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ABSTRACT

OPTIMIZATIONS AND APPLICATIONS OF

TRIE-TREE BASED FREQUENT PATTERN MINING

By

Stuart King

Frequent pattern mining is an active area of research in a field of artificial intelligence

called knowledge discovery. With it, we are teaching computers to discover hitherto

undiscovered information about ourselves and the world around us. Traditionally,

discovering patterns has been a very resource-intensive endeavor, costing both a great

deal ofmemory and processing time. In this research, we are going to introduce a

mechanism to geometrically reduce memory requirements. This allows frequent pattern

mining to be applied to new domains. To prove this, a new client application in PC

Internet security is developed that takes advantage of this optimization. Additionally,

research is presented on a CPU optimization for degenerate cases in the application. In

combination, this thesis presents a road map for advancing frequent pattern mining in a

new direction.
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CHAPTER 1: Introduction

Frequentpattern mining is a booming area of research on the process of discovery. In its

simplest terms, it is finding patterns in large quantities of data. In a broader sense, it is a

kind of artificial intelligence that reveals relationships in our complex world that we have

never before seen. It took less than two years to get from the first practical algorithm for

frequent pattern mining to the creation of an entire industry dedicated to the task. This

thesis could not possibly cover in detail all of the various aspects of this research, but it

does aim to introduce some important aspects ofthe field, and to present a new direction

for it.

To accomplish that aim, the paper is broken down into two distinct parts. The first part

introduces some ofthe concepts, objectives, and methods of frequent pattern mining, as

well as some of the more common algorithms used. The second part introduces a new

algorithm to geometrically reduce the memory requirements of a large genre of frequent

pattern mining algorithms. As a proof-of-concept for the potential of the algorithm, a

new client application in PC Internet security is developed that takes advantage of the

optimization. As will be seen, this proves very successful. However, extending the

application to do a more detailed analysis revealed a degenerate case in which CPU

utilization dramatically increased. Additional research is presented on this degenerate

case and how to more efficiently handle it. Combined, this thesis introduces a complete

approach for a practical application of fi'equent pattern mining in a personal computing

environment.



PART ONE

FREQUENT PATTERN MINING



CHAPTER 2: Definitions and Practices

2.] What is “Frequent Pattern Mining”

To better understand what frequent pattern mining is (a.k.a. mining'), it helps to

understand some of the applications it is being used for, and to know a few key terms. To

start with, we will provide a definition of what afi'equent pattern is:

Frequent Pattern:

Given a set of discrete items and a set of records composed from these

items, a frequent pattern is a combination of items that occurs frequently

within the records.

NOTE: Ideally, this means patterns that occur more often than can be

explained by random chance; however other definitions can apply (see

minimum support below).

Example:

Set of Discrete Items: “A”, “B”, “C”, “D”, “E”

Set of Records: “ABD”, “BCD”, “ABCDE”, “BE”

Frequent Pattern: “BD” occurs in three of the four records

You might ask “So what, what is the big deal?”. The answer is association rules.

An association rule is a relationship between items in a dataset. Finding

association rules between items helps to make predictions about the future. To

illustrate, consider if the “Set of Records” from the example represents a database

of purchase records where “B” stands for “Bread” being purchased, and “D”

stands for “Hot Dogs” being purchased. Then someone buying “Bread” has a

 

‘ There are many meanings for the word mining, including the more general term data mining representing

the discovery of any potentially useful knowledge from data. However, this is afrequent pattern mining

thesis, so mining throughout the entire thesis will refer to “frequent pattern mining”.



75% chance of also buying “Hot Dogs”. This is an association rule and can be

written “B => D2 with 75% confidence”.

Another Association Rule would be “AC => E with 100% confidence”.

However, this Association Rule needs to be tempered with the fact that the pattern

“ACE” only occurs once in this database of four records. That is, the rule

“AC => E” only has 25% support. Although both confidence and support are

important, confidence can be calculated from support. That is, given the support

of the rule’s assertion, “ACE”, and the antecedent, “AC”, the confidence can be

calculated as follows:

Confidence = Support of the rule’s assertions / Support of the antecedent

Confidence(AC => B) = Support(“ACE”) / Support(“AC”) = 25% / 25% = 100%

As a result, a minimum support is frequently specified when mining for frequent patterns.

Minimum support, like it sounds, is specifying the lowest support a pattern can have and

still be considered a frequent pattern. Using the example above, a minimum support of

50% would remove the pattern “ACE” from consideration. A good value for minimum

support is very subjective and data dependent. For example, a 10% success rate is small,

but a 10% death rate is high.

What is not subjective is the definition ofthe terms “Support”, “Confidence”, and

“Association Rule”. Formally, the definitions are as follows:

Let I= {i., i;, , in }be a set ofliterals called items. Let D be a set of

transactions where each transaction T is a set of items such that T g 1. Given an

antecedent of A (where the items ofA c l ) and a consequence C (where the

items of C c: I ) such that A n C = Q, than an Associate Rule is an implication of

the form A => C. As such, a transaction T is said to contain the antecedent A if

 

2 “=>” stands for implication, so “AC => B” is saying “condition A and C implies condition D”



A g T. Similarly, a transaction T is said to contain the consequence C if C Q T.

The rule holds in the transaction set D with “Confidence of c%” ifc% of the

transactions in D that contain A, also contain C. The rule A => C has a “Support

of 5%” if s% of the transactions in D contain A U C.

Associations between items like “Hot Dogs & Bread” or “Beer & Diapers”3 is very

important for “market basket” analysis4, but frequent pattern mining has many other uses.

For example, it is currently being used to identify patterns of credit card and identity

thefi, intrusion detection over IP networks, and cancer detection. In addition,

“Knowledge Discovery and Data mining” (KDD) is an active area of research for

artificial intelligence systems, and as the field grows, I expect discoveries like the effects

of “El Nino”5 on global weather patterns and patterns in economic flux will be identified

with mining techniques.

2.2 Metric Datasets and Dataset parameters

Since the introduction in 1993 of frequent pattern mining, many common practices have

been adopted for categorizing data for analyzing the performance of algorithms. Just as

different sorting algorithms work best with different kinds of data, so do difi‘erent mining

algorithms. Defining the different kinds of data an algorithm works best with involves

defining key characteristics ofthe data that play a significant role in the mining process.

Two types of data with known characteristics can assist in analyzing the performance of

algorithms. One is a library of datasets with well known properties, and the other is a

common algorithm for generating artificial datasets with desired characteristics.

 

3 In the FIMI'04 data mining competition, the most frequent pattern was “Beer, Diapers”.

’ Argawal et al’s research on finding simple patterns in market basket data has touched nearly every super

market shopper with the advent of “Super Market ‘Club’ Cards” for tracking purchase patterns.

5 The data mining technique Conical Correlation Analysis (CCA) has been used to help find the efl'ects of

El Nino, however, combining CCA with other data mining techniques may prove even more effective.



Four of the common attributes used for measuring the characteristics of datasets are:

l) The Number of Records in a Database

2) The Average Record Length

3) The Number of Items Within the Database

4) The Expected Pattern Length‘5

In addition, there is a qualitative attribute commonly used called pattern density. Pattern

density is a measure ofhow many patterns a large number of records will produce7. If a

relatively small number of records produce a large number of frequent patterns, the

database is said to have a high pattern density. However, if a large number of diverse

records only produce a small number of frequent patterns, then the database is said to

have low pattern density (or its pattern density is sparse). Altering the minimum support

frequently changes the density of a dataset. For example, a dataset may be dense with a

minimum support of 5%, but sparse with a minimum support of 25%.

One of the sparsest datasets is random data, but it is not effective in testing mining

algorithms. The very objective of frequent pattern mining is to find data patterns in

seemingly random data. One of the biggest challenges of mining algorithms is to

efficiently wade through and filter out random data to reveal the hidden patterns. As

such, when random data is mined, it turns out that new patterns are found in only a

narrow range ofminimum support. That is, when minimum support is above this

threshold, the random data is filtered out; below this threshold, there are very few

combinations of items to be found that have not already been discovered.

 

6 Many factors effect pattern length, especially minimum support. However, for FIMI datasets there is

frequently a known set of useful patterns that can be used to define the expected pattern length.

7 An alternate definition ofa dense dataset is one in which, on average, most records contain at least halfof

the frequent items. Although most would agree this would produce a dense dataset, the term is frequently

used in a broader sense.



So what kind of data is good for frequent pattern mining? Intuitively, it is data with

frequent patterns. That is, data that has combinations of items that occur together far

more often than can be explained by random chance. Usually such patterns are indicative

of forces that we are either ignorant of, or do not fully understand. The real world is full

of such forces that interplay in a myriad of fashions.

The FIMI (Frequent Itemset Mining Implementations) repository contains several well

known datasets from the real world. These datasets have a variety of characteristics that

make them ideal for testing the performance of different implementations of mining

algorithms. Some examples of the kinds of datasets are:

Chess and Connect-4: A set of winning moves for the games chess and Connect-4

Mushroom: Mushroom classification data

Webdocs: Terms used in 1.7 million web documents

(and many others)

These datasets are real data from real problems. The reason data mining programs exist

is because of datasets like these, and it is important that mining algorithms work well

with this kind of data. However, the FIMI repository does not contain every possible real

world dataset. As such, finding a spectrum of datasets to fully test and understand the

limits, scalability, and capabilities of a mining program is not possible. As a result, FIMI

has a method of generating synthetic datasets.

Synthetic datasets are artificial datasets that are guaranteed to contain frequent patterns.

Synthetic dataset generators are programs designed to generate synthetic data and were

developed to give the researcher more control of the characteristics of a dataset. As a

result, a spectrum of datasets can be generated that allows the different components of an

algorithm to be tested. These datasets not only give the developer the control to



incrementally vary the attributes of a dataset, but they are also guaranteed to contain

frequent patternss. One such generator was developed by IBM and creates data using the

following process:

Procedure Generate_Synthetic_Data

1) The data generator takes many input parameters including:

a) I: The number of items used by the artificial dataset

b) T: The average length of records

c) D: The number of records

(and several other parameters)

2) A list of random patterns are generated9

3) Records are generated as follows:

a) The size of the record is randomly chosen to be close to the desired length.

b) A pattern is selected.

c) One or more items are randomly chosen from the selected pattern.

d) steps b & c are repeated until the record is the chosen length.

e) Steps a-d are repeated until the desired number of records have been created.

Usually, when a synthetic dataset is generated, it is given a name similar to TnyDz, where

x is the average length of transactions, y is the number of items in the dataset (in 10005) and

z is the number of records in the database. So, a dataset called T10110D100K would contain

100,000 records averaging 10 items in length and using about 10,000 items. Since each

record was created from patterns, this forces the existence of frequent patterns within the

dataset. Because of the ability to tightly control dataset attributes, synthetic datasets will be

used later on in this work to evaluate the performance of algorithms.

 

8 That is, data that has combinations of items that occur together far more often than can be explained by

random chance.

