.1 , .. 3,34 3; . xmmw 1.. 3:? RI #1.. . I.- .tAit-siais .. 4...». Juan... 1.! .5. 5.1.5.1....” nun-MW. mun ..., dorm.” WM. 12:... . o .3 . A. {N i.) .9 it :7 .5 5.... ma . y . 7.5K}. 5 2.7 b H!" 4"“ .. 2am: )- .4! 0:31:33. It. 530. =tahflwnu . :rvl (on. { .3: 1...... a: 4...: .l .6 a.‘ . bums «4.517353 'Slt'ate ; ,I University 30031 This is to certify that the thesis entitled DISCRIMINATION BETWEEN EARTHQUAKES AND CHEMICAL EXPLOSIONS IN EASTERN RUSSIA USING AMPLITUDE RATIOS OBTAINED FROM ANALOG RECORDS presented by Lepolt Linkimer has been accepted towards fulfillment of the requirements for the Master of degree in Geological Sciences Science m ”£4” éfijor Proffiéor’ s Signature 7/2 7/2 005 Date MSU is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 p:/CIRC/DateDue.inddop.1 QiI\l'II VI‘IIII DISCRIMINATION BETWEEN EARTHQUAKES AND CHEMICAL EXPLOSIONS IN EASTERN RUSSIA USING AMPLITUDE RATIOS OBTAINED FROM ANALOG RECORDS By Lepolt Linkimer A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geological Sciences 2006 ABSTRACT DISCRIMINATION BETWEEN EARTHQUAKES AND CHEMICAL EXPLOSIONS IN EASTERN RUSSIA USING AMPLITUDE RATIOS OBTAINED FROM ANALOG RECORDS By Lepolt Linkimer Amplitudes information from 237 earthquakes (1.5 65% 100° E 160° E 170" W Figure 3. Percentage of seismicity occurring during local daytime in Northeast Russia (Modified from Mackey and Fujita, 2005). Labeled regions are the Southern Yakutia region (A) and the Magadan and Northern Yakutia regions (B). In this study various types of Pg/Sg amplitude phase ratios are explored as discrimants between earthquakes and explosions for the Yakutia and Magadan regions of Eastern Russia. There is a simple intuitive basis for choosing ratios of P- to S-wave as an earthquake-explosion discriminant. Explosions may be thought of, in theory, as spherically symmetric pressure sources and are expected to generate primarily P waves. On the other hand, earthquakes occur by shear slip along fault surfaces and radiate the greater fraction of their seismic energy as S waves. Therefore, explosions would be expected to have higher Pg/Sg ratios than earthquakes. Besides the intuitive basis of the PySg amplitude phase ratio, several other factors motivated its selection as the discriminant to be tested for Eastern Russia. First, there is a sufficient amount of amplitude information for both Pg and Sg phases in the Russian seismic bulletins and it can also be easily obtained from the archives of seismograms in the Russian networks. Second, no previous work has been reported using the Pg/Sg phase ratio in Eastern Russia. Since previous studies (Walter et al., 1995; Taylor, 1996; Hartse et al., 1997; Kim et al. 1997, 1998) in other regions of the world have shown that amplitude phase ratios can be used successfully as a discriminant between earthquakes and both nuclear and chemical explosions, their transportability to Eastern Russia seems reasonable. Third, Pg/Sg amplitude ratios are easy to calculate, and the comparison of these ratios between seismic stations can be easily done because the ratios offer the advantage of canceling variations in instrument responses. 1.1 . Geographic Location The study area is located in the northern part of the Far East of the Russian Federation (Fig. 1). It mostly includes parts of the Sakha Republic (Yakutia) and the Magadan Oblast. It also includes the northern parts of the Amur Oblast and Khabarovsk Krai '. Explosion and earthquake identification analysis was performed in regions labeled as A and B in Figure 1. The total size of the two regions under analysis is approximately 4,700,000 kmz, which is about half the size of the United States. Region A comprises part of the Southern Yakutia and adjacent areas to the south, and region B consists of the Magadan District and the northeastern part of Yakutia. These regions were ' Oblast and Krai are terms that describe administrative divisions in Russia defined based on the location of the earthquakes and explosions found in the bulletins. Since both regions have different neotectonic regimens and crustal structure, the analysis was performed in these two separate regions in order to find possible differences in the performance of earthquake-explosion discriminants. 1.2. Neotectonic Setting The present tectonic of Eastern Russia results from the complex interactions between at least six different plates and microplates (Fig. 1). The movement of these plates and blocks may be controlled by the mutual convergence of the North American, Eurasian, Indian, and Pacific plates (Taponnier et al., 1982; Parfenov et al., 1987; Worrall et al., 1996). Microplates, such as Okhotsk, Amur, and Bering, and minor blocks, such as Korea-Khabarovsk, Stanovoy, and Transbaikal, have been proposed as being either extruded or rotating in a context of extrusion tectonics (Riegel et al., 1993; Worrall et al., 1996; Mackey et al., 1997; Fujita et al., 1997; Fujita et al., 2004). The plate boundaries between Eurasian and Amur, Eurasia and North American, Eurasia and Okhotsk, and North American and Okhotsk plates are located within the study area (Fig 1). The boundary between the Eurasian and Amur plates has been proposed to be the Olekma—Stanovoi Seismic Zone (OSSZ) located along the southern edge of the Siberian platform. The OSSZ is up to 200 km wide and extends for 1,000 km to the east of the Baikal rift as far as the Sea of Okhotsk. This zone includes faults of different geometry that move small blocks (Parfenov et al., 1987; Irnaev et al., 1994). Region A comprises a portion of this boundary. The Eurasia—North America plate boundary is defined fiom north to south by the Laptev Rift System (LRS) and the Chersky Seismic Belt (CSB). The LRS is expressed by several graben systems and seismicity which is primarily concentrated in clusters and bands that link the Arctic Mid-Ocean Ridge to the active CSB on the continent (F ujita et al., 1990a,b; Drachev, 2000; Koz’min et al., 2004). One or two microplates have been proposed in the Laptev Sea area as an attempt to explain the distribution of the seismicity in this region (Avetisov, 199; Drachev, 2000; Franke et al., 2000). Further south, the CSB is defined by a belt of epicenters that is about 400 km wide and 2000 km long and diffusely splits into two main branches: the northern one represents the Eurasia—Okhotsk plate boundary and the southern one represents the North America-Okhotsk plate boundary (Chapman and Solomon, 1976; Riegel et al., 1993; Imaev et al., 1994; Seno et al., 1996; Fujita et al., 1997). Two aspects make the Eurasia—North America plate boundary very peculiar: the North America—Eurasia pole of rotation is located in the vicinity of the plate boundary (Cook et al., 1986) and the LRS is one of the few places on Earth where an active ocean spreading center enters a continental edge (Drachev, 2000; Franke et al., 2000). Region B incorporates much of the CSB. The Eurasia—Okhotsk plate boundary is defined by a right lateral transpressional zone that extends from the CSB to Sakhalin Island (Riegel et al., 1993; Imaev et al., 1994, 2000). The North America-Okhotsk plate boundary is a left-lateral transpressional zone that extends from the CSB to the Kamchatka Peninsula (Riegel et al., 1993; Imaev et al., 1994). This plate boundary is presumed to lie on the Ulakhan fault, which is one of the largest strike-slip fault systems in northeastern Asia (~1500 km long). It has a spectacular expression that can be traced distinctly by remote sensing photographs and topographic maps (Imaev et al., 1994, Fujita et al. 2004). The Moma Rifl (MR) is another structure that is frequently discussed in the tectonic literature of Eastern Russia (Fig. 1). It comprises a series of northwest trending topographic depressions mainly located along the North America-Okhotsk plate boundary between the Indigirka and Kolyma rivers. Even though both high heat flow and isolated recent volcanism are observed along the MR, this structure is considered to be an aborted Pliocene rift system. Based on focal mechanisms and geology, several authors have proposed that today the MR is a transpressional zone along most of its length (Cook et al., 1986; Fujita et al., 1990a; Imaev et al., 1995, Franke et al., 2000). 1.3. Previous Work on Explosion Discrimination The problem of explosion and earthquake discrimination has long been known in seismology. Given this interest in the CTBT, nuclear explosions have been the focal point for the studies of explosions as seismic sources and their comparisons with earthquakes. Nevertheless, other events of significance, such as chemical explosions (mining, constructions), rock bursts, mine collapses, and volcanic earthquakes are also found in the literature. The key to discriminating between earthquakes and explosions is an examination of the sources of each event. Among the factors that are likely to differentiate earthquakes from explosions in seismograms are the source mechanisms, i.e., double couple for earthquakes vs. center of dilation for explosions, the amount of shear and compressional energy that is radiated from the source, the duration of the processes at the source, and the depth of the source. Table 1 contains a summary of the theoretical differences between earthquakes and explosions discussed in this section. Most previous studies on earthquake-explosion discrimination have mainly involved the analysis of wave forms (amplitudes, frequencies, energy) and the temporal and geographical distribution of earthquakes and explosions. Amplitude ratios from combinations of seismic phases and frequency bands have been used successfully to discriminate between earthquakes and both chemical and nuclear explosions. However, only approaches based on geographical and temporal distribution of earthquakes and explosions are found in the literature for the study area in Eastern Russia (Tables 2 and 3). Explosions and earthquakes differ fundamentally in their source function. In general, the source time function of earthquakes shows a complex source process with a longer duration, implying that earthquake processes involve a fault dimension of a few to several tens of kilometers. In contrast, the explosion source presents a relatively simple source time function with one or two pulses and a much shorter source duration (Li et al., 1995). In theory explosions are “expansion center” sources, therefore, the primary waves they emit are recorded at all azimuths as compressional waves. This is true for nuclear explosions and also for explosion fields used in open-pit mining and construction (Deneva et al., 1989). As opposed to explosions, earthquakes are recorded with a quadrant or quasi-quadrant P-wave polarity distribution. Unfortunately, first motions observations not always can be read because amplitudes are very low. 10 Table 1. Theoretical differences between earthquakes and explosions of similar magnitude. See text for references. Factors Explosions Earthquakes First motion of P wave Compression at all Quadrant or quasi-quadrant azimuths”) sing distribution (compression and dilation depending on the azimuth) Complexity of the source rupture process Simpler, it comprises one or two simple pulses (2) More complex, it comprises multiple source pulses Duration of processes at the Shorter (2) Longer source Source dimension Smaller Much larger Presence of surface waves High-amplitude Almost unobservable at regional distances Frequency of the dominant Above 10 Hz Below 10 Hz amplitude Source depth Usually no more than tens Usually deeper than 2.5 km to hundreds of meters Attenuation with distance Faster Slower Macroseismic surface effect Felt at smaller distances Felt more strongly and at greater distances Origin local time Show time periodicity, Do not show time usually diurnal periodicity 1. However, tectonic release caused by an explosion can generate a non-isotropic radiation pattern like a double couple earthquake (Fujita et al., 1995; Li et al., 1995). 2. However ripple fire explosions can be complex sources with duration of several seconds. 11 Table 2. Selected previous works on discrimination between chemical explosions and earthquakes Reference Discriminant Region Agnew (1990) Analysis of the temporal and San Diego area, southern geographical distribution of the seismicity using histograms and maps California Deneva et al. (1989) Amplitude phase ratios (SIP) and envelopes of coda waves Sofia seismic zone, Bulgaria Fah and Koch (2002) Multivariate statistical analysis Central Switzerland considering S/P ratios Filina (1999) Ratios of periods (S/P) Altai-Sayan Region (southern Siberia and parts of Kazakhstan, China, and Mongolia) Fujita et al. (2002) Analysis of the temporal and Chukotka, Northeastern geographical distribution of Russia the seismicity Kim et al. (1997) 3-D spectrograms and Pg/Lg Southern Russia, near ratios Kislovodsk Kim et al. (1998) 3-D spectrograms and Pg/Lg at North and South Korea different frequency bands Kim et al. (1993) Pg/Lg ratios Northeastern United States Mackey, (1999); Mackey Analysis of the temporal Eastern Russia and Fujita, (1999 and distribution of the seismicity 2001); Mackey et al. using maps showing the (2002), and Mackey et percentage of seismicity al. (2003) occurring during local daytime in discrete cells Malarnud and AK (K class comparison at Dushanbe-Vakhsh Nikolaevskii (2001) different distances) region, Tajikistan Odinets (1996) Analysis of the temporal Kolyma Region, distribution of the seismicity northeastern Siberia. using histograms Wiemar and Baer (2000) Ratios of daytime to nighttime Switzerland, Alaska, and events in discrete cells Western US 12 Table 3. Selected previous works on discrimination between nuclear explosions and earthquakes Reference Discriminant Region Derr (1970) Rayleigh-wave spectral Western United States amplitude ratios Hartse et al. (1997) Many combinations of Western China and amplitude ratios at different Kyrgyzstan frequency bands Li et al. (1995) Relative source time functions Central Asia (southern estimated using empirical Siberia and nonwestem Green’s functions China) Pomeroy et al. (1982) Fifteen classes of regional Global discriminants, including first motion, Mszmb, and Lg/Rg, Pn/Lg, Pg/Lg and Pmax/Lg amplitude ratios Stevens and Day (1985) mb: Ms and Variable Global Frequency Magnitude (V FM) Taylor et al. (1989) Multivariate statistical analysis NTS and Western United considering mb: Ms, Lg/Pg, States Lg/Rg, Lg/Sm short period amplitude ratios, and Pn,Pg, and Lg spectral ratios Taylor (1996) Pg/Lg, Pn/Lg, and Lg and Pg NTS and Western United spectral ratios States Walter et al. (1995) Pn/Lg and Pg/Lg and Pn, Pg, NTS Lg and Lg coda spectral ratios NTS. Nevada Test Site 13 The reliability of the first motion as an earthquake-explosion discriminant can be also affected by the distorting influence of instruments and local structure that change the authentic pattern of the first motions (Pomeroy et al., 1982; Filina, 1999). It is also important to recognize that tectonic release caused by larger explosions could generate a non-isotropic radiation pattern like a double couple earthquake (Li et al., 1995). For example, the “Horizon-4” peacefirl nuclear explosion detonated in the Northern Yakutia region in 1975 presents a mechanism of a double-couple thrust source (Fujita et al., 1995) Another fundamental difference between earthquakes and explosions is the depth of the source. Explosions usually have depths of tens to hundreds of meters, whereas earthquakes are usually deeper than 2.5 km. However, this fact cannot always be used as a criterion of discrimination, since the accuracy of hypocenter determinations in a regional network is about 2.5 km at best (Malamud and Nikolaevskii, 2001). Since the majority of explosions occur at shallower depths than earthquakes, there is a predominant effect of depth on seismic waves. One difference observed in records obtained at equal regional distances from explosions and earthquakes that have comparable energy is the presence of high-amplitude surface waves in explosions records. On the other hand, surface waves from earthquakes at similar distances are almost unnoticeable against the background of S waves. This makes the shape of the envelope a criterion of explosion recognition because it essentially reflects the presence of more intense surface waves in explosions (Filina, 1999). The frequency content is also different between explosions and earthquakes. Several studies have suggested that the frequency of the dominant amplitude appears to 14 be higher (above 10 Hz) for explosions than for earthquakes (Kim et al., 1997; Kim et al., 1998). It is important to note that the frequency contents of P and S waves depend on the specific propagation paths and local structure; therefore, the frequency of the dominant amplitude may vary from one region to another. The duration of processes at the source has also been found to be different between the two types of events. For example, moderate earthquakes (5.5 1.01 1* 9 U‘ A 1 l .5 0| 1 Network Averaged Log1o(Pg/Lg). Z—component p O D > no» oH—uo—no—bo» o o 9W» >9 ‘1» be m 0 . . o D womw' ' com o promo W- 0 ”CW... (new no on“ e ,ooo-cheee, eeq me. new... or» ewe-nee r e cameo We» p am... not» Mr» carpet-coco D COW» I I I I I T T I T I T I 24681012141818202224 w é Log (Pg/L9) b s r -200 * KSRS DATA 0 Explosions(SlHY Explosions) 1' ‘1 Earthquakes + Unknown event -— - Average value of explosions Average value of earthquakes I ' fl l I E 0.5-3H2 3-5Hz 5-7Hz 8-10Hz 2-4Hz 4-6Hz 6—8Hz l e Earthquakes A Chemical multi le-hole ripple-fired exp osions 0 Mean value earthquakes A Mean value explosions Figure 4. Examples of amplitude phase ratios obtained in previous studies. A) Network- averaged Pg(z)/Lg(z) ratios from the Caucasus area, southern Russia (From Kim et al., 1997). B) Pg(z)/Lg(h) ratios from the Korean Peninsula (From Kim et al., 1998). 17 The rock properties (gas porosity, density, and velocity) in the near-source zone of explosions have also been found to have an effect on the performance of the same discriminant in different regions. For example, Walter et al. (1995) showed that the Pg/Lg ratio separates all the earthquakes from the Nevada Test Site (NTS) nuclear explosions detonated in low gas-porosity-high strength materials. On the other hand, nuclear explosions detonated in high gas-porosity-low strength materials significantly overlap the earthquakes. Hartse et al. (1997) showed that the Lg (3-6 Hz/O.75-l .5 Hz) spectral ratio did not separate earthquakes and nuclear explosions in central Asia in the same way that these events were separated at the NTS. According to these authors, this situation may be due to source medium properties effects, as Asian explosions are thought to be detonated in highly lithified rocks below the water table, while most of the smaller (mb<4.8) NTS explosions have been detonated in poorly lithified rocks above the water table. Below, a brief summary of the results obtained by several authors using amplitude ratios and spectral analysis is presented. Deneva et al. (1989) successfully discriminated between chemical explosions and earthquakes using amplitude (S/P) ratios as a function of both magnitude and distance. They studied the Sofia seismic zone in Bulgaria using 1500 events (6 < A < 50 km, 0.5 < Mag.< 2.3), of which 1420 were explosions and 80 were earthquakes, recorded with a vertical short-period seismograph (S-13 seismometer). They concluded that when the S/P amplitude ratio is above 2.5 the source is not an explosion. F ilina (1999) compared the frequency compositions of body and surface waves of 90 chemical explosions and earthquakes (50 < A < 700 km, 1.5 < Mag. < 3.5) recorded by SMK-3 instruments in the Altai-Sayan region which includes southern Siberia and 18 adjacent areas of Kazakhstan, China, and Mongolia. The frequency composition was analyzed using visible periods of maximum phases for waves of various types. The ratio of periods (Ts/T p) from earthquakes and explosions was found to be practically independent of epicentral distances, but it is higher by about 0.3 in the case of explosions. Kim et al. (1997) observed that earthquakes and chemical multiple-hole ripple- frred explosions in the Caucasus area of southern Russia, near Kislovodsk, show distinctive patterns in the spectral content of P and S waves. They analyzed high frequency (1 to 25 Hz) regional records from 25 small earthquakes (Mag. < 4.5) and chemical explosions of comparable magnitude in distance ranges of 15 to 233 km. They found that the network-averaged vertical component Pg/Lg in the frequency band of 8 to 18 Hz served well for classifying the events, with explosions having higher values than earthquakes (Fig. 4a). They found that the Pg/Lg spectral ratios of rotated, three— component regional records improved the discrimination power of the spectral ratio method in the same frequency band. A similar approach was used by Kim et al. (1998) to study the frequency content of ten chemical explosions (Mag. 5 3.0) and 20 small earthquakes (Mag. S 4.0) recorded in the Korean Peninsula. In order to get closer to the radiation characteristics of the sources, these authors calculated the Pg/Sg ratio from free surface corrected P, SV, and SH seismograms and considered the average of frequency bands obtained for each station. They found that chemical explosions had higher values than earthquakes (Fig. 4b). The best separation was observed from 6 to 8 Hz with a critical value of log(Pg/Sg) = -0.5 (or Pg/Sg = 0.32), although other frequency bands were also valid for discrimination. 19 Walter et al. (1995) analyzed 130 underground nuclear explosions, one large chemical explosion, and 50 earthquakes (190 < A < 315 km; 2.0 < Mag. < 6.5) recorded at two broadband seismic stations in the vicinity of the NTS. They found that the Pn/Lg and Pg/Lg phase ratios both showed little dependence on magnitude and worked better at higher frequencies and when the two stations used were averaged. At 6 to 8 Hz explosions have larger Pn/Lg ratios than earthquakes. Taylor (1996) also studied events at the NTS. This author was able to correctly identify 95% of 294 NTS nuclear explosions and 114 western United States earthquakes (175 < A < 1300 km, 2.5 < Mag. < 6.5) using the high-frequency (0.5 and 10 Hz) Pg/Lg discriminant in six different frequency bands for events recorded at four broadband seismic stations. The best discrimination occurred for larger magnitudes and higher frequencies (6-8 and 8-10 Hz bands). Hartse et al. (1997) successfully discriminated between earthquakes and underground nuclear explosions using different types of amplitude ratios. They measured noise and signal levels of over 380 earthquakes (2.5 > m, > 6.1) and 31 underground nuclear explosions (4.5 > m, > 6.5) recorded at different regional distances (<1700 km) at two stations in western China and Kyrgyzstan. They concluded that the most effective discriminants for this region were the following: phase ratios for frequencies above 4 Hz, P(3-6 Hz/O.75-1.5 Hz) spectral ratios, P(3-6 Hz)/S(0.75-1.5 Hz) cross spectral ratios, and short period (21 Hz) to long period Rayleigh-wave (0.05-0.1 Hz) ratios. For all of these ratios, explosions had higher values than earthquakes. 20 1. 3. 2. Discrimination Based on Geographical and Temporal Distribution Temporal analysis of the seismicity is a very simple and practical method for detecting areas with explosion contamination. The basis of this method is that blasting, whether or not geographically dispersed, is usually concentrated in time. This is because chemical and mining explosions are usually detonated during the daytime hours. On the other hand, earthquakes do not show such a diurnal periodicity. A ratio of daytime to nighttime events (Rq) is a useful way to express time-biased seismicity. Wiemar and Baer (2000) identified regions with high quarry activity in Switzerland, Alaska, and the western part of the United States by mapping Rq over the mentioned regions. Examples of time-biased temporal distribution of the seismicity are usually found in the vicinity of mining regions and construction projects. For example, in Southern Russia, near Kislovodsk, Kim et al. (1997) observed that 87.5% of the events recorded in 1992 and located within 15 km of the Tymauz mine were clustered near two peak times, 10 am and 4 pm. They also observed that 100% of the events located within the 10 km radius of the Ust-Djeguta and Tsementny-Zavod quarries, also in southern Russia, were clustered near 2 pm. Another example was discussed by Agnew (1990) in the San Diego area of southern California. This author showed that the seismicity from 1976 to 1988 had two large peaks in time: one just before noon and another in the late afternoon. 1.3.3. Previous Studies in Eastern Russia Analysis of the temporal distribution of recorded events has also been applied to identify areas of explosion contamination in Eastern Russia (Godzikovskaya, 1995; 21 Odinets, 1996; Mackey, 1999; Mackey and Fujita, 1999 and 2001; Fujita et al., 2002; Mackey et al., 2002; and Mackey et al., 2003). Odinets (1996) found that a large fraction of the earthquakes reported in the central Kolyma region in northeast Siberia were in reality explosions. Mackey and F ujita (2001) observed regions with presumed explosion contamination based on the fact that the majority of seismicity occurs during daytime hours. Mackey (1999) found that the Amur District had the clearest explosion contamination. He observed that when he plotted local daytime and local nighttime epicenters separately, there were several large clusters of epicenters that could be correlated geographically with specific mining regions. Mackey et al. (2003) calculated the fraction of day vs. night events in discrete cells for Eastern Russia (Fig. 3). These authors noted several clusters with more than 90% of events occurring during local daytime. Areas where events occurred primarily during daylight hours were correlated geographically with specific mining regions. They also found a correlation between daytime-biased cells with constructions projects, such as the route of the Baikal-Amur mainline railroad construction and the Kolyma hydroelectric dam in northeast Siberia. They also identified areas with explosion contamination in the Amur District (Fig. 5), Southern and Northern Yakutia regions, the Magadan region, and Sakhalin Island. The Polyarni region in Chukotka was also found to have explosion contamination (Fujita et al., 2002; Mackey et al., 2003). Mackey and F ujita (2001) and Mackey et al. (2003) determined that, for northeast Siberia, the levels of explosion contamination also changed with the season because 22 explosions in placer mining districts are mostly concentrated during the late winter and early spring, when frozen ground is broken up for the summer processing season. Figure 5. Seismicity in the Amur region. A) Daytime. B) Nighttime. Gray shaded regions indicate clear explosion contamination (Modified from Mackey et al., 2003). 23 1.3. 4. Other Techniques The mszs, Variable Frequency Magnitude (VFM), and the AK discriminants are other techniques used for earthquake-explosion discrimination that involve the comparison of seismic energy radiated from earthquakes and explosions. The mszs discriminant is mostly used for discriminating earthquakes and nuclear explosions. This method is based on the observation that, in general, nuclear explosions have substantially higher mb than earthquakes for the same seismic moment. This results in a difference between the magnitudes of body and surface waves (mb-Ms) that is greater for explosions than for earthquakes. (Douglas et al., 1974, Stevens and Day, 1985, Taylor et al., 1989). The Variable Frequency Magnitude (VF M) method is based on the observation that body waves from nuclear explosions contain more high-frequency energy than body waves from earthquakes of comparable size. In this method, the body wave magnitude is measured from narrow-band-filtered seismograms at two different frequencies, f1 and f2, usually about f1= 0.5 Hz and f2 = 3.0 Hz. In many circmnstances, a plot of mb(f1) versus mb(f2) produces a clear separation of earthquakes and explosions. When spectral magnitudes are measured for a large number of events, the earthquake and explosion populations fall into different regions on the plot, with mb(f2)-mb(f1) typically larger for explosions than for earthquakes (Stevens and Day, 1985). Malamud and Nikolaevskii (2001) proposed a convenient method based on the comparison of seismic energy (K) class from data of two stations at different epicentral distances in the Dushanbe-Vakhsh region in Tajikistan. They demonstrated that the difference (AKzKi'Kj) between two stations (i and j) at different distances (xi < Xj) is 24 generally positive for earthquakes and negative for chemical explosions. This may be attributed to the fact that most of the seismic energy generated by explosions attenuates in the zone near the source. Consequently, with increasing distance, a further decrease in the amplitude of an explosion-generated signal is much less significant than in the case of earthquake signals. This technique does not allow the discrimination for some pairs of stations. The authors attributed this situation to specific local tectonic effects, such as the anisotropy and fracturing of rocks. 25 2. DATA ANALYSIS AND RESULTS In the following sections, the methodology of amplitude phase ratio processing are explained. Amplitude phase ratios are shown in four different ways: the raw phase ratio, the distance-corrected phase (DCP) ratio, the network-averaged phase (NAP) ratio, and the network-averaged distance-corrected phase (NADCP) ratio. The results are discussed separately for the two regions studied: the Southern Yakutia region and the Magadan and Northern Yakutia regions. 2.]