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ABSTRACT 

PREDICTIVE CONTROL OF A HYBRID POWERTRAIN 

By 

Jie Yang 

Powertrain supervisory control strategy plays an important role in the overall performance of 

hybrid electric vehicles (HEVs), especially for fuel economy improvement. The supervisory 

control includes power distribution, driver demand fulfillment, battery boundary management, fuel 

economy optimization, meeting emissions, etc. Developing an optimal control strategy is quite a 

challenge due to the high degrees of freedom introduced by multiple power sources in the hybrid 

powertrain. This dissertation focuses on driving torque prediction, battery boundary management, 

and fuel economy optimization.  

For a hybrid powertrain, when the desired torque (driver torque demand) is over battery 

operational limits, the internal combustion (IC) engine needs to be turned on to deliver additional 

power (torque) to the powertrain. But the slow response of the IC engine, compared with electric 

motors (EMs), prevents it from providing power (torque) immediately. As a result, before the 

engine power is ready, the battery has to be over-discharged to provide the desired powertrain 

power (torque). This dissertation presents an adaptive recursive prediction algorithm to predict the 

future desired torque based on past and current vehicle pedal positions. The recursive nature of the 

prediction algorithm reduces the computational load significantly and makes it feasible for real-

time implementation. Two weighting coefficients are introduced to make it possible to rely more 

on the data newly sampled and avoid numerical singularity calculations. This improves the 

prediction accuracy greatly, and also the prediction algorithm is able to adapt to different driver 

behaviors and driving conditions.  



 

 

 

Based on the online-predicted desired torque and its error variance, a stochastic predictive 

boundary management strategy is proposed in this dissertation. The smallest upper bound of future 

desired torque for a given confidence level is obtained based on  the predicted desired torque and 

prediction error variance and it is used to determine if the engine needs to be proactively turned 

on. That is, the engine can be ready to provide power for the “future” when the actual power 

(torque) demand exceeds the battery output limits. Correspondingly, the battery over-discharging 

duration can be reduced greatly, leading to extended battery life and improved HEV performance. 

To optimize powertrain fuel economy, a model predictive control (MPC) strategy is developed 

based on the linear quadratic tracking (LQT) approach. The finite horizon LQT control is based 

on the discrete-time system model obtained by linearizing the nonlinear HEV and only the first 

step of the solution is applied for current control. This process is repeated for each control step. 

The effectiveness of the supervisory control strategy is studied and validated in simulations under 

typical driving cycles based on a forward power split HEV model. The developed MPC-LQT 

control scheme tracks the predicted desired torque trajectory over the prediction horizon, 

minimizes the powertrain fuel consumption, maintains the battery state of charge at the desired 

level, and operates the battery within its designed boundary.  
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CHAPTER 1:  INTRODUCTION 

 

 

 

 

1.1  Motivation 

Compared to conventional vehicles powered by the internal combustion (IC) engine, hybrid 

electric vehicles (HEVs) are able to improve fuel economy with reduced emissions due to the 

following reasons. Firstly, part of the vehicle kinetic energy can be recovered through braking-

regeneration; secondly, the IC engine can be turned off under stop or low-load conditions; and last 

but not the least, the HEV is able to operate the IC engine at its most efficient conditions with the 

help of electric motor and battery [1]. Two of the main challenges for HEVs are the limited useful 

life of the battery and the development of a real-time optimal control strategy used to improve the 

fuel economy without complete knowledge of future driving conditions.   

At low temperatures, the HEV battery is more likely to be over-discharged than at normal 

temperatures due to the limited battery capacity, especially under transient operational conditions. 

However, frequent or persistent over-discharging could lead to permanent damage and reduced 

life of the battery, and hence affect the overall performance of the HEV. As part of the hybrid 

powertrain, the IC engine can be used to deliver additional power (torque) to the drivetrain when 

the battery capacity is limited and the battery over-discharging would occur. However, the slow 

response of the engine, compared with electric motor, prevents it from delivering torque 

immediately. Note that it could take half to one second to start the engine and make its power 

available. Before the engine power is available, the battery has to be over-discharged to maintain 

the powertrain power (torque) output, which could lead to reduced battery life and degraded HEV 
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performance. This often happens at extremely low temperatures. However, if the desired 

powertrain power (torque) can be predicted, the IC engine can get ready before the actual power 

exceeds the battery capability. In this case, the battery can be operated within its designed 

boundary or with reduced over-discharging duration leading to extended battery life, which is 

called battery boundary management in this dissertation.   

