.A C no :14... anxmwfi‘ Wm. .. 36.15.. . ... ,an... r‘ 1')“wa .. . J . “v“.w, . L3? 3: .. :15 , . Eva-‘67. . .99»: 7 i c; ..£..a..uflu§wnww :Ifihfi‘natv: id“ ha... .3. m... was 33.9. {a 3.5%.. y .1 .3! z x V a an»; n. .e . 73.... 9.. .13":\ _ . 7 \ .A. .. ‘ . . , . 7 $335.». 5.. 5.513.! :.3..n.wu.»..v.rr.. x Farrah , , .. , , . . THESIS, 1 LIBRARY 100; Michigan State University This is to certify that the thesis entitled INFLUENCE OF SEED PROVENANCE ON SPECIFIC GRAVITY AND RADIAL GROWTH INCREMENT OF PICEA GLAUCA presented by KYLE WEHNER has been accepted towards fulfillment of the requirements for the MS. degree in Forestry Major Professor’s Signature 4/20/30? Date MSU is an Affirmative Action/Equal Opportunity Institution 4 -‘C---n-o-I-I-t-A-I-a-I-OCI-I-o-o-I-o-a-o---a-0-O-O-O-a-0-l-o-o-.—.-.n — - PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 p'JClRC/DateDue.indd-p.1 INFLUENCE OF SEED PROVENANCE ON SPECIFIC GRAVITY AND RADIAL GROWTH INCREMENT OF PICEA GLA U CA By Kyle Wehner A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Forestry 2006 ABSTRACT INFLUENCE OF SEED PROVENANCE ON SPECIFIC GRAVITY AND RADIAL GROWTH RATE OF PICEA GLA U CA By Kyle Walter Wehner Specific gravity, radial growth rate, and percentage of latewood were examined for Picea glauca between three seed provenances planted at Russ Experimental Forest, in southwestern Michigan, USA. The three seed sources were from Labrador, and British Columbia, Canada and Michigan. Trees were planted in 1963 and felled in 2005. Disks were taken from three heights: 1.2 m, 3.6 m, and 7.2 m. A 2.5 cm wide strip was cut from the disks going through the core at random and was analyzed using an x-ray densitometer (USDA Forest Service, Athens, Georgia). Highly significant differences were found for specific gravity between Labrador (.364) and Michigan (.338) seed sources, and British Columbia (.357) and Michigan (.338) seed sources. For radial growth per year, highly significant differences were found between British Columbia and Labrador seed sources, and between Michigan and Labrador seed sources at 95% confidence suggesting that seed from British Columbia outperformed seed from Michigan. British Columbia seed grew just as fast and had a significantly higher specific gravity. The percentage of latewood had a strongly positive relationship with specific gravity with an r2 value of .90. Growth had a weakly negative relationship with SG with an r2 value of .54. Specific gravity was highest near the pith, decreased for ten years, and then slowly increased towards the bark. Specific gravity remained relatively constant as height increased. To my late grandfathers, Norman Geiger and Allen Wehner. iii ACKNOWLEDGEMENTS As always, I want to first thank my parents, Paul and Paulette Wehner, for their guidance over the last twenty-four years. They raised five boys and one girl and sculpted us into the fine men and woman that we are today. Dr. Kamdem has been a tremendous mentor and friend, both as an undergraduate and during my graduate studies. I hope to live up to his expectations both professionally and scientifically. He has given me a solid base in the forest products sector and I look forward to continuing to learn in the industry. Also, gratitude goes to Alexander Clark and the Forest Service for allowing me to use their equipment, Greg Kowaleski for his help in felling the white spruce trees used in the experiment, along with Dr. Pascal Nzokou and fellow forestry graduate students for their support. Finally, I would like to thank my fiance, Sheryl Carpenter. Sheryl has given me the determination, desire, and courage to finish my graduate studies. I am very anxious to share the rest of our lives together. iv TABLE OF CONTENTS LIST OF TABLES ............................................................................ vi LIST OF FIGURES ........................................................................... vii CHAPTER 1 INTRODUCTION ............................................................................ 1 CHAPTER 2 LITERATURE REVIEW .................................................................... 3 Methods for Measuring Specific Gravity ......................................... 3 Specific Gravity of Gymnosperms ................................................. 5 Specific Gravity of Eastern Spruce ................................................ 8 CHAPTER 3 MATERIALS AND METHODS ............................................................ 12 Experimental Design ................................................................. 12 Site Description ....................................................................... 12 Sample Collection .................................................................... 13 Sample Preparation .................................................................. 15 Statistical Analysis ................................................................... 15 CHAPTER 4 RESULTS AND DISCUSSION ............................................................. 17 CHAPTER 5 CONCLUSIONS .............................................................................. 47 APPENDICES APPENDIX A ................................................................................. 48 APPENDIX B ................................................................................. 53 APPENDIX C ................................................................................. 58 APPENDIX D ................................................................................. 63 REFERENCES .................................................................................... 98 LIST OF TABLES Table 1 - Average Monthly Temperature and Precipitation ............................ 12 Table 2 — Sampling Scheme ................................................................. 14 Table 3 — SG Type 3 Tests of Fixed Effects ............................................... 17 Table 4 — SG Least Square Means .......................................................... 17 Table 5 — SG Differences of Least Square Means ........................................ 17 Table 6 - British Columbia's Seed Collection Site - Average Monthly Temperature and Precipitation (World Climate, 2005) ................................................... 18 Table 7 — SG by Height Least Square Means ............................................. 19 Table 8 - SG by Height Differences of Least Square Means. . .. ....................... 19 Table 9 - Radial Growth Type 3 Tests of Fixed Effects ................................. 20 Table 10 — Radial Growth Least Square Means ......................................... 20 Table 11 — Radial Growth Differences of Least Square Means ...................... 20 Table 12 — Radial Growth by Height Least Square Means .............................. 20 Table 13 — Radial Growth by Height Differences of Least Square Means ............ 21 Table 14 — % Latewood Type 3 Tests of Fixed Effects .................................. 21 Table 15 — % Latewood Least Square Means ............................................. 22 Table 16 — % Latewood Differences of Least Square Means ........................... 22 Table 17 — % Latewood by Height Least Square Means ................................. 22 Table 18 — % Latewood by Height Differences of Least Square Means ............... 23 vi LIST OF FIGURES Figure 1 — Seed Sources Used in Study .................................................... 13 Figure 2 -— Tree Cookie Sampling Scheme ................................................. 14 Figure 3 — Average Ring Radial Growth vs. Average Ring Specific Gravity. . . . .....26 Figure 4 — Average Ring Percent Latewood vs. Average Ring Specific Gravity. . ...27 Figure 5 — Average Ring SG vs. Rings from Pith by Height..............................28 Figure 6 — Average Specific Gravity Across All Heights ................................ 29 Figure 7 —- Average Ring Specific Gravity ................................................ 30 Figure 8 - Average Specific Gravity ....................................................... 31 Figure 9 — Average Cumulative Basal Area Growth vs. Rings from Pith by Height32 Figure 10 - Average Ring Basal Area Growth vs. Rings from Pith by Height ....... 33 Figure 11 — Average Ring Radial Growth Across All Heights ......................... 34 Figure 12 — Average Ring Radial Growth ................................................. 35 Figure 13 — Average Radial Growth ........................................................ 36 Figure 14 — Average Ring Percent Latewood vs. Rings from Pith by Height. . . . .....37 Figure 15 — Average Percent Latewood Across All Heights ............................ 38 Figure 16 -— Average Ring Percent Latewood ............................................. 39 Figure 17 -— Average Ring Latewood SG vs. Rings from Pith by Height .............. 40 Figure 18 — Average Latewood Specific Gravity Across All Heights .................. 41 Figure 19 - Average Ring Latewood Specific Gravity .................................. 42 Figure 20 - Average Ring Earlywood SG vs. Rings from Pith by Height ............ 43 Figure 21 — Average Earlywood Specific Gravity Across All Heights ................ 44 vii Figure 22 — Average Ring Earlywood Specific Gravity ................................. 45 Figure 23 — Survival Rate for Seed Sources Before Thinning in 1985 ................ 46 Figure 24 - Histogram of Studentized Residuals for SC ................................. 51 Figure 25 - Boxplot of Studentized Residuals for SC .................................... 52 Figure 26 — Histogram of Studentized Residuals for Growth ........................... 56 Figure 27 — Boxplot of Studentized Residuals for Growth .............................. 57 Figure 28 — Histogram of Studentized Residuals for % of Latewood .................. 61 Figure 29 - Boxplot of Studentized Residuals for % of Latewood ..................... 62 viii CHAPTER 1 INTRODUCTION Specific gravity (SG) is the density of wood divided by the density of water. SG is a common measure of wood quality because of its ease of measurement and its close relationship to wood strength. Strength properties such as modulus of rupture, hardness, impact bending, and compression parallel to the grain, increase with increasing SG (Paul, 1963). Therefore, SG is often considered the “best single index of intrinsic wood quality” (Bendtsen, 1978). After many years of research, there are no existing conclusions as to which factors influence specific gravity and the magnitude of the roles they each play. As for white spruce (Picea glauca), many investigators agree that growth rate, age, tree height, and climate are some of the key factors that affect SG. If climate is indeed a key factor, it is speculated that seeds collected from vastly different climates could have significantly different specific gravity and mechanical properties when planted in the same location. This study was performed to investigate such differences for white spruce (Picea glauca). The objectives of this study, using white spruce from a provenance test grown in Michigan, were to quantify differences in radial growth rate and specific gravity; and to explain radial and vertical variation of specific gravity within the tree. Hernandez et a1. (2001) researched the wood machining properties of plantation grown white spruce and concluded that plantation grown white spruce performed well for planing, shaping, and boring processes. The chemical composition of wood includes IL cellulose, hemicellulose, lignin, and extractives. It is desirable for pulp and paper to have wood with high cellulose content and low lignin and extractives content (Bowyer et al., 2003). White Spruce is a lightweight, soft, moderately strong wood, which is ideal for a wide array of uses. The two most common uses are pulpwood and construction grade lumber. Spruce’s long, tough fibers make a superior pulp (LandOwner Resource Centre et al., 1995). Other uses include boxes, crates, doors, roof decking and paneling, piano sounding boards, violins, paddles and oars. CHAPTER 2 LITERATURE REVIEW Methods for Measuring Specific Gravity There are several methods of measuring the specific gravity of wood. Depending on the shape and size, certain test methods are more applicable than others. The most basic and fundamental method to attain specific gravity for a regular shaped piece of wood with right-angle comers is to measure the length, width, and thickness and use these factors to calculate the volume of the piece. One must then determine the moisture content, which is the basis on which the specific gravity is computed, and finally find the oven-dry weight. Ultimately, to determine the SG, one divides the oven-dry mass by the volume at the predetermined moisture content and divides the result by the density of water. The aforementioned equation is listed below: Density of wood = mass/volume (at any given moisture content) SG of wood = (Oven-dry mass/volume)/density of water Density of water = l g cm'3, 1,000 kg m'3, 62.4 lb ft'3 Other methods for determining volume include the water immersion method, flotation tube method, mercury immersion method, Forstner bit method, and the increment core method (ASTM, D 2395-02, 2005). Another technique that provides the density of wood uses an x-ray densitometer. Hoag and McKimmy (1988), Walker and Dodd (1988), Moschler and Winistorfer (1990), Clauson and Wilson (1991), and Bergsten et al (2001) have all shown positive correlation of the use of x-ray densitometry data to sample density. Other advantages of using an x-ray densitometer include attaining the density for each individual growth ring along with earlywood density, latewood density, percentage of latewood, and radial growth increment by ring. Densitometry provides excellent measurement of density along a continuous recording of the wood sample. Hoag and McKimmy (1988) compared the use of the film—exposure system, which is now outdated, to the direct-scanning system, allowing direct conversion of x-ray absorption information to digital data. This method works by passing x-rays through a wood sample. Higher density samples absorb more x-rays, which generate a lower detector current. The detector current is converted to a voltage by the picoammeter and is analyzed with computer software control. Software has been designed to make all the necessary calculations for the density determination. Hoag and McKimmy (1988) attributed measurement error to electrical noise within the testing system. The largest electrical noise was caused by the x-ray tube creating 60-Hz noise. The resulting density values were within 0.03 g/cm3 of the gravimetric density values. The greatest deviation values occurred with species of low density such as Balsa (Ochroma lagopus). Bergsten et. al. (2000) investigated the performance of conventional rectangular samples versus intact drill cores without sample preparation using an x-ray densitometer. They were able to obtain the density of the intact drill cores with a standard deviation of 1.6% compared to 1% for the rectangular samples. Bergsten et. al. (2000) recommended a sample thickness of 5 mm unless high spatial resolution is needed. In this case, thinner samples would be more useful. Wood species with high extractive content, such as pine, should have the extractives removed to maximize the precision and accuracy of the data. Specific Gravity of Gymnosperms Paul (1930), one of the earliest investigators of specific gravity in the United States, found that specific gravity of coniferous wood depends on the proportions of spring-wood (earlywood) to summer-wood (latewood) in each individual growth ring. He compared second-growth stands to virgin growth stands of southern pine (Pinus palustris) and redwood (Sequoia sempervirens). In the second-growth stands, the spacing of the stems influenced the width of the earlywood portion of the growth ring. The earlywood portion was much wider in large-crowned trees of more open stands and narrower in small-crowned trees of denser stands. Therefore, trees growing in crowded stands had a larger proportion of latewood and a higher specific gravity, but also grew at a slower pace compared with trees in a more open stand. Paul Concluded that the proportionate amount of earlywood in the annual ring is influenced by the size of the crown. Spurr and Hsiung (1954) concluded that the effect of growth rate on specific gravity is much less than the effect of factors such as height of wood above ground, age of wood at a given height, and topographic site class. To study the effects of these factors on specific gravity, Spurr and Hsiung used several jack pine plantations at various ages. They took boring samples and used specific gravity values based on wet volume and oven-dry weight. As height above ground increased, specific gravity decreased; and as distance from the core increased, specific gravity increased. Neither ring width nor stem diameter had any significant effect on specific gravity. Age on the other hand, had a significant effect, in that mature wood yielded a higher specific gravity. Cores from a 70- year—old stand, a 50-year-old stand, and a 30-year-old stand had mean specific gravities of 0.406, 0.388, and 0.363, respectively. Overall, Spurr and Hsiung (1954) found no correlation between stem diameter and specific gravity or between crown class and specific gravity. In a study on the growth ring characteristics and specific gravity of rapidly grown loblolly pine, Taylor and Burton (1982) found that growth rate did not significantly influence specific gravity. The study had a treatment group which was thinned to 100 crop trees per acre at age 9, pruned to half height triennially until clear bole length at 33 feet, and thinned to 76 trees per acre at age 19, 64 trees at age 24, 48 trees at age 27, and 41 trees at age 30. The control group consisted of 100 crop trees per acre at age 12 and was thinned to basal area of 85 square feet per acre