. Data Sources, Seismic Stations, and Type of Explosions Amplitude information, arrival times, and location parameters of 544 events, including 259 earthquakes and 285 known chemical explosions, recorded between 1985 and 2000, were acquired from unpublished bulletins and analog seismograms made available from the Yakutia and Magadan regional networks. The amplitude collected from the bulletins consists of peak-to-peak maximum amplitudes for both Pg and Sg phases recorded on each of the three components Z, N-S, and E-W. Amplitudes were determined from analog seismograms in Russia by measuring the maximum peak of both Pg and Sg phases in millimeters. In order to obtain amplitude in microns, these values were first divided by two, and then divided by the station amplification in thousands. Two examples of amplitude measurements made using seismograms from an earthquake and an explosion obtained in Russia are shown in Figure 6. 26 till lllllllIl l m} n: u I": null I IIII P-g—z 27mm 0.210 microns B) Explosion 19860123 06:47 K= 9. 4, Dist=193 km Station Amplification: 44, 750 w M m lllllg ggll as; S . B B IIIIIIQ N ...___..__~.M .m-— M- » Figure 6. Examples of amplitude measurements made on the vertical component of a seismograrn of A) An earthquake recorded at SEY and B) an explosion recorded at USZ. The amplitude calculation is shown for both Pg and Sg phases. Note that these seismograms read from right to left. 27 Specific frequency ranges are not considered explicitly in this study due to the unavailability of this information in the analog Russian bulletins. However, there is a frequency range implicit in the records used, since the seismic stations utilized SM-3, SKM, or VEGIK short period seismometers, which record periods between 018-13 5 (076-55 Hz). This is considered the frequency range in which the phase ratios calculated in this study are valid. The stations used in the analysis are summarized in Table 4 and shown in Figure 7. Approximately 65% of the amplitude information comes from the following seven stations: Chagda (CGD), Chul' man (CLNS), Seirnchan (SEY), Tungurcha (TUG), Ust’ Nera (UN 1 S), Ust’ Nyukzha (U SZ), and Ust’ Urkima (UURS). The majority of the chemical explosions considered in the analysis are related to open-pit mining activities. These explosions were conducted under a technique called ripple fire. The geometry of the detonation consisted of a set of five to 15 lines, in which each line has a number of holes filled with explosives to depths of 10-15 m. The detonation occurs with a time delay in each line that can be in the order of 50 milliseconds. The total amount of explosive used could range from 10 to 200 tons and the total duration of the detonation could be in the order of tends of seconds (Mackey, pers. com.) 28 Table 4. Seismic stations used in this study Station Name Lat N Long E Seismic Network N“::::: “f Region") ATKR Artyk 64. 1 8 145. 13 Yakutia 24 B BTG Batagai 67.65 134.63 Yakutia 9 B CGD Chagda 5 8.75 130.62 Yakutia 77 A,B CLNS Chul' man 56.84 124.89 Yakutia 64 A DBI Debin 62.34 150.75 Magadan 24 B EVES Evensk 61 .92 1 59.23 Magadan l B KHG Khandiga 62.65 1 3 5.56 Yakutia 9 A KROS Kirovskii 54.43 126.97 Amur 22 A KU- Kulu 61 .89 147.43 Magadan 1 B MGD Magadan 59.56 150.81 Magadan 2 B MOMR Moma 66.47 143.22 Yakutia 20 B MYA Miyakit 61 .41 152.09 Magadan 7 B NAY Naiba 70.85 130.73 Yakutia 7 B NKBS Nel'koba 61 .34 148.81 Magadan 26 B NZDS Nezhdanisk 62.50 139.06 Yakutia 18 A OMS Omsukchan 62.52 155.77 Maggan 3 B SAY Saidy 68.70 134.45 Yakutia 7 B SEY Seymchan 62.93 152.38 Magadan 40 B SNES Sinegor’e 62.09 1 50.52 Magadan 13 B SSY Sasyr’ 65.16 147.08 Yakutia 25 B SUUS Susuman 62.78 148.16 Magadan 37 B TBK Tabalakh 67.54 136.52 Yakutia 13 B TLl Tenkeli 70. 1 8 140.78 Yakutia 4 B TLAR Talaya 61 . 13 l 52.39 Magadan 9 B TNL Tonnel'nyi 56.29 1 13.35 Irkutsk A TI'Y Takhtoyamsk 60.20 1 54.68 Maggan 3 B TUG Tungurcha 5 7.28 1 2 1 .50 Yakutia 79 A ULZS Kamenistyi 65.41 144.83 Yakutia 2 B UNIS Ust’ Nera 64.57 143.23 Yakutia 79 B USZ Ust’ Nyukzha 56.56 121.59 Yakutia 133 A UURS Ust’ Urkima 55.30 123.22 Yakutia 85 A YAK Yakutia 62.03 129.68 Yakutia 6 A YUB Yubileniya 70.74 1 36.09 Yakutia 3 B ZY R Zyryanka 65.72 149.82 Yakutia 5 B 1. The seismic station recorded events located in regions A and B denoted in Figure 1: the Southern Yakutia region (A) and the Magadan and Northern Yakutia regions (B). 29 Sea of Okhotsk 134'E Armor mu Ymm mm 0 A I m<10m . A I W11~Smtim A I mum-tbs ——— Ibhphbm Figure 7. Seismic stations used in this study. Labeled regions are the Southern Yakutia region (A) and the Magadan and Northern Yakutia regions (B). See Table 4 for more details. Size of symbols denotes amount of data available. 2.2. Phase Ratio Processing and Methodology The 544 events collected initially were separated into two groups: night-time earthquakes and day-time known explosions. The time window selected for the earthquake group was 11:00-22:59 UTC for the Southern Yakutia region and 9:00-20:59 30 UTC for the Magadan and Northern Yakutia regions. The time window for the explosion group was 23:00-10:59 UTC for the Southern Yakutia region and 21 :00-8z59 UTC for the Magadan and Northern Yakutia regions (Fig. 8). This separation was done because night time seismicity better reflects tectonic trends as most explosions are excluded (Mackey and F ujita, 2001; Mackey et al., 2003, Fig. 3). Only daytime events clearly identified in the bulletins as “explosions” are included in the database for the explosion group. Events with Pg and Sg phase amplitude information in all three components (Z, N-S, and E-W) for at least one station were selected. Events with amplitude information for Pg in Z and Sg in both N-S and E-W components were also selected. This selection was conducted because values of K class could always able to be calculated using the nomogram of Rautian (1960) that requires at least amplitudes of the Z component for Pg and the horizontal components for Sg (Fig. 9). One advantage of records with amplitudes in all components is that it allows for the calculation and comparison of any possible combination of amplitude phase ratios as well as the full vector. This permitted the comparison of the performance of amplitude phase ratios using the exact same set of data. 31 2: Number of events 30 £9 25 20 Number of events 3 III-I , Iln 0246810121416182022 Time (UTC) i!.1:*ZF§'Ela!aE¢§ a117, mars 2 4 6 810121416182022 Time(UTC) Figure 8. Distribution by time of the events used. A) The Southern Yakutia region. B) The Magadan and Northern Yakutia regions. 32 Ap +As 10.0 0.2 0.1 0.01 3 10 20 100 300 500 1000 Distance (km) Figure 9. The Rautian (1960) nomogram used to calculate K class. Dashed red lines denote an example of a calculation of a 9.4 value of K Class. From the amplitude information, the following five types of phase ratios were created: Pg(h) = (Pg/vs )2 + (Png )2 Sg(h) (Sgss )2 + (Sg 15W )2 2g Pg(2)=sz Sg(2) ng 33 P301): ‘/(Pg~s)2 +(ngw )2 58(2) (582) 4, Pg(z) = sz Sg ,/(Sg~s )2 +(Sg1-W )2 5 Full Vector: \Rpgz )2 ‘1' (Pg NS )2 '1' (Pg raw )2 \/(ng )2 + (SgNS )2 + (SgEW )2 The five types of amplitude phase ratios were plotted against the energy class of the seismic shock (K) as calculated by each station. The database of selected events consisted of 484 events (Fig. 10). These events are distributed in the two studied regions as follows: 147 earthquakes in the Southern Yakutia region and 90 earthquakes (6.1 < K < 12.8, 16 < A < 916 km) and 130 explosions (4.8 < K < 10.2, 9 < A < 752 km) in the Magadan and Northern Yakutia regions. From the amplitudes of these 484 events, 1164 Pg(z)/Sg(h) and 858 of the other four types of phase ratios were calculated. Table 5 summarizes the number of events and ratios per region and other parameters of the selected events. Appendix A shows the amplitudes collected for these events. 34 73° N :f' NORTH .gAMERlCAN f“ PLATE Figure 10. Location map of events used. Labeled regions are the Southern Yakutia region (A), the Magadan and Northern Yakutia regions (B), the Neryungri-Chulman mining region (NCMR), and Susuman miming region (SMR). 35 Table 5. Characteristics of the database of selected events Southern Yakutia Magadan and Northern Yakutia Earthquakes Explosions Earthquakes Explosions Number of events 147 117 90 130 Number of 323 251 370 220 Pg(z)/Sg(h) Number of ratios 259 206 255 138 (other four types) Distance range 10-900 km 6-423 km 16-916 km 9-752 km K class range 5.2-12.6 4.8-10.6 6.1-12.8 4.8-10.2 m, range “1 1.5-4.8 1.4-3.9 1.9.4.9 1.4-3.7 UTC time window 11:00-22:59 23:00-10:59 9:00-20:59 21 :00-8z59 1. Magnitude (mb) was calculated using the regional regression of m, = 5.4+0.44 (K-14). 2.2.1. The Distance Correction In order to improve the separation between explosions and earthquakes and account for attenuation effects, a distance correction was applied to the five types of phase ratios previously calculated. Figure 11 shows an example of the procedure followed to calculate distance corrected phase ratios. The phase ratios of one explosion and one earthquake of the same size (K class 8) are highlighted in order to illustrate more clearly the effects of the correction. The distance correction was calculated using a linear regression for the earthquake data in an amplitude-phase-ratio vs. epicentral—distance graph. In this example, the linear regression is given by a slope of -0.0001 and a y- intercept of 0.2326 (Fig 11a). The coefficient of determination (R2) was also calculated. 36 B) 9 Network-Averaged Figure 1’8 (h) / 58 (h) Pam/5201) 0.8 0.4 ‘ 0.0 * 3 3 y = -0.0001x + 0.2326 1.2 ,3 R2 = 0.0178 5 I. .- I) U) a ~Farthqtnkes 6°." -Epr8b8 1 019871114 019860115 0100200300400500600700800900 Distameflcm) C) 16 2 l O - 1. 4 - ' . I" gA ‘ ‘..‘ 5 g ,2,» a go ;' I I: 2 g _-0'_.. .,_: I); I“ 4 EV I..L:‘HII..I'3"1§'“1 I’N ._ a - - a -. T .04 . a I 7 8 9 10 11 I2 6 8 9 10 1] 12 E) 1.6 n, 1.2 8 ‘ - < ‘ ..o'. z 0.8 ; 6:: g . . . I'.' M 0.4— . ‘.. 083:1... : ‘3 ' ' ' -3 " a 00 '..-“W H) 34 04 789101112 6 89101112 K-Class -Chss 11. An example of a distance correction and network-average calculation for the Pg(h)/Sg(h) phase ratio of one earthquake and one explosion in the Southern Yakutia region. All of the Pg(h)/Sg(h) phase ratio for the region are also shown. See Table 6 for more details. A) Pg(h)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(h) phase ratio vs. K class. C) Pg(h)/Sg(h) phase ratio vs. K class after the application of the distance correction. D) Network-average Pg(h)/Sg(h) phase ratio vs. averaged K class. E) Network-averaged distance-corrected Pg(h)/Sg(h) phase ratio vs. averaged K class. 37 The difference between this regression line and each phase ratio was added to the original phase ratio (Fig. 11b) to obtain a distance-corrected phase (DCP) ratio which was plotted against K class. The same correction based on the linear regression for the earthquakes was also applied to the explosions (Fig. 11c). Table 6 contains the data for the two events highlighted in Figure 11. It can be seen that the separation between the phase ratios from earthquakes is larger after the application of the distance correction. For this reason, the use of a distance correction improves the discriminating power of amplitude phase ratios as was seen in previous studies (Taylor, 1996; Hartse et al., 1997; Kim et al., 1997, and Mackey et al., 2005). Table 6. An example of a distance correction and network average calculation for the Pg(h)/Sg(h) phase ratio of one earthquake and one explosion in the Southern Yakutia region Event . P80!) P80!) P80?) P h — —— —— Date Station {)k‘ms‘g £85 32% Sg(h) Sg Sg< h) @3253: Time DCP NAP NADCP CLNS 231.8 8.1 0.14 0.07 E“““'“‘”‘" .4 7. . - . 1987 11 14 USZ 28 0 0 07 0 09 0.13 0.03 8.0 14 50 297 TUG 78.6 8.4 0.16 0.10 UURS 193.6 8.6 0.13 0.05 CLNS 11.8 6.5 0.26 0.29 EXPI°Si°n usz 193 0 8 5 0 78 1 35 1986 01 15 ' ' ' ' 0.52 0.83 8.0 07 04 31.7 TUG 203.0 8.6 0.64 1.07 CGD 411.4 8.5 0.39 0.59 DCP distance-corrected phase ratio, NAP network-averaged phase ratio, NADC network- averaged distance-corrected phase ratio. 2.2.2. The Network Average It was found that in many cases a single event, either an earthquake or an explosion, had a very different value of the Pg/Sg phase ratio calculated for different 38 stations. This difference in outliers between stations suggests that averaging the measurements over the seismic network may decrease the scatter and improve the earthquake-explosion separation. For this reason, a network-averaged phase (NAP) ratio was calculated when three or more phase ratios were available for the same event. Figure 11 (d, e) shows an example of this procedure applied to the same set of data shown for the distance correction in the previous section. This average was calculated for both the phase ratios (Fig. 11d) and the distance-corrected phase ratios (Fig 11d) and were plotted against the network-averaged K class. Table 6 provides the results of these calculations. Network-averaged amplitude ratios were also used by Taylor et al. ( 1989), Taylor (1996), Walter et al. (1995, 1996), and Kim et al. (1997). 2. 2. 3. Critical Values The critical value (CV) of a phase ratio is the value of the ratio that best separates the populations of earthquakes and explosions. Since it is intuitively expected that explosions should have higher values of Pg/Sg phase ratios than earthquakes, the critical values were calculated taking possible values of amplitude phase ratios and counting the number of ratios from earthquakes below that value and the number of ratios from explosions equal or above it. Figure 12 shows an example of the procedure applied to the Pg(h)/Sg(h) phase ratios in the Magadan and Northern Yakutia regions. The analysis was performed by iterations every 0.01 of the value of the phase ratio from -O.4 to 5 (Table 7). The sum of the number of earthquakes below each value and the explosions equal or above it for one specific value define the number of ratios correctly classified by that value. The 39 maximum number of correctly classified events determines the critical value for the phase ratio analyzed (Fig. 12 a,b). A) 400 B) Max. at 0.42-0.43 .§ 3 3 300 ‘ 55 I a .3;- 6 g 200 « "5- o 1 3° "5 a g 100 1 § 5 a: Z 0 T . . . . . . -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 9801) / 38(h) P801) / 580:) C) 400 D) - ~ . . t . g A Max 8 023 .3 a «'22 300 < '35; 3 2 5 8 a ’3 200 ‘ '.5 '3 —- 0 U g on“ c.- . 5 ° § 100 4 B e S 3 ‘ z 0 2 r ~ 1 0 - r . ~ -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Pg(h) / Sg(h) MW 5801) — Earthquakes ' *- Explosions - Total Fig 12. An example of the calculation of the critical value for the Pg(h)/Sg(h) phase ratio for the Magadan and Northern Yakutia regions. Additional details in Table 7. A) Number of correctly classified ratios by the Pg(h)/Sg(h) phase ratio. B) Percentage of correctly classified ratios by the Pg(h)/Sg(h) phase ratio. C) Number of correctly classified ratios after an EEF of 1.85 was applied to the number of explosions. D) Percentage of correctly classified ratios afier an EEF of 1.85 was applied to the number of explosions. 40 Table 7. An example of the calculation of the critical values for the Pg(h)/Sg(h) phase ratio in the Magadan and Northern Yakutia regions. Iterations are only shown completely for a window from 0.20 to 0.50 of the critical values (see also Fig. 12) Explosions Total Explosions Total Critical Earthquakes e ual or correctly times a EEF correctly Value below CV ab‘clwe CV classified by of 1.85 equal classified (CV) CV or above CV afier EEF Num. % Num. % Num. % Num. % Total % 0.00 0.0 0.0 138.0 100.0 138.0 35.1 255.0 100.0 255.0 50.0 0.10 32.0 12.5 137.0 99.3 169.0 43.0 253.2 99.3 285.2 55.9 0.20 123.0 48.2 122.0 88.4 245.0 62.3 225.4 88.4 348.4 68.3 0.21 126.0 49.4 120.0 87.0 246.0 62.6 221.7 87.0 347.7 68.2 0.22 135.0 52.9 116.0 84.1 251.0 63.9 214.3 84.1 349.3 68.5 0.23 148.0 58.0 115.0 83.3 263.0 66.9 212.5 83.3 360.5 70.7 0.24 156.0 61.2 107.0 77.5 263.0 66.9 197.7 77.5 353.7 69.4 0.25 166.0 65.1 102.0 73.9 268.0 68.2 188.5 73.9 354.5 69.5 0.26 170.0 66.7 98.0 71.0 268.0 68.2 181.1 71.0 351.1 68.8 0.27 175.0 68.6 96.0 69.6 271.0 69.0 177.4 69.6 352.4 69.1 0.28 183.0 71.8 94.0 68.1 277.0 70.5 173.7 68.1 356.7 69.9 0.29 186.0 72.9 91.0 65.9 277.0 70.5 168.2 65.9 354.2 69.4 0.30 189.0 74.1 85.0 61.6 274.0 69.7 157.1 61.6 346.1 67.9 0.31 190.0 74.5 81.0 58.7 271.0 69.0 149.7 58.7 339.7 66.6 0.32 192.0 75.3 77.0 55.8 269.0 68.4 142.3 55.8 334.3 65.5 0.33 195.0 76.5 72.0 52.2 267.0 67.9 133.0 52.2 328.0 64.3 0.34 199.0 78.0 70.0 50.7 269.0 68.4 129.3 50.7 328.3 64.4 0.35 204.0 80.0 68.0 49.3 272.0 69.2 125.7 49.3 329.7 64.6 0.36 208.0 81.6 65.0 47.1 273.0 69.5 120.1 47.1 328.1 64.3 0.37 215.0 84.3 64.0 46.4 279.0 71.0 118.3 46.4 333.3 65.3 0.38 218.0 85.5 57.0 41.3 275.0 70.0 105.3 41.3 323.3 63.4 0.39 222.0 87.1 55.0 39.9 277.0 70.5 101.6 39.9 323.6 63.5 0.40 228.0 89.4 54.0 39.1 282.0 71.8 99.8 39.1 327.8 64.3 0.41 230.0 90.2 53.0 38.4 283.0 72.0 97.9 38.4 327.9 64.3 0.42 234.0 91.8 51.0 37.0 285.0 72.5 94.2 37.0 328.2 64.4 0.43 235.0 92.2 50.0 36.2 285.0 72.5 92.4 36.2 327.4 64.2 0.44 236.0 92.5 48.0 34.8 284.0 72.3 88.7 34.8 324.7 63.7 0.45 239.0 93.7 46.0 33.3 285.0 72.5 85.0 33.3 324.0 63.5 0.46 241.0 94.5 41.0 29.7 282.0 71.8 75.8 29.7 316.8 62.1 0.47 241.0 94.5 40.0 29.0 281.0 71.5 73.9 29.0 314.9 61.7 0.48 243.0 95.3 39.0 28.3 282.0 71.8 72.1 28.3 315.1 61.8 0.49 244.0 95.7 30.0 21.7 274.0 69.7 55.4 21.7 299.4 58.7 0.50 244.0 95.7 30.0 21.7 274.0 69.7 55.4 21.7 299.4 58.7 0.70 252.0 98.8 8.0 5.8 260.0 66.2 14.8 5.8 266.8 52.3 0.90 255.0 100.0 1.0 0.7 256.0 65.1 1.8 0.7 256.8 50.4 1.00 255.0 100.0 0.0 0.0 255.0 64.9 0.0 0.0 255.0 50.0 EEF. Explosion Equalization Factor 41 The number of ratios calculated from earthquakes was higher than the number of explosions in each of the studied regions. In order to calculate the critical values, an equal amount of phase ratios is desirable for both earthquakes and explosions. For this reason, the number of explosions was multiplied by a factor named here as Explosion Equalization Factor (EEF), which is equal to the fraction of earthquakes to explosions in each region. Figure 12 (c,d) shows the results afier multiplying a EEF of 1.85 to the explosions. 2.2.4. Performance of Discriminants A qualitative scale was defined to describe the performance of the discriminants in three categories: good, fair, and poor. Good means that ratio populations are completely or nearly separated with at least 85.0% of the ratios correctly classified by the critical value. Fair means that ratio populations are separated between 75.0 and 84.9%. Poor means that there is a considerable overlap between event populations with less than 74.9% of the events correctly classified. 2.3. Southern Yakutia Amplitude information from 147 earthquakes (5.2 < K < 12.6, 10< A < 900 km) and 117 explosions (4.8 < K < 10.6, 6 < A < 514 km) was used to calculate 323 Pg(z)/Sg(h) phase ratios from earthquakes and 251 from explosions, and 259 phase ratios of the other four types from earthquakes and 206 from explosions (Table 5). The distribution by time, K class, epicentral distance, and seismic station of the phase ratios calculated from stations with amplitude information in all components is shown in Figure 13. 42 A) 100 I 259 mus-hes I 206 12mm 20 04. 0 2 4 6 810121416182022 Tim(U'PC) B)100 0100 80 601 40.. 20 0. Ooaqoooqq 3312:3333??? -22 KChss D) 100* E)100 80 60 40 - K. .33 2° 1 5:3. . 3:131 ‘.f o . .aon' m "3 123456789101112 azgoSEEmg< U-‘M‘Z D >. u x :2 Number of Ratios per Event Sciuic Stat'nn Figure 13. Distribution of phase ratios calculated from amplitude information in all components for the Southern Yakutia region. A) By time. B) By K class. C) By epicentral distance. D) By maximum number of ratios per event. B) By seismic station. 43 The time window used for the selection of explosions was 23:00-10:59 UTC, while the window for earthquakes was 11:00-22:59 (Fig. 13a). The majority of the ratios (~ 81%) were from events that have a K class between 7 and 10 (2.3 < m, < 3.6, Fig. 13b). Most of the ratios calculated from explosions (~ 66%) are located in the Neryungri -Chu1man mining region (56-58°N and 124-126°E, Fig. 10). The distribution of explosions by epicentral distance is concentrated (~ 42%) around 200 to 250 km, which is the distance between the Neryungri -Chulman region and seismic stations USZ, UURS, and TUG that recorded the majority of the events. In contrast to explosions, the epicentral distribution of earthquakes is more scattered and therefore has a more uniform distribution by epicentral distance, especially between 100 and 300 km (Fig 10 and 13c). Approximately 54% of the phase ratios calculated came from events with amplitude information in all components from at least three stations (Fig. 13d). This represents 41 earthquakes and 31 explosions that could be averaged over the network, as explained in the methodology. Since more amplitude information could be used to create Pg(z)/Sg(h) phase ratios, 51 earthquakes and 42 explosions could be averaged over the network for this specific ratio. Most of the phase ratios from both earthquakes and explosions were calculated from amplitudes recorded at stations USZ (~ 28%), UURS (~ 18%), TUG (~ 17%), CGD (~ 16%), and CLNS (~ 14%), as shown in Figure 13e. 2.3.1. Results There was a clear tendency of the amplitude ratios from explosions to have higher values than earthquakes in all cases. However, a considerable overlap between the two types of events was also noticed, especially in the cases where the phase ratios were not averaged over the network. 44 The results of the five types of amplitude ratios obtained are shown as follows: raw phase ratios in Figures 14 to 18, DCP ratios in Figures 19 to 23, NAP ratios in Figures 24-28, and NADCP ratios in Figures 29-33. Each figure describes one specific phase ratio using a plot of the amplitude ratio vs. K class, a histogram of the amplitude ratio, and two graphs showing the number and percentage of correctly classified events by the different values of the phase ratio. In order to compare the phase ratio before and after the application of the distance correction, a plot of the phase ratio vs. distance and the phase ratio vs. K class is also shown in the case of the DCP ratio (Fig. 19-23). Figure 34 shows a comparison of the values of all types of amplitude ratios. Table 8 provides the results of all phase ratio vs. distance regressions used for the Southern Yakutia region. As indicated by the low values of the coefficient of determination, there is a very weak phase ratio vs. distance trend (Fig 19a-23a). These linear regressions were used to calculate the distance-corrected phase ratios shown in Figures 19c-23c. Table 9 and Figure 35 contain averages and standard deviations of earthquake and explosion populations of all types of amplitude ratios calculated in the Southern Yakutia region. In all cases, the average of amplitude phase ratios for explosions is higher than earthquakes. As shown in Table 9, Pg(z)/Sg(h) amplitude ratios usually had the lowest standard deviation for both earthquakes and explosions compared to the rest phase of the amplitudes ratios calculated using the same technique. On the other hand, the Pg(h)/Sg(z) amplitude ratios always had the highest standard deviation for both types of events (Fig. 35). Both Pg(h)/Sg(h) and full vector phase ratios had similar standard deviations to the Pg(z)/Sg(h) phase ratios. 45 3 P8 (In) I 88 (h) P: (h) / Seth) . 259 Earthques o 206 Eprs'nns I259 Earflnmkes I 206 mm C) (explosionstimesl.26) o—ou—NNUU assasssa§ _J. _.,_" Number of Classified Ratios r Y T I 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 Pg(h)/Sg(h)rlnseamio 9 8 80‘ Percentage of Classified Ratios 8 40« 20« o 4fi - .4, - . . . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pgh)/Sg(h)mmenstio — Earthquakes "—- Explosions — Total Figure 14. Pg(h)/Sg(h) raw phase ratio for the Southern Yakutia region. A) Pg(h)/Sg(h) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 46 2 P: (z) / 38 (z) 9 K-Cbss O 259 Earthmkes 0 206 Explosions C) 400 (explosions times 1.26) — 88 Number of Classified Ratios O 20 Percentage ofClassified Ratiosg 0 150 . 10 11 P8 (2) / 88(2) I 259 Eartl'ques I 206 Eprs'nm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 * r T 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 mm / 83(2) PlIse Rat'n -- Earthquakes ._ Explosions — Total Figure 15. Pg(z)/Sg(z) raw phase ratio for the Southern Yakutia region. A) Pg(z)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 47 A) 3.2 2.8 4 2.43 i 2.0 z: 1.6« A 1 5 1.2: o'." 0.81 0.4 1 0”” ‘ gfifiQfiNQYWQfiQQQfifiQ 5 6 7 8 9 w n n n e27°°°°°°°°°°““2 V K-Chss Pym/8‘1) 0259 Earthques 0206 Eprs'nm I259Earthmkeal206Eprsbm C) 400 g 350j .2 ii 300« - A D g g 250: -' * 3- 2001 9. g 150l ° .8 g a 1001 ii 503 z . 0 4 a J 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 93111) / sgz) Pluse Ratio § Percenuge of Classified Ratios-g 8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(h)/Sg(z)91nse Rat'n — Earthquakes -.._. Explosions — Total Figure 16. Pg(h)/Sg(z) raw phase ratio for the Southern Yakutia region. A) Pg(h)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 48 lb 2: Pam/Seal) 5 6 7 8 9 m H D K-Chas m m “NfiQfiNQYQQfiQQQfiNQ qucocoooocoo———— '3 é A V P8 (2) / Sub) e323Earthques OZSIEme I323Earth1nkesl251fipre'nm Q 500 4 450 . 400 J 350 7‘ 300 . 250 . 200 j 150 . 100 . 50 i 0 Number of Classified Ratios (explosions times 1.29) an. _-I.._._. Y't 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(z)/ salt) Phase Ratio D) 100 E 80* 5.3.8.“? 39“?“ g 204 O... 0 T T 7 1' 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 mm / 8111) Phase Ratio — Earthquakes *“ Explosions — Total Figure 17. Pg(z)/Sg(h) raw phase ratio for the Southern Yakutia region. A) Pg(z)/Sg(h) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 49 A) Full Vector 5678910111213 K-Chss - 259 Fartlnmkes o 206 Eprs'nrs I 259 Wes I 206 Btpbs'nns C) 400 3so~ 300« 250: ‘ ' zoo~ 150i 1003 50« o 7 . T T T . ‘. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 (explosions times 1.26) NumberofClassifiedRatios FulVectorPhaseRat'n D) 100 "* 20* Percentage of Classified Ratios 0 . s , , , QY -.._.—_._ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Ful Vector Pllse Ratio —- Earthquakes Explosions — Total Figure 18. Full vector raw phase ratio for the Southern Yakutia region. A) Full vector vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 50 A) 3.2 2.8 ~ y = -0.0001 x + 0.2326 8) A 2.4 3 53 2.0 « A E 1.6 5 a 1.2 « Q“ g.,,” 0.8: g 0.4 an 0.0 -0.4 . . . - . 0 200 400 600 800 1000 Distamefltm) . 259 Wes o 206 Eprsiom D) 50 C) 3.2 2.8 ~ , ° 40 1 2.4 g 2.01 ° 3. o 3’ 3° 1 Q“ a. 20+ 2 ,0. 6'.“ b 0 Distance-Corrected Pg (h) / 5gb) I 259 Earthquakes I 206 Eprsiom E) 400 100 T"— i - 350 ~ f a :9! 300 I a " 250 < i g i g 200 § .5; 150 « E; 100 . 3 ~— 50 E z o , a. 0 e , . a -0.4 0,0 0.4 0.3 1.2 1.6 2_0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distariceecorrected Pgh) / Sgh) Distance-Corrected Pgh) / 8gb) -- Earthquakes ' Explosions — Total —- Earthquakes ...-._ Explosions — Total Figure 19. Pg(h)/Sg(h) DCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(h) phase ratio vs. K class. C) Pg(h)/Sg(h) DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 51 A) 3.2 B) 3.2 2.8 4 y=-0.0003x+0.3985 2.3 4 A 2.4 j 2.4 : a 2.0 t E 2.0 9 1.6 . g 1.6 1* E 1.2 4 § 1.2 1 E 0.8 4 :3 0.8 1 0.4 - ‘- 0.4 1 0.0 0.0 . -o,4 . . 4 . . . fl -0.4 . . . 02004006008001000 5678910111213 D'Itanee(km) K-Chs 0 259 Eanhqukes o 206 Eprs'nm D) 50 C) 3.2 40 2.8 . R . ' o o 3' 30 2.4 , . O E E 2.0 ‘ O: . g 20 4 90 1.6 . U) 5 "2‘ m “Hum-J I, 0.8 ‘ o m ‘ —N—°—NMVWOFQQQfifiQ b 04* flfiéddddddddoc---- 0.0 4 3 A ~0.4 D'Itame-Corrected Pg (z) / 8‘1) 5 6 7 8 9 10 ll 12 13 K-Chss I259 Earthmkes I 206 mum E) 400 F) 100 .. 350 .3 E 80 ~ 3 3m 1 .- ¢ N. . a "' 250 ‘ 2‘ § 60 .. ' .a 200 ‘ a: g 150 5° 40 1 ' 8 100 8 20 . 4.. 50 1 #3 z o T ' T A 0 W 1 Y Y -0.4 0.0 0.4 0.8 1.2 1.6 2.0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-Corrected Pg(z) / sgz) Distance-Comm! Pslz) / Sstz) -- Earthquakes ' Explosions -Total — Earthquakes * Explosions —Total Figure 20. Pg(z)/Sg(z) DCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(z) phase ratio vs. K class. C) Pg(z)/Sg(z) DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 52 A) 3.6 B) e y = -0.0m3x + 0.5055 1: 2.8 1 ’: O. r” 9 en \ m a e 6'.“ 27. I. D) 50 C) 3.6 . 40 2.8 « go 3O 23 20 g 20 51° ' o. g 1.2 . ‘0 o'.“ 0 ‘ ' Q41 ~N—QfiNQYWQfiQQQfiflQ D géécccecccocc———X -0.4 - . . 1 V . Dmme-CorreetedP (h IS 2 5 6 7 8 9 10 ll 12 13 g ) d) K—Chss I259 Earthques I206 Explosions E) 400 F) a A 350 ‘ “g a g 300 ’ '3' .32 25° ? ' a j- 200 - "f; g . 150 j 3’ E 100 g ... :12 z 50 ' 0 . . 1 . . . . . . . -0.4 0.0 0.4 0.8 1.2 1.6 2.0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-Corrected Path) / Sslz) Distance-Corrected Pg(h) / sgtz) — Earthquakes Explosions — Total -- Earthquakes Explosions — Total Figure 21. Pg(h)/Sg(z) DCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(z) phase ratio vs. K class. C) Pg(h)/Sg(z) DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 53 E“: 3.2 ‘2 B) 3.2 2.8 1 y=-0.0001x+0.1971 2.8 A 2.44 5 A J," 5 \ N 3 1’ :3 3 6°.“ 0 5 6 7 8 910111213 K-Chss 0323 ukesOZSI ' Eanln Eprsnm D) 50 40 (g1 a. E . o? ' T Durance-Corrected Pg (2) / 81h) 5 6 7 8 910111213 locust; I323Fart1qukesl251EprsbrI E) 500, 1 . A 4‘” '1 55 t . is 300 « U 3% 200 g- .n . z . 0 J - - . -_... . 0 . . . - -0.4 0.0 0.4 0.8 1.2 1.6 2-0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-CW Putz) / 580') Distance-Corrected Pg(z) / snot) --Earthquakes - . Eprsions —Tota1 —-Ea.rthquakes "r Embsiom —Total Figure 22. Pg(z)/Sg(h) DCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(h) phase ratio vs. K class. C) Pg(z)/Sg(h) DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 54 A) 3.2 B) 3.2 2.8 : y= -0.0002x+ 0.2661 23 : 2.4 1 2.4 j g 2.0 1 2.0 . 