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ABSTRACT

PART I

AN ELECTRON SPIN RESONANCE STUDY OF RADICALS

IN IRRADIATED SINGLE CRYSTALS

OF MANDELIC ACID

PART II

A GENERALIZATION OF METHODS FOR

DETERMINING g TENSORS

BY

William George Waller

In Part I, the electron spin resonance spectra of

irradiated single crystals of mandelic acid, C6H6CHOHCOOH,

have been studied. Two radicals, a-hydroxybenzyl (CGHSCHOH)

and cyclohexadienyl-glycolic acid (C6H6CHOHCOOH), were

identified and the ESR parameters determined for each.

The a-hydrogen hyperfine splitting tensor of the

a-hydroxybenzyl radical is nearly isotropic with principal

values (-15.0,-15.3,-18.3) gauss and the g tensor is nearly

isotropic with principal values (2.0022,2.0033,2.0039).

The ESR data are those expected for a planar n-electron

radical and molecular orbital calculations (INDO method)

confirm this and provide detailed geometry. The benzene

rings appear to have reoriented upon irradiation.



William George Waller

The cyclohexadienyl-glycolic acid radical shows a

large hyperfine splitting by the methylene protons; the

tensor is nearly axially symmetric and quite anisotropic,

with principal values (-28.S,-52.S,-S7.3) gauss.

In Part II, a generalization of the usual methods

for obtaining the principal values, and directions of the

principal axes, of the g tensor from single—crystal ESR

data has been derived. The formalism of Part II converts

the inherent overspecification of tensor elements into a

determination of three rotational misalignments, and so

improves the accuracy of the g-tensor parameters. The

procedures developed have been applied to the determi-

nation of g tensors from rotations about orthogonal axes,

monoclinic axes, coplanar axes, or general axes. The

coplanar and general cases should prove useful in

determining g tensors for needle-shaped crystals and for

crystals with inconvenient face development. The equations

have been cast in a convenient form for computer programming

and a program has been written.
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PART I

AN ELECTRON SPIN RESONANCE STUDY OF RADICALS

IN IRRADIATED SINGLE CRYSTALS

OF MANDELIC ACID



INTRODUCTION

One distinctive difference between quantum mechani-

cal and classical properties of systems is that there are

sharply defined energy levels in the former as compared‘to

a continuous range in the latter. In situations where the

quantum mechanical energy levels are not too close together,

a resonance technique can sometimes allow an accurate

determination of energy differences between levels.

There are at least four "simple" types of resonance

phenomena--nuclear, paramagnetic, ferromagnetic, and

antiferromagnetic. The first is concerned with inter-

actions of the nuclear dipoles, while the last three deal

with electron dipoles. The last two phenomena deal with

magnetic systems where the electron dipoles are strongly

coupled by exchange forces. Paramagnetic resonance is

confined to loosely-coupled systems where the paramagnetic

units may be regarded as individuals.

Such loosely-coupled paramagnetic species some-

times can be formed in irradiated single crystals. The

damaged molecules can become trapped and oriented in the

crystal. The interaction of the odd electron with nuclei



in the damaged molecule would cause its energy levels to

change and divide. These effects can be determined by

electron spin resonance (ESR) spectroscopy and can be used

to identify the radical and its orientation. Molecular

information concerning the radical also can be deduced.

While there has been a lot of work done on ESR

studies of aliphatic radicals in organic single crystals,

the literature on ring compounds is small. There has been

an interest in discovering the benzyl radical or a simple

modification of it in single crystals. The nature of the

delocalization of the unpaired electron could provide

information concerning the structure of the radical. d1:

Mandelic acid was chosen because it is a relatively simple

ring system. On irradiation, two ring structures, the

alpha-hydroxybenzyl radical and the cyclohexadienyl-

glycolic acid radical, appear to be formed. The analysis

of the ESR spectra of these radicals has been carried out

and their geometrical and electronic structures are

discussed in Part I of this thesis.

Part II of this thesis consists of a theoretical

treatment of methods for determining g tensors. A gener-

alized procedure is derived that can be applied to any

symmetric second rank tensors such as the zero-field

splitting and hyperfine interaction tensors B and A,

respectively. The computer programs used for Part I and

Part II are also listed in the Appendices.



HISTORICAL BACKGROUND

I. History

Some important dates in the history of magnetic

reasonance are as follows:

l936--First prediction of magnetic resonance absorption by

Gorter.l

l938--First observation of magnetic resonance absorption

in molecular beams by Rabi, Zacharias, Millman and

Kusch.2

l945--First observation of the electron spin resonance

phenomenon in liquids by Zavoisky.3

l946--First report of nuclear magnetic resonance by

Purcell, Torrey and Pound4 and by Bloch, Hansen and

Packard.S

l947--First ESR free radical spectrum was observed by

Kozyrev and Salikhov.6

l949--First report of ESR hyperfine structure by Penrose.7

l949--First evidence of quadrupole interaction by Ingram.8

l949--First ESR study of naturally occurring organic free

radicals by Holden, Kittel, Merritt and Yager.9



l951--First analysis of the hyperfine structure in the ESR

spectra of paramagnetic salts by Abragam and

Pryce.10

l951——First ESR study of free radicals formed by radiation

damage by Schneider, Day and Stein.11

l956--First ESR study of oriented organic radicals in a

single crystal by Uebersfeld and Erb.12

l956--First ENDOR experiment by Feher.l3

l958--First ESR study of a triplet state by Hutchison and

Mangum.l4

l959--First complete analysis of the ESR spectrum of an

oriented organic radical in a single crystal matrix

by Cole, Heller and McConnell,15 by Ghosh and

16 17
Whiffen, and by Miyagawa and Gordy.

II. ESR Literature

There are many surveys of the ESR literature”-31

26
including in particular an early review by Morton of

radicals in single crystals. Recent work on ESR of organic

radicals is discussed in a review by Kochi and Krusic.31

There are also frequent review articles in the Annual

Reviews of Physical Chemistry32 and in the Annual Reports

33 Other sources of information

34-38

of the Chemical Society.

include the proceedings of ESR symposia and col-

lections of ESR data.39’40



There are also a large number of books on ESR.

Textbooks giving a complete introduction to magnetic

41

resonance are those by Carrington and McLachlan and by

Wertz and Bolton.42 ESR theory is presented in a new book

by Poole and Farach.43 A more mathematical book with

emphasis on interaction mechanisms was written by Slichter.44

There is a comprehensive reference book by Abragam and

Bleaney45 that does not contain many formula derivations.

A textbook approach in deriving the necessary mathematics

for ESR theory has been used in a work by Griffith.46

Comprehensive books covering the experimental techniques

include those by Poole47 and by Alger.48

III. g and A Tensors

In ESR, the most commonly measured quantities are

the g and A tensors in crystals or their isotropic values

in liquids, powders, or glasses. These quantities are

defined by their contribution to the following spin

Hamiltonian.

+==+ + =+

7i = BH-g-s + glp AP 5

where g is the magnetic field intensity vector, and Ip and

S are the spin angular momentum vectors of the pth nucleus

and the unpaired electron, respectively. Given a specific

magnetic field direction, the value of the g tensor

describes the Zeeman contribution to the energy of the

system as a linear function of magnetic field strength.

The "shape" of the tensor describes the variation of this



Zeeman energy as a function of magnetic field direction

in the crystal. In a similar manner, the Ap tensor

describes the hyperfine energy contribution due to the

interaction of the unpaired electron with the magnetic

moment of the pth nucleus.

The g and Ap tensors each have three principal

values associated with three orthogonal directions. These

principal values can be equivalently specified by their

average isotropic part and their anisotropy.

From ESR studies of a variety of oriented radicals,

investigators have found patterns in the average values

and anisotropies of the g and A tensors. These are useful

in identifying the radical. The principal g values are

related to the orbitals occupied by the free electron. The

principal values of :P are related to the number of bonds

and the geometry between the pth nucleus and the site

where the electron is located.

IV. Pi—Electron Radicals
 

One of the common types of organic radicals,

concerning which there is a great deal of theoretical and

experimental literature, is the pi-electron radical. This

is a paramagnetic molecule containing a number of coplanar

atoms, usually carbon and hydrogen, such that the spin

paramagnetism is largely distributed in atomic orbitals

having a node in the molecular plane. The experimental

Ap tensors have been related to the interaction between



the unpaired electron and a protons (C—Ha), 8 protons

l3
(C-C-HB) and C of the central carbon atom.

For the a protons, the theoretical relationship for

the isotropic part of 3 i528’ 49-54

H n

where Q is approximately a constant having a value of —22.5

gauss and 01T is the fl-electron spin density on the carbon

atom. The anisotropic part has been found in general to

consist of the three principal values (+10,0,-10) gauss.

The first value corresponds to the H-C bond direction, the

second value to a direction perpendicular to the radical

plane, and the third value to a direction perpendicular to

the two previous directions.26' 55’ 56

The K tensor for B protons is generally quite

isotropic and has been described by the equation57' 58

a = B + B cos2 8

where B0 is a constant with a value between 0 and 4 gauss,

B2 is about 50 gauss, and 6 is the angle between the

projections of the axis of the unpaired electron n orbital

and the C-HB bond onto a plane perpendicular to the C-C

bond. Tables of a- and B-proton splittings have been

given in the Ph.D. theses of Kispert59 and Watson.60



THEORET ICAL

I. Introduction
 

The theoretical development and the inherent

limitations of ESR are dependent upon the approximations

used to solve the nonrelativistic Schroedinger equation

‘Hw = BY. (1)

The problem is that W is a function of the

positions, momenta, and spin states of all the particles

in the system. The Hamiltonian?‘ is a quantum mechanical

operator analogous to the classical mechanical formula for

the total energy of the system. This is complex in that

it includes all interactions between the particles. The

main approximation needed to solve Equation (1) is taken

from the following equation:

W = E ciwi. (2)

where W1 are the functions which (as is postulated) span

the space. We assume that we can pick some set of

functions ¢i so that the infinity in the summation is

replaced by a finite reasonably small number.



If Equation (2) is applied in a perturbation

formalism where

W=7Llo +71. '%0¢o(j) = 130%(3) I (3)

and the effect of ‘H' is small compared to that of‘H, then

the coefficients ci of Equation (2) are of the order of

th (k)
(E0(k)-EO(J))—r1 for the n order perturbation where E0

and Eo(j) are the exact energies in Equation (3). So if

we order the functions ¢0(j) according to their energies

E0(j), then we terminate the summation in Equation (2) when

Eo(j) becomes "large" since that corresponding coefficient

is "small." The functions ¢i that we choose form a manifold

in the infinite dimensional W1 vector space.

Electron spin resonance is concerned with the

interaction of an electron with other electrons, nuclei,

and external magnetic fields. The number of functions

needed in the manifold to describe reasonably this inter-

action is determined by considering the time-reversal

operator and Kramers theorem.

II. Time Reversal and Kramers Degeneracy

The time-reversal operator 8 can be defined by its

effect on wave functions W1 in

3(ewi(t)) awi(t)

at ‘ " _§E_"' '
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Thus 8 would have the effect of reversing every momentum

while not affecting the positions of the particles. We,

therefore, can define 8 by its effect on operators:61
 

. (4)

We can apply this similarity transformation to the quantum

mechanical operators that correspond to the following

classical quantities:62

 

+ ++ + 1+++

L = fmrxv dT , u = EEfrxJ(r') d1 ,

H(r) = %fo|i(:') dT ,

r-r

+ + +

where L is the angular momentum, and p and H are the

magnetic moment and magnetic field, respectively, of the

current distribution 3(f'). We can thus write in terms of

operators

where the last relationship follows from the exact mathe-

matical analogue of the postulated intrinsic spin to the

angular momentum in quantum mechanics.

It can be seen then that the spin-spin and spin-

orbital interactions of the electrons are invariant with

respect to the time-reversal similarity transformation,

as is the kinetic energy and any time-independent potential

energy. If these are the only terms we allow in the



11

Hamiltonian of the isolated system of the electron, then we

see a - = , an 15 a symme ry e emen .thte‘HGIW (19' t 1 t

Consider the following equations:

(mgr) =‘Hw (6)

amiss-$1) = (e’He‘hew

canes-3w =‘Hew . (7)

They can be taken to mean that the isolated system evolves

forwardly in time (Equation (6)) in the same way as it

would appear if viewed by someone going backwards in time

(Equation (7)). Continuing the physical reasoning, we

would deduce that the transition probabilities between

states is the same in the time-forward or time-backwards

view of the system. This gives us the mathematical
 

assumption that

|(<I>,‘i’)l2 = l(e¢,e‘¥)lz°

Using this equation, it is shown63 that

62a w = Za*ew - 92 = +1 (8)
i i i i i i’ —

and thus we call 9 an antilinear operator. From Equation

(4), 6 has been determined for a one-electron system in

the coordinate representation



12

where we use the standard Pauli matrices

_ 01 _ 0-1) _ 1 o

0x ’ (1 o) 0y ‘ (i 0 Oz ‘ (o —1) '

and we define

_ 1 0 _ 0 l : *

E“(o 1) C‘(—1 0) Kow'w '

which can be used to derive

-l 2 2

9 = “KOC = -CKO ; C = 9 = ’1

and the formulas for the many-electron system

n _1 n

O I

9:1 p 09:1 p (9)

2 _ . . even
6 — (1)1 if n is (odd ).

If an isolated system has an odd number of

electrons, then 62=-1 from Equation (9» and it has been

shown64 that if N is an eigenfunction, then 4 = 6w is

another orthogonal eigenfunction of the same energy. The

ground state of the isolated system of the electrons is

then at least two-fold degenerate and this two-dimensional

space is spanned by what is called the Kramers doublet.

If we now add to the Hamiltonian the interaction

-> —>

due to an external magnetic field )J'He , then 74 is not
xt

invariant under the 9 similarity transformation because

—> + —]_ _ 4 —]_ . + —l

9(U Hext)e - (BUB ) (eHexte )

1 + -+

= ('U)°(H 99 ) = -1J°
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and fiext is not part of the isolated system under study.

Likewise, if the nucleus has a magnetic moment, than

+ + I C I

uI-Hel 18 not 1nvar1ant because

(aile'l)-(e§ele ) = (K ) , (10)

+

where “I is the magnetic moment of the nucleus (which is

not part of the system) and fie is the magnetic field
1

produced by the electrons at the nucleus.

In ESR, these interactions are considered pertur-

bations which lift the degeneracy of the Kramers doublet

and thus we assume that the excited states of the electron

system are much higher in energy than either of the external

interactions.

III. 9 and A Tensors

The 9 tensor is developed by considering the

matrix elements of 5. It has been shown64 that,since

936- =-; from Equation (5), the expectation values of

uq(q=x,y,z) in the two Kramers-conjugate states add to

zero. The matrix representing ”q in the Kramers manifold

must be Hermitian since “q is a physically measurable

quantity. So, in general, we can write

|w> I61)?

- IQ> zq Xq-lyq

q I8Q> xq+iyq -zq .

t
“
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This can be written in terms of Pauli matrices as

_ .—

.— —

= xqox+yt
“

z 0 = §r(q)j0' (11)
+

q q Y q 2 3

and we can put this in terms of a 3X3 9 "matrix"

_ _ 2

gqj Eg'r<q>j

1 Be =

" uq-—§“§gqjj

The basis functions w and 6w are arbitrary in that we can

choose two other states as in

WI

aw + b(9W)

(GW') a*(9¢) - b* T)

where we have used the relations in Equation (8). We can

write that

D = (43* a*) ' pq .__ qu'D

represent the similarity-transformation matrix and uq' in

65
the new basis manifold. It can be shown that the change

to the new matrix jg. can also be represented by a proper

rotation of the vector ;q(j) in Equation (11). This is to

say

8
= e

Z R..r .o. = — Z -1 = .

j i 31 ‘q’1 3 T3' i‘R ’iquin
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After changing the basis set and obtaining the new matrices

jg , we can also rotate the coordinate system by the

rotation matrix E to give new jg":

+1! _ =S=.+l u _ is l

u — w . ur — rquq

q

,.. 3 II ____ is i I

r q rq q

and

B B
= e l = e =
u " = - ——| X S g .( ).. = - —— Zg ."O ,
r 2 .. r 1 1 2q31 q q 3 J 3 r3 3

where

§n=;;?1=?;?.

For the "matrix" g to be considered a second-rank (co-

variant) tensor, we must arbitrarily decide that for every

rotation E, we will change the Kramers basis functions so

that the equivalent mathematical rotation R is set equal
 

to E.

Now, if we consider the g2 matrix formed by setting

= fl=

G = ° G = . .g 9 . pg Esplgql

(12)

== =T= = ===.. ===_

G" = g" 'g" = R'3T°§T'S°9°R 1 = R°G'R 1.

Using the relationships

(EE3T=EE1E,E-=§T,el=?,
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we see that we need not put any restrictions on E, and that

it is a "true" symmetric tensor.

This tensor is useful when we consider the

eigenvalues of the Zeeman HamiltonianflJ' = —E°H:

B H fz fx-ify
Be = e = =

= _ = _ Q. = =

2 Eng (§%Ci 2 3g ngioi gfioi f +ify -f ,

where

+ BeH

Hq = Q’qIH' I fi = T ggngi (q=XIYIz) I

and the fig are the direction cosines of the magnetic field

with respect to the original coordinate system. The

eigenvalues offij'E=EE are obtained by setting

f -E fX-ify

 

z = 0

fx+1fy -fz-E

E = + #f 2+f 2+f 2 = +(Zfi 2) 1/2 =
_ x y 2

B H

8H11/2 2 1/2
9 2 . (229 =:—-(11 G

:7 i1“; pgpl) ngi 2 pqpqpq) °

Now, when G is diagonal, we have

BeH B H
1/2 e

= +——— 2 = +E 2 (12pGpp) _9-§-

so that a transition occurs when an incoming photon has

the energy



l7

 

AB = hv = gBeH with g = /§L:g:+2;g3+£:g:j

The diagonalization of E by the Jacobi method66 gives the

squares of the principal components (92,93, 9:) and the

eigenvectors give the direction cosines of the new principal

axes with respect to the original coordinate system.

The other mentioned interaction, fiI'Hel (Equation

(10)), also lifts the degeneracy of the ground state.

Following the same procedure as used for the E tensor, we

can form a pseudotensor a and a "real" tensor A from

(Eel =-§-1—B—Zal

9n n 1

=-_—_T.= _

A — a a , pq - gapiaqi . (13)

Similarly, we may determine the energy levels of

+ +. , = _ . .
the perturbat1on‘H’ “I He1 to obtain

with

 

=/22XX1).2+2)2’AY‘HLZAZ ,

>
"

where Ax'A , and A2 are the principal values of after it

Y

is diagonalized.

>
fl

The simultaneous diagonalization of the G and

tensors would require that the similarity transform R in

Equation (12) diagonalize K also or, in other words, that
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one choice of coordinate axes and basis states will lead

to a diagonal representation of E and 3. It has been

determined67 that,if environmental interactions are small

with respect to the energy difference between the J

multiplets of the species, 3 and 3 can be diagonalized

simultaneously. This is also true for the species with

rhombic symmetry, but is not true for those with trigonal

symmetry.

Now, by using the relation

0 i + 10

x 2

+

S:

n
fl
H

:
m

j +

N
H
4

Y

we can write two terms of a spin Hamiltonian

=+

6H = «at-3.9.3 + H
+

3557. (14)

IV. Isotropic Interaction

The second operator in Equation (14) involves the

interaction of the electrons and the nuclei. The Hamil-

tonian for an electron in a magnetic field can be written

as

)2

I
0

0
5
+

~15 +v++ avg
‘H-Tm‘+ (r) geeH .

68 69+ 0 O o I

where A is the vector potential. Fermi and Milford have

shown that the Hamiltonian has a singular part at r = 0

and a nonsingular part elsewhere. A careful evaluation of

74' gives



 

 

9 9 B 8 PL ..

74' - e N 63” geQNBeBN{I-§ 3(s-3?) (1%)} '
hr r3 r5

+ 817 B B j? +6 + _ —> + + + = + + + + 1

i—gegN e N s (r) — 51 L I D s aisI s ( 5)

+

where 6(r) is the Dirac delta function and the prime on the

second term indicates that evaluation takes place when

r f 0. The second-order term e2A2/2mc2 has been neglected

since it is small under any normal experimental conditions.

The third term is the Fermi contact interaction giving rise

to a.is' the isotropic part of :. The 5(?) operator

specifies the electron density at point r = 0 because the

evaluation of <6(;)> gives

(ME) = fw*(‘£>6(?>w(‘£)dr = Iw<o>l2.

The derivation of the Fermi interaction part of

Equation (15) involves electromagnetic theory. It describes

the energy between the nuclear magnetic moment and the

magnetic field at the nucleus due to the magnetic moment of

the electron. There are other interactions though, and

these can give rise to non-classical results such as a

negative value for ais'

Consider the two structures of Figure l,70 where

one pi electron occupies a 2pz carbon orbital (which is

perpendicular to the plane of three sp2 trigonal bonds).

Since the spacial interaction between the sigma and pi
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bonds is zero, there would be no energy preference between

(a) and (b). The spin interaction, however, would favor

(a) and this slight polarization of the sigma bond would

induce a reverse polarization of the hydrogen electron

spin. Now it is this electron spin on the hydrogen atom

+

which is interacting with the hydrogen I term. Since

+

SH = -§C for configuration (b), we have a negative inter-

+===+ "*

action I'a°S (where S is the electron spin operator on the

carbon atom), which is imputed to a negative value of ais'

To be more exact, we can write a more complete contact

Hamiltonian, which is a function of all the electrons, as

_81[ +--+ +.+

7(c ” 3—9e8egNBNE5(rk rN)Sk I ' (16)

where we sum over the different electrons k, and we can

define the unpaired electron density at the nucleus rN as

+ _ f *22 5 + +

p(rN) _' q) k (Sz)k (rk-rN) WdT I

where 2(Sz)k = +1 or -1, depending on whether the spin is

a or B, respectively; w is now the wave function of all the

electrons k over which the summation is taken. Then we can

write

all _ 4n +

ais - 3 geBegNBNp(rN)

(H = “f.:.‘s*all '

c

- +all . .
where S is the complete spin operator for all the

electrons summed in Equation (16).
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V. Spin-Orbit Coupling
 

There is also an interaction between the intrinsic

spin of an electron and its own angular momentum. This

interaction and the angular momentum of the electron are

both "caused" by the rotation of the electron about the

nucleus. The general formalism that can be used to

describe the interaction is that of an effective magnetic

field.

The Hamiltonian in Equation (14) can be written as

M. :3 .+ = B g'.-§

“e

(17)

H
+

Ca 'Ev - -§-: + 1

E;

where fi' is a "real" vector, because the right~hand side of

Equation (17) has the transformation properties of a

vector. The revolving electron also experiences a magnetic

field caused by the electric field of the nucleus which, in

the electron's reference frame, is revolving in the

opposite direction. The field produced is thus E" =

+

+

- %»x E, so we have an effective magnetic field

+

s =§'+§"=§'- XE. (18)
eff O

l
<
+

This will produce a torque on the intrinsic angular

momentum, or the "spin" of the electron,

(mg) + +
—_—dt = uXBeff I

(19)
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where

It can be shown71 that if there is an equation of the form

of Equation (19), and geff is a constant with respect to

time, then the particle will rotate with an angular velocity

vector

 

+_ _—_-e_+' ++.

w — - ch + 2 VXE (20)

8+

_(mE)Beff
mc

We now can show that Eeff is constant. E' is

constant because in Equation (17) H is the constant external

magnetic field, I is constant if there are no NMR tran-

sitions, and 3 and 2 are parameters of the species. In

considering the second part of Equation (18), we know that

the electric force can be written as eE = -§V(r,6,¢). We

now assume that V is spherically symmetric so that

+ + dV

eE - $V(r) ‘; —; I (21)

then

 

+

and we know that the quantum number associated with L is

constant if the electron does not change orbits. Thus,

+

Beff is constant and we obtain the result in Equation (20).

There is yet another correction to Equation (19)

and this comes from special relativity theory which states
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that a set of space axes that is both moving and being

accelerated has, as observed from an inertial reference

 

 

system, an angular velocity of precession72’ 73

_a _

wT - 2 [(1-3—) 1/2 - 1],
V 2

C

or

.. §x+ V

“0:- a,when—(<1,

T 2c2 C

The coordinates of the electron have the added motion

+ +

+ _ -V X (F/m) _ i—e

“’T‘ 2 ' 2
2C 2mc

+ +

VXE,  

so that a corresponding ET can be written with the same

ratio as in Equation (20):

g; .. i
g T v X E 1+

T = -(e7mc) = 2c = "28

 

This factor of one-half is called the Thomas factor.

Finally, we obtain a "corrected" effective magnetic field

and angular velocity,

 

+

+ _-> _+'_L +

Bcorr — Beff + gT _ B 2c x E ’

+ 1 f dV
= __E ' -_S ___ ___.__

wcorr mcg + ( mc)( 2c)(mer)dr

__ 9"! l+li¥

_ ch + 2 2L r dr
mc

by using Equations (20) and (21). The magnetic interaction

is



' = ? 0+ — i + .+ = + O

4" Bcorr U mc Bcorr S fl wCOI‘I‘

=45... . are: is
2mc r r

_ efi + = —+ -+ = + zfi -+ + l dV

_fn_5HgS+IaS+_—§LSFE?

2mc

'0. 77" -_- Be§.:.§ + fez-cg + AE’E ,

where A = L. l. g;

2mc2 r dr

A is the spin-orbit coupling constant.

VI. Spin-Spin Coupling

There is a tensor form of coupling between any

. + +

nuclear spins Ii and Ij’

_ 2 2 + .= .

(HD — gNBN I. DI I

which is derived in the same way as the second term in

Equation (15). This is caused by the interaction of the

dipole moments of the nuclei. The effect of this term in

liquids is proportional to the trace of 31' A simple

evaluation in any coordinate system shows the trace to be

74
zero.

There can also be an isotropic term

where Jij is an interaction not completely understood. One

important interaction mechanism is the correlation of
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nuclear spins through the polarization of the intervening

electron Spins,7S which is analogous to the mechanism

described above concerning Figure 1.

VII. Orbital Angular Momentum
 

t
“
+

There is also a classical energy term E = -H° ,

where i is the orbital angular momentum of the electron.

This is a first-order approximation, in contrast to the

exact energy of —H°I, because the former case does not

consist of an infinitesimally localized current distribution

as is postulated for the "spin."76 The higher-order terms

are neglected though, and we have the added quantum

mechanical analogue

++

04‘ = H'L
operator'

This term sometimes does not contribute much to the

expectation value of the Hamiltonian, or in other words,

to the energy of the system.77 This is because we can

evaluate (L2) as

(L2) = (wl-ifi §$Iw> = -ififw*§-$wdT

and, if w = w*, then

(L2) = —ihf%— .375 (W*lb)d'r = iK .

Now K=0 because the expectation value must be real. So,

whenever the wavefunction for the system can be chosen to

be real, we have (L2) = 0. This can always be done in
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non-degenerate systems by multiplying by an appropriate

phase factor, which is always allowed.

Species which do not have orbitally degenerate

ground states would then have a "quenched" orbital angular

momentum interaction. This would also be true for the

radicals studied in this work since the Kramers degeneracy

is lifted by the magnetic field.

VIII. Nuclear g Tensor
 

The Hamiltonian can include a nuclear term78

similar to that of the electron in the first term of

Equation (14). The tensor quality would come about by

changes in the magnetic field felt by the nucleus that were

caused by changes in the electron wave function. The

distortion of the electronic cloud can be caused by, and be

approximately proportional to, the external magnetic field

H. This is not important in our studies.

IX. Electric Quadrupole Coupling
 

There is also a nuclear electric quadrupole

coupling. This comes about when the interaction energy of

a charge distribution and an electric potential V due to

external sources is expanded about the origin:79

Q
I
H++

Energy = Q¢(0) - P'E(0) - E Q .v.. + ...,
13 13 l]
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where

Q - = f(3x x -6. r2)p dT
i) i j ij

3E.(O)

Vi' = x
3 1

By using the Wigner-Eckart theorem,80 it can be

shown that the quadrupole term can be changed from an

expression involving integration over coordinates to an

equivalent form in Ix'Iy’ and I2 by multiplying the former

by a constant. This changes the form to

_ 80 3 _ _ +.=.*fiHQ - 61 21_1 3% Vij[2(Iin+Iin) éijI ] I P I.

From the properties of second-order partial

derivatives, we have Vi'= ThenV..

J 31

the symmetric real matrix E

which implies Pij=Pji'

can be diagonalized by choosing

a new set of axes to give the form81

2 2 2
CHQ PXIX+Pny+PzIz

_ 2 1 1 2 2
_ K + p” [{Iz-§I(I+1)} + g n (I+ ' 1-)]:

where

1
2

K = 5(Ix+ly+lz)[I(I+I)-Iz]

2

 

_ 3 _ 3eQ _ 8 V

P” ’ 212 “ ZI(21-I) q ‘ a 2

= — = + 'n (Ix Iy)/Iz I:- I _ II
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and we have K=0 because the Laplace equation VZV = Zvii=0

i

implies P +P +P = 0.
x y 2

We see that the n term is a second-order effect

compared to the other term in brackets, and when axial

symmetry is present, n = O.

X. Spin Hamiltonians
 

The energy transitions observed in any type of

magnetic resonance experiment can generally be described in

terms of an appropriate spin Hamiltonian. The Schroedinger

equation to be solved is generally very complicated. The

various terms of a general spin Hamiltonian can be re-

written in terms of raising and lowering operators to give

expressions which are in a form suitable for a computer.82

Approximate formulas for the energy have been obtained from

some Hamiltonians by specifying simplifying conditions and

using first- and second-order perturbation theory.

We list below some of the spin Hamiltonians and

various formulas that have been derived. In the pertur-

bation cases, it is assumed that the first term has a much

greater contribution to the energy than the rest.

Let M be the quantum state of 5,

Let m be the quantum state of I,

Let W be the energy of‘a quantum state,

Let hv be the energy needed for an (M-l)++(M) transition.
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A. Electron Zeeman Hamiltonian
 

 

 

41.! : Bfi°§'§

Condition: H has direction cosines (gx’zy’fiz) with

reSpect to the principal axes of 3: (3X,3y,§z).

The exact solution i582' 83

W = gBHM

hv = gBH ,

where

(1) if 3 has different principal values,

_ ‘72 '2 2 2 2‘
g — /gxflx + gyly + gzfiz (22)

(2) if 3 is axially symmetric, i.e., gx=gy=g”, gy=€LJ

+

and H makes an angle 9 with 3” ,

i

g = /§fi c0526 + gfsinze . (23)

B. Hamiltonian A Plus Hyperfine Interaction

.++ = + +

”H = BH‘g°S + I- -sw
"

Conditions: H has direction cosines (ix’fiy’lz) with

respect to the principal axes of 3. These

axes define the coordinate system.