9 Since the items of records only come from pre-generated patterns, the actual number of items used in the

synthetic dataset may be less than the desired number.



2.3 Trie-Tree data structure

Several effective algorithms in frequent pattern mining have adopted deviations on a

structure called a Trie-Tree. Wikipedia defines a Trie as:

“A trio, or prefix tree, is an ordered tree data structure that is used to store an

associative array where the keys are strings. Unlike a binary search tree, no

node in the tree stores the key associated with that node; instead, its position

in the tree shows what key it is associated with. All the descendants of any

one node have a common prefix of the string associated with that node, and

the root is associated with the empty string.”

For example, given the strings “ABC”, “ABD”, and “BCD”, the associated Trie-Tree would

look similar to Figure 3.1. In this example, “ABC” and “ABD” have a common prefix of

“AB”, so both strings share the use of the nodes “A:2” and “8:2”. Tire number following

the “:” is a common convention used by researchers to indicate the number of strings using

the node. That is, the “1” of node “B: 1” indicates only one string is using the node. As

such, the original records of the dataset are captured within the Trie-Tree. For example,

following up from the leaf node “C: 1” of Figure 1, it can be seen the original dataset had a

record “ABC”.
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  Figure 1: Trie-Tree

 



CHAPTER 3: Previous Work

3.1 SimpleMining: Is Not Easy To Do

Mining frequent patterns is a complex problem that is a very CPU and RAM intensive

application. Given n unique items within a database, the SimpleMining algorithm

below has a time complexity and space complexity of 0( 2n — 1 ). As such, even a small

database with only 85 unique items'0 would require 38,685,626,227,668,133,590,597,63l

patterns to be generated. Even though computers are constantly getting faster and bigger,

this brute force method of mining is just not practical. As a result, the first practical

algorithm for frequent pattern mining needed to introduce a mechanism for pruning

pattern combinations that were not useful.

Procedure SimpleMining

1) Scan through the dataset and store each unique item.

2) Generate and store all possible patterns (combinations of items).

3) Scan the dataset again.

a) Rearrange the unique items ofeach record into all possible combinations.

b) For each combination, increment the counter of its associated pattern.

4) Scan through the patterns and print any that are above a given support.

3.2 Largeltemsets and Apriori: The First Practical Algorithms

In 1993, Agrawal (et. all.) wrote just such an algorithm. The Largeltemsetsll algorithm

(see below) was introduced in a paper called “Mining Association Rules Between Sets of

Items in Large Databases”. The primary method it used for pruning unneeded patterns

involved the Monotonicity Principle. Basically, the Monotonicity Principle says:

 

'0 This would be the approximate number of items from the menu of your local fast food restaurant.

” This algorithm is sometimes called “AIS” after the authors of the paper (ie: “Agrawal lmielinski Swami”)

10



If pattern B ;.D, then the support(B) 2 support(D)

Therefore, if the pattern B is infrequent, then all its supersets are also infrequent.

As an example, if the pattern B = “AB”, the pattern D = “ABCD”, and the

support(B)=10%, then the Monotonicity Principle says support(D) S 10%.

Largeltemsets combined the Monotonicity Principle with the Mutual Independence

method of estimating frequencies to greatly reduce the number of patterns that needed to

be generated (see Section 5 in Chapter 5 for details on Mutual Independence). However,

introducing “estimating” also introduced error. As a result, the Largeltemsets algorithm

may “estimate” that a pattern is not frequent when it actually is. As a result, several

passes through the database may be needed to eliminate such “estimating errors”.

Procedure Largeltemsets

1) Scan through the dataset and count the frequency of each unique item.

2) Based on what is known, “estimate” which patterns are frequent,

or might be almost frequent. Call this set the “candidate itemsets”

3) Scan the dataset again.

a) Rearrange the unique items ofeach record into all possible combinations

b) For each combination that is in the list of “candidate itemsets”,

increment the counter of its associated pattern.

4) If any pattern expected to be infrequent turns out to be frequent,

go back to step 2.

Although Largeltemsets was a practical algorithm for mining, it still produced a large

number of “candidate itemsets”, however, some simple observations helped to suggest an

improved algorithm. One observation was that most patterns were short (only three or

four items), and the Largeltemsets algorithm usually took three or four scans through the

database. As such, an algorithm that “grows” candidate itemsets might be more efficient.

ll



 

That is, an algorithm would be more efficient if it generates “length 2” candidate itemsets

before the second scan, “length 3” candidate itemsets before the third scan, etc. Another

simple observation that helped is that most of the items within a database were not

frequent. So, it was possible to significantly reduce the size of the database records by

filtering out infrequent items. As such, encoding of the data could usually reduce the size

of the database to a size that could fit in RAM.

This improved algorithm was introduced by Agrawal only one year after the

Largeltemsets algorithm. It was called Apriori (see below), and it turned out to be

significantly faster than Largeltemsets for most datasets. To this day, algorithms based

upon the Apriori algorithm are commonly used for frequent pattern mining. The

algorithm works as follows:

Procedure Apriori

1) Scan through the dataset and count the frequency ofeach unique item

2) Rescan the dataset and filter out infrequent items from each record

and encode the data to create a “compressed dataset”12

3) Initialize K=1

4) Generate all “candidate itemsets” of length K+l

a) Generate length K+1 patterns based upon the “length K candidate itemsets”

b) For each new pattern, filter out patterns that can not be frequent

5) Scan the compressw dataset

a) Rearrange the items of each record into length K+1 combinations

b) For each combination that is in the list of “length K+1 candidate itemsets”,

increment the counter of its associated pattern

6) If any patterns in “length K+1 candidate itemsets” is frequent,

Then increment K and repeat steps 4-6

'2 Technically, the first “encoding and compression” of Apriori was introduced in the same paper as

Apriori, and was called AprioriTid. However, since then, many other mechanisms have been introduced.

12



The compression of the dataset (step 2) has been implemented in many ways, but there

are two common features that are frequently used. One is that duplicate items are

removed from each record. A more significant feature is that items are encoded into

numbers. That is, each frequent item is assigned a number, and the numbers are stored in

9

the “compressed dataset”. For example, the record { “beer”, “diaper’ , “Purple People

Eater”, “diaper” } could be encoded as { 1 2 } if “diaper”=1, “beer”=2, and “Purple

People Eater” is not a frequent item. These two mechanisms are so common that a lot

datasets targeted for mining will have these compression mechanisms applied as a pre-

processing step to mining.

Step 4 of the Apriori algorithml3 filters patterns using the Monotonicity Principle. Since

one consequence of the Monotonicity Principle is that each frequent “length K pattern”

could have supersets of “length K+l” that are frequent, step 4a generates its “length K+l

candidate itemsets” from its “length K candidate itemsets”. Another consequence of the

Monotonicity Principle is that a “length K+l pattern” can only be frequent if all subsets

of “length K patterns” are frequent. An example of Apriori filtering is:

Given:

K=3

Thepattems L3 ={ {12 3}, {1 24}, {1 3 4}, {2 3 4}, {3 5 6}, {45 6} } are frequent

Then: (step 4a)14

{1 2 3} and {l 2 4} differ by one item, so {1 2 3 4} might be frequent

{l 2 4} and {1 3 4} differ by one item, also generates {l 2 3 4}

{3 5 6} and {4 5 6} differ by one item, so {3 4 5 6} might be frequent

 

'3 This application of the Monotinicity Principle is sometimes referred to as the Apriori principle.

" NOTE: There are many mechanisms to make step 4a more efficient; however, only a simple method is

demonstrated here.

13



Filtering: (step 4b)

For the pattern {1 2 3 4} to be frequent, all “length 3” subsets must be frequent.

Since { {1 2 3}, {124}, {1 3 4}, {2 3 4} }isasubsetofL3,{12 3 4}e L4

For the pattern { 3 4 5 6 } to be frequent, all “length 3” subsets must be frequent.

Sincethesubset { 3 45} as L3,thepattern { 3 456} e L4

The final resulting “candidate length 4 itemsets” is L4 = { {1 2 3 4} }

Scanning will need to be done to validate if any patterns in L4 are actually frequent.

3.3 Trie-Tree Approaches

Apriori works very well when there are not too many items. However, if there are a lot

of frequent items in the dataset, there is a drastic increase in the size of the “candidate

itemsets”. This has a significant impact on both the size and processing time ofthe

algorithm. One common circumstance in which this occurs is when the support threshold

is relatively small. When there are a lot of frequent items, there are Trie-Tree approaches

that can help. One of the first such approaches is Tree Projection.

Tree Projection is a Trie-Tree frequent pattern mining algorithm that stores compressed

and filtered copies of the dataset in the leaf nodes of the tree. It is a top down mining

algorithm that grows the depth of the tree as it discovers longer frequent patterns. A key

aspect of the algorithm is that it reorders the items within a record. For example, Tree

Projection reorders the items within the records “ACB” and “ABCD” to make it easier to

see the pattern “ABC”. Tree Projection works as follows:
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Procedure TreeProjection

1) Scan through the dataset and count the frequency of each item

2) Create a tree structure similar to Figure 2 for the frequent items in the dataset

3) Rescan the dataset. For each record scanned, do the following:

Add_Records_To Nodes:

a) Filter infrequent items from the record

b) Order the items in the record

c) Based on the first item in the record, add the record to a node of the tree

d) Remove the first item from the record

e) Repeat steps C & D until there are no more items in the record

4) For each set of records in a leaf node of the tree

a) Count the frequency of items

b) Add a branch to the leaf node for each item that is frequent in the node

c) For each record of the node, use the “Add_Records_To_Nodes” procedure

5) Repeat step 4 until there are no more frequent items in any of the leaf nodes

 

GE’

0 o 0 (£300

ooaaoooo

CDEF DF DEF E EF F

DEF EF F

 

             

Figure 2: Tree Projection  
 

Although Tree Projection was a big step forward in “growing” frequent patterns without

generating “candidate itemsets”, the algorithm had significant performance degradation

with long records and dense datasets. A few observations in the mining process helps to

suggest areas of improvement. First, a single record can contribute to many different

patterns, so a record might be copied to many different leaf nodes. This has a significant

impact for the initial Tree Projection Trie because the tree branches are short and the leaf
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nodes contain longer records. An algorithm that uses pointers can significantly reduce

this overhead. Another observation is that the number of frequent items within a branch

of a Trie-Tree is drastically smaller then the number of frequent items within the entire

Trie-Tree. As such, copying a branch to a new Trie-Tree with infrequent items removed

has a small overhead and a large benefit.

An improved tree algorithm was developed by Han (et. all.) the year after Tree Projection

was introduced. It was called FP-Growth (see below), and it worked by combining a

Trie-Tree of records with an array of linked lists. Contrary to Tree Projection, FP-

Growth starts with a complete Trie-Tree structure from the strings in the dataset.