1.6 a 1.6 . > . a; 1.2 > 1.2 j u. 0.8 1 E 0.8 1 0.4 0.4 1 0.0 0.0 0 -0.4 . T . . . -0.4 . - . 02004006008001000 5678910111213 D'Itameflun) K-Chss O 259 Fartl'nukes O 206 Fprsnns D) 50 C) 40 , 0 33" 30 g a g 20 0 a. '3 2 10 '5 "' 0 b -~-Qfifinanehnqqfifln Nééccccccoooc—-~: Distance-Corrected FulVector I 259 Earthques 206 Explosions E) 400 F) 100 ~ 350 ‘ I8 59; 300 j E 80 "‘ 250 ‘ ' 3 60 . . g 5' a U . 2‘” T 0.6 340 t '8 . 150 g . g 100 ‘ 5 20 . 2 v 50 1 g 0 - » r y - 0 . t . » - . 04 0.0 0.4 0.8 1.2 1.6 2.0 ~04 0-0 0-4 0-8 1-2 1.6 2.0 Distance-Corrected Fun Vector Distance-Corrected Full Vector —Earthquakes Explosions —Total --Earthquakes "*- Explosiona —Total Figure 23. Full vector DCP ratio for the Southern Yakutia Region. A) Full vector phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Full vector phase ratio vs. K class. C) Full vector DCP ratio vs. K class. D). Histogram. E) Number of correctly classified events. F) Percentage of correctly classified events. 55 A) 1.2 a) 60 O 1.04 50* E3 M E“ > ” g 0 <2 0-61 a 33° ' A “O .Q ‘35 0.41 0’09 n.20‘ a: -" ’ ° 2 0.2 “*1. 4' 101 4 I . 0,0 . . . . 0‘ ”aka ~Neqfifln109fiwaqfififi 5 6 7 8 9 1011 12 13 Neqcocccococc---- 3 A K-Chss Network-Amati 1’8 (h) / 81111) .41 Earrltqunkes o3l Explosions I41 Euutques I31 Eprs'nm C) 80 a? Q 60 j E; 50‘ j . 40 .1 95. 30f g 20 j V 10 . z 0 4 t r ’P J 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / 8%) D) 100 - 3% 80* .i .0. 8.: < 85 4° ‘3 20 . 8 D - -- OI. 0 f—v , Y , 7 r t 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Pub) / Sdh) - Earthquakes Explosions — Total Figure 24. Pg(h)/Sg01) NAP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(h) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 56 2: Network-Averaged 1’s (z) / Sr (2) 1.2 a) 60 1.0+ ° 50+ 0 O 0 0,8 1 .. . g 40 e . , 0.61 0 . g 30 O. 0.44 .$.e‘.e 201 0.2 O a” ' 10~ I 0.0 . - 0' “NfiQfiNQYWQEQQQfiNQ 5 6 7 8 9 1011 1213 g§q¢ococoeoco———-X V K'Ch“ Network-Amati Pg (2) / 8‘2) I4IEIl1lntlkca o31£xplo¢iom I41 Earthmkes I31Eprs'nns C) 80, .3 A 70 - a: 33 60 « ,3; g 50 g. 40. 955 30 . g 2'20 - V 10 . Z 0 . , , 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd sz) / sgz) D) 100 ‘- 1 E 804 e s 60‘, “5 '3 it? ‘° 3 20 . a. o , , . . . 4 . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd sz) / Sfiz) — Earthquakes Explosions — Total Figure 25. Pg(z)/Sg(z) NAP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(z) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 57 2: Network-Averaged Ps(h)/ 38(2) 2.0 1.6 , 1.2 «j 0.8 3 0.4 1 1 -- l or a) 60 501 404 E304 20« I 1 l 10< 0.0 5678910111213 K-Chas o 41 Farthqukes o 31 Explosions 80 (explosionstimesl.32) '5’ ‘5’ 8 ‘6 8 5’ :33 Number of Classified Ratios Q 100 88 Percentage of Classified S Ratios 0 —- Earthquakes N O Netmrk-Averapd Pg (h) / sgz) I41 EartlmIkesI31 Eprs'nm IJELAIAIA L . - .g...----. I 7 v v v f 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd P 3(1)) / Sfiz) 1 L ‘L A T 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / ng) * ' Explosions —Total Figure 26. Pg(h)/Sg(z) NAP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(z) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 58 A) 1.2 a) 60 1.04 501 EE 0.8 3.40 > a? 00 < \ 0'6-l O 0 g 30 4 . 3 . ° 0 ° 0° g a 0.4 4 Q Q: are 20 . 1 O z 02 34 . 10 0.0 4 - - . J or 5 6 7 8 910111213 K-Chss Network-Ampd Pg (2) / Sdh) - 51 Eudtques .42 Explosions I51 antiques I42 Eprs'nm C) 100 1 90 j 1 '§ A 80 A r 2 a, 70 j 3" 60 3.1 .01 U 40 . s3 30‘ g 20 1 E». 104 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged P g2) / 8gb) D) 3 9.: 3 8 a e 2: g.,; C ii 0 m 1 0 , f Y . ..| 1' . _ ,1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged P gz) / Sfih) —- Earthquakes . "' Explosions — Total Figure 27. Pg(z)/Sg(h) NAP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(h) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 59 A) 1.2 13) 60 1.0 . 0 50 i g? Mt . Em) <7 > 0.6 n .‘a , g 30 g E 0-4 1 ~{.. .0... 9" 20 q z 0.24 :. 4 ‘fi' . 10 E 0 , a EL . 00 Try ~NfiQfiNflYWQEQQQfiflQ 5 6 7 8 9 10 11 12 13 399°°°°°°°°°°“"7§ V K-Chss Network-Averapd Ful Vector I41Eartlxluakes O31Exphs’ms I41 EarthquakesI31 Eprs'nm C) 80 f g A 70 2. 60 . 33w: 3- 401 95.3 30 . 5 . g a 20 E 10 . z 0 . . e-.. -. ____-...._.....-...,-.. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Full Vector D) 100 - E 80 . g \ —- 60 't 28 . O '33 82” S g 20 + 0 a. 0 4 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Full Vector — Earthquakes Explosions — Total Figure 28. Full vector NAP ratio for the Southern Yakutia Region. A) Full vector NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 60 M 22 B)& O n. 1.81 5° 8 it 4°“ g . . O 3.0 3 ”’1 ”.a , 20 r? 0.61 ‘10. «’.. 101 5 021 "fl ‘5' °' ' ' no ' I. 3 g I ~f‘!-.°."."!"l"."l‘9".°9°t°.—:N."1 & 02 . quo ccccoooc———: 5 6 7 8 9 1011 1213 NetworkAverapdD'It-Correeted K-Chss Pam/Seth) 041 Earthquakes 031Eprsiom I41Eart1nmkes I31Eprs’nns C) 80‘ g 70‘ a, 60 . 50‘. .g 40.. _.m 1 551, 301 E 20: z 3 10: 0 . 1 1 . . . “ -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pgh) / sgh) NADCP D) 100 E- 801 3 601 4. 8 1 e240 go . 8 4 g 20 a. o . . T . . T -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pg(h) / spat) NADCP — Earthquakes Explosions — Total Figure 29. Pg(h)/Sg(h) NADCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(h) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 61 A) 2.2 1 B) 60 m 1.8“ . 501 § [Al O . o 40‘ 2 no. §30« 1; 1.0 ’, ' o :3 . . o 3.20‘ g 0.6 2:...‘00. 104 lllllll III‘ ‘5 0.21 .: h'. I 0‘ . E ' “NfiQfiNQYWQEQQQfiNQ £2 - - gqqooaoeccoao———: s 6 7 s 9 no 11 12 13 V NetworkAveragedDbt-Con'ected K-Chu Pg (2) / 8‘2) .4: Earflques .31 mum I41 We. I31 Eprs'nm C) 80 3270‘ Egsw a. 4o: ' “5 E30; 20 ‘ £15, 10 4 z o . . . . -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz)/S§Z)NADCP D) 100 3g. 80 .3 .0. U “aé W404 g 20 a. 0 , . , - -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz) / 8‘2) NADCP — Earthquakes ' Explosions — Total Figure 30. Pg(z)/Sg(z) NADCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(z) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 62 A) 3.0 v 13) 60 2.6 50 g 2.2~ . 3140 g 1.34 0 ° 0 §30‘ 3 1.4 0.; a. 20J ,2,“ 1.0i ° ‘OJI: . 13‘ . 3 0'6‘ 3%. . —~—°.-.r~1r'zv.va~qr~.°eo:q—m~z .0 0.2 . o ' N¢§co=ccccooo--—- n' 02 . ' -' ' 3 A s 6 7 s 9 1011 12 13 Nmau'e'mdm'cm'md Pam/83(2) K-Chss 041W“ 0315mm I41 Eutlxlukes I31Eprs'nm C) 80 .g 70- £860 .3; g 50 - "" y . 1 “5. 30‘ . v10 2 0 r . . . . . -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pg(h) / 39(2) NADCP D) 100 ‘ ,2 80‘ 9 36° 6'... 3°“ 3 204 o . O... 0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pgh)/ Sdz) NADCP — Earthquakes - Explosions — Total Figure 31. Pg(h)/Sg(z) NADCP ratio for the Southern Yakutia Region. A) Pg(h)/Sg(z) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 63 1.4 fl- 1 o 1.0 a < E 0.61 5 1 r3? ; (M4 :1 a.“ .02 838 Pmmflp NW 90 O 6789 K-Chss 10 ll 12 13 05151111111131“: o42£1q3b¢bns "NfiQfiNQYWQfiQQQfiQQ gqqcccoooccco———- A wammmmwmwfimmw P8 (2) / Sdh) I51 makes I42 12mm 100 y .3 A 90 ‘ a —1 80 .4 '83 m‘ E g 60 1 £2 50% / E3 5 40 . h— .— 23 N* 33% 20: S 3 10 . z 0 . . A -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz) / 8gb) NADCP D) 100 1 B 80 « E . .3. 60« U . “a E 40. so; . g 20 4 °‘ 0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz)/Sgh) NADCP — Earthquakes Explosions — Total Figure 32. Pg(z)/Sg(h) NADCP ratio for the Southern Yakutia Region. A) Pg(z)/Sg(h) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 64 A) 2.2 1.8 4 0.2 Full Vector NADCP -0.2 1.4 * 1.0 1 0.6 * B) 60 a . E o 9 a. O ”O ”21..“ r. 5 v f T NetworkAverapdet-Corrected 6 7 8 9 10 ll 12 I3 FulVector K-Chss O41Eartlnuakes 031Eprsiom I4l Earthquakes I3lFpra'nm C) Number of Classified o . . . I “ ' r . . -O.4 0.0 0.4 0.8 1.2 L6 2.0 Full Vector NADCP Percentage of Classified 9 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Full Vector NADCP — Earthquakes *' Explosions — Total Figure 33. Full vector NADCP ratio for the Southern Yakutia Region. A) Full vector NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 65 3.2 5 = : 5 ’ 32 5. ° 1: ‘ 23* E ' O '3 2-31 3 3 ° . ° 0 2.4 : ‘ 5 2.4 :. ° ' o o . 1 ‘ z E 3 J 1 g g . ‘ . : 0 . o g 1.6 . . o : . l E 3 i E L6 . ‘ o : 1.2 ' : 1.2 . g 0.8 i I I I 1 I ' ls I § 0.8 ‘ 0'4 ‘ i l E ' 0.4 1 0.0 E .3 0.0 i -0.4 ' 9 -0.4 ‘ Pail/83H Pal/Sal Pail/Sal Pal/58H Fullvector 9311/ng W W W Fullveetor C) 3'6 1 i E F :r m 3-6 T r : g 3.2 ‘ ° ° ° 3 E 3.2 3 g . 3 2.8 : : g 2.8 1 g 2 :31 5 s s 9 2.4 5 . , . 0 ‘3 ' 2'0 4 . o : 8 E 0 L6 1 ‘ : : 1.6 8 ' ' . 0.8 { g I I ‘ I I 5 E , <. 03 ' 0.4 ' | 5 | 5 ' ' 5 ' «g 0.4 U 00 : . : : ° . z ' . a ' s a 5 °-°* ° . ° . a ’ -0.4 2 -0.4 ' PIS P P/S P HFllector “Hg“ gZJSngHngZ/Sg “v PgH/SgHPgflSgZPgWSflPgZ/Sgflfullveemr Figure 34. Comparison of the amplitude ratios for the Southern Yakutia region. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP ratio. 66 Table 8. Distance linear regression results of amplitude phase ratios calculated from earthquakes in the Southern Yakutia region Phase Ratio Slope Y-intercept R2 Figure Reference M 00001 0.2326 0.0178 Fig 19a 580?) 13(1) 00003 0.3985 0.0294 Fig 20a 88(2) 39'.) -00003 0.5055 0.0161 Fig 21a 58(2) 55(1) -0.0001 0.1971 0.0214 Fig 22a 580:) Full vector -00002 0.2661 0.0305 Flg 23a R2 is the coefficient of determination. Values for R2 near 0 indicate a weak ratio vs. distance trend, while values approaching to one indicate a strong ratio vs. distance dependence. The critical values found for the discriminants applied to the Southern Yakutia region are shown in Table 10 and in Figure 36. For earthquake-explosion discrimination purposes, an amplitude phase ratio that is lower than the critical value is likely to be an earthquake while an amplitude phase ratio that is higher than the critical value is likely to be an explosion. Table 11 grades each discriminant tested as good, fair, and poor. The best earthquake-explosion discriminants found for the Southern Yakutia region are the full vector and the Pg(h)ng(h) NADCP ratios (Figs. 29 and 33) and the Pg(h)/Sg(h) NAP ratio (Fig. 24). These three discriminants were able to correctly classify as much as 89.1% of the ratios calculated. Other discriminants that produced good separations were 67 the Pg(z)/Sg(h) NADCP ratio (Fig. 32) and also the Pg(z)/Sg(h) (Fig. 27) and the full vector (Fig. 28) NAP ratios. “when. j n “a. —-.-o- mum-auunooolon‘ ...-....................‘ ’.‘m‘0-I-I4Q‘I‘OOI rum—mem—n-i 1—0—1 6 r—-.——1 .§ t-—-O--—-1 . 4 Distance-Corrected Phase Ratio 9 . ea h-m-v-O-m-w-t . 6 ‘ 0.2 02 i i i f -o.4 ‘ : 3 : «0.4 " i 11 L 1 9.11/ng PgZJSgZ PgH/Sgl 1522ng Full vector W W w W M C) 2-0 E E s E D) 2.0 - 1.4 0.8 9 ea 3.. .._-... .. m.-. 8..-... “a“...u...“ 0.21 C Network-Averaged finale Ratio 6 N rO-i H——i r-O-i f—«O—w-a 1—0—1 in 6 w Phase Ratio ,......... +--~i r—O—H 1—0—1 PC-t 1—0—1 r—O—i 1---¢-—4 1-4-1 1—0—1 Network-Averaged Dit-Correebd 0.4 6.1 = = = 2 PIN/5B“ PSI/581 PgH/ng W Full vector W PW inH/ng PgZ/Sgfl Full vector Figure 35. Comparison of amplitude ratios averages and standard deviations in the Southern Yakutia region. The average value is plotted with their arms representing the scatter in red for earthquakes and gray for explosions. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP ratio. 68 Table 9. Average, standard deviation, and maximum and minimum values obtained for the amplitude ratios in the Southern Yakutia region T of Number tecmque T”? Of Type Of of ratios Average 0 Max Min. . rat1o event applied Pg(h)/Sg(h) Earthquakes 259 0.21 0.14 0.96 0.02 Explosions 206 0.39 0.24 1.52 0.03 Pg(z)/Sg(z) Earthquakes 259 0.34 0.27 1 .93 0.02 Explosions 206 0.50 0.31 1.80 0.03 Raw Phase Pg(h)/Sg(z) Earthquakes 259 0.44 0.39 2.79 0.03 Ratio Explosions 206 0.70 0.49 3.20 0.05 Pg(z)/Sg(h) Earthquakes 323 0.1 7 0.14 1.40 0.02 Explosions 251 0.31 0.23 1.29 0.00 Full vector Earthquakes 259 0.23 0.15 1.02 0.04 Explosions 206 0.42 0.24 1.47 0.04 Pg(h)/Sg(h) Earthquakes 259 0.21 0.28 1.73 -0.17 Explosions 206 0.57 0.49 2.83 -0.17 Pg(z)/Sg(z) Earthquakes 259 0.34 0.54 3.52 -0.29 Distance- Explosions 206 0.67 0.62 3 .31 -0.30 Pg(h)/Sg(z) Earthquakes 259 0.44 0.77 5.14 -0.37 Corrected Phase . (DCP) Ratio Explos1ons 206 0.97 0.98 5.98 -0.37 Pg(z)/Sg(h) Earthquakes 323 0. l 7 0.29 2.63 -0. 15 Explosions 25 1 0.46 0.46 2.43 -0.20 Full vector Earthquakes 259 0.23 0.29 1.83 -0. 16 Eiqilosions 206 0.60 0.48 2.70 -0.18 Pg(h)/Sg(h) Earthquakes 41 0.19 0.06 0.34 0.10 Explosions 31 0.42 0.17 1.09 0.13 Pg(z)/Sg(z) Earthquakes 41 0.32 0. l 5 0.79 0. 13 Explosions 31 0.56 0.20 1.07 0.18 Netwmk' Pg(h)/Sg(z) Earthquakes 41 0.38 0.16 0.78 0.17 Averaged Phase . (NAP) Ratio Explos1ons 31 0.73 0.30 1.71 0.22 Pg(z)/Sg(h) Earthquakes 5 1 0.15 0.06 0.31 0.06 Explosions 42 0.34 0.12 0.63 0.12 Full vector Earthquakes 41 0.22 0.07 0.3 8 0.10 Explosions 31 0.45 0.16 1.01 0.14 Pg(h)/Sg(h) Earthquakes 41 0.17 0.12 0.48 -0.01 Explosions 31 0.64 0.35 1.98 0.05 Pg(z)/Sg(z) Earthquakes 41 0.32 0.29 l .21 -0.03 ’23:"; Explosions 31 0.80 0.41 1.80 0.02 . g Pg(h)/Sg(z) Earthquakes 41 0.33 0.32 1.09 -0.10 D1stance- . Corrected Phase Explos1ons 31 1.02 0.61 2.99 -0.02 (N ADCP) Ratio Pg(z)/Sg(h) Earthquakes 51 0.14 0.12 0.46 -0.04 Explosions 42 0.54 0.25 1.10 0.09 Full vector Earthquakes 41 0.20 0.13 0.53 -0.03 Explosions 31 0.68 0.33 1.79 0.05 o is the standard deviation of the group of amplitude ratios. 69 Table 10. Critical values for the Southern Yakutia region Discrimant ”Kati?“ DCP Ratio NAP Ratio NADCP Ratio Pg—(h) 0 25 0 29 0 32-0 33 0 41-0 46 5g“) . . . . . . Pg (2) — 0.31 0.32 0.44 0.44 58(2) Pg(h) —— 0.41 0.36 0.45 0.55 58(2) Pg(Z) —— 0.20 0.23 0.24 0.30-0.32 580:) Full vector 0.31 0.38 0.35 0.48 Table 11. Maximum percentage of correctly classified events and qualitative performance assignment for each discriminant in the Southern Yakutia region Discrimant ”Kati?” DCP Ratio NAP Ratio NADCP Ratio Pg 0’) Poor Poor Good Good Sg(h) 71.3% 71.0% 89.1% 89.1% Pg (2 ) Poor Poor Fair Fair Sg(z) 65.4% 66.6% 78.5% 80.1% P807) Poor Poor Fair Fair 53(2) 69.4% 69.4% 81.3% 80.6% Pg(Z) Poor Poor Good Good Sg(h) 68.0% 68.6% 86.8% 86.8% F 11V t Poor Poor Good Good “ °° °’ 71.2% 71.6% 87.9% 89.1% 70 As seen in Figure 36, the critical value usually did not separate an equal number of earthquake and explosions. For example, Pg(h)/Sg(h) NADCP ratios correctly classified 89. 1% of the ratios calculated, separating 97.6% of the earthquakes and 80.6% of the explosions (Fig. 36d). On the other hand, other amplitude ratios separated the two groups of events equally, such as the Pg(h)/Sg(z) NADCP ratios that separated 80.6% of the earthquakes and 80.5% of the explosions (Fig. 36d). There was not a clear pattern that could be observed in the way that the amplitude ratios separated earthquakes and explosions. As expected from the weak phase ratio vs. distance dependence observed for this region, the distance correction did not have a significant effect on the performance of the phase ratios after its application. The percentage of correctly classified events by the amplitude ratios changed only by -0.3 to 1.2%, slightly improving the performance of the Pg(z)/Sg(z), Pg(z)/Sg(11), and the full vector phase ratios (Table 11). The critical values were also slightly affected by the distance correction. With the exception of the Pg(h)/Sg(z) ratio, critical values always increased alter the application of the distance correction (Table 10). More importantly, averaging the ratios over the network had a considerable effect on the performance of discriminants. The percentage of correctly classified events increased by 11.9 to 18.2% after averaging. The Pg(h)/Sg(h) and Pg(z)/Sg(h) NAP ratios had the largest change, followed by the full vector NAP ratios. The critical values also increased in all cases, as seen in Table 10. The NADCP ratios also significantly improved the performance. The critical values also increased in all cases with respect to the ratios before averaging (Table 10). 71 6...: .532 E 6...: .22 .w 6...: .69 a 6...: as... 33. 2 .582 3.3; 505:8 05 E 358 one... aaoaoéml magical .SohI 38:8 -85 388286382 .629 .835 . 69...... 8.8%.. Nugnewamhmawzmmaa _ , d 8... , 3.... w 8.. n3. 3.... 1...... 3m a... 3m m. 8m. .88 0 .8 88.... E 39:. ego—3200.09.83 635.580 W 69.? _..mmfiagamima ~88... 3min; _ 8.. . 8.. . 8... d . w a mm 8 m. a. - s 3 s m 9 8 w 8. 8 Eu 2.. no coca—Eaton he cents—Eco .3 8:»...— 8288... I 88:35.". I Baal 6.3.68... Bans}. o_...Eoz .3..> .836 O9...... :88“... 85:38th 58...... 8... _ d -8... m m . c m , 8 . 8 m. M W 3m x W 8 w 8 m a... m. _.. .8 8. 6 6.3. as... 8.9.830 69...... 58%.. 8.8.9.8..th mamas. .2. 8... W _ o 8 mm . 0 8 s m 8 w § 2 72 2.3.2. Phase Ratios for Individual Stations DCP ratios were analyzed separately for individual stations that had more than ten amplitude phase ratios for both earthquakes and explosions. In the Southern Yakutia region, only CGD, CLNS, TUG, USZ, and UURS fulfilled this requirement (Fig. 13e). The critical values, averages, and standard deviations found for each station were extremely variable, as seen in Table 12. The DCP ratios that performed the best were Pg(h)/Sg(h) for the CGD and CLNS, Pg(z)/Sg(h) for the TUG and UURS, and the full vector for the USZ station (Fig. 37, Appendix B). In general, the best separations were found in ratios calculated from amplitudes recorded at TUG, USZ, and UURS (Table 12). The Pg(z)/Sg(h) DCP ratio calculated from station TUG showed the best performance of all the amplitude ratios obtained from data recorded at individual stations. This DCP ratio was able to correctly classify 83.6% of the data used. This percentage was particularly high when compared to the performance of the Pg(z)/Sg(h) DCP on the whole region (69.0%). One interesting situation occurred at stations USZ and UURS, where all amplitude ratios performed similarly (70.1-76.4%). As seen in the previous section, Pg(z)/Sg(z) and Pg(h)/Sg(z) always performed poorly and very differently from the rest of the amplitude ratios (Table 11). On the other hand, stations CGD and CLNS performed poorly for all amplitude rations with the exception of the Pg(h)/Sg(h) DCP ratio, as shown in Table 12. 73 8...... 2.3.3.5. ..o gem o... .0 8.8.5.. Ragga b 690.835 80.... 8...... .... .383... N .moxgcntuo 8...... 8...... .... .385: . .N...... a... .8... a... .8... S... ...9... 8... .2... 8... .o. 8.8.9... 08.9.... .8... ..N... .8... o... .8... 8... .8... o . ... ...9... 8... .... 8.88:8 .883. 8... 8.1.9.. 8... 8... ......é... 2...; .8....o .89.... .8 .898. ...... .898. .... .89.... .8. .828. .8. .8. 88:88.. .... 8 85: .89... 8... ..9... 89.. .88. ...... .8... 8... .8... .... .... 8.8.96 883. .8... 8... .NN... . . ... ...9... 8... .8... 8... .8... .N... .... 8.8.2.8.. 88>... 8.8.8.. 8... NE. N9.. 8... 8.; .895 8.8. .... .89.... ...... .898. ...... .898. .... .898. .... .8. 88:88.. Nm .. Mm: .Nm... E... .8... ..9.. .2. .. 8.. ..9... 8... ...9... 8... .... 8.8.9.... 88>... .8... 8... ...... N . ... .8... 8... .N9... 8... ..9... .N... .... 0.88:8 08.22 8... 8...-8... ...... v9.18. 8... 8.9 .826 .89.... ...... .898. .... .89.... .8. .898. .8. .8981... .8. 8889...... .. .8 DE .8... ...... 2...... 8.. .8... N9.. .8... ..m... .8... 8... .... 8.8.98 08.22 .8... .N... .8... ..N... .89... 8... .8... ...... .8... N . ... .... 8.88:8 8.83.. NN...- . N... ..9.. 8.19.. 8.98... .. . ... 2....> .89.... .89.... .8. .89.... .8. .89.... .8. .895 .8. .89.... .8. .8. 888...... 8 8 mz..o .8... ...... .8... 2... .NN. .. 8.. 2...... ...... .8... ...... .... 8.8.9.0 08.3... .8... 8... .3... .. . ... G .. .. 8... .8... 8... ...N... ..N... .... 8.8.9.98 .88.... 8... ...... .....-8... 8...-8... 8.... 2....> .89.... .898. .8. .898. .8. .898. .8. .898. .8. .89.... .8. .8. 8889...... ... NM Q00 .88.. ...... 3.8.8.8.. 389...? $89.58.. 3.8.3.8.. ... ... ... .. 8.23m .580. «333’ Eofizom o... ... 85.88 8323?. ...... 3.23.8 mom. .0 mamas; 8.... 8388.083 .82? 30.3.0 .2 0...“... 74 TUG 2.2 USZ 2.2 g n. 1.8“ . . [-8 ’ .0 8 1.4 . g 1.4 A 0 ~ i ”H .... o. 1.04 m . O o g a. 0.6+ ...“). > 0st v i O Q = a? 0.2« 0.0%.- .. . a 0.24 o o . -0.2 T * j - ' -02 - 5673910111213 5678910111213 O38£anhqtnkes 041Embsbm OSIEmhqukesOSZE-prbsbm UURS 2.2 . CLNS 2.2 1.8 4 1.8 s D- 4 .. Q- < 8 1.44 .0 g 1.4~ 5 ' E 0 J? 1.0 ... . . an 1.0 o o m . C I 1 0.6 " 0.0. 2 0.6 4 ”3 . o. . 5 4 .o$".o.‘ 5 4 ...... a 0.2 Oa. 0‘ A? 0.2 O . . ‘ fl .' 1 . ‘ . «O . ~ ‘ -0.2 w . -0,2 1 8k 5678910H12l3 5678910111213 K-Chss K-Chss .45 Earthquakes 040Eprsiom .36 Emhqukes . 28 Expme CGD 2.2 1.89 A. 8 1.4~ A O 5 1.0 .° 0 a . 0 ; 0.6< 0$”° i 0.2~ ‘... “é.“ o -0.2 v . 5 6 7 8 9 IO ll 12 I3 K-Chss O 32 Emthquakes O 41 Eprsiom Figure 37. Best discriminants for individual stations in the Southern Yakutia region. The totality of the plots per station is shown in Appendix B. 75 2.4. Magadan and Northern Yakutia Amplitude information from 90 earthquakes (6.1 < K < 12.8, 16 < A < 916 km) and 130 explosions (4.8 < K < 10.2, 9 < A < 752 km) in the Magadan and Northern Yakutia regions was used to create 370 Pg(z)/Sg(h) phase ratios from earthquakes and 220 from explosions, and 255 phase ratios of the other four types from earthquakes and 138 from explosions (Table 5). The distribution of the amplitude ratios by time, K class, epicentral distance, and seismic station of the phase ratios calculated from stations with amplitude information in all components is shown in Figure 38. In the Magadan and Northern Yakutia regions, the time window used for the selection of explosions was 21 :00-8z59 UTC and was 9:00-20:59 for earthquakes (Fig. 38a). The distribution by K class was different for earthquakes and explosions with more earthquakes with a higher K class than explosions. Sixty-five percent of the phase ratios calculated for both earthquakes and explosions came from stations that recorded events with K class of 7.0-9.0 (Fig 38b). The epicentral distribution of the earthquakes was more scattered than that of explosions. There was a concentration of explosions in the Susuman mining region (coordinates 62.5-64°N and 146-149°E). Approximately 54% of the phase ratios were calculated fi'om explosions located in this particular area. The epicentral distance distribution of explosions was biased by this fact, showing the greatest of the explosions recorded at distances of ZOO-250 km. The earthquakes showed a more uniform distribution by all of epicentral distances, especially in the range of 100-350 km (Fig. 38c). 76 A) 70 60 so 40 30 20 10 I255Em1mmka o aissapbsiom 0 2 4 6 810121416182022 Tim(UTC) B) 70 -7 C) 70 60. 60 50, 50 40‘ 4o 30 3o 20 20 1o; 10 o°$°232222 oqaaaqaaoqqoog Iaieeaa‘ggg §§§§3§§§§§§§— ...c... seams .aaé MumnD-mllnvfi D) D70 60 50 4o 30 20 10 0 «ga'wogago-a m>>w>ag m ragga; gasszsxgégggfigsaasaeaeEas.an Nunber ofRat'ns per Event Figure 38. Distribution of phase ratios calculated from amplitude information in all components for the Magadan and Northern Yakutia regions. A) By time. B) By K class. C) By epicentral distance. D) By maximum number of ratios per event. B) By seismic station. 77 A large number of the explosions (~3 8%) considered for the Magadan and Northern Yakutia regions had only one station with amplitude information on all components (Fig. 38d). Only 17 explosions and 47 earthquakes had more than three stations with amplitude information on the three components. In the case of the Pg(z)/Sg(h) 65 earthquakes and 24 explosions allowed the averaging over the network following the procedure explained in the methodology. As shown in Figure 38c, most of the phase ratios calculated (~ 55%) came from events recorded at UNIS (~ 21%), SUU (~ 10%), SEY (~ 10%), DBI (~ 6%), and NKB (7%). 2. 4.1. Results Even though there was overlap in the populations of ratios from explosions and earthquakes, there was a clear tendency of the amplitude ratios from explosions to have higher values than earthquakes, as in the Southern Yakutia region. The results of the five types of amplitude ratios obtained are shown as follows: raw phase ratios in Figures 39 to 43, DCP ratios in Figures 44 to 48, NAP ratios in Figures 49-53, and NADCP phase ratios in Figures 54-58. Each figure describes one specific phase ratio in the same way as was done for the Southern Yakutia region. A comparison of the values of all types of amplitude ratios is shown in Figure 59. The results of all phase ratio vs. distance regressions used for the Magadan and Northern Yakutia regions are shown in Table 13. The DCP ratios shown in Figures 44c- 48c were calculated using these linear regressions. The phase ratio vs. distance dependence was also found to be weak for this region. 78 1.0 E: 0.8 0.6 t 0.4 1 P8 0!) / Se (1!) 0.2 1 0.0 O 255 Earthqmltes 0138 Eprs'om 400 350 300 250 O 150 Number of C lassified Ratios (explosions times 1.85) 5 O 0 D) 100 1 E 80 g 60 53 8 1 3 '5 ‘ a) 40 3 20 f: 0 200‘ 100‘ 1’8 (h) I Seth) I255 Baht-Ices I138 Eprs'nm r 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pflhl/Sdh) PhaseRatio r v T J .— ,. -. .. ..-...T.....-.. ..T.. . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pgh) / Sg(h) Phase Ratio — Earthquakes w" Explosions — Total Figure 39. Pg(h)/Sg(h) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(h) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 79 1.6 1.4 -+ 12: 1.0 1 0.8 0.6 : 0.4 j 3 P8 (2) / Se (2) 0.2 j 0.0 8 9 10 K-Chss C) 4004 350 éasoo 3‘250 33200 D 953150 ,2 @100 55". z 50 o 9 on C Percentage of Classified Ratios N O 0 8 8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Pg(z) / sgz) Phase Ratio 100 - l A ll e 255 Earthques 0138 Explosions $0 301 20‘ 10‘ "fifiQfifiQVQQEQQQfiQfi quococococcc———— A P: (z) I Satz) I255 Balm-Res I138 Eprsbm LLmAA A 'h— n Y l l a T 1.4 r fl r W 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 sz) / Sdz) Phase Ratio -- Earthquakes ' '" Explosions — Total T Figure 40. Pg(z)/Sg(z) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 80 E: 3.2 v 3) 50 2.8 1 2.4 i 2.0 1 1.6 q 1.2 1 0.8 a 0.4 1 0.0 P: (h) / Sc (2) - —O--- l 0 oc— 5 6 7 s 9 1011 1213 33¢5533336326;;33 A “‘0'“ P201) I 8:12) . 255 mm 0 13s Eprs'nns I255 Emthqmltea I 138 mm 400 ‘é’ t—GNNM 8.3888 11111.1 Number ofClassified Ratios Q (explosions times LBS) 50.. o . . r . . . . . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(h) / Sg(z) Phase Ratio D) 100- E 80 . 3 . o 8 60 1 _ _ ~53 . "0 ° a: 40 a e. 0 , ,— 1 , . T . . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(h) / Sg(z) Phase Ratio — Earthquakes * — Explosions '— Total Figure 41 . Pg(h)/Sg(z) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(z) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 81 2: L0 (L84 0151 (L4 Ps (20 I S: (h) (12 011‘ 5 6 7 8 9 10 11 12 13 o 370 Eanhques o 220 Explosiom O . ll “NfiQfiNQYWQEQQQfiflQ fiq¢¢cccocccoe———— A 1’8 (z) I Sub) I 370 Balm-hes I 220 Eprs'nm gas U 8 hmmfldGdeNMN hwhhmhmlfl) N 8 “a. ‘1 // mo 0 j j.nfi a sum , , .. . . 01) (12 (L41 015 (18 ll) 1J2 lu4 Pg(z) / 8411) Phase Ratio 1)) 100 ' 1 g; 80 1 U) .3. 60, 8 s a“ O '5 ‘ . in? 40* ' § 20~ e. 0 1 r r I ~ A ...-,...-~..-.,-..._..-_....-.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Pg(z) / sgh) Phase Ratio —Earthquakes ' ‘ Explosions —' Total Figure 42. Pg(z)/Sg(h) raw phase ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(h) vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events . 82 A) 1.0 . B) 50 0.8% 40‘1 r . o l :3 0.6 g: 30 0.4‘ g 20 0.2 '0‘ 0.0 0‘ ~N—QfififitWQhQQQfiflfi 5 6 7 8 9 IO 11 1213 ”Q’q'ocococcooo—um-x - v KC” Fuller .255 Hardin-Res 0138 Eprsions I255 makes-138 Eprsbm C) 400 g 350 {of 300 ‘ . g 2504 ... .a 2m q U «5.3 150 t 100 a z . 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 FullVectorPhaseRatio D) 100 E 80 8 360‘ ‘~ on. < a” E 20 a. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 FullVectorPhascRatio -- Earthquakes ' " Explosions — Total Figure 43. Full vector raw phase ratio for the Magadan and Northern Yakutia regions. A) Full vector vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 83 A) 2.0 B) 2.0 y=-lBO4x+0.2543 1.6 1.6 25 ~ .2. g z ' 1 ' . .. . an 5 ._ .. “l y °" . t o 0.0 -o,4. . -0.4 a a A . 02004006008001000 5678910111213 0mm K-Cb-s o 255 Eanlqukes o 138 Eprsbns C) 2.0 D) 5° 16 ’ 40 E a 1.2 * § 30 . ‘3 0.8 ‘ g 20 . a 0.4 ‘ J E: 10 0.0 0 -0.4 . 5 6 7 8 9 10 ll 12 13 K-Chss Dame-Corrected Pg (h) / sub) I255EafllumkesI138Emhsinm E) F )100 ‘— 08838§§§§ ALL; _..—N Ratio: 8 8 (explosions dam L85) NutcrofChuifiedRuioc PercentageofClasified '5' S J— 7 -o.4 0.0 0.4 0.8 13 1.6 2.0 ' ‘ 0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-CW?“d P50" ’ 39‘“) Distance-Corrected Pg(h) / Seth) _ We; Explosions —Total — We: Ewm — T0” .L C Figure 44. Pg(h)/Sg(h) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data B) Pg(h)ng(h) phase ratio vs. K class. C) Pg(h)/Sg(h) DCP ratio vs. K class. D). Histogram of the Pg(h)/Sg(h) DCP ratio. E) Number of correctly classified events. F) Percentage of correctly classified events. 84 A) 3.2 2.3 . y = lE~05x + 0.3797 1: 2.4 g 2.0 0 E a'.‘ C) 2.0 i 0 PI (1)/ Sc (2) 56789|0lll2|3 K-Chss m V oa§§§§§§§ (cxplooionct'na LBS) leberofChnificd Ratios ______4 ——w ~0.4 0.0 0.4 0.8 1.2 1.6 2.0 Distance-Corrected sz) / 812) pm orCImifiao 3' —- Earthquakes ' Eiqflosions —Total B) 3.2 2.84 2.4 3 2.0« o g 1.64 . o . 0 2 ,1. ' ° 8 ‘3 0.8] o ’ " 8 ' 0 ~00 o " 0.41 ‘ . 0.0« 0 ° -0.4 5 6 7 8 9 I0 ll l2 l3 K-Chsl D) so 40.. Ratios _ O 8888 Diane-Corrected Pg(fi/S‘z) IZSSWIIRW -0.4 0.0 0.4 0.8 1.2 Bounce-Corrected sz) / Sdz) — Earthquakes "“- Explosions — Total 1.6 2.0 Figure 45. Pg(z)/Sg(z) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(z) phase ratio vs. K class. C) Pg(z)/Sg(z) DCP ratio vs. K class. D). Histogram of the Pg(z)/Sg(z) DCP ratio. E) Number of correctly classified events. F) Percentage of correctly classified events. 85 A) 3.6 13) 36 . y = 3E-05x + 0.4633 A 2.s< 3 an E if an A m 5 1 a ‘3 fl- 5 67 89lOlllZl3 K-Chss c) 3.6 2.8 E a 2.0 (I) g 12« a? l a 0.44 -o.4 . . ' 5 o 7 s 9 1o 11 12 13 mcmwflm’w‘ws‘” K-Class IZSSEartlmfltesIUBEprsm' a 350) 80 a: a 300 +W’ . g g 250 i . . so w A U- 200 “6-5 ~ '3. 