(1) The First-Order Approximation:

W = gBHM + AmM

(24)

hv gBH + Am ,
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where

(a) if E and A have different principal axes,84

A = {(2 g A + 2 g A + R g A )2
x x xx y y yx z 2 2x

2
+(2XgXAXy + RygyAyy + fizngzy) (25)

2 l/2
1 1+(2ngAXZ + ygyAyz + 2ng22) } /g .

and g is given by Equation (22);

(b) if 3 and A have the same principal axes,

2 2 2 2 2 2 2 2 2 1/2
= 2A {2"ngX + lygyAy + zngz} /g, (26)

with 9 given by Equation (22);

(c) if 3 and A have the same principal axes, and

are axially symmetric with E making an angle 6

with 3",

2 2 2 2 }1/2 /9

A = {gfiAficos 6 + giAlsin 9 (27)

with 9 given by Equation (23).

(2) The Second-Order Approximation85

(a) If 3 and A have the same principal axes, and

the direction of H is described in this

principal-axis coordinate system by the

standard polar angles 6 and ¢,
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A A A

X Z

ZgBHA

2 ll gBHM + AmM - [S(S+l)-M2]m + ZM

hv

A A A

gBH + Am + 333%33 [2M+l]m + z,

2-A2)2

X 4y coszesin2¢cosz¢} [I(I

A

2

P

(A

2

+1)-m2]

4gBH

A = (g 2Agsinze + g:A:COSZG)1/2/gr

A = (gx2Azcos2 ¢ + g sin2¢)l/2/g
2A

P YA

N
‘
<
3
,
N

21/22 . 2
(gPSin 9 + gzcos 6)l/2 , g = (g:cos 2¢ + gisin2 ¢)

P

Q

II

(b) if 3 and A have the same principal axes, and

are axially symmetric with H making an angle 6

. ->

WIth g",

'2
‘. ll gBHM + T

hv gBH + UA ,

where
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T = ZM - fijA” [S(S+l)-M2]m 28
A ZgEHA ( )

AiAII
UA = Z + m [2M+l]m, (29)

9% Qi‘Afi ’Ai)2 2 2 2 Ai(A%Afi ) 2
Z = 5 2 m sin 6cos 9 + 2 [I(I+l)-m ]

29 BHA 4gBHA

and g and A are given by Equations (23) and (27),

respectively.

C. Hamiltonian nglus Zero-Field Splittigg

+==+ +=+ +==+

’H= BH'g'S + I-A-s + s-D-s

= +

,D have different principal axes. H hasV
“

Conditions: 3,

direction cosines (Rx'fi .12) with respect to
Y

any arbitrary coordinate system (x,y,z).

3,:, and B are expressed in this coordinate

The second-order approximation i586

_ 1 _
hv — gBH + AM + 2§Bfi'(TxxTyy TxyTyx)(2M+1)m

T2 +T2 +T2 +T2 T2 +T2
xx gyy, xy yx _ 2 xz z 2

+ 49“ [I(I+l) m 1 + “7381};— m

'2 + '2

xz Ayz

ZgBH

 

D

 [4S(S+1)-24M(M+l)-9]

I I 2

(Dxx - Dyy) +4D

BgBH

'2

X1 [28(S+l)-6M(M+l)-3] , 
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where

U .V .Ai'
3 mn mi n3 mn

I

0.. = )[U .U .D
1] mi n] mn

mn

l/2
A = ( X K.K.A. A. ) /g

ijk i 3 ik 3k

_ 1/2 _

g _ (.2 ILifijgikgjk) ’ Kn _ E:’?“mgmn
ljk m

KZ/Y KlKB/gY Kl/g

U - -Kl/Y K2K3/gY Kz/g

0 -Y/g K3/9

Y=VKi+K§a

v is obtained from 3 by changing Ki to Ki=ZKjAji and g to

j

Ag.

D. Hamiltonian C plus Electric Quadrupole and Nuclear

Zeeman Terms

+

H
+

l

I
D

3
3

“5
,"
.

L
:

é
+

W
“+ +

08+ I.

U
"+ "F

OS + S.

m
"

2” = B§'§°S + i-

,E,F, and 3(1)W
"

Conditions: 3, have the same principal

+

axes. H has direction cosines (RX,£ ,lz) with

Y

respect to the principal axes of 3, which

define the coordinate system.87
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(l) The First-Order Approximation:

W = gBHM + AmM + D"(M-%) + P{m2-%I(I+1)} - G m
I

hV gBH+AIn+D I

where g and A are given by Equations (22) and (26),

respectively, and

" _ 2 2 2 2 2 2 2
D _ 3(2ngox + zygyDy + QZgZDz)/g

_ 3 2 2 2 2 2 2 2 2 2 2 2
p _ 2(2ngAxPx + 2ygyAyPy + zzngsz)/g A

= 2 (I) 2 (I) 2 (I)
GI BHULngAXgX + iygyAygy Rzngzgz )/gA ,

(2) If we also have axial symmetry for all the

tensors, we have the Second-Order Approxi-

mation:

2
‘
.

II +

gBHM + TA TD + TP + T9

hv = gBH + UA + UD + UP ,

+=+

where TA'UA correspond only to the I°A°S term,

TD’UD correspond only to the §°B°§ term,

+==+

TP'UP correspond only to the I°P°I term,

+=(I)
Tg corresponds only to the -BH-g °I term,

so that any Hamiltonian made up of only some of the tensors

has only those corresponding terms in the equations for W

and hv.
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and U are given by Equations (28) and (29), respectively.

+

A

%D{(3gfi /g2)cosze-l}{M2-%S(S+l)}

(g2 gi/g4)(choszesinze/ZX)M{8M2+1-4S(8+1)}

(gfi/g4)(Dzsin46/8X)M{ZS(S+l)-2M2-l}

D{Zgfi cosze—gisin26}/g2

(gfi gE/g4)(D2c05263in26/2X){24M(M-1)+9-4S(S+1)}

(gfi/g4)(Dzsin46/8X){28(S+l)-6M(M-l)-3}

‘ 2

9 9 A A

P{m2--;'-I(I+l)} + (H '2 g 'L) {Pfi sin226/8AM}m

g A

{8m2+1-4I(I+1)}

(gLAL/gA)4{Pfi sin46/8AM}m{21(I+l)-2m2-l}

-(gll gLA“ Ag/92A2)2{Pfi sin228/8AM(M-l)}m{8m2+1—4I(I+1)}

(gLAg/gA)4{Pfi sin4e/8AM(M-1)}m{2I(I+I)-2m2-1}

‘(BHm/gA)(g(I)g A c0526 + g(I)
. 2

H II N .L giAiSID 6)

3

7 DH

98H

3 2 2 2 2 2 . 2

Eig” A P cos 6 + gLALFLSin 6}/g
2 2

H II A
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g and A are given by Equations (23) and (27), respectively.

XI. Determination of ESR Parameters

In general, the parameters of the 3 and A tensors

are determined from isofrequency plots, where the frequency

v is constant and H is swept through a range for each of

several orientations of a crystal rotated about a specific

axis. To determine the values of the magnetic field at

which resonance occurs, we can use Equation (24) for a

first-order approximation:

where Ap is the hyperfine interaction with the pth nucleus

and has appropriate energy related units (usually MHz), Ap

corresponds to Ap but has units of gauss, and mp is the

quantum number of the pth nucleus with values from -Ip to

+Ip. Halfway between the outer lines of any hyperfine

multiplet would be the place where (perhaps only mathe-

matically) mp = 0. Choosing the midpoint between the

outermost lines of the whole spectrum will give H0 =

hv/gB. By considering only these midpoints, we have a

"reciprocal g-value" plot for the crystal. The values of

Ap are determined by measuring the distance between the

outer lines of the corresponding multiplet and dividing

by 21p. By plotting these values versus the angle of
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rotation of the crystal, we obtain A-value plots. We thus

have two symmetric covariant second-rank tensors to

determine.

Since g is given by Equation (22), it can be

rewritten as

If we form the symmetric diagonalized g tensor as

ij = giéij = Gji r ‘30)

where 6ij is the Kronecker delta function, then we can

write

2 2 2 '

g = 2 ~29 5 -g- = X {G -G
1 ij i 1] i l] l i ij )1

=l =I =_ = =0 =_ = =l __ =

= )2?(G °G ).. = {2?(R 1-R c °R 1-R-G °R °R)..
. 1 ll . 1 11

l l

- 2 -1 =,=',=-1‘,=.=',=-1

_ .2 iRimHR G R )(R G R )lmn ni

imn

= .2 (Run. 1) (Rnifii) (G.G)mn

imn

. 2 _ ' '
.. g — Z£m£nwmn. (31)

run

where

W = 32 , fi’ — ET - (32)
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Here 3 is an orthogonal matrix which represents a proper

rotation to a new coordinate system, and 2A and E. are the

direction cosines of H and the new representation of E in

this new coordinate system, respectively. Equation (31) is

of the same form as Equation (4) in Part II of this thesis,

so the values of the W matrix can be determined by any of

the methods presented there.

To solve for 3, we can first diagonalize W by a

similarity transformation

===T ='

S°W°S = W (diagonalized) ° (33)

Then,by forming a diagonal matrix whose diagonal elements

0

are the square roots of the corresponding ones in W , one

obtains

6:67, (34)

but, from Equation (33), we have

(73:54???

E) = 5-3 ,2
“

ll

=§T0
"

so -E'°§ is the solution to Equation (32).

We now want to determine A for the most general

case in which 3 and A have different principal axes. If

we multiply the terms out and rearrange them in Equation

(25), and use primes to signify the fact that the 3 and A

terms are in the 3 principal-value coordinate system, we get
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2 2 _ ' ' ' . . __

izjxijg’ig'j I (1!) - XIYIZ)

where a typical term is

ij = 9.1g.3(Aixij+Aiijy+AizAjz)

919-[AikAjk .

Using Equation (30) and the fact that K is symmetric from

Equation (13), we can write

.Z.(giAik' )(gjAjkm 2).

13

ngz

= kEjdgiéilA lk)(zgm6mjAmk)£12j

= )(ZcilA'lkMZAkamjmiz

kij 3

Z ( )kF" ‘3 2'2'= G. .A' A .G 0 0 0

kij k3 1 3

=' =' =' =' ' I

= §:(G -A -A ’G )i.£i£
ij 3 J

. 2 2 I l I

'° 9 A - fig 13 123 I

where
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Hence, in any coordinate system, we can write

x
n

H o
n

é
u

$
n

o
n

which again is of the same form as Equation (4) of Part II.

We can solve for K by determining X from angular variation

of the quantity ngz by any procedure in Part II, then

solving the equation

-1 1
0;.03-

y
“

0
“Z.

by the method mentioned for Equation (34). This result has

88
been stated elsewhere. If 3 and K have the same principal

>
H

axes, then the principal values of are found by diago-

a: =l

nalizing X to give X and using the equation

0 1 I

A.. = VX../G.. .
ii 11 11

If the relative anisotropy of g is much smaller than that

of A, we can treat A exactly as we did 9, that is

 

 

' Ag

g. A.

180 180

then

I

A JQZAz + £2A2 + £2A2
x x y y z

.0 A2 = {2; 2W 1

m n mn
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the largest anisotropy

the largest anisotropy

is the isotropic value

is the isotropic value

of

of

of

of

«
M
I

>
H

0
H

>
H



EXPERIMENTAL

I. §pectrometers
 

Three ESR spectrometers were used, two of them X-

band systems and one a Q-band system. The X-band systems

were used with a magnetic field of about 3300 gauss and a

resonant frequency of about 9.5 GHz. while the Q-band

system was used with the corresponding values 12000 gauss

and 35 GHz., respectively.

One spectrometer was the Varian V-4502 X-band

system with a lZ-inch magnet and 100 KHz. modulation.

First- or second-derivative spectra were taken on various

XY-recorders. The appropriate derivative of the absorption

mode was plotted as a function of the magnetic field

intensity. The magnetic field was measured by accurately

determining the proton NMR resonance frequency of a water

sample and using the equation 89

H(gauss) = 0.2348682 vwater(MHz),

A homemade marginal oscillator90 was used to detect the

proton resonance and the frequency was measured with a

Hewlett-Packard Model 524C electronic counter. After each

spectrum was taken on the XY—recorder, two accurate

43
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magnetic field determinations were made on top of the

spectrum. From this, it was found that the linearity of

the magnetic field sweep and the stability of the absolute

magnetic field on the spectra were within the experimental

error of the NMR probe measurements. The klystron frequency

was measured using a TS-148/UP U.S. Navy spectrum analyzer

with a calibration chart; the accuracy was about 1 part in

105.

For some preliminary spectra, a Varian E—4 X-band

spectrometer was used. This also had 100 KHz. modulation,

but the magnet had 4-inch diameter pole pieces. The

absolute magnetic field, the magnetic field sweep, and the

klystron frequency were read from the dials on the machine.

The Q-band spectrometer was a Varian V-4503 system

with a 12-inch magnet and 100 KHz. modulation. There was no

external probe to measure the magnetic field accurately.

The klystron frequency was determined by the wavemeter of

the Varian V-4561 35 GHz. Microwave Bridge. Repeated

measurements indicated that the stability of the klystron

frequency was only 1 part in 104.

The X-band spectrometers had provisions for keeping

samples immersed in liquid nitrogen and all three spectro-

meters could be used with a Varian V-4540 variable temper-

ature controller. This instrument regulates the sample

temperature by passing over it a stream of gaseous nitrogen

whose temperature is controlled by either being passed
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through a helical tube immersed in liquid nitrogen and/or

warmed by heating filaments.

\ A common sequence of measurements involves mounting

an irradiated crystal with a chosen axis vertical. When the

X-band system was used, magnetic field sweeps were made

with the crystal progressively rotated about that axis.

With the Q—band system, the magnetic field was instead

rotated about the sample. This is the more desirable

arrangement since moving the crystal in the cavity changes

the Q of the system which tends to change the klystron

frequency and the detector current leakage. The magnet on

the V-4502 was not rotated because the connecting hoses

were too short.

II. Crystal Irradiation and Mounting

\ There are two methods for mounting crystals that

must be kept at liquid nitrogen temperature. One method is

to irradiate the crystal, then mount it between flexible

brass strips. This method, which is described in the thesis

60 has problems associated with it. It isby Watson,

difficult to align and ascertain the alignment of the

crystal. The lack of space caused by the presence of the

brass strips in the liquid nitrogen Dewar makes liquid

nitrogen bubbling more likely because of "hot Spots" on

sharp edges of the brass. Also, any bubbling that occurs

tends to shake the crystal causing electronic stability

problems and creates a possibility of accidental realignment
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of the crystal. The metal in the cavity also lowers the

sensitivity of the instrument.

Another method is first to glue the crystal

(Pliobond cement, Goodyear Rubber Co., Akron, OhiO) onto

a copper wire which in turn is imbedded into a thin glass

rod. This allows one to adjust accurately the axis of

rotation. The whole assembly is then irradiated and used

in the same way as the crystal holder in the first method.

An extra signal at g = 2.0026 is introduced from the

irradiated glue.

There were two sources of irradiation used. One

60
was a Co y-ray source that had an intensity of 1.0 X 106

rad/hr. The other was a 1 Mev electron source (G.E. XRD-l

Resonant Transformer) that had a dose rate of 1.8 X 107

rad/hr.

III. ENDOR Measurements
 

Some electron-nuclear double-resonance (ENDOR)

measurements were made on crystals of dlfmandelic acid.

A Varian E—700 ENDOR system was used with the V-4502 X-band

spectrometer. A Monsanto Model 1100A counter-timer was

used to determine the rf pulse frequencies.

IV. X-ray Crystallography
 

dlfMandelic acid, C6H6CHOHCOOH, in powdered form

was obtained from Matheson Coleman and Bell Co. Crystals

were grown from saturated aqueous solutions by slow
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evaporation. The morphology of the crystals was the same

as determined by Rose.91 He reported that the crystal

system was orthorhombic with cell dimensions a = 9.66:

0.05 i, b = 16.20 i 0.08 3., and c = 9.94 i 0.05 i, and that

the number of molecules per unit cell was eight. An

orthographic projection of dlfmandelic acid is shown in

Figure 2. Small crystals of about 0.1 mm. length were

grown in a shallow dish by slow evaporation from water.

The crystal chosen had a clear-cut morphology that allowed

us to mount it specifically about the a axis. This was

confirmed by taking oscillation photographs92 using a

Weissenberg Camera (Supper Co., Watertown, Mass.) with

filtered Cu (AKa = 1.5418 A) radiation. The cell

dimensions were determined from these photographs and

compared with those reported by Rose.91 There was excellent

agreement within experimental error. The oscillation

photographs were used also to align the rotation axis of

the crystal accurately along the a axis. The zero-,

first-, and second—layer photographs were taken about the

a axis. By considering the symmetry of the missing

reflections, we were able to determine the limiting

conditions for reflection in terms of the hkl indices.

This uniquely determined the space group out of the 74

possible ones for the orthorhombic case.
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V. Parameters From Tensor Variations

The purpose of this section is to describe a way in

which the 3 and A tensor parameters can be determined when

there is restricted information from the isofrequency

plots. This was the case for mandelic acid when the normal

93 did not work. Theanalysis utilizing Schonland's method

reason that Schonland's method, and the method outlined in

Part II for the orthogonal case, both tend to have diffi-

culty is because they depend heavily on the high accuracy

of the g-values for all three rotations. This is difficult

to achieve since three separate experiments are involved

with the spectrometer and each time the tuning character-

istics differ. Also, if there are broad, overlapping

lines, as was the case for mandelic acid, further un-

certainty is added.

It appears that some of the most accurate data that

can be gathered from an isofrequency plot are the g

variation (Ag) between the maximum and minimum values of g

for that plot, and the angle at which gmax occurs (emax).

This gives six pieces of data from the three isofrequency

plots. We need formulas relating these quantities to the

principal values and eigenvectors of 3.

At first we need to calculate the parameters 8 and

Y as defined by consideration of the value of g at a

specific magnetic orientation given by Equations (1) and

(4) in Part II:
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2 _ _ .
g — Zwijzizj — a + Bcos20 + YSin28 ,

ij

where W = 3': and the li are direction cosines of the

magnetic field vector with respect to the coordinate

system. From Equation (29) of Part II, we have

_ 1 _
8 — 2 ijwijmisj MiMj)

(36)

Y'== {w .S.M. ,
ij ij 1 j

where Si and Mi are the direction cosines of the vectors

g and M, which represent the magnetic field direction at

the start of the isofrequency plot (0 = 0°) and at the

middle of the isofrequency plot (0 = 90°).

There are two coordinate systems involved, one

associated with the crystal axes, which is left unprimed,

and one associated with the eigenvectors of the g tensor,

which is primed. Using Figure lb in Part II, we can write,

in the crystal-axis coordinate system, for the three

standard rotations about the orthogonal axes,

S. = 6. , M. = 6. , Q = 0 , £8 = cose , 1m = sinfl ,(37)

where the subscripts n,s,m refer to the rotation, starting;

and middle-axis numbers. Putting Equation (37) into

Equation (36) gives
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In the principal-axis coordinate system of the g tensor we

have

and to change into the unprimed system, we set

= = =' =

W = RT'W °R

w = NW) = 2R. g?6..R.

Pq ij Piwij qu ij 1P 1 1) Jq

2
W = .R. R.

pq £91 lp 1q

. _ l 2 2 _ 2

o o B - .5 ggi(RiS Rim)

Y = ZgiRisRim

8 = 1 arctan(Y/B)
ex 2 '

where eex 15 an angle assoc1ated w1th gmax or 9min and the

principal g-value eigenvectors in terms of the unprimed co-

ordinate system are along the rows of R; or, likewise, the

crystal-axis eigenvectors in terms of the primed coordinate

system are along the columns of 3. Since the arctangent

function has two solutions 180° apart, we see that emax and
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6min must be 90° apart. The two values for the extrema of

g are calculated from Equation (22):

2 _ 2 '2

9ex — £9111 (eex)

' _ T

2i(eex) — E<R )ika(eex)

_ 2 1/2

9 " {1211911391 (eex)} I

where £n(eex) = 0 , 23(eex) = cosBeX , £m(eex) = s1n8ex .

).The g-value difference Ag is then (gmaX-gmin

It is impractical to determine the values of gi and

the eigenvector matrix R from the values of Ag and emax'

Instead, the formulas calculate Ag and emax for the three

orthogonal rotations, given a specified 9 tensor. There

are three independent parameters describing the eigenvector

matrix, but there are nine elements in 3. So instead of

varying the elements in R, it is best to vary some set of

three independent parameters and calculate R from them.

One such set is the Euler angles (0,8,Y) as defined

by Rose.94 We can construct an orthogonal matrix by using

a formula by Rose.95
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ca°cb-cc-sa°sc sa-cb-cc+ca-sc -sb°cc

R = -ca°cb°sc-sa°cc -sa-cb°sc+ca°cc sb-sc

ca°sb sa°sb Cb

(38)

ca 5 cos(a) , cb E cos(B) , cc 3 cos(Y)
I
l
l

H
I

sin(Y) .sa sin(a) , sb sin(8) , so

A computer subroutine was written such that given

three Euler angles, three principal g values, the experi-

mental values for Ag and emax, and the corresponding

weighting factors, it calculated the theoretical values for

Ag and 6m and determined a squared-d1fference-weighted
ax

error. This subroutine was used with a general minimization

routine that varied the parameters to determine a minimum

error. These subroutines are listed in Appendix I.

The A tensor can likewise be calculated by using

this procedure for the quantity gA, or A, as was discussed

under Determination of ESR Parameters in the Theoretical

Section.



RESULTS

1. X-ray Crystallography
 

The limiting conditions for reflection in terms of

the hkl indices were determined as described in the

Experimental section. These are listed in Table 1. There

is a completely symmetric relationship among the hkl indices

in these rules. By comparing these conditions with those

96 it was determinedlisted in the International Tables,

that the space group is Pbca. This space group has four

equivalent right-handed positions related by three screw

axes about the a,b, and c axes. It also has four left-

handed positions which are similarly related. These eight

positions could be considered as corresponding with the

four gfmandelic acid and the four 1—mandelic acid molecules

in the unit cell.

II. Irradiation and Spectra

The crystals generally were irradiated with a 60Co

y-ray source at a dose of 3 X 106 rads. This treatment

caused the crystals to change from a colorless to a slightly

yellow appearance. When single crystals of dlfmandelic

acid were irradiated at 77°K, and the ESR spectrum was

54
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taken before the crystals were warmed up, it consisted of

one very broad line at the free-spin value for electrons.

Upon warming up, a "normal" spectrum resulted. When the

crystals were recooled to 77°K, the same type of broad line

resulted, but it was smaller in amplitude. A typical first-

derivative normal spectrum is shown in Figure 3.

This spectrum consists of a central portion with

large peaks, and two other portions on either side with

considerably smaller peaks. The central portion consists

of between seven and about twenty-two resonances over a

range of about 33 gauss, centered approximately about the

g free-spin value. The two groups of side peaks are

symmetrically placed on either side of the central portion

with a distance of about 92 gauss between the centers of

the two groups. Each side portion consists of three to

twelve resonances over a range of about 29 gauss.

III. Alpha-Hydroxybenzyl Radical

A. Determination of Radical

The central spectra can be analyzed as consisting

of two sets of lines for the rotations about the b and c

axes, and four sets of lines for the rotation about the a

axis (Figures 4-6). Each set of lines consists of two

groups of quartets which have one line overlapping to form

12C and 16O have no magneticseven lines (Figure 3). Since

moments, only the hydrogen nuclei produce hyperfine

splittings. The observed set of lines could be produced
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if one hydrogen caused a splitting of 16.0 gauss and three

equivalent hydrogens produced a splitting of 5.3 gauss each.

We postulate that the species is the alpha-

hydroxybenzyl radical, the alpha hydrogen causing the large

splitting, the nearly equivalent ortho and para hydrogens

the smaller splittings; the meta and hydroxyhydrogen

splittings are too small to be observed in the broad lines.

A comparison of the splittings for the alpha-hydroxybenzyl

radical as reported in solution and the average ESR values

of this investigation is shown in Table 2. The agreement

appears good. Also, in the Table is listed the value of

5.83 gauss obtained from an ENDOR experiment on d1fmandelic

acid consistent with the value for the para hydrogen.

B. g—Tensor Evaluation

93 of deter—We tried to use Schonland's method

mining the tensor parameters for E and K, but it failed.

We then used the method described above in Parameters from

Tensor Variations in the Experimental section. There was

an ambiguity about which set of lines in each isofrequency

plot belonged to a specific site of the radical. Each

combination was tried in the six—parameter error-

minimization routine also described above. We forced one

of the principal values to remain the same during each

computer run of this routine. We would then change this

value independently to give the correct g-value average

and give the other five final parameters as starting values
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for another run of the program. This procedure stabilized

the search for an absolute error minimum in the six-

dimensional parameter space. At most four runs of the

program were needed to reach a stable minimum. Although

there was no guarantee that the minimum reached was not

just a relative minimum, the searching method of the

program was written to reduce this possibility.

One combination produced a considerably lower

fitting-error than any other one. According to the space

group of the undamaged crystal, there are four sites related

by three twofold screw axes. To determine the eigen-

vectors of a radical related by a twofold screw about any

axis, we need only change the signs of the direction

cosines associated with that axis. When we formed these

four theoretical isofrequency plots and put them together,

they overlapped quite perfectly to form half of the sets

of lines observed experimentally. Since the other half of

the sets of lines were caused by the same radical, we tried

to fit them by varying only the three Euler angles while

keeping the same principal g values determined previously.

Each remaining combination of lines was tried in a three-

parameter minimization routine and one combination fit much

better than the others. This second fit was not as good

as the one obtained in the previous procedure. We now

determined the remaining four sites required by the

symmetry of the undamaged crystal. When all eight
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theoretical plots were put together, they accounted for all

the lines. The principal values, and direction cosines of

the radical, for all eight sites are shown in Table 3 and

the various site overlappings are shown in Table 4.

There are three causes for the large number of

overlapping isofrequency curves. First, all the iso-

frequency plots have a near-mirror symmetry about the 8 =

0° and 0 = 90° positions (which point along crystal axes).

This requires mathematically that sites must overlap in

pairs. Secondly, the isofrequency plot for the ab plane

shows that the extrema occur along the axes, which also

requires sites to overlap in pairs. Thirdly, there is an

accidental, experimental near-overlapping of lines for the

rotation in the ac plane.

C. A-Tensor Evaluation.

The alpha hydrogen splitting was the only one whose

anisotropy was large enough to be measured. Even in this

case, there was a large scatter of experimental A-value

points. This can be seen in Figures 7-10 where the A-value

plots are labelled according to the g—value lines with which

they are associated in Table 4. A rough calculation was

made of the ratio between the fractional changes of the g

and A tensors as defined in Equation (35). Since the ratio

was small (0.008), we treated the A plots as representing

a diagonalizable second—order tensor rather than the plots

of the quantity gA.
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Table 4.--Correlation between the individual sites and the

resulting overlapped lines for the alpha-

hydroxybenzyl radical.

 

Axis of Correlation of Center-of-Spectrum
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Using the experimental values for AA and emax for

the A-value plots, we again used the six-parameter mini-

mization routine on each combination of lines. One

combination of lines had a considerably smaller fitting-

error than the other ones. This set of A-value lines

corresponded to the same g-value lines (site 1) which had

given the best fit for the g tensor. Again using Equation

(38), we produced a matrix Av representing the eigenvectors

of A for site 1.

Since the A and g tensors are for the same radical,

it was expected that the tensors were similarly related to

each other for all eight sites. Because of the similar

symmetry of the A and 9 plots, we could also produce half

of the A-value line sets by applying the same three screw-

axis-transformations to :v' This trivially guaranteed that

the g and A tensors were similarly related for sites 1,2,3,

and 4. For the g tensor, sites 5,6,7, and 8 were symme-

trically related to each other, and site 5 was related to

site 1 by some nonsymmetric similarity transformation

matrix which was calculated. By applying this transfor-

mation to :v' we produced A-tensor eigenvectors for site 5

that had the proper relationship to the g tensor for site

5. We again derived the A-tensor eigenvectors for sites

6,7, and 8 from the one for site 5 by applying the screw-

axis operations. When all eight A tensors were considered

together, they accounted for all of the lines in the A
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plots. The principal A values and direction cosines of the

alpha-hydrogen splitting for all eight sites are shown in

Table 3.

D. Variable Temperature Study

A variable temperature ESR study of the alpha-

hydroxybenzyl radical was done. The Q-band instrument was

used and the temperature was varied from -150°C to +120°C.

There was no discernible difference in the spectra.

IV. Cyclohexadienyl-Glycolic

Acid Radical

A. Determination of Radical

From the spectrum shown in Figure 11, we see that

each set of peaks can be analyzed as consisting of a

triplet of triplets with splittings of 8.99 gauss and 2.65

gauss. The large 95.5 gauss separation would not normally

be caused by a hydrogen atom, so we can assume that there

is a triplet splitting of 47.7 gauss. The middle portion

of the spectrum would be lost in the larger peaks of the

alpha-hydroxybenzyl radical.

We postulate that the side peaks are caused by the

cyclohexadienyl-glycolic acid radical. A comparison of the

splittings for this radical as reported in solution with

the average ESR values of this work is shown in Table 5.

The agreement appears good. We attribute the largest

triplet splitting to the two para protons, the second
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Table 7.--The principal values and direction cosines for the CH2

hyperfine splitting tensor of the cyclohexadienyl-glycolic

acid radical in1g17mandelic acid.

 

Signs for the Various Sites

 

 

Principal Direction Cosines

Values site 1 site 2 site 3 site 4

a b c a b c a b c a b c a b c

All = -28.50 0.6323 0.5228 0.5717 - + - - + + - - - + + -

A22 = -52.48 0.7236 0.1350 0.6769 + + - + + + + - - - + -

A33 = -57.26 0.2767 0.8417 0.4637 - — - - - + - + - + - -

 

Table 8.--Unpaired electron spin and excess charge densities calculated

for the alpha-hydroxybenzyl radical by the McLachlan
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largest triplet splitting to the two meta protons, and the

smallest triplet splitting to the two ortho protons.

This second radical is found under more stringent

conditions than the main radical. Irradiation of 91:

mandelic acid at room temperature gives the main radical

but not the second radical. Irradiation of dfmandelic or

lfmandelic acid at either 77°K or room temperature appear

to give the main radical. The lines of the side radical,

if formed, are considerably weaker than in the case of its

formation when dlfmandelic acid is irradiated at 77°K.

B. g:Value and A-Tensor Evaluation
 

In the ab plane, the isofrequency plot for the side

radical showed a clear pattern of twelve lines paired into

two sets of six lines. This is shown in Figure 12. The

ortho proton splitting was discernable only on some outer

lines for some orientations. The other planes had similar

isofrequency plots, but only the outer line positions could

be clearly followed throughout the rotation. The A-value

plots for the CH2 splitting are shown in Figures 13-15 where

the plots are labelled according to the scheme in Table 6.

The data from the isofrequency plots were not

precise enough to determine any g-tensor anisotropy. The

isotropic value for g was calculated to be 2.0026.

