‘ . . V . . . . . at: . . , , . . )flhaflmusma . a. l v A . . . . I4 . >533; . . . , ‘ . . ifwm. 14.3 V . , ‘ ghyi 9“. {h -: ”flaw.“ “.ficmwaffi $3.53. unawawq .1 . a. ....ufi... 5.? . 5.1 c We! , . “man... . £4 53% ‘ . ‘ ‘ . j . , . %%¢ I Finals 200’} This is to certify that the thesis entitled Impacts of Beech Bark Disease on Stand Composition and Wildlife Resources in Michigan. presented by Amy M. Kearney has been accepted towards fulfillment of the requirements for the degree In EntomologL Maj‘l" Professo mite/z M % 072 AquS‘l‘ 2009— Date MSU is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University AA-.aa—n—.-.-.-.-.-O-I-.-O-O-O-l-.- PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 p:ICIRC/DateDue.indd-p.1 IMPACTS OF BEECH BARK DISEASE ON STAND COMPOSITION AND WILDLIFE RESOURCES IN MICHIGAN. By Amy M. Kearney A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Entomology 2006 ABSTRACT IMPACTS OF BEECH BARK DISEASE ON STAND COMPOSITION AND WILDLIFE RESOURCES IN MICHIGAN. By Amy M. Kearney Beech bark disease was discovered in Michigan in 2000 and will likely kill at least 50% of mature American beech trees. Our study was designed to collect benchmark data that will allow us, in future studies, to determine how understory composition, wildlife resources, and stand productivity are affected by beech bark disease. We assessed the potential impact of beech bark disease in forest stands with varying beech densities (low, moderate, and high) and infestation of Cryptococcusfagisuga (absent, light, and heavy). Variables were measured in 62 stands throughout the Upper and Lower Peninsulas of Michigan in 2002 and 2003. Regenerating beech stem density did not differ among stands and no current evidence suggests dense beech thickets will regenerate in stands impacted by beech bark disease in Michigan. Beech snags were significantly more abundant in stands with heavy C. fagisuga infestation than in stands where C. fagisuga was absent or infestation was light, suggesting tree mortality from beech bark disease had occurred. Coarse woody debris volume and beech nut mass appeared to be highest in stands with heavy C. fagisuga infestation, although means were not statistically different. Long-term monitoring of these stands will be necessary to document the effects of beech bark disease as it progresses throughout Michigan. Dedicated to Walter Bartow and Genevieve Hermann, who taught the essentials. iii ACKNOWLEDGEMENTS The research presented here has been a collaborative effort of many individuals. Their contributions of expertise, field assistance, laboratory equipment, data, and support made this project possible, for which I owe great thanks. Deborah G. McCullough provides tremendous support to all of her students, yet it is her unparalleled work ethic and passion for forest entomology that distinguishes her as an outstanding adviser. I have been fortunate to develop my academic and professional skills under her guidance. I am also grateful to Michael Walters and Therese Poland for serving on my advising committee and contributing valuable, diverse perspectives on this research. With utmost gratitude, I thank William Kearney and Ivan Locke for providing field assistance during winter leaf litter collections, a particularly cold and unpleasant task. They also volunteered a great deal of woodworking and construction expertise to the hardware used in this research. Above all, their encouragement and sense of humor has been the greatest contribution to this project. I had the assistance of two exceptional undergraduate student workers, Daniel Armstrong and Christie Sampson. Their dedication to the research was demonstrated in their diligence, accuracy, and good nature despite the ofien challenging work environment. I also appreciate the field and laboratory assistance of Emily Carlson, Deric Grain, Shannon Hannah, Laura Lazarus, Sarah C. Matteo, Lance J. Roberts, Abby Sommers, Zsofia Szendrei, and Melanie DePoy. I was fortunate to share a lab with iv talented colleagues who offered valuable insight and assistance. Many thanks to Kirsten Fondren, Nathan Seigert, Laura Lazarus, Andrew Klein, and Andrea Agius. In addition to valuable discussions on forest ecology, Bruce Walker generously offered access to his cabin in the Upper Peninsula, which was located conveniently near many of our research stands. Paul Bloese and Randy Klavickas provided the drying oven and workspace at the Tree Research Center on MSU’s main campus and kindly allowed me to monopolize the oven schedule. Ray Miller and personnel at MSU Upper Peninsula Tree Improvement Center in Escanaba, MI provided computer hardware and WinDendro® for tree ring analyses. I specifically thank Brad Bender for his trouble- shooting efforts and ultimately helping me acquire necessary data. Carol Graysmith offered indispensable technical support in operating WinDendro® at the main campus. Upon the insight and suggestion of William Kearney, Lesco, Inc. donated seed bags that enhanced the quality and sanitary storage of leaf litter samples. Research was conducted in conjunction with John Witter at the University of Michigan, with particular thanks to Holly Petrillo and Erin Thompson for providing maps and stand-level data. We received support and access to research stands from Michigan Department of Natural Resources, Hiawatha Sportsmen’s Club, Shelter Bay, Longyear Corporation, Pictured Rocks National Lakeshore, and Seney Wildlife Refuge. This project was funded by a grant from the Michigan Department of Natural Resources. TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. vii LIST OF FIGURES ............................................................................................................ ix INTRODUCTION ............................................................................................................... 1 CHAPTER 1. SPECIES COMPOSITION AND REGENERATION IN HARDWOOD FORESTS OF MICHIGAN IMPACTED BY BEECH BARK DISEASE ................................................................................................................. 5 CHAPTER 2. IMPACT OF VARYING STAGES OF BEECH BARK DISEASE ON WILDLIFE RESOURCES IN MICHIGAN .............................................. 31 CHAPTER 3. RADIAL GROWTH AND LEAF BIOMASS OF MICHIGAN BEECH FORESTS IMPACTED BY VARYING LEVELS OF BEECH BARK DISEASE ........................................................................................... 54 APPENDICES ................................................................................................................... 75 BIBLIOGRAPHY ............................................................................................................ 102 vi LIST OF TABLES Table 1-1. Mean basal area (d: SE) of overstory species composition in stands with low, moderate, and high beech density and absent, light, and heavy C. fagisuga infestation. Means in rows (a-c) and columns (y-z) followed by different letters are significantly different (p<0.05) ............................................................................................................... 20 Table 1-2. Spearman's correlation coefficients (rs) and significance value (p) for basal area (mz/ha) among different overstory of 62 stands. Correlation coefficients with p<0.05 are significantly different ................................................................................................... 21 Table 1-3. Spearman's correlation coefficients (rs) and significance values (p) for basal area (mz/ha) among overstory species and corresponding species of seedlings, saplings, and recruits in 62 stands. Correlation coefficients with p<0.05 are significantly different. ............................................................................................................................. 22 Table 1-4. Mean number of stems (i: SE) per m2 of American beech (Fagus grandifolia), sugar maple (Acer saccharum), other hardwoods, conifers, and all species of seedlings, saplings, and recruits in and recruits in stands with low, moderate, and high beech density and absent, light, and heavy C. fagisuga infestation. Means followed by different letters among rows are significantly different (p<0.05). .............................................................. 23 Table 2-1. Basal area, mean diameter, and number of trees examined and number of cavities of three size classes by tree species) ..................................................................... 48 Table 2-2. Volume of coarse woody debris (m3/ha fl: SE) of 5 decay classes among stands with low, moderate, and high beech density and absent, light, and heavy C. fagisuga infestation ........................................................................................................................... 49 Table 2-3. Mean number (:l: SE) and mean basal area (mz/ ha 3: SE) of beech snags and snags of all species among stands with low, moderate, and high beech density and among stands with absent, light, and heavy C. fagisuga infestation. Means followed by different letters among rows (a-b) and among columns (y-z) are significantly different ................. 50 Table 3-]. Mean annual increment ratios (mmzmm) for 5, 10, and 15-year intervals for beech (n=304) and non-beech (n=62) trees among stands with absent, light, and heavy C. fagisuga infestation and among stands with low, moderate, high beech density .............. 67 Table 3-2. Mean leaf mass (g/mz) of American beech (F agus grandifolia), sugar maple (Acer saccharum), red maple (Acer rubrum), red oak (Quercus rubra), and other hardwood species among stands with absent, light, or heavy C. fagisuga infestation ...... 68 Table 3-3. Spearman's correlation coefficients (rs) and significance value (p) for the relationship between basal area (mz/ha) of overstory species and corresponding leaf vii biomass from 40 stands in 2002 and 54 stands in 2003. Correlation coefficients with p<0.05 are significantly different ....................................................................................... 70 viii LIST OF FIGURES Figure 1-1. Distribution of beech bark disease research sites and Cryptococcusfagisuga infestation indices throughout Michigan, 2003 ................................................................. 25 Figure 1-2. Intensive research plot design indicating arrangement of subplots 1-5, overstory composition transects, and regeneration plots ................................................... 26 Figure 1-3. Number of stands with absent, light, and heavy Cryptococcusfagisuga abundance among stands with low, moderate, and high beech densities .......................... 27 Figure 1-4. Interactive effects between beech density classification and C. fagisuga infestation for basal area of overstory a) beech, b) sugar maple, and c) red maple ........... 28 Figure 1-5. Interactive effects between beech density classification and C. fagisuga infestation for sugar maple a) seedlings, b) saplings, and c) recruits ............................... 29 Figure 1-6. Interactive effects between beech density classification and C. fagisuga infestation for red maple a) seedlings, b) saplings, and c) recruits ................................... 30 Figure 2-1. Intensive research plot design indicating arrangement of subplots 1-5, individual beech trees selected for long-term monitoring, beech nut collection traps, and coarse woody debris and snag measurement transects ...................................................... 52 Figure 2-2. Beech nut mass (g/m2 i SE) among stands with low, moderate, and high beech density and absent, light, and heavy C. fagisuga infestation in a) 2002 and b)2003 ............................................................................................................................... 53 Figure 3-1. Intensive research plot design indicating arrangement of subplots 1-5, overstory composition measurement transects, individual beech trees selected for long- terrn monitoring, and leaf litter trap ................................................................................... 72 Figure 3-2. Age of beech trees (n=94) plotted against the ratio of mean annual increment for intervals of a) 5-year, b) 10-year, and c) lS-years ....................................................... 73 ix Figure 3-3. Composition of leaf biomass (g/mz) by species from a) 40 stands in of stands in 2002 and from b) 54 stands in 2003 .............................................................................. 74 INTRODUCTION Throughout history, beech trees (Fagus sp.) have supplied humans with a variety of resources. Early Europeans and North American settlers used lumber for household furnishings and water wheels, fed beech nuts to domestic hogs and turkeys, and stuffed mattresses with dry, elastic beech leaves (Sand 1991, Tubbs and Houston 1990). Beech wood imparts no taste and was a favored material for food containers and utensils, such as ice cream paddles, cutting boards, and beer casks (Sand 1991). The dense wood continues to be valued for firewood and harvested for pulp and lumber production (Peters 1997, Tubbs and Houston 1990). American beech, Fagus grandifolia, primarily occurs in structurally diverse stands of mixed species. Although previously spanning the Atlantic to Pacific coasts of North America, the post-glacial range of American beech is delimited in the north by Nova Scotia and the Upper Peninsula of Michigan, west by Indiana, Wisconsin and eastern Texas, and south by northern Florida (Little 1971). Annual precipitation across this area ranges from 760-1270 mm and mean annual temperatures vary from 4°—21° C (40°-70° F), with lows of -42° C (-44° F) and highs of 38° C (100° F) (Tubbs and Houston 1990). Beech stands are typically found on loose, dry mesic loams with a pH of 4.1-6.0 (Tubbs and Houston 1990). Beech is a shade tolerant species that regenerates by both seed and root-sprouting (Ward 1961). Mature beech greater than 40 years of age produce periodic crops of beech nuts every two to three years, while large-scale mast events occur in summers following a drought year (Tubbs and Houston 1990, Piovsean and Adams 2001). Successful germination of beech nuts is highly variable, ranging from 0-81% (Stalter 1982). In northern regions, or where site conditions are poor, regeneration occurs primarily by root- suckering (Graber 1992, Held 1983). Injury to trees or roots can stimulate trees to sprout vigorous root-suckers, although these do not generally form desirable trees (Tubbs and Houston 1990, Ward 1961). Beech grows in cycles of suppression and release, surviving well in a shaded understory but not responding rapidly to sudden gaps (Kobe 1995, Tubbs and Houston 1990). Beech trees are not preferentially browsed by deer, giving them a competitive advantage in stands heavily impacted by herbivory (Kelty and Nyland, 1981). The bark of beech trees is composed of only a few layers of cork and is easily penetrated by insects (Burns and Houston 1987). The beech scale insect, Cryptococcus fagisuga Lind. (Homoptera:Cryptococcidae), has a feeding stylet of only 2 mm, which cannot penetrate the relatively thin bark, but is instead used to feed on the bark parenchyrna (Dubeler 1997, Shigo 1972). The scale insects feed on the sap in the inner bark of beech, creating minute wounds that provide entry courts for at least one of three Nectria fungus species, Neonectria galligena A., Bionectria ochroleuca A., or the exotic Neonectria coccinea var. faginata A; resulting in the beech bark disease complex (Houston and O’Brien 1994). The pathogen progressively kills areas of tissue and eventually girdles the limbs and trunk of the tree. Eventually, secondary factors cause structural weakening and trees often break in high winds during a condition known as “beech snap” (Houston and O’Brien 1994). Cryptococcusfagisuga disperses ahead of the Nectria spp., transported primarily by wind currents, during a phase called the “Advancing Front” and typically colonizes areas of rough bark on the trunks of large, old trees (Houston 1975, Mielke 1982). Generally within a few years, Nectria sp. invades scale-infested trees and completes the beech bark disease etiologic complex (Ehrlich 1934). Tree impact and mortality is high during this phase known as the “Killing Front”. Mature trees that are not outright killed by beech bark disease exhibit a substantial growth reduction (Twery and Patterson 1984). Declining trees often produce dense root-sprouts that are genetically identical to the parent trees and equally susceptible to beech bark disease (Houston 1975). In northeastern stands impacted by beech bark disease, understory vegetation shifted to a strongly dominant beech composition of both seed and sprout origin (Hane 2003). Trees originating from root sprouts are generally stunted or deformed, contributing to the characteristic “Aftermath” forest structure that has replaced much of the original beech component of the northeastern United States (Houston 1994, Houston and Valentine 1987, Ostrofsky and McCormack 1986). Beech bark disease first arrived in North America in Nova Scotia in 1890 on infected nursery stock from Europe and has since spread to Maine, New Hampshire, Vermont, New York, Massachusetts, Pennsylvania, Ohio, Tennessee, West Virginia, Virginia, North Carolina, and Ontario (Houston and O’Brien 1994). The immature crawlers are the mobile form of the insect and are transported primarily by wind, but birds may also transport them over short distances or along migratory routes (Houston and O’Brien 1994, McCullough et al. 2001). Beech bark disease infestations that occur in close proximity to campgrounds suggests that firewood infested with crawlers serves as another means of transporting C. fagisuga long distances. Beech bark disease was discovered near camping areas in Mason and Luce Counties in Michigan in 2000 and now infests at least two regions, one in the Upper Peninsula and another in the Lower Peninsula (McCullough et a1. 2001)(Figure 1-1). Both infestations were estimated to be at least 10 years old, based on observations by Michigan Department of Natural Resources (MDNR) personnel and local residents (O’Brien et al. 2001). The relatively recent occurrence of beech bark disease in Michigan offers a unique opportunity to quantify characteristics of a forest stand before and after infestation. We designed a study to monitor beech bark disease as it spreads in range and intensity throughout Michigan. We established permanent plots to quantify current conditions of stands including overstory composition and species regeneration, availability of wildlife resources, radial growth, and leaf biomass production. Conditions were compared among stands grouped by beech density and levels of C. fagisuga. Although we are specifically addressing the impacts of beech bark disease, the broader scope of this research will enhance our understanding of how non-native organisms impact forested ecosystems. The potential impact of beech bark disease is examined in three chapters; Current stand composition and future regeneration are presented in Chapter One, Chapter Two discusses wildlife resources, and Chapter Three focuses on stand—level productivity. Details specific to the stands sampled in this study are detailed in Appendix One and include location, beech density, and C. fagisuga infestation at the time of the study. Occurrence of overstory and regenerating species are listed for each stand in Appendix Two. Appendix three details stand stocking characteristics along with known management histories. Individual tree measurements are listed in Appendix four and include diameter, height, crown vigor, age, and radial growth trends. Data presented in these appendices will be essential background measurements for future comparisons. SPECIES COMPOSITION AND REGENERATION IN HARDWOOD FORESTS OF MICHIGAN IMPACTED BY BEECH BARK DISEASE. Introduction Forests cover 19.3 million acres of the Michigan landscape over two distinct landmasses, the Upper and Lower Peninsulas (Dickmann and Leefers 2003). The mesic- deciduous forest type, also known as northern hardwoods, is most prevalent and is comprised of beech (Fagus sp.), maple (Acer sp.), birch (Betula sp.), and hemlock (T suga sp.) (Dickmann and Leefers 2003, Woods and Davis 1989). American beech (Fagus grandifolia Ehrh.) is typically found in the beech-maple forest type dominant in Michigan and typically occurs in association with sugar maple (Acer saccharum Marsh), red maple (Acer rubrum L.), eastern hemlock (T suga canadensis), and northern red oak (Quercus rubrum L.) (Tubbs and Houston 1990). As mature beech trees are impacted by beech bark disease, the composition and structure of the overstory may shift. Species composition may be further impacted by beech bark disease if declining, mature trees produce root sprouts and create dense beech thickets, subsequently limiting regeneration of other species (Hane 2003, Houston 1975, Houston and Valentine 1987, Jenkins 1997, Twery and Patterson 1984). We designed a study to address the impacts of beech bark disease on overstory species composition and composition of regenerating vegetation in Michigan forests. Our primary objective was to quantify differences in overstory and understory composition among stands with varying levels of C. fagisuga infestation and among stands with varying densities of beech. These data will be used to 1) examine the current impact of C. fagisuga on species composition, 2) determine future composition of stands impacted by beech bark disease, and 3) serve as a baseline for long-term monitoring and firture comparisons as beech bark disease spreads and intensifies throughout Michigan. Methods Study Sites Our research was conducted in the Upper and Lower Peninsulas of Michigan, with study sites located within the infestation, along the periphery, and in areas not yet impacted by the disease. During the time of this study in 2002-2003, known infestations of C. fagisuga in Michigan occurred in only five counties (Chippewa, Manistee, Mason, Luce, and Oceana) (Figure 1-1). Data were collected between May 2002 and December 2003 in 34 hardwood stands in the eastern Upper Peninsula and 28 stands in the western Lower Peninsula of Michigan (62 stands total) (Appendix 1). In addition to beech, overstory composition in our study stands included sugar maple, red maple, eastern hemlock, and red oak, with lesser amounts of white ash (F raxinus americana), basswood (T ilia americana), black cherry (Prunus serotina), birch sp., and aspen sp. (Populus sp.)