150 « 4° g 100 20 0 Z 50 1 o 0 . 2B 3 2 -o.4 0.0 0.4 0-8 1-2 1-6 2-0 -o.4 0.0 0.4 0.8 1.2 1.6 2.0 Diana-Corrected Pdh) / SKI) Distance-Corrected Pub) / Sdz) —Ean.hquakes Explosions —Total —Euthquakcs Explosions —Total Figure 46. Pg(h)/Sg(z) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(z) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(h)/Sg(z) phase ratio vs. K class. C) Pg(h)/Sg(z) DCP ratio vs. K class. D). Histogram of the Pg(h)/Sg(z) DCP ratio. E) Number of correctly classified events. F) Percentage of correctly classified events. 86 A) 2.0 « y= -o.ooozx+ 0.243 B) 2'0 . 1.63 1.6 .. g . ‘2’. .32 1.21 O E «3 0.3« a i 0.4 '1 n- 1 0.0 ~ Y 7 r ’0.4 r r Y 1 o 200 400 600 300 1000 .00“) 5678910111213 um“ K-Chss o 370 Enrthmkes . 220 Etpbsiom D) 50 C) 2.0 Distance-Corrected Pl (2) / S: (h) Mme-Corrected Pg (2) / Sflh) s o 78 910111213 K-Chss I 370 Makes a 220 Eprs'om E) ooo~— .aA soo~ 8 "‘4 4001 i1 3.. as g 200‘ £35 1004 z . o , . , . . . 0 . Y - Y 7 AW -o.4 0.0 0.4 0.8 1.2 1.6 2.0 .0.4 0.0 0.4 0.3 1.2 1.6 2.0 Disuncc-CmectedPstzHSsth) Dismiee-Corrected Pun/sub) -Eanhqunkes “Embsions -Total --Eard1quake| Embeions -Total Figure 47. Pg(z)/Sg(h) DCP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(h) phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Pg(z)/Sg(h) phase ratio vs. K class. C) Pg(z)/Sg(h) DCP ratio vs. K class. D). Histogram of the Pg(z)/Sg(h) DCP ratio. E) Number of correctly classified events. F) Percentage of correctly classified events. 87 A) 2.0 ' l 6 y = -0.0001x + 0.2934 3 E -0.4 . T - 1 0 200 400 600 800 1000 D'staneeatm) 0 255 Eartlnmkes 0 138 Eprsiom C) Full Vector Distance-Corrected 56789101113 K-Chss _/">\ 12 § 9.1 u O L4+ J. NmterofClanifledRetios (explosiorut'meelfiS) — u—- N 2 § § L o88‘6 -0.4 0.0 0.4 0.8 1.2 1.6 Dime-Corrected Full Vector — Earthquakes 2.0 correctly classified events. Explosions — Total 88 3) Full Vector Percentage ofClassified 3 Ratio: 8 A A n A ll 12 I3 8 8 I255 Emlmnku I138 Eprs'nm fifl—m—l O -o.4 0.0 DitancevCon'ected Full Vector 0.4 0.8 1.2 1.6 2.0 —Earthquakes _-. Explosions —Total Figure 48. Full vector DCP ratio for the Magadan and Northern Yakutia regions. A) Full vector phase ratio vs. epicentral distance and linear regression for the earthquake data. B) Full vector phase ratio vs. K class. C) Full vector DCP ratio vs. K class. D). Histogram of the Full vector DCP ratio. E) Number of correctly classified events. F) Percentage of 3.: 1.2 B) 1.0 * 0.8 * e 0.6 « . o 0.4 « Network-Avenged P: (h) / S: 01) Percentage o888888 j V j “NfiQfiNQY09§QQQfiNQ e . 5" 0.2 .7.“ 1;... 00 qucoceccccec—-—~ 5678910111213 " “Ch“ Netwrk-Averapd Pg (11) / 8‘11) 047 Eanlnmkes 0 l7 Eprs'nns I47 Wes I17Eprsbm C) 90 a 80 a: if 70 1 Q 60‘ 3.5 50 * - _f .9. 40 o ' 30 r 1; g 20 « 2 v 10 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / Sdb) D) 100 - E 80 3 so 1 ‘. 95.8. 1 0 ii 40 ‘ M g . 3 20 * o . n' 0 fi Y 7 ' " .' ' r 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Pgh) / 39(1)) — Earthquakes Explosions — Total Figure 49. NAP Pg(h)/Sg(h) NAP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(h) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 89 3: Network-AW Pa (2) I 83 (z) 1.2 a) 60 1.0+ 50‘ 0.8 . o° 5‘40' . .0 a... 0 g 30* 0.61 o '. .- . ee ‘ n. 20 * 0.4 ‘ ‘ .~ O 10. . 0 ‘k ‘.‘0 0.21 “d. o 04 | . 1 —N"9fiNQYQQ§QQQfiNQ Q0 - fi§§ccecccccoo-~~: 5678910111213 Network-A P z/S 2) we“ W s() d e47Eu11'qtlkesOI7E1q3beims I47Earthqueell7£prebm C) 90 . .3 30 1 a: i? 70 I 3'; .0. .- 50 | ,_._ 3 401 " /” "5 ' 30 j ‘1 4E 20 j z V 10 + ._ 0 ’ T *“7 - T “—fi 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Avenged P ‘2) / 83(2) D) 100 E 80 4 .3 60. 2 8 . e .. t3 4°: 5 20 . O a- 0 ‘Tfit 1*1A‘f'm T' "'1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd sz) / ng) -- Earthquakes ...... Explosions — Total Figure 50. Pg(z)/Sg(z) NAP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(z) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 3 Network-Averaged P: (h) / S: (2) 1.2 < 0.8 i 0.4 * 0.0 0 3’0 e"a I ’.. Q C ”C '.‘b'a-‘l. .q’q’ddddo‘c’o’ddd—i—i—i: 5 6 7 8 9 1011 12 13 Network-AmdengSdz) K-Chss O47Emlmlke8017Epra°nm lam-17mm C) 90 .§ A 80 1 12 g 70 r E N 60 1 E.g so 1 .2 s 40‘ e 5 301 E 1:20 5 J z v 10 o . , . 1 j . . s 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / Sdz) D) 100— E 80 a 6.. “aé ‘ so; 4"? g 20« n- o r r 1 T ' V 7 ' ' 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averapd Pgh) / 812) — Earthquakes ' ._ Explosions — Total Figure 51. Pg(h)/Sg(z) NAP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(z) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 91 A) 1.0 B) 60 0.81 50‘ A 40 Eff; 0.61 < ‘2 0.. 30 . ' A 04 « ° 0.. ’ 'E d ' Q o . fi- 20 en a. 4 9 . g 0.2 .fi§?3. 10 00 . a. 0‘ ‘ ‘ ‘ ‘ ’ P‘ ° aNfiQfiNQYWQWQQQfiNQ s 0 7 8 9 10 11 12 13 -?¢1°°°°°°°°°°""; K'Ch“ Network-Aw Pg (2) / 5111) ~65 Bum-kc: .24 Explosiom I65 Earthmkes I24 Eprsbm 120 Q C NumberofChssifiedRatios 9 (explosions times 2.71) 8 0 1 r 1 ' 1 ‘ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Avede P 12) / 8gb) D) 100 ' E 80 ‘ g 601 ... a 1 \ °E 0 40 - 33" g 20 a. 0 . T j ,1. ,. . r. -. .T,__,._....-... , , 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged sz) / Sgh) — Earthquakes *- Explosions — Total Figure 52. Pg(z)/Sg(h) NAP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(h) NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 92 A) Network-Averaged Full Vector 1 .2 1.0 ‘ 0.8 1 0.6 0.4 l 0.2 4 O O O Q. . 3) Percentage —¢~!—°—NMVW\DF%OO_NM Nq§dddédddddd;4;4 0.0 5 321-5112..- A 6 7 3 9 10 11 12 13 Network-Averapd FulVector K-Chss e47EartlnukeeOI7Eprs'ms I47EInlnmkesll7Eprsbm C) 90 a m” a: 3g 70 j 1: .. .0- '3 g 50 1 o 40‘. "5 ° 30 r g g- 20 j v 10 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Full Vector D) 100 " E 80 o 601 “5 . 9.1g 4" ‘ 8 . E 20 4 E 0 a a 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Network-Averaged Full Vector — Earthquakes Explosions — Total Figure 53. Full vector NAP ratio for the Magadan and Northern Yakutia regions. A) Full vector NAP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 93 A V Pg (h) / Sg (h) NADCP 1.4 1.0 7 0.6 7 0.2 3) Percentage oSBSSSS 7 8 9 K-Chss 10 11 12 13 O47Eartlx|mkes 017Explos'nm 70 50 30 Number ofClassified Ratios 9 (explosions times 2.76) 0 Ratios N O A 1 Percentage of Classified 0 -0.4 0.0 90. 80.. 60.. 40: 20‘ 101 8 8 Network Averapd D'It-Conected Pam/Ssh) I47 Wes I 17 Eprsbm -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Pg(h) / syn) NADCP 1 0.4 0.8 1.2 1.6 2.0 9301) / sub) NADCP — Earthquakes "'- Explosions — Total Figure 54. Pg(h)/Sg(h) NADCP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(h) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 94 A) 1.4 e B) 60 . Q 9 so a n' 1.0 ‘ . ’0 o . 8 e O 40 < ° ° 0 I E 0.6 4 e .. I 30 3 . e ' 0 20 ea \- O. O ’ m .. O . . ,3 0,21 ' e0” . h 10 9- . _ -0.2 . . . . g 5 6 7 8 9 10 ll 12 13 V Network Averapd D'It-Corrected K J? has Pg (2) / Sdz) 047kaes 01715!me I47Emlnmkesll7liprsm 90 80 70j 60: $0. .... 'D-FI 40 7 1 -( \ 1 Number ofClassified Ratios 9 (explosions times 2.76) 30 j 20 10 ~ 0 T - Y fl I 3"": ..-.- .___. -1 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz) / Sflz) NADCP S Percentage of Classified O f r 7 . 1 . T ..t... -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz) / Sg(z) NADCP — Earthquakes ' Explosions — Total Figure 55. Pg(z)/Sg(z) NADCP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(z) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 95 A) 3.0 3) 60 2.6 , g 2.2< z 1.8« . O 3 ”1 . 3.0.“ g 1.04 o 2 0.67 - 8h- 3"“: '5 3 ?§.‘."; an 0.2 -0.2 ' . gq'ééddddo‘dddd;g.;2: s 0 7 s 9 1011 12 13 N AmpdD'It-C “3"” P801) / sax) OWE-mmkufl'lfiprdom Inseam-teammates: we 801 70 60 401 //—H 30* 20: 104 o . . ~0.4 0.0 0.4 0.8 1.2 1.6 2.0 Number ofClassified Ratios Q (explosions times 2.76) Pg(h) / sgz) NADCP D) '3 3:. .3 U h o. 0 g a. o - . - . . . .1 J. -0.4 0.0 0.4 0.8 1.2 1.6 2.0 11301) / sgz) NADCP — Earthquakes '7 ' Explosions — Total Figure 56. Pg(h)/Sg(z) NADCP ratio for the Magadan and Northern Yakutia regions. A) Pg(h)/Sg(z) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 96 3 Pg (2) / Sg (11) NADCP Figure 57. Pg(z)/Sg(h) NADCP ratio for the Magadan and Northern Yakutia regions. A) Pg(z)/Sg(h) NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 1.0 B) 60 O . so 4 O O 0.61 ° ’0’ 5‘ 4° Q 0 30 1 ?° 0 .’ é}: 0:1 E 20 0.2+ 0 e e 10 O 0“?$. . e 0‘ . . . —~—e—Nnvv)~or~eeoo—Nm a} €9qcooccaccec——-: 5 6 7 3 9 '0 ” ‘2 ‘3 NetworkAverapdD'It-Cm'ecwd K-Chss Pun/Sub) °6SEnn|nmkes024Embsbns I65Eart1x|1IkesI24Eprsbm C) 120 é; J N 80 1.1 1 a: e' 40 1... -0.4 0.0 0.4 0.8 1.2 1.6 2.0 sz)/Sgh)NADCP D) 100- 1% 80‘ 35.56“. 0 a 40 _. 3’ g 2. a. 0 . v 1 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 szwsgmNADCP —Earthquakes “”13prst —Total 97 A) 1.4 B) 60 50. g 1.0‘ 0.. 040 15. 06+ ’ .. E301 g . h.:‘ .0 ‘20 I I 0.. 10 =>=l 0.2« ‘.fiugee L2 . O. O 0 , . - 'NfiQfiflQYWQEQQQfiQQ $2 r a e fiqqococooccco———— 67891011 T A v 12 13 Network Averapd Dist-Corrected Ful Vector I47 Earthques I 17 Etpbs'nns K-Chss I 47 Eanlnmkes 017 anabs’nns C) 90 .§ 30' as 70 a "‘ 60: 1151* u 40‘. ‘8- 30* £3.20 v 10 7 z 0 f -0.4 0.0 0.4 0.8 1.2 1.6 2.0 FullVectorNADCP D) 100 E 80 3 60 8 s . 3§m~ a: 5's" 3 20« :13 0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 FullVectorNADCP —Earthquakes Explosions—Total Figure 58. Full vector NADCP ratio for the Magadan and Northern Yakutia regions. A) Full vector NADCP ratio vs. K class. B) Histogram. C) Number of correctly classified events. D) Percentage of correctly classified events. 98 A) 4.4 3.6 ' 2.8 2.0 lm'lm. 0.4 I I. ;II I I I . I : 41.4 P31175511 1132/ng W W Fullvector 4.4 9 3.6 2.8 1 2.0 0.4 7 Network-Averqed Phase Ratio ‘17—-- — —- —-r---——- "- I I I I I I I I I I I I I I I I I I I I Y s!" & 9311/5311 PgZJSgZ PgH/ng pwsw Full vector B) 4.4 g 3.61 0.4 J «0.4 20109-9 OUO‘b Plusekatio 5 .° ; Network-Averaged Dist-Conceal 9 b .4 I i W I-.- I I D l PgH/SgH Pal/Sal PgH/SgZ 1132/5311 Full vector Figure 59. Comparison of amplitude ratios in the Magadan and Northern Yakutia regions. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP phase ratio. 99 Table 13. Distance linear regression results of amplitude phase ratios calculated from earthquakes in the Magadan and Northern Yakutia regions Phase Ratio Slope Y-intercept R2 Figure Reference M 00001 0.2543 0.01 Fig. 44a Sg(h) 5511) 0.00001 0.3797 0.00003 Fig. 45a Sg(2) 513(1). 0.00003 0.4633 0.0001 Fig. 46a Sg(2) £82 00002 0.2243 0.0296 Fig. 47a Sg(h) Full vector -0.0001 0.2934 0.0149 Fig. 48a R2 is the coefficient of determination. Values for R2 near 0 indicate a weak ratio vs. distance trend, while values approaching to one indicate a strong ratio vs. distance dependence. Table 14 and Figure 60 show the averages and standard deviations of the earthquake and explosion groups of all types of amplitude ratios calculated for the Magadan and Northern Yakutia regions. As observed in the Southern Yakutia region, the Pg(h)/Sg(z) amplitude ratio always had the largest standard deviation when compared to the rest of the amplitude ratios calculated using the same technique. In contrast, the Pg(z)/Sg(h) and Pg(h)/Sg(h) amplitude ratios usually had the smallest standard deviation compared to the rest of amplitude ratios calculated using the same technique (Fig. 60). 100 Table 14. Average, standard deviation, and maximum and minimum values obtained for the amplitude ratios in the Magadan and Northern Yakutia regions T of Number tecfique Type Of Type Of of ratios Average 0 Max. Min. applied rano event Pg(h)/Sg(h) Earthquakes 255 0.23 0.13 0.73 0.03 Explosions 138 0.3 7 0.17 0.96 0.05 Pg(z)/Sg(z) Earthquakes 255 0.38 0.30 2.00 0.02 Explosions 138 0.55 0.38 3.50 0.03 Raw Phase Pg(h)/Sg(z) Earthquakes 255 0.47 0.36 2.20 0.04 Ratio Explosions l3 8 0.67 0.51 4.00 0.1 l Pg(z)/Sg(h) Earthquakes 3 70 0.20 0.14 l .20 0.01 Explosions 220 0.31 0.17 0.86 0.00 Full vector Earthquakes 255 0.26 0.14 0.82 0.04 Explosions 138 0.41 0.17 0.95 0.05 Pg(h)/Sg(h) Earthquakes 255 0.23 0.26 1.25 -0. l 8 Explosions 138 0.51 0.34 1.67 -0.15 Pg(z)/Sg(z) Earthquakes 255 0.38 0.59 3.61 -0.34 . Explosions 138 0.71 0.76 6.62 -0.32 D'S‘ance' Pg(h)/Sg(z) Earthgakes 255 0.47 0.72 3.91 -039 Corrected Phase . (DCP) Ratio Explosmns 138 0.88 1.02 7.53 -0.24 Pg(z)/Sg(h) Earthquakes 370 0.20 0.27 2.18 -0.20 Explosions 220 0.42 0.34 1 .49 -0.24 Full vector Earthquakes 255 0.26 0.28 1.39 -0.20 Explosions 138 0.56 0.34 1.65 -0.18 Pg(h)/Sg(h) Earthquakes 47 0.22 0.06 0.37 0.09 Explosions 17 0.44 0.1 1 0.66 0.28 Pg(z)/Sg(z) Earthquakes 47 0.36 0.13 0.73 0.14 Explosions 17 0.59 0.17 0.87 0.29 “mm" P h)/S (2) Earth uakes 47 0 44 0 15 0 85 0 17 Averaged Phase g( g q. ' ' ' ' (NAP) Ratio Explos1ons 17 0.78 0.29 1.47 0.36 Pg(z)/Sg(h) Earthquakes 65 0.19 0.07 0.48 0.08 Explosions 24 0.34 0.07 0.49 0.22 Full vector Earthquakes 47 0.25 0.06 0.40 0. 13 Explosions 17 0.48 0.1 l 0.67 0.31 Pg(h)/Sg(h) Earthquakes 47 0.21 0.12 0.5 l -0.04 Explosions 17 0.65 0.21 1.08 0.34 Pg(z)/Sg(z) Earthquakes 47 0.34 0.25 1 .08 -0.09 232:2”; Explosions 17 0.81 0.33 1.36 0.20 Distal]; Pg(h)/Sg(z) Earthquakes 47 0.41 0.31 1.22 -0.12 Corrected Phase Explosions 17 1.10 0.58 2.47 0.24 (N ADCP) Ratio Pg(z)/Sg(h) Earthquakes 65 0.19 0.13 0.74 -0.06 Explosmns 24 0.46 0.15 0.76 0.22 Full vector Earthquakes 47 0.24 0.13 0.53 0.00 Explosions l 7 0.69 0.23 l .06 0.36 o is the standard deviation of the group of amplitude ratios. 101 A) 2.0 :fi j B) 2.0 :r E 7w: 5 ° 3 ' E a 1.4 4 : g 1.4 . I 0 g '3 1 g 1 2 E 1r g E"? ' 111' 1° 1 i "' 1 ~- . : 'r , g < 9: 1 1 T 9 ‘ - 5 9 L z ”*51'1'1131‘L E021{ .1 1 E1} : £ .1. . L 1. i '0" .04 PgH/SBH 733381 W82 W Full vector FM 1521ng PgH/ng PgZ/SgH Fullvector C) 2.0, E o) 2.0, . .1. g 1.4 . E 1.4 E E 0.8 i { gas { Y 1 1 <. I" ‘ f E 1 ~ i i . . 1 1 .1. 5 5 g < E . -04 2 41.4 PsH/Ssfl Pal/Sal PsH/Ssl PsZ/SsH Full vector mus.“ W 1’ngng 11:72ng Full vector Figure 60. Comparison of amplitude ratios averages and standard deviations in the Magadan and Northern Yakutia regions. The average value is plotted with their arms representing the scatter in red for earthquakes and gray for explosions. A) Raw phase ratio. B) DCP ratio. C) NAP ratio. D) NADCP phase ratio. The critical values found for the discriminants applied to the Magadan and Northern Yakutia regions are shown in Table 15 and in Figure 61. The best earthquake- explosion discriminants found for this region were the full vector NAP ratio and also the Pg(h)/Sg(h) and full vector NADCP ratio (Figs. 53, 54, and 58). These discriminants allows for the separation of 91 .7% of the ratios that were calculated. Three more amplitude ratios were categorized as good discriminants with 86.1-91.0 % of the ratios 102 correctly classified. These ratios were the Pg(z)/Sg(h) NADCP and also the Pg(h)/Sg(h) and Pg(z)/Sg(h) NAP ratios (Tables 15 and 16, Figs. 49, 52, and 57). Table 15. Critical values for the Magadan and Northern Yakutia regions Discrimant Phase Ratio DCP Ratio NAP Ratio NADCP Ratio Pg(h) —- 0.23 0.33 0.30-0.32 0.35 5301) Pg(2) — 0.33 0.27-0.28 0.55-0.58 0.78-0.79 Sg(2) Pg(h) —— 0.48 0.45 0.68-0.75 0.87-1.03 Sg(2) Pg(Z) — 0.18 0.15 0.23 0.29 52:01) Full vector 0.27 0.25 0.33 0.37-0.39 Table 16. Maximum percentage of correctly classified events and qualitative performance assignment for each discriminant in the Magadan and Northern Yakutia regions Discrimant Phase Ratio DCP Ratio NAP Ratio NADCP Ratio Pg (’7) Poor Poor Good Good Sg(h) 70.7% 70.0% 91.0% 91.7% Pg (2 ) Poor Poor Fair Fair Sg(z) 63.8% 63.8% 78.1% 79.1% Pg (’7) Poor Poor Fair Fair Sg(z) 62.8% 63.3% 80.2% 80.2% Pg (2 ) Poor Poor Good Good Sg(h) 67.0% 66.0% 86.4% 86.1% Full vector Poor Poor Good Good 70.9% 70.8% 91.7% 91.7% 103 658 08:...— ago—Mo. «Ea—.9 Eoztoz can 828.91". I moxazgtum I 38. I 38:8 $me §£o>$oz .9‘¢> EU 82.3 .33.... £82.... V No.39. .3sz.. . .d on... 8.. V E... -8... 8... -5... -2... a... .m 9 0 r: 3 1 Q? m. u. w ... m S. N. a 8. “a ass. 0as... 38:83.58 .313 .855 V 0.9:: Emma“... Namiwa was”... 25:»... V . . ..N.. d V n... V 3... N... m m N». ...... wow 0 mm m «.2 - 8 m - 8. m E z 8 one .22 6 .22: ..oo 8 5...: as... so... 2 a2 05 E 858 33:95 05 mo oonanuoton 05 mo cannon—=50. _o 95w...— ao.8.&m I 88:35.. I .aoh I as. 2.2... E99... “......32 .3..> 3.5 32.5 _.zmmaatummima Nmmhaa ENE»; .eVN who wm. o -88 -ch No-82. m. m VNNmm 9. w w .8 s m. g 8.8.. 8. m» Samoa... 8:28.80 82.: :58... MagmaNamNE 35:.» :N. N... NE. 2... N... d O w V 8N u .m V m. o w 8 W m 2V. 8 m. V 8 m- 104 The distance correction did not have a significant effect on the performance of the phase ratios after its application. The percentage of correctly classified events changed by -1.0 to 0.5%. The critical values slightly decreased for the Pg(z)/Sg(z), Pg(h)/Sg(z), Pg(z)/Sg(h), and full vector phase ratios and increased for P(h)/Sg(h) phase ratios (Table 15). Averaging over the network again had a significant effect on the performance of the discriminants. The percentage of correctly classified events by the amplitude ratios increased by 14.3 to 20.8% afier averaging. The full vector phase ratio had the most positive effect, followed by Pg(z)/Sg(h) phase ratio and then the Pg(h)/Sg(h) phase ratio (Table 16). The critical values increased for all types of phase ratios after averaging the ratios over the network, as seen in Table 15. The average over the network of the DCP ratios also always produced an increase in the critical values. 2.4.2. Phase Ratios for Individual Stations Amplitude phase ratios obtained from individual stations were plotted against K class when more than ten amplitude phase ratios for both earthquakes and explosions were available for each station (Fig 38e). For the Magadan and Northern Yakutia region these stations were DBI, NKB, SEY, SUU, and UNIS. The DCP ratios that performed the best were Pg(h)/Sg(h) for DBI, SUU, and UNIS and Pg(z)/Sg(h) for NKB and SEY (Fig 62, Appendix B). Due to the lack of data, the critical values and performance calculations for DB1 and NKB stations are considered unreliable. 105 The critical values, averages, and standard deviations calculated were extremely variable, as seen in Table 17. There was not a pattern in the critical values or performance that could be observed for all types of amplitude ratios analyzed in this region. One notable observation situation was that the Pg(z)/Sg(z) and Pg(h)/Sg(z) DCP ratios showed a fair performance that was in some cases better than that of the other three types of amplitude ratios. Using all of the data collected for the region, the two aforementioned amplitude ratios performed more poorly and differently than the other three amplitude ratios calculated. 106 8...... 2.3.1:... ..o as...» o... .... :2332. “.8858 b £82298 8...... 8.8. .... .353: N .moxungtuo E9... 8...... .... .355: . SN... 8... .8... ..N... .8... ...... .8... .m... ..N... ...... .... 8.8.93 888... .8... ..N... .8... ...... .8... ...... .2... ..N... .2... .N... .o. 88......8 88.8... NN...-.N... ... ... . ...-.. . ... No...- o....-.. . ... 88> .825 ..xN.$.8o.. .8288... £88.89. .5838... .8988... 98.88.8029. mm 2. £2: .8... Q... .8... ...... .8... ..N. .8... N... .N.... on... .... 8.8.93 888... .NN.... .N... .2... o. ... ...... 8... .8... ...... .2... ..N... .... 3.88:8 888.. ...... ...... 8...... ..N..... . ... Nm... 8...> .82... .8238... £88.89. 9.8.8.8.... 9.8.8.8.... .8288“. ......888288 a. ... 32m ... . .... ...... ...N.... ...... .8... on... ...N... .m... .8... ...... .... 8.8.93 888.. SN... NN... ...... ...... ...»... 8... .8... ..N... ...-N... .N... .... 2.89.28 8.88.. .N...-R... mac-.N... 2.8-...... 88-8... 2.8-m... 88> .826 .8158. .5328. 82.8.8... .8958... .5652“... ..x..o..8§o.8.. E .N ...-5 .. m... 8.. .8... No... .2... ...... ...... ..N. ..N... 8... .... 8.8....3 828... .8... R... .N . .... m . ... .8... ...... .8... NW... .8... mm... .... 8.88:8 8.88... moo-NW... ...... 2.8-...... 38-..... 8.8.2... 8...> .82... .8........~... 388...... 9.8.8.8.... .8888... £88.89. 98:88:28.. N. ... 5.2 .8... 8... ...... hm... . ...... 8.. .8... 8.. .8... mm... .o. 8.8.93 883% .8... 8.. ...N.... .m... .8... 8.... .8... 8... ..N.... .N... .o. 3.89.28 8822 8.8.8.. 8.8-8.. 8.8-2.... 8.-.... owe-.N... 88> .826 98.8.8... ......Ntsp. 9858.8... £88.89. £88.22. 9588888.. ... ... .mo 88> ..._. 3.5.59. 8.3.2.9. .8339. 3.8.3.9. a ... ... .. 8.88. 8.2m... «new; €05.82 ...... 53mm: on. E 88.88 1523...... 5.. 38.3.8 mom .... €0.83»... €3.53» ...... £03.82. 88.88.88... .329 .8320 .2 2......- 107 UN U) Pam/530000 é P8 0|)/38(h)DCP 1.8 NKBS 2.2 L4 4 a. 1.8 "i 8 1.44 . 1.04 o. . a 4 o , 1.0* 0.6 1 . .. £::$ g ... . . Z 05* 0! fi ’0: 3.00.. '5 “ 0 o 0.21 ‘ an 02‘ 3.. ° . I. on -0.2 -0.2 . v r . T 56789101l1213 5678910111213 K-Chss K-Chss . 46Eartlr|mkes . 33 Eprsions - 14 Enrttques . 12 Eprsbm 1.8 SEY 1.8 O 1.4“ o 1.4‘ . ° ‘ g 1.0* 0 A , 4 ,. 5 101 . no "-6. . 3... .05. a 0.6: ° ;. -1 \INI -4 0.2 .. ’..0’0: 5...“ 0,2 4 .... .1 -o.2 . .02 . . ' 5678910111213 5678910111213 K-Chss K-Chss - 18 Eanlnmkes o 19 Explosions o 26Earthques o 14 Eprs‘nm DBI 1.8 a. 1.4 ‘ 8 g 1.0‘ . co 9 ' (<3 0.6‘ . g. 0. g 02 . v . 0 d? O « o ‘. '0 -0.2 I 5 6 7 8 9 10 ll 12 I3 K-Chss O 14 Earthquakes O 10 mes'mls Figure 62. Best discriminants for individual stations in the Magadan and Northern Yakutia regions. The totality of the plots per station is shown in Appendix B. 108 2. 5. Comparison between Regions There was a tendency of explosions to have higher values than earthquakes for the five types of amplitude ratios explored in both of the two regions studied. However, an overlap between the two types of events was also observed for all the ratios calculated. The amplitude ratios that exhibited the best performance as earthquake-explosion discriminants were the same for the two regions: the Pg(h)/Sg(h), Pg(z)/Sg(h), and the full vector NAP ratios and the Pg(h)/Sgai), Pg(z)/Sg(h), and the full vector NADCP phase ratios (Tables 10 and 15). The percentage of correctly classified ratios that these types of discriminants produced was 86.8-89. 1% for the Southern Yakutia region and 86.1-91.7% for the Magadan and Northern Yakutia regions. For the two regions, Pg(z)/Sg(z) and Pg(h)/Sg(z) performed similarly, but always with a percentage of correctly classified ratios considerably lower than that of the other three types of amplitude ratios. The critical values for the amplitudes ratios of Pg(h)/Sg(h), Pg(z)/Sg(h), and full vector amplitude ratios were very similar for the two regions (Table 10 and 15, Fig. 63 a,d,e). On the other hand, the Pg(z)/Sg(z) and Pg(h)/Sg(z) phase ratios showed very distinct critical values for the two regions. These two types of amplitude ratios exhibited the worst performance for the two regions, and both ratios involved the amplitude of the S g phase in the vertical component in the denominator. 109 FEW/580!) Pam/89(2) E) Full Vector l .0 0.9 0.8 ‘ 0.7 0.6 0.5 0.4 0.3 0.2 * 0.I l .0 0.9 0.8 0.7 0.6 ' 0.5 0.4 4 0.3 0.2 0.! LG , 0.9 , 0.8 0.7 0.6 0.5 ' 0.4 0.3 0.2 0.1 Pg(zVSg(z) Pam/830!) NAP NADCP DCP NAP NADCP 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 l .0 0.9 0.8 0.7 0.6* 0.5 0.4 0.3 0.2 0.! DCP NAP NADCP NAP NADCP 0 Southern Yakutsk region I Magadan and Northern Yakutsk regions Figure 63. Comparison of critical values calculated using the four techniques applied to the two study regions. A) Pg(h)/Sg(h) phase ratio. B) Pg(z)/Sg(z) phase ratio C) Pg(h)/Sg(z) phase ratio. D) Pg(z)/Sg(h) phase ratio E) Full vector phase ratio. 110 The critical values found for the two regions usually did not separate an equal number of earthquakes and explosions (Fig. 36 and 61). This situation was more evident in the Magadan and Northern Yakutia regions than in the Southern Yakutia region. For the two regions, the standard deviation of explosions was always higher than earthquakes (Fig. 64). In another words, there is a larger variation in the amplitude of Pg with respect to Sg for the explosions than for the earthquakes. The larger standard deviation for explosions could be the result of different techniques of blasting, geometries on the ripple fire detonations, and materials properties (gas porosity, density, velocity) in the near zone of the explosions. For all types of amplitude phase ratios calculated, earthquakes from the Southern Yakutia region always had a slightly lower average amplitude ratio than earthquakes from the Magadan and Northern Yakutia regions (Fig. 64). However, it is important to notice that this difference is less than the standard deviation of the amplitude ratios for both regions. In the case of explosions, there was not a clear pattern. The average of amplitude ratios for explosions was usually slightly higher in the Southern Yakutia region for the phase ratios and DCP ratios. On the other hand, NAP and NADCP ratios were usually slightly lower in the Southern Yakutia region. With the exception of the Pg(z)/Sg(z) and Pg(h)ng(z) phase ratios and the Pg(z)/Sg(z) DCP ratios, the standard deviations of the group of amplitude ratios from the Magadan and Northern Yakutia regions were always smaller than those of the Southern Yakutia region (Fig. 64). This was more significant in the case of explosions that had a much larger standard deviation for the Southern Yakutia region. 111 A) 2.0 ~ ~ ~ ,r—— B) 2.0 l” l . 1.8 ' ' 1.8 t [.6 1.6 l ,2 1-4 ‘ 1.4 l a l.2 ‘ ° [.2 . " 0 . ‘2 1.0 , 5 l.0' .. , fl. 2 0.8 « ' 0.8 , a » 0‘6 fl ‘ O . g 0.6 J ‘ ; ,1 3 t ‘ . *+Q ‘ ¢ . t2 0'4 _, ’ +9 * ‘ 0-4 ‘ A“ . 0.2 éé éf 4 0.2 0.0 ~ 0.0 4 . - _02 a .02 1 ‘L 1‘ L .. -o.4 -o.4 ‘ PsH/SsH Pal/Sal PgH/ng Wu Full vector Pail/83H Pol/Sol Purl/s32 roman Full vector C) 2.0 r" ' " ‘ D) 2.0 l 1.8 ‘ 1.8 t 1.6 « 1.6 l 1.4 ' O 1.4 ~ 0 L2 ' , , '3 1.2 :5 LG i ' a 1.0 T *t 0.8 j i o “- 0.8 l . o g 0.6 ‘ +., +oi, é+ . é ool To { +‘ %o 0.4 ' A . + z 0.4 « 1 ~ 02 :50 9* ‘ sci 4. 02 §§ {A{ l §§ ‘H 0.0 ‘ 0.0 ‘ J. -02 ‘ .o,2 . -0-4 ‘ ‘ *' -o.4 » l -—+- -L-— -- - PsH/Sw Pal/Sal PgH/Ssl 932/ng Full vector PsH/SsH P321832 PgH/ng Pal/83H Full vector A Earthquake Southern Yakutia region 0 Earthquake Mapdan and Northern Yakutia regions I Explosion Southern Yakutia region 0 Explosion Magadan and Northern Yakutia regions Figure 64. Comparison of averages and standard deviations of all type of amplitude phase ratios for the two study regions. 112 3. CONCLUSIONS There was a tendency of chemical explosions to have higher values than earthquakes for the five types of amplitude ratios explored in the Yakutia and Magadan regions. The average of all types of amplitude phase ratios for explosions was always higher than earthquakes. However, an overlap in the values of the groups of the two types of events was also noticed, especially in the cases where the phase ratios were not averaged over the network. The best earthquake-explosion discriminants found for the Southern Yakutia region and the Magadan and Northern Yakutia regions were: the Pg(h)ng(h), Pg(z)/Sg(h), and the full vector NAP ratios and the Pg(h)/Sg(h), Pg(z)/Sg(h), and the full vector NADCP phase ratios. The percentage of correctly classified ratios that these types of discriminants produced was 86.8-89.1% for the Southern Yakutia region and 86.1- 91.7% for the Magadan and Northern Yakutia regions Critical values were found for five types of amplitude ratios that were calculated in four different ways: the raw phase ratio and the DCP, NAP, and NADCP ratios (Table 10, 15). For earthquake-explosion discrimination purposes in the two regions studied, an amplitude phase ratio that is lower than the critical value is likely to be an earthquake while an amplitude phase ratio that is higher than the critical value is likely to be an explosion. Good separations were found analyzing stations separately. In the Southern Yakutia region, the best separations were found at stations TUG, USZ, and UURS, while 113 in the Magadan and Northern Yakutia regions the best separations were found at SUU and SEY. There were no important differences in the performance and averages of amplitude phase ratios calculated between the two studied regions. The only important differences in the critical values were found for the two discriminants which performed badly: the Pg(z)/Sg(z) and Pg(h)/Sg(z) phase ratios. The standard deviation of the group of explosions was always considerably larger than that of earthquakes for the two regions. The larger standard deviation for explosions could be the result of the variability in the techniques of blasting, geometries on the ripple fire detonations, and near-source materials properties (gas porosity, density, velocity) within the regions. A weak earthquake amplitude phase ratio vs. distance relationship was found for the Yakutia and Magadan regions. For this reason, the distance correction did not have a significant effect on the performance of the amplitude ratios. More importantly, averaging the amplitude phase ratios when more than three stations were available reduced the scatter that the Pg/Sg phase ratios initially had and significantly improved the discrimination power of the amplitude ratios. Despite the fact that this study was based on analog data collected only from short period instruments and analyzed without the use of corrections for seismic ray paths, it is significant that discrimination between the two types of events can be observed. This fact confirms that it is possible to conduct earthquake-explosion discrimination studies using historic Russian regional data. Nevertheless, in order to verify the results and increase the reability of the estimates, the use of the amplitude phase ratios with other alternative 114 discriminants is recommended. Some of these could be the location of the source (known mines or faults), the time of occurrence (daytime vs. nighttime), and the sign of the first arrival. Future work will attempt to use the totality of the amplitude information acquired to create more amplitude phase ratios of specific types. Future studies should also attempt to discriminate between earthquakes and explosions in the study area using waveforms recorded by recently installed digital seismic stations, which will allow better control of frequency bands for analysis and allow waveform correlation studies. 