The anisotropy of the CH2 splitting was con-

siderable. We used the same procedure as described for

the alpha-hydroxybenzyl radical to determine the tensor
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parameters. There were two A-plot curves for each

rotation. This gave eight combinations of lines. One

combination gave a drastically lower fitting-error than

the others. The eigenvectors of this site were transformed

into the eigenvectors of the other three sites by performing

the three twofold screw axis operations on them. When

these theoretical plots were considered together, they

accounted for all of the A—value curves. The principal

values and direction cosines of the radical for all four

sites are shown in Table 7 and the various site overlappings

are shown in Table 6.

C. Variable-Temperature Study

A variable temperature ESR study of the

cyclohexadienyl-glycolic acid radical was made. The

Q—band instrument was used and the temperature was varied

from -150°C to +120°C. As in the case of the alpha-

hydroxybenzyl radical, no significant differences were

observed in the spectra with change in temperature.

V. Electron Irradiation at 77°K

A single crystal of d1fmandelic acid was irradi-

ated at 77°K with a dose of 6 X 107 rads using the 1 Mev

electron source described in the Experimental section. This

treatment caused the crystal to turn slightly yellow as was

the case on y-irradiation. The spectra were identical to

the ones obtained from y-irradiation at 77°K.
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VI. d-Mandelic Acid and l-Mandelic

Acid Irradiation
 

dfMandelic acid and lfmandelic acid in powdered

form were obtained from Aldrich Co. All crystals were

grown from saturated aqueous solutions by slow evaporation.

The crystal system of dfmandelic acid was reported to be

monoclinic103

104

while that of 1fmandelic acid was orthor—

hombic. The morphology of the gfmandelic acid crystals

agreed with that reported in the literature and this was

similarly true for the l-mandelic acid crystals.

dfMandelic acid crystals were y-irradiated at room

temperature and their spectra were taken on the Q-band

spectrometer at various orientations. These spectra had

the same type of seven-line pattern with no side peaks as

was found for the case of dlfmandelic acid irradiated at

room temperature. When dfmandelic acid was irradiated at

77°K, it still showed the same spectra with no side peaks

while the spectra of glfmandelic acid irradiated at 77°K

would have the extra side peaks. This showed that the

alpha-hydroxybenzyl radical is formed in both the d: and

dlfmandelic acid crystals at either 77°K or room temperature,

but that the cyclohexadienyl-glycolic acid radical is

formed only in dlfmandelic acid at 77°K an never in g:

mandelic acid.

The same procedure was applied to lfmandelic acid

with the same results. Only the alpha-hydroxybenzyl
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radical is formed when 1fmandelic acid is irradiated at

77°K or room temperature.



DISCUSSION

I. Alpha-Hydroxybenzyl Radical
 

The alpha-hydroxybenzyl radical appears to be formed

by the removal of a carboxyl group from a 97 or lfmandelic

acid molecule. It is assumed that the hydrogen and hydroxy

groups would move from their original tetrahedral con-

figuration about the central carbon atom to give a planar

species.

To check the geometry of this radical, energy

calculations were made for various configurations using

INDO.105 At first, we varied the positions of the CHOH

atoms in the plane of the benzene ring using previously

106 until andetermined parameters for the benzyl radical

energy minimum was reached. It was then found that any

rotation of the CHOH group produced a higher energy.

Therefore, INDO calculations would predict a planar

radical. The final parameters which minimized the energy

are shown in Figure 16.

As was discussed in the section on Results, the

central isofrequency lines were accounted for by assuming

that there were two sets of four sites. In each group,

the four sites were related by the three twofold

83
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Mandelic acid

 

H

+

H H

H

alpha-Hydroxybenzyl

radical

H H

H H

HH

Cyclohexadienyl-glycolic acid radical

Figure 18. A possible scheme for the formation of the two

radicals in the irradiation of glfmandelic

acid at 77°K.
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screw axes. The undamaged crystal had two sets of four

molecules per unit cell, one set being dfmandelic acid

molecules and the other being 1—mandelic acid molecules.

We could deduce then that sites 1,2,3, and 4 of Table 3

correspond to the dfmandelic acid species and sites

5,6,7, and 8 correspond to the 1fmandelic acid species, or

vice versa.

In the undamaged crystal, the £7 and lfmandelic acid

molecules are related by a center of inversion. This would

require that the benzene ring plane of each of the four

sites of the dfmandelic acid molecules must be parallel to

the benzene ring plane of a corresponding 1fmandelic acid

molecule. Because the alpha-hydroxybenzyl species ia a

pi-electron radical, we would expect that one of the

principal axes of the g tensor would be perpendicular to

the radical plane and thus to the benzene ring plane. Then,

if the benzene ring planes did not reorient when the

crystal was damaged, we would expect that one eigenvector

in each of the sites 1,2,3, and 4 would be parallel to the

eigenvectors in each of the sites 5,6,7, and 8. It is

evident from Table 3, that this is not the case. We would

conclude that the benzene ring planes change their orien-

tation significantly as a result of the radiation.

Previous calculations of the spin densities for

107
the alpha-hydroxybenzyl radical have been made by using

McLachlan's approximate self-consistent field method.108
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An "excess charge density" was also calculated by using the

relation proposed by Colpa and Bolton,109: 110

a = (Q + K€)pl

where a is the isotropic proton hyperfine coupling constant,

e the excess charge density, p the unpaired electron spin

density on the adjacent carbon atom, and Q and K are

constants that were chosen to be -30 gauss and -15 gauss,

respectively, to give the best fit to the values of a. This

relationship was used instead of McConnell's equation

because it produces better results for radicals in which

there is an appreciable excess charge, or considerably

different excess charges at various sites of the radical,

both conditions of which apply to the alpha-hydroxybenzyl

radical. The results are listed in Table 8.

It was found that the relationship between the

eigenvectors of the g and A tensors could be related to the

geometry of the molecule. This is shown in Figure 17,

where the principal g and A values correspond to those in

Table 3. In this figure, the eigenvectors of the g tensor

point so that 933 is perpendicular to the CHOH plane,

gll=gmax points along the exocyclic carbon-carbon bond,

and 922:9min is orthogonal to 911 and 933. Assuming this,

it was then found that the eigenvectors of the A tensor of

the alpha hydrogen point so that A is perpendicular
33=Amin

to the CHOH plane within 2°, A 2 points along the C-H bond
2

o . o = . '

w1th1n 15 , and A11 Amax lS orthogonal to All and A33.
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If we subtract the isotropic value of —16.21 gauss

from the principal values of A(H7) in Table 3, we obtain

(-2.12,+0.88,+l.24) gauss for the anisotropy of the

alpha-proton. The typical values for alpha-proton

anisotropy are (-10.0,+10) gauss.26 One theoretical

111 to calculating the anisotropy approximates itapproach

as a magnetic dipole interaction between the hydrogen and

the electron spin magnetization that is distributed in the

23 and 2p atomic orbitals on the neighboring carbon atom.

This treatment gives values of (-l4,-2,+15) gauss for a

case of one pi electron on the adjacent carbon atom. If

we consider the dipole effect to be proportional to the

unpaired spin density on the carbon atom and use the value

of 0.489 from Table 8, we would still expect theoretically

an anisotropy of (-5,0,+5) gauss, which is considerably

greater than measured experimentally. Considering the

intransigence of the g and A tensors to normal analysis,

and the uncertainties in determining the parameters from

the experimental information used, we might expect that

the calculated anisotropy values have compounded un-

certainties associated with them.

II. Cyclohexadienyl-Glycolic

Acid Radical

The cyclohexadienyl-glycolic acid radical appears

to be formed by the addition of a hydrogen atom at the para

position of a d- or l-mandelic acid molecule. This extra
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hydrogen atom could come from the dissociation of a free

carboxyl group into CO2 and H, where the carboxyl group

was previously removed from a d: or 1fmandelic acid mole-

cule in forming the alpha-hydroxybenzyl radical discussed

above.

There are eight possible sites in the undamaged

crystal, but only four sites are distinct in ESR spectra

for the cyclohexadienyl-glycolic acid radical as compared

to eight sites for the alpha-hydroxbenzyl radical. This

would imply that the A tensors for the former radical are

paired together while they are not for the latter radical.

The A tensor for the CH2 group would obviously be fixed

with respect to the benzene-ring plane. As discussed

previously, the g7 and 1fmandelic acid molecules are

related by a center of symmetry so that the A tensors

associated with these molecules would have the same

eigenvectors if the benzene rings did not reorient. So we

can conclude that the benzene rings did not significantly

reorient themselves upon irradiation to form the

cyclohexadienyl-glycolic acid radical. A possible scheme

for the formation of the alpha-hydroxybenzyl and

cyclohexadienyl-glycolic acid radicals is shown in

Figure 18.
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III. Summary

The ESR spectra of the radicals produced in single

crystals of dlfmandelic acid by irradiation with y-rays

have been obtained and analyzed. The alpha-hydroxybenzyl

radical and the cyclohexadienyl-glycolic acid radical are

formed. The alpha-hydroxybenzyl radical appears to be

planar, its benzene ring having reoriented during the

radical formation process. The cyclohexadienyl-glycolic

acid radical appears to be formed only at 77°K and the

hyperfine splitting tensors of the d and 1 radicals are

parallel.



PART I

REFERENCES



10.

11.

12.

13.

14.

15.

REFERENCES

Gorter, Physica 3, 995 (1936).

Rabi, J. Zacharias, S. Millman, and P. Kusch,

Phys. Rev. 23, 318 (1938).

Zavoisky, J. Phys. USSR 9, 211 (1945).

Purcell, H. Torrey, and R. Pound, Phys. Rev. 62, 37

(1946).

Bloch, W. Hansen, and M. Packard, Phys. Rev. 69,

127 (1946).

Kozyrev and S. Salikhov, Doklady Akad. Nau, SSSR

28, 1023 (1947).

Penrose, Nature (London) 163, 992 (1949).

Ingram, Proc. Phys. Soc. (London) A62, 664 (1949).

Holden, C. Kittel, R. Merritt, and W. Yager, Phys.

Rev. 12, 1614 (1949).

Abragam and M. Pryce, Proc. Roy. Soc. (London) A206,

164 (1951).

Schneider, M. Day, and G. Stein, Nature (London)

168, 644 (1951).

Uebersfeld and E. Erb, Compt. Rend. 242, 478 (1956).

Feher, Phys. Rev. 103, 834 (1956).

Hutchison Jr. and B. Mangum, J. Chem. Phys. 22,

952 (1958).

Cole, C. Heller, and H. McConnell, Proc. Natl.

Acad. Sci. U.S. 45, 525 (1959).

92



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

93

D. Ghosh and D. Whiffen, Mol. Phys. 2, 285 (1959).

I. Miyagawa and W. Gordy, J. Chem. Phys. 30, 1590

(1959).

B. Bleaney and K. Stevens, Rep. Prog. Phys. 16, 108

(1953).

K. Bowers and J. Owen, Rep. Prog. Phys. 18, 304 (1955).

B. Bleaney, Phil. Mag. 42, 441 (1951).

D. Whiffen, Quart. Rev. 12, 250 (1958).

A. Carrington and H. Longuet-Higgins, Quart. Rev. 14,

427 (1960).

A. Carrington, Quart. Rev. 11, 67 (1963).

(
.
4

Wertz, Chem. Rev. 55, 829 (1955).

G. Russell, Science 161, 423 (1968).

J. Morton, Chem. Rev. 64, 453 (1964).

D. Eargle, Analyt. Chem. 42, 303R (1968).

K. Sales, Adv. in Free Rad. Chem. 3, 139 (1969).

M. C. R. Symons, Adv. Phys. Organic Chem. 1, 284

(1963).

R. Norman and B. Gilbert, Adv. Phys. Organic Chem. 5,

53 (1967).

J. Kochi and P. Krusic, "Electron Spin Resonance of

Free Radicals in Non-aqueous Solutions," in

Chemical Society, Special Publication #24, London

(1970).

Annuals Reviews of Physical Chemistry, 1955-1964,

Annual Reports of the Chemical Society, 1957, 1960,

1962, 1964, 1966-1971.

Symposium on Electron Spin Resonance, East Lansing,

Michigan, 1-3 August, 1966. (Also contained in the

first issue of J. Phys. Chem. 11 (1967)).

Fifth Annual George H. Hudson Symposium, Plattsburg,

New York, 20-22 October, 1969.



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

94

Second ESR Conference, Athens, Georgia, 7-9 December,

1970. (Also contained in the 22nd issue of J. Phys.

Chem. 15 (1971)).

Yen, "Electron Spin Resonance of Metal Complexes,"

(Symposium on ESR of Metal Chelates at the Pitts-

burgh Conference on Analytical Chemistry and Applied

Spectroscopy, Cleveland, Ohio, 4-8 March, 1968),

Plenum Press, New York (1969).

Coogan, N. Ham, S. Stuart, J. Pilbrow, and G.

Wilson, "Magnetic Resonance," (Proceedings of the

International Symposium on Electron and Nuclear

Magnetic Resonance, Melbourne, Australia, 11-15

August, 1969), Plenum Press, New York (1970).

Bielski and J. Gebicki, "Atlas of Electron Spin

Resonance Spectra," Academic Press, New York (1967).

Fisher, "Landolt-Bérnstein, New Series Gp. II,"

Vol. 1, "Magnetic Properties of Free Radicals,"

Springer-Verlag, Berlin (1965).

Carrington and A. McLachlan, "Introduction to

Magnetic Resonance," Harper, New York (1967).

Wertz and J. Bolton, "Electron Spin Resonance,"

McGraw-Hill, New York (1972).

Poole Jr. and H. Farach, "Theory of Magnetic

Resonance," John Wiley, New York (1972).

Slichter, "Principles of Magnetic Resonance,"

Harper, New York (1963).

Abragam and B. Bleaney, "Electron Paramagnetic

Resonance of Transition Ions," Oxford University

Press, London (1970).

Griffith, "The Theory of Transition-Metal Ions,"

Cambridge University Press, London (1961).

Poole Jr., "Electron Spin Resonance,‘ Interscience,

New York (1967).

Alger, "Electron Paramagnetic Resonance: Tech-

niques and Applications," Wiley, New York (1968).

McConnell and D. Chestnut, J. Chem. Phys. 28, 107

(1958).

McConnell, J. Chem. Phys. 28, 1188 (1958).



51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

95

Colpa and J. Bolton, Mol. Phys. E, 273 (1963).

Bolton, J. Chem. Phys. 12, 309 (1965).

Giacometti, P. Nordio, and M. Pavan, Theoret. Chim.

Acta 1, 404 (1963).

Moss and G. Fraenkel, J. Chem. Phys. £2! 252 (1969).

McConnell and J. Strathdee, Mol. Phys. 2, 129

(1959).

Ghosh and D. Whiffen, J. Chem. Soc., 1869 (1960).

Stone and A. Maki, J. Chem. Phys. 21, 1326 (1962).

Horsfield, J. Morton, and D. Whiffen, Mol. Phys. 1,

425 (1961).

Kispert, Ph. D. Thesis, Michigan State University,

East Lansing, Michigan (1966).

Watson, Ph. D. Thesis, Michigan State University,

East Lansing, Michigan (1970).

Hammermesh, "Group Theory and Its Application to

Physical Problems," Addison-Wesley, Reading, Mass.

(1962). PP. 86-87.

Jackson, "Classical Electrodynamics," John Wiley,

New York (1967), pp. 137, 146, 148.

Wigner, "Group Theory and Its Application to Quantum

Mechanics of Atomic Spectra," Academic Press, New

York (1959). PP. 326-327.

Abragam and B. Bleaney, 92. cit., pp. 646-648.

Wigner, 22. cit., pp. 158-161 (Note that the Sy and

S2 matrices are defined differently).

Greenstadt, "Mathematical Methods for Digital

Computers," (A. Ralston and H. Wilf, Eds.), John

Wiley, New York (1960), Vol. I, p. 84.

Abragam and B. Bleaney, 92, cit., pp. 653-656.

Fermi, Z. Phys. fig, 320 (1930).

Milford, Am. J. Phys. 22, 521 (1960), (Note that

ge is assumed to be exactly 2).



70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

96

Carrington and A. McLachlan, 92, cit., pp. 81—82.

Slichter, 92, cit., pp. 10-12.

M¢ller, "The Theory of Relativity," Oxford Uni-

versity Press, New York (1952), pp. 53-56.

Furry, Am. J. Phys. 22, 517 (1955).

Carrington and A. McLachlan, 92, 929., pp. 29-30.

Carrington and A. McLachlan, 92, 929., pp. 64-66.

Jackson, 92. 929., pp. 148-150.

Slichter, 92, 929., pp. 65-68.

Abragam and B. Bleaney, 92, 922., p. 167.

Slichter, 92, 929., pp. 161-171.

Rose, "Elementary Theory of Angular Momentum," John

Wiley, New York (1957), pp. 85-88.

Abragam and B. Bleaney, 92, cit., p. 166 (Note we

have used I1 and I_ in place of Ix and I in

Equation (3.40c)). y

Swalen and H. Gladney, IBM J., 515 (1964), (Note

that there is a mistake in Equations (10) and (11)

where 0 and 8 should be interchanged).

Abragam and B. Bleaney, 92, cit., p. 135.

. Abragam and B. Bleaney, 92, cit., pp. 167-171.

McClung, Can. J. Phys. 99, 2271 (1968), (Note that

the relationships between our A and 0 and his are

A(our) = MA(his) and ¢(our) = 180°-0(his)).

Lin, Mol. Phys. 29, 247 (1973).

Abragam and B. Bleaney, 92, cit., pp. 157, 171,

181, 182.

Lund and T. Vanngérd, J. Chem. Phys. 92, 2979

(1965).

Taylor, W. Parker, and D. Langenberg, Rev. Mod.

Phys. 41, 375 (1969).



90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

M.

97

Buss and L. Bogart, Rev. Sci. Instr. 21, 204 (1960).

Rose, Analytical Chem. 29, 1680 (1952).

Woolfson, "X-ray Crystallography," Cambridge Uni-

versity Press, Cambridge (1970).

Schonland, Proc. Phys. Soc. (London) 22, 788 (1959).

Rose, 92, cit., pp. 50-51.

Rose, 92, cit., p. 65 (Equation (4.43)).

"International Tables for X—ray Crystallography,"

Kynoch Press, Birmingham, England (1969), Vol. I,

p. 150.

Fischer, Z. Naturforsch. 29, 488 (1965).

Livingston and H. Zeldes, J. Chem. Phys. 92, 1245

(1966).

Wilson, J. Chem. Soc. (B), 528 (1968).

Ohnishi, T. Tanei, and I. Nitta, J. Chem. Phys. 22,

2402 (1962).

Fessenden and R. Schuler, J. Chem. Phys. 22, 773

(1963).

Fessenden and R. Schuler, J. Chem. Phys. 22, 2147

(1963).

Groth, "Chemische Krystallographie," Wilhelm

Engelmann, Leipzig (1917), Vol. IV, p. 559.

Groth, "Chemische Krystallographie," Wilhelm

Engelmann, Leipzig (1917), Vol. IV, p. 560.

Pople and D. Beveridge, "Approximate Molecular

Orbital Theory," McGraw-Hill, New York (1970);

QCPE #142 from Quantum Chemistry Program Exchange,

Department of Chemistry, Indiana University,

Bloomington, Ind. 47401.

Benson and A. Hudson, Mol. Phys. 29, 185 (1971).

Wilson, J. Chem. Soc.(B), 84 (1968).

McLachlan, Mol. Phys. 2, 233 (1960).



98

109. J. Colpa and J. Bolton, Mol. Phys. 9, 273 (1963).

110. J. Bolton, J. Chem. Phys, 92, 309 (1965).

111. H. McConnell and J. Strathdee, Mol. Phys. 2, 129

(1959).



PART I

APPENDIX

COMPUTER LISTING OF SUBROUTINES USED TO

DETERMINE THE 9 AND A PARAMETERS FROM

TENSOR VARIATIONS



0
0
0
0
0
0
0
6
3
0
6
5
0
0
0
O
O
O
O
O
O
O
O
O
O
O
O
G

APPENDIX

COMPUTER LISTING OF SUBROUTINES USED TO

DETERMINE THE 9 AND A PARAMETERS FROM

TENSOR VARIATIONS

SUHRDUIINE MINN

DIMENSION XX(IOI-LPOS(10).SOCOSIIOIoIVECTIIOI

CONNON/GRAD/IGRAD.GRAD.DCOSIII

CDNMON/XREG/XDFDIIIlsrALI/SCALF(II/LOCATE/V.XIII

COMMON/PARAGEN/NDIM.KTN.KOUT.DIST.DTSTMx.VM

CDHMON/MINN/KDERV.NVOTM.NGRAD .

couNON/Tlug/TIMELIM.TREG.TEND.ANOH.IMP.IPP.IVP.IXP

COMMON/TITLT/IIITLE(S).NDAIE(3)

THIS SUPROUTINF IS A GENERAL ROUTINE FOR LOCATING THE MINIMUM OF A

FUNCTION OF ANY NUMBER OF PARAMETERS. ITS BASIC METHOD IS TO USE THE

SURROUTINE PARAGEN wHICH HILL SEARCH FOR A MINIMUM IN ANY GIVEN

DIRECTION BY FITTING THE CURVE TO A PARABDLA. THE MAIN PROGRAM

CONSISTS or METHODS or DETERMINING IN wHIcH DIRECTION PARAGEN SHOULD

SEARCH. :

THIS PROGRAM REQUIRES: RARAGEN.VALUE.TIh5.NnRMGRD.CALNDER.

LAREIIFD COMMONS USED: IGRAD/./XREG/./LOCATE/.ISCALE/./RARAGEN/./HTNN/

o/TIMC/./TITLE/.

PUT THE ROUTINE-DETERMINING INSTRUCTIONS IN CENTRAL EVALUATION CENTER.

DIST IS THE LENGTH OF A NORMAL STEP.

KDERV = (0.1I WHFN THF SUNRDUTINE VALUE (DOES NOT.DDESI CALCULATE

THF GRADIENT COMPONINTS.

LPOS(HVDIM) TELLS wHICH OF THE DIMENSION NUMBERS 1.20....oNDIM ARE TO

BE VARIED.

NDIM IS THE NUMnER OF PARAMETERS IN THE SUBROUTINE VALUE.

NGRAD IS THE NUHRER OF TIMES THF GRADIENT METHOD IS USED BEFORE THE

RRDGRAu DSES THF UNTFORM-DASIc—DIRECTIDNS ROUTINE.

NVDIH IS THE NUMRER OF THE NDIH PARAMETERS HHICH ARE TO RE VARIED.

SCALFINUIHI APF THF SCALING FACTORS TO BE USED IN THE FDUATION TN

SURPDUTIHE VALUE: XBIII=XBEGIIIosCALEIII-XAIIIo UHERE x4 IS BROUGHT

IN MY MINN AND VALUE USES THE VARIABLES x8.

TIHELIH IS THE NUMBER OF CENTRAL-MEMORY SECONDS FOR THE JOB.

TBEG.TENO ARE THE NUHRERS OF SECONDS OF HIGH-OUTPUT FROM THE

BEGINNING DR FND or THE PROGRAM.

XREGINDIMI ARE THE BEGINNING VALUES OF THE NDIM COMPONENTS OF x.

STOP NUVRFRS USED: IO].102o101o104.105.106.I07.

DIMENSIONIZE XXoLPDSoSDCOSoIVFCTo AS (NZ) HHERE NZ.GE.NDIM.

1000 FDRNATIIHI.27x.8AIo.TI?A.T?.Ix.IA1.o 10°.I29//)

1001 FORMAT(T50oR.... HIUIMIZATION OF A FUNCTION ....°.//

A TAP.°NDIM.THE NUHRrR OF VARIABLES:o.IIA.//

8 TIR.-NVDIM.THE NUMRER OF VARIARLES HHICH ARE TO RE VARIED:O

C IIAIII. 132.9LPnSoTHE VARIAOIE NUMRERS TO BE VARIFO39oIOIb)

1002 FORHAI( /. T5.¢KDERV=I0.II.(NO.YESI.DOFS SUHROUTINE VALUE CALCULAT

AE ThE GRADIENT:o.IAA // TIO.oNGRAD.NUMnER OF TIMES THAT T

BHE GRADIENT ROUTINE HILL HE USED:-.IIA.///

C TAA.°XREG.IHE BEGINNING VALUES OF THE PARAMETERS ARE:*//(T?3o6615

0090/),

1003 FORMATII. T33.°SCAIE.THE SCALING FACTOR IN THE FOUATION-xntlIaanG

I(IIOAAIIIRcIH’oRSCALEII) ARE:R. II. (T21o6615.°./))

1004 FORMATI I. T43o°DIST.THF DISTANCE OF A NORMAL STEP IS:OolGIS.9o/

AI. T40.-DISTMT.THE MAXIMUM DISTANCF OF A SILP IS:¢.IGIS.9.//

D T19.¢TIMFLIM.THE TIMF LIMIT FOR THE Rnnopnw 1S29o1615.90//

c T6.oTBEG.THF NUWRFQ oF SECONDS 0F HIGH-OUTPUT FROM BEGINNING OF

DTHE PROGRAM IS:--IGIS.9 II. TBoOTENO.THE NUMHER 0F SECONDS 0

EF HIGH-OUTPUT FRDH THF END OF THE PROGRAM IS:°.IGIS.9.//.

'FIx.2745H . Io/I

99



‘100

IIRS FORMAT(lozxo'IIHS-ANOH.VH =‘.1015.9oT115o1015.9)

INOEX=0 S I"ED=0 S IYN=4H NO

IFIKDERV.EQ.I) ITN=AH YES

OISIMX=?0.0°DISI

CAll (AINDER(NOATE)

... INITIAIIZF LPOS

ITT=0

DO 10 I=I.NDIM

IFISCALE(11.LE.0.0) GO TO 10

ITT=ITT¢1 s LPOSIITTI=I

10 CONTINuE

PRILT 1000.1TITLE.NDATE

PRINT 1001.NDIM.NVOIM.IIPDS(L)oL=IoNVDIHI

RRIAI 1002~1YN.NGRAO.(XBEGILIoL=1oNOIM1

PRINT 1003.(SCALE1L)oL=1-NDIM)

PRINT 1OOA.DIST.DISTMI.TIMFLIMoTREGoTEND

C ..... CHECK FOR 840 PARAMETERS ....

IF(NUIM.LT.1.0R.NDIM.GT.10) STOP 101

IFINVDIM.LT.I.DR.HVOIM.GT.10.0R.NVOIM.NE.ITT) STOP 102

IFIOIST.LT.I.OF-T.OR.OIST.GT.IOO.0) STOP 103

lF(NhRAD.LI.01 STOP 104

IF(TIHELIH.LT.0.0.DR.TIMELIM.GT.SO0.0) STOP 105

IF(THFG.LT.0.0.0R.TDEG.GT.500.0) STOP 106

IF(TENo.LT.0.0.DR.TEND.GT.500.OI STOP 107

CALL TMINIT

c ... INITIALIZE THE x VECTOR ...

00 2 1:10NDIH

2 XIII=O.D

[GRADro

10001 CAIL VAIUEIX.VI

GO TO 300

C o..... GRADIENT METHOD .....

50 CONTINUE

60001 CAIL GRADNT(LPOS1

8000! CALL PARAGFN(XX)

IRED=IREOol ‘

IFIIKDUT.ANO.IBI.NE.IBI IREO=0

IFIIRFD.LI.2) GO IO 5?

IRED=0 S DIST=DIST/2.0 S OISTMX=20.OODIST

52 DD 54 1=1.NDIM

54 X(II=XX(I)

V=VN

GO TO 300

.... UNIFORM BASIC-DIRECTIONS ROUTINE ...

160 KIN=O

DO 19S NONFS=1.NVDIM

RFN=1.0/SORT(FLOAT(NONES1I

DO 162 IZ=IoNONES

162 IVFCTII7I=NONESol-IZ

GO TO 172

164 IOHJ=I $ IFND=NVDIM

166 IFIIVFCT(108J1.LT.IEND) GO TO 168

IF(IOHJ.GE.NONES) GO TO 195

IORJ=IOBIOI % IFND=IEMn-I I GO TO 1&6

168 IVECT1IORJ1=IVECTIIOHJ101

IFIIOBJ.EO.1) GO TO 172

IORJIzIONJ-l % ISTAND=IVECTIIORJIoIOBJ

DO 170 JN=1.1OHJ1

170 IVECIIJHI=ISTAND-JN

172 Do 171 IN=I.NDIM

173 OCOS(IN)=0.0

17$ NONFSI=NONFS-1 T I7=IVECTINONESI S DCDSILROSIIZII=REN

JINO=SHIET(18.NONFS1)

DO 190 I=I.JINO

II=I-I S IFINONESI.E0.0I GO TO R0002

Do 180 IK=IoNONESI

AI=REN S IFIIII.A.IDI.EQ.181 AL=-RFM

IZ=IVFCT(IK) S OCOSILROS(17))=AL

180 II=II/2

80002 CALL PARAGEN(XX)

C



C

0
3
1
3
5
0
0
0
0
0
0

10].

pRINT IIRS.ANOH.VM

DO 186 JY=1oNDIM

185 XIJY1=XXIJYT

V=VM 5 CALL TIME

190 CONTINUE

GO TO 164

195 CONTINUF

00.... CFNTPAL EVALUATION CEntfiQ O...

300 INDEX=INOEX°I

IF11NOEX-NGRAO) 80.50.160

FNO

qnqnouTlNE TIME

COMHON/TIME/TIuEL10.TREG.TEND.ANOH.TMP.IPP.IVP.IXP

GO 10 (10020910) IARC

10 ANOH=§ECOMDIAI % OIE1=ANOH-REG

IF(DIF1.LI.THEG) RETURN

IAHC=? $ IMP=0 ‘ IPD=-l S 1VP=0 S RETURN

20 ANON=RECONO1A1 $ OIF2=TIMELIM-ANOH

IFtOIF2.GT.TENO) RETURN

IARC=1 $ IMP=1 $ IPP=I $ IVP=1 s RETURN

ENTRY TMINIT

IARC=1 T 1MP=1 s 199:1 s TVP=1 s REG=SECON01A1

30 PFTURM

Fun

SUBROUTINE GRAONT(IPO§)

COMMON/1OCATE/V.X(II/GRAD/IGRAO.GRAOoDCOS(I)

COMMON/PAPAGEN/NOIMoKTNoKOUToOI§T¢OISTMXoVM

COMMON/MINNIKOEPV.NVDIMoNGRAD

OIMFNQION 1PO§(101.XX(101oSOCOSIIOT

... THIS RURDOUTINE CA1CU1ATE§ THE NORMALIZEO GRADIENT OF A FUNCTION 0

OTHER HOROS. THE UNIT VECTOR POINTING IN THE DIRECTION OF STEEPEST ASC

DEOUIPE§ IARFLLED COMMON: /LnCATF/0IGQAn/o/"IHN/o/PARAGFN/.

DCOS IR A VECTOR CONTAINING THE PESHLTANT COMPONENTS OF THE NORMALI7EO

GRADIENT ORoIN OTHFR wORORo THE DIRECTION COSINCS OF THE GRADIENT.