However, each node of the Trie-Tree has an additional pointer. The additional pointer is

used to link records together. For example, all nodes of the Trie-Tree containing “A”

would have an additional pointer linking them together, as such, the pointers create a

linked list of records containing the letter “A”. Similar lists are created for items “B”,

“C”, etc. The headers for all these lists are stored in an array. Combined, this data

structure is called an “FP-Tree”. As the algorithm progresses, it creates and destroys

additional FP-Trees from subsets of the data. The algorithm works as follows:

Procedure FP-Growth

1) IF this is the first scan of the dataset,

THEN Scan through the dataset and count the fiequency of each item

2) Create a linked list for each frequent item

The array of linked lists will be called the “header table”

3) Rescan the dataset. For each record scanned, do the following:

Procedure Add_Records_To_Tree:

a) Filter infrequent items from the record

b) Order the items in the record

c) Add the record to the tree (See figure 3.2 for an example tree)
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4) Add each node of the tree to one of the link list created in step 2

5) Create a subset of records by finding all records that contain the last item

(ie: “F” in Figure 3). The last “link list” of the header table (the one for “F”)

points to the leaf nodes of these records

6) Scan up the subset of records to count the frequency of items within the subset

Note: The list of frequent items in this subset represent patterns that begin with “F*”

7) Recurs the Procedure FP-Growth using the subset of records

Note: The FP-Tree constructed from the filtered subset of records is called a

conditionalfi7-tree

8) Repeat step 5-7 for each item of the header table (ie: E, D, C, B, A)
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Figure 3: FP-Tree    
In some cases, the most significant benefit of the FP-Growth approach is that longer

patterns tend to produce conditional fp-trees with only one branch. For example, the

removal of infrequent items might produce the three strings “BDF”, “BDF”, and “BDF”.

This would create a conditional Trie-Tree with one branch. As such, a very efficient

method ofproducing all combinations of“BDF” can be used to generate patterns.

Typically, the FP-Growth algorithm will re-order the strings of a subset from “most-

frequent” to “least-frequent” to help promote this effect.
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The algorithms presented here represent only a fraction of the many algorithms available.

Frequent pattern mining is a very active area of research, and there are many, many more,

certainly more than can be presented here. A large percentage of the algorithms are

based upon the two approaches “Apriori” and “FP-Growth”. An even larger percentage

compare themselves against these two approaches. Many approaches are designed for

specialized datasets such as continuous data streams, very dense datasets, etc. There is

also a lot of research in special kinds of patterns such as closed itemsets and constraint

based rules which are designed to reduce the number of frequent patterns returned by a

fiequentpattern miningprogram. However, the remainder of the paper will work on new

approaches to optimize frequent pattern mining as well as exploring a new domain for the

task.
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PART TWO

OPTIMIZING MINING
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CHAPTER 4: Using Compressed Tries in Frequent Pattern Mining

4.1 Introduction

The uses of frequent pattern mining is expanding, and with it, the size of datasets that are

being analyzed are also increasing. Since a significant portion of the most commonly

used frequent pattern mining algorithms use deviations of the Trie-Tree data structure,

most programs need significantly more RAM than the original dataset. It is now to the

point where even relatively small datasets can exceed the capacity of existing equipment.

When this happens, the processing time it takes to mine data increases explosively.

Although there are methods of sub-dividing the dataset to prevent this from happening

(see “An efficient algorithm for mining association rules in large databases”), these

methods require analyzing the data multiple times and thus require a great deal of time.

This section introduces a simple approach for significantly reducing the memory

requirements during mining. This approach works well for a broad range of data and a

large genre of frequent pattern mining algorithms. It literally reduces the memory

requirements by an order of magnitude, and it does so with no discemable increase on

processing time.

The approach works by modifying the Trie-Tree data structure. The Trie-Tree data

structure can be used to create very time efficient mining algorithms. Because of this,

there are even implementations of the Apriori algorithm that use Trie-Tree like structures

to store data. However, like most trees, Trie-Trees require a great deal of overhead. One

of the fastest Frequent pattern mining algorithms, FP-Growth, adds additional data

structure complexity (ie: doubly linked nodes, usage counts, etc.) that increase this
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requirement even further. For small datasets, this does not have a significant impact,

however, for larger datasets, space requirements could be many times that of the original

dataset.

Statistics can reveal quantitative results to seemingly random events. Analysis of the

seemingly random distribution of data within a Trie-Tree used for frequent pattern

mining shows a large number of tails. A tail is a branch of a Trie-Tree that is only used

by one record, that is, each node has no siblings and all but the leaf node has one child.

Knowing this pattern is prevalent, a compressed trie” is an obvious solution to

significantly reducing space complexity. However, compressed tries do not lend them

selves to the substring searches required for frequent pattern mining. This chapter

introduces an algorithm to solve this challenge that not only has negligible overhead, but

is occasionally slightly faster.

The organization of the rest of the paper is as follows: Sections 4.2-4.3 discusses Trie-

Trees in frequent pattern mining. Section 4.4 and 4.5 gives a mathematical model for

why tails exist. Next, section 4.6 presents an algorithm for efficiently storing and

accessing data within tails, and section 4.7 gives experimental results. The last section

presents conclusions and introduces future work.

4.2 Compressing Trie-Tree Tails

There are many deviations and customizations for building a Trie-Tree for frequent

pattern mining. For efficiency, most mining algorithms using Trie-Trees will sort the

items within a record. This usually increases the number of records with common

 

‘5 Compressed tries is a method of storing a Trie-Tree that takes up less space. See section 4.4 for details.
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prefixes, so it reduces the number of nodes within the tree, and lends itself to a

methodical method of getting strings into and out of the tree. For simplicity, this chapter

will sort the items within a record in a lexographical order (see Table 1).

Figure 4 is the Trie-Tree created from the records in Table 1. Even with just seven

records, you can start to see some usage patterns. One obvious pattern is that nodes near

the root of the tree have higher usage counts than nodes near the leaf nodes of the tree. A

less obvious pattern is that it is not just leaf nodes that have a usage count of 1. Indeed,

of the 20 nodes in the tree, 15 of them have a usage count of 1. Further, of the 7 records

in the Tree, all of them have tails. For this paper, a tail is:

A tail is a branch of a Trie-Tree that is only used by one record, that is, each node has

no siblings and all but the leaf node has one child.

 

 

Record?“ RECORD

ACDF

ACEF

ABDEF

ABEF

ABCDE

ABD

BCDF\
I
Q
U
I
A
U
N
"

 

Table 1: Sorted Items   

 

 Figure 4: Sorted Items in a Trie   
By this definition, node “B: l ” is not part of a tail because it has sibling “Az6”. However,

the nodes below “B:1” do create the tail “C:1-D:l-F:1”.
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Trie-trees with a large number of tails compress very well. Trie-tree compression is a

process of reducing the number ofnodes in the tree. Although there are several methods

to do compression”, for this application, level compression alone will be very effective in

reducing the number of nodes in the Trie-tree. In this case, level compression is

performed by taking all of the child nodes of a tail and storing them as one string. For

example, the tail “B:1-C:l-D:1-F:1” of Figure 14 can be stored as the single node B:1

with the string CDF attached. Note that such nodes will always have the following three

characteristics: (1) they will always be leaf nodes; (2) they will not have siblings; and (3)

they will only be used by one record. As such, compressing the Trie-tree of Figure 14

will produce a Compressed Trie-Tree that looks like Figure 5.

 

 
Figure 5: Compressed Trie   

4.3 Mathematical Models

Tails are not just an anomaly, but a statistical probability. That is, the patterns seen in

Figure 4 are common, and they are common for a reason. Section 4.3 and 4.4 present

that reason using statistical analysis. However, before that can be done, you first need to

see how the principles of Mutual Independence can be applied to Trie-Trees.

 

'6 Patricia Trees are a method of doing “path compression”, but, that method will not be used here.
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4.3.1 Mutual Independence

Back in 1993, Agrawal et—al presented frequent pattern mining and some key

mathematics used in the algorithm. The foundation behind the mathematics was the

prediction of frequent patterns. That is, given the frequency of short patterns, it predicted

the expected frequency of longer patterns. It did so by assuming a statistical property

called “Mutual Independence”. Mutual Independence basically says that if two (or more)

events are independent of each other, then the probability that events will occur together

can be calculated. That is, if event A and event B occur with a frequency of f(A) and

f(B), then the frequency of both A and B occurring at the same time is f(A+B)=f(A)f(B).

This implies that if event A happens frequently and event B happens frequently, then

A+B is likely to occur ofien.

Agrawal at-al presented mutual independence as follows: (see Figure 6)

IDB

Figure 6: Mutual Independence

 

 

   
   

Given:

X is a pattern x. xz X3 xn

Y is apattem such thatX n Y = {}

Then:

Sxy is the frequency of the pattern X+Y

The formula for Sxy is:

Fl) Sxy = f(y.) f(yz) . .. f(yk) (x—c) / dbsize

F2) f(yi) = support of item yi within dataset DB

Where y; 6 Y
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F3) x = the # of occurrences of X within DB

For this paper, [X] is a set of records containing X

IfX = {}, then x = |DB| = dbsize = R

F4) c= | C | where C is a subset of [X] — [X+Y]

Note: (x-c)= Size of remaining portion of [X]

This is treating the occurrence of items within a string as events. The dataset DB

represents R independent trials where each string is a combination of simultaneous

events. The set [X] represents a set of strings that contain the simultaneous events X.

[X] is subdivided into mutually exclusive subsets. Given the set [X+Y] is such a subset

of [X], and knowing the support of X, Sxy predicts the support of the events X+Y. As

each subset is processed, it is added to the set C (ie: C’ = C + [X+Y]).

4.3.2 Mutual Independence for Trie-Trees

This same analogy can be applied to a Trie-Tree. Given a node Xn in a Trie-Tree (See

Figure 7), then the path from the root to Xn represents the pattern X = x; X; x“, and the

strings that use node Xn would represent the set [X]. The child nodes of Xn represent

mutually exclusive subsets of. [X]. Given the child nodes of Xn are Y1 Y2 Yk, then Y

can be represented as the single item yj, and C would be represented as the subset of

strings that use nodes Y. YH As such, Sxy = f(Yj) (x—c)/dbsize, where x = |[X]| =

the number of strings using x, and c = [CI = the number of strings using nodes Y1 through

Y...
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  Figure 7: Mutual Independence for Trie-Trees

 

Figure 4 can be used to demonstrate how the analogy can be applied. Let node A:6

represent the pattern X, and item “B” be pattern Y to add to X. As a result, the pattern

X+Y is represented by node 3:4. The Sxy predicts how many records should use node

B:4. So:

X= “A”

Y= “B”

dbsize = R = 7 records

f(Y) = f(“B”) / R = 5 / 7 = 0.71

x=6

c=0

Sxy=f(Y) (x—c)/R

=0.71(6—0)/7

= 0.61 z f(X+Y)

So, the predicted support of 3:4 is Sxy=0.61, and the actual support is

0.57 ( = f(“AB”) = 4 / 7 ). As in 1993, a model of Mutual Independence produces a fairly

good estimate.
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4.3.3 The Prediction of Trie-Tree Tails

So far, what has been presented is only a different perspective of Agrawal’s formulas.