115 4. REFERENCES Agnew, D. C. (1990). The use of time-of-the-day seismicity maps for earthquake/explosion discrimination by local networks, with an application to the seismicity of San Diego county, Bulleting of the Seismological Society of America. 80, 747-750. Avetisov, G. P. (1999). Geodynamics of the zone of continental continuation of the mid- Artic earthquakes belt (Laptev Sea), Physics of the Earth Planetary Interiors. 114, 59-70. Chapman, M., and S. C. Solomon (1976). North American-Eurasian plate boundary in Northeast Asia, Journal of Geophysical Research. 81, 921-930. Cook, D., K. F ujita, and C. McMullen (1986). Present day plate interactions in Northeast Asia: North American, Eurasian, and Okhotsk plates, Journal of Geodynamics. 6, 33-51. Davies, J. B., and S. Smith (1968). Source parameters of earthquakes and discrimination between earthquakes and nuclear explosions, Bulletin of the Seismological Society of America. 58, 1503-1517. Deneva, D., L. Khristoskov, N. Barachkova, N. Dotesev, and K. Marinova (1989). Detection of industrial explosions and weak earthquakes with local seismological networks, Izvestiya, Earth Physics. 25, 750-753. Derr, J. (1970). Discrimination of earthquakes and explosions by the Rayleigh-wave spectral ratio, Bulletin of the Seismological Society of America. 60. 1653-1668. Douglas, A., J. A. Hudson, P. D. Marshall, and J. B. Young (1974). Earthquake that look like explosions, The Geophysical Journal of the Royal Astronomical Society. 36, 227-233. Drachev, S. (2000). Laptev Sea rified continental margin: modern knowledge and unsolved questions, Polarforschung. 68, 41-50. Fah, D., and K. Koch (2002). Discrimination between earthquakes and chemical explosions by multivariate statistical analysis: a case study for Switzerland. Bulletin of Seismological Society of America. 92, 1795-1805. Filina, A. G. (1999). Recognition of records from industrial explosions in the Altai-Sayan region. Izvestiya, Physics of the Solid Earth. 35, 461-468. 116 Franke, D., F. Kruger, and K. Klinge (2000). Tectonics of the Laptev Sea—Moma ‘Rifi’ region: investigation with seismologic broadband data, Journal of Seismology. 4, 99-116. Fujita, K. (1995). Peaceful nuclear explosions in the Sakha Republic (Yakutia), Russia, Seismological Research Letters. 66, 20-24. Fujita, K., F. W. Cambray, and M. A. Velbel (1990a). Tectonics of the Laptev Sea and Moma Rift Systems, Northeastern USSR, Marine Geology. 93, 95-118. F ujita, K., D. B. Cook, H. Hasegawa, D. Forsyth, and R. Wetmiller (1990b). Seismicity and focal mechanisms of the Artic region and the North American plate boundary in Asia, in The Artic Ocean Region: The Geology of North America, vol. L, A. Grantz, L. Johnson, and J. F. Sweeney (Editors), Geological Society of America, Boulder, Colorado, 79-100. Fujita, K., K. Mackey, R. McCaleb, L. Gunbina, V. Kovalev, V. Imaev, and V. N. Smimov (2002). Seismicity of Chukotka, northeastern Russia, in Tectonic evolution of the Bering Shelf-Chukchi Sea-Arctic margin and adjacent landmasses, Special Paper 360, E. L. Miller, A. Grantz, S. L. Klemperer (Editors), Geological Society of America, Boulder, Colorado, 259-272. Fujita, K., G. F. Sella, K. G. Mackey, S. Stein, K. D. Park, V. S. Imaev, and D. Hindle (2004). Relationships between seismicity and GPS determined velocities in Northeast Asia, Eos Trans. AGU, 85 (4 7), Fall Meet. Suppl., Abstract GP4lA- 0836. F ujita, K., D. Stone, P. W. Layer, L. M. Parfenov, and B. Koz’min (1997). Cooperative program helps decipher tectonics of northeastern Russia, Transactions, American Geophysical Union (Eos), 78, 245, 252-253. Godzikovskaya, A. A. (1995). Local explosions and earthquakes, Russian Joint-Stock Association Energy and Electrification (EES Rossii), Moscow, 98 pp. (in Russian). Hartse, H., S. Taylor, S. Phillips, and G. Randall (1997). A preliminary study of regional discrimination in Central Asia with emphasis on western China, Bulletin of the Seismological Society of America. 87, 551-568. Hartse, H., K. Mackey, K. Fujita, and B. Koz’min (2005). Discrimination analysis of the NEVA —2, -3, and —4 PNE’s using digital and analog regional seismic records, SSA Abstract, 2005 Annual Meeting. Imaev, V. S., L. P. Imaeva, and B. M. Koz’min (1994). Active faults and recent geodynamics of Yakutian seismic belts, Geotectonics. 28, 146-158. Imaev, V. S., L. P. Imaeva, and B. M. Koz’min (1995). Seismotectonic dislocations in seismic belts of Yakutia, Geotectonics. 29, 73-86. 117 Imaev, V.S., L. P. Imaeva, B. M. Koz’min, L. V. Gunbina, K. G. Mackey, and K. Fujita (2000). Seismicity and present-day boundaries of plates and blocks in northeast Asia, Geotectonics. 24, 294-301. Kim, W. Y., D. W. Sirnpsom, and P. G. Richards (1993). Discrimination of earthquakes and explosions in the eastern United States using regional high-frequency data, Geophysical Research Letters. 20, 1507-1510. Kim, W. Y., A. L. Aharonian, A. L. Lemer-Lam, and P. G. Richards (1997). Discrimination of earthquakes and explosions in southern Russia using regional- high frequency three-component data from the IRIS/J SP Caucasus network, Bulletin of the Seismological Society of America. 87, 569-588. Kim, S. G., Y. Park, and W. Y. Kim (1998). Discrimination of small earthquakes and artificial explosions in the Korea Peninsula using Pg/Lg ratios, Geophysical Journal International. 134, 267-276. Koz’min, B., L. Linkimer, K. Fujita, and K. Mackey (2004). Seismicity and Tectonics Stress Field of the Laptev Sea Shelf, Eos Trans. AGU, 85 (47), Fall Meet. Suppl., Abstract GP41A-0830. Li, Y., N. T. Toksoz, and W. Rosi (1995). Source time functions of nuclear explosions and earthquakes in central Asia determined using empirical Green’s functions, Journal of Geophysical Research. 100, 659-674. Mackey, K. (1999). Seismological studies in Northeast Russia. PhD Thesis, Michigan State University, East Lansing, 326 pp. Mackey, K., and K. F ujita (1999). The northeast Russia seismicity and explosion contamination of the Russian earthquake catalog, in Proceedings of the 21 Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty (C TBT ), Vol. 1 US. Department of Defense, Dulles, VA, 1 5 1-161 . Mackey, K., and K. F ujita (2005). Explosion Contamination of the Baikal Seismicity Catalog. Part 4 final report: regional-scale ground-truth studies of Northeast Russia, Department of Geological Sciences, Michigan State University, East Lansing, 25 pp. Mackey, K., K. Fujita, L. Gunbina, V. Kovalev, V. Imaev, B. Koz’min, and L. Imaeva (1997). Seismicity of the Bering Strait: evidence for a Bering Block. Geology, 25 (11): 979-982. Mackey, K., and K. Fujita (2001). Seismicity characterization and structure velocity of Northeast Russia, NERSP Report 8, Department of Geological Sciences, Michigan State University, East Lansing, 119 pp. 118 Mackey, K. G., K. Fujita, L. K. Steck, and H. E. Hartse (2002). Seismic regionalization in northeast Russia, in Proceedings of the 24 Seismic Research Review—Nuclear Explosion Monitoring Innovation and Integration, vol. 1 U. S. Department of Energy, National Nuclear Security Administration and Defense Threat Reduction Agency, 107-116. Mackey, K., K. Fujita, L. Gunbina, B. Koz’min, V. Imaev, L. Imaeva, and B. Sedov (2003). Explosion Contamination of the Northeast Siberian seismicity catalog: implications for natural earthquake distribution and location of the Tanlu fault in Russia, Bulletin of the Seismological Society of America. 93, 737-746. Mackey, K., K. Fujita, H. Hartse, L. Steck, and T. Stead (2005). Seismic characterization of Northeast Asia and analysis of the Neva PNE’s. SSR Abstract, 27‘“ Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies. Malamud, A. A., and N. Nikolaevskii (2001). Recognition of industrial explosions and weak earthquakes from their seismic energy, Izyestiva, Physics of the Solid Earth. 37, 151-156. Odinets, M. G. (1996). The problem of polluting the earthquake catalog with industrial explosions blasts in northeastern Russia, in Geophysical Models of Geologic Processes in Northeast Russia, T. I. Lin’kova and V. A. Bobrobnikov (Editors). NEISRI, Magadan, Russia, 90-99 (in Russian). Parfenov, L., M., B. Koz’min, V. Imaev, and L. A. Savostin (1987). The tectonic character of the Olekma-Stanovoy seismic zone, Geotectonics. 21, 560-572. Pomeroy, P. W., W. J. Best, and T. McEvilly (1982). Test ban treaty verification with regional data — a review, Bulletin of Seismological Society of America. 72. S89- 8129. Rautian T. G. (1960). Energy of earthquakes, in Y. V. Riznichenko (Editor). Methods for the detailed study of seismicity, Izdatel’stvo Akademii Nauk SSSR, Moscow, 75- 114 (in Russian). Riegel, S., K. Fujita, B. Koz’rnin, V. Imaev, and D. Cook (1993). Extrusion tectonics of the Okhotsk plate, Northeast Asia, Geophysical Research Letters. 20, 607-610. Rodgers, A., T. Lay, W. Walter, and K. Mayeda (1997). A Comparison of regional-phase amplitude ratio measurement techniques, Bulletin of Seismological Society of America. 87, 1613-1621. Seno, T., T. Sakurai, and S. Stein (1996). Can the Okhotsk plate be discriminated from the North American plate?, Journal of Geophysical Research. 101, 11305-11315. Stevens, J, L., and S. M. Day (1985). The physical basis of the mb: Ms and Variable Frequency Magnitude methods for earthquakes/explosion discrimination, Journal of Geophysical Research. 90, 3009-3020. 119 Taponnier, P., G. Peltzer, A. Y. Le Dain, and R. Armijo (1982). Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Geology. 10, 611-616. Taylor, S., M. Denny, E. S. Vergino, and R. Glaser (1989). Regional discrimination between NTS explosions and western US earthquakes, Bulletin of Seismological Society of America. 79, 1 142-1176. Taylor, S. (1996). Analysis of high-frequency Pg/Lg ratios from NTS explosions and Western US Earthquakes, Bulletin of Seismological Society of America. 86, 1042— 1053. Walter, W., K. Mayeda, and H. Patton (1995). Phase and spectral ratio discrimination between NTS earthquakes and explosions. Part I: empirical observations, Bulletin of Seismological Society of America. 85, 1050-1067. Wiemar, S., and M. Baer (2000). Mapping and removing quarry blast events from seismicity catalogs, Bulletin of Seismological Society of America. 90, 525-530. Worrall, D. M., V. Kruglyak, K. F unst, and V. Kuznetsov (1996). Tertiary tectonics of the Sea of Okhotsk, Russia: far-field effects of the India-Eurasia collision, Tectonics. 15, 813-826. 120 APPENDICES 121 APPENDIX A Amplitude Information 122 e8... 83 N8... 38... 3 83.. one 8.8. 8.8 3. t. N. .8 e8. 83 8...... 83 N83 3 8.8 8: 8.8. 8.8 e... .m N. e8 e8. 83 .8... 83 8.3 3 8.8 one 8.8. 8.8 3 .m N. e8 e8. :3 83 e8... e8... 83 N8... 3 8.8 N8. No.8. 8.8 ..8 8 ..N ...N 28. 83 83 .8... :3 83 8.3 3 8.8 0.: 8.8. 8.8 ..8 8 ..N ...N 8. ...3 83 e. 3 8.3 83 83 e... 8.8 mzd No.8. 8.8 ..8 8 ..N ...N 28. $3 83 :3 :3 N8... :3 3 8.8... 0.... 8.8. 8.8 3N ..e. N. ..N e8. 83 83 83 83 e8... 83 3. 8.8.. mm: 8.8. 8.? n8 .m N. ..N e8. N.N... 83 .8... m .3 83 83 3. 8N8 moo 8.8. 8.8 3N .m N. ..N e8. 83 83 83 83 83 83 .3 8.8. mzd 8.8. 8.8 3N .m N. ..N e8. ..3 83 83 N... 8.8 03 :8. 8.8 3. 8 N. e N e8. 83 83 83 :3 NN 8.8 8: ... .NN. 8.8 3. 8 N. o N e8. 83 83 N83 E 8.8 N8. .....N. No.8 3N e. ... 8 N .8. N8... 83 83 :3 2.3 2 8.8. .3240 8.8. 8.8 ...8 e. .N .... e8. 3 .3 83 83 .8... 83 .... 8.8 85: 8.8. 8.8 3.8 e. .N .... e8. .83 83 83 83 N8... 83 e... 2.8. moo 8.8. 8.8 3 ... ... N . e8. 83 o. .3 e8... 83 83 :3 e... 8.8... new 8.8. 8.8 ...Nm 8 ..N N . e8. 83 83 8.3 8.3 83 83 3... NS: one 8.8. 8.8 ...Nm 8 ..N N . e8. 83 83 83 e8... e8... :3 3 8.8. mm: 8.8. ....8 ...NW 8 ..N N . e8. e8... 83 83 m .3 8.3 83 S 8.8. 85: 8.8. ....8 ...Nm 8 ..N N . e8. N83 .83 8.3 N .3 83 3 2.8. mzd 8.8. 8.8 ...Nm 8 ..N N . e8. 38.. 8.... 83 83 83 83 3. 8N... ca 8.8. 8.8 ...... NN t e. . :8. 83 83 83 83 83 8.3 3 ....8. mzd 8.8. 8.8 ...... NN N. e. . :8. $3 83 83 83 N8... 83 .3 8.8. 8: 8.8. 8.8 ...8 NN ... ...N 8. 3.3 82 :3 N. 3 3.3 83 e3 e3 85: 8.8. 8.8 3.8 NN ... ...N 8. N mm 3m mm mz mm N me am we mz M... v. :5: ..oE 8.38 .83 ..3 2:: 8.5 see .533— acsza> ...—953m 05 E moo—asaatam 123 ....3 ..N3 ....3 8...... N...... N...... ...8 . ...8 0.: 8.8. 8.8 8.... .... N. 8 e 88. 8.... ..8... ... .... 8...... 8...... 8.8 8.88. N8: 88. 8.88 8.... 8 N. 8 e 88. 8.... 8.... 8...... 88... ...8 ...8 0:... 8.8. 8.8 8.88 8. N. . 8 88. 8...... 8...... N88... 8...... 88... ...8 88 N8: 8...N. 8.8 8.88 8. N. . e 88. 8.... 88... .N.... 8...... ...8 838 89... 8.8. 8.8 ...8 .N 8. 8 8 e8. 8 . ... N88... 88... ...8 8.8. 82.0 88.8. 8.88 ...8 .N 8. 8 8 e8. N8... 8.... 8...... .... .....88. N8: 8.8. 8.88 ...8 .N 8. 8 8 e8. 8...... 8...... 8...... 8.8 8.8 N8: .88. 88.8 8.8 8.. 8. 8.. 88. 8.... 8 . ... 8.... ..8... 8.8 8.8... ...... 8.8. .....8 8.8 .. N. N... 88. 8N . ... 88... 8.... -.. 8.8 8.8. 82... 8.8. .....8 8.8 .8 N. N... 88. 8: ... 88... ..8... 8.8 8.8... N8: 8.8. .....8 8.8 .. N. N... 88. 88... .N.... 8.... 8.... 88.. 8...... 8.. 8.88. 82.5 8.8. .88 ...8 8 8. 8 8 88. 88.... NNN... 88... 8.... 8.... .N.... N3 88.88. ...: 88.8. .88 ...8 8 8. 8 8 e8. 8...... 88... 8.... 8...... 8...... 8...... 8.8 8...: 88.5 88.8. .88 ...8 8 8. 8 8 88. ...... ... .... 8.... 8...... 8.... 8...... ...8 88 N8: 88. .88 ...8 8 8. 8 8 88. 83 ..NN... 8.... 8...... 8.... 8.... N... 888 new ...8. 8.88 3.. 8. ..N NNN 88. ...N... ....N... ... .... N8... 8...... 3 8.88 88.5 ...8. 8.8 ...... 8. ..N .8 88. ....N... 88... 88... ..8... 8.... 8.... .... 838 0:8 8...8N. 8.8 3.. 8. ..N .8 e8. 83 88.. 8...... 8.... .... 8.88 82.6 ...8. 8.8 3.. 8. ..N NNN 88. 8.... ... .... 8.... 8.... 8...... ..N..... .... 8. .8 808.. 8.8. 88.88 8.8.. 88 8. .8 88. ....3 8.... 83 8.... 8...... 8.... .3 8.88 Q8 8.8. 88.88 8.8.. 88 8. 8N e8. ... .... 8.... 8 . ... 8...... 8.... N3 .838 N8: 88. 88.88 8.8.. 88 e. 8N e8. 8.... ..8... ..88... 8.... 8.... 8...... 8... 8.8 ...... 8.8. 88.88 8.8.. 88 8. NNN 88. ..8 . ... 8.... 88... 8.... -.. ...... ....88 82.0 8.8. 88.88 .8... 88 e. NNN 88. 8.... 88... 8.... 8...... ...8... ...8... ..8 8.88 02.8 8.8. 88.88 8.8.. 8. 8. N8 88. 8.... 83 ..83 8.... ..8... 8.... 8.8 8.88 82.0 8.8. 88.88 8.8.. 8. 8. NNN 88. N 88 am 88 82 88 N 8.. 38. 8.. 82 8.. v. .5... .8... 88.8 .88. ...... 2...... 58.5 2.5 124 8.8.8 888.8 888.8 8N8.8 888.8 ..88 8.8 8.88 82.0 N8...N. NN8 8.8.. .8 N. N 8.88. 8N8.8 888.8 8.8 8 .88 8.8.8 .88 8.8 8.88. ...8. 8N.8N. 8.8 8.88 ..8 ... 8N8 888. 8.8.8 888.8 888.8 8.8 ...88 82.0 88.8N. 88.88 N...8 88 8. 8 .8 888. .888 888.8 N.8.8 8.8 .88: 82.0 8..NN. 8E8 N.8 8.. 8. NN8 888. 8.8.8 .88 8N8.8 8.8.8 ..888 ..888 8.8 .888 88.. 88.88. 88.8 8.8 ..8 8. NN8 888. 8N8.8 8.8.8 8.8.8 N.8.8 :88 ..8.8 8.8 N..88 0.: 8.8. 88.8 8.8 ..8 8. NN8 888. 8N8.8 888.8 8.88 ..N8.8 888.8 888.8 E 88.8 88: 8..NN. N888 N.8 88 8. 8.8 888. 88.8 8....8 888.8 ...88 .88 8.8.8 8.8 N28 0:... 8..NN. N88 N88 88 8. 8.8 888. 88.8 .888 8.8 ..888 8.8.8 8.8.8 ..8 88.8NN 82... 8.. .N. 88.88 N.8N 88 8. N.8 888. N8N.8 ..888 N8N.8 N888 888.8 888.8 ..8 88.8 8..: 8.. .N. 88.88 N.8N 88 8. N.8 888. 888.8 888.8 888.8 88.8 8.8 .888 8.8 8.8 8: 8...N. 88.88 N.8N 88 8. N.8 888. 888.. 8..... NN8.8 NN8.8 N8N.8 .8N.8 N.N. ..N..88 8.8 88.8N. 8.88 8...N .8 8. 8 8 888. 8.88 888.8 888.. 88.8 8. ..8 8.N.8 8... 888 0:8 88.8N. 8.88 8...N .8 8. N 8 888. 88.. 888.. 88.8 88.8 88N.8 8.8. 3.8. m8. 88.8N. 8.88 8...N .8 8. 8 8 888. 8. ..8 888.8 88N.8 8N8.8 ....88 .88 ...8 N88 0:... 88.NN. 88.88 ..88 88 8. .. 8 888. N.8.8 NN8.8 .88 888.8 888.8 N.8.8 8.8 88.88 0:8 88.8N. 8.8 8.. .N .N 8N8 888. N.8.8 NN8.8 .88 888.8 888.8 888.8 8.8 8.8 ...: 88. .N. ..88 8.88 ..8 8. 8.8 888. 888.8 888.8 8.8.8 8.8.8 8N8.8 N888 8.8 88.88 8: 88. .N. ..8.8 8.88 ..8 8. 8 .8 888. ..888 88N.8 88.8 888.8 888.8 8.8.8 8.8 88.88 88:: 8.8. N88 N88 88 8. 8 8 888. 8.8 .88 88...8 ..888 ..N8.8 8N8.8 8.8 8N...8N 82.0 8.8. N88 N88 88 8. 8 N 888. ..888 8N8.8 N.8.8 88.8 888.8 88.8 ..8. 8.....N. 8: 8.8. N8...8 N88 88 8. 8 N 888. 3.88 88.8 888.8 ..888 N.8 88.8 88.. N8..N. 88.8 ...8 .8 8. 8.8 888. 8.88 888.8 8.8 888.8 8N8.8 888.8 8.8 88.8... 82.0 88.NN. 8.8 8.8 8. ... 8.8 888. 888.8 888.8 88.8 888.8 888.8 888.8 ...8 .88.. 88: 88.NN. 88.88 8.8 8. ... 8.8 888. 88N.8 88...8 888.8 8.8 88.8 8.8 ...8 NN.88 ca... 88.NN. 88.88 8.8 8. ... 8.8 888. 8.88 888.8 88.8 888.8 N.8 8.8 82... 88.8N. 88.88 N.8 8.. 8. 8 8 888. N 88 38. 88 82 88 N 8.. 38. 8.. 82 8.. v. ...... ...8. 82.8.8 .883 .8. 28; 8.8.5 288. 125 ...... 8 ...... .N.... 8...... .... ......3. 805. 8...N. 8.8 8...N ..8 ... 1:58. 88.... 8..... ..8..... 2...... 2...... 2...... .... N....8N 82.0 8...N. 88.8 N.8N ..8 ... ... . :8... 8..... E... 88.... 8...... ...... 2...... 8... N88. 8.5: 8...N. 88.8 N.8N ..8 ... ... . Ea. 88.... ..NN... ..8.... 8..... ..N.... 8N..... .... 8..: ca 8...N. 88.8 N.8N ..8 ... ... . Ea. N.N.. ...... ...... ...... 8..... ...... ...8 N...N N8: 8...N. N.8.8 8...N ..8 ... ... . .5... 82... .N.... 2...... ..N.... 8...... 2...... N.8 .3... N8: ......N. 8N.88 N... .N N. 8. . .N.... NN..... .N.... 8.... .. ...... 8...... 8.8 .N.N.: N8: 8...N. 88.8 ....8 .... ... ... . Ea. 8.... 8.... 8... 82... 88.... 82.... .... ..8.N.. 0:8 8... .N. 88.8 8.8 N.. ... v :5... ....N... ..NN... ....N... .N.... .N.... ..N..... E 838 N8: 8... .N. 28.8 8.8 NV ... v :58. 8N... 8.... 8..... 8...... 8.8 88.2. mzd 8...N. .....88 ...NN .... 8. N :58. NN.... 2...... 8..... 8...... 8... 2.88 805. 8.8. ..NN8 N.8 .... 8. ..N..88. ...... ..N.... ..2... 8...... 8...... 2...... 8.8 8N. .8 ca .... .N. ....88 8.. 8 ... ..N..88. 2.... 2.... 2...... 8...... 2...... 8...... ...8 .... .NN Nm: 8...N. N28 .... ... 8. 82:58. NN.... 8.... ...... 2...... 8.... 2.... 8... .8. a. ...... N8...N. N38 .... ... 8. 88.8.3. 8...... 8N.... 2.... 2...... 8.. 8..: 02,8 2.. .N. ..88 8.8N 8.. ... ..N..88. .N.... N2... .2... 8...... 2...... 8...... .... 8N... N8: N8..N. 8.8 ...8 2. ... 88.2.... 8..... 8..... ..8N... 82.... 8.... ... .... ...8 8...... N8: ......N. 5.8 .... 8.. .N N85... ..NN... ....N... ..N8... 8..... 8.... 88.... 8.. 88.... N8: 8...N. ...8 ...N 8.. 8. N85... 8..... N2... 8..... 2...... 8...... «...... 8... .888 028 ......N. ......8 ....8 .... N. ..N..88. 8...... ..2... NN... 8...... 8...... ...... ...8 8.888 8.5.. ......N. ......8 ....8 .... N. ..N..88. 88.... 2...... .2... .N.... 2...... 8N.... ...8 8.88 N8: N... .N. 88 ..NN .... ... NEE... NN.... NS... 3...... 8...... 2.... ...... .... 8N: 8.5: .....NN. 8.8 2 ... .... e. 8 ...8... ...... 2...... N.N.... 2...... 2...... 2...... 8.8 8.8... 02 .....NN. 8.8 2 ... .... e. 8 ...8... ..N..... 82.... NN.... 2.... 8...... 8...... N... .N.... 8...... 2.82 2.8 N.8 88 8. 8 ...8»... N2... 82.... 8..... 2...... 8...... 3.... 8.8 88.2.. 0.: 2.8N. N...8 N.8 88 8. 8 22.8. .2... .2... 8..... 2...... 2...... 8..... ...8 828.. N8: 2.8N. N...8 N.8 88 8. 8 ...8»... N mm .5. mm 82 ..8 N 9. an E 82 .... V. .5... ...8. 8.3.8 .25.. ...... 2...... £25 28 126 8...... 8..... ...... 2...... 8...... 8...... N.8 .8.N8N 8.8 88.8N. 8N.88 8.88 ... ..N 8 8 888. 8N8... N88... .88... 8...... 8...... ...8... 8.8 88.88N moo 88.8N. 88.8 8.8.. 8N 8. 8 8 888. 8 ...... 82.... N...... 8...... 8...... 8.8 .8.88N 808v. 88.8N. 88.88 8.8.. 88 8. 8 8 888. N88... ..2... N88... 8N8... 8N8... 8.8 88.8N. N8: 88.8N. 8..88 8.88 8.. 8. ..NN 888. .2... ... .... ..8... 8N8... 8N8... 8.8 ...8: 0:8 88.8N. 8..88 8.88 .... 8. ..NN 888. 88.... 88.... 88.... 88.... 8...... ...8 .N...8 82.0 88.88. 8..88 8.88 .... 8. 8NN 888. 8 ...... 8...... 8N8... 8...... 8...... 8...... 8.8 N...88N N8: 88. .N. 88...8 ... ... N. 8. ...N 888. 8...... 88.... ..N8.8 8...... 8...... -.. N.8 8N2... 89.8 8...N. 88.8 ..8N .8 8. 8 N 888. ....N... ..NN... ..N... 82.... 88.... 8...... ...8 88.88N 82.0 8... .N. 88.8 ..8N .8 8. 8 N 888. ....8... ..88... ..88... N2... 82.... 88.... 8.8 88.88. 888... 8... .N. 88.88 ..8N .8 8. 8 N 888. ...8... ....8... 8...... 8N... ..N... 8..... 8.8 88.88 N8: 8... .N. 88.8 ..8N .8 8. 8 N 888. 8...... .88.. 88.... N2... 2...... 8.8 8...N 82.8. 88.8N. .....88 8.88 .... N8 8 N 888. 88.... 8..... 88.... 8...... ..N8.8 8.8 88.88 928 N8..N. 88.88 N.8N 88 8. ..8. 888. ..2... 88.... 8...... ..N8.8 N.8... 88.... 8.8 8N.88 N8: N8..N. 888 N88 88 8. ..8. 888. 8N8... 88.... 88.... N ...... 8N8... 8N8... 8.8 88.8. . 0P8 88.8N. 88.88 88.. 8.. ..N N. . 888. 8...... 8...... 8..... 8...... ...8 8..88 N8: 88.8N. 88.8 8.N.. ..8 ..N ... 888. 8...... 8..... 8...... 8...... 8...... ...8... 8.8 .8..8 N8: 88.8N. 88.88 8.88 88 8. 8 . 888. 8. .... N. .... 88.... 8N8... NN8... NN8... ..8 8... .8 0:8 8... .N. 88.88 ..8. 88 N. 8 . 888. ... .... 8N... ..N.... 8...... 8...... 8...... 8.8 88.8 N8: 8...N. 88.88 ..8. 88 N. 8 . 888. 88.... 2...... 88.... 8...... 8.8 88.8.. 0.... 88.NN. 8..88 8.88 ..8 8. N . 888. 8..... 8...... ...8... 8...... 2...... 8...... 8.8 88.88 N8: 88.8N. 88.88 8.8.. ... ... 8. . .888. ...... 8N8... 8N8... 8...... 8...... 8...... 8.8 8..88N 88...8 88.88. 88.88 8.8.. ... ... 8. . .888. 88.... 8...... 88.... 8 ...... 8...... 2...... ..8 88.88 82.0 88.8N. 88.88 8.8.. ... ... 8. . .888. 8...... 8N8... 8N8... 8...... 8.8 N...88N 82.0 8...N. 88.88 ...8 8. ..N ... . .888. 82... ...... 8..... N.8... 8N8... ...8... 8.8 88...8 0:8 8... .N. 88.88 ...8 8. ..N ... . .888. 8..... 88.... 88.... 88.... 8...... N2... ...8 ......8 N8: 8...N. 88.88 ...8 8. ..N ... . .888. N 88 38. 88 82 88 N 8.. 38 88 82 88 V. ...... .28. 8888.8 .888.. ...8. 28.8 8.8.5 288. 127 ..88... 888... ...8... 88.... 88.... 8.... 88. .88 8..; 88.88. 88.88 8...N 88 8. ..88 ..88. 888... 888... 888... 8...... .88... 8. .... 8.... 88.8.8 88 88.88. 88.88 .....N 8N 8. ..88 888. ...8... 88.... 88.... 88.... 8...... 88.... ...... 88.2.8 8.888. 88.88. 88.88 ...8 8N 8. ..NN ..88. 888.. 888.. 88.... 88.... 88.... 8... 88.2.8 8...... 88.88. 88.88 8.8. 8.. 8. 8N. 888. 82... 8. ... 88... 88.... 88.... N8... 8.... 88..8N 88.... 88.8N. 88.88 8.8. 88 8. 88. 888. 888.. .88.. 888.. 88.... 8.8... 888... N... 8.8888 82.5 88...8. 88.88 8.8. 8.. 8. 8N. 888. 88... 8.8... .88.. 8...... 888.. 888... 8.... 88.88 N8: 88...8. 88.88 8.8. 8.. 8. 88. 888. .88... 888.. 888... 88.... 88.... 88.... 8.... ....888 coo NN.NN. N...88 .... 88 8. .... ..88. ...8... ...8... 88.... ... .... 8...... 8.... 88...... 8.88.. 88.88. N...88 8... 8N 8. .... ..88. 8...... 8...... 8...... 2...... 8...... 8.8 8....8 N8: 88...8. 88.88 ...88 88 ... 8 8 888. 8...... 88.... 82... 8...... 88.... ...... 8.8 ...8... 88:8 8..8N. N...88 ...8 8N 8. . 8 888. 8...... 8...... 8...... 8...... 8...... 8...... 8.8 88.8.8 ....8 8..8N. 88.88 8.8. N. N. 88.. 888. 8...... 88.... 82.... 8...... 8...... 2...... 8.8 88.88. N8: 88.88. 88.88 8.8.. ... ... 88.. 888. 8 ...... 82... 88.... 8...... 8...... . ...... 8.8 88...8 0:8 88.88. 88.88 8.8.. 8. ... 88.. 888. 88.... 8..... 88.... 88.... 8..... 88.... 8.8 88.8.8 805. 88.8. .....88 8.88 88 8. 88.. 888. 82.... 88.... 88.... ...8... 88.... 8..... ...8 88.888 moo 88.8. .....88 8.88 88 8. 88.. 888. 8...... 88.... 88.... 8...... 2...... ..N8.8 8.8 .8.8.8 88.... 88.88. .....88 8.88 88 8. 88.. 888. 888... 88.... 88.... 88.... 82... ...... 2.2.8 0:8 88.8. .....88 8.88 88 8. 88.. 888. .88.. 888.. 888.. 888... 8.8.. 888... ...8 88.8. 82.0 88.8. .....88 8.88 88 8. 88.. 888. 888... 888.. 888... 88.... 88.... 8...... 8.8 88.888 N8: 88.8. .....88 8.88 88 8. 88.. 888. 8...... 88.... 88.... 8...... 8...... 8...... 8.8 88.88. 8..... 88.88. 88.8 ... 88 N. 88.. 888. 8...... .N.... 88.... 2...... 8...... 2...... 8.8 88.88. moo 88.88. 88.88 8.2. 88 ..N 88.. 888. 8...... 8...... 88.... 8...... 8..... 8...... 8.8 88.88. N8: 88.88. 88.88 ...N 2. 8. .N.. 888. 8...... 8...... 88.... 8...... 8...... 8...... 8.8 88.8... N8: 88. .N. 88.88 8.8 88 N. 8... 888. 8...... 88.... 88.... 88.... 8...... .N.... 8.8 8..88 0:8 88.8. 88.88 8.8 88 8. 8... 888. 8...... 8...... ...... 8...... 8...... ...8 88.88 N8: 88.88. 88.88 ....8 8. ..8 8.8 888. N 88 38. 88 82 88 N 88 38. 88 82 88 8. .5... ...8... 8888.8 .888.. ...... 28.8 8.8.5 28.. 128 8...... 8...... 8...... 2...... 8...... 2...... ...8 88.888 88 8..8N. 88.88 8.88 ... 8. ..88 ..88. ..88... 888... 888... 88.... 88.... 8..... ...8. 88.888 82> 8...N. 88.88 8.88 88 8. 8 .8 ..88. 88.... 88.... 888... 8...... .8.... 8...... 8.... 88.8.8 ...... 8...N. 88.88 8.88 88 8. 8.8 ..88. 888... 8..... N88... 888... 88.... 88.... 8.... 88.888 82.0 8...N. 88.8 8.88 88 8. 8.8 ..88. 88.... 888... N88... . .8... 8. .... 88.... 8.... 88.88. 88.... 8...N. 88.88 8.88 88 8. 8.8 888. ... .... .8.... 88.... 8...... 8...... 8..... 8.8 88...8. 8...... .8.88. .88 8.8 ..8 88 8.8 ..88. 888... .88... 8.8... 88.... 88.... .N.... 8.8 88.88 N8: .8.88. .88 8.8 ..8 88 8.8 ..88. 88.... 88.... 88.... 8...... 8...... 8...... 8.8 88.88 N8: 88.88. 88.8 8. .8 8. ..8 8.8 ..88. 8...... 8...... 88.... 8...... 2...... 8...... 8.8 88.88 N8: 88.88. 88.88 8.. 8.. 8. 8.8 888. 88.... 88.... 88.... 8...... 8...... 8...... 8.8 8..88 N8: 88.NN. 8..88 8.... 8. ..8 8 8 ..88. 8...... 88.... 88.... 88.... 8...... 8..... 8.8 .8. .88 8.8 .....88. 88.8 .....8 ..8 8. . 8 ..88. 88.... 88.... 8. .... 8...... 8...... 8...... 8.... 88.888 8.Nz 88.88. 88.88 8.88 88 8. . 8 ..88. 8.8... ..N... 888... 88.... 88.... 8...... 8.... 88. .88 N8: 88.88. 88.88 8.88 88 8. . 8 ..88. 888.. 888... 888.. 88.... 88.... 88.... 8... 88.888 05. 88.88. 88.88 8.88 88 8. . 8 888. 888... 888... 888.. 888... 88.... 88.... 8... 88.888 ...; 88.88. 88.8 8.88 88 8. . 8 ..88. 88.... .N.... 88.... 88.... 88.... ..N8.8 .... 88.888 88.... 88.88. 88.88 8.88 88 8. . 8 888. ..8... ....N... 888... 88.... 88.... 88.... 8.... 88.8.8 808.. 88.88. 88.88 8.88 88 8. . 8 ..88. 888.. N8... 888... 888.. 888... 888... 8.... 88.888 28 88.88. 88.88 8.88 88 8. . 8 ..88. 88.... 88.... .. .... 8...... . ...... .8.... 8.8 88.888 ...... 88.88. 88.88 8.88 8. N. 8.8 ..88. 88.... 88.... 88.... 2...... 8...... 2...... 8.8 88...8. moo 88.88. 88.88 ...8 88 8. 888 888. 88.... 88.... 88.... 8...... 8 .8... 8...... 8.8 88.888 808.. 88. . 8. 8..88 8.8. 88 8. 8.8 ..88. 88.... 88.... 88.... 8...... 8...... ...... 8.8 88.888 8.8 88.88. 88.88 8.8 88 N. 8 8 ..88. 88.... 888... 8.8... 82.... 8...... 8.8 88.88. 82.8. 88.88. 88.88 8.8 88 8. 8 8 ..88. 88.... 88.... 88.... 2...... 8...... 88.... 8.8 88.8.8 89... 88.88. 88.88 8.8. 8.. 8. 888 ..88. ..88... 888.. 88.... 88.... 8N.... ...... 88.88. 82.... 88.88. 88.88 8.8. 8.. 8. 888 ..88. 88.... 88.... 8. .... 8 ...... 88.... 8...... 8.8 8.888 coo 88.88. 88.88 8.8. 8.. 8. 888 888. N 88 38 88 82 88 N 8.. 38. 88 82 88 8. .88.. .85 8888.8 .888. .8.. 28.8 8.8.5 8.88. 129 ...... 8...... . .8... 8...... 8...... 8...... 8.8 88.88 N8: 88.NN. ....88 ...88 88 8. 8.8 ..88. 88.... 88.... 88.... 8...... 8...... 8 ...... 8.8 8..888 88.... 88.88. 88.88 ...8. 8.. 8. 8.8 ..88. 88.... 88.... 88.... 8...... 8...... 8 ...... 8.8 88.88 89... 88.88. 88.88 ...8. 8.. 8. 8.8 ..88. .8.... 88.... 88.... 88.... 8...... 8...... 8.8 88.8 .N 82.0 88.88. 88.88 ...8. 8.. 8. 8.8 ..88. 88.... 82.... 88.... 8...... 8...... 8...... 8.8 .....88 N8: .N.NN. 88.88 8.8 8.. 8. 8 8 ..88. 8.8... ....8... 888... 88.... 88.... 88.... 8.8 .888 N8: .....88. ...88 8.. .... 8. 8 8 ..88. 8 ...... 8...... 8...... 2...... 8...... 8...... ...8 88. .88 88:: 88.8. 88.88 8.88 8. N. 8 8 ..88. 82.... 88.... .8.... 8...... 8...... 8...... 8.8 88...... N8: 88. .N. 88.88 8.88 8. N. 8 8 ..88. 888.. .88... 888... 88.... 8...... 88.... ...8. 88.888 ..Nz 88...8. 88.88 8.8. .. 8. N 8 ..88. 88...8 8... .8 888.8 88.... 88.... 88.... 8.8. 88...8 82> 88...8. 88.88 8.8. . . 8. N 8 ..88. ..88... 8.8... 888... 88.... 8 ...... 88.... 8.8. 88.888 05. 88...8. 88.88 8.8. . . 8. N 8 ..88. 888... 888... 82... 88.... 88.... 88.... 8... 88..88 N8: 88...8. 88.88 8.8. .. 8. N 8 ..88. 888.. 888.. 888.. ..88... 88.... 888... 8... 88.888 82.0 88...8. 88.88 8.8. .. 8. 8 8 ..88. 888... 88.... 888.. 88.... 88.... ...8... 8... 88.888 8.8 88...8. 88.88 8.8. .. 8. 8 8 ..88. 88.... 88.... 88.... 8...... 2...... 8...... 8.8 8... . 8. N8: 88.88. 88.88 8.88 88 8. .88 ..88. 88.... .2... 88.... 8...... 8...... 8...... 8.8 88.88 88.... 88.88. 88.8 8.88 88 8. .88 ..88. 88.... 82.... .8.... 8...... 8...... 8...... 8.8 88...8. 88.5 88.88. 88.8 8.88 88 8. 888 ..88. 88.... 82... 82.... 8...... 8...... 8...... 8.8 ....88. N8: 88.88. 88.8 8.88 88 8. 888 ..88. 88.... .N.... 88.... 8...... 8...... 8...... 8.8 88.888 N8: .....88. 88.88 ...8 ... 8. 888 ..88. 88.... 88.... 82.... 8...... 8...... ...... 8.8 8.8... 82.0 88.88. 88.88 ...8 ... 8. 888 ..88. 2...... 8...... 8...... -.. 8.8 8..88N 88.... 8..NN. 88.88 8.88 ..8 8. 888 ..88. 88.... 88.... 88.... 8 ...... 8...... 8...... 8.8 88.88 N8: 8..NN. 88.88 8.88 ..8 8. 888 ..88. .8.... 2...... 88.... 88.... 8...... .N.... 8.8 88.888 89... 88.88. 88.8 8.8 88 8. .88 ..88. .8.... 888... 8. .... 88.... 2...... 8...... 8.8 .888. 88.... 88.88. 88.8 8.8 88 8. .88 ..88. 888... 8...... 888... 88.... ..2... ...... 8.8 88.88 82.... 88.88. 88.88 8.8 88 8. .88 ..88. 88.... 88.... 88.... 88.... 88.... 8...... 8.8 88.88. N8: 88.88. 88.88 8.8 88 8. .88 ..88. N 88 38 88 82 88 N 88 38. 88 82 8.. v. .88.. .8... 88.888 .888. .8... 28.8 8.8.5 8.88. 130 .88... 888... 888... 88.... 82... 88.... 8.8 88. .8 N8: 88.88. 88.88 8.88 8. 8. 8. . .88. 88.... 88.... 88.... 8...... ...8... 8...... 8.8 88. .88 N8: .888. 88.88 8.8 8.. 8. 8 8 ..88. 88.... 88.... ..2... 8...... 8...... 8..... 8.8 88.888 8...... .888. 88.88 8.8 8.. 8. 8 8 ..88. 88.... 888.. ...8... 8...... 8...... 88.... 8.8 88.8.8 coo .888. 88.88 8.8 8.. 8. 8 8 ..88. 888... 888... ....8... 88.... 82... 88.... 8.8 8.8. 82.0 .888. 88.88 8.8 8.. 8. 8 8 ..88. .8.... .2... 8...... 8.8 88.8.8 88.... 8..NN. ....88 8.8 88 8. ..88 888. 88.... 8. .... 8...... 8.8 88.88. 8z.u 8..NN. ....88 8.8 88 8. ..88 ..88. 88.... 88.... 888... 88.... 88.... 88.... 8.8 8....8 N8: 8..NN. ....88 8.8 88 8. ..88 ..88. .N.... 88.... 88.... 8...... 8...... ...... 8.8 88.88. 8...... 88.88. 88.88 .... ..8 8. 888 ..88. 8...... 88.... 88.... 8 .8... 