(Appendix 2). Soils in our study sites were primarily sands or sandy loams and occurred on moraine, glacial outwash, lakebeds, or sand dunes (Veatch 1953). Widespread logging occurred in Michigan from approximately 1840 to 1900 and stands in our study have had variable harvest activities since (Appendix 3). We aimed to select stands with no harvest activity since 1998 but were limited in some cases by the availability of accurate management records. Cooperators from the Michigan Department of Natural Resources (MDNR) and the University of Michigan initially selected stands as part of the long-term Michigan Beech Bark Disease Monitoring and Impact Analysis System (Thompson and Witter 2003). Stands were selected to represent three levels of beech stocking and three levels of beech bark disease infestation. We assigned classification indices to each stand based on beech basal area and C. fagisuga infestation (Appendix 1). Beech density was classified for each stand based on basal area data provided by University of Michigan. Stands were classified as low (<9 m2/ha), moderate (9-18 mZ/ha), or high (>18 mtha) beech density. Scale density was classified by visually estimating C. fagisuga abundance on beech trees located within the plot boundary. Stands were classified according to the percentage of beech trees having greater than 50% coverage of C. fagisuga on at least one side of the main bole and assigned to the following categories: absent (no infested trees), light (less than 50% of beech trees infested), or heavy (greater than 50% of beech trees infested). In each stand, University of Michigan field staff established five circular subplots 14.68 m diameter, one at center and one at 18.28 m from center in each of four azimuths (Figure 1-3). Each subplot was marked with a permanent metal turf stake and geographic positioning coordinates were recorded from the center subplot. Overstory composition Overstory species composition was measured in each stand along two perpendicular transects (51 m long) established from subplot 2 to subplots 5 and 3 (Figure 1-3). Species and diameter at breast height, dbh, (1.3 m) were recorded for all live trees > 24.5 cm dbh within 5 m of each transect. Tree regeneration Regeneration plots were established beyond the subplots to minimize the effects of trampling likely to occur in the subplots. Four regeneration plots were established at 18 m from the center point of the center subplot, in each cardinal direction (Figure 1-3). From the center of each regeneration plot, we identified number and species of seedlings (< 30.5 cm tall) within a 2.4 m radius, saplings (> 30.5 cm tall and < 2.5 cm dbh) within a 3.5 m radius, and recruits (> 2.5 cm dbh and < 12.5 cm dbh) within a 7.3 m radius. Statistical analyses Normality was tested for all variables using the Shapiro-Wilk test (SAS Institute, 1985). Prior to analyses, mean number of stems per hectare of beech and mean number of stems per hectare of all species combined were square root transformed to normalize distribution. (N on-transformed means are referenced in tables.) Two-way ANOVA [proc glm] was used to test the differences in mean number of stems among stands with low, moderate, or high beech density and absent, light, or heavy C. fagisuga infestation (SAS Institute 1985). When results of ANOVA were significant (or = 0.05), Tukey’s Honestly Significant Difference was used to compare means (Tukey 1977). Transformations did not normalize data distributions for mean basal area of overstory trees (each species), number of stems of sugar maple, red maple, other hardwoods (red oak, ash, aspen, basswood, birch, and black cherry), and conifers (eastern hemlock, balsam fir, and white pine) for each stage of regeneration, and species richness, therefore, these variables were ranked and analyzed with nonparametric tests. The nonparametric Kruskal-Wallis test [proc rank] was used to determine if these variables differed among stands with low, moderate, or high beech density and absent, light, or heavy C. fagisuga infestation (SAS Institute 1985). For significant tests ((1 =0.05), means were compared with nonparametric Tukey’s-type multiple comparison (Zar 1984). Spearrnan’s nonparametric correlation [proc corr spearman] was used to evaluate the linear relationship between basal area and regeneration of seedlings, saplings, and recruits of selected species and both the correlation coefficient (rs) and significance value (p) are reported (SAS Institute 1985). All analyses were conducted using SAS 9.1, except for the nonparametric Tukey’s-type multiple comparison which was conducted with Microsoft Excel software (Redmond, WA). Root injury during harvest activity has been shown to stimulate sprouting in beech (Fowells 1965a). Although we attempted to select stands with no recent harvest activity, we later found that two stands (stand ID 121 and 166) had been selectively harvested between 1998 and 2000. To account for possibly confounding impacts of management practices on species regeneration, we analyzed data with and without these two stands. Inclusion of these two stands had no impact on results of analyses or our conclusions and were retained. Results Cryptococcusfagisuga was absent in 18 stands with low beech density, 16 stands with moderate beech density, and five stands with high beech density (39 stands total) (Figure 1-3). Light C. fagisuga infestation was present in five stands with low beech density, five stands with moderate beech density, and two stands with high beech density (12 stands total). Heavy C. fagisuga infestation was present in two stands with low beech 10 density, three stands with moderate beech density, and six stands with high beech density (1 1 stands total). Overstory composition Beech and sugar maple were the most prevalent species in the overstory, although neither species was encountered in our transects in all 62 stands (Appendix 2). Beech was present in 52 stands with basal area ranging from 1.39 to 39.04 mZ/ha. Sugar maple was present in 50 stands with basal area ranging from 1.74 to 29.88 mZ/ha. Red maple was also a common associate, present in 25 stands with basal area ranging from 1.43 to 15.65 mz/ha (Table 1-1). Aspen was only present in five stands yet comprised the greatest basal area of any species with a maximum of 39.78 m2/ha in any one stand. Eastern hemlock was encountered in 16 stands; only five of which were in the Lower Peninsula. Red oak, white ash, basswood, black cherry, and birch sp. were also present, but each species occurred in fewer than 20 stands. Balsam fir was encountered in a single stand and white pine was not encountered in the overstory of any stands. Basal area of overstory beech was not significantly different among stands with absent, light, or heavy C. fagisuga infestation (p=0.060) (Table 1-1). There was significantly greater beech basal area in stands classified as moderate beech density than in stands classified as low beech density (dfi-2,59; F =19.05, p<0.001). The interactive effect between beech density classification and C. fagisuga infestation was significant for overstory beech (dfi4,57; F =10.65, p<0.001) (Figure 1-4). Basal area of overstory beech was not significantly correlated with basal area of sugar maple, red maple, red oak, other hardwoods, or conifers in the overstory (Table 1-2). Basal area of beech in the 11 overstory was not significantly correlated with mean number of beech saplings, seedlings, or recruits (Table 1-3). Basal area of overstory sugar maple, red maple, red oak, assorted hardwoods, and conifers were not significantly affected by beech density (Table 1-1). Basal area of red oak, assorted hardwoods, and conifers were not significantly affected by C. fagisuga infestation while basal area of overstory sugar maple and red maple were significantly affected by C. fagisuga infestation (Table 1-1). In stands with heavy C. fagisuga infestation compared to stands with no C. fagisuga infestation, basal area of overstory sugar maple was lower (dfi2,59;, F = 1.60, p<0.001) and overstory red maple was higher (df=2,59; F = 7.33, p=0.001). Basal area of sugar maple in the overstory was inversely correlated with basal area of red maple, red oak, and other hardwoods in the overstory (Table 1-2). Basal area of overstory sugar maple and red maple were significantly correlated with corresponding species regeneration, except regeneration of red maple saplings (Table 1- 3). The interaction between beech density and C. fagisuga infestation was significant for overstory sugar maple (dfi—4,57; F = 6.01 , p<0.001) overstory red maple (($457; F=5.23, p=0.001) (Figure 14). Tree regeneration In the 11 stands with heavy C. fagisuga infestation, seedling regeneration was entirely absent in two stands and another stand had only 2,073 stems per ha, compared with 54,415 i 15,175.8 stems per ha for the remaining eight stands. Seedling and sapling regeneration was present but highly variable in all 51 stands with absent or light C. fagisuga. Number of seedlings ranged from 138 to 733,522 stems per ha and number of 12 saplings ranged from 129 to 52,455 stems per ha in these stands. Sapling regeneration was entirely absent in four of the 11 stands, with an average of 12,569 d: 3,260.5 stems per ha for the remaining seven stands. Beech seedlings were encountered in 95%, saplings in 90%, and recruits in 89% of all stands (Appendix 2). There were no significant differences in mean stems per ha of beech seedlings, saplings, or recruits among stands with low, moderate, or high beech density (seedlings: p=0.108) (saplings: p=0.681) (recruits: p=0.075) nor among stands with absent, light, or heavy C. fagisuga infestation (seedlings: p=0.565) (saplings: p=0.192) (recruits: p=0.593) (Table 1-4). The interaction between beech density classification and C. fagisuga infestation was not significant for beech seedlings (p=0.303), beech saplings (p=0.575), or beech recruits (p=0.415). Sugar maple seedlings were encountered in 79%, saplings in 66%, and recruits in 80% of all stands (Appendix 2). Red maple seedlings were encountered in 60%, saplings in 27%, and recruits in 32% of all stands (Appendix 2). Other hardwood species encountered in regeneration plots included striped maple (Acer pensylvanicum), birch sp., aspen sp., black cherry, ash sp., red oak, American basswood, ironwood, serviceberry (Amelanchier arborea), common witch-hazel (Hamamelis virginiana), and sassafras (Sassafras albidum). Striped maple stems were most prevalent and represented 53%, 34%, and 30% of all assorted hardwood seedling, sapling, and recruit regeneration respectively. Regenerating conifer species included eastern hemlock, balsam fir, and white pine, collectively comprising less than 3.9% of total seedling, sapling, and recruit regeneration of all stands combined. Maximum stand densities of all conifer species combined were 599 seedlings/ha, 2455 saplings/ha, and 134 recruits/ha. l3 Regeneration of sugar maple, red maple, other hardwoods, and conifers was not significantly affected by beech density, except for sugar maple recruits, which were significantly more abundant in stands with low beech density than in stands with moderate beech density (off—2,59; F =3.99, p=0.024) (Table 1-4). Regeneration of sugar maple and red maple stems was significantly affected by C. fagisuga infestation (Table 1- 4). Significantly fewer sugar maple seedlings, saplings, and recruits occurred in stands with heavy C. fagisuga infestation than in stands without C. fagisuga infestation (seedlings: df—=2,59; F =7.61, p=0.001) (saplings: djE2,59; F :62], p=0.004) (recruits: df=2,59; F =6.84, p=0.002). The interaction between beech density classification and C. fagisuga infestation was significant for sugar maple seedlings (dfi4,57; F =3.80, p=0.008), saplings (dj-L—4,57; F =3.06, p=0.024), and recruits (df=4,57; F =5.17, p=0.001) (Figure 1-5). Red maple sapling and recruit stems were significantly greater in stands with heavy C. fagisuga infestation than in stands with no C. fagisuga infestation (saplings: df=2,59; F =4.28, p=0.01 8) (recruits: dfi2,59; F = 26.39, p<0.001). The interaction between beech density classification and C. fagisuga infestation were significant for red maple saplings (df=4,57; F =2.5 5, p=0.049) and red maple recruits (df=4,57; F =16.39, p<0.001) (Figure 1-6). Regeneration of red oak, other hardwoods, and conifers were not significantly affected by C. fagisuga infestation (Table 1-4). Red oak regeneration was not encountered in any of the 62 stands surveyed. On average, species richness of understory regeneration was relatively low. There were 3.2 :1: 0.02 seedling species, 2.6 at 0.02 sapling species, and 2.5 :1: 0.01 recruit species per stand. Mean number of seedling, sapling, or recruit species did not differ among stands with absent, light, or heavy C. fagisuga infestation (seedlings: p=0.163) 14 (saplings: p=0.564) (recruits: p=0.3 53) nor among stands with low, moderate, or high beech density (seedlings: p=0.830) (saplings: p=0.792) (recruits: p=0.179). Discussion Overstory composition In all but one of the stands, a maple species, either sugar or red, was also present in the overstory. In the northeastern United States, beech bark disease killed 85% of the overstory beech and created gradual gaps (Krasny 1992). If beech bark disease were to progress through our study area with a similar effect on mature beech, we could expect sugar maple and red maple to dominate the forest structure following the “Killing Front”. The formation of gaps in the overstory may also enhance the growth of sugar maple, which responds to rapidly to sudden gaps by increasing incremental and terminal growth (Canham 1988). Both species of maple were present at similar levels in the overstory of stands with varying densities of beech but their basal area was inversely related to each other. This indicates one or the other species of maple will likely dominate stands impacted by beech bark disease. Factors that predispose a stand to beech bark disease are uncertain but likely include density and composition of overstory species (Twery and Petterson 1984). The presence of eastern hemlock in a stand may enhance shading and moisture retention, conditions which have been correlated with C. fagisuga colonization and survival (T wery and Patterson 1984). In a New England study, stands impacted by beech bark disease had a greater component of eastern hemlock in the overstory prior to infection than stands that were not impacted by beech bark disease (Twery and Patterson 1984). Results from 15 our study do not support this association; the basal area of eastern hemlock in the overstory was relatively low and similar among stands with absent, light, and heavy C. fagisuga infestations. In our study, the presence of C. fagisuga was not related to the density of beech in the stand, contrary to other studies where beech mortality was correlated with beech basal area (Runkle 1990). During the time of our study, the distribution of C. fagisuga was geographically limited and therefore, the actual impact of stand composition on beech bark disease susceptibility may not yet be realized. As C. fagisuga spreads to additional stands with varying overstory components, comparisons could be made among stands with varying mortality to determine characteristics of the most susceptible stands. Tree regeneration Mature beech trees that are diseased or growing in stressful conditions are known to generate root-suckers and create dense thickets (Houston 1975). Studies conducted in northeastern stands impacted by beech bark disease documented increases in beech regeneration in the “Aftermath” forest (Hane 2003, Houston 1994, Houston and Valentine 1987, Ostrofsky 1986). Our results, however, suggest that beech bark disease has not yet altered the overall abundance of beech seedlings, saplings, or recruits in Michigan forests. Although beech bark disease was evident in at least three stands with heavy C. fagisuga infestation, as indicated by “beech snap” and beech tree mortality, the disease complex has not yet progressed to the “Aftermath” stage. Future comparisons of beech regeneration with baseline data will account for potential lag time in the response of understory regeneration. There are documented instances in the northeast, however, in 16 which density of regenerating beech did not change despite impacts of beech bark disease (Twery and Patterson 1984). The overstory basal area of beech in our stands was not correlated with beech regeneration, suggesting that beech regeneration may not be directly impacted by mortality of beech in the overstory. Results from our study demonstrated no reduction in beech regeneration in stands that had been impacted by C. fagisuga. A similar study conducted in Wisconsin found no correlation between beech basal area of overstory beech and beech seedlings (Ward 1961). Sugar maple was the most common associate of beech in our stands. Like beech, it is shade-tolerant and capable of responding to overstory gaps with rapid growth (Canham 1985, Pulson and Platt 1996). Declines in sugar maple regeneration corresponding to increased beech regeneration have been documented for northeastern forests impacted by beech bark disease (Hane 2003, Jenkins 1997, Houston 1975). Sugar maple seedlings decline when competing with dense beech for understory light resources (Hane 2003). Competition for underground resources and beech leaf leachate have also been also shown to reduce sugar maple regeneration (Hane 2003, Hane et. a1. 