However, the formula for Sxy can be generalized for all children of node X. For Trie-

Trees, it is given Y will always represent one item from the set it“, i.+2, ..., im. As such,

the support of the ik child ofX will be given by:

F5) va = f(ik) (1 - Zj=t+l k-l f(ij) ) X / R

Further, the support for the ip child of Y (a grand child of X) can be calculated as follows:

Given:

Z = ip

y = R Sxy = the size of[X + Y]

Then:

F6) SXYZ=f(ip)(1'Zj=k+l...p-l f(ij))y/R

F7) SXYZ=f(ip)(1‘Zj=k+l...p-l f(ij))

f(ik)(1-Zj=t+l...k-l f(ij) ) X/R

F8) sxyzsrrip) f(ik)x/R

For the root, x=R, so the support ofany node path X = x. xn will be bounded by:

F9) Sx S H1=1...n f( Xj)

As a result, the number of records that are expected to use a node X can be predicted with

R Sx. If this is less than or equal to 1, then the node is predicted to be part of a tail.

Assuming all items have equal support, the depth of non-tail nodes can be estimated with:

Given:

f(x1)= f( X2): = f( X“) S l /n (where n = number ofitems in the dataset)

d is the depth of a node used by multiple records
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R is the number of records in the dataset

Then:

F10) 1<R Sx= r1j=1...d f( ’9')

F11) 1 <R(1/n)d

F12) 0 < ln(R) — d ln(n)

F13) d < ln(R) / ln(n)

So, for example, if the number of strings in a dataset DB is R=1,000,000, and the number

of equally supported items in DB is n=20, then the expected depth where tails are

expected to show up is less than d=4.6. In other words, in this example, tails are

expected if the average number of frequent items within a string is more than 5.

To give an empirical test of the formula, the predicted depth was compared to the depth

ofrandom datasets. In this case, the random data did not have any frequent patterns;

instead, each record contains 6 randomly selected items. As a result, the distribution of

items was evenly distributed and the length of each record was 6. From each dataset, a

Trie-Tree was constructed.

For Figure 8, nine datasets were generated with 100,000 records and the number of items

within the dataset varied17 from 20 to 100. For the datasets, the average depth of the

associated Trie-Tree shared nodes was plotted on the graph. This was compared to the

predicted average depth based on the formula (I < ln(R) / ln(n). As can be seen in Figure

8, the predicted depth does a very good job of bounding the average depth of shared

nodes. Figure 9 does a similar analysis, only it varies the size of the database and keeps

the number of items at 50. It also shows that the formula d < ln(R) / ln(n) does well at

bounding the expected average depth for random data.
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4.3.4 The Observation of Trie-Tree Tails

The prediction of tails in random data is one thing, but do they occur in real data? After

all, the mathematical model makes several simplifying assumptions such as mutual

independence and evenly distributed items. To help answer that question, two distinct

and diverse datasets were examined.

The two datasets were collected from the FIMI repository. They were chosen because of

their diversity. The first dataset is a DB of Belgium Traffic Accident data. At 35 MB,

 

'7 Since each record was fixed at 6 items long, a minimum of20 items was needed to create a sufficiently

random set of records.
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and an average record length of45 items, it is relatively small DB. However, many of its

572 items are mutually exclusive”, so it has a dense set of long patterns. Conversely,

WebDocs is a 1.5 GB dataset with a relatively sparse set of frequent patterns. Each

transaction of the WebDocs represents words of a document from the World Wide Web.

As such, it has 1.5 million records, and over 5.3 million unique words. Because of its

large size, it has a significant number of frequent patterns. Despite the diversity ofthe

datasets, both have a large percentage of tails.

For both datasets, a graph of the percentage of the records that have at least one frequent

item in it (Figure 10), as well as a graph of the percentage of nodes that are in tails

(Figure 11) was made. From this, it can be seen that even with relatively high support,

more than 90% of all records have at least one frequent item. It can also be seen that

even with support as high as 25%, more than half of the nodes of a Trie-Tree are in tails.

Observation has shown that the average depth of shared nodes for data with frequent

patterns is deeper than random data. Despite this, the graphs show that datasets with

infrequent items removed still have a lot of records, and it also shows their associated

Trie-Trees have a high percentage of tails. So, there is a large number of tails in real

data.

Since tails are so prevalent in the Trie-Trees of real data, what can be done to help? The

answer is a more efficient method of handling tails.

 

'8 An example of mutually exclusive items would be “road condition = dry” and “road condition = wet”.
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Figure 11: Most Nodes are in Tails
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4.3.5 Exploiting Tails for Frequent Pattern Mining

Now that we have explained and justified that tails exist, our challenge is to exploit this

characteristic in frequent pattern mining. Since several algorithms of mining use Tri-

Tree type structures (see Section 3.3 for examples), they can be made to be more space

efficient by using the compressed Trie-Tree structure presented in Section 4.2. However,

some Tri-Tree based approaches add additional information and pointers to each node.

Most of this can be reduced or eliminated with the realization that tails have no siblings

and at most one child. Much of the rest can be eliminated by understanding the

methodical nature of mining. The next section will explore how this can be done for the

FP-Growth algorithm.

4.4 Implementing Tails

The most efficient method of storing a tail within a Trie-Tree is to store only the items of

the tail. This can be easily done, but then the challenge for frequent pattern mining is

identifying all strings containing a particular item without scanning the entire tree. This

section will demonstrate how this can be done without such a scan, and without having a

separate pointer for each item of the string. To understand better, it helps to explain how

this has been done in the past.

4.4.1 FP-Growth’s Method of DB Scans

One ofthe core processes of FP-Growth is to scan all of the branches of its tree that

contain a given item. It can quickly find all of these branches because it links the items

of its branches when it builds its tree (see figure 12). With all of the links in place, FP-

Growth can find all branches containing a particular item. For example, when FP-

Growth wants to find all strings that contain “D”, it starts with the D node for the string
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“BCDF”. This node points to the D node for the string “ACDF”. The D node of

“ACDF” points to the D node of“ABDEF”. The last D node pointed to is for “ABCDE”.

By doing so, FP-Growth can methodically search for patterns that contain “D”. FP-

Growth will repeat this process for all items. A through F.
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Figure 12: FP-Tree
 

4.4.2 Modify Scans to Scan Tails

The FP-Growth algorithm can be modified to scan tails by observing that the algorithm is

methodical in its scans. That is, it will look at all strings containing “A” before it looks at

strings containing “8””. When it starts looking at the strings for “B”, it will no longer

need to link “A” strings. As a result, each tail needs to only have one link.

For example, Figure 13 shows the initial setup of the link lists. Notice that this is a kind

of compressed Trie-Tree (ie: the compressed tail under 3:] is “CDF”). Notice also that

the “CDF” tail is linked to the list of “C” strings, but not to the list of “D” or “F” strings.
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As part of scanning the list of “C” strings, the tail “CDF” will be scanned. After the

algorithm is done scanning the tail “CDF”, “CDF” is linked to the list of“D” strings (see

Figure 14). As such, the tail only needs one pointer for all of its items. This algorithm is

outlined in Figure 15 as well as the algorithm for adding strings to the tree.
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NOTE: The tail below “B21” is no longer linked to “C”   
 

 

'9 The original FP-Growth algorithm was implemented with a bottom-up approach, however, there have

been top—down approaches and the procedure presented here can be adapted for either top-down or

bottom-up.
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Procedure Add_String_To_Tree(String S, Tree T)

Node = root of T

For i = each item of S

lfNode has a tail

make lst item of tail a node

end if

lf Node has children

Merge i as a child ofNode

Node = i child ofNode

Else

Tail = remainder of string S

attach Tail to Node

exit For loop

end

nexti

Procedure Process_Tree(Tree T)

For i = each item of I

For 5 = each object of LinkListi

Process_object(s)

If (s is a tail)

j= the item after i in string 5

add 5 to LinkListj

end if

next 5

nexti

Figure 15: Tail Procedures    
4.5 Experimental Evaluation

Since tails compose an increasingly greater percentage of a tree as the strings get longer,

the advantage of compressing the tails becomes increasingly more significant. In the

following experiments, the dense “accidents” and sparse “webdocs” datasets used from

section 4.4 were analyzed using two versions of FP-Growth. The FP-Growth algorithm

was used to demonstrate results because of its prevalence, however, other Trie-Tree

based approaches should work equally well. The comparison of the results will help to

demonstrate the algorithm is applicable for a wide range of datasets.
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4.5.] Experimental Setup

The experiments on the performance comparison between FP-tail and FP-growth were

conducted on an AMD Atholon 2800+ PC with 1.2 GB RAM, running RedHat Linux 8.0.

The programs were written in C++ and compiled with gcc using the "-03" compiler

optimization.

4.5.2 Experimental Results

Figure 16 is a graph of memory usage for analyzing Accidents and Webdocs data using

the FP-Growth program and the FP-Tail program. The bottom two lines (AchP and

AccTail) represent the memory usage for analyzing the 35 MB Accidents data file, and

the top two lines represent the memory usage for analyzing the 1.5 GB of WebDocs data -

(DocFP and DocTail). As the “% Support” goes down, memory usage goes up. This is

expected since items with smaller support will need to be included in the analysis. What

might be less intuitive is the rate of growth for RAM as support decreases.

Since Figure 25 is LoglO, it can be seen decreasing support causes a geometric grth in

RAM. Although this growth is bounded, it only reaches this bound when “% Support”

reaches 0%. As a result, efficiently handling tails is not just a linear savings in space, but

a geometric one. Since the nature of this geometric growth is beyond the scope if this

chapter, Appendix A will expound upon its implications.
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Figure 16: RAM for FP-Growth vs FP-Tail   
 

Achieving this geometric savings in space can be achieved with no loss in performance.

Figure 17 shows the amount of time it took to process each data file. Notice that the

processing times for the accident data for both FP-Growth and FP-Tail (the bottom lines)

are overlapping. That is, the amount of time it takes to implement the tails algorithm for

the accidents data is negligible. Indeed, it produces a small time-savings because of the

more efficient memory handling. The time savings for the analysis of the WebDocs data

also overlaps until it reaches 12% support. At that support, using the standard FP-Growth

algorithm takes over 5 hours instead of only 240 seconds. The reason this happens is

because the algorithm has exceeded physical memory by less than 5%. Since frequent

pattern mining requires analysis of the entire dataset on each pass, exceeding physical

RAM carries a very heavy price. This helps emphasize that saving memory can directly

lead to a significant savings in time.
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4.6 Conclusions of Compressed Trie Mining

Using compressed Trie-Trees for frequent pattern mining has proven extremely effective

in saving space. The space savings is not just linear, but geometric; as such, it has

changed the order of complexity of space requirements for mining. Further, this savings

is not only effective for diverse datasets, but it becomes more effective as space demands

increase. That is, the algorithm works best when it is needed the most, and it does not

appear to have any deviant case with a noticeable cost in space and/or time.