triennially, favoring crop trees without pruning. The mean specific gravity increased from 0.40 to 0.52 as the trees matured. Differences between the control group and the treatment group were not significant, suggesting that thinning loblolly pine to maximize diameter growth has no effect on specific gravity. In a similar study of thinning effects on ring specific gravity of loblolly pine, Tassisa and Burkhart (1998) had three main objectives: description of the within tree pattern of specific gravity; evaluation of the thinning effects on growth ring specific gravity; and finally the development of specific gravity prediction model using direct covariance modeling to account for correlation among observations. The study consisted of an unthinned control plot, a lightly thinned (approximately 30% basal area removed) plot, and a heavily thinned (approximately 50% basal area removed) plot. They used a blocking factor of broad physiographic region in their randomized incomplete block design, which included the Atlantic Coastal Plain, Gulf Coastal Plain, Piedmont, and Highlands. Two trees were randomly selected from each plot for analysis. A cookie approximately 2.5 cm thick was taken at 1.2 m intervals from the base to a top diameter of approximately 5 cm. Ring width, average ring specific gravity, average earlywood specific gravity, average latewood specific gravity, and percent latewood proportion were measured for each growth ring. In addition, diameter at breast height (approximately 1.4 m), total tree height, height to base of live crown, crown width, and subjective measures of tree health status and stem quality were measured. Tassisa and Burkhart (1998) found that as height within the tree increased, specific gravity values decreased. As age increased, both specific gravity and the proportion of latewood increased at a rapid rate until approximately age 10 and then leveled off. This study supports the idea that propertions of earlywood to latewood in conifers can explain ring specific gravity. Other findings showed that broad physiographic factors significantly affected ring specific gravity of loblolly pines. They also observed that loblolly pines tend to have a higher specific gravity value in denser stands. These results contradict what Taylor and Burton (1982) found using the same loblolly pine species. These inconsistencies could be due to climatic factors, precision of measurement, sampling techniques, and even genetic variation. Throughout the years divergent results have been found on whether growth rate influences or does not influence specific gravity. Taylor and Burton (1982) were more likely to have greater human error, as they collected their data using microscopes which had to be manually read and interpreted. Tassissa and Burkhart (1998) used an x-ray densitometer so that all measurements where read using computer analysis, thus decreasing human error. Specific Gravity of Eastern Spruce The wood of white spruce (Picea glauca), red spruce (P. rubens), black spruce (P. mariana), and Norway spruce (P. abies) cannot be separated from one another and are often grouped together as “eastern spruce”(Hoadley, 1990). Aldridge and Hudson (1958) made a few observations in regards to growth rate and its effects on SG for Norway spruce. They used three collections of boards, namely those with an increase in growth rate with age, a decrease in growth rate with age, and a uniform, moderate growth rate across the board. In all of the boards, specific gravity increased as the number of growth rings per inch increased, suggesting that growth rate has an important influence on SG. Aldridge and Hudson (1958) also pointed out that in three out of the four boards where an abrupt increase in growth occurred, compression wood was present. Therefore, investigators need to be cognizant of and take into account the effect of abnormal wood on the specific gravity. Keith (1961) confirmed Aldridge and Hudson’s findings when he examined fifteen white spruce logs taken from a uniform bottom-land site in Alberta, Canada. He obtained ten-inch discs from the logs and cut through the core in the four cardinal directions. Keith measured rings per inch and compared them with their respective SG measurements. There was a tendency for high specific gravity wood to be associated with a larger number of rings per inch. Additionally, specific gravity tended to increase outward from the center of the tree only when rings per inch increased outward from the center as well. Therefore, growth rate was also attributed for variation of SG within the tree . Chang and Kennedy (1967) studied the influence of growth rate on dry wood production in plantation-grown white spruce throughout southern Ontario, Canada. They used a total of 232 trees that ranged from 17 to 41 years of age. Discs were taken from four-foot intervals for each tree. They concluded that there is a positive correlation between SG and the number of rings per inch. They also noticed a number of “superior” trees that grew faster and produced a larger amount of dry wood (higher SG). No evidence of an environmental factor was related and they proposed that genetic factors may have played an important role in the larger amount of dry wood in these trees. In a study of white spruce in Alberta, Taylor et al. (1982) measured specific gravity and tracheid length from 10 trees in each of four selected stands. They used green volume and oven-dry weight to determine the specific gravity. Contrary to Spurr and Hsiung’s (1954) and Tassissa and Burkhart’s (1998) findings discussed earlier, specific gravity increased from the base to the top of the tree. The authors suggested this finding might have been due to the use of only dominant or codominant trees for the study. Taylor et al. (1982) found the specific gravity, typically increasing from pith to bark in softwoods, was highest near the pith, decreasing as age increased from years 0 to 30, and then increasing following age 30. Given these unusual results, more studies on white spruce should be done looking at variations of specific gravity as height increases within a tree as well as radially outward from the core of the tree. The objective of the present study is to try to bridge the information gap on the variability of the specific gravity of white spruce in terms of genetic and environmental factors. Shepard (1982) studied fertilization effects on growth and specific gravity of red spruce. Three spruce stands, located in Maine, were each fertilized with nitrogen, phosphorus, and potassium at rates of 168, 72, and 140 kg per ha. respectively, singly and in all combinations possible. Cross section disks were cut and removed at predetermined heights. He found that specific gravity at breast height was not affected by fertilization, except when all three fertilizers were used. This resulted in a five percent decrease in one stand compared to the control group. In the same stand, specific gravity at the base of the crown decreased four to five percent when compared with trees that received no fertilization. However, the specific gravity at the base of the crown was not affected in the other stands. The fertilization effects on average annual diameter growth varied greatly among treatments and stands at breast height and the base of the crown. Shepard (1987) also investigated wood properties of red spruce on soils of three drainage classes: poorly drained, somewhat poorly drained, and moderately well or well drained. Increment cores (12mm) were taken at breast height from ten trees and compared among each class. Mean specific gravity of the poorly drained soil was significantly higher than the other two drainage classes. There were no significant differences between lignin content, extractable content, or radial growth rates among soils. In review, there are many factors that affect the specific gravity of wood. These factors include site, climate, geographic location, species, topography, moisture, sunlight, nutrients, wind, temperature, location within tree, and growth stressors (droughts, severe storms, flooding, etc.). One must be cautious when analyzing growth stressors that cause tension wood, knots, resin pockets, or whorled grain, because they are one of the few factors that will increase the specific gravity but will not increase the 10 associated strength properties. After reviewing the literature, three hypotheses were proposed for this study: Hypothesis 1: Seed collected from different locations and environments when planted in the same location will have different SG. Hypothesis 2: As height increases, SG will decrease. Hypothesis 3: As distance from the pith increases, SG will increase. Over the last five years, the Forest Products Industry has switched focus from quantity production to quality. There have not been many studies performed to analyze seed provenances for trees of this age. Seed provenance studies usually deal with trees below the age of 10. This makes it difficult to hypothesize whether significant differences between seed sources exist. There have been numerous within-tree variation studies, some of which were aforementioned. Spruce trees, however, have been difficult to characterize. Most authors agree that as height increases, SG will either decrease or remain the same. However, in a study of white spruce in Alberta (Taylor, 1982), researchers found that SG increased as height increased. Radial variation of SG has been a topic of controversy for many years as well. Some authors found that SG is highest near the pith and decreases outward towards the bark, and some authors have found the opposite. In addition, other authors have found a high SG near the pith, decreasing for a number of years in the juvenile wood, and then slowly increasing in the mature wood towards the bark. For these reasons, within-tree variation was chosen to be investigated further for white spruce. ll CHAPTER 3 MATERIALS AND METHODS Experimental Design White spruce (Picea glauca) seed was collected in 1960 from twenty sites throughout a naturalized range in Alaska, Canada, and the northeastern United States to establish a provenance test. In the spring of 1963, the seedlings were planted at the Russ Experimental Forest, (NW 1A of SW 1A, See. 20, T58, R14W, Cass County, MI) in southwestern Michigan, in five blocking units, four trees from each of the twenty sites per block. Site Description The plantation site of the trees is roughly 250 meters above sea level (World Climate, 2005, http://www.worldclimate.com). The soil is an Ormas series, which is a well drained soil on moraines. These soils formed in sandy and loamy material. Slopes range from 0 to 6 percent. The average monthly temperatures and precipitation for Three Rivers, a city within 30 miles of the field site plantation, are listed in Table 1 and are typical of southwestern Michigan. Table 1. Average Monthly Temperature and Precipitation (World Climate, 2005) Jan. Feb. Mar. Apr. May Jun. Jul. Lg. Sep. Oct. Nov. Dec. Avg. High (°C) -1.3 0.3 7.1 14.6 21.2 26.6 28.6 27.2 23.5 16.6 8.7 1.5 Avg. Low - - (°C) 10.6 10.0 -3.7 2.3 8.2 13.3 15.6 14.2 10.4 3.8 -1.1 -6.9 Mean (°C) -6.0 -4.8 1.7 8.4 14.8 20.0 22.1 20.7 17.0 10.2 3.7 -2.7 Precip. (mm) 46.4 38.8 61.7 86.4 87.8 100.7 96.6 86.3 87.4 72.3 69.5 59.3 Tree spacing was 3.5 meters square and the seedlings were put into 4-tree plots elongated in the east to west direction. The plots were row thinned in 1985 in the north to south direction on every other column to remove 50% of the trees. 12 Sample Collection Three seed sources were selected from a twenty provenance test initially established in 1963. Seed from vastly different regions, in terms of both latitude and longitude, were chosen for this study (Fig. 1). Figure 1. Seed Sources Used in Study. 20 .9. v'é/ Key 6) Seed Source I Study Location V“- Q \,.‘~ ' o .2125... _ ‘ 00'.‘. The samples included nine trees with seed sources from 22 miles SE of Mio, Michigan (Sec. 17, T24N, R6E, Iosco County), five trees with seed sources from Fort McLeod, near Summit Lake, British Columbia (54° N, 123° W), and six trees with seed sources from Port Hope Simpson near the mouth of the Alexis River, Labrador (52° 36’ N, 56° 26’ W), for a total of twenty trees felled (Table 2). 13 Table 2. Sampling Scheme Region Origin # of Trees # of Cookies Fort McLeod, near Summit Lake, (54° British Columbia N, 123° W) 5 15 Port Hope Simpson near the mouth of the Alexis River, (52° 36’ N, 56° 26’ Labrador W) 6 18 22 miles SE of Mio, Michigan (Sec. 17, T24N, R6E, Iosco Michigfl County) 9 27 Trees were felled at ground level from the five blocking units in the late summer of 2005 using a chainsaw. Tree cookies, approximately 3.5 10.5 centimeters in thickness, were cut and collected within five days of being felled. The samples were taken at heights of 1.2 m, 3.6 m, and 7.2 m from the base of the tree as illustrated in Figure 2. Figure 2. Tree Cookie Sampling Scheme. 7. 2 meters e_,_."—*‘ _ _ 3.6 meters ll -[ - 1.2meters L , l4 Diameter at breast height was recorded for all trees using a circumference tape. Branches, knots, and tension wood in the stems were avoided by sampling immediately above, below, or beside the irregularity, and as close as possible to the intended sampling location. Sample Preparation A strip perpendicular to the growth rings was cut from each cookie that measured 2.5 cm thick and 2.5 cm wide. Special care was taken to ensure that there were no visual knots, resin pockets, cracks, or tension wood. These strips were stored in a conditioning chamber (21° C, 65% RH) for 8 weeks. The samples were sent to the USDA Forest Service (Athens, Georgia) for further preparation. This included gluing yellow poplar to the sides as a backer for x-ray analysis and then ripped down to 2.3 :t 0.05 mm thick using a double-headed table saw. The samples were analyzed for specific gravity by ring, radial growth by ring, and percentage latewood by ring, using an X-ray densitometer (Quintek Measurement Systems, Inc., Oak Ridge, TN, USA). Statistical Analysis Data were analyzed using the SAS software system (SAS 9.1). Ranges, means, and standard deviations were obtained for all variables. Graphing of residuals and studentized residuals were used to validate the normality of the data. With the exception of mild outliers, the specific gravity data was normal. Radial growth per year was log transformed in order to normalize the data. PROC MIXED was used so that the blocking factor could be random while keeping the other factors fixed. A Type 3 Test of Fixed Effects was performed based on a random linear model: Yijkl = 1.1 + pi + (lj + Bk + aBJ-k + eijk] 15 where u is the overall mean, p,- is the effect of the ith block, a; is the main effect of the jth level of height, 8;, is the main effect of the kth type of seed source, and (18,1, is the two-factor interaction between height and seed source. Since the blocking factor is random, there can be no inferences made on its interaction terms. 16 CHAPTER 4 RESULTS AND DISCUSSION Statistical analyses show that there were significant differences between seed sources and height for SG (Table 3). The estimated SG from British Columbia seed was 0.357 with 95% confidence that the estimate was between 0.343 and 0.370 (Table 4). The SG estimated for trees grown from Labrador seed source was 0.364 with 95% confidence that the estimate was between 0.350 and 0.377 (Table 4). The SC estimated for trees grown from Michigan seed source was 0.339 with 95% confidence that the estimate was between 0.325 and 0.352 (Table 5). The estimated differences between seed sources were shown to be highly significant between British Columbia and Michigan, and also between Labrador and Michigan using a Tukey’s adjusted p-value Table 3. SG Type 3 Tests of Fixed Effects Num. Den. F Effect DF DF Value Pr > F Seed 2 1520 41.8 <.0001*** Height 2 1520 15.89 <.0001“ Seed'Height 4 1520 1 .32 0.2595 Table 4. SG Least Square Means Seed Estimate Std. Err. Alpha Lower Upper BC 0.3568 0.006889 0.05 0.3433 0.3703 LA 0.3636 0.006794 0.05 0.3502 0.3769 MI 0.3385 0.006674 0.05 0.3254 0.3516 Table 5. SG Differences of Least Square Means Tukey’s Seed _Seed Estimate Std. Err. Pr. > t Adjus. P BC LA -0.00675 0.0031 17 0.0304 0.0773 BC MI 0.01828 0.003098 <.0001 <.0001” LA MI 0.02504 0.002817 <.0001 <.0001“ l7 The estimated specific gravity (0.338) of the white spruce trees grown from Michigan seed compared similarly to other reports across North America (Taylor, 1982). However, the estimated specific gravity of the white spruce trees grown from British Columbia (0.357) and Labrador seed (0.364) are considerably higher than other’s findings. Taylor (1982) reported an average specific gravity of 0.338 in Alberta, Canada, which is near where the seed was collected from for the British Columbia seed. It is assumed that these higher specific gravities are due to genetic factors since seed from British Columbia has evolved with a different environment and climate compared to seed from Michigan. The average monthly temperature in British Columbia is considerably lower than Michigan’s and also has a considerably lower amount of precipitation (Table 6). Table 6. British Columbia's Seed Collection Site - Average Monthly Temperature and Precipitation (World Climate, 2005) Jan. Feb. Mar. Apr. May Jun. Jul. Au . Sep. Oct. Nov. Dec. Avg. High (°C) -6.3 -1.1 4.0 10.3 16.3 19.6 22.0 21.0 16.3 9.6 0.7 39 Avg. Low - - - °C) 15.1 11.2 -6.8 -1.6 2.6 6.3 8.0 7.1 3.3 -0.2 -6.7 11.9 Mean (C) 10.7 -6.2 -1.4 4.4 9.5 13.0 15.0 14.1 9.8 4.7 -3.0 -7.9 Precip. (mm) 50.9 31.2 27.6 21.6 38.1 58.5 55.0 61.4 43.4 46.3 44.0 47.0 Table 7 shows the estimated SG by height for all three seed sources. Highly significant (p-value of .0019, .0064, and .0071) differences were found between trees grown from British Columbia seed and Michigan seed for all three height levels (Table 8). In addition, highly significant (p-value of <.0001, <.0001, and .0043) differences were found between trees grown from Labrador seed and Michigan seed for all three height levels (Table 8). 