ_i , λ_i and the final parameters β_i , γ_i , to obtain

$$\delta\theta_{i} = \frac{1}{2} \left[\cos^{-1}(\beta_{i}/\lambda_{i}) \cdot SIGN\gamma_{i} + \cos^{-1}(\beta_{i}^{t}/\lambda_{i})\right] \quad (i = a,b,c).$$

From Equations (8) we can calculate the number of solutions for the starting-angle shifts in each of the four cases. The approximate methods will only give the solution with the smallest starting-angle shifts.

Exact Solutions

The principal values of the g tensor are the square roots of the equation $\overline{WX}_i = E_i \overline{X}_i$ (i = 1,2,3). The principal values E_i solely determine the "shape" of the tensor. The eigenvectors \overline{X}_i determine the orientation of the principal axes and thus the orientation of the tensor. The number of eigenvalue solutions is the number of diagonalized W tensors which are "shaped" differently. The number of eigenvector solutions is the number of diagonalized W tensors which are "shaped" or oriented differently. If we

consider the degeneracy of the solutions to be the number of eigenvector solutions per eigenvalue solution, we find from Equations (8) that the degeneracies of the coplanar, monoclinic, orthorhombic, and general cases to be 2, 2, 4, and 1, respectively. If two of the possible W tensors have the same principal values, and the eigenvectors of one tensor become the eigenvectors of the second tensor when rotated 180° about the axis i, then we call the axis i an axis of degeneracy. The axes of degeneracy account for the degeneracy of the solutions and are listed below.

		ı

COLLECTED FORMULAS

The α , β , γ parameters depend on the choice of initial orientations and, to use the formulas of this article, they should be determined with the orientation conventions of Table 1. The W coefficients and null functions for each case are also given in Table 1. The solutions are listed below.

Coplanar Case

Possible number of eigenvalue solutions: 0, 1, 2, 3, 4.

Possible number of eigenvector solutions: 0, 2, 4, 6, 8.

The one axis of degeneracy is the \vec{c} axis (the $\vec{2}$ axis).

The iterative solution is

$$\Delta_{a} = \frac{\varepsilon_{3} + \beta_{b}Bsin\psi - \beta_{c}Csin\phi}{\beta_{a}sin(\psi - \phi) - \beta_{b}B'sin\psi + \beta_{c}C'sin\phi},$$

$$\Delta_{b} = B + B'\Delta_{a}, \quad B = \varepsilon_{1}/\gamma_{b}, \quad B' = \gamma_{a}/\gamma_{b},$$

$$\Delta_{c} = C + C'\Delta_{a}, \quad C = \varepsilon_{2}/\gamma_{c}, \quad C' = \gamma_{a}/\gamma_{c}.$$

Table 1. W coefficients and null functions with the necessary "theoretical" initial orientations.

Rotation Axes	Initial Conditions for H when θ = 0°	W Coefficients	Null Functions
		Coplanar Case	
4	H in a b c plane	W11 = a + B W2 = a - B W12 = Ya	$c_1 = \alpha_b - \beta_b - \alpha_a + \beta_a$
Д	H in a b c plane	$W_{23} = (Y_a \cos \phi - Y_b)/\sin \phi$	ε ₂ = α - β - α + β
υ	H in a b c plane	$\frac{(B_a(1 + \cos^2 \phi) - 2B_b) \sin^2 \psi - (B_a(1 + \cos^2 \psi) - 2B_c) \sin^2 \phi}{2 \sinh \phi \sin \psi \sin (\psi - \phi)}$	$\epsilon_3 = \gamma_a \sin(\psi - \phi) - \gamma_b \sin\psi + \gamma_c \sin\phi$
		$[8_{a}(1 + \cos^{2}\phi) - 28_{b}]\sin 2\psi - [8_{a}(1 + \cos^{2}\psi) - 28_{c}]\sin 2\phi$ $[8_{a}(1 + \cos^{2}\phi) - 28_{c}]\sin 2\phi$	
		Monoclinic Case	
•	H in a b plane	$w_{11} = \alpha + \beta$ $w_{22} = \alpha - \beta$	€1 = α - β - α - β
Δ	H in a b plane	M12 = Ya W13 = Yc W33 = a + Bc	ε ₂ = α - β + α _b - β - 2α _a
v	H in a c plane	$W_{23} = (Y_{a} \cos \phi - Y_{b})/\sin \phi$ Orthorhombic Case	ε 3 = α - α + sinφ(Y _c cosφ - β sinφ)
đ	H in a b plane	$w_{11} = a_a + \beta_a$ $w_{22} = a_b + \beta_b$	6 - 6 - 5 = 13
Δ	H in b c plane	$M_{33} = \alpha_c + \beta_c W_{12} = \gamma_a$	ε ₂ = α = α = β _b
U	H in c a plane	W ₂₃ = Y _b W ₁₃ = Y _c General Case	ε ₃ = α _b - α _b - β _c
٩	H in a b plane	W ₁₁ = a + B W ₂₂ = a - B W ₁₂ = Ya	$\epsilon_1 = \alpha_b - \beta_b - \alpha_a + \beta_a$
Д	H in a b plane	$N_{23} = (Y_{a} \cos \phi - Y_{b})/\sin \phi$	$\varepsilon_2 = \alpha_1 + \beta_1(2S_1^2 - 1) + 2\gamma_1S_1S_2 - \alpha_2 - \beta_1^2$
υ	H along 5 where 5 = 0 (1.e., in the 1 2 plane)	$M_{13} = [Y_C^+ + 26_S_2^{+} Z_2^ Y_A(S_1^1 Z_2^+ + S_2^{+} I_1) - W_{23}S_2^{+} X_3]/S_1^{+} X_3^{-}$ $W_{-1} = [\alpha_1 + \beta_2 - (\alpha_1 + \beta_2) \cos^2 \phi + W_{-1} \sin^2 \phi / \sin^2 \phi]$	$\varepsilon_3 = \alpha_a (1 - M_3^2) + \beta_a (M_1^2 - M_2^2) + 2\gamma M_1^2 + 2M_2 M_2^2$
		33 'b 'b 'a 'a' 'c ' '13 'c ' ' '13 'c ' ' '13 'c ' ' '13 'c ' '13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

The exact solution to Equations (7) is complex and thus it is more feasible to use an iterative procedure than the closed form. Some relationships among the various exact solutions of Equations (7) are: If $(\zeta_a, \zeta_b, \zeta_c)$ is a solution, then $(-\zeta_a, -\zeta_b, -\zeta_c)$ is another solution with the properties that (a) its eigenvalues are the same as those of $(\zeta_a, \zeta_b, \zeta_c)$, (b) the signs of W_{12}, W_{23} are changed, and (c) the eigenvectors are rotated 180° about the \overline{Z} axis.

Monoclinic Case

Possible number of eigenvalue solutions: 0, 2, 4. Possible number of eigenvector solutions: 0, 4, 8. The one axis of degeneracy is the \vec{c} axis (the $\vec{2}$ axis).

The iterative solution is: $\Delta_c = \epsilon_3/[\sin\phi(\beta_c\cos\phi+\gamma_c\sin\phi)]$,

$$\Delta_{b} = (\epsilon_{2} - \gamma_{c} \Delta_{c})/\gamma_{b}, \quad \Delta_{a} = (\epsilon_{1} - \gamma_{c} \Delta_{c})/\gamma_{a}.$$

The exact solution is

$$\zeta_{\mathbf{c}} = \begin{cases} \xi_{\mathbf{c}} + \phi \\ \\ \pi - \xi_{\mathbf{c}} + \phi, \quad \zeta_{\mathbf{a}} = \pm \xi_{\mathbf{a}}, \quad \zeta_{\mathbf{b}} = \pm \xi_{\mathbf{b}}, \end{cases}$$

where

$$\xi_{c} = \sin^{-1}[(\alpha_{a} - \alpha_{b})/\lambda_{c}\sin\phi], \quad \xi_{a} = \cos^{-1}[(\alpha_{c} - \alpha_{a} - \lambda_{c}\cos\zeta_{c})/\lambda_{a}],$$

$$\xi_{b} = \cos^{-1}[(\alpha_{b} + \alpha_{c} - 2\alpha_{a} - \lambda_{c}\cos\zeta_{c})/\lambda_{b}].$$

For each of the two choices for $\zeta_{\rm C}$ there are four solutions for $\zeta_{\rm a}$ and $\zeta_{\rm b}$ corresponding to the four choices of sign for these: $(+\xi_{\rm a},+\xi_{\rm b})$, (--), (+-), (-+), where the first two solutions represent one eigenvalue solution and the last two represent another. Also a rotation of the eigenvectors about the c axis will transform the solutions as follows: $(++)^+(--)$, $(--)^+(++)$, $(+-)^+(-+)$, $(-+)^+(+-)$.

The $\alpha\lambda$ solution may be obtained by calculating β_i and γ_i from $\beta_i = \lambda_i \cos \zeta_i$, $\gamma_i = \lambda_i \sin \zeta_i$ (i = a,b,c), using the solutions given above for ζ_a , ζ_b , ζ_c (which depend only on α_i and λ_i). These are then employed in the formulas for the W coefficients.

Orthorhombic Case

Possible number of eigenvalue solutions: 0, 1, 2.

Possible number of eigenvector solutions: 0, 4, 8.

The three axes of degeneracy are the \vec{a} , \vec{b} , \vec{c} axes (the $\overset{\rightarrow}{3}$, $\overset{\rightarrow}{1}$, $\overset{\rightarrow}{2}$ axes).

The iterative solution is $\Delta_a = \epsilon_1/\gamma_a$, $\Delta_b = \epsilon_2/\gamma_b$, $\Delta_c = \epsilon_3/\gamma_c$.

The exact solution is

$$\zeta_{a} = \pm \cos^{-1}[(\alpha_{c} - \alpha_{b})/\lambda_{a}], \quad \zeta_{b} = \pm \cos^{-1}[(\alpha_{a} - \alpha_{c})/\lambda_{b}],$$

$$\zeta_{c} = \pm \cos^{-1}[(\alpha_{b} - \alpha_{a})/\lambda_{c}].$$

The solutions may be ordered according to the eight possible combinations of signs for the ζ_i : $(+\zeta_a, +\zeta_b, +\zeta_c)$, (+--), (-+-), (--+), (---), (-++), (+-+), (++-). The first four solutions represent one eigenvalue and the last four solutions represent the other. A rotation of 180° about axis a will transform the solutions as follows: (+++)+ (+--), (+--)+(+++), (---)+(-++), (-++)+(---). Similarly, for a rotation of 180° about axis b: (+++)+(-+-), (-+-)+(+++), (---)+(+++)+(---). Finally, for a rotation of 180° about axis c: (+++)+(---)+(+++), (---)+(++-)+(---).

The $\alpha\lambda$ solution is

$$\begin{split} w_{11} &= \alpha_{\rm a} - \alpha_{\rm b} + \alpha_{\rm c}, \quad w_{22} &= \alpha_{\rm b} - \alpha_{\rm c} + \alpha_{\rm a}, \quad w_{33} = \alpha_{\rm c} - \alpha_{\rm a} + \alpha_{\rm b}, \\ w_{12} &= \pm \sqrt{[\lambda_{\rm a}^2 - (\alpha_{\rm c} - \alpha_{\rm b})^2]}, \quad w_{23} &= \pm \sqrt{[\lambda_{\rm b}^2 - (\alpha_{\rm a} - \alpha_{\rm c})^2]}, \\ w_{13} &= \pm \sqrt{[\lambda_{\rm c}^2 - (\alpha_{\rm b} - \alpha_{\rm a})^2]}. \end{split}$$

General Case

Possible number of eigenvalue solutions: 0, 1, 2, ... 16.

Possible number of eigenvector solutions: 0, 1, 2, ... 16.

There are no axes of degeneracy.

The iterative solution is

$$\Delta_{a} = \frac{-\epsilon_{3} - \epsilon_{2} - RM_{3}^{*2} - 2PM_{2}^{*}M_{3}^{*} - 2QM_{1}^{*}M_{3}^{*}}{\gamma_{a}(M_{1}^{*2} + S_{1}^{*2} - M_{2}^{*2} - S_{2}^{*2}) - 2\beta_{a}(M_{1}^{*}M_{2}^{*} + S_{1}^{*}S_{2}^{*})} + R'M_{3}^{*2} + 2P'M_{2}^{*}M_{3}^{*} + 2Q'M_{1}^{*}M_{3}^{*}}$$

$$\Delta_{b} = B + B'\Delta_{a}, \quad \Delta_{c} = C + C'\Delta_{a},$$

where

$$\begin{split} \mathbf{B} &= \mathbf{\varepsilon}_{1} / \gamma_{b}, \quad \mathbf{B'} &= \gamma_{a} / \gamma_{b}, \quad \mathbf{C} &= \mathbf{\varepsilon}_{2} / \gamma_{c}^{*}, \quad \mathbf{C'} &= [\gamma_{a} (2 s_{1}^{*2} - 1) - 2 \beta_{a} s_{1}^{*} s_{2}^{*}] / \gamma_{c}^{*}. \\ \mathbf{P} &= \beta_{b} \mathbf{B} / \sin \phi, \quad \mathbf{P'} &= (\beta_{b} \mathbf{B'} - \beta_{a} \cos \phi) / \sin \phi, \\ \mathbf{Q} &= (-\beta_{c}^{*} \mathbf{C} - \mathbf{P} s_{2}^{*} \mathbf{M}_{3}^{*}) / s_{1}^{*} \mathbf{M}_{3}^{*}, \\ \mathbf{Q'} &= [-\beta_{c}^{*} \mathbf{C'} + 2 \gamma_{a} s_{2}^{*} \mathbf{M}_{2}^{*} + \beta_{a} (s_{1}^{*} \mathbf{M}_{2}^{*} + s_{2}^{*} \mathbf{M}_{1}^{*}) - \mathbf{P'} s_{2}^{*} \mathbf{M}_{3}^{*}] / s_{1}^{*} \mathbf{M}_{3}^{*}, \\ \mathbf{R} &= (\mathbf{\varepsilon}_{1} + \mathbf{Q} \sin 2 \phi) / \sin^{2} \phi, \quad \mathbf{R'} &= \gamma_{a} + (2 \mathbf{Q'} \cos \phi / \sin \phi). \end{split}$$

The exact solution is obtained by substituting Equations (6) into Equations (7) which gives the expressions to be solved for ζ_a , ζ_b , ζ_c . Most of the sixteen possible solutions will generally not be acceptable since they will not be real.

PART II

REFERENCES

REFERENCES

- 1. J. Weil and J. Anderson, J. Chem Phys. 28, 864 (1958).
- 2. J. Geusic and L. Brown, Phys. Rev. 112, 64 (1958).
- 3. D. Schonland, Proc, Phys. Soc. (London) 73, 788 (1959).
- 4. D. Billing and B. Hathaway, J. Chem. Phys. <u>50</u>, 2258 (1969).
- 5. A. Lund and T. Vänngard, J. Chem. Phys. <u>42</u>, 2979 (1965).
- 6. J. Greenstadt, "Mathematical Methods for Digital Computers" (A. Ralson and H. Wilf, Eds.), John Wiley, New York (1960), Vol. I, p. 84.

PART II

APPENDICES

APPENDIX A

SOLUTIONS TO A TRIGONOMETRIC EQUATION

APPENDIX A

SOLUTIONS TO A TRIGONOMETRIC EQUATION

There are at least four different ways in which the solution to

$$A\cos\theta + B\sin\theta = C$$
 (A1)

may be written. The most convenient for the present purpose is derived below.

Equation (A1) may be written as $M\cos(\theta - \lambda) = C$, where $M\cos\lambda = A$ and $M\sin\lambda = B$. The relative signs of A and B determine the quadrant of the angle λ . By setting $M = +\sqrt{(A^2 + B^2)}$ it is seen that λ is uniquely determined by

$$\lambda = \cos^{-1}[A/\sqrt{(A^2 + B^2)}] \times SIGN(B), \qquad (A2)$$

where SIGN(B) = B/|B|. Equation (A1) now becomes $\cos \xi = C/\sqrt{(A^2 + B^2)}$, where $\xi = \theta - \lambda$. Since ξ is double valued, the two solutions to Equation (A1) are

$$\theta = \cos^{-1}[A/\sqrt{(A^2 + B^2)}] \cdot SIGN(B) + \cos^{-1}[C/\sqrt{(A^2 + B^2)}].$$
(A3)

APPENDIX B

PROPERTIES OF SECOND-ORDER TENSORS

APPENDIX B

PROPERTIES OF SECOND-ORDER TENSORS

If a second-order symmetric tensor $\overline{\overline{W}}$ is diagonalized by the similarity transformation $R^{-1}WR$, then the columns of the unitary matrix \overline{R} represent the eigenvectors of the tensor. Changing the signs of any column of R does not change the eigenvalues (the "shape" of the tensor), or the orientation, of the corresponding diagonalized tensor W. Changing all the signs of the i-th row of R does not change the eigenvalues but rotates the eigenvectors 180° about axis i, which is the same as reflecting the eigenvectors through the jk plane $(j,k \neq i)$. These results are similarly accomplished by changing the signs of four of the off-diagonal elements of the undiagonalized $\overline{\overline{W}}$ tensor: $W_{ij} = W_{ji}, W_{ik} = W_{ki}$ (j \neq k). This can be shown by considering another matrix R^* such that $R_{pq}^* = + R_{pq}[(p,q)]$ 1,3), (+) sign if $p(\neq)$ i]. Applying this new similarity transformation to \overline{W} gives

$$W_{lm}^{*'} = \sum_{jk} (R^{*})_{lj}^{-l} W_{jk} R_{km}^{*} = \sum_{jk} R_{jl}^{*} R_{km}^{*} W_{jk}$$

$$= \sum_{j \neq i} R_{jl}^{R} R_{jm}^{W} jj + (-R_{il}) (-R_{im}) W_{ii} + \sum_{\substack{j \neq k \\ j,k \neq l}} R_{jl}^{R} R_{km}^{W} W_{jk}$$

$$+ \sum_{\substack{j \neq k \\ k = i}} (R_{jl}) (-R_{im}) W_{ji} + \sum_{\substack{j \neq k \\ j \neq k}} (-R_{il}) (R_{km}) W_{ik},$$

from which we see that if the similarity transform matrix \overline{R} diagonalizes \overline{W} , then \overline{R}^* diagonalizes the matrix \overline{W} with the signs changed on the four off-diagonal elements $W_{ji} = W_{ij}$, $W_{ik} = W_{ki}$.