Using this approach allows frequent pattern mining algorithms to be used in at least two

new ways. First, with reduced space requirements, it becomes practical to analyze larger

datasets. Although time will increase the capacity of systems, it will also increase the

size of datasets, and this is a very effective approach to help bridge that gap. For

example, 1.5 GB is not very large, but it is by far the largest dataset offered by the FIMI

repository, and it is larger than a standard PC can mine using conventional methods. The
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second way reduced memory can help is that it allows mining to enhance a system

instead of overwhelming it. For example, pattern mining can be used to enhance hard

drive usage, network security, or word processing preferences; and it can do so without

having to size a PC to meet the high resource demands of frequent pattern mining. This

point will be demonstrated in the next chapter with the development of an application for

fiequent pattern mining involving the enhancement ofPC lntemet security.

As a side note, this chapter also introduced several interesting observations from its

experimental results. These observations can be seen in Figures 10, 11, and 16.

Together, they help lead to a method of predicting the resources needed for mining.

However, predicting resources is not the same as optimizing the use of resources. As

such, this is out ofthe scope of this thesis, and the analysis of these observations has been

added as appendix A.
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CHAPTER 5: Enhancing PC lntemet Security with Pattern Mining

5.] Introduction

The previous chapter introduced a mechanism for significantly reducing the memory

resources required for frequent pattern mining. As mentioned, this can be used to either

mine bigger datasets, or to mine the same size datasets in a smaller environment. For

example, mining is not just practical on a personal computer, but it is now no longer

necessary to size your system to do some forms of mining. That is, mining can be

implemented to improve everyday tasks without having to buy extra RAM to do so. But

what task can be improved by mining? One of the contemporary problems plaguing

personal computing today is lntemet security.

In this case, we are talking about the long term leaching of information out of and/or into

your computer. That is, network applications and applications enhanced with network

connectivity are increasing the network traffic for personal computers to the point where

it is getting more difficult to determine the network activity of your own system. Worms,

viruses, spyware, and even helpful applications will regularly send undesirable

information from your computer, or get unwanted data from the lntemet. However,

considering the volume of information involved, it would be impractical to monitor all of

this traffic to determine what is, and is not, intended and necessary traffic. Frequent

pattern mining can be used to analyze and classify this data to a manageable size. An

application that finds patterns in lntemet traffic can be used to enhance the effectiveness

ofPC lntemet security programs. This chapter introduces the development ofa new

application called NetAppMine that does just that.

40



To understand why most systems need an application like NetAppMine, it is important to

realize that almost every home/office computer today is connected to the lntemet at least

intermittently. Frequently, applications on your system will automatically check when

you have connected to the lntemet and silently transfer data. However, identifying the

applications transferring this data can be challenging, and determining if the data

transferred is good or bad is next to impossible, but NetAppMine can help.

There are several types of applications on your PC that might transfer bad data. For

example, Adware will intermittently display advertisement on your screen”. Another

more subtle example is Spyware. Spyware will discreetly collect information about you

and your habits” for targeting purposes. Worse yet, Malware, Viruses, and Dialers can

take control of your computer and do any number of malicious acts without your

knowledge. Even purchased sofiware will frequently have Spyware/Adware functions

built-in.

This does not mean all programs discretely connecting to the lntemet are bad, indeed,

some are helpful. A program can remove bugs via auto-update. Well targeted marketing

can help you find products your interested in. A company that knows more about you

can serve you better. The trick is to identify and control the data your sending and

getting.

Several applications have been developed to help control the flow of lntemet data from/to

your PC. These include Pop Up Blockers, Spyware/Virus Detection, and lntemet

security programs. The problem with these solutions is that they only identify known

 

2° Frequently, Adware will display ads on how to spend money you don’t have.

2' A common use of Spyware is to collect E-mail addresses so “spammers” can send you ads on how to

enlarge or shrink something.
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problems or have broad/stateless solutions. For instance, if an lntemet security program

lets a program access the lntemet, the program can do anything it wants without further

checks, including IP broadcasts in the middle of the night.

One solution is to addfuzzy logic to lntemet security programs. That is, look for patterns

in the data flow of information. Since frequent pattern mining is the process of looking

for patterns in data, it is ideally suited for this task. The scope ofNetAppMine is to find

such patterns between network applications and network data. This information can be

examined or post-processed to help identify problems.

The organization of the rest of this chapter is as follows: Section 5.2 presents previous

work in lntemet security and describes the unique niche NetAppMine will fill. Section

5.3 explains the methods used to collect and pre-process the data to make mining as

effective and efficient as possible. Next, section 5.4 shows the results of analyzing the

data from three environments to demonstrate the effectiveness ofNetAppMine. This is

followed by section 5.5, which demonstrates the efficiency NetAppMine. The last

section presents conclusions and introduces future work.

5.2 Previous Work

Programs with dubious lntemet communications have been around for many years. By

the year 2000, Spyware was so prevalent that Gibson Research released a program

dedicated to the removal of Spyware. Kazaa has been bundled with Spyware since at

least Dec 2001 (see Table 2). SpywareGuide currently has 2041 Spyware programs

listed, and this list is growing fast. A recent study found over 5% of the computers at the

University of Washington were infected with Spyware, some ofthem for over 4 years.
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Network viruses and worms have been around even longer than that. But what can be

done?

Fundamental changes in the lntemet, and how it is used, would be needed to preserve

privacy. IPv6 would go a long way to helping out. This would allow for better packet

route tracing and greatly reduce spoofing. In addition, IPv6 would allow the elimination

ofNAT and the addition of Kerberos authentication as needed. However, IPv6 would not

be enough. Some organization would need to oversee network applications and certify

Java Scripts, ActiveX applets, etc. to ensure their compliance with privacy standards.

However, these are extreme measures that are not likely to happen soon, if at all.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

Version 1.3.3 1.4 1.5 1.6 1.7 2.0 2.1 2.1.1 2.6

released 12/01 01/02 02/02 04/02 05/02 09/02 02/03 05/03 1 1/03

Gator X

SaveNow X X X X X X X X

Cydoor x x x x x x x

BDE X X X X X X

VX2 X X

New.net X X X X X X

OnFlow X X X

OIL-Ware X X X

CmnName X X X X X X X

PromulGate X

DirecTVloon X X

MySearch X

Table 2: Spyware Bundled with Kazaa

Twelve different programs that were bundled with Kazaa at various points in time.    
A more practical approach is for the individual to monitor their own lntemet data. One

way to do this monitoring is to have sofiware tools that can find patterns in network

traffic. IntelliGuard IT has just such a tool. It uses frequent pattern mining in their
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architecture to create a self-learning firewall for an enterprise environment. It is this kind

of process that NetAppMine will be using for enhancing the lntemet security for the PC

environment.

Mining can be used to find frequent patterns in network data. That is, finding two or

more network events that frequently occur together. For example, a DNS lookup of

MSU.EDU may frequently occur with a PING of MSU.EDU and an FTP to MSU.EDU.

This would result in a frequent pattern of (DNS, FTP, PING). Additional frequent

patterns might be (DNS, FTP) or (FTP, PING). In fact, there are 7 possible combinations

for the three items DNS, FTP, & PING. With 9 items, there would be 511 (=29-1)

combinations. Finding all of the frequent patterns and filtering out the interesting ones is

one of the challenges this research will tackle. Afier all, even with filtering, there is still

lot ofpatterns to look at.

5.3 Methodology

The last section emphasized NetAppMine is a real application filling a real niche, this

section will demonstrate that every effort was done to make NetAppMine as effective and

efficient as possible. It will do so by describing the methods used to collect and pre-

process data, as well as describing the kinds of results expected from the frequent pattern

mining analysis. As will be seen in the experimental results (see Section 5.5), the

optimization presented in Chapter 4 is an integral part of making NetAppMine practical

due to the high volume of data.

5.3.1 Collecting Network and Application Data
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The program collects and time stamps information from each network packet sent. The

information that NetAppMine logs is Source IP, Source Port, Destination IP, Destination

Port, and the protocol (ie: tcp, udp, icmp, or other). In addition, as packets of data are

collected, the program also collects a snapshot of applications with active network

connections. This is done up to four times a second. Lastly, all transactions are given a

timestarnp in milliseconds. However, without processing, the resulting logs quickly grow

into many gigabytes of data.

5.3.2 Processing the Logs

Processing the logs prepares and reduces the amount of data that needs to be analyzed.

Processing will include the filtering out of extraneous IPs, combining data to create

items, and grouping items to create records. The objective here is to balance between

having enough data to produce meaningful and useful patterns, while not having so much

data that the time and space complexity needed for analysis is too costly to be practical.

Filtering extraneous data is the safest method of reducing the amount of data that needs to

be analyzed. For example, the data was collected in promiscuous mode, so network

traffic between other systems can be filtered out. This is done by removing any

transactions that does not contain the IP address of the local machine, 127001, or

0.0.0.0. Some space compression is also done at this stage by encoding the data. That is,

IP addresses, application names, etc. are encoded as a single unique numbers. However,

this still leaves tremendous amounts of data to be analyzed.

Combining data to make items is a key component to reducing the time complexity of

analyzing the data. For example, one of the smaller experiments presented in Section 5.4

had 120 IPs, 700 Ports, 15 Applications, and 4 Protocols (ie: tcp, udp, icmp, and other).
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Because of combinatorial explosion problem, this would mean 420 billion combinations

to look for with thousands ofthem being fi'equent. To reduce this complexity, each

transaction is converted to three items. These items are a combination of the following

fields:

1) Application, Domain

2) Application, IP address

3) Application, IP address, Protocol, Destination Port, Send? 22

Where “Domain” is the first two octets of the IP address.

Where “Send?” is FALSE if the source IP is a remote address.

As a result, the experiment with 420 billion combinations is reduced to less then 22

million; with less than 100 ofthem being frequent.

For example, event #1, event #2, and event#3 from Table 3 are all from a single

transaction. As such, this transaction only creates three items. Otherwise, this same

transaction would create the 6 items: “IE”, “35.9”, “35.9.2020”, “TCP”, “Port=80”, and

“Send=True”. However, with these definitions of items, we can still capture an

application that frequently connects to the “35.9” domain even if it continually changes

ports and/or IP addresses it is connecting to.

The last consolidation done by NetAppMine before analysis is the identification of

records. In this case, a record is a collection of items. To reduce the number of records,

the definition of an item is further refined to be an event. An event is the starting or

ending of a virtual connection. For example, if IE starts sending data to 35.9.2020 at

8:00 am, and continuously sends IP packets to port 80 until 9:00 am, that would generate

 

22 Items of type three are similar to a virtual circuit. That is, a virtual connection between two applications

that are communicating over the network.
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6 events (see Table 3). Events that occur within the same time slice are grouped together.