2003, Huntley et.al. 1989). In our stands, sugar maple stems were less abundant in the understory of stands with heavy C. fagisuga. Beech regeneration, however, was not related to sugar maple sapling abundance, suggesting direct competition was not the limiting factor. Rather, the low density of sugar maple saplings was likely due to the lower component, relative to beech, of sugar maple basal area in the overstory of stands with heavy C. fagisuga. Sugar maple regeneration was directly correlated with overstory composition and therefore, it is likely that future impacts of beech bark disease would 17 increase sugar maple regeneration more dramatically in areas with higher sugar maple canopy basal area. Red maple is often an early colonizer but may be dominated by sugar maple after approximately 80 years in northern hardwood stands (Fowells 1965b). Red maple is a vigorous sprouter but also regenerates from the light, wind—disseminated seeds that are produced annually. In our stands, regeneration of red maple was highest in stands with heavy C. fagisuga infestation, which is likely attributed to the greater basal area of red maple in the overstory of stands with heavy C. fagisuga infestation than in stands with light to no C. fagisuga. As the canopies of mature beech impacted by beech bark disease become sparse, shade-intolerant red maple seedlings are expected to benefit from increased light levels on the forest floor. No current evidence suggests that abundant beech regeneration will compete with red maple in the understory and consequently, a compositional shift to a increased dominance by red maple may occur. In addition to beech bark disease, other factors likely affected regeneration in the seven stands we studied in Mason County (Appendix 1). Regardless of C. fagisuga infestation, stands in these counties had dramatically fewer stems in the understory than stands sampled in other counties (Appendix 2). Three of the stands were in close proximity to a popular campground and regeneration may have been limited by heavy foot traffic. Nonetheless, other stands in our study, including some with heavy C. fagisuga, were located near campgrounds with presumably similar public use, yet regeneration was present. Stand-level factors inhibiting regeneration in these counties are not conclusively explained by beech bark disease or proximity to campgrounds and warrant further investigation. 18 The data presented in this study represent the conditions of beech in Michigan forests as of 2002-2003 but are largely intended as a baseline for future comparisons. As the range of beech bark disease expands and additional stands are exposed, the significance of overstory composition as a predisposing factor to the severity of infection will be determined. Likewise, the effects of beech bark disease on firture species composition will require that stands be revisited to assess regeneration over the long- term. 19 Table 1-1. Mean basal area (i SE) of overstory species composition in stands with low, moderate, and high beech density and absent, light, and heavy C. fagisuga infestation. Means in rows (a-c) and columns (y-z) followed by different letters are significantly different (_p<0.05). C. fagisuga Beech density infestation low moderate high all stands American beech Fagus grandifolia absent 3.70 :1: 1.056 9.41 i: 1.468 18.78 i 6.237 7.97 :1: 1.320y light 8.19 :1: 3.699 13.01 i 2.421 18.66 i 7.604 11.95 :1: 2.258y heavy 3.14 :1: 3.141 8.67 d: 3.410 19.36 i 3.129 13.50 i: 2.819y all stands 4.55 d: 1.094” 10.07 i 1.174 19.03 :I: 2.760“ Sugar maple A cer saccharum absent 10.78 :t 1.940 14.53 :1: 1.760 13.11 i 3.838 12.62 d: 1.249y light 4.94 i 2.430 4.74 :t 2.441 8.75 a: 6.226 5.49 :t 1.606’rz heavy 5.85 i 5.847 1.07 :t 1.070 3.14 :h 1.690 3.06 i 1.3092 all stands 9.22 :t 1.579a 10.81 i 1.6813 7.84 i 2.165a Red maple Acer rubrum absent 1.97 i 0.645 1.86 d: 1.114 0.00 d: 0.000 1.67 :1: 0.5462 light 0.96 :1: 0.956 4.36 d: 2.762 0.00 :1: 0.000 2.21 :1: 1.2662 heavy 8.67 :t 0.076 7.15 i 3.203 4.87 i 1.730 6.18 :1: 1.269y all stands 2.30 i 0.6293 3.04 i 1.037a 2.25 :t 1.033a ' Red oak Quercus rubra absent 2.85 i 1.682 1.22 i 0.943 0.00 i 0.000 1.82 :h 0.870y light 5.56 d: 4.923 0.36 :1: 0.362 0.00 i 0.000 2.47 i 2.077y heavy 10.43 i 10.429 2.36 :1: 2.356 2.91 :1: 2.540 4.13 d: 2.220y allstands 4.00 :t 1.6773 1.19 i 0.6822' 1.34 i 1.190a Other hardwood sp.l absent 7.72 i 2.605 3.60 i 0.811 7.86 :t 0.905 6.05 :l: 1.276y light 4.00 d: 1.706 0.98 d: 0.630 1.19 :t 1.188 2.27 d: 0.847y heavy 16.97 1 14.797 2.41 d: 1.755 3.45 :t 1.664 5.63 :t 2.790y all stands 7.72 :h 2.1653 2.91 d: 0.619a 4.80 :1: 1.0923 Eastern hemlock T suga canadensis absent 2.27 i 1.227 2.04 i 1.237 0.00 :t 0.000 1.89 :t 0.757y light 2.96 i 2.274 0.00 i 0.000 0.00 :t 0.000 1.23 :1: 0.989y heavy 0.83 i 0.828 4.33 i 2.224 3.37 i 2.602 3.17 a: 1.506y all stands 2.30 :1: 0976‘“ 1.90 i 0.886a 1.55 d: 1.2408 lOther hardwood species included ash (F raxinus sp.), aspen (Populus sp.), basswood ( T ilia sp.), birch (Betula sp.), and black cherry (Prunus serotina ). 20 A Sougofi 253$ 8E 823 98 . «3533a .835 cm 88.3 A execsngc sweet :8an 39:05 360% .5833 $59 x85 use Adm 6385 :83 A.% 3.5.5 @8333 A.% 23505 comma 6% mgaxdg :3 38205 360% 80263: $25.. hop—no 68.8 38.8 ~wa8 a: .8 638 83 8.0.0 89o 98.0 $3- «8.0- 88.8 $2.8 $3.8 $08 83 $8.0 £90 23- mg. 88.8 88.8 :28 83 $3 $3. 9.3- :88 53.8 83 53- Sod- 82 .8 83 z: .o- 83 a .3 .8250 ..nm cookie: :3 to“ 0.9:: com 29:: ..awam :82. 53225.. R a a a d... 82.80 a. a a sauces—2e: .850 m C a:5 com Q a L 29:: com a a a 2qu .395 a L :82. Eaton—as .320.va baeeoficwlmm 2a 8.on 53, 356508 cove—880 .355 no me @9303 :8..ch mecca A2598 no.8 .83 com A3 025» ooceomemm new 45 356508 cove—oboe $58803 NA 033. 21 Table 1-3. Spearman's correlation coefficients (rs) and significance values (p) for basal area (mZ/ha) among overstory species and corresponding species of seedlings, saplings, and recruits in 62 stands. Correlation coefficients with p<0.05 are s_i_gnificant1y different. Seedlings Saplings Recruits American beech rs 0.216 0.072 0.115 p 0.092 0.579 0.373 Sugar maple rs 0.552 0.517 0.290 p <0.001 <0.001 0.022 Red maple rs 0.229 0.253 0.434 p 0.074 0.047 <0.001 Other hardwood sp.a rs -0.258 -0.024 0.029 p 0.043 0.855 0.821 Conifer sp. b rs 0.049 0.092 0.182 p 0.704 0.476 0.157 aOther hardwood species included red oak (Quercus rubra) ash (Fraxinus sp.), aspen (Populus sp.), basswood (T ilia sp.), birch (Betula sp.), and black cherry (Prunus serotina ). bOther conifer species included hemlock (Tsuga canadensis ), balsam fir (A bies balsamea) , and white pine (Pinus monticola ). 22 A 3528 8325 98:0 :83 one Adm 3:83 :85 A9 558 3938: A9 838$ :88 A9. 82.325 :8 A 5:3 888:9 :8 o2 89:2: 888% ooo3o8: 8:5 _ mooo a moo Nooo a oo.o :ooo a oo.o «oo.o a moo mooo « oo.o ovoo a oo.o 888% =< ooo.o a oo.o ooo.o a oo.o ooo.o a oo.o ooo.o a oo.o ooo.o a oo.o ooo.o n oo.o 88:80 ooo.o a oo.o ooo.o a oo.o ooo.o a oo.o ooo.o a oo.o ooo.o n.1. oo.o ooo.o a oo.o m800268: 8:5 emooo a moo e:ooo a So eooo.o a oo.o :ooo a oo.o ooo.o a oo.o ooo.o a oo.o 2qu o3: emooo a So eNooo a moo Looo a moo eNooo a moo eoooo M So e:ooo a moo 2er 58% :ooo a moo Nooo H moo Boo a moo :ooo a moo :ooo « moo _oo.o a So :88m .98: “mm: 88% :3: 88888 32 883m 8358...: gamma U 588.. :ooom £38m vooo a oo.o omoo a oo.o wnoo a :2 ooo.o a o: ooo.o a on: ovoo a o: 888% =< mooo a oo.o ooo.o H oo.o :ooo 8 :oo «oo.o a :oo Nooo « :oo ooo.o a moo 888800 Eoo a moo «So « moo :ooo H :oo ooo.o a moo ooo.o a voo :ooo a :oo 88368: 8:5 .Boo a 2o enooo .1." moo :cooo a woo o_o.o am So vooo a oo.o ooo.o a So 2er 8m .83 a cod 88¢ a woo .83 a 83 too a NS 80.0 a 3.0 ~80 « 8.0 28883 ooo.o a to mmoo a :mo oNoo « Eo vwoo a go ooo.o a oo.o :moo a emo 8on ~98: @: 88% :m2 88888 32 88on 8688...: euaumuex U 8.28.8 :ooom ”mi—mam mono a more. one: a wow: oomo 8 Nos Eco a mi. :Voo a o_.: :mmo a m3. 8828 =< :ooo a oo.o ooo.o a oo.o ooo.o a oo.o ooo.o a oo.o :ooo a :oo ooo.o a oo.o 888800 ovoo a omo ooo.o a go vooo a woo «woo a omo mmoo a go ooo.o n moo ~80928: 8:5 oofio a oo: memo a co: omoo a Vmo ooo.o n oo.o ooo.o a oo.o ooo.o a oo.o 2er 8m emmmo a mo: boo: a 8.: e92o a. 36 mono a one mvoo 8 2o mao a file 2er 5&5 NEo a $2 o:.o a an: Nmoo a mo: ammo a S: nmoo 8 mm: Scoo a So :83: .98: Em: #838 :wE 88838 32 882a 8338...: euanmuek. U 88.8.. :88: 85.8% .33va 8.86 8:85st 88 v.38 553 88.8— :88bmo A: 830:8 8882 d338,? 388.8% 0 .98: one Em: 4828 one 38.8w :88: :wE 28 68838 .32 ::3 888 5 £382 use .3338 85:88 me 888% z“ 98 £8883 £30268: 8:80 A 5388.09. .883 28.: 8mg A caobhacsm 888.5 :08: 8o88< .«o "8 8a $8 8 888 .«o 8:83: :82 T: 2:3. 23 Figure Legends Figure 1-1. Distribution of beech bark disease research sites and Cryptococcusfagz’suga infestation indices throughout Michigan, 2003. Figure 1-2. Intensive research plot design indicating arrangement of subplots 1-5, overstory composition transects, and regeneration plots. Figure 1-3. Number of stands with absent, light, and heavy Cryptococcusfagisuga abundance among stands with low, moderate, and high beech densities. Figure 1-4. Interactive effects between beech density classification and C. fagisuga infestation for basal area of overstory a) beech, b) sugar maple, and c) red maple. Figure 1-5. Interactive effects between beech density classification and C. fagisuga infestation for sugar maple a) seedlings, b) saplings, and c) recruits. Figure 1-6. Interactive effects between beech density classification and C. fagisuga infestation for red maple a) seedlings, b) saplings, and c) recruits. 24 1.1 _° Manistee Mason Oceana Cryptococcusfagisuga densities: 0 Absent (n = 39) f.) , ® Light (n = 12) O Heavy (n= 11) Counties with BBD indicated by text. 5 I: :4 25 Key to plot diagram: Regeneration plot __ Overstory basal area sampling transect Subplot 26 Number of stands 20 18 l6 14 12 ONAO‘OO bw mode rate Beech density 27 C. fagisuga infestation E] absent I light I heavy high Basal area (ml/ha) Basal area (mz/ha) Basal area (mZ/ha) a) Overstory beech absent light heavy C. fagisuga infestation b) Overstory sugar maple 16.0 14.0 ‘ 12.0 - 10.0 -. 8.0 ~ 6.0 - 4.0 — 2.0 a 0.0 I 1 absent light heavy C. fagisuga infestation c) Overstory red mple 10.0 absent light heavy C. fagisuga infestation 28 Beech density low - - ‘- -— moderate ...- '— high Beech density low ~--—moderate ———'—high Beech density bw —- -———-moderate ---high Number of stems Number Of stems Number of stems 3) Sugar maple seedlings 200,000 150,(X)0 ~ 100,(X)0 a - 50,(X)0 - light C. fagisuga infestation absent b) Sugar maple saplings 7,000 6,000 “' 5,(I)0 ‘ 4,000 J 3,000 l 2,(I)O r l,(I)0 1 absent light C. fagisuga infestation c) Sugar maple recruits Beech density low - ‘- -* -— moderate "r"hgh Beech density low —' r r —' moderate ''''' high 600 500 «A 400 - 300 ~ 200 - 100 - 4 Beech density low -' -— — - moderate ""'""hlg'1 light C. fagisuga infestation absent 29 Number of stems Number of stems Number of stems a) Red maple seedlings 35,000 . Beech densny 30,000 - -— - low 25,000 ‘ C — ———--— -— moderate 20,000 -1 .. o -—H ...-.-th 15,000 10,000 ~- ___ 5,000 r" ——o 0 absent light heavy C. fagisuga infestation b) Red maple sapl'ngs Beech density bw " " ’ ’ moderate **** high absent light heavy C. fagisuga infestation c) Red maple recru'ts 250 Beech density I 200 ’v.’/ low I” r " r ’ moderate 150 ’1” """high 100 , ’ ,, I ” I .” ’ 50 ’ ’ , .J' 0 A] ’ ’ T “ J ' ’ 1 absent light heavy C. fagisuga infestation 30 IMPACT OF VARYING STAGES OF BEECH BARK DISEASE ON WILDLIFE RESOURCES IN MICHIGAN. 31 Introduction American beech (F agus grandifolia Ehrh.) provides important food and habitat resources for diverse bird, mammal, and amphibian species. Beech, a shade tolerant species, is characteristic of late successional communities. It is a major component of Michigan hardwood forests, typically associated with sugar maple (Acer saccharum), eastern hemlock (T saga canadensis), red maple (Acer rubrum), red oak (Quercus rubra), black cherry (Prunus serotina), and birch (Betula sp.). Mature beech trees, greater than 40 years of age, periodically produce crops of highly nutritious nuts (Dix 1975, Forcier 1973, Fowles 1965, Piovesan 2001, Tubbs and Houston 1990, but see Statler 1982). Afier one year of maturation, beech nuts ripen between September and October and fall after the first heavy frost (Tubbs and Houston 1990). Blue jays (Cyanocitta cristata) are among the many animals that utilize this source of hard mast and, through caching behavior, contribute to long-range dispersal of beech (Held 1983, Johnson and Adkisson 1985). Many wildlife species rely on concentrated fat resources in the fall prior to hibernation and beech nuts, which have a high fat content, are particularly valuable in stands without other mast-producing species such as oak and hickory (Carya sp.) (Piovesan 2001, Tubbs and Houston 1990). Fertility of black bears (Ursus americanus), for example, is influenced by females attaining a threshold weight prior to hibernation and fecundity has been shown to cycle synchronously with hard mast production (Lariviere 1994, Rogers 1987). Populations of white-footed mice (Peromyscus leucopus), deer mice (P. maniculatus), and red-backed voles (Clethrionomys gapperi) also cycle in synchrony with beech mast years (Schnurr et 012002) 32 Mature beech trees are susceptible to many cavity-forming pathogens and these cavities provide shelter, nesting, and hibernation resources for a diverse array of wildlife species that rely upon them (Allen 1990, Conner et al. 1975, Goodburn and Lorimer 1998, Mannan et al. 1980, Paragi 1996, Raphael and White 1984,Robb and Bookhout 1995, Runde and Capen 1987, Sadlon, Steele 1995, Stribling 1990, Welsh et. al. 1992); In addition, as beech trees decline and die, they provide critical habitat for a variety of wildlife species. Standing dead trees, termed “snags”, create important forage, hunting, and roosting habitat for birds (Conner et. a1 1975, Mannan et. a1 1980, Raphael and White 1984, Paragi 1996, Stribling 1990). Fallen trees and branches accumulate on the forest floor as coarse woody debris, which provides shelter, travel corridors, and forage substrate for many small mammals, reptiles, and amphibians (Bowman et.al. 2000, Dueser I978, Harmon et.al. 1986, Jaeger 1980). As beech bark disease spreads throughout hardwood forests of Michigan, beech nut production, cavity abundance, snag density, and coarse woody debris characteristics will likely be altered. Beech trees killed by beech bark disease may be replaced by other species that produce less energetically valuable seeds, such as maple, or by dense thickets of stunted, beech root-sprouts that fail to reach nut-producing maturity (Houston 1994). Availability of suitable wildlife cavities may decline as mature beech are removed from the overstory and replaced by species less prone to cavity-formation. As mature beech decline in vigor, changes in the abundance of snags and coarse woody debris may occur, potentially increasing habitat for certain wildlife species, for at least a period of time. We initiated a long-term study to address how wildlife resources will be affected as beech bark disease spreads in range and intensity throughout Michigan. Our specific 33 objectives were to i) collect baseline data related to beech nut masting and abundances of cavities, snags, and coarse woody debris in stands not yet affected by beech bark disease infestation; ii) compare current abundance of wildlife resources among stands with varying levels of beech bark disease and C. fagisuga infestation; and iii) establish long- term research plots to monitor changes in wildlife resources over time. Methods Study Sites Study site selection was described in detail in Chapter One. Beech nut production Beech nuts were collected using four leaf litter/seed traps set between subplots 2 and 5 in each stand (Figure 2-1). Traps were constructed from industry standard 1.9 cm diameter (% in) pvc pipe assembled into a horizontal one m2 square frame. The horizontal frame was elevated approximately 70 cm from the ground and supported by legs of varying length (to account for variable terrain). Shade cloth (40%) was attached to the frame to collect beech nuts , as well as acorns (red oak mast), that fell from overstory trees. Traps were placed in the 40 stands established in 2002 by 15 August and retrieved by 5 December. In 2003, traps were placed in 54 of the 62 total stands by 15 August and were retrieved by 7 December, afier leaf drop was complete. Traps were not set in eight stands in 2003 because of heavy timber harvesting (three stands), seasonal inaccessibility (two stands), and vandalism (three stands). Due to these limitations and because of damage to traps, seed was collected from only five stands with heavy C. 34 fagisuga infestation. Leaves and seeds from each trap were bagged and returned to the Forest Entomology laboratory at Michigan State University. All seed, beech nut, and acorn samples were sorted to species, oven-dried at 38°C (100° F) for 72 hours, and weighed. To test viability, beech nuts were floated in de—ionized water for 40 hours (Williams and Hanks 1976). Beech nuts remaining in suspension were not considered viable seeds. Preliminary dissection tests indicated that this method accurately separated green, viable seeds from the nonviable. Mean values for number of beechnuts, number of viable beechnuts, and mass of beechnuts were calculated from the number of successful traps in each stand. Cavities Cavity abundance in standing live trees was assessed after leaf senescence in all stands between 21 November and 7 December 2003. We recorded species, dbh, and number of cavities of each of three size classifications for all trees greater than 25.4 cm dbh in the five subplots in each stand. Trees less than 23.4 cm were not sampled because previous studies have shown cavities occur predominantly in large diameter trees (Goodbum and Lorimer I998, Gysel 1961, Welsh and Capen 1992). Cavity diameter, visually estimated from the ground, was classified as small (<7.0 cm diameter), moderate (7030.0 cm diameter), or large (>30.0 cm diameter). The main hole and limbs of trees were examined for cavities when leaves did not obstruct the view of the crown. Cavity abundance and size was also assessed for individual beech trees selected for long-term monitoring (Appendix 4). In each stand, 12 beech trees were selected 10.7 m from the center of each of the four outer subplots in each cardinal direction, excluding 35 the azimuth leading toward the center subplot, and marked with round blue tree tags (Figure 2-1). When more than one beech tree fell within the designated distance and azimuth, we preferentially selected a tree by the following prioritized criteria: 1) the largest tree with a canker, 2) any tree (pole-sized or larger) with a canker, 3) large tree with C. fagisuga present, 4) any tree (pole-sized or larger) with C. fagisuga, or 5) any large tree (closest to the azimuth used). During full leaf expansion in the summer, canopy dieback was visually estimated for each of the 12 trees as low (<30%), moderate (30-60%), and high (>60°/0). Coarse woody debris and snags Abundance and volume of coarse woody debris and basal area and number of snags were measured in each stand along two transects, 51 m long by l m wide, running between subplots 2 and 5 and subplots 2 and 3 (Figure 2-1). Each piece of coarse woody debris greater than 7.6 cm diameter and occurring within 0.5 m of the transects was measured and decay recorded as 0 (freshly downed, no discoloration of sapwood, bark intact, no visible decay), 1 (discoloration of sapwood, bark intact, no visible decay), 2 (form maintained under impact, bark peeling, visible decay), 3 (crushes under impact, bark removed, mosses and advanced visible decay), or 4 (little structural integrity, mixing with soil)(Daniels 1997). Volume of coarse woody debris was calculated as cylinders (length x 1t(1/diameter)2) for pieces in decay classes 0-3 and as rectangles (length x width x height) for pieces in decay class 4. All standing dead trees, within five meters of each transect, greater than 12.7 cm diameter at breast height (dbh) (1.3 m) were counted, identified to species, and dbh was measured. 