18 Table 7. 86 by Height Least Square Means 1.2 3.6 7.2 Seed Source meters meters meters British Columbia 0.362 0.353 0.355 Labrador 0.376 0.360 0.354 Micmgan 0.344 0.336 0.335 Table 8. 86 b r HM“ Differences of Least Square Means Seed HM _Seed _Height AdLP Ajiha BC 1.2 LA 1 .2 0.0568 0.05 BC 3.6 LA 3.6 0.8717 0.05 BC 7.2 LA 7.2 1 .0000 0.05 BC 1 .2 MI 1 .2 0.0019" 0.05 BC 3.6 MI 3.6 0.0064“ 0.05 BC 7.2 MI 7.2 0.0071 ** 0.05 LA 1.2 MI 1.2 <.0001“ 0.05 LA 3.6 MI 3.6 <.0001“ 0.05 LA 7.2 MI 7.2 0.0043“ 0.05 Statistical analyses show that there were significant differences between seed sources and height for radial growth measured in millimeters (Table 9). The estimated growth per year log transformed from British Columbia seed was 1.16 with 95% confidence that the estimate was between 1.062 and 1.263 (Table 10). The growth per year log transformed estimated for trees grown from Labrador seed was 0.920 with 95% confidence that the estimate was between 0.826 and 1.014 (Table 10). The log transformed growth per year estimated for trees grown from Michigan was 1.121 with 95% confidence that the estimate was between 1.036 and 1.205 (Table 10). The estimated differences between seed sources were shown to be highly significant between British Columbia and Labrador, and also between Labrador and Michigan using a Tukey’s adjusted p-value (Table 11). No significant difference was found for the log transformed growth per year between British Columbia and Michigan. 19 Table 9. Radial Growth Type 3 Tests of Fixed Effects Num. Den. F Effect DF DF Value Pr > F Seed 2 1520 13.41 <.0001” Height 2 1520 1 1 .02 <.0001*** Seed‘Height 4 1520 1 .22 0.299 Table 10. Radial Growth Least Square Means Seed Estimate Std. Err. Alpha Lower Upper BC 1 .1622 0.05123 0.05 1 .0617 1 .2627 LA 0.9198 0.0479 0.05 0.8259 1 .0138 MI 1 .1206 0.0432 0.05 1 .0359 1 .2053 Table 11. Radial Growth Differences of Least Square Means Seed _Seed Estimate Std. Err. Pr. >t Ad'LP BC LA 0.2424 0.05254 <.0001 <.0001” BC Ml 0.04159 0.05109 0.4158 0.6944 LA Ml 02008 0.047 <.0001 <.0001” Table 12 shows the log transformed radial growth by height for all three seed sources. A highly significant difference was found between trees grown from Labrador seed and British Columbia seed at a height of 1.2 m as well as for trees grown from Labrador seed and Michigan seed at heights of 1.2 m and 3.6 m (Table 13). There were no differences found between Michigan seed and British Columbia seed. Table 12. Radial Growth by Height Least Square Means (mm) Seed Source 1.2 meters 3.6 meters 7.2 meters British Columbia 1.07 1.10 1.31 Labrador 0.79 0.86 1.10 Michigan 1.08 1.11 1.17 20 Table 13. Radial Growth by Height Differences of Least Square Means Seed Height _Seed _Height Adj. P Alpha BC 1.2 LA 1.2 0.0078“ 0.05 BC 3.6 LA 3.6 0.1134 0.05 BC 7.2 LA 7.2 0.4325 0.05 BC 1.2 MI 1.2 1.0000 0.05 BC 3.6 MI 3.6 1.0000 0.05 BC 7.2 MI 7.2 0.8320 0.05 LA 1 .2 MI 1 .2 0.0007“ 0.05 LA 3.6 MI 3.6 0.0326“ 0.05 LA 7.2 MI 7.2 0.9969 0.05 Statistical analyses show that there were significant differences between seed sources and height for percentage of latewood (Table 14). The estimated percentage of latewood log transformed from British Columbia seed was 2.942 with 95% confidence that the estimate was between 2.760 and 3.125 (Table 15). The percentage of latewood log transformed estimated for trees grown from Labrador seed was 2.659 with 95% confidence that the estimate was between 2.479 and 2.840 (Table 15). The log transformed percentage of latewood estimated for trees grown from Michigan seed was 2.338 with 95% confidence that the estimate was between 2.162 and 2.514 (Table 15). The estimated differences between seed sources were shown to be highly significant between British Columbia and Labrador, between British Columbia and Michigan and also between Labrador and Michigan using a Tukey’s adjusted p-value (Table 16). Table 14. % Latewood Ti pa 3 Tests of Fixed Effects Effect Num. DF Den. DF F Value Pr > F Seed 2 1382 84.05 <.0001 Mt 2 1382 19.65 <.0001 ‘Seed'Height 4 1382 3.85 0.0041 21 Table 15. % Latewood Least Square Means Seed Estimate Std. Err. Alpha Lower Upper BC 2.942 0.09308 0.05 2.760 3.125 LA 2.659 0.09197 0.05 2.479 2.840 [MI 2.338 0.08986 0.05 2.162 2.514 Table 16. % Latewood Differences of Least Square Means Seed _Seed Estimate Std. Err. Pr. >t Adj P BC LA 0.283 0.04779 <.0001 <.0001 BC Ml 0.604 0.04696 <.0001 <.0001 LA Ml 0.321 0.04434 <.0001 <.0001 Table 17 shows the log transformed percentage of latewood by height for all three seed sources. A highly significant difference was found between trees grown from Labrador seed and British Columbia seed at heights of 3.6 m and 7.2 m. Highly significant differences were found for all height levels between trees grown from British Columbia seed and Michigan seed. Finally, a highly significant difference was also found between trees grown from Labrador seed and Michigan seed at heights of 1.2 m and 3.6 m (Table 18). Table 17. % Latewood by Height Least Square Means Seed Source 1.2 meters 3.6 meters 7.2 meters British Columbia 3.01 2.95 2.86 Labrador 2.91 2.63 2.44 Michigan 2.41 2.31 2.29 22 Table 18. % Latewood by Height Differences of Least Square Means Seed Hejght _Seed _Height Adj. P Amha BC 1.2 LA 1.2 0.8255 0.05 BC 3.6 LA 3.6 0.0006“ 0.05 BC 7.2 LA 7.2 <.0001“ 0.05 BC 1.2 MI 1.2 <.0001“ 0.05 BC 3.6 MI 3.6 <.0001“ 0.05 BC 7.2 MI 7.2 <.0001“ 0.05 LA 1.2 MI 1.2 <.0001“ 0.05 LA 3.6 MI 3.6 <.0001“ 0.05 LA 7.2 MI 7.2 0.6048 0.05 Softwoods have often shown high correlation between growth and specific gravity. This has been characterized as a negative relationship, namely as growth increases, specific gravity decreases. Data from this research also shows this negative E relationship, but with a weak correlation, with an r2 value of 0.524 (Fig. 3). Figure 3 shows average ring radial growth among each height level versus average ring SG among 0.02 intervals (0.2810300, 0.3010320, 0.321-0.340,..., 0481-0500). This study has shown a much stronger positive relationship between percentage of latewood and SG with an r2 value of 0.896 (Fig. 4). Figure 4 shows average ring percent latewood among each height level versus average ring SG among 0.02 intervals (0281-0300, 0301-0320, 0.321-0.340,. . ., 0481-0500). A significant difference was found between Michigan and British Columbia for specific gravity but the two seed sources could not be separated in analysis of growth. Perhaps growth is not the best indicator of specific gravity in white spruce. The specific gravity averaged across all three seed sources was highest near the pith, decreased for the ten years following, and then slightly increased towards the bark (Fig. 5). Specific gravity, with considerable variation, was generally the highest at 1.2 meters and the lowest at 7.2 meters. In order to standardize the results for variation and 23 form relationships, the data was graphed by averaging the different factors and separating out the three seed sources (Fig. 6-8). Figure 4 shows specific gravity averaged across all heights and across 5 ring intervals (1970-1974, 1975-1979,. . ., 2000-2004). Figure 8 shows further detail by separating each sample height among each seed source. British Columbia clearly had the highest SG while Michigan had the lowest SG (Fig. 6-7). Height of sampling appears to only affect the British Columbia seed source whereas seed from Michigan and Labrador had SG remain relatively constant across all three heights. The cumulative basal area growth looked rather typical for white spruce trees (Fig. 9). The ring basal area growth averaged across all three seed provenances increased rapidly until approximately 10 growth rings from the core at which point growth began to slow down and generally continued to decrease out to the bark (Fig. 10). Figure 11 shows radial growth averaged across all heights and across 5 ring intervals (1970-1974, 1975-1979,..., 2000-2004). Average growth per year increased until 1985, when the stand was thinned. This thinning appears to have lessened the rate of decrease as growth decreased at a lesser rate from 1985 to 1995 compared to 1996 to 2004. Michigan seed appeared to have larger growth increments than the other two seed sources (Fig. 11-13). However, with statistical analysis, seed from Michigan was not proven to be different from British Columbia, and both of those seed sources had significantly higher growth than Labrador seed. Growth increased as height increased (Fig. 12), which is typical due to the fact that foliage is mostly at the top of the tree. As mentioned earlier, this study shows a high correlation between SG and percent latewood. Figures 14 and 15 look very similar to Figures 5 and 6 of SG. British Columbia seed clearly has the highest average percent latewood. However, Labrador has 24 the lowest percent latewood which contradicts what one might think as Labrador had significantly higher SG than Michigan seed. Perhaps this could be explained by further separating each ring into latewood and earlywood and obtain SG for each individually. Figure 17 was presented for completeness but is very difficult to analyze due to the variation. No single seed source shows separation from another for SG of latewood (Fig. 18-19). Latewood SG was highest near the pith and again approximately 10 rings from the bark (Fig. 18). As height increased, latewood SG tended to decrease (Fig. 19). SG of earlywood was clearly the highest near the pith, decreased rapidly for 10 years, and then slowly decreased or remained towards the bark (Fig. 20-21). Seed from Labrador and British Columbia clearly have a higher average earlywood SG than Michigan (Fig. 22). This helps to better explain why seed from Labrador had a significantly higher ring SG than Michigan as percentage of latewood did not show a clear separation between the two seed sources. There were significant differences between seed source for both specific gravity and growth. British Columbia seed had better growth and higher SG values compared to seed from Michigan. Perhaps there may be other tradeoffs that may make British Columbia seed less desirable to plant in Michigan. One must consider survival and mortality rates for the seed. Very often, seed from a vastly different climate will not grow well in another. This has been the case for the seed from Labrador that was planted in Michigan (Fig. 23). In 1971, data was collected on mortality and only 60% of Labrador seed had survived. However, British Columbia seed once again shows as a good candidate for plantations in Michigan as it had 82.5% survival which was the same as the seed planted from Michigan. 25 3580 0...“.on me 98 so mad no mad , . _ 8.0 l l l l l l l l l l l l l l, l.l.l ll. .l. ll- li..l! -li lll-l.l- l-.l ,l 00—. - cod 8. (0 (win) Guru/urinals 8. V 00.0 3.220 2:00am 9...... 3803‘ .m> 539.6 .2qu 9...". omuco>< .n 0.59“. 26 3.220 0502.0 0.0 mwd #0 00.0 0.0 0N0 3.220 0.2025 05: 009.23 .m> 002593 Edema 05m 009.93 .v 0.50.“. 00.0 -- - 00.0.. - 00.0w - 00.00 . 00.0w poomem to afiewerued 00.0w . . | ll ll + 00.00 00.0h 27 OV Nétll... LI 8 a O.- O ....b...._........._..._....._._._.__.L_ ’ r t C > . x xi .1 ’ ..\\, s , I . . y \x .\ .. x.\ a 0 Q 0. A.. 0 .-NM.0 ”-8.0 weed m-mmd ”-8.0 Kmd ”-8.0 Wood ”.910 ”-54 .0 wNvd Wmuvd "Sud Ego... can. 5E £0: wer 929 0w 05m @0903 .m 059... M2 [lg 28 .. . _ _ £95.00 cmzcm ...- 595:2 IT Loo—cam.- II _ 0 SN 000N 000m 000 w 000p 80F 000p 0N0 F 05580 539.0 .0 23> - omvd «20.2.. =< mmoeo< 339.0 050on 0080>< .0 0.50....— 0h0 w 000.0 ..- 000.0 Aime amoeds 83 000.0 29 ..5 2%: 65358 m k m m e m N F o . 9&8 lli T-l llllil Ill.l.l-.l;l. I. l- l-.l l H‘lin-HltllllfllMlNl -li ll l-,.. l quo O/ l l l.l llll-l- l- i l 0 .lim .l--l ..... , 1.0000 4 - mmmd L,.._s§_&aaa.uj - - - ll - - l l l - - - - ll l ll- ll: 88 __ 89:22.11 7 $893+. l I --llll l l- l- i ll -l -l l i ll - I 88 .4, End _ Rad . 086 8nd 3.220 050on 05m o020>< <- 950$ 30 GEE—.000 5326 he 23> 0 wow 0000 000m 0009 000 w 000 _. 000 F 050w 0N0 p . . _ . _ + 000.0 r 000.0 M E as - 3328 :35 J, . E ed - «BEES EeEm . a E w; - «35.8 555 _. __ E m.» - 5952.211 _ ll 1,. Eo.0-c~0_co_2101,. l l l llil-l l-l. l l l l l l. l l -l. l-l l l l 0010 a, E m; - 39:22-1- . I E as - 5853+ n J E as - 8853+ L I .E N; -.oucafil L We 01:1de 31 ll 000.0 000.0 339.0 05030 ouaco>< .0 230E N.“¢II mm .N.FII* |=.|_ 34W. 0? 8 8 OF 0 —._PPF-..-_LLr-.._-F_..Fp...F.-P.....F..L .IOO NO 1 005.50 £9va .5 £5 E0: mmcfi magma £5,020 83 _gmm wpzwiEJO 0090.3 .0 939“. 32 N.N-0I¢I¢ mafia... N.F*I*I* i—I 064E OV 8 ON O.- O —_.._.p...b........._-..P....._.......p. m-VNC C n o 08-. T. ,. O OO'O'O'O'O'O'O'O'O'O'O'O'O' E 061 .5 £5 E0... mmci mama... £390 $3. :85 ocfi @0993. .9 0.59“. 33 05.95000 5.59.6 00 23> 0 ..0N 000m 000m 000 .. 000 w 000 w 000' 0N0 F 0N0 .. . F k h .. F 83° _.1 q _ masaoo 5...... L... _ .. 595.5. in: _ W 8853 now. 3:03: =< mmo.o< 5320 .23.". 0...: o0a..e>< ... F 950.... 34 .- _ . _ masaoo 525 1L. 50.5.5. Ill _ .8053 Iol . .E. £92. 05350 530.6 .030: 0...: 000.0>< .Nw 0.50.". 0...0 00.0 - 00.0 - 00.0 - 0rd 006 (mm) we 35 0......5000 5.595 3 23> o 50 meow 0000 000 _. 000 F 009 000 P E N... - SE28 52.0 ... . E 0.0 - 0.9.5.00 5:00 In..- . i 1.. E N; - 0.0E200 52.0 if. .. E NN - 50.5.5. lar- E o... - 596.5. in: . E 04 .. c0020.: ll . Ems-5853+ ll lll - - , . . ... E o... - 8853+ M L . i L. A .- lE a; - 8853+ ._ 5.59.6 .2000 000.0>< .mp 230E .- - 00.0 00K 36 NNOII 0M... NEIL... LT. 06. 8 8 Or 0 .....h-p.._.-._..p.._..Lk.l_-._.._......-..— E 90... >0 EH. E0... was... gems 00055.3 E0200 9...”. 00903 .3 939“. 37 ...-mseaao 6.0.5 If... _ . 4 _ _ 000.20.: III . .000..an IOL 00.0.5000 £2.26 .0 23> . 0 SN Doom OOON mam _. 0mm P mam F omm F mhm w 05m w L7 02.0.0: =< mmo..o< 000330.. «000.80 0920>< .3 0.50.". 8.0 Y 00.0w - -83. - 8.0m 00.05 38 @9528 5:5 - wt ._ , . F‘ _ . 000.525. 1*: 800.00.. IOIL. .E. 20.0: 05.088 oo.Nw T 00.9. ..T ooéw - 006w I oodw - T CORP T 8.9. l oodN 000.580... “000.3... 9...: omflo>< .2. 0.50.". mum 8.9. 39 NNOi 0.0;... N.—.uTI*I* LT. 064m”. 0? 8 8 OP 0 _p.....__b_.__p_p..-_._P_...p.._lb.......— -vmd ”.80 25.0 ..Ovd ..Nvd .. > 5qu .. ..mvd ..mvd .. a v . ..omd , .. ..de , \ It \ HIE-O .f\\ c a . -mm o .9 ..mmd .1000 6 9 V830 5.00 60.0 mESImuw Ego: 3 5E 52. was: 929., 00 3°33 9E omega E 2:0". 4O . , . _ _r M39128 525 ii 0095.5. Ill _. 000903 IOI , OPON r.” Ilir‘. ¢Dr.. sync? c . . . .. ~ 3* 50.5530 530.0 .0 23> mooN Doom mam F 8m F mmm .1 camp mum — a / lgllylillllllllzllail:lllllllla \ . . a \ a Ohm r 03.0 . oovd I owvd ,, Ode Mums unloads . 90.0 . w owmd T ommd coed 02.0.0... ..< 000:3 3380 05025 000390.. 0080>< .3 0.50.... 41 05228 5.00 «M. . . Fl . A 00900.5. Iii . 309%.. IT M 05 £9»: 05.0500 owed omvd oomd . owmd . .1 owmd O 53 O owmd . ommd oomd 33000 050on 000.5204 00.: 00000>< .3 0.59.... mm!) moods 42 NNOIi 0.0.1.. NEE ..T. 0? 8 ON OF 0 ..P~.p..._....bp...—__.l.-_ppFPP.....Fb._ ..mNd {00 ENG ”.000 .80 Tm .0 @000 30.0 30.0 @000 @000 ”.80 @000 W000 ".000 >.Eam_.mM £00... 3 £0 so... “90 329 00 .890th 9.0 000.94 .8 2:0". 43 00.0.5000 53000 _0 0000> 050 meow 0000 000, 009 009 009 0.0.0? 000. _ p . k 0 . _ 8N.o -1\ . 000.0 ..-hrll/l. I /1 fl!!! / l llllilll l.l lllall nflll lll- lll I lll 14000.0 ..azeaoo 00.00 L. l_ _ _. .4 108.0 . 000.00.: II! _ ., . 000000004; lllllll ll llllllll lll l l 1 ll l l l -lllommo ,, -840 lllll l l l l l l ll l l l l l l l l ll l l ll» l.-l-l+o~v.o l «ll 1 l l l l l 1 ll l l l l l ll l l l l l l.l--.lxll. 11.0.3.0 $00.0... ..< 00000< 330.5 0.0.0000 00025.05 000.93 . pm 0.50.... 035200 2000 1T . _ . ._ l. 000.025. lll M 500.50.. IOIL .E. 20.0: 05.0500 n 0 m c m N F o -./lrr/ lllllllllllll l ll.lll ll ll llllllllll 5‘. l l l l l ll ll lll llllllllll l l ll Alllllll ll ll / /J ./- ../, v/ -4 lllllllll l llllllllllllllll.lllll .. 05.0 - l mpmd mmwd 08.0 000.0 Annals amends .- 80o . mde .. 000.0 000.0 330.20 0.0.0000 00023.00m 00E 00000>< .NN 0.50.“. 45 Figure 23. Survival Rate for Seed Sources Before Thinning in 1985 ‘. -‘ TWA ff" {5:9 ”RSI?“ 3’11" :g‘fiIII :45.) $5,111! 4&3; “IX.“ Ma y‘. W3; 1.3m» Mr -. British Columbia - '71 F 1‘ § I 0.. 3 ° «3 '0 ‘3 3 ' ‘.‘ --fi;.:r;-1-IV'I :‘k . I‘?’ If" I I-I . . = "- ‘5‘ I ‘ '1 I.“ 1'- .7. £3.51“ £35qu I .rm.f.a:«r;~1.3-7_’3-.: ‘ b o c (U .9 .C .9 90.00% I L .\° .\° .\° .\° .\° .\° .\° .\° 0 8. 8 8. 8. 8. 8. 8. 8. 8. 8 f3 8 8 3 8 8 .9 ° DOMAINS 1000190! 46 CHAPTER 5 CONCLUSIONS Highly significant differences were found for specific gravity between Labrador (.364) and Michigan (.338) seed sources, and British Columbia (.357) and Michigan (.338) seed sources. For the log transformed data of radial growth/year, highly significant differences were found between British Columbia and Labrador seed sources, and between Michigan and Labrador seed sources. Percentage latewood had a strongly positive relationship with specific gravity and n! ‘11“.2. an r2 value of 0.896. Growth had a weakly negative relationship with specific gravity and .I! '6‘! (“In I R !‘ an r2 value of 0.524. As for within-tree variation, specific gravity was highest near the pith, decreased for ten years, and then slowly increased towards the bark. Specific gravity remained relatively constant as height increased, with the exception of the seed source from British Columbia which decreased as height increased. British Columbia seed seems to be a promising alternative for plantation grown white spruce in Michigan. It had a significantly higher SG average than Michigan seed, and comparable growth rates to Michigan seed. British Columbia seed also had an 82.5 % survival rate, same as Michigan, while Labrador only had a 60% survival rate. 47 APPENDIX A 48 SAS EDITOR TO CHARACTERIZE DIFFERENCES IN SPECIFIC GRAVITY DATA KYLE; INFILE 'D:\PROVENANCE.SUM.TXT'; INPUT STUDY_NAME $ 1-12 BLOCK 24 SEED 35 28-29 REPETITION 33 HEIGHT 37-39 RINGNO 42-43 YEAR 4649 ENDRIN G 52-57 RINGSTAR 60—65 LATEWIDT 70-73 RINGWIDT 77-81 LATEPER 85-89 SG_EARLY 93-97 SG_LATE 101-105 SG_RING 109-113; ll IF YEAR = 2005 THEN DELETE; RUN; PROC SORT; BY SEED BLOCK REPETITION HEIGHT RINGNO; RUN; TITLE 'PROC MIXED ANALYSIS'; PROC MIXED; CLASS BLOCK SEED REPETITION HEIGHT; MODEL SG_RING = SEED HEIGHT SEED*HEIGHT/outpm=newresid residual; RANDOM BLOCK; REPEATED SEED / SUBJ ECT=REPETITION (BLOCK) TYPE=CS; LSMEAN S SEED HEIGHT/CL DIFF ADJ UST=TUKEY; RUN; proc univariate data=newresid normal; var resid studentresid; qqplot / normal (mu=0 sigma=est); histogram / normal (mu=0 sigma=est); run; data newresid; set newresid; nid = _n_; run; 49 proc sort data=newresid; by block nifg ; run; proc boxplot data=newresid; plot (resid studentresid)*nifg (block) /boxstyle=schematicid; id nid; run; 50 359”. mad 8.. .0 8rd 03.0 DrOdumwhOdummgdnmmr.OnmmNdum—umudu L _ p _ . L _ _ _ O f Um IOF C e -.. I l 8 9 n-mLUQC-H 0m m0”. ggwwm DMNFZMDBm ”_O EEOQQI .vm 0.39". 