GRAO Tc THF MAGNITHDF OF THE GQADIFMT

N01" IS THL NuvHER nr nIMFNRIONG IN THE SPACE OF THE FUNCTION

X IG A VFCIOQ CONTAINING THE INITIAL COOPnINAIFfi HF THE FUNCTION

V IS THE VALUE OF THE EUNCTIOH AT THE INITIflI COOROINATFQ

..... OIMENQIOMIZE: LPQR(N719XX(N7).GDCOSIN7) WHERE N7.GE.NDIH

IE(N01H.LE.0.0P.NVOIM.LE.01 GO TO 0]

IFIKDERV.EO.11 GO TO 81

IGRAO=0 $ GPAD=O.0 % OERSTEP=0.01°OIST

On 10 13190101”

DCOS(II=0.0

10 XK(I)=X(I)

On 20 I=I.NVDIM

II=LPOS(I)

XXIIII=XIIIIODERSTFD

70001 COLL VALUE(XX0VVI

Xx11I1=X(III

01 = (VV-VIIDERSTEP

DCOS(III=O7

20 GPAC=GRAOoDZ'D7

GpnnzfiopTIGPAD)

IEIGQAH.FO.0.0) GO TO 91

OO 30 1:19'101‘4

30 DCOSIII=DCOS(I)/GQAD

QFTURN

51 IG°00=I

70002 CAIL VAIHFIX.V)

00 S2 I=1~Un1W

SDCOSIII=DCOSIII

52 DCOSIII=0.0

DO SO I=1~NVDIM
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55 DCOSILPOSIIIIESDCOS'II

...... DENHQHAIIZE THE “COS VECIOR ...

IGWQD=0 S 7730.0

00 56 IaloNDIW

S6 Zz=ZZOOCOS(I)°‘2

ZZ=SQQIIZZI

IFIZZ.CQ.0.0) GO TO 91

DO 53 I=IQNDIM

58 DCOSIII=DCOSIIIIZZ

RETURN

91 PQINI I91ONDIMONVDIHOKOERVO{Gu&006;ADO7ZOnIStCDERSTEpOI.‘IOVOVVOO7

l. (XILI 0L3] 0511,11“) o (17PO<(I-I.L=1.NVDI'H

IQI FQRHAT(//o. CQROQ I” GRADNT-NOIM;NVOIM.KDERV9IGRADsGRADo72 3 .0

A “1502X026I5.90//o TI69°DISTODERSTEDOIOIIQVOVVODZ 3 '9 7615.992Xo

8219.?X03015.90//0T160.(XIL)oL=loNDIH10(LPOSILIQL310NVDIM) = .9

C (15h04615o99/II

QIOP 246

FND

SUBROUTINE PARAGENIUUI

COMMON/GRAO/IGRAO.GRA0.0COS(l1/LOCATE/V.XII)

COMMON/PARAGFN/NOIM.KIN.KOUT.DIST.DISTMX9VM

COMMON/TIME/IIMELIMoTREG.TEND.AN0w.IMP.IRP.IVP.IXP

DIMENSION STEPIIOI.XX(10).YY(IOIoZZ(101oUUIIOI

H.G.HA11FR - CHEM OER. MICH STATE H: 0 JUL 1972 - 17$ CARDS

REOUIRFS IARELLFO COMMON: IT[NE/c[LOCATE/oIGRAD/vlpARAGEN/o

PEOUIPES SURROUTINF VAIUE.

INPUT: x.V.OCOS.OIST.NOIM.DISTMX.KIN. OUTPUT: KOUT.UU.VM

PARAGFN IS TO BE USED IN A PROGRAM THAT SEARCHES FOR THE MINIMUM OF A

FUNCTION OF NDIM VAPIARLES. THF FUNCTION IISFLF IS HRITTEN AS THE

SURROHTINE VALUFIXA.ANSI. WHERE XA(NOIMI ARE THE VARIARLES AND ANS IS

THE FUNCTIONAL VALUE. PARAGFN IS GIVEN A STARTING SET OF PARAMETERS IN

THE NOIM DIMENSIONAL SPACE ANO A NORMALIZEO VECTOR wHICH MAY POINT

ALONG THE GRADIENT. PADAGFN BEGINS G' TAKING A STEP IN THE OPPOSITE

DIRECTION OF THE VLCTOP. IT THEN TAKES A 7ND STFP AND. IDEALLY. FITS

THF 3 POINTS TO A PARAROLA. IT STEPS AT THE UOTTOM OF THE PARAHOLA AND

PETUDMS THE VALUE OF THE FUNCTION. DARAGEN IS SET UP TO TAKE CARE OF

ATMOST ANY CONCEIVIRLF SHAPE OF CURVE ALONG HHICM IT MALKS. IT VILL

ONLY QFIURN A NEV POSITION IN THE NDIM DIMENSIONAL SPACE AND A NEW

FUNCTIONAI VALUE IF IT IS LESS THAN THE FUNCTIONAL VALUF GIVEN TO IT.

IF IT FINOS ITSFLF ON A ”FRFFCILY STRAIGHT LINE. II HILL PRINT EVERY-

THING AND STOP.

XINDIMI ARE THE VAIUFS GIVING THE INITIAI POSITION IN THE NDIH

DIMENSIONAL SPACE.

V IS THE INITIAL VALUE OF THE FUNCTION AT THE INITIAL POSITION.

DCOSINDIMI ARE THE VALUES OF THE NORMALI7ED VECTOR ALONG HHICH THE

SUOPOUTINE PARACEN NILI SEARCH FOR A MINIMUM.

DIST IS THE LENGTH OF THr STEP THAT PARAGEN SHOULD TAKE.

NOIM IS THE NUMRFR OF VARIARIES THAT DEFINE THE FUNCTION.

DISTMx IS THE MAXIMUM REASONABLE DISTANCE TO BE TRAVELLEO IN I STEP.

KKIN = (1.0) IF THE VECTOR DCOSINDINT ‘DOCSQDOES NOT) POINT ALONG THE

POSITIVE GRADIENT OF THE FUNCTION.

KDUT IS A FLAG INTEGER WHICH IS 0R UNLESG PARAGEN USES SPECIAL

ROUTINFS. RIT POSITIONS-1.7.3.4.S.6 APE SET EQUAL TO I IF PARAGEN-

(11.TURNS AROUNO.I21.FAILS AT FINAL CHECK-OR GOES TO THE (31.NIDOLE

thI.DOUBLE-VALLEY.IS).HILL-WOlKo OP (6).CUT-OEF ROUTINES.

UUINOIMI REPRESENTS THE FINAL MINIMUM POSITION ALONG THE VECTOR DCOS.

VM IS IMF FINAL VALUE OF THE FUNCTION AT POSITION UU.

PARAGFN USES ONLY THE VARARLF IPP IN THE LANELLED COMMON ITIMF/.

IPP=(0.II NHFN (NOTHING.FVEDTHING IS TO HF PPINTFO. IF IPP=ANOTHER

NUMBER. THEN ONLY FORMATS 2041.2110.?120.2502.?Aoo ARE PRINTED.

DIMENSIONIZE: STEP.xx.YY.77.UU AS (NZ) HHFRE N2 19 GREATER THAN OR

EQUAL TO THE LARGEST VALUE OF NDIM TO RF USED.

7001 rnuPAII/.IIo.o...,, ENTEOIHG OAPAOFN: DIST = 0.1G16.9./.(T3A.ODCOS

l = °96hlb.Qo/)I

P010 FUDNATI" PAW/\GFH“VIQ‘IP'Q‘XOYY -'- 0o2GI‘3.9./.(T'To‘BGIGJTo/H

?0‘00 an”AI(/01200.ooo NO LOWE-p VALUE FOUND! IIQYQVIOVZOVJQVM = ..llz.

12X04616.9o/)
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20A] FORMAT(/.T10.OSSS..... AFTER A TRIFS ANO USING A STEP SI7F 0F 0.

11616.0. 0. NO LONE” VbIUES HER? TnHND on... LfiflvaG pAQAGEN uncoo‘

P“'o/I

20h2 an“AI(/0I309..oo LEAVING PAPAGEN: V1.v?.v3.VM = 0.6616.o./)

7100 FORMATII-O MIDDLE.PARAGFN?IOO-IOIV-DSTT.VIoVEoXXoYYoSTEP = ’oISo

M2x.3615.°./.(TIA.SOIS.9./11 '

2110 FORMAT(//.T28o°... POHOLE VALLEY-PARAGENZI10-V1.V2.V3.XX.YY.ZZ = 0

001515.90/0(TQOQG'qoqc/II

ZIPO FORMAT(/v70x.'........ FAILURE AT HIDOIE ROUTINE ......“o/)

2200 FORMATIIo HILLWALV—PAOAGFNP200-ISIFpovl.V2.V3cxxoYYo77 = 'oISoPXo

HWGIG.“o/o(Tl°95615.9o/)1

280? FORPATII'...¢... COIOFF..OARAOF‘IP‘SOfl-x«511M = MIGHTJH

P000 FnuvATI //.T2§o¢...DARAGENPOOO-DIVIDER IS ZERO. SO PARAGEN STOPS H

PEPE: v1.v2.v3.VM.OSTT.xx.YY.ZZ.UU-DCOS = o./I(IRoSGIS.9o/1)

ISTFP:0 $ ITRY=O S KOUT=OB

IFIIPP.EQ.IT PQINT ?OOl-DIGT.(DCOSIL).L=19NDIMI

DSTT=DIST

2 VI=V

DO 3 I=IoNOIM

1 xx(11=X(II

5 Do 10 1:1.NOIM

STEPIII=DSTT°DCDSII)

10 YY(II=XX(II-STEP(II

70001 CALL VALUEIYY.V71

IF(v2.LT.VI) 16.115

11S IFIKIN.EO.11 GO TO 10h

C.. TURN-AROUNn..

12 DO 13 1:1.NDIM

VT=XX(I) $ XXII1=YYIII s STEPIII=-STEPIIT

IT YYIII=VT

VT=V1 $ v1=v2 S V2=VT s OSTT=~OSTT s KOUT=KOUT.OR.18

16 Do 30 I=1.NDIM

10 ZZIII=YY(I)-STEP(1)

70002 CALL VALUF(7Z.V3)

DIVIDFR = Vl-V2-V20V3

IF(OIVIOERI 200.600.)?

37 DELTA = 0.5"DSTTR(3.06V1-¢.0°V20V1)IDIVIDER

IFIAHSIOFLTA).GT.OISTMX1 GO TO 800

38 Do 40 I=I.NDIM

#0 UU(I):XX(I1-DFLTAPDCOS(II

TOOOT CALL VALUEIUU.VMI

c.0000 FINAL CHECKOQ

VMIN=AMINIIV2.VR.VMI

IFIVMIN.LT.V1 GO TO A?

TTRYzIIRYoI 3 KOUTzKOUT.OR.ZR

I‘Ilppofiool) PRINT '201009ITRY9V10V29V39V’4

IFIITRY.OI.AI GO TO 41

OSTT = -O.2°DSTT

GO To 2

4! IFIIPP.NE.01 PRINT 2041.0STT

6? [FIIPPoEQ.I1 ppINT 204?.V19V29V30VM

IF(VMIN.EQ.VM1 RETURN

IEtVMIN.EQ.V21 GO TO 55

DO ‘30 131.5“)1”.

SO UU(I)=ZZ(I)

VM=V3 s RFTURN

SS DO #0 I=I.NOIM

60 UUIII=YY(II

VH=V2 S RETURN

C so. MIDDLE "HUIINE .00

100 IDIv=n S KOUT=KOUT.OR.AR

IrIIPP.Fo,II PRINT ?IOOoIDIV.nsTT.v1.V?.(lX(L1-L=IoNDIMIo(YY(L1.L=

II.NOIM1.(SIEPIL).L=1.NOIMI

10$ VT=V2 S OSTT=DSTT/2.0 s IDIV=IDIV~I

DO 110 I=1.NDIM

STEP(II=STEPIII/2.o $ ZZII)=YY(I1

110 YY(I)=YX(I)-STFP(II

70004 CALL vALUEIYY.V21

IFIV2.LT.VRI GO TO IPO

C ....... DOUBLE-VALLEY MARNING .....



120

2104

xnnlzxoUT.OP.10H

IFIIPP.NL.01 PRINT 2110-V19V2ovIoIXXILI.LzloNDIM).(YYILIoLtloNDIMI

10(77III0L210NDIHI

IFIV?.IT.VII GO TO 17

IEIIDIV.LT.3I GO TO 103

IFIIP“.NE.0) PRINT 2190

GO TO I?

C 0.00.. H'LL‘HALK QnUT1NEoo

200

20%

210

220

C 00.

500

$01

50?

503

504

$06

$08

509

S?0

S?5

530

70008

533

540

Sh?

C a...

600

ISTFP=ISTFH°1

IFIIPP.EQ.II ppxnv 2200.1SIEp.v1.v2.v1.(xxIL1.L:1.NOIu).(YY1L1.L=I

1.NDIM10(ZZ(lIoL=I-NDIMI

IFIMOOIISIFP.31.EQ.0) GO TO 210

DO 20S I=I-NOIM

XXIII=YY¢II

YY(I)=ZZ(11

V1=V2 T V2=V3 s KOUT=KOUT.OR.20O S 60 T0 16

DO 220 I=I.NOIM

XXIII=ZZ(II _

VI=V3 I USTT=DSTToOSTT S GO TO S

CUTOFF ROUTINE ...

FOUT=KOUT.OR.60R

VNIN=AMINIIV1oV?vV3)

IFIVMIN.EO.V1) GO TO 902

IFIVMIN.EO.VII GO TO 504

DO 501 I=IQNDIM

xx111=YY1I1

GO TO Soa

Do 501 I=I.NOIM

xx(I)=ZZ(11

160:] s XNUM=ABSIOFLTAIDISTMXI s V1=V3

IFIIPR.NF.01 PRINT 2502.?NUM

IFIXNUM.GT.3.01 GO TO 506

DST=OFLTA/?.0 S NTIME=P A 60 TO 520

IFIXNUM.GT.91 GO TO 908

DST=DFLTA/3.0 S NTIME=3 5 GO TO 520

DST=SIGN(DISTMX-DFLTA1 S NTIME=2 S IGO=2 S 60 T0 520

NTINE = IFIXISORTIXNUM-2.01)

DST=DFLTOIIFLOAT(NTIMEII S IGO=I S GO TO S20

DO 52$ I=IQNDIM

STFP(II=OSTPDCOS(II

DO 940 J=IoNTIMF

00 $30 I=I~NDTM

YYII):XX(II-STEP(I1

CAIL vAlHFlYYoVPI

IFIV2.GT.V1) GO TO 94?

DO 533 IA=IoNDIM

XXIIA1=YY(IA)

V1=V2

CONTINUE

GO TO (S42.50°) IGO

DSTT=SIGN1DISToDSTTI c 60 T0 5

IF DIVIOFP IS 7FPO. EVERYTHING IS PRINTED AND RAPAGEN STOPS.

PRIAT 2600oV1oV2oVT~VMoDSTTo(XKIL).L=I.NDIMIoIYYILI~L=IoNDIM1oI77

1(LI.L=19NDIM10(UU(LI0L=IQNDIVIQ(DCDSILIoL=loNPIM)

STOP 600

END

SHRPOHTINE VALHEIXAQANSI

COMMON/VALuE/QA.OO.YMCNT(TI.OMENT111.611)

COMVUN/XUEG/XRFGIRI/§CALE/SCALF(6)

COMMON/GPAD/IGPAO.GRAD.OCOS(51

COMVON/TIHFIIIMFLIHOTWFGQTENOQANOWOINpoIpp-IVDoIXP

DIMFNQIO” DEANGIJT.OFCVAL131-0x121oR13.11.xA161.x9(61.DDFANG(6.31o

DDDFGVOLI6-3IQDGXIZIoDR(1~119UG(3)oDXHIfiIoN(310$AVE(2~3I

DATA R0/S7.295779SI3I/

C REQUIQFS LAHILLED CDVNON: IVALUE/o/XHFG/qISCALH/o/GRhD/o/TIMEI.

C ALL VALUES IN THE LARFLLFD COMMONS MUST BE PREVIOUSLY INITIALIZED

C EXCEPT FOR GRAD AND DCOSIGI IN /GRAD/.
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NO OTHER guanouTlNfig Rg REOOIRED.

INPUT: xAIOI. OUIDUI: AmS.

STOP NUMDFRS USED: 121A.

THIS SOOPOUTINF 15 TO OF USED WITH A A PARAMETER MINIHI7AIION PPOGPAN

TO DETERMINE THE PRINCIPLE G-VAIUFS AND Iu-IR O'PECTION COSINES FROM 1

ISOFOFOUCNCY PLOTS. IT DETERMINFS HON HILL wa THEORETICAI CURVES

PRODUCED FROM THC InPUT PAPAMrIFRS FIT THr F‘PEPIMFNIAL ISOFRFOUENCY

PLOTS. [I ALSO DETERMINFS TMI GPADIFNT Or IUAT VALUE. THF DIRECTION

COSINFS OF THE GPAOIFNT ARE IN DCOSIG) AND GRAD CONTAINS THE MAGNITUOF

OF IMF (RADIFNT.

IGPAH:(0.]) WIIL IUI OOH'IFNT HF LAICUIAIFD: (NOoYFSI.

IRIOI VALUES ARE ODITFN FROM SCALING AND PFPOSITIONINO THE INPUT

XAIO) VALUES. A.n.C=xR(1o?.1) ARE 1 FHIFP ANGLES THAT ARE USED TO

PRODUCE A ROTATION MATRIX 011.1).

0131 IS A VECTOR CONTAININO THE 3 PRINCIPIF G«VALUES.

xnta.u.61 ARE THE 3 VARIAPIF G-VALUE PARAMETERS. THE 3 ELEMENTS 0E

6(1) ARE EOUATEO TO XRIA.S.6).

RI3.1) Iq THE HHITADY MATRIX THAT IS PRODUCED FROM A.R.C.

ANS IS THE PISHLTANI [POOP ASSOCIATED WITH THE INPUT PARAMETERS.

QA IS THE STANDARD UFVIATION IN THE ANGLE NHFRE G-MAXIMUM OCCURS.

0G IS THE STANDARD DEVIATION OF THE G-VALUE RANGE FROM G-MAXIMUM TO

G-MINIMUM. ‘

XMENT IS A VECTOR CONTAINING THE EXPERIMENTAL G-MAX ANGLES FOR THE 3

PLANES OF ROTATION.

GMFNI IS A VECTOR CONTAINING THE EXPERIMENTAL G-VALUE RANGES FOR THE

1 PIANFS OF ROTATION.

90R rnouATIA VALUE-RRA:OPAO.DCOS = 6.7GIS.°1

990 FORMAI(0 vAIUF-QRO.A.R.C.C.DFANO.DFOVA1.FRANG.ERGVAI.ANS =0.//.

AZAOI‘IQISogosz¢//03’QE~IGIS.')Q?XI9//o70*03II-1150902XII

54321 FORNAIIP EPHOP IN VALUF:°o/o(T109§GIS.90/II

C

00 3 1:195

3 XBIII=AREGIII°XAIII’§CAIFIII

AZXUIII $ R=XHIZI $ C=XBI31 $ GIII=XQIQI E G(2)=XRI§I S GI3I=X8I6I

CA=COSIAI $ SA=§INIAI $ CB=COSIBI $SB=SINIRI SCC=COSIC> $SC=SINICI

QIIQII 3 CA“CH°CC-§A’§C

"(103) 3 SA°CR°CCOCA°§C

”(1031 = “QR“CC

p(?,]) =-CA°Cq”9C-§A”FC

”(202) =‘SA°C”°SCOCA”CC

9(7931 = §R°§C

9(3011 = CA“SR

9‘1971 = gAPSB

”(393) 3 CB

0.... UNITARY CHECK ...

[IINOR‘ 0.0

DO 10 I=lo3 S 00 10 J=Io1

T = RIIQIIPPIJol)OQIIo2I°RIJ92)ORIIQ3I°R(JQ3I

‘F([OFOOJ, T=T-I.0

10 FRPCR=FRROR°ARSIII

IFIERRDR.GT.I.0F-7) GO TO 12365

N(1)=I G NI21=2 S NI31=3

DO 22? Ip2101

Nl=h(l) I N(1)=N(21 $ N(2)=N(3I$ NI3I=N7 $ 7130.0 S F2=0.0

DO 12 J=103

FI=F1°GINIJII““?”°IN(JIQN(II)PRINIJIoNIZII

I? F2=F20GINIJII'”2°(°(N(JIoNIIII°’2-R(N(J)9N(2)I'P?I

F2=F2/?.O

X = (AIAN(FIIFZIIIZ.O S CX=COSIXI S SX=SINIXI

DO 20 11:19?

GXIIII=0.0

00 ‘8 .13101

QAVEIIIOJI = GINIJII°I9INIIIOHIII1°CXORINIJIQNIZII”§XI

18 OKIIII=OXIIIIASAVF(II.J1°°2

GXIIII=SDRT(GX(IIII $ 22=CX S cx=-SX 5 SX=ZZ

20 CONTINUE

CX=-C¥ ‘ SX=~SX,

X” = (“Rn S IRFV=0

IFIGXIII.GF.GXIPII GO IO 2]

ID = XD-SIGNIQD.0.XDI S IREV=1

77 3 GXII) S GXIII = GXIZI S GXIZI = Z?
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21 DEANGIIPI=ARSI!0I-1MENTIIPI S DFGVALIIPI=GXIII-GXIZI-OMENT(IPI

IFIIGOAD.FQ.OI DO TO 222

C ... CAICULATE GRADIENT

00 )0 I=lo6

30 DXRIII=0.0

DO 100 IJK=196

DxO(IIKI=SCALF(IJKI A DAerRII) S DR=UXRI?I S OC=DXRI3I

DG(II=DYBIRI S DGI2I=0XBISI I DGIBIwDXRIO)

DCA=~£A°DA i HSA=CA°UA T DCR=-SD”DB S USH=CB°DB T DCC:-SC°DC

DQF=CCROC

DRII.II=UCA’CR°CC0CA°OCP°FCOCAOCRODCC-DSA05C-SA005C

anI.2)=D3AoCRocc4gnoncnvCCoSAocnvDrCoOCAoSCoCAoDSC

no(|.3.=—DSR»(c-Sguocc

un(2.|I=~DcAocHoSc-CAoncuesc-cAocueDSC-OSARCC~SA¢OCC

DRI2.?)=~DSA°CR°SC-SADDCROSC-SAGCRGDSC.DCAGCCOCAGDCC

DRIPo1I=nSH“SF°SR”DSC

DPI‘~II=DCA0SRoCAoOSO

09(3q2I=0§A°SROSARDSH

DRI3.1)=DCR

DFI=0.0 S DF2=0.0

DO 40 J=I.3

GI=GINIJII S DGJ=DGINIJII S RJI=RINIJ).N(I)I S DRJI=DRIN¢JIoNIIII

PJ2=RINIJI.N(2II S 0RJ2=DRIN(J).N(?II

CVI=DFIRGJ¢(7.O°DGI°PJ109J2°GJ°IDQIl'PJZ‘RJI“DRJ2II ’

40 DEP=DE2°OJ*(?.0°UGJ°(RJIERZ-DJ2“°?IoGJR(2.0°RJI°DPJI-?.O°RJ2°DRJ?I

D) f DI2=DF2/2.0

Dx=((COSI2.0°x)Iaa2/?.0)«((DEI/Ezi-(FI/EZRRZIGDFZI

DCX=~SXRDX $ DSX=CX°DX

n") 60 11:10?

DY=0.D

Do SO J=l.3

GJ=G(N(JII S OGJ=DDINIJII S RJI=RINIJI.N(I)I S DRJ1=DR(N(J)-N(II)

RJ2=RINIJI.N(2)I $ DPJ?=DR(N(J).N(?II

0Y=DY°(DGJ’IRJI“CX00JP°SXIOGJ°(DPJI°CXORJI°DCXODRJZ’SXORJ2°OSXII.

G?.0°SAVF(IIoJ)

So CONTINuf

DGXIIII=DY/(2.0°GXIIII)

77=0Cx S DCx=-DSX S DSX=ZZ S ZZ=CX S cx=-sx S SX=ZZ

60 CONTINUE

Cx=-Cr S Sx=—SX .

ODFANG(IJK.IPI=OX°DD F‘

IE(xn.LT.0.0) DDFANGIIJK.IPI=-ODFANGIIJKoIP)

DOFGVAL(IJK.I°I=DG¥(lI-DGXI?I

IFIIREV.EO.II DDFGVAL(IJK~IPI=-DDFGVAL(IJqup)

DxRIIJKI=0.0

IOO CONTINUE

??? CONTINUE

(DANG:(DVAHGIII°°?¢DFAHG(?I°“?¢DFANG(1)"?)/QA’.2

ERGVAI=(DFGVALI1)9020DFGVAL(2)““20DFGVAL(3)“"PI/OG'“?

AH§=IQANGOFPGVAL 2

IEIIVP.FO.I) PRINT ROQ.A.B.C.O.DEANO.DEGVALoERANG-EPGVALoANS 5

IFIIGUAD.EO.OI PFTUPN

GPAC=0.0

Do TOO Irl.6

UEOANA = P.0’I0FAMGIII°0DFANGII~1)ODFAMG(2)”DDFANG(19?)O

EDEANOITIGDDFANGII.1II/OA°°?

DEROVAL = 7.0“(0F6VALI1)°ODFGVAI(Io))ODFGVAL(?)°DDFGVAL(IOZ)’

FDFGVAI(3)°DDFGVALII01IIIQG“°?

DCOSII)=DCR5NG‘DEPGVDL

300 GRAnznOADoDCOSIIIaap

ORAD=SQ0TIDPADI

DO JID I=I.6

310 DCOSIII=DFOSIIIIGDAD

IF(IVP.£Q.I) PRINT 098.60A0.0COS

RETURN

12345 pulNI 510.52]QAOHQCOGQCAOCROCCOSAQSR.SC.RQERROR

STOP I?14

FND

 



PART II

A GENERALIZATION OF METHODS FOR

DETERMINING g TENSORS

 



INTRODUCTION

Several authors have derived procedures for

determining the principal values, and the directions of the

principal axes, of the g tensor from magnetic resonance

data.1-4 These involve measurements of g=hv/BH at orien-

tations provided by rotating the crystal about each of

three axes. Any symmetric second-rank tensor may be

evaluated by the same procedures, and examples include the

zero-field splitting and hyperfine interaction tensors E

and K, respectively.5 The necessary equations have been

reported only for the cases of rotation about three

orthogonal axes]‘_5 and three monoclinic axes3 and contain

an overdetermination of some of the tensor elements. It

was suggested that additional information in the form of

rotational misalignments can also be obtained from the data

and a technique for so doing in the orthorhombic case was

presented.4

In this article a general formalism is developed

which converts the inherent over-specification of tensor

elements into a determination of the three rotational mis—

alignments. It is applied to the orthorhombic and
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monoclinic cases, the potentially useful case of three

coplanar axes, and the general case of rotation about any

three axes. The latter two cases have not been discussed

previously. Since it is frequently possible to mount a

crystal most precisely by choosing general or coplanar

rotation axes, these latter methods should prove useful in

experimental investigations. Also, the determination of

the three azimuthal misalignments in each case will serve

to make fullest use of data and to improve the accuracy of

the derived tensors.



DATA FOR g-TENSOR DETERMINATION

Experimental
 

Experimentally the crystal is mounted so it may be

rotated about a specific axis and ESR spectra are recorded

for various orientations of the magnetic field in the plane

perpendicular to that axis. The 9 values are plotted as a

function of rotation angle 6, which is taken as positive

when the crystal is rotated clockwise (or magnetic field

rotated counterclockwise) as viewed from above. Three such

plots for the three chosen rotation axes constitute the

experimental data.

Parameterization of the Data

Depending on the quality of the plots, three levels

of analysis may be employed. The first method (called the

aBY method below) utilizes either all the data in a curve-

fitting procedure or only the g extrema with the corre-

sponding angles 6. In the second method (ax method), only

the g extrema are used.

As will be shown below (Equation (28)), the g

values for rotation about any axis must obey the equation

(in the notation of reference 3)
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92 = a + BcosZO + ysin26. (l)

The most accurate values of the parameters a, B, Y would be

obtained by a least-squares fit of the data to Equation (1).

Alternatively, OBY may be evaluated from the equations for

the extrema:

2 .

a = (g: + gE)/2, B = (g: - g_)cosZG+/2, Y = (g: - g3)51n26+/2,

(2)

obtained by differentiation of Equation (1); 9+, g_ are the

maximum and minimum 9 values in the given plot (or vice

versa) and 6+ is the angle corresponding to g+; 6+ should

be taken from the best extremum.

For a rotation about any axis, each experimental

spectrum is associated with an angle 6 read on a protractor.

The numerical values of 6 then depend on the arbitrarily

chosen initial placement of the crystal. The position of

the crystal associated with 9 = 0° is called the "experi—

mental" initial orientation. Since 6' = e + 180° also

satisfied Equation (1), we see that the initial conditions

specified have a twofold ambiguity. In developing the

theory, it is necessary to specify the orientation of the

crystal in the cavity at the beginning of each rotation,

i.e., the orientation of the crystal axes a, b, 0 when

6 = 0° for each rotation is required. These are called

the three "theoretical" initial orientations. The main

error in orienting crystals is the azimuthal angle error,
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which is the rotation error 66; we neglect in these

calculations errors in the orientation of the vertical

axis. The aximuthal angle 66 from the actual "experimental"

to the "theoretical" initial orientation is called the

starting-angle shift. The three starting—angle shifts can

always be evaluated.

The data may also be analyzed using only the g

extrema by employing the parameters

2 2 2 2

a = (9+ + 9_)/2. A = lg+ - 9_|/2. (3)

The a, B, Y parameters are used below to solve the general,

coplanar, orthorhombic, and monoclinic cases while the

later two are also solved explicitly using the a, A

parameters. In addition, all cases may be treated using

only the a, A parameters by setting 8 = A and Y = 0 (which

is equivalent to introducing an unknown starting-angle

shift) and employing the aBY method.



GENERAL THEORY

The value of g at a specific orientation has been

shown to be given by1

92: Z w 2!; (w..=w..), (4)

where 21, £2, £3 are the direction cosines of the uniform

magnetic field with respect to a set of orthogonal axes l,

2, 3 fixed with respect to the crystal. The relationship

between the W and g tensors is N = 32. When the symmetric

tensor W is diagonalized, the squares of the principal g

values, and their direction cosines, are determined. The

Jacobi method6 is a very good way to diagonalize the

matrix. The general problem is thus reduced to determining

the six coefficients (matrix elements) W W

11' ”22' W33' 12'

w23' w13'

Nomenclature

The three experimental rotation axes, fixed with

respect to the crystal, are labeled a, b, c. Along these

.+_ + +

axes are placed three rotation vectors a, b, c chosen so

that rotation of the magnetic field is in a right-handed

112
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sense about the vectors. Where appropriate, the letters

a, b, c are used as subscripts to the parameters a, B, Y,

A, 0+, 9+, g_, g, M obtained from the respective rotations.

A coordinate system consisting of a specific arbitrary set

of three orthogonal axes labeled 1, 2, 3, also fixed with

respect to the crystal, is chosen for each of the cases

treated in this investigation. It must be remembered that

the direction cosines obtained by diagonalizing the W

matrix will be relative to the l 2 3 coordinate system

chosen.