36 Statistical analyses Normality was tested for all variables using the Shapiro-Wilk test (SAS Institute, 1985). Mean oven-dried beech nut masses and mean volume of coarse woody debris (all decay classes pooled) were log transformed to achieve normality. Mean number of snags (all species combined) and mean number of beech snags were square—root transformed to achieve normality. (N on-transfonned means are referenced in tables.) Two-way ANOVA [proc glm] was used to determine if mean beech nut mass, number of beech nuts collected in 2002 and 2003, volume of coarse woody debris in each decay class, number of all species of snags, and number of beech snags differed among stands with low, moderate, or high beech density and absent, light, or heavy C. fagisuga infestation (SAS Institute 1985). When ANOVA results were significant (oc=0.05), means were separated by Tukey’s Honestly Significant Difference (Tukey 1977). Transformation did not normalize data distributions for mean number of viable beech nuts per stand, number of cavities in each size class, number of cavities in trees of each dieback rating, volume of coarse woody debris in each decay class, basal area of all species of snags, and basal area of beech snags. These variables, therefore, were ranked and the nonparametric Kruskal-Wallis test [proc rank] was used to determine if these variables differed among stands with low, moderate, or high beech density and absent, light, or heavy C. fagisuga infestation (SAS Institute 1985). For significance tests ((1 =0.05), means were compared with nonparametric Tukey’s-type multiple comparison (Zar 1984). Spearman’s nonparametric correlation analysis was used to assess the relationship between basal area of beech and red oak in the overstory with the mass of beech nuts and acorns, 37 respectively (SAS Institute 1985). Spearman’s nonparametric correlations were also used to determine if total overstory basal area and beech basal area were related to basal area of snags (all species combined) and beech snags, respectively. All analyses were done using SAS 9.1, except for the nonparametric Tukey’s-type multiple comparison which was done with Microsoft Excel software (Redmond, WA). Three stands with recent selective harvest activity were omitted from coarse woody debris analyses to avoid confounding effects of logging slash and beech bark disease impacts (stand ID 104, 107, 121) (Appendix 3). Results Beech nuts In 2002, beech nuts were collected from all 36 stands we surveyed. Mean beech nut mass in 2002 averaged 18.4 :1: 2.31 g/m2 and did not significantly differ among stands with absent, light, or heavy C. fagisuga infestation (p=0.234), nor among stands with low, moderate, or high beech density (p=0.162) (Figure 2-2). Mean beech nut mass varied considerably among stands, ranging from 0.1 to 51.8 g/mz. Mean beech nut mass within stands was also variable. In one stand, for example, mean beech nut mass among the four traps varied from 0.38 g/m2 to l 19.00 g/mz. Basal area of beech in the overstory was significantly correlated with beech nut mass produced in 2002 (r,=0.393, p=0.018). Mean number of beech nuts collected in 2002 averaged 98 i 11.3 /m2 and was not significantly affected by C. fagisuga infestation (p=0.614), nor beech density (p=0.490) (Figure 2-2). An average of 51 % of the beech nuts collected in 2002 were viable. 38 In 2003, beech nuts were collected from 27 of the 51 stands we surveyed. Only four stands in 2003 produced more than 1.0 g/m2 beech nut mass; three of the four were in stands classified as low beech density. Mean beech nut mass in 2003 averaged 0.3 :t 0.09 g/m2 and number of beech nuts only averaged 2.0 3: .06 /m2. Neither mass nor number of beech nuts was significantly affected by C. fagisuga infestation level (p=0.053, p=0.221, respectively) or beech density (p=0.771, p=0.534, respectively) (Figure 2-2). Only 10% of beech nuts collected in 2003 were viable. There was no significant correlation between beech basal area and beech nut mass produced in 2003 (p=0.205). For the 32 stands sampled for two consecutive years, total beech nut production decreased by an overall mean of 99.5 d: 2.31 beech nuts/m2 and viable beech nut production decreased by a mean of 52.8 :i: 1.35 beech nuts/m2. Red oak was encountered in the overstory of 13 stands with basal area ranging from 1.47 to 26.32 mz/ha. In 2002, acorns were collected from six of the 36 stands, all in the Lower Peninsula. Mean acorn mass in 2002 averaged 1.0 :i: 0.50 g/mz. In 2003, acorns were collected from seven of the 51 stands, all in the Lower Peninsula except for one stand. Mean acorn mass in 2002 averaged 0.9 :t 0.54 g/mz. Basal area of oak in the overstory was significantly correlated with acorn mass in 2002 (r,=0.647, p<0.001) and in 2003 (r, =0.407, p<0.001). Cavities Cavity size and number were recorded for a total of 683 trees representing 12 species (Table 2-1). At least one tree of each species, except black cherry, contained small cavities (<7.0 cm diameter). Small cavities occurred in trees ranging from the 39 smallest tree sampled (10.0 cm dbh) to the largest tree sampled (29.0 cm dbh). There were significantly more small cavities in American beech trees than in any other species sampled (df=8,673; F =1 7.01, p<0.001) (Table 2-1). Tree age was significantly correlated with diameter (r,=0.494, p<0.001) and number of cavities (r,=0.215, p=0.03 8). Diameter and number of cavities were also significantly correlated (r,=0.336, p=0.001). Beech trees contained significantly more moderately sized (7.0 to 30.0 cm diameter) cavities than sugar maple trees (df——8,673; F =3.64, p<0.001) but differences between beech and other species were not significant. A beech tree that was 48.1 cm dbh contained the maximum number of moderately sized cavities encountered (11) and occurred in a stand with light C. fagisuga infestation. A total of 89 trees comprised of red oak, black cherry, ash, hemlock, and basswood trees were examined; none had moderate seized cavities. Large diameter cavities (>30.0 cm diameter) occurred on only six of the 683 trees and did not significantly differ among species, likely due to the limited sample size (p=0.697). Five of the large cavities were on the main bole of beech treesand one was on the main bole of a sugar maple; no single tree had more than one large cavity. The six trees with large cavities ranged from 13.3 cm to 28.4 cm in dbh with an average of 21 .3 i 2.85 cm. Individual trees selected for long-term monitoring (n=94) from the perimeter of subplots had a mean diameter of 3 1 .8 cm and were 82 years old on average (see Chapter 3). The number of cavities per tree was significantly correlated with age (r,=0.215, p=0.038), diameter (r,=0.336, p=0.001), and canopy dieback (r3: 0.156, p=0.134) (Table 40 2-2). Age was significantly correlated with diameter (r,=0.394, p=0.000) and dieback (r,=0.255, p=0.013). Dieback was significantly correlated with diameter (r,=0.339, p=0.001) (Table 2-2). Coarse Woody Debris and Snags Coarse woody debris was encountered in every stand and ranged from 2.5 to 235.0 m3/ha. A total of 746 pieces were encountered on the transects. Size of pieces ranged from 008—122 m length; 49% of the pieces less than 1 m length, 48% were between 1 and 3 m length, and 3% were greater than 3 m long. Only 64% of the coarse woody debris pieces sampled retained characteristics that allowed identification to species. Identified pieces were predominantly beech (24% of total) and white birch (Betula papyrifera) (12% of total) and a lesser component of sugar maple, hemlock, aspen (Populus sp.), and black cherry. Volume of coarse woody debris did not vary among stands with low, moderate, or high beech density (p=0.061) and absent, light, or heavy C. fagisuga infestation (p=0.192) (Table 2-2). The interaction between beech density classification and C. fagisuga infestation level was not significant for coarse woody debris volume (p=0.314). Volume of coarse woody debris in decay classes 0, l, 2, 3, and 4 was not significantly affected by C. fagisuga infestation level (decay class 0: p=0.226) (decay class 1: p=0.557) (decay class 2: p=0.467) (decay class 3: p=0.735) (decay class 4: p=0.153) (Table 2-2). Only 1% of total coarse woody debris volume was of decay class 0. These relatively fresh pieces were encountered only in seven stands, three of which 41 had heavy C. fagisuga infestation. The majority of total coarse woody debris volume (62%) was assigned to decay classes 2 and 3. Snags were present in 45 of the 62 stands we sampled, but only 12 stands contained beech snags. A total of 112 snags with a mean dbh of 31 :t 1.6 cm were examined. Snags were predominantly beech (24), sugar maple (17), white birch (l 7), and black cherry (1 1). Basal area of snags of all species combined (including beech) did not significantly differ among stands with low, moderate, or high beech density (p=0.528) and absent, light, or heavy C. fagisuga infestation (p=0.155) (Table 2-3). Mean number of snags of all species also was not significantly affected by beech density (p=0.113) or C. fagisuga infestation (p=0.100) (Table 2-3). Basal area of all species of trees in the overstory was not correlated with basal area of all species of snags (p=0.273). Mean basal area of beech snags was significantly higher in stands with high beech density (dfi2,59; F =4.57, p=0.014) and in stands with heavy C. fagisuga infestation (df=2,59; F =4.65, p=0.013) than in other stands. Similarly, significantly more beech snags occurred in stands with high beech density (dfi-2,59; F=5.17, p=0.009) and in stands with heavy C. fagisuga infestation (dfi2,59; F =4.08, p=0.022) than in other stands. The interactive effect between beech density classification and C. fagisuga infestation was significant for basal area of beech snags (off—2,59; F =2.34, p=0.083) and number of beech snags (df=2,59; F =3.57, p=0.012). Basal area and number of beech snags were at least two times more abundant in stands with high beech density and heavy C. fagisuga infestation than in other stands. Discussion 42 Beech nut production The effect of beech bark disease on mature beech trees will eventually reduce beech nut abundance and may affect the animals that nutritionally depend on them. Our study results, however, indicate that stand-level C. fagisuga infestation had not yet impacted nut production. Stands with heavy C. fagisuga infestation were in heavily used recreation areas where leaf litter traps were often disturbed by humans or damaged by falling trees and limbs. Consequently, our results might have been affected by the limited sample size (n=5 stands) of intact beech nut collections. Beech bark disease may, however, progressively stress mature trees and reduce the overstory component of mature, nut-producing trees as it reaches the “Aftermath” forest structure in Michigan. Therefore, continued monitoring will be needed to quantify effects of beech bark disease on nut production. Beech nut production can fluctuate annually by up to 65% and the phenomenon of even year mast events has been well documented (Gysel 1971, Piovesan 2001 , Schnurr 2002). Our results indicate a mast event occurred in 2002 followed by a substantially reduced intermast crop in 2003. Levels of beech nut production we documented in the mast event of 2002 (98 beech nuts/m2) are similar to a previous study in Michigan. Gysel (1971) reported beech nut production in mast years averaged 40 beech nuts/m2 among stands, with production in one stand exceeding 250 beech nuts/m2. The viability of beech nuts in our study also varied between mast and intermast years, ranging from 58% in 2002 to less than 10% in 2003. Viability in 2002 was markedly higher than that reported by Gysel (1971) who found only 10% of nuts were viable during mast years. 43 Our methods did not account for the possible consumption of beech nuts by blue jays in early August before seed drop and often before seeds are fully ripe. (Johnson and Adkisson 1985). Blue jays select only viable seeds, potentially increasing the proportion of non-viable seeds in our traps. We collected beech nuts throughout the caching period but from near the forest floor and consequently, may have underestimated actual production (Johnson and Adkisson 1985). Cavities Our results demonstrate that cavities of all diameter classes were more abundant in beech than in other overstory species, except white birch. Other studies conducted in hardwood forests found that beech had more small cavities than other species (Gysel 1961, Robb and Bookhout 1995). Tree diameter was correlated with number of cavities, indicating that declines in mature beech from beech bark disease will likely reduce the abundance of cavities available for wildlife. Gysel (1961) found that cavities greater than 10 cm diameter occurred more often in trees of declining vigor. This suggests that mature trees impacted by beech bark disease may contain an abundance of moderate to large size cavities. Our data indicated no difference in cavity abundance among stands with varying levels of beech bark disease nor among trees with varying degrees of dieback. Both size and location of cavities can influence habitat suitability for specific species. For example, downy woodpeckers (Picoides pubescens L.) prefer to nest in 20- cm diameter cavities located 6 m above ground, whereas large pileated woodpeckers (Dryocopus pileatus L.) prefer 56-cm diameter cavities 18 m aboveground (Sadlon 44 1992). In addition to external cavity dimensions, internal dimension can also be critical, as in the case of wood ducks (Aix sponsa) that prefer entrances of 7 x 9 cm with bottom dimensions of at least 12 x 17 cm (Robb and Bookhout 1995). In our study, five of the six large cavities we encountered were in beech trees. Eventual loss of large diameter beech and the corresponding loss of large cavities may have negative consequences for certain wildlife species. Coarse woody debris and snags Coarse woody debris volume was consistently greater in stands with heavy C. fagisuga infestation, although means were not statistically different because of the limited number of stands with heavy C. fagisuga infestation. Studies conducted in northeastern states impacted by beech bark disease showed a consequent increase in coarse woody debris volume of 20-30% with volumes exceeding 166 at 42 m3/ha, whereas stands unaffected by beech bark disease contained 15-45 m3/ha (Carbonneau 1986, McGee 2000). Mean volumes of coarse woody debris from our stands with heavy C. fagisuga exceeded the maximum volume measured in uninfested stands, but, this was likely due to stand-level variations in productivity. Decay characteristics of coarse woody debris can determine species-specific values for wildlife (Bowman 2000, Jaeger 1980). For example, red-backed voles (C. gapperi) use highly decayed logs for shelter and fresh, solid form logs for runways, thereby requiring a diversity of decay classes (Bowman et. al. 2000, Maser and Trappe 1994). Highly decayed logs also serve as critical nutrient and moisture sinks on the forest floor (Covington 1981, Fraver et al. 2002). In our study, coarse woody debris volumes in 45 stands with heavy infestations of C. fagisuga were evenly distributed among decay classes, indicating no recent accumulation of freshly downed material, as might be expected from declining, breaking trees. The greater number and basal area of beech snags in stands with heavy C. fagisuga suggests beech bark disease has begun to affect individual trees and that stands have progressed to the “Killing Front”. Abundance of snags of other species remained constant among stands, further supporting that beech bark disease was specifically contributing to greater snag abundance. The great diversity of wildlife using snags may benefit from this alteration of forest structure for some period of time, although specific characteristics, such as decay stage and remaining branches, influence actual value. Hardwood and conifer stands in which snags were retained supported a greater diversity of wildlife in eastern and western states, although surpassing minimum density thresholds may not proportionately benefit wildlife (Gunn and Hagan 2000, Raphael and White 1984, Paragi 1996, Robb and Bookhout 1995, Scott 1979, Stribling 1990, Yahner 1987). To date, beech bark disease has likely contributed to an increase in snag abundance in stands with heavy infestation of C. fagisuga, but other wildlife resources have not been significantly altered. More cavities were found in beech trees than in any other species occurring in the stands we examined. Beech was typically the only hard mast-producing species except in seven stands where red oak also occurred. As mature beech succumb to beech bark disease and are replaced by other species, the abundance of hard mast and cavities will be reduced. Snags and coarse woody debris, however, will likely continue to increase as beech bark disease progresses and trees die. The data presented here provide a valuable baseline to compare with data acquired from long-term 46 monitoring in the same plots as beech bark disease expands in range and intensity throughout Michigan. 47 A85 71. 5 8:8 863 68 A893 :0 5 88.888 A823 mu 5 .8 888:: A883 mu 5 3m :8 A888. 5.1. 5 88:: :83 A893 on 5 88 A883 on to 63038:: 86388 888% 3088:8864 ... 82088 8 8.0on 082 .5 A8886 8: 8.3-85 888608 A8886 80 Nosvv =88m 8 8:8 one. 8 86:88 86820 883 83:80 3 A80 3 “:38: 88:: 8 683888 8886 :82 .. oo.o oo.o om: o\oo o 8o o 83 M F. :31 31mm 088on .86: oo.o So So o\oo o :8: N :8: m 2 m3; SN 8%: 5029mm oo.o oo.o 3.2 $6 o X: m 882 m :m 8.3 mm: :86 8::3 oo.o oo.o :mo G\eo o 88m. _ 88% m mm :02 No.3 8: 68m oo.o Vmo Zn: 8o o Rem : 83 v o: 2.2 moo. 288 8m oo.o mno vow ..\oo o 8m : 88: n G 3 .2 3.: V6288: 838m woo woo om: c\..o _ 8% S :8: vm mum oil 5 om 288 8m3m N: o 3.: oo.o o\om m 8% o: 83. o: oom No.2 woo: :08: 838:2. 89:: 888608 88m 83: 888608 =88m 8828 .8886 A::\~8V 888% 8;. 88: .8 :82 8828 8:832 88 :88: 68,—. 8:6 :08 .m: 8:38 o: 988 .3888 :88 .3 8:68 @8888 :88: «88:83:: 38:89 82: :0 38:88:83ch 8:832 888% 88 3: 88:8 :8 88:3 .8 8:38 .8 8:83: :8 8:88 883 .8 8:83: 68 888:6 :88 .88 .88: .TN 2:3. 48 Table 2-2. Volume of coarse woody debris (m3/ha i SE) grouped by decay class among stands with low, moderate, and high beech density and absent, light, and heavy C. fagisuga infestation. Beech C. fagisuga infestation densifi absent light heavy all stands Decay Classes Poolec low 46.2 i: 3.21 29.4 d: 3.44 50.6 :1: 4.82 43.1 i 1.95 moderate 62.3 :1: 3.78 77.6 i 15.51 125.3 3: 19.69 74.8 i 1.89 high 43.8 i 6.01 40.8 :t 22.33 70.2 i 7.82 55.5 i 3.06 allstands 52.4 d: 1.41 51.4 :t 4.59 81.7 d: 4.68 Decay Class 02' low 0.3 :I: 0.08 0.4 d: 0.17 0.0 i 0.00 0.3 :1: 0.05 moderate 0.1 d: 0.03 0.0 3: 0.00 0.4 :t 0.25 0.1 :t 0.01 high 0.2 i 0.09 0.0 i 0.00 5.3 :t 2.06 2.5 d: 0.65 all stands 0.2 i 0.03 0.2 :1: 0.04 3.0 i 0.83 Decay Class 1 low 3.9 :t 0.32 0.4 :1: 0.17 4.5 i 3.18 3.3 :I: 0.21 moderate 10.2 i 0.61 16.9 d: 4.61 4.7 :t 1.00 11.0 :1: 0.40 high 7.1 3: 1.85 5.3 i 3.76 8.5 d: 2.26 7.5 :1: 0.81 all stands 6.8 d: 0.21 8.1 d: 1.35 6.7 :1: 0.92 Decay Class2 low 13.0 :t 0.68 10.0 i 1.73 6.2 d: 0.28 11.8 i 0.44 moderate 20.5 i 1.17 13.0 d: 3.13 57.8 :t 15.69 23.9 :t 0.78 high 17.1 i 1.99 20.3 i 13.55 17.1 :t 3.09 17.6 31.19 all stands 16.5 i 0.38 13.0 :t 1.17 26.2 i 2.94 Decay Class3 low 10.9 i 0.70 13.2 :t 1.93 11.0 :t 0.41 11.4 :1: 0.45 moderate 19.7 i 2.14 22.6 :t 5.32 52.3 3 11.04 24.8 :t 0.95 high 15.5 :t 2.26 13.7 :t 4.87 9.9 d: 2.22 12.6 :t 0.88 all stands 14.9 :I: 0.57 17.2 :t 1.50 21.7 :1: 2.40 Decay C1ass4 low 6.6 i 0.71 5.3 :t 1.60 28.9 :t 8.13 8.2 :I: 0.53 moderate 12.5 :1: 1.92 25.1 i 8.37 10.0 i 3.36 15.0 i 0.90 high 3.8 i 1.71 1.4 i 0.15 29.5 i 9.21 15.3 i 2.96 all stands 8.5 i 0.52 12.9 :t 2.32 24.1 i 3.70 a Decay classes recorded as 0 (freshly downed, no discoloration of sapwood, bark intact, no visible decay), 1 (discoloration of sapwood, bark intact, no visible decay), 2 (form maintained under impact, bark peeling, visible decay), 3 (crushes under impact), and 4 (little strucutral integrity, mixing with soils). 49 Table 2—3. Mean number (i SE) and basal area (mz/ ha :t SE) of beech snags and snags of all species among stands with low, moderate, and high beech density and among stands with absent, light, and heavy C. fagisuga infestation Means followed by different letters are significantly different among rows (a-b) or among columns (y-z). Number of snags /ha All species C. fagisuga abundance Beech density absent light heavy all stands low 15 i 1.0 25 i 3.0 5 i 3.5 16 :1: 0.7 moderate 12 :1: 0.8 14 :t 3.0 23 :I: 7.5 13 :h 0.4 high 24 :t 3.8 15 :t 10.4 36 i 4.6 28 :1: 1.8 all stands 15 i 0.4 19 :t 1.3 27 :1: 2.3 Beech Beech density absent light heavy all stands low 1 :1: 0.1 4 d: 1.1 0 a: 0.0 1 i 0.12 moderate 1 3: 0.2 0 i: 0.0 3 :1: 1.9 1 at 0.1Z high 6 d: 2.6 10 i 6.9 21 :1: 4.6 14 :1: 1.6y all stands 2 i 0.1b 3 :1: 0.5ab 12 i 1.53 Basal area of snags (ml/ha) All species Beech density absent light heavy all stands low 1.0 d: 0.08 1.2 :I: 0.26 0.6 d: 0.42 1.0 :1: 0.05 moderate 0.8 i 0.07 2.0 i 0.56 4.8 :t 1.46 1.6 i 0.10 high 44.8 :1: 0.34 1.5 d: 1.07 2.5 d: 0.58 1.9 i 0.20 all stands 1.0 i 0.03 1.6 :1: 0.17 2.8 :1: 0.32 Beech Beech density absent light heavy all stands low 0.1 i 0.03 3.5 i 1.09 0.0 :t 0.00 0.8 d: 0.112 moderate 0.8 i 0.14 0.0 i 0.00 2.2 i 1.28 0.8 :1: 0.092 high 1.6 :1: 0.70 5.6 :1: 3.97 12.5 i: 2.62 7.2 d: 0.91y all stands 0.6 :t 0.05b 2.4 a: 0.39ab 7.4 i 1.16“ 50 Figure legends Figure 2-1. Intensive research plot design indicating arrangement of subplots 1-5, individual beech trees selected for long-term monitoring, beech nut collection traps, and coarse woody debris and snag measurement transects. Figure 2-2. Beech nut mass (g/m2 i SE) among stands with low, moderate, and high beech density and absent, light, and heavy C. fagisuga infestation in a) 2002 and b) 2003. 