51 5.5.1.3." 1!. taint... ..." i n. .. 9.....- h. umN-L 3 no.m-m w. m 2mm-..” mm. a 4 mea He ”WW 4. o _. 4.: .T 1W .1 J. .1! m N Dwt—D. D HM. Lama WImN“ m D m m D D D c m a town 3 tmes. mt v m N L 8 mo“. 950mm,“. omNFZmon “_o ._.o._n_xom_ .mm 93mm 52 APPENDIX B 53 SAS EDITOR TO CHARACTERIZE DIFFERENCES IN SPECIFIC GRAVITY DATA KYLE; INFILE 'D:\PROVENANCE.SUM.TXT'; INPUT STUDY_NAME $ 1-12 BLOCK 24 SEED $ 28-29 REPETITION 33 HEIGHT 37-39 RINGNO 42-43 YEAR 46-49 ENDRIN G 52-57 RINGSTAR 60-65 LATEWIDT 70-73 RINGWIDT 77-81 LATEPER 85-89 SG_EARLY 93-97 SG_LATE 101-105 SG_RING 109-113; IF YEAR = 2005 THEN DELETE; GROWTH = LOG(RINGWIDT); RUN; PROC SORT; BY SEED BLOCK REPETITION HEIGHT RINGNO; RUN; TITLE 'PROC MIXED ANALYSIS'; PROC MIXED; CLASS BLOCK SEED REPETITION HEIGHT; MODEL GROWTH = SEED HEIGHT SEED*HEIGHT/outpm=newresid residual; RANDOM BLOCK; REPEATED SEED / SUBJECT =REPETITION(BLOCK) TYPE=CS; LSMEAN S SEED HEIGHT/CL DIFF ADJUST=TUKEY; RUN; proc univariate data=newresid normal; var resid studentresid; qqplot / normal (mu=0 sigma=est); histogram / normal (mu=0 sigma=est); run; data newresid; set newresid; 54 nid = _n_; run; proc sort data=newresid; by block nifg ; run; proc boxplot data=newresid; plot (resid studentresid)*nifg (block) /boxstyle=schematicid; id nid; run; 55 l 1.0 [x IMNF TESOEO m0... w4§o_mmm QMN_._.ZMDD._.w ".0 24m 00.5.1 6N 930E 56 —2 S 8 2 S B 2 S 8 2 S 2 2 if, I- i Mw—HL. .fi + “_W + + M + .% +-0M 5- e e e L e -- e e .2 LL D _U ....m. _ s ._ ...._ .4 L TEE EOE wigflonwwm OmN_._2mOD._.w ".0 ...ng8 KN 059". 57 APPENDIX C 58 SAS EDITOR TO CHARACTERIZE DIFFERENCES IN % OF LATEWOOD DATA KYLE; INFILE 'D:\PROVENANCE.SUM.TXT'; INPUT STUDY_NAME $ 1-12 BLOCK 24 SEED $ 28-29 REPETITION 33 HEIGHT 37—39 RINGNO 42-43 YEAR 46-49 ENDRING 52-57 RINGSTAR 60-65 LATEWIDT 70-73 RINGWIDT 77-81 LATEPER 85-89 SG_EARLY 93-97 SG_LATE 101-105 SG_RING 109-113; IF YEAR = 2005 THEN DELETE; RUN; 3 LATEPERCENT = LOG(LATEPER); .- PROC SORT; BY SEED BLOCK REPETITION HEIGHT RINGNO; RUN; TITLE 'PROC MIXED ANALYSIS'; PROC MIXED; CLASS BLOCK SEED REPETITION HEIGHT; MODEL LATEPERCENT = SEED HEIGHT SEED*HEIGHT/outpm=newresid residual; RANDOM BLOCK; REPEATED SEED / SUBJECT=REPETITION(BLOCK) TYPE=CS; LSMEAN S SEED HEIGHT/CL DIFF ADJUST=TUKEY; RUN; proc univariate data=newresid normal; var resid studentresid; qqplot / normal (mu=0 sigma=est); histogram / normal (mu=0 sigma=est); run; data newresid; 59 set newresid; nid = ;n_; run; proc sort data=newresid; by block nifg ; run; proc boxplot data=newresid; plot (resid studentresid)*nifg (block) /boxstyle=schematicid; id nid; run; 60 g_@flu_ _UQN_uC@—03m $4.: mu NN V4. ®.O N.Oi Fl _ 0N: v.0: N..VI _ / / NR \ lmhomC-H IWNF [CAMP lm.k.r DOOR—Ed.— o\o m0". Ego—mum QMNFZMOEM ...O EEOBQI .wN 0.59m 61 um- _ m 3 D D D IV: U D D _ D b D m U D .... a w m D m ._: D J :N- I .0 a a a a a . + 47 L l _ H H H .. c U 0 B F m H m H m :N _o D D [F D _J u D m Iv _ m_ v_ m_ N_ L OOOgmbuj oxw IO". wqumem QMN_._.ZMDD._.w m0 ...OJmXOm .QN 0.59"— 62 APPENDIX D 63 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mA3) (kg/m43) (kg/m43) 1 76 1 1 .2 34 2005 1 .80 33.33 309.9 654.6 424.8 1 76 1 1 .2 33 2004 1 .26 23.81 289.7 600.7 363.7 1 76 1 1 .2 32 2003 0.90 20.00 289.8 587.9 349.4 1 76 1 1.2 31 2002 1.56 15.38 288.4 564.5 330.9 1 76 1 1 .2 30 2001 1 .68 14.29 296.2 606.3 340.5 1 76 1 1 .2 29 2000 1 .14 15.79 320.0 676.0 376.2 1 76 1 1.2 28 1999 1.26 14.29 317.6 622.6 361.2 1 76 1 1 .2 27 1998 1 .68 17.86 305.3 661 .8 369.0 1 76 1 1 .2 26 1997 1 .80 20.00 307.3 648.0 375.5 1 76 1 1.2 25 1996 1.74 17.24 300.5 620.4 355.7 1 76 1 1.2 24 1995 1.98 15.15 287.3 610.9 336.3 1 76 1 1.2 23 1994 3.90 15.38 303.1 680.7 361 .2 1 76 1 1 .2 22 1993 4.08 20.59 292.2 606.4 356.9 1 76 1 1 .2 21 1992 4.14 13.04 309.0 679.6 357.4 1 76 1 1 .2 20 1991 3.84 21 .88 281.2 698.2 372.4 1 76 1 1.2 19 1990 5.28 1 1 .36 321 .6 633.7 357.1 1 76 1 1.2 18 1989 3.30 30.91 273.9 684.2 400.7 1 76 1 1.2 17 1988 4.56 7.89 311.6 692.4 341.7 1 76 1 1.2 16 1987 6.42 20.56 298.9 624.1 365.7 1 76 1 1.2 15 1986 5.70 16.84 294.8 645.1 353.8 1 76 1 1.2 14 1985 6.66 18.02 ' 326.8 589.8 374.2 1 76 1 1.2 13 1984 5.34 12.36 308.6 618.6 346.9 1 76 1 1 .2 12 1983 3.60 15.00 283.9 670.8 341 .9 1 76 1 1 .2 1 1 1982 6.06 19.80 289.2 593.4 349.4 1 76 1 1.2 10 1981 7.62 7.87 319.7 598.9 341.9 1 76 1 1 .2 9 1980 6.42 20.56 330.0 590.9 383.1 1 76 1 1.2 8 1979 7.02 15.38 335.3 618.5 378.9 1 76 1 1 .2 7 1978 5.70 8.42 347.7 592.2 368.3 1 76 1 1 .2 6 1977 2.34 20.51 345.8 545.4 386.7 1 76 1 1 .2 5 1976 3.54 8.47 323.9 559.8 343.9 1 76 1 1 .2 4 1975 6.84 10.53 349.2 541 .7 369.4 1 76 1 1.2 3 1974 3.60 8.33 385.7 510.8 396.1 1 76 1 1 .2 2 1973 2.52 14.29 393.0 504.0 408.9 1 76 1 1 .2 1 1972 1 .68 67.86 397.0 539.9 490.7 1 76 1 3.6 27 2005 1 .26 14.29 297.4 537.0 331 .6 1 76 1 3.6 26 2004 1 .44 20.83 295.9 675.1 374.9 1 76 1 3.6 25 2003 0.96 18.75 289.9 610.9 350.1 1 76 1 3.6 24 2002 1.86 16.13 283.5 680.1 347.4 1 76 1 3.6 23 2001 1.62 18.52 295.5 648.9 361.0 1 76 1 3.6 22 2000 1 .08 27.78 292.0 702.9 406.2 1 76 1 3.6 21 1999 1 .80 6.67 306.8 622.4 327.8 1 76 1 3.6 20 1998 2.22 18.92 280.5 748.9 369.1 1 76 1 3.6 19 1997 2.46 14.63 284.1 695.6 344.3 1 76 1 3.6 18 1996 2.28 15.79 276.3 613.2 329.5 1 76 1 3.6 17 1995 1.92 12.50 275.1 654.4 322.5 1 76 1 3.6 16 1994 3.18 13.21 306.8 730.7 362.8 1 76 1 3.6 15 1993 3.54 22.03 295.0 620.5 366.8 1 76 1 3.6 14 1992 3.48 18.97 312.3 707.1 387.2 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mA3) (kg/m3) (kg/m43) 1 76 1 3.6 13 1991 3.84 25.00 292.1 687.5 390.9 1 76 1 3.6 12 1990 4.14 10.14 336.1 606.0 363.5 1 76 1 3.6 1 1 1989 2.22 37.84 260.0 690.4 422.8 1 76 1 3.6 10 1988 3.00 12.00 298.6 634.3 338.9 1 76 1 3.6 9 1987 4.02 17.91 287.0 674.5 356.4 1 76 1 3.6 8 1986 4.80 17.50 278.5 666.0 346.3 1 76 1 3.6 7 1985 3.66 19.67 310.5 649.8 377.2 1 76 1 3.6 6 1984 4.98 8.43 301.0 624.7 328.3 1 76 1 3.6 5 1983 6.00 6.00 308.8 609.6 326.9 1 76 1 3.6 4 1982 6.30 6.67 304.1 621 .9 325.3 1 76 1 3.6 3 1981 7.38 4.07 311.9 538.7 321.2 1 76 1 3.6 2 1980 5.94 4.04 345.6 530.4 353.1 1 76 1 3.6 1 1979 2.10 28.57 421.1 515.1 447.2 1 76 1 7.2 21 2005 1.44 4.17 341.1 485.9 347.1 1 76 1 7.2 20 2004 2.04 0.00 347.8 0.0 347.8 1 76 1 7.2 19 2003 1.38 0.00 364.0 0.0 364.0 1 76 1 7.2 18 2002 1.98 0.00 319.2 0.0 319.2 1 76 1 7.2 17 2001 3.12 0.00 348.7 0.0 348.7 1 76 1 7.2 16 2000 1.80 0.00 369.9 0.0 369.9 1 76 1 7.2 15 1999 2.34 0.00 324.5 0.0 324.5 1 76 1 7.2 14 1998 3.18 20.75 344.6 493.0 375.4 1 76 1 7.2 13 1997 2.82 8.51 315.8 499.3 331.4 1 76 1 7.2 12 1996 2.52 0.00 317.5 0.0 317.5 1 76 1 7.2 11 1995 2.16 0.00 319.0 0.0 319.0 1 76 1 7.2 10 1994 3.90 12.31 332.7 498.5 353.1 1 76 1 7.2 9 1993 6.42 8.41 319.3 512.2 335.5 1 76 1 7.2 8 1992 6.72 18.75 343.6 531 .5 378.8 1 76 1 7.2 7 1991 6.24 18.27 341.9 536.6 377.4 1 76 1 7.2 6 1990 7.32 3.28 _ 330.7 491 .9 336.0 1 76 1 7.2 5 1989 2.82 12.77 323.6 493.1 345.2 1 76 1 7.2 4 1988 3.72 1 1 .29 330.8 527.1 352.9 1 76 1 7.2 3 1987 6.00 5.00 332.1 517.8 341.4 1 76 1 7.2 2 1986 6.66 0.00 363.1 0.0 363.1 1 76 1 7.2 1 1985 1 .62 29.63 370.2 500.2 407.3 1 76 2 1 .2 31 2005 0.54 0.00 280.5 0.0 280.5 1 76 2 1.2 30 2004 1.14 0.00 284.3 0.0 284.3 1 76 2 1 .2 29 2003 1.08 0.00 291.3 0.0 291.3 1 76 2 1 .2 28 2002 1 .68 0.00 298.4 0.0 298.4 1 76 2 1 .2 27 2001 1.50 0.00 290.3 0.0 290.3 1 76 2 1 .2 26 2000 1 .38 0.00 297.9 0.0 297.9 1 76 2 1 .2 25 1999 1 .62 14.81 287.4 563.5 328.3 1 76 2 1 .2 24 1998 1 .56 3.85 277.7 520.8 287.0 1 76 2 1 .2 23 1997 5.10 7.06 266.8 621.1 291.8 1 76 2 1 .2 22 1996 4.56 10.53 271.8 576.1 303.8 1 76 2 1 .2 21 1995 4.68 1 1.54 288.1 595.0 323.5 1 76 2 1 .2 20 1994 4.86 7.41 286.6 577.7 308.2 1 76 2 1 .2 19 1993 5.22 4.60 281 .5 584.2 295.4 1 76 2 1.2 18 1992 3.42 22.81 269.7 558.3 335.5 65 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m43) (kg/mAS) 1 76 2 1.2 17 1991 4.14 5.80 284.0 628.1 303.9 1 76 2 1 .2 16 1990 5.64 7.45 286.3 587.5 308.7 1 76 2 1 .2 15 1989 4.92 10.98 277.5 567.1 309.3 1 76 2 1 .2 14 1988 3.36 10.71 286.4 602.6 320.3 1 76 2 1.2 13 1987 4.80 2.50 256.3 595.0 264.8 1 76 2 1 .2 12 1986 5.94 5.05 267.9 590.2 284.2 1 76 2 1 .2 1 1 1985 6.78 7.96 253.7 579.2 279.7 1 76 2 1 .2 10 1984 7.38 6.50 303.8 598.7 323.0 1 76 2 1 .2 9 1983 7.68 7.03 323.4 598.4 342.7 1 76 2 1 .2 8 1982 6.06 6.93 338.1 587.2 355.4 1 76 2 1 .2 7 1981 6.78 7.96 343.4 547.3 359.6 1 76 2 1 .2 6 1980 2.76 10.87 297.7 565.3 326.8 1 76 2 1 .2 5 1979 5.34 0.00 271.8 0.0 271 .8 1 76 2 1 .2 4 1978 6.96 3.45 280.2 513.0 288.2 1 76 2 1 .2 3 1977 5.22 4.60 296.9 51 1 .0 306.7 1 76 2 1 .2 2 1976 5.46 4.40 314.9 501 .2 323.1 1 76 2 1 .2 1 1975 10.98 1 .64 385.8 482.9 387.4 1 76 2 3.6 25 2005 0.54 1 1 .1 1 295.9 545.3 323.6 1 76 2 3.6 24 2004 0.66 0.00 294.4 0.0 294.4 1 76 2 3.6 23 2003 0.72 0.00 I 288.7 0.0 288.7 1 76 2 3.6 22 2002 1 .14 0.00 295.0 0.0 295.0 1 76 2 3.6 21 2001 1.26 0.00 284.9 0.0 284.9 1 76 2 3.6 20 2000 1 .50 16.00 264.3 545.7 309.3 1 76 2 3.6 19 1999 1 .92 9.37 270.4 571 .2 298.6 1 76 2 3.6 18 1998 1.98 9.09 271.3 557.2 297.3 1 76 2 3.6 17 1997 1.26 0.00 248.3 0.0 248.3 1 76 2 3.6 16 1996 2.94 12.24 275.6 606.2 316.1 1 76 2 3.6 15 1995 4.86 9.88 280.8 553.7 307.8 1 76 2 3.6 14 1994 5.16 11.63 284.6 579.2 318.9 1 76 2 3.6 13 1993 4.92 7.32 286.1 605.3 309.5 1 76 2 3.6 12 1992 5.40 3.33 278.2 552.1 287.4 1 76 2 3.6 1 1 1991 4.02 7.46 301 .2 593.7 323.0 1 76 2 3.6 10 1990 3.06 5.88 275.1 602.1 294.3 1 76 2 3.6 9 1989 3.72 14.52 276.7 597.6 323.2 1 76 2 3.6 8 1988 5.94 7.07 271 .6 616.9 296.0 1 76 2 3.6 7 1987 5.16 10.47 292.9 559.6 320.9 1 76 2 3.6 6 1986 6.66 5.41 286.9 536.6 300.5 1 76 2 3.6 5 1985 7.26 0.83 284.5 489.9 286.2 1 76 2 3.6 4 1984 7.80 2.31 272.8 522.2 278.6 1 76 2 3.6 3 1983 7.08 3.39 314.4 498.3 320.6 1 76 2 3.6 2 1982 6.18 7.77 356.1 548.9 371.0 1 76 2 3.6 1 1981 4.80 46.25 453.1 515.6 481.7 1 76 2 7.2 20 2005 0.36 16.67 338.1 492.0 363.8 1 76 2 7.2 19 2004 1 .14 0.00 293.7 0.0 293.7 1 76 2 7.2 18 2003 0.96 0.00 294.4 0.0 294.4 1 76 2 7.2 17 2002 1.02 0.00 284.6 0.0 284.6 1 76 2 7.2 16 2001 0.54 0.00 294.3 0.0 294.3 1 76 2 7.2 15 2000 1 .56 0.00 299.5 0.0 299.5 66 L ...-.1" ..Mllr “a“ O 4 Block Seed Heplic Height of Ring Year of Growth Latewood EW LW Hing Source ation Disc (rn) No. Growth (mm) °/o Density Density Density (kg/m43) (kg/m3) (kg/m43) 1 76 2 7.2 14 1999 1.62 1 1 .11 282.2 588.4 316.2 1 76 2 7.2 13 1998 2.94 10.20 271 .4 575.5 302.5 1 76 2 7.2 12 1997 3.72 3.23 282.2 490.7 289.0 1 76 2 7.2 1 1 1996 2.82 6.38 273.6 518.9 289.2 1 76 2 7.2 10 1995 4.20 8.57 298.3 523.0 317.6 1 76 2 7.2 9 1994 5.40 4.44 285.1 524.8 295.8 1 76 2 7.2 8 1993 6.24 7.69 300.1 533.8 318.1 1 76 2 7.2 7 1992 5.94 7.07 291 .4 516.5 307.3 1 76 2 7.2 6 1991 7.14 3.36 297.7 499.8 304.5 1 76 2 7.2 5 1990 7.08 5.08 306.1 561.8 319.1 1 76 2 7.2 4 1989 5.76 3.12 343.2 553.3 349.8 1 76 2 7.2 3 1988 4.32 2.78 311.3 534.7 317.5 1 76 2 7.2 2 1987 4.38 2.74 371 .6 499.3 375.1 1 76 2 7.2 1 1986 1.86 16.13 314.1 512.9 345.2 2 57 1 1 .2 34 2005 0.54 0.00 286.3 0.0 286.3 2 57 1 1 .2 33 2004 0.90 0.00 282.0 0.0 282.0 2 57 1 1 .2 32 2003 0.72 0.00 266.6 0.0 266.6 2 57 1 1 .2 31 2002 0.96 0.00 289.1 0.0 289.1 2 57 1 1.2 30 2001 1.08 0.00 254.2 0.0 254.2 2 57 1 1.2 29 2000 1 .08 16.67 289.7 510.9 324.6 2 57 1 1 .2 28 1999 1 .38 4.35 293.6 542.7 304.4 2 57 1 1 .2 27 1998 1.38 4.35 286.2 491 .8 295.6 2 57 1 1 .2 26 1997 1 .62 0.00 274.2 0.0 274.2 2 57 1 1 .2 25 1996 2.58 9.30 284.0 557.1 309.4 2 57 1 1 .2 24 1995 4.26 4.23 298.7 563.5 309.9 2 57 1 1 .2 23 1994 3.66 9.84 305.6 587.5 333.3 2 57 1 1.2 22 1993 3.96 6.06 295.4 603.7 314.1 2 57 1 1 .2 21 1992 3.96 4.55 303.6 616.2 317.8 2 57 1 1 .2 20 1991 2.58 1 1 .63 295.4 592.9 330.0 2 57 1 1 .2 19 1990 2.64 6.82 277.4 513.0 293.5 2 57 1 1 .2 18 1989 4.44 8.1 1 277.2 573.1 301.2 2 57 1 1.2 17 1988 4.86 8.64 284.2 620.6 313.3 2 57 1 1 .2 16 1987 4.62 9.09 307.3 579.5 332.0 2 57 1 1.2 15 1986 3.12 7.69 289.4 613.3 314.3 2 57 1 1 .2 14 1985 4.02 7.46 278.6 550.5 298.9 2 57 1 1 .2 13 1984 5.22 6.90 287.3 549.6 305.4 2 57 1 1.2 12 1983 5.16 4.65 288.8 518.6 299.5 2 57 1 1 .2 1 1 1982 4.86 7.41 273.5 530.7 292.6 2 57 1 1 .2 10 1981 5.28 5.68 286.8 572.3 303.1 2 57 1 1 .2 9 1980 4.98 4.82 294.1 520.8 305.0 2 57 1 1 .2 8 1979 2.82 14.89 304.7 532.4 338.6 2 57 1 1 .2 7 1978 5.64 5.32 274.0 556.8 289.0 2 57 1 1 .2 6 1977 5.34 7.87 303.0 575.6 324.4 2 57 1 1 .2 5 1976 3.42 7.02 297.0 572.5 316.4 2 57 1 1.2 4 1975 4.62 5.19 314.8 535.3 326.3 2 57 1 1 .2 3 1974 4.26 8.45 334.9 529.4 351 .3 2 57 1 1.2 2 1973 2.64 4.55 382.8 557.2 390.7 2 57 1 1.2 1 1972 3.54 10.17 412.3 533.0 424.4 67 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (rn) No. Growth (mm) °/o Density Density Density (kg/m43) (kg/mA3) (kg/m43) 2 57 1 3.6 27 2005 0.36 0.00 355.4 0.0 355.4 2 57 1 3.6 26 2004 1 .20 0.00 295.0 0.0 295.0 2 57 1 3.6 25 2003 0.66 0.00 291 .4 0.0 291.4 2 57 1 3.6 24 2002 0.84 0.00 291 .4 0.0 291.4 2 57 1 3.6 23 2001 1.50 0.00 284.2 0.0 284.2 2 57 1 3.6 22 2000 0.72 0.00 31 1 .2 0.0 31 1.2 2 57 1 3.6 21 1999 1.08 0.00 307.9 0.0 307.9 2 57 1 3.6 20 1998 1 .02 0.00 289.4 0.0 289.4 2 57 1 3.6 19 1997 2.22 0.00 297.7 0.0 297.7 2 57 1 3.6 18 1996 2. 82 12.77 308.6 580.1 343.2 2 57 1 3.6 17 1995 3. 00 4.00 312.5 603.8 324.1 2 57 1 3.6 16 1994 1 3.2 4.55 266.6 511.7 277.3 2 57 1 3.6 15 1993 4.08 8.82 301.0 572.7 325.4 2 57 1 3.6 14 1992 4.50 9.33 273.6 562.0 300.2 2 57 1 3.6 13 1991 5.88 3.06 291 .3 579.0 300.2 2 57 1 3.6 12 1990 3.96 7.58 284.5 563.9 305.7 2 57 1 3.6 11 1989 3.12 7.69 254.0 597.6 280.4 2 57 1 3.6 10 1988 5. 88 9.18 266.0 643.2 300.6 2 57 1 3.6 9 1987 7.14 9.24 272.3 581 .7 300.9 2 57 1 3.6 8 1986 6. 96 6.90 281.8 553.5 300.5 2 57 1 3.6 7 1985 5. 64 6.38 267.6 592.1 288.3 2 57 1 3.6 6 1984 5. 82 4.12 264.7 577.5 277.6 2 57 1 3.6 5 1983 7. 62 5.51 274.0 566.0 290.1 2 57 1 3.6 4 1982 8. 64 6.25 276.2 527.4 291.9 2 57 1 3.6 3 1981 8. 28 5.80 279.2 534.7 294.0 2 57 1 3.6 2 1980 6. 90 4.35 307.7 546.8 318.1 2 57 1 3.6 1 1979 4. 02 5.97 338.3 502.8 348.0 2 57 1 3.6 21 2005 0.60 0.00 328.2 0.0 328.2 2 57 1 7.2 20 2004 0.96 0.00 302.4 0.0 302.4 2 57 1 7.2 19 2003 0.84 0.00 303.2 0.0 303.2 2 57 1 7.2 18 2002 0. 84 0.00 317.0 0.0 317.0 2 57 1 7.2 17 2001 0.48 0.00 327.0 0.0 327.0 2 57 1 7.2 16 2000 1.68 0. 00 310.3 0.0 310.3 2 57 1 7.2 15 1999 1.68 0. 00 298.8 0. 0 298.8 2 57 1 7.2 14 1998 2. 34 15.38 290.7 510.5 324.5 2 57 1 7.2 13 1997 2.10 0. 00 318.5 0.0 318.5 2 57 1 7.2 12 1996 3. 30 0. 00 296.6 0. 0 296.6 2 57 1 7.2 11 1995 4. 86 13.58 310.7 564. 5 345.1 2 57 1 7.2 10 1994 7.74 6. 98 299.0 547.5 316.3 2 57 1 7.2 9 1993 6.18 7. 77 316.5 535.5 333.5 2 57 1 7.2 8 1992 8.28 6. 52 291.8 542.9 308.2 2 57 1 7.2 7 1991 7.92 5.30 283.6 537. 8 297.1 2 57 1 7.2 6 1990 6.42 4.67 314.7 544.4 325.4 2 57 1 7.2 5 1989 5.52 9.78 298.4 575. 4 325.5 2 57 1 7.2 4 1988 9.42 6.37 302.9 536.6 317.8 2 57 1 7.2 3 1987 9.18 2.61 328.5 531.4 333.8 2 57 1 7.2 2 1986 7. 38 6.50 334.2 569.0 349.6 2 57 1 7.2 1 1985 4. 50 52.00 436.1 534.2 486.4 68 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m43) (kg/m43) 2 57 1 7.2 33 2005 0.60 0.00 320.3 0.0 320.3 2 57 1 7.2 32 2004 0.78 0.00 280.0 0.0 280.0 2 57 1 7.2 31 2003 0.60 10.00 280.8 494.1 302.1 2 76 1 1 .2 30 2002 1 .02 5.88 294.2 497.9 306.2 2 76 1 1.2 29 2001 0.84 0.00 317.9 0.0 317.9 2 76 1 1 .2 28 2000 0.48 0.00 313.0 0.0 313.0 2 76 1 1.2 27 1999 1.68 3.57 313.4 485.4 319.6 2 76 1 1.2 26 1998 1.38 8.70 301.1 492.8 317.7 2 76 1 1 .2 25 1997 0.90 6.67 307.1 505.5 320.3 2 76 1 1.2 24 1996 1 .92 15.62 301 .5 551 .6 340.6 2 76 1 1.2 23 1995 1 .20 10.00 293.8 546.6 319.1 2 76 1 1 .2 22 1994 2.94 14.29 291.9 584.0 333.7 2 76 1 1.2 21 1993 3.30 14.55 318.7 541.5 351.1 2 76 1 1 .2 20 1992 3.78 17.46 281 .1 587.0 334.5 2 76 1 1.2 19 1991 2.16 22.22 274.4 641.1 355.9 2 76 1 1 .2 18 1990 4.26 12.68 299.2 626.2 340.6 2 76 1 1 .2 17 1989 5.04 16.67 268.4 585.0 321 .2 2 76 1 1.2 16 1988 7.98 5.26 279.1 561 .6 294.0 2 76 1 1.2 15 1987 3.72 19.35 264.5 600.7 329.5 2 76 1 1 .2 14 1986 5.22 8.05 273.8 593.2 299.5 2 76 1 1.2 13 1985 5.46 12.09 276.5 589.2 314.3 2 76 1 1 .2 12 1984 6.72 6.25 278.0 544.9 294.7 2 76 1 1 .2 1 1 1983 7.92 6.82 277.4 544.5 295.6 2 76 1 1.2 10 1982 5.52 6.52 286.0 577.8 305.0 2 76 1 1.2 9 1981 6.00 6.00 296.0 562.0 312.0 2 76 1 1.2 8 1980 3.48 13.79 296.7 600.3 338.6 2 76 1 1 .2 7 1979 5.40 6.67 269.1 585.6 290.2 2 76 1 1 .2 6 1978 5.94 5.05 297.4 556.6 310.5 2 76 1 1.2 5 1977 4.68 7.69 314.0 552.1 332.3 2 76 1 1 .2 4 1976 4.26 9.86 320.6 515.3 339.8 2 76 1 1 .2 3 1975 4.32 5.56 358.3 535.9 368.2 2 76 1 1.2 2 1974 2.64 15.91 401.2 506.7 418.0 2 76 1 1 .2 1 1973 1 .68 32.14 440.2 514.4 463.2 2 76 1 1 .2 27 2005 0.54 0.00 301.8 0.0 301.8 2 76 1 1.2 26 2004 0.60 0.00 281 .6 0.0 281 .6 2 76 1 1 .2 25 2003 0.36 0.00 299.6 0.0 299.6 2 76 1 1 .2 24 2002 0.54 0.00 297.7 0.0 297.7 2 76 1 3.6 23 2001 0.96 0.00 306.7 0.0 306.7 2 76 1 3.6 22 2000 0.78 0.00 305.4 0.0 305.4 2 76 1 3.6 21 1999 0.54 0.00 308.5 0.0 308.5 2 76 1 3.6 20 1998 1 .08 5.56 300.8 500.9 31 1 .9 2 76 1 3.6 19 1997 0.72 8.33 285.4 490.3 301.2 2 76 1 3.6 18 1996 2.04 5.88 291.9 510.7 304.4 2 76 1 3.6 17 1995 1 .50 16.00 296.0 683.6 358.0 2 76 1 3.6 16 1994 5.28 6.82 303.0 553.2 320.1 2 76 1 3.6 15 1993 2.58 30.23 291 .5 571 .1 376.0 2 76 1 3.6 14 1992 3.90 12.31 305.9 593.2 341.3 2 76 1 3.6 13 1991 6.66 4.50 305.5 554.9 316.7 69 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m43) (kg/mA3) 2 76 1 3.6 12 1990 5.10 7.06 328.2 533.4 342.7 2 76 1 3.6 1 1 1989 2.76 13.04 277.6 543.4 312.2 2 76 1 3.6 10 1988 7.20 6.67 302.6 540.6 318.5 2 76 1 3.6 9 1987 10.02 2.40 277.1 490.4 282.2 2 76 1 3.6 8 1986 7.74 3.10 303.6 552.1 311.3 2 76 1 3.6 7 1985 4.68 5.13 296.8 498.2 307.1 2 76 1 3.6 6 1984 6.72 3.57 278.9 554.9 288.9 2 76 1 3.6 5 1983 7.62 7.09 286.4 550.6 305.0 2 76 1 3.6 4 1982 8.16 3.68 304.6 540.2 313.3 2 76 1 3.6 3 1981 7.02 5.13 288.7 520.7 300.6 2 76 1 3.6 2 1980 7.20 4.17 335.8 550.0 344.7 2 76 1 3.6 1 1979 6.60 5.45 373.0 534.6 381.8 2 76 1 3.6 22 2005 1 .14 10.53 275.1 520.3 300.9 2 76 1 3.6 21 2004 1 .62 18.52 292.1 609.6 350.9 2 76 1 3.6 20 2003 0.84 14.29 280.6 520.9 314.9 2 76 1 3.6 19 2002 0.96 12.50 278.4 533.2 310.3 2 76 1 7.2 18 2001 1.62 7.41 31 1.8 597.1 332.9 2 76 1 7.2 17 2000 0.78 15.38 302.0 556.6 341 .2 2 76 1 7.2 16 1999 1.80 10.00 301 .4 544.4 325.7 2 76 1 7.2 15 1998 1 .02 17.65 . 