For these experiments, a time slice was defined as 10 seconds. As such, if the application

PING and FTP frequently run within 10 seconds of each other, a frequent pattern will be

identified that associates the running of PING with the running of FTP. It is this data that

NetAppMine analyzes for frequent patterns, and these kinds of patterns that NetAppMine

 

 

 

 

 

 

 

 

 

 

  
 

  

will find.

Event #1 08:00:00 (IE. 35.9)

Event#2 08:00:00 (IE, 35.9.2020)

Event #3 08:00:00 (IE, 35.9.2020, tcp, 80. True)

Event“ 09:00:00 (IE, 35.9)

Event #5 09:00:00 (IE, 35.9.2020)

Evenurs 09:00:00 (IE. 35.9.2020. tcp, 80. True)

Record/I1 08:00:00 (IE, 35.9)

(IE. 35.9.2020)

(IE, 35.9.2020, tcp, 80, True)

Record#2 09:00:00 (IE.35.9)

(IE, 35.9.2020)

(IE, 35.9.2020, tcp, 80, True)

Table 3: Events and Records

This table shows 6 events and the two records

created by the events.

 

5.3.3 Analyzing the Data

Frequent pattern mining can be done using several methods that produce several kinds of

results. In this case, the algorithm was modified to reduce the number ofpatterns found

without eliminating interesting patterns.

A pattern is a combination of items that occur together frequently. For example, (IE,

35.9) and (IE, 35.9.2020) could occur together in 150 records. As a result, the pattern

[ (IE, 35.9), (IE, 35.9.2020) ] has a frequency of 150. Such a pattern would indicate that
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a lot of the communication to the Domain “35.9” is to the same IP Address. For these

experiments, a pattern needs to occur in at least 20% of the records to be considered a

frequent pattern.

To reduce the number of patterns printed, usually only “maximal patterns” are printed.

For example, if [ (IE, 35.9), (IE, 35.9.2020) ] has a frequency of 150, then [ (IE. 35.9)]

and [ (IE,35.9.20.20) ] must have a frequency of at least 150. However, neither of these

patterns will be printed unless one of them has a frequency significantly greater than the

frequency of [(IE, 35.9), (IE, 3592020)].

In addition, to emphasize the role each application plays in network communications,

mining was done on each application. For example, network communication by

EXPLOREEXE may indicate file sharing over the network. As a result, all records that

reference EXPLOREEXE are extracted from the logs and the dataset is mined

separately. This is done for each application that connects to the network.

If a dataset only has a few records, it is not mined. If there are only 5 records in a dataset,

then every record will be considered frequent. If two records contain several items that

are the same, then hundreds of patterns will be generated from just a few records. As a

result, any application dataset that contains 15 or fewer records is not mined. Instead, the

high port (1000 or greater) items are removed from the records and each record is printed

as a pattern.

5.4 Experiments

5.4.1 Experimental Environment
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The network traffic of three computers were analyzed. All three environments were

home PCs running different versions of Microsofl Windows. Each of the computers had

a 2+ Mb/s lntemet connection. Each of the computers had network applications other

than browsers and were monitored during both active and idle times for at least 12 hours.

The names of the three computers were TEST, WORK, and MEDIA.

The TEST computer was the computer that NetAppMine was developed and tested. Its

network traffic was collected several times over a two week period. Some collections

were under 10 minutes and others were over 12 hours. The Test PC was running

Windows 2000 and was connected to the lntemet via Cable through 3 D-Link Firewall

Router. Some of the collection was made with Norton lntemet Security installed, and

some was not. In addition, the Spyware programs “iGetNet” and “BonziBuddy” were

intentionally installed.

The Work computer’s primary function was to connect to a remote office. Since it was a

relatively new computer, it did not have many programs installed on it. It was running

Windows XP and was connected to the lntemet via a wireless hub. Data collection was

done over a single 24 hour period.

The MEDIA computer’s primary function was for entertainment. It had many

applications installed on it, including two P2P applications (ie: Kazaa). It was running

Windows XP and was connected to the lntemet via Cable through a router. Data

collection was done over a single 12 hour period.

The collection of network and application data was done with a program that uses the

third party tools Ngsniff and Tcpvcon. These tools were chosen because they do not

require any setup or installation. That is, they can be run on any computer.
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5.4.2 Displaying Results Using a GUI

Although there may be fewer than a hundred patterns, each pattern might contain 30 or

more items. To make it easier to review and recognize interesting patterns, NetAppMine

uses a GUI to display the results. Figure 28 (at the end of this chapter) contains a GUI

display of the pattern represented by the table below as well as summary columns:

 

 

Pattern #2 has a frequency of 6 with 13 simultaneously network events

for the application “C:\Program files\Intemet Explorere\IEXPLORE.EXE”

The13 network events include:

Pat Port App [P Protocol Port Direction Name

Type #

l 1 0 -1 None

2 2001 0 -1 None

3 1 0 192.168.0100 UDP 53 < None

2 2043 0 216.177 None

1 43 0 216.177.73.139 None

3 43 0 216.177.73.139 TCP 80 < None

2 2035 10 209.244 SymProxySvc.exe

2 2044 10 216.1 77 SymProxySvc.exe

1 44 10 216.177.73.139 SymProxySvc.exe

l 1 10 10 65.54.140.158 SymProxySvc.exe

1 57 12 127.001 IEXPLORE.EXE

3 57 12 127.001 TCP 1030 < IEXPLORE.EXE

2 2008 12 205.161 IEXPLORE.EXE

 

Table 4: “Events” for a Single Pattern

NOTE: An “Event” does not mean a packet was sent,

but that a network connection was started or stopped

The format of the GUI display makes it easier to see information and patterns that can not

be easily seen in the text. The GUI display lists all applications on the right side and all

items of a pattern on the left. This makes it easier to see which applications are (and are

not) participating in a pattern. Further, the current application dataset is in black and has

“*9,

an . This makes it easy to identify which application dataset is being looked at. In
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addition, extra information is readily available about the current application dataset as

well as other applications. This includes the number of records in other datasets as well

as the number of patterns. The top line of the display shows the number of patterns in the

dataset as well as the frequency count of the current pattern and the full path to the

application. All ofthis data in Figure 18 makes it easier to see that lntemet Explorer is

using SymProxy to access the Internet for everything except the Domain 205.151.

Further analysis of this pattern will be given in section 5.

5.4.3 Results of Analysis

In all, there were 89 patterns generated among the three computers. Figures 18, 19, and

20 demonstrate the results of the three ofthose patterns. This help to demonstrate that

useful results can be gathered from this kind of analysis.

Figure 18 is a pattern from the analysis of the TEST computer. The TEST computer had

a total of 45 patterns generated. The Local IP address of the TEST computer was

192.168.0100. Figure 18 displays pattern #2 from the analysis of IE. It shows that IE

primarily used SymProxy23 to access the Internet. This can be seen from the “127.00.1”

communication while SymProxy was accessing 216.177.73.139 (IGnet Spyware web

site). However, IE did have an exception. It directly accessed several computers in the

Domain 205.161. Most likely, this is an indication that the IGnet sofiware was using IE

to access the web directly. However, it could also be normal communications by IE for

tasks like downloading a program. Further collection of data would help to distinguish if

this was an anomaly or just normal behavior.

 

23 SymProxy is a Norton proxy program for lntemet security.
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The analysis of the WORK computer had 23 patterns as well as 27 records from

programs that infrequently access the Internet. PokerStarsUpdate.exe is an example of

just such a dataset. It helps to show what a pattern looks like for a program that

infrequently accesses the lntemet. Figure 19 is the first pattern of the

PokerStarsUpdate.exe application. Since this program’s dataset has fewer than 15

records, each record that contains PokerStarsUpdate.exe generates a pattern with a

frequency of 1. This clearly demonstrates that PokerStarsUpdate.exe is accessing the

web. In addition, it shows what else is going on while it is doing so. Based on this

information, the PokerStarsUpdate.exe program could be blocked from accessing the

lntemet, or it could be blocked from the 66.212 Domain.

The MEDIA computer has an IP address of 192.168.2.35 and generated over 3,000

records in less then 12 hours. Most of these records were generated while the computer

was not being used. During that time, it was generating network traffic at 6 times the rate

of the other two computers. Figure 20 shows that a lot of these records were broadcasts.

This is a likely indication that there is a misconfigured, poorly designed, or bad

application on this computer. Further analysis would be needed to determine which

application is causing the problem, but it is most likely the HP program “BackWeb”

because of the high volume of network traffic it is generating.
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Pat 2 of 14 with Freq 6 C:\Program Files“ ntemet ExplorefllEXPLOREEXE
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3221680100UDF’53 < (ALL— 5 663 823
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232.377 (Wins 2 l 2

21317773139 (SVCh 0 0 0

33.7.3.3... (serv 0 0 0
127033031 TCP 1030 < (MSTa 0 0 0

205"“ (wmpl 3 1 3

(SShC 3 l 3

(real 5 1 5

(Quic 2 l 2

(SymP 5 663 780

(Nets 5 663 780

* ( IEXP l4 7 l7

(cvpn 0 0 0

(ie6w 2 1 2

Figure 18: GUI Display ofTEST Computer

lntemet Explorer is using SymProxy (usually).

Pat 1 of 8 with Freq 1 C:\Program Fites\PokerStars\PokerStarsUpdate.exe
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(ALL__ 5 113 244

192.168.2.1 UDP 53 <

     

 

  

 

 
 

 

  

 

209.33 E ( NONE 6 6 5 1 3 4

53512225224; (SYS t 7 1 4 8 1 4 9

06.212.225.22 TCP 80 < .4; (svch 3 1 3
03.212.233.223 ..

66213333223 TCP 443 / (31 g . 0 0 0

1553552255 / * (Poke 8 1 8

192.163.2255 UDP 137 < (poke 5 1 6

192103235 (ieXp 5 1 1 3 242

(ccAp 0 0 0

l 0 1 1 0
 

102183235 TCP 130 <

192108235 UDP 137 >

03.21:

00.212.225.22 (LUCO

66.212

015.212.233.228

200.253.208.100

Figure 19: GUI Display ofWORK Computer

PokerUpdate has fewer than 15 records in its dataset.
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Pat 1 or 4 with Freq 119 System

 

 

 

192 168
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(svch 0 0 0

(Expl 6 l 6
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(back 0 0 0

(Back 3 766 1438

(nava 0 0 0

Figure 20: GUI Display of MEDIA Computer

Over a 12 hour duration, this computer was very “chatty” despite it was idle.

5.5 Benefits of Optimizations

Section 5.3 presented the measures taken to filter and process the data so that the analysis

done by NetAppMine is as space and time efficient as it could be. Section 5.4

demonstrated that the analysis of this data still produced meaningful and useful results.

This section analyzes the performance ofNetAppMine.