The HEV supervisory control strategy is aimed to improve vehicle fuel economy, and it is a 

challenging task to optimize the fuel consumption in real-time without the complete mission 

knowledge. In the case that the complete knowledge is available, a global optimization approach, 

such as dynamic programming (DP), can be deployed. But this is not the case for practical 

applications since the mission information is generally not available. However, when the desired 

torque command can be predicted in real-time, this information can be used for optimal equivalent 

fuel consumption control over the prediction horizon, where model predictive control (MPC) and 

linear quadratic tracking (LQT) are used.  

1.2  Research overview 

Supervisory control strategy development has many challenges. This dissertation focuses on 

battery boundary management and powertrain fuel economy optimization. Figure 1. 1 shows the 

supervisory control scheme based upon the predicted desired power (torque) command.  
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Figure 1. 1 Supervisory control scheme 
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As shown in Figure 1. 1 (up—pedal position; Tdes—desired torque; and Tpre—predicted desired 

torque), there are three main topics in this dissertation. Part I studies the desired torque prediction. 

Due to real-time application, the prediction algorithm shall have low computational load with 

proper prediction accuracy and robustness to different driving behaviors and patterns. Part II 

describes the battery boundary management. Based on the desired torque prediction and its error 

variance, the control strategy manages the on-off operation of the IC engine to make engine power 

ready before the actual driving power demand exceeds the battery designed operational limits. Part 

III presents developed supervisory control scheme based on MPC and LQT. With prediction 

information available online, the MPC supervisory controller follows the predicted desired torque 

trajectory, minimizes the total equivalent fuel consumption over the prediction horizon, and at the 

same time, maintains the battery state of charge (SOC) at the desired level and keeps the battery 

operated within its operational boundary.   

1.2.1  Desired torque prediction 

Prediction is useful to provide additional information for decision making and is widely used 

in many fields, such as statistics, science, engineering, and etc. Motivated by the potential 

application to the desired torque prediction in the area of the HEV supervisory control. This 

dissertation proposes an adaptive recursive desired torque prediction algorithm and investigates its 

feasibility based on past and current desired torque and pedal position information using auto-

regressive with extra input (ARX) model, where both pedal position up and conditioned pedal 

position Tdes (desired toque) are inputs; see Figure 1. 1. In order to obtain the regression gains, the 

Least-Squares approach is utilized to minimize the error between actual system outputs and 

predictions. For the purpose of reducing the influence of old data and depending more on the 

current one, two weighting coefficients are introduced. This makes it possible for the prediction 
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algorithm to forget old driving patterns and adapt to the new ones. Since the regression gains are 

updated online at each step, the prediction algorithm is able to adapt to different driver behaviors 

with low computational load for real-time implementation. The effectiveness of the proposed 

prediction algorithm is studied and validated in simulations under typical driving cycles and 

compared with two existing prediction algorithms: step-by-step and fixed gain prediction. Among 

the three algorithms, the proposed one is the best in terms of the guaranteed prediction accuracy, 

low computational load, and robustness to different driver behavior and driving patterns.  

1.2.2  Battery boundary management 

Keeping the hybrid battery operated within its designed boundary is a challenging task 

especially at low battery temperatures, and most existing work either limits battery power output 

or uses external device to increase the battery temperature so as to expand the battery capacity. 

Inspired by the multiple power sources available in an HEV, this research proposes a stochastic 

predictive boundary management (SPBM) based on the predicted desired torque and its error 

variance. In the hybrid powertrain, the IC engine is modeled as a first order dynamics system with 

start delay; the electric motor (or generator) is modeled without dynamics; and the battery capacity, 

internal resistant, discharging/charging current are modeled as functions of temperature, and 

assume they will not change over the prediction horizon . The proposed SPBM is capable of 

proactively turning on the IC engine when the predicted desired power (torque) is greater than the 

battery capacity to reduce the battery over-discharging duration. With the predicted desired torque 

and its error variance calculated in real-time, the SPBM can be implemented for practical 

applications due to its low computation load. The effectiveness of the SPBM is studied and 

validated in simulations under typical driving cycles and compared to the PBM and baseline 

power-follower strategy (without predictive boundary management), the SPBM reduces the 
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battery over-discharging duration greatly among the three especially under aggressive driving 

cycles leading to improved battery life and HEV performance. 

1.2.3  Model predictive control 

Another challenge for the HEV supervisory control strategy development is how to optimally 

distribute power to the multiple power sources. Based on the desired torque prediction, this 

research proposes a model predictive control strategy using linear quadratic tracking (LQT) to 

obtain the close-loop control law for optimal power distribution, where the LQT controller is 

designed to track the predicted desired torque trajectory and minimize the total equivalent fuel 

consumption over the prediction horizon. The total equivalent fuel consumption is defined as the 

sum of engine fuel and battery equivalent fuel consumed. The control-oriented nonlinear 

powertrain model is linearized and discretized under current operational condition for the control 

law calculation. Once the control law is obtained, only the first step of the horizon is used for 

current control. Since the performance index is defined as the combination of tracking error and 

total equivalent fuel consumption, by carefully selecting the weights, the LQT is able to track the 

predicted desired torque, minimize the engine fuel consumption, and keep the battery SOC at the 

desired level. In addition, due to the inheritance of engine-on control logic from the battery 

boundary management strategy, the LQT is also capable of keeping the battery operated within its 

operational boundary. 

The effectiveness of the proposed MPC supervisory control strategy is studied and validated 

in simulations under typical driving cycles, and also compared with baseline power-follower 

control strategy. The MPC-LQT is able to operate the engine at high-efficiency operational region, 

leading to significantly improved fuel economy especially under highway or mixed city and 

highway driving cycles while maintaining the battery SOC at the target level and keeping the 
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battery operated within the boundary. The reduced computational load using an approximated 

iterative Riccati solution for LQT makes it feasible for real-time implementation with very small 

fuel economy penalty. 

1.3  Dissertation contributions 

The following is a list of major contributions: 

 A multi-step desired torque prediction algorithm, based on pedal position signal, is 

proposed to predict the future desired torque over a given time horizon. In the algorithm, 

two weighting coefficients are utilized to rely less on the past data and more on the current 

one. This makes it possible for the algorithm to adapt to current driving patterns. Also, 

since regression gains are updated online, the proposed algorithm is able to adapt to 

different driver behaviors and the low computational load makes it feasible for real-time 

applications. 

 A stochastic predictive boundary management strategy is proposed to reduce the battery 

over-discharging duration to extend battery life. The proposed strategy proactively turns 

the engine on and makes engine power available to the powertrain based on the predicted 

desired torque and its prediction error variance. Most importantly, the adaptive prediction 

and its error variance can be calculated in real-time with very low computational load, 

which makes the strategy feasible for practical application. 

 A model predictive supervisory control strategy is developed based on linear quadratic 

tracking. The controller tracks the predicted driver torque demand with optimized total 

equivalent fuel consumption over a given horizon. At the same time the battery is operated 

within its operational boundary and its state of charge is maintained around the desired 

level.  
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1.4  Dissertation outline 

The material presented in this dissertation is organized as follows. In chapter 2, an adaptive 

recursive prediction algorithm of the desired torque is proposed and compared with two existing 

prediction algorithms, step-by-step and fixed-gain prediction ones. The proposed algorithm is 

validated through simulations. In chapter 3, a stochastic predictive boundary management strategy 

is developed to operate the battery within its operational boundary and reduce over-discharging 

duration. The proposed strategy is compared with predictive boundary management and baseline 

power-follower scheme and shows significant reduction of battery over-discharging duration. In 

chapter 4, a model predictive supervisory control strategy is proposed based on the linear quadratic 

tracking that follows the predicted driver torque demand, minimizes the equivalent fuel 

consumption over a given horizon, and at the same time maintains the battery within its operational 

boundary and battery state of charge close to the target level. The effectiveness of the proposed 

strategy is validated under typical driving cycles and compared with power-follower one. Chapter 

5 adds conclusions and future work.  
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CHAPTER 2:  ADAPTIVE RECURSIVE PREDICTION OF THE DESIRED 

TORQUE 

 

 

 

2.1  Introduction 

Hybrid electric vehicle (HEV) has sparked the interest of researchers and car manufacturers 

for decades [1] due to its capability of improving fuel economy and reducing emissions. The hybrid 

powertrain has the freedom to use electric machine (EM) or (and) the internal combustion (IC) 

engine to deliver required power to the vehicle wheels [3]. Among the hybrid powertrain 

subsystems, battery-EM subsystem has much faster dynamics than an IC engine, and is often 

required to provide additional torque (or power) to the vehicle drive-train during the transient 

operations, especially during the low speed vehicle operations [4]. This enables the HEV to 

outperform conventional vehicles. However, when an HEV is under cold start operations, the 

available battery power is significantly reduced due to the cold temperatures [5] [6], and because 

of the IC engine start delay, the battery has to provide power at the level beyond its normal 

operation limit, which would dramatically shorten the battery life [7]. If the desired torque, 

therefore, can be predicted, the IC engine will be started early when necessary, which reduces the 

battery over-discharging duration and keeps the battery operated within the designed operational 

boundary, and hence to protect the battery. This makes torque demand prediction important for 

extending battery life. 

References [1], [8]-[11] develop predictive energy management control strategies to estimate 
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future torque (power) demand, but the prediction were vision-based and prediction accuracy 

cannot be guaranteed. Reference [4] presents a methodology to predict available torque in real-

time for HEVs, and [12] proposes an algorithm for predictive torque control. Although they can 

avoid issuing commands to exceed battery capacity, however the protection is very limited and is 

not suitable for extending battery life due to single step prediction. In addition, there has been 

some research on driver torque prediction, for example [13]-[14], however most of driver torque 

predictions are for driving behavior modeling such as power steering torque prediction. There also 

were many driver models with even more sophistic frameworks, such as auto-regressive with extra 

input (ARX) based models: stochastic switched ARX (SS-ARX) [15], piecewise affine ARX 

(PWARX) [16], probability weighted ARX (PrARX) [17][18] and switched ARX (SARX) [19] 

(to name a few). Whereas, their focuses are mainly on driver behavior modeling, identification, 

and prediction. Gaussian mixture model [20]-[23] and Markov chain model [20], [24]-[25] were 

also used to predict powertrain torque. The challenge is to obtain a feasible prediction model based 

the training data set for reduced prediction error and to select a proper model order for reduced 

computational load. It also worth to mention that both Gaussian matrix and Markov chain 

prediction models are with the fixed prediction gains.   

Although there are many prediction algorithms in literature, few research was focused on 

multi-step prediction of future powertrain desired torque based on the past and current acceleration 

pedal position signal. The prediction algorithm can be divided into linear and nonlinear ones, 

where the linear method including auto-regressive (AR) model, auto-regressive moving average 

(ARMA) model, aforementioned ARX model, and so on; the typical nonlinear prediction adopts 

artificial neural networks. Whereas the main challenge to develop a good multi-step prediction 

model based upon the past data is to provide accurate prediction using minimal available 
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information for reduced computational load. References [26], [27], [28], and [31] present a typical 

multi-step prediction method, the recursive-one-step (or step-by-step) prediction, which uses the 

same prediction model iteratively, and the previous predictions are used along with the sampled 

data as inputs to obtain the next prediction. By applying the one-step prediction iteratively, multi-

step prediction can be achieved. For one-step prediction, this technique is comparatively feasible. 

However, for multi-step prediction, due to the fact that the predicted data is used for predicting the 

next data point, the prediction error could be accumulated and the error increases significantly as 

the number of prediction step goes up.  

Also, references [26] to [31] provide a method for direct-multi-step prediction. Compared with 

the recursive-one-step method, all the input is the measured data, i.e., the predicted data is not used 

iteratively for the multi-step prediction, and future signal is predicted directly in one prediction. 

Some improvements are achieved due to the elimination of the cumulative error, and 

comparatively more accurate results could be obtained [32]. However, for more than one models 

are required for direct-multi-step prediction, the computational load is very high, which makes 

real-time prediction difficult.  

Reference [29] describes a DirRec strategy using the combination of recursive-one-step and 

direct-multi-step methods for multi-step prediction. This approach not only provides the prediction 

of each step but also validates the information generated from the previous prediction steps. 

Although the cumulative prediction error decreases over the recursive-one-step prediction for the 

DirRec strategy, the conditional independence of the trained models is not necessarily effective 

[33]. As an extension to the above prediction strategies for multiple-input and single-output system, 

references [31] and [34] present the case for multi-input and multi-output (MIMO) systems, where 

the predicted value is a vector of future values. Nevertheless the conditional independence 
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assumption of the DirRec algorithm is removed, the key disadvantage of these prediction strategies 

is the reduced prediction flexibility. In summary, the existing prediction work has three major 

disadvantages as summarized in [35]. Firstly, low prediction accuracy due to the utilization of the 

predicted data for future prediction; secondly, the high cumbersome online computational load 

makes it impossible for online applications because of