300.7 578.2 349.7 2 76 1 7.2 14 1997 2.16 11.11 304.7 616.5 339.4 2 76 1 7.2 13 1996 0.78 0.00 295.0 0.0 295.0 2 76 1 7.2 12 1995 3.06 7.84 299.3 548.0 318.8 2 76 1 7.2 1 1 1994 2.10 20.00 306.3 571.3 359.3 2 76 1 7.2 10 1993 5.40 4.44 310.1 574.9 321.9 2 76 1 7.2 9 1992 2.64 25.00 326.8 544.0 381.1 2 76 1 7.2 8 1991 5.28 9.09 297.9 586.3 324.2 2 76 1 7.2 7 1990 7.14 5.04 294.3 623.7 310.9 2 76 1 7.2 6 1989 6.60 3.64 293.0 568.0 303.0 2 76 1 7.2 5 1988 4.02 16.42 298.3 551 .0 339.7 2 76 1 7.2 4 1987 7.68 6.25 302.2 559.5 318.3 2 76 1 7.2 3 1986 7.68 3.91 291 .6 538.0 301 .2 2 76 1 7.2 2 1985 6.60 5.45 334.9 492.4 343.5 2 76 1 7.2 1 1984 7.50 9.60 390.7 516.5 402.7 2 76 1 7.2 34 2005 1 .20 30.00 303.1 561 .4 380.6 2 76 1 7.2 33 2004 0.48 25.00 303.9 626.2 384.5 2 76 1 7.2 32 2003 0.42 0.00 312.3 0.0 312.3 2 76 2 1 .2 31 2002 0.78 15.38 272.4 523.3 31 1.0 2 76 2 1 .2 30 2001 1 .14 26.32 277.3 558.5 351 .3 2 76 2 1 .2 29 2000 0.78 23.08 276.6 572.0 344.8 2 76 2 1 .2 28 1999 0.96 18.75 291 .1 526.5 335.2 2 76 2 1.2 27 1998 1.32 18.18 274.6 651.5 343.2 2 76 2 1 .2 26 1997 1 .26 23.81 244.3 619.4 333.6 2 76 2 1 .2 25 1996 1 .14 15.79 274.9 585.8 324.0 2 76 2 1 .2 24 1995 1 .68 10.71 233.7 563.9 269.1 2 76 2 1 .2 23 1994 2.88 20.83 283.0 581 .1 345.1 2 76 2 1.2 22 1993 3.30 14.55 295.3 608.5 340.9 2 76 2 1 .2 21 1992 4.56 17.1 1 287.2 566.5 335.0 70 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/mA3) (kg/m43) 2 76 2 1.2 20 1991 5.22 12.64 282.3 591.6 321.4 2 76 2 1 .2 19 1990 4.86 13.58 318.3 538.4 348.2 2 76 2 1.2 18 1989 3.36 17.86 268.3 612.3 329.7 2 76 2 1.2 17 1988 3.54 6.78 306.9 653.0 330.3 2 76 2 1 .2 16 1987 4.86 14.81 323.8 577.8 361.9 2 76 2 1.2 15 1986 4.56 13.16 348.3 555.3 375.2 2 76 2 1.2 14 1985 3.84 15.62 343.1 590.0 381.7 2 76 2 1.2 13 1984 5.88 7.14 311.2 599.9 331.8 2 76 2 1.2 12 1983 5.40 14.44 294.6 560.7 333.1 2 76 2 1 .2 1 1 1982 6.42 10.28 304.4 579.8 332.7 2 76 2 1.2 10 1981 7.20 8.33 300.0 518.8 318.2 2 76 2 1.2 9 1980 6.42 12.15 327.0 550.8 354.2 2 76 2 1 .2 8 1979 5.22 6.90 320.2 524.3 334.2 2 76 2 1 .2 7 1978 5.34 14.61 336.0 529.9 364.3 2 76 2 1.2 6 1977 3.48 12.07 325.6 602.0 358.9 2 76 2 1.2 5 1976 5.16 1 1.63 325.9 547.2 351.6 2 76 2 1.2 4 1975 6.48 11.11 313.0 547.6 339.1 2 76 2 1 .2 3 1974 4.56 13.16 323.4 560.6 354.6 2 76 2 1 .2 2 1973 4.38 9.59 377.8 587.9 398.0 2 76 2 1.2 1 1972 5.16 36.05 I 455.0 514.7 476.3 2 76 2 1 .2 28 2005 0.84 7.14 324.2 498.1 336.6 2 76 2 1 .2 27 2004 0.78 38.46 325.5 518.5 399.8 2 76 2 3.6 26 2003 0.60 0.00 334.0 0.0 334.0 2 76 2 3.6 25 2002 0.84 0.00 313.2 0.0 313.2 2 76 2 3.6 24 2001 1.02 17.65 305.6 507.8 341.3 2 76 2 3.6 23 2000 0.90 13.33 299.8 502.5 326.9 2 76 2 3.6 22 1999 0.84 0.00 302.3 0.0 302.3 2 76 2 3.6 21 1998 1.44 12.50 290.3 500.3 315.5 2 76 2 3.6 20 1997 1.74 13.79 272.3 538.7 309.1 2 76 2 3.6 19 1996 1.68 10.71 291.4 508.0 314.6 2 76 2 3.6 18 1995 1.92 0.00 264.8 0.0 264.8 2 76 2 3.6 17 1994 3.42 14.04 283.4 560.2 322.2 2 76 2 3.6 16 1993 4.02 1 1 .94 269.0 563.1 304.1 2 76 2 3.6 15 1992 5.22 12.64 276.8 588.7 316.2 2 76 2 3.6 14 1991 5.46 13.19 287.0 584.2 326.2 2 76 2 3.6 13 1990 3.66 13.11 315.0 555.2 346.5 2 76 2 3.6 12 1989 4.56 15.79 272.4 590.8 322.7 2 76 2 3.6 1 1 1988 4.02 5.97 292.1 485.0 303.6 2 76 2 3.6 10 1987 4.62 9.09 296.9 529.0 318.0 2 76 2 3.6 9 1986 7.32 8.20 290.0 548.2 31 1 .2 2 76 2 3.6 8 1985 6.78 9.73 305.1 578.8 331 .7 2 76 2 3.6 7 1984 7.68 3.91 275.5 532.3 285.5 2 76 2 3.6 6 1983 7.26 7.44 298.3 570.1 318.5 2 76 2 3.6 5 1982 9.12 7.24 298.0 555.5 316.6 2 76 2 3.6 4 1981 8.52 9.15 317.5 546.1 338.5 2 76 2 3.6 3 1980 7.80 7.69 324.4 552.1 341 .9 2 76 2 3.6 2 1979 5.82 6.19 366.6 548.7 377.9 2 76 2 3.6 1 1978 7.62 30.71 440.1 500.6 458.5 71 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m43) (kg/m43) 2 76 2 3.6 23 2005 1 .50 20.00 259.5 599.1 327.4 2 76 2 7.2 22 2004 1.74 17.24 304.9 648.2 364.1 2 76 2 7.2 21 2003 1 .20 20.00 251 .7 683.1 338.0 2 76 2 7.2 20 2002 1 .56 15.38 270.8 644.8 328.4 2 76 2 7.2 19 2001 1.86 12.90 293.6 642.3 338.6 2 76 2 7.2 18 2000 1 .74 20.69 288.0 648.2 362.6 2 76 2 7.2 17 1999 1.56 15.38 271.2 674.3 333.2 2 76 2 7.2 16 1998 2.34 12.82 260.2 658.6 31 1.2 2 76 2 7.2 15 1997 2.88 12.50 265.0 650.8 313.2 2 76 2 7.2 14 1996 2.70 8.89 278.6 604.0 307.5 2 76 2 7.2 13 1995 2.52 7.14 247.8 597.2 272.7 2 76 2 7.2 12 1994 5.34 7.87 288.7 645.2 316.7 2 76 2 7.2 1 1 1993 6.42 9.35 275.6 570.4 303.1 2 76 2 7.2 10 1992 5.58 10.75 291.4 602.8 324.9 2 76 2 7.2 9 1991 8.28 9.42 310.2 578.3 335.4 2 76 2 7.2 8 1990 7.62 1 1 .02 334.9 577.1 361.6 2 76 2 7.2 7 1989 7.20 1 1.67 295.0 552.4 325.0 2 76 2 7.2 6 1988 6.12 1 1.76 294.9 573.6 327.6 2 76 2 7.2 5 1987 7.50 6.40 31 1 .5 604.1 330.2 2 76 2 7.2 4 1986 7.50 9.60 I 336.0 542.3 355.8 2 76 2 7.2 3 1985 5.64 9.57 335.4 583.3 359.4 2 76 2 7.2 2 1984 5.76 5.21 378.1 523.0 385.5 2 76 . 2 7.2 1 1983 1 .44 4.17 448.5 584.5 453.9 3 57 1 1.2 31 2005 0.90 0.00 371.0 0.0 371.0 3 57 1 1 .2 30 2004 0.78 46.15 358.0 575.9 458.6 3 57 1 1 .2 29 2003 0.48 62.50 410.7 553.9 500.2 3 57 1 1 .2 28 2002 0.90 26.67 321 .9 527.5 376.7 3 57 1 1 .2 27 2001 0.96 18.75 354.3 530.6 387.4 3 57 1 1 .2 26 2000 0.72 41 .67 358.7 601.3 459.8 3 57 1 1 .2 25 1999 0.54 33.33 358.7 550.5 422.6 3 57 1 1 .2 24 1998 0.72 33.33 375.6 61 1.4 454.2 3 57 1 1.2 23 1997 0.60 40.00 366.7 542.3 437.0 3 57 1 1 .2 22 1996 0.30 20.00 381 .8 483.5 402.1 3 57 1 1 .2 21 1995 0.36 0.00 365.4 0.0 365.4 3 57 1 1.2 20 1994 0.72 16.67 344.6 513.5 372.8 3 57 1 1.2 19 1993 0.72 25.00 372.0 548.1 416.0 3 57 1 1.2 18 1992 0.84 0.00 382.8 0.0 382.8 3 57 1 1.2 17 1991 1.56 0.00 375.6 0.0 375.6 3 57 1 1 .2 16 1990 1 .32 9.09 332.6 483.6 346.3 3 57 1 1.2 15 1989 2.52 14.29 301.8 580.7 341.7 3 57 1 1.2 14 1988 2.04 20.59 369.4 572.4 41 1 .2 3 57 1 1.2 13 1987 2.10 0.00 310.1 0.0 310.1 3 57 1 1.2 12 1986 2.40 15.00 287.1 582.3 331.4 3 57 1 1.2 1 1 1985 2.94 10.20 295.3 634.1 329.8 3 57 1 1.2 10 1984 4.92 7.32 306.8 577.5 326.6 3 57 1 1.2 9 1983 4.80 8.75 295.3 612.0 323.0 3 57 1 1.2 8 1982 3.96 12.12 326.7 613.2 361.4 3 57 1 1.2 7 1981 4.62 9.09 347.5 561.0 366.9 72 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) °/o Density Density Density (kg/mA3) (kg/m43) (kg/mAS) 3 57 1 1.2 6 1980 3.12 15.38 354.0 566.7 386.7 3 57 1 1 .2 5 1979 4.62 7.79 337.9 522.9 352.3 3 57 1 1 .2 4 1978 4.98 7.23 336.1 528.5 350.0 3 57 1 1 .2 3 1977 3.90 7.69 339.8 524.4 354.0 3 57 1 1 .2 2 1976 2.40 0.00 392.3 0.0 392.3 3 57 1 1 .2 1 1975 1 .26 28.57 445.0 509.4 462.6 3 57 1 3.6 26 2005 1 .26 9.52 324.1 499.0 341 .6 3 57 1 3.6 25 2004 1 .32 27.27 337.2 612.5 409.0 3 57 1 3.6 24 2003 1 .20 25.00 352.8 582.2 410.2 3 57 1 3.6 23 2002 1 .50 20.00 31 1.4 587.9 366.7 3 57 1 3.6 22 2001 1.56 15.38 339.1 582.0 376.5 3 57 1 3.6 21 2000 1.62 29.63 361.0 583.8 427.0 3 57 1 3.6 20 1999 1 .26 19.05 324.3 658.1 387.9 3 57 1 3.6 19 1998 1.98 18.18 313.1 627.9 370.3 3 57 1 3.6 18 1997 1.98 21 .21 320.4 601.9 380.1 3 57 1 3.6 17 1996 1.68 10.71 353.0 585.9 378.0 3 57 1 3.6 16 1995 1.98 15.15 313.8 610.2 358.7 3 57 1 3.6 15 1994 3.06 1 1 .76 320.1 609.0 354.1 3 57 1 3.6 14 1993 3.66 9.84 319.5 574.7 344.6 3 57 1 3.6 13 1992 3.84 10.94 . 321.4 582.4 349.9 3 57 1 3.6 12 1991 3.66 13.1 1 309.0 617.3 349.4 3 57 1 3.6 1 1 1990 3.54 8.47 322.1 591.8 344.9 3 57 1 3.6 10 1989 3.00 20.00 322.8 542.9 366.8 3 57 1 3.6 9 1988 2.46 7.32 300.7 599.4 322.5 3 57 1 3.6 8 1987 4.38 10.96 293.7 583.2 325.4 3 57 1 3.6 7 1986 5.40 12.22 292.5 539.2 322.7 3 57 1 3.6 6 1985 4.32 13.89 314.0 553.2 347.2 3 57 1 3.6 5 1984 4.98 7.23 299.2 564.8 318.4 3 57 1 3.6 4 1983 4.92 4.88 295.7 548.3 308.0 3 57 1 3.6 3 1982 6.90 6.09 295.8 560.6 311.9 3 57 1 3.6 2 1981 6.66 5.41 313.9 503.0 324.1 3 57 1 7.2 1 1980 8.76 0.00 361.5 0.0 361.5 3 57 1 7.2 21 2005 1.02 0.00 318.9 0.0 318.9 3 57 1 7.2 20 2004 1.44 20.83 342.0 561 .7 387.7 3 57 1 7.2 19 2003 1 .38 26.09 337.0 537.4 389.3 3 57 1 7.2 18 2002 1.56 1 1 .54 306.5 495.5 328.3 3 57 1 7.2 17 2001 1 .74 20.69 326.0 529.7 368.2 3 57 1 7.2 16 2000 1.68 28.57 348.8 576.8 414.0 3 57 1 7.2 15 1999 1.62 18.52 321.2 521.9 358.4 3 57 1 7.2 14 1998 2.16 22.22 314.2 546.6 365.8 3 57 1 7.2 13 1997 1.92 18.75 31 1.0 578.5 361.1 3 57 1 7.2 12 1996 1 .86 6.45 307.5 521.0 321 .3 3 57 1 7.2 11 1995 2.88 10.42 291.1 591.4 322.4 3 57 1 7.2 10 1994 3.96 13.64 296.4 569.0 333.6 3 57 1 7.2 9 1993 5.94 5.05 291 .2 592.0 306.4 3 57 2 1 .2 8 1992 6.00 7.00 303.4 568.0 321.9 3 57 2 1.2 7 1991 5.76 8.33 288.9 559.0 31 1.4 3 57 2 1 .2 6 1990 6.36 4.72 296.3 556.6 308.6 73 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/mA3) (kg/mA3) 3 57 2 1 .2 5 1989 5.28 3.41 291 .4 493.3 298.2 3 57 2 1.2 4 1988 5.16 3.49 313.1 501.2 319.6 3 57 2 1 .2 3 1987 6.18 3.88 324.6 484.6 330.8 3 57 2 1 .2 2 1986 6.48 1 .85 357.1 493.4 359.6 3 57 2 1 .2 1 1985 2.58 55.81 458.4 502.1 482.2 3 57 2 1 .2 37 2005 1 .02 23.53 271 .8 613.4 352.2 3 57 2 1.2 36 2004 1.50 16.00 281 .5 594.4 331 .6 3 57 2 1 .2 35 2003 0.72 25.00 261 .9 594.0 345.0 3 57 2 1 .2 34 2002 1.20 15.00 268.7 549.1 310.8 3 57 2 1.2 33 2001 1.14 15.79 289.6 588.9 336.8 3 57 2 1.2 32 2000 0.84 7.14 287.8 609.5 310.8 3 57 2 1 .2 31 1999 1 .20 5.00 286.5 640.0 304.2 3 57 2 1 .2 30 1998 1.74 17.24 282.5 640.9 344.3 3 57 2 1 .2 29 1997 1 .74 17.24 273.2 603.9 330.2 3 57 2 1.2 28 1996 1.98 15.15 291.6 578.9 335.2 3 57 2 1 .2 27 1995 1 .56 15.38 263.3 637.5 320.8 3 57 2 1 .2 26 1994 1.74 13.79 284.4 619.0 330.5 3 57 2 1 .2 25 1993 2.28 7.89 292.7 584.6 315.7 3 57 2 1 .2 24 1992 3.36 14.29 299.2 593.3 341 .2 3 57 2 1.2 23 1991 3.18 18.87 _ 292.2 556.8 342.1 3 57 2 1 .2 22 1990 4.38 6.85 304.8 582.3 323.8 3 57 2 1 .2 21 1989 3.54 16.95 307.0 542.9 346.9 3 57 2 1.2 20 1988 2.82 14.89 299.6 61 1 .6 346.1 3 57 2 1 .2 19 1987 2.70 22.22 310.8 563.4 366.9 3 57 2 1 .2 18 1986 4.80 15.00 302.8 597.3 347.0 3 57 2 1.2 17 1985 2.76 23.91 324.8 578.8 385.5 3 57 2 1.2 16 1984 3.06 7.84 316.7 525.8 333.1 3 57 2 1 .2 15 1983 3.00 12.00 295.8 549.3 326.2 3 57 2 1 .2 14 1982 4.80 7.50 299.9 552.4 318.8 3 57 2 3.6 13 1981 6.66 4.50 291.3 506.3 301.0 3 57 2 3.6 12 1980 4.50 8.00 290.5 582.0 313.8 3 57 2 3.6 1 1 1979 5.76 5.21 297.3 605.0 313.3 3 57 2 3.6 10 1978 6.84 5.26 300.3 592.4 315.6 3 57 2 3.6 9 1977 2.88 12.50 295.3 556.4 328.0 3 57 2 3.6 8 1976 7.26 4.96 274.3 604.7 290.7 3 57 2 3.6 7 1975 6.96 5.17 302.4 586.4 317.1 3 57 2 3.6 6 1974 6.54 4.59 308.6 613.9 322.6 3 57 2 3.6 5 1973 8.28 5.07 326.7 566.2 338.8 3 57 2 3.6 4 1972 6.06 5.94 350.9 538.8 362.0 3 57 2 3.6 3 1971 5.46 5.49 355.4 505.6 363.6 3 57 2 3.6 2 1970 6.42 2.80 373.9 499.9 377.4 3 57 2 3.6 1 1969 5.52 6.52 379.7 534.9 389.7 3 57 2 3.6 32 2005 0.96 18.75 286.5 644.3 353.6 3 57 2 3.6 31 2004 1.26 14.29 295.9 633.7 344.1 3 57 2 3.6 30 2003 0.78 23.08 279.8 613.7 356.9 3 57 2 3.6 29 2002 1.32 18.18 279.9 615.9 341.0 3 57 2 3.6 28 2001 1.32 18.18 289.1 643.6 353.6 3 57 2 3.6 27 2000 0.96 25.00 288.7 713.5 394.9 74 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m43) (kg/mAS) 3 57 2 3.6 26 1999 1.44 12.50 287.1 622.9 329.1 3 57 2 3.6 25 1998 1.20 25.00 285.3 631 .6 371 .9 3 57 2 3.6 24 1997 1 .08 22.22 277.1 667.0 363.7 3 57 2 3.6 23 1996 1 .26 14.29 281 .7 650.4 334.3 3 57 2 3.6 22 1995 1.26 19.05 274.7 641.1 344.5 3 57 2 3.6 21 1994 1.62 18.52 283.0 598.4 341.4 3 57 2 7.2 20 1993 3.00 12.00 304.3 578.5 337.2 3 57 2 7.2 19 1992 3.48 18.97 312.8 580.2 363.5 3 57 2 7.2 18 1991 3.36 23.21 299.3 562.9 360.5 3 57 2 7.2 17 1990 4.56 7.89 318.8 587.1 340.0 3 57 2 7.2 16 1989 3.54 23.73 297.1 571 .4 362.2 3 57 2 7.2 15 1988 3.00 10.00 300.0 693.8 339.4 3 57 2 7.2 14 1987 3.36 26.79 297.5 609.9 381 .2 3 57 2 7.2 13 1986 7.14 8.40 309.7 598.7 334.0 3 57 2 7.2 12 1985 6.60 20.91 351.3 559.1 394.7 3 57 2 7.2 11 1984 5.40 13.33 322.2 592.5 358.2 3 57 2 7.2 10 1983 6.30 9.52 308.0 591.2 334.9 3 57 2 7.2 9 1982 8.94 9.40 316.3 570.4 340.1 3 57 2 7.2 8 1981 8.82 5.44 297.0 533.9 309.9 3 57 2 7.2 7 1980 8.04 6.72 . 301.3 534.2 316.9 3 57 2 7.2 6 1979 7.98 10.53 317.5 548.6 341.8 3 57 2 7.2 5 1978 10.86 1.66 302.0 509.6 305.4 3 57 2 7.2 4 1977 4.08 4.41 342.5 533.6 350.9 3 57 2 7.2 3 1976 4.20 2.86 369.5 490.1 372.9 3 57 2 7.2 2 1975 3.84 0.00 386.9 0.0 386.9 3 76 1 1 .2 1 1974 1 .50 4.00 380.1 560.4 387.0 3 76 1 1 .2 23 2005 0.66 0.00 283.6 0.0 283.6 3 76 1 1 .2 22 2004 1 .14 21 .05 291 .0 601 .0 356.3 3 76 1 1 .2 21 2003 0.72 25.00 282.0 557.1 350.8 3 76 1 1 .2 20 2002 1 .32 9.09 278.1 577.8 305.3 3 76 1 1.2 19 2001 1.08 11.11 283.9 602.2 319.3 3 76 1 1 .2 18 2000 0.84 21 .43 277.1 609.8 348.4 3 76 1 1.2 17 1999 1.44 12.50 272.0 636.7 317.6 3 76 1 1.2 16 1998 1.86 12.90 282.3 670.1 332.3 3 76 1 1 .2 15 1997 1.98 21.21 258.9 578.1 326.6 3 76 1 1 .2 14 1996 2.22 5.41 291 .6 622.6 309.5 3 76 1 1.2 13 1995 1.86 16.13 250.8 640.5 313.7 3 76 1 1.2 12 1994 2.28 15.79 266.4 591.1 317.7 3 76 1 1.2 1 1 1993 3.72 8.06 289.2 573.6 312.1 3 76 1 1.2 10 1992 3.90 10.77 292.0 585.4 323.6 3 76 1 1.2 9 1991 5.40 7.78 292.6 568.1 314.0 3 76 1 1.2 8 1990 5.52 6.52 299.5 547.4 315.7 3 76 1 1.2 7 1989 4.68 5.13 299.5 563.5 313.0 3 76 1 1.2 6 1988 4.26 9.86 282.9 563.1 310.5 3 76 1 1 .2 5 1987 4.56 5.26 291 .8 588.5 307.4 3 76 1 1.2 4 1986 8.58 6.99 303.5 532.6 319.6 3 76 1 1.2 3 1985 9.18 3.92 306.1 562.5 316.1 3 76 1 1 .2 2 1984 6.42 5.61 291 .4 555.6 306.2 75 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) °/o Density Density Density (kg/m43) (kg/m43) (kg/m43) 3 76 1 1.2 1 1983 10.80 18.89 370.7 652.0 423.6 3 76 1 1 .2 34 2005 1 .44 4.17 267.0 486.2 276.2 3 76 1 1.2 33 2004 1.80 33.33 268.7 619.7 385.7 3 76 1 1 .2 32 2003 1 .50 32.00 269.3 602.9 376.0 3 76 1 1 .2 31 2002 2.28 21 .05 261.5 577.3 328.0 3 76 1 1 .2 30 2001 1.92 31 .25 262.1 597.2 366.9 3 76 1 1 .2 29 2000 1.68 35.71 299.6 621 .0 414.4 3 76 1 1 .2 28 1999 1 .56 19.23 288.5 560.8 340.9 3 76 1 3.6 27 1998 1.98 33.33 263.6 613.5 380.2 3 76 1 3.6 26 1997 2.34 20.51 251 .3 607.7 324.4 3 76 1 3.6 25 1996 1.86 16.13 256.2 596.1 31 1.0 3 76 1 3.6 24 1995 2.34 12.82 249.7 552.7 288.5 3 76 1 3.6 23 1994 3.54 16.95 277.3 612.9 334.2 3 76 1 3.6 22 1993 4.08 22.06 241 .0 608.2 323.2 3 76 1 3.6 21 1992 4.98 12.05 287.5 605.8 325.4 3 76 1 3.6 20 1991 4.08 33.82 238.8 617.4 366.9 3 76 1 3.6 19 1990 4.08 23.53 256.0 579.7 332.2 3 76 1 3.6 18 1989 3.36 30.36 239.8 639.9 361.3 3 76 1 3.6 17 1988 2.94 18.37 247.5 592.5 310.9 3 76 1 3.6 16 1987 4.08 27.94 231 .8 623.8 341.3 3 76 1 3.6 15 1986 5.10 16.47 251.4 673.0 320.8 3 76 1 3.6 14 1985 4.32 23.61 286.7 647.3 371.9 3 76 1 3.6 13 1984 4.20 20.00 272.3 620.1 341.8 3 76 1 3.6 12 1983 5.10 12.94 244.8 647.8 297.5 3 76 1 3.6 11 1982 6.60 14.55 288.5 612.0 335.1 3 76 1 3.6 10 1981 7.08 13.56 260.1 586.5 304.4 3 76 1 3.6 9 1980 5.64 15.96 275.6 593.5 326.3 3 76 1 3.6 8 1979 5.10 17.65 279.1 558.8 328.5 3 76 1 3.6 7 1978 5.16 20.93 302.4 578.1 360.1 3 76 1 3.6 6 1977 4.26 14.08 273.9 597.2 319.4 3 76 1 3.6 5 1976 5.58 18.28 302.0 565.4 350.1 3 76 1 3.6 4 1975 4.80 12.50 317.5 563.3 348.2 3 76 1 3.6 3 1974 4.08 26.47 350.4 590.0 413.9 3 76 1 3.6 2 1973 3.36 19.64 355.6 562.1 396.2 3 76 1 7.2 1 1972 7.38 16.26 415.0 524.4 432.7 3 76 1 7.2 28 2005 1 .98 21 .21 239.4 595.2 314.9 3 76 1 7.2 27 2004 1.68 32.14 240.3 648.2 371.4 3 76 1 7.2 26 2003 1.38 21 .74 239.6 662.1 331 .4 3 76 1 7.2 25 2002 2.40 1 5.00 230.1 633.5 290.6 3 76 1 7.2 24 2001 2.16 22.22 236.6 630.5 324.2 3 76 1 7.2 23 2000 1 .86 35.48 258.1 677.4 406.9 3 76 1 7.2 22 1999 1 .80 23.33 255.0 577.7 330.3 3 76 1 7.2 21 1998 1.68 25.00 244.2 673.8 351.6 3 76 1 7.2 20 1997 2.40 25.00 252.4 626.4 345.9 3 76 1 7.2 19 1996 1.74 24.14 236.7 623.1 330.0 3 76 1 7.2 18 1995 2.52 16.67 243.1 607.6 303.8 3 76 1 7.2 17 1994 3.84 26.56 263.3 605.0 354.1 3 76 1 7.2 16 1993 4.74 24.05 255.5 662.7 353.4 76 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Source ation Disc (m) No. Growth (mm) °/o Ring Density Density Density (kg/m3) (kg/m43) (kg/"143) 77 3 76 1 7.2 15 1992 5.04 17.86 306.3 643.9 366.6 3 76 1 7.2 14 1991 4.92 37.80 265.4 632.0 404.0 3 76 1 7.2 13 1990 4.86 39.51 264.6 640.2 413.0 3 76 1 7.2 12 1989 4.56 27.63 254.2 647.9 363.0 3 76 1 7.2 1 1 1988 4.50 25.33 266.9 587.6 348.1 3 76 1 7.2 10 1987 5.94 22.22 265.1 610.6 341.9 3 76 1 7.2 9 1986 7.62 22.83 271 .7 597.0 346.0 3 76 2 1 .2 8 1985 7.20 27.50 293.5 582.1 372.8 3 76 2 1.2 7 1984 6.48 17.59 293.0 613.5 349.4 3 76 2 1 .2 6 1983 6.42 20.56 265.9 649.2 344.7 3 76 2 1 .2 5 1982 8.46 8.51 278.0 612.1 306.5 3 76 2 1.2 4 1981 7.86 1 1.45 278.0 581.8 312.8 3 76 2 1 .2 3 1980 7.56 13.49 302.5 548.7 335.7 3 76 2 1 .2 2 1979 7.14 6.72 345.0 492.9 354.9 3 76 2 1 .2 1 1978 5.52 6.52 376.4 484.7 383.4 3 76 2 1 .2 23 2005 1 .92 0.00 258.0 0.0 258.0 3 76 2 1 .2 22 2004 2.22 29.73 241 .1 558.4 335.4 3 76 2 1 .2 21 2003 1 .62 18.52 253.2 620.9 321.3 3 76 2 1 .2 20 2002 2.70 15.56 246.5 583.3 298.9 3 76 2 1 .2 19 2001 2.34 20.51 248.2 626.5 325.8 3 76 2 1.2 18 2000 2.70 40.00 254.0 622.3 401 .3 3 76 2 1.2 17 1999 2.64 13.64 272.1 632.0 321.2 3 76 2 1.2 16 1998 2.88 22.92 244.5 703.6 349.8 3 76 2 1.2 15 1997 3.66 16.39 243.7 641.6 309.0 3 76 2 1 .2 14 1996 3.00 22.00 243.0 598.8 321.3 3 76 2 1.2 