51 X El X X Key to plot diagram: X Sample tree X LEI Leaf litter trap Coarse woody debris and snag sampling transect Subplot 52 Mass of beechnuts (g/mz) Mass of beechnuts (g/mz) a) 2002 El bw beech density ——: nndemte beech density I high beech density J 1——1 absent light heavy C. fagisuga abundance b) 2003 4 3 ..L._. ...... ___ 2 _, B A#__, # _7 A #__ ,,_ 1 2 ____- _ g __ __ ____ O _ 3...... HM. absent light heavy C. fagisuga abundance 53 RADIAL GROWTH AND LEAF BIOMASS OF MICHIGAN BEECH FORESTS IMPACTED BY VARYING LEVELS OF BEECH BARK DISEASE. 54 Introduction Beech bark disease has been advancing throughout the range of beech in North America and, in 2000, was discovered in Mason County in the northwest Lower Peninsula Michigan and Luce County in the eastern Upper Peninsula Michigan (McCullough et.al. 2001, O’Brien et.al. 2001). In 2001, we initiated a study to collect baseline data for long-term comparisons of forest productivity as beech bark disease spreads and intensifies throughout Michigan. The primary objective of this project was to determine the impacts of beech bark disease on total biomass production in stands by quantifying radial grth and foliage production of beech in stands with varying levels of beech bark disease and beech densities. Our research addressed the following questions: i) Does infestation of C. fagisuga impact radial growth of individual trees and if so, are stand-level trends evident? ii) Is there a difference in foliar biomass of beech and other species produced among stands with varying levels of beech bark disease? Although beech bark disease can kill trees, some beech trees survive decades after infection, persisting in a state of decline and contributing limited biomass production to the stand (Hane 2003, Shigo 1972, Twery and Patterson 1984). Reductions in radial growth lead to lower timber and fiber production in a stand. Predicting the impact of beech bark disease, therefore, is important for long-term management of sustainable forests. Methods Study Sites 55 These data were collected from the study sites described in Chapter One and classified by the same beech density and C. fagisuga infestation criteria. Radial growth We selected 12 beech trees, 10.67 m from the center of each of the four outer subplots in each cardinal direction, excluding the azimuth leading toward the center subplot (Figure 3-1) for long-term monitoring. Each tree was marked with a round, blue tree tag nailed into the base of the tree facing the subplot center. When more than one beech tree fell within the designated distance and azimuth, we preferentially selected a tree by the following prioritized criteria: 1) the largest tree with a canker, 2) any tree (pole-sized or larger) with a canker, 3) large tree with C. fagisuga present, 4) any tree (pole-sized or larger) with beech scale, or 5) any large tree (closest to the azimuth used). Abundance of C. fagisuga on each of the 12 trees was estimated by overlaying a transparent, acetate grid containing 50 cells, each 1.9] cm2, at 1.3 m aboveground on the north and south azimuths of the main bole. Each cell was assigned a rating based on the area occupied by C. fagisuga as absent, light (<10%), or heavy (>10%). Overall values were then assigned to each tree as 1) the percentage of the main bole with C. fagisuga present and 2) the percentage of the main bole heavily covered by C. fagisuga. CanOpy dieback was visually estimated for each tree and, based on the percentage of mortality in the crown, classified as absent (0), low (< 30%), moderate (30-60%), and high (>60%). To analyze radial grth of beech trees before and afier the onset of beech bark disease, increment cores were extracted from the 12 beech trees in each stand between May and August 2002 or June and August 2003. Because trees were actively growing 56 when cored, current year increments were not included in analyses to eliminate partial increments. Increment cores were extracted at approximately 1 meter above ground perpendicular to the main bole of each of the 12 beech trees using a cordless drill and case-hardened coring bit. Coring tools were dipped in alcohol and flamed before sampling each tree to prevent possible artificial inoculation of Nectria sp. to uninfected trees. Increment cores were mounted on wooden holders, sanded four times with progressively finer paper (100 grit, 220 grit, 600 grit, and emery cloth) to create a flat surface, then scanned into a digital image for annual increment measurements with WinDENDRO® (Regent Instruments, Inc.). To distinguish between effects of site conditions and beech bark disease, cores were also extracted from two non-beech trees within each stand. Approximately half the cores were either damaged in the preservation and measurement process or did not have sufficiently visible annual growth rings and were excluded from analyses. To eliminate the effect of crown position on growth pattern, only trees in the dominant and codominant dominance classes were included in the analyses. Consequently, a total of 90 trees with intermediate crown class and 15 suppressed trees were removed from analyses. A total of 376 cores were analyzed; 304 were from beech and 72 were from non-host trees. Mean distances between annual growth rings (mm/yr) were calculated for each tree in 5, 10, and 15-year intervals. To identify any changes in growth in the last 5, 10, or 15 years, ratios were established for mean annual grth during 1997~2001 and 1992- 1996 (5 years), 1992-2001 and 1982-1991 (10 years), and 1987-2001 and 1986-1972 (15 years). Intervals were established around the last 5, 10, and 15-year periods because, as of 2000, beech bark disease had likely been present in Mason and Luce Counties for at 57 least 10 years (O’Brien et al. 2001). The established intervals were also intended to account for the expansion of beech bark disease into previously uninfected stands over time. Although trees cored in 2003 included a complete increment for 2002, all analyses were initiated from 2001 to maintain consistency. Annual increments (mm/yr) were plotted for each tree and distinct reductions in growth were identified. To distinguish regularly oscillating fluctuations growth patterns from distinct reductions in growth, only annual increments that decreased below the average growth increment and did not recover to previous growth increments for at least 10 years were considered growth reductions. We were not able to determine the age of 210 beech trees from which cores were extracted due to light annual rings that were not detectable by WinDENDRO® or because the heartwood was decayed with no pith remaining as a reference point. Tree age was quantified for 94 beech trees from 45 stands. Some stands had no beech cores successfully extracted and aged while others had up to six cores with complete analysis. Fifty five beech cores were aged from stands with absent C. fagisuga infestation (27 low, 23 moderate, and five high beech density), 24 stands with light C. fagisuga infestation (11 low, 10 moderate, and three high beech density), and 15 stands with heavy C. fagisuga infestation (one low, two moderate, and 12 high beech density). Age was determined from 28 of the 72 non-host cores extracted, representing 28 stands, with a maximum of one core successfiilly aged from each stand. Non-host cores were aged from 18 stands with absent C. fagisuga infestation (six low, eight moderate, and four high beech density), four stands with light C. fagisuga infestation (zero low, 58 three moderate, and one high beech density), and six stands with heavy C. fagisuga infestation (two low, two moderate, and two high beech density). Leaf biomass Leaves were collected in the 1m2 pvc traps described in Chapter Two. Traps were not set in eight stands in 2003 because of heavy harvesting (three stands), seasonal inaccessibility (two stands), and vandalism (three stands). Due to these limitations and to site damage to traps, leaf collections were only made fi'om five stands with heavy C. fagisuga infestation; none of these five stands had a heavy infestation of C. fagisuga. Leaves from each trap were bagged and returned to the forest entomology lab at Michigan State University. All leaf samples were sorted to species, oven-dried at 38°C (1000 F) for 72 hours, and weighed. Statistical analyses Normality was tested for all variables using the Shapiro-Wilk test (SAS Institute, 1985). Data distributions for growth ratios for 5, 10, and lS-year intervals and overstory basal area by species could not be normalized by transformation, thus these variables were ranked and analyzed with nonparametric tests. The nonparametric Kruskal-Wallis test was used to determine if growth ratios for 5, 10, and lS-year intervals differed among stands with low, moderate, or high beech density and absent, light, or heavy C. fagisuga infestation (SAS Institute 1985). Spearman’s correlations were used to determine if the percent of the main hole with C. fagisuga or with heavy C. fagisuga correlated with annual growth ratios for 5, 10, and 15-year intervals. Spearman’s nonparametric 59 correlation coefficients were also calculated to assess linear associations among age, dieback, and annual growth ratios for 5, 10, and lS-year intervals. Leaf biomass for each stand was calculated as the mean of all traps collected in each stand. A paired t-test was used to test the differences in mean leaf mass produced in 2002 and 2003. Two-way ANOVA was used to test the differences in mean leaf mass of (1) all species and (2) beech among stands with low, moderate, or high beech density and among stands with absent, light, and heavy C. fagisuga infestation. When results of ANOVA were significant (01 = 0.05), Tukey’s Honestly Significant Difference was used to compare means (Tukey 1977). Basal area of overstory species were not normalized by transformation, thus were ranked and analyzed with nonparametric tests. Spearman’s correlation coefficients were calculated for basal area of each overstory species (beech, sugar maple, red maple, red oak, other hardwoods, and all species combined) and their respective leaf mass. All data analyses were conducted using the Statistical Analysis System (a = 0.05) (SAS Institute 1985). Results Radial growth A total of 304 beech cores from 59 stands were successfully extracted and measured, an average of 5 :t 0.3 cores per stand (Appendix 4). Continuous, detectable annual growth rings from bark to pith were present for only 94 beech trees, which averaged 81i 2.5 years of age. Mean increments calculated for all 304 beech trees averaged 2.2 d: 0.06 mm in the last 5 years, 2.1 :1: 0.05 mm in the last 10 years, and 2.1 i: 0.05 mm in the last 15 years (Table 3-1). Of the 304 beech trees examined, only 29 60 exhibited a reduction in radial growth, with onsets occurring between 1956 and 1997. The 29 trees exhibiting growth reductions were from 21 different stands. Only four stands contained more than one tree exhibiting growth reductions; none of these trees had C. fagisuga. Cryptococcusfagisuga was present on 73 of the 304 individual beech trees measured. The percentage of the main bole covered with C. fagisuga varied greatly. Five of the 73 infested trees exhibited a reduction in radial growth, with onsets of decline occurring between 1956 and 1993. Two of the beech trees exhibiting decline (trees 776 and 820) had trace amounts of C. fagisuga present on the main bole (Appendix 4). The other three declining beech trees had a heavy infestation of C. fagisuga on virtually all of the main bole, with 40-55% of the main bole heavily covered. Each of the five heavily infested trees that exhibited growth reduction were from separate stands, thus no consistent reduction in radial growth was evident at a stand level. Of the 304 beech trees cored, 101 exhibited no canopy dieback, 159 exhibited low dieback, 35 exhibited moderate dieback, and nine exhibited heavy dieback. Cryptococcusfagisuga was present on the main bole of ten trees exhibiting no dieback (10%), 40 trees exhibiting low dieback (25%), 18 trees exhibiting moderate dieback (51%) and five trees exhibiting high dieback (56%). Ratios for 5, 10, and 15-year intervals of mean annual growth in beech trees did not significantly differ among stands with absent, light, or heavy C. fagisuga infestation (S-yr interval: p=0.966) (10-yr interval: p=0.076) (IS-yr interval: p=0.338), or among stands with low, moderate, or high beech density (Table 3-1) (S-yr interval: p=0.884)(10- yr interval: p=0.696)(15-yr interval: p=0.873). The percentage of the main bole with C. 61 fagisuga present was not correlated with growth ratios of 5, 10, or 15-year intervals (5-yr interval: p=0.52) (IO-yr interval: p=0.948) (15-yr interval: p=0.842), nor was the percentage of the main bole heavily covered by C. fagisuga (5-yr interval: p=0.982) (10- yr interval: p=0.477) (1 5-yr interval: p=0.584). Tree age was not correlated with the annual growth ratios for 5, 10, and lS-year intervals (5-yr interval: p=0.127) (10-yr interval: p=0.774) (IS-yr interval: p=0.687) (Figure 3-2). Dieback was not correlated with the annual growth ratios for 5, 10, and 15-year intervals (S-yr interval: p=0.173) (10-yr interval: p=0.981) (IS-yr interval: p=0.377). Non-beech tree cores were extracted to serve as a baseline for comparison with grth reduction in beech. Sixty-two cores from non-beech trees from 45 stands were successfully extracted and measured, an average of 1 :t 0.9 non-beech cores per stand. Non-beech trees that were cored were primarily sugar maple (44 trees from 32 stands) and red maple (15 trees from 12 stands). Continuous, detectable annual growth rings from bark to pith were present for 25 non-beech trees and averaged 78 :t 4.8 years of age. Mean increments for individual non-beech trees averaged 2.1 i 0.13 mm in the last 5 years, 2.10 :1: 0.12 mm in the last 10 years, and 2.0 d: 0.11 mm in the last 15 years (Table 3-1). As no reductions in beech growth were detected, no further analyses were conducted on the non-beech cores. Leaf biomass Mean leaf biomass of all species combined was 289 i 15.0 g/m2 in 2002 and 311 i 16.0 g/m2 in 2003 (Table 3-2). Although differences in leaf biomass were not substantial, they differed significantly among years (of/E30, t=-2.81, p=0.008). Beech and 62 sugar maple comprised the greatest portion of leaf litter in both 2002 and 2003 (Figure 3- 3). In 2002, mean leaf biomass of all species combined was significantly greater in stands with no C. fagisuga infestation than in stands with heavy C. fagisuga (djE2,33; F=4.60, p=0.017), but not different among stands with low, moderate, or high beech density (p=0.304). Mean leaf biomass of beech did not significantly differ among stands with absent, light, or heavy C. fagisuga (p=0.2l3), but was greater in stands with high beech density than in stands with low beech density (df=2,33; F =0.12, p=0.014). In 2003, mean leaf biomass of all species was not significantly affected by C. fagisuga infestation (p=0.45 8), nor beech density (p=0.238). Mean leaf biomass of beech did not significantly differ among stands with varying levels of C. fagisuga (p=0.437), but was significantly greater in stands with moderate and high beech density than in stands with low beech density (df=2,48; F =7.64, p=0.001). Basal area of beech, sugar maple, red maple, red oak, and other hardwoods was significantly correlated with species leaf biomass of each corresponding in 2002 and 2003 (Table 3-3). Discussion Radial growth Examination of radial growth trends for all beech trees (n=304) did not elicit any marked reductions in growth attributable to beech bark disease. Only five of the 73 cores from beech trees infested with C. fagisuga exhibited distinct reductions in growth. Each was from a different stand, indicating no stand-level reduction in growth. In at least three 63 of our 11 stands with heavy C. fagisuga, signs and symptoms of beech bark disease were evident (including perithecia of Nectria sp.) and mortality and breakage of mature beech had begun by the onset of our study. We extracted cores from only the remaining live trees with C. fagisuga in these stands and likely included the effects of the changing canopy structure on radial growth in our analyses. Mature beech trees increase radial growth when growing in open gaps, such as those created by the mortality of a neighboring tree (Canham 1990, Poage and Peart 1993). The availability of increased light may have outweighed the effects of beech bark disease on radial growth. Such an occurrence was documented in New York stands affected by beech bark disease, where radial growth of surviving beech was highest in stands with greatest mortality (Runkle 1990) Beech bark disease occurs with greatest frequency on poor sites where trees are subject to greater physiological stress, particularly when moisture is limited (Lonsdale 1980, Shigo 1964). Under poor conditions, beech may have “missing” rings (Peters 1997). We did not cross-date our cores and therefore did not account for this possible discrepancy among trees growing under various site conditions. Beech bark disease had not yet impacted the radial grth patterns of beech trees sampled from our study stands. Other studies demonstrated a 25-40% reduction in radial growth of beech that had been impacted by beech bark disease for 8 to 30 years (Gavin and Peart 1993, Mize and Lea 1979, Runkle 1990). Our study accounts for roughly 10 years of cumulative impact of C. fagisuga. Because C. fagisuga cannot live on dead tissue, trees in our stands with heavy C. fagisuga infestation were probably not yet infected with Nectria spp. We cannot assume, therefore, that presence of C. fagisuga 64 ill-T equates to beech bark disease. Long-term monitoring will be necessary to evaluate the radial growth of trees with C. fagisuga as they are progressively impacted by beech bark disease and dieback occurs. Leaf biomass In both 2002 and 2003, the beech component of mean leaf biomass did not differ among stands with varying levels of C. fagisuga infestation. In other words, C. fagisuga had not affected foliar productivity of beech and infested and uninfested stands produced similar amounts of foliage. In a study conducted in New York stands transitioning from the Killing Front to the Aftermath Stage of beech bark disease, annual litter production remained constant, beech foliar biomass did not change, and soil chemistry was not altered by changes in beech leaf leachate, likely because basal area of regenerating beech compensated for declines in mature overstory mature trees (Forrester et al. 2003). Although our study was primarily conducted in stands at the Advancing Front, our results are consistent with conditions reported afier 15 years of cumulative beech bark disease impact in the New York stand. Stand-level C. fagisuga classifications were derived from density estimates made on individual large diameter trees, which are more readily infested by C. fagisuga (Houston and Valentine 1987), yet foliage was collected at the stand level and included leaf production from all classes of trees positioned above the traps. Collecting leaf litter from trees of all classes and conditions likely included productivity from smaller trees not infected with C. fagisuga in the understory. As trees succumb to beech bark disease and 65 crowns become sparse, suppressed trees of other species in the understory respond to increased light levels with rapid growth (Canham 1990). Published equations are useful for estimating foliar biomass of individual trees based on dbh along with total aboveground productivity for a given stand (Briggs et al. 1989, Forrester et al. 2003, Ter-Mikaelian 1997). In our study, basal area of red maple, red oak, and other hardwood species were correlated with leaf mass of respective species. Basal area for beech and sugar maple, however, were not linearly associated with leaf mass suggesting long-term studies are needed to assess that relationship between foliage production with basal area. The complete etiologic complex of beech bark disease was not conclusively determined in our study and therefore, conclusions are limited to the impacts of C. fagisuga infestation. Future studies on the impacts of beech bark disease on Michigan forests should include Nectria sp. present, as tree vigor measurements have been reported to be more closely correlated with Nectria sp. than C. fagisuga infestation (Jones and Raynal 1987). It is plausible that, by the time of this study, beech bark disease had only recently begun to impact individual trees and stands. One long-term study in New Hampshire demonstrated that at low levels of infestation, individual tree growth trends varied widely and occasionally included overall increases (Gavin and Peart 1993). The results presented here were largely intended to provide a baseline for comparisons of long-term data and will be useful in elucidating the period over which any changes in radial grth and biomass production occur. 