Considerable simplification of the equations was

found to result from choosing the l 2 3 coordinate system

such that rotation vector 3 points along the positive 3 axis

and b lies in the I 3 plane at an angle ¢ from 3 as shown

in Figure la. Here I 3 3 are three orthonormal vectors in

a right-handed relationship and a positive or negative sign

is given to ¢ according to whether it represents a right-

or left-handed screw sense rotation about 5 (Figure l).

The four experimental cases considered--coplanar, mono-

clinic, orthorhombic and general--then correspond,

respectively, to the conditions (a) vector 3 in the I 3

plane, (b) vector 3 along 3, (c) vector 3 along 5 and ¢ =

+90°, and (d) vector 3 in none of the above relationships

0 + I I C O O

(i.e., c pOints in an arbitrary direction).
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Figure l.+ Systems ef axee: (a) foretheeprelimi-

nery+equations: a, b, 83, Sb in 3 plane, Ma, Mb along

+ , a along + 3 (in this figure O > 0:); (b) for an arbi-

trary rotation: N axis of rotation, § starting vector

(9+: 0°), M middle vector (6 = 90°), L magnetic field in +

g M plane at aggle 9 to S; (c) for coplanar case: a, b, c,

Sa, Sb, Sc in l 3 plane, Ma, Mb, MC along +3 (in this +

giguge, e > 9°, w < 0°): (Q)+for monoelinic case: e, b,

ea, §b, SC, Mp are in the l 3 plane, Sa, Mc along +1, c,

Ma, Mb along + +(in this figure >+O°%; (e) for ortho-
. +

ghombic case: a, Sc, Mb along + , b, a; M; along++ , c,

Ibfi Ma along +5; (f) for general case: a, b, Sa, Sb in

plane, Ma, Mb along +2, c in arbitrery direetion+(in

none ef the abeve special directions), Sc i.c, Se l.c and

in 1 plane, M5 222 in l 2 plane.
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General Formulation
 

There are nine parameters to determine the six W

coefficients and the three starting-angle errors in the

aBY method. The nine functions wll(aaBaYaabBbeachYc)'

W22(...), W33(...), W12(...), W23(...), W13(...). €1(...),

e2(...), and €3(...) are set up, where the values of the

six W functions for any set of a, B, Y values represent the

approximate values of the W coefficients and the values of

the three 6 functions represent three measures of the

magnitude of the starting-angle shifts. The parameters a,

B, Y from Equation (1) are functions of the starting-angle

shifts 66a, 69b, 68C since a, B, Y depend on the choice of

the "theoretical" initial orientations. When the "true"

starting-angle shifts 68:, 66; and 68: are used, the values

of a, B, Y become the "true" parameters at E a(66:,66t,56:),

at : 3(ae:,59t,ae:), yt z y(66:,66t,66:), while the e

t t tBt t t t t. t _ _
functions become zero, 81(a B beacBCYC) - €2(...) —

a aYaab

€3(...) = 0, and

t t t t

YbaCB Y ), W22(...), etc.,

become the "true" values of the components of the W tensor.

The 61, £2, 63 functions are called null functions because

the condition that they all be simultaneously zero is used

to determine the true starting-angle shifts and thus the

true a, B, Y parameters and the W tensor.
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In the OA method there are six parameters, the six

w coefficients, to determine. After W:is diagonalized, the

values of 0+ with respect to any rotation and any arbitrary

initial orientation may be calculated by using the formulas

of Equation (29) with the relation 6+ = (1/2)tan-1(Y/B)

obtained from Equation (2). The difference between the

calculated and the experimental 6+ (each with respect to

the same initial orientation chosen) is equal to the

starting-angle shift for that rotation.

Determination of Starting-Angle Shifts

In this section, formulas are derived giving the

dependence of a, B, Y on the starting-angle shifts 66a,

56b, 66C and the original a, B, Y values. The formulas are

used, along with a condition on the null functions developed

here, to obtain the "true" starting-angle shifts. From the

latter, the "true" a, B, Y values are then obtained and the

"true" components of W computed.

If, in a certain rotation, the angle assigned to

each orientation is changed by an amount 68 so that 6 =

9' + 66, then Equation (1) becomes

a + Bcos(26' + 256) + Ysin(26' + 266)

A
G II

a + (8cos266 + Ysin256)cos26' + (YcosZOB - Bsin266)sin28'

a' + B'cos26' + Y'sin26', (5)
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from which, using Equations (2) and (3), we see that

a' = a, 8' = Acosg, Y' = Asinc, (6)

where C = 29+ — 266. When the "true" 66i are used, we

obtain the "true" values for at 'BI’YI’ and CE. The values

of the three null functions then become

tt ttt _ _

W(G YHabBbYtGCBCYC) — €i(aaBaYaab 8bbYaCB cY C) + 6&1 _ 0,

(7a)

58. = -E. (i = 1,2,3), (7b)

where 6ei is defined by Equation (7a). Also, from Equations

(6) we can rewrite this in terms of the variables Ci as

e.“(AAb AC,ct;;ct) = o (i =1,2,3). (8)

In some cases the exact solution of the three

simultaneous equations (7) or (8) is prohibitively compli-

cated. It can then be determined by an iterative procedure

using simpler equations. It is, in general, more con-

venient to define the quantities Ai = 266i (i = a,b,c);

then, to first order in A,

5a].- = 0 ai = ail

681 = YiAi, Bi = Bi + 68

6Y = -B A Y. = y. + 6y. (i = a,b,c). (9)
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These are substituted into Equations (7), which are then

solved for Aa' Ab, AC.



THEORY--DERIVATION OF FORMULAS

PreliminarygEquations

A general rotation may be expressed in the following

way. Let §, g, a be right-handed orthonormal vectors as

shown in Figure lb with fi representing the axis of

rotation, § the magnetic field direction at the start of

the rotation and i the magnetic field direction at the

"middle" of the rotation (6 = 90°). Let L be a unit vector

representing the direction of the magnetic field as it

sweeps the g i plane in a right-handed sense about fi

(Figure lb). Let 6 of Equation (1) be the angle between L

and § (rotating f by +9 is the same as rotating the crystal

by -9), then

+ + + -> + + ,

M = N x S and L = Scose + MSinG. (10)

With respect to any axes l, 2, 3 one has, from Equations

(4) and (10),

ii = Sicosfi + Misine (i = 1,2,3). (11)

Choosing the l 2 3 coordinate system in Figure 1a,

one sees that for the rotation about the a axis, the

120
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arbitrary initial orientation (where 0 = 0°) is specified

to be along the 1 axis, so that §a = 3, ga = 1, and fia = 2.

From Equation (11) one has 2i = Slcose + Mlsine = cose,

22 = Szcosa + M231n9 = Sine and £3 = S3cose + M381n6 = 0,

which, when substituted into Equation (4), give

92 = W1100526 + W225in26 + 2W12cosesin6

= 1(W + W ) + 1(W - W )cosZB + W sin26 (12)

2' 11 22 2’ 11 22 12

and, by comparison with Equation (1), it may be seen that

_ 1 _ 1 _ _

cla " "2’(W11 + ”22’ ' Ba ‘ 2(Wll W22) ' Ya ‘ W12 (13)

and, solving for the W coefficients, one obtains

W =a+8, w =a-B, W =Y. (14)
11 a a 22 a a 12 a

For the rotation about axis b we specify that the

initial orientation occurs when the magnetic field is in

the l 3 plane. From Figure la we see that fib = 3cos¢ +

15in¢ g = 1cos¢ - 38in¢ and + = 2 Again- i =
' b ' Mb ' ° 1

cos¢cose,£2 = sine and £3 = -sin¢cos6, and substituting

these into Equation (4) one obtains

2 _ 2 2
g - (Wllcos ¢ + W

. 2 . 2 .

33Sin ¢ - 2W13cos¢31n¢)cos 9 + (W22)51n 6

+ 2(W12cos¢ - W23Sin¢)c05651n6. (15)

Since Equation (15) is an exact analogue of Equation (12),

the solutions analogous to Equation (14) are written
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2 . 2 . _
Wllcos ¢ + W3351n ¢ - 2Wl3cos¢31n¢ — ab + Bb, (16)

W22 = “b ’ Bb’ (17)

lecos¢ - W2351n¢ = Yb. (18)

Using Equations (14) in (18), the W23 coefficient may be

defined as

W23 = (Yacos¢ - Yb)/sin¢. (19)

Comparing Equations (14) and (17) leads to the relation

ab - 8b - aa + B = 0: (20)
a

which may be used as a null function. Substituting from

Equation (14) into (16) and using Equation (20) to cancel

the ab term gives

sin2¢(W - sin2¢(W33 - aa) = Ba(1 + cosz¢) - 28b.
13)

(21)

From the six parameters a , Ba a' Ya, ab: Bb’ Yb used

so far, four relationships 1nv01V1ng W11, W22, W12, W23, one

relationship involving W13 and W33, and one null relation—

ship have been defined. The third rotation, which differs

in each of the four cases, will be treated separately for

each individual case below.
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Case of Three Coplanar Axes
 

If the third rotation axis c lies in the l 3 plane,

along with the a and b axes, we have the coplanar case.

Let ¢, w be the angles between 3 and b, c, respectively;

these have a positive or negative sign according to whether

they represent a right- or left-handed screw sense about 2,

and let the initial orientation vectors Sb, SC lie in the

l 3 plane (Figure 1c). From Equations (19)-(21), with w

and c replacing ¢ and b, we obtain

W23 = (Yacosw - YC)/sin¢, (22)

ac - 8C - aa + 8a = 0, (23)

sin2w(wl3) - sin2¢(w33 - aa) = ea(1 + coszw) - 28¢. (24)

Equations (21) and (24) can now be solved to give W13 and

W33. Equations (20) and (23) provide two null functions

and the third is derived from a comparison of Equation (19)

with Equation (22). For the iterative solution, we apply

Equations (7) and (9) to the null function 61 leading to

61 = dab - 68b - éaa + 68a = 0 - YbAb - 0 + YaAa = —el,

Ab = (El/Yb) + (Ya/Yb)Aa = B + B Aa' (25)

Similarly, applying Equations (7) and (9) to the analogous

52 null function gives

AC = (Ez/YC) + (Ya/YC)Aa = c + c Aa.
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Again, with e3 and the above relationships,

I!66 3 -baAasin(w - ¢) + BbAbsinw - BcAcsin¢

(BstinW - BCCsin¢) - [Basin(w - ¢) -BbB'sinw + BCC'sin¢]Aa

= -€3,

which is solved for Aa. These results for the approximate

solution are listed in the Collected Formulas, as are some

properties of the exact solution of Equation (8).

Case of Three Monoclinic Axes

If the c axis, about which the magnetic field is

rotated in a right-handed sense, is perpendicular to the 1

3 plane, we have the monoclinic case. Let the c axis point

along the +2axis (Figure 1d). Note, however, that if the

experimental c axis actually pointed along the -2 axis,

then one must change He + -9C (or equivalently Yc + -YC) to

use the formulas. The initial orientation for this rotation

is selected so that the magnetic field is along the 3 axis

for 6 = 0° hence fi = 2, S = 3 and E = 1. Therefore, from

Equation (11), £1 = sine, £2 = 0, £3 = c036, and from

Equation (4),

2 _ 2 . 2 .
g — W33cos 6 + W1131n 6 + 2W1351n6cose,

which is the same form as Equation (12). So, according to

Equation (14),

W33 = ac + SC, W = a — B , W = Y . (26)
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Equations (14) and (26) are used to define W W and

13' 33

the null function

Then, equating Equations (14) and (17) gives an expression

for Ba which, when substituted in 81, gives 82 = dc - BC +

8b - Zda. Substituting 62 and all the relations of

Equation (26) in Equation (16) and dividing by two gives

63 = (ab — da) + Sin¢(chos¢ - BCSin¢).

Applying Equation (7) to the three null functions

gives 661 = ‘81 = -YcAc - YaAa’ 682 = -62 = -YcAc - YbAb

and 683 = -63 = Sin¢(-BCACcos¢ - YCACSin¢). From these the

Ai's are obtained directly for the formulas of the iterative

method. The exact solution has also been obtained from

Equation (8) and the formulas for the a1 method worked out.

Case of Three Orthorhombic Axes

The initial orientations are best chosen in a cyclic

manner (Figure 1e), because of the high symmetry of the a,

b, c axes, i.e., for rotation about a, b or c the 6 = 0°

orientation is chosen in the ab, bc or ca plane,

respectively. The problem is then set up so that there

is a cyclic relationship betweeen the three rotations.

The formulas in Equation (14) for a rotation about the a

axis can then be extended in a cyclic manner to the other

rotations by changing the subscripts of a, B, Y, and W as
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as follows: a + b + c, 11 + 22 + 33, 12 + 23 + 13. The

result of this is

Rotation a Rotation b Rotation c

w11 = “a + 8a W22 = “b + 8b W33 = “c + 8c

w22 = “a ’ Ba w33 = “b ‘ 8b w11 = “c ’ Bc

w12 = Ya w23 = Yb w13 = Yc (27)

The first and third rows of Equation (27) define the W

coefficients. Subtracting the first row of relationships

from the second row, dividing by two, and using the relation

-Bb -Bc = ac - ab obtained from the two formulas for W33

gives 81; 62, 83 are then obtained by cyclic permutations

of 61.

Using Equation (9) we obtain for the iterative

solution 661 = -YaAa = -81 so that Aa = el/Ya.

For the exact solution, we have from Equations (8),

ac - ab - Aacos§a = 0 which is straightforwardly solved

for Ca. The solutions for Ab, A Cb, Cc are obtained from
C!

those of Aa and Ca by a cyclic permutation.

For the ax method, it is seen from 61 that the

"true" parameters obey the relation Ba = a - ab, which

211/2 =

c

gives W11 = aa - ab + ac and Ya = i [1: - (ac - db)

W12, and cyclically the remaining W coefficients. All the

results are listed in the Collected Formulas.
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General Case
 

If the third axis of rotation does not satisfy the

conditions for any of the previous cases, we have the

general case (Figure If). The direction of the rotation

axis c (about which the magnetic field rotates in a right-

handed sense) must be known, while the initial orientation

need only be determined within a twofold ambiguity.

Let

—+ +

1 + N 2 + N

+ —>

1 2 33' S

+ + + + +

S 1 + S 2 + S and M = N X S

+

1 2 33'

be unit vectors representing the rotation axis, the initial

orientation (6 = 0°) and

The three starting-angle

data, are independent of

solve for them; hence we

convenient system to simplify the solution.

the 6 = 90° direction, respectively.

errors, being a property of the

the coordinate system chosen to

are allowed to choose a more

One such

system is obtained by choosing a different initial unit

*

vector S in the S E plane with the property that 83 =

+ +* +*

Let E be the angle between S and 8 so that S =

+. +*

MsinE and M =

+ + .

McosE - SSinE.

*

0.

Scosi +

Then S must satisfy the

relation tan€ = -S3/M3. One such transformation that will

+ + . +* +* .

change S and M into S and M is

* A * AS1 (81M3 - 83M1)/ , Ml - ($183 + M1M3)/ ,

* A * A32 — (82M3 — S3M2)/ , M2 — (3233 + M2M3)/ ,

'k 'k A

S3 — 0' M3 — ’
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 Fj

where A 2 “(Si + Mg). Similarly the corresponding

transformation between the old a B , YC, A and the new
c' c c

t * t * .

ac, BC, YC, Ac parameters would be from Equations (3) and

(5)

* *

a = a , A = A ,

c c c

8* = B cos(2€) + y sin(2€) = [8 (M2 - 52) - 2y M s J/A2
c c c c 3 3 c 3 3 ’

Y* = Y cos(2€) - B sin(2€) = [Y (M2 - 82) + 28 M S ]/A2
c c c c 3 3 c 3 3 '

Substituting Equation (11) into Equation (4), remembering

that Wij = wji' and noting the analogy with Equation (12),

we arrive at the result

92 = 23, w. M.

i,j=l 13 1 3

( Z W..S.S.)cosze + ( Z W..M.M.)sin29 + 2( Z W..S.M.)cosGsin8
i’j 1] 1 J i'j 13 1 J i'j 13 1 3

“C + BCCOSZG + chinZG (28)

analogous to Equation (13), where

_ 1

0‘c ‘ 2.2.Wij(sisj + MiMj) '
13

B = IZW (SS-44M)
c: '2.. ij :1;j i j '

1]

YC = ZijwijSiMj' (29)

Since Equations (28) and (29) hold for rotations about any

axis, they may be used as a check on the correctness of the
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W tensor by reproducing the original 0, B, Y parameters.

*

For the case with S = 0, Equation (29) gives
3

* + 8* — *2 *2 2 * 'k

“c c ‘ Wllsl + w2252 + W125152' (3°)

* 8* - *2 *2 + w *2 2 * * 2w * *

a ’ ‘ w11M1 + W22M2 33M3 + w12M1M2 + 23M2M3

* *

* * * * * * * * *

Yc ‘ w1131M1 + szszmz + w12(51M2 + SZMl)

* * * * 2

+ w2332M3 + W13siM3° (3 )

. .d . . *2 *2 _ 1 d * * * * _
With the i entities S1 + 82 — an SIMl + SZMZ _

O, we use Equations (l4), (19), (32), and (16) to define

W11, W22, w12' W23, W13, and W33, respectively. By

comparing Equations (14) and (17), the first null function

El = ab - 8b - aa + Ba 13 derived. USing the formulas for

the W coefficients and Equation (30), the second null

function

E - B 2 *2 1 2 * * * 8*

2 _ aa + a( Sl - ) + YaslSZ - ac - c

is obtained. The third null function 8 listed in Table l,
3'

follows similarly from Equation (31). Considering the

approximate solution, we see that since 61 is the same as

in the coplanar case, Ab is given by Equation (25). Using

82 in Equations (7) and (9) leads to the relationship

Y (25"2 1) 28 s*s*
__ * a 1 - - a 1 2 _ 0

A — (CZ/Yo) +‘{ ‘}Aa — C + C Aa. 

c Y?

c
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In order to use the third null function C3 it is necessary

6W and GW ~ these areto obtain 6W23, 13’ 33.

-BaAacos¢ + BbAb -BaAacos¢ + BbB + BbB'Aa

  

 

 

 

6w23 = sin¢ = siné

' —

= (BbB + BbB Bacos¢ A = P + P'A

sin$ sin¢ a a’

8*c Ps*M§
5W13 = c i * 2

S1M3

—B*c' + 2 3*M* + B (s*M* + S*M*) - p's*M*
+ c Ya 2 2 a 1 2 2 1 2 3 A

*fif a

S1M3

= Q + Q'Aar

 

E + Qsin2¢

_ 1 ZQ'cos¢ _ .
6w33 — ( Sin2¢ ) + (Ya + Tan)Aa — R + R Aa.

Finally, putting 83 into Equation (7) we obtain

*

66 e 2 * * 2 M * *2 28*2 1 28 8* *= + + + - -

3 ( 2 + PM2M3 Q 1M3 RM3 ) [Ya( 1 ) a 152

*2 *2 28 t t ' * * 2 ' * * ' *2 A

+ Yam1 - M2 ) - aM1M2 + 2P M2M3 + Q M1M3 + R M3 ] a

= —€3'

from which the formula for Aa given below (Collected

Formulas) is obtained.



DISCUSSION

A computer program has been written in Fortran IV

for the calculation of g tensors in any of the four cases

described. By employing this program with experimental g

tensors, the equations of this article were checked. a,

B, Y parameters were first obtained from Equations (29) and

these were used as input for the computer program. Agree-

ment of the g tensors derived by the program with the

original tensors provided a check on the internal con-

sistency of the equations for each of the four cases.

Iterative Solutions
 

The iterative procedures for the four cases

described above may not converge if a starting-angle error

is too large (as may happen in using the al method of

Equation (3)), in which case the problem may be solved by

setting

D II

Ai(calculated), iflAi(Calcd)l<ch

RC x SIGNAi(calcd), ifIAi(calcd)I>Rc (i = a,b,c),
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where SIGNx = x/le. RC should be chosen to be within the

range of stable convergence which is different for each of

the four cases considered below. A safe value for Rc is

~0.2.

From the approximate changes in angles Ai one may

proceed in two ways:

(i) Calculate exactly the new values of the parameters

from

I

ai - di,

' I

Bi = BicosAi + YiSIHAi,

U

Yi = YicosAi - BiSinAi (i = a,b,c) (33)

obtained from Equation (5) and use these again in the

equations for the iterative solution to obtain a new set

of Ai's. This process is continued until either the

absolute fractional changes of the a, 8, Y parameters are

below a certain low value (for the CDC 6500 computer this

11
was set at 1.0 x 10- ), or until the values of the null

functions are negligible. If the approximations for Aa,

Ab, AC, are continually summed, and the final values

divided by two, three starting-angle shifts 66a, 69b, 69C

(i.e., the angles fggm the experimental alignments to the

"true" theoretical initial orientations) are obtained.
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(ii) Calculate approximately the new values of the

parameters from

a. = a., B. = B. + y.A., Yi = Yi - BiAi (i = a,b,c)

and continue the process as in the first method. This

procedure will converge because the method is self-

correcting. The starting angle shifts can then be

determined by solving Equations (33), using Appendix A with

the initial parameters Bi, y.1, Ai and the final parameters

Bi' Yi, to obtain

691 = [cos-1(Bi/Ai)-SIGNYi i cos-1(BE/Ai)] (i = a,b,c).

M
u
d

From Equations (8) we can calculate the number of

solutions for the starting-angle shifts in each of the

four cases. The approximate methods will only give the

solution with the smallest starting-angle shifts.

Exact Solutions

The principal values of the g tensor are the square

roots of the equation fiii = E121 (i = 1,2,3). The principal

values Ei solely determine the "shape" of the tensor. The

eigenvectors ii determine the orientation of the principal

axes and thus the orientation of the tensor. The number

of eigenvalue solutions is the number of diagonalized W

tensors which are "shaped" differently. The number of

eigenvector solutions is the number of diagonalized W

tensors which are "shaped" or oriented differently. If we
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consider the degeneracy of the solutions to be the number

of eigenvector solutions per eigenvalue solution, we find

from Equations (8) that the degeneracies of the coplanar,

monoclinic, orthorhombic, and general cases to be 2, 2, 4,

and 1, respectively. If two of the possible W tensors have

the same principal values, and the eigenvectors of one

tensor become the eigenvectors of the second tensor when

rotated 180° about the axis i, then we call the axis i an

axis of degeneracy. The axes of degeneracy account for the

degeneracy of the solutions and are listed below.





COLLECTED FORMULAS

The a, B, y parameters depend on the choice of

initial orientations and, to use the formulas of this

article, they should be determined with the orientation

conventions of Table l. The W coefficients and null

functions for each case are also given in Table l. The

solutions are listed below.

Coplanar Case

Possible number of eigenvalue solutions: 0, 1,

Possible number of eigenvector solutions: 0, 2,

The one axis of degeneracy is the 3 axis (the 2

axis).

The iterative solution is

+ . _ .
e3 BbBSinw BCCSin¢

Aa = Basin(¢ - ¢) - BbB‘sinw + BCC‘sin$ ’

D II

I _. I

b B + B Aa. B - Sl/Yb. B Ya/Yb.

_ I = I
A — C + C Aa, C ez/YC, C Ya/Yc.
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The exact solution to Equations (7) is complex and

thus it is more feasible to use an iterative procedure than

the closed form. Some relationships among the various

exact solutions of Equations (7) are: If (ca, Cb' cc) is

a solution, then (-Ca, -§b, -CC) is another solution with

the properties that (a) its eigenvalues are the same as

those of (Ca, Cb' cc), (b) the signs of W12, W23 are

changed, and (c) the eigenvectors are rotated 180° about

the 2 axis.

Monoclinic Case
 

Possible number of eigenvalue solutions: 0, 2, 4.

Possible number of eigenvector solutions: 0, 4, 8.

The one axis of degeneracy is the 3 axis (the 2

axis).

The iterative solution is: AC = 63/[sin¢(8ccos¢

+ Yc51n¢)].

Ab = (62 - YCAC)/Yb. A = (61 - YCAc)/Ya.
a

The exact solution is

where
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_ . -1 _ . _ -1 _ _
EC — Sin [(01a ab)/Ac51n¢], Ea — cos [(aC aa AccosCC)/ka],

-l
Eb _ cos [(ab + ac - 2aa - AccosCC)/Xb].

For each of the two choices for CC there are four solutions

for Ca and:b corresponding to the four choices of sign for

these: (+£a,+£b), (--), (+-), (-+), where the first two

solutions represent one eigenvalue solution and the last

two represent another. Also a rotation of the eigenvectors

about the c axis will transform the solutions as follows:

(++)+(--). (--)+(++). (+-)+(-+). (-+)+(+-).

The ax solution may be obtained by calculating Bi

and Yi from Bi = Xicosci, Yi = X.sinCi(i = a,b,c), using
1

the solutions given above for Ca' C Cc (which depend only
bl

on mi and Ki). These are then employed in the formulas for

the W coefficients.

Orthorhombic Case

Possible number of eigenvalue solutions: 0, l, 2.

Possible number of eigenvector solutions: 0, 4, 8.

The three axes of degeneracy are the 3, b, E axes

++ +

(the 3, l, 2 axes).

The iterative solution 18 Aa = El/Ya, Ab = EZ/Yb'

D II

EB/Yc'

The exact solution is

c = + COS-1[(G - )/l ] C = + cos—1[(a - a )/A 1
—’ c ab a ' b — a c b '

Cc = : cos—1[(0Lb — aa)/AC].
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The solutions may be ordered according to the eight

possible combinations of signs for the Ci: (+Ca, +Cb' +CC),

(+--), (-+-), (--+), (---), (-++), (+-+), (++-). The first

four solutions represent one eigenvalue and the last four

solutions represent the other. A rotation of 180° about

axis a will transform the solutions as follows: (+++)+

(+--), (+--)+(+++), (---)+(-++), (-++)+(---). Similarly,

for a rotation of 180° about axis b: (+++)+(-+-), (—+-)+

(+++), (---)+(+-+), (+-+)+(---). Finally, for a rotation

of 180° about axis c: (+++)+(--+), (--+)+(+++), (---)+

(++-), (++-)+(---).

The ax solution is

W11=0La—OS:>+OLC' w22=ab-ac+aa' W33=ac-aa+0b'

 

 

_ 2_ _ 2 = 2_ _ 2
“Hz-:63 (ac ab)]. w23 :v/[ij (mail cc) ].

 

2 2

w13-ivfnc- (%-aa) 1°

General Case

Possible number of eigenvalue solutions: 0, l, 2,

Possible number of eigenvector solutions: 0, 1,

There are no axes of degeneracy.

The iterative solution is
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* * * *

A * 3 2 3 - 2PM2M3 — 2QM1M3

- i * T *

+ 2P'M*M* + 2 'M*M*
2 3 Q :1 3

A == (2 + (:‘A ,
C a

where

2* t it *

B = el/Yb. B = Ya/Yb. c = €2/YC. c = [Ya(281 - 1) - 28aslszl/YC.

P = BbB/sin¢, P' = (B B' - B cos¢)/sin¢,

b a

t *

M

_ 8* t i

Q - (- CC ‘ PSZM3)/Sl 3,

'k

2

B t t i * ' t i

+ a(SlM + S Ml) - P 52M3l/S

* *

2 2 M

I 8*: *

Q ‘ [' cC + 2yaszM 1 3'

R = (61 + Qsin2¢)/sin2¢, R' = Ya + (2Q'cos¢/sin¢).

The exact solution is obtained by substituting

Equations (6) into Equations (7) which gives the expressions

to be solved for Ca, Cb' CC. Most of the sixteen possible

solutions will generally not be acceptable since they will

not be real.
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APPENDIX A

SOLUTIONS TO A TRIGONOMETRIC EQUATION

There are at least four different ways in which the

solution to

Acose + Bsine = C (Al)

may be written. The most convenient for the present purpose

is derived below.

Equation (Al) may be written as Mcos(6 - A) = C,

where McosA = A and MsinA = B. The relative signs of A and

B determine the quadrant of the angle A. By setting M =

+ (A2 + B2) it is seen that A is uniquely determined by

A = cos-1[A/ (A2 + 32)] x SIGN(B), (A2)

where SIGN(B) B/IBI. Equation (Al) now becomes cosE =

C//(A2 + BZ), where E = 6 - A. Since 6 is double valued,

the two solutions to Equation (A1) are

e = cos'ltA/ (A2 + Bz)]°SIGN(B) i cos‘lm/ (A2 + 32)].

(A3)
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APPENDIX B

PROPERTIES OF SECOND-ORDER TENSORS

If a second-order symmetric tensor W is diagonalized

1
by the similarity transformation E. ii, then the columns

of the unitary matrix R represent the eigenvectors of the

tensor. Changing the signs of any column of R does not

change the eigenvalues (the "shape" of the tensor), or the

orientation, of the corresponding diagonalized tensor W.

Changing all the signs of the i-th row of E does not change

the eigenvalues but rotates the eigenvectors 180° about

axis 1, which is the same as reflecting the eigenvectors

through the jk plane (j,k # 1). These results are

similarly accomplished by changing the signs of four of

the off-diagonal elements of the undiagonalized W tensor:

W.. = W.

1] ji' wik = Wki (3 # k). This can be shown by con-

=* *

sidering another matrix R such that qu = :_qu[(p,q =

1,3), (1) sign if p(:) i]. Applying this new similarity

transformation to W gives
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w*' — R* ..l * — * *

lm ‘ 3L< )ljwijkm ‘ gLlekawjk

Z R. R. w.. _ _

j#i 31 3m 33 + ( Ril)( Rim)wii + j#k lekaij

+ j;k(le)(-Rim)wji + j;k(-Ril)(ka)wik'

k=i j=i

from which we see that if the similarity transform matrix

R diagonalizes W, then R diagonalizes the matrix W with

the signs changed on the four off-diagonal elements Wji =

wij' wik = wki'

The eight tensors resulting from the eight possible

sign permutations of the off-diagonal elements W12, W23,

wl3 are (+W120 +W23, +W13)I ('+-)r ('-+)r (+--)I (---)!

(+-+), (++-), (-++). The first four of these have one set

of eigenvalues and the last four a second set. A rotation

of 180° about axis I changes (+++)+(—+-) and (---)+(+-+),

about axis 3 changes (+++)+(—-+) and (--—)+(++—), and about

axis 3 changes (+++)+(+—-) and (--—)+(-++).
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APPENDIX C

COMPUTER LISIING or SUBROUTINES USED FOR THE

CALCULAVION 0F 6 TENSORS FOR THE COPLANAR.