88.... 8...... 8.8 88...8. N8: 88.88. 88.88 .... ..8 N. 888 ..88. 88.... ...... 8...... 88.... ...... 8...... 8.8 88.88 82.0 88.88. 88.88 .... ..8 N. 888 ..88. 88.... 88.... ..8... 88.... 8...... 8...... 8.8 .82.. 8.5: 88.8. .888 8.88 88 8. 888 ..88. 88.... 88.... 88.... 88.... 8...... 88.... ...8 .....88 N8: 88. .8. .888 8.88 88 8. 888 ..88. 88.... 88.... 888... 8 ...... 2...... 8...... 8.8 88.888 88.5 8..NN. 88.88 ...8 88 8. .88 ..88. 88.... N88... 888... 82... 8...... 8...... ...8 88.88. 82... 8..NN. 88.88 ...N 88 8. .N8 ..88. 888... 888... 888... ..8... ... .... ... .... 8.8 88.88 N8: 8..NN. 88.88 ...N 88 8. .88 ..88. ..88... 888.. 888... 88.... ..8... ..N... 8.8 88.88 0:8 8 ..88. 88.88 ...8 88 8. .88 ..88. 88.... 88.... 88.... 8...... 8...... 8...... 8.8 88.88 N8: 8...N. 88.88 ...8. 8. 8. ..88 ..88. 88.... 88.... 88.... 88.... .. ...... 8 .8... 8.8 88.888 N8: 8...N. 8..88 8.88 88 8. ..88 ..88. 88.... 88.... .2... 88.... 8...... 88...8 8.8 8..88. 8...... 8...N. 8..88 8.88 88 8. ..88 888. 88.... .N.... 88.... 8...... 8...... 2...... 8.8 88.888 88.5 8..NN. 88.88 8.8 88 8. 8 .8 ..88. .8.... 88.... 88.... 8...... 8...... 8...... ...8 8.8 N8: 8..NN. 88.88 8.8 88 8. 8.8 ..88. .8.... 88.... 888... 88.... 88.... 88.... 8.8 88.88 02.8 8..NN. 88.88 8.8 88 8. 8.8 ..88. 8...... 8...... 8...... 8...... 8.8 88.888 8...... 8..NN. 88.88 8... 88 8. 8.8 ..88. 88.... 88.... 88.... 8...... 8...... 8...... 8.8 88.88 N8: 8..NN. 88.88 N... 88 8. 8.8 ..88. 8 .8... 88.... .N.... 8...... 8...... 8...... 8.8 88.88. N8: 88.88. 88.88 ..88 88 8. 8.8 ..88. N 88 38 88 82 88 N 8.. 38. 8.. 8z 8.. 8 .88.. .8... 8888.8 .888. .8. 28.8 8.8.5 8.88. 131 8.8.8 888... 888.8 888.8 888.8 888.8 8.8 88.888 88: .888. 88.88 8.88 88 8. 888 .88. 888.8 888.8 88.... 888... 8.8... :8... 8.8 88.88. 89.8. .888. 88.88 8.88 88 8. 888 .88. 88.... 8..... 888.8 888.8 888.8 888.8 ...8 .888 N8: .888. 8..88 8.8 88 8. 888 .88. 888.8 .88... 8...... :8... 8.8... 888.8 8.8 8.888 88: ....8. 88.88 8.88 88 8. 888 .88. 88 ..8 88.... 888... .88... 888.8 8...... 8.... 88.888 88:: ....8. 88.88 8.88 88 8. 888 .88. 88.... 888.8 88.... 888.8 888.8 88.... ...8. 88.888 coo ....8. 88.88 8.88 88 8. 888 .88. 8.8.8 88.... 888.8 88.... .88... .88... 8.8 88.88 805. ....8. 88.88 8.88 88 8. 888 .88. 888... 888.8 888... :8... 888... 888.8 8.8 ...888 808.8. 88.88. 88.88 8.88 88 8. 8.8 .88. 888... 888.8 888.8 888.8 88.... 88.... 8.8. 88.88. 8.8 88.88. 88.88 8.88 88 8. 8.8.88. .88... 888.8 8.8... 888.8 888... 8.8 88.888 89.8. 88.88. 88.88 ..888. 8. 8.8 .88. 88.... 888.8 88.... 8.8.8 8...... ...8... 8.8 .8888 88.5 88.88. 88.88 ..888. 8. 8.8 .88. 88.... 888.8 888.8 888.8 888.8 888.8 8.8 88.8 858 88.88. 88.88 ..888. 8. 8.8 .88. 888... 8.8.8 888... 8..... 888.8 888.8 8.8 88.88 88: 88.88. 88.88 ..888. 8. 8.8 .88. 8.8.8 888... 888.8 888... :8... 888.8 8.8 88.888 805. 88.88. 88.88 8.888. 8. 8.8 .88. 888.8 888... 8.8.8 8.8.8 8.8.8 8.8 88.888 8828 88.88. 88.88 8.88 8. 8. 8.8 .88. 88.... 88.... 88.... 888... 8.8.8 8.8... 8.8 88.88 88: 88.88. 88.88 8.88 8. 8. 8.8 .88. 888... 8.8.. 888.. 888.8 888.8 888... 8.8 88.88 8280 88.88. 88.88 8.88 8. 8. 8.8 .88. 888... 888.8 88.... 888.8 888.8 8.8 88.88. 89.8. 88.88. 8..88 8.8 88 8. ..8 .88. 888.8 8.8... 888.8 888.8 888.8 888.8 8.8 .8888 88: 88.88. 8..88 8.8 88 8. ..8 .88. 8.8... 888.8 888... 8.8... 888.8 888.8 8.8 88..88 8.8 88.88. 8..88 8.8 88 8. ..8 .88. 888.8 888... 88.... 8.8.8 8.8.8 8.8.8 8.8 8..888 88:: 88.88. 8..88 8.8 88 8. ..8 .88. 88.... 88.... 88.... 888.8 888... 888... 8.8 88.88. 825 88.88. 8..88 8.8 88 8. ..8 .88. 888.8 888.8 8.8... 888.8 888... 888.8 8..: 88.888 moo 88.88. 88.88 8.8 88 .8 88. .88. 888... 888.8 888... 888.8 888... 888.8 8.8 88.888 88:: 88.88. 88.88 8.8 88 .8 88. .88. 88.... 888.8 .88... 8.8... 888.8 888.8 8.8 88.888 88:: 88.88. 88.88 8.88 8. 8. 8.. .88. 888.8 888... 888.8 888.8 .88... 8..... 8.8 88..88 828 88.88. 88.88 8.88 8. 8. 8.. .88. N88 38 88 8288 88.. 38. 8.. 82 88 8. 8.5.. 88.8. ..888.8 .883 83 28.8 8.8.5 8.88. 132 88.... 888... 88.... 888.8 .88... 888.8 8.8 88. .8 88: ...88. 88.88 8.8. 88 8. 8 8. .88. 88.... 88.... 8.8... 888... 8.8... 888.8 8.8 88.8. 8280 88.88. 88.88 ..8. 88 8. 88..88. 888.8 888.8 888... 8.8.8 8.8.8 :8... 8.8 88.888 88:: 88.88. 88.88 ..8. 88 8. 88..88. .88... 888.8 888... 888.8 888.8 :8... 8.8 88.888 88: 88.88. 88.88 ..8. 88 8. 88..88. 888.8 888... .88... 888.8 888.8 888.8 8.8 8...: 8.8:: 88.88. 88.88 8.88 8. 8. 88..88. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 88: 88.88. 88.88 8.88 8. 8. 88..88. 888.8 888.8 888... 8.8.8 8...... 8.8.8 8.8 88.888 88: 88.88. 88.88 8.8 88 8. .8..88. 888.8 888.8 888... 8.8.8 888... 8.8.8 8.8 88.888 88:: 88.88. 88.88 8.8 88 8. .8..88. 888.8 888.8 888.8 888.8 8.8... 888.8 8.8 8..88 89.8. 88.88. 88.88 8.8 88 8. .8..88. 8.8... .88... .88... 888.8 8.8... 8.8.8 8.8 88.8 88:: 88.88. 88.88 8.88 88 8. 88...88. 8.8.8 8.8.8 8.8.8 888... 8.8.8 8.8.8 8.8 88.88. 888. 88.88. 88.88 8.88 88 8. 88...88. 8...... 88.... 888.8 888.8 8.8... 8.8... 8.8 88.888 89.8. 8..88. 8..88 8.8. 8. 8. .....88. .8.... 888.8 88.... 888.8 .88... .88... 8.8 88.8.. 8.8:: 8..88. 8..88 8.8. 8. 8. .....88. 888... 8.8.8 888... 888.8 888.8 888.8 8.8 88.88. 88: 8..88. 8..88 8.8. 8. 8. .....88. 8.8.8 888... 888.8 888.8 888.8 888.8 8.8 88.88 8280 8..88. 8..88 8.8. 8. 8. ...:88. 88.... 88.... 88.... 888.8 888.8 888.8 8.8 88...8 88.5 88.88. 88.88 8.8 8. 8. 882.88. 888... 888.8 888.8 888.8 8.8... 88.... 8.8 88.88 88: 88.88. 88.88 8.8 8. 8. 882.88. 888... 8.8.8 888... 888.8 88.... 8..... 8.8 88.88 038 88.88. 88.88 8.8 8. 8. 882.88. 88.... 88.... 888.8 888.8 888... 888.8 8.8 88.88 08.8 88.88. 88.88 8.88 8. 8. 8.8.88. .88... 8..... 888... 888.8 888.8 888.8 8.8 88.88 88: 88.88. 88.88 8.88 8. 8. 8.8.88. 8...... 8.8.8 8.8.8 888... 888.8 :8... 8.8 8.8.8 8.8:: 88.88. 8..88 8.8 88 8. 88 .88. 888... 88.... 88.... 8.8.8 888.8 888.8 8.8 88.88 88: 88.88. 8..88 8.8 88 8. 88 .88. 888.8 888.8 .88... 888.8 888.8 888... 8.8 88.8 88: 8..88. 88.88 8.88 88 8. 8 8 .88. .88... 888... 8.8... 888.8 888.8 888.8 8.8 .888 88: 88.88. 8..88 8.8. 88 8. 88 .88. 888.8 .88... .88... 8.8.8 8.8... 888.8 8.8 88..88 89.8. 8..88. 88.88 8.8.8.8. 8.8 .88. 888.8 888.8 888... .88... .88... 8.8.8 8.8 .888 8.8:: .888. 88.88 8.8888 8. 888 .88. N88 38. 88 8288 888 38. 88 8288 8. 8.5.8885 82.8.8 .883 ..3 8.8.8 8.8.5 288. 133 88.8 888.8 888.8 ..88 :8.8 8.8.8 8.8 88.888 828 88.8. 88.88 ..88 88 8. . .8 888. 88.8 88.8 88.8 888.8 888.8 888.8 8.8 88.88. 88: 88.8. 88.88 ..88 88 8. ..8 888. 888.8 888.8 .28 888.8 8 .8.8 8 .8.8 8.8 88.88. 825 ...88. 88.88 8.88 88 88 8 8 888. 88.8 888.8 .888 888.8 8.8.8 888.8 8.8 ...88. 88:: ...88. 88.88 8.88 88 88 8 8 888. 88.8 8. ..8 88.8 8.8.8 8.8.8 8.8.8 8.8 88.88 88.. ...88. 88.88 8.88 88 88 8 8 888. 888.8 .888 888.8 ..88 8.8.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 8. 8. 8.8 888. 8.8.8 88.8 888.8 8.8.8 888.8 8.8 88.88. 89.8. 88.88. 88.88 8.88 8. 8. 8.8 888. 88.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.88. 82.0 88.88. 88.88 8.88 8. 8. 8.8 888. 888.8 888.8 8888 8.8.8 8.8.8 8.8.8 8.8. 88.8.8 82.0 88.88. 88.88 8.8 88 8. 8.8 888. 88.8 88.8 88.8 .888 888.8 888.8 ..8 .8888 8088. 88.88. 88.88 8.8 88 8. 8.8 888. 888.8 888.8 ..88 88.8 888.8 888.8 8.8 88.888 88.. 88.88. 88.88 8.8 88 8. 8.8 888. 88.8 88.8 888.8 888.8 8.8.8 8 .88 8.8 88.888 89.8. 88.88. 88.88 8.8. .8 88 . 8 888. 88.8 88.8 8.8.8 888.8 .888 .888 8.8 88.888 82.0 88.88. 88.88 8.8. .8 88 . 8 888. 88.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8. 8.8 88.88. 88.88 8.8. .8 88 . 8 888. 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.888 82.0 88.8. 88.88 8.88 88 88 888 888. .888 888.8 88.8 888.8 .888 8.8.8 8.8 88.88. 88:: 88.8. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 888.8 88.8 88.8 8.8 88.88 88.. 88.8. 88.88 8.88 88 88 888 888. 888.8 8.8 888.8 8.8.8 888.8 8.8.8 ..8 88.888 825 88.88. 88.88 8.8. 88 88 . 8 888. 888.8 888.8 888.8 88.8 88.8 88.8 8.8 8..88. 888... 88.88. 88.88 8.8. 88 88 . 8 888. 8.8.8 8.8.8 888.8 888.8 888.8 .888 8.8 88.8. 89.8 88.88. 88.88 8.8. 88 88 . 8 888. 8 .8.8 888.8 888.8 .888 -.. 8.8 88.888 8088 88.88. 88.88 8.8 88 8. 8 8 888. 888.8 88.8 ..88 8.8 8.888 8.8 88.88. 88.88 8.8 88 8. 8 8 888. 8 .88 888.. .88.. 888.8 8.8.8 88. .8 8... 88.888 08 88.88. 88.88 8.88 88 8. 8.8 888. ..8.8 8 .8.8 888.8 8.8 88.888 coo 8..88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88 8280 .888. 88.88 8.8 88 8. 888. .88. 888.8 888.8 .888 ..88 888.8 888.8 8.8 88.888 88:: ...88. 88.88 8.8. 88 8. 8 8. .88. N 88 38. 88 82 88 N 88 38 88 82 88 8. .88.. .85 8888.8 .883 ..88 88...8 8.8.5 8.88. 134 888.8 888.8 888.8 888.8 888.8 888.8 8... 88.888 coo .888. 88.88 8.88 88 8. 8 8 888. 888.. 888.. 888.. 888.8 888.8 88.8 8.8. .8888 88:: .888. 88.88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 888.8 888.8 88.8 8... 88.888 825 .888. 88.88 8.88 88 8. 8 8 888. 888.. 888.8 88... 888.8 888.8 888.8 8.8. 88.88. 88: .888. 88.88 8.88 88 8. 8 8 888. 8. ..8 888.8 888.8 888.8 888.8 88.8 8... 88.8.8 82> 88.88. 88.88 8.88 88 8. 8 ..888. 888.. 88... 888.. 88.8 88.8 88.8 8... 88.888 8.8 88.88. 88.88 8.88 88 8. 8 ..888. 888.. 888.. 888.. 888.. 8.8.8 888.8 8.8. 88.888 8280 88.88. 88.88 8.88 88 8. 8 ..888. 888.. 88... 888.. 888.8 888.8 888.8 8.8. 88. .88 88:: 88.88. 88.88 8.88 88 8. 8 ..888. 8 .8.8 8.8.8 888.8 8.8 88.88. 8.8 88.88. 88.88 8.88 88 8. 888 888. 8.8.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 moo 88.8. 88.88 ..88 88 8. . .8 888. 888.8 888.8 888.8 8.8 8..888 808.8. 88.8. 88.88 ..88 88 8. . .8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.88 88:: 88.8. 88.88 ..88 88 8. . .8 888. N 88 38. 88 82 88 N 88 38 88 82 88 8. .88.. .85 8888.8 .883 ..88 8.8.8 8.8.5 8.88. 135 .888 88.8 888.8 888.8 888.8 8.8 88.8. 88:: 88.88. 88.88 8.8 88 88 8.. 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 88: 88.88. 88.88 8.8 88 88 8. . 888. 888.8 888.8 888.8 888.8 888.8 8.8 88.8.8 89.8. 88.88. 88.88 8.88 88 88 8.. 888. 8. ..8 88.8 88.8 .888 8.8.8 ..8 8..888 moo 88.88. 88.88 8.88 88 88 8.. 888. 888.8 888.8 ....8 888.8 8.8.8 888.8 8.8 88.888 8280 88.88. 88.88 8.88 88 88 8. . 888. 888.8 888.8 8.8.8 88.8 88.8 888.8 8.8 88.8 82.0 .8.88. 88.88 8.8 88 88 8. . 888. 8 .88 8 .8.8 888.8 8 .8.8 888.8 888.8 8.8 88.8. 88:: .8.88. 88.88 8.88 88 88 8 . 888. ..8.8 ..88 ..88 888.8 888.8 8.8 88.8.8 038 .8.88. 88.88 8.88 88 88 8 . 888. 888.8 88.8 888.8 .888 888.8 8. ..8 8.8 88... 8280 .8.88. 88.88 8.88 88 88 8 . 888. 888.8 .888 888.8 888.8 .888 888.8 8.8. 88.8.8 8.8 88.88. 88.88 8.88 8. 88 8 . 888. 8.8.8 8.8.8 888.8 88.8 888.8 .8..8 ..8. 88.88. 88:: 88.88. 88.88 8.88 8. 88 8 . 888. 888.8 888.8 8.8.8 88.8 ....8 888.8 8.8 88.888 038 88.88. 88.88 8.88 8. 88 8 . 888. 8.8.8 8.8.8 888.8 .888 888.8 88.8 ..8. 88.88. 88: 88.88. 88.88 8.88 8. 88 8 . 888. 888.8 88.8 888.8 8 .8.8 888.8 .888 8.8 .8.888 moo 88.88. 88.88 8.88 88 88 8 . 888. 888.8 ..88 ..88 888.8 888.8 8.8 88.888 028 88.88. 88.88 .... 88 88 8 . 888. .888 888.8 888.8 .888 .888 888.8 8.8 88.888 coo 88.88. 88.88 .... 88 88 8 . 888. 888.8 888.8 88.8 888.8 888.8 888.8 8.8 88.888 moo 88.88. 88.88 8.8. 88 88 8 . 888. 888.8 888.8 888.8 ..88 ..88 :88 8.8 88.8.8 028 88.88. 88.88 8.8. 88 88 8 . 888. 888.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 8..888 88: .8.88. 88.88 8.88 88 88 8 . 888. .888 888.8 888.8 888.8 888.8 888.8 8,.8 88.888 8280 .8.88. 88.88 8.88 88 88 8 . 888. 888.8 888.8 .888 ..8.8 ..88 888.8 8.8 .8.888 038 .8.88. 88.88 8.88 88 88 8 . 888. 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 .8. .88 8.8 88.88. 88.88 8. . 8 .8 88 8 . 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 8280 88.88. 88.88 8.8 .8 88 8 . 888. ..8.8 888.8 .888 888.8 ..8.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.8 .8 88 8 . 888. N 88 38. 88 82 88 N 88 38. 88 82 88 8 .88.. .8..8. 8888.8 .888. ..88 8.8.8 8.8.5 8.88. nomuum are—fir .8.—0558i 2: am 8.388398”..— 136 8.8.8 888.8 8.8.8 888.8 ..88 8.8 .8.88. 88:: 88.88. 88.88 ..88 88 88 . .8 888. ..88 888.8 888.8 ..88 ..88 ..88 8.8 88. .88 0:8 88.88. 88.88 ..88 88 88 . .8 888. 88.8 888.8 8. ..8 8.8.8 888.8 888.8 8.8 88.8. 82:0 88.88. 88.88 ..88 88 88 . .8 888. 888.8 888.8 .888 ..88 8.8.8 888.8 8.8 88.8. 88: 88.88. 88.88 ..88 88 88 . .8 888. 888.8 .888 888.8 888.8 888.8 8.8 88.888 8.00 88.88. 88.88 8.8. 88 88 88. 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8.8 0:8 88.88. 88.88 8.8. 88 88 88. 888. 88.8 888.8 888.8 888.8 888.8 888.8 8.8 .8.88. 88:: 88.88. 88.88 8.8. 88 88 88. 888. 888.8 888.8 88 ..8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.8. 88 88 88. 888. 88.8 88 . .8 88.8 888.8 ....8 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 888.8 888.8 8.8 .8.888 808.8. 88.88. 88.88 8.88 88 88 88. 888. 888.8 .888 8. ..8 888.8 .888 888.8 8.8 88.888 8.00 88.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 8.8 8..88. 88:: 88.88. 88.88 8.88 88 88 88. 888. 88.8 8. _.8 88.8 88.8 888.8 8 .8.8 8.8 88.88. 88: 88.88. 88.88 8.88 88 88 88. 888. 8 .8.8 888.8 .888 888.8 8.8 88.888 0:8 .8.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 .888 8.8.8 8.8.8 .888 8.8 88.8.8 88:: .8.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 88: .8.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 888.8 8. ..8 8.8 88.8. 82:0 .8.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 88.888 000 .8.88. 88.88 8.88 88 88 .8. 888. 888.8 888.8 88.8 888.8 88.8 88.8 8.8. ...888 0:8 88.88. 88.88 8.8. 88 88 8. . 888. 88..8 8.8.8 8888 8.8 88.888 :00 88.88. 88.88 8.8. 88 88 8. . 888. 888.8 8.8.8 888.8 888.8 888.8 88.8 8.8. 88.888 88:: 88.88. 88.88 8.8. 88 88 8. . 888. 8.8.8 888.8 888.8 888.8 888.8 88.8 8.8. 88.888 88: 88.88. 88.88 8.8. 88 88 8. . 888. 888.8 88.8 888.8 888.8 888.8 888.8 8.8 88.888 8088 88.88. 88.88 8.8. 88 88 8. . 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.8 88 88 8. . 888. 8.8.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.. .8 8.00 88.88. 88.88 8.8 88 88 8. . 888. 888.8 888.8 888.8 88.8 88.8 8. ..8 8.8 .8... 82:0 88.88. 88.88 8.8 88 88 8. . 888. N 88 >88. 88 82 88 N 88 >88. 88 82 88 v. .88.. ..88. 8888.8 .888: ..8: 8.8.8 8.880 8.88. 137 888.8 888.8 .888 ..88 888.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 8. 88 8 .8 888. 888.8 8.8.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 8. 88 8.8 888. 888.8 88.8 88.8 888.8 888.8 888.8 8.8 88.888 8.00 88.88. 88.88 8.88 .. 88 8.8 888. .888 8 .88 ..88 8 .8.8 888.8 :88 8.8 88.88. 88:: 88.88. 88.88 8.88 .. 88 8.8 888. 888.8 888.8 888.8 888.8 ..88 ..88 8.8 88..88 0:8 88.88. 88.88 8.88 .. 88 8.8 888. 888.8 88.8 88.8 888.8 888.8 888.8 8.8 88.8. 82:0 88.88. 88.88 8.88 .. 88 8.8 888. 888.8 .888 888.8 .888 888.8 .888 8.8 88.88. 8.8:: 88.88. 88.88 ..88 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 .888 8.8 88. .88 0:8 88.88. 88.88 ..88 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 .888 8.8 8..888 88: 88.88. 88.88 ..88 88 88 8.8 888. ..88 8 .88 888.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.8. 88 88 8.8 888. 888.8 888.8 888.8 888.8 88.8 888.8 8.8 88.888 :00 88.88. 88.88 8.8. 88 88 8.8 888. 88 . .8 888.8 88 . .8 8 .88 888.8 888.8 8.8 88.888 8.00 88.88. 88.88 8.88 88 88 8 . 8 888. 8.8.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 8.00 88.88. 88.88 8.8. 88 88 8.8 888. .888 888.8 .888 8 .8.8 888.8 888.8 8.8 88.888 88:: 88.88. 88.88 8.8. 88 88 8.8 888. 888.8 888.8 88.8 888.8 888.8 8.8.8 8.8 88.8.8 88: 88.88. 88.88 8.8. 88 88 8.8 888. 888.8 .888 888.8 888.8 888.8 888.8 8.8 88.888 :00 88.88. 88.88 8. .8 88 88 8.8 888. 888.8 88.8 888.8 .888 888.8 888.8 8.8 88.888 88:: 88.88. 88.88 8. .8 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 .888 8.8 88.888 0:8 88.88. 88.88 8. .8 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 8.8.8 88: 88.88. 88.88 8. .8 88 88 8 .8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.888 000 88.88. 88.88 8.88 88 88 8.8 888. .888 88.8 888.8 .888 888.8 888.8 8.8 8..888 88:: 88.88. 88.88 8.88 88 88 8.8 888. .8..8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 8.8 888. 88.8 88.8 88.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 88 88 8.8 888. 88.8 888.8 88.8 8 .8.8 .888 888.8 8.8 88.88. 88:: 88.88. 88.88 ..8. 88 88 8.8 888. 88.8 88.8 88.8 888.8 888.8 888.8 8.8 88.888 0:8 88.88. 88.88 ..8. 88 88 8.8 888. 88.8 888.8 .888 ....8 88.8 .888 8.8 ...8.8 88: 88.88. 88.88 ..8. 88 88 8.8 888. N 88 38 88 82 88 N 88 38 88 82 88 8 .88.. ..88. 8888.8 .888: .8.. 8888 8.880 8.88. 138 8.8.8 8.8.8 888.8 888.8 8.8.8 8.8 88.8.8 88: 8..88. 88.88 8.88 88 88 8 8 888. ..88 ..88 8.8.8 8.8.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 8.8 88..88 88:: 88.88. 88.88 8.88 88 88 8 8 888. 88.8 88.8 88.8 888.8 888.8 888.8 8.8 88.888 8.00 88.88. 88.88 8.88 88 88 8 8 888. .8..8 88.8 888.8 888.8 888.8 888.8 8.8 88.888 000 88.88. 88.88 8.88 8. 88 . 8 888. .888 888.8 888.8 888.8 .88.8 888.8 8.8 88.888 88:: 88.88. 88.88 8.88 8. 88 . 8 888. 888.8 888.8 88.8 .8..8 88.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 8. 88 . 8 888. 888.8 .888 .888 888.8 888.8 8.8 88.8.8 88:: 88.88. 88.88 8.88 8. 88 . 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8.8 0:8 88.88. 88.88 8.88 8. 88 . 8 888. 888.8 888.. 888.. 88.8 88.8 88.8 8.8 88.8. 82:0 88.88. 88.88 8.88 8. 88 . 8 888. 888.8 888.8 .888 888.8 888.8 888.8 8.8. 88.8.8 88: 88.88. 88.88 8.88 8. 88 . 8 888. .888 888.8 888.8 888.8 888.8 8.8 8..88. 88:: 8..88. 88.88 8... 88 88 . 8 888. 8.8.8 888.. 888.8 888.8 888.8 888.8 8.8 88.88 82:0 8..88. 88.88 8... 88 88 . 8 888. 888.8 888.8 .888 888.8 888.8 888.8 8.8 88.8.8 88: 8..88. 88.88 8... 88 88 . 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88. .88 82:0 88.88. 88.88 8.88 88 88 .88 888. 88.8 888.8 88.8 888.8 888.8 888.8 ..8 88.888 000 88.88. 88.88 8.88 88 88 .88 888. 888.8 ..88 888.8 888.8 8.8 8 . 8.8 0:8 88.88. 88.88 8.88 .. 88 8 .8 888. ..88 888.8 888.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 .. 88 8.8 888. .888 888.8 .888 .888 888.8 .888 8.8 88.88. 88:: 8..88. 88.88 8.88 8. 88 8.8 888. 888.8 888.8 888.8 888.8 . .88 . .88 ..8 88.888 0:8 8 . .88. 88.88 8.88 8. 88 8.8 888. 888.8 888.8 888.8 8 .88 8.8.8 8.8.8 8.8 88.8.8 88: 8..88. 88.88 8.88 8. 88 8.8 888. .888 88 . .8 88.8 888.8 .888 888.8 8.8 88.888 8.00 88.88. 88.88 8. .8 88 88 8.8 888. 888.8 888.8 888.8 . .8.8 888.8 888.8 8.8 .8.888 0:8 88.88. 88.88 8.8 88 88 8.8 888. 888.8 .888 888.8 888.8 8.8.8 888.8 8.8 8..888 82.0 88.88. 88.88 8. .8 88 88 8.8 888. . .8.8 8 .88 888.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8. .8 88 88 8.8 888. .888 888.8 .888 .888 888.8 .888 8.8 88.888 88:: 88.88. 88.88 8.88 8. 88 8.8 888. N 88 38 88 82 88 8 88 38 88 82 88 8 .88.. .8.: 8888.8 .888: ..8: 8888 8.880 8.80 139 88.8 888.8 8.8.8 .888 8.8 88.888 8088 88.88. 88.88 8.88 88 88 888 888. 8. ..8 888.8 888.8 888.8 888.8 .888 8.8 88.888 8.00 .8.88. 88.88 ..88 88 88 8 8 888. 888.8 888.8 8.8.8 888.8 8.8.8 8. ..8 8.8. 88.888 88: 88.88. 88.88 8.88 88 88 8 8 888. 888.8 88.8 888.8 8. ..8 888.8 888.8 8.8 88.88. 0:8 88.88. 88.88 8.88 88 88 8 8 888. 888.8 88.8 888.8 888.8 8.8.8 8.8. 88.888 8.00 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.888 88: 88.88. 88.88 8.88 88 88 8 8 888. 888.8 .888 .888 888.8 8.8.8 8.8.8 8.8 8..888 88:: 88.88. 88.88 8.88 8. 88 8 8 888. 888.8 888.8 8.8.8 888.8 ..88 888.8 8.8 88.8 .8 0:8 88.88. 88.88 8.88 8. 88 8 8 888. 888.8 888.8 888.8 .888 888.8 888.8 8.8 8.8.8 88: 88.88. 88.88 8.88 8. 88 8 8 888. 888.8 88... 888.8 888.8 888.8 8.8 88.8 82:0 88.88. 88.88 8.88 8. 88 8 8 888. 8.8.8 888.8 .888 888.8 888.8 888.8 8.8 88.8.8 0:8 88.88. 88.88 8.8. 88 88 8 8 888. 8.8.8 8.8.8 888.8 8.8.8 888.8 888.8 8.8 8..888 88: 88.88. 88.88 8.8. 88 88 8 8 888. 888.8 88.8 88.8 888.8 8. ..8 8. ..8 8.8 88.888 000 88.88. 88.88 8.88 .8 88 8 8 888. 888.8 888.8 .888 ..88 ..88 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 .8 88 8 8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.888 82:0 88.88. 88.88 8.88 .8 88 8 8 888. 8.8.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 .8 88 8 8 888. 888.8 .888 888.8 888.8 888.8 .888 8.8 88.8.8 :00 .8.88. .8.88 8.88 88 88 8 8 888. 88.8 888.8 88.8 88.8 8 .8.8 88.8 8.8 88.88. 88:: .8.88. .8.88 8.88 88 88 8 8 888. 88.8 88.8 888.8 88.8 ....8 888.8 8.8 8... .8 0:8 .8.88. .8.88 8.88 88 88 8 8 888. 888.8 88.8 888.8 88.8 88.8 888.8 8.8 88.88. 88: .8.88. .8.88 8.88 88 88 8 8 888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 000 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 .888 888.8 8.8.8 888.8 8.8 88.8.8 88:: 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 .888 8.8 88.8.8 0:8 88.88. 88.88 8.88 88 88 8 8 888. ..88 ..88 8.8.8 888.8 ..88 8.8.8 8.8 88.888 0:8 8..88. 88.88 8.88 88 88 8 8 888. .8..8 888.8 8. ..8 888.8 888.8 8.8.8 8.8 88.88 82:0 8..88. 88.88 8.88 88 88 8 8 888. 8 88 38. 88 82 88 N 88 38. 88 82 88 8 8.8... .85 8888.8 .888: ..8: 8.8.8 8.880 8.8: 140 888.8 888.8 88.8 8.8 88.88. 88: 88.88. 88.88 8.88 88 88 8.8 888. 888.. 888.8 88... 8.8 .88. 82:0 88.88. 88.88 8.88 88 88 8.8 888. 888.8 8. ..8 888.8 888.8 888.8 .888 8.8 88.888 :00 88.88. 88.88 8.8. 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.8. 88 88 8.8 888. 888.8 888.8 88.8 8.8.8 ..88 8.8 .8.888 8.00 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 888.. 888.8 888.8 88.8 ..8 88.8 82:0 88.88. 88.88 8.88 88 88 ..8 888. 888.8 888.8 .888 888.8 888.8 888.8 8.8 88.8.8 88: 88.88. 88.88 8.88 88 88 . .8 888. 888.8 .8..8 888.8 888.8 888.8 888.8 8.8. 88.888 8.00 88.88. 88.88 8.88 88 88 8 8 888. 88.8 888.8 8.8.8 8. ..8 8.8.8 88.8 8.8 .8.88. 0:8 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 8.8.8 88.8 888.8 888.8 8.8 88.88. 88: 88.88. 88.88 8.88 88 88 8 8 888. 888.8 .8..8 888.8 888.8 888.8 .888 8.8 88.8.8 0:8 88.88. 88.88 ..88 88 88 . 8 888. 888.8 888.8 .888 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 ..88 88 88 . 8 888. 8.8.8 8.8.8 888.8 8.8.8 888.8 888.8 8.8 8..888 8088 8..88. 88.88 8.88 88 88 8 .8 888. 888.8 888.8 88.8 888.8 8.8.8 888.8 8.8 88.888 88:: 8..88. 88.88 8.88 88 88 8 .8 888. 88.8 888.8 888.8 888.8 888.8 ..88 8.8 88.888 0:8 8..88. 88.88 8.88 88 88 8.8 888. .888 88.8 88.8 888.8 .8..8 .888 8.8 88.8. 82:0 8..88. 88.88 8.88 88 88 8.8 888. 888.8 888.8 .888 888.8 888.8 8.8.8 8.8 .8.8.8 88: 8..88. 88.88 8.88 88 88 8.8 888. 888.8 888.8 8.8.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 8. 88 8.8 888. 8.8.8 ..88 8.8.8 888.8 888.8 888.8 8.8 8..888 88: 8..88. 88.88 8.88 88 88 . .8 888. 888.. 888.. 888.8 888.8 888.8 888.8 8.8. 88.88 82:0 88.88. 88.88 8.88 .8 88 8 8 888. 88.8 888.8 888.8 88.8 88.8 888.8 8.8 ....88 88: 88.88. 88.88 8.88 .8 88 8 8 888. 88.8 88.8 888.8 888.8 8.8.8 888.8 8.8 88.88 82.0 88.88. 88.88 8.88 8. 88 8 8 888. 888.8 88.8 88.8 888.8 8.8.8 8.8.8 8.8 88.888 88:: 88.88. 88.88 ...8 88 88 8 8 888. 88.8 88.8 88.8 888.8 888.8 8.8.8 8.8 88. .88 0:8 88.88. 88.88 ...8 88 88 8 8 888. 88.8 88.8 888.8 888.8 888.8 888.8 8.8 .8.88. 88: 88.88. 88.88 ...8 88 88 8 8 888. 888.8 888.8 888.. 888.8 888.8 .888 8.8 88... 82:0 88.88. 88.88 ...8 88 88 8 8 888. N 88 38 88 82 88 N 88 38. 88 82 88 8 8.8... 88.8. 8888.8 .888: ..8: 8.8.8 8.880 8.88. 141 888.8 888.8 8 .88 888.8 888.8 888.8 8.8 88.888 88: 88.88. 8..88 ..88 88 88 8 8 888. 888.8 88.8 888.8 888.8 ..88 8 .88 ..8 8.8.8 8088 88.88. .8.88 8.88 88 88 8 8 888. 88.8 888.8 888.8 .888 888.8 888.8 8.8 88.888 88:: 88.88. .8.88 8.88 88 88 8 8 888. 8.8.8 88.8 888.8 888.8 888.8 8.8 88. .8. 88: 88.88. .8.88 8.88 88 88 8 8 888. 88.8 8. ..8 8. ..8 888.8 888.8 888.8 8.8 88.88. 0:8 88.88. .8.88 8.88 88 88 8 8 888. 888.8 .888 888.8 888.8 888.8 8.8 88. .88 0:8 .8.88. .8.88 8.88 88 88 8 8 888. 888.8 88.8 88.8 8.8.8 888.8 888.8 8.8 88.888 :00 .8.88. .8.88 8.88 88 88 8 8 888. ..88 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.888 82:0 88.88. 88.88 8.88 88 88 8 8 888. .888 88.8 888.8 888.8 888.8 88.8 8.8 88. .88 000 88.88. 88.88 8.88 88 88 8 8 888. 88.8 .8..8 888.8 888.8 888.8 888.8 ..8 88.8.8 0:8 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 88.8 888.8 88.8 .888 8.8 88.88. 88: 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 888.8 8.8.8 ..88 8.8 88..88 82:0 88.88. ...88 8.88 88 88 888 888. 888.8 8.8.8 888.8 888.8 .888 ..8 .8.888 88:: 88.88. ...88 8.88 88 88 888 888. 888.8 ..88 888.8 888.8 888.8 8.8 88.8. 8 0:8 88.88. 88.88 8.8. 8. 88 888 888. 88.8 8. ..8 888.8 888.8 888.8 8.8.8 8.8 88.888 82:0 88.88. 88.88 8.88 88 88 8.8 888. 888.8 88... 88.8 88.8 8. ..8 888.8 8.8. 88.888 88:: 88.88. 88.88 8.8. 88 88 8.8 888. 88.8 888.8 888.8 888.8 888.8 8.8 88.88 82:0 88.88. 88.88 8.88 88 88 8.8 888. .888 888.8 888.8 8.8.8 8.8.8 888.8 8.8 .8.888 88: 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 8 8 888. 88.8 88.8 88.8 8. ..8 888.8 .888 8.8 88.88 82:0 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 88.8 888.8 888.8 8.8 88.88. 88:: 88.88. 88.88 8.88 88 88 888 888. 88.8 8.8.8 88.8 888.8 888.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 888 888. 8. ..8 888.8 888.8 8.8. 8..888 000 88.88. 88.88 8.88 88 88 8 8 888. 888.8 88.8 888.8 8.8 88.88 82:0 88.88. 88.88 8.88 88 88 8 8 888. 888.8 88.8 88.8 888.8 8.8 88.88 82:0 8..88. .8.88 8.8. 88 88 888 888. 888.8 88.8 88.8 8.8 .8.888 0:8 88.88. 88.88 8.88 88 88 8.8 888. N 88 38. 88 82 88 8 88 38. 88 82 88 8 .88.. .8.: 8888.8 .888: ..88 8.8.8 8.880 8.88. 142 .888 888.8 8.8.8 888.8 888.8 888.8 ..8 8..88 88: 88.88. 88.88 8.88 88 8. 888 888. 8. ..8 88.8 88.8 888.8 888.8 888.8 ..8 88.888 0:8 88.88. 88.88 8.88 88 8. 888 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.888 88:: 88.88. 88.88 8.88 8. 88 888 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.8.8 88: 88.88. 88.88 8.88 8. 88 888 888. -.. 888.8 888.8 888.8 -.. 888.8 8.8 88.. .8 88:: 88.88. 88.88 8.88 8. 88 888 888. 888.8 888.8 888.8 888.8 888.8 8.8 88.8 .8 88: 88.88. 88.88 8.8. 8. .8 8.8 888. -... 8.8.8 8.8.8 8.8.8 8.8.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 8.8 .8 88: 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 88.88 88: .8..8. 88.88 8.8. 88 88 888.888. 888.8 .888 888.8 888.8 8.8.8 8.8.8 8.8 8..888 000 88.88. 88.88 8.88 88 88 8.8.888. 888.8 888.8 8.8.8 8.8.8 888.8 888.8 8.8 88.888 88:: 88.88. 88.88 8.88 8. 88 8.8 888. 888.8 888.8 88.8 ..88 888.8 888.8 8.8 88.888 :00 88.88. .8.88 8.88 88 88 8 8 888. 8. ..8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.888 88:: 88.88. 88.88 8.88 88 88 8.8 888. 8. ..8 88.8 88.8 888.8 888.8 888.8 8.8 88.888 0:8 88.88. 88.88 8.88 88 88 8.8 888. 888.. 888.. 888.8 888.8 88.8 88.8 8.8 88.88 82:0 88.88. 88.88 8.88 88 88 8.8 888. 888.8 88.8 88.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 88 88 8.8 888. 888.8 88.8 888.8 8.8.8 888.8 888.8 8.8 .8.888 000 88.88. 88.88 8.88 88 88 8.8 888. .888 888.8 8 .88 8.8.8 888.8 8 .8.8 8.8 88.888 88:: 88.88. 88.88 8.88 88 88 8.8 888. 8.8.8 888.8 8 .88 8.8.8 888.8 ..88 8.8 88.8 .8 0:8 88.88. 88.88 8.88 88 88 8.8 888. 8.8.8 ..88 888.8 8.8.8 888.8 888.8 8.8 .8.888 88: 88.88. 88.88 8.88 88 88 8.8 888. 88.8 88.8 88.8 888.8 8.8.8 888.8 8.8 88.88. 88:: 88.88. .8.88 8.88 88 88 8 8 888. 8.8.8 8.8 888.8 888.8 ..88 888.8 8.8 88.888 0:8 88.88. .8.88 8.88 88 88 8 8 888. 88.8 .8..8 888.8 888.8 888.8 8 .88 8.8 8..88. 88: 88.88. .8.88 8.88 88 88 8 8 888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 8.8:: 88.88. 8..88 ..88 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.8.8 0:8 88.88. 8..88 ..88 88 88 8 8 888. 888.8 88.8 8.8.8 888.8 8.8 88.88 82:0 88.88. 8..88 ..88 88 88 8 8 888. N 88 38. 88 82 88 N 88 >88 88 82 88 8 8.8... 88.8. 8888.8 .888: ..8: 8888 8.880 8.80 143 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 88.888 000 88.88. 88.88 8.88 88 88 8 .8 888. 8 .88 888.8 888.8 8 .88 8.8.8 8 .88 ..8 88.888 82:0 88.88. 88.88 8.88 88 88 8.8 888. 888.8 888.8 88.8 8 .88 888.8 888.8 8.8 88.888 :00 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 88.8 8 .88 888.8 888.8 8.8 88.888 8.00 .8.88. 88.88 ..8. 88 88 8.8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.888 8.00 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 .8.888 :00 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 .888 8.8.8 888.8 888.8 8.8 88.888 000 88.88. 88.88 8.8 88 88 ... 888. 8.8.8 8.8.8 .888 888.8 888.8 888.8 8.8 88.8.8 88:: 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 ..8 88.888 8.00 88.88. 88.88 8.8. .8 88 888 888. 888.8 .888 888.8 8 .8.8 8.8.8 8.8 88.888 82.0 88.88. 88.88 8.88 88 88 888 888. 888.8 8 .8.8 888.8 .888 888.8 .888 8.8 88.888 88: 88.88. 88.88 8.88 88 88 . .8 888. 88.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 88:: 8..88. 8. .88 8.88 88 88 8 8 888. 888.8 8.8.8 888.8 888.8 8.8.8 888.8 8.8 88.888 000 88.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 88.888 :00 88.88. 88.88 8.88 88 88 88. 888. 8 .88 888.8 888.8 888.8 888.8 8.8.8 8.8 8..888 :00 88.88. 88.88 8.8. 88 88 8. . 888. 888.8 888.8 8.8.8 888.8 888.8 888.8 8.8 .8.88 82:0 88.88. 88.88 8.88 .8 .8 8 . 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 ..8. .8 88 888 888. 888.8 8.8.8 888.8 8.8.8 888.8 888.8 8.8 88. .8 88: 88.88. ...88 8.8. 88 88 8.8 .88. ..88 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 8.8:: 88.88. 88.88 8. .8 88 .8 888 .88. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.88. 88:: 88.88. 88.88 ..88 88 88 888 .88. 8.8.8 ..88 888.8 888.8 888.8 888.8 8.8 88.88. 88:: 88.88. 88.88 8.88 88 88 .88 .88. 8.8.8 888.8 888.8 8.8 88.88. 88:: 8..88. 8..88 8.88 88 88 8.. .88. 888.8 888.8 .888 8.8.8 8.8.8 8.8.8 8.8 .8.88. 88:: 88.88. 8..88 8.88 88 88 8.8.888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.88. 88:: 88.88. ...88 8.88 88 88 88:888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 8..88. 88:: 88.88. 88.88 8.88 88 88 8 ..888. 888.8 8 .88 8.8.8 888.8 888.8 888.8 ..8 88.88. 88:: 88.88. 88.88 8.88 8. 8. 888.888. 8 88 3.8 88 82 88 N 88 38 88 82 88 8 .88.. ...8.8. 8888.8 .888: ..88 8.8.8 8.880 8.80 144 888.8 888.8 8. ..8 888.8 888.8 888.8 8.8 88.888 000 .8.88. 88.88 8.88 8. 88 8.8 8888 8.8.8 ..88 8 .88 .888 888.8 .888 8.8 88.888 88: .8.88. 88.88 8.88 8. 88 8.8 8888 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. 88.88 8.88 88 88 8 .8 8888 888.8 .888 .888 ..88 888.8 ..88 8.8 88.888 8088 88.88. 88.88 8.88 88 88 8.8 8888 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 88:: 88.88. 88.88 8.8 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 88:: 88.88. 88.88 ..88 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 ..8 88.888 88:: 88.88. 88.88 8.8 .8 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 000 .8.88. 