66 no.0 H no; 000 H mo._ 00.0 H mo; no.0 H 00.0 :0 H mo; no.0 H no; oonmnoCSomnwfl 22:85 .8313 voo H 0: woo H 00A no.0 H 00; 3.0 H 24 00.0 H no.0 00.0 H N: ~007N02>00¢N03 3325 $3.10 N No.0 H 00.0 00.0 H 00; 2.0 H mm; 00.0 H mo; no.0 H 8.0 00.0 H mm; ooonoEEooNnmE NSESE .8»an £331.82 voo H m: 03.0 H n: v0.0 H 0N; $0.0 H 004 $00 H 0N; mmoo H a: oonmnoQHooanE 3:85 .8312 moo H m: v0.0 H n: moo H m: 30.0 H 00.0 30.0 H 54 30.0 H n: ~007~00~>00NA00~ BESS .8313 V0.0 H 00._ no.0 H 0: v0.0 H M: £00 H 00; $00 H v: 30.0 H o: ooonooSoomnofl 3225 $30 525 nwE 880008 32 >28: Em: 83% 536% 0358 :88 com mound £82. 590m 533805 036me U 56:00 :88 sum: .380008 .32 £5 3531388 28 newsmoofi ewmmwexdb :98: 05 .E a .68»? £3» 35% :25 moo: Anon 5 580-8: 28 com” 5 :83 com £23.: Son-2 98 .0_ .m 80 AEEHEEV 808 608085 3:58 :82 .Tm 203. 67 mm H mm 00: H 9 on H 3 me H 0N #2 H 3 0.0 H 3 $532? m.NN H 0m 0.0: H on _.n H 02 E: nm: H mm 3. H on 0.2 H mo: 0.0 H Vm :98: mo: H nv mm: H 3 mm: H 6 ram: H 3 «.3 H Vm 0.0 H mm 0.0 H vo: Wm: H 3. Em: «:0 H on :V H v v0 H cm 0.0 H 3 Tn H on 0.m H n no: H on 2: H 3 Ease Banning—x v.5 H mn Wm: H 00: NE H :0: :.n: H om 0.0: H :n 0.2 H 0m 356 EW 00 H 0 0.0 H o N: H : «E 0.0 H E w: H m: 0.0 H H 0.0 H :m 060: 03 H :w ZVN H 03 0.nm H mm m.mm H Vm on: H mm 0.0 H mm 0.0 H 0 0.0: H on Em: Nd H 0: 0.3 H 8 0.2 H mm: «.2 H n: 0.0: H mm mom H on 0.3 H v0 n2 H an Eamon Egficabovx E: H 0: «n H vw mn H nm mm: H 3 mm H no mo H 9. 2:86 :u m: H om 2: H 3 23 H mm s: to H mm mm H 8 «e H 9. 0.0 H a go: 0.0: H mm mam H m0: 0.0 H 00 odm H mn 0.: H mm 0.0 H «m 0.0 H :0 0.2 H 0v Em: 0.0 H mn wen H :2 mo H :0 0.0 H mm mm H vn mom H N: no: H mn mm H om Eamon am~exw§§bm gunk mocsm :m EmE 03309: 32 momma :a EmE 880008 32 aosfimofi: emaanU bacon :83: £200 :83: .88 82 .mooN So: mac—meg :m can Noon :6: 838.8 on $5858 «:5 dogwood: eMEer U :98: .5 .Em: .Eomom 5:5 €55 mecca 860% 08308: $50 28 A 503 95.2ng :8 :8 A 53%: $.63 2&8 08 A 5:56:83. $63 2an Ema A caehhzesm mzmcré :80: 505:2 :0 C53 mane :8: =82 .N-m 038. 68 A 5533. mazaxoa #55 :02: 05 Adm 6383 :83 A.% «5.5 009.38: A .am 3:305 :33 A.% $5255 :8 0:22: 360% 000303: 3:5 a .28 :0 ans 2088 a 88:5: 0 :o 98.5 0.8285 . ”MN H mmN m0: H onm mmm H omm 00: H 2N m.m: H NmN YNN H vvm 3:82? 00¢ H mNN 0N0 H non 0.0m H Nmn 0? :0: H om: 0.8 H nn: 0.0m H moN 0.0 H mm: :98: TN: H m8 0:: H mom Tan H Non 0.n: H mvm v.0: H :0N 0.0 H EN 0.0 H oNN n.MN H :0: Em: ”mu Ema H Sm :.V: H mnm 0:: H 0mm adv H Sum N.m: H mmm no: 03.. Wm: H ova now H nnm Enemaw 3:558 860% =< S. H :N 3. H 2 mm H 8 2 H 8 S. H 2 ow H 8 3:323 3 H 2 v.2 H 2 0.2 H MN .2: n: H 2 2: H a: a: H 2 o.o H S 0,8: S H M: an H o 2 H v 0.: H a S; H 2 0.0 H : 0.0 H m 0.2 H S. Em: 0.0 H 3 0.: H mm mm H mm m: H av I. H a on H R an H m: 3 H R 23% 98:92:». 08303: .850 0.: H a 3 H a we: H 8 3 H : S H 2 08 H am 3333 52 H ON EN H R 3 H a a: as H M: 2: H «N 2: H 2 o.o H o is: 3. H o o.o H o E H n 0.4 H o S H 2 0.0 H o 0.0 H mm 3: H 2 2m: 03 H on o.o H o 3 H m 3% H 8 of H mm to H o 2: H : was. H mm 83% ~20»: nausuam 3:85 :a :m:: 88258 26: $53 :a :m:: 880:9: >6: so:§mu.:c: emanamgd base: :83: 3:20: :83: noon noomri .9800 NA 0331 69 Table 3-3. Spearman's correlation coefficients (rs) and significance value (p) for the relationship between basal area (mz/ha) of overstory species and corresponding leaf biomass from 40 stands in 2002 and 54 stands in 2003. Correlation coefficients witllp<0.05 are significantly different. 2002 2003 American beech rs 0.588 0.664 p <0.001 <0.001 Sugar maple rs 0.587 0.638 p <0.001 <0.001 Red maple rs 0.632 0.679 p <0.001 <0.001 Red oak r5 0.761 0.797 p <0.001 <0.001 Other hardwoodsa r: 0.598 0.696 p <0.001 <0.001 aOther hardwood species included ash (F raxinus sp.), aspen (Populus sp.), basswood (T ilia sp.), birch (Betula sp.), and black cherry (Prunus serotina ). 70 Figure legends Figure 3-1. Intensive research plot design indicating arrangement of subplots 1-5, overstory composition measurement transects, individual beech trees selected for long- term monitoring, and leaf litter traps. Figure 3-2. Age of beech trees (n=94) plotted against the ratio of mean annual increment for intervals of a) 5-year, b) 10-year, and c) lS-years. Figure 3-3. Composition of leaf biomass (g/mz) by species from a) 40 stands in of stands in 2002 and from b) 54 stands in 2003. 71 Key to plot diagram: X Sample tree El Leaf litter trap —_ Overstory basal area sampling transect O Subplot 72 A) 5-year intervals: 1997-2001 and 1992-1996 “c3 +2 4.00 $33.00. .. __ g at; ’ s E: E 2-00 ‘—"—“‘"';“.6'3* E. $ “5% 100 __ O .’ 2“.O¢'.’ g o O O. 0 £2 5‘) 0.00 . . 0 50 lOO 150 Ag€(year8) B) lO-year intervals: 1992-2001 and 1982-1991 .4: 8 3.00 -~—— 4:: ...—...-:--_.- .-----_........______ 8 1 (O ,1 "01 s ‘. " q 3?. O c 10 J7 Ratlo of mean annual growth increments N 0 o 1 I P 8 o Age (yearS) C) 15-year intervals: 1987-2001 and 1986-1972 4.00 '3 5 *3 g g 3.00 .. ~ : . .— - s a .e 2.00 , .4“; . __ Q5 9 ’ ..‘o". ‘Joo ° .9. 1% 1-00 + .Ws—mfia- 62 3° 0.00 . ° . 0 50 100 150 Age (years) 73 a) 2002 not identifiable 11% other hardwoods 7, , 77:: 3' ‘“ . K beech 9% g _ . ’ i 28% red oak 9% d 1 sugar maple re mape 26% 17% b) 2003 not identifiable 8% ° 27% other hardwoods 10% redma 1e sugar maple p 33% 14% 74 APPENDICES 75 76 NOON O N NEE ON: ON: NN NN NN 0% EN zNNH N80858: NOO NOON O N 2% 3 Na NN NNN ON 0% 32 zNNH 83826 NOO NOON O N NeoBm ONO Na NO ON 20mm 2: NNN 72 NH 2853 NNO NOON O N 23 NNONONN. NNNNNNO ON ON 2.20% BNNNN zNNp 53235 t ONO NOON O N 3% NONNSN. NNNNNNO NO ON N.NNumN BEN zNNe 530220 KO NOON O N 23 NNOOSN- ON NN N? NN NN NNomN 3E ZONE 585 NS NOON O N 2% ONNNOON- NONE? NN.N N S 20% 32 zNNN: 852 SO NOON O N 23 ONONNNN- NNOONS NN N ONumN BNNNN zNNN. NOONNBN NOO NOON O N EOE NNNONNN- NNOONS ON NN NumN BNNNN zNNNt 2853 NNO NOON N N NeoBhN OONNOON- ONNNOi ON RN NN.NNomN BNNNN zONe 83: SO NOON O N ONNNN :ONNON- $39? I .NN §NNN NNomN BNNNN 22. 9880 NOO NOON N N 23 NNNNNON- NNNOONO I O: 525 NNumN BNNNN Zn; 2800 ONO NOON O N 23 NNNONON- NNNNN .NN . 3265 32m 22‘ Swans: ONO NOON O N 3550 ONNON .ON- NNONONO I N6 8&5 8% 32m 28. $68 N NNO NOON O N 2% OONONON. NNOOONO . NoaNNNaN NNomN BONNN 2:: 5&2? ONO NOON N N 353m ONNNN .ON- ONSNS N ONO NNomN 32m zNNP 85832 ONO NOON O N 2% ONONNNN- $5.3 2.: NN Nomm BNNNN zNNNt BNNNNNNE NNO NOON N N N838 ENCON- O: N N .3 NN ONN ONomN BNNNN zONe 53: NNO NOON N N NaoOonN NNNNNON- NNNNOi ON ONN NN.NNumN BNNNN zONN: 83: ONO NOON N N NNNOBHN NNOONON- NNNOOi NN NNN NNomN BEN zONe 83: ONO NOON N N 23 ONOONON- NNNNO$ . OONNNNNOS :umN BNNNN ZOE. 83: N NNO NOON N N 2% NNOOOON- NEOi . OONNONOS :85 NONE zONN. 83: ONO NOON N N 2% NNOOOON- NONNOS . NNONNNNNNNS :omm BNNNN 2O; 832 N ONO NOON O N 2% £933- NONE: ON O 8% 33m zNNN: 220m ONO NOON O N NEE OONSNN- ONNONS ON ON 83 BN Na 25. EOE? ONO NOON O N ONNNN NNONN .NN- NOONNN; NO O: :85 BE zNNe 3ng NOO NOON O N ONNNN NONNNON- NONOONO N NN NNomN 32 zONN. seam NOO NOON O N 2% NNNNNON. OOSNNO N O: NN 32 2O? seam NOO .825 .N .86:— . SE: .5550 mag: 98. «as: N... NON—3m EoEtaanU :ozatosn Ewoq @580 a .52: 5258...: .3289 8351.88 mN—G 653m .3 23> uuamuux. U 500m .52: couSNomE cma&u\m§uoooN&DU 93 £35 >383 589 §NN0>NNND 8.8m sawing dEfioES ,NcoNNuoON unflm .N 533?. 77 NOON O N NNNOBnN ONOONON- ONNNNS I INzNNnN 20% BEN 239 8N2 N: NOON O N NNNOBNN NNNNNON- NNNNNOO NO NON comm BONNN 22% «Non NNN NOON O N NERO NNONNON. ONOOOOO NN NON ONomN BONNN 2N3: sNon NNN NOON O N 388m NNNO0.0N- NNONOS O ONN NNomN BOE zNE sNoa ONN NOON O N Neouom NONONON- ONNONN; NN NN ONomN BONNN 289 8N2 SN NOON O N BONE NNONOON- ONNNNOO NN ON ONoNNN BON 239 .82 SN NOON N N 325 NNOONNN- NNONNON. ONN I NNomN BONN 23: 8:282 NNN NOON N N 325 294.8. ON: N .3 N.NN I ON 0% BOON zNfi 28282 NNN NOON N N 28.5 OONENN- NOE .3 3N I NNomN BONN 23.9 8:382 ONN NOON N N SEE ONNNONN- ONNON .8 ONN I ONomN BONN 239 08282 O: NOON O N 23 OONOONN. ONNOONO N N NNomN mom zNE NEOONNNU NON NOON N N 25m NON: .NN. NNNOOOO N ONN 8% BE zNfi 85x82 NNN NOON O N NNNONNON NNNONON- OONOONN ON NON NNN BE 23% 8:282 ONN NOON O N NNNanN NONNOON- NONNONN NN NN NNomNN 32 2:9 08282 NNN NOON N N 28.5 ONNONNN- NNNONOO I I 8% BE 25. $8an E ONN NOON N N N888 RNOOON- NNNNOS N NN ONomN 32 2:9 85820 NNN NOON O N Naomi ONRONN. ONONNNOO ON N. NNomN 32 2:; $8an ONN NOON N N 2% ONNNN.NN- ONNNNOO I 885838. :85 BNN zNE 83 NNN NOON N N ONNNN ONNNNNN- OOOOOS I 855895 NNumN BE ZOE $8an ONN NOON N N ONNNN NONNO.NN- NNNOOS N.N ON ONumNN 3N NNN 23% 83 NNN NOON N N ONNNN ONNNNNN- NNNOOON. ON O 20% BNNNN 2:; 83 NNN NOON O N 23 NNNNNON. NONNONN. NNN NN 6% BEN zNE NNNNONOONNONN NNN NOON O N 33 ONONNON- ONNOONO .NN 585 5mm BONNN zNE NEONOONNON ONN NOON O N NeuBhN OONONON- NOONNOO ON NON 3.8% BNNNN 23H 98328 NNN NOON O N NNNOBN NNNNOON- NONNOON. NN ONN NN.ON omN BONNN zNE. sNoo NNN NOON O N NNNOBN ENNNON- OSNNNNO O ON 20% BNNNN 239 8»? NNN NOON N N 385 NNNNNNN- N833 I I ONomN 3N NNN 2:9 83 NON NOON N N 225 NONONNN- NNNOOOO I .NN NNNNN 20% BN NNN ES: 83 «ON NOON N N 2% NONNO.NN- NONOOON ON ON 6% 2: NNN 25% 83 NON motam N 5?: . not—Nu 3:30 32:. was auua 3. 38m NaoEtaN—EOU catatumon ..Nwoq @580 a 3:: =c=5§=~ £25: Baum N85: .88 ..c .3; unamua U 58m 6 mmU .988 N 595%“ .NNtoNNoNNN owaoN co cocoNoNNN Nscmaoo .2 ,No .D smaoNNNNNN 82.5853 86 03285 353» UMENMQ U on 88580 5:038: 292 ”SN 85 A8: $3 .2 .No .3 8:89:59 BNN 02385 :22? 885%st U NENNNNNoo :oNNboNNNNNN DmE ”NAN 8% E .bNNNNNNNNoooNNcN 3888 9 26 EN Nam: Nos: .82 o: vaN 68 NNNNNSm : .3on 5:352 9 $8885 8 26 EN NNNNNN N85 N82 on ”mac ,Nmo .mNo £85m N Ao\oom N85 8823 baa: u N 6.80m N85 80: Em: n N A80: 05 N538 u o 6623 .No 89» NONNNNNN .No 08: NN @8333 N888 NNNNNNNB N8: 880.3 3160: .No omScooNoNN 9 @6883 x35 coNNSNoNNNN umNEMQ UN $538 w NAV NNwNNN u m AER—c wNIQV 88252 n N 6858 ovv 304 u N ”30.8 :83 82038 9 @2083 N82: 56:09 585 u NOON O N «85 8N: ON: ON N: ON 0mm BN2 ZONE 8:282 NON NOON O N N888 NE NE ON OON 80% 26m 23. 83830 NON NOON O N 385 8N: 8N: I I NNomN BEN 782‘ 80882 ONN NOON O N N888 S: 8N: I m3 8:8 6mm BNNN 239 «22888 E ONN NOON O N 088 8N: 8N: I I 8% 32m 259 N82 O ONN N325 N 5?: 8 5?.— ..255 mace: wac— wca: Na. NON—5m EoEtaNNEoU 53338: Name‘— bESU a :55 5383:: £289 9.sz .NO 23> uuaafl. U :83— NONNNNNNNNNOS mmw P .UNHNNOO m 560MM< 78 09.3.. .MK 8 .mm ONN .NOO NOON ONN ONN NOON NOO NE 5 .8 NOON Om ONN cm in ON .NNN ONION LNN NOON 8 NE .3 .8188 OON .NOO NOON 8 .8188 NOO .NNN .mm OOO ONN NOON 5 ON .3 ONN NOON NNN NOON 8m .8188 ON .8188 ON .8188 ON NOON 8m .8 Ow Ow ONN NNN .NNN NNN NNN Ow NOO ONN NOON 35.98% Ow .88 5.1% NOON ONN 3 .88 ONN NOON ON .8 KO 8 ONN NNN ONN ON .6 .88 .8 NOON ONO S E ONN ONO ONN ONN NON ONN NOO NOON NNN NOON NOO 81$ .NNN Om 2.1% NOON ON NNN .88 NOO NNN NOON km EN f 5.1% NOON NOO NNO N288 NOON cu ONN NOON Nu NOON NOON ONN NOO 81% Na Om 51$ 3 NOON £381.? NOO NOO NOON NON NOO .mu. NNN NOON .NNNN .NNN Nu ONO 8 ONN NOON NNN NOON .NN NNN cu ONN NOON ONO NNN .8188 Na .NNN NOON E .8188 O NO MN 8 .....NN 88 8 am an ONO NON S f NOON NNN Om ONN .88 NOON Na .81? ONO 5 SO NNN ONN OON .8 .8 OS NOO .88 .mm NNO NNN ON 8 Nu NOON cw NNO MN MO Na in NOO NOON ONO EN MN Na .8188 ONO «88$ «883 u& .&m ..NV .MK Nmo N288 NNN 3.81% ONO «88% 3:95 NU .Qm .NNN. .MK a N o MN NNN .NOO OON NNN 51% ONO NOO OE £813.88 8 E .8188 ONO ONN O.NO NNN 818 8.1.8 .Nm .8 .818. NOO NNN NOON NOO .8185 OON .NNN NOO ON ON. .8188 E NNNN NOO ONN ONN cm .3 ONN NNN «NON NOO 355%. O «5%85 O 3.38...an a .coNNONocowoN .No owSN some NNN N88 @9896 08 NNN 860% .8 35.5500 .N xNNucoNNm< 79 . NMHN A ”Kw ”V O3. 3M3. NOO. ..OV MWR ...... .... 3V. 3.3.. .MHN Om... ..OO. 3. .3. NOON .O .3. m... O3... ..OON. Mk .3.. mfiv. a... OON .3. O3. 3. a... 3. .MK Ow. NOO. .... ..NM. 3.3. mm 3% LV .MK MO. .MK 3.. .3. m... £31m... .3. NO... GMEQVN 3.3,... 3. .3. w». 3. .3. ..Or... SE... 3.3. .3. N... WON .MK .3“. .3. m... g V «QR qkfl‘ .MK “MAN QANN .Qflw NM.“ .3. 3.313. a... O .3. m... 3.31m... ”3. .MN m... 3...»... ...... .3. ..Oh. 3.. “3. .3. m... 3.9 .3. ”...... .O .3. MWK ...... .... 6 .ON .3. MN >- WV .mk $5.3m. O. ..OO. .OV .mmmk WV ..NO. .3.. 3.. ..OO. MWR KVHVV HOV NMHN WNW k .LV 6V 3K QWV. .MK 3. .3. ...OOM. O... ..N ORV kOWHN O3... .3. ”M... “a. .3. .m... 3. .3.. .mk .3. w... 3.3. ..Or... .NO. .3. ..OO. 3. .... .3. mm m3. M3. .wk .m SK .3.. “WK ow SK .Omk OD 3mm .2. 3mm. .3. ...... uNSVumm. 9.— S: ...v. .MK 52 mm 3M6. .MK m9 am 3.. ..wk v2 3% .3.. .mk 2: La... .3. ”MN ON. cflk .3. MK 52 ON 3mg. .MK 03 ..V .MK . mg OWN“... .3. MR may MK 8%.“. ..OO. WK HQ pm . .3. MW 02 3.. 39.. .3.. 5: OH .thm WV ”MK mwfi ONN .3 .3.. MK 3: ..K UMV.MK he .3.. 5.. .Mk. v3 3% ...v. .3. MR no" UK 5% WV .MHN WGO § 519% moo 95 MR 6V. K owo QrN . ”WV mg a Na MMO. Mm wfiwss Nag. o .m “£50 0 .3.: 80 $4393. 35% 2% .«35933 .3..an 3. .Emtmhczuu NOMEH» QR .«QESMLE EOEGEQE 3* .«SNENEES OENEBQ ob .«uxgtmfic BEE arm .35.... ngwag gm .«uzcutmfic Oazgét ch .3220me 3.52% am .«SuEOEENEm 23.30% Mm .«metamum 53.88 mm .«OfimzmmchNMONB £59m» aqxszoEcéAath $3..» 5. .3553. $qu NV .«EESBOQO .393 3x .«uccbhnusm wacky Mk ”macaw 0 OOO :5 N.N_ v 23 OOO :5 ON A n 328. 5. 5 ON v O5. .32. so OON A u 3533 .332. :5 OON v u 338% .. A80— 3 38833 now So 9va u 33.330 . 3. .3. .wk .3. .3. w“. 3. .3. w... 3. w... N2 O,N .3. ON em .3. .mm 3. .3. .3. N... 3. .3. .mm N2 8 .3. ONN .3. .3.... 3. .3. .3. .m... .m .3. .31»... OM: 3. .mk 3131mm 3. .3. 3.. NN NNN. .3. .3. w... OM: 3. .3. O3. .3. .m... 3. 3. 3: 3. .33 O3. .3. .3. wk .3. .3. .3. .MO 3. .3... N: 3:»... 3.3. .mm 3. .3. 3.. ON .3. .3. .3. .3... N: 3. .m3 .3. .mk 3. .3. NW ...N NNN. .3. .3.... E 3. 3. .3. NE 3. .3. O... 3. .3. a... O: 3. Own. 3. a... .3. .3. .m... an .31»... N2 313:»... 313.. NE a... .3. .3. .3. 3.. ...... 31m... OO_ 3. .3. 3. .313... 3. .3. .MN 3. .m... N2 .313. .3. .m... .3. .3. NE .3. .3. .3. .mm Os NNN. .3. .M... 5 3. .3. .3. .3.... 313.3,... O... .3. .3. .3. .mm 3.8. O: 93:32 M3356. 353%. 3.8.9836 a .983 .N iguana. 81 9.5.... 3.0838838 ..8 8823. ONO. OO.O. OO.O. OO NOO .O.. NOO 8.8 8...... 83.55 998.5 NOO. NN... N. .NN OO O0.0 NO. NOO 9.88 .2... OO NOO. .N.. N 8 N...O N3. NOO 95.8 8.... 8 O0.0. N. .8 OO OO.O OON NOO $5.3 BE. 2. o. .N. .3.: 8.. w. .o ONO So 95.8 8E. 8 ON... N. .. N 2. ONO OO.O NOO 98.8 8.... 2. N3: .ONN 3O OO.O O. .ON ONO 98.8 8.... 2. Ni. O. .NN OO ONO OO.O. ONO 98.8 8.... 2. NN.O. .N.O. OO NOO OO.O. ONO 958 BE. 8 OO.O. ON.NN OO OO.O OON .NO .88.. .29.... .98. 9.35... ONO. O. .O. .N.O. 3. .N.O OO.O ONO 98.8 8E. 8 OO.O. .NNN OO .N.O OO... NNO 95.8 8.... 2. NO... NNON 3O NOO ON... ONO 95.8 8.... 2. NNN. .NNN 3N .N.O OON. ONO 98.8 8.... 2. ON... NOO. 3. .OO NO... .NO $5.8 .2... o: 8.2 2.8 8.. ON... NO... .8 $5.8 8.... 0.. 3.... N. ...N 8.. NO... 3.3 one $.83 .2... 2. 3.2 mm. m 8» Nod «.03 O8 98.8 8.... OO OO.O. ON. N 2. NNO NNO 0.0 98.8 .2... 2. ON... ON.NN OO .N.O ..ONN O.O O... N. .O. ON.NN OO .N.O OO.O NOO .89... 3.8 NOV 8.59.... 3085838: NOO. N. .O. SNN OO NOO OO..N NOO 288...... N .25 .8 8823. .NO. ONN. OO.O. 8 N. .O NOO .OO .0353. ...»Eowaaaz :3qu =8... :5 A53 89:. uuaummfi. U .893. .AaéNEv a sows—52 895,—. GEE—am o—Q—flam ac eon—Omaha“ End” 32:. Goad. imam nun—am =5qu £08m .«O :98” ea .«0 Scam ho £80m .O .89 £9... :82 ...... :32 35:88.. .N.O..SO .«o 858.. ...oEoWufiE v.8 £86586 8... . QMEMQOSOSSROU flaw—08¢. sooom .m 52.33. 82 95.8 8.... O. NNN. .... N 2. N...O OO.O. ON. .88.. .8. 2...... ...O... .82... ..N... 8... N. OOO. ONN. OO.ON ... ON.O O0.0 ..N. 95.8 8.... O.. NN.O. NEN NON ON.O OO.O .N. 89.88. .82.... N58... NNO. ONN. NOON OO O. .O .NN ON. 95.8 8.... .... OO.O. ...O... .NN NN.O OON. ..N. 95.8 8.... O. OO.O. OO... .8. NN.O OO..N ON. 95.8 8.... .... OO.O. OO.ON ...O ....O ON.O. ON. 9.5.8 8.... 2. NN.O. O0.0N 8N NN.O ON.O. NN. .82.... 8288.. 8...... OOON ON.O. NN.ON OO NN.O OO.O .N. 95.8 8.... .... NN.: O. .NN 2. NOO NOON ON. 689.885.. .82.... 888.9. OOO. N. .O. NOON O. O0.0 ON.O. N: .8888. .82.... .8888... ..OO. NN.... NOON .... O0.0 .N.... O.. .8932... 89.8.. .8888... OOO. NO... .O...N OO O. .O OO... ... 2.... ... OA 8.8... ...O .82.... 858.3. NOON NO... NOON NO. NOO ON... NO. 8...... 89.. ...... 88... .82.... O5...... NOON.NOON ON.O. ..ONN N... O. .O O..O. OO. 95.8 8.... .8 NOO. NN.ON .8. O. .O NO... NO. O... OON. N. .O.. OO OO.O O0.0 OOO 95.8 8.... OO ONN. OO.O. O. ...O NNN NOO N... O..O. ON.NN OO ON.O .N... NNO .8 .8829. 888.5... NOO. NN.... NN.ON O. NOO ON.O. ONO 95.8 8.... O. O. .O. NN.ON 2. ...O OON ..OO $.53. aeoEowaaas 2.88m 2.2: :5 A83 82H. emanmuux. U 3.3. A255. a $3.32 82,—. 2956 can—am .... 8:395 .525 .53. 8.3. ......a 2.3m 330m :83— .... ..uoom .... no 525 .3 53¢ .... 83> Emmi :82 mm:— :32 «$352.5 .UhGOO .m Xmficoum< 83 v F:flgub fluvifard...‘ I... ...... I ...-O .. .... II ....Ir ...Omflouz ..o b.3355 .N.. 880:8 8.... 8.8 385 _. .8 .8828 ..OO. ON.O. NN.NN 2. OO.O ON... NO. 95.8 8.... 2. ON.O. NOS 9. O. .O .0.0 OO. O... NO... O. ...N 2. ONO ...O. ON. 95.8 8.... 2. NO... .N.OO 2. ONO ON... ON. 95.8 8.... 2. OO.... ON..N 2. OO.O O. .N ON. 95.8 .2... 2. N. .O. OONN 2. SO N. .O. NO. .8888. .822. 958.... .OO. ON.O. OONO 2. N. .O NO.N N: 389.888. .82.... .8828 .OO. ON.O. ON..N 2. OO.O NNN .... .8888. .822. 958.... ONO. ON.O. ... .ON 2. OO.O O. .N. OO. 289.88. .822. 8825...... ONO. NN.O. ON.. N 2. NN.O OO.NN OO. 289.2888. 822. 858.8 NOO. ON.O. OON. 2. NO.O ONN. OO. 88.. 2.82.. OO.. ......22 22...... N.. ONO. O..O. NOON 8N OO.O OO.ON NO. .822. 8838...... NNO. OO.... OO.ON 8N ONO ... .O .O. NNO. OO.O. ... .ON 8. OO.O NON. OO. 98.8 8.... 2. OO.... NOON 8N OO.O NN.... O... .8 8828 .OO. NN.O. NN.ON 2. OO.O OO.... N... .88.. NO .228. ...... O... 9.88... OOO. ONN. OO..N 8O NOO NN.ON ON. .8888. .822. 8288.2... ONO. NN.O. ON.. N 2. NN.O ON... ON. .0323. 2.02.0325). 2.30% .5... A8. A28. 82,—. $283.... U 3.3.. 925.5 a $3.82 80:. «...—5% 0.98.6 .... 8.83.5 ...an .83. no.5. ...Nam 2.3m 2.30m nooom .... :uoom .... .... 500m .... 53m 84 2.. 2.. 2.. 2.. NN.O NOO OO.O ...... 2.. 2.. 2.. 2.. OO.O OO.O .2. OO.O ON. 2.. .N.. 2.. OO.O 2.. OO.. ON. ON. 2.. 2.. N... . 33.. 2.2.5.8... ...».mu .2. .2. 2.. 2.. OO.O NOO ONO 2.. 2.. 2.. 2.. 2.. OO.. OO.O 2.. OO.O OO.. 2.. OO.O 2.. OO.O 2.. N... OO.. .N.. 2.. 2.. NN.O o 8.2.. 2.2—8.2.. ...»-..— E . Pal ...u 2:431 2.. 2.. 2.. 2.. OO.. .OO .OO 2.. 2.. 2.. 2.. 2.. OO.. ON. 2.. NO. ...... 2.. NN.O 2.. OO.. 2.. O... NO. N... 2.. 2.. ONO O 2:... 2.25.8... ...».m w‘rl. (1...... n 2.. ...O. 99. 09F f¥lr Om ow on om cm co oo o... ow om cm oo oo ow om cm ov ow ow oo oo cm 2. 0.. 0.. cu ov ow . . 22.8... 2.5. 0.50 559—0 am?BBBZNmmmmBmZmeBummmmmaazz MF‘NF‘OF‘NMMNMHF‘OOF‘OOfiv—F‘F‘Nfiv—OF‘N a 5 E o.— N6— N6. 5: 53 5: N6. 0w. an. .6. 0w. N6. .N. m6. NNN 9w. aw. m. 0.2 ..5 N6. 2.: Wm. m6. 5: may ma. m6. Nd. UQHUUQHQQUUUOUQQHHQUUQUUHQHU ovdm 00.2“ ON? vodm Nvdm Nvdm 22mm $.02 QEON NNdO 3.: wam mow.» 3.0m Edv wmwm 3.9... 3.3 mean 3.9» :5». amdm 35m «NON “Own omdm 32.3. 8.? . 8.6 A... ENE. ...... ...... cm. on. on. 0m. 8. em. on. em. on. on. on. 09 cm. om. om. 09 mm. mm. mm_ mm. mm. mg mm. mm. mm. mm. mm. mm. a fiflaum ... 2. ON NN ON ON ON ..N NN NN .N ON ON NN ON ON .N ON O. N. O. O. O. ... N. N. .. O. ... N... 32,—. OO..N. .5880... 538m ....N 6?. £030... .23. :26... £33 .232. A8253... Emmi .NNOB ... .225... ..o 82.; 8.. 3.6.32... ... 2.9.33. 85 vO . . mod NO... Q... 8.. .. 3:... 53....» .N.O. 2.. O... OO.O OO.O 2.. 2.. o 2:... Skew 2.0.3 om ow oo o. cm 02 ow ov om on 0m 0m ow on on ow ow on 0m 0m ow oo ow on on ov om om ov . O..O.... 2.5. 239.0 mzz2mmZmemZBBBBBmmBmmBBBBmzm Opuv—to—dv—av—nv-uv—dv-AOOv—tv—tv—nv—uv—uo-«OOONOOq—nr—av—NO 2.3 2 No. 2.5 w. 2.: N6. .6. 2.: 0w. 3 Q3 Nd. VON NE v.2 .N.: No. Qw. ww— w. m. v.3 v.3 wd. w. No. ad. 5: UQUUDt—lHUUHHHUUUUUUHHUOHUUQUUH 05.2 omém mm.NN mfg mfg 8.3 3.: SEN moNN had. SNN 3.7m mmém mwdv Nada om.wm ohfim mmd. omdm 3.9m mNNm mv.mm RON deN cod.V NF; OmwN 8.3. 3.2mm . .86 .2. ENE. ...... ...... No. No. No. No. No. no. No. N0. N3 mm. mm. mm. mm. mm. mm. mm. mm. mm. mm. mm. mm— on. on. on. on. on. on. on. on. a mun-flaw 9. NO ... N... 82H ......80 .v 29.0%... 86 NH. 0 mod wNH 2: m N oo 0 H.0N 93». 05 NH: 3: E: S: «E , m H om Q N.oH 3.5» 2o 2: ca o wwd wwd NE 32 m o 0 NdH Siam v3 3 «\c .2: S: Q: 3 o ov U m .m H 3.3 v2 em 5 o voH mm o «E Z N om Q de mnfim voH ma 3: «\c a? 3: >9 o oo H 02 0N.wH X: 3 cm 0 wNH ovH E: m H ov U HNH 03% v3 3 8: S: 8: «E m m 0N H N.oH vaéN 2: Na a? E: a? a). m H ov U m H m m.