13 1995 4.14 10.14 258.6 657.8 299.1 3 76 2 1 .2 12 1994 4.98 16.87 273.6 640.7 335.5 3 76 2 1 .2 1 1 1993 6.06 16.83 239.7 603.6 300.9 3 76 2 1.2 10 1992 6.66 10.81 277.4 594.4 311.6 3 76 2 1.2 9 1991 6.36 22.64 274.9 632.1 355.8 3 76 2 1 .2 8 1990 5.64 22.34 274.6 598.2 346.9 3 76 2 1 .2 7 1989 6.30 17.14 292.5 585.2 342.7 3 76 2 1.2 6 1988 5.34 17.98 281.0 591.7 336.9 3 76 2 1 .2 5 1987 7.14 17.65 302.0 618.6 357.8 3 76 2 1.2 4 1986 6.90 14.78 31 1.0 577.1 350.3 3 76 2 1 .2 3 1985 5.82 14.43 323.1 566.3 358.2 3 76 2 1.2 2 1984 3.84 17.19 348.5 562.8 385.3 3 76 2 1.2 1 1983 3.06 50.98 313.2 569.5 441.3 3 76 2 1.2 35 2005 1 .08 0.00 272.2 0.0 272.2 3 76 2 1 .2 34 2004 1 .38 30.43 263.7 603.0 367.0 3 76 2 1 .2 33 2003 1 .80 20.00 254.8 578.3 319.5 3 76 2 1 .2 32 2002 1 .62 22.22 246.0 610.6 327.0 3 76 2 1 .2 31 2001 1 .38 30.43 257.0 626.9 369.6 3 76 2 1.2 30 2000 1 .44 25.00 268.8 642.4 362.2 3 76 2 3.6 29 1999 1.44 29.17 260.8 571.7 351.5 3 76 2 3.6 28 1998 3.12 9.62 278.6 674.5 316.6 3 76 2 3.6 27 1997 2.40 22.50 252.0 626.2 336.2 3 76 2 3.6 26 1996 1 .92 31 .25 259.5 640.7 378.6 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Source ation Disc (m) No. Growth (mm) % Ring Density Density Density (kg/Wm) (kg/W9) (kg/MS) 78 3 76 2 3.6 25 1995 2.28 15.79 267.9 613.0 322.4 3 76 2 3.6 24 1994 3.18 18.87 286.7 640.5 353.4 3 76 2 3.6 23 1993 3.96 31.82 276.0 646.5 393.9 3 76 2 3.6 22 1992 4.26 18.31 306.9 626.4 365.4 3 76 2 3.6 21 1991 3.36 28.57 270.5 673.2 385.6 3 76 2 3.6 20 1990 2.88 29.17 284.6 630.9 385.6 3 76 2 3.6 19 1989 2.58 25.58 252.6 640.0 351.7 3 76 2 3.6 18 1988 3.24 12.96 286.3 586.5 325.2 3 76 2 3.6 17 1987 3.66 24.59 259.9 615.7 347.4 3 76 2 3.6 16 1986 4.56 25.00 280.6 649.3 372.8 3 76 2 3.6 15 1985 3.48 36.21 319.5 643.7 436.9 3 76 2 3.6 14 1984 3.54 18.64 298.5 586.7 352.2 3 76 2 3.6 13 1983 3.54 20.34 284.5 591 .2 346.9 3 76 2 3.6 12 1982 4.32 22.22 325.7 575.6 381 .2 3 76 2 3.6 1 1 1981 4.98 18.07 341 .4 529.0 375.3 3 76 2 3.6 10 1980 5.40 14.44 349.3 51 1.8 372.8 3 76 2 3.6 9 1979 5.04 26.19 366.4 527.4 408.6 3 76 2 3.6 8 1978 6.18 29.13 383.7 525.2 424.9 3 76 2 3.6 7 1977 4.56 27.63 363.7 532.2 410.3 3 76 2 3.6 6 1976 6.60 24.55 354.8 541.5 400.6 3 76 2 3.6 5 1975 5.70 24.21 374.3 524.1 410.6 3 76 2 3.6 4 1974 5.04 30.95 385.1 539.0 432.7 3 76 2 3.6 3 1973 6.66 21.62 381 .4 538.6 415.4 3 76 2 3.6 2 1972 4.38 10.96 366.8 501 .3 381.5 3 76 2 3.6 1 1971 6.54 6.42 432.4 504.5 437.0 3 76 2 3.6 29 2005 1 .20 5.00 257.4 491 .0 269.1 3 76 2 3.6 28 2004 1 .56 30.77 240.9 671 .6 373.4 3 76 2 3.6 27 2003 1 .38 21 .74 260.1 655.7 346.1 3 76 2 7.2 26 2002 1 .44 16.67 255.8 645.2 320.7 3 76 2 7.2 25 2001 1.50 36.00 241 .4 620.2 377.7 3 76 2 7.2 24 2000 1 .32 31 .82 273.7 697.2 408.4 3 76 2 7.2 23 1999 1 .38 26.09 267.7 634.6 363.4 3 76 2 7.2 22 1998 3.12 17.31 281.6 694.1 353.0 3 76 2 7.2 21 1997 2.58 25.58 246.1 655.4 350.8 3 76 2 7.2 20 1996 2.04 29.41 275.6 671.1 391 .9 3 76 2 7.2 19 1995 2.70 17.78 268.4 659.0 337.8 3 76 2 7.2 18 1994 3.54 20.34 281 .6 649.4 356.4 3 76 2 7.2 17 1993 3.84 21 .88 286.8 666.8 370.0 3 76 2 7.2 16 1992 4.68 17.95 303.5 656.3 367.6 3 76 2 7.2 15 1991 4.44 21.62 291.5 611.5 359.7 3 76 2 7.2 14 1990 3.06 43.14 280.7 619.7 426.9 3 76 2 7.2 13 1989 3.66 34.43 252.4 622.7 379.9 3 76 2 7.2 12 1988 3.66 24.59 286.0 581 .2 358.6 3 76 2 7.2 1 1 1987 5.34 34.83 286.0 589.7 391 .8 3 76 2 7.2 10 1986 6.66 28.83 307.7 640.3 403.6 3 76 2 7.2 9 1985 5.82 39.18 332.1 641.3 453.2 3 76 2 7.2 8 1984 5.82 14.43 327.2 637.3 371.9 3 76 2 7.2 7 1983 5.64 24.47 307.9 629.2 386.5 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mA3) (kg/mA3) (kg/mA3) 79 3 76 2 7.2 6 1982 6.36 15.09 322.7 642.9 371 .1 3 76 2 7.2 5 1981 5.88 14.29 322.2 628.4 366.0 3 76 2 7.2 4 1980 6.24 16.35 319.1 578.0 361.4 3 77 1 1.2 3 1979 5.94 16.16 340.8 604.8 383.4 3 77 1 1 .2 2 1978 6.66 16.22 395.1 567.9 423.2 3 77 1 1.2 1 1977 6.36 71.70 469.0 543.1 521.6 3 77 1 1.2 22 2005 1.68 7.14 270.5 513.8 287.9 3 77 1 1 .2 21 2004 2.28 34.21 244.1 660.1 386.4 3 77 1 1 .2 20 2003 2.64 25.00 255.9 706.4 371 .1 3 77 1 1 .2 19 2002 2.40 22.50 252.9 664.0 343.1 3 77 1 1 .2 18 2001 2.40 25.00 273.5 643.3 365.9 3 77 1 1.2 17 2000 2.88 29.17 283.7 665.0 397.3 3 77 1 1.2 16 1999 3.18 28.30 293.5 615.1 382.8 3 77 1 1 .2 15 1998 4.32 16.67 276.1 700.4 346.8 3 77 1 1 .2 14 1997 3.72 16.13 266.4 649.4 328.2 3 77 1 1 .2 13 1996 2.76 26.09 282.6 617.3 369.9 3 77 1 1.2 12 1995 3.18 18.87 279.1 596.3 339.0 3 77 1 1.2 11 1994 3.96 21.21 294.3 616.4 362.6 3 77 1 1 .2 10 1993 4.62 20.78 280.0 599.1 346.3 3 77 1 1.2 9 1992 4.98 18.07 307.9 585.7 358.1 3 77 1 1 .2 8 1991 6.90 23.48 303.4 586.5 369.8 3 77 1 1.2 7 1990 6.18 31.07 321.2 583.0 402.6 3 77 1 1 .2 6 1989 7.56 22.22 330.3 574.9 384.6 3 77 1 1 .2 5 1988 8.22 18.98 389.0 592.4 427.6 3 77 1 1.2 4 1987 9.12 19.74 360.9 597.5 407.6 3 77 1 1.2 3 1986 9.30 14.84 371 .0 544.8 396.8 3 77 1 1.2 2 1985 8.64 13.89 368.1 539.3 391.9 3 77 1 1.2 1 1984 9.66 3.1 1 364.6 486.8 368.3 3 77 1 1 .2 31 2005 0.66 0.00 346.3 0.0 346.3 3 77 1 1 .2 30 2004 0.72 33.33 288.7 559.5 378.9 3 77 1 1.2 29 2003 0.54 1 1.1 1 330.3 512.8 350.6 3 77 1 1 .2 28 2002 0.36 0.00 337.1 0.0 337.1 3 77 1 1 .2 27 2001 0.48 25.00 314.7 553.9 374.5 3 77 1 1 .2 26 2000 0.42 28.57 359.7 568.9 419.5 3 77 1 1 .2 25 1999 0.78 30.77 342.5 550.5 406.5 3 77 1 1.2 24 1998 0.96 25.00 359.3 613.5 422.8 3 77 1 1 .2 23 1997 2.16 27.78 350.2 588.4 416.3 3 77 1 3.6 22 1996 1 .50 32.00 302.7 554.4 383.2 3 77 1 3.6 21 1995 1 .26 19.05 31 1 .5 599.6 366.4 3 77 1 3.6 20 1994 1 .80 23.33 323.5 596.2 387.2 3 77 1 3.6 19 1993 2.16 36.11 351.9 542.9 420.9 3 77 1 3.6 18 1992 2.34 25.64 327.4 638.1 407.1 3 77 1 3.6 17 1991 2.22 16.22 293.4 719.0 362.4 3 77 1 3.6 16 1990 2.52 23.81 308.1 635.3 386.0 3 77 1 3.6 15 1989 2.58 25.58 285.4 627.0 372.8 3 77 1 3.6 14 1988 2.76 19.57 276.4 614.2 342.5 3 77 1 3.6 13 1987 4.02 20.90 293.8 621.5 362.3 3 77 1 3.6 12 1986 6.42 14.95 295.2 556.1 334.2 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mAS) (kg/m43) (kg/m43) 3 77 1 3.6 11 1985 4.20 14.29 354.3 624.4 392.8 3 77 1 3.6 10 1984 4.50 8.00 331.1 535.8 347.5 3 77 1 3.6 9 1983 5.82 9.28 303.0 538.1 324.9 3 77 1 3.6 8 1982 6.30 4.76 309.8 524.8 320.0 3 77 1 3.6 7 1981 7.02 10.26 287.6 569.9 316.6 3 77 1 3.6 6 1980 4.80 10.00 348.8 568.0 370.7 3 77 1 3.6 5 1979 4.32 9.72 334.0 552.4 355.2 3 77 1 3.6 4 1978 4.14 13.04 354.7 584.2 384.6 3 77 1 3.6 3 1977 1.26 57.14 418.4 533.7 484.3 3 77 1 3.6 2 1976 0.90 26.67 447.1 495.7 460.1 3 77 1 3.6 1 1975 2.40 15.00 318.5 496.1 344.4 3 77 1 3.6 25 2005 0.48 0.00 316.7 0.0 316.7 3 77 1 3.6 24 2004 1 .02 35.29 295.7 664.5 425.9 3 77 1 3.6 23 2003 0.66 27.27 31 1.0 607.3 391.8 3 77 1 3.6 22 2002 0.48 0.00 328.5 0.0 328.5 3 77 1 3.6 21 2001 0.72 33.33 301.1 558.9 387.0 3 77 1 3.6 20 2000 0.60 30.00 312.7 627.7 407.2 3 77 1 7.2 19 1999 1.08 22.22 308.7 565.8 365.9 3 77 1 7.2 18 1998 1.44 25.00 306.4 667.4 396.6 3 77 1 7.2 17 1997 1.92 18.75 302.8 646.4 367.3 3 77 1 7.2 16 1996 1.62 14.81 292.9 671 .8 349.0 3 77 1 7.2 15 1995 2.88 12.50 288.9 603.8 328.2 3 77 1 7.2 14 1994 3.24 16.67 303.5 640.7 359.7 3 77 1 7.2 13 1993 4.02 14.93 283.3 615.0 332.8 3 77 1 7.2 12 1992 3.84 14.06 315.7 621.6 358.7 3 77 1 7.2 1 1 1991 4.38 13.70 288.1 636.9 335.9 3 77 1 7.2 10 1990 5.34 10.1 1 295.7 566.5 323.1 3 77 1 7.2 9 1989 4.86 17.28 31 1 .5 593.4 360.2 3 77 1 7.2 8 1988 3.66 18.03 289.7 614.6 348.2 3 77 1 7.2 7 1987 5.46 16.48 308.2 545.2 347.2 3 77 1 7.2 6 1986 5.76 8.33 313.5 582.1 335.9 3 77 1 7.2 5 1985 5.46 12.09 337.4 551 .6 363.3 3 77 1 7.2 4 1984 3.66 16.39 356.9 528.2 385.0 3 77 1 7.2 3 1983 3.12 0.00 411.3 0.0 411.3 3 77 1 7.2 2 1982 3.12 0.00 403.1 0.0 403.1 3 77 1 7.2 1 1981 2.16 2.78 413.3 487.7 415.3 3 77 1 7.2 14 2005 0.78 7.69 285.5 494.5 301 .6 3 77 1 7.2 13 2004 1.74 27.59 295.4 61 1.7 382.6 3 77 1 7.2 12 2003 1.86 25.81 304.1 629.4 388.0 3 77 1 7.2 1 1 2002 1 .62 25.93 291.1 593.9 369.6 3 77 2 1 .2 10 2001 1.56 23.08 307.7 603.3 375.9 3 77 2 1 .2 9 2000 1.68 42.86 317.7 635.1 453.7 3 77 2 1 .2 8 1999 2.10 17.14 309.2 640.4 366.0 3 77 2 1.2 7 1998 3.18 1 1 .32 322.7 659.1 360.8 3 77 2 1.2 6 1997 2.94 14.29 283.6 616.2 331.1 3 77 2 1.2 5 1996 3.12 1 1 .54 273.7 575.8 308.6 3 77 2 1.2 4 1995 3.84 10.94 293.0 603.7 327.0 3 77 2 1 .2 3 1994 4.86 7.41 333.2 507.5 346.1 80 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Source ation Disc (m) No. Growth (mm) % Ring Density Density Density (kg/m"3) (kg/W3) (kg/m"3) 81 3 77 2 1.2 2 1993 5.76 2.08 346.5 500.6 349.7 3 77 2 1.2 1 1992 7.98 4.51 389.3 509.8 394.7 3 77 2 1 .2 32 2005 0.42 0.00 336.0 0.0 336.0 3 77 2 1.2 31 2004 ' 0.60 20.00 308.5 612.1 369.3 3 77 2 1 .2 30 2003 0.54 22.22 323.2 620.9 389.3 3 77 2 1 .2 29 2002 0.60 20.00 326.6 651 .8 391 .6 3 77 2 1 .2 28 2001 0.72 25.00 307.3 654.1 394.0 3 77 2 1 .2 27 2000 0.78 30.77 329.7 703.5 444.7 3 77 2 1 .2 26 1999 0.90 20.00 326.4 602.6 381 .6 3 77 2 1 .2 25 1998 1 .08 38.89 329.1 692.0 470.2 3 77 2 1.2 24 1997 1 .26 23.81 315.4 688.8 404.3 3 77 2 1.2 23 1996 1 .14 26.32 310.6 681.2 408.1 3 77 2 1.2 22 1995 1 .32 22.73 297.4 661 .0 380.1 3 77 2 1 .2 21 1994 1 .68 28.57 336.4 669.5 431.5 3 77 2 1 .2 20 1993 2.58 30.23 347.5 646.6 437.9 3 77 2 1 .2 19 1992 2.04 29.41 376.8 647.2 456.3 3 77 2 1.2 18 1991 2.70 26.67 345.0 645.4 425.1 3 77 2 1.2 17 1990 2.64 43.18 350.8 628.7 470.8 3 77 2 1 .2 16 1989 2.58 39.53 315.2 656.0 449.9 3 77 2 1 .2 15 1988 2.16 27.78 330.0 657.4 420.9 3 77 2 1 .2 14 1987 2.58 37.21 321.5 642.4 440.9 3 77 2 1.2 13 1986 4.08 23.53 346.9 645.4 417.1 3 77 2 1 .2 12 1985 2.64 40.91 343.7 636.9 463.7 3 77 2 1.2 1 1 1984 3.36 26.79 346.4 603.0 416.4 3 77 2 1 .2 10 1983 3.24 20.37 336.2 621 .8 393.4 3 77 2 1 .2 9 1982 5.94 9.09 321 .3 624.0 348.8 3 77 2 1.2 8 1981 4.80 13.75 316.7 611.6 357.3 3 77 2 3.6 7 1980 4.50 13.33 328.4 593.7 363.8 3 77 2 3.6 6 1979 4.32 5.56 310.8 609.2 327.4 3 77 2 3.6 5 1978 4.14 15.94 335.5 568.8 372.7 3 77 2 3.6 4 1977 2.70 24.44 334.2 528.6 381 .7 3 77 2 3.6 3 1976 5.22 10.34 359.3 547.6 378.8 3 77 2 3.6 2 1975 5.22 5.75 354.2 598.7 368.3 3 77 2 3.6 1 1974 4.26 57.75 451.4 571.1 519.6 3 77 2 3.6 25 2005 0.36 33.33 399.0 484.3 427.4 3 77 2 3.6 24 2004 0.42 28.57 344.1 495.4 387.3 3 77 2 3.6 23 2003 0.36 0.00 363.6 0.0 363.6 3 77 2 3.6 22 2002 0.66 27.27 329.5 505.3 377.5 3 77 2 3.6 21 2001 0.78 46.15 334.5 567.8 442.2 3 77 2 3.6 20 2000 0.72 33.33 358.2 607.7 441 .4 3 77 2 3.6 19 1999 1 .08 27.78 346.8 559.7 405.9 3 77 2 3.6 18 1998 1 .20 45.00 325.5 621 .1 458.5 3 77 2 3.6 17 1997 1 .38 30.43 336.8 655.9 434.0 3 77 2 3.6 16 1996 1.26 28.57 328.1 642.6 418.0 3 77 2 3.6 15 1995 1.44 29.17 319.7 628.1 409.6 3 77 2 3.6 14 1994 1 .80 30.00 329.0 648.2 424.8 3 77 2 3.6 13 1993 3.72 27.42 349.1 635.5 427.6 3 77 2 3.6 12 1992 2.46 31.71 347.1 700.9 459.3 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/mA3) (kg/m43) 3 77 2 3.6 11 1991 2.94 22.45 331 .5 680.5 409.9 3 77 2 3.6 10 1990 3.42 35.09 366.6 603.7 449.8 3 77 2 3.6 9 1989 4.74 27.85 373.5 620.9 442.4 3 77 2 3.6 8 1988 3.18 22.64 343.7 625.3 408.6 3 77 2 3.6 7 1987 5.04 27.38 357.5 638.1 433.4 3 77 2 3.6 6 1986 5.58 17.20 347.6 616.1 393.8 3 77 2 3.6 5 1985 5.16 12.79 389.3 582.1 414.0 3 77 2 3.6 4 1984 5.04 5.95 349.3 530.3 360.0 3 77 2 7.2 3 1983 4.56 1 1 .84 364.6 587.5 391 .4 3 77 2 7.2 2 1982 6.72 4.46 353.5 541 .0 361.8 3 77 2 7.2 1 1981 5.10 9.41 413.3 501.8 421.5 3 77 2 7.2 19 2005 0.66 18.18 322.1 594.3 371.6 3 77 2 7.2 18 2004 0.96 25.00 322.8 710.6 419.7 3 77 2 7.2 17 2003 0.78 30.77 332.8 596.2 413.9 3 77 2 7.2 16 2002 1 .02 23.53 304.7 534.1 358.7 3 77 2 7.2 15 2001 1.68 32.14 319.7 607.5 412.2 3 77 2 7.2 14 2000 2.28 47.37 329.2 687.2 498.8 3 77 2 7.2 13 1999 2.46 12.20 325.1 632.3 362.5 3 77 2 7.2 12 1998 2.82 27.66 315.5 705.2 423.3 3 77 2 7.2 11 1997 3.00 18.00 330.1 713.9 400.6 3 77 2 7.2 10 1996 4.08 13.24 331 .6 612.7 368.2 3 77 2 7.2 9 1995 4.02 20.90 319.0 669.4 392.2 3 77 2 7.2 8 1994 3.90 18.46 330.7 664.4 392.3 3 77 2 7.2 7 1993 5.10 1 1 .76 322.9 638.7 360.0 3 77 2 7.2 6 1992 4.14 10.14 331.3 593.9 357.9 3 77 2 7.2 5 1991 5.34 7.87 325.1 634.2 349.4 3 77 2 7.2 4 1990 6.18 8.74 361 .1 558.5 378.4 3 77 2 7.2 3 1989 4.08 4.41 357.6 522.7 364.9 3 77 2 7.2 2 1988 2.88 10.42 403.1 506.8 413.9 3 77 2 7.2 1 1987 2.64 0.00 293.1 0.0 293.1 4 57 1 1 .2 35 2005 3.36 3.57 292.7 501 .6 300.1 4 57 1 1 .2 34 2004 4.20 14.29 274.0 645.9 327.1 4 57 1 1 .2 33 2003 2.52 26.19 271 .2 629.9 365.2 4 57 1 1 .2 32 2002 3.42 14.04 277.3 596.6 322.1 4 57 1 1.2 31 2001 3.24 12.96 288.8 615.2 331.1 4 57 1 1 .2 30 2000 1 .74 34.48 279.9 691.9 422.0 4 57 1 1 .2 29 1999 3.06 9.80 279.1 519.3 302.6 4 57 1 1.2 28 1998 4.62 15.58 285.4 612.8 336.5 4 57 1 1 .2 27 1997 3.54 13.56 275.4 605.9 320.2 4 57 1 1.2 26 1996 3.60 8.33 293.1 513.9 31 1 .5 4 57 1 1 .2 25 1995 3.24 12.96 275.0 585.8 315.3 4 57 1 1.2 24 1994 6.00 1 1 .00 292.1 593.3 325.2 4 57 1 1 .2 23 1993 9.24 5.19 281 .1 579.7 296.6 4 57 1 1 .2 22 1992 6.48 14.81 297.0 572.2 337.8 4 57 1 1.2 21 1991 6.12 8.82 290.7 595.7 317.6 4 57 1 1 .2 20 1990 5.22 6.90 305.4 574.8 324.0 4 57 1 1 .2 19 1989 4.44 14.86 288.0 627.7 338.5 4 57 1 1 .2 18 1988 3.30 12.73 302.1 575.5 336.9 82 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/mA3) (kg/m43) 4 57 1 1.2 17 1987 4.20 12.86 279.9 564.5 316.5 4 57 1 1.2 16 1986 6.12 13.73 271.0 591.2 315.0 4 57 1 1.2 15 1985 6.66 8.1 1 300.1 625.6 326.5 4 57 1 1.2 14 1984 3.78 7.94 305.1 61 1.2 329.4 4 57 1 1.2 13 1983 5.88 9.18 275.6 589.4 304.4 4 57 1 1.2 12 1982 7.50 8.00 286.6 629.3 314.0 4 57 1 1.2 1 1 1981 7.50 6.40 292.9 628.0 314.4 4 57 1 1.2 10 1980 5.82 8.25 287.1 672.9 318.9 4 57 1 1.2 9 1979 4.80 7.50 292.6 610.1 316.4 4 57 1 1.2 8 1978 5.82 5.15 305.7 576.5 319.7 4 57 1 1.2 7 1977 4.02 10.45 308.0 564.6 334.9 4 57 1 1 .2 6 1976 4.44 5.41 281 .1 543.8 295.3 4 57 1 1.2 5 1975 6.84 5.26 303.5 567.2 317.4 4 57 1 3.6 4 1974 4.80 6.25 321 .3 594.9 338.4 4 57 1 3.6 3 1973 2.64 6.82 336.3 573.7 352.5 4 57 1 3.6 2 1972 3.54 8.47 373.7 521 .4 386.2 4 57 1 3.6 1 1971 0.90 33.33 421.0 51 1.6 449.3 4 57 1 3.6 29 2005 2.16 0.00 270.3 0.0 270.3 4 57 1 3.6 28 2004 3.00 10.00 272.7 658.3 31 1.3 4 57 1 3.6 27 2003 1.50 20.00 _ 236.5 696.8 328.6 4 57 1 3.6 26 2002 2.46 4.88 259.0 719.3 281.5 4 57 1 3.6 25 2001 2.76 10.87 282.9 670.5 325.0 4 57 1 3.6 24 2000 1 .62 25.93 261 .8 720.2 380.6 4 57 1 3.6 23 1999 2.82 4.26 275.9 621.7 290.6 4 57 1 3.6 22 1998 3.96 12.12 288.0 655.2 332.5 4 57 1 3.6 21 1997 2.58 18.60 268.3 663.0 341.7 4 57 1 3.6 20 1996 2.64 9.09 285.0 582.2 312.1 4 57 1 3.6 19 1995 3.42 8.77 271.2 652.8 304.6 4 57 1 3.6 18 1994 5.28 1 1 .36 308.0 635.5 345.2 4 57 1 3.6 17 1993 6.96 5.17 309.8 618.0 325.7 4 57 1 3.6 16 1992 4.62 1 1.69 312.0 608.4 346.6 4 57 1 3.6 15 1991 4.50 12.00 298.4 656.4 341.4 4 57 1 3.6 14 1990 4.32 8.33 307.9 631.8 334.9 4 57 1 3.6 13 1989 3.96 12.12 289.1 598.3 326.6 4 57 1 3.6 12 1988 3.90 10.77 288.5 663.3 328.9 4 57 1 3.6 1 1 1987 5.70 8.42 290.1 652.2 320.6 4 57 1 3.6 10 1986 7.56 8.73 294.8 613.4 322.6 4 57 1 7.2 9 1985 8.82 8.16 296.1 572.0 318.6 4 57 1 7.2 8 1984 6.30 7.62 294.6 574.8 316.0 4 57 1 7.2 7 1983 6.78 6.19 291.3 613.7 31 1.2 4 57 1 7.2 6 1982 8.82 7.48 291.0 621.0 315.7 4 57 1 7.2 5 1981 7.56 6.35 297.1 610.3 317.0 4 57 1 7.2 4 1980 8.22 6.57 301 .7 620.9 322.7 4 57 1 7.2 3 1979 5.88 8.16 315.2 609.1 339.2 4 57 1 7.2 2 1978 6.18 5.83 366.4 556.9 377.5 4 57 1 7.2 1 1977 1.14 42.11 266.8 512.4 365.0 4 57 1 7.2 24 2005 3.00 0.00 276.5 0.0 276.5 4 57 1 7.2 23 2004 4.14 13.04 275.1 656.2 324.8 83 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m43) (kg/m43) 4 57 1 7.2 22 2003 2.46 21 .95 253.6 708.6 353.5 4 57 1 7.2 21 2002 3.18 1 1 .32 264.9 652.4 308.8 4 57 1 7.2 20 2001 4.02 7.46 291 .3 657.6 318.6 4 57 1 7.2 19 2000 2.76 30.43 289.8 671 .7 406.0 4 76 1 1.2 18 1999 3.90 7.69 301.0 671.1 329.5 4 76 1 1.2 17 1998 4.68 10.26 304.9 689.0 344.3 4 76 1 1.2 16 1997 5.28 18.18 390.3 604.2 429.2 4 76 1 1 .2 15 1996 2.22 0.00 287.5 0.0 287.5 4 76 1 1 .2 14 1995 3.24 9.26 268.6 562.4 295.8 4 76 1 1 .2 13 1994 4.80 8.75 287.9 680.0 322.2 4 76 1 1.2 12 1993 7.80 6.15 281.2 600.8 300.9 4 76 1 1.2 11 1992 8.10 9.63 301.4 622.1 332.2 4 76 1 1.2 10 1991 9.90 5.45 301.4 635.8 319.7 4 76 1 1.2 9 1990 5.22 12.64 312.1 620.9 351.1 4 76 1 1 .2 8 1989 3.90 13.85 304.5 602.8 345.8 4 76 1 1 .2 7 1988 5.22 5.75 281 .5 651 .2 302.7 4 76 1 1.2 6 1987 7.56 7.94 301.3 618.5 326.5 4 76 1 1.2 5 1986 8.34 5.76 296.4 574.7 312.5 4 76 1 1 .2 4 1985 7.62 7.09 309.5 538.2 325.7 4 76 1 1.2 3 1984 4.62 0.00 341.4 0.0 341.4 4 76 1 1 .2 2 1983 4.74 0.00 370.5 0.0 370.5 4 76 1 1 .2 1 1982 1 .74 24.14 362.9 499.3 394.7 4 76 1 1 .2 35 2005 0.72 0.00 366.5 0.0 366.5 4 76 1 1 .2 34 2004 2.40 0.00 325.5 0.0 325.5 4 76 1 1 .2 33 2003 1 .68 0.00 339.1 0.0 339.1 4 76 1 1.2 32 2002 1.74 0.00 331.0 0.0 331.0 4 76 1 1 .2 31 2001 1 .62 0.00 327.4 0.0 327.4 4 76 1 1 .2 30 2000 1 .50 0.00 350.0 0.0 350.0 4 76 1 1.2 29 1999 1.50 0.00 319.6 0.0 319.6 4 76 1 1 .2 28 1998 1 .20 0.00 342.8 0.0 342.8 4 76 1 1 .2 27 1997 1 .38 0.00 330.1 0.0 330.1 4 76 1 1 .2 26 1996 2.82 0.00 336.2 0.0 336.2 4 76 1 1.2 25 1995 3.12 0.00 335.7 0.0 335.7 4 76 1 1.2 24 1994 2.40 22.50 340.2 525.6 381.9 4 76 1 1 .2 23 1993 2.64 1 1 .36 324.6 498.4 344.3 4 76 1 1.2 22 1992 2.40 2.50 336.1 487.0 339.9 4 76 1 1 .2 21 1991 1 .74 0.00 343.0 0.0 343.0 4 76 1 1.2 20 1990 1 .68 0.00 318.3 0.0 318.3 4 76 1 1 .2 19 1 989 3.24 9.26 304.7 527.5 325.3 4 76 1 3.6 18 1988 5.22 9.20 293.4 515.6 313.8 4 76 1 3.6 17 1987 4.08 13.24 304.2 628.7 347.2 4 76 1 3.6 16 1986 1.98 15.15 285.3 633.6 338.1 4 76 1 3.6 15 1985 5.34 4.49 281 .6 588.6 295.4 4 76 1 3.6 14 1984 3.96 15.15 294.3 575.1 336.8 4 76 1 3.6 13 1983 4.38 8.22 281 .2 570.5 305.0 4 76 1 3.6 12 1982 5.82 6.19 279.8 577.8 298.3 4 76 1 3.6 1 1 1981 5.40 7.78 283.8 574.0 306.4 4 76 1 3.6 10 1980 6.96 4.31 297.3 529.5 307.4 84 Block Seed Replic Height 01 Ring Year of Growth Latewood EW LW Source ation Disc (m) No. Growth (mm) % Ring Density Density Density (kg/mAS) (kg/mA3) (kg/mA3) 85 4 76 1 3.6 9 1979 3.96 9.09 293.6 535.6 315.6 4 76 1 3.6 8 1978 5.64 6.38 