The eight tensors resulting from the eight possible sign permutations of the off-diagonal elements W_{12} , W_{23} , W_{13} are $(+W_{12}, +W_{23}, +W_{13})$, (-+-), (--+), (+--), (---), (+-+), (++-), (-++). The first four of these have one set of eigenvalues and the last four a second set. A rotation of 180° about axis $\vec{1}$ changes (+++)+(-+-) and (---)+(+-+), about axis $\vec{2}$ changes (+++)+(--+) and (---)+(++-), and about axis $\vec{3}$ changes (+++)+(--+) and (---)+(-++).

APPENDIX C

COMPUTER LISTING OF SUBROUTINES USED FOR THE
CALCULATION OF g TENSORS FOR THE COPLANAR,
MONOCLINIC, ORTHORHOMBIC, AND
GENERAL CASE

APPENDIX C

COMPUTER LISTING OF SUBROUTINES USED FOR THE CALCULATION OF G TENSORS FOR THE COPLANAR. MONOCLINIC. ORTHORHOMBIC. AND GENERAL CASE

```
PROGRAM GTENSOR (INPUT, OUTPUT)
                                                                               GTNSR
      REAL NN1.NN2.NN3
                                                                               GTNSR
                                                                                       2
      COMMON/PARAM/ALA.BEA.GAA.ALB.BEB.GAB.ALC.BEC.BAC
                                                                               GTNSR
                                                                                       3
      COMMON/W/W11.W22.W33.W12.W23.W13
                                                                               GTNSR
   99 FORMAT(I1)
                                                                               GTNSR
                                                                                       5
   98 FORMAT (3F10.8)
                                                                               GTNSR
                                                                                       6
                                                                               GTNSR
                                                                                       7
      READ 99. INDEX
      READ 98.ALA.REA.GAA.ALB.BEB.GAB.ALC.BEC.BAC
                                                                               GTNSR
                                                                                       8
      GO TO (10.20.30.40) INDEX
                                                                               GTNSR
C THIS IS A SAMPLE PROGRAM SHOWING HOW ONE MAY WRITE A PROCEDURE THAT
                                                                               GTNSR 10
C WOULD CALL ANY OF THE FOUR SUBROUTINES. ONLY THE SUBROUTINE OF
                                                                               GTNSR 11
 INTEREST NEED BE LOADED INTO THE COMPUTER.
                                                                               GTNSR 12
   ALA-ALB-ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. GTNSR
BEA-BEB-BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. GTNSR
                                                                                      13
                                                                                      14
   GAA.GAB.GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. GTNSR 15
  THESE PARAMETERS ARE TRANSMITTED THROUGH THE LABELLED COMMON /PARAM/. GTNSR 16
  THE W-COEFFICIENTS W11.W22.W33.W12.W23.W13 ARE CALCULATED BY EACH OF
                                                                               GTNSR 17
  THE SUBROUTINES AND ARE LOCATED IN THE LABELLED COMMON /W/. EACH
                                                                               GTNSR
                                                                                      18
  SUBROUTINE CALLS DISPLAY AND PASSES THE W-COEFFTCIENTS THROUGH /W/. SUBROUTINE DISPLAY CALLS DIAG1 WHICH IS A STANDARD DIAGONALIZATION
                                                                               GTNSR
                                                                                      19
                                                                               GTNSR 20
C SUBROUTINE. OTHER SUBROUTINES ARE INCLUDED. BUT ARE NEVER CALLED.
                                                                               GTNSR 21
C THESE SUBROUTINES CAN RE USED TO TEST OR DOUBLE-CHECK THE RESULTS OF
                                                                               GTNSR 22
 THIS PROGRAM. THE COMMENT CARDS IN EACH SUBROUTINE DESCRIBE THE
                                                                               GTNSR 23
  QUANTITIES CALCULATED.
                                                                               GTNSR 24
   .... COPLANAR CASE .....
                                    (INDEX = 1)
                                                                               GTNSR 25
   10 PEAD 98.PHI.PSI
                                                                               GTNSR 26
      CALL COPLANR (PHI.PSI)
                                                                               GTNSR 27
      STOP 1111
                                                                               GTNSR 28
   .... MONOCLINIC CASE ....
                                    (INDEX = 2)
                                                                               GTNSR 29
   20 READ 98.PHI
                                                                               GTNSR 30
      CALL MONOCLN(PHI)
                                                                               GTNSR
                                                                                      31
      STOP 2222
                                                                               GTNSR
                                                                                      32
    .... ORTHORHOMBIC CASE ..... (INDEX = 3)
                                                                               GTNSR 33
   30 CALL RHOMBIC
                                                                               GTNSR 34
      STOP 3333
                                                                               GTNSR 35
   .... GENERAL CASE ....
                                    (INDEX = 4)
                                                                               GTNSR 36
   40 READ 98.PHI
                                                                               GTNSR
                                                                                      37
      READ 98.4N1.4NN2.4NN3.551.552.553
                                                                               GTNSR
                                                                                      38
      CALL GENERAL (PHI+NN1+NN2+NN3+SS1+SS2+SS3)
                                                                               GTNSR 39
      STOP 4444
                                                                               GTNSR 40
      END
                                                                               GTNSR 41
      SUBROUTINE COPLANR (PHI.PSI)
                                                                               COPI N
                                                                                       1
   ..... PHI AND PSI ARE IN DEGREES.
                                                                               COPLN
                                                                                       2
      DIMENSION ANGDEG (3)
                                                                               COPLN
      COMMON/PARAM/ALA.BEA.GAA.ALB.BEB.GAB.ALC.BEC.BAC
                                                                               COPLN
      COMMON/W/W11.W22.W33.W12.W23.W13
                                                                               COPLN
      DATA PI/3.14159265359/.TODEG2/28.64788976/.TORAD/0.01745329252/.
                                                                               COPLN
     DNSTEPS/180/+NTRTES/23/
                                                                               COPLN
   ALA.ALB.ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. COPLN BEA.BEB.BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. COPLN
                                                                                       A
                                                                                       a
   GAA.GAB.GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. COPLN 10
C TONEG2 = 57.29577951/2.0 = (180/PI)/2. TORAD = PI/180.
                                                                               COPLN 11
  600 FORMAT(1H1+41X+ 23H.... COPLANAR CASE ....+10X+6HPHI = +1F9.4+3X+ COPLN 12
     A6HPSI = .1F9.4.//.39x.28HTHE ORIGINAL PARAMETERS ARF: /)
                                                                               COPLN 13
  601 FORMAT(37x.5HALPHA.11x.4HBETA.12x.5HGAMMA.//.24x.7HAXIS A:.1F16.8.COPLN 14
     B2E16.9//24X.7HAXIS B:.1F16.8.2E16.9//24X.7HAXIS C:.F16.8.2E16.9//)COPLN 15
  602 FORMAT(22x. 38HTHE STARTING-ANGLE ERRORS (IN DEGREES). /. 22x.
                                                                               COPLN 16
                                                                               COPLN 17
     C29HABOUT THE THREE ROTATION AXES./.23x.6HAXIS A.6X.6HAXIS B.6X.
                                                                               COPLN 18
     D6HAXIS C)
                                                                               COPLN 19
  603 FORMAT(3x.12HSOLUTION NO., I2,4H... +F9.4,3x.F9.4,3X.F9.4)
```

```
604 FORMAT(/.38x. 48HTHIS SOLUTION HAS THE FOLLOWING ALPHA.BETA.GAMMA.COPLN 20
     E/+ 38x+41HPARAMETERS FOR THE THREE AXES OF ROTATION)
                                                                          COPLN 21
  605 FORMAT(/-27(5H ● ).//.49x.27H... END OF CALCULATIONS ...)
                                                                          COPLN 22
  700 FORMAT(//. 65H THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONCOPLN 23
     FVERGE WITHIN . 14.11H ITERATIONS./.36H THE VALUE OF THE NULL FUNCTCOPLN 24
     GIONS ARE./. 6H E1 = .E15.9.6H F2 = .E15.9.6H E3 = .E15.9./.
                                                                          COPLN 25
                                                                          COPLN 26
     MISH ANGA-ANGR-ANGC = . 3E15.9./)
                                                                          COPLN 27
  701 FORMAT(18H ERROR IN COPLANRO, /, (39X,3E15.9,/))
      FE = PHI-TORAD
                                                                          COPLN 28
      ST = PSI TORAD
                                                                          COPLN 29
      SNFE=SIN(FE)
                                                                          COPLN 30
                                                                          COPLN 31
      SN2FE=SIN(2.0*FE)
                                                                          COPLN 32
      SNFE2=SNFE++2
      SNSI=SIN(SI)
                                                                          COPLN 33
                                                                          COPLN 34
      SN2SI=SIN(2.0*SI)
                                                                          COPLN 35
      SNSI2=SNSI **2
      CSSI=COS(SI)
                                                                          COPLN 36
      CSS12=CSS1++2
                                                                          COPLN 37
                                                                          COPLN 38
      CSFE=COS(FE)
                                                                          COPLN 39
      CSFE2=CSFE==2
                                                                          COPLN 40
      SNSIFE=SIN(SI-FE)
                                                                          COPLN 41
      DEN=2.0*SNFE*SNSI*SNSIFE
      ABSTEP = PI/FLOAT (NSTEPS)
                                                                          COPLN 42
                                                                          COPLN 43
      ACCUR = ABSTEP/1000.0
                                                                          COPLN 44
      PRINT 600.PHI.PSI
      PRINT 601, ALA. REA. GAA. ALB. BEB. GAB. ALC. BEC. BAC
                                                                          COPLN 45
      ZLMDAA=SQRT (REA++2+GAA++2)
                                                                          COPLN 46
                                                                          COPLN 47
      ZLMDAB=SQRT (REB==2+GAB==2)
                                                                          COPLN 48
      ZLMDAC=SORT (REC##2+GAC##2)
      DPLUSA = SIGN(ACOS(REA/ZLMDAA).GAA)
                                                                          COPLN 49
                                                                          COPLN 50
      DPLUSB = SIGN(ACOS(BEB/ZLMDAR).GAB)
      DPLUSC = SIGN(ACOS(BEC/ZLMDAC),GAC)
                                                                          COPLN 51
                                                                          COPLN 52
      NSOL=0
                                                                          COPLN 53
      STEP = SIGN(ABSTEP+DPLUSA)
      X1 = (-ZLMDAR-ALB+ALA)/ZLMDAA
                                                                          COPLN 54
      X2 = (-ZI,MDAC-ALC+ALA)/ZLMDAA
                                                                          COPLN 55
                                                                          COPLN 56
      XX1= (+ZLMDAR-ALB+ALA)/ZLMDAA
                                                                          COPLN 57
      XX2= (+ZLMDAC-ALC+ALA)/ZLMDAA
      XLOWER=AMAX1(X1.X2.-1.0)
                                                                          COPLN 58
                                                                          COPLN 59
      XUPPER=AMIN1(XX1+XX2++1.0)
                                                                          COPLN 60
      IF (XUPPER-XLOWER) 299,299,10
                                                                          COPLN 61
   10 ZTAMAX=ACOS(XLOWER)
      ZTAMIN=ACOS (XUPPER)
                                                                          COPLN 62
      IBEG = IFIX(ZTAMIN/ABS(STEP))+1
                                                                          COPLN 63
      !END = IFIX(ZTAMAX/ABS(STEP))+1
                                                                          COPLN 64
      PNB = +1.0
                                                                          COPLN 65
      PNC = -1.0
                                                                          COPLN 66
      DO 201 LMN=1.4
                                                                          COPLN 67
                                                                          COPLN 68
      T=PNB
      PNB=-PNC
                                                                          COPLN 69
                                                                          COPLN 70
      PNC=T
                                                                          COPLN 71
      KLL=0
      KSCH=0
                                                                          COPLN 72
      INDEX=0
                                                                          COPLN 73
                                                                          COPLN 74
      CROSS=+1.0
                                                                          COPLN 75
      DO 200 I=IBEG.IEND
                                                                          COPLN 76
   .... INDEX = NUMBER OF STEPS IN ALLOWED REGION.
   .... KLL = 0 FORBIDDEN REGION
                                                                          COPLN 77
                                                                          COPLN 78
   .... KLL = 1 ALLOWED REGION
C
   .... KLLSV = VALUE OF KLL FOR PREVIOUS STEP. ENTERING THE DO LOOP
                                                                          COPLN 79
   **** KSCH = (0.1) IF SEARCH FOR CROSSOVER (DOES NOT.DOES) OCCUR.
                                                                          COPLN 80
   .... KSCHSV = VALUE OF KSCH FOR PREVIOUS STEP.
                                                                          COPLN A1
                                                                          COPLN 82
   FOR THE FIRST TIME CAUSES KLLSV TO BE SET TO 0.
   .... CROSS IS LESS THAN OR EQUAL TO 0.0 ONLY IF A CROSSOVER IS TO
                                                                          COPLN 83
C
   RE SEARCHED FOR.
                                                                          COPLN 84
   .... FUNC = TEST FUNCTION = E3. WE SEARCH FOR THE ZERO VALUES.
                                                                          COPLN A5
   .... SFUNC = LAST VALUE OF FUNC
                                                                          COPLN 86
   .... SSFUNC * SECOND TO THE LAST VALUE OF FUNC
                                                                          COPLN 87
                                                                          COPLN 88
      ZTA=FLOAT(I)+STEP
```

```
CSZTA=COS (ZTA)
                                                                          COPLN 89
                                                                          COPLN 90
      KLLSV=KLL
                                                                          COPLN 91
      KSCHSV=KSCH
                                                                          COPLN 92
      KSCH=0
      SSFUNC=SFUNC
                                                                          COPLN 93
                                                                          COPLN 94
      SFUNC=FUNC
                                                                          COPLN 95
      CSZTB = (ALB-ALA+ZLMDAA+CSZTA)/ZLMDAB
      IF(ABS(CSZTR)-1.0) 38.38.190
                                                                          COPLN 96
                                                                          COPLN 97
   38 CSZTC = (ALC-ALA+ZLMDAA+CSZTA)/ZLMDAC
      IF(ABS(CSZTC)-1.0) 39.39.190
                                                                          COPLN 98
                                                                          COPLN 99
C ..... ALLOWED ZONE .....
                                                                          COPLN100
   39 KLL=1
      INDEX=INDEX+1
                                                                           COPLN101
   .... CALCULATE FUNC ...
                                                                           COPLNIOS
                                                                           COPLN103
      SNZTA = SIN(ZTA)
                                                                           COPLN104
      SNZTB = SIGN((SQRT(1.0-CSZTB++2)).PNB)
      SNZTC = SIGN((SORT(1.0-CSZTC++2)).PNC)
                                                                           COPLN105
      FUNC = ZLMDAA+SNZTA+SNSIFE-ZLMDAB+SNZTB+SNSI+ZLMDAC+SNZTC+SNFE
                                                                          COPLN106
        IF LAST STEP WAS IN THE FORBIDDEN REGION. CHECK FOR CROSSOVER. COPLN107
      IF(KLLSV) 50.100
                                                                           COPLN108
   .... IF INDEX=1. THIS IS THE FIRST STEP AND ANOTHER STEP IS TAKEN.
                                                                          COPLN109
   IF FUNC=0.0. THEN THIS WILL BE DETERMINED BY THE PRODUCT SPUNC+FUNC
                                                                          COPLN110
   50 IF(INDEX-1) 200+200+52
                                                                           COPLN111
                                                                          COPLN112
   52 CROSS = SFUNC*FUNC
   .... IF CROSS IS NEGATIVE OR ZERO. A CROSSOVER HAS OCCURED.
                                                                           COPLN113
      IF(CROSS) 100,100,54
                                                                           COPLN114
   .... INDEX MUST BE AT LEAST 3 FOR THE FOLLOWING CHECK TO BE VALID
                                                                           COPLN115
C
   54 IF (INDEX-3) 200.56.56
                                                                           COPLN116
   .... WE TEST TO SEE IF THE FUNCTION HAS APPROACHED TOWARD AND THEN
                                                                          COPLN117
   RETREATED FROM THE FUNC=0.0 AXIS. THERE ARE TWO CONDITIONS THAT
                                                                           COPLN118
  MUST BE MET FOR THIS TO HAVE OCCURED.
                                                                           COPLN119
   (1). (FUNC-SFUNC) + (SFUNC-SSFUNC) MUST BE LESS THAN OR EQUAL! TO ZERO
                                                                          COPLN120
                                                                          COPLN121
   (2). FUNC-(FUNC-SFUNC) MUST BE GREATER THAN OR EBUAL TO ZERO.
   56 CHECK = (FUNC-SFUNC) + (SFUNC-SSFUNC)
                                                                           COPLN122
      IF (CHECK) 58.58.200
                                                                           COPLN123
                                                                          COPLN124
   58 CHECK = FUNC+(FUNC-SFUNC)
      IF (CHECK) 200.100.100
                                                                           COPLN125
                                                                           COPLN126
...... ROUTINE FOR SEARCHING FOR CROSSOVER POINTS .......
C CALCULATE THE THREE ANGLES ABOUT WHICH THE SEARCH IS TO BEGIN
                                                                           COPLN127
  100 KSCH=1
                                                                           COPLN128
   .... ANGA, ANGB, ANGC ARE THE (DOUBLE) - STARTING-ANGLE-SHIFTS FOR
                                                                           COPLN129
                                                                           COPLN130
   ROTATIONS ABOUT AXES A.B.C RESPECTIVELY.
      ANGA = DPLUSA-ZTA
                                                                           COPLN131
      ANGB = DPLUSB-SIGN(ACOS(CSZTB).PNB)
                                                                           COPLN132
                                                                           COPLN133
      ANGC = DPLUSC-SIGN(ACOS(CSZTC),PNC)
      JFLAG=0
                                                                           COPLN134
      GO TO 112
                                                                           COPLN135
                                                                          COPLN136
  110 ANGA=ANGA+DELA
                                                                          COPLN137
      ANGR=ANGR+DELB
      ANGC=ANGC+DELC
                                                                           COPLN138
  112 CSA=COS (ANGA)
                                                                           COPLN139
      CSB=COS (ANGR)
                                                                          COPLN140
      CSC=COS (ANGC)
                                                                           COPLN141
      SNA=SIN (ANGA)
                                                                           COPLN142
                                                                          COPLN143
      SNB=SIN(ANGB)
      SNC=SIN(ANGC)
                                                                           COPLN144
      BEAK=BEA+CSA+GAA+SNA
                                                                           COPLN145
                                                                          COPLN146
      BEBK=BEB+CSB+GAB+SNB
      BECK=BEC+CSC+GAC+SNC
                                                                           COPLN147
      GAAK=GAA+CSA-REA+SNA