¢N 2: Ha S: E: «H: «H: m H ow H 5.: av. HN 2: ca 8: «\a «\c «\c m H on H de Ho.HN voH am mm 0 mod oo.o moH 7H H 0m 0 0.2 oo.Nm 2: mm 0H H No.0 two 3: m H on U o.mH 3.: X: 3 .2: «\c E: E: m H om D 5.2 Hvdv 2: cm 3 o no 0 who .2: m o On 0 wH mmNm H H H mm 3 H me mHH E: m o ov Q m.wH vowm HHH vw E: «\c S: S: m o ow U HNH ov.mN HHH mx 5 o 3.0 mNH 8: 7H H on U v.2 moNN H HH Nm am H ONH $6 8: m H oo 0 v.3 aHHm HHH Hm mH H co H 2: 3: 7H H on 0 m.mH oo.oN HHH 0w 3: S: S: «H: m H ow D N.oH NN.Nm HH H as NH N NH.H owd «E Z H om U 00H 3.? HHH wk. mo H mNH V: «E m H ow U v.2 mH.mm HHH HE Nb o wad end co m H on U E: voNN HH H ob co H 3H NH 3: 3m 0 ow U o.wH cmdN H H H 2. a? E: «\c 8: Z o ow AH v.2 on. H m H H H E. HN H NH.H SH «E Z H ow U H.H.H ovéN NoH mm «H: «\c E: E: 3 N on U N.oH voéN NoH Nb Vm H in H and S: m H on U HNH Hmwm NoH HH. _ 3:: o 8:: v 222 Arab 0 HHH—Egan 9 “H2305 23¢ a 820 HEV ..HwHoHH HE“; ...—G a u wfi 532w 532w 532w owa 93H. 9.50 52:0 9.an 3:. .988 .v x6534. 87 —.||||||||||IP . ..w I E: S: E: a? m N OO m O O0.0 HNO mmH S: «E S: S: m m ow H OOH mvNN HNO «NH 3: S: E: S: m O Om m ms SN HNO mmH «H: S: S: «E m m ON H «H H NN.OH HNO NNH S: Q: S: S: 3 N OH. m NNH NNwH HNO HNH S: E: 8: 8: 7H m Om H 02 ON.OH HNO 92 S: Q: S: Q: Q: m ow Q v.2 NN.Nm HNO ONH OO.H NmH 8H 3: m N On 0 6: O0.0 ONO ONH «H: S: S: E: m N ON H 6H H Nm.mH ONO mNH VOH SH mod 8: m N ON 0 62 mva ONO «NH SH Hod 3H 8: m H Om o 0.2 OH .3. ONO mNH E: S: E: 2: Z N OH H H .3 ON .3 ONO NNH HNH NH.H O0.0 Q: m H ON 0 H.HH mow». ONO HNH E: S: E: S: B N OV H H .3 vow H ONO ONH «H: «E 8: 8: m O Om H 0.2 2.8 ONO OHH S: 8: 8: w: 3 N Om m H.HH MENH ONO OHH «H: E: E: S: 3 N OH H m H EMVN ONO n H H «E «\c E: 8: 3m H Om H m .m H EOH ONO OH H S: Q: S: E: mm H OH H «.3 NH .Om ONO m H H VNH ONO end S: m H ON 0 OOH O0.0 OHO N: “E E: E: S: m H OH H 5.3 3.2 OHO HHH E: E: 8: 8: m m ON H v.3 ooHN OHO OHH NNH ONH 2 .H E: m H ow U v.2 OO.?“ 08 OOH 3O O0.0 3H 8: 3 N ow o NNH O0.0N OHO OOH E: a? 8: «H: m N Om Q HON O0.0 OHO NOH NO.H OHH H2 3: >9 H On U 2 ohwm OHO OOH S: Q: S: 3: Z N ow H WNH mmON OHO mOH NH.H SH SH 92 m N Ow Q ON 8.3 08 «OH «E a? E: E: 7H m ow H 0.2 NO.NN OHO MOH a 8:: o 33.. u 3:: H25 o 5253 a x2395 33% n mus—U HEO H.HwHoHH H53 .3: HHH a. mag 538m 538w 538w ow“ 8; 980 52:0 235 8F ...».mH bf: ...?m .380 .v £95qu 88 a «E «E «E «E m H Om H wOH 8.3 «NO OOH «E «E «E «E m H O« H «.«H HQOH «NO «OH «NH m«H o«.H mOH 99 H OH m N.« mm.«m «NO OOH «E «E «E «E >9 H Om m md «Hm «NO moH «E «E «E «E Z H OH H m.mH Om.«H «NO «OH «E «E «E «E m H O« D m.mH m0.0« «NO mOH H0.0 mO.H mN.H «E m H O« D «OH 3.3 «NO NOH «E «E «E «E Z H on G «H «mOO «NO HOH «E «E «E «E m H Om H O.NH NN.ON «NO OOH «E «E «E «E Z N Om H N.mH «m«H «NO OmH mO.H ONH O0.0 «E Z H Om D «.«H N«.HO «NO me NoH NO.H O0.0 «E Z H OO Q mOH NO.mO «NO «mH «E «E «E «E m H Om 0 m.mH mem «NO «2 «E «E «E «E m H OO 0 OmH o«.Om «NO mmH «E «E «E «E m N on H N. mH «m .«N «NO Nm H mH.H NmH Nod «E m O OO O mOH H«.H« «NO HmH mO.H OHH a«.H «E Z H o« D OOH OO.m« «NO OmH HO.H ««.H «0O «E Z H Om U 2 N«.«m «NO «3 «E «E «E «E m O O« H ONH OH OH «NO m«H «m.H Nm.H mO.H «« m H O« AH m.mH Nm.Om «NO «3 «E «E «E «E m H O« H O.NH OH .3 «NO 03 SH OOH mO.H «E m H O« U m.mH ON.mN «NO m«H «E «E «E «E Z H OH m «.0 NO.HN «NO «3 «E «E «E «E Z H O« H N.mH NOmH «NO m«H «E «E «E «E >9 H OO H m.mH m«mH HNO o«H «E «E «E «E >9 N o« m m6 o«.OH HNO OmH mO.H HmH mN.H «E >9 N OO D «H H0.0m HNO mmH «E «E «E «E m m Om m m.O ««.O HNO «2 OHH ««.H mO.H mm m N O« o m.mH «NON HNO OmH «2:: 03.2 «3:: O5 0 52:5 2253: 2:2 . :20 :5...st :5. ...E a «as 532w 532w 532w ow« «8H. «.80 5580 ...—«gm 8:. «m.mH ...?OH «mm «as ..V «ea? 89 «E «E «E «E >9 O OH H O.NH mm.«H «OH mON O«.O ooH ONH «E m N Om o H.«H. mO.wm «OH «ON «E «E «E «E m O o« H «.«H O0.0N «OH mON «E «E «E «E >9 O Om H «.«H O«.«H «OH NON «E «E «E «E m O Om H N.mH OHOH «OH HON ««.O N«.O O«.O «E >9 H Om U m.mH «O.mm mNH OOH ««.O O0.0 OO.H «E m N OO 0 «.«H HO.mm mNH mOH «E «E «E «E >9 N o« 0 «.«H OO. H m mN H «OH «E «E «E «E Z H O« U m.OH wN.«N mNH mOH «E «E «E «E m O o« H m.mH OmHH mNH NOH O0.0 m«.O O0.0 «NH m N Om U m.mH «m.O« mNH HmH H«.O m0.0 OmH «E m H Om 0 m.mH Om.m« mNH OOH «E «E «E «E Z H O« m NH ««.mH mNH OmH OHH HmH mNH «E m N Om o H.«H «O.m« mNH m«H «E «E «E «E Z H Om H 2 m«.mH mNH «OH «E «E «E «E Z H Om G «.«H ««.O« mN H OOH «E «E «E «E m O O« m H.«H «HNH mNH me «E «E «E «E m m OH H H .«H N0.0H ONO NmH mO.H ««.O mH H «E >92 N O« o OOH H«.O« ONO HmH NOO O0.0 N«.O «E Z H O« U m.mH «O.m« ONO OmH «mH mNH «HH «E Z H OO 0 m.mH m«.«m ONO O«H «E «E «E «E Z H OO m 0.0 «mm ONO m«H mm .H OmH ««.O «E m N Om o m.mH ««.Om ONO ««H OmH HHH OHH «E Z N Om U «H O«.«m ONO O«H «E «E «E «E Z H O« m H .w ««.« ONO m « H «E «E «E «E Z N O« U OmH OO.Nm ONO ««H «E «E «E «E Q N Om H m H m«.ON ONO m«H m«.H «OH OmH «E Z H Om U «H O«.mm ONO N«H mO.H m«.O Hm.H «E m m O« U OOH mN.mm ONO H«H . 3:... o 8:... _. 0...... 3.3 0 .....EH«« .. «.2305 3:3 . «««.O HEV ..HwHOHH HEuv .39 a t w... 539% 5.5....» 53....» «w« «0...! «.80 .520 28% 09.9. ...mumH ...»..OH ...HM 6.2.8 .« «Enema 9O Om.O Nod «NH O« Z O o« O «.2 mm .mN OmO O«N «O.H HHH NH.H «E m H O« D H.ON m0.0« OmO m«N m«.O OO.H m«.O «E Z O o« o de Om.mm OmO ««N «E «E «E «E , >9 H Om H «.OH «0.0N OmO m«N mHH HO.H ONH HO Z H Om o m.mH mm.mm OmO N«N Om.O mm.O H«.H Nw >9 N Om o H.«H O«.Om OmO H«N NO.N ««H NOO «E O O on U m.mH Om.mm OmO O«N N«H HO.N mN.N O« Z O Om U m.mH OO.mm OmO OmN ««.O ««.O m«H «E m H O« 0 «.ON «mNm OmO mmN «E «E «E «E m O O« H O.m H H«.OH OmO «mN «E «E «E «E m H Om 0 «OH mm.mm OHO «mN mO.H mmH ««.O «E N O Om U O.mH O0.0N OHO mmN ««H ««H mod «E Z H Om U O.mH «m.«m OHO NmN H«H «O.H N«.O mm m H ON Q O.mH ««.m« OHO HmN «E «E «E «E m O Om o O.mH «m.ON OHO OmN OHH OHH OmH OO m O Om U m.mH «O«N OHO ONN OO.H OHH mO.H «E Z O Om U «.«H OO.mm OHO «N «E «E «E «E m H O« o m.mH NH .Om OHO «NN N«H OH .H NoH «E m O OO 0 NOH mm.mO OHO ONN «E «E «E «E ”H O ON 0 O.mH ««.ON OHO mNN «E «E «E «E m O OO 0 O.mH Nm.N« OHO «NN «E «E «E «E Z O ON 0 «.«H «m.«N OHO mNN O«H mO.H «0.0 «E m N OO 0 m.mH mH.mm «OH NHN «E «E «E «E m N OO 0 m .m H ON.mN «OH H HN O0.0 O«.O mO.H «E Z m o« o O.mH «NHm «OH OHN «E «E «E «E m N Om U 2 OO.Nm «OH OON «O.H OmH Om.O «m Z H Om o N.m H O«.mN «OH mON «E «E «E «E Z O O« H m.mH «m.OH «OH «ON «E «E «E «E Z O Om U m.mH NoHN «OH OON . 3.... o 3:... u 3:... Hrb a 5.5.5. .. .3395 «H.«m . «««.O E: ...wHomH H53 .39 a t w... 53....» 53....» 53....» ow« 8:. «.80 58.0 H...«.m 8.8 ...»..OH ...».O «.88 .« £32m? 91 «E «E «E «E N O Om U m.OH OH.«m mmO O«N OmH mNH mNH «E m O O« U O.mH O«.mm mmO ««N «E «E «E «E m O O« 0 H .ON «O.Nm m 8 ««N «E «E «E «E Z O O« H «.«H N«.mN «mO O«N «E «E «E «E Z O OH H m.mH O«.«H «mO m«N ««.O NO.H O«.O «E Z H OO O NOH mO.«« «8 ««N «E «E «E «E Z H O« U O.mH «N«N «mO m«N «OO O0.0 mNH «E Z H o« 0 O.mH Om.Nm «mO N«N ««.O Om.O «mH «E m O OO 0 m.OH mN.mm «mO H«N «E «E «E «E Z O O« o m.OH O0.0« «mO O«N «E «E «E «E m O o« 0 H .ON mO. H« «8 OON «E «E «E «E m H Om U «.«H O«.mm «8 «ON «E «E «E «E Z H Om m m.NH O«.«N «8 «ON mmH HHH OO.H «E >9 O o« O m.OH NOON «mO OON «E «E «E «E >9 O Om U OHN mNH« «mO mON «E «E «E «E O O O« Q O.mH O«.mm N«O NON «E «E «E «E ”H O Om U O.mH mO.mN N«O HON mNH mmH ««H «E Z O O« U m.mH ««.ON N«O OON «E «E «E «E m N Om O OH mO.mN N«O OmN O«.O O0.0 OHH «E Z O OO 0 m.OH «H.«N N«O mmN «E «E «E «E >9 O O« U O.mH mO.mN N«O «mN «oO H«.O N«.H «E Z O Om nH O.mH O0.0m N«O OmN mHH Hm.H mmH «E >9 H Om U NOH mO.mN N«O mmN «E «E «E «E m H O« Q «.ON mm.N« N«O «mN «E «E «E «E >9 O O« H m. m H mm .NN N«O mmN «E «E «E «E >9 O O« H O.mH mm.mN N«O NmN «OO m0.0 N«.O mm m O O« U O.mH «NON N«O HmN «E «E «E «E m O O« H «.ON ON. HN OmO ««N ««H OmH O0.0 H« m H O« U «H ««.Nm OmO ««N . 3:: o «...: _. 3:: ...O a 5:55 2232.. 23. . .36 ...O 2.2.... He: ...... a. ... «8 5.5....» 53....» 5.3....» «9. 8.; «.80 559.0 33m 09.9. ..«umH ...»-OH ...?m «.88 .« 520%? 92 93 r O ..E «\c 3: «E «E. Z H Om H H.H«H ©m..vN NmH OHM HN.H mNH OH.H m.NH Z H O? U m.mH mNOm NmH OOM «\HH O\HH «E. a). m H Om AH m.OH «.N.Ov NmH mom“ «\a a). «E. «H: Z O OV H m.OH H«mON NmH «.Om ONH va Om.O a}. m H O0 AH H.H.H wOOv NmH OON «\H. a). «E. a}. 3 H OO AH m.OH wvdv NmH MOM «\c «\c a). a). m H O«. H m.OH NN.ON NmH «Om OON mmH wHH «\c .5 H Om AH OH.H mm.mv NmH MOM «9. O). «\H. «E Z H On Q m.mH mm.mm NmH NOM «\c a). «\a a). m H Om H m.OH mNSN NmH HOM «\c «\a «E. a}. .5 O OH. H NOH H«.mm OmO OOm ONH OO.H O«.O a). m O OO O H.H.H mvHv OmO OON OmH NmH OO.H a). Z O OH. O O.mH HmON ONO mON mmO Om.O OO.H «\HH N O OO O O.mH Owém OmO «ON «9. «E. «E. «\c m O OH. H O.m H OH. O H OmO OON «\c «\a «\c «\c m O OO O m.OH Om.O? OmO mON OE a). «\c «\c m H ON. 0 D. m H Om .Om Ono VON H0O HO.H NmH wHH Z O OH. O m.OH Om.ON OmO mON OH.H mNH N«.O «\c m O Om U m.mH OH.«m OmO NON Om.O mmO mO.H HNH Z O Om AH m.OH NMOM OmO HON «\HH 3: «\c a}. m O Om m NH Wm. M H OmO OON «\c «\a «\H. «\H. N O Om H H«H; mm.mN OmO OmN «\c «\c «\c a). m H Om U O.mH HwNm mMO wwN a). «\c «E. «\c .5 O 0v 0 OH.H OO.».V mmo OmN a). «E «E. OO.. m H Om U m.mH H«.mm mmO OmN OO.H «O.H WOO «\c m O Om U m.mH mmOv mmO mmN Hm.H ONH MOO a). N O OH. O H«.ON Nmfi? mmO NmN a}. a}. «\c a). m O Om H H«.OH mmOm mmO HmN mH.H OH.H OH.H «\c m H ON 0 m.OH H«OOM mmo OmN . ...... o 2:: . «...: ...O o 52...... 223.... 25. . .3... .522... .51.... ... .. «a. 5.5....» 53....» 53....» o»« 09.8 «....U 52:0 HESm 3:. ...».OH ...».3 ...Hum ......8 .« £98..qu .2 .... .... .... a... .... .... .... .... .... .... .... .... .... ... o. .o .... .... .... «a... «E «E «E «E «E «E «E H N. H . .5... 53....» ...».OH 8.. .... .... .... .... .... «... .... .... .... «... «... .... ... .... «m .o .... .... «... a ... «... ... .... .... .... .... .... ... .. .. o .5... 53....» ...... «mO «E «E «E «E «E «E «E «E «E «E «E «E «E « m. H «E «E «E m O .O «E «E «E «E «E «E «E «E «» .O .. 0...... 53....» ..«um «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E mO «E «E «E «E «E «E «E «E «E «E «E «E H O ...O o»« «9.9. .... .... 2 on ow .... «m on .... 8 o. «m 9. on S .... on 8 8 8 8 .... o. o. o. «m on .... on 5:53 . .23.... «...... 58.0 mZZmBmmmmemmmZBmmBBBmemmBBZ v—tv—tv—IoOv—ar—nv—nv—noovac—«OOp—fiu—Op—uo—nv—av—Oo—‘u—aq—tv—n »H «.3 NOH mH mH H.«H «.«H «.«H md H.«H O.mH H.«H «.«H m.mH «.w O.mH N.mH m.mH O.NH «.«H N.OH H.«H H.«H m.OH m.mH ONH m.mH mH O.mH OH.Hm HH.m« OO.MO mm.«H ON.OH ««.ON «m.Om mH.mm Hm.» ««.ON mN.NN mH.«N OHON «O.mH mN.mH NOmm N».mH «NOm H».«H mm.mm mO.«m H«.mm mm.Nm «O«N «O«N mm.NH »H .»m «m.ON mN.«N . .36 .5. ...«E. ...... ...... O8 08 08 mNO mNO »NO »NO mNO »NO »NO »NO »NO »NO »N0 »N0 mOO moo mOO mOO mOO mOO mOO mOO mOO mOO mOO mOO NmH NmH 3 H5...» .«m O«m «mm «mm «mm Omm mmm «mm mmm Nmm .mm Omm «Nm «Nm «Nm ONm mNm «Nm mNm NNm .Nm «Nm «.m mHm «.m O.m mHm NHm HHm .. «a. 3.8 ......oo .« 59.2.3. 94 s: 8.. a... 8.. «... «... E. «... 8.0 8... who 8.. .... «... «... NE a... 8.. a... a... «E «E «E on. H oo.o «E . 3:... 539.» ..mumH «... 8.. 8... 8.. «... «a 8.. «E S .H on .0 mad mmH 00.0 «E «E «E wad «E mod «E mm. H «E «E «E «E mm. H mud «E o 3:... 538w ...... «... 8.. 8.. 8.. «... «... 8... «a 8... m... .8... 8.. 8.0 «... «E mad «E and «E 3N «E «E «E «E w H . H 2.6 «E .. 3:... 539% ...».m 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 5.5.5 A. .230... 25. 5.6.5 mmmBZmBmmBmZmmmmmmBmZmZBmBme oo~oooooooooooo~~~~~oo~o~~~~m m.mH 0.2 HdN m.mH HRH m.mH m.mH v.2 wH v.5 m.mH wH wH m.OH mH H.vH 0.2 5: m.mH 5.: H.HH 5.: wH m.NH m.mH mH 0.3 NdH 0.3 05.3. hm.Hm mem 3.3 5&9. 3.3. N©.wm mm.mH QNSM mH.mm aqmv 3.0m mmdm mm.mm mm.mN mH.mH hwém mN.mm mm.mH mm.mm «62w Siam owém wHéH mo.wH 3.3 made 3.3 ohms . .86 :5 .83. :5. ...... mmH SH RH 52 NmH m.mH bmH mmH wmo wmo wmo wmo $0 $0 wmo wmo mmo wmo wmo wmo 08 08 one omo 08 OS 08 08 one a E.3m «8 «8 won Sn 8». 88 «8 mom «8 .8 88 88 mmm 5mm 88 8.. 8m mmm mmm .8 «8 8m «8 Sum 8.8 as. $8 8.8 «8 ... «a. 3:. 6.8.8 .v «€5an2. 95 «E oo. H H H . H «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E m w .o .. 8:... 53....» «rm. «E no. H o 3:... 53....» 8-8 a... .....o ow« 3.8 8 8 8 8 8 8 8 o. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 a .88... 33. F320 mmmBmZBZBmmmBmmmmmmmMZBmBmBBm F‘Ov—‘OOOOOONOOv—‘OOOOOHOOOOOOOF‘F‘v—l 0 5.5.8.. «.80 m.mH O.mH m.mH mH 56H m.mH m.mH mm mom on m.mH 0d Ho m.mH mom mH Tom v.HH 5.: de m.OH m.mH mH mo 5: 5.: 5.: 92 mH 2m: mm.mm no.5 whoH moan o9: mmoo Hoo mHHuo mm.mm 86m mmm was 3.: Hvsm mm.oH Rem v92 mo.vH oo.om oo.o mvHH omoH 092 wo.wH Rom mm.mm mmHm Hmdv . 2.5 .3 2.8.0.. .53 ...... Duo moo moo moo moo moo moo moo moo moo moo moo moo H oo Hoo H oo Hoo H oo H oo H oo H oo H oo H oo H oo H oo 5 m H ... m H h m H h m H a Gnu-3m .8 08 88 won 3m won 88. van mmm mam Ham can 88 mmm mmm 88 won 88 88 88 .8 omm 88 m8 ..8 «pm mmm mum .8 ... «a. 09.8 .888 .8 85...? 96 «E «E «E g . H 3. H mm. H «E H m .o Ho. H «E «E «E «E «E 00. H «E «E mwo «E «E «E «E «E «E «E «E «E «E «E .. 2:... 53....» ...?mH «... a... a... N... 8.. 8.. mo hoH a... a... a... 8.. 8.. 3.. a... 8... m... a... a... a... s: m. .. .... ...: 8... a... a... m... «... a... «E «E «E «E «E .. 3:... 539% ...».m «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E .....o 09. 02,—. o. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 .. .88... 33. $39.0 BmBBmmmBBBmmemmmZZmZZmazagmm OAOAOOOOOA—lv—ooo—-u—.oov—:o—o-—u—oo—'o o 5:55. 0.80 H.m HmH HHH on 5.: wH Him wH m.mH wH 0.0 5: on on wH m.mH m.mH wH m.mH mH EHH m.mH m.mH mm v.3 ad 56H H.HVH omH moo mmmm mo.mm Zumm omov v0.3 mhoH ooh? mmm.V moon mm.o mmoH vmdm ohHm ooém no.9 ode mon vHom mm.mm ova Hon mm.NH Hum... omom mod no.5 no.2 Hm.mH . 8..an AEV .anon A83 ...:— H: H: H: HnH H: HmH h: 5: bHH hHH hHH hHH :H hHH hHH hHH hHH bHH So So to Do hvo to two two Duo 5.0 So a 8.8 .8 Q? 8.. . 8 «8 a? 88 mmv 88 88 N8 .8 «8 a... ...v :8 o... m H.» a... . ... 0... m8 «0.. now 88 m8 .8 m8 «8 ... «a. 3:. 6.2.8 .8 533%.. 97 s: 8... a... 8... «... a... 3.. «E «E «E Hv. H ..oH mm .o «E «E oH . H we. H 3. H «E «E no. H «E «E «E 5H .m on. H . 3:... 53....» .3. mm. H mm. H o 2:... 5.59.» «...: «... 8.. a... 8.. mod mmH a... ...... a... 8.. 8.. 8... a... 8... 8.. 8... .8 8.. «E «E «E 3. H «E on. H .. 2:... 53....» ...».m s: A25 0?. 09.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 5:55 a .88... «.3. 52:0 BBmZBBmmeBZBBmZZmNBBmmmemZm Ov—nv—aOOv—uo—nv—Iv—nu—:r—cv—no—ur—cw—tr—n—nv—nv—nr—IOv—IOu—av—1No—n 0.3 02 92 mom o.wH m.OH m.mH 9o HHH mH mH HmH m.mH HmH HmH HmH m.mH m.oH HHH v.5 m.OH 5.: m.OH de omH omH o.mH «a: HHH UUUmHQHQUUUQQUUUQUHUQWQUUQQUQ ooém OHH}. Hmov mm.mm Hm.Hm Hhém oomm omoH oo.ov mmov mm.mm modm H92. 05.; v0.5 moon coin oon Hhom mm.mv dem 8.; oon om.mc mH.mH HmmH mm.mm 3.2V oomm . «««.O AEV 2».on A83 ...:— 00H 00H 00H 8H 00H 00H 00H 00H 00H 00H 00H omH omH omH omH omH omH omH omH omH omH omH omH H: H: H: H: H: H: a fififlum 88 «8 Ev 88 m5. .8 88 N8 .8 «8 88 8.. 8.. v8 8.. N8 .8 88 88 88 8.. 88 m8 8.. 8... «8 8.. «8 m8 ... «5 92,—. ...an .v 520% 98 .... 8... .8 8.. 8... .... a... 8... 8.. 8... .... «... e: 8... a... ...... a... .8 8... «... «... a... a... .... 8. . .. 3:... 5.5....» ...».2 «E oo.o «E ..m. H Rd «E «E mno 3.0 w... H «E «E «E om. H «E «E om. H «E «E «E moo «E «E «E «E «E «E H H . H «E o 3:... 53....» ...»-o. .8 8.. 8H who «... 8... 8.. 8.. «... a... «... 8... a... «... 8.. «... ...: ...: 3... «... «... «... a... a... 8... .. 3:... 539% ...».m «... .....o 0?. «9.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 «2.5.5. .. .23.... 2.5. ateu BmmZBBZmZBmHomBBmZZBZmmeZZBZ m~~~oo~ooo~oo~o~~~~o~~mooo~~o ...: m.mH no 0.3 HHH m.mH mH de Hm: on mH m.mH v.3 ~...om m.mH 5: wH 5.: 0.2 moH HmH 0.2 on 0.2 m.OH m.mH eoH H.om on :om mmmm mud wmom 2.0m mmd mhoH mm.mo omom oo.om mmHH oHoH 3.2 002. mm.mH ommm mmmm Homm oo.om Hodm mm.mm vowm moom oomm Om.mm mmHm moom Hmov vwém a «2:0 AEV ..meofl AEoV ...:— woo So So So 08 08 08 08 08 05 20 05 08 08 05 08 SH SH SH SH SH SH SH 50H hoH SH SH SH 00H 3 mun—flew N8 .8 08 m8 «.8 ..m «8 m8 88 88 88 m8 .8 88 N8 .8 «8 m8 «8 .8 «8 8.. «8 88 «8 8.. 8.. 8.. «8 a «a. «9.8 ......oo .v x6583 99 «E «E «E «E m H on U 02 omdm owo Sm «E «E «E «E 2 H oo Q o.wH muam owo omm «E «E «E «E >9 H on o 3: Son owo mmm «E «E «E «E Z o on O m.mH ohmm omo me oo.o moo mHH vHH 7H H on U «H 3.3. owo mmm woo woo SH «E m H on Q de wwwm owo mmm «2 SH SH «E 3 H on Q v.2 no.9 owo Hmm moH mvH ««H «.2 m H ov Q mNH omom owo omm «E «E «E «E m o ov H ow H mmom owo own mHH 32 SH «E m H ow U 02 Noon mmH 9% who Hoo mo.H SH 3 H om 0 82 MH .Nm mmH 3% «E «E «E «E >9 H ov H ow H oo.oH mmH 9% «E «E «E «E >9 H oo H m.mH Hmov mmH mmm mmH obH NNH NmH 3 H om U o.mH oo.om mmH mmm «E «E «E «E >9 H on U m.mH mm.mv mmH mmm «E «E «E «E Z H on H m.NH modm mmH omm «E «E «E «E m o ow D 02 5.3 m2 mmm «E «E «E «E m o om H S1 Hmdm mmH 8mm «E «E «E «E m H ow D 5.2 avov HHH mmm «E «E «E «E 3 H om Q de mm.mo m: mmm omo who «HH mm m o om 0 NE boom m: Hmm vHH moo mmo mm 3 H oo 0 v.2 mafia So omm «E «E «E «E 3 o om m «.8 mod So omm «E «E «E «E Z o 2 m o 36 So mmm mmH SH SH H5 3 o on U «.2 NN.; So mmm «E «E «E «E Z H om H 5.: omom So can m«H mmH moH «E 3 o on Q m.mH mva So mmm «E «E «E «E Z H on D O«H m H .8 So «mm «E «E «E «E Z o om m So How So mmm « 2:: o 3:: .u 322 8.3 o 5:513 a 32305 33“ . «ma—U AEV EwHomH AEuV .39 a .... as 538w 532w 538w owa 02,—. 980 5520 H235 92,—. ...?mH ...HuoH ...».m .988 .v 58.0%? 100 «E «E «E «E >9 H om H v.3 ohdH o>H oom «E «E «E «E m H ov U «H 8.3 omH awm «E «E «E «E m H on H v.3 8.2 HmH mmm «So So So H> m H ov o on vH .mH HmH 5m «E «E «E «E Z N on H «.2 mmom HmH own «E «E «E «E m H on H 62 SSH HmH mmm «E «E «E «E Z o oo H «.3 mag HmH «mm go go moo «E >9 H om U 56H mm.mN HmH mmm «E «E «E «E m H on H «.2 SOS HmH mmm «E «E «E «E m o oo m Wm 22 HmH me ova mmN moH «E >9 N on 0 «SH mvom HmH own «E «E «E «E Z o on H m H 3.2 H mH ohm mHH Hm.H omH co m H 2 U «H HH.HN HmH «hm moH NoH vHH «E m H ov D 0.3 3.9.. HmH Pm «E «E «E «E m o on U v.5 oH.Nm ««H «S «E «E «E «E Z o on H o.NH 8.3 mvH mum «E «E «E «E m o oo Q v.5 Noon mvH «S «mo oo.H mmH «E m H om U v.2 whom mvH HS 8H 8H moo «E Z o ov Q 02 3.? mvH ohm «E «E «E «E m H oo H 53 HvoH mvH Sm «E «E «E «E Z o ob U of 3.8 «.3 won Sud 8o 2 .H «E >9 H ow U v.2 moom mvH Sm NVH oo.o voH «E >9 o oo Q HHH oH 6m «.3 Son «E «E «E «E m o ov H v.3 mm: mvH mom «E «E «E «E Z o on U m.mH moon mvH vow «E «E «E «E m o on m mo omd mvH Sm «E «E «E «E m o ov H «.2 3.3 owo oom «E «E «E «E >9 H ov U m.mH SH .Nm owo mmm «E «E «E «E m o on m m.mH oHHN owo mmm E 8:... o 3:... .. 2:... 3.5 o HHS—Ema .. guano:— oHHSH . 820 :5 ~stun 35 can a .... wag 532m 532w 53ch can 3:. 980 52:0 9.5m 3:. ...HumH ...muoH ...?m .«88 .8 8.82.3... 101 8.: 8.8 8.. 8.. m... 8.8 «8 8.8 «... 88 a... 8.8 8.. mO.H mO.H 88 8.. «E omH mvo NmH «E HmN .. £28.. 539.» :8. .8: 88.. 8.. 88 .N.. N... 8.8 voH 8). 8.8 8.. e: 88.. 8.8 8.. «a 8.8 88 88 88 s: 8.8 8... 8... 8.8 8.. «E m m . H «E «E NH . H 2 . H 38. H «E S. H 8 2:: 539.» ...».m 88.. 3.5 «3 89;. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 .. 8.2385 8.3. 52:0 33m?memZZBmmZZBmZmBmemBZmZB OF‘F‘F‘OF‘F‘N—‘OF‘MF‘ONMONNMMNOMNNNF‘N a 5:853 «.80 5.: 92 HHH Q2 v.5 m.OH H.HH NoH m.mH moH v.5 5.: m.OH S.wH m.mH N.oH v.3 o.wH o.wH m.mH moH 0:2 a.mH HRH H.HH o.wH a.wH m.mH a.mH QUUUQUUHUt—lQQUHUUHUQUUOQUQHUOU :98 Sow mem mm.mN 2.98 58.3 mmsv Hmom 0958 mvom 28.8 8.3 mm.mN NEVS oo.ov 8.3 2 SN mowm 80.98 5:: Hmdm modH ovdm omH m Snow N838 wmov wodm omHm . 28.0 :5 2.8.8. :5. ...... mmH mmH haH 50H 3H 3H 3H mNH RH hNH mNH hNH mNH mNH NNH mNH mNH NNH mNH o: o: o: omH OH.H OH.H OH.H o: o: omH a fiflaam 88 N8 .8 88 8.8 8.8 :8 8.8 8.8 «.8 . .8 8.8 88 88 88 88 88 88 88 88 88 88 88 88 man 88 «.8 N8 .8 .8 as 3.5. 8.8.8 .8 888888. 102 mHH moo mHH HNH «E omH oo.o SH H.HH «E 88H wHH Hwo oo.o 88H SH omH «E 3% go «E «E «E SSH «E «E «E moH «E . 2:... 5.86..» ...».mH 88.. 88.8 8... 8.. .... 8.8 8.8 8... 88.. 8.... 8.. 88.. 8.8 8:. 88.. 8.. 88.. 8... 8.. 8:. 8... e: .8: 8.8 8... .... 8... 8.. 8.: o 3:... 5.86..» .88. .N.. 88.8 8.. 8... 88.. a... 88.. 88... 8... 8... 8.. 8.. 88.8 8.... 88.. .8. 8.. 8... 8.8 88.8 «E «E oho «E «E «E oo.o «E 8 3:... 539% ...».m «E ....o 89. 89.8 mmmZmZBBZBBZmzmmmmmmBmBBBmmmm ov om om on ov om om on om om om ov om om o0 ow om on on om oo om ov om ow on on om om .. =88... 8...... 52:0 MNONOOO—‘v—H—‘v—F‘NOF‘F‘OOOOF‘OOv-‘v—H-‘OOO m.mH m.mH v.2 5.: NEH m.mH mH 5.: 5.: v.2 wH on 2 NH HH8H m.mH m.mH m.mH 0.2 NoH ”2 5.3 m.mH v.3 H.H8H on m.mH m.mH m.mH OO.—QHUUUUUUUUUQUOQQQQQUOQUOUU 3.88:. 9.5 Nmém 38.3 ooov mmév vmdm vmfiv 3.8m mvoo SH Hm H598 mm.mm vH .wN “.N.: thm mm.mm oo.om SH .mN SHm VONM Show 368 mm.mN SSH oo.mm no.3 omoo 8.58 . .86 ..5 2.8.8.. ...... ...... .888 .8 8.85%.“ N: N: NH.H a: N: N: N: N: NmH NS NS N: m: m: m: mHH mHH mHH mHH mHH mHH mHH mHH mHH 3H 3H 3H 3H 3H a nun—Gum 888 888 888 888 N88 .88 888 88 888 888 888 888 88 .88 88 88 88 88 888 888 888 888 88 .88 88 88 88 88 88 ... a... 09.8 103 w. .H on who «E m o o... Q «.2 Hmom 88o moo «E «E «E «E m o 9. U on oN. H N 88o Noo «E «E «E «E m o on H m.mH 8>.NH 88 Hoo «E «E «E «E m o oo 0 N.oH oH .oH 88o ooo «E «E «E «E m o o8 H 3: 2.: 88o owo «E «E «E «E m o on H m.mH >NoN 88o moo 88o mNH So «E >9 o on U N.oH m>.oN 88o So «E «E «E «E m o om H 8 H mvNN to go So mHH Noo «E Z H 9. U o.8H mm.NH. to go ovH omH SH «E m H o8 o moH ovdm Ro Noo who and Bo «E Z H 9. Q ES 3.88 to Hwo «E «E «E «E Z H on U 8 H on .oH to owo oo.o oo.o oo.o «E m H 9. U o.8H EBN who mS oH.N omH NNH on m o ow U m.mH 88.2 who wS «E «E «E «E >9 H oo D H NH 2 .88 Po >S «E «E «E «E >9 o oo 0 8.: mm.mN Fo oS «E «E «E «E m o o8 H m.mH owsH 88o 8S ovH 88H 8H .N Hm Z o o8 o m.mH NNHm Po 8S omH 8o.H oo.o «E m H 9. 