280.8 575.2 299.6 4 76 1 3.6 7 1977 5.94 4.04 297.5 521.0 306.5 4 76 1 3.6 6 1976 5.58 6.45 321.8 546.1 336.2 4 76 1 3.6 5 1975 5.88 4.08 312.4 497.9 320.0 4 76 1 3.6 4 1974 4.92 0.00 351.0 0.0 351.0 4 76 1 3.6 3 1973 4.98 0.00 384.0 0.0 384.0 4 76 1 3.6 2 1972 5.10 1 1 .76 385.7 526.6 402.3 4 76 1 3.6 1 1971 8.94 97.32 277.2 524.2 516.0 4 76 1 3.6 29 2005 0.00 0.00 0.0 0.0 0.0 4 76 1 3.6 28 2004 0.66 9.09 291.6 520.5 312.4 4 76 1 3.6 27 2003 1 .26 14.29 300.1 569.4 338.6 4 76 1 3.6 26 2002 0.90 0.00 313.6 0.0 313.6 4 76 1 3.6 25 2001 0.96 18.75 301.9 509.6 340.8 4 76 1 3.6 24 2000 0.96 31 .25 284.8 622.2 384.0 4 76 1 3.6 23 1999 0.90 6.67 295.6 517.6 310.4 4 76 1 3.6 22 1998 1 .20 25.00 286.6 629.8 372.4 4 76 1 3.6 21 1997 1 .44 8.33 293.9 622.4 321 .3 4 76 1 3.6 20 1996 1 .32 9.09 305.8 489.4 322.5 4 76 1 3.6 19 1995 1.74 13.79 316.0 570.3 351.1 4 76 1 7.2 18 1994 2.58 6.98 302.6 505.8 316.7 4 76 1 7.2 17 1993 4.62 5.19 289.9 530.3 302.4 4 76 1 7.2 16 1992 2.76 17.39 322.6 540.0 360.4 4 76 1 7.2 15 1991 3.12 11.54 292.8 553.0 322.8 4 76 1 7.2 14 1990 3.66 9.84 312.9 537.2 334.9 4 76 1 7.2 13 1989 2.28 21 .05 301 .0 592.2 362.3 4 76 1 7.2 12 1988 1 .20 10.00 266.6 553.2 295.3 4 76 1 7.2 1 1 1987 4.32 8.33 296.8 619.4 324.0 4 76 1 7.2 10 1986 6.78 6.19 283.5 598.5 302.9 4 76 1 7.2 9 1985 8.58 6.29 297.5 551 .4 313.4 4 76 1 7.2 8 1984 4.32 4.17 296.7 558.1 307.6 4 76 1 7.2 7 1983 6.78 4.42 280.2 531 .0 291 .3 4 76 1 7.2 6 1982 7.38 4.88 302.7 554.3 315.0 4 76 1 7.2 5 1981 8.34 3.60 313.0 528.0 320.7 4 76 1 7.2 4 1980 4.86 13.58 300.5 524.7 330.9 4 76 1 7.2 3 1979 5.64 2.13 349.6 499.7 352.8 4 76 1 7.2 2 1978 3.30 3.64 356.9 51 1.8 362.6 4 76 1 7.2 1 1977 9.12 1.97 419.4 517.4 421.3 4 76 1 7.2 24 2005 1 .26 0.00 330.5 0.0 330.5 4 76 1 7.2 23 2004 2.88 14.58 321 .2 520.2 350.2 4 76 1 7.2 22 2003 1 .14 26.32 308.7 597.5 384.7 4 76 1 7.2 21 2002 2.10 17.14 291.4 582.9 341.4 4 76 1 7.2 20 2001 2.40 12.50 306.9 540.5 336.1 4 76 1 7.2 19 2000 1.62 33.33 294.7 608.3 399.2 4 76 2 1 .2 18 1999 1 .74 3.45 295.6 512.2 303.1 4 76 2 1 .2 17 1998 1 .98 21 .21 288.4 548.9 342.0 4 76 2 1.2 16 1997 1.98 12.12 275.5 510.6 304.0 4 76 2 1.2 15 1996 1.86 0.00 311.5 0.0 311.5 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mAa) (kg/mA3) (kg/mAS) 4 76 2 1.2 14 1995 2.16 13.89 284.1 609.0 329.2 4 76 2 1.2 13 1994 5.10 8.24 294.5 575.2 317.6 4 76 2 1.2 12 1993 8.58 5.59 290.7 543.6 304.8 4 76 2 1 .2 1 1 1992 5.22 6.90 302.5 583.8 321 .9 4 76 2 1.2 10 1991 5.82 7.22 283.3 557.0 303.1 4 76 2 1.2 9 1990 6.54 4.59 297.8 621.2 312.7 4 76 2 1.2 8 1989 5.82 4.12 289.6 545.4 300.1 4 76 2 1 .2 7 1988 3.06 5.88 285.4 556.5 301 .3 4 76 2 1.2 6 1987 6.30 7.62 295.1 580.5 316.8 4 76 2 1 .2 5 1986 7.62 3.94 274.0 583.0 286.2 4 76 2 1.2 4 1985 8.82 3.40 307.2 575.2 316.3 4 76 2 1.2 3 1984 4.20 1 .43 308.5 527.0 31 1 .6 4 76 2 1.2 2 1983 5.16 1.16 359.1 542.2 361.2 4 76 2 1.2 1 1982 5.76 22.92 378.1 510.4 408.1 4 76 2 1.2 33 2005 1.56 42.31 252.2 641.3 416.8 4 76 2 1 .2 32 2004 2.22 40.54 270.0 600.3 403.9 4 76 2 1 .2 31 2003 2.22 40.54 249.5 636.4 406.3 4 76 2 1 .2 30 2002 1 .86 32.26 247.5 627.2 370.0 4 76 2 1 .2 29 2001 2.04 44.12 250.8 578.0 395.1 4 76 2 1 .2 28 2000 2.22 54.05 256.2 622.9 454.4 4 76 2 1.2 27 1999 2.82 14.89 ' 297.7 609.8 344.2 4 76 2 1 .2 26 1998 2.70 35.56 269.6 653.1 409.1 4 76 2 1.2 25 1997 2.88 22.92 272.9 600.5 346.4 4 76 2 1 .2 24 1996 2.22 27.03 260.2 609.0 354.5 4 76 2 1 .2 23 1995 2.46 21 .95 245.6 620.4 327.9 4 76 2 1 .2 22 1994 3.12 15.38 275.8 645.1 332.6 4 76 2 1.2 21 1993 4.32 15.28 259.6 652.6 319.7 4 76 2 1 .2 20 1992 3.96 18.18 293.1 626.9 353.8 4 76 2 1 .2 19 1991 3.42 19.30 252.6 640.2 327.4 4 76 2 1 .2 18 1990 4.50 20.00 279.9 590.4 342.0 4 76 2 1 .2 17 1989 3.18 32.08 249.0 631.2 371.6 4 76 2 3.6 16 1988 2.94 18.37 261.9 594.4 323.0 4 76 2 3.6 15 1987 3.96 24.24 276.4 622.0 360.1 4 76 2 3.6 14 1986 5.46 13.19 278.1 657.2 328.1 4 76 2 3.6 13 1985 3.84 28.12 297.8 583.1 378.0 4 76 2 3.6 12 1984 2.58 13.95 264.4 582.0 308.7 4 76 2 3.6 1 1 1983 4.32 13.89 269.8 594.8 314.9 4 76 2 3.6 10 1982 5.16 10.47 283.5 595.7 316.2 4 76 2 3.6 9 1981 4.32 9.72 266.8 602.4 299.4 4 76 2 3.6 8 1980 4.08 7.35 266.8 585.6 290.3 4 76 2 3.6 7 1979 3.48 8.62 274.0 593.2 301 .5 4 76 2 3.6 6 1978 2.88 20.83 292.8 586.8 354.1 4 76 2 3.6 5 1977 3.12 13.46 294.1 566.4 330.7 4 76 2 3.6 4 1976 6.00 5.00 291.5 522.0 303.0 4 76 2 3.6 3 1975 6.48 16.67 359.3 568.1 394.1 4 76 2 3.6 2 1974 5.46 16.48 383.7 509.8 404.5 4 76 2 3.6 1 1973 8.40 40.00 387.2 554.8 453.8 4 76 2 3.6 25 2005 0.90 26.67 217.5 609.1 321.9 86 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/mAS) (kg/mA3) 4 76 2 3.6 24 2004 1 .50 32.00 233.4 661 .3 370.3 4 76 2 3.6 23 2003 1 .44 29.17 233.7 659.4 357.8 4 76 2 3.6 22 2002 1.38 21 .74 233.3 647.3 323.3 4 76 2 3.6 21 2001 1 .50 28.00 259.6 583.9 350.4 4 76 2 3.6 20 2000 1.44 41 .67 235.0 618.3 394.7 4 76 2 3.6 19 1999 2.16 11.11 267.9 613.8 306.4 4 76 2 3.6 18 1998 1 .86 29.03 246.5 665.8 368.3 4 76 2 3.6 17 1997 1.92 15.63 248.1 61 1.2 304.9 4 76 2 3.6 16 1996 1 .86 22.58 254.8 627.4 338.9 4 76 2 3.6 15 1995 2.46 7.32 256.2 648.7 284.9 4 76 2 3.6 14 1994 2.94 16.33 269.1 648.0 331.0 4 76 2 3.6 13 1993 3.42 14.04 235.6 644.3 292.9 4 76 2 7.2 12 1992 3.84 14.06 263.8 641.9 317.0 4 76 2 7.2 1 1 1991 3.72 20.97 245.5 652.5 330.9 4 76 2 7.2 10 1990 5.16 15.12 264.7 595.0 314.7 4 76 2 7.2 9 1989 3.42 26.32 238.2 632.1 341 .8 4 76 2 7.2 8 1988 4.02 1 1.94 273.8 592.6 31 1 .9 4 76 2 7.2 7 1987 5.52 18.48 268.1 594.7 328.5 4 76 2 7.2 6 1986 7.26 19.01 279.1 557.3 332.0 4 76 2 7.2 5 1985 7.98 10.53 315.2 561.2 341.1 4 76 2 7.2 4 1984 5.58 17.20 ' 270.9 537.6 316.8 4 76 2 7.2 3 1983 8.40 8.57 291.9 550.8 314.1 4 76 2 7.2 2 1982 9.36 7.05 316.5 548.7 332.8 4 76 2 7.2 1 1981 12.00 7.50 395.2 498.9 403.0 4 76 2 7.2 20 2005 1 .62 22.22 259.4 628.8 341 .5 4 76 2 7.2 19 2004 2.64 15.91 275.7 586.5 325.1 4 76 2 7.2 18 2003 2.64 15.91 277.7 594.4 328.1 4 76 2 7.2 17 2002 2.94 18.37 259.3 638.9 329.0 4 76 2 7.2 16 2001 3.06 15.69 291 .7 586.7 338.0 4 76 2 7.2 15 2000 2.76 28.26 292.0 596.6 378.1 4 76 2 7.2 14 1999 3.12 7.69 275.9 614.9 302.0 4 76 2 7.2 13 1998 3.66 21.31 246.5 558.2 312.9 4 76 2 7.2 12 1997 4.80 12.50 267.5 592.2 308.1 4 76 2 7.2 1 1 1996 4.20 8.57 277.9 569.7 303.3 4 76 2 7.2 10 1995 3.60 1 1 .67 251.4 605.0 292.0 4 76 2 7.2 9 1994 4.80 1 1 .25 270.0 586.9 305.6 4 77 1 1 .2 8 1993 6.36 8.49 258.1 587.7 286.1 4 77 1 1 .2 7 1992 6.84 7.89 324.7 573.1 344.3 4 77 1 1.2 6 1991 7.20 17.50 293.3 572.0 342.1 4 77 1 1 .2 5 1990 7.74 7.75 287.3 561 .2 308.5 4 77 1 1.2 4 1989 6.00 1 1 .00 326.6 555.7 351 .8 4 77 1 1.2 3 1988 5.70 13.68 341.7 561.8 372.1 4 77 1 1.2 2 1987 4.56 19.74 401.8 538.7 428.5 4 77 1 1.2 1 1986 9.66 65.84 365.8 618.3 531.1 4 77 1 1 .2 32 2005 0.60 0.00 363.0 0.0 363.0 4 77 1 1 .2 31 2004 1.02 0.00 392.1 0.0 392.1 4 77 1 1 .2 30 2003 0.66 36.36 383.7 521 .2 433.7 4 77 1 1 .2 29 2002 0.48 0.00 384.5 0.0 384.5 87 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m3) (kg/m43) (kg/mA3) 4 77 1 1 .2 28 2001 0.66 27.27 360.5 503.1 399.4 4 77 1 1 .2 27 2000 0.90 20.00 317.3 544.5 362.7 4 77 1 1 .2 26 1999 0.78 0.00 330.4 0.0 330.4 4 77 1 1 .2 25 1998 1 .02 17.65 324.9 492.7 354.5 4 77 1 1 .2 24 1997 1.26 19.05 293.0 548.5 341 .7 4 77 1 1 .2 23 1996 1 .62 29.63 299.2 582.4 383.1 4 77 1 1 .2 22 1995 2.16 19.44 344.2 535.6 381 .4 4 77 1 1 .2 21 1994 1 .32 27.27 325.1 535.5 382.5 4 77 1 1 .2 20 1993 2.46 29.27 332.6 554.4 397.5 4 77 1 1 .2 19 1992 2.34 23.08 289.7 569.2 354.2 4 77 1 1.2 18 1991 1.92 25.00 313.3 533.7 368.4 4 77 1 1.2 17 1990 2.76 17.39 285.6 541.7 330.2 4 77 1 1 .2 16 1989 4.92 30.49 331.1 606.0 414.9 4 77 1 1 .2 15 1988 2.64 20.45 323.0 525.0 364.3 4 77 1 1.2 14 1987 3.60 13.33 323.6 538.1 352.2 4 77 1 1.2 13 1986 3.90 7.69 285.5 529.5 304.3 4 77 1 1.2 12 1985 5.34 10.11 285.1 579.1 314.8 4 77 1 1 .2 1 1 1984 5.52 8.70 276.4 557.7 300.8 4 77 1 1 .2 10 1983 5.70 1 1 .58 283.6 552.2 314.7 4 77 1 1 .2 9 1982 4.68 1 1.54 31 1.4 550.7 339.0 4 77 1 1.2 8 1981 3.78 30.16 312.5 558.3 386.6 4 77 1 3.6 7 1980 4.56 21.05 313.6 571.5 367.9 4 77 1 3.6 6 1979 10.08 13.69 346.1 567.7 376.5 4 77 1 3.6 5 1978 9.30 16.77 364.7 528.1 392.1 4 77 1 3.6 4 1977 4.80 22.50 380.7 538.2 416.1 4 77 1 3.6 3 1976 2.88 27.08 406.1 546.1 444.0 4 77 1 3.6 2 1975 6.30 76.19 447.5 548.0 524.0 4 77 1 3.6 1 1974 4.86 71.60 441.1 540.3 511.3 4 77 1 3.6 28 2005 0.54 0.00 340.9 0.0 340.9 4 77 1 3.6 27 2004 0.84 14.29 322.6 487.1 346.1 4 77 1 3.6 26 2003 0.42 0.00 396.2 0.0 396.2 4 77 1 3.6 25 2002 0.66 0.00 320.6 0.0 320.6 4 77 1 3.6 24 2001 0.66 9.09 332.5 508.8 348.6 4 77 1 3.6 23 2000 0.78 23.08 329.5 533.2 376.5 4 77 1 3.6 22 1999 0.84 21.43 322.8 499.5 360.6 4 77 1 3.6 21 1998 1.32 18.18 286.3 515.9 328.1 4 77 1 3.6 20 1997 1.44 29.17 287.7 542.2 359.0 4 77 1 3.6 19 1996 1.20 25.00 298.8 559.6 364.0 4 77 1 3.6 18 1995 1.80 13.33 283.7 505.1 313.2 4 77 1 3.6 17 1994 1.80 23.33 265.4 558.7 331 .7 4 77 1 3.6 16 1993 2.46 19.51 293.0 598.1 352.6 4 77 1 3.6 15 1992 3.12 15.38 295.0 591.1 340.6 4 77 1 3.6 14 1991 2.34 23.08 272.3 621.7 352.9 4 77 1 3.6 13 1990 3.06 15.69 296.2 582.9 341.2 4 77 1 3.6 12 1989 3.00 22.00 255.8 651.1 342.8 4 77 1 3.6 11 1988 2.64 15.91 275.3 604.1 327.6 4 77 1 7.2 10 1987 3.90 18.46 253.7 614.7 320.4 4 77 1 7.2 9 1986 5.52 14.13 276.4 653.5 329.7 88 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m3) (kg/mA3) 4 77 1 7.2 8 1985 5.28 14.77 285.8 605.6 333.1 4 77 1 7.2 7 1984 5.28 9.09 274.5 570.9 301 .4 4 77 1 7.2 6 1983 4.98 10.84 256.2 591.6 292.6 4 77 1 7.2 5 1982 7.20 10.00 274.3 605.8 307.4 4 77 1 7.2 4 1981 7.86 18.32 275.5 529.1 322.0 4 77 1 7.2 3 1980 8.40 7.86 304.4 560.5 324.5 4 77 1 7.2 2 1979 7.62 6.30 375.9 527.7 385.4 4 77 1 7.2 1 1978 6.60 22.73 389.8 507.4 416.3 4 77 1 7.2 23 2005 1.08 1 1.1 1 265.0 546.8 296.3 4 77 1 7.2 22 2004 1.68 14.29 279.9 616.9 328.1 4 77 1 7.2 21 2003 1.08 22.22 251.3 644.0 338.5 4 77 1 7.2 20 2002 1 .56 15.38 257.3 584.9 307.7 4 77 1 7.2 19 2001 1 .56 23.08 273.2 585.8 345.3 4 77 1 7.2 18 2000 2.10 20.00 306.5 655.7 376.4 4 77 1 7.2 17 1999 1 .98 15.15 290.2 575.5 333.4 4 77 1 7.2 16 1998 2.58 18.60 271.9 626.5 337.9 4 77 1 7.2 15 1997 2.46 12.20 274.3 615.5 315.9 4 77 1 7.2 14 1996 2.28 26.32 267.2 595.1 353.5 4 77 2 1.2 13 1995 3.18 11.32 277.0 587.8 312.2 4 77 2 1.2 12 1994 3.18 16.98 271.2 637.3 333.3 4 77 2 1 .2 11 1993 4.20 12.86 ' 258.6 668.3 31 1.3 4 77 2 1.2 10 1992 4.92 9.76 280.0 625.9 313.8 4 77 2 1 .2 9 1991 4.56 19.74 272.9 646.7 346.7 4 77 2 1 .2 8 1990 6.30 12.38 276.2 585.6 314.5 4 77 2 1.2 7 1989 5.22 21.84 285.5 608.1 355.9 4 77 2 1 .2 6 1988 5.40 21 .1 1 301 .3 566.3 357.2 4 77 2 1 .2 5 1987 7.68 1 1 .72 344.0 553.9 368.6 4 77 2 1 .2 4 1986 2.34 17.95 398.2 546.5 424.8 4 77 2 1 .2 3 1985 3.78 9.52 375.1 505.6 387.5 4 77 2 1.2 2 1984 2.58 55.81 451.2 520.8 490.1 4 77 2 1 .2 1 1983 4.14 36.23 345.5 574.5 427.3 4 77 2 1.2 31 2005 0.60 20.00 404.6 561.7 436.0 4 77 2 1 .2 30 2004 0.36 0.00 376.1 0.0 376.1 4 77 2 1 .2 29 2003 0.30 0.00 378.5 0.0 378.5 4 77 2 1 .2 28 2002 0.30 0.00 414.0 0.0 414.0 4 77 2 1 .2 27 2001 0.78 0.00 430.1 0.0 430.1 4 77 2 1 .2 26 2000 0.66 9.09 383.0 486.9 392.4 4 77 2 1.2 25 1999 0.66 54.55 469.0 553.9 515.3 4 77 2 1 .2 24 1998 0.72 41 .67 389.3 494.5 433.2 4 77 2 1 .2 23 1997 1 .50 28.00 327.2 562.8 393.2 4 77 2 1 .2 22 1996 1.98 33.33 31 1.3 579.4 400.7 4 77 2 1 .2 21 1995 1 .98 30.30 382.0 585.5 443.7 4 77 2 1 .2 20 1994 1.86 35.48 348.2 629.0 447.9 4 77 2 1 .2 19 1993 2.22 32.43 331 .0 598.0 417.6 4 77 2 1.2 18 1992 1.80 33.33 315.5 607.0 412.7 4 77 2 1 .2 17 1991 1 .44 0.00 332.5 0.0 332.5 4 77 2 1 .2 16 1990 2.22 29.73 307.7 580.3 388.8 4 77 2 1 .2 15 1989 3.54 22.03 339.7 595.8 396.1 89 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mA3) (kg/mA3) (kg/mA3) 4 77 2 1.2 14 1988 2.10 28.57 361.1 578.0 423.0 4 77 2 1.2 13 1987 1.44 25.00 291.5 576.5 362.7 4 77 2 3.6 12 1986 2.70 13.33 293.6 544.6 327.1 4 77 2 3.6 11 1985 3.90 13.85 297.5 590.9 338.2 4 77 2 3.6 10 1984 4.50 16.00 304.6 562.5 345.8 4 77 2 3.6 9 1983 3.60 18.33 316.0 580.0 364.4 4 77 2 3.6 8 1982 3.18 1 1 .32 326.9 508.5 347.5 4 77 2 3.6 7 1981 3.60 20.00 329.1 537.4 370.7 4 77 2 3.6 6 1980 2.82 23.40 358.6 519.8 396.4 4 77 2 3.6 5 1979 4.02 17.91 349.7 538.6 383.5 4 77 2 3.6 4 1978 5.82 0.00 360.0 0.0 360.0 4 77 2 3.6 3 1977 5.88 10.20 369.3 493.8 382.0 4 77 2 3.6 2 1976 5.88 92.86 458.5 618.6 607.1 4 77 2 3.6 1 1975 5.10 2.35 41.7 555.9 53.8 4 77 2 3.6 24 2005 0.12 0.00 371 .7 0.0 371.7 4 77 2 3.6 23 2004 0.36 0.00 326.6 0.0 326.6 4 77 2 3.6 22 2003 0.60 0.00 365.7 0.0 365.7 4 77 2 3.6 21 2002 0.42 14.29 331 .2 51 1 .9 357.0 4 77 2 3.6 20 2001 0.54 33.33 339.2 565.8 407.2 4 77 2 3.6 19 2000 0.72 16.67 320.9 506.4 351.8 4 77 2 3.6 18 1999 0.78 30.77 ‘ 281.2 582.2 373.8 4 77 2 3.6 17 1998 1 .02 23.53 275.8 571 .0 345.2 4 77 2 3.6 16 1997 1.14 15.79 289.4 572.4 334.0 4 77 2 3.6 15 1996 1 .26 23.81 279.4 588.4 353.0 4 77 2 3.6 14 1995 2.34 20.51 300.2 639.9 369.9 4 77 2 3.6 13 1994 3.18 24.53 287.2 622.1 369.4 4 77 2 3.6 12 1993 3.12 19.23 309.8 700.8 385.0 4 77 2 3.6 1 1 1992 3.60 26.67 280.9 661 .0 382.2 4 77 2 3.6 10 1991 3.78 14.29 323.7 605.1 363.9 4 77 2 3.6 9 1990 3.66 21.31 317.9 617.7 381.8 4 77 2 7.2 8 1989 2.64 15.91 269.4 591.9 320.7 4 77 2 7.2 7 1988 4.02 22.39 293.0 636.8 370.0 4 77 2 7.2 16 1987 7.50 7.20 302.9 601 .9 324.5 4 77 2 7.2 5 1986 6.48 1 1 .1 1 305.9 593.8 337.9 4 77 2 7.2 4 1985 4.56 9.21 299.5 565.1 324.0 4 77 2 7.2 3 1984 5.28 5.68 312.5 595.7 328.6 4 77 2 7.2 2 1983 5.94 7.07 304.1 599.7 325.0 4 77 2 7.2 1 1982 7.26 6.61 383.3 552.7 394.4 4 77 2 7.2 15 2005 0.84 7.14 373.0 485.3 381.0 4 77 2 7.2 14 2004 0.78 0.00 369.5 0.0 369.5 4 77 2 7.2 13 2003 0.72 0.00 382.2 0.0 382.2 4 77 2 7.2 12 2002 1.14 42.1 1 366.5 575.4 454.5 4 77 2 7.2 1 1 2001 1.86 16.13 340.6 531.1 371 .3 4 77 2 7.2 10 2000 2.16 30.56 315.1 654.8 418.9 4 77 2 7.2 9 1999 2.04 23.53 299.5 600.6 370.3 4 77 2 7.2 8 1998 1 .56 30.77 322.5 581 .3 405.3 4 77 2 7.2 7 1997 2.52 21.43 315.5 578.8 370.6 4 77 2 7.2 6 4.38 19.18 307.0 577.4 358.8 1 996 90 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/Wm) (kg/W9) (kg/M3) 91 4 77 2 7.2 5 1995 4.80 12.50 295.7 562.8 329.1 4 77 2 7.2 4 1994 4.92 15.85 330.4 564.9 367.6 4 77 2 7.2 3 1993 5.52 11.96 317.9 531.1 343.4 4 77 2 7.2 2 1992 5.88 0.00 348.0 0.0 348.0 4 77 2 7.2 1 1991 7.62 0.79 361.4 665.5 363.8 5 57 1 1 .2 32 2005 0.42 0.00 333.6 0.0 333.6 5 57 1 1 .2 31 2004 0.66 45.45 290.1 666.8 461 .4 5 57 1 1 .2 30 2003 0.54 44.44 313.1 633.4 455.4 5 57 1 1.2 29 2002 0.54 1 1.1 1 301.0 535.6 327.0 5 57 1 1 .2 28 2001 0.54 33.33 248.4 563.1 353.3 5 57 1 1 .2 27 2000 0.60 40.00 279.8 661 .7 432.5 5 57 1 1 .2 26 1999 0.72 33.33 292.1 559.3 381 .2 5 57 1 1 .2 25 1998 1 .02 35.29 293.0 605.9 403.4 5 57 1 1 .2 24 1997 1 .02 29.41 265.9 644.7 377.3 5 57 1 1 .2 23 1996 0.84 21 .43 256.0 626.2 335.4 5 57 1 1 .2 22 1995 1.14 15.79 273.3 636.0 330.5 5 57 1 1 .2 21 1994 1 .50 32.00 262.7 607.5 373.1 5 57 1 1 .2 20 1993 2.46 17.07 285.3 657.4 348.8 5 57 1 1 .2 19 1992 2.58 1 1.63 321.6 626.4 357.0 5 57 1 1 .2 18 1991 2.58 23.26 298.9 635.6 377.2 5 57 1 1.2 17 1990 3.78 15.87 305.6 604.9 353.1 5 57 1 1 .2 16 1989 2.04 41 .18 266.2 608.6 407.2 5 57 1 1 .2 15 1988 2.46 12.20 287.1 584.8 323.4 5 57 1 1 .2 14 1987 2.64 20.45 262.5 616.3 334.8 5 57 1 1 .2 13 1986 3.72 14.52 279.2 671 .9 336.2 5 57 1 1.2 12 1985 3.90 21.54 316.3 620.8 381.9 5 57 1 1 .2 1 1 1984 3.54 15.25 286.4 619.3 338.0 5 57 1 1.2 10 1983 3.54 1 1 .86 277.2 627.0 318.0 5 57 1 1.2 9 1982 4.56 13.16 310.6 642.3 354.2 5 57 1 1.2 8 1981 4.98 9.64 288.1 598.9 318.1 5 57 1 1 .2 7 1980 6.00 17.00 312.0 573.9 356.5 5 57 1 1 .2 6 1979 5.10 17.65 324.6 573.5 368.5 5 57 1 1 .2 5 1978 4.56 25.00 345.7 546.9 396.0 5 57 1 1 .2 4 1977 3.12 25.00 401 .9 525.8 432.9 5 57 1 3.6 3 1976 4.20 21 .43 399.4 531 .4 428.1 5 57 1 3.6 2 1975 4.50 24.00 390.4 522.8 421 .7 5 57 1 3.6 1 1974 1 .44 87.50 430.4 494.9 484.6 5 57 1 3.6 25 2005 0.60 20.00 295.7 585.6 353.7 5 57 1 3.6 24 2004 0.72 41 .67 289.7 662.9 445.2 5 57 1 3.6 23 2003 0.54 44.44 302.7 618.1 442.9 5 57 1 3.6 22 2002 0.78 30.77 295.8 560.0 377.1 5 57 1 3.6 21 2001 0.66 27.27 301 .9 577.4 377.0 5 57 1 3.6 20 2000 0.72 41 .67 304.6 623.4 437.5 5 57 1 3.6 19 1999 0.96 31.25 306.2 577.8 391.1 5 57 1 3.6 18 1998 1.38 43.48 327.0 599.4 445.5 5 57 1 3.6 17 1997 1 .26 28.57 290.6 606.3 380.8 5 57 1 3.6 16 1996 0.96 25.00 296.2 656.1 386.2 5 57 1 3.6 15 1995 1.26 19.05 292.0 562.0 343.5 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m43) (kg/m43) (kg/m43) 92 5 57 1 3.6 14 1994 1.74 24.14 292.8 615.8 370.8 5 57 1 3.6 13 1993 3.06 13.73 295.3 658.3 345.1 5 57 1 3.6 12 1992 2.58 18.60 322.9 561 .9 367.4 5 57 1 3.6 1 1 1991 3.30 21.82 291.5 609.9 360.9 5 57 1 3.6 10 1990 4.56 15.79 285.5 579.8 331 .9 5 57 1 3.6 9 1989 4.50 20.00 31 1.9 602.4 370.0 5 57 1 3.6 8 1988 2.94 16.33 303.5 549.6 343.7 5 57 1 3.6 7 1987 3.48 17.24 288.2 593.4 340.8 5 57 1 3.6 6 1986 5.04 19.05 292.0 614.2 353.4 5 57 1 7.2 5 1985 5.64 19.15 330.3 561.3 374.6 5 57 1 7.2 4 1984 5.88 14.29 300.8 566.2 338.7 5 57 1 7.2 3 1983 4.62 1 1 .69 306.9 584.0 339.3 5 57 1 7.2 2 1982 5.22 12.64 326.9 529.4 352.5 5 57 1 7.2 1 1981 6.30 14.29 385.6 547.0 408.4 5 57 1 7.2 19 2005 0.84 7.14 297.6 538.7 314.8 5 57 1 7.2 18 2004 2.04 47.06 307.6 566.7 429.5 5 57 1 7.2 17 2003 1 .20 40.00 292.7 634.8 429.5 5 57 1 7.2 16 2002 1 .62 18.52 288.5 563.6 339.5 5 57 1 7.2 15 2001 2.04 47.06 291.8 546.4 411.6 5 57 1 7.2 14 2000 1.86 48.39 315.0 591.2 448.6 5 57 1 7.2 13 1999 1.74 24.14 330.4 559.8 385.8 5 57 1 7.2 12 1998 2.76 28.26 321 .9 576.1 393.7 5 57 2 1 .2 1 1 1997 2.58 23.26 301 .4 564.5 362.6 5 57 2 1.2 10 1996 2.22 40.54 281.9 551.9 391.4 5 57 2 1 .2 9 1995 3.00 8.00 320.3 578.9 341 .0 5 57 2 1.2 8 1994 2.94 18.37 321.5 610.5 374.6 5 57 2 1 .2 7 1993 4.50 12.00 307.0 622.4 344.9 5 57 2 1 .2 6 1992 4.08 14.71 354.4 578.1 387.3 5 57 2 1.2 5 1991 5.22 16.09 331.5 621.1 378.1 5 57 2 1.2 4 1990 4.98 18.07 318.9 573.7 365.0 5 57 2 1 .2 3 1989 4.56 1 1.84 361 .1 583.3 387.4 5 57 2 1 .2 2 1988 4.20 7.14 401 .3 528.2 410.4 5 57 2 1.2 1 1987 2.94 6.12 330.1 489.5 339.7 5 57 2 1 .2 29 2005 0.54 0.00 369.9 0.0 369.9 5 57 2 1 .2 28 2004 0.84 28.57 323.4 535.3 383.9 5 57 2 1 .2 27 2003 0.84 21 .43 334.4 557.8 382.2 5 57 2 1 .2 26 2002 1 .02 23.53 312.1 573.0 373.5 5 57 2 1 .2 25 2001 1.26 23.81 319.6 577.7 381.0 5 57 2 1 .2 24 2000 1 .14 26.32 338.4 605.2 408.6 5 57 2 1.2 23 1999 2.10 8.57 312.9 548.2 333.0 5 57 2 1.2 22 1998 2.22 18.92 305.0 601.5 361.1 5 57 2 1 .2 21 1997 1.80 13.33 299.4 599.2 339.4 5 57 2 1 .2 20 1996 1 .44 37.50 299.2 569.8 400.7 5 57 2 1.2 19 1995 1.86 12.90 314.1 594.4 350.2 5 57 2 1.2 18 1994 2.22 21.62 312.4 618.1 378.5 5 57 2 1 .2 17 1993 3.06 17.65 294.6 608.1 349.9 5 57 2 1 .2 16 1992 3.66 27.87 366.1 608.7 433.7 5 57 2 1.2 15 1991 3.12 34.62 313.0 598.9 411.9 a ..u.; —.