Because of the high volume of network traffic that a PC can generate, NetAppMine can

have large datafiles. Figure 21 is a graph of the RAM usage ofNetAppMine for

analyzing data. In this case, each dataset represents a 24 hour period of traffic and is

ordered from the smallest dataset to the largest. As you can see from the figure, the

amount ofRAM required to mine patterns grows geometrically with the size of the
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dataset. However, implementing space optimizations has a geometric reduction ofRAM

requirements, and it does so without increasing processing time (see Figure 22).
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You may notice that although there appears to be a good relationship between the size of

the dataset and the amount ofRAM it takes to mine, a similar relationship between the

dataset size and runtime does not appear to exist. A lot of parameters affect the runtime

of mining, and the size of the dataset is not necessarily the most important. Indeed, while
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doing performance analysis, the worst dataset was one of the smaller datasets. Figure 23

is a graph of the processing time needed to do detailed analysis of the network traffic

running through the firewall from the experiment done on the TEST computer. From this

graph, it can be seen that decreasing the support by a small amount has a dramatic effect

on the processing time. The next chapter will look at why this is occurring, and what can

be done about it.
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Figure 23: CPU usage with a Dense Data

5.6 Conclusions Drawn From the Application

NetAppMine works, and it does so efficiently. The results of analysis proved useful in

determining applications with network problems. Further, the combination of reducing

the quantity of data analyzed and implementing the RAM optimization technique has

made NetAppMine a practical application that should not overwhelm standard PC.

NetAppMine could be significantly improved. Further studies in normal network activity

and a database of acceptable patterns could be added to help automate the process of

identifying unusual network traffic. In addition, the application could keep track of user
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responses to help automate the future distinction between acceptable and unusual

patterns. NetAppMine can be further improved by increasing the kinds of data it collects.

For example, it could collect packet sizes, or classifying the kinds ofTCP data that is

being transferred. This would enhance the analysis and widen the kinds of problems that

the NetAppMine could detect. However, degenerate datasets do exist that make such

analysis difficult. The next chapter will look at how such datasets might be handled.
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CHAPTER 6: Reducing CPU Requirements For Dense Datasets

6.1 Introduction

The last chapter introduced a frequent pattern mining application; however, this

application discovered a degenerate datasets that was difficult to mine. The reason for

this drastic degeneration ofperformance was due to the high number of patterns produced

by the small dataset. In other words, it was an extremely dense dataset. However, it is

common that the performance of mining algorithms degrade as pattern density increases.

Such degradation occurs when you are trying to get past common knowledge (ie: “it is

dry in the summer”) to more interesting knowledge (ie: conditions for “drought in the

summer”). This chapter presents an algorithm to increase the efficiency of such analysis.

Recent work on frequent pattern mining focused on using pattern growth algorithms such

as FP-Growth. This approach works well when the patterns are longer or there are a

large number of patterns. Although Trie-Tree like data structures have proven effective

for such algorithms, the construction and the traversal of the trees are a bottlenecks of

these approaches. In this chapter, we propose a method that uses a self modifying prefix-

tree structure that mines the patterns in a predefined order. The method is called Fri, it

works through a process of extracting frequent patterns from a Trie-tree structure in a

depth first fashion. Our experiments show that when minimum support is low, or when

the pattern density is high, Fri significantly outperforms previous approaches.

FP-tree, the Trie-Tree data structure of FP-growth, has a complex structure of pointers.

As such, the cost of construction and traversal of the conditional FP-tree is not trivial, and

it adversely affects the performance of FP-growth under certain circumstances. Further,
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the bottom-up approach produces results in a very erratic fashion. Indeed, the only

pattern it tends towards is the production ofthe least supported patterns first. In this

work, we propose the following techniques to reduce the cost: First, the prefix-tree

structure, Trie-tree, is constructed to store the critical information about frequent patterns;

Second, a depth-first pattern growth method is proposed to mine the frequent patterns

incrementally, as such, the Trie-tree grows during the mining process without having to

create conditional trees. The organization of the following sections is as follows. We

start by giving a brief description of frequent pattern generation and association rule

mining in section 2. Then the general idea of mining frequent patterns from the Trie

structure is introduced in section 3. Section 4 discusses the Fri algorithm as well as

several optimizations that could be applied. Section 5 is the presentation ofthe

performance study. Section 6 summarizes the study and discusses future work.

6.2 Trie and Frequent Patterns

The data structure Trie was first introduced by Fredkin. The construction procedure of

Trie guarantees the sufficiency of this compressed data structure, i.e., it contains all the

information in the original dataset. For detailed construction, see section 2.3 or see the

article “An efficient Implementation of TRI Structures” by Aoe (et. al).

Figure 24 illustrates a Trie-tree of an example dataset. We denote the subtree with a root

ofA:6 under Root as subTree(A:6, Root); so the Trie in Figure 24 has 3 subtrees under

Root: subTree(A:6, Root), subTree(B:2, Root), and subTree(Dzl, Root). It can be seen

that the subTree(A:6, Root) represents all the transactions that contain "A", so

subTree(A:6, Root) contains the exact information that is needed to generate frequent

patterns containing "A"; the union of subTree(B:4, A:6) and subTree(B:2, Root) contains
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the exact information to generate frequent patterns containing "B". Due to the structure

of the prefix tree, subTree(B:4, A:6) and subTree(B:2, Root) could be merged to form a

new Trie, subTree(Bz6, Root). The Fri process is a pattern growth algorithm like FP-

growth. However, its data structure is a standard prefix-tree (Trie—tree). Further, the

frequent patterns are mined in a depth first approach. As such, patterns are created in a

very predictable fashion. Further, the mining process is a recursive algorithm that can

easily be modified for parallel processing. That is, afier the first iteration of mining

patterns that begin with "A", the mining of the patterns that begin with "B" can be started.

The ordering of the pattern generation can be in any predefined order such as alphabetical

or numerical. The patterns are generated in this lexographical order. As a result, if the

patterns are added to a tree, the tree would always be adding leaf nodes. Such a tree

would be very similar to the tree produced by the Tree Projection algorithm and can be

compactly stored and quickly reread for future reference. The Fri algorithm is a recursive

algorithm with each iteration producing one new pattern. When mining the "A" branch,

the first step is to copy the branches under "A" to other parts of the tree. After that has

completed, the "B" branch can be mined independently of the "A" branch. Similarly,

after the first iteration of the "B" branch, the "C" branch can be mined independently of

"A" and "B". Further, once the mining of a branch has started, the nodes under the

branch can be copied to another system and mined independently. This partitioning can

be applied to each level of the tree. That is, once the mining ofthe "AB" branch has

started, it too can be copied to another system and mined independently.
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Figure 24: A sample dataset and its Trie

6.3 The Fri Algorithm

The simplified algorithm for producing patterns using a tree is:

Procedure SimpleFri(Branch)

(1) For(each Limb below Branch)

(2) CopyMerge the Limb up one level

(3) Output Pattern

(4) For(each Limb below Branch)

(5) SimpleFri(Limb)

The technique behind pattern growth algorithms is to generate combinations of various

patterns in an orderly fashion. Since our algorithm searches for frequent patterns using a

Trie-tree, we call the algorithm Fri. The basic approach is a depth first recursive

procedure of copying branches up one level. This means the tree will be modifying itself

as the patterns are generated. For example, the tree in Figure 24 has subTree(B:4, A:6)

which contains the nodes(C:2 & D: 1 ). This subtree would be copied up one level to

subTree(B:2, Root). The resulting tree would look like Figure 25. In some cases, the
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result will be to change nodes(i.e.: 82 becomes B:6). Other times, new nodes will need

to be created(i.e.: Dzl under B:6 is created).

 

 

 

/A :5)

”.- l \l . .

’B - 4) (C : 2)
I

'l

I‘ . \ o

. / ..

/’
./

’l

,/
/,

J

(.53.2 "1952.13" 1 13.1)

Figure 25: The Trie after applying CopyMerge of subTree(B:4, A:6)

Since subTree(A:6, Root) also has C12 under it, C:2 would also be copied up one level.

This would complete the processing of the "A:6" node. The effect of doing these copies

is to create new combinations of items, This is like removing all of the "A"s from the

records that contain "A"("AB", "ABC", "ABC", "ABD", "AC", and "AC") and adding

them to the Tri-tree. Now the tree would look like Figure 26. Since this is a depth first

algorithm, the next subtree to be processed is subTree(B:4, A:6). Copying C:2 and D:1

up one level would have the effect of adding the combinations "ABC", "ABC", and

"ABD" without the"B" and without modifying the count of A:6. Processing this new tree

would process nodes C:2, Dzl of subTree(B:4, A:6) and nodes C24 and Dzl of

subTree(A:6, Root). However, since these are leaf nodes, they have no subtrees beneath

them. As a result, Figure 27 is how the tree would look like after processing all of the

nodes in subTree(A:6, Root).
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Figure 27: The Trie afier applying CopyMerge of two leaf nodes of subTree(B:4, A:6)

Afier all of the nodes in subTree(A:6, Root) have been processed, each node in

subTree(A:6, Root) will represent a pattern. For example, the "A" branch represents the

patterns "A:6", "AB:4", "ABC:2", "ABD21", "AC:4", and "AD: 1 ". When all of the nodes

are processed, the resulting tree will have a similar structure to the tree produced by the

"Tree Projection" algorithm. Figure 28 is the fully-fledged Trie-tree, each node whose

item has a frequency no less than min sup represents a pattern generated by Fri, and the
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frequency of the pattern is equal to that of the item in the current node, due to the fact that

nodes at a higher level will have a higher frequency.
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Figure 28: The fully-expanded Trie

6.4 Optimizations

The SimpleFri algorithm is very efficient at generating all patterns for all items in all the

transactions. However, when min sup is bigger than one transaction, there are a few

optimizations that will significantly increase performance. The motivation for these

optimizations is driven by the general structure of a database stored in a Trie-tree. That

is, leaf nodes of a Trie-tree tend to be at the end of a long string of nodes with only one

child. An example of this is in the branch created by the transaction "BCD" in Figure 24.

These "tails" are frequent because long records tend to have unique "tails". For example,

two records "BCDE" and "BDE" both have the same prefix "B" but have different postfix

items(i.e., "CDE" and "DE"). Because of this, they will create different "tails" in a Trie-

tree. Copying these tails up one branch is costly and will usually not generate a frequent

pattern. As a result, it is a big optimization to allow multiple references to the same "tail"

whenever possible. Another optimization can be done when the algorithm is performing

its depth first search and it comes across a node that is not frequent. Since the nodes of



the Tri-tree are ordered (i.e., alphabetically, a node will only have children that are

alphabetically bigger than it). This means that when the children of a node are copied up,

they can never add to the current node. It can greatly reduce the copying of infrequent

nodes if the branch is pruned of infrequent items. Since the siblings of a node were

copied up before traversing the branch, pruning will not eliminate any possible frequent

patterns of parent nodes. Similarly, after a node has been processed, it can be deleted to

reclaim any resources it is using. The last optimization is a result of the pruning process.