MONOCLINICo ORIHORHONIIC. AND

GENERAL CASE

PROGRAM GTENSORTINPUToOUTPUT) OTNSR

REAL NNIvNNZQNNJ OTNSR

CDHHON/PARAH/ALA.BEAOGAAQALDOBEDoGABOALCoDECOOAC GTNSR

COMMON/U/HII9H229U330U129U23vH13 GTNSR

99 FORMAT¢IIT GTNSR

9O PORMATCJEID.8) GTNSR

READ 999INDE! OTNSR

READ 989ALA98EAOGAA9ALBOBEBOGABQALCOBECOOAC GTNSR

GO TO (10920930060) INDEX GTNSR

THIS IS A SAMPLE PROGRAH SHOWING HOH ONE MAY HRITE A PROCEDURE THAT GTNSR

UOULD CALL ANY OF THE FOUR SUBROUTINES. ONLY THE SUIROUTINE OF GTMSR

INTEREST NEED BE LOADED INTO THE COMPUTER. GTNSR

ALAoALBoALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES AoRoC. GTNSR

BEAoBEBQBEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES AOBOC. GTNSR

GAAvGABoGAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES AoBQC. GTNSP

THESE PARAMETERS ARE TRANSMITTED THROUGH THE LAIELLED COHMON [PARAM/. GTNSR

THE H-COEFFICIENTS UlloUZZoUJJoHIZoUZJoUIJ ARE CALCULATED BY EACH OE GTNSR

THE SUBROUTINES AND ARE LOCATED IN THE LAIELLED COMMON lU/o EACH GTNSR

SUBROUTINE CALLS DISPLAY AND PASSES THE H-CDEEETCIENTS THROUOH IHI. 'GTNSR

SUBROUTINE DISPLAY CALLS DIAGI WHICH IS A STANDARD DIAGONALIZATION GTNSR

SUBROUT INE. OTHER SUBROUTINES ARE INCLUDED. .UT ARE NEVER CALLED. GTNSR

THESE SUBROUTINES CAN BE USED TO TEST OR DOUBLE-CHECK THE RESULTS OF GTNSR

THIS PROGRAH. THE CDHHENT CARDS IN EACH SUHROUTINE DESCRI'E THE GTNSR

QUANTITIES CALCULATED. GTNSR

0.0.. COPLANAR CASE .0... IINDEA . I) GTNSR

IO PEAD QBDPHIOPSI GTNSR

CALL COPLANR (PHI OPSII GTNSR

STOP IIII GTNSR

00000 HONOCL INIC CASE 0000. (INDEX . 2’ GTNSR

20 READ 980PHI GTNSR

CALL HONOCLNIPHI) GTNSR

STOP 2222 GTNSR

0.000 ORTHORHOHBIC CASE .o 000 TINDEX . 3) GTNSR

30 CALL RHOHBIC GTNSR

STOP 3333 GTNSR

00000 GENERAL CASE 0000. (INDEX ' “I GTNSR

AD READ 980PHI GTNSR

READ 980NNIONN2'NN3'SSI95520553 GTNSR

CALL GENERAL IPHI ONNI ONNZONN3OSSI 05520 $53, GTNSR

STOP “‘0’“. GTNSR

END GTNSR

SUBROUTINE COPLANRIPHIQPSI) CDPLN

...... PHI AND PSI ARE IN DEGREES. CDPLN

DIMENSION ANGDEG(3) CDPLN

COHHDN/PARAH/ALAoBEAoGAAOALBOBEBQGADOALCODECOOAC CDPLN

COHHON/M/HII9M229U330N129H239UI3 CDPLN

DATA PI/3.IAIS92653S9/9TODEGZ/28.60788976/9TORAD/O.DI745329252/9 CDPLN

DNSTEPS/IBO/oNTRTES/E3/ CDPLN

ALAoALBQALC ARE THE ALPHA PARAMETERS FOR RDTATIONS ABOUT AXES AvfloC. CDPLN

BEAvBEBoBEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES AoRoC. CDPLN

GAAQGABQGAC ARE THE GAMMA PARAHETERS FOR ROTATIONS AHOUT AXES AQRQC. CDPLN

TODEGZ 3 57.29577951/2.0 I (I80/PI)/2. TORAD - PI/IBO. CDPLN

60° FORMRTIIHI'“IXO 23".... COPLANRR CASE .0000I0x06HpHI = oIF9.A.3X. CDPLN

AOHPSI ' QIF9."40//039XO?BHTHE ORIGINAL PARAMETERS AREA, II CDPLN

60I EORHATT37XQSHALPHA9IIXQAHBETAQI?XoSHGAHHAo//.24X07HAXIS A89IEID.HOCOPLN

82E16.9//24X07HAXIS 989IE16.892E16.9/IPAXO7HAXIS CI0F16.892EI6.9//)COPLN

602 EORHATIZZXO 38HTHE STARTING-ANGLE ERRORS (IN DEGREES). I9 22X. CDPLN

CZQHABOUT THE THREE ROTATION AXESo/923X96HAXIS Av6X96HAXIS 806Xo CDPLN

DGHAXIS C) CDPLN

603 E0RHATI3X0I2HSOLUTIDN No.9 I236H... 0E9.403X9E9.403X0F9.43 CDPLN
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GOA FORMATI/QJBX. ABHTHIS SOLUTION HAS THE FOLLOWING ALPHAclETAcGAMMAoCDPLN

El. 38X961HPARANETERS FOR THE THREE axEs or ROTATION)

605 FORMAT(/.27(SH o ).l/O‘PQXOZTH... END OF C‘LCULATIONS ...,

CDPLN

CDPLN

TOO FORHATI/lc 65H THERE IS AN ERROR. AN [TERATIVE PROCESS DID NOT CONCOPLN

FVERGE HITHIN o IQQIIH ITERATIONSo/o36H THE VALUE OF THE NULL FUNCTCOPLN

OIONS AREo/o OH EI P 9EIS.906H F? I .Els.9.6H E3 P oElS.9o/o

HID" ANGAQANGRQANGC P o 3E15.90/I

TOI FORMATIIRH ERROR IN COPLANRI. lo (39X.3EIS.S.IDI

10

FE P PHIPTORAD

SI P PSIPTDRAD

SNFEPSINIFE)

SNZEEPSIN(2.DPFEI

SNEEZPSNFE..2

SNSIPSIN(SII

SNZSIPSINIZ.D.SII

SNSIZPSNSI..Z

CSSIPCOSISII

CSSIZPCSSI..Z

CSFEPCOSIFEI

CSFEZPCSFEPRZ

SNSIFEPSINISI-FE)

DENP2.O.SNFEPSNSI'SNSIFE

ADSTEP P PI/FLOATINSTEPSI

ACCUR P ABSTEP/IDOD.O

PRINT 6009PHI.PSI

PRINT 601CALAQREAQGAAOALBOBEBOGABOALCOBECODAC

zLHDAAPSORT(REAPPZOGAAPPZI

ILHDABPSORT(REBPPZOGABPPZI

zLHDACPSORTIPEC'.2°GACPPZ)

DPLUSA P SIGN(ACOSIBEA/ZLHDAAIoGAA)

DPLUSB P SIGNIACDSIBEH/ZLHDAHIOGA'I

DPLUSC P SIGNIACOS‘BEC/ZLHDACIOGAC)

NSDLPO

STEP P SIGNIABSTEPODPLUSAI

XI P I-lLHDAR-ALBOALAIYZLHDAA

AZ P I'ZLHDAC-ALCOALAI/ZLMDAA

ARI. I‘ZLHDAR-ALHPALAI/ZLHDAA

XXZP IOZLHDAC-ALCOALAIIZLHDAA

ALDHERPAHAXIIXIOXEOOI.OI

XUPPERPAMINI(XXI.XXZO°I.OI

IFIXUPPER-XLDUER) 29Q02999ID

ITAHAXPACDSIXLOHERI

ITAHINPACDSIXUPPERI

IBEG P IFIXIZTAMIN/ABSISTEPIIOI

IEND P IFIXIITAMAX/ABSISTEPII’I

PNB P PIQD

PNC . -I.O

DO ZOI LHNPIOA

TPPNB

PNBP'PNC

PNCPT

KLL'D

KSCHPO

INDEXPD

CROSSPPI.O

DD 200 IPIBEGoIEND

..... INDEX P NUMBER OF STEPS IN ALLOUED REGION.

KLL P O FORBIDDEN REGION

KLL P I AlLONED REGION

KLLSV P VALUE OF KLL FOR PREVIOUS STEP. ENTERING THE DO LOOP

RSCH 8 (001) IF SEARCH FOR CROSSOVER (DOES NOTQDOFSI OCCUR.

KSCHSV P VALUE OF KSCH FOR PREVIOUS STEP.

FOR THE FIRST TIME CAUSES KLLSV TO BE SET TO 0.

CROSS IS LESS THAN OR EOUAL T0 0.0 ONLY IF A CROSSOVER IS TO

BE SEARCHED FOR.

FUNC 8 TEST FUNCTION 3 E3. NE SEARCH FOR {HE ZERO VALUES.

SFUNC P LAST VALUE OF FUNC

SSFUNC P SECOND TO THE LAST VALUE OF FUNC

ZTAPFLOATTII'STEP

COPLN

COPLN

COPLN

COPLM

COPLN

CDPLN

CDPLN

CDPLN

COPLN

CDPLN

CDPLN

CDPLN

COPLN

CDPLN

CDPLN

CDPLN

COPLN

CDPLN

CDPLN

CDPLN

COPLN

COPLN

COPLN

COPLN

COPLN

CDPLN

CDPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

CDPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

CDPLN

COPLN

COPLN

COPLN

COPLN

COPLN

CDPLN

COPLN

COPLN

COPLN

COPLN

COPLN

COPLN

CDPLN

COPLN

COPLN

COPLN

COPLN

3
”
'

‘
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0
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0
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cszra-cos¢ZTA) CDPLN 09

KLLSVPKLL COPLN 90

NSCHSVPKSCH CDPLN 9I

KSCHPO CDPLN 92

SSEUNCPSFUNC CDPLN 93

SEUNCPFUNC CDPLN 9A

CSZTD P IALD-ALAOELHOAAPCSZTA)IZLHOAB CDPLN 9S

I'IADSICSETHI'I.OI 380380I90 CDPLN 96

3G CSITC P IALC-ALAOELHDAAPCSZTAIIzLHDAC CDPLN 97

IFIADSICSETCI'I.0I 390390I90 CDPLN 9D

.00.... ALLOHED ZONE ..... CDPLN 99

39 KLLPI COPLNIOO

INDEAPINDEX’I COPLNIOI

0.0.0 CALCULATE EUNC 0.. COPLNI02

SNZYA P SINIITAI COPLNI03

SNITD P SIGNIISORTII.0-CSZTDPP2IIOPNGI COPLNIOO

SNZTC P SIGNIISORTII.0’CSZTCPP2IIQPNCI COPLNIOS

PUNC P ELHDAAPSNZTAPSNSIFE'ZLHDABPSNZTBPSNSIOZLHOACPSNETCPSNFE COPLNIOG

on... IE LAST STEP HAS IN THE FORBIDDEN REGION. CHECE 'OR CROSSOVER. COPLNIOT

IFINLLSVI 500I00 COPLNIDD

0.... Ir INDEAPIO THIS IS THE FIRST STEP AND ANOTHER STEP IS TAKEN. COPLNI09

IF PUNCP0.09 THEN THIS HILL DE DETERMINED DY THE PRODUCT SFUNCPFUNC COPLNIIO

SD IEIINDEX‘II 2000200052 COPLNIII

SZ CROSS P SFUNCPFUNC COPLNIIZ

...o. IE CROSS IS NEGATIVE OR ZERO, A CROSSOVER HAS OCCURED. COPLNIIS

IEICROSSI IDOOIODOSO COPLNII“

0.... INDEX HUST BE AT LEAST 3 FOR THE 'OLLOHING CHECK TO DE VALID COPLNIIS

SO IFIINDEX-3I 200056056 COPLNIIO

0.... NE TEST TO SEE IF THE FUNCTION HAS APPROACHEO TOUARO AND THEN COPLNIIT

RETREATED EROH THE FUNCP0.0 AXIS. THERE ARE THO CONDITIONS THAT . COPLNIIH

HUST CE NET FOR THIS TO HAVE OCCURED. COPLNII9

III. IFUNC‘SFUNCIPISEUNC'SSFUNCI HUST DE LESS THAN OR EDUALITO ZERO COPLNIZD

IZI. EUNCPIFUNC-SFUNCI HUST BE GREATER THAN OR EDUAL TO ZERO. COPLNIZI

S6 CHECK P IFUNC‘SEUNCIPISEUNC'SSFUNCI COPLNIZZ

IEICHECKI 58.580200 COPLNIZJ

SD CHECK P FUNCPIEUNC'SFUNCI COPLNIZG

IEICHECKI 2009I000I00 COPLNIZS

...... ROUTINE EOR SEARCHING FOR CROSSOVER POINTS ........ COPLNIZO

CALCULATE THE THREE ANGLES ABOUT HHICH THE SEARCH IS TO BEGIN COPLNIZT

I00 KSCHPI COPLNIZH

0.... ANGADANGBOANGC ARE THE (DOUBLE)'STARTING-ANGLE-SHIETS FOR COPLNIZ9

ROTATIONS ABOUT AXES AOBOC RESPECTIVELY. COPLNI30

ANGA I DPLUSA-ZTA COPLNI3I

ANGD P OPLUSD'SIGNIACOSICSZTBIOPNDI COPLNI32

ANGC P DPLUSC'SIGNIACOSICSZTCIQPNCI COPLNI33

JELAGPD COPLNI36

GO TO IIZ COPLNI35

IIO ANGAPANGAODELA COPLNI36

ANGHPANGBODELB COPLNI37

ANGCPANGCPDELC COPLNI3B

IIZ CSAPCDSIANGAI COPLNI39

CSBPCOSIANGBI COPLNIAO

CSCPCOSIANGCI COPLNIRI

SNAPSINIANGAI COPLNIhz

SHOPSINIANGDI COPLNI63

SNCPSINIANGCI COPLNIAA

DEAKPBEAPCSAOGAAPSNA COPLNIAS

OEBKPBEBPCSDOGADPSNS COPLNI66

DECKPHECPCSCOGACPSNC COPLNIAT

GAAKPGAAPCSA-REAPSNA COPLNIAH

GAOKPGABPCSB-HEHPSNR COPLNIA9

GACKPGACPCSC-RECPSNC COPLNISD

EI P ALG-BEBK-ALAOBEAK COPLNISI

E? P ALC-PECK-ALAOBEAK COPLNISZ

E3 P GAAKPSNSIEE-GADKPSNSI’GACK'SNEE COPLNIS3

D P EI/GABK COPLNISA

OP P GAAK/GARK COPLNISS

C P EZIGACK COPLNISG

CP P GAAK/GACK COPLNIST

 



C CHANGE THE STARYING-ANGLE SHIFT SO THAT ITS NAONITUDE 15 LESS THAN 90

C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUYION.

6
0
6

148

'1 P EJ’BEBKPB'SNSI'8ECK.C‘SNEE

'2 P BEAN'SNS1FE-BE8K'BP'SNSI.BECKPCP'SNFE

OELAPrl/FZ

OELBPBOBPPDELA

OELCPCOCPPOELA

AAA P ABS‘DELA)

1FCJ'LA01 299911¢9119

11‘ 1FIXXA-ABSYEP) 11991199115

115 1'1CROSS1 11991199200

119 JFLAG P JFLAG°1

1'1JFLAG-NYR1ES1 12091209195

120 XXB P ABS(DELB1

AAC P ABS¢DELC1

XA P ANAXI‘XXA9XXB9XXC)

‘1' 1AA¢ACCUR1 13091309123

123 1F1XXA¢AHSTEP1 1259125912“

12“ UCLA P SIGN(ABSTEP9DELA)

125 1F1XX8¢ABSTEP1 12791279126

126 DELB P SIGN(ABSTEP9DELB1

127 1F(XXC-ABSTEP) 11091109128

120 DEL: P SIGN(ABSTEP9DELC)

130 OD 180 KABCP192

COPLNISB

COPLN159

COPLN160

COPLN161

COPLN162

COPLN163

COPLN164

COPLNIOS

CORLN166

COPLN167

COPLN168

COPLN169

COPLN170

COPLN171

CDPLN172

COPLN173

COPLN176

COPLN17S

COPLN176

COPLN177

CDPLN178

COPLN179

..... FIRSY TIME THROUGH THE 00 LOOP ANGAIANOAoETC. AND OAAKIGAAK9ETCCORLN180

9.99. NEA' 71HE9 ANGA P ZPDPLUSA-ANGA9E1C. AND CAAKP-GAAK9ETC.

ANGA P FLOA112'KA8C1PANGAOFLOAT(KANC‘11.12.0PDPLUSA-ANDA1

ANGD P FLOA1(?'KABC1.ANGBOFLOAT(KAHC‘l1.12.0.OPLUSH‘AND'1

ANGC P FL0A1(2'KA9C1PANGCOFLOA1(KABC'11.12.0POPLUSC'ANOC1

GAAN P FLOATCJ‘Z”KAHC1'GAAK

GAB“ P FLOAT13‘29KA8C1PGABN

GACN P FLOAT‘J'Z'KABC1PGACK

ANGOEGC11 P ANGAPTODEGZ

ANGDEG‘Z1 P ANGBPVODEGZ

ANGOEG‘J’ P ANGCPTODEGZ

00 1A0 K8193

136 X! P ABSCANGDEGtK11-90.0

1'1X21 14091409137

137 ANGOEG‘K’ P ANGDEG(K)'SIGNC180.09ANO0EG‘K11

60 '0 136

1‘0 CONTINUE

NSOLPNSOL°1

PRIN' 602

PR1N7 6039N50L9ANGDEG

PRINT 604

PR1N' 6019ALA9BEA9GAA9AL89HE89GAB9ALC9HEC96AC

U11 P ALAOBEAK

'22 P ALA-BEAN

'12 P GAAK

H23 P (GAAKPCSFE-GA8K1/SNFE

01 P BEAK.(1.0‘CSFEZ1-2.0'HEBK

02 P HEAR.(1.0’CSS121-?.0'HECK

H33 P ALAO(01'5N251-02'SN2FE1/DEN

'13 P 101’5NS12-02’5NFE21/DEN

CALL DISPLAYC11

180 CON71NUE

00 to 200

..... FORBIDDEN ZONE ... 1? LAST STEP HAS 1N ALLOHED ZONE AND A

CROSSDVER SEARCH HAS NOT PERFORMED9 THEN CHECK FOR CROSSOVER POINT

AFYER RESETYING THE PREVIOUS VALUES OF ZTA9CSZTA9CSZTB9CSZYC.

190 1NDEX80

KLL=0

1F(KLLSV1 1929200

192 17(KSCHSV) 2009193

193 ZTAleA-SYEP

CSZYAICOSCZYA)

CSZYB I (ALB-ALAOZLHDAAOCSZTA)IZLMDAB

CSZYC I (ALC-ALA‘ZLHDAA'CSZTA)IILHDAC

GO TO 100

COPLNIBI

COPLNIBZ

COPLN183

COPLN186

CDPLNlBS

CDPLNIBO

COPLNIRT

COPLNIBO

CDPLN189

COPLN19O

COPLN191

COPLN192

COPLN193

CDPLN194

CDPLN195

CDPLN196

COPLN197

COPLN198

COPLN199

CDPLNZOO

COPLNZOI

COPLN202

CORLN203

COPLNZOQ

CORLNZOS

COPLNPOG

COPLN207

COPLN208

COPLN209

COPLNZIO

COPLNZII

COPLNZIZ

COPLN213

CORLNZIA

COPLNZIS

COPLNZIG

COPLNZIT

COPLNZIB

COPLNZI9

CORLNZZO

COPLN221

CDPLN???

COPLN273

CORLNZP6

COPLNBPS

COPLN226
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601 FORMATI37X9$HALPHA91IchHHETAoIZXoSHGAHHAo/loZAXQTHAXIS AloIFlégaoHONOC

C coo... NO CROSSOVER HAS BEEN FOUND: IF CROSS IS LESS THAN 0.09 ERROR COPLN227

19S IFICROSS) 19701970200 COPLNZZB

197 CROSSI°1.0 COPLN229

PRINT TDOONTRIESOEIoEZcE39ANGA9ANGBOANGC COPLN230

200 CONTINUE COPLN231

201 CONTINUE COPLNZJZ

PRINT 605 COPLN233

RETURN COPLNZJA

299 PRINT 701oZLHDAAcZLHDABoZLHDACvALAoALIvALCoX1oXZoXchXXZoXLOHERo COPLNZJS

XXUPPER COPLNZ36

RETURN COPLN237

END COPLNZJB

SUBROUTINE HONOCLN(PHI) NDNOC 1

C .0000. PHI IS IN DEGREES. HONOC Z

DIMENSION ANGOEG(3I NONOC 3

CONNON/PARAH/ALAcBEAoGAAoALBOBEfloGABoALCoIECoOAC HONOC k

CONNON/H/UII9H220U339U129H230H13 NONOC 5

DATA PI/3.16159265359/9TODEG2/Zao64788976/9TORAD/0.01745329252/o HONOC 6

DNTRIES/ZJ/ HONOC 7

C ALAQALBoALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES AoOoC. NONOC B

C BEAOBEBOBEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES AoBoC. HONOC 9

C GAAoGABvGAC ARE THE GAHHA PARAMETERS FOR ROTATIONS ABOUT AAES AoHoC. HONOC 10

C TODEGZ I 57.29577951/2o0 I (180/PI)/2. TORAD I PI/IBO. HONOC 11

600 FORHATCIHI. 37X925H..o. MONOCLINIC CASE o...9101¢6HPHI I 01F9.69 HONOC 12

A/IOJOXQZRHTHE ORIGINAL PARAMETERS ARE'. I) HONOC 13

16

15

C

603

60‘

82E16o9/IZAX07HAXIS 8!o1F16.802E16.9//ZQX0THAXIS C89F16.892E16.9I/)H0NOC

602 FORMAT(22X9 38HTHE STARTING-ANGLE ERRORS (IN DEGREES). lo 2219 HONOC

CZ9HABOUT THE THREE ROTATION AXESo/023X06HAXIS AoonbHAXIS 806K, HONOC

D6HAXIS C) HONOC

FORHATCJXoIZHSOLUTION No.9 IvaH... 9F9.49310F9.49310F9.6) HONOC

FORHATI/oJBXv ASHTHIS SOLUTION HAS THE FOLLOWING ALPHAoIETAoGAHHAoHONOC

E/o 38X061HPARAHETERS FOR THE THREE AXES OF ROTATION) HONOC

FORMAT(1027(SH I )9/I969XoZTH... END OF CALCULATIONS ...I HONOC605

700

FVERGE UITHIN o

FORHATI/lo 65H THERE IS AN ERROR. AN

GIONS AREo/o 6H E1 I 9E15o9obH E2 3 9E150906H E3 I 9E15o9o/0

H18H

1999

10

12

ANGAoANGRoANGC I 9 3E15o99/1

FORMATCITH ERROR IN HONDCLNo/o (9X96E15o99/I)

FE I PHI'TORAD

PRINT 6000PHI

PRINT 601oALAOBEAOGAACALBOBEBOGABQALCOBECvOAC

NSOL I 0

SNEE I SINCEEI

CSFE I COSIFE)

ACCUR I PI/IBDODoD

NTRIESI30

ZLHOAAISORT(PEAIIZ0GAAIIZI

ILHDABISQRT(FER’IZ‘GABIIZI

ILHDACISORT(BECI'2OGAC'IZI

OPLUSA I SIGN(RCOSIBEA/ZLNUAAIOGAA)

DPLUSB I SIGN(ACOSIBEB/ZLHDAHI95A.)

OPLUSC I SIGNLACOS(BEC/ZLMDACIQGACI

SNCHIC I (ALA-ALBI/IZLHDACISNFEI

IFIADS(SNCHICI-1.0) 8930999

CHIC I ASINISNCHICI

DO 80 KK'IOZ

ZETAC I FLOAT(2-KK)’(CHICOFEIOFLOAT(KR-1I'IPI'CHICOFE)

CSZTAC I COSCZETAC)

CSCHIB I (ALHOALC’ZoD’ALA-ZLNDAC'CSZIACI/ZLNDA.

IFIABSICSCHIB)-1o0) 109109999

CHIS I ACOSICSCHIB)

CSCHIA I (ALC-ALA-ZLHDAC'CSZTAC)IZLHDAA

IF(ABS(CSCHIA)-1.0) 120129999

CHIA I ACOSICSCHIAI

DO 80 LLIIOZ

ZETAA I CHIA

ZETAB I FLOATT3-2’LLIICHIB

ooo ANGAoANGBoANGC ARE THE (DOUBLE)-STARTINS-ANGLE-SHIFTS FOR

ITERATIVE PROCESS DID NOT CONHONOC

IkollH ITERATIONSo/o36H THE VALUE OF THE NULL FUNCTHONOC

HONOC

HONOC

HONOC

NONOC

HONOC

NONOC

HONOC

MONOC

HONOC

NONOC

NONOC

MONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC

HONOC
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C RDTATIONS ABOUT AXES AoBoC RESPECTIVELY. NONOC SO

ANGA I DPLUSA-ZETAA HONOC 59

ANGB I DPLUSH-ZETAB NONOC 60

ANGC I DPLUSC-ZETAC HONOC 61

JFLAGI0 NDNOC 62

GO TO 17 NONOC 63

15 ANGA I ANGAODELA HDNOC 66

ANGa-I ANGBODELB ' NDNOC 65

ANGC I ANGCODELC NONOC 66

17 CSR I COSIANGAI NDNOC 67

C58 I COS(ANGB) HONOC 68

CSC I COSTANGC) NONOC 69

SN‘ I SINIANGAI HONOC 7D

5N8 I SIN(ANGB) NONOC 71

SNC I SIN(ANGC) NDNOC 72

IEAKIBEAICSAOGAAISNA NONOC 73

IEBKIBEBICSBOGABISNB HDNOC 76

.ECKIBECICSCOGACISNC NONOC 75

GAAKIGAAICSA-BEAISNA NONDC 76

GABKIGAB'CSB-BEBISNB NONOC 77

GACKIGAC'CSC-BEC'SNC HONOC 78

E1 I ALC-BECK-ALA-BEAK HDNDC 79

E2 I ALC-BECKOALH-BEBK-Z.OIALA NDNDC 60

E3 I ALB-ALAOSNFE.(GACK'CSFE-BECKISNFEI NONOC 81

DELC I E3/(SNFE'(BECK'CSFEOGACK'SNFEII NDNOC 82

DELB I (E2°GACK'DELC)/GA8K NONOC B3

DELA I (EIIGACK'DELCIIGAAK HONOC 86

JFLAGIJFLAG01 HONOC 85

IFIJFLAG-NTRIESI 20019919 HDNOC 86

19 PRINT 7009NTRIESOE1oEZoE3oANGAoANGDcANGC NONOC 67

GO TO 25 NONOC 88

20 XXA I AHS‘DELA) NDNOC 89

XXB I ABS(DELBI NONOC 90

XXC I AHSIDELC) HONOC 91

XX I AHAXIIXXAQXXBDXXC) HONOC 92

IFIXX-ACCUR) 25025015 NDNOC 93

25 DO 80 HNIIOZ HONOC 96

C 0.... FIRST TIME THROUGH THE 00 LOOP ANGIIANGCOETCo AND GARKIGABKOETCNDNOC 95

C 0.... NEXT TIME. ANGB I 2°DPLUSBOANGIOETC. AND GABKI-GARKOETC. HONOC 96

ANGB I FLOATTZ-MHIIANGBOFLOAT(MN-11.12.0'DPLUSD-ANGDI HONOC 97

ANGA I FLOAT(2'HHIIANGA0FLOAT(NH-11.12.0'DPLUSA-ANGA1 NDNOC 98

GABK I FLOAT(3'2'NN)IGA8K HONOC 99

GAAK I FLOAT(3-2.HH1IGAAK HONOCIDO

ANGDEG(11 I ANGAOTODEGZ NONOCIOI

RNGDEGIZI I ANGBITODEGZ HONOCIOZ

ANGDEGI31 I ANGC'TODEGZ HONOC103

C CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS NAONITUDE IS LESS THAN 90 HONOC104

C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION. HONOCIOS

DO 50 KI193 HONOC106

‘6 X2 I ABS(ANGOEG(K))-90.0 HONOC107

IF(XZI 50950947 NONOCIOB

67 ANGDEGIK) I ANGDEGIKI-SIGN1180.09ANGDEG(KII NONOC109

. GO TO 66 HONOCIIO

50 CONTINUE HONOCIII ‘

NSOL=NSOL01 HONOCIIZ

PRINT 602 HONOC113

PRINT 6039NSOL0ANGDEG HONOCIIQ

PRINT 604 HDNOCIIS

PRINT 601oALAvBEAKoGAAKoALBOBEBKOGABKoALCoIECKoGACK HONOC116

U11 I ALAOBEAK NONOC117

H22 I ALA-BEAK HONOCIIB

N33 I ALCOBECK MONOC119

H12 I GAAK NONOC120

N13 I GACK HONOC121

N23 I (GAAK’CSFE-GABKI/SNFE HONOCIZZ

CALL DISPLAYIZ) HONOC123

80 CONTINUE HONOCIZA

PRINT 605 HONOC125

RETURN HONOC126
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999 PRINT I9999ALA9BEA9GAA9ALB9BE89OAD9ALC9OEC9GAC9BEAK9GAAK9BE'K9GABKHONOC127

K98ECK9GACK9E19E29E39DELA9DELB9DELC9ANGA9ANGI9ANGC9DPLUSA9DPLUSB9 MONOCIZB

BDPLUSC9ZETAA92ETAB9ZETAC9ACCUR MONOC129

RETURN MONOC130

END MONOC131

SUBROUTINE RHOMBIC RHOMB 1

DIMENSION ANGLESI39B)9LL(3)9LSIGN(39B)9LSI(3939B)9NSOLIB) RHOMB 2

COMMON/PARAM/ALA9BEA9GAA9ALBvBEBoGAB9ALC9IEC9BAC RHOMB 3

COMMON/N/UI19H229H339H1299239H13 RHOMB 6

DATA PI/3.16159265359/9TOOEGZ/28.64788976/9NTRIES/30/9KHA/1HA/9 RHOMB 5

DKHB/IHB/oKHC/IHC/9IY1/1/91Y2/2/9IY3/3/9IY6/4/9IYS/S/9IY6/6/9 RHOMB 6

DIY7/7/9IYB/B/ RHOMB 7

C ALA9ALB9ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A9B9C. RHOMB B

C BEA9BEB9BEC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A9B9C. RHOMB 9

C GAA9GAB9OAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES A9B9C. RHOMB 10

C TOOEG2 I S7.29S779SI/2.0 I (180/PI)/2. RHOMB 11

600 FORMAT11H19 37X927H.... ORTHORHOMIIC CASE ....9 ll939X9 ZBHTHE ORIRHOMB 12

AGINAL PARAMETERS ARE89/) RHOMB 13

601 FORMATI37X9SHALPHA911X9AHBETA912XoSHGAMMA9/I9ZAX97HAXIS AI91F16.B9RHOMB 16

B2E16o9l/26X97HAXIS B!91F16.892E16.9/l26X97HAXIS C'9F16.B92E16.9//)RHOMB 15

602 'ORHRTIZZXO 38HTHE STARTINGIANGLE ERRORS (IN DEGREESIO ’9 22X. RHONB 16

C29HABOUT THE THREE ROTATION AXES9/923X96HAIIS A96X96HAXIS B96X9 RHOMB 17

D6HAXIS C) RHOMB 16

603 FORMAT(3X912HSOLUTION No.9 IZ9AH... 9F9.493X9F9.493X9F9.6) RHONB I9

60‘ FORMAT(/9 27X962HTHESE B SOLUTIONS HAVE THE SAME ALPHA ANO IETA PARHOMR 20

ERAMETERS. THE9 l9 27X962HSIGNS OF THE GAMMA PARAMETERS ARE DIFFERRHOMB 21

EENT FOR EACH SOLUTION99/9 35X9 8(6HSOLTN )9/938X95HALPHA910X9 - RHOHB 22

ORHBETA915X95HGAMMA97X9B(9H NO.912)9/9 121X9SHAXIS 91A191HI9F16.89 RHOHH 23

H6X9E159995H I‘-)9E19.993X9 8(2H (91A193H) 19/11 RHOHB 2“

605 FORMATI/9 17X916HTHE H TENSOR I539 2X931E15.992X19//35X93(E15.99 RHOHB 25

I2X19/l35X93IE15.992X)9/1 RHONB 26

606 FORMAT! 7X9129HTHE SIGNS TO BE ASSOCIATED UITH THE ELEMENTS OF THERHOMB 27

J HITENSOR GIVEN ABOVE ARE ARRANGED IN A CORRESPONDING MATRIX FOR ERHOMB 28

KACH SOLUTION9 //9 2X9 8(SX99HSOLTN NO.912)9/9 3(9X9 8(3X91A191X9 RHOMB 29

L1A191X91A199BX19 l1) RHOMB 30

607 FORMATI 2X926HTHE RESULTS FOR SOLUTIONS 91191H91191H9I191H9II9 RHOHB 31

NIOH ORE GIVEN HELOH9/9 27ISH I )1 RHONB 32

608 FORMATI l9 19X941HABOVE ARE THE RESULTS FOR SOLUTION NUMBER9IZ9 RHOMB 33

NIH.9/9 19X982HTO OBTAIN THE OTHER SOLUTIONS9 CHANGE THE SIGNS OF ORHOMB 36

ONE COLUMN OF DIRECTION COSINES9/9 19X973HAND CHANGE THE CORRESPONDRHOHB 3S

PING COLUMN OF ANGLES BY SUBTRACTING 180 DEGREES.9 //9 (I9X919HFOR RHOMB 36

ISOLUTION NUMBER9 I29 29H CHANGE THE COLUHN UNDER AXIS9 129/)) RHOMB 37

609 FORMATIZTISH I )9/) RHOMB 38

610 FORMATIA9X927H... END OF CALCULATIONS ...) RHOMB 39

611 FORMAT(//936X924H... ERROR IN RHOMBIC! XZ91A1911H I COS(ZETA91A19 RHOMB 60

RAH) I 9IF10.6) RHOMB 41

612 FORMATISSX92OHHAS BEEN CHANGED TO 91F10.69/) RHOMB 42

700 FORMATI/l9 65H THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONRHOMB A3

SVERGE WITHIN 9 IA911H ITERATIONS9/936H THE VALUE OF THE NULL FUNCTRHOMR AA

TIONS ARE9/9 6H E1 I 9E15.996H E2 I 9E15.996H E3 I 9E15.99/9 RHOHB AS

U1BH ANGA9ANGB9ANGC I 9 3E15.99/) RHOMB A6

PRINT 600 RHOHH 67

PRINT 6019ALA9HEAQGAA9ALB9HEBOGA89ALC9BEC9OAC RHOHR 68

ACCUR I PI/IBOO0.0 RHOHB 69

ZLMDAAISORT(BEA'IZ’GAAIIZI RHOHB 50

ZLMDABISQRT(BEB'IZ‘GABIIZ) RHOMB SI

ZLHOACISQRT(HECIIZ‘GACIIZI RHOMR 52

DPLUSA I SIGN(ACOSIBEA/ZLHOAA)9GAA) RHOHH S3

DPLUSB I SIGN(ACOSIBEB/ZLHDAB)9GAB) RHOMH 54

DPLUSC I SIGNIACOSIBECIZLMOAC)9GAC) RHOHR 55

XZAIIALC-ALBIIZLMDAA RHONB 56

XZBIIALA-ALCIIZLMDAB RHONB S7

szIIRLBIALAIIZLHDAC RHOMR 58

KERROR I O RHOHH 59

C KERROR I (0911 IF EITHER XZA9XZB9OR XZC (HAS NOToHAS) BEEN CHANGED TO RHOHH 60

C TO ALLOU A SOLUTION TO EXIST. RHOMB 61

TV I AHS(XZA1 RHOHB 62

IFIYYI1901 49492 RHOMH 63

2 KERROR I 1 RHOMB 6A
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PRINT 6119KHA9KHA9XZA

XIA I SIGN(1909XZA)

PRINT 6129XZA

6 YY I ABSIXIB)

IFIVY'1901 89896

6 KERROR I 1

PRINT 6119KHB9KHB9XZB

A29 I SIGN(1.09XZB)

PRINT 6129XZB

O 77 I ABSIXZC)

IFIYY’I-O) 12912910

10 KERROR I I

PRINT 6119KHC9KHC9XZC

XIC I SIGN(1.09XZC)

PRINT 6129XZC

I2 IETAA I ACOSIXZA)

IETAB I ACOSIXZB)

IEIAC I ACOSIXZC)

P" I ‘IOO

DO 25 III192

PMIIPM

C 9999. ANGA9ANGB9ANGC ARE THE (DOUBLE)ISTARTINO-ANOLE‘SHIFTS FOR

C ROTATIONS ABOUT AXES A9B9C RESPECTIVELY.

RNGA I DPLUSA'SIGNIZETAA9PH1

ANGB I DPLUSBISIGNIZETAB9PM)

ANGC I DPLUSC-SIGNIZETAC9PM)

JFLAGIO

I5 CSAICOSIANGA)

CSBICOSIANGB)

CSCICOSIANGC)

SNRISINIANGA)

SNBISINIANGB)

SNCISINIANGC)

'ERNIBEAICSAOGAAISNA

'EBKIBEBICSBOGABISNB

DECKIBECICSCOGACISNC

GAAKIGAAICSA-HEAISNA

OABKIGABICSB-BEBISNB

GACKIGACICSC-BECISNC

E1 I ALC-ALB-BEAK

E2 I ALA-ALC-BEBK

E3 I ALB-ALA-BECK

DELA I EIIGAAK

DELB I E2/GABK

DELC I E3/GACK

C IF KERROR I 19 THEN HE CAN NOT FIND A SELF-CONSISTENT SOLUTION9 SO HE

C ALLOW THIS APPROXIMATION TO BYPASS THE CHECKING OF DELA9DELB9DELC.

IFIKERROR) 21917921

17 ANGAIANGAODELA

ANGBIANGRODELB

ANGCIANGCODELC

JFLAGIJFLAGOI

IFIJFLAG-NTRIES) 19919918

16 PRINT 7009NTR1E59E19E29E39ANGA9ANGB9ANGC

GO TO 21

19 XXA I ABSIOELA)

XXB I ABS(OELB)

XXC I ABS(DELC)

XX I AHAXIIXXA9XXB9XXC)

IFIXX-ACCUR) 21915915

21 IJIAIII'J

ANGLESI19IJ12ANGA

ANGLESI291JIIANGH

ANGLESI39IJ1=ANGC

25 CONTINUE

XAIIANGLESI1951-ANGLES(191I1/290

X8I1ANGLESTZ95)-ANGLES(291))/2.0

XCIIANGLES(3951-ANGLES(391I1/2.0

BEAKIZLMDAA'COSIXA)

RHOHB 6S

RHOMB 66

RHOMB 67

RHOMB 6a

RHOMB 69

RHOMR 7o

RHOMB 7|

RHOMB 72

RHOHB 73

RHOMB 76

RHOHB 7S

RHOHB 76

RHOMB 77

RHOHB 78

RHOHB 79

RHOHB so

RHOHB 8|

RHOHB 82

PHONE 83

RHOMB ah

RHOMB 85

RHOMB 86

RHOMB 87

RHOMB 88

RHOMB B9

RHOMB 9o

RHOMB 91

RHOMB 92

RHOMB 93

RHOHB 9a

RHOMB 9S

RHOHR 96

RHOHR 97

RHOMB 98

RHOMR 99

RHOMBIOO

RHpMBlOl

RHOHBIOZ

RHOMBIO3

RHOMRIOA

RHOMBIOS

RHOMRIO6

RHOMBIOT

RHOMBIOB

RHOMRIO9

RHOMBIIO

RHOMRIII

RHOMRIIZ

RHOMBIIJ

RHOMBIIA

RHOMBIIS

RHOMBII6

RHOMRIIT

RHOMBIIB

RHOMRII9

anonalzo

RHOMBIZI

RHOMBIZZ

RHOM8123

RHOMBIZA

RHOMBIZS

RHOMBI26

RHOMBIZ?

RHOMBIZB

RHOM9129

RHOHBIBO

RHOMBIBI

RHOMRIBZ

RHOMBI33

 ' J



C CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS MAGNITUOE IS LESS THAN 90

C DEGREES. TO ADD OR SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION.

27

28

30

62

AS

50

60
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GAAKIZLMOAA'SINIXA)

BEBKIZLMDABICOS(XB)

GABKIZLMOAB'SIN(XB)

DECKIZLMOAC'COS(XC)

GACKIZLMDAC‘SINTXC)

GAAB I ABSIGAAK)

GA88 I ABS(GABK)

GACB I ABS(GACK)

DO 30 KI19596

DO 30 JI193

XX I ANGLES(J9K)ITODEG2

X2 I A85(XXI-909O

IFIXZ) 30930928

XX I XX'SIGN(180.09XX)

GO TO 27

ANGLESIJ9K) I XX

DO 32 II193

LSIGNII91) I 1H0

LSIGNII95) I 1H0

IFIGAAK) 33934934

LSIGNIIOII I IN-

IFIGABK) 35936936

LSIGNI2911 I 1H-

IFIGACK) 37938938

LSIGNI391) I 1H-

DO 50 II193

MM I LSIGNTI911-1HO

IFIHM) 40939940

LSIGNII95) I 1”“

CONTINUE

LLIIIIOZ

LLI21I-2

LLI31I02

DO 65 I8I296

DO 62 IAI193

ANGLESTIA918) I ANGLESIIA93°LLIIA11

ANGLESIIA91894) I ANGLESIIA93ILLIIAII

LSIGNIIAoIB) I LSIGNIIA93°LLIIAII

LSIGNIIA9IBOA) I LSIGNIIA93-LLIIA))

ITILLI3)

LLI3IILL(2)

LLIZIILLIII

LLIIIIIT

CONTINUE

DO 50 II198

LSOII919III1HO

LSOI2929I)‘1H°

LSOI3939I)I1HO

LSOII929I) I LSIGNI19I)

LSOI2919I) I LSIGNII9I)

LSOII939I) I LSIGNI39I)

LSOI3919I) I LSIGN(39I)

LSOIZ939I) I LSIGN129I)

LSOI3929II I LSIGNIZvII

CONTINUE

H11 I ALAOBEAK

H22 I ALROBEHK

H33 I ALCOBECK

H12 I GAAK

H23 I GABK

H13 I GACK

DO 60 II198

NSOLII) I I

PRINT 602

PRINT 6O39III9IANGLESIJ9I)9J=193))9II198)

PRINT 6OA9NSOL9KHA9ALA98EAK96AAH9(LSIGNI19KI9NI19819

1KH89AL898E8K9GABR9ILSIGNIZ9KI9K=1981 9KHC9ALC9HECK96AC89

RHOMBI36

RHOMBIJS

RHOMBI36

RHOM8137

RHOMRIJB

RHOM8139

RHOHBIAO

RHonnlhl

RHOMBIAZ

nHonele

RHOMBIAA

RHOMRIAS

RHOMBlbb

RHOMBIA7

RHOMBIAB

RHOM8169

RHOMBlSO

RHOMBISI

RHOMBISZ

RHOMBISJ

RHOHBISA

RHOHBISS

RHOM8156

RHONBIS?

RHOHBISB

RHOM8159

RHON816O

RHOMBI61

RHOMBI62

RHOMRI63

RHOM816A

RHOM8165

RHOMBI66

RHOM8167

RHOMfilbfl

RHOM8169

RHOMBI70

RHOHBI71

RHOMBI72

RHOMBIT3

RHOMBITA

RHOMRI75

RHOMBI76

RHOMBI77

RHOMBI78

RHOMBIT9

RHOMBIBO

RHOMBIRI

RHOMBIRZ

RHOM9183

RHonalea

RHOMBIBS

RHOH8186

RHOM8187

RHOMBIBB

RHOM8189

RHOM8190

RHOMRI9I

RHOM8192

RHOMBI93

RHOMRIQA

RHOMBI9S

RHOMnl96

RHOMRI97

RHOMRI9H

RHOMRI99

RHOMRPOO

RHOMBEOI

RHOMRZOZ
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0
0
6
0
6
6

n
o
n

2(L5IGNI39K)9K=198) RHOMB203

PRINT 6059H119GAAB9GACB9GAA89H229GABB9GACI9GAID9H33 RHOHBZO“

PRINT 6069NSOL9(((LSO(I9J9K)9J=193)9KI198)9II193) RHOHBZOS

PRINT 6079IY19IY291Y39IY0 RHOH8206

CALL DISPLAY(3) RHOMBZO7

PRINT 6089IY19IY29IY19IY391729IY49IY3 RHOMBZOB

PRINT 609 RHOMB209

H12I-H12 RHOMB210

H23IIH23 RHOMBZII

H13IIH13 RHOMB212

PRINT 6079IYS9IY69IY79IY8 RHOM8213

CALL DISPLAY(3) RHOM8216

PRINT 6089IYS9IY69IYI9IY79IY29IY89IY3 RHOM8215

PRINT 609 RHOM8216

PRINT 610 RHOM8217

RETURN RHOM8218

END RHOM8219

SUBROUTINE GENERAL(PHI9NN19NN29NN3955195529553) GENER 1

999999 PHI IS IN DEGREES. GENER 2

NN19NN29NN3 ARE THE DIRECTION COSINES HITH RESPECT TO AXES 19293 GENER 3

RESPECTIVELY OF THE ARBITRARY ROTATION AXIS C. GENER I

55195529553 ARE THE DIRECTION COSINES HITH RESPECT TO AXES 19293 GENER 5

RESPECTIVELY OF THE STARTING DIRECTION FOR THE ROTATION ABOUT AXIS C GENER 6

NEITHER (NN19NN29NN3) NOR (55195529553) NEED 8E NORHALIZED. GENER 7

REAL H19H29H39MH19MM29HH39N19N29N39NN19NN29NN39ANGDEG(3) GENER 8

COHHON/PARAM/ALA98EA9GAA9ALB9BE89GA89ALC9'EC9GAC GENER 9

COHHON/H/HI19H229H339H129H239H13 GENER 10

DATA PI/3.16159265359/9TODEG/57.29577951/9TODEG2/28.6A788976/9 GENER 11

DTDRAD/OoOI765329252/9NSTEP/360/9NTRIES/15/ GENER 12

ALA9AL89ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A9B9C. GENER 13

8EA98E898EC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES A9B9C. GENER I“

GAA9GAB9GAC ARE THE GAMMA PARAMETERS FOR RDTATIONS ABOUT AXES A9B9C. GENER 15

600 FORHAT(1H19 AOX922H.... GENERAL CASE ....910X96HPHI I 91F9.69//9 GENER I6

A39X928HTHE ORIGINAL PARAMETERS AREI9I) GENER 17

601 FORHAT(37X95HALPHA911X9AHBETA912X95HGAMMA9l/924X97HAXIS A391F16.B9GENER 18

82E16o9/I2AX97HAXIS 8191F16.892E16.9//2AX97HAXIS C89F16.892E16.9//)GENER 19

602 FORNAT(28X9 72HTHE VECTOR (N19N29N3) REPRESENTING THE DIRECTION OFGENER 20

C AXIS C 15 GIVEN AS (91F9.691H91F9.691H91F9.691H)9/9 69X931HTHIS IGENER 21

D5 NORMALIZED TO PRODUCE (91F9.691H91F9.691H91F9.691H)) GENER 22

603 FORHAT(100H THE VECTOR (51952953) REPRESENTING THE STARTING OIRECTGENER 23

EION FOR A ROTATION ABOUT AXIS C 15 GIVEN AS (91F9.691H91F9.691H9 GENER 26

F1F9.691H)) GENER 25

60A FORHAT(84H THIS VECTOR IS PROJECTED ONTO THE PLANE PERPENDICULAR TGENER 26

GO (N19N29N3) AND NORMALIZED.9/976X9 ZAHTHESE CORRECTIONS GIVE (9 GENER 27

H1F9o691H91F9.691H91F9.691H)9/9 AOX960HTHE STARTING-DIRECTION VECTOGENER 28

IR (51952953) 15 NOH CHANGED TO (91F9.691H91F9.691H91F9.691H)) GENER 29

605 FORHAT(60X917HBY A ROTATION OF F9.A925H DEGREES ABOUT (N19N29N3)/)GENER 30

606 FORHAT(43H THIS CHANGES THE FOLLOWING THO PARAMETERSI9/9 35H BETAGENER 31

J FOR ROTATION ABOUT AXIS C I 91E15.99/935H GAMMA FOR ROTATION AROUGENER 32

KT AXIS C I 91E15.99//) GENER 33

607 FORHAT(22X9 38HTHE STARTING-ANGLE ERRORS (IN DEGREE519 I9 22X9 GENER 39

L29HABOUT THE THREE ROTATION AXES9/923X96HAXIS A96X96HAXIS 896X9 GENER 35

H6HAXIS C) GENER 36

608 FORMATI3X912HSOLUTION N099 I204"... 0F90493XOF9.“93XOF994I GENER 37

609 EORHAT(/936X9 “BHTHIS SOLUTION HAS THE FOLLOHING ALPHA98ETA9GAHHA9GENER 38

N/9 36X941HPARAMETERS FOR THE THREE AXES OF ROTATION) GENER 39

610 FORHAT(/927(SH I )9//949X927H9.. END OF CALCULATIONS ...) GENER 60

700 FORHATI/I9 65H THERE IS AN ERROR. AN ITERATIVE PROCESS DID NOT CONGENER AI

OVERGE HITHIN 9 IA911H ITERATIONS9/936H THE VALUE OF THE NULL FUNCTGENER 62

PIONS ARE9/9 6H E1 I 9E15.996H E2 I 9E15.996H E3 I 9E15.99/9 GENER 63

018H ANGA9ANGB9ANGC I 9 3E15.99/) GENER 66

1999 FORHATI19H ERROR IN GENERAL! 92169/9(39X93E15.99/) ) GENER 65

FE I PHI'TORAD GENER 66

NSOL I 0 GENER A7

ABSTEPIPI/FLOAT(NSTEP) GENER 68

STEPIABSTEP GENER A9

ACCUR=STEPIIOOO0.0 GENER 50

CONV I 3.09ABSTEP GENER 51

PRINT 6009PHI GENER 52
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PRINT 6019ALA98EA9GAA9ALB9BEB9GA89ALC98EC9OAC GENER 53

999.9 NORMALIZE (NN19NN29NN3) TO FORM (N19N29N3) 9.. GENER 54

RENORN . SORT (NN 1 .NNI ONNZ'NNZ’NNB'NNJ) GENER 55

I'(RENORN) “9999 GENER 56

6 NI'NNIIRENORN GENER 57

N2'NNZ/RENORH GENER 58

N33NN3/RENORM GENER 59

PRINT 6029NN19NN29NN39N19N29N3 GENER 60

PRINT 603955195529553 GENER 61

99999 PROJECT (55195529553) ONTO THE PLANE PERPENDICULAR TO THE GENER 62

VECTOR (N19N29N3) ..9 GENER 63

DCSN ' 551'N1’552'NZ’553’N3 GENER 66

551‘551-0CSN'N1 GENER 65

SSZ'SSZ'DCSN'NZ GENER 66

553'553-DC5N0N3 GENER 67

99999 NDRHALIZE THE NEH (55195529553) GENER 68

RENORH ' SORT(551.551’552'552’553'553) GENER 69

IE(RENORM) 59999 GENER 70

5 SSI'SSIIRENORH GENER 71

SSZ’SSZ/RENORN GENER 72

5533553/RENORM GENER 73

99999 FORM (HM19MH29HH3) FROM (NI9N29N3) CROSS (55195529553) 99. GENER 76

HHI'NBPSS3’N3'SSZ GENER 75

HHZ'N3'SSI'NI'SS3 GENER 76

HH33NIPSSZ'N2'SSI GENER 77

..9.. CHANGE TO A NEH STARTING DIRECTION (51932953) UHERE S3l0.0 AND GENER 78

A CORRESPONDING NEH MIDDLE DIRECTION (N1.N2.N31 ... GENER 79

Trtuna) 6.999.6 GENER so

6 1r15531 8.7 GENER a1

7 MllMHI GENER 82

NZINMZ GENER 83

N3-MN3 GENER 86

518551 GENER 85

52.552 GENER 86

538553 GENER a?

BECSaeEC GENER 88

GACSIGAC GENER 89

x1 I 0.0 GENER 90

GO TO 18 GENER 91

8 ALNOA - SORTTSS3'SS39HM3'MM3) GENER 92

51 . (SSloMNT-SSJPMN11/ALNDA GENER 93

52 . (SSZOMM3-5S3'MH21/ALHDA GENER 99

53 h 0.0 GENER 95

N1 - (SSI'SSJOMMI'HM311ALMDA GENER 96

N2 I (552-5530NN20NN31/ALNDA GENER 97

N3 9 ALNOA GENER 9a

TANK! . ~553/NN3 GENER 99

x1 x ATAN(TANXI1OTODEG GENERloo

IFJNMJ) 10.10.15 GENERIOI

10 x1 = x1-516N11eo.o.5531 GENERloz

x1 15 THE AuGLE OF ROTATION ABOUT (N19N2.N31 To PRODUCE (51.52.53). GENERIOJ

..... NEH BETA AND GAMMA PARAMETERS FOR ROTATION AIDUT Asz c. GENERloa

OLD VALUE: BEC.GAC ARE ASSOCIATED HITH (551.552.5531... GENER105

NEH VALUES BECS.GACS ARE A55OCIATED HITH (51.82.53). GENER106

15 DECS s (RECO(NN3-02—5530-21-2.O'GAc-NN3-593)/(ALNDA~ALNDA1 GENERlOT

GACS : (GACGTNN30-2-5530-21o2.0°85c-NN30551)/(ALNDA-ALNDA1 GENERloe

18 PRINT 609.55195529553.Sl.52.53 GENER109

PRINT 605.x1 GENER110

PRINT 606.85C5.GAC5 GENER111

ILNOAA-SORT(REA-ozoGAAo-21 GENER112

ILMDABISORT(BEB'GZOGA89'21 GENER113

ZLMDACISORT(HECS'°ZOGACS"2) GENERlla

DPLUSA . SIGN(Acos<REA/2LMDAA1.GAA) GENERIIS

OPLUSB - SIGN(Ac05(REa/2LNDA81.GAD) GENER116

DPLUSC - SIGN(Ac05(BECSI2LMOAc1.GACS) GENER117

SNFE . SIN(FE1 GENER118

csre x COS(FE1 GENER119

SNZFE - SIN(2.0'FE1 GENER120

SNFEZISNFE"? GENERIZI

3
5
“
.
"
!



0
0
0
0
0
0
0
5
6
0
0
6
0

156

CSFEZ‘CS'E"?

.ElK'BEA

'EBK'BEB

BECK'BECS

GA‘K3G‘A

GABK‘GAB

G‘CK3GACS

CH!" 3 (ALA'ILB’ZLHDAB)/ZLMDAA

CN‘X 3 (AL‘-‘L8’ZLHDAB)/2LNOAA

CH1N 3 AHAXICCMINO'loO)

CH‘X 3 ANINI(CHAX.01.O)

XNAX 3 ACOS(CH!N’

X"!N 3 .COS(CNAX,

IBEG 3 ‘FtX‘XNIN/STEP,

[END 3 I'IX(‘H‘X/SYEP).‘

IF(IEND'lBEG) 9990999020

20 DO 20‘ Itl3‘02

STEP 3 “STEP

PNB 3 .‘00

PNC ' -100

00 201 LNN3‘0‘

‘3PNB

PNB3-PNC

PNC3'

KLL'O

KSCH30

INDEX'O

CROSS3°loo

DO 200 I'lHEGOIEND

00000 ‘NDEX 3 NUMBER OF SVEPS ‘N ‘LLO'EO “[010".

00000 KLL ' 0 FORBIDDEN REGION

00000 KLL 3 l ALLOWED REGION

00000 KLLSV 3 VALUE OF KLL FOR PREVIOUS-STEP. ENTERlNG INC 00 L009

00000 KSCH 3 (001’ IF SEARCH FOR CROSSOVER (DOES NOIODOES. OCCUR0

00000 KSCHSV 3 V‘LUE 0F KSCH FOR PREVIOUS STEP0

FOR 'HE FIPSY T!HE CAUSES KLLSV 10 SE SE! to 00

00000 CROSS [5 LESS THAN 0R EQUAL 10 000 ONLY IF ‘ CROSSOVER IS TO

BE SE‘RCHED '09.

00000 FUNC 3 VEST FUNCTION 3 E30 HE SEARCH FOR THE ZERO V‘LUESO

00000 SFUNC 3 L557 VALUE OF FUNC

00000 SSFUNC 3 SECOND To YHE LAST V‘LUE 0' FUNC

ZYA3FLOAV(I).STEP

CSZYA3C05(ZTA)

KLLSV3KLL

KSCHSV'KSCH

KSCH30

SSFUNc3S'UNC

SFUNC’FUNC

CSZTBB(ZLMDAA'CSZTAOALB-ALA)IZLHDAB

1F‘IBS(CSZTB)-100) 380380190

38 SNZTA 3 SIN‘ZY"

GENERIZZ

GENERIZJ

GENERIZQ

GENERIZS

GENERIZO

GENERIZ?

GENERIZO

GENERIZ9

GENERIJO

GENERIJI

GENERIJZ

GENEPIBJ

GENERIJ“

GENEPIJS

GENER136

GENER137

GENERIJB

GENERI39

GENERIbO

GENERlb‘

GENERIbZ

GENERle

GENERIbb

GENERIhS

GENERIhb

GENERIb?

GENERIbB

GEN£R|69

GENERISO

GENERISI

GENERISZ

GENERIS3

GENERISA

GENERISS

GENERIS6

GENERIST

GENER158

GENERIS9

GENERIbO

GENERI6I

GENER162

GENER163

GENERlbh

GENERI6S

GENERI66

GENERl67

bGENERle

GENERI69

GENERI70

GENERl7l

GENERI72

CSZTC8(ZLMDAA'((2.'Sl'Sl-l.)'CSZTA°2.'SIOSZ'SNZTA)OALA-lLC’IZLHDACGENEPl73

IFCABS(CSZTC)-l.0) 399390190

C 0000000 ‘LLOHEO ZONE 00000

C

39 KLL'I

lNOEX3iNDEX’1

00000 C‘LCULAVE FUNC 000

SNZTB 3 SIGN((SQRT‘loO‘CSZTB..2’)IPNB,

SNZ'C 3 SIGN((SORT(10°'CSZTC..2))OPNC’

ach . ZLHDAAOCSZTA

aeex . ZLHDAR'CSZTB

atcx - ZLHDAC'CSZYC

GAAK 3 ZLMOAAOSNZTA

GABK - zLqunosnzre

GACK 8 ZLMDAC'SNZYC

9233(GAAK'CSFE-GABK)ISNFE

H133(GACK02.0'BEAK'SZ'M2-GAAK0($19M20520Hl)-U23'SZ'H3)/(SI'H3)

U33=CALBOBEBK-(ALAOBEAK)'CSFE20H13“SN2FE)/SNFEZ

GENERI?“

GENEPI7S

GENERI76

GENERI77

GENERITB

GENERI79

GENERIBO

GENERIRI

GENERIBZ

GENERIBJ

GENERIBQ

GENERIBS

GENFRlfib

GENERIBT

GENERIBB

GENERIB9

FUNC'RLAO(1.0-M39'Z)OBEAK*(H10¢2-M2“’2)02.0‘6AAK9H1.H20?.0’H23'M2'GENER190
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'H39200'H13."!CHJOHJJ'HJO'Z-ALCOBECK

0000. 1' LAST STEP HAS IN THE FORBIDDEN RE01ON0 CHECK 'OR CROSSOVERo

1F1KLLSV1 500100

00000 1' TNDEX310 THIS 15 THE VIRST STEP AND ANOTHER STEP TS TAKEN.

1F 'UNC30.00 THEN THIS HILL DE DETERMINED IV THE PRODUCT S'UNC'FUNC‘

50 1F(1NDEX-1) 2000200052

52 CROSS 3 SFUNC'FUNC

00... 1' CROSS TS NEGATIVE OR zERO0 A CROSSOVER HAS OCCUREDo

1F1CROSS) 100010005“

00000 1NDEX MUST BE AT LEAST 3 FOR THE FOLLOHING CHECK T0 IE VALID

5. 1F11NDEX-3) 200056056

00000 HE TEST TO SEE IF THE FUNCTION HAS A'PROACHED TOHARD AND THEN

RETREATED FROH THE VUNC30o0 AAISo THERE ARE THO CONDITIONS THAT

MUST BE NET FOR THIS TO HAVE OCCURED.

(110 (FUNC‘SFUNC1‘(SFUNC-SSFUNC) MUST BE LESS THAN OR ECUAU T0 ZERO

(Z10 FUNC.(FUNC-SFUNC) MUST BE GREATER THAN 0R EDUAL T0 ZERO.

56 CHECK 3 (FUNC-SFUNC).(SFUNC-SSFUNC)

IFTCHECK) 580580200

50 CHECK 3 'UNC'(FUNC-SFUNC1

1FCCHECK1 20001000100

000000 ROUTTNE FOR SEARCHING FOR CROSSOVER ROTNTS 00000000

CALCULATE THE THREE ANGLES ABOUT HHICH THE SEARCH 15 TO DE01N

00000 ANGA0ANGB0ANGC ARE THE (DOUBLE)-START1NC-ANGLE'SH1FTS FOR

ROTATIONS ABOUT AXES AOBOC RESPECT1VELY.

100 KSCH31

ANGA 3 DPLUSA¢ZTA

ANGB 3 DRLUSB'SIGNCACOS(CSITD)0PM.)