                                                                           COPLN148
      GABK=GAB+CSB-REB+SNB
                                                                          COPLN149
      GACK=GAC+CSC-REC+SNC
                                                                           COPLN150
      E1 = ALB-BEBK-ALA+BEAK
                                                                           COPLN151
      E2 = ALC-RECK-ALA+BEAK
                                                                           COPLN152
      E3 = GAAK+SNSIFE-GABK+SNSI+GACK+SNFE
                                                                           COPLN153
      B = E1/GARK
                                                                           COPLN154
      BP = GAAK/GARK
                                                                          COPLN155
      C = E2/GACK
                                                                           COPLN156
      CP = GAAK/GACK
                                                                           COPLN157
```

```
F1 = E3+BEBK+B+SNSI-BECK+C+SNFF
                                                                          COPLN158
      F2 = BEAK+SNSIFE-BEBK+BP+SNSI+BECK+CP+SNFE
                                                                          COPLN159
                                                                          COPLN160
      DELA=F1/F2
                                                                          COPLN161
      DELB=B+BP+DELA
      DELC=C+CP+DELA
                                                                          COPLN162
                                                                          COPLN163
      XXA = ABS(DELA)
                                                                          COPLN164
      IF (JFLAG) 299.114.119
  114 IF (XXA-ABSTEP) 119,119,115
                                                                          COPLN165
  115 IF(CROSS) 119,119,200
                                                                          COPLN166
                                                                          COPLN167
  119 JFLAG = JFLAG+1
                                                                          COPLN168
      IF (JFLAG-NTRIES) 120.120.195
                                                                          COPLN169
  120 XXB = ABS(DELB)
      XXC = ABS(DELC)
                                                                          COPLN170
                                                                          COPLN171
      XX = AMAX1(XXA,XXB,XXC)
      IF (XX-ACCUR) 130-130-123
                                                                          COPLN172
  123 IF (XXA-ARSTEP) 125+125+124
                                                                          COPLN173
  124 DELA = SIGN(ABSTEP+DELA)
                                                                          COPLN174
  125 IF (XXB-ABSTEP) 127.127.126
                                                                          COPLN175
  126 DELB = SIGN(ABSTEP.DELB)
                                                                          COPLN176
  127 IF (XXC-ABSTEP) 110,110,128
                                                                          COPLN177
                                                                          COPLN178
  128 DELC = SIGN(ABSTEP+DELC)
                                                                          COPLN179
  130 DO 180 KABC=1.2
   .... FIRST TIME THROUGH THE DO LOOP ANGA-ANBA-ETC. AND BAAK-GAAK-ETCCOPLN180
   .... NEXT TIME, ANGA = 2+DPLUSA-ANGA-ETC. AND GAAK=-GAAK, ETC.
                                                                          COPLMIAI
      ANGA = FLOAT(2-KABC) *ANGA *FLOAT(KARC-1) *(2.0*DPLUSA-ANGA)
                                                                          COPLN182
                                                                          COPLN183
      ANGB = FLOAT(2-KARC) *ANGB+FLOAT(KARC-1) *(2.0*DPLUSR-ANGB)
      ANGC = FLOAT (2-KARC) +ANGC+FLOAT (KABC-1) + (2.0+DPLUSC-ANGC)
                                                                          COPLN184
      GAAK = FLOAT (3-24KARC) +GAAK
                                                                          COPLN185
                                                                          COPLN186
      GABK = FLOAT (3-2*KABC) *GARK
      GACK = FLOAT (3-2*KARC) *GACK
                                                                          COPL NIA7
                                                                          COPLN188
      ANGDEG(1) = ANGA+TODEG2
                                                                          COPLN189
      ANGDEG(2) = ANGB+TODEG2
      ANGDEG(3) = ANGC+TODEG2
                                                                          COPLN190
C CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS MAGNITUDE IS LESS THAN 90 COPLN191
C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION. COPLN192
      DO 140 K=1.3
                                                                          COPLN193
                                                                          COPLN194
  136 XZ = ABS(ANGDEG(K))-90.0
      IF(XZ) 140.140.137
                                                                          COPLN195
  137 ANGDEG(K) = ANGDEG(K)-SIGN(180.0, ANGDEG(K))
                                                                          COPLN196
                                                                          COPLN197
      GO TO 136
  140 CONTINUE
                                                                          COPLN198
                                                                          COPLN199
      NSOL=NSOL+1
      PRINT 602
                                                                          COPLN200
      PRINT 603.NSOL.ANGDEG
                                                                          COPLN201
      PRINT 604
                                                                          COPLN202
      PRINT 601.ALA.BEA.GAA.ALB.REB.GAB.ALC.REC.GAC
                                                                          COPLN203
      W11 = ALA+BEAK
                                                                          COPLN204
                                                                          COPLN205
      W22 = ALA-BEAK
                                                                          COPLN206
      W12 = GAAK
      W23 = (GAAK+CSFE-GABK)/SNFE
                                                                          COPLN207
                                                                          COPLNZOR
          Q1 = REAK+(1.0+CSFE2)-2.0+REBK
          Q2 = REAK+(1.0+CSSI2)-2.0+RECK
                                                                          COPLN209
      W33 = ALA+(Q1+SN2SI-Q2+SN2FE)/DEN
                                                                          COPLN210
      W13 =
                (Q1*SNSI2-Q2*SNFE2)/DEN
                                                                          COPLN211
      CALL DISPLAY(1)
                                                                          COPLN212
                                                                          COPLN213
  180 CONTINUE
      GO TO 200
                                                                          COPLN214
     ... FORBIDDEN ZONE ... IF LAST STEP WAS IN ALLOWED ZONE AND A
                                                                          COPLN215
                                                                          COPLN216
 CROSSOVER SEARCH WAS NOT PERFORMED. THEN CHECK FOR CROSSOVER POINT
  AFTER RESETTING THE PREVIOUS VALUES OF ZTA+CSZTA+CSZTB+CSZTC.
                                                                          COPLN217
                                                                          COPLN218
  190 INDEX=0
                                                                          COPLN219
      KLL=0
                                                                          COPLN220
      IF (KLLSV) 192,200
  192 IF (KSCHSV) 200+193
                                                                          COPLNSS1
                                                                          COPLN222
  193 ZTA=ZTA-STEP
      CSZTA=COS (ZTA)
                                                                          COPLN223
      CSZTB = (ALB-ALA+ZLMDAA+CSZTA)/ZLMDAB
                                                                          COPLN274
                                                                          COPLN225
      CSZTC = (ALC-ALA+ZLMDAA+CSZTA)/ZLMDAC
                                                                          COPLN226
      GO TO 100
```

```
..... NO CROSSOVER HAS BEEN FOUND. IF CROSS IS LESS THAN 0.0. ERROR COPLN227
  195 IF(CROSS) 197.197.200
                                                                         COPLN228
  197 CROSS=+1.0
                                                                         COPLN229
      PRINT 700.NTRIES.E1.E2.E3.ANGA.ANGB.ANGC
                                                                          COPL N230
  200 CONTINUE
                                                                          COPLN231
                                                                          COPLN232
  201 CONTINUE
                                                                         COPLN233
      PRINT 605
                                                                          COPLN234
      RETURN
  299 PRINT 701.ZLMDAA.ZLMDAB.ZLMDAC.ALA.ALB.ALC.X1.X2.XX1.XX2.XLOWER.
                                                                         COPLN235
     XXUPPER
                                                                          COPI N236
      RETURN
                                                                          COPLN237
                                                                          COPLN238
      END
      SUBROUTINE MONOCLN(PHI)
                                                                          HONOC
C ..... PHI IS IN DEGREES.
                                                                          MONOC
                                                                                 2
      DIMENSION ANGDEG (3)
                                                                          MONOC
                                                                                 3
      COMMON/PARAM/ALA.BEA.GAA.ALB.BEB.GAB.ALC.BEC.BAC
                                                                          MONOC
                                                                                 5
      COMMON/W/W11.W22.W33.W12.W23.W13
                                                                          HONOC
      DATA PI/3.14159265359/.TODEG2/28.64788976/.TORAD/0.01745329252/.
                                                                         MONOC
                                                                                 6
                                                                                 7
     DNTRIES/23/
                                                                          MONOC
  ALA.ALB.ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. MONOC
  BEA, BEB, BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. MONOC
                                                                                 9
 GAA-GAB-GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A-R-C. MONOC 10
                                                                         MONOC 11
C TODEG2 = 57.29577951/2.0 = (180/PI)/2. TORAD = PI/180.
  600 FORMAT(1H1+ 37X+25H.... MONOCLINIC CASE ....+10X+6HPHI = +1F9.4+
                                                                         MONOC 12
     A//+39X+28HTHE ORIGINAL PARAMETERS ARE: /)
                                                                         MONOC 13
  601 FORMAT(37x+5HALPHA+1)X+4HBETA+12x+5HGAMMA+//+24X+7HAXIS A*+1F16.8+MONOC 14
     B2E16.9//24x.7HAXIS B::1F16.8.2F16.9//24X.7HAXIS C::F16.8.2E16.9//)MONOC 15
  602 FORMAT(22x, 38HTHE STARTING-ANGLE ERRORS (IN DEGREES). /. 22x.
                                                                         MONOC 16
     C29HABOUT THE THREE ROTATION AXES./.23X.6HAXIS A.6X.6HAXIS B.6X.
                                                                         MONOC 17
     D6HAXIS C)
                                                                         MONOC 18
  603 FORMAT (3x.12HSOLUTION NO., 12.4H... . F9.4.3x.F9.4.3x.F9.4)
                                                                         MONOC 19
  604 FORMAT(/.38X, 48HTHIS SOLUTION HAS THE FOLLOWING ALPHA.BETA.GAMMA.MONOC 20
     E/+ 38x+41HPARAMETERS FOR THE THREE AXES OF ROTATION)
                                                                         MONOC 21
                                                                         MONOC SS
  605 FORMAT(/+27(5H + )+//+49X+27H... END OF CALCULATIONS ...)
  700 FORMAT(//. 65H THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONMONOC 23
     FVERGE WITHIN . 14.11H ITERATIONS./.36H THE VALUE OF THE NULL FUNCTMONOC 24
     GIONS ARE, /. 6H El = .E15.9.6H E2 = .E15.9.6H E3 = .E15.9./.
                                                                         MONOC 25
     H18H ANGA.ANGR.ANGC = . 3E15.9./)
                                                                         MONOC 26
                                                                         MONOC 27
 1999 FORMAT(17H ERROR IN MONOCLN./, (9X.6E15.9./))
                                                                          MONOC 28
      FE = PHI+TORAD
      PRINT 600.PHI
                                                                          MONOC 29
                                                                         MONOC 30
MONOC 31
      PRINT 601.ALA.BEA.GAA.ALB.BEB.GAB.ALC.BEC.GAC
      NSOL = 0
      SNFE = SIN(FE)
                                                                          MONOC 32
      CSFE = COS(FE)
                                                                          MONOC 33
      ACCUR = PI/18000.0
                                                                          MONOC 34
                                                                          MONOC 35
      NTRIES=30
      ZLMDAA=SQRT(PEA++2+GAA++2)
                                                                          MONOC 36
      ZLMDAB=SQRT (RER++2+GAB++2)
                                                                         MONOC 37
                                                                         MONOC 38
      ZLMDAC=SQRT(BEC++2+GAC++2)
      DPLUSA = SIGN(ACOS(BEA/ZLMDAA) .GAA)
                                                                         MONOC 39
      DPLUSB = SIGN(ACOS(BER/ZLMDAR) + GAB)
                                                                         MONOC 40
      DPLUSC = SIGN(ACOS(BEC/ZLMDAC) + GAC)
                                                                         MONOC 41
                                                                          MONOC 42
      SNCHIC = (ALA-ALB)/(ZLMDAC*SNFE)
      IF (ABS (SNCHIC) -1.0) 8+8+999
                                                                          MONOC 43
    B CHIC = ASIN(SNCHIC)
                                                                         MONOC 44
      DO 80 KK=1.2
                                                                          MONOC 45
      ZETAC = FLOAT(2-KK)+(CHIC+FE)+FLOAT(KK-1)+(PI-CHIC+FE)
                                                                          MONOC 46
      CSZTAC = COS(ZETAC)
                                                                         MONOC 47
                                                                         MONOC 48
      CSCHIB = (ALR+ALC-2.0+ALA-ZLMDAC+CSZTAC)/ZLMDAB
      IF (ABS(CSCHIR)-1.0) 10.10.999
                                                                         MONOC 49
  10 CHIB = ACOS (CSCHIB)
                                                                         MONOC 50
                                                                         MONOC 51
      CSCHIA = (ALC-ALA-ZLMDAC+CSZTAC)/ZLMDAA
                                                                          MONOC 52
      IF (ABS(CSCHIA)-1.0) 12.12.999
                                                                         MONOC 53
  12 CHIA = ACOS (CSCHIA)
      DO 80 LL=1.2
                                                                         MONOC 54
      ZETAA = CHIA
                                                                         MONOC 55
                                                                         MONOC 56
      ZETAB = FLOAT (3-2*LL) *CHIB
  .... ANGA.ANGB.ANGC ARE THE (DOUBLE)-STARTING-ANGLE-SHIFTS FOR
                                                                         MONOC 57
```

```
MONOC 58
  ROTATIONS ABOUT AXES A.B.C RESPECTIVELY.
      ANGA = DPI USA-ZETAA
                                                                           MONOC 59
                                                                           HONOC 60
      ANGB = DPLUSB-ZETAB
      ANGC = DPLUSC-ZETAC
                                                                           MONOC 61
      JFLAG=0
                                                                           MONOC 62
                                                                           MONOC 63
      GO TO 17
                                                                           MONOC 64
   15 ANGA = ANGA+DELA
      ANGB = ANGB+DELB
                                                                           MONOC 65
                                                                           MONOC 66
      ANGC = ANGC+DELC
                                                                           MONOC 67
   17 CSA = COS(ANGA)
                                                                           MONOC 68
      CSB = COS (ANGB)
                                                                           MONOC 69
      CSC = COS (ANGC)
                                                                           MONOC 70
      SNA = SIN(ANGA)
                                                                           HONOC 71
      SNB = SIN(ANGB)
      SNC = SIN(ANGC)
                                                                           HONOC
                                                                                 72
                                                                           MONOC 73
      BEAK=BEA+CSA+GAA+SNA
                                                                           MONOC 74
      BEBK=BEB+CSB+GAB+SNB
                                                                           MONOC 75
      BECK=BEC+CSC+GAC+SNC
                                                                           MONOC 76
      GAAK=GAA+CSA-BEA+SNA
                                                                           MONOC 77
      GABK=GAB+CSB-BEB+SNB
                                                                           MONOC 78
      GACK=GAC+CSC-BEC+SNC
      E1 = ALC-BECK-ALA-BEAK
                                                                           MONOC 79
                                                                           MONOC 80
      E2 = ALC-BECK+ALB-BEBK-2.0+ALA
                                                                           MONOC 81
      E3 = ALB-ALA+SNFE+(GACK+CSFE-BECK+SNFE)
      DELC = E3/(SNFE+(BECK+CSFE+GACK+SNFE))
                                                                           MONOC 82
      DELB = (E2-GACK+DELC)/GARK
                                                                           MONOC 83
      DELA = (E1-GACK+DELC)/GAAK
                                                                           MONOC 84
                                                                           MONOC 85
      JFLAG=JFLAG+1
                                                                           MONOC 86
      IF (JFLAG-NTRIES) 20.19.19
                                                                           MONOC 87
   19 PRINT 700.NTRIES.E1.E2.E3.ANGA.ANGB.ANGC
                                                                           MONOC 88
      GO TO 25
   20 XXA = ABS(DELA)
                                                                           MONOC 89
      XXB = ABS(DELB)
                                                                           MONOC 90
      XXC = ARS(DELC)
                                                                           MONOC 91
      XX = AMAX1(XXA \cdot XXB \cdot XXC)
                                                                           MONOC 92
                                                                           MONOC 93
      IF (XX-ACCUR) 25.25.15
   25 DO 80 MM=1.2
                                                                           MONOC 94
   .... FIRST TIME THROUGH THE DO LOOP ANGB-ANGB.ETC. AND GABK-GABK.ETCMONOC 95
   .... NEXT TIME. ANGB = 2*DPLUSB-ANGB.ETC. AND GABK=-GABK.ETC.
                                                                           MONOC 96
      ANGB = FLOAT(2-MM) *ANGB *FLOAT(MM-1) *(2.0*DPLUSB-ANGB)
                                                                           MONOC 97
      ANGA = FLOAT(2-MM) + ANGA+FLOAT(MM-1) + (2.0+DPLUSA-ANGA)
                                                                           MONOC 98
                                                                           MONOC 99
      GABK = FLOAT (3-2+MM) +GABK
      GAAK = FLOAT (3-2*MM) *GAAK
                                                                           MONOC100
                                                                           MONOC101
      ANGDEG(1) = ANGA+TODEG2
                                                                           MONOC102
      ANGDEG(2) = ANGB+TODEG2
      ANGDEG(3) = ANGC+TODEG2
                                                                           MONOC103
C CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS MAGNITUDE IS LESS THAN 90 MONOC104
C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION. MONOCLOS
                                                                           MONOC106
      DO 50 K=1.3
   46 XZ = ABS(ANGREG(K))-90.0
                                                                           MONOC107
                                                                           MONOC108
      IF(XZ) 50.50.47
   47 ANGDEG(K) = ANGDEG(K)-SIGN(180.0,ANGDEG(K))
                                                                           MONOC109
                                                                           MONOC110
      GO TO 46
   50 CONTINUE
                                                                           MONOC111
      NSOL = NSOL + 1
                                                                           MONOC112
      PRINT 602
                                                                           MONOC113
                                                                           MONOC114
      PRINT 603.NSOL.ANGDEG
      PRINT 604
                                                                           MONOC115
                                                                           MONOC116
      PRINT 601.ALA.BEAK.GAAK.ALB.BEBK.GABK.ALC.BECK.GACK
      W11 = ALA+BEAK
                                                                           MONOC117
      W22 = ALA-BEAK
                                                                           MONOC118
      W33 = ALC+BECK
                                                                           MONOC119
                                                                           MONOC120
      W12 = GAAK
                                                                           MONOC121
      W13 = GACK
      W23 = (GAAK+CSFE-GABK)/SNFE
                                                                           M0N0C122
                                                                           MONOC123
      CALL DISPLAY(2)
   80 CONTINUE