When infrequent items are removed from a branch, it frequently leaves a tail of nothing

but frequent items. This is especially true if there is a high confidence between the items.

As a result, a more efficient algorithm for printing all combinations of all nodes can be

utilized. The new optimized algorithm works very well for processing nodes in memory.

The optimized algorithm is:

Procedure Fri(Branch)

(1) For (each Limb below Branch)

(2) CopyMerge theLimb up one level

(3) If (Branch Support < min sup)

(4) Return

(5) Output Pattern

(6) CheckForRef(Branch)

(7) For (each Node below Branch)

(8) Limb = subTree(Node, Branch)

(9) If(Node Support < min sup)

(10) Prune(Limb)

(11) Else

(12) Fri(Limb)

(13) Delete Node
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The fiinction CheckForRefO will ensure that the branch is not multiply referenced. Limb

is a reference to a subtree, not a copy of the subtree.

6.5 Experiments

The experiments on the performance comparison between Fri and FP-growth were

conducted on an AMD Atholon 2800+ PC with 768MB RAM, running RedHat Linux

8.0. The programs were written in C++ and compiled with the "-O3" compiler

optimization.

We used synthetic datasets for our experiments. The procedure of generating the datasets

is described in. In the first experiment, min sup is varied from 0.07% to 0.7% with the

dataset D1(T2017D500K) where average transaction size is 20, the average maximal

potentially frequent itemset size is 7, there are 500K transactions, and the number of

different items is 20K. In the second experiment, the dataset size is varied from 100K

transactions to 2 million transactions with a min sup of 1%, 2%, and 3% and the D2

datasets (T2016D*K) where the average transaction size is 20, the average maximal

potentially frequent itemset size is 6 and the number of different items is 20K. In the

third experiment, the potentially frequent pattern length (PatLen) varies from 1 (random

data) to 13 (very long maximal patterns) with the D3 datasets (T201*D500K) where the

average maximal potentially frequent itemset size is from I through 14 and the number of

items is 20K. The last experiment varied the number ofpredefined frequent patterns used

to generate the artificial datasets. This would be the "NPats" parameter of the “gen”

program. NPats was varied from 40 patterns to 200 patterns for the D4 datasets

(T2017D500K) with 20K items.
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The first experiment (Figure 29) showed that Fri outperforms FP-growth significantly

when min sup is less than 0.2%, This would be because ofthe high density of patterns

when min sup is small. The second experiment (Figure 30) showed that Fri is up to 5

times faster than FP-growth when the dataset has 200K transactions. Further, Fri is

consistently faster than FP-growth for datasets of at least 2 million transactions. FP-

growth does appear to scale better, but the dataset would have to be significantly bigger

than 2 million transactions to outperform Fri. Further, because Trie-Trees have a lot of

"tails", and Fri does not prune tails until it needs to, Fri's runtime is much more

predictable for similar datasets.
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Figure 29: Performance comparison on T2OI7D500K
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The third experiment (Figure 31) showed that Fri works better with longer average

maximal pattern lengths. Fri outperforms FP-growth as pattern lengths are greater than 6.

Further, as the pattern lengths get longer, the difference becomes very significant. When

the pattern length is 1, there is essentially a random or orthogonal relationship between

the items in the dataset. Under such circumstances Fri does not perform as well as FP-

growth, but neither algorithm will find many patterns because there are not many patterns

to be found. This helps demonstrate that Fri works best when frequent patterns are dense.

The last experiment (Figure 32) showed Fri performs well when there is a large number

of shorter patterns. Since the procedure described in draws its items for the generated

dataset from a set of predefined potential frequent patterns, a larger number of such

predefined patterns will decrease the occurrence of any one potential pattern. This has
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the effect of reducing the density of frequent patterns. With a reduced pattern density, Fri

and FP-growth perform about the same, but when the density gets higher, Fri

significantly outperforms FP-growth.
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Figure 32: Performance comparison on T2017D500K with varying NPats

6.6 Conclusions of Reducing CPU Requirements

In this chapter, we have used a Trie structure to store the database in a compressed format

without information loss, and we then proposed that a pattern growth algorithm, Fri, be

used for frequent pattern mining in databases with dense frequent patterns. Fri

outperforms other algorithms as follows: (1) the temporary data structure for storing the

compressed dataset is very compact; (2) the pattern grth method not only avoids

candidate set generation and test, but also significantly reduces the cost of node count re-

computation when the pattern density is high.
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However, the real question is, does it help with the problem discovered in the previous

chapter. The figure below is a comparison between mining without the CPU

optimization and mining with Fri. As you can see, it cut the run time in half. This is not

to say Fri is best in all situations, but it clearly helped in this one.
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Figure 33: CPU Optimization of Degenerate Case

Further research issues related to Trie and Fri are caching and disk-based algorithms. For

example, when the dataset is very large and the resulting Trie-tree cannot fit into

memory, we can put Trie onto disk. The locality of the Fri algorithm makes it possible to

efficiently generate patterns with a caching strategy, thus very large databases could be

mined. Initial studies have shown that data copied forward in the tree accounts for less

than 1% of the data processing needed to calculate frequent patterns. That is, the

algorithm has better than a 99% cache hit rate as it performs it's mining. An algorithm to

reduce the cost of cache hit/miss calculations is still being worked on.

The current algorithms repeat a lot of work. The same transactions are repeatedly

searched if they contain the items oftwo or more frequent patterns. As a result, they will

need to be repeatedly pruned and/or copied. One approach we are looking into is to store
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the results of a transaction search. The obvious disadvantage of such an approach is the

high RAM requirements. Of course, the technique presented in Chapter 4 will help deal

with that.
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CHAPTER 7: Conclusions and Future Work

This thesis has presented a road map for expanding frequent pattern mining into a new

environment. The new environment is pattern mining as a secondary application. Under

this new role, mining needed to be optimized to avoid having to size the resources of a

system for a secondary application. Since mining sometimes has high processing costs,

chapter 4 demonstrated how to implement frequent pattern mining to reduce processing

requirements. Since mining often has high memory requirements, chapter 5 introduced

an approach to significantly reduce the memory usage of pattern mining. To demonstrate

that mining can have practical uses as a secondary application, chapter 6 implemented

enhancements to PC lntemet security using frequent pattern mining. Together, these

chapters provide a practical map for optimizing and applying frequent pattern mining to a

new area of research.

Further research of frequent pattern mining in secondary application can lead to an

enhanced computing environment. For instance, realize that the document you are

reading now was created with a program that continually tried to “autocorrect” the

formatting, but kept “guessing” wrong. Reconfiguring the program could have been

done, but formatting preferences changed as the context of the document changed.

Frequent pattern mining could be used to adapt to the pattern usages of the user and

enhance the word processing experience. This is just a second example ofhow frequent

pattern mining could enhance the computing environment: it could also be used to

enhance disk sage; adjust the display of icons, windows, and colors; reorder search

results for files and web pages to match our usage patterns; and many, many others
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secondary applications. But it all depends upon mining being optimized enough to

handle the increasing data load without overwhelming the system it is trying to enhance.

Frequent pattern mining is a very active area of research; some of this research can be

used to enhance this work. For instance, because of the nature of permutations, there are

often too many fiequent patterns to be analyzed. To assist, there is a lot of research in

reducing this number to a more manageable size. For instance, there are frequently

groups of patterns that use the same items. Analyzing these groups instead of analyzing

the individual patterns reduces the complexity of analysis to something more practical.

In addition, having a preset criterion of interesting patterns helps to limit analysis to more

useful patterns. Also, analyzing patterns that are missing helps to find missing data.

Missing patterns could be an indication of preferences people do not want to see, or

forces that keep patterns from occurring. All of this research, and much more, can be

incorporated with this work to enhance the computing environment and make

applications more usefiil.
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APPENDIX A: Support vs Space

The focus of the thesis has been on the optimizing of mining for PC applications.

However, as is often the case, while researching one topic, new and interesting topics

arise. Figure 16 of section 4.6 demonstrated a relationship between RAM and minimum

support. In this appendix, we have the opportunity to expound on the implications of this

relationship. Especially the rather surprisingly predictable relationship between

minimum support and RAM requirements.

Since the diverse datasets used in section 4.6 were from unrelated sources, it was

surprising to see such a strong and predictable relationship arise in Figure 16. Figures 34

and 35 repeat the memory requirements for WebDocs and Accidents, as well as adding a

160 MB dataset of census data from 2000, and a 500 MB synthetic dataset. Although

Figure 34 shows curved lines, Figure 35 demonstrates how straight the lines become

when comparing support with the log ofRAM. Interestingly enough, this logarithmic

relationship holds strongest for the real world datasets, and such datasets do not normally

exhibit such nice linear results without a strong overriding principle governing it.

Although the principle governing the relationship between support and RAM is not strict,

it has a dominating effect for minimum support as high as 20%. Working from the

y = ax + b formula of a straight line, the principle (hereafter called the support-space

principle) would be as follows:

ln( D’ )= -a s + ln(D)

where: s = the minimum support

D = the space needed for storing the entire dataset

D’ = the space needed for a given support

a = a constant dependent upon the dataset and the

algorithm used to mine it.
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To understand the implications of this principle, it helps to look at some of the

observations of section 5.6. That section observed that for support as high as 20%, most

ofthe nodes within a Trie-Tree are within tails. So, the amount ofRAM a Trie-Tree is

going to need is going to be proportional to R * L’, where R is the number of records in

the dataset, and L’ is the average length of records after infrequent items have been

filtered out. However, section 5.6 also demonstrates that most records within a dataset

contain at least one frequent item. As a result, the number of records within a dataset

remains relatively constant with respect to the minimum support.

The consequence of the observations of section 5.6 and the support-space principle is that

there is a strong relationship between L’ and minimum support. Hereafter, this

relationship will be called the support-length principle, and it can be deduced from the

support-space principle as follows:

Given:

ln( D’ )= -a s + ln(D) (where a is a constant and s is the minimum support)

D’ = R "' L’ (where L’ is the average length of filtered records)

L = Average length of unfiltered records in the dataset

Then:

ln(L’ * R)=-as+ln(L*R)

ln(L’ *R)= ln(L*R * a“)

L’*R = L*R * e‘as

L’ / L = e ‘ a 5

Using the support-space and the support-length principles, it is possible to estimate the

space needs and the average lengths of filtered records. This appears to work best for

larger real world datasets with longer records. Fortunately, it is just such datasets that

need good estimates. To do so would only require some basic knowledge ofthe
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characteristics of the data, and a way to calculate “a”. Calculating “a” can be done by

either measuring the space requirements at a relatively high minimum support, or

measuring the average length of records after filtering out infrequent items.

In any case, these principles are a beginning to getting a handle on analyzing resource

requirements for frequent pattern mining. Further research would need to be done to

define the environments best suited for these principles, but it is clear that they do occur

in the real world. Perhaps further analysis may reveal why these relationships exists; but,

until then, the results have an immediate and practical application of estimating resource

needs.
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