0 8H oN.8N 88o mS «E «E «E «E m H oo 0 8.: 8.8.88 moo oS «E «E «E «E >9 o o8 U 8.: Ho.Nm moo moo «E «E «E «E Z o o8 O H .oN H H .88 moo moo 8o.N mN.N 88H «E Z o 9. 0 8H HmoN moo So «E «E «E «E Z N 9. o o. w H H m. H 8 88o ooo vmo ~8o.o 88o «E Z o oo 0 o.wH H8.om moo moo «E «E «E «E m N oo 0 >.oN 8o.o8 moo voo «E «E «E «E >9 H o8 U NdH MNov moo moo «E «E «E «E m H om U wdH H 8 .mN moo Noo «E «E «E «E Z o oo 0 >.oN N888 moo mmo . 3.9. o 3.9. 8 8..... 8.5 o 5555. 8 8.2385 33¢ . 8..—U AEV ..HwHuHH HES .39 a .... w... 538w 539.» 5.59.» «ma 82,—. 8.80 .595 25w 8; ...».mH ...?oH ...muo .888 .8 8.8588. 104 «E «E «E «E m o ow H oNH ow: HNH NmH. «E «E «E «E m o ov H o.mH no.3 HNH Hmh «E «E «E «E >9 H om U «H om.wN HNH omn moH who NoH «o m H om 0 o.wH HH..om HNH oNH. oo.H mmH «NH «E >9 o on o N.oH ovsm HNH mNH. «E «E «E «E m H oN H m.NH mmom HNH NNN «E «E «E «E Z o oN U on Nm. H m HNH oNN «E «E «E «E w o ov H m.mH Ho.vH HNH mN> «E «E «E «E m o on H m.NH HquN HNH «Nb «E «E «E «E >9 o om H NH om.mH HNH mN> «E «E «E «E >9 o on U H.HH «H .mm HNH NNH. «E «E «E «E m o ov U N.oH No.mm HNH HNN «E «E «E «E Z N ow D m H S. H m Noo w H b N«H mmH NH.H No m o ov 0 m.mH HvoH Noo Sn «E «E «E «E Z o ow m o god Noo £5 «E «E «E «E m o on w v. H H oo.oN Noo m H N «E «E «E «E >9 H oo H m.mH ovNH Noo v: «mo and 3o 3 m o ow U «.2 oo.oN Noo mHm «E «E «E «E >9 H ov U m.mH mN.mN Noo NHm «E «E «E «E >9 H ow m H.H H ««H H Noo H Hm Noo woo woo «E m o on U m.NH vH .mH Noo oHN «E «E «E «E Z H on 0 mo H 5. «N Noo ooh «E «E «E «E Z o on H m.NH Ho.mH Noo won SH SH SH «E m H on Q m.mH voéN Noo non «E «E «E «E m H ov U moH H.oéN mno moo «E «E «E «E Z o on w «.0 mos who go «E «E «E «E Z o oo H m.mH oo.o who ooo «E «E «E «E m H on U «H HEN So So «E «E «E «E m H ov U moH owNN who woo « 33.. o 2:: u 33.. H95 0 :.:E_u« .. «.2505 23¢ a «««.O :5 Eamon HES .39 a & wS 538w 538w 538w ow« 92% «.80 56.5 35m 02,—. ...».mH ...».oH ...?m .9an .v gnocchi/x 105 ovH MN. H «E «E NE .o «E «E o 3:... 539.» «I: oo.o NN. H «E 2 . H «E «E Co «E «E « 2:2 539.» uhfi owa 85,—. mmmmmBBBMZZmeBBZBmemmBmZmzm a HHH-HEHNa «.80 ~om~~o~~m~m~oooo~oo~~o~~~N~oo O v 8 a. €2.05 23. 52:0 O.mH NNH N.oH m.mH N.oH m.mH v.3 H.H«H N.oH 9.: 5.3 H.HH v.2 HNH m.NH H.«H v.3 on moH m.mH wH v.5 H.om v.2 on NNH v.2 o.mH m.mH QHDUUOQUHQQDHUI—IQUHUOUUQUUUQUU whom :om Nmfiv mH.mm gov oo.mN omdm NY: oo.o». mm.mN mm.NN ohm wHNm No.3 no.5 thN 3.2 3.3 thv Nodv Nm.Nm Nv.mv no.3V VM.Ho mvoo oHow nH .vv HNéN oo.om . 9.20 :5 £90m Has :3 OmH OmH OmH OmH omH ovH mvH a: a: a: 03 03 03 ovH 03 a: a: omH omH omH omH owH omH omH omH omH omH omH omH a fl—Hauw «2. «2. SH. o2. «E «E «E «E SE o? «E «E «E NE HE of. «E «E «E «E «E NE HE «E o2. «E E. on. «E u «a. 8.5. «.88 .v 52%? 106 «E «E «E oo.o «E «E «E «E «E «E «E «E «E NO. H «E mm .o «N. H «E «E «E oN . H «E N« .o «E «E «E «E «E «E « «H3.— 539% ««.«H «a «a «E ««.H «E H: «a «a «E «a a: «a o 8:: 539% «I: to «E «E «E «E «E «E u 8:: 539.» .rmum «E Area «ma «9:. ov Oo Ow On On On oo Ov Om Om ON Om ON ON Om Om Oo Om ON ON O0 Om ov Om Ov Om OV Om Om BZBZmBmmzmmZZmmemeBBmBmmgzz v—‘Ov-H—‘v—‘OF-‘OOOOO—‘OF-‘OOOOv-‘OOOOOv-‘r—‘v-‘F—i o.mH N.oH NNH o.mH m.NH HNH 3 9.3 NNH o.wH moH H.HH N.HH N.oH wH m.mH N.oH N.oH m.OH NH O.mH O.mH on O.mH on m.mH m.mH m.mH o.mH OH .mm adv mem OH.H«N mO.mH HFNN mm.mv OO.NN NONM wNov HN.: vHNH NOOH NEVN NN.OV ONoN wH .ov O53“ 36 OH .NN hodv onv oo.ov OO.Hm Hmov boom 2.? film mH.Nm o «BEE. 2233: 23— a «««.O :5 ...«sm H83 in 0.50 5.99.0 NoO NoO NoO Noo NoO NoO NoO NoO N8 N8 mmO mmO mmO mmO mmO mmO mmO mmO mmO mmO mmO mmO OmH Om H Om H Om H Om H Om H Om H a fiflaum «E EE «E «E «E «E NE E «E «E «E EE «E «E «E «E NE HE «E EE «E EE «E «E EE «E NE E «E a «a no; .988 .v «Hogan? 107 oo.o «NH «E moo «HH Hm.H omH SH H«.o m«.H H«H «E «E NN.O m«H Hoo N«H «E «.«H «E «E Ho.H oo.o owN mN.N 3H «E «E E 2:: 539% ...mumH :3 ««.« a; «E ««.O ««.« E3 «2 «O.H E«.« 2: «Z «a «a ««.« 2: «Z «2 «a ««.H «a «a «2 «2 ««.« ««.H 3: «a e: ... 8:: 539.» «I: «E «E «E «E «E ow «H H 5 mo «E «E «m «E «E «E «E «w «E «E «E «E «E «E «E «N «E H o H «E «E H2O o»« «29. ON ov om Om Om Om Oo oo ON Ov Om Om ON Om OV Om Om Ov ON om Om Ow Om om Om Ov Om Om Ov o 5=EH§ «12305 83% 52:0 «BaamazzmzammzszzBamazszaaz Ov-H-‘Ov—OOOOv-‘OOv—v-‘OOOOv-‘Ov-H-to—‘Ov-‘NOv— m.mH o.NH ONH H.HH O.mH m.oH v.3 9.3 m.mH v.3 HNH m.mH m.OH mH O.mH mH HNH wH Hi: O.mH m.mH m.mH m.oH NNH m.oH N.oH omH on o.mH OUUUUUUHUUUQUUUUHUQUUQUQQIDUUU mm.mN oo.oN oN.Nm vaN Nvom HN.mv NOmm Om.mm vam oNdN OO.mN omNN mO.mH oo.oN NmHm Nomv OH.mm mhdv mONN ON.Om deN hwéN HmNN Homm O0.0m owNN Euwm mm.NN Om.mN . «««.O :5 Emmi HES «on omH OmH OmH HmH HmH HmH HmH HmH HmH HmH HmH HmH HmH HmH HmH mmH wOH mmH mmH mmH mmH mmH mmH wOH mmH mmH on NoO NoO a «««.« E« «E «E «E HE ««.« E« ««« E« ««« ««« E« ««« N«« H «« «N« E« «N« mNm E« E« NN« E« «N« a; «H« EH« 8« «E .« «s 02H .388 .v «£53.? 108 oo.o «E 9m.o oH.H N«.O «E «E NNH O«.m «E go ««.o ««H 3o «E «E «E «E «E «E «9o oH.H voH NN.H «O.H «E Noo N9.o «oH .. 2:: 539% ««.«H ««.« «2 Ed 2: ««.« «E «a «3 omH, «a ««H ««.O E«.« ««.« «a e: «E «a «E «2 HS «3 ««.H «2 ES 3.. «S :3 ««.« o 33.. 5.59.» «I: ««.« «a ««.O ««.H ««.« «E e: E«.« ««H «a ««.« ««.H ««.H «3 «E «a «E «E «E woN ovH O9.o Nmo «O.H «E 9m.o H9.o Hoo « 2:: 532w ...?m oo «E «9 m9 m m «E «E «E «E «E «E «E H 9 «v «E «E «E «E «E «E «E «E «E «E «E «E «E «E «E 3.5 «w« «2.9 «m «m «v «v «m «m «v «m o« o« o« o« o« «« «v o« «v o« «m o« «v o« o« E. o« «m 8 9. E «SEE. « «2395 «««m 58.5 «Hm~HHNHNOOOOOEOOOOOAOAqAAEEA 332mmZBBZmZZZmemm3m3MmZmBZm3 m.mH m.mH N.mH H.H«H mH m.mH v.3 v.3 wH v.9H O.mH omH o.mH O.mH N.OH m.OH H.H«H w.9 m.oH NH m.mH o.mH m.NH o.mH H.9H 9.3 m.oH m.mH O.mH OOO.—4QUUUUHQmUmmUUUQQUUUUUUUUU O0.0H OO.mN mo.mN Nw.wH mH.NN ovdH om.9N o9+N mNéV mooo mN.mm mm.NN mH.Om OO.H.m O9.NH 09.: m9.Hm 9m.OH H9.ov vaH Om.Nv H9.NN m9.om mO.Hv HH.Om NN.mN mO.9m mO.9m HH.Vm a «««.O 3: Ewfim AEov ...:— ONH ONH ONH ONH ONH ONH mNH ONH va va va va va va va va va va va va OmH omH OmH omH omH mmH omH OmH omH a fi—Haum o«« E« E« E« o9w m9w E« E« o3 mow mow 9om oom mow vow ««« Now How o«« ««« omm m mm E« «E wa Hm w Omm «E «E u «5 02.9 «.28 .v «cocoon? 109 N9oH-oooH 80¢ «58805 .3 £32 \ 9on-HOON EEO «58805 .8 23:2 u 23m «$8805 §-mH .. N««HHooH EEO «5882: .8 «H322 \ N««THooN 88o «5822: .Ho fimEH n 23M «««—:22: «9.2 o N««HomoH Boa «58205.8 «HESH \ 9««H-HooN 82H «58805 O0 :«wcoH .I. 33m 62:82: EA.m « .o««o«bx« ««3 «8o «58985 :02? Soc «282% H«H—HES n £252 «80 o o\«ooA um «\«ooom n N .«\oomv n H n«co: n o ”€380 «H 3:388 mo «mg—«8810329. «5588 u D .«ficHEoooo u U .«««Ho«:c«EH n H .o«««««&:« n m 63280 «H ««b .8 :2onqu «««HUE HE. «E EE «3 Ed ««.« H«._ «S «E «S 9o.o mo. H mm . H «E «E « 3:: 538m «m.m— «E o 33.. 5.59% «I: «I «E m o E o «.«H «««« EH ««« «E «E B .H o« a 9: ««.E E E«« «E «E 3 E «« o «.«H «««« EH ««« «3 H« m o o« o «H ««.E EH ««« 3: «E B A «« o «.2 SE EH ««« ««.« «E z A «« o «.«H «««N E ««« ««.H N: 3 o o« o «.2 «««« EH ««« «2 «E 3 o E o S; «««« «a _«« «E «E m o o« H S ««.«H 3: ««« «2 «E m .H o« o S: ««.m« EH ««« «E «E a .H o« o «.«H E.«« EH ««« 2: E 3 o «v o «.«H «in EH E«« «2 E 3 .H E. o «.2 E9 «.2 E« E2 E« m A 8 o «.«H 2.: ««H ««« «E «E 3 o «m H «.«H «H.«H EH ««« «E «E z o «m o «.«H ««.«H ««H H«« E. «2.: «no a 5:55 2:395 35. .. «««.O :5 ...«EM Has «.5 a «««. 539% «w« «««.H. «.80 53.5 ...—5m «««.H. ...».m «ES .« «Bum? 110 Appendix 5 Record of Deposition of Voucher Specimens* The specimens listed on the following sheet(s) have been deposited in the named museum(s) as samples of those species or other taxa, which were used in this research. Voucher recognition labels bearing the Voucher No. have been attached or included in fluid-preserved specimens. Voucher No.: 2004-02 Title of thesis or dissertation (or other research projects): IMPACTS OF BEECH BARK DISEASE ON TIMBER AND WILDLIFE RESOURCES IN MICHIGAN. Museum(s) where deposited and abbreviations for table on following sheets: Entomology Museum, Michigan State University (MSU) Investigator’s Name(s) (typed) Amy M. Kearney Date 7/27/04 *Reference: Yoshimoto, C. M. 1978. Voucher Specimens for Entomology in North America. Bull. Entomol. Soc. Amer. 24: 141-42. Deposit as follows: Original: Include as Appendix 5 in ribbon copy of thesis or dissertation. Copies: Include as Appendix 5 in copies of thesis or dissertation. Museum(s) files. Research project files. This form is available from and the Voucher No. is assigned by the Curator, Michigan State University Entomology Museum. 111 BIBLIOGRAPHY 112 LITERATURE CITED Allen, WA. and Corn, J .G. 1990. Relationship between live tree diameter and cavity abundance in a Missouri oak-hickory forest. NJ AF. 7: 179-183. Bowman, J .C., Sleep, D., Forbes, OJ. and Edwards, M. 2000. The association of small mammals with coarse woody debris at log and stand scales. Forest Ecology and Management. 129: 119-124. Briggs, R.D., Porter, J .P. and White, EH. 1989. Component biomass equations for Acer saccharum and Fagus grandifolia. Faculty of Forestry Miscellaneous Publication, SUNY College of Environmental Science and Forestry, Syracuse, New York. Burns, BS. and Houston, DR. 1987. Managing beech bark disease: evaluating defects and reducing loss. NJAF. 4: 28-33. Canham, CD. 1985. Suppression and release during canopy recruitment in A cer saccharum. Bull. Torry. Bot. Club. 112: 134-145. Conner, R. N., et al. 1975. Woodpecker nesting habitat in cut and uncut woodland in Virginia. J. Wildl. Manage. 39:144-150. Covington, WW. 1981. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62: 41-48. Daniels, L.D. et.al. 1997. Determining year of death of logs and snags of T huja plicata in southwestern coastal British Columbia. Can. J. For. Res. 27(7): 1132-1141 Dickmann, D. and Leefers, LA. 2003. "The Forests of Michigan". The University of Michigan Press. 297 pages. Diibeler, A, Voltmer, G.A., Gora, V., Lunderstéidt, Zeeck, A. 1997. Phenols from Fagus sylvatica and their role in defence against Cryptococcusfagisuga. Phytochemistry. 45(1):51-57 Dueser, RD. and Shugart, H.H. Jr. 1978. Microhabitats in a forest-floor small mammal fauna. Ecology 59: 89-98. Ehrlich, J. 1934. The beech bark disease, a Nectria disease of Fagus following Cryptococcusfagi (Bier.). Canadian Journal of Research 10:593-692. Forrester, J .A. and Runkle, J .R. 2000. Mortality and replacement patterns of an old- growth Acer - Fagus woods in the Holden Arboretum, Northeastern Ohio. American Midland Naturalist. 144:2 227-242 113 Fowells, H.A. 1965a. Fagus grandifolia Ehrh. American Beech. In Silvics of Forest Trees of the United States. USDA For. Serv. Agric. Handb. 271. pp 172-180. Fowells, H.A. 1965b. Acer rubrum L. Red Maple. In Silvics of Forest Trees of the United States. USDA For. Serv. Agric. Handb. 271. pp 172-180. Fraver, S., Wagner, R.G. and Day, M. 2002. Dynamics of coarse woody debris following gap harvesting in the Acadian forest of central Maine, U.S.A. Can. J. For. Res. 32: 2094-2015. Gavin, D.G. and Peart, DR. 1993. Effects of beech bark disease on the growth of American beech (Fagus grandifolia). Can. J. For. Res. 23: 1566-1 575 Godman, R.M., Yawney, H.W. and Tubbs, CH. 1990. Acer saccharum Marsh. Sugar maple. In Silvics of North America. Vol. 2. Hardwoods. Edited by RM. Burns and B.H. Hankala. USDA For. Serv. Agric. Handb. 654. pp 78-91. Goodbum, J .M. and Lorimer, CG. 1998. Cavity trees and coarse woody debris in a old- growth and managed northern hardwood forests in Wisconsin and Michigan. Can. J. For. Res. 28: 427-438. Gunn, IS. and Hagan, J .M. 2000. Woodpecker abundance and tree use in uneven-aged managed, and unmanaged, forest in northern Maine. For. Ecol. Manage. 126: 1-12. Graber, RE. and Leak, W.B. 1992 Seed fall in an old-grovvth northern hardwood forest. USDA For. Serv. Res. Pap. NE-663. Gysel, L.W. 1961. An ecological study of tree cavities and ground burrows in forest stands. J. Wildl. Manage. 25: 12-20. Gysel, L.W. 1971. A 10-year analysis of beech nut production and use in Michigan. J. Wildl. Manage. 35: 516-519. Hane, EN. 2003. Indirect effects of beech bark disease on sugar maple seedling survival. Can. J. For. Res. 33: 807-813. Hane, E.N., Hamburg, S.P., Barber, A.L., and Plant, J.A. 2003. Phytotoxicity of American beech leaf leachate to sugar maple seedlings in a greenhouse experiment. Can. J. For. Res. 33: 814-821. Harmon, M.E. et. a1. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15: 133-302. 114 Held, ME. 1983. Pattern of beech regeneration in the east-central United States. Bull. Torrey Bot. Club 110(1): 55-62. Horsley, S. 8., Long, R.P., Bailey, S.W., Hallett, R.A. and Hall, T.J. 2000. Factors associated with the decline disease of sugar maple on the Allegheny Plateau. Can. J. For. Res. 30: 1365-1378. Houston, DR. 1994. Major new tree disease epidemics: beech bark disease. Annu. Rev. Phytopathol. 32275-87. Houston, D. R. 1975. Beech Bark Disease: The aftermath forests are structured for a new outbreak. J. For. 73:660-663. Houston, DR. and O’Brien, J .T. 1994. Beech bark disease. USDA Forest Insect and Disease Leaflet 75.Houston, D.R. Major New Tree Disease Epidemics: Beech Bark Disease. Annu. Rev. Phytopathol. 32:75-87. Houston DR. and Valentine, HT 1987. Beech bark disease: the temporal pattern in cankering in aftermath forests of Maine. Can. J. For. Res. 18: 38-42. Huntley, B., Bartelein, R]. and Prentice, J .C. 1989. Climate control of the distribution and abundance of beech (F agus L.) in Europe and North America. Journal of Biogeography 16: 551-560. J aeger, R.G. 1980. Microhabitats of a terrestrial salamander. Copeia. 1980: 265-268. Jenkins, J. 1997. Hardwood regeneration failure in the Adirondacks: preliminary studies of incidence and severity. Working Pap. No. 9. Wildlife Conservation Society, Bronx, NY. Johnson, WC. and Adkisson. 1985. Dispersal of beech nuts by blue jays in fragmented landscapes. Am. Midl. Nat. 113: 319-324. Kelty, MJ. and Nyland ,R.D. 1981. Regenerating Adirondack northern hardwoods by shelterwood cutting and control of deer density. J. For. 79(1):22-26. Kobe, P.K., Pacala, S.W., Silander, J.A., and Canham, CD. 1995. Juvenile tree survivorship as a component of shade tolerance. Ecol. Monogr. 66: 181-301. Krasny, ME. and Whitmore, MC. 1992. Gradual and sudden forest canopy gaps in Allegheny northern hardwood forests. Can. J. For. Res. 22: 139-143 Lariviere, S., Huot, J. and Samson, C. 1994. Daily activity patterns of female black bears in a northern mixed-forest environment. Journal of Mammalogy. 75: 613-620. 115 Little, EL. 1971. Atlas of United States trees, volume 1, conifers and important hardwoods: US. Department of Agriculture Miscellaneous Publication 1146, 9 p., 200 maps. Lonsdale, D. 1980. Nectria coccinea infection of beech bark: variations in disease in relation to predisposing factors. Ann. Sci. forest 37(4): 307-317 Mannan, R. W., Meslow, E. C., and Wight, H.W. 1980. Use of snags in Douglas-fir forests, western Oregon. J. Wildl. Manage. 44: 787-797. Maser, C. and Trappe, J .M. 1984. The seen and unseen world of the fallen tree. USDA For. Serv. Gen. Tech. Rep. PNW-l64. Pacific Northwest For. and Range Exp. Station, Portland, Oregon. pp. 56. McCullough, D.G., Heyd, R.L., and J .G. O’Brien. 2001. Biology and management of beech bark disease: Michigan’s newest exotic forest pest. 12 pgs. Michigan State University Extension Bulletin E-2746. McGee, G.G. 2000. The contribution of beech bark disease-induced mortality to coarse woody debris loads in northern hardwood stands of Adirondack Park, New York, U.S.A. Can. J. For. Res. 30: 1453-1462. Meilke, M.E., Haynes, C. and MacDonald, W.L. 1982. Beech scale and Nectria galligena on beech in the Monongahela National Forest, West Virginia. Plant Disease. 851-852. Mize, CW. and Lea, R.V. 1979. The effect of the beech bark disease on the growth and survival of beech in northern hardwoods. Eur. J. For. Path. 9: 243-248 O’Brien, J .G., Ostry, ME. and Mielke, ME 2001. First report of beech bark disease in Michigan. Plant Disease. Pg. 921. Ostrofsky, W.D. and McCormack, ML. 1986. Sivicultural management of beech and the beech bark disease. NJAF 3:89-91. Ott, R. L. and Longnecker, M.T. Introduction to Statisitcal Methods and Data Analysis. Duxbury Press. p. 410 Peters, R. 1997. Beech Forests. Kluwer Academic Publishing. Piovesan, G. and Adams, J .G. 2001. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79: 1039-1047. Poage, NJ. and Peart, DR. 1993. The radial growth response of American beech (F agus grandifolia) to small canopy gaps in a northern hardwood forest. Bulletin of the Torrey Botanical Club. 120(1): 45-48. 116 Poulson, TL. and Platt, WJ. 1996. Replacement patterns of beech and sugar maple in Warren Woods, Michigan. Ecology. 77(4): 1234-1253. Raphael, M. G. and White, M. 1984. Use of snags by cavity-nesting birds in the Sierra Nevada. Wildl. Monogr. No. 86. Robb, J .R. and Bookhout, TA. 1995. Factors influencing wood duck use of natural cavities. J. Wildl. Manage. 59(2): 372-383. Rogers, LL. 1987. Effects of food supply and kinship on social behavior, movements, and population growth of black bears in northeastern Minnesota. Wildlife Monographs. 97: 1-72. Rosenberg, D.K., Fraser J .D. and Stauffer, DP. 1988. Use and characteristics of snags in young and old forest stands in southwest Virginia. Forest Science. 34: 224-228. Runde, DE. and Capen, DE. 1987. Characteristics of northern hardwood trees used by cavity-nesting birds. J. Wildl. Manage. 5(11): 217-223. Runkle, J .R. 1990. Eight years change in an old Tsuga Canadensis woods affected by beech bark disease. Bulletin of the Torrey Botanical Club. 117: 409-419. Sadlon, N. 1992. Tree snags — A tree even an agronomist can love. USDA Green Section Record. 24-25. Sand, S. 1991. The American beech. American Horticulturalist. 37-40. SAS Institute Inc. 1985. SAS User’s Guide: Statistics, version 5 edition. SAS Institute Inc., Cary, NC. Scheffer, T.C., Englerth, G.H., and Duncan, CG. 1949. Decay resistance in seven native oaks. J. Agric. Res. 78:129-149. Schnurr, J. L., Ostfeld RS. and Canham, CD. 2002. Direct and indirect effects of masting on rodent populations and tree seed survival. OIKOS 96: 402-410. Scott, V. E. 1979. Bird response to snag removal in ponderosa pine. J. For. 77: 26-28. Shigo, A. 1972. The beech bark disease today in the Northeastern U.S. Journal of Forestry. 286-290. Shigo, A. 1964. Organism interactions in the beech bark disease. Phytopathology, Symposium: Tree Cankers. 263-269. Smith, W.H. 1970. Tree Pathology: A Short Introduction. Academic Press, New York. 309 p. 117 Stalter, R. 1982. Production of viable seed by the American beech (F agus grandzfolia). Bulletin of the Torrey Botanical Club. 109: 542-544. Steele, BB. 1993. Selection of foraging and nesting sites by black-throated blue warbles: their relative influence on habitat choice. The Condor. 95: 568-579. Stribling, H.L. 1990. Bird community response to timber stand improvement and. snag retention. NJ AF 7: 35-38. Ter-Mikaelian, M.T. and Korzukhin, MD. 1997. Biomass equations for sixty-five North American tree species. Forest Ecology and Management. 97 : 1-34. Thompson, EM. and Whitter, J .A. 2003. Michigan Beech Bark Disease Monitoring and Impact Analysis System: Summary Data for Intensive Plot System 2001-3002. Mich. Coop. For. Pest. Mgrnt. Tech. Rep. 03-2. Univ. Mich., Sch. Nat. Res. Environ, Ann Arbor, MI. Tubbs, CH. and Houston, DR. 1990. American Beech, in Silvics of North America, Vol. 2: Hardwoods. USDA For. Serv. Agric. Handbook 654. Tukey, J .W. 1977. Exploratory Data Analysis, Addison-Wesley. Twery, MJ. and Patterson, WA. 1984. Variations in beech bark disease and its effects on species composition and structure of northern hardwood stands in central New England. Can. J. For. Res. 14: 565-574. Veatch, J .O. 1953. Soil Map of Michigan. Michigan State College Press, East Lansing, Michigan. Ward, RT. 1961. Some aspects of the regeneration habits of the American beech. Ecology 42(4): 828-832. Welsh, C.J.E., Healy, W.M. and DeGraaf, RM. 1992. Cavity-nesting bird abundance in thinned versus unthinned Massachusetts oak stands. NJ AF . 9: 6-9. Williams, RD. and Hanks, SH. 1976. Hardwood nurseryman’s guide. USDA Agricultural Handbook No. 473. pg. 29. Yahner, R. H. 1987. Use of even-aged stands by winter and spring bird communities. Wilson Bull. 99: 218-232 Zar, J .H. 1984. Biostatistical analyses. Prentice Hall. pp 199-201. 118