                                                                           MONOC124
                                                                           MONOC125
      PRINT 605
                                                                           MONOC126
      RETURN
```

```
999 PRINT 1999-ALA-BEA-GAA-ALB-BEB-GAB-ALC-BEC-GAC-BEAK-GAAK-BEBK-GABKMONOC127
     K.BECK.GACK.E1.E2.E3.DELA.DELB.DELC.ANGA.ANGB.ANGC.DPLUSA.DPLUSB. MONOC128
                                                                         MONOC129
     BDPLUSC, ZETAA, ZETAB, ZETAC, ACCUR
      RETURN
                                                                         MONOC130
      END
                                                                         MONOC131
                                                                         PHOMB
      SUBROUTINE RHOMBIC
                                                                                1
      DIMENSION ANGLES (3+8)+LL (3)+LSIGN (3+8)+LSO (3+3+8)+NSOL (8)
                                                                         RHOMB
                                                                                2
      COMMON/PARAM/ALA.BEA.GAA.ALB.BEB.GAB.ALC.BEC.BAC
                                                                          RHOMB
                                                                                 3
      COMMON/W/W11+W22+W33+W12+W23+W13
                                                                          RHOMB
      DATA PI/3.14159265359/.TODEG2/28.64788976/.NTRIES/30/.KHA/1HA/.
                                                                          PHOMB
                                                                                 5
     DKHB/1HB/.KHC/1HC/.IY1/1/.IY2/2/.IY3/3/.IY4/4/.IY5/5/.IY6/6/.
                                                                          RHOMB
                                                                                 6
     DIY7/7/.IY8/8/
                                                                          RHOMB
                                                                                 7
   ALA.ALB.ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. RHOMB
                                                                                 8
   BEA.BEB.BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C.
                                                                         RHOMR
                                                                                 9
   GAA.GAB.GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. RHOMB 10
                                                                          RHOMB 11
C TOOEG2 = 57.29577951/2.0 = (180/PI)/2.
  600 FORMAT(1H1. 37x.27H.... ORTHORHOMBIC CASE .... //.39%, 28HTHE ORIRHOMB 12
                                                                          RHOMS 13
     AGINAL PARAMETERS ARE: +/)
  601 FORMAT(37x+5HALPHA+11x+4HBETA+12x+5HGAMMA+//+24x+7HAXIS A:+1F16-8+RHOMB 14
     B2E16.9//24X.7HAXIS B:.1F16.8.2E16.9//24X.7HAXIS C:.F16.8.2E16.9//JRHOMB 15
  602 FORMAT(22x. 38HTHE STARTING-ANGLE ERRORS (IN DEGREES). /. 22x.
                                                                         RHOMB 16
                                                                          RHOMB 17
     C29HABOUT THE THREE ROTATION AXES . / . 23x . 6HAXIS A . 6X . 6HAXIS B . 6X .
                                                                          RHOMB 18
     D6HAXIS C)
  603 FORMAT(3x.12HSOLUTION NO.. 12.4H... .F9.4.3x.F9.4.3x.F9.4)
                                                                          RHOMB 19
  604 FORMAT(/. 27x.62HTHESE 8 SOLUTIONS HAVE THE SAME ALPHA AND BETA PARHOMR 20
     ERAMETERS. THE. /. 27X.62HSIGNS OF THE GAMMA PARAMETERS ARE DIFFERHOMB 21
                                                                        . RHOMB 22
     FENT FOR EACH SOLUTION../. 85X. 8(6HSOLTN )./.38x.5HALPHA.10X.
     G4HBETA.15x.5HGAMMA.7x.8(4H NO..12)./. (21x.5HAXIS .1A1.1H:.F16.8. RHOMR 23
     M4X+E15.9.5H (+-).E14.9.3X, 8(2H (.1A1.3H) )./))
                                                                         RHOMB 24
  605 FORMAT(/. 17x.16HTHE W TENSOR IS: 2X.3(E15.9.2X).//35X.3(E15.9.
                                                                         RHOMB 25
                                                                          RHOMB 26
     12x) •//35x•3(E15.9•2x)•/)
  606 FORMAT ( 7x 129HTHE SIGNS TO BE ASSOCIATED WITH THE ELEMENTS OF THERHOMB 27
     J W-TENSOR GIVEN ABOVE ARE ARRANGED IN A CORRESPONDING MATPIX FOR ERHOMB 28
     KACH SOLUTION, //. 2X, 8(5X.9HSOLTN NO., 12)./, 3(9X, 8(3X.1A1.1X.
                                                                         RHOMB 29
     L1A1.1X.1A1..8X). /))
                                                                          RHOMB 30
  607 FORMAT( 2x.26HTHE RESULTS FOR SOLUTIONS .II.1H.II.1H.II.1H.II.
                                                                          RHOMB 31
     M16H ARE GIVEN BELOW+/+ 27(5H + ))
                                                                          RHOMB 32
  608 FORMAT( /. 19%,41HABOVE ARE THE RESULTS FOR SOLUTION NUMBER-12.
                                                                          RHOMB 33
     N1H. . /. 19X.82HTO OBTAIN THE OTHER SOLUTIONS. CHANGE THE SIGNS OF ORHOMB 34
     ONE COLUMN OF DIRECTION COSINES./. 19X.73HAND CHANGE THE CORRESPONDRHOMB 35
     PING COLUMN OF ANGLES BY SUBTRACTING 180 DEGREES., //, (19x.19HFOR RHOMB 36
     @SOLUTION NUMBER. I2. 29H CHANGE THE COLUMN UNDER AXIS. I2./))
                                                                         RHOMB 37
  609 FORMAT (27(5H + )+/)
                                                                          RHOMB 38
  610 FORMAT(49x+27H... END OF CALCULATIONS ...)
                                                                          RHOMB 39
  611 FORMAT(//,34x.24H... ERROR IN RHOMBIC: XZ.1A1.11H = COS(ZETA.1A1. RHOMB 40
     R4H) = *1F10.6
                                                                          RHOMR 41
  612 FORMAT (55x.20HHAS BEEN CHANGED TO .1F10.6./)
                                                                          RHOMR 42
  700 FORMAT(//. 65H THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONRHOMB 43
     SVERGE WITHIN . 14.11H ITERATIONS./.36H THE VALUE OF THE NULL FUNCTRHOMB 44
     TIONS ARE -/ + 6H E1 = +E15.9+6H E2 = +E15.9+6H E3 = +E15.9+/+
                                                                         RHOMB 45
     U18H ANGA.ANGB.ANGC = . 3E15.9./)
                                                                         RHOMB 46
                                                                         RHOMB 47
      PRINT 600
      PRINT 601.ALA.BEA.GAA.ALB.BEB.GAB.ALC.BEC.GAC
                                                                         RHOMR 48
                                                                         RHOMB 49
      ACCUR = PI/18000.0
                                                                         RHOMB 50
      ZLMDAA=SQRT(BEA++2+GAA++2)
      ZLMDAB=SQRT(BEB++2+GAB++2)
                                                                          RHOMB 51
      ZLMDAC=SURT (REC++2+GAC++2)
                                                                          RHOMB 52
      DPLUSA = SIGN(ACOS(BEA/ZLMDAA), GAA)
                                                                          RHOMB 53
      DPLUSB = SIGN(ACOS(BEB/ZLMDAB),GAB)
                                                                         RHOMB 54
      DPLUSC = SIGN(ACOS(BEC/ZLMDAC), GAC)
                                                                         RHOMB 55
                                                                         RHOMB 56
      XZA=(ALC-ALB)/ZLMDAA
      XZB=(ALA-ALC)/ZLMDAB
                                                                         RHOMB 57
      XZC=(ALB-ALA)/ZLMDAC
                                                                          RHOMR 58
      KERROR = 0
                                                                         RHOMR 59
C KERROR = (0.1) IF EITHER XZA.XZB.OR XZC (HAS NOT. HAS) BEEN CHANGED TO RHOMB 60
C TO ALLOW A SOLUTION TO EXIST.
                                                                          RHOMB 61
                                                                         RHOMB 62
      YY = ABS(XZA)
      IF(YY-1.0) 4.4.2
                                                                         RHOMR 63
                                                                          RHOMB 64
    2 KERROR = 1
```

```
RHOMB 65
      PRINT 611, KHA, KHA, XZA
                                                                            RHOMB 66
      XZA = SIGN(1.0.XZA)
      PRINT 612.XZA
                                                                            RHOMB 67
    4 YY = ABS(XZB)
                                                                            RHOMB 68
                                                                            RHOMB 69
      IF(YY-1.0) 8.8.6
    6 KERROR = 1
                                                                            RHOMA 70
      PRINT 611.KHB.KHR.XZB
                                                                            RHOMB 71
                                                                            RHOMB 72
      XZB = SIGN(1.0.XZB)
      PRINT 612.XZB
                                                                            RHOMB 73
                                                                            RHOMB 74
      YY = ABS(XZC)
                                                                            RHOMB 75
      EF(YY-1.0) 12.12.10
   10 KERROR = 1
                                                                            RHOMB 76
                                                                            RHOMB 77
      PRINT 611,KHC+KHC+XZC
                                                                            RHOMB 78
      XZC = SIGN(1.0.XZC)
      PRINT 612.XZC
                                                                            RHOMB 79
   12 ZETAA = ACOS(XZA)
                                                                            RHOMB 80
                                                                            RHOMB 81
      ZETAB = ACOS(XZB)
      ZETAC = ACOS(XZC)
                                                                            RHOMB 82
                                                                            RHOMB 83
      PM = -1.0
      DO 25 II=1.2
                                                                            RHOMB 84
      PH=-PH
                                                                            RHOMB 85
   .... ANGA, ANGB. ANGC ARE THE (DOUBLE) - STARTING-ANGLE-SHIFTS FOR
                                                                            RHOMR 86
   ROTATIONS ABOUT AXES A.B.C RESPECTIVELY.
                                                                            RHOMB 87
                                                                            RHOMB 88
      ANGA = DPLUSA-SIGN(ZETAA+PM)
                                                                            RHOMB 89
      ANGB = DPLUSB-SIGN(ZETAB,PM)
      ANGC =
              DPLUSC-SIGN(ZETAC.PM)
                                                                            RHOMB 90
      JFLAG=0
                                                                            RHOMB 91
   15 CSA=COS (ANGA)
                                                                            RHOMB 92
                                                                            RHOMB 93
      CSB=COS (ANGB)
      CSC=COS (ANGC)
                                                                            RHOMB 94
      SNA=SIN(ANGA)
                                                                            RHOMB 95
      SNB=SIN (ANGR)
                                                                            RHOMR 96
      SNC=SIN (ANGC)
                                                                            RHOMB 97
                                                                            PHOMR 98
      BEAK=BEA+CSA+GAA+SNA
      DEBK=BEB+CSB+GAB+SNB
                                                                            RHOMB 99
      BECK=BEC+CSC+GAC+SNC
                                                                            RHOMB100
      GAAK=GAA+CSA-BEA+SNA
                                                                            RHOMB101
      GABK=GAB+CSB-REB+SNB
                                                                            RHOMB102
      GACK=GAC+CSC-BEC+SNC
                                                                            RHOMB103
      E1 = ALC-ALB-BEAK
                                                                            RHOMB104
      E2 = ALA-ALC-BEBK
                                                                            RHOMB105
      E3 = ALB-ALA-BECK
                                                                            RHOMB106
      DELA = E1/GAAK
                                                                            RHOMB107
      DELB = E2/GARK
                                                                            RHOMB108
                                                                            RHOMB109
      DELC = E3/GACK
C IF KERROR = 1. THEN WE CAN NOT FIND A SELF-CONSISTENT SOLUTION. SO WE RHOMBILO
C ALLOW THIS APPROXIMATION TO BYPASS THE CHECKING OF DELA.DELB.DELC.
                                                                            RHOMB111
      IF (KERROR) 21-17-21
                                                                            RHOMB112
   17 ANGA=ANGA+DELA
                                                                            RHOMB113
      ANGB=ANGR+DELR
                                                                            RHOMB114
      ANGC=ANGC+DELC
                                                                            RHOMB115
      JFLAG=JFLAG+1
                                                                            RHOMB116
      IF (JFLAG-NTRIES) 19,19,18
                                                                            RHOMB117
   18 PRINT 700 NTRIES . El . E2 . E3 . ANGA . ANGB . ANGC
                                                                            RHOMB118
                                                                            RHOMR119
      GO TO 21
   19 XXA = ABS(DELA)
                                                                            RHOMB120
      XXB = ABS (DELB)
                                                                            RHOMB121
                                                                            RHOMB122
      XXC = ABS(DELC)
      XX = AMAX1(XXA•XXB•XXC)
                                                                            RHOMB123
      IF(XX-ACCUR) 21+15+15
                                                                            RHOMB124
   21 IJ=4*II-3
                                                                            RHOMR125
                                                                            RHOMB126
      ANGLES (1.IJ) = ANGA
      ANGLES (2. IJ) = ANGR
                                                                            RHOMB127
      ANGLES (3. IJ) = ANGC
                                                                            RHOMB128
   25 CONTINUE
                                                                            RHOMB129
      XA=(ANGLES(1.5)-ANGLES(1.1))/2.0
                                                                            RHOMB130
      XB=(ANGLES(2.5)-ANGLES(2.1))/2.0
                                                                            RHOMB131
      XC=(ANGLES(3.5)-ANGLES(3.1))/2.0
                                                                            RHOMB132
      BEAK=ZLMDAA+COS(XA)
                                                                            RHOMB133
```

```
RHOMB134
      GAAK=ZLMDAA+SIN(XA)
      BEBK=ZLMDAB+COS(XB)
                                                                              RHOMB135
      GABK=ZLMDAR+SIN(X8)
                                                                             RHOMB136
                                                                             RHOMB137
      BECK=ZLMDAC+COS(XC)
      GACK=ZLMDAC+SIN(XC)
                                                                              RHOMB138
                                                                              RHOMB139
      GAAB = ABS(GAAK)
      GABB = ABS (GABK)
                                                                              RHOMB140
      GACB = ABS(GACK)
                                                                              PHOMB141
C CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS MACNITUDE IS LESS THAN 90 RHOMB142
C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION. RHOMB143.
                                                                              RHOMR144
      DO 30 K=1.5.4
      DO 30 J=1.3
                                                                              RHOMB145
      XX = ANGLES(J+K)+TODEG2
                                                                              RHOMB146
   27 XZ = ABS(XX)-90.0
                                                                              RHOMR147
      IF(XZ) 30.30.28
                                                                              RHOMB148
   28 XX = XX - SIGN(180.0 + XX)
                                                                              RHOMB149
                                                                              RHOMB150
      GO TO 27
   30 ANGLES(J.K) = XX
                                                                              RHOMB151
                                                                              RHOMB152
      DO 32 I=1.3
                                                                              RHOMB153
      LSIGN(I \cdot 1) = 1H \cdot
   32 LSIGN(I+5) = 1H+
                                                                              RHOMB154
                                                                              RHOMB155
      IF(GAAK) 33.34.34
   33 LSIGN(1 \cdot 1) = 1 + -
                                                                              RHOMB 156
                                                                             RHOMB157
   34 IF (GABK) 35.36.36
   35 LSIGN(2+1) = 1H-
                                                                              RHOMB158
   36 IF (GACK) 37.38.38
                                                                              RHOMB159
   37 \text{ LSIGN}(3,1) = 1H-
                                                                              RHOMB160
                                                                              RHOMB161
   38 DO 40 I=1,3
                                                                              RHOMB162
      HH = LSIGN(I \cdot I) - IH \cdot
      IF(MM) 40.39.40
                                                                              RHOMB163
   39 LSIGN(I+5) = 1H-
                                                                              RHOMB164
   40 CONTINUE
                                                                              RHOMB165
      LL(1)=+2
                                                                              RHOMB166
      LL (2) =-2
                                                                              RHOMB167
      LL (3) =+2
                                                                              RHOMB168
      DO 45 IB=2.4
                                                                              RHOMB169
      DO 42 IA=1.3
                                                                              RHOMB170
      ANGLES (IA, IB)
                       = ANGLES(IA+3+LL(IA))
                                                                              RHOMB171
      ANGLES(IA, IB+4) = ANGLES(IA, 3-LL(IA))
                                                                              RHOMR172
      LSIGN(IA+IB) = LSIGN(IA+3+LL(IA))
                                                                              RHOMB173
   42 LSIGN(IA.IB.4) = LSIGN(IA.3-LL(IA))
                                                                              RHOMB174
                                                                              RHOMB175
      IT=LL(3)
      LL (3)=LL (2)
                                                                              RHOMB176
      LL (2)=LL(1)
                                                                              RHOMB177
                                                                              RHOMB178
      LL(1)=IT
   45 CONTINUE
                                                                              RHOMB179
      DO 50 I=1.8
                                                                              RHOMB180
      LSQ(1.1.1)=1H+
                                                                              RHOMBIBL
                                                                              RHOMB182
      LS2(2.2.1) -1H+
                                                                              RHOMB183
      LSQ(3.3.1)=1H+
      LSO(1+2+I) = LSIGN(1+I)
                                                                              RHOMB184
      LSQ(2+1+1) = LSIGN(1+1)
                                                                              RHOMB185
                                                                              RHOMB186
      LSQ(1\cdot3\cdot1) = LSIGN(3\cdot1)
      LSO(3+1+1) = LSIGN(3+1)
                                                                              RHOMB187
                                                                              RHOMB188
      LSQ(2+3+1) = LSIGN(2+1)
      LSO(3\cdot2\cdot1) = LSIGN(2\cdot1)
                                                                              RHOMB189
   50 CONTINUE
                                                                              RHOMB190
      WII = ALA+BEAK
                                                                              RHOMB191
      W22 = ALR+BERK
                                                                              RHOMB192
      W33 = ALC+BECK
                                                                              RHOMB193
                                                                              RHOMB194
      W12 = GAAK
      W23 = GARK
                                                                              RHOMB195
      W13 = GACK
                                                                              RHOMB196
      DO 60 I=1.8
                                                                              RHOMB197
   60 NSOL(I) = I
                                                                              RHOMB198
                                                                              RHOMB199
      PRINT 602
                                                                             RHOMB200
      PRINT 603.(([.(ANGLES(J.1).J=1.3)).[=1.8)
      PRINT 604.NSOL.KHA.ALA.BEAK.GAAB.(LSIGN(1.K).K=1.8).
                                                                              RHOMB201
     1KHB+ALB+REBK+GARR+(LSIGN(2+K)+K=1+8)
                                                   .KHC.ALC.BECK.BACB.
                                                                              RHOMB202
```

```
RHOMB203
    2(LSIGN(3.K).K=1.8)
     PRINT 605-W11-GAAB-GACB-GAAB-W22-GABB-GACB-GABB-W33
                                                                        RHOMB204
     PRINT 606.NSnL. (((LSQ(I.J.K).J=1.3).K=1.8).I=1.3)
                                                                        RHOMB205
     PRINT 607.1Y1.1Y2.1Y3.1Y4
                                                                        RHOMB206
                                                                        RHOMB207
     CALL DISPLAY(3)
                                                                        RHOMBZOB
     PRINT 608.1Y1.1Y2.1Y1.1Y3.1Y2.1Y4.1Y3
     PRINT 609
                                                                        RHOMB209
                                                                        RHOMB210
     A15=-A15
     W23=W23
                                                                        RHOMB211
                                                                        RHOMB212
     W13=-W13
     PRINT 607,1Y5,1Y6,1Y7,1Y8
                                                                        RHOMB213
                                                                        RHOMB214
     CALL DISPLAY(3)
     PRINT 608,175,176,171,177,172,178,173
                                                                        RHOMB215
                                                                        RHOMB216
     PRINT 609
     PRINT 610
                                                                        RHOMB217
     RETURN
                                                                        RHOMB218
                                                                        RHOMB219
     END
                                                                        GENER
     SUBROUTINE GENERAL (PHI.NN1.NN2.NN3.SS1.SS2.SS3)
  ..... PHI IS IN DEGREES.
                                                                        GENER
                                                                               2
 NN1.NN2.NN3 ARE THE DIRECTION COSINES WITH RESPECT TO AXES 1.2.3
                                                                        GENER
                                                                               3
                                                                        GENER
    RESPECTIVELY OF THE ARBITRARY ROTATION AXIS C.
  $$1.552.553 ARE THE DIRECTION COSINES WITH RESPECT TO AXES 1.2.3
                                                                               5
                                                                        GENER
  RESPECTIVELY OF THE STARTING DIRECTION FOR THE ROTATION ABOUT AXIS C GENER
                                                                               6
 NEITHER (NN1.NN2.NN3) NOR (SS1.SS2.SS3) NEED BE NORMALIZED.
                                                                        GENER
     REAL M1.M2.M3.MM1.MM2.MM3.N1.N2.N3.NN1.NN2.NN3.ANGDEG(3)
                                                                        GENER
                                                                        GENER
                                                                               9
     COMMON/PARAM/ALA, BEA, GAA, ALB, BEB, GAB, ALC, BEC, BAC
     COMMON/W/W11.W22.W33.W12.W23.W13
                                                                        GENER 10
     DATA PI/3.14159265359/.TODEG/57.29577951/.TODEG2/28.64788976/.
                                                                        GENER 11
    DTORAD/0.01745329252/.NSTEP/360/.NTRIES/15/
                                                                        GENER 12
 ALA-ALB-ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A-B-C. GENER 13
                                                                        GENER 14
 BEA.BEB.BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A.R.C.
  GAA.GAB.GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. GENER 15
 600 FORMAT(1H1. 40x.22H.... GENERAL CASE .....10x.6HPHI = .1F9.4.//. GENER 16
    A39X+28HTHE ORIGINAL PARAMETERS ARE +/)
                                                                        GENER 17
 601 FORMAT(37x,5HALPHA,11X,4HBETA,12X,5HGAMMA,//,24X,7HAXIS A:,1F16.8,GENER 18
    82E16.9//24X.7HAXIS B:.1F16.8.2E16.9//24X.7HAXIS C:.F16.8.2E16.9//)GENER 19
 602 FORMAT (28x - 72HTHE VECTOR (N1.N2.N3) REPPESENTING THE DIRECTION OFGENER 20
    C AXIS C IS GIVEN AS (+1F9.6+1H+1F9.6+1H+1F9.6+1H)+/+ 69X+31HTHIS IGENER 21
                                                                        GENER 22
    DS NORMALIZED TO PRODUCE (+1F9.6+1H+1F9.6+1H+1F9.6+1H))
 603 FORMAT(100H THE VECTOR (S1.52.53) REPRESENTING THE STARTING DIRECTGENER 23
    EION FOR A ROTATION ABOUT AXIS C IS GIVEN AS (+1F9.6+1H+1F9.6+1H+
                                                                        GENER 24
                                                                        GENER 25
    F1F9.6.1H))
 604 FORMAT(84H THIS VECTOR IS PROJECTED ONTO THE PLANE PERPENDICULAR TGENER 26
    GO (N1.N2.N3) AND NORMALIZED../.76X. 24HTHESE CORRECTIONS GIVE (.
                                                                       GENER 27
    H1F9.6.1H.1F9.6.1H.1F9.6.1H)./, 40X.60HTHE STARTING-DIRECTION VECTOGENER 28
    IR ($1.52.53) IS NOW CHANGED TO (.1F9.6.1H.1F9.6.1H.1F9.6.1H))
                                                                        GENER 29
 605 FORMAT(40x+17HBY A ROTATION OF F9.4+25H DEGREES ABOUT (N1+N2+N3)/)GENER 30
 606 FORMAT(43H THIS CHANGES THE FOLLOWING TWO PARAMETERS↓•/• 35H BETAGENER 31
    J FOR ROTATION ABOUT AXIS C = +1E15.9*/+35H GAMMA FOR ROTATION ABOUGENER 32
                                                                        GENER 33
    KT AXIS C = *1E15.9*//)
607 FORMAT(22X. 38HTHE STARTING-ANGLE ERRORS (IN DEGREES). /. 22X.
                                                                        GENER 34
    L29HABOUT THE THREE ROTATION AXES+/+23X+6HAXIS A+6X+6HAXIS B+6X+
                                                                        GENER 35
    M6HAXIS C)
                                                                        GENER 36
 608 FORMAT (3x.12HSOLUTION NO.. 12.4H... . F9.4.3x.F9.4.3X.F9.4)
                                                                        GENER 37
 609 FORMAT(/.36%, 48HTHIS SOLUTION HAS THE FOLLOWING ALPHA.BETA.GAMMA.GENER
                                                                              38
    N/. 36x.41HPARAMETERS FOR THE THREE AXES OF ROTATION)
                                                                        GENER 39
 610 FORMAT(/+27(5H * )+//+49X+27H+... END OF CALCULATIONS ...)
                                                                        GENER 40
 700 FORMAT(//, 65H THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONGENER 41
    OVERGE WITHIN . 14.11H ITERATIONS./.36H THE VALUE OF THE NULL FUNCTGENER 42
    PIONS ARE-/+ 6H E1 = +E15.9+6H E2 = +E15.9+6H E3 = +E15.9+/+
                                                                        GENER 43
    Q18H ANGA, ANGR, ANGC = . 3E15.9./)
                                                                        GENER 44
                                                                        GENER 45
1999 FORMAT(19H ERROR IN GENERAL: ,216,/,(39X,3E15,9,/) )
    FE = PHI TORAD
                                                                        GENER 46
    NSOL = 0
                                                                        GENER 47
     ARSTEP=PI/FLOAT (NSTEP)
                                                                        GENER 48
                                                                        GENER 49
     STEP=ABSTEP
     ACCUR=STEP/10000.0
                                                                        GENER 50
     CONV = 3.0 ABSTEP
                                                                        GENER 51
                                                                        GENER 52
    PRINT 600.PHI
```

```
PRINT 601.ALA.BEA.GAA.ALB.BEB.GAB.ALC.BEC.GAC
                                                                           GENER 53
                                                                           GENER 54
   .... NORMALIZE (NN1+NN2+NN3) TO FORM (N1+N2+N3) ...
      RENORM = SQRT (NN1+NN1+NN2+NN2+NN3+NN3)
                                                                           GENER 55
                                                                           GENER 56
      IF (RENORM) 4.999
                                                                           GENER 57
    4 NI=NN1/RENORM
      N2=NN2/RENORM
                                                                           GENER 58
                                                                           GENER 59
      N3=NN3/RENORM
                                                                           GENER 60
      PRINT 602.NN1.NN2.NN3.N1.N2.N3
                                                                           GENER 61
      PRINT 603.551.552.553
   .... PROJECT (SS1+SS2+SS3) ONTO THE PLANE PERPENDICULAR TO THE
                                                                           GENER 62
         VECTOR (N].N2.N3) ...
                                                                           GENER 63
                                                                           GENER 64
      DCSN = SS1*N1+SS2*N2+SS3*N3
                                                                           GENER 65
      SS1=SS1-DCSN+N1
                                                                           GENER 66
      SS2=SS2-DCSN+N2
                                                                           GENER 67
      $$3#$$3-DC$N*N3
   .... NORMALIZE THE NEW (SS1.SS2.SS3)
                                                                           GENER 68
                                                                           GENER 69
      RENORM = SQRT(SS1*SS1+SS2*SS2+SS3*SS3)
      IF(RENORM) 5.999
                                                                           GENER 70
    5 SS1=SS1/RENORM
                                                                           GENER 71
                                                                           GENER 72
      SS2=SS2/RENORM
                                                                           GENER 73
      SS3=SS3/RENORM
   .... FORM (MM1.MM2.MM3) FROM (N1.N2.N3) CROSS (SS1.SS2.SS3) ...
                                                                           GENER 74
                                                                           GENER 75
      MM1=N2*SS3-N3*SS2
                                                                           GENER 76
      MM2=N3+SS1-N1+SS3
      MM3=N1+SS2-N2+SS1
                                                                           GENER 77
   .... CHANGE TO A NEW STARTING DIRECTION ($1.52.53) WHERE 53=0.0 AND GENER 78
         A CORRESPONDING NEW MIDDLE DIRECTION (M1+M2+M3) ...
                                                                           GENER 79
                                                                           GENER 80
      IF(MM3) 6.999.6
     IF(SS3) 8.7
                                                                           GENER AT
    7 M1=MM1
                                                                           GENER 82
                                                                           GENER 83
      SHH=SH
                                                                           GENER 84
      M3=MM3
      $1=$$1
                                                                           GENER 85
                                                                           GENER 86
      S2=SS2
                                                                           GENER 87
      S3=SS3
      BECS=BEC
                                                                           GENER 88
      GACS=GAC
                                                                           GENER 89
                                                                           GENER 90
      XI = 0.0
      GO TO 18
                                                                           GENER 91
    8 ALMDA = SQRT(SS3*SS3*MM3*MM3)
                                                                           GENER 92
      S1 = (SS1+MM3-SS3+MM1)/ALMDA
                                                                           GENER 93
                                                                           GENER 94
      S2 = (SS2+MM3-SS3+M42)/ALMDA
      53 - 0.0
                                                                           GENER 95
      M1 = (SS1+SS3+MM1+MM3)/ALMDA
                                                                           GENER 96
      M2 = (SS2*SS3*MM2*M43)/ALMDA
                                                                           GENER 97
                                                                           GENER 98
      M3 = ALMDA
                                                                           GENER 99
      TANXI = -SS3/MM3
      XI = ATAN(TANXI) + TODEG
                                                                           GENER100
                                                                           GENER 101
      IF/MM3) 10+10+15
   10 \times I = \times I - SIGN(180.0.SS3)
                                                                           GENER102
    XI IS THE ANGLE OF ROTATION ABOUT (N1.N2.N3) TO PRODUCE (S1.S2.S3). GENER103
   .... NEW BETA AND GAMMA PARAMETERS FOR ROTATION ABOUT AXIS C.
                                                                           GENERIO4
C
         OLD VALUES BEC.GAC ARE ASSOCIATED WITH ($51.552.553)...
                                                                           GENER105
         NEW VALUES BECS.GACS ARE ASSOCIATED WITH ($1.52.53).
                                                                           GENER106
   15 BECS = (REC*(MM3**2-SS3**2)-2.0*GAC*MM3*SS3)/(ALMDA*ALMDA)
                                                                           GENER107
      GACS = (GAC+(MM3++2-SS3++2)+2.0+BEC+MM3+SS3)/(ALMDA+ALMDA)
                                                                           GENER 108
                                                                           GENER109
   18 PRINT 604.SS1.SS2.SS3.S1.S2.S3
      PRINT 605.XI
                                                                           GENER 110
                                                                           GENER111
      PRINT 606.BECS.GACS
      ZLMDAA=SORT (BEA++2+GAA++2)
                                                                           GENER112
                                                                           GENER113
      ZLMDAB=SQRT (BER##2+GAR##2)
      ZLMDAC=SQRT (HECS++2+GACS++2)
                                                                           GENER114
      DPLUSA = SIGN(ACOS(REA/ZLMDAA) .GAA)
                                                                           GENER115
                                                                           GENER116
      DPLUSB = SIGN(ACOS(BEB/ZLMDAB) + GAB)
      DPLUSC = SIGN(ACOS(BECS/ZLMDAC)+GACS)
                                                                           GENER117
                                                                           GENER118
      SNFE = SIN(FE)
      CSFE = COS(FE)
                                                                           GENER119
      SN2FE = SIN(2.0*FE)
                                                                           GENER120
                                                                           GENER121
      SNFE2=SNFE++2
```

```
CSFE2=CSFE++2
                                                                           GENER122
                                                                           GENER123
      BEAK=BEA
                                                                           GENER124
      BEBK=BEB
                                                                           GENER125
      BECK=BECS
      GAAK=GAA
                                                                           GENER 126
                                                                           GENER127
      GABK=GAB
      GACK=GACS
                                                                           GENER128
                                                                           GENER129
      CMIN = (ALA-ALB-ZLMDAB)/ZLMDAA
                                                                           GENER130
      CMAX = (ALA-ALB+ZLMDAB)/ZLMDAA
                                                                           GENERI 31
      CMIN = AMAX1(CMIN+-1.0)
                                                                           GENER132
      CMAX = AMINI(CMAX++1.0)
                                                                           GENER133
      XMAX = ACOS (CHIN)
      XMIN = ACOS (CMAX)
                                                                           GENER134
      IBEG = IFIX(XMIN/STEP)
                                                                           GENER135
                                                                           GENER136
      IEND = IFIX(xmax/step)+1
      IF(IEND-[BEG) 999,999,20
                                                                           GENER137
   20 DO 201 III=1.2
                                                                           GENER138
                                                                           GENER139
      STEP = -STEP
      PNB = +1.0
                                                                           GENER140
      PNC = -1.0
                                                                           GENER141
                                                                           GENER142
      DO 201 LMN=1,4
                                                                           GENER143
      TEPNE
                                                                           GENER144
      PNB=-PNC
                                                                           GENER145
      PNC=T
                                                                           GENER146
      KLL=0
      KSCH=0
                                                                           GENER147
                                                                           GENER148
      INDEX=0
      CROSS=+1.0
                                                                           GENER149
      DO 200 I=IREG.IEND
                                                                           GENER150
   .... INDEX = NUMBER OF STEPS IN ALLOWED REGION.
                                                                           GENER151
   .... KLL = 0 FORBIDDEN REGION
                                                                           GENER152
   .... KLL = 1 ALLOWED REGION
                                                                           GENER153
   .... KLLSV = VALUE OF KLL FOR PREVIOUS STEP. ENTERING THE DO LOOP
                                                                           GENER154
   .... KSCH = (0.1) IF SEARCH FOR CROSSOVER (DOES NOT. DOES) OCCUR.
                                                                           GENER155
   .... KSCHSV = VALUE OF KSCH FOR PREVIOUS STEP.
                                                                           GENER156
                                                                           GENER157
   FOR THE FIRST TIME CAUSES KLLSV TO BE SET TO 0.
   .... CROSS IS LESS THAN OR EQUAL TO 0.0 ONLY IF A CROSSOVER IS TO
                                                                           GENER158
                                                                           GENER159
   BE SEARCHED FOR.
   .... FUNC = TEST FUNCTION = E3. WE SEARCH FOR THE ZERO VALUES.
                                                                           GENER160
   .... SFUNC = LAST VALUE OF FUNC
                                                                           GENER161
   .... SSFUNC = SECOND TO THE LAST VALUE OF FUNC
                                                                           GENER162
      ZTA=FLOAT(I) +STEP
                                                                           GENER163
      CSZTA=COS(ZTA)
                                                                           GENER164
                                                                           GENER165
      KLLSV=KLL
      KSCHSV=KSCH
                                                                           GENER166
                                                                           GENER167
      KSCH=0
      SSFUNC=SFUNC
                                                                           GENER168
      SFUNC=FUNC
                                                                           GENER 169
      CSZTB=(ZLMDAA+CSZTA+ALB-ALA)/ZLMDAB
                                                                           GENER170
      IF(ABS(CSZTB)-1.0) 38.38.190
                                                                           GENER171
   38 SNZTA = SIN(ZTA)
                                                                           GENER172
      CSZTC=(ZLMDAA+((2.+51+S1-1.)+CSZTA+2.+S1+S2+SNZTA)+ALA-ALC)/ZLMDACGENER173
      IF (ABS(CSZTC)-1.0) 39,39,190
                                                                           GENER174
                                                                           GENER175
C ..... ALLOWED ZONE .....
   39 KLL=1
                                                                           GENER 176
      INDEX=INDEX+1
                                                                           GENER177
   **** CALCULATE FUNC ***

SNZTB = SIGN((SQRT(1.0-CSZTB**2)),PNB)
                                                                           GENER178
C
                                                                           GENER179
      SNZTC = SIGN((SORT(1.0-CSZTC++2)).PNC)
                                                                           GENER180
                                                                           GENERIAL
      BEAK = ZLMDAA+CSZTA
      BEBK = ZLMDAR+CSZTB
                                                                           GENER182
                                                                           GENER183
      BECK = ZLMDAC+CSZTC
      GAAK = ZLMDAA-SNZTA
                                                                           GENER184
      GABK = ZLMDAR+SNZTB
                                                                           GENER185
      GACK = ZLMDAC+SNZTC
                                                                           GENFR186
      W23=(GAAK+CSFE-GARK)/SNFE
                                                                           GENER187
      W13=(GACK+2.0+BEAK+S2+M2-GAAK+(S1+M2+S2+M1)-W23+S2+M3)/(S1+M3)
                                                                           GENER188
      W33=(ALB+BEBK-(ALA+BEAK)+CSFE2+W13+SN2FE)/SNFE2
                                                                           GENER189
      FUNC=ALA+(1.0-M3++2)+BEAK+(M1++2-M2++2)+2.0+GAAK+M1+M2+2.0+W23+M2+GENER190
```

```
GENER191
     FN3+2.0+W13+M1+M3+W33+M3+*2-ALC+BECK
   .... IF LAST STEP WAS IN THE FORBIDDEN REGION. CHECK FOR CROSSOVER. GENER192
                                                                         GENER193
      IF(KLLSV) 50.100
    .... IF INDEX=1. THIS IS THE FIRST STEP AND ANOTHER STEP IS TAKEN.
                                                                         GENER194
   IF FUNC=0.0. THEN THIS WILL BE DETERMINED BY THE PRODUCT SPUNC-FUNC
                                                                         GENER195
                                                                         GENER196
   50 IF(INDEX-1) 200+200+52
                                                                         GENER197
   52 CROSS = SFUNC*FUNC
   .... IF CROSS IS NEGATIVE OR ZERO, A CROSSOVER HAS OCCURED.
                                                                         GENER 198
                                                                         GENER199
      #F(CROSS) 100-100-54
                                                                         GENER200
   .... INDEX MUST BE AT LEAST 3 FOR THE FOLLOWING CHECK TO BE VALID
                                                                         GENER201
   54 IF(INDEX-3) 200,56,56
   .... WE TEST TO SEE IF THE FUNCTION HAS APPROACHED TOWARD AND THEN
                                                                         GENER202
  RETREATED FROM THE FUNC=0.0 AXIS. THERE ARE TWO CONDITIONS THAT
                                                                         GENER203
  MUST BE MET FOR THIS TO HAVE OCCURED.
                                                                         GENER204
                                                                         GENER205
   (1). (FUNC-SFUNC) + (SFUNC-SSFUNC) MUST BE LESS THAN OR EQUAL TO ZERO
   (2). FUNC*(FUNC-SFUNC) MUST BE GREATER THAN OR EQUAL TO ZERO.
                                                                         GENER206
   56 CHECK = (FUNC-SFUNC) * (SFUNC-SSFUNC)
                                                                         GENER207
      IF (CHECK) 58,58,200
                                                                         GENER208
   58 CHECK = FUNC+(FUNC-SFUNC)
                                                                         GENER209
      IF (CHECK) 200.100.100
                                                                         GENER210
C ..... ROUTINE FOR SEARCHING FOR CROSSOVER POINTS .....
                                                                         GENER211
C CALCULATE THE THREE ANGLES ABOUT WHICH THE SEARCH IS TO BEGIN
                                                                         GENER212
   .... ANGA+ANGB+ANGC ARE THE (DOUBLE)-STARTING-ANGLE-SHIFTS FOR
                                                                         GENER213
  ROTATIONS ABOUT AXES A.B.C RESPECTIVELY.
                                                                         GENER214
                                                                         GENER215
 100 KSCH=1
      ANGA = DPLUSA-ZTA
                                                                         GENER216
      ANGB = DPLUSB-SIGN(ACOS(CSZTB) .PNB)
                                                                         GENER217
      ANGC = DPLUSC-SIGN(ACOS(CSZTC),PNC)
                                                                         GENER218
      JFLAG=0
                                                                         GENER219
     GO TO 112
                                                                         GENER220
 110 ANGA=ANGA+DELA
                                                                         GENER221
      ANGB=ANGR+DELB
                                                                         GENER222
                                                                         GENER223
      ANGC=ANGC+DELC
 112 CSA=COS (ANGA)
                                                                         GENER224
     CSB=COS (ANGB)
                                                                         GENER225
     CSC=COS (ANGC)
                                                                         GENER226
                                                                         GENER227
     SNA=SIN(ANGA)
                                                                         GENER228
      SNB=SIN(ANGB)
                                                                         GENER229
     SNC=SIN(ANGC)
     BEAK=BEA+CSA+GAA+SNA
                                                                         GENER230
     BEBK=BEB+CSB+GAB+SNB
                                                                         GENER231
     BECK=BECS+CSC+GACS+SNC
                                                                         GENER232
     GAAK=GAA#CSA-BEA#SNA
                                                                         GENER233
     GABK=GAB+CSB-BEB+SNB
                                                                         GENER234
     GACK=GACS+CSC-BECS+SNC
                                                                         GENER235
     W11=ALA+BEAK
                                                                         GENER236
                                                                         GENER237
     W22=ALA-REAK
     W12=GAAK
                                                                         GENER238
                                                                         GENER239
     W23=(GAAK+CSFE-GABK)/SNFE
     W13=(GACK+2.0+REAK+52+M2-GAAK+(51+M2+52+M1)-W23+52+M3)/(51+M3)
                                                                         GENER240
     W33=(ALR+REBK-(ALA+BEAK) *CSFE2+W13*SN2FE)/SNFE2
                                                                         GENER241
     E1=ALB-BERK-ALA+REAK
                                                                         GENER242
     E2=ALA+BEAK+(2.0+S1++2-1.0)+2.0+GAAK+S1+S2-ALC-BECK
                                                                         GENER243
     E3=ALA#(1.0-M3**2)*REAK#(M1**2-M2**2)*2.0*BAAK*M1*M2*2.0*W23*M2*M3GENER244
                                                                         GENER245
    E+2.0+W13+M1+M3+W33+M3++2-ALC+BECK
     BR=E1/GARK
                                                                         GENER246
     BBP=GAAK/GABK
                                                                         GENER247
                                                                         GENFR248
     CC=E2/GACK
     CCP=(GAAK+(2.0+S1++2-1.0)-2.0+BEAK+S1+S2)/6ACK
                                                                         GENER249
     PP=BERK+RB/SNFE
                                                                         GENER250
     PPP=(BEBK+BBP-BEAK+CSFE)/SNFE
                                                                         GENER251
     QQ=-(BECK+CC+PP+52+43)/(51+H3)
                                                                         GENER252
     QQP=(-BECK+CCP+2.*GAAK+S2*M2+BEAK+(S1*M2+S2*M1)-PPP+S2*M3)/(S1*M3)GENER253
     RR=(E1+QQ+SN2FE)/SNFE2
                                                                         GENER254
     RRP=GAAK+(2.0+QQP+CSFE/SNFE)
                                                                         GENER255
     F1 = -E3-E2-RR*M3**2-2.0*PP*M2*M3-2.0*44*M1*M3
                                                                         GENER256
                                                                         GENER257
     F2 = GAAK*(M1**2+S1**2-M2**2-S2**2)-2.0*BEAK*(M1*M2+S1*52)+
    F RRP*M3**2+2.0*PPP*M2*M3+2.0*QQP*M1*M3
                                                                         GENER258
                                                                         GENER259
     DELA=F1/F2
```

```
GENER260
      DELB=BR+RBP+DELA
      DELC=CC+CCP+DELA
                                                                           GENER261
      XXA = ABS(DELA)
                                                                           GENER262
                                                                           GENER263
      IF(JFLA6) 114.114.119
  114 IF(XXA-CONV) 119.119.115
                                                                           GENER264
  115 IF(CROSS) 119,119,200
                                                                           GENER265
  119 JFLAG=JFLAG+1
                                                                           GENER266
      IF (JFLAG-NTRIES) 120.120.195
                                                                           GENER267
  120 XXB = ABS(DELB)
                                                                           GENER268
      XXC = ABS(DELC)
                                                                           GENER269
      XX = AMAX1(XXA+XXB+XXC)
                                                                           GENER270
      IF (XX-ACCUR) 130-130-123
                                                                           GENER271
  123 IF (XXA-ABSTEP) 125,125,124
                                                                           GENER272
  124 DELA = SIGN(ABSTEP.DELA)
                                                                           GENER273
  125 IF (XXB-ABSTEP) 127-127-126
                                                                           GENER274
  126 DELB = SIGN(ABSTEP+DELB)
                                                                           GENER275
  127 IF (XXC-ABSTEP) 110+110+128
                                                                           GENER276
  128 DELC = SIGN(ABSTEP+DELC)
                                                                           GENER277
      GO TO 110
                                                                           GENER278
  130 ANGDEG(1) - ANGA+TODEG2
                                                                           GENER279
      ANGDEG(2) = ANGB+TODEG2
                                                                           GENER280
      ANGDEG(3) = ANGC+TODEG2
                                                                           GENER2A1
C CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS MACNITUDE IS LESS THAN 90 GENER282
C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION. GENER283
      DO 140 K=1.3
                                                                           GENER284
  136 XZ = ARS(ANGDEG(K))-90.0
                                                                           GENER285
      IF(XZ) 140.140.137
                                                                           GENER286
  137 ANGDEG(K) = ANGDEG(K)-SIGN(180.0,ANGDEG(K))
                                                                           GENER287
      GO TO 136
                                                                           GENER288
  140 CONTINUE
                                                                           GENER289
      NSOL=NSOL+1
                                                                           GENER290
                                                                           GENER291
      PRINT 607
      PRINT 608, NSOL, ANGDEG
                                                                           GENER292
                                                                           GENER293
      PRINT 609
      PRINT 601.ALA.BEAK.GAAK.ALB.BEBK.GABK.ALC.BECK.GACK
                                                                           GENER294
      CALL DISPLAY(4)
                                                                           GENER295
      GO TO 200
                                                                           GENER296
   .... FORBIDDEN ZONE ... IF LAST STEP WAS IN ALLOWED ZONE AND A
                                                                           GENER297
  CROSSOVER SEARCH WAS NOT PERFORMED. THEN CHECK FOR CROSSOVER POINT
                                                                           GENER298
   AFTER RESETTING THE PREVIOUS VALUES OF ZTA+CSZTA+CSZTB+CSZTC.
                                                                           GENER299
  190 INDEX=0
                                                                           GENER300
      KLL=0
                                                                           GENER301
      IF(KLLSV) 192.200
                                                                           GENER302
  192 IF (KSCHSV) 200,193
                                                                           GENER303
  193 ZTA=ZTA-STEP
                                                                           GENER304
      CSZTA=COS(ZTA)
                                                                           GENER305
      SNZTA = SIN(ZTA)
                                                                           GENER306
      CSZTB=(ZLMDAA+CSZTA+ALR-ALA)/ZLMDAB
                                                                           GENER307
      CSZTC=(ZLMDAA+((2.*S1*S1-1.)*CSZTA+2.*S1*52*SNZTA)*ALA-ALC)/ZLMDACGENER308
      GO TO 100
                                                                           GENER309
C ..... NO CROSSOVER HAS BEEN FOUND. IF CROSS IS LESS THAN 0.0, ERROR
                                                                           GENER310
  195 IF(CROSS) 197.197.200
                                                                           GENER311
  197 CROSS=+1.0
                                                                           GENER312
      PRINT 700.NTRIES.El.E2.E3.ANGA.ANGB.ANGC
                                                                           GENER313
  200 CONTINUE
                                                                           GENER314
  201 CONTINUE
                                                                           GENER315
      PRINT 610
                                                                           GENER316
      RETURN
                                                                           GENER317
  999 PRINT 1999 · IREG · IEND · RENORM · NN1 · NN2 · NN3 · SS1 · SS2 · SS3 · MM1 · MM2 · MM3 · GENER318
     PXMIN.XMAX.CMIN.CMAX.STEP.ZLMDAA.ZLMDAB.ZLMDAC.DPLUSA.DPLUSB.DPLUSGENER319
      RETURN
                                                                           GENER320
      END
                                                                           GENER321
      SUBROUTINE DISPLAY (INDEX)
                                                                           DISPL
      DIMENSION W(3+3)+R(3+3)+RA(3+3)+EIG(3)
                                                                           DISPL
      COMMON/W/W11+W22+W33+W12+W23+W13
                                                                           DISPL
      DATA TORAD/57.29577951/
                                                                           DISPL
  100 FORMAT(20x+16HTHE W TENSOR IS++2x+3(E16+9+1x)+//+38x+3(E16+9+1x)+ DISPL
     A//+38X+3(E16.9+1X)+/)
                                                                           DISPL
  101 FORMAT(13x+ 117HEACH OF THE PRINCIPAL VALUES (WHICH ARE THE SQUAREDISPL
```

```
B ROOTS OF THE EIGENVALUES) HAS A PRINCIPAL AXIS ASSOCIATED WITH ITDISPL
     C., /. 13x,118HTHE DIRECTIONS OF EACH PRINCIPAL AXIS ARE GIVEN BY TDISPL
     DHE PROJECTIONS OF THIS AXIS (I.E. DIRECTION COSINES) ON THE 3 AXESDISPL 10
     E. /. 13x.110HOF THE ORIGINAL COORDINATE SYSTEM. AND THE ANGLE BETWDISPL 11
                                                                            DISPL 12
     FEEN THIS PRINCIPAL AXIS AND THE 3 COORDINATE SYSTEM AXES. • /)
  102 FORMAT( 69x.25HDIRECTION COSINES BETWEEN. 8x.27HANGLES (IN DEGREESDISPL 13
     G) BETWEEN. /. 56x.9HPRINCIPAL.4X.22HTHE PRINCIPAL AXIS AND.11X.
                                                                            DISPL 14
     HZ2HTHE PRINCIPAL AXIS AND./.56X.6HVALUES.BX.6HAXIS 1.4X.6HAXIS 2. DISPL 15
     14x.6HAXIS 3.7x.6HAXIS 1.5x.6HAXIS 2.5x.6HAXIS 3 )
                                                                            DISPL 16
  103 FORMAT(3(/+20x+22HPRINCIPAL AXIS NUMBER +11+2H ++F13-9+2x+F8-6+2x+DISPL 17
     JF8.6.2X.F8.6.6H
                         + ,F8.4,3X,F8.4,3X,F8.4,/),/)
                                                                            DISPL 18
                                                                            DISPL 19
      \forall (1 \cdot 1) = \forall 11
      M(1.5) = M15
                                                                            DISPL 20
      W(1.3) = W13
                                                                            DISPL 21
                                                                            DISPL 22
      W(2.1) = W12
                                                                            DISPL 23
      M(S^{*}S) = MSS
                                                                            DISPL 24
      M(5.3) = M53
      W(3.1) = W13
                                                                            DISPL 25
                                                                            DISPL 26
      W(3,2) = W23
      W(3.3) = W33
                                                                            DISPL 27
                                                                            DISPL 28
      IF(INDEX-3) 1.2.1
                                                                            DISPL 29
    1 PRINT 100,((W(I,J),J=1,3),I=1,3)
   .... DIAG1 RETURNS THE EIGENVECTORS IN THE COLUMNS OF R ...
                                                                            DISPL 30
    2 CALL DIAG1(3,1,1.0E-8, W.R.EIG)
                                                                            DISPL 31
                                                                            DISPL 32
      DO 3 I=1.3
                                                                            DISPL 33
DISPL 34
    3 EIG(I) = SQRT(EIG(I))
      DO 10 I=1.3
      DO 10 J=1.3
                                                                            DISPL 35
      XX = R(I,J)
                                                                            DISPL 36
      YY = ABS(XX)
                                                                            DISPL 37
                                                                            DISPL 38
      IF(YY-1.0) 10.10.8
    8 XX = SIGN(1.0.XX)
                                                                            DISPL 39
   10 RA(I \cdot J) = ACOS(XX) \cdot TORAD
                                                                            DISPL 40
      PRINT 101
                                                                            DISPL 41
      PRINT 102
                                                                            DISPL 42
   ....THE EIGENVECTORS ARE PRINTED OUT IN ROWS ...
                                                                            DISPL 43
      PRINT 103 \cdot ((I \cdot EIG(I) \cdot (R(J \cdot I) \cdot J = 1 \cdot 3) \cdot (RA(J \cdot I) \cdot J = 1 \cdot 3)) \cdot I = 1 \cdot 3)
                                                                            DISPL 44
      RETURN
                                                                            DISPL 45
      END
                                                                            DISPL 46
      SUBROUTINE DIAGI(NSIZE, IFLAG, ERROR, A, R, EIG)
                                                                            DIAG
                                                                                    1
                                                                            DIAG
                                                                                    2
      DIMENSION A(3.3).R(3.3).TT(3.3).EIG(3)
C INPUT: NSIZE.IFLAG.ERROR.A(NZ.NZ).
                                          OUTPUTE R(NZ.NZ).EIG(NZ).
                                                                            DIAG
                                                                                    3
C NEED ONLY THE TOP HALF AND DIAGONAL OF MATRIX A(NSIZE+NSIZE).
                                                                            DIAG
C DIAG1 DIAGONALIZES REAL SYMMETRIC MATRICES WHOSE DIMENSIONS ARE LESS
                                                                                    5
                                                                            DIAG
C THAN OR EQUAL TO THOSE IN THE DIMENSION STATEMENT. IT DOES NOT DESTROYDIAG
                                                                                    6
  INPUT. IT USES THE JACOBI METHOD WITH A 4-SQUARE ROOT METHOD FOR
                                                                                    7
                                                                            DIAG
 EVALUATING COS AND SIN. A SINGLE-PRECISION SQUARE ROOT IS USED. IT
                                                                            DIAG
                                                                                    8
 SEARCHES FOR ABSOLUTE VALUES LESS THAN RHO WHICH IS PROGRESSIVELY
                                                                            DIAG
                                                                                    9
C REDUCED. IF IT IS TOLD TO DOUBLE-CHECK THE ANSWER. IT DOES SO BY
                                                                            DIAG
                                                                                   10
 SEEING IF THE ABSOLUTE VALUE OF ANY OFF-DIAGONAL ELEMENT IS GREATER
                                                                            DIAG
                                                                                   11
 THAN ERROR. IF SO. DIAGI CONTINUES THE JACOUL PROCESS.
                                                                            DIAG
                                                                                   12
   NSIZE. THE SIZE OF THE MATRIX WHICH MUST BE .LE. NZ. WHERE NZ IS THE DIAG
                                                                                   13
     DIMENSION USED IN A(NZ+NZ)+R(NZ+NZ)+TT(NZ+NZ)+EIG(NZ).
                                                                            DIAG
                                                                                   14
C
   IFLAG=(0+1) • (NO+YES) THE DIAGONALIZATION SHOULD BE DOUBLE-CHECKED.
                                                                            DIAG
                                                                                   15
   ERROR. THE LARGEST ALLOWED ABSOULUTE VALUE OF AN OFF-DIAGONAL ELEMENTDIAG
                                                                                   16
     IN THE MATRIX FORMED BY MULTIPLYING RAR (-1).
                                                                            DIAG
                                                                                   17
   A(NZ+NZ)+ THE INPUT MATRIX CONTAINING A(NSIZE+NSIZE) WHICH IS THE
                                                                            DIAG
                                                                                   18
                                                                                   19
C
                                                                            DIAG
     REAL SYMMETRIC MATRIX TO BE DIAGONALIZED.
   R(NZ.NZ) CONTAINS R(NSIZE.NSIZE) WHICH IS THE OUTPUT UNITARY MATRIX
                                                                            DIAG
                                                                                   20
C
     WITH THE EIGENVECTORS IN THE ROWS.
                                                                            DIAG
                                                                                   21
C
   EIG(NZ) CONTAINS EIG(NSIZE) WHICH IS THE OUTPUT EIGENVALUES. THE NTH DIAG
                                                                                   22
     EIGENVALUE IN EIG HAS ITS EIGENVECTOR IN THE NTH ROW OF R.
                                                                            DIAG
                                                                                  23
C MATRIX IT ONLY NEEDED IF THE DIAGONALIZATION IS TO BE DOUBLE-CHECKED. DIAG
                                                                                   24
                                                                                   25
 .... DIMENSIONIZE A+R+TT AS (NZ+NZ) AND EIG AS (NZ) WHERE NZ.6E.NSIZE DIAG
      BIG=ABS(A(1.2)) $ NSZ1=NSIZE-1 $ ERR1=0.8*ERROR
                                                                            DIAG
                                                                                  26
      DO 10 J=1.NSIZE
                                                                            DIAG
                                                                                   27
      IBEG=J+1 $ R(J+J)=1.0 $ EIG(J)=A(J+J)
                                                                            DIAG
                                                                                  28
      IF(J-NSIZE) 5+12+12
                                                                            DIAG
                                                                                  29
                                                                            DIAG
    5 DO 10 I=IREG.NSIZE
                                                                                  30
```

10-36-5

```
C TAKE THE UPPER-HALF ELEMENTS AND PUT THEM IN THE LOWER HALF. THE LOWERDIAG
C HALF IS DESTROYED BY BEING DIAGONALIZED. SET UP R AS A UNIT MATRIX
                                                                           DIAG
                                                                                  32
      ATM=A(J+I) S A(I+J)=ATM S R(I+J)=0.0 S R(J+I)=0.0
                                                                            DIAG
                                                                                  33
                                                                            DIAG
      BIG=AMAX1 (BIG+ABS(A(J+I)))
                                                                            DIAG
                                                                                  35
   10 CONTINUE
                                                                            DIAG
                                                                                  36
   12 IF (BIG-ERROR) 13,14,14
                                                                            DIAG
   13 RETURN
                                                                                  37
   14 RHO = BIG
                                                                            DIAG
                                                                                  38
                                                                            DIAG
                                                                                  19
   15 RHO = 0.1-RHO
   20 IND = 0
                                                                            DIAG
                                                                                  40
C SEARCH FOR THE ELEMENTS GREATER THAN RHO
                                                                            DIAG
                                                                            DIAG
                                                                                  42
      DO 300 IP=1.NSZ1
                                                                            DIAG
                                                                                  43
      IREGEIP+1
                                                                            DIAG
      DO 300 IQ=IBEG.NSIZE
                                                                                  44
                                                                            DIAG
                                                                                  45
      XX = A(IQ \cdot IP)
      YY = ABS(XX)
                                                                            DIAG
                                                                                  46
      IF(YY-RHO) 300.40.40
                                                                            DIAG
                                                                                  47
C CALCULATE CX AND SX BY THE ALGEBRAIC 4-SQUARE ROOT METHOD
                                                                            DIAG
                                                                                  48
                                                                            DIAG
                                                                                  49
   40 APQ = XX
                                                                            DIAG
      U = 0.5 \cdot (EIG(IP) - EIG(IQ))
                                                                                  50
                                                                            DIAG
      W = -APQ/SQRT(APQ++2+U++2)
                                                                                  51
      IF(U) 41.42.42
                                                                            DIAG
                                                                                  52
   41 W = -W
                                                                            DIAG
                                                                                  53
   42 SX = W/(SQRT(2.0*(1.0*SQRT(1.0-W**2))))
                                                                            DIAG
      CX = SORT(1.0-SX++2)
                                                                            DIAG
                                                                                  55
      L=0
                                                                            DIAG
                                                                                  56
   90 L=L+1
                                                                            DIAG
                                                                                  57
      IF (L-NSIZE) 92.92.200
                                                                            DIAG
                                                                                  58
   92 IF(L-10) 94,90,94
                                                                            DIAG
                                                                                  59
   94 IF(L-IP) 100.90.110
                                                                            DIAG
                                                                                  60
  100 T1=A(IP+L) $ GO TO 120
                                                                            DIAG
                                                                                  61
                                                                            DIAG
  110 T1=A(L.IP)
                                                                                  62
  120 IF(L-IQ) 130.140.140
                                                                            DIAG
                                                                                  63
  130 T2=A(IQ+L) $ A(IQ+L)=T1+SX+T2+CX $ GO TO 150
                                                                            DIAG
                                                                                  64
                                                                            DIAG
  140 T2=A(L+IQ) $ A(L+IQ)=T1+SX+T2+CX
                                                                                  65
  150 IF(L-IP) 160,180,180
                                                                            DIAG
                                                                                  66
  160 A(IP+L)=T1*Cx-T2*SX $ GO TO 90
                                                                            DIAG
                                                                                  67
  180 A(L.IP)=T1+CX-T2+SX-S GO TO 90
                                                                            DIAG
                                                                                  68
  200 APP=EIG([P) $ AQQ=EIG([Q) $ A([Q+[P)=0.0
                                                                            DIAG
                                                                                  69
      EIG(IP) =APP*CX*CX+AQQ*SX*SX-2.0*APQ*SX*CX
                                                                            DIAG
                                                                                  70
      EIG(IQ)=APP+SX+SX+AQQ+CX+CX+2.0+APQ+SX+CX
                                                                            DIAG
                                                                                  71
                                                                            DIAG
      DO 250 I=1.NSIZE
                                                                                  72
      T1=R(I.IP) $ T2=R(I.IQ)
                                                                            DIAG
                                                                                  73
      R(I.IP)=T1*CX-T2*SX
                                                                            DIAG
                                                                                  74
                                                                                  75
  250 R(I+IQ)=T1+SX+T2+CX
                                                                            DIAG
                                                                            DIAG
                                                                                  76
      IND=IND+1
                                                                            DIAG
                                                                                  77
  300 CONTINUE
                                                                            DIAG
      IF(IND) 305.305.20
                                                                                  78
  305 IF (RHO-ERR1) 307+307+15
                                                                            DIAG
                                                                                  79
C IF FLAG=1 DOUBLE-CHECK BY MULTIPLYING RAR(-1)
                                                                            DIAG
                                                                                  A A
  307 IF (IFLAG-1) 308,309,308
                                                                            DIAG
                                                                                  81
  308 RETURN
                                                                            DIAG
                                                                                  82
  309 DO 330 I=1.NSIZE $ DO 330 J=1.NSIZE
                                                                            DIAG
                                                                                  A3
                                                                            DIAG
      TOT=0.0
                                                                                  84
      DO 320 L=1.NSIZE
                                                                            DIAG
                                                                                  85
                                                                            DIAG
      IF(L-I) 310.315.315
                                                                                  86
  310 EL=A(L+I) $ 60 TO 320
                                                                            DIAG
                                                                                  87
  315 EL=A(I.L)
                                                                            DIAG
  320 TOT=TOT+EL+R(L+J)
                                                                            DIAG
                                                                                  A9
                                                                            DIAG
                                                                                  90
  330 TT([.J)=TOT
      DO 350 I=1.NSIZE $ DO 350 J=1.NSIZE
                                                                            DIAG
                                                                                  91
                                                                            DIAG
                                                                                  92
      VALUE=0.0
                                                                            DIAG
                                                                                  93
      DO 340 L=1.NSIZE
                                                                            DIAG
 340 VALUE=VALUE+R(L+I)+TT(L+J)
                                                                                  94
                                                                                  95
      IF(I.EQ.J) 345.349
                                                                            DIAG
                                                                            DIAG
                                                                                  96
  345 EIG(1)=VALUE $ GO TO 350
  349 IF (ABS (VALUE) .GT. ERROR) GO TO 355
                                                                            DIAG
                                                                                  97
  350 CONTINUE
                                                                            DIAG
                                                                                  98
                                                                            DIAG
                                                                                  99
      RETURN
```

```
C IF OFF-DIAGONAL ELEMENTS ARE TOO LARGE. CALCULATE A AND CONTINUE
                                                                          DIAG 100
                                                                          DIAG 101
  355 DO 370 J=1.NSIZE $ DO 370 I=J.NSIZE
                                                                          DIAG 102
      TOT=0.0
                                                                          DIAG 103
      DO 360 L=1.NSIZE
                                                                          DIAG 104
  360 TOT=TOT+R(L+I)+TT(L+J)
                                                                          DIAG 105
      IF(I-J) 364,362,364
                                                                          DIAG 106
  362 EIG(J)=TOT $ GO TO 370
                                                                          DIAG 107
  364 A([.J)=TOT
                                                                          DIAG 108
  370 CONTINUE
                                                                          DIAG 109
      ERR1 = 0.5*ERR1
      GO TO 20
                                                                          DIAG 110
                                                                          DIAG 111
      SUBROUTINE PARAM(INDEX+G+R+FE+SI+N1+N2+N3+KSTART+S1+S2+S3+ARG)
                                                                          PARAM
                                                                                 1
      REAL G(3) .R(3.3) .GG(2) .THETA(2) .N(3) .S(3) .N1 .N2 .N3 .AB6(9)
                                                                          PARAM
C THIS SUBROUTINE CALCULATES THE ALPHA.BETA.GAMMA PARAMETERS FOR THREE
                                                                          DADAM
                                                                                 3
                                                                          PARAM
 ROTATIONS OF A G-TENSOR.
 IT DOES THIS FOR THE COPLANAR, MONOCLINIC, ORTHORHOMBIC, AND GENERAL CASEPARAM
                                                                          DADAM
   INPUT | INDEX • G(3) • R(3 • 3)
   OPTIONAL INPUT: FE+SI+N1+N2+N3+KSTART+S1+S2+S3
                                                                          PARAM
C
   OUTPUT: ABG(9) WHICH CONTAINS 9 VALUES IN THE FOLLOWING ORDERS ALA.
                                                                          PARAM
      BEA,GAA,ALB,REB,GAB,ALC,BEC,GAC
                                                                          DADAM
C
   ALA.ALB.ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. PARAM 10
C
   BEA.BEB.BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C.
   GAA.GAB.GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A.B.C. PARAM 12
                                                                          PARAM 13
    INDEX=(1,2,3,4) FOR THE (COPLANAR, MONOCLINIC, ORTHORHOMBIC, GENERAL)
                                                                          PARAM 14
      CASES RESPECTIVELY.
C
                                                                          PARAM 15
   G(3) CONTAINS THE 3 PRINCIPLE G-VALUES.
   R(3,3) CONTAINS THE 3 EIGENVECTORS IN ROWS. IT IS THE UNITARY MATRIX PARAM 16
C
      IN R(-1) +G(DIAGONAL) +R = W.
                                                                          PARAM 17
   FE IS THE ANGLE PHI(IN RADIANS) ABOUT AXIS 3 WHICH DETERMINES THE
                                                                          PARAM 18
      DIRECTION OF THE 2ND ROTATION(AXIS B) IN THE COPLANAR + MONOCLINIC + PARAM 19
C
                                                                          PARAM 20
      AND GENERAL CASES.
   SI IS THE ANGLE PSI(IN RADIANS) ABOUT AXIS 3 WHICH DETERMINES THE
                                                                          PARAM 21
                                                                          PARAM 22
      DIRECTION OF THE 3RD ROTATION (AXIS C) IN THE COPLANAR CASE.
 NI.NZ.N3 ARE THE 3 COMPONENTS OF A VECTOR SPECIFYING THE DIRECTION OF PARAM 23
      THE 3RD AXIS OF ROTATION (AXIS C) FOR THE GENERAL CASE. THIS VECTORPARAM 24
      NEED NOT BE OF UNIT LENGTH.
                                                                          PARAM 25
 S1.52.53 ARE THE 3 COMPONENTS OF A VECTOR SPECIFYING THE STARTING
                                                                          PARAM 26
      DIRECTION (WHEN THETA=ZERO DEGREES) FOR THE 3RD AXIS OF ROTATION
                                                                          PARAM 27
      (AXIS C) FOR THE GENERAL CASE.
                                                                          PARAM 28
      THESE VALUES NEED NOT BE SPECIFIED.
                                                                          PARAM 29
C
  KSTART = (1.0) WHEN.FOR THE GENERAL CASE. $1.52.53 (ARE.ARE NOT)
                                                                          PARAM 30
C
                                                                          PARAM 31
C
      SPECIFIED.
                                                                          PARAM 32
  N(3) IS A UNIT VECTOR ABOUT WHICH THE MAGNETIC FIELD IS ROTATED.
                                                                          PARAM 33
C
   S(3) IS A UNIT VECTOR THAT INDICATES THE STARTING DIRECTION (WHEN
                                                                          PARAM 34
C
      THETA=ZERO DEGREES).
                                                                          PARAM 35
   M(3) IS A UNIT VECTOR INDICATING THE MIDDLE DIRECTION (WHEN THETA =
C
                                                                          PARAM 36
      90 DEGREFS)
   GG(2) AND THETA(2) ARE NOT USED BUT ARE NEEDED AS F.P.S IN ALBEGA.
                                                                          PARAM 37
      ABG(9) CONTAINS THE 9 ALPHA.BETA.GAMMA PARAMETERS IN THE ORDERS
                                                                          PARAM 38
                                                                          PARAM 39
      ALA+BEA+GAA+ALB+BEB+GAB+ALC+BEC+GAC
  .... SUBROUTINE REQUIRES THE SUBROUTINE ALREGA .......
                                                                          PARAM 40
  999 FORMAT(//+17H ERROR IN PARAMI+216+(3X+6E15.8+/))
                                                                          PARAM 41
      ICHECK = (INDEX-1)*(4-INDEX)
                                                                          DARAM 42
      IF (ICHECK) 199.5.5
                                                                          PARAM 43
    5 IADD = 1
                                                                          PARAM 44
                                                                          PARAM 45
      KEY = 1
                                                                          PARAM 46
      JZGO = 2*(INDEX-1)
                                                                          PARAM 47
      N(1) = 0.0
      N(2) = 0.0
                                                                          PARAM 48
      N(3) = 1.0
                                                                          PARAM 49
      S(1) = 1.0
                                                                          PARAM 50
                                                                          PARAM 51
      S(2) = 0.0
                                                                          PARAM 52
      S(3) = 0.0
      GO TO 100
                                                                          PARAM 53
                                                                          PARAM 54
   .... COPLANAR CASE ....
                                                                          PARAM 55
   11 SNFE = SIN(FE)
      CSFE = COS(FF)
                                                                          PARAM 56
                                                                          PARAM 57
      SNSI = SIN(SI)
```

```
CSSI = COS(SI)
                                                                         PARAM 58
                                                                         PARAH 59
   N(1) = SNFE
   N(2) = 0.0
                                                                         PARAM 60
   N(3) = CSFE
                                                                         PARAM 61
   S(1) = CSFE
                                                                         PARAH 62
   5(2) = 0.0
                                                                         PARAM 63
                                                                         PARAM 64
   S(3) = -SNFE
                                                                         PARAM 65
   GO TO 100
12 N(1) = SNSI
                                                                         PARAM 66
                                                                         PARAM 67
   N(2) = 0.0
                                                                         PARAM 68
   N(3) = CSSI
   S(1) = CSSI
                                                                         PARAM 69
                                                                         PARAM 70
   S(2) = 0.0
                                                                         PARAM 71
   S(3) = -SNSI
   GO TO 100
                                                                         PARAM 72
                                                                         PARAM 73
.... MONOCLINIC CASE .....
                                                                         PARAM 74
21 SNFE = SIN(FE)
   CSFE = COS(FE)
                                                                         PARAM 75
                                                                         PARAM 76
   N(1) = SNFE
   N(2) = 0.0
                                                                         PARAM 77
   N(3) = CSFE
                                                                         PARAM 78
                                                                         PARAM 79
   S(1) = CSFE
                                                                         PARAM BO
   S(2) = 0.0
                                                                         PARAM AL
   S(3) = -SNFE
                                                                         FARAM 82
   GO TO 100
22 N(1) = 0.0
                                                                         PARAH 83
   N(2) = 1.0
                                                                         PARAM 84
   N(3) = 0.0
                                                                         PARAM 85
   S(1) = 0.0
                                                                         PARAM 86
   S(2) = 0.0
                                                                         PARAM 87
   S(3) = 1.0
                                                                         PARAM 88
   GO TO 100
                                                                         PARAM 89
.... ORTHORHOMBIC CASE .....
                                                                         PARAM 90
                                                                         PARAM 91
31 N(1) = 1.0
   N(2) = 0.0
                                                                         PARAM 92
   N(3) = 0.0
                                                                         PARAM 93
                                                                         PARAM 94
   S(1) = 0.0
   5(2) = 1.0
                                                                         PARAM 95
   S(3) = 0.0
                                                                         PARAM 96
                                                                         PARAM 97
   GO TO 100
                                                                         PARAM 98
32 N(1) = 0.0
   N(2) = 1.0
                                                                         PARAM 99
                                                                         PARAM100
   N(3) = 0.0
   S(1) = 0.0
                                                                         PARAM101
   S(2) = 0.0
                                                                         PARAM102
   S(3) = 1.0
                                                                         PARAM103
   GO TO 100
                                                                         PARAM104
.... GENERAL CASE .....
                                                                         PARAM105
41 SNFE = SIN(FE)
                                                                         PARAM106
   CSFE = COS(FE)
                                                                         PARAM107
   N(1) = SNFE
                                                                         PARAM108
   N(2) = 0.0
                                                                         PARAM109
   N(3) = CSFE
                                                                         PARAM110
   S(1) = CSFE
                                                                         PARAM111
   S(2) = 0.0
                                                                         PARAM112
   S(3) = -SNFE
                                                                         PARAM113
                                                                         PARAM114
   GO TO 100
42 RN = SQRT(N1++2+N2++2+N3++2)
                                                                         PARAM115
                                                                         PARAM116
   IF(RN) 199,199,43
                                                                         PARAM117
43 N(1) = N1/RN
   N(2) = N2/RN
                                                                         PARAM118
                                                                         PARAM119
   N(3) = N3/RN
   IF(KSTART-1) 44.50.44
                                                                         PARAM120
44 DN = SQRT(N(1) + 2 + N(2) + 2)
                                                                         PARAM121
                                                                         PARAM122
   IF(DN) 199.199.45
45 S(1) = N(2)/DN
                                                                         PARAM123
   S(2) = -N(1)/DN
                                                                         PARAM124
                                                                         PARAM125
   S(3) = 0.0
   GO TO 100
                                                                         PARAM126
```

```
PARAM127
   50 RN=SQRT(S1+S1+S2+S2+S3+S3)
                                                                             PARAM128
       IF(RN) 199,199,55
   55 S(1) = S1/RN
                                                                             PARAM129
      S(2) = S2/RN
                                                                             PARAM130
                                                                              PARAM131
      S(3) = S3/RN
                                                                              PARAM132
  100 CALL ALBEGA (G.R.N.S.AL.BE.GA.GG.THETA)
      ABG(KEY) = AL
                                                                             PARAM133
                                                                             PARAM134
      ABG(KEY+1) = BE
      ABG(KEY+2) = GA
                                                                              PARAMI 35
                                                                             PARAM136
      IF(IADD-3) 102,104,104
  102 KEY = KEY+3
                                                                             PARAMI 37
      IADD = IADD+1
                                                                             PARAMI 38
      JZGO = JZGO+1
                                                                             PARAM139
      GO TO (11,12,21,22,31,32,41,42) JZGO
                                                                             PARAM140
                                                                             PARAM141
  104 RETURN
  199 PRINT 999.INDEX.KSTART.N1.N2.N3.S1.S2.S3.FE.SI.RN.DN.N.S.G.R.GG. PARAM142
                                                                              PARAM143
     PTHETA . ABG
                                                                              PARAM144
      END
                                                                              ALBEG
      SUBROUTINE ALBEGA (G+R+N+S+AL+BE+GA+GG+THETA)
                                                                              ALBEG
      REAL G(3) +R(3+3) +N(3) +S(3) +H(3) +GG(2) +THETA(2) +W(3+3)
                                                                                     2
      DATA TORAD/.0174532925199/
                                                                              ALBEG
C THIS SUBROUTINE CALCULATES THE ALPHA.BETA.GAMMA PARAMETERS FOR A
                                                                              ALBEG
C SPECIFIC ROTATION OF A G-TENSOR ABOUT AN ARBITRARY AXIS.
                                                                              AL REG
                                                                                     5
   G(3) CONTAINS THE 3 PRINCIPLE G-VALUES.
                                                                              ALBEG
                                                                                     6
  INPUT: G.R.N.S
                     OUTPUT: AL.BE.GA.GG.THETA
                                                                              ALBEG
                                                                                     7
   R(3,3) CONTAINS THE 3 EIGENVECTORS IN ROWS. IT IS THE UNITARY MATRIX ALBEG
      IN R(-1)+G(DIAGONAL)+R = W.
                                                                              ALBEG
C
   S(3) IS A UNIT VECTOR THAT INDICATES THE STARTING DIRECTION (WHEN
                                                                              ALBEG 10
                                                                              ALBEG 11
C
      THETA=ZERO DEGREES) .
C
   M(3) IS A UNIT VECTOR INDICATING THE MIDDLE DIRECTION (WHEN THETA =
                                                                              ALBEG 12
C
      90 DEGREES).
                                                                              ALBEG 13
   GG(2) CONTAINS RESPECTIVELY THE MAXIMUM AND MINIMUM VALUES OF 6.
                                                                              ALBEG 14
C
C
   THETA(2) CONTAINS THE ANGLES (IN DEGREES) WHICH CORRESPOND TO THE
                                                                              ALBEG 15
                                                                              ALBEG 16
C
      VALUES IN GG(2) RESPECTIVELY.
  AL.BE.GA ARE THE ALPHA.BETA.GAMMA VALUES CALCULATED FOR THIS ROTATIONALREG 17
C
C THEY ARE THEN USED TO CALCULATE GMAX+GMIN AND THE CORRESPONDING ANGLESALBEG 18
C WITH THESE VALUES. ALPHA.BETA.GAMMA ARE RECALCULATED AND COMPARED WITHALBEG 19
C THEIR VALUES OF THE 1ST CALCULATION. IF THE FRACTIONAL CHANGE OF ANY ALBEG 20
C OF THE 3 PARAMETERS IS GREATER THAN 1.0E-9. IT WILL PRINT EVERYTHING. ALBEG 21
                                                                              ALBEG 22
  199 FORMAT(17H ERROR IN ALREGA: /. (2X.6E15.9./))
                                                                              ALBEG 23
      M(1) = N(2) * S(3) * N(3) * S(2)
                                                                              ALBEG 24
      M(2) = N(3)*S(1)-N(1)*S(3)
      M(3) = N(1) \cdot S(2) - N(2) \cdot S(1)
                                                                              ALBEG 25
                                                                              ALBEG 26
      DO 10 I=1.3
      DO 10 J=1.3
                                                                              ALBEG 27
                                                                              ALBEG 28
      0.0 = (L \cdot I)W
                                                                              ALBEG 29
      DO 10 K=1.3
                                                                              ALBEG 30
   10 W(I_{\bullet}J) = W(I_{\bullet}J) + (G(K)_{\bullet}+2)_{\bullet} R(K_{\bullet}I)_{\bullet} R(K_{\bullet}J)
      AL = 0.0
                                                                              ALBEG 31
                                                                              ALBEG 32
      BE = 0.0
      GA = 0.0
                                                                              ALBEG 33
      DO 20 I=1.3
                                                                              ALBEG 34
      DO 20 J=1.3
                                                                              ALBEG 35
                                                                              ALREG 36
      AL = AL + 0.5 + (W(I + J) + (S(I) + S(J) + M(I) + M(J)))
                                                                              ALBEG 37
      BE = RE + 0.5 + (W(I + J) + (S(I) + S(J) - M(I) + M(J)))
      GA = GA * W(I * J) * S(I) * M(J)
                                                                              ALBEG 38
                                                                              ALBEG 39
   20 CONTINUE
      IF(BE) 30,25
                                                                              ALBEG 40
                                                                              ALREG 41
   25 IF(GA) 99.28
C IF BE=0.0 AND GA=0.0. THEN GG(1)=GG(2)=AL AND THETA=ANYTHING
                                                                              ALBEG 42
                                                                              ALBEG 43
   28 GG(1) = AL
      GG(2) = AL
                                                                              ALBEG 44
                                                                              ALREG 45
      THE = 0.0
      GO TO 40
                                                                              ALBEG 46
                                                                              ALBEG 47
   30 THE=0.5*ATAN(GA/BE)
   35 CS = COS(2.0+THE)
                                                                              ALBEG 48
                                                                              ALBEG 49
      SN = SIN(2.0+THE)
                                                                              ALBEG 50
      ADD = BE+CS+GA+SN
                                                                              ALREG 51
      GG(1) = SQRT(AL+ADD)
```