ANGC 3 DRLUSC-S1GNCACOS(CSZTC10PNC)

JFLAG'O

GO TO 112

110 ANGAIANGAODELA

ANGBSANGBODELB

ANGCSANGC.DELC

112 CSA=COS(ANGA)

CSB=COS(ANGB)

CSC3COS(ANGC1

SNA351NTANGA1

5N8351N1ANGB1

SNC3S1N(ANGC)

DEAK38EA9CSAOGAA.SNA

BEBK3BEB'CSBOGAB.SNB

DECK3BECS’CSCOGACS'SNC

GAAK'GAA'CSA-BEA'SNA

GADK‘GAD'CSD-BEB'SNB

GACK3GACS‘CSC-BECS’SNC

H113ALA°BEAK

HZZ3ALA-REAK

H123GAAK

H23315AAK'CSFE'GABK)/SNFE

H133(GACK02.098EAK°SZ°HZ-GAAK.(Sl'MZ‘SZ'Hl1-H23'529H31/1513H3)

HJJ'TALHOHEBK-(ALA08EAK1.CSFE2°H13°SN2FE1ISNFEE

E13AL8-BEHK-ALAOHEAK

E23ALA°BEAK’(2o0’Sl.'2-1.0).2.0'GAAK“SI.SZ'ALC-IECK

GENER191

GENERI92

GENER1§3

GENERIQ“

GENERI¢5

GENERIQO

GEN£9197

GENER19O

GENERI99

GENERZOO

GENERZOI

GENERZOZ

GENER203

GENERZOb

GENERZOS

GENERZOO

GENERZOT

GENERZOB

GENERZO9

GENERZIO

GENERZII

GENERZIZ

GENERZIJ

GENERZIb

GEMERZIS

GENERZIG

GENERZIT

GENERZIO

GENER219

GENERZZO

GENERZZI

GENERZZZ

GENERZZ3

GENER220

GENERZZS

GENERZZb

GENERZZ?

GENERZZB

GENERZZ9

GENERZ30

GENERZJI

GENERZ3Z

GENERZ33

GENERZJh

GENERZJS

GENER236

GENER237

GENERZJB

GEN69239

GENE926O

GENE9261

GENE926Z

GENERZAJ

E3’ALA'11o0‘M39'21OBEAK'(H1"2-H2"2)02oO'BAAK'N1“M202.O'HZJ'HZ'HJGENERZAA

E02o0'H13°M1'M39H33‘H3"2-ALCOBECK

BB'El/GARK

DBPSGAAKIGABK

CC'EZ/GACK

CCP'IGAAK9(2.0'SI"Z-1.01-2o0'BEAKOSl'521/OACK

PPIBEBK'HBISNFE

PPPI(BEBK'BBD-BEAK’CSFE)ISNFE

003-(BECK’CC0PP'SZ'H3)[(SI‘HJ)

GENERZAS

GENERZhb

GENER267

GENERZAB

GENER249

GENERZSO

GENERZSI

GENERZSZ

OOP=C-BECK'CCPOZ.'GAAK‘SZ'HZOBEAK9(Sl'HZ'SZ'Hl1-PPP'52'H3)[($1'H3166NER253

Rna(61ooo-SN2FE)/snr£2

RRP=GAAK0(2.0'OOPOCSFE/SNFE)

r1 2 -EJ-£2-RR~M3-°2-2.o0pp»H2-M3-2.o-000uloua

r2 2 GAAK-(n1-uzosn-«2-Mzo-2-szooz)-2.o-Ieaxo(Ml-M2o51052)o

r Rap-uaouzoz.o-ppp-nzonaoz.oooopoun-ua

DELAIFl/FZ

GENE9296

GENERZSS

GENE9256

GENERZS7

GENE9258

GENERZS9
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DELB3BBODBP'DELA

DELC3CC0CCP°DELA

XXA I ABS(DELA)

IFIJFLAG) 11401140119

11‘ IFIXXA-CONV’ 11901190115

115 IFICROSS) 11901190200

[19 JrLAG-JFLAGol

IFIJFLAG-NTRIESI 12001200195

120 SKI 3 ABSIDELB)

XAC 3 ABS(DELC)

XX 3 AMAXIIXXA0XXB0XXC)

IFIXX-ACCHR) 13001300123

123 IFIXXA-ABSTEPI 1250125012“

123 DELA 3 SIGN(ABSTEP0DELA)

125 IFIXXB-ABSTEPI 12701270126

126 DELD 3 SIGN(ABSTEP0DELB)

127 IFIXXC-ABSTEP) 11001100128

120 DELC 3 SIGNIABSTEP0DELCI

GO TO 110

130 ANGDEGIl) 3 ANGAOTODEG2

ANGDEGIZ) 3 ANGB'TODEGZ

ANGDEGI3) 3 ANGC'TODEG2

CHANGE THE STARTING-ANGLE SHIFT SO THAT ITS HAINITUDE

DEGREES. TO ADD 0R SUBTRACT 180 DEGREES DOES NOT AFFECT THE SOLUTION.

DO 140 K3103

136 X2 3 ARS(ANGDEG(K))-90.0

IF(XZT 14001400137

13? ANGDEG(K) 3 ANGDEG(K)-SIGN(180.00ANGDEGIK))

GO TO 136

160 CONTINUE

NSOL'NSOLOI

PRINT 607

PRINT 6080NSOL0ANGDEG

PRINT 609

PRINT 6010ALA0BEAK0GAAK0AL80BEBK0GA8K0ALC0DECK0GACK

CALL DISPLAY(A)

GO TO 200

0.00. FORBIDDEN ZONE ... IF LAST STEP HAS IN ALLOHED ZONE AND A

THEN CHECK FOR CROSSOVER POINT

AFTER RESETTING THE PREVIOUS VALUES 0' lTA0CSZTA0CSZTB0CSZTC.

CROSSOVER SEARCH HAS NOT PERFORMED0

190 INDEX30

KLL30

IFIKLLSV) 1920200

192 IFCKSCHSV) 2000193

193 ITAIZTA-STEP

CSZTA!COS(ZTA)

SNZTA I SIN(ZTA)

CSZTB'(ZLHDAA¢CSZTAOAL8-ALA1IZLHDAI

IS LESS THAN 90

GENERZ60

GENERZ61

GENER262

GENER263

GENERZOA

GENERZbS

GENERZOO

GENERZ67

GENERZOO

GENER269

GENERZTO

GENERZTI

GENERZTZ

GENERZTJ

GENERZTb

GENERZTS

GENER276

GENERZTT

GENER278

GENER279

GENERZBO

GENERZRI

GENERZBZ

GENER283

GENERZBA

GENERZBS

GENER286

GENERZBT

GENERZBB

GENERZR9

GENER290

GENER29I

GENER29Z

GENER293

GENER29A

GENER29S

GENER296

GENER297

GENER298

GENER299

GENERJOO

GENERJOI

GENERJOZ

GENER303

GENERJOA

GENER305

GENER306

GENER307

CSZTC'IILHDAA.((2.“51'51-1.1'CSZTA92.'SIPSZ'SNZTA)OALA-ALCTIZLMDACGENER308

GO TO 100

...... NO CROSSOVER HAS BEEN FOUND.

195 IVCCROSS) 19701970200

197 CRO$S=°1.0

PRINT 7000NTRIES0E10E20E30ANGA0ANGD0ANGC

200 CONTINUE

201 CONTINUE

PRINT 610

RETURN

999 PRINT 19990IREG0IEND0RENORM0NN10NN20NN30SSI0SSZ0SS30HM10MH20HH30

IF CROSS 15 LESS THAN 0.00

GENER309

GENER310

GENER311

GENER312

GENER313

GENERJIA

GENER315

GENER316

GENERJIT

GENER318

PXHIN0XHAX0CHIN0CHAX0STEP0ZLHDAA0ZLHDAR0lLHDAC0DPLUSA0DPLUSB0DPLUSCGENER3I9

RETURN

END

SUBROUTINE DISPLAY(INDEX1

DIMENSION H(30310R(303)0RA(303)0EIGI31

COHHON/H/HI10H220H330H120H230H13

DATA TORAD/57.Z9577951/

100 FORHAT(20X016HTHF H TENSOR ISC0ZX03IE16.901X)0//038X03(516.901X10

A/I038X03IE16.901X10/1

101 FORHAT113X0 IITHEACH OF THE PRINCIPAL VALUES (HHICH ARE THE SQUAREDISPL

GENERJZO

GENER32I

DISPL

DISPL

DISPL

OISPL

OISPL

DISPL

N
O
W
’
U
N
H
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B ROOTS OF THE EIGENVALUES) HAS A PRINCIPAL AXIS ASSOCIATED UITH ITDISPL

C.0 l0 13X0118HTHE DIRECTIONS OF EACH PRINCIPAL AXIS ARE GIVEN BY TDISPL

ONE PROJECTIONS OF THIS AXIS (I.E. DIRECTION COSINEST ON THE 3 AXESDISPL

E0 /0 13X0110HOF THE ORIGINAL COORDINATE SYSTEM0 AND THE ANGLE BETHDISPL

FEEN THIS PRINCIPAL AXIS AND THE 3 COORDINATE SYSTEM AXES.0 IT DISPL

102 FORMATI 69X025HDIRECTION COSINES IETUEEN0 8X027HANGLES (IN DEGREESDISPL

61 BETHEENO ’0 56X09HPRINCIPAL04X022HTHE PRINCIPAL AXIS ANDOIIXO

HZZHTHE PRINCIPAL AXIS AND0/056X06HVALUES08X06HAXIS 105X06HAXIS 20

I§X06HAXIS 307X06HAXIS 105X06HAXIS 20SX06HAXIS 3 T

DISPL

DISPL

DISPL

103 FORMAT(3(1028X022HPRINCIPAL AXIS NUMBER 01102H I0F13.90ZX0FB.60ZX0DISPL

JF8060210F80606H 9 0F80403X0F8.403X0F8.“0/10/1

.1101) 3 III

HI1021 3 H12

NI1031 3 H13

.12011 3 H12

HI2021 3 H22

H(2031 3 U23

HI301) 3 U13

UI3021 3 N23

UI303T 3 H33

IFIINDEX-3T 10201

I PRINT 1000IIUII0JT0J310310I3103)

0.... OIAGI RETURNS THE EIGENVECTORS IN THE COLUMNS OF R ...

2 CALL DIAG1(30101.0E-80H0R0EIGT

DO 3 13103

3 516(1) 3 SORTIEIGIITI

DO 10 13103

00 10 J3103

XX 3 RIIOJT

YY 3 ABSIXXT

IFIYY-1001 1001008

8 XX 3 SIGN(1000XX)

10 RAII0JT 3 ACOSIXXI'TORAD

PRINT 101

PRINT 102

0.00.THE EIGENVECTORS ARE PRINTED OUT IN ROHS ...

PRINT 1030III0EIGIIT0IRIJoIT0J=103T0IRAIJ0IT0J3103TT0I3103)

RETURN

END

SUBROUTINE DIAGI(NSIZE0IFLAG0ERROR0A0R0EIDT

DIMENSION AI303T0RI303T0TTI303T0EIGIJT

INPUT! NSIZE0IFLAG0ERROR0AINZ0NZT. OUTPUT! RINZoNZT0EIGINZT.

NEED ONLY THE TOP HALF AND DIAGONAL OF MATRIX AINSIZEONSIZE1.

OIAGI DIAGONALIZES REAL SYMMETRIC MATRICES HHOSE DIMENSIONS ARE LESS

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DISPL

DIAG

DIAG

DIAG

DIAG

DIAG

THAN OR EOUAL TO THOSE IN THE DIMENSION STATEMENT. IT DOES NOT DESTROYDIAG

INPUT. IT USES THE JACOB! METHOD HITH A A-SOUARE ROOT METHOD FOR

EVALUATING COS AND SIN. A SINGLE-PRECISION SQUARE ROOT IS USED. IT

SEARCHES FOR ABSOLUTE VALUES LESS THAN RHO HHICH IS PROGRESSIVELY

REDUCED. IF IT IS TOLD TO DOUBLE-CHECK THE ANSHER0 IT DOES SO BY

SEEING IF THE ABSOLUTE VALUE OF ANY OFF-DIAGONAL ELEMENT IS GREATER

THAN ERROR. IF 500 DIAGI CONTINUES THE JACOB] PROCESS.

NSIZE0 THE SIZE OF THE MATRIX UHICH MUST HE .LE. N20 UHERE NZ IS THE

DIMENSION USED IN A(NZ0NZT0R(NZ0NZ)0TT(NZ0NZ)0EIGINZT.

IFLAG3IO0IT0 (NO0YES) THE DIAGONALIZATION SHOULD BE DOUBLE-CHECKED.

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

ERROR0 THE LARGEST ALLOHED ARSOULUTE VALUE OF AN OFF-DIAGONAL ELEMENTDIAG

IN THE MATRIX FORMED BY MULTIPLYING RAR(-IT. .

AINI0NZT0 THE INPUT MATRIX CONTAINING A(NSIZE0NSIZE) HHICH IS THE

REAL SYMMETRIC MATRIX TO BE DIAGONALIZED.

RINZ0NZT CONTAINS RINSIZE0NSIZE) UHICH IS THE OUTPUT UNITARY MATRIX

UITH THE EIGENVECTORS IN THE ROHS.

EIGINZT CONTAINS EIG(NSIZET WHICH IS THE OUTPUT EIGENVALUES. THE NTH

EIGENVALUE IN ETG HAS ITS EIGENVECTOR IN THE NTH ROH OF R.

MATRIX TT ONLY NEEDED IF THE DIAGONALIZATION IS TO IE DOUBLE-CHECKED.

.... DIMENSIONIZE A0R0TT AS (NZ0NZT AND EIG AS (NZ) UHERE NZ.6E.NSIZE

BIGIABS(A(102)T S NSZI=NSIZE-1 S ERR130.8'ERROR

DO 10 J310NSIZE

IBEG=J°1 S RTJ0J131.0 S EIGIJTSAIJ0J)

IFIJ-NSIZET 5012012

5 DO 10 I3IBEG0NSIZE

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG
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C TAKE THE UPPER-HALF ELEMENTS AND PUT THEM IN THE LOHER HALF. THE LOUERDIAG

C HALE IS DESTROTEO BY BEING OIAGONALIZED. SET UP R AS A UNIT NATRIX

ATN3AIJ011 S A(I0JT3ATH S RIIOJ13000 S RIJ01130.0

.163ANAAIIBIG0ABSIAIJOI)11

10 CONTINUE

12 IFIBIO~ERROR1 13014014

13 RETURN

14 RHO 3 DIG

15 RHO 3 001'RHO

20 1ND 3 0

C SEARCH FOR THE ELEMENTS GREATER THAN RHO

DD 300 IP310NSZI

IDEG31P°1

D0 300 IO3IBEG0NSIZE

XX 3 AIIO0IPT

VT 3 ADSIXXT

IFIYV-RHOT 300040040

C CALCULATE CX AND SX BY THE ALGEBRAIC 4-SOUARE ROOT METHOD

40 APO 3 XX

U 3 0.5.(EIGIIPT-EIGIIOTT

U 3 -APO/SDRTIAPO'.2‘U'.21

IFIU1 41042042

41 H 3 3U

42 5X 3 U/ISORT12.0.I1.0°SORT(1.0-H.921TIT

CX 3 SORT1100'SX9921

L30

90 L3L’1

1FIL3NSIZET 920920200

92 1FIL'IDI 94090094

94 IFIL'IPT 1000900110

100 T13AIIP0L1 S GO TO 120

110 T13AIL0IPT

120 IFIL'IDT 13001400140

130 T23AIIO0LT S A(IO0LT3TIRSX0T2'CX S GO TO 150

140 T23AIL0IQT S A(L0I013T1’SXOT2'CX

150 IFIL‘IPI 16001800180

160 A(IP0L13T1'CX-T2'SX S GO TO 90

130 AILOIP13T1.CX-T2.SX‘S GO TO 90

200 APP3EIGIIPT S AQQ3EIGIIOT S A(IO0IPT30.0

EIGI IPT 'APP'CX'CXOAQQRSXRSX32.OPAPQ.SX.CX

EIGIIQ)3APP'SXRSX0AQQ'CX'CX02.O'APQ'SXPCX

DO 250 I310NSIZE

T13RII0IP) S T2=R(IOIQ)

RII0IPT3T1'CX-T2'SX

250 RII0IOT3T1'SX0T2'CX

IND3IND°1

300 CONTINUE

IFIINDT 3050305020

305 IEIRHO’ERR1T 3070307015

C IF FLAG31 DOUBLE-CHECK BY MULTIPLYING RARI-IT

307 IFIIFLAG-IT 30803090308

308 RETURN

309 00 330 I310NSIZE S 00 330 J310NSIZE

TOT=00°

DO 320 L310NSIZE

IFIL‘IT 31003150315

310 EL3AIL0IT S 60 T0 320

315 EL3AII0LT

320 TOTSTOT‘EL'RIL0JT

330 TTIIOJI'TOT

DO 350 I310NSIZE S 00 350 J310NSIZE

VALUE3000

DO 340 L310NSIZE

340 VALUE‘VALUEORIL0IT'TTIL0J)

IFII.ED.JT 3450349

345 EIGIIT3VALUE S GO TO 350

349 IEIABSIVALUE106T0ERROR1 GO TO 355

350 CONTINUE

RETURN

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG
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DIAG

DIAG

DIAG
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DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG
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c 1r OFF-DIAGONAL ELEMENTS ARE TOO LARGE. CALCULATE A AND CONTINUE

360

362

364

370

355 00 370 J310NSIZE S 00 370 I3J0NSIZE

TOT30.0

DO 360 L310NSIZE

TOT3TOT°RIL0ITPTTIL0JT

IFII’J) 36403620364

EIGIJ)3TOT S GO TO 370

AII0J)3TOT

CONTINUE

ERRI 3 0.5.ERR1

GO TO 20

END

SUBROUTINE PARAMIINDEX0G0R0FE0SI0N10N20N30KSTART0SI0520530APG)

REAL OI3T0RI303)0GGIZ)0THETA(2)0NI3)0S(3)0N10N20N30A96I9)

C THIS SUBROUTINE CALCULATES THE ALPHA0IETA0GAMMA PARAMETERS FOR THREE
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fl
fi
fi
fl
fi
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fi
fl
fl
fl
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fi
fl
fi
fl
fl
fl
fi
fl
fi
fl
fl
fi
fi
n
fl
fl
fl
fi
fi
fl

C

.... SUBROUTINE REQUIRES THE SUBROUTINE

999 FORMATT/l017H ERROR IN PARAM802160(3X06E15.B0/))

ROTATIONS OF A G-TENSOR.

IT DOES THIS FOR THE COPLANAR0MONOCLINIC0ORTHORH0MIIC0AND GENERAL CASEPARAM

INPUTI INDEX0GI3)0RI303)

OPTIONAL INPUT! FE0SI0N10N20N30KSTART051052053

OUTPUT! ABGI9) UHICH CONTAINS 9 VALUES IN THE FOLLOWING ORDERI ALA0

DEA0GAA0AL808EB0GAB0ALC0BEC0GAC

ALA0ALB0ALC ARE THE ALPHA PARAMETERS FOR ROTATIONS ABOUT AXES A0R0C.

DEAODE808EC ARE THE BETA PARAMETERS FOR ROTATIONS ABOUT AXES AODOC.

GAAoGA80GAC ARE THE GAMMA PARAMETERS FOR ROTATIONS ABOUT AXES AOROC.

INDEX3II020304) FOR THE (COPLANAR0MONOCLINIC0ORTHORHOMBIC06ENERAL)

CASES RESPECTIVELTo

6(3) CONTAINS THE 3 PRINCIPLE G-VALUES.

RI303) CONTAINS THE 3 EIGENVECTORS 1N ROHS.

IN RI'ITPGIDIAGONAL).R 3 H0

FE IS THE ANGLE PHIIIN RADIANS) ABOUT AXIS 3 HHICH DETERMINES THE

DIRECTION OF THE 2ND ROTATIONIAXIS B) IN THE COPLANAR0MONOCLINIC0

AND GENERAL CASES.

51 IS THE ANGLE PSIIIN RADIANS) ABOUT AXIS 3 WHICH DETERMINES THE

DIRECTION OF THE 3RD ROTATION (AXIS C) IN THE COPLANAR CASE.

IT IS THE UNITARV MATRIX

N10N20N3 ARE THE 3 COMPONENTS OF A VECTOR SPECIFYING THE DIRECTION OF

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

DIAG

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

THE 3RD AXIS OF ROTATIONIAXIS C) FOR THE GENERAL CASE. THIS VECTORPARAM

NEED NOT BE OF UNIT LENGTH.

51052053 ARE THE 3 COMPONENTS OF A VECTOR SPECIFYING THE STARTING

DIRECTION (WHEN THETA3ZERO DEGREES) FOR THE 3RD AXIS OF ROTATION

(AXIS C) FOR THE GENERAL CASE.

THESE VALUES NEED NOT RE SPECIFIED.

KSTART 3 I100) HHENOFOR THE GENERAL CASE0 51052053 IARE0ARE NOT)

SPECIFIED.

NI3) IS A UNIT VECTOR ABOUT HHICH THE MAGNETIC FIELD IS ROTATED.

5(3) IS A UNIT VECTOR THAT INDICATES THE STARTING DIRECTION (WHEN

THETA3ZERO DEGREES).

M13) IS A UNIT VECTOR INDICATING THE HIDOLE DIRECTION (WHEN THETA 3

90 DEGREES).

GGIZ) AND THETAI2) ARE NOT USED BUT ARE NEEDED AS F.P.S IN ALHEGA.

ABGI9) CONTAINS THE 9 ALPHA0HETA0GAMMA PARAMETERS IN THE ORDER.

ALAOBEAOGAAOALHOBEBOGABOALCOHECOGAC

ALHEGA 000000000000

ICHECK 3 (INDEX-IT'I4-INDEX)

IFIICHECK) 1990505

5 IADD 3 1

KEY 3 1

JZGO 3 2'IINDEX-1)

N11) 3 000

N12) 3 000

N13) 3 1.0

SCI) 3 1.0

$12) = 0.0

5(3) 3 0.0

GO TO 100

00000 COPLANAR CASE 000.0

11 SNFE'3 SINIFE)

CSFE 3 COSIFF)

SNSI 3 SINISI)

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

PARAM

100

101

102

103

104

105

106

107

108

109

110

111

0
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d
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fl

 



CSSI 3 COS(5I)

N(1) 3 SNFE

"(2) . 0.0

N(3) 3 CSFE

5(1) 3 CSFE

5(2) 3 000

5(3) 3 3SNFE

GO TO 100

12 N(1) 3 SNSI

N(2) 3 000

N(3) 3 C551

5(1) 3 C551

5(2) 3 000

5(3) 3 .SN51

60 TO 100

CO... "ONOCL1~IC C‘SE .0...

21 SNFE 3 SIN(FE)

CSFE 3 COS(FE)

N(1) 3 SNFE

"(2) 3 00°

N(3) 3 CSFE

5(1) 3 CSFE

5(2) 3 000

5(3) 3 - NFE

GO TO 100

22 N(1) 3 0.0

N(2) 3 1.0

N(3) 3 000

5(1) 3 000

5(2) 3 000

5(3) 3 1.0

60 TO 100

00000 ORTHORHOHDIC CASE 00000

31 N(1) 3 1.0

N(2) 3 000

N(3) 3 0.0

5(1) 3 0.0

5(2) 3 100

5(3) 3 000

GO TO 100

32 N(1) 3 0.0

"(2) 3 1.0

"(31 3 000

5(1) 3 000

5(2) 3 0.0

5(3) 3 10

GO TO 100

00000 GENERAL CASE 00000

41 SNFE 3 SIN(FE)

CSFE 3 COS(FE)

N(1) 3 SNFE

N(Z) 3 000

N(3) 3 CSFE

5(1) 3 CSFE

5(2) 3 0.0

5(3) 3 -SNFE

GO TO 100

42 RN 3 SORTIN10'20N29920N3'92)

IF(RN) 1990199043

43 N(1) 3 N1/RN

N(Z) 3 NZIRN

N(3) 3 N3/RN

IF(KSTART-I) 44050044

44 DN 3 SORT(N(1)"2‘N(2)"2)

IF(DN) 1990199045

45 5(1) 3 N(2)/DN

5(2) 3 -N(1)/DN

5(3) 3 0.0

GO TO 100
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PARAM SB

PARAM S9

PARAM 60

PARAM 61

PARAM 62

PARAM 63

PARAM 64

PARAM 6S

PARAM 66

PARAM 67

PARAM 6B

PARAM 69

PARAM 70

PARAM 71

PARAM 72

PARAM 73

PARAM 74

PARAM 75

PARAM 76

PARAM 77

PARAM 78

PARAM 79

PARAM 80

PARAM 81

PARAM 82

PARAM 83

PARAM B4

PARAM 65

PARAM B6

PARAM 87

PARAM 88

PARAM B9

PARAM 90

PARAM 91

PARAM 92

PARAM 93

PARAM 94

PARAM 9S

PARAM 96

PARAM 97

PARAM 9B

PARAM 99

PARAMIOO

PARAMIOI

PARAM102

PARAM103

PARAM104

PARAMIOS

PARAM106

PARAM107

PARAMIOB

PARAM109

PARAMIIO

PARAMIII

PARAMIIZ

PARAM113

PARAM114

PARAMIIS

PARAM116

PARAM1I7

PARAMIIB

PARAMII9

PARAMIZO

PARAM121

PARAMIZZ

PARAM123

PARAM1?4

PARAM1?5

PARAM126
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50 RN3SORT(51'51‘52'52‘53'53)

IF(RN) 1990199055

55 5(1) 3 SI/RN

5(2) 3 52/RN

5(3) 3 53/RN

10° CALL ALBEGA(G0R0N0S0AL08E0GA0GG0THETA)

ABG(KEY) 3 AL

ABG(KEY’1) 3 BE

ABO(KEY°2) 3 GA

IF(IAOD‘3) 10201040104

102 KEY I KEYOJ

IADD 3 IADD.)

JIGO 3 JZGO’I

GO TO (11012021022031032041042) JZGO

104 RETURN

199 PRINT 9990INDEX0K5TART0N10N20N30$10520S30EE051oRNOONONOSOOOROGGO

PTHETAoABG

END

SUBROUTINE ALBEGA(G0R0N0S0AL08E0GA0GG0THETA)

REAL G(3)0R(303)0N(3)05(3)0N(3)0GG(2)0THETA(2)0U(303)

DATA TORAD/00174532925199/

THIS SUBROUTINE CALCULATES THE ALPHA0OETA0GANNA PARAMETERS 'OR A

SPECIFIC ROTATION DE A G-TENSOR ABOUT AN ARBITRARY A3150

6(3) CONTAINS THE 3 PRINCIPLE G-VALUES0

INPUT) GORON05 OUTPUT! AL0BE0GA0GG0THETA

R(303) CONTAINS THE 3 EIGENVECTORS IN ROH50 IT IS THE UNITARY HATRIX

1N R(-1).G(DIAGONAL)'R 3 U0

5(3) 15 A UNIT VECTOR THAT INDICATES THE STARTING DIRECTION (UHEN

THETA32ER0 DEGREES)0

"(3) 15 A UNIT VECTOR INDICATING THE MIDDLE DIRECTION (WHEN THETA 3

9O DEGREES)0

56(2) CONTAINS RESPECTIVELY THE HAXIHUN AND MINIMUM VALUES OF 60

THETA(2) CONTAINS THE ANGLES (IN DEGREES) HHICH CORRESPOND TO THE

VALUES IN 56(2) RESPECTIVELY0

THEIR VALUES OF THE IST CALCULATION0 IF THE FRACTIONAL CHANGE OF ANY

OF THE 3 PARAMETERS IS GREATER THAN 100E-90 IT HILL PRINT EVERYTHING.

199 EORHAT(17H ERROR IN ALREGAIO I0 (2X06E15090/))

"(1) 3 N(Z).5(3)-N(3)35(2)

"(2) 3 N(3).S(1)-N(1)'S(3)

"(3) 3 N(1).5(2)‘N(2)35(1)

DO 10 13103

00 10 J3103

N(IOJ) 3 000

00 10 K3103

10 N(IoJ) 3 H(I0J)9(G(K).'2).R(K0I).R(K0J)

AL 3 000

IE 3 000

GA 3 0.0

00 20 13103

00 2° J3103

AL 3 AL°0.5’(U(I0J).(S(I)*5(J)0H(I)°N(J)))

.E 3 HE’O0S.(H(IOJ).(S(1).S(J)-H(I).M(J)))

GA 3 GA°N(IOJ).S(1).M(J)

20 CONTINUE

IF(BE) 30025

25 IF(GA) 99028

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

C If BE3000 AND GA=0000 THEN GGTI)=GG(2)3AL AND THETAIANYTHING

28 66(1) 3 AL

66(2) 3 AL

THE 3 000

GO TO 40

30 THE30053ATANTGA/BE)

35 CS 3 COST200'THE)

SN 3 SIN(2000THE)

ADD 3 8E3C5‘GA'SN

66(1) 3 SORTTALOADD)

PARAN127

PARAM128

PARAM129

PARAM130

PARAH131

PARAN132

PARAM133

PARAN134

PARAMIJS

PARAN136

PARAMIJT

PARAN138

PARAM139

PARAH140

PARAN141

PARAM142

PARAM143

PARAN144

ALOEG

ALBEG

ALOEG

ALBEG

ALBEG

ALBEG

ALOEG

ALBEG

ALBEG

ALBEG 10

ALBEG 11

ALBEG 12

ALBEG 13

ALBEG l4

ALBEG 15

ALBEG 16

0
3
‘
1
0
0
1
5
U
N
3
'

AL09E0GA ARE THE ALPHA0BETA0GAHMA VALUES CALCULATED FOR THIS ROTATIONALREG 17

IHEY ARE THEN USED TO CALCULATE GHAX0GMIN AND THE CORRESPONDING ANGLESALBEG 13

HITH THESE VALUE90 ALPHA08ETA06AHHA ARE RECALCULATED AND COMPARED HITHALBEG l9

ALBEG 20

ALBEG 21

ALBEG 22

ALBEG 23

ALOEG 24

ALBEG 25

ALBEG 26

ALBEG 27

ALBEG 28

ALBEG 29

ALBEG 30

ALBEG 31

ALOEG 32

ALBEG 33

ALBEG 34

ALBEG 35

ALREG 36

ALBEG 37

ALBEG 38

ALBEG 39

ALBEG 40

ALREG 41

ALBEG 42

ALBEG 43

ALBEG 44

ALBEG 45

ALBEG 46

ALBEG 47

ALBEG 48

ALBEG 49

ALBEG 50

ALBEG 51

 



37

38

40

02

03

99
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66(2) 3 SORT(AL-ADD)

ALI 0053(66(1)..2¢66(2)992)

UIK GO(1)332-66(2)332

3E1 OoS'UIK‘CS

6A1 O053U1K’5N

EAL ABS((AL-AL1)/AL)

ESE 3 ABS((BE'8E1)/BE)

E6A300O

IF(GA) 37035

E6A3((6A-6A1/6A))

EE3ANAK1(EAL0EBE0E6A)

IF(EE3100E-9) 40040099

THETA(1) 3 THE'TORAO

THETA(2) 3 THETA(1).9000

XX 3 66(1)'GG(2)

IF(X‘) (03092042

RETURN

T 3 60(1)

66(1) 3 66(2)

66(2) 3 T

T 3 THETA(1)

THETA(1) 3 THETA(2)

THETA(2) 3 T

RETURN

PRINT 199060R0N0S0AL08E06A0660THETAOALI0'E10OA1

RETURN

END

ALOEG

ALIEG

ALOEG

ALOEG

ALIEG

ALBEG

ALIEG

ALBEG

ALBEG

ALBEG

ALIEG

ALOEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

ALBEG

 



 