88.88 ..88 88 88 888 888. 8.8.8 8.8.8 ..88 888.8 888.8 888.8 8.8 88. .88 88: .8.88. 88.88 ..88 88 88 888 888. 888.8 ..88 888.8 888.8 8.8 .8.888 8088 .8.88. 88.88 ..88 88 88 888 888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 82:0 88.88. .8.88 8.88 8. 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 88: 88.88. .8.88 8.88 8. 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 88:: 88.88. 88.88 8... .8 88 8 .8 888. 888.8 888.8 888.8 . .8.8 . .88 888.8 8.8 88.8.8 88: 88.88. .8.88 8.88 88 88 8 . 888. 88.8 .8..8 .888 8.8.8 8 .88 8.8.8 8.8 88.8. 8280 88.88. .8.88 8.88 88 88 8 . 888. 888.8 888.8 888.8 888.8 8.8 8..888 8.00 .8.88. 88.88 8.88 88 88 8 8.888. 8.8.8 888.8 8.8.8 .888 8.8.8 8.8 88.88. 88:: 88.88. 88.88 8.88 8. 88 8 8.888. 888.8 8.8.8 888.8 888.8 8.8.8 ..88 8.8 88.88. 88: 88.88. 88.88 8.88 8. 88 8 8.888. 888.8 888.8 888.8 888.8 8.8 88.888 8088 88.88. 88.88 8.88 .8 88 888 888. 8 88 38. 88 82 88 N 88 38 88 82 88 8 .88.. 88.8. 8888.8 .888: ..8: 8.8.8 8.880 8.80 145 888.8 888.8 88.8 ..88 ..88 ..88 8.8 88.888 >88 88.88. 88.88 8.8 88 8. ....888. 888.8 888.8 888.8 88.8 888.8 88.8 8.8 88.88. ::8 88.88. 88.88 8.8 88 8. ....888. 88.8 888.8 888.8 888.8 88.8 888.8 8.8 8..88. 8.2: 88.88. 88.88 8.8 88 8. ....888. 888.8 888.8 888.8 ..88 ..88 ..88 ..8 88.88. >88 88.88. 88.88 8.8. 88 8. 888.888. 88.8 888.8 888.8 888.8 8.8. 88.8.8 00.). 88.88. 88.88 8.88 .. .. 8.8 888. 888.8 .8..8 888.8 888.8 888.8 888.8 8.8 88.888 8 .2: 88.88. 88.88 8.88 .. .. 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 ..8 88.888 >88 88.88. 88.88 8.88 .. .. 8.8 888. 88.8 888.8 888.8 88.8 88.8 8.8. 88..88 .8: 88.88. 88.88 8.88 .. .. 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88 ::8 88.88. 88.88 8.88 .. .. 8.8 888. 8.8.8 888.8 888.8 888.8 888.8 888.8 8.8 88...8 >88 8..88. 88.88 8.8 88 8. 888 888. 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.88. 8.2: 8..88. 88.88 8.8 88 8. 888 888. 888.8 888.8 8.88 .888 888.8 888.8 8... 88.888 0:8 8..88. 88.88 8.88 88 .. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.8.8 >88 8..88. 88.88 8.88 88 .. 888 888. 888.8 888.8 8.8.8 8.8 888.8 888.8 8.8. 88.8.8 .8: 8..88. 88.88 8.88 88 .. 888 888. 888.8 888.8 888.8 88.8 888.8 888.8 8.8. 88.888 8208,. 8..88. 88.88 8.88 88 .. 888 888. 888.8 888.8 888.8 88.8 88.8 8.8. .8.888 ::8 8..88. 88.88 8.88 88 .. 888 888. 888.8 88... 888.8 888.8 888.8 888.8 8.8. .8.88. 8.2: 8..88. 88.88 8.88 88 : 888 888. 888.8 8 .88 888.8 ..88 ..88 888.8 8.8 88.888 >88 88.88. 8..88 8.88 88 : 8.8 888. 88.8 888.8 88 . .8 888.8 888.8 888.8 8.8 8..88. 8.7.: 88.88. 8..88 8.88 88 .. 8 .8 888. 888.8 888.8 8.8 8.8.8 8.8 .8.88. ::8 88.88. 8..88 8.88 88 . . 8.8 888. 888.8 888.. 888.8 888.8 888.8 888.8 8.. . 88.888 8<> 88.88. 88.88 8.88 88 88 88. 888. 888.8 .888 888.8 888.8 888.8 888.8 8.8. .8.888 8.2: 88.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.. 8.8.8 888.8 888.8 8.. . 88.888 0:8 88.88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 888.8 888.8 888.8 .... 88.888 820:. 88.88. 88.88 8.88 88 88 88. 888. 8 88 38 88 82 88 8 88 38. 88 82 88 8 .8.... 88.: 8888.8 .888: ..8: 8.8.8 8.880 8.8: :3qu «::8—88> ...—05.82 _..—a ...8—8.89.2 2: 5 88.28.5288,.— 146 888.8 888.8 888.8 888.8 888.8 888.8 8.8 8..8.. ::8 88.88. 88.88 8.88 .8 8. 8 ..888. 8 .8.8 8.8.8 88.8. 888.8 888.8 ..8 88.888 8208,. 8..88. 88.88 8.88 88 8. 888 888. 888.8 888.8 888.8 8 .88 8 .8.8 888.8 8.8 88.888 .8.: 8..88. 88.88 8.88 88 8. 888 888. 888.8 .888 888.8 8.8.8 8.8.8 8.8.8 8.8 .8.888 8.28 8..88. 88.88 8.88 88 8. 888 888. 88.8 88.8 8.8.8 8.8.8 888.8 8.8.8 8.8 .8.888 8.82 8..88. 88.88 8.88 88 8. 888 888. 888.8 888.8 88.8 888.8 8.8 88.88. ::8 8..88. 88.88 8.88 88 8. 888 888. 888.8 888.8 8.8.8 888.8 888.8 888.8 8.8 88.888 8.82 88.88. 88.88 8.8 88 8. 888 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 88.888 8.28 88.88. 88.88 8.8 88 8. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 .8.888 >88 88.88. 88.88 8.8 88 8. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 ..8 88.888 .8.: 88.88. 88.88 8.8 88 8. 888 888. 888.8 8.8.8 888.8 8.8.8 8.8.8 888.8 8.8 88.8.8 8.2: 88.88. 88.88 8.8 88 8. 888 888. 888.8 888.8 888.8 8.8.8 888.8 8.8 88.88. ::8 88.88. 88.88 8.8 88 8. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 .8.88. 88.88 8.88 88 8. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8. .8.: .8.88. 88.88 8.88 88 8. 888 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.888 >88 88.88. 88.88 8.8. 88 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.888 8.2: 88.88. 88.88 8.8. 88 8. 8.8 888. 888.8 8.8.8 8.8.8 888.8 888.8 8.8 88.888 >88 88.88. 88.8 ..88 8. 8. 888 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 .8.888 8.82 .8.88. 88.88 8.8. 88 8. 8 8 888. 888.8 888.8 888.8 888.8 8.8 88.88. 8.28 .8.88. 88.88 8.8. 88 8. 8 8 888. 888.8 888.8 888.8 8.8 88.88. .88. .8.88. 88.88 8.8. 88 8. 8 8 888. 888.8 888.8 888.8 8 .8.8 888.8 888.8 8.8 88.88. .8.: .8.88. 88.88 8.8. 88 8. 8 8 888. 888.8 888.8 888.8 8.8.8 8.8.8 888.8 ..8 88. . 8. >88 .8.88. 88.88 8.8. 88 8. 8 8 888. 8.8.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 88.888 8.2: 8..88. 88.88 8.8. 88 8. 8. . 888. 888.8 888.8 888.8 ..88 ..88 888.8 8.8 88.888 >88 8..88. 88.88 8.8. 88 8. 8. . 888. .888 .888 .888 8.8.8 8.8.8 8.8.8 8.8 88.888 .8.: 8..88. 88.88 8.8. 88 8. 8. . 888. 8.8.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. ::8 8..88. 88.88 8.8. 88 8. 8. . 888. 8 88 38. 88 82 88 N 88 38. 88 82 88 8 .88.. .85 8888.8 .888. ..8. 8.8.8 8.880 8.88. 147 8 .88 888.8 8.88 888.8 888.8 8.8.8 8.8. 88.8.8 <>2 88.88. .8.88 ..88 88 8. 8.. 888. 888.8 888.8 888.8 888.8 888.8 .888 8.8 88.888 888 88.88. .8.88 ..88 88 8. 8. . 888. 888.8 88.8 888.8 888.8 888.8 888.8 8.8. 88.888 >88 88.88. .8.88 ..88 88 8. 8. . 888. 88.8 888.8 888.8 888.8 888.8 8.8. 88.888 .8.: 88.88. .8.88 ..88 88 8. 8. . 888. 888.8 ..88 888.8 88.8 88.8 888.8 8.8. 8...8. ::8 88.88. .8.88 ..88 88 8. 8.. 888. 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 88.88. 8.2: 88.88. .8.88 ..88 88 8. 8.. 888. 88.8 888.8 .888 888.8 888.8 8.8.8 8.8 88.888 8.28 88.88. .8.88 8.88 88 8. 888.888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 ..8 88.88. 8.82 88.88. .8.88 8.88 88 8. 888.888. 888.8 888.8 .888 888.8 888.8 8.8.8 8.8 88.88. ::8 88.88. .8.88 8.88 88 8. 888.888. 888.8 888.8 888.8 888.8 ..88 8.8.8 8.8 88.888 8.2: 88.88. 88.88 8.8. 88 8. 888.888. 888.8 888.8 88.8 888.8 888.8 888.8 8.8 88.888 .8.: 88.88. 88.88 8.8. 88 8. 888.888. .888 888.8 888.8 888.8 888.8 888.8 8.8 88.888 8.28 88.88. 88.88 8.8. 88 8. 888.888. 88.8 .8..8 888.8 888.8 888.8 888.8 ..8 88.88. ::8 88.88. 88.88 8.8. 88 8. 888.888. 88.8 88.8 888.8 8.8. .8.888 8.20 88.88. 88.88 8.88 88 8. 8 8.888. 888.8 888.8 8. 8.8 888.8 888.8 8.8.8 .... 88.888 8.82 88.88. 88.88 8.88 88 8. 8 8.888. 888.8 888.8 888.8 88.8 88.8 888.8 8.8. 88..88 888 88.88. 88.88 8.88 88 8. 8 8.888. 88.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.888 85.08,. 88.88. 88.88 8.88 88 8. 8 8.888. 8.8.8 8.8.8 888.8 888.8 8. ..8 888.8 8.8. 88.888 828 88.88. 88.88 8.88 88 8. 8 8.888. 888.8 888.8 888.8 88.8 888.8 888.8 8.8. 88. .88 .8.: 88.88. 88.88 8.88 88 8. 8 8.888. 888.8 888.. 8.8.. 888.8 888.8 888.8 8.8. 88.88. ::8 88.88. 88.88 8.88 88 8. 8 8.888. 888.. 8. ... 888.8 888.8 888.8 888.8 8.8. ...88. 8.2: 88.88. 88.88 8.88 88 8. 8 8.888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 .8.: 88.88. 88.88 8.8 88 88 88. .888. 888.8 888.8 888.8 888.8 888.8 8 .88 8.8 88.88. 888 88.88. 88.88 8.8 88 88 88. .888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 88.88. 88.88 8.8 88 88 88. .888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8. ::8 88.88. 88.88 8.8 88 88 88. .888. 888.8 888.8 888.8 8.8.8 8.8 8..888 8.28 88.88. 88.88 8.88 .8 8. 8 ..888. N 88 38. 88 82 88 N 88 38.. 88 82 88 8 .88.. ...8.8. 8888.8 .888: ..8. 8888 8.8.5 8.88. 148 888.8 888.8 .88.. 888.8 888.8 88.8 8.8. 88.88. >88 88.88. 88.88 8.88 8. 8. 888.888. 888.8 888.8 888.8 888.8 888.8 88.8 8.8 88.88 ::8 88.88. 88.88 8.88 8. 8. 888.888. 888.8 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.888 >88 88.88. 88.88 8.8. 88 8. 8.8 888. 88.8 88.8 88.8 888.8 888.8 8.8.8 8.8 88.8. 8.2: 88.88. 88.88 8.8. 88 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. .888 88.88. 88.88 8.8. 88 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 8..8.8 88:: 88.88. 88.88 8.88 88 8. 8.8 888. -.. 888.8 888.8 888.8 8.8. 88.888 00.). 88.88. 88.88 8.88 88 8. 8.8 888. 888.8 88.8 88.8 888.8 888.8 888.8 8.8 .8.888 8 .2: 88.88. 88.88 8.88 88 8. 8.8 888. 88.8 888.8 88.8 888.8 888.8 888.8 8.8 88.888 .88 88.88. 88.88 8.88 88 8. 8.8 888. 888.8 888.8 888.8 8. ..8 888.8 888.8 8.8. 88.888 <>2 88.88. 88.88 8.88 88 8. 8.8 888. 88 . .8 88.8 8. ..8 888.8 888.8 8.8 88.888 8.82 88.88. 88.88 8.88 88 8. 8.8 888. 888.8 888.8 888.. 888.8 888.8 8.8. 88.88. >88 88.88. 88.88 8.88 88 8. 8.8 888. 888.8 .888 8.8.8 88.8 88.8 888.8 8.8 88.88 ::8 88.88. 88.88 8.88 88 8. 8.8 888. 88.8 88.8 88.8 888.8 8.8 88.888 <88. 8..88. 88.88 8.88 88 8. 8 8 888. 88.8 8.8.8 88.8 8 .88 8.8.8 8.8.8 8.8. 88.888 <>2 8..88. 88.88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 888.8 888.8 8 .8.8 8.8 88.888 >88 8..88. 88.88 8.88 88 8. 8 8 888. 88 . .8 88.8 88.8 888.8 888.8 888.8 8.8 88. .88 8.2: 8..88. 88.88 8.88 88 8. 8 8 888. 888.8 888.8 .888 88.8 888.8 888.8 8.8 88.88. ::8 8..88. 88.88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 8..88. >88 .8.88. 88.88 8.8. .8 8. 888 888. 888.8 888.8 .888 8.8.8 8.8.8 8.8.8 8.8 .8..8. ::8 .8.88. 88.88 8.8. .8 8. 888 888. 88.8 88.8 88.8 8 .8.8 888.8 888.8 8.8 88.888 Sc). 88.88. 88.88 8.88 .8 8. 88. 888. 888.8 88.8 888.8 88 88.888 8.08,. 88.88. 88.88 8.88 .8 8. 88. 888. 88.8 888.8 88.8 888.8 8.8.8 888.8 8.8 88.888 8.2: 88.88. 88.88 8.88 .8 8. 88. 888. 888.8 888.8 888.8 8 .88 888.8 888.8 8.8 88.888 >88 88.88. 88.88 8.88 .8 8. 88. 888. 888.8 8.8.8 888.8 888.8 ..8 88.888 ...8. 88.88. 88.88 8.88 .8 8. 88. 888. 88.8 888.8 888.8 8.8. 88.888 8.08,. 88.88. .8.88 ..88 88 8. 8. . 888. N 88 38. 88 82 88 8 88 38. 88 82 88 8 .88.. .8.: 8888.8 .888. .8.. 28.8 8.8.5 8.88. 149 888.8 888.8 888.8 888.8 8.8 8..8.8 082 88.88. 88.88 8.8 88 8. 8.8 888. 88.8 8.8.8 888.8 888.8 ..8 88.88. ::8 88.88. 88.88 8.8 88 8. 8.8 888. 88 . .8 88.8 888.8 888.8 888.8 888.8 8.8 88.88. 8 .2: 88.88. 88.88 8.8 88 8. 8.8 888. 888.8 888.8 88.8 8 .8.8 8 .8.8 8.8.8 8.8 88.888 >08 88.88. 88. .8 8.88 88 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 8..8.8 8 .2: 88.88. 88. .8 8.88 88 8. 8 .8 888. 88.8 88.8 88.8 888.8 8.8 88.8. 8 .00 88.88. 88. .8 8.88 88 8. 8.8 888. 888.8 888.8 888.8 8.8. 88.888 008,. 88.88. 88. .8 8.88 88 8. 8 .8 888. 88.8 888.8 88.8 888.8 888.8 888.8 8.8 88. .88 ::8 88.88. 88. .8 8.88 88 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 .8.88. 082 88.88. 88. .8 8.88 88 8. 8.8 888. 888.8 88.8 888.8 888.8 888.8 ..8 8..888 082 88.88. 88.88 ..88 88 88 .88 888. 88.8 88.8 8. ..8 888.8 888.8 888.8 8.8 .8.888 8 .2: 88.88. 88.88 ..88 88 88 .88 888. 888.8 888.8 888.8 888.8 8888 8.8.8 8.8 88.888 >08 88.88. 88.88 ..88 88 88 .88 888. 88.8 88.8 888.8 888.8 888.8 ..8 8... .8 .00 88.88. 88.88 ..88 88 88 .88 888. 888.8 8.8.8 888.8 888.8 888.8 8.8 88.88. ::8 88.88. 88.88 ..88 88 88 .88 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.888 >08 88.88. 88.88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.888 8 .2: 88.88. 88.88 8.88 88 8. 8 8 888. 888.8 88.8 888.8 8.8 88.888 .00 88.88. 88.88 8.88 88 8. 8 8 888. 88.8 88.8 .8..8 888.8 888.8 888.8 8.8. 88.888 082 8..88. .8.88 8.8 88 8. .88 888. 88.8 88.8 888.8 888.8 888.8 8.8.8 8.8. 88.8.8 >08 8..88. .8.88 8.8 88 8. .88 888. 888.8 888.8 88.8 8. ..8 8.8 88.888 ::8 8..88. .8.88 8.8 88 8. .88 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 >08 88.88. 88.88 ..88 88 8. 8 ..888. 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.888 >88 88.88. 88.88 ..88 88 8. 8 ..888. 888.8 888.8 888.8 8.8.8 ..88 8.8 88.888 8.2: 88.88. 88.88 ..88 88 8. 8 ..888. 888.8 8. ..8 8. ..8 8.8.8 8.8.8 8.8.8 8.8 88.888 082 88.88. 88.88 ..88 88 8. 8 ..888. 888.8 888.8 .888 888.8 8 .88 8.8 88.8.8 888... 88.88. 88.88 ..88 88 8. 8 ..888. 8.8.8 8. ..8 88.8 888.8 888.8 888.8 8.8 88.888 8.2: 88.88. 88.88 8.88 8. 8. 888.888. 8 88 30 88 82 88 N 88 30 88 82 88 8 .88.. 88.0 8888.8 .888: ..8. 8.8.8 8.880 8.80 150 888.8 888.8 88.8 888.8 888.8 8.8. 88. .88 8.88 88.88. 88.88 8.88 88 88 888 888. .888 888.8 888.8 888.8 888.8 888.8 ..8 88.88. 8 .2: 88.88. 88.88 8.88 88 88 888 888. 888.8 88.8 88.8 888.8 888.8 888.8 8.8 88.88 ><2 88.88. 8. . .8 8.8. 88 8. 888 888. 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 88.88. 808 .8.88. 88.88 8.8 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 88.88. 88.88 8.88 88 8. 8. 8 888. 8.8.8 ..88 8.8.8 888.8 888.8 888.8 ..8 88.88 >88 88.88. 88.88 8.88 88 .. 8 .8 888. 888.8 888.8 8.8.8 888.8 888.8 888.8 8.8 88.. .8 082 88.88. 88.88 8.8 88 8. 8 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 8.2: 88.88. 88.88 8.8 88 8. 8 8 888. 8 .88 888.8 888.8 888.8 888.8 888.8 8.8 8..888 082 .8. .8. 88.88 8.88 .8 8. 8 8 888. .888 888.8 888.8 888.8 .888 8.8.8 8.8 8..888 >88 88.8. 8..88 8... 88 8. .8. 888. 888.8 .888 8.8.8 8.8 88.888 888< 88.8. 8..88 8... 88 8. .8. 888. 888.8 888.8 888.8 8.8 88.888 -:8 88.8. 8..88 8... 88 8. .8. 888. 88.8 888.8 88.8 888.8 -.. 8.8 8.888 082 88.8. 8..88 8... 88 8. .8. 888. 88.8 88.8 888.8 888.8 888.8 8.8 88.888 820 88.8. 8..88 8... 88 8. .8. 888. 888.8 888.8 888.8 888.8 8.8 88.88. ::8 88. . 8. 8..88 8... 88 8. .8. 888. 888.8 888.8 888.8 888.8 8.8 88.88. .00 88. .8. 8..88 8... 88 8. .8. 888. 888.. 888.. 888.8 888.8 888.8 8.8 88.88 >08 88.8. 8..88 8... 88 8. .8. 888. 888.8 888.8 888.8 -.. 8.8. 8 . .888 00s. 88.88. 88.88 8.88 88 88 8 8.888. 888.8 888.. 88. .8 8... 88.888 820 88.88. 88.88 8.88 88 88 8 8.888. 888.8 888.8 88.8 88.8 888.8 8.8. 88.888 082 88.88. 88.88 8.88 88 88 8 8.888. .888 8 .88 888.8 888.8 .888 888.8 8.8. 88.888 >08 88.88. 88.88 8.88 88 88 8 8.888. 888.8 888.. 888.8 888.8 8. 8.8 8.8. 8..888 ::8 88.88. 88.88 8.88 88 88 8 8.888. 888.8 888.8 8 .8.8 888.8 888.8 888.8 8.8 88.88. 8.88 88.88. 88.88 8.88 88 88 8 8.888. 888.8 8 .8.8 888.8 88.8 888.8 .888 8.8 88.88 .888 88.88. 88.88 8.88 88 88 8 8.888. 888.8 888.8 .888 8 .88 8 .88 888.8 ..8 88.888 >08 88.88. 88.88 8.8 88 8. 8.8 888. 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 88.888 >08 88.88. 88.88 8. .8 88 8. 8.8 888. 8 88 30 88 82 88 N 88 30 88 82 88 8 08... 88.0 8888.8 .888. .8.. 8.8.8 8.880 8.80 151 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.88. 88.8 88.88. 88.88 8.8. 8. 8. 888 888. 888.8 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.888 000 8..88. 88.88 8.88 8. 8. 8.8 888. 888.8 888.8 88.8 8.8.8 888.8 888.8 8.8 88.888 888... 8..88. 88.88 8.88 8. 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 8.2: 8..88. 88.88 8.88 8. 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 . .88 8.8 88.88. 008 8..88. 88.88 8.88 8. 8. 8.8 888. 8.8.8 888.8 888.8 888.8 888.8 8.8.8 8.8. 88.8 .8 820 88.88. 8..88 8.88 88 8. 8 8 888. 888.8 888.8 88.8 888.8 888.8 888.8 8.8. 88.888 .00 88.88. 8..88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 88.888 080 88.88. 8..88 8.88 88 8. 8 8 888. 888.8 88.8 888.8 8 .88 8.8.8 8.8.8 8.8. 88.888 >88 88.88. 8..88 8.88 88 8. 8 8 888. .8..8 888.8 8.8.8 8 .8.8 888.8 888.8 ..8. .8.888 000 88.88. 8..88 8.88 88 8. 8 8 888. .8..8 88.8 88.8 8.8.8 8.8.8 888.8 8.8. 88.888 85.0.). 88.88. 8..88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 888.8 .888 8.8.8 8.8. 88.888 888< 88.88. 8..88 8.88 88 8. 8 8 888. 888.8 888.8 .888 8 .8.8 888.8 8 .88 8.8 88.888 8.2: 88.88. 8..88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 88.88. >88 88.88. 88.88 8.8. 88 8. . 8 888. 8 .8.8 8.8.8 8 .8.8 888.8 888.8 888.8 8.8 88.88. 8.2: 88.88. 88.88 8.8. 88 8. . 8 888. 888.8 888.8 888.8 88.8 888.8 88.8 8.8 88.8. 888... 88.88. 88.88 8.8. 88 8. . 8 888. 888.8 888.8 888.8 .888 888.8 8.8 8..888 082 88.88. 88.88 8.88 8. 8. 888 888. 88.8 888.8 88.8 888.8 888.8 888.8 8.8 88.888 ::8 88.88. 88.88 8.88 8. 8. 888 888. 88.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 88.88. 88.88 8.88 8. 8. 888 888. 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.88. 8.2: 88.88. 88.88 8.88 8. 8. 888 888. 888.8 888.8 888.. 888.8 888.8 888.8 8.8 88.8. 888< 88.88. 88.88 8.88 8. 8. 888 888. 888.8 88.8 88.8 888.8 8.8. 88.888 002 88.88. 88.88 8.88 88 88 888 888. 888.8 88.8 8.8.8 8.8 88.888 .00 88.88. 88.88 8.88 88 88 888 888. 88. .8 .8..8 888.8 888.8 888.8 8.8 88.888 082 88.88. 88.88 8.88 88 88 888 888. 88.8 88.8 888.8 8.8 88.888 082 88.88. 88.88 8.88 88 88 888 888. 88.8 88.8 888.8 8.8 ...888 8.208,. 88.88. 88.88 8.88 88 88 888 888. N 88 30 88 82 88 8 88 30 88 82 88 8 .88.. 88.0 8888.8 .888. .8.. 8.8.8 8.880 8.80 152 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 8.2: 88.88. 88.88 8.8 88 88 8 8 888. 888.8 888.8 .888 888.8 888.8 888.8 8.8 88.88. 8.20.2 88.88. 88.88 8.8 88 88 8 8 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.88. 288 88.8. 88.88 8.88 88 8. . 8 888. 888.8 888.8 888.8 888.8 ..8 88.888 >08 88.88. 88.88 8.8 88 8. 888 888. 888.8 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.888 >88 88.88. 88.88 8.8 88 8. 888 888. 8. ..8 88.8 888.8 888.8 8 .88 8.8.8 8.8 8..888 8 .2: 88.88. 88.88 8.8 88 8. 888 888. -.. 888.8 888.8 888.8 888.8 8.8 88.88. ::8 88.88. 88.88 8.8 88 8. 888 888. .8..8 888.8 88.8 888.8 88.8 888.8 8.8 88.88. 888< 88.88. 88.88 8.8 88 8. 888 888. 88.8 888.8 888.8 ..8. 88.888 >88 88.88. .8.88 8.88 88 .. 888 888. -.. 888.8 888.8 888.8 888.8 8.8. 88.888 >08 88.88. .8.88 8.88 88 .. 888 888. 888.8 888.8 888.8 8.8. 88.888 .00 88.88. .8.88 8.88 88 .. 888 888. 888.8 888.8 8. 8.8 888.8 888.8 888.8 8.8 88. .88 >88 88.88. .8.88 8.88 88 .. 888 888. 88.8 888.8 888.8 888.8 88.8 88.8 8.8. .8.888 082 88.88. .8.88 8.88 88 .. 888 888. 8.8.8 888.8 888.8 .8..8 888.8 888.8 8.8. 88. .88 8.2: 88.88. .8.88 8.88 88 .. 888 888. 888.8 888.. 888.8 888.8 88.8 8.8. 88.88. ::8 88.88. .8.88 8.88 88 .. 888 888. .888 888.8 888.8 888.8 888.8 888.8 8.8. 88.8. 888< 88.88. .8.88 8.88 88 .. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8.. 820.2 88.88. 88.88 8.88 88 .. 888 888. 888.8 888.8 888.8 8 .88 8.8.8 8.8.8 8.8 88.888 288 88.88. 88.88 8.8. 88 8. 8 8 888. 888.8 88.8 888.8 8.8.8 8.8.8 ..88 8.8 88.888 .08 88.88. 88.88 8.8. 88 8. 8 8 888. 888.8 88.8 88.8 888.8 8.8.8 888.8 8.8 88.88. 8202 88.88. 88.88 8.8. 88 8. 8 8 888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 888< 88.88. 88.88 8.8 88 8. 8 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 8.2: 88.88. 88.88 8.8 88 8. 8 8 888. 888.8 888.8 .888 8.8.8 888.8 888.8 8.8 .8.8.8 028 88.88. 88.88 8.8 88 8. 8 8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 808 88.88. 88.88 8.88 88 8. 888 888. 888.8 888.8 8 .88 8.8.8 888.8 8.8.8 8.8 8...8. 080 88.88. 88.88 8.88 88 8. 888 888. 888.8 888.8 888.8 888.8 ..88 8.8.8 8.8 88.88. 808 88.88. 88.88 8.8. 8. 8. 888 888. 8 88 30 88 82 88 N 88 >20 88 82 88 8 08... 88.0 8888.8 .888. ..8. 8.8.8 8.880 8.80 153 888.8 8.8.8 888.8 888.8 8... 88.8.8 0>0 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 88.8 888.8 88.8 88.8 888.8 8.. . 88..88 8.20 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 888.. 888.. 88.8 888.8 88.8 8.. . 88.8.8 0.88 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8.. . . ..888 002 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8... 88.888 8-08 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 888.. 888.. 888.8 88.8 88.8 8... 88.888 .8202 88.88. 88.88 8.88 8. 8. 8.8 .88. 8.8.8 888.8 888.8 888.8 888.8 88.8 8.8. ...888 >08 88.88. 88.88 8.88 8. 8. 8.8 .88. .88.. 888.. 888.. 888.8 888.8 8. 8.8 8.. . 88.888 082 88.88. 88.88 8.88 8. 8. 8.8 .88. 88... 888.8 888.8 888.8 888.8 888.8 8... 88.888 .00 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 888.8 88... 888.8 888.8 888.8 8.8. .8.888 082 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 888.. 888.. 888.. 88. .. .888 8.8. 88.88. -:8 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.. 888.. 888.. 888.8 888.8 888.8 8... 88.888 >88 88.88. 88.88 8.88 8. 8. 8.8 .88. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 .8. .88 >2 88.88. 88.88 8.88 8. 8. 888 888. 888.8 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88..88 808 88.88. 88.88 8.88 8. 8. 888 888. 888.8 88.8 888.8 8.8.8 888.8 8.8.8 8.8 8..888 .28 88.88. 88.88 8.88 8. 8. 888 888. 888.8 .888 888.8 888.8 8 .88 8.8.8 8.8 88.88. 080 88.88. 88.88 8.88 8. 8. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 8. 2: 88.88. 88.88 8.8 88 88 8.8 888. 888.8 888.8 8.8.8 8.8 88.888 8.202 ...88. .8.88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 888.8 8.8.8 ..8 .8.888 8.2: ...88. .8.88 8.88 88 8. 8 8 888. 8. ..8 88.8 .8..8 8.8.8 8 .8.8 888.8 8.8 88.888 082 ...88. .8.88 8.88 88 8. 8 8 888. 88.8 888.8 88.8 8.8.8 8 .88 .888 ..8. 8..888 .28 ...88. .8.88 8.88 88 8. 8 8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.888 008 ...88. .8.88 8.88 88 8. 8 8 888. 888.8 888.8 8.8.8 88.8 888.8 888.8 ..8. 88.888 808 ...88. .8.88 8.88 88 8. 8 8 888. 888.8 8 .88 888.8 888.8 888.8 888.8 8.8 88.8.8 >88 88.88. 88.88 8.8 88 88 8 8 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.8.8 888< 88.88. 88.88 8.8 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 ..88 888.8 8.8 88.888 808 88.88. 88.88 8.8 88 88 8 8 888. 8 88 30 88 82 88 N 88 >80 88 82 88 8 .88.. 88.0 8888.8 .888. ..8. 8.8.8 8.880 8.80 154 88.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.888 082 8..88. 88.88 ..8. 88 .. 8.8 .88. 888.8 888.. 88.8 888.8 88.8 888.8 8.8. 88.88. 8-08 8..88. 88.88 ..8. 88 .. 8.8 .88. 888.8 888.8 88... 888.8 888.8 8.8.8 8.8. 88.88. 8.20 8..88. 88.88 ..8. 88 .. 8.8 .88. 888.8 888.8 888.. 88... 888.8 888.8 8.8. 88.8. .00 8..88. 88.88 ..8. 88 .. 8.8 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8.8 082 88.88. 88.88 8.88 .8 8. 8.8 .88. .888 888.8 88.8 888.8 888.8 888.8 8.8 88.88. 8.2: 88.88. 88.88 8.88 .8 8. 8.8 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.888 ::8 88.88. 88. .8 8.88 88 8. 8 8 .88. 888.8 888.8 888.8 8... 88.888 0.20 88.88. 88. .8 8.88 88 8. 8 8 .88. 88.8 88.8 888.8 88.8 888.8 888.8 8.8. 88.888 082 88.88. 88. .8 8.88 88 8. 8 8 .88. 888.8 888.8 888.8 888.8 8.8. ...888 00.2 88.88. 88. .8 8.88 88 8. 8 8 .88. 888.8 888.8 888.8 88.8 88.8 8.8. 88.888 .00 88.88. 88. .8 8.88 88 8. 8 8 .88. 888.. 888.. 888.. 88.8 888.8 88.8 8... 88.888 8.8 88.88. 88.8 8.88 88 8. 8 8 .88. 888.8 8.8.8 888.8 888.8 8.8.8 888.8 8... 8..88. 8.8 88.88. 88. .8 8.88 88 8. 8 8 .88. 888.8 888.8 888.8 88.8 888.8 88.8 8... .8.88. 0>0 88.88. 88. .8 8.88 88 8. 8 8 .88. 888.8 888.8 88.8 888.8 888.8 888.8 8.8 88.888 008 88.88. 88.88 8.88 88 8. 8 8 .88. 8. ..8 88.8 88.8 8.8.8 .888 .888 8.8 88.888 8 .2: 88.88. 88.88 8.88 88 8. 8 8 .88. 888.8 88.8 ....8 888.8 888.8 .888 8.8 88.88. 002 88.88. 88.88 8.88 88 8. 8 8 .88. 888.8 888.8 888.8 8.8 .8.888 ::8 88.88. 88.88 8.8. 8. 8. . 8 .88. 88.8 88.8 88.8 8.8.8 8.8 88.888 -:8 88.88. 88.88 8.8. 8. 8. . 8 .88. 888.8 88.8 8. ..8 888.8 888.8 888.8 8.8 8..888 .00 88.88. 88.88 8.8. 8. 8. . 8 .88. 88.8 888.8 888.8 888.8 888.8 888.8 ..8. 88.88. 8-08 88.88. 88.88 8.8. 8. 8. . 8 .88. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 0<.2 88.88. 88.88 8.8. 8. 8. . 8 .88. 888.8 88... 88... 888.8 888.8 8.8.8 8.8. .88.. 002 88.88. 88.88 8.8. 8. 8. . 8 .88. 888.8 888.8 888.8 888.8 8.8. 88.88. >88 88.88. 88.88 8.8. 8. 8. . 8 .88. 8. ... 888.8 888.8 88.8 88.8 8. ..8 8.8. 88..88 808 88.88. 88.88 8.88 8. 8. 8.8 .88. 88.8 888.8 888.8 888.8 888.8 8... 88.888 0.20 88.88. 88.88 8.88 8. 8. 8.8 .88. N 88 >20 88 82 88 8 88 2.0 88 82 88 8 08... 88.0 8888.8 .888. .8.. 28.8 8.880 8.80 155 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 8.2: 8..88. 88.88 8.8 88 8. 888 .88. 888.8 888.8 888.8 ..88 888.8 888.8 8.8 88.88. .888.. 8..88. 88.88 8.8 88 8. 888 .88. 88.8 88.8 888.8 888.8 8.8.8 888.8 8.8 8..88. >88 8..88. 88.88 8.8 88 8. 888 .88. 888.8 888.8 888.8 888.8 8.8.8 ..88 8.8 88.888 >88 88.88. 88.88 8.8 88 8. 888 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88..88 .08 88.88. 88.88 8.8 88 8. 888 .88. 88.8 88.8 88.8 888.8 888.8 888.8 8.8 88888 8.2: 88.88. 88.88 8.8 88 8. 888 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 ><8 88.88. 88.88 8.8 88 8. 888 .88. 88.8 888.8 88.8 888.8 888.8 .888 ..8 88.8.8 080 88.88. 88.88 8.8 88 8. 888 .88. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 ..8 88.888 .88 88.88. 88.88 8.8888 8. 8.8 .88. 8:8 88.8 88.8 8.8.8 8.8.8 8.8.8 8.8 88.8.8 8.2: 88.88. 88.88 8.8888 8. 8.8.88. 888.8 88.8 88.8 88.8 888.8 .888 8.8 88.8. 888< 88.88. 88.88 8.8888 8. 8.8 .88. 888.8 8...8 888.8 888.8 888.8 8.8 88.88. ::8 88.88. 88.88 8.8888 8. 8.8.88. 888.8 888.8 888.8 888.8 8.8 88.888 8.20 .8.88. 88.88 8.88888. 888 .88. 888.8 88.8 888.8 888.8 888.8 8.8. 88.888 8-08 .8.88. 88.88 8.88888. 888 .88. 88.8 888.8 888.8 888.8 8.8 8..8.8 >08 .8.88. 88.88 8.88888. 888 .88. 888.8 888.8 888.8 888.8 888.8 -.. 8.8 88.88. .00 .8.88. 88.88 8.88888. 888 .88. 88.8 888.8 888.8 88.8 888.8 88.8 8.8 88.8.. 082 .8.88. 88.88 8.8888 8. 888 .88. 888.8 888.8 888.8 888.8 88.8 888.8 8.8 88.88 ::8 .8.88. 88.88 8.88888. 888 .88. 888.8 888.8 .888 888.8 8.8.8 888.8 ..8 88.88. 8.2: 8..88. 88.88 8.8 88 8. 8.8 .88. 888.8 88.8 888.8 8.8.8 8.8.8 .888 8.8 88.8.. >88 8..88. 88.88 8.8 88 8. 8.8 .88. 888.8 888.8 88.8 888.8 888.8 888.8 8.8 88.8 888< 8..88. 88.88 8.8 88 8. 8.8.88. 888.8 8.8.8 88.8 888.8 888.8 8.8. 88.888 0>0 8..88. 88.88 ..8. 88 .. 8.8 .88. 8.8.8 888.8 8.8.8 8...8 888.8 8.8 88.888 -:8 8..88. 88.88 ..8. 88 .. 8.8 .88. 888.8 88... 888.8 8.8. 88.888 0082 8..88. 88.88 ..8. 88 .. 8.8.88. 88.8 888.. 888.. 88.8 88.8 88.8 8.8. .8.888 >88 8..88. 88.88 ..8. 88 .. 8.8.88. 888.8 88.8 888.8 888.8 888.8 888.8 8.8. 88.888 ::8 8..88. 88.88 ..8. 88 .. 8.8 .88. N88 >20 88 82 88 N88 30 88 82 88 8 .88.. 88.0 8888.8 .888. ..8. 8.8.8 8.880 8.80 156 8 . 8.8 888.8 88.8 888.8 888.8 8.8 88.888 808 88.88. 88.88 8.88 8. 8. 8 8 .88. 88.8 888.8 88 . .8 888.8 -.. 888.8 8.8 88.888 ::8 88.88. 88.88 8.88 8. 8. 8 8 .88. 888.8 888.8 8.8.8 8 .88 888.8 888.8 8.8 88. .8. >88 88.88. 88.88 8.88 8. 8. 8 8 .88. 888.8 888.8 888.8 888.8 88.8 .8..8 8.8 88.88. 088< 88.88. 88.88 8.88 8. 8. 8 8 .88. 888.8 888.8 888.8 88.8 .888 88.8 8.8 88.88. 8.20.2 88.88. 88.88 8.88 8. 8. 8 8 .88. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 .8. .8. 8.2: 88.88. 88.88 8.88 8. 8. 8 8 .88. -.. 888.8 8. ..8 888.8 8.8. 88.888 820 88.88. 88.88 8.8 88 8. 8 8 .88. 88.8 .888 888.8 888.8 888.8 8.8. 88.888 >08 88.88. 88.88 8.8 88 8. 8 8 .88. 888.8 888.8 888.8 88.8 888.8 8.8. 88.888 ::8 88.88. 88.88 8.8 88 8. 8 8 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.888 080 88.88. 88.88 8.8 88 8. 8 8 .88. 888.8 888.. 888.8 888.8 88.8 888.8 8... 88.888 082 88.88. 88.88 8.8 88 8. 8 8 .88. 8.8.. 888.. .88.. .888 888.8 888.8 8... 88.888 808 88.88. 88.88 8.8 88 8. 8 8 .88. 888.. 888.. 888.. 8.8.8 8.8.8 88.8 8.8. .8.88. >88 88.88. 88.88 8.8 88 8. 8 8 .88. 888.. 888.8 888.. 888.8 888.8 888.8 8.8. .8.88. 888< 88.88. 88.88 8.8 88 8. 8 8 .88. 888.8 888.8 .888 888.8 888.8 888.8 8.8 88.888 8.2: 88.88. 88.88 8.8. 88 8. 888 .88. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 888< 88.88. 88.88 8.8. 88 8. 888 .88. 888.8 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.888 082 88.88. 88.88 8.8. 88 8. 888 .88. 888.8 888.8 8.8.8 888.8 888.8 888.8 8.8 8.. .88 808 88.88. 8..88 8.88 88 8. 8 8 .88. 88.8 .8..8 88.8 888.8 888.8 8.8 .8.888 082 88.88. 8..88 8.88 88 8. 8 8 .88. 888.8 888.8 888.8 888.8 8.8.8 8.8 8..888 888< 88.88. 8..88 8.88 88 8. 8 8 .88. 88.8 888.8 88.8 888.8 888.8 888.8 8.8 88.8.8 8.2082 88.88. 8..88 8.88 88 8. 8 8 .88. 88.8 8. ..8 888.8 88.8 888.8 8.8 88.88. 8.2: 88.88. 8..88 8.88 88 8. 8 8 .88. 888.8 888.8 888.8 888.8 8.8.8 8 .88 ..8 88.88. 8.20.2 88.88. 88.88 8.8. 88 88 888 .88. 888.8 8. ..8 8 .8.8 8 .8.8 888.8 8.8 88.88. 8.2: 88.88. 88.88 8.8. 88 88 888 .88. 888.8 .888 888.8 888.8 888.8 888.8 8.8 88.88. 888.8 88.88. 88.88 8.8. 88 88 888 .88. 888.8 888.8 8. ..8 888.8 888.8 888.8 8.8 88.88 .88 88.88. 88.88 8.8. 88 88 888 .88. N 88 30 88 82 88 N 88 >20 88 82 88 8 0.8.. 88.0 8888.8 .888. 88.. 8.8.8 8.880 8.80 157 888.8 888.. 888.. 88..8 888.8 88..8 8.8. 88.88. 8-88 88.88. 88.88 8.8 88 8. 8.8.88. 888.. 888.8 88..8 88..8 8.8. 88.88. .88. 88.88. 88.88 8.8 88 8. 8.8.888. 888.. 888.. 888.8 888.8 88..8 8.8. 88.88 >88 88.88. 88.88 8.8 88 8. 8.8.888. 888.8 888.8 888.8 8... 88.888 8.2082 88.88. 88.88 ..8 88 8. 888 888. 88..8 888.8 888.8 8... 88.888 m>m 88.88. 88.88 ..8 88 8. 888 888. 888.8 888.8 888.8 8... .8..88 88.8.8 88.88. 88.88 ..8 88 8. 888 888. 888.. 888.. 888.8 888.8 888.8 8... 8...88 ::8 88.88. 88.88 ..8 88 8. 888 888. 888.8 888.8 888.8 88..8 888.8 8.8. 88.888 .88. 88.88. 88.88 ..8 88 8. 888 888. 888.. 888.. 8.8.8 888.8 888.8 888.8 8... 88.888 >88 88.88. 88.88 ..8 88 8. 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8... 88.888 8-88 88.88. 88.88 ..8 88 8. 888 888. 888.8 8.8.8 88..8 888.8 888.8 888.8 ..8 88.888 8.82 88.88. .8.88 8.88 8. 8. . 8. .88. -.. 888.8 8.8.8 888.8 8.8 8..88. 8.0.2 88.88. .8.88 8.88 8. 8. . 8. .88. 888.8 88..8 888.8 888.8 8.8 88.888 ::8 88.88. .8.88 8.88 8. 8. 8 ...88. 888.8 888.. 888.8 888.8 888.8 8... 88.888 >88 88.88. .8.88 8.88 8. 8. 8 ...88. 888.8 888.8 88..8 888.8 888.8 88..8 8.8 8..888 8.8.2 88.88. .8.88 8.88 8. 8. 8 ...88. 888.8 88..8 888.8 88..8 8.8. 88.8.. 8.082 88.88. .8.88 8.88 8. 8. 8 ...88. 888.8 888.8 888.8 888.8 8.8 88.888 .8..8. 8..88. 88.88 8.88 88 88 8 8 .88. 888.8 888.8 88..8 8.8 88.88. 82 8..88. 88.88 8.88 88 88 8 8 .88. 88..8 888.8 888.8 8. ..8 888.8 888.8 8.8 88.88. 8-88 8..88. 88.88 8.88 88 88 8 8 .88. 88... 88... 888.8 888.8 888.8 8.8 88.88 >88 8..88. 88.88 8.88 88 88 8 8 .88. 88..8 88 . .8 88..8 888.8 888.8 8.8 88.888 .88. 88..8. 88.88 8.88 88 . . 8 8 .88. 888.8 8. ..8 88..8 888.8 8.8 88.88. 882 88..8. 88.88 8.88 88 .. 8 8 .88. 888.8 888.8 88..8 8.8 88.88 8.02 88..8. 88.88 8.88 88 .. 8 8 .88. 888.8 88..8 88..8 888.8 888.8 888.8 8.8 88.88 8-88 88..8. 88.88 8.88 88 .. 8 8 .88. 888.8 888.8 88..8 888.8 888.8 ..8. 88.888 8.82 88.88. 88.88 8.88 8. 8. 8 8 .88. 88..8 888.8 88 . .8 888.8 888.8 888.8 8.8 88.888 8.82 88.88. 88.88 8.88 8. 8. 8 8 .88. 8 88 38. 88 82 88 8 88 >88. 88 82 88 V. .85.. ...8.8. .5838 .883 ..88. 28.8 8.8.5 288. 158 888.. 888.. 888.8 8... 88.888 >88 88.88. 88.88 8.88 8. 88 8 8.888. 888.. 888.. 8.8.. 888.8 888.8 8.8.8 8.8. .8.88. 888< 88.88. 88.88 8.88 8. 88 8 8.888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.8.8 888< 88..8. 88.88 8.88 8. 8. 8 . 888. 888.8 888.8 888.8 888.. 888.. 888.8 8.8. 88.888 8.2.. 88..8. 88.88 8.88 8. 8. 8 . 888. 8.8.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 888< 88.88. 88.88 8.8. .8 88 888 888. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 88.88. 88.88 8.8. .8 88 888 888. 888.8 888.8 .888 .888 888.8 888.8 8.8 88.88. 8.2: 88.88. 88.88 8.8. .8 88 888 888. 888.8 888.8 8 .8.8 8.8 88.888 082 88.88. 88.88 8.88 88 88 8.8 888. 8. ..8 88..8 88..8 888.8 888.8 888.8 8.8 8..88 8 .2: 88.88. 88.88 8.88 88 88 8.8 888. 888.8 888.8 888.8 88..8 888.8 88..8 8.8 88.88 888... 88.88. 88.88 8.88 88 88 8.8 888. 888.8 888.8 888.8 8.8. 88.8.8 002 88.88. 88.88 8.8. 88 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 88.88. 88. .8 8.88 88 8. 8 8 888. 8. ..8 88..8 88..8 888.8 88..8 888.8 ..8 88.88. 8.20 88.88. 88..8 8.88 88 8. 8 8 888. 88..8 888.8 888.8 888.8 888.8 888.8 8.8. 8..8.8 8.20.2 88.88. 88.88 8.8. 8. 8. 8.8 888. 888.8 8.8.8 888.8 888.8 8.8. 88.888 8.20 88.88. 88.88 8.8. 8. 8. 8.8 888. 888.8 8.8.8 888.8 88..8 888.8 888.8 8.8. .8.888 082 88.88. 88.88 8.8. 8. 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.888 >88 88.88. 88.88 8.8. 8. 8. 8.8 888. 888.8 888.8 888.8 888.8 88..8 88..8 8.8. 88.8.8 8.20 88.88. 88.88 8.8. 8. 8. 8.8 888. 888.8 888.. 888.8 888.8 888.8 8.8.8 8.8. 88.888 888< 88.88. 88.88 8.8. 8. 8. 8.8 888. 888.8 888.8 888.8 888.8 888.8 8.8. 88.88. ::8 88.88. 88.88 8.8. 8. 8. 8.8 888. 88..8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. .80 ...88. 88.88 ..8 88 8. ..8 888. 888.8 88..8 88..8 888.8 888.8 8.8 88.88. .80 88.88. 88.88 8.88 88 8. 8 . 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8.. 8-88 88.88. 88.88 8.88 88 8. 8 . 888. 888.8 8. ..8 888.8 8.8 88.8.. 882 88.88. 88.88 8.88 88 8. 8 . 888. 88..8 88..8 88..8 -.. 8.8 88.88 002 88.88. 88.88 8.88 88 8. 8 . 888. 88..8 88..8 88..8 888.8 888.8 888.8 8.8 88.888 882 88.88. 88.88 8.8 88 8. 8.8.888. 8 88 38 88 82 88 8 88 38 88 82 88 8 85.. 88.0 588.8 .883 .3 28.8 8.8.5 280 159 8. ..8 888.8 888.8 888.8 888.8 888.8 8.8. 88.888 000 88.88. 88. .8 8.88 88 .. 888.888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8. 88.8.8 8.2: 88.88. 88. .8 8.88 88 .. 888 .888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8. 88. . 88 888< 88.88. 88. .8 8.88 88 . . 888.888. 888.. 888.. 888.. .88.8 888.8 888.8 .... .8.888 ><2 88.88. 88.88 8.88 88 .. 8 8.888. 888.. 888.. 888.. 888.8 .88.8 888.8 8.8. 88.888 088 88.88. 88.88 8.88 88 .. 8 8.888. 888.8 888.8 88..8 8.8. 88.888 8.20 88.88. 88.88 8.88 8. 88 8 8.888. 888.8 888.8 8.8.8 8.8. 88.888 00.2 88.88. 88.88 8.88 8. 88 8 8.888. 888.8 888.8 888.8 88 . .8 88..8 88 . .8 8.8. 88.888 8.2.. 88.88. 88.88 8.88 8. 88 8 8.888. 8 88 38 88 82 88 8 88 >28 88 82 88 8 .88.. 88.0 8888.8 .883 ..88 28.8 8.8.5 280 160‘ 888.8 888.8 888.8 888.8 . .8.8 888.8 8.8 88.888 8.2: 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 .88.8 8.8.8 8.8.8 8.8 88.88 80> 88.88. 88. .8 8.88 88 88 8 8 888. 88..8 88..8 88..8 888.8 8.8 88.888 8.2: 88.88. 88.88 8.88 88 88 .88 888. 888.8 88..8 88..8 888.8 .88.8 .88.8 8.8 .8.88 8.2.. 8..88. 88.88 8.88 8. 88 8 8 888. 8 .8.8 888.8 8.8.8 8.8.8 8.8 88.88. ><8 88.88. 88.88 8... 88 88 888 888. 888.8 888.8 8 .8.8 8 .8.8 8.8 88.888 888 8..88. 88.88 8.88 88 88 888 888. 8.8.8 888.8 .88.8 888.8 888.8 888.8 8.8 88. .8 8 .2: 88.88. 88.88 8.88 88 88 8.8 888. 8.8.8 888.8 888.8 888.8 8.8 88.88. 820.2 88.88. 88.88 8.88 88 88 8.8 888. 8 .8.8 888.8 .88.8 888.8 888.8 888.8 8.8 88.88 8.2: 88.88. 88.88 8.88 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. ><8 88.88. 88.88 8.88 8. 88 8.8 888. 8 .8.8 888.8 ..88 888.8 888.8 8.8 88.888 888 88.88. 88.88 8.88 8. 88 8.8 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 88.888 088 88.88. 88.88 8.88 8. 88 8.8 888. 888.8 888.8 .88.8 888.8 8 .8.8 888.8 8.8 88.88. ><2 88.88. 88.88 8.88 8. 88 8.8 888. 8 .8.8 ..88 ..88 888.8 888.8 888.8 8.8 88.88. 8.2: 88.88. 88.88 ..88 88 88 8.8 888. 8.8.8 . .8.8 .88.8 8.8.8 888.8 888.8 8.8 88.888 8 .2: 8..88. 88.88 8. .8 88 88 8.8 888. 8 .8.8 ..88 ..88 888.8 888.8 888.8 8.8 8.8. 8 8.2: 88.88. 88.88 8.88 88 88 8.8 888. .88.8 8 .8.8 888.8 8.8.8 ..88 888.8 8.8 88.888 8 .2: 88.88. 88.88 8.. 88 88 8. . 888. .88.8 .88.8 ..8.8 ..88 ..8.8 ..8 88.888 8.202 88.88. 88.88 8.. 88 88 8. . 888. .88.8 888.8 888.8 8.8.8 ..8.8 888.8 8.8 8..888 8.20 88.88. 8..88 8.88 88 88 8. . 888. 888.8 888.8 888.8 888.8 888.8 8.8 88. .88 888 88.88. 88.88 8.88 88 88 8. . 888. 888.8 88. .8 888.8 888.8 .88.8 888.8 ..8 88.888 8.2082 88.88. 88.88 8.88 88 88 8. . 888. 88..8 888.8 88..8 .88.8 888.8 888.8 8.8 88.88 8 .2: 88.88. 88.88 8.88 88 88 8. . 888. 888.8 888.8 888.8 888.8 ..88 888.8 8.8 88.8.8 8.2.. 88.88. 88.88 8.88 88 88 8 . 888. 888.8 888.8 888.8 888.8 888.8 8.8 ...888 >88 88.88. 88.88 8.88 88 88 888 888. N 88 38 88 82 88 N 88 38 88 82 88 8 ..88. 88.0 8888.8 .8888 .83 8.8.8 8.8.80 8.80 acmwow— «::8—Er _..—2.8.57. _..—8 sagas—Z 2: 5 8:38.038”..— 161 .88.8 888.8 8.8.8 8.8 88.88 8.20 88.88. 8..88 8.88 88 88 8 8 888. 8 .8.8 888.8 888.8 8.8 88.8.8 8.20 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 -.. 8.8 88.888 8.20 88.88. 88.88 88 88 888 888. 8 .8.8 8.8.8 8.8.8 8.8.8 888.8 888.8 8.8 .8.888 .80 88.88. 88.88 8.88 8. 88 8.8 888. 888.8 888.8 888.8 888.8 8 .8.8 888.8 8.8 8..888 .58 88.88. 88.88 8.88 8. 88 8.8 888. 8.8.8 888.8 8.8.8 888.8 888.8 888.8 8.8 88.88. 882 8..88. 88.88 8..8 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 ..8 88.88. .80 8..88. 88.88 8..8 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8. 008 8..88. 88.88 8..8 88 88 8.8 888. 888.8 888.8 8 .8.8 888.8 888.8 8.8.8 8.8 88.. .8 882 8..88. .8.88 8.88 88 88 8.8 888. 8 .8.8 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.88. .80 8..88. .8.88 8.88 88 88 8.8 888. 8.8.8 8 .8.8 8.8.8 888.8 8.8.8 888.8 ..8 ...88. 828 8..88. .8.88 8.88 88 88 8.8 888. 88..8 .88.8 88..8 88..8 888.8 .8..8 8.8 88.88 008 8..88. .8.88 8.88 88 88 8.8 888. 888.8 8 .8.8 888.8 888.8 888.8 888.8 ..8 88.88. 882 88.88. 88.88 8.8. 8. 88 8 8 888. 888.8 8.8.8 8.8.8 888.8 888.8 8.8.8 8.8 88..8. 828 88.88. 88.88 8.8. 8. 88 8 8 888. 888.8 .88.8 88..8 888.8 .88.8 .88.8 8.8 88.88 .58 88.88. 88.88 8.8. 8. 88 8 8 888. 888.8 888.8 8.8.8 888.8 888.8 888.8 8.8 88.888 882 88.88. 88.88 8..8 88 88 8 8 888. 888.8 888.8 888.8 888.8 8 .8.8 888.8 8.8 88.88. :08 88.88. 88.88 8..8 88 88 8 8 888. 8.8.8 88..8 8.8.8 888.8 888.8 .88.8 8.8 88.88 008 8..88. 88.88 8.88 88 88 88. 888. 888.8 888.8 888.8 8.8 8..88 8.20 88.88. 88.88 8.88 88 88 888.888. 8.8.8 888.8 8.8.8 8.8 88.888 8.2: 88.88. 88.88 8.88 88 88 8.8.888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.8. 8.202 88.88. 88.88 8.8. 88 88 8 8 888. 888.8 888.8 888.8 88..8 888.8 88..8 8.8 88.88 8<> 88.88. 88.88 8. .8 88 88 888 888. 888.8 8.8.8 888.8 888.8 888.8 8.8 88..88 8.2.. 88.88. 88.88 8.88 8. .8 8.8 888. 8.8.8 8.8.8 888.8 8.8.8 888.8 8.8 88.888 8.20.2 .8.88. 88.88 8.8. 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 8..8.8 8.20 .8.88. 88.88 8.8. 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 ..8 88.88. 80> 88.88. 88.88 8.88 88 88 888 888. 8 88 38 88 82 88 N 88 38 88 82 88 8 .88.. 88.0 8888.8 .8888 .88.. 8.8.8 8.8.5 8.80 162 888.8 888.8 888.8 8.8 88.8.. ><2 8..88. 88.88 8.88 88 88 8.8 888. 8 .8.8 888.8 8.8.8 8.8.8 888.8 888.8 8.8 88.88. 882 88.88. 88.88 8.88 8. 88 8.8 888. 8.8.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.88. 828 88.88. 88.88 8.88 8. 88 8.8 888. 8.8.8 8 .8.8 8 .8.8 8.8.8 888.8 888.8 8.8 8..88. .80 88.88. 88.88 8.88 8. 88 8.8 888. 888.8 88..8 8. ..8 888.8 888.8 888.8 8.8 8..8. 008 88.88. 88.88 8.88 8. 88 8.8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 88.888 882 88.88. 8..88 8.88 88 88 8.8 888. .88.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 88.88. 828 88.88. 8..88 8.88 88 88 8.8 888. 888.8 888.8 888.8 888.8 8 .8.8 888.8 8.8 88.88. .80 88.88. 8..88 8.88 88 88 8.8 888. 88..8 88..8 88..8 888.8 888.8 88..8 8.8 88.88 008 88.88. 8..88 8.88 88 88 8.8 888. 888.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.888 828 88.88. 88.88 8.88 88 88 8.8 888. 8.8.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 .80 88.88. 88.88 8.88 88 88 8.8 888. 8.8.8 8.8.8 8.8.8 8.8.8 888.8 888.8 8.8 88.. .8 882 88.88. 88.88 8.88 88 88 8.8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 8.8 .8.888 008 88.88. 88.88 8.88 88 88 8.8 888. 88..8 88..8 8.8.8 8.8 88.88 8.20 88.88. 88.88 8.88 88 88 8.8 888. 888.8 8.8.8 8.8.8 ..8 88.88. 088 88.88. .8.88 8... 8. 88 8.8 888. 888.8 888.8 8 .8.8 8.8 88.8.. 888 88.88. .8.88 8... 8. 88 8.8 888. 8.8.8 8.8.8 888.8 888.8 ..8 88.888 8 . 20 88.88. 88.88 8.88 88 88 8. 8 888. 888.8 8.8.8 888.8 8.8.8 8.8 88.888 8.20 88.88. 88.88 8.88 88 88 8. 8 888. 888.8 888.8 8.8.8 8.8 88. .8 8.20 88.88. 88.88 8.88 .8 88 8 8 888. 888.8 888.8 888.8 8.8 88.88. ><2 88.88. 88.88 8.88 8. 88 8 8 888. 888.8 888.8 888.8 8.8 88.88 80> 88.88. 88.88 8.88 8. 88 8 8 888. .8..8 .88.8 888.8 ..8 88.88. 888 88.88. 88.88 8.88 88 88 8 8 888. 8.8.8 8.8.8 888.8 8.8 88.888 082 88.88. 88.88 8.8. 88 88 8 8 888. .8..8 88..8 888.8 8.8 88.88 8.20 88.88. 88.88 8.8. 88 88 8 8 888. 888.8 888.8 888.8 8.8 88.88 8.20 88.88. 88.88 8.88 88 88 8 8 888. 8. ..8 88..8 888.8 8.8 88.88 8.20 88.88. 88.88 8.88 88 88 8 8 888. N 88 38 88 82 88 8 88 38 88 82 88 8 .8.... 88.0 8888.8 .888.. .8.. 8.8.8 8.880 8.80 163 8.8.8 888.8 888.8 .88.8 .88.8 888.8 8.8 88..8 8.20 .8.88. 88.88 8.88 88 88 888 888. .88.8 .88.8 888.8 888.8 ..88 888.8 8.8 88.888 082 .8.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 8.8.8 888.8 8.8.8 8.8 8..88. ><2 ...88. 88.88 8. .8 8. 88 .88 888. 888.8 88..8 888.8 888.8 888.8 888.8 8.8 .8.88. 80> ...88. 88.88 8. .8 8. 88 .88 888. 8.8.8 888.8 888.8 888.8 888.8 888.8 8.8 8..88. ><8 ...88. 88.88 8..8 8. 88 .88 888. 88..8 888.8 88. .8 888.8 888.8 8.8 88.88 80> 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 88.88. ><2 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 8.8 88.88. 80> 88.88. 88.88 8..8 88 88 8 8 888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.8.8 8.20 88.88. 88.88 ..88 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.888 >88 88.88. 88.88 8.88 88 88 8 8 888. 8.8.8 888.8 8.8.8 8.8 88. .88 8.20 88.88. 88.88 8.88 88 88 8 8 888. 88..8 .8..8 88..8 888.8 8.8.8 88..8 8.8 88.88 8.20 88.88. 88.88 8.88 .8 .8 8 8 888. 888.8 8 .8.8 888.8 8.8.8 8.8.8 888.8 8.8 88.8 .8 >88 8..88. 88.88 8.88 88 .8 . 8 888. 888.8 888.8 888.8 888.8 8.8.8 888.8 ..8 .8.888 888 88.88. 8..88 8.88 88 88 888 888. 8.8.8 888.8 8.8.8 888.8 888.8 888.8 8.8 8..888 828 88.88. 88.88 ..88 .8 88 888 888. 8.8.8 8.8.8 8 .8.8 8.8.8 888.8 888.8 8.8 88.888 >88 88.88. 88.88 ..88 .8 88 888 888. 888.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.888 008 88.88. 88.88 ..88 .8 88 888 888. 888.8 88... 888.8 8.8 88.88 :8 88.88. 88.88 8.8. 88 88 888 888. 888.8 888.8 888.8 8.8 88.88 80> 88.88. 88.88 8.88 88 88 888 888. .8..8 88..8 .88.8 8.8 88.8. 8.20 88.88. 88.88 8.8. 88 88 888 888. 888.8 888.8 8.8.8 8.8 .8.888 8.202 88.88. 88.88 8.88 88 88 .88 888. .8..8 88..8 8.8.8 8.8 88.88 8.20 88.88. 88.88 8.88 88 88 .88 888. 888.8 888.8 888.8 8.8 8..88 80> .8.88. 88.88 8.88 88 88 .88 888. 888.8 8.8.8 888.8 ..8 88.88. ><2 .8.88. 88.88 8.88 88 88 .88 888. 888.8 8 .8.8 888.8 8.8 .8.88. 8.20.2 .8.88. 88.88 8.88 8. 88 .88 888. .8..8 88..8 888.8 8.8 88.88 8.20 .8.88. 88.88 8.88 8. 88 .88 888. N 88 38 88 82 88 8 88 38 88 82 88 8 .88.. ....0 8888.8 .8880 .8.. 88..8 8.880 8.80 164 8 .8.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.8.8 8 .20 88.88. 88.88 8..8 88 88 .88 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 _.8 88.888 8.20 88.88. 88.88 8.88 88 88 8.8 888. 8.8.8 888.8 888.8 888.8 -.. -.. 8.8 .8.888 8.20.2 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 .88.8 888.8 888.8 8.8.8 8.8 .8.888 8.20 88.88. 88.88 8.88 88 88 888 888. 888.8 .88.8 888.8 ..88 8.8 88.888 .08 88.88. 88.88 8.8. 8. 88 888 888. 888.8 88..8 88..8 888.8 8.8.8 888.8 ..8 88.888 80> 88.88. 88.88 8.8. 8. 88 888 888. 888.8 888.8 8.8.8 888.8 888.8 8.8.8 ..8 8..88. ><2 88.88. 88.88 8.8. 8. 88 888 888. 8 .8.8 8.8.8 8 .8.8 888.8 888.8 888.8 ..8 88. .88 882 88.88. 88.88 8..8 88 .8 888 888. 888.8 8.8.8 8 .8.8 888.8 888.8 8 .8.8 8.8 88.888 008 88.88. 88.88 8..8 88 .8 888 888. -.. 8.8.8 888.8 8.8.8 -.. 8.8 88.888 8.20.2 88.88. 88.88 8..8 88 .8 888 888. 888.8 .88.8 888.8 8.8.8 888.8 888.8 8.8 88..88 082 88.88. 88.88 8. . 8 88 .8 888 888. .8..8 .88.8 8.8.8 888.8 888.8 888.8 8.8 88.88 8.20 88.88. 88.88 8. .8 88 .8 888 888. ..88 888.8 8.8.8 ..8 .8.88. 8.20.2 88.88. 88.88 ..8. 88 88 888 888. 88..8 .88.8 888.8 888.8 888.8 888.8 8.8 .8.88 8.20 88.88. 88.88 ..8. 88 88 888 888. 888.8 8 .8.8 888.8 8.8 88. .8. 8.20 88.88. 88.88 8.8. 88 88 888 888. -.. .88.8 888.8 8.8.8 8.8 88.88 8 .20 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 8.8 88.88. 088 8..88. 88.88 8.88 88 88 888 888. -.. 8. ..8 888.8 8 .8.8 8.8.8 8 .8.8 8.8 88.88 888 8..88. 88.88 8.88 88 88 888 888. 8 .8.8 888.8 8.8.8 8 .8.8 8 .8.8 8 .8.8 8.8 88.888 882 88.88. .8.88 8.88 88 88 888 888. 888.8 888.8 888.8 888.8 888.8 8.8.8 8.8 88.888 828 88.88. .8.88 8.88 88 88 888 888. 888.8 888.8 888.8 88..8 88..8 88..8 8.8. 88.888 008 88.88. .8.88 8.88 88 88 888 888. 8.8.8 8.8.8 8.8.8 888.8 888.8 888.8 8.8 88.888 828 .8.88. 88.88 8.88 88 88 888 888. 888.8 8 .8.8 8 .8.8 888.8 888.8 888.8 8.8 88.888 882 .8.88. 88.88 8.88 88 88 888 888. 888.8 8 .8.8 8 .8.8 888.8 888.8 888.8 8.8 88.888 .80 .8.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 8 .8.8 8 .8.8 8 .8.8 8.8 8..888 008 .8.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 8.8.8 888.8 ..8.8 ..8 88.888 8.2082 .8.88. 88.88 8.88 88 88 888 888. 8 88 38 88 82 88 8 88 2.8 88 82 88 8 08... 88.0 8888.8 .8880 .8.. 8.8.8 8.880 8.80 165 888.8 .88.8 888.8 8.8.8 8.8.8 8.8 88.888 8.20 88.88. 88.88 8.88 88 88 8 ..888. 8.8.8 8.8.8 8.8.8 888.8 8.8 88.888 8.20 88.88. 88.88 8.88 88 88 8 ..888. 888.8 888.8 888.8 888.8 8.8.8 8.8 88.88 0:8 88.88. 8..88 8.88 88 88 8 ..888. 888.8 88 ..8 888.8 888.8 888.8 888.8 8.8 88..88 000 88.88. 88.88 8.88 88 88 .88.888. 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 88..88 8.20 88.88. 88.88 ..88 88 88 888.888. 888.8 .88.8 888.8 8.8.8 888.8 8.8.8 8.8 88.8.8 8.20 88.88. 88.88 8.8. .8 88 8 8.888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 8.20 88.88. .8.88 8.88 .8 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.. .8 820.2 88.88. 88.88 8.88 88 88 8 .8 888. 888.8 888.8 888.. 888.8 8.8 88.88 8>8 88.88. 88.88 8.88 88 88 8 .8 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.8.. .08 88.88. 88.88 8.88 88 88 8 .8 888. 8.8.8 8.8.8 8.8.8 888.8 .88.8 888.8 8.8 88.888 8208.. 8..88. 88.88 88 .8 . .8 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8. 88.888 8.20 8..88. 88.88 . 88 .8 . .8 888. 888.8 888.8 888.8 8.8.8 888.8 888.8 ..8 .8.888 8.2082 88.88. 88.88 8.88 88 88 . 8 888. 888.8 8. ..8 888.8 888.8 888.8 .88.8 8.8 88.888 8>8 88.88. 88.88 8.88 88 88 . 8 888. 888.8 888.8 888.8 .88.8 .88.8 888.8 8.8 88.888 8.20 88.88. 88.88 8.88 88 88 . 8 888. 888.8 8 .8.8 888.8 8.8.8 888.8 888.8 8.8 88.888 8.20 .8.88. .8.88 8.88 88 88 8 8 888. .88.8 8.8.8 888.8 8.8.8 8.8 88.8.8 8.20 88.88. 88.88 ..8. .8 88 8 8 888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.. .8 8.20 88.88. 88.88 8. .8 88 88 8 8 888. 888.8 888.8 888.8 888.8 8.8.8 8.8 88..88 088 8..88. 88.88 8.88 88 .8 888 888. 888.8 888.8 888.8 888.8 8.8.8 ..88 8.8 88.88. 888 8..88. 88.88 8.88 88 .8 888 888. 888.8 888.8 888.8 888.8 888.8 ..88 8.8 .8.888 8.20 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 8.8.8 8.8.8 8.8 8..88. 8.20.2 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 888.8 8.8 8..88 8.20 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 .88.8 888.8 888.8 8.8 88.88. 082 88.88. 8..88 8.88 .8 .8 888 888. 888.8 .88.. 8.8.8 8.8.8 8.8.8 8.8.8 8.8 88.88 8>8 ...88. 88.88 8.88 88 88 888 888. 888.8 .88.8 888.8 ..88 888.8 888.8 8.8 88.888 082 88.88. 88.88 8..8 88 88 .88 888. N 88 38 88 82 88 8 88 >88 88 82 88 8 88... 88.0 8888.8 .8880 .8.. 8.8.8 8.880 8.80 166 888.8 8.8.8 888.8 8.8.8 8.8.8 8.8.8 ..8 .8.888 >88 88.88. 88.88 8.88 88 88 8.8 888. 888.8 8.8.8 888.8 888.8 888.8 .88.8 8.8 .8.888 8 .20 88.88. 88.88 8.88 88 88 8.8 888. 888.8 8 .8.8 888.8 8.8.8 888.8 888.8 8.8 .8.888 >88 88.88. 88.88 8..8 88 88 888 888. 8 .8.8 8 .8.8 888.8 888.8 888.8 8 .8.8 8.8 8 . .888 008 88.88. 88.88 8.88 88 88 888 888. 88..8 88. .8 .88.8 888.8 888.8 8.8 .8.88 8 . 20 88.88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 888.8 888.8 8 .8.8 ..8 88.888 <>.2 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88 .80 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 8.8 .8.88 008 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 8 . .888 <>2 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 88..8 888.8 888.8 888.8 8.8 88.888 .80 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 888.8 8.8.8 8 .8.8 8.8.8 8.8 88.888 882 88.88. 88.88 8.88 88 88 . .8 888. 888.8 888.8 888.8 888.8 888.8 88..8 8.8 88.88. 008 88.88. 88.88 8.88 88 88 . .8 888. 888.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88.888 <>.2 88.88. .8.88 8.88 8. 88 . .8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 8..88. .80 88.88. .8.88 8.88 8. 88 . .8 888. 8.8.8 888.8 8.8.8 8.8.8 8.8.8 8.8.8 8.8 88.88. 882 88.88. .8.88 8.88 8. 88 . .8 888. 88..8 88..8 88..8 88..8 888.8 88..8 8.8 88.8 008 88.88. .8.88 8.88 8. 88 ..8 888. 888.8 88..8 88..8 888.8 -.. 8.8 88.88 80> 8..88. 88.88 8.88 88 88 8.8 888. 888.8 8.8.8 8 .8.8 888.8 888.8 8.8 88.88. 8 . 20 88.88. 88.88 8.88 88 88 8 . 888. 888.8 8. ..8 888.8 888.8 888.8 8.8.8 8.8 88.888 888 88.88. 8..88 8.8. 88 88 8.8.888. 888.8 888.8 888.8 8.8.8 8 .8.8 8.8 88..8. ><8 88.88. 8..88 8.8. 88 88 8.8.888. 888.8 .88.8 888.8 888.8 888.8 888.8 8.8 88.88. .08 88.88. 8..88 8.8. 88 88 8.8.888. 888.8 888.8 888.8 888.8 888.8 888.8 ..8 88.888 008 88.88. 88.88 8.88 88 88 88. .888. 8.8.8 888.8 888.8 8.8.8 888.8 8.8.8 ..8 88.888 8.202 88.88. 88.88 8.88 88 88 .8. .888. 888.8 888.8 888.8 .88.8 8.8 88..8. ><8 88.88. 88.88 8.88 88 88 88. .888. 8.8.8 .88.8 888.8 888.8 888.8 888.8 8.8 88.888 088 88.88. 88.88 8.88 88 88 88. .888. 888.8 888.8 888.8 8.8.8 888.8 . .8.8 8.8 88.88. 8.20 8..88. 88.88 8.88 88 88 8. . .888. N 88 >88 88 82 88 8 88 38 88 82 88 8 08... 88.0 8888.8 .8880 ..80 8.8.8 8.880 8.80 167 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.88. >88 88.88. 88.88 8.8. 8. 88 8 ..888. 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 88.888 >88 88.88. 88.88 8.8. 88 88 8 ..888. 888.8 888.8 8.8.8 888.8 888.8 8.8 88.88. >88 88.88. 88.88 8.8. 88 88 8 ..888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.88. 888< 88.88. 88.88 8.8. 88 88 8 ..888. 888.8 888.8 8.8.8 8.8.8 8.8.8 888.8 8.8 88.88. 888< 88.88. 88.88 8.88 8. .8 888.888. 888.8 888.8 888.8 888.8 ..88 8.8.8 ..8 .8.88. >88 88.88. 88.88 8.8 88 88 888.888. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 ...88. 88.88 8.88 88 88 888 888. 888.8 888.8 888.8 8 .8.8 888.8 888.8 8.8 88.888 >88 88.88. 8..88 8. .8 88 88 888 888. 88..8 888.8 88..8 888.8 888.8 8.8 88.888 8 .20 88.88. 8..88 8..8 88 88 888 888. 88..8 88..8 888.8 888.8 .88.8 8.8.8 ..8 88.888 >88 88.88. 8..88 8. .8 88 88 888 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8.8 ..8 88.88. >88 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. 8>8 88.88. 88.88 8.88 88 88 8 8 888. 888.8 888.8 888.8 8.8.8 8.8.8 8.8 88.888 8.00 88.88. 88.88 8.8 88 88 8.8 888. 888.8 888.8 888.8 8.8.8 888.8 888.8 8.8 .8.888 8880 88.88. 88.88 8.8 88 88 8.8 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 >88 88.88. 8..88 8.8 88 88 888 888. 888.8 888.8 88..8 888.8 888.8 888.8 8.8 88.888 8.20 88.88. 8..88 8.8 88 88 888 888. .8..8 .8..8 888.8 .8..8 888.8 888.8 8.8 88.88. 888.8 88.88. 8..88 8.8 88 88 888 888. 888.8 8.8.8 888.8 888.8 8.8.8 888.8 8.8 88.888 >88 .8.88. 88.88 ..8 .8 .8 .88 888. 888.8 .88.8 888.8 888.8 8.8.8 888.8 ..8 88.8 .8 8.20 .8.88. 88.88 ..8 .8 .8 .88 888. 888.8 888.8 888.8 .88.8 8.8.8 8.8 88. .8. 888< .8.88. 88.88 ..8 .8 .8 .88 888. 888.8 .88.8 888.8 888.8 8.8 88.888 082 88.88. 8..88 8.8. 88 88 888 888. 8.8.8 8.8.8 8.8.8 888.8 8.8 88.888 8.20 88.88. 8..88 8.8. 88 88 888 888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88 008 88.88. 88.88 ... 88 88 .88 888. 8.8.8 8.8.8 888.8 888.8 888.8 888.8 8.8 88. .88 >88 88.88. 88.88 ... 88 88 .88 888. 888.8 8.8.8 888.8 8.8.8 888.8 888.8 8.8 88.8.8 8.20 88.88. 88.88 ... 88 88 .88 888. 8.8.8 888.8 888.8 8.8.8 888.8 ..88 8.8 88.88. ...8 88.88. 8..88 8.88 88 .8 888 888. N 88 2.8 88 82 88 8 88 38 88 82 88 8 .8.... 88.0 8888.8 .888.. .8.. 8.8.8 8.880 8.80 168 888.8 88..8 88..8 888.8 8.8 88..88 088 88.88. 8 ..88 8.88 88 88 .8. 888. 888.8 888.8 888.8 8.8 .8.88. 888< 88.88. 88.88 8.8. 88 88 8 8.888. 88..8 .88.8 888.8 888.8 8 .8.8 888.8 8.8 88.88. 888 88.88. .8.88 ..88 88 88 8 8 888. 888.8 88..8 888.8 888.8 8 .8.8 888.8 8.8 88.88. 088 88.88. .8.88 ..88 88 88 8 8 888. 888.8 888.8 888.8 888.8 888.8 8 .8.8 8.8 88.888 >88 88.88. 88.88 8.88 8. 88 888.888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.88. >88 88.88. 88.88 8.88 88 88 8.8.888. .88.8 8.8.8 8.8.8 ..88 8.8 88.88. >88 88.88. 88.88 8.88 88 88 8 8.888. 888.8 8 .8.8 888.8 8.8.8 888.8 888.8 8.8 88.88. >88 .8.88. 88.88 8.8 .8 88 8 8.888. .88.8 888.8 8 .8.8 888.8 8.8 88.888 082 88.88. 88.88 8.8. 88 88 8 8.888. 8.8.8 8.8.8 888.8 888.8 8 .8.8 8.8.8 8.8 88.88. 888< 88.88. 88.88 8.8 88 88 88. .888. 888.8 888.8 888.8 8.8.8 8.8.8 888.8 8.8 88.8.8 >88 8..88. 88.88 8.88 88 88 88. .888. 888.8 888.8 888.8 888.8 888.8 888.8 8.8 88.888 >88 88.88. 88.88 8.88 88 88 88. .888. .88.8 888.8 888.8 8.8.8 8.8 .8.888 082 88.88. 88.88 8.88 88 88 8. . .888. 888.8 888.8 888.8 888.8 888.8 8.8 88.88. ><8 8..88. 8..88 8.88 .8 88 8. . .888. N 88 38 88 82 88 N 88 >88 88 82 88 8 .8.... 88.0 8888.8 .8880 .8.. 8.8.8 8.880 8.80 169 APPENDIX B Graphs for Individual Station 170 TUG 2.2 81 usz 2.2 , g 1.8 . 0 ° 1.8 i o O | ‘ O 2 1'4 1 . .‘ I g 1.4 ‘ o .0 o 3 1.0 ... . O . i 5 1.0 < : O o O m 00 g on o o: . - 0.6 «O .r g m .8 00 0° A w . . \ 0.6 ‘ . .. . 5 0.2. "fir-0 ' E 021 0': .3" . 35’ -o.2 '44 - 8'." _0'2 *‘ ' °" " J 5 78910111213 5678910111213 K'Ch“ K-Chss 0 38 Earthquakes 0 41 Explosions 0 81 Earthquakes 0 52 Explosions UURS 2.2 CLNS 2.2 :5 L4 * . .° 2; 1J4: 2 0 V 1.0 « ° V 1.0 o no . an 0’ c ’0 m 0 o 1’ 0.6 ..o‘é'” : 0‘? '..?‘o’o . A * ’0 0 o '5 0.2 4 fi 0 5 . o. 0 ° 3 ° 0 “ I 8'3 3': 4 - $.08?“ 6°? .02 f 4? , .5678910111213 5678910111213 K-Class K-Class 0 45 Earthquakes 0 40 Explosions 0 36 Earthquakes 0 28 Explosions CG 2.2 . 1.8 « 1.4 « 1.0 ‘ 0.6 ~ 0.2 « -o.2 ‘: Pew/SB (MDCP U O. . I O O fi‘lfi :‘1. ! 1 J 5678910111213 K-Class 0 32 Earthquakes 0 41 Explosions Figure Bl. Pg(h)/Sg(h) DCP ratio for stations in the Southern Yakutia region. 171 é Pg (2) / 83 (z) DCP § Pg (2) / 83 (z) DCP 2.2 . o USZ 2.2 . O 1.8 v0 m 1,s« .. . 1.4 -~ . o 8 1.4 t O ’.‘ ”0 . ‘ o 0 3‘ 1.08 o 3... o a; 1.0f . 0.. :0. \ 1 0 ~09 0'6? ' ”‘3‘." 1: 0'6 ~ .103."- 0 ' V . o -0.2 T4L 9 “0.2 Y Y 5678910111213 56789‘011‘2'3 K'Cm K‘Chss ”85.88818”th '81W605252‘pb8bm 2.2 CLNS 2.2 1.8* O O. m 1.8- : . 1.48 . o g 1.4‘ : 8. 1.0 4‘ o ' f; 1.01 ‘..... o O 0.6« ‘fi'l' 2 0.64 ”I .. ‘ J a 5 o. O . o O . ° 0 o 0.24 '8‘??? 1 0‘. g: 0.2 .0. o ...: ... 0 : -o.2 . * -o.2 - .° ’L—v— 5678910111213 5678910111213 K-Chss K-Chss O4S&nhquesO40Eprsbm o365|flhque30285prsbns CGD 2.2 1.84 O- . O 8 1.4f .. o 12 1.08 o 'o ’0, 3 06; ’“O’ A ' . O a ' 8:"- a. 0.2.i ~ .‘. .‘ . 5‘ O A ° .i i" .0.2 . . T s 6 7 8 9 10 11 12 13 K-Chss - 32 Earthluakes . 41 Explosions Figure 32. Pg(z)/Sg(z) DCP ratio for stations in the Southern Yakutia region. 172 § 3.0 USZ O 2.6 . . a. 2.2 i 0. U o a 1.8 * o . B N 73 V 1.4 . g V N on E 1.01 0'0: .0 , '2 5 0.6‘ "x‘... E 01° 0.2 1 ,‘ . . a...“ -0.2 4.1 v w . 5678910111213 5678910111213 K-Chss K-Chl O38Emtll1mkc8041Fprs'nm 081Earthques05213prsbns UURS 3.0 8 CLNS 3.0 ‘ 2.6 A . . 2.6 : 8 2.2 3 8 2.2: 8 1.8 ‘ 8 1.8 ‘ 1:: i o '8‘ ‘ ° ° :3 1.4 ..o O a... . I; 1'4. 0 W to ~ m to . '3!“ 2 ' :&.0a )8 ' '. o o 5 0.6 « ° 5 0.6‘ ’ f °° “.0: ’ 00 en . . .0 o 0‘ 0 D- 0.2 . 3- 0.2 ‘ 0 ' 0 .0 .0... .0 .0. o O o O -02 - . -02 4 41*.— 5678910111213 5678910111213 K-Chss K-Chss O 45 Eanlqucs O 40 Explosbm O 36 Farthques O 28 Eprs'nm CGD 3.0 v 2.6 i o O o g 2.2 < . 1.8 ‘ '8‘ j 1 ° ’ v 1.4 '.. an O E 1.0 4 0 o .: E 0.6; . 8 "3 at“ 0.2 « ”i ...o I ' o o -0.2 v 5 6 7 8 9 10 ll 12 13 K-Chss O 32 Earthquakes O 41 Eprsbns Figure B3. Pg(h)ng(z) DCP ratio for stations in the Southern Yakutia region. 173 Pg (z)/Sg (h) DCP § § Pg (2) / sg (h) DCP 2.2 1 1.8 + . 1.4 ~ 1.0 « 0.6 * 0.2 ~0.2 O .1 0’ 5 6 7 8 9 K-Chss 10 11 12 13 I 38 Wake: 0 41 Eprs'nns 2.2 4 0 1.8 . 1.4 « ° .8 1.0 . : 06 « :30 °. ' s’v'! ’.. 0.21 ‘.. ... _02 o to 5 6 7 8 9 10 11 12 13 K-Chss I45Earthquu O40Eprsions CGD Pg (z)/ 83 (h) DCP USZ Pg (2) / 8g (11) DCP 0 3 Pg (2) / 83 (h) DCP 2.2 1.8 * o o 0 1.4 ‘ . 9. 10 11 12 13 2.2 1.8 -0.2 K-Chss o 81 Earthquakes 0 52 15mm 1.4 i 1.0 l 0.6 0.2 ‘ 036W“ 0288mm 2.2 1.8 t 1.4 4 1.0 0.6 i 0.2 1 -0.2 0... r... :3... f o 56789 K-Chss O 32 Earthukes O 41 £2me 10 11 12 13 Figure B4. Pg(z)/Sg(h) DCP ratio for stations in the Southern Yakutia region. 174 TUG F1111 Vector DCP UURS Full Vector DCP 2.2 USZ 2.2 o 1 ‘ l.8 « 1 1.81 o o. 1.4 1 ’0 o O i n- 1.4 « 0 ° . ‘ O I 8 4 1.01 . 00' .. 0 1 a 1.0: 4 ’° 0 5 0.6 1 °°6 , '33-.‘5 1 E 02: 0.2« "9 u 1 “‘ ' ”'4‘. ' . i -0.2 -0.2 v w " 5678910111213 5678910111213 K-Class K-Chns O38Ea11|nmkes¢41Eprsbm '81Fammk60528mbsiom 2.2 1 CLNS 2.2 1.81 0 i 1.84 1.4« :’ . g 1.4: . 1.01 0’ 00 ‘. : .. g 1.01 . ‘ . 0-6 0. o ’ . > 0.61 O. + “A“: g ‘ .0 .‘ 0.0" ‘ 1 O o 9 o o 0.2 O 0 LI- 02‘ O Q .0” Q o f i. o 10 o. w o ' -0-2 " Y 1 ‘ .02 3 ,A r 1 fi 1 5678910111213 5678910111213 K-Ciass K-Chss O4SEufl1qukesO40Eprsims 0365111111131“: 028mbsbm CGD 2.2 1.8 a- 1.4« . 8 .o .- 1.o« - g . .0 o > 0.6‘ ' := 02: ‘3‘?»- . ' . o . U .5. -0.2 v T S 6 7 8 9 10 11 12 13 K-Chss . 32 Earthques . 41 Explosions Figure BS. Full vector DCP ratio for stations in the Southern Yakutia region. 175 2 Pg (h) / Sg (h) DCP z 7: 2'; Pg (h) / Sg (h) DCP 1.8 SUUS 1.8 1,4 ~ 3. 1.4 4 . o 8 ‘ 3. - A 1.0 ° 1.0 o. o. . 5 .. “O '2 '° 5? 06 « 0.6 .0 ‘.. .0. . 2 - '... . 0. o '. o' 5 02 ° "9 o" 0.2 - o ‘33..” :9.” - . . 0 ..u':. -0.2 -0.2 5678910111213 5678910111213 K-Chss K-Chss O 46 Fanlques 0 33 Explosiom O 18 Earthquakes 0 l9 Eprs'nm 2.2 DBI 1.8 ‘3 ‘ L 1.4 1.4 < 0 ° 53 1.0 1.0< . f; . o ' 00. U) 0.6 ‘ . .. O. 0'6 ‘ o! '0 o >- 0. Q. 5 02 . O 0.2 ... .. 5'.“ . $. on -0.2 -0.2 T 5678910111213 5678910111213 K-Chss K-Class 0 14 Earthquakes 012 Explosions 014Eanhquakes 010Eprsiom SEY 2.2 1.8 E: o 1.4 <5 1.0 < 31° ; 0.6 x: 5 o .1 o °° 0.2 - a- ‘ ' ... .... -0.2 56789 K-Chss 10 ll 12 13 0 26 Earthquakes 0 14 Fxplosiom Figure B6. Pg(h)/Sg(h) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 176 UNIS 2.2 Pg (2) / Sg (z) DCP z 7: 8 Pg (2) / Sg (z) DCP SUUS 2.2 1.8 . a 1.8 j - . 1.4 0 Q '4 ° ‘ E . o 1.0 . o 9 . ‘23 1'0 o 3 06 1 g. . \ 0.61 oo o . '1 . if 0 . i 0 ° !' ° 23 0.21 ° '3’ 8". o o I g 9.. ° 0 o. 0.2 . . C 1 C ' M." I -0.2 f a 02 _ 0 o o " 5678910111213 5 6 7 8 9 10 11 12 13 K-Cbss K-Chss 2.2 DBI 2.2 . 1.8 . 1.8 * on... o a. 0000. 1.4 ‘ g 1.4 ~ 0 i? 1.0 1 o . . :3 1.0 * m 0.6 . o. o ,1 0.6 * .0 . 1 ... . . 3 . oo 9. 0'2 0 ‘ E 0'2 4 o. 'o -0.2 -02 1 - . V 5678910111213 5678910111213 K-Chss K-Chss o 14Fart1ques 012 Explosions Il4Ea11hques 0 10 Eprs'nns SEY 2.2 1.8 A. g 1.4 ~ 1: 131° (1)0 4 0 o . 1 .6 ‘ 9 i 0. § 9 a. 0.2 :£.. ‘ o o .02 . v‘ ' S 6 7 8 9 10 11 12 13 K-Chss o 26 Fmttnuakes 0 14 Explosions Figure B7. Pg(z)/Sg(z) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 177 UNIS 3.0 SUUS 3.0 I 2.6 . o 2.6 4 i O . ‘ O n. 2.2 1 a. 2.2 ‘ 8 0 ° 1.8 a 1.8 . o a 1,4 g 1.4 4 o ' .1 o ‘3 1.01 ’o ‘.' :1 1.0« '0. ° 3 0.6 ...? ’° ' E 0.6: . .°' ,1“. E 0.2 0 Q. ‘5 "'.. 11°? 0.2 ‘ o. I on ‘ o I O o -02 « - . -0.2 . . v 5 6 73 910111213 56 78910111213 K-Chss K—Clus O 46Earthquakcs 0 33 Eprsiom O 18 Eaanmkes 0 19 Eprs'nm NKBS 3.0 4 DBI 3.0 _ 2.6 1 2.6 < 224 ° °°° - a. 22 ' ° E3 ' o . 8 ' o a 1.8 'J . 1.8 d O . 5 1.4 1 o 3 1.4 « . 131° 0 . no 0 \ 1.0 '4 .. r g 1'0 . .0 E 0.6 « . ' E 0.6 « .1. 1 O . 5'.” 0.2 . .. ' 8? 0,2 « «- ° '. . o o. -0-2 v -0.2 - 5678910||1213 5678910111213 K-Chss K-Class O 14 Eam'quakes o 12 Eprsiom O 14 Eanlnmkes O 10 Eprs'nm SEY 3.0 2.6 * a. 2.2 4 U a 1.8 5 1.4 ~ a ‘3 1.0 * .0 . I 5 0.6 4 ::‘t w o 9" 0.2 " fl . _02 1__‘+._‘_‘_._ 56789 K-Chss 10 11 12 13 O 26 Makes 0 14 Eprs'nns Figure BS. Pg(h)/Sg(z) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 178 UNIS Pg (2) / Sg (h) DCP NKBS Pg (1) I Sg (h) DCP 2.2 SUUS 2.2 1.8“ 8 1.8* 1.4 . a 1.4 " 5 1.04 o 1.0~ , O. if 05‘. .0 0.61 o O :. 0.. fi . . ? .0 ‘ o O. o ‘6; 0.2“ O .“W. 0 0.2 a}. .' 0:0. 2‘ .0 . .o ‘. . . ’0.2 . Y 1 f '0-2‘ * * s 6 7 8 910111213 5678910111213 1°C“ K-Chss O46Enrt1nmke0033Eprsiom ”swa'wfimbsiom 1.8 DBI 2.2 1.4 . 1.8 ' .1 o E; 1 1.0 .Q . a 14? 9 O . E 1.01 0.6“ 9 m . .0 ‘ . .3 . . z 0.6 1 . . ° 0.. ' N o ‘ 0.2 a a 90 . . .020. a. 0.21 Q.- o. o. .002 I ' .02 1 T ‘ Y 56739‘011‘2‘3 5678910111213 K-Chss K-Cllss 014Emhquesoleprsiom 014Eanhque3010Eprsiom SEY 1.8 m 1.4 1 § 1.0. ’5 * : 5 0.6 0 .0 an - 1 a. _ . ... ...: -01 . . g T 5 6 7 8 9 10 11 12 13 K-Chss o 26 Eamnmkes 014Eprs'nm Figure B9. Pg(z)/Sg(h) DCP ratio for individual stations in the Magadan and Northern Yakutia region. 179 UNIS 2.2 SUUS 2.2 1.8 1.8 4 . “- 1.4 . 8 1.4 8 1 9. G 10‘ ’ ‘ 5 1.0 . 0 g - 3' 8 9‘. > 0.6 2 : I. Z 0.61 on ..‘o. = 0 ..\~.. '5 ”.é.’ 9. ° .2 0.2« 0'.’. u- 0.2 < . ‘ . 4 .. . . ‘..i I. -0.2. . —0.2 1 4A. 5678910111213 5678910111213 K-Chss K-Chss 046Wcs033fiprsbm 018Wc50191§prsbm NKBS 2.2 DBI 2.21 1.8 * 1.8 . 8 1.4 * 9 a. 1.4 « Q 9o 8 ‘ o 0 9 1.0 * .. . . 1.0 . O o 00 a z .9 a O . > 0.6 1 o .. u > 0.6 * .o E 02 .0 . ' -"§ * O o . u- . 4 ... . u. 0.2 '1 ‘.. .. .. -02 -o.2 , , 5678910111213 5678910111213 K-CN K-Chss . 14 Eanhques . 125411310115 0 I4 W6 0 10 Eprsiom SEY 2.2 1.8 1 8 1.4 1 O 1.0 * i < . . > 0-6 O o "5‘: u. 0.2 . o i '. .00 -0.2 . . 5 6 7 8 9 10 ll 12 13 K-Chss o 26Ea111ntnkes 014Explos'nm Figure B10. Full vector DCP ratio for individual stations in the Magadan and Northern Yakutia region. 180 EEEEEEE wamwmm