	GG(2) = SQRT(AL-ADD)	AL DEC	
	AL1 = 0.5*(GG(1)**2*GG(2)**2)	ALBEG ALBEG	
	WIK = G6(1)++2-G6(2)++2		
	BE1 = 0.5+WIK+CS	ALBEG	
		ALBEG	
	GA1 = 0.5+WIK+SN	ALBEG	
	EAL = ABS((AL-AL1)/AL)	ALBEG	-
	EBE = ABS((BE-BE1)/BE)	ALBEG	58
	EGA=0.0	ALBEG	59
	IF(GA) 37,38	ALBEG	60
	EGA=((GA-GA1/GA))	ALBEG	61
38	EE=AMAX1(EAL.EBE.EGA)	ALBEG	62
	IF(EE-1.0E-9) 40.40.99	ALBEG	63
40	THETA(1) = THE+TORAD	ALBEG	
	THETA(2) = THETA(1)+90.0	ALBEG	_
	XX = GG(1) - GG(2)	ALBEG	
	IF(XX) 43.42.42	ALBEG	
42	RETURN	ALBEG	_
43	T = GO(1)	ALBEG	_
	GG(1) = GG(2)	ALBEG	-
	GG(2) = T	ALBEG	
	T = THETA(1)	ALBEG	
	THETA(1) = THETA(2)		
	THETA(2) = T	ALBEG	
	RETURN	ALBEG	
90		ALBEG	
77	PRINT 199.G.R.N.S.AL, BE.GA.GG, THETA.AL1.BE1.GA1	ALBEG	
	RETURN	ALBEG	
	END	ALBEG	78