- r-v-.nv—.. -.—..-— Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/m3) (kg/mAS) (kg/mAS) 5 57 2 1.2 14 1990 2.64 25.00 348.5 554.8 401.3 5 57 2 1.2 13 1989 2.16 30.56 335.8 582.3 409.1 5 57 2 1.2 12 1988 1.98 18.18 334.8 511.5 366.9 5 57 2 3.6 1 1 1987 1.44 33.33 388.4 510.6 429.1 5 57 2 3.6 10 1986 2.04 0.00 404.6 0.0 404.6 5 57 2 3.6 9 1985 2.10 0.00 381.7 0.0 381.7 5 57 2 3.6 8 1984 2.76 0.00 327.7 0.0 327.7 5 57 2 3.6 7 1983 2.70 0.00 349.2 0.0 349.2 5 57 2 3.6 6 1982 3.30 16.36 391 .0 506.7 410.0 5 57 2 3.6 5 1981 3.90 9.23 350.5 501.7 364.5 5 57 2 3.6 4 1980 2.82 0.00 364.0 0.0 364.0 5 57 2 3.6 3 1979 8.10 0.00 363.9 0.0 363.9 5 57 2 3.6 2 1978 2.46 80.49 472.4 495.9 491 .3 5 57 2 3.6 1 1977 3.72 0.00 453.7 0.0 453.7 5 57 2 3.6 23 2005 0.60 0.00 352.0 0.0 352.0 5 57 2 3.6 22 2004 1.08 27.78 322.7 605.4 401 .2 5 57 2 3.6 21 2003 1 .50 28.00 366.2 533.3 413.0 5 57 2 3.6 20 2002 1 .26 23.81 320.8 565.3 379.0 5 57 2 3.6 19 2001 1.44 25.00 339.4 502.2 380.1 5 57 2 3.6 18 2000 1.44 50.00 353.1 567.4 455.9 5 57 2 3.6 17 1999 2.04 0.00 318.4 0.0 318.4 5 57 2 3.6 16 1998 3.24 22.22 320.4 570.0 375.9 5 57 2 3.6 15 1997 2.52 19.05 326.1 538.8 366.6 5 57 2 3.6 14 1996 1.92 18.75 341.8 531.8 377.4 5 57 2 3.6 13 1995 2.88 14.58 314.6 537.9 347.2 5 57 2 3.6 12 1994 3.96 15.15 315.4 585.0 356.3 5 57 2 3.6 11 1993 4.74 15.19 290.9 548.9 330.1 5 57 2 7.2 10 1992 5.64 6.38 362.8 550.8 374.8 5 57 2 7.2 9 1991 5.22 12.64 302.7 566.2 336.0 5 57 2 7.2 8 1990 5.04 4.76 331 .6 495.3 339.4 5 57 2 7.2 7 1989 4.80 10.00 310.9 504.9 330.3 5 57 2 7.2 6 1988 3.54 8.47 335.5 505.0 349.9 5 57 2 7.2 5 1987 3.24 5.56 342.8 492.7 351 .2 5 57 2 7.2 4 1986 2.76 0.00 354.9 0.0 354.9 5 57 2 7.2 3 1985 2.22 0.00 395.2 0.0 395.2 5 57 2 7.2 2 1984 2.16 0.00 399.9 0.0 399.9 5 57 2 7.2 1 1983 3.96 1.52 413.6 498.9 414.9 5 57 2 7.2 13 2005 0.96 6.25 299.2 584.3 317.0 5 57 2 7.2 12 2004 2.22 13.51 305.7 623.7 348.7 5 57 2 7.2 1 1 2003 2.52 16.67 314.0 565.4 355.9 5 57 2 7.2 10 2002 2.46 17.07 284.6 614.1 340.8 5 57 2 7.2 9 2001 2.46 7.32 296.4 593.4 318.1 5 57 2 7.2 8 2000 2.82 23.40 317.8 603.4 384.6 5 76 1 1.2 7 1999 3.78 3.17 275.5 545.7 284.0 5 76 1 1 .2 6 1998 5.28 7.95 283.1 633.8 31 1.0 5 76 1 1 .2 5 1997 4.80 5.00 285.4 562.7 299.3 5 76 1 1 .2 4 1996 4.62 0.00 289.5 0.0 289.5 5 76 1 1 .2 3 1995 5.34 4.49 293.7 504.6 303.2 93 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/W3) (kg/"1‘31 (kg/W3) 94 5 76 1 1.2 2 1994 5.82 0.00 318.8 0.0 318.8 5 76 1 1 .2 1 1993 5.34 2.25 371 .0 517.6 374.3 5 76 1 1.2 29 2005 0.36 33.33 321.7 51 1.1 384.8 5 76 1 1 .2 28 2004 0.66 36.36 303.4 593.4 408.9 5 76 1 1 .2 27 2003 0.42 42.86 367.0 589.7 462.5 5 76 1 1 .2 26 2002 0.60 40.00 298.2 559.0 402.6 5 76 1 1.2 25 2001 0.54 22.22 332.3 586.5 388.8 5 76 1 1 .2 24 2000 0.60 50.00 327.5 613.1 470.3 5 76 1 1 .2 23 1999 0.78 38.46 313.8 561.3 409.0 5 76 1 1.2 22 1998 0.78 46.15 316.7 610.7 452.4 5 76 1 1.2 21 1997 0.84 28.57 306.9 552.7 377.1 5 76 1 1 .2 20 1996 0.72 25.00 325.0 567.1 385.5 5 76 1 1.2 19 1995 1.44 29.17 301.3 574.3 380.9 5 76 1 1.2 18 1994 1.14 36.84 291.5 618.8 412.1 5 76 1 1 .2 17 1993 1.68 28.57 295.5 602.0 383.1 5 76 1 1 .2 16 1992 2.28 39.47 334.5 574.8 429.4 5 76 1 1.2 15 1991 2.34 33.33 293.0 646.5 410.9 5 76 1 1.2 14 1990 2.10 40.00 319.2 617.3 438.5 5 76 1 1.2 13 1989 2.40 37.50 293.9 626.7 418.7 5 76 1 1 .2 12 1988 2.40 20.00 299.7 576.3 355.0 5 76 1 1 .2 1 1 1987 2.28 39.47 313.4 598.3 425.9 5 76 1 1 .2 10 1986 3.66 29.51 309.6 583.4 391 .7 5 76 1 1 .2 9 1985 2.70 42.22 371 .8 573.7 455.2 5 76 1 1.2 8 1984 2.52 26.19 319.7 573.0 386.0 5 76 1 1.2 7 1983 4.08 14.71 309.0 575.7 348.2 5 76 1 1 .2 6 1982 4.38 23.29 331.9 585.5 391.0 5 76 1 1.2 5 1981 4.14 18.84 338.6 605.5 388.9 5 76 1 3.6 4 1980 3.90 29.23 364.8 618.7 439.0 5 76 1 3.6 3 1979 3.84 23.44 425.9 553.0 455.7 5 76 1 3.6 2 1978 7.68 53.91 418.2 561.9 495.7 5 76 1 3.6 1 1977 7.20 98.33 475.5 509.4 508.5 5 76 1 3.6 24 2005 0.48 0.00 299.7 0.0 299.7 5 76 1 3.6 23 2004 0.90 33.33 293.0 675.6 420.5 5 76 1 3.6 22 2003 0.84 28.57 292.4 644.6 393.0 5 76 1 3.6 21 2002 1.08 22.22 287.1 691.5 377.0 5 76 1 3.6 20 2001 0.84 28.57 297.4 704.6 413.7 5 76 1 3.6 19 2000 0.72 41 .67 308.7 678.8 462.9 5 76 1 3.6 18 1999 1.14 26.32 314.9 587.6 386.7 5 76 1 3.6 17 1998 1.56 30.77 323.7 667.0 429.4 5 76 1 3.6 16 1997 1.44 29.17 295.6 664.9 403.4 5 76 1 3.6 15 1996 0.96 31 .25 274.4 647.2 390.9 5 76 1 3.6 14 1995 1.86 22.58 300.3 601 .7 368.3 5 76 1 3.6 13 1994 1.62 33.33 292.1 649.3 41 1 .2 5 76 1 3.6 12 1993 3.36 16.07 280.9 626.7 336.5 5 76 1 3.6 11 1992 2.58 30.23 306.5 662.3 414.1 5 76 1 3.6 10 1991 3.06 25.49 289.7 635.0 377.7 5 76 1 3.6 9 1990 3.12 23.08 329.6 602.3 392.5 5 76 1 3.6 8 1989 3.90 29.23 309.2 597.6 393.5 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mA3) (kg/mA3) (kg/mAS) 5 76 1 3.6 7 1988 3.72 14.52 296.6 604.7 341 .3 5 76 1 3.6 6 1987 4.38 19.18 294.4 602.5 353.5 5 76 1 3.6 5 1986 4.38 12.33 295.8 581.7 331.1 5 76 1 3.6 4 1985 3.66 16.39 326.7 578.3 367.9 5 76 1 3.6 3 1984 3.42 8.77 300.9 508.6 319.1 5 76 1 3.6 2 1983 2.64 0.00 347.4 0.0 347.4 5 76 1 3.6 1 1982 3.96 7.58 352.4 488.7 362.6 5 76 1 3.6 16 2005 0.90 0.00 304.1 0.0 304.1 5 76 1 7.2 15 2004 1.44 33.33 309.3 682.5 433.7 5 76 1 7.2 14 2003 1 .32 22.73 307.1 722.3 401 .4 5 76 1 7.2 13 2002 1.86 16.13 300.3 715.5 367.2 5 76 1 7.2 12 2001 1 .56 34.62 296.8 652.9 420.0 5 76 1 7.2 1 1 2000 2.22 45.95 323.8 632.1 465.4 5 76 1 7.2 10 1999 1.98 15.15 348.6 573.6 382.7 5 76 1 7.2 9 1998 3.42 17.54 310.5 666.3 373.0 5 76 1 7.2 8 1997 3.48 15.52 312.3 659.0 366.1 5 76 1 7.2 7 1996 3.30 21.82 310.6 587.3 370.9 5 76 1 7.2 6 1995 3.42 12.28 305.3 626.3 344.7 5 76 1 7.2 5 1994 4.08 14.71 303.0 609.3 348.0 5 76 1 7.2 4 1993 5.82 9.28 296.6 572.9 322.2 5 76 1 7.2 3 1992 4.02 16.42 331 .0 570.7 370.4 5 76 1 7.2 2 1991 5.28 0.00 368.1 0.0 368.1 5 76 1 7.2 1 1990 3.30 5.45 430.9 490.3 434.1 5 76 1 7.2 32 2005 2.40 0.00 343.0 0.0 343.0 5 76 1 7.2 31 2004 3.12 9.62 333.9 498.4 349.7 5 76 1 7.2 30 2003 1.98 15.15 347.0 500.9 369.6 5 76 1 7.2 29 2002 2.88 4.17 330.5 501.9 337.5 5 76 1 7.2 28 2001 2.16 0.00 340.4 0.0 . 340.4 5 76 1 7.2 27 2000 1.74 41 .38 355.8 546.0 431.9 5 76 1 7.2 26 1999 2.10 0.00 324.4 0.0 324.4 5 77 1 1.2 25 1998 3.90 15.38 317.3 547.4 352.7 5 77 1 1.2 24 1997 3.06 19.61 299.8 520.0 343.0 5 77 1 1.2 23 1996 2.34 0.00 339.1 0.0 339.1 5 77 1 1 .2 22 1995 3.48 0.00 340.5 0.0 340.5 5 77 1 1.2 21 1994 4.14 10.14 320.6 503.5 339.1 5 77 1 1.2 20 1993 5.28 2.27 307.1 482.9 31 1 .1 5 77 1 1.2 19 1992 6.30 9.52 321.7 506.3 339.3 5 77 1 1.2 18 1991 4.56 18.42 336.2 519.9 370.0 5 77 1 1.2 17 1990 3.24 11.11 349.3 490.0 364.9 5 77 1 1.2 16 1989 2.40 30.00 352.8 502.4 397.7 5 77 1 1.2 15 1988 3.06 0.00 343.2 0.0 343.2 5 77 1 1.2 14 1987 3.30 16.36 336.2 498.3 362.7 5 77 1 1.2 13 1986 4.32 0.00 331.0 0.0 331.0 5 77 1 1.2 12 1985 3.84 12.50 332.7 498.4 353.4 5 77 1 1.2 1 1 1984 2.58 0.00 330.0 0.0 330.0 5 77 1 1.2 10 1983 3.06 0.00 317.1 0.0 317.1 5 77 1 1 .2 9 1982 4.62 14.29 308.5 508.8 337.2 5 77 1 1.2 8 1981 4.62 6.49 313.7 495.7 325.6 95 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (m) No. Growth (mm) % Density Density Density (kg/mA3) (kg/mA3) (kg/m/t3) 5 77 1 1.2 7 1980 5.34 8.99 329.0 501.9 344.5 5 77 1 1.2 6 1979 3.54 1 1 .86 334.6 495.6 353.7 5 77 1 1.2 5 1978 5.04 15.48 362.2 545.7 390.6 5 77 1 1.2 4 1977 2.16 11.11 390.9 483.7 401.2 5 77 1 1.2 3 1976 3.12 0.00 357.3 0.0 357.3 5 77 1 1.2 2 1975 18.00 84.33 452.0 551.8 536.1 5 77 1 1.2 1 1974 4.44 62.16 448.7 571.6 524.1 5 77 1 1.2 29 2005 1 .26 4.76 281.7 484.6 291 .3 5 77 1 1 .2 28 2004 1 .74 17.24 276.7 636.0 338.6 5 77 1 1 .2 27 2003 1 .62 18.52 287.1 638.5 352.2 5 77 1 1 .2 26 2002 1 .68 14.29 271 .3 605.7 319.1 5 77 1 1 .2 25 2001 1 .38 17.39 297.1 623.6 353.9 5 77 1 1 .2 24 2000 0.96 18.75 288.9 597.3 346.7 5 77 1 1 .2 23 1999 1 .62 3.70 286.8 524.9 295.6 5 77 1 3.6 22 1998 2.16 19.44 281.0 620.9 347.1 5 77 1 3.6 21 1997 1 .74 13.79 285.4 643.0 334.7 5 77 1 3.6 20 1996 1.44 12.50 299.3 569.1 333.0 5 77 1 3.6 19 1995 1.74 13.79 279.5 546.4 316.3 5 77 1 3.6 18 1994 2.22 21 .62 289.9 598.2 356.6 5 77 1 3.6 17 1993 2.88 18.75 280.5 579.3 336.5 5 77 1 3.6 16 1992 3.78 7.94 317.6 578.1 338.3 5 77 1 3.6 15 1991 3.30 18.18 281.6 601.8 339.8 5 77 1 3.6 14 1990 3.12 1 1 .54 324.2 609.7 357.1 5 77 1 3.6 13 1989 1.92 28.12 291.7 576.3 371.7 5 77 1 3.6 12 1988 2.70 8.89 297.4 524.1 317.6 5 77 1 3.6 11 1987 4.20 12.86 296.8 573.8 332.5 5 77 1 3.6 10 1986 5.16 10.47 288.1 589.4 319.6 5 77 1 3.6 9 1985 4.62 10.39 289.2 578.6 319.3 5 77 1 3.6 8 1984 4.98 7.23 285.6 529.1 303.2 5 77 1 3.6 7 1983 4.56 5.26 281.1 554.1 295.5 5 77 1 3.6 6 1982 6.66 5.41 272.8 590.9 290.0 5 77 1 3.6 5 1981 8.28 4.35 279.1 531.8 290.1 5 77 1 3.6 4 1980 9.54 4.40 268.2 555.0 280.8 5 77 1 3.6 3 1979 6.48 8.33 296.2 563.5 318.5 5 77 1 3.6 2 1978 6.96 0.00 311.3 0.0 311.3 5 77 1 3.6 1 1977 8.76 0.68 393.1 544.9 394.1 5 77 1 3.6 22 2005 2.52 2.38 305.8 487.0 310.2 5 77 1 3.6 21 2004 3.12 15.38 291.9 581.1 336.4 5 77 1 3.6 20 2003 2.28 15.79 294.7 518.0 330.0 5 77 1 7.2 19 2002 2.82 0.00 285.9 0.0 285.9 5 77 1 7.2 18 2001 2.70 15.56 308.7 559.8 347.8 5 77 1 7.2 17 2000 2.88 18.75 323.7 543.3 364.8 5 77 1 7.2 16 1999 2.28 0.00 300.4 0.0 300.4 5 77 1 7.2 15 1998 3.96 13.64 285.4 615.1 330.4 5 77 1 7.2 14 1997 3.42 19.30 273.3 606.1 337.5 5 77 1 7.2 13 1996 2.58 9.30 282.8 614.5 313.7 5 77 1 7.2 12 1995 2.64 4.55 277.0 603.5 291.9 5 77 1 7.2 1 1 1994 3.60 15.00 289.6 583.4 333.7 96 Block Seed Replic Height of Ring Year of Growth Latewood EW LW Ring Source ation Disc (111) No. Growth (mm) % Density Density Density (kg/mA3) (kg/mes) (kg/mAS) 97 5 77 1 7.2 10 1993 4.98 8.43 271 .0 567.4 296.0 5 77 1 7.2 9 1992 6.00 10.00 295.1 567.5 322.3 5 77 1 7.2 8 1991 5.52 6.52 277.5 615.7 299.6 5 77 1 7.2 7 1990 6.48 5.56 295.3 550.6 309.5 5 77 1 7.2 6 1989 5.88 8.16 310.2 526.0 327.8 5 77 1 7.2 5 1988 6.12 1 1 .76 290.8 578.2 324.6 5 77 1 7.2 4 1987 8.04 6.72 294.0 550.4 31 1.2 5 77 1 7.2 3 1986 8.88 2.03 277.4 498.4 281 .8 5 77 1 7.2 2 1985 10.56 0.00 326.0 0.0 326.0 5 77 1 7.2 1 1984 4.56 0.00 314.8 0.0 314.8 REFERENCES Aldridge, F. and Hudson, R. H. 1958. Growing Quality Softwoods: Variation in Strength and Density of Picea abies Specimens Taken from a Commercial Consignment. Quart. Jour. Forestry, Vol. 52, No. 2, pp. 107-114. ASTM, D 2395-02. 2004. Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials. Copyright ASTM International (West Conshohocken, PA 19428-2959) Barbour, R.J., Bailey, RE, and Cook, J .A. Evaluation of Relative Density, Diameter Growth, and Stem Form in a Red Spruce (Picea rubens) Stand 15 Years After Precommercial Thinning. Can. J. For. Res. 22: 229-238. Barnett, John R., and Jeronimidis, George. 2003. Wood Quality and its Biological Basis. Blackwell Publishing Ltd. (9600 Garsington Road, Oxford OX4 2DQ, UK) Bendtsen, B. Alan. 1978. Properties of Wood From Improved and Intensively Managed Trees. Forest Products Journal, 28(10), pp. 61-72. Bergqvist, Goran, Bergsten, Urban, and Ahlqvist, B0. 2000. Fibre Properties of Norway Spruce of Different Growth Rates Grown Under Birch Shelterwoods of Two Densities. Can. J. For. Res., 30: 487-494. Bergsten, U., Lindeberg, J., Rindby, A., Evans, R. 2001. Batch Measurements of Wood Density on intact or Prepared Drill Cores Using X-ray Microdensitometry. Wood Science and Technology, 35, pp. 435-452. Bowyer, Jim L., Schmulsky, Rubin, and Haygreen, John. 2003. Forest Products and Wood Science: An Introduction. Fourth Edition. Iowa State Press. (Ames, IA 50014) Bruchert, F., Becker, G., and Speck, T. 2000. The Mechanics of Norway Spruce [Picea abies (L.) Karst]: Mechanical Properties of Standing Trees from different thinning regimes. Forest Ecology and Management, 135, pp. 45-62. Chang, C. I. and Kennedy, R. W. 1967. Influence of Specific Gravity and Growth Rate on Dry Wood Production in Plantation-Grown White Spruce. Forestry Chronicle, June, pp. 165-173. Chui, Y.H. 1995. Grade Yields and Wood Properties of Norway Spruce [Picea abies (L.) Karst.] from the Maritimes. The Forestry Chronicle, July/August, Vol. 71, No.4, pp. 473-478. 98 Clauson, M. L., and Wilson, J. B. 1991. Comparison of Video and X-ray for scanning Wood Density. Forest Products Journal, 41(3), pp. 58-62. Cown, D. J ., and Parker, M. L. 1978. Comparison of Annual Ring Density Profiles in Hardwoods and Softwoods by X-ray Densitometry. Can. J. For. Res., Vol. 8, pp. 442-449. Echols, R. M. 1973. Uniformity of Wood Density Assessed from X-rays of Increment Cores. Wood Science and Technology, Vol. 7, pp. 34-44. Heger, L. 1974. Longitudinal Variation of Specific Gravity in Stems of Black Spruce, Balsam Fir, and Lodgepole Pine. Can. J. For. Res. 4, pp. 321-326. Hernandez, R. E., Bustos, C., Fortin, Y., Beaulieu, J. 2001. Wood Machining Properties of White Spruce from Plantation Forests. Forest Products Journal, 51(6), pp. 82- 88. Hoadley, R. Bruce. 1990. Identifying Wood: Accurate Results With Simple Tools. The Taunton Press. (Newtown, CT 06740-5506) Hoag, M., and McKimmy, M. D. 1988. Direct Scanning X-ray Densitometry of Thin Wood Sections. Forest Products Journal, Vol. 38, No. 1, pp. 23-26. Keith, C. T. 1961. Characteristics of Annual Rings in Relation to Wood Quality. Forest Products Journal, 11(3), pp. 122-126 LandOwner Resource Centre, Sir Sandford Fleming College and the Ontario Ministry of Natural Resources. 1995. Extension Notes: White Spruce. Queen’s Printer for Ontario. (Ontario, Canada) Moschler, W. W., Jr., and Winisorfer, P. M. 1990. Direct Scanning Densitometry: An Effect of Sample Heterogeneity and Aperture Area. Wood and Fiber Science, 22(1). PP. 31-38. Nyakuengama, Downes & Ng. 2003. Responses to fertilizer Application in Radiata Pine. IAWA Journal, V01. 24(4), pp. 397-409. Olson, J. R., Liu, C. J., Tian, Ye, and Shen, Q. 1988. Theoretical Wood Densitometry: 1. Mass Attenuation Equations and Wood Density Models. Wood and Fiber Science, 20(1), pp. 22-34. Olson, J. R., Liu, C. J ., Tian, Ye, and Shen, Q. 1988. Theoretical Wood Densitometry: II. Optimal X-ray Energy for Wood Density Measurement. Wood and Fiber Science, 20(2), pp.187-196. 99 Parker, M. L., and Jozsa, L. A. 1973. X-ray Scanning Machine for Tree-Ring Width and Density Analyses. Wood and Fiber, V. 5(3), pp. 192-197. Parker, M. L., Schoorlemmer, J ., and Carver, L. J. 1973. Computerized Scanning Densitometer for Automatic Recording of Tree-Ring Width and Density Data from X-ray Negatives. Wood and Fiber, V. 5(3), pp. 237-248. Paul, Benson H. 1930. The Application of Silviculture in Controlling the Specific Gravity of Wood. U. S. Dept. Agr., Forest Serv. Bul. No. 168. Paul, Benson H. 1963. The Application of Silviculture in Controlling the Specific Gravity of Wood. USDA Technical Bulletin. 1288. 97 pp. Shepard, Robert K., Jr., and Shottafer, James E. 1979. Effects of Fertilization on Specific Gravity and Growth Rate of Red Spruce (Picea rubens Sarg.). Wood Science, 12(2), pp. 100-102. Shepard, Robert K., Jr. 1982. Fertilization Effects on Specific Gravity and Diameter Growth of Red Spruce. Wood Science, 14(3), pp. 138-144. Shepard, Robert K. 1987. Wood Properties of Red Spruce in Maine on Soils of Three Drainage Classes. Wood and Fiber Science, 19(3), pp. 233-238. Shepard, Robert K., and Shottafer, James E. 1990. Effect of Early Release on Specific Gravity and Wood Yield of Black Spruce. Forest Products Journal, 40(1), pp. 18- 20. Spurr, Stephen H. and Hsiung, Wen-yeu. 1954. Growth Rate and Specific Gravity in Conifers. Journal of Forestry, March 1954, pp. 191-200. Syta, D.E., Curtis, K.C., Gasbarro, A.F., Sampson, GR. 1995. A Mechanical Evaluation of Alaska White Spruce. Forest Products Journal, 45(2), 4 pgs. Tasissa, Gudaye and Burkhart, Harold E. 1998. Modeling Thinning Effects on Ring Specific Gravity of Loblolly Pine (Pinus taeda L.). Forest Science, 44(2), pp. 212-223. Taylor, Fred and Burton, James. 1982. Growth Ring Characteristics, Specific Gravity, and Fiber Length of Rapidly Grown Loblolly Pine. Wood and Fiber, 14(3), pp. 204-210. Taylor, Fred W., Wang, E. I. C., Yanchuk, A., and Micko, M. M. 1982. Specific Gravity and tracheid length variation of white spruce in Alberta. Canadian Journal of Forest Research, Vol. 12, pp. 561-566. 100 Van Nostrand, RS. 1979. Growth Response of Black Spruce in Newfoundland to N, P and K Fertilization. The Forestry Chronicle, October, pp. 189-193. Walker, N. K., and Dodd, R. S. 1988. Calculation of Wood Density Variation from X- ray Densitometer Data. Wood and Fiber Science, 20(1), pp. 35-43. World Climate, 2005. Climate Data for Three Rivers, St. Joseph County, Michigan, USA. www.worldclim_ate.com. Copyright 1996-2005 Buttle and Tuttle Ltd. Zhang, S.Y., Chauret, G., Haiqing, Q.R., and Desjardins, R. 2002. Impact of Initial Spacing on Plantation Black Spruce Luber Grade Yield, Bending Properties, and MSR Yield. Wood and Fiber Science, 34(3), pp. 460-475. Zhou, Hui and Smith, Ian. 1991. Factors Influencing Bending Properties of White Spruce Lumber. Wood and Fiber Science, 23(4), pp. 483-500. Zhou, Hui and Smith, Ian. 1991. Influences of Drying Treatments on Bending Properties of Plantation-Grown White Spruce. Forest Products Journal, Vol. 41(2), pp. 8-14. 101 IIIIIIIIIIIIIIIIIIIIIIIIII 1111111111111111111: