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ABSTRACT

DIETARY SUPPLEMENTS AND THEIR EFFECT ON STRESSED

CARTILAGE EXPLANTS

By Robert Harlan

We performed two experiments: for the first experiment, three culture schemes:

1) Interleukin-1 (IL-1) (50 ng/ml) treatment with and without GLN + CS for 48 h (short-

term non-impact), 2) IL-1 plus mechanical trauma (15 mega pascal) with GLN + CS for

48 h (short-term impact), 3) two-week cultures were cultured with GLN + CS and were

exposed to IL-1 (50 ng/ml) on day 2 and day 10 (long-term non-impact). For the second

experiment, SAMe was tested at concentrations of 1.0, 0.1, and 0.01 ug/ml (high,

medium, and low dose) and ASU was tested at concentrations 10.0, 1.0, and 0.1 ug/rnl

(high, medium, and low dose). Interleukin-l (IL-1) at 15 ng/ml was used to initiate

inflammatory stress. Nitric oxide (NO) and prostaglandin E2 (PGEZ) were measured as

indicators of inflammatory response for both experiments. Glycosarninoglycans (GAG)

were measured as an indicator of cartilage turnover for both experiments.

For the first experiment, GLN + CS did not affect NO, PGEz, or GAG

concentrations in the non-impact short-term model. When mechanical impact was

combined with IL-1 , the NO concentration in the GLN + CS treatment was lower than the

IL-1 treatment and did not differ from control. The GAG release was also lower in the

GLN + CS treatment than in the IL-1 treatment. The non-impact long-term cultures

demonstrated that GLN + CS treatment did not affect NO or PGEZ concentration or GAG

content in the explants at termination. The second experiment showed no significant

treatment effects for either SAMe or ASU.
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INTRODUCTION

Osteoarthritis (0A) is a degenerative joint disease marked by progressive

cartilage tissue loss, pain, inflammation, and eventual loss ofjoint function (Felson et a1.

1998; Hashimoto er al. 1998). The significance of0A to the horse racing industry is that

it results in lameness. The onset of OA can be initiated by normal exercise of the animal

(Stashak 2002). Since no known way to cure or prevent OA exists, better therapies are

needed. In recent years, dietary supplements (now known as nutraceuticals) have been

used to treat 0A in both humans and animals. Glucosamine (GLN) and chondroitin

sulfate (CS), S-adenosyl-L-methionine (SAMe), and avocado soy unsaponifiables (ASU)

have been among some ofthe dietary supplements taken for joint pain.

This project consisted of two objectives: 1) our first objective was to test the anti-

inflarnmatory effects of biologically relevant concentrations of GLN plus CS in three

different equine cartilage cultures that included conditions for inducing stress; 2) The

second objective was to test concentrations of ASU and SAMe in bovine cartilage

explant cultures for their ability to mitigate cytokine-induced stress. Explant tissue

culture provides an excellent system for testing chondroprotective agents because of the

convenience and accuracy of the data collection. Mechanical loading is known to be a

risk factor for CA in horses and the combination of GLN and CS at biologically relevant

concentrations have neverbeen tested in a mechanical loading tissue culture system.

In the first series of experiments, we provide evidence that biologically relevant

concentrations ofGLN + CS may be effective against harmful inflammatory responses to

trauma in equine cartilage tissue. We exposed equine cartilage explant cultures to three



different types of conditions: 1) a short-term non-impact culture system utilizing

(interleukin-1) IL-1 (50 ng/ml) as the inducer of inflammatory stress with and without

GLN + CS, 2) a short-term impact utilizing IL-l plus mechanical trauma to induce

inflammatory stress with and without GLN + CS 3) a two-week culture (long term) with

continuous exposure to GLN + CS and introduction of IL-1 (50 ng/ml) on day 2 and day

10.

In the second series of experiments, we used the short-term culture system

mentioned above to test varying concentrations of SAMe and ASU in bovine explants.

Both experiments measure tissue inflammatory and breakdown products as the response

variables. Similar types of culture systems have been used in our lab previously (Chan et

al. 2005a; Chan et al. 2005b; Chan et al. 2005c), and in this study we use an in vitro

cartilage explant approach to test GLN and CS, SAMe, and ASU and their ability to

mitigate inflammatory responses.
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Chapter 1

Literature Review

Importance of dietary supplements to the horse industry

The American Horse Council reported that the equine industry provides 1.4

million full-time jobs in the US. and that there are 9.2 million horses nation-wide (2005).

The same report stated that the direct contribution of the horse industry to the US.

economy is $39.9 billion annually. Also, they found that 4.6 million people are involved

in the equine industry in a professional or volunteer capacity.

The significance of osteoarthritis (CA) to the racing industry is that OA results in

lameness, reduced performance, and wastage (Murray et a1. 2005); and one of the main

factors that determines the value and usefulness of a race horse is soundness of the legs

(Jeffcott et al. 1982; Rossdale et al. 1985; Fubini et al. 1999). Lameness is the most

significant limiting factor for race horses; the greatest numbers of days lost to training are

caused by lameness (Rossdale et al. 1985), and failure to race is most commonly due to

lameness (Jeffcott et al. 1982).

The presence of 0A is pervasive in the American horse population. A survey of

veterinary schools found that at veterinary schools, 33% of equine patients had OA

lesions (Rose 1977). In another survey of 140 2-year-old Thoroughbred horses, only

23% were sound (Jeffcott et a1. 1982). The onset of OA can be initiated by injuries

sustained during normal exercise normal exercise of the animal and has been linked to

activities such as barrel racing, pole bending, dressage, and other types of competions

(Stashak 2002). Since no known way to cure or prevent OA exists, better therapies are

needed.



Articular Cartilage

Chondrocytes

Articular cartilage tissue at the ends of long bones provides a frictionless surface

that allows for joint mobility. Cartilage also provides a shock-absorbing cushion that

protects the ends of bones. The tissue is composed of chondrocytes, which are

surrounded by an extracellular matrix. These cells only constitute 1% of the tissue

volume (Buckwalter and Lane 1997). In healthy cartilage, chondrocytes are capable of

breaking down and synthesizing extracellular matrix to maintain a stable equilibrium of

catabolism and anabolism (Bullough 1992a). Chondrocytes are also capable of

responding to mechanical stimuli, which cause these cells to modulate their metabolism

and matrix production to meet the demands of external forces (Buschmann and

Grodzinsky 1995). Extracellular matrix mediates cell signaling and maintenance of

phenotype (Bullough 1992a; Blanco et al. 1995). This is substantiated when

chondrocytes are removed from the extracellular matrix and cultured in a monolayer, the

cells begin to lose their spherical morphology and chondrocyte-specific markers (Domm

et al. 2004; Marlovits et al. 2004). Adult cartilage tissue is avascular and therefore

chondrocytes absorb nutrients from the synovial fluid, which flows through the matrix as

a result of mechanical forces on the joint (Mankin 1984). Chondrocytes absorb oxygen

solely from the synovial fluid and carry on a combination of aerobic and glycolytic

metabolism (Clegg et al. 2006).

Chondrocytes are organized into four distinct zones within the cartilage:

superficial, transitional, radial, and calcified zones. Within the superficial zone,



chondrocytes have a flattened morphology and are arranged randomly within the matrix

(Buckwalter and Mankin 1997). In the transitional zone, they are spherical and are also

arranged in a random pattern in the matrix (Buckwalter and Mankin 1997).

Chondrocytes in the radial zone are arranged in columns and also demonstrate a spherical

morphology (Buckwalter and Mankin 1997). Chondrocytes in the calcified zone have a

spherical shape and are arranged in a random pattern in the matrix (Bullough 1992a).

Extracellular matrix

The extracellular matrix of cartilage consists largely of collagen surrounded by

proteoglycans. Collagen gives cartilage its tensile strength and provides a rigid

framework, which prevents the tissue from swelling to its fullest extent (Maroudas 1976).

Collagen fibrils have characteristics appropriate for the each zone of cartilage tissue

(Bullough 1992b). Collagen fibrils are arranged parallel to the surface in the superficial

zone while in the transitional zone the fibrils appear to be randomly arranged (Bullough

1992b). In the radial zone, the collagen fibrils are arranged perpendicular to the articular

surface (Bullough 1992b). The collagen fibrils in the calcified zone however, are

calcified by the surrounding chondrocytes (Bullough 1992b). Most of the collagen in the

matrix is type II, but type, VI, IX, and XI are also present (Bruckner 1994).

Proteoglycans consist of a protein core with glycosanrinoglycan (GAG) side

chains in a radial arrangement giving the molecule a “bottle brush” type structure (10220

1998). The specific proteoglycan that is produced by chondrocytes is called aggrecan,

which contains chondroitin sulfate (CS) as the predominant GAG side chain. This GAG

is composed of repeating disaccharide units of N-acetyl galactosarnine and glucuronic



acid residues. The negatively charged sulfur groups of this disaccharide allow hydrogen

bonding with water molecules. The resulting hydration endows aggrecan with the

cushioning properties that are typical of articular cartilage (Prydz and Dalen 2000). As

mechanical forces are applied to the cartilage tissue, fluid is expelled from between the

aggrecan side chains and from the tissue. As the force is removed, fluid returns to the

matrix and re-hydrates the negatively charged aggrecan side chains, thus yielding the

compressive elasticity and shock absorbing properties of the cartilage matrix.

Osteoarthritis

Onset ofdisease

Osteoarthritis is a degenerative disease marked by progressive cartilage tissue

loss, pain, inflammation, and eventual loss of joint function (Felson et al. 1998;

Hashirnoto et al. 1998). When injury or disruption to a joint occurs, enzymes are

synthesized that break down the proteoglycan component of the matrix (Spiers et al.

1994a; Spiers et al. 1994b). Chondrocytes respond to this stress by proliferating and

increasing proteoglycan synthesis; but this response is sometimes insufficient to

overcome the degradation. As a result, the equilibrium is shified toward a gradual loss of

total proteoglycan, leading to cartilage destruction (Morales and Roberts 1988; Hedbom

and Hauselrnann 2002).

Onset of OA may be initiated by trauma or chronic mechanical stress (Quinn et

al. 2001; Patwari et al. 2003). 0A in horses is believed to usually be the result of trauma

resulting from over use of the joint (Mackay-Smith 1962). Factors that can induce OA

include intense exercise and fatigue (Hodgson and Rose 1989). The pressure on a joint



that a race horse can generate during a race can be millions of foot-pounds per mile

Wackay-Smith 1962). Another risk factor in horses is subchondral bone sclerosis, which

results from excessive bone remodeling in response to mechanical forces on the bone

(Kawcak 2000). Cartilage that is covering areas of the bone affected by sclerosis is

vulnerable to the development of OA because the subchondral bone changes shape and

increases in density (Kawcak et al. 2001).

Acute trauma to a joint can also lead to OA. Also injury to the anterior cruciate

ligament can cause OA (Roos et al. 1995). For example, damage to intra-articular

ligaments can lead to 0A. This has been demonstrated in dogs, rabbits, and in horses by

transection of the cranial cruciate ligament and lateral collateral and lateral collateral

sesamoidean ligaments in horses, which leads to destabilization of the joint and cartilage

wear (Pond and Nuki 1973; Troyer 1982; Simmons et al. 1999; Clegg et al. 2006).

Injury to the meniscus is also a common cause for joint destabilization leading to 0A in

humans (Roos et al. 1998; Clegg et al. 2006). Increased concentrations of proteoglycan

fragments accumulate in the synovial fluid after injury to the anterior cruciate ligament or

meniscus (Lohmander et al. 1989). Stromelysin, an enzyme that breaks down cartilage,

can increase up to 40-fold over time in an injured joint in (Lohmander et al. 1993).

Inflammatory mediators

Joint injury is often accompanied by an inflammatory response that includes the

production of pro-inflammatory cytokines such as interleukin-1 beta (ILal). This

cytokine is secreted by macrophages, monocytes, and synoviocytes (Kirker-Head 2000;

Femandes et al. 2002) and is implicated in the inflammatory symptoms of OA. Another



example of an inflammatory cytokine that is implicated in 0A is tumor necrosis factor-

alpha (TNFu) (Hardingham et al. 1992; Femandes et al. 2002; Lopez-Armada et al.

2006), which is produced by macrophages and synoviocytes. The inflammatory activity

of IL-1 is mediated by signaling molecules such as nitric oxide (NO) and prostaglandin

E2 (PGEZ) (Smalley et al. 1995; Grabowski et al. 1997). IL-l inhibits proteoglycan

synthesis and increases proteoglycan breakdown. When inflammation in the joint is

prolonged, it leads to a chronic imbalance in tissue turnover, which results in the eventual

destruction of the cartilage tissue (Hardingham et al. 1992; Goldring et al. 1994). The

imbalance is mediated by enzymes in the joint called matrix metalloproteinases (MMPs)

and a disintegrin and metalloproteinase with a thrombospondin type 1 motif (ADAMTS),

which are responsible for breakdown of matrix components such as aggrecan and

collagen (Struglics et al. 2006). Some examples of enzymes of these types that have

been implicated in OA include, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5

(Patwari et al. 2003; Neil et al. 2005; Struglics et al. 2006).

Treatment

Conventional treatments

Conventional treatments for CA include nonsteroidal anti-inflammatory drugs

(NSAIDS) and intra-articular corticosteroids (Hochberg et al. 1995b, 1995a). These

treatments are effective for decreasing joint pain, but they do not affect the progression of

the disease. They also have significant side effects (Hochberg et al. 1995a).

Nonsteroidal anti-inflammatory drugs, amoung other things, inhibit two enzymes known

as cyclooxygenase-l and -2 (COX-1 and COX-2) (Harkins et al. 1993). Both of these



enzymes produce PGEz, which mediates pain and inflammation in the joint. However,

COX-1 is also an important enzyme for maintaining the gastrointestinal lining. As a

result of COX-1 inhibition, NSAIDs eventually cause gastrointestinal ulceration if they

are taken long-term, which results in thousands of deaths each year (Hochberg et al.

1995a; Griffin 1998). A common NSAID used in horses, called phenylbutazone, is

associated with gastric ulcers, weight loss, and diarrhea (Traub et al. 1983). The

development of a COX-2-specific inhibitor seemed to be a significant advance promising

to become a NSAIDs treatment without significant side effects. Inhibiting COX-2

exclusively, however, resulted in cardiovascular side effects in patients. Clinical trials of

some of these drugs demonstrated that adverse cardiovascular events were '3 times more

frequent afier coronary bypass surgery when COX-2 inhibitors were administered (Ott et

al. 2003; Nussmeier et al. 2005). Reports also detail increased risk of cardiovascular

events and serious skin reactions (Sibbald 2005; Talhari et al. 2005). This cardiovascular

effect may be because COX-2 produces prostaglandin 12 in vascular epithelial tissue,

which inhibits platelet aggregation, neutrophil adhesion, and dilatation of bronchial and

vascular smooth muscles (Lin 2005). Modulation of such physiological processes could

cause thromboembolic events, which is a risk especially to patients with a history of

cardiovascular disease (Fitzgerald 2004; Warner et al. 2004).

Synthetic corticosteroids can be injected intra-articularly for treatment of OA and

have shown efficacy in dramatically decreasing inflammation in horses and in humans

(Harkins et al. 1993; Bellamy et al. 2005). These treatments also decrease the production

of prostaglandins by COX-2 enzymes (Moses et al. 2001; Frean et al. 2002; Tung et al.

2002). The side effects are eventually damaging to the cartilage, which may include the
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formation of calcium deposits on the surface of the cartilage, fissuring of the cartilage,

and decreased cartilage elasticity (Harkins et al. 1993).

Glucosamine and chondroitin sulfate

In recent years, dietary supplements (now known as nutraccuticals) have been

used to treat OA in both humans and animals. Glucosamine (GLN) and CS have been

among the most popular supplements. GLN is a precursor molecule of various

components of the cartilage matrix (Hamennan 1989; Muller-Fassbender et al. 1994).

Chondroitin sulfate is a component of the cartilage proteoglycan called aggrecan (Conte

et al. 1991). Some evidence suggests that glucosarnine is as effective as ibuprofen at

relieving pain (Muller-Fassbender et al. 1994) and that the combination of GLN and CS

is effective at relieving moderate to severe joint pain in OA patients (Clegg et al. 2006).

GLN has an excellent safety profile, when taken orally, based on studies done in humans,

dogs, and rats (Pujalte et al. 1980; Tapadinhas et al. 1982; Muller-Fassbender et al.

1994). CS also has an excellent safety profile in humans, dogs, and rats (Conte et al.

1995; Bucsi and Poor 1998; Ronca et al. 1998; Volpi 2002). Dosing in humans is usually

1500 mg ofGLN and 1200 mg ofCS daily (Clegg et al. 2006) and in horses the dosage is

9 g ofGLN and 3 g of CS (Du et al. 2004).

Work has been done in animal models to show the effectiveness of these agents.

For instance, work done in cultures systems with IL-1 stimulated cartilage explants from

Holstein steers show that GLN and CS will decrease cartilage NO and PGE2 synthesis at

concentrations found in the blood (Chan et al. 2005b). Another study used fibronectin

fragments to initiate cartilage degradation in bovine cartilage explants and showed that
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mixture of GLN and CS at biologically relevant concentrations was effective at

decreasing expression of catabolic mediators MMP-3 and MMP-13 and promoting repair

(Homandberg et al. 2006). Studies in equine cartilage explant cultures have shown that

GLN and CS are effective at decreasing NO, PGEz , MMP-9, and MMP-l3, though the

concentrations used here were higher than what is normally found in viva (Orth et al.

2002). Studies in equine chondrocyte cell culture (pellet culture) have shown that

relevant concentrations of GLN decrease expression of catabolic mediators such as

MMP-13, aggrecanase-1, inducible nitric oxide synthase (iNOS), and COX-2 (Neil et al.

2005)

The mechanism of action of these two substances has received significant

attention lately. Based on the biochemistry of GLN and CS and GAG synthesis is

examined, it appears feasible that these molecules could increase the synthesis of GAG

(Mch et al. 2000). McCarty et al. proposed that GLN supplementation provides the

rate-limiting substrate for GAG (McCarty et al. 2000). Evidence for this theory was

demonstrated by a study in which over-expression of glutamine fructose-6-phosphate

aminotransferase, an important rate limiting enzyme in the synthesis of GLN, caused

resistance to IL-1 inhibition of GAG synthesis (Gouze et al. 2001). In a study involving

dogs with a transected cranial cruciate ligament, a combination ofGLN and CS increased

GAG synthesis (Johnson et al. 2001). One of the mechanisms for the preservation of

cartilage tissue by GLN maybe the inhibition of aggrecanase (Patwari et al. 2003; Chan

et al. 2005a). GLN alone decreases IL-l -induced production ofNO and PGE2 and IL-1-

induced proteoglycan breakdown (Fenton et al. 2000; Gouze et al. 2001; Fenton et al.

2002; Chan et al. 2005b). The mechanism of decreasing proteoglycan breakdown is in
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part due to the inhibition of MMPs, aggrecanases, and collagenase (Fenton et al. 2000;

Pipemo et al. 2000; Fenton et al. 2002; Dodge and Jimenez 2003; Chan et al. 2005a).

GLN can also decrease the gene expression of MMP-1, MMP-3, and MMP-13 (Byron et

al. 2003; Dodge and Jimenez 2003; Chan et al. 2005a). CS May stimulate GAG

production by binding to membrane proteins of synovial cells (Mch et al. 2000). CS

increase proteoglycan synthesis and decreases proteoglycan breakdown (Bassleer et al.

1992; Nerucci et al. 2000). CS reduces proteoglycan loss from articular cartilage in

humans (Uebelhart et al. 1998) and rats (Omata et al. 1999) when taken orally. CS may

reduce proteoglycan loss in part by decreasing aggrecanase-l synthesis (Chan et al.

2005a). CS can also decrease IL-l-induced PGE2 and NO production (Bassleer et al.

1992; Chan et al. 2005b). The mechanism for this appears to be that CS decreases the

expression of iNOS and microsomal prostaglandin E synthase-l (Chan et al. 2005b).

If GLN and CS are taken together, they appear to have a synergistic effect in

mitigating the clinical signs of OA. An in vivo study that used a rabbit instability model

of osteoarthrosis showed that animals given GLN and CS did not develop OA lesions as

severe as rabbits fed GLN or CS alone (Lippiello et al. 2000). In the in vitro portion of

the study, the combination of glucosarnine hydrochloride and chondroitin sulfate acted

synergistically in stimulating GAG synthesis (Lippiello et al. 2000). GLN and CS also

both increase chondrocyte response to mechanical stress and prevent the loss of GAG

(Lippiello 2003). The fibronectin fiagrnents study also showed a synergistic relationship

between GLN and CS for reversing cartilage damage and promoting repair (Homandberg

et al. 2006). GLN and CS have the ability to modify expression of genes that regulate

inflammatory mediators such as iNOS, COX-2, and mPGEsl (Chan et al. 2005b; Neil et
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al. 2005). The concentrations used in these studies (Chan "et al. 2005b; Neil et al. 2005)

were within range of those found in the blood of horses after oral administration (Du et

al. 2004), and within GLN levels achieved in the synovial fluid of horses when

administed by intravenous infusion (Laverty et al. 2005).

S-adenosylmethionine

S-Adenosyl-L-methionine (SAMe) is synthesized by the body from the essential

the amino acid L-methionine and the nucleoside adenosine triphosphate. SAMe acts as a

methyl donor for reactions important in the synthesis of proteins, phospholipids, and

hormones. It has a variety of roles and is involved in membrane fimction, gene

regulation, and brain function (Chiang et al. 1996). SAMe was first sold over the counter

in 1999 for treatment ofjoint pain. The common human dosage is usually between 400

and 1600 mg daily. SAMe has a good safety record, with few side effects and an absence

of generation of toxic metabolites (Kagan et al. 1990; Goren et al. 2004). The

concentration attained in the synovial fluid in OA patients given SAMe at 400 mg daily

for 7 days is 30 to 80 ng/ml (Stramentinoli 1987). Clinical trials show that SAMe

supplementation decreases pain and inflammation (Polli et al. 1975; Caruso and

Pietrogrande 1987; Soeken et al. 2002). A randomized, double-blind, cross-over study,

comparing SAMe with celecoxib (Celebrex) showed that SAMe, over the long term, is

just as effective at relieving pain as Celecoxib (Najm et al. 2004).

The exact mechanism of action is not known. SAMe also upregulates the

proteoglycan synthesis of chondrocytes, and some believe that it may function as a signal

of sulfur availability (McCarty and Russell 1999). A study used human chondrocytes in
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a thick-layer culture model and showed that SAMe increases proteoglycan synthesis

(Harmand et al. 1987). SAMe has also demonstrated anti-inflammatory effects by

suppressing the effects of TNFa and transcriptional activation of iNOS and COX-2

(Hevia et al. 2004). IL-l suppresses the production of SAMe in the joint. Therefore,

since IL-1 production in the joint is upregulated in the disease state of 0A, a

supplementation of SAMe may compensate for this deficit (McCarty and Russell 1999).

SAMe also decreases with aging in human and rats (di Padova 1987; Stramentinoli

1987). Since aging is a risk factor for 0A, the two may be related and supplementation

with age may be a benefit.

Avocado/soybean unsaponifiables

Avocado soybean unsaponifiables (ASU) are a mixture of vegetable extracts

obtained from avocado and soy bean oils that are normally taken orally. Clinical trials

with ASU show that it has a good safety record (Lequesne et al. 2002; Little and Parsons

2002), though more study is needed to confirm this. These extracts are obtained when

the oil is saponified (heated and broken down by alkaline hydrolysis). The small fraction

that is not broken down is known as the “rmsaponifiable” fraction (Bassleer et al. 1992).

It relieves pain when taken orally, and is usually taken at 300 mg daily (Reginster et al.

2000; Walker—Bone 2003; Soeken 2004).

This decrease in pain is attributed to the ability of ASU to decrease inflammatory

mediators such as IL-1, NO, and PGE2 as seen in human chondrocyte studies (Bassleer et

al. 1992). A study using human chondrocytes in an alginate bead tissue culture system

showed that ASU increased the accumulation of GAG in the alginate beads in a dose
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dependent manner (Bassleer et al. 1992). Avocado soy unsaponifiables also prevent

collagen breakdown and thus potentially save cartilage from degradation (Mauviel et al.

1989). This is partially mediated by the ability of ASU to inhibit MMP production, such

as MMP-3, as it did in a study of human chondrocytes in culture (Bassleer et al. 1992).

There has been no pharrnacokinetic studies done on this supplement and the exact

mechanism of action is unknown.

Rationale for experiments

One objective is to test biologically relevant concentrations of GLN and CS in

various equine cultures: 1) a short-term (2 d) in vitro culture model designed for

cartilage explants in a 24-wellplate format, 2) a similar short-term culture model

including mechanical loading, 3) a long-term culture system (without loading) designed

to test the effects of GLN and CS over a 2-week period. Explant tissue culture provides

an excellent system for testing chondroprotective agents because of the convenience and

accuracy of the data collection. Mechanical loading is known to be a risk factor for CA

in horses and the combination of GLN and CS at biologically relevant concentrations

have never been tested in a mechanical loading tissue culture system. IL-l will be used

to model inflammatory stress in each model and a hydraulic stressor with IL-1 will be

used to model mechanical loading in the short-term impact culture. The response

variables will consist of concentrations of inflammatory mediators NO and PGE2 in the

media. Glycosaminoglycan concentration in the media and within cartilage explants will

be measured as an indicator of cartilage breakdown. The concentrations of GLN and CS
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that will be used in these cultures will be in the range of what is measured in the blood of

dogs and horses after oral administration (Adebowale et al. 2002; Du et al. 2004).

Another objective is to test varying concentrations of SAMe and ASU in bovine

cartilage explant cultures. The system will be a short term 2 (1 culture with IL-1 used to

model inflammatory stress. The response variables will consist of NO, PGEz, and GAG

concentrations in the media and concentration of GAG in cartilage explants at

termination of the experiment. Bovine tissue culture is used here because cartilage tissue

from bovine species is readily available. Bovine tissue culture is oflen used as a model

for testing agents that have relevance to human treatment.
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Chapter 2

The Effect of Biologically Relevant Concentrations of Glucosamine and Chondroitin

Sulfate on Stressed Equine Cartilage Explants

Summary

Reasons for performing study: In the past decade, dietary supplements such as

glucosamine (GLN) and chondroitin sulfate (CS) have gained popularity in treating

joint pain and inflammation due to osteoarthritis (0A) in humans and animals.

Although GLN and CS have established anti-inflammatory properties, to our

knowledge, no study has tested biologically relevant concentrations of these molecules

in equine cartilage explants.

Hypothesis: Glucosamine and CS have anti-inflammatory properties at biologically

relevant concentrations when tested in equine cartilage explant cultures.

Methods: Three culture schemes were used: 1) IL-1 (50 ng/ml) treatment with and

without GLN + CS (short-term non-impact) 2) IL-1 plus mechanical trauma with and

without GLN + CS (short-term impact) 3) two-week cultures were cultured with and

without GLN + CS and were exposed to IL-1 (50 ng/ml) on day 2 and day 10 (long-

term non-impact). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured as

indicators of inflammatory response. Glycosarninoglycans (GAG) were measured as an

indicator of cartilage turnover.

Results: Glucosamine + CS did not affect NO, PGEZ, or GAG concentrations in the non-

impact short-term model. When mechanical impact was combined with IL-1 the NO

production in the GLN + CS treatment was lower than the IL-1 treatment and did not
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differ from control. The GAG release was also lower in the GLN + CS treatment than

the IL-1 treatment, although the PGE2 concentration was not affected by GLN + CS.

The non-impact long-term cultures demonstrated that GLN + CS treatment decreased

GAG release and did not affect NO or PGE2 concentration or GAG content in the

explants at termination.

Conclusions: This study suggests that biologically relevant concentrations of GLN + CS

may have protective effects against some indicators of mechanically-induced trauma in

explants.

Potential relevance: These in vitro data provide support that GLN and CS may be

beneficial for equine joint health.

Introduction

In recent years, dietary supplements (now known as nutraccuticals) have been

used to treat osteoarthritis (0A) in both humans and animals. Glucosamine (GLN) and

chondroitin sulfate (CS) have been among the most popular dietary supplements taken for

joint pain. Glucosamine is a precursor of N-acetyl galactosarnine, which is a component

of glycosaminoglycans (GAG). Glycosaminoglycans, such as CS, are components of a

proteoglycan called aggrecan, which gives cartilage its distinctive properties. Both of

these molecules increase synthesis (Bassleer et al. 1992; Lippiello et al. 2000) and

decrease breakdown (Orth et al. 2002; Lippiello 2003) of GAG in cartilage tissue, and

they may be an effective treatment for decreasing joint pain in clinical trials (Clegg et al.

2006; Qui et al. 2005).
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We use three different culture systems with equine” cartilage explants: short-term

non-impact used previously in our lab (Chan et al. 2005b), short-term impact system

(Ewers et al. 2001), and a long-term non-impact system. Our objective was to test the

anti-inflammatory effects of biologically relevant concentrations of GLN and CS in these

three different equine cartilage cultures that. We provide evidence that biologically

relevant concentrations of GLN and CS may be effective against harmful inflammatory

responses to trauma in equine cartilage tissue.

Materials and methods

Explant Cultures

Articular cartilage was isolated fiom antebrachial-carpal and middle carpal joints

of 2- to 9- year-old horses, of several breeds (Thoroughbred, Appaloosa, Tennessee

Walking Horse, Arabian, and Paint). Horses were euthanized at The Diagnostic Center

for Population and Animal Health at Michigan State University for reasons other than

lameness. Cartilage discs (6 mm in diameter) were isolated and randomly distributed to

be cultured in 24-well Falcon platesb with two discs per well. Each well contained 1 ml

of media. The medium (Ham media: 1:] Dulbecco’s Modified Eagles Medium: nutrient

mixture F-12)a was supplemented as previously described (Fenton et al. 2000). Medium

was also supplemented with all 20 amino acids6 at 25% the concentration as previously

described (Rosselot et al. 1992).

Human recombinant interleukin-1 betae (IL-1) at a concentration of 50 ng/ml was

used to induce inflammatory stress. Glucosamine Hle (1, 5, or 10 rig/ml) and low
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molecular weight (16.9 kilodaltons) chondroitin sulfatef (5, 20, or 50 pg/ml) were all

within the range of concentrations known to occur in equine blood after oral

administration (Adebowale et al. 2002; Du et al. 2004).

Short-Term Non-Impact Model

Explants for short-term experiments were harvested from six different horses and

equilibrated for 2 d in media without fetal bovine serum21 (FBS). Media was removed

and replaced with fresh media 1 d afier harvesting. Cultures were then incubated in

media supplemented with 10% FBS3 and treatments 1-4 in Table 1 for 2 d. There were 6

to 12 wells per treatment depending on the availability of cartilage from a given horse.

Treatments were non-impact treatments were assigned as listed in Table 1. Media were

replaced daily until termination of the experiment at 4 d after harvest.

Short-term Impact Model

Explants from three horses were mechanically impacted as a single acute load of

15 mega pascal (MPa) for 50 msec using a Servo-Hydraulic Testing Machine (Model

1331).g The unconfined explants were compressed between highly polished stainless

steel plates and peak load was recorded electronically. There were 6 wells per treatment

and the impact treatments were assigned as listed in Table 1.

Long-Term Model
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Explants in long-term cultures were equilibrated as above for 2 d and the media

was changed at 24 h after harvesting. Cultures were then incubated in serum-free media

supplemented with 1 ul/ml insulin transferring seleniteh (ITS) to termination. There were

9 wells per treatment assigned as listed in Table 11. Media were replaced every 2 (1 until

termination of the experiment at 14 d. The cartilage explants were then stored at -20° C

for later papain digestion and GAG analysis.

All conditioned media samples were stored at 4° C for later assay. All cultures

were maintained at 37° C in a humidified incubator with 7% C02. For the short-term

non-impact system, there were six horses used (11 = 6) for all treatments except the low

dose, which only had four horses (n = 4). For both the short-term impact and the long-

terrn non-impact there were three horses (n = 3).

Biochemical Analyses:

Nitrite levels in the media were assayed as previously described (Blanco et al.

1995; Chan et al. 2005b). Absorbance was detected at 540 nm by a Spectromax 300

plate reader.l Results are expressed as nmol NO/ml.

GAG release into the media was assayed by dimethylene blueJ (DMB) assay as

previously described (Chandrasekhar 1987). The total amount of GAG in the explant

was obtained from papainc-digested cartilage. Results of explant DMB assays are

expressed as pg GAG/mg wet weight of cartilage.

Prostaglandin E2 was assayed using a commercially available kite according to the

manufacturer’s instructions concentrations are reported in pg/ml. Indomethacinc (10
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ug/ml) was added to the media at collection and samples were stored at -20° C until

analysis. To bring the samples within range of the standard curve, samples were diluted

1:10 or 1:20 depending on the PGE2 level of the sample, and PGE2 was detected at 405

nm with a wavelength correction set at 590 nm with a spectrometer.

Statistical Analysis

Data were analyzed using Fisher’s Least Significant Difference in the PROC

MIXED procedure of SAS software.k The data from all wells were pooled according to

treatment, with individual horses as replicates. The random effects included horse,

treatrnent*horse, and horse*day. The long-term data had the same random effects and

were analyzed for each day using Fisher’s Least Significant Difference in the PROC

MDIED procedure by using daily average and the repeated measures option. We also

analyzed the long-term cumulative total for GAG and NO for all days of the long term

using Fisher’s Least Significant Difference, except that the horse*day effect and the

repeated measure options were omitted since only one measurement was being analyzed

for a total time period. GAG content in explants were also measured with Fisher Least

Significant Difference with no horse*day effect and no repeated measures option. A p

value of <0.05 was considered significant and p values <0.1 were considered a trend.

Results

Short-Term Non-Impact Model
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The explants in the IL-l-only treatment released significantly more NO, PGE2,

and GAG compared with the control. The NO concentration in the media in the 5 rig/ml

GLN + 20 ug/ml CS (medium dose), and 1 rig/ml GLN + 5 rig/ml CS (low dose) did not

differ from the IL-l-only treatment (Fig 1A). The low dose did not differ from the

control (Fig 1A). The nutr‘aceutical treatments had no effect on PGEZ or GAG release

into the media. (Fig 18, C).

Short-term Impact Model

The IL-l + impact explants released more NO (p = 0.03) and GAG (p = 0.02)

than the control (Fig 2A-C). The impact model included only the medium dose of GLN

+ CS because of lack of available tissue. The NO concentration in the IL-1 + impact

treatment containing GLN + CS was lower than in the IL-1 + impact treatment (p =

0.013) and did not differ from the control (Fig 2A). Neither the IL-1 nor the GLN + CS

treatment had a significant effect on PGE2 release into the media (Fig 2B). GAG release

in the GLN + CS treatment was lower than in the IL-1 + impact treatment (p = 0.023)

(Fig 2C).

Long-Term Model

The IL-1 treatment resulted in increased NO release in all treatments with IL-1 on

d 4, d 12, and total for the two week accumulation (Table 3). The GLN + CS treatments

did not affect the IL-l-induced NO release (Table 3).

The GAG release was higher in all treatments with IL-1 than those without IL-1

on d 4, but the IL-1 did not effect the GAG release on d 12 (Table 4). The high dose
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GLN and CS treatment had lower GAG release than the IL-1 treatment on d 4 (p < 0.001)

(Table 4). For the cumulative totals, all treatments containing IL-1 were lower than the

IL-l-only, except for the control, which tended to be lower (p = 0.093) (Table 4). The

high dose GLN and CS treatment had lower GAG release over the two-week period (p =

0.001) and the low dose tended to be lower (p = 0.055).

The assay for GAG content in explants did not show any difference between the

control and the IL-l-only treatment (Fig 3). Furthermore, the IL-l-only treatment did not

differ significantly from the control or any other treatment.

Discussion

We used equine cartilage explant cultures including short-term, long-term, and

mechanical trauma (impact) culture systems. The short-term model has been used befor

in out laboratory to test these agents (Chan et al. 20053-c). To our knowledge, this is the

first study to test physiologically relevant concentrations ofGLN + CS in equine articular

cartilage using trauma to stress the explants. This is a relevant way to induce stress is to

apply mechanical impact, since OA often results from acute trauma to the joint and

subsequent inflammation (Quinn et al. 2001; Patwari et al. 2003). We modeled acute

trauma to the cartilage using a hydraulic impact concomitant with IL-1 treatment as

previously reported (Quinn et al. 2001; Patwari et al. 2003). A previous study

(Dvoracek-Driksna 2001) has demonstrated that impact treatment at 15 MPa pressure

causes fissuring and cell death in the superficial tangential zone of bovine cartilage. We

used this treatment concomitantly with IL-1, to model trauma and inflammatory stress

found in vivo. The long-term study was used to see if there were long-term effects of
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GLN and CS on cartilage explants. The advantage of the long-term system is that total

release of NO and GAG can be calculated at the end of an experiment as well as the

average concentration of GAG within the explant for each treatment. This cumulative

effect of the treatments may reveal effects that may not be seen over the short-term,

especially since these agents are known to be slow acting when compared with

conventional treatments (Muller-Fassbender et al. 1994).

NO is an inorganic free radical released into the media by the cartilage tissue.

Studies using rabbit and human cartilage have shown that NO can increase GAG loss and

decrease GAG synthesis (Taskiran et al. 1994; Hardy et al. 2002). Nitric oxide promotes

inflammation and cartilage breakdown by increasing cytokine production, suppressing

matrix synthesis, and increasing matrix metalloproteinase (MMP) synthesis (Taskiran et

al. 1994; Evens 1995; Murrell et al. 1995). We demonstrated that the NO release was

lower in cartilage explants treated with GLN + CS and impact + IL-l than in cartilage

explants treated with impact + IL-l alone, though GLN + CS were not effective without

impact as they were in a previous study (Chan et al. 2005b).

Prostaglandin E2 was also measured because it is implicated in the pain,

inflammation, and cartilage breakdown observed in OA (Hardy et al. 2002; Kirker-Head

et al. 2000; Schueter and Orth 2004). Why the GLN and CS treatments were ineffective

at decreasing the PGE2 release or why concentration of PGE2 was so much higher in the

GLN and CS low dose treatment than even in the IL- 1—only treatment in the short-term

non-impact model is not known (Fig 1B). In contrast, a previous study has demonstrated

success in effecting a change in PGEz release with GLN + CS at these concentrations in

explants from Holstein steers (Chan et al. 2005b). Other studies that used equine
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cartilage demonstrated positive affects of GLN (alone) on PGEz, but at much higher (up

to 100 times) concentrations of GLN used in the present study (Orth et al. 2002;

Schlueter and Orth 2004).

IL-l-induced MMP synthesis causes cartilage matrix breakdown, which we

quantified by measuring GAG release (Chan et al. 2005a). GLN alone decreases IL-l-

induced proteoglycan breakdown (Fenton et al. 2000; Gouze et al. 2001; Fenton et al.

2002). CS also may reduce proteoglycan loss in part by decreasing MMP-13 (Chan et al.

2005a). Another study showed a synergistic relationship between GLN and CS for

reversing cartilage damage and promoting repair (Homandberg et al. 2006). In the

current study, the high dose was most effective at protecting cartilage against the loss of

GAG (Table 4), and there was also an effective protection using the medium dose in the

impact system G‘ig 2 C). There was no treatment effect on the GAG content in the

explants at termination (Fig 4).

Chan et al. (2005b) have previously demonstrated that genes responsible for NO

and PGE2 synthesis are down-regulated when bovine explant cultures are exposed to

physiologically relevant concentrations ofGLN + CS. Metalloprotienases responsible for

breakdown of the cartilage matrix are also down regulated (Chan et al. 2005a). The

present study tested the same physiologically relevant concentrations of GLN and CS as

those used by Chan et al. (2005a-b). There were instances in this study where the GLN +

CS treatments were less effective than reported in earlier studies. It is unknown why the

PGE2 concentration was unaffected by the GLN + CS treatment in either the short-term

impact experiment or the short-term non-impact experiments. It is also difficult to explain

the lack of responsiveness of NO and GAG level to GLN + CS treatment in the short-
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term non-impact experiment. Significant differences may not have been found because

the GLN + CS concentrations may have been too low to effect a change. Also, the

variation between horses, which differed with respect to breed and age, may have been

too high to detect a statistically significant difference between treatments. The Chan et

al. (2005a-b) studies used bovine species of a single breed and common age, which may

have decreased the variation in these studies and made finding differences more

statistically possible.

Conclusion

Our hypothesis was that GLN + CS would decrease inflammatory markers and

cartilage breakdown at physiologically relevant concentrations. Our results indicate that

GLN + C8 are effective in rrritigating harmful inflammatory responses due to mechanical

impact + IL-1 in equine cartilage tissue. The advantage of this impact model is the

combination of impact and IL-1. The reason for this is that 0A is often initiated by

trauma to the joint, which is then followed by IL-l-mediated inflammation (Quinn et al.

2001; Patwari et al. 2003). This makes the conditions in this system somewhat similar to

those found in vivo. We demonstrated that the NO release was lower in cartilage explants

treated with GLN + CS and impact + IL-l than in cartilage explants treated with impact +

IL-l alone. We have also shown that the GAG release was lower in cartilage explants

treated with GLN + CS and impact + IL-l than in cartilage explants treated with impact +

IL-l alone. We also demonstrated that, over a two-week period, the GAG release was

lower in cartilage explants treated with GLN + CS and IL-1 than in cartilage explants

treated with IL-1 alone. This study provide some support these supplements are
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beneficial for horses, in maintaining equine joint health, although in vivo research should

be done to confirm the findings.
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Fig I: Mean (iSE, n=6 for medium dose, n# for low dose) NO, GAG, and PGE2

concentrations in media samples at d 1 (A, C) or at d 1 (B). IL-1 (50 ng/ml) was added to

each treatment except for control. The experimental treatments contained 5 rig/ml GLN

+ 20 ug/ml CS (medium dose) or 1 ug/ml GLN + 5 ug/ml CS (low dose).

45



 

  



 
 

 

 
 



Fig 2: Mean (iSE, n=3) NO, PGEz, and GAG concentrations in media samples at d O

and 1 (A, C) or at d 1 (B). IL-1 (50 ng/ml) + Impact was added to each treatment except

for control. The experimental treatment contained 5 rig/ml GLN + 20 ug/ml CS (medium

dose). GLN + CS treatment differed from IL-l-only treatment in NO (p = 0.0013) and

GAG (p = 0.023) concentrations.
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Fig 3: Mean (:tSE, n=3) final GAG content in cartilage explants at day 14.
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Chapter 3

The Effect of Avocado and Soy Unsaponif'rables and

S-Adenosyl-L-Methionine on Inflammatory Mediators in Bovine Cartilage

Summary

Reasons for performing study: Alternative ways of treating osteoarthritis (OA) have

become popular in the past decade. S-Adenosyl-L-Methionine (SAMe) and avocado

soy unsaponifiables (ASU) are among the supplements that are available for controlling

pain and inflammation due to CA. We used bovine cartilage explant cultures to

measure the effect of both of these agents on inflammatory mediators and cartilage

breakdown.

Hypothesis: SAMe and ASU have anti-inflammatory properties and will decrease

inflammatory mediators and cartilage breakdown in a dose dependent manner.

Methods: Two experiments were performed: the first tested SAMe at concentrations of

1.0, 0.1, and 0.01 ug/ml (high, medium, and low dose) and ASU at concentrations 10.0

and 1.0 ug/ml (high dose and medium dose); the second tested ASU at concentrations

of 10.0, 1.0, and 0.1 uyml (high, medium, and low dose). Interleukin-1 (IL-1) at 15

ng/ml was used to initiate inflammatory stress. Nitric oxide (NO) and Prostaglandin E2

(PGEz) were measured as indicators of inflammatory response. Glycosaminoglycans

(GAG) were measured as an indicator of cartilage turnover.

Results: The first experiment showed no significant treatment effects for either SAMe or

ASU. However, the medium dose of SAMe tended to have a lower PGEz
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concentration than the IL-l-only (p = 0.09). In the second experiment, ASU again did

not significantly decrease inflammatory mediators or cartilage breakdown.

Conclusions: This study yields little evidence that SAMe or ASU affects inflammation or

cartilage breakdown at these concentrations.

Potential relevance: Further testing with different in vitro models is needed to determine

whether these agents affect inflammation and cartilage turnover and at what

concentrations.

Introduction

Osteoarthritis (DA) is a degenerative joint disease marked by progressive

cartilage tissue loss, pain, inflammation, and eventual loss ofjoint function (Felson et al.

1998; Hashirnoto et a1. 1998). Onset of OA may be initiated by trauma or chronic

mechanical stress and is marked by production of proinflammatory cytokines such as

interleukin 1 beta (IL-1) (Quinn et al. 2001; Patwari et al. 2003). The inflammatory

activity of these cytokines is mediated by signaling molecules such as nitric oxide (NO)

and prostaglandin E2 (PGEZ) (Smalley et al. 1995; Grabowski et al. 1997). IL-l inhibits

glycosanrinoglycan (GAG) synthesis and increases GAG catabolism. Since GAG is an

important component of cartilage extracellular matrix, this imbalance in tissue turnover

leads to ultimate destruction of the cartilage tissue and joint disability (Hardingham et al.

1992; Goldring et al. 1994).

GLN and CS are the most popular nutraceuticals for management ofOA; however

other nutraceuticals such as S-Adenosyl-L-Methionine (SAMe) seem effective against

the symptoms of 0A. SAMe was first sold over the counter in 1999 for treatment ofjoint
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pain. It is a compound that is synthesized by the body from the essential the amino acid

L-methionine and adenosine triphosphate. Clinical trials show that SAMe

supplementation decreases joint pain and inflammation (Polli et al. 1975; Caruso and

Pietrogrande 1987; Soeken et al. 2002) and increases proteoglycan synthesis (Harmand et

al. 1987), which is important since proteoglycan is responsible for the shock absorbing

properties of cartilage tissue. The exact mechanism of these protective effects is not

known.

Avocado soy unsaponifiables (ASU) are a mixture of natural vegetable extracts

obtained from avocado and soy bean oils. These extracts are obtained when the oil is

saponified (heated and broken down by alkaline hydrolysis). The small fraction that is

not broken down is known as the “unsaponifiable” fraction (Bassleer et al. 1992), which

may relieve pain when taken orally (Reginster et al. 2000; Walker-Bone 2003; Soeken

2004). This decrease in pain is attributed to the ability of ASU to decrease inflammatory

mediators such as IL-1 , NO, and PGE2 seen in human chondrocyte studies (Bassleer et al.

1992). Avocado soy unsaponifiables also increase synthesis and decrease breakdown of

GAG, thus potentially preserving cartilage fiom breakdown (Mauviel et al. 1989;

Bassleer et al. 1992).

Our objective was to test biologically relevant concentrations of SAMe and ASU

in bovine cartilage explant cultures. We have utilized this type of culture system to study

GLN and CS (Chan et al. 2005a; Chan et al. 2005b; Chan et al. 2005c), and in this study

we use a similar approach to test SAMe and ASU and there ability to mitigate

inflammatory responses to IL-1.
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Materials and methods

Explant Cultures

Articular cartilage was isolated from antebrachial-carpal and middle carpal joints

of Holstein steers (18-24 mo old) from a local abattoir within 3 hours of slaughter. The

cartilage was obtained in 6 mm discs, which were washed three times in media. The

discs were cultured in 24-well Falcon platesb with two discs per well. Each well

contained 1 ml of media (1 :1 Dulbecco’s Modified Eagles Medium: nutrient mixture F-

12).a The medium was supplemented as previously described (Fenton et al. 2000).

Media was also supplemented with all 20 amino acidsc at the concentrations used by

Chan et al. (2005b). All cultures were maintained at 37° C in a humidified incubator with

7% C02.

Human recombinant IL-1 betae (IL-1) at a concentration of 15 ng/ml was used to

induce inflammatory stress. S-Adenosyl-L-Methionine concentrations were 1.0, 0.1, and

0.01 rig/ml (high, medium, and low doses, respectively). These concentrations,

especially the lower two, approximate those in the blood and synovial fluid when orally

administered (Stramentinoli 1987). Avocado soy unsaponifiables concentrations were

10, 1, 0.1 ug/ml (high, medium, and low doses, respectively). Concentrations ofASU are

achieved in the synovial fluid after oral administration are not known, but these

concentrations were chosen because past studies have found effects using similar

concentrations (Bassleer et al. 1992).

Explants were equilibrated in media without fetal bovine ser'umfil (FBS) for 2 d

with the media being changed at 24 hours. The media without FBS was replaced with
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media with FBS and treatments at 48 h. At 72 h the media was replaced again with FBS

and treatments in the media. The conditioned media was stored at 4° C until analysis for

NO and GAG content. A small fraction of the media was isolated for PGE2 analysis.

The cartilage explants were stored at -20° C for later papain digestion and GAG analysis.

Two experiments were performed: (1) the first included concentrations for both

SAMe and ASU and (2) in the second only ASU concentrations. There were six wells

per treatment for each experiment, which were assigned to one of eight treatments for the

first experiment (Table I) and one of six treatments for the second experiment (Table 11).

Each experiment was replicated four times with cartilage being isolated from four

different Holstein steers.

Biochemical Analyses:

Nitrite levels in the media were assayed as previously described (Blanco et al.

1995). Absorbance was detected at 540 nm by a Spectromax 300 plate reader.l Results

are expressed as nmol NOZ/ml. GAG release into the media was assayed by the

dimethylene blueJ (DMB) assay as previously described (Chandrasekhar 1987). The

digest contained 1 pg papainc per mg cartilage digest. Results of explant DMB assays

are expressed as ug/mg wet weight for cartilage. PGEZ was assayed using a

commercially available kit.e Indometlracinc (10 rig/ml) was added to the media at

collection and samples were stored at -20° C until analysis. Media samples were assayed

for PGEZ on media samples from the first 24 h of both experiments according to the
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manufacturer’s instructions and are reported in pg/ml. To bring the samples within range

of the standard curve, samples were diluted 1:10 or 1:20 depending on the PGEZ level of

the sample. PGEz was detected at 405 nm with a wavelength correction set at 590 nm.

Statistical Analysis

Data were analyzed using the PROC MIXED procedure of SAS software.k The

data from all wells were pooled according to treatment, with individual cows as

replicates. The random effects included cows, treatmentfcow, and cow“day. A p value

of <0.05 was considered significant and p values <0.1 were considered a trend.

Results

The explants in the IL-l-only treatment released significantly more NO, PGEz,

and GAG than control explants, as expected. The SAMe treatments did not have lower

NO, PGEZ, or GAG concentration than the IL-l-only treatments (Fig lA-C). However,

the PGEz concentration in the medium dose of SAMe showed a trend (p = 0.09) of being

lower compared to the IL-l-only treatment (Fig 1B). The treatments also had no effect

on final GAG content in the explants (data not shown).

None of the ASU treatments decreased NO, PGEz, or GAG concentration in the

media (Fig 1 and 2). The GAG concentration was significantly affected by the ethanol

since the ethanol control released more GAG than did the IL-l-only treatment. The

medium concentration of ASU increased rather than decreased the GAG concentration

60



(Fig 2C). The ASU treatments also had no effect on final" GAG content in the explants

(data not shown).

Discussion

SAMe has the ability to decrease the transcriptional activation of genes that effect

NO and PGE2 level (iNOS and COX-2, respectively) (Hevia et al. 2004). Our study did

show a trend that the medium dose of SAMe was lower than the IL-l-only. Our study

did not show the effects of SAMe the Hevia et al. 2004 study showed. However, the

current study differed from the Hevia et al. (2004) study in that 5'-methylthioadenosine

(MTA), a product of SAMe metabolism, was used instead of SAMe (Hevia et al. 2004).

Another difference was that the Hevia et al. study use a murine macrophage cell line and

rat hepatocytes (Hevia et al. 2004). They also used LPS to model inflammation rather

than IL-l. It may be that the anti-inflammatory effects of SAMe are mediated by the

breakdown product MTA. If this is the case, then MTA, as a downstream molecule, may

be more potent than SAMe as an anti-inflammatory. SAMe has also been reported to

increase proteoglycan synthesis in human chondrocytes in vitro at concentrations used in

the current study (1 to 10 pg/ml) (Harmand et al. 1987). Hannand et al. (1987) used

human articular osteoarthritic chondrocytes in a thick-layer culture model. Using

chondrocytes in culture without the extracellular matrix may yield a more responsive

culture system with respect to SAMe supplementation than using explants in culture. A

clinical study showed that SAMe was just as effective as a known anti-inflammatory

(celecoxib) at relieving pain, however SAMe took a much longer time to elicit the same

effects as celecoxib (Najm et al. 2004). Because SAMe is involved in so many different
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reactions, our experiments may not have been carried on long enough to detect the

delayed nature ofthe SAMe.

ASU increased cartilage proteoglycan content and thickness in sheep (Cake et al.

2000). In that study, 0A was induced by meniscectomy and ASU was administered

orally. ASU also inhibited the breakdown of rat cartilage implanted beneath the skin of

mice (Khayyal and el-Ghazaly 1998). The concentrations of ASU achieved in the blood

or in the synovial fluid in either of these studies, which may account for the discrepancy

between the results from Khayyal and el-Ghazaly and the current study was unknown.

ASU also had anti-inflammatory effects in two studies using human chondrocytes: IL-l-

induced PGE2 was reduced by 40 to 50% (Bassleer et al. 1992), and ASU decreased basal

production ofNO and PGE2 in human OA chondrocytes (Bassleer et al. 1992).

In the case of both the SAMe studies and the ASU studies, a species other than

bovine species was used, which raises the possibility of species-specific effects. Bovine

cartilage tissue may be less responsive to SAMe and ASU than cartilage tissue from other

species. Another consideration is that all of the tissue culture experiments reported have

used monolayers rather than explants. Cells may respond differently to these

supplements when cultured without the natural extra cellular matrix surrounding the cells.

Conclusion

The results presented here using bovine explants do not support the usefulness of

ASU and SAMe as chondroprotective molecules. Further work is needed to elucidate the

concentration of ASU in the blood and synovial fluid upon oral administration. Further
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work is also need to delineate the exact mechanism of these two supplements as the

mechanism of both of these supplements remains largely unknown.

Manufacturer's address:

aGibco, Grand island, New York, U.S.A.

bFisher Scientific, Pittsburgh, Pennsylvania, U.S.A.

cSigma Chemical, St Louis, Missouri, U.S.A.

dJ.T. Baker, Phillipsburg, New Jersey, U.S.A.

eR&D Systems, Minneapolis, Minnesota, U.S.A.

fNutrarnax Laboratories, Edgewood, Maryland, U.S.A.

gRoche Diagnostics Corporation, Indianapolis, Indiana, U.S.A.

hMolecular Devices, Sunnyvale, California, U.S.A.

iPolyscience, Inc., Warrington, Pennsylvania, U.S.A.

JSAS Institute, Inc., Cary, North Carolina, U.S.A.
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Fig I: Mean (iSE, n=4) NO, PGE2, and GAG concentrations in media samples at day 1

(AC). IL-1 (15 ng/ml) was added to each treatment except for control. The

experimental treatments contained 1 ug/ml SAMe (high dose); 0.1 ug/ml SAMe (medium

dose); 0.01 ug/ml SAMe (low dose); 0.3% EthOH (EthOH control); 10 pig/ml ASU (high

dose); or 1 ug/ml ASU (medium dose).
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Fig 2." Mean (iSE, n=4) NO, PGE2, and GAG concentrations in media samples at day 1

(A-C). IL-1 (15 ng/ml) was added to each treatment except for control. The treatments

contained: 0.3% EthOH (EthOH control); 10 ug/ml ASU (high dose); 1 ug/ml ASU

(medium dose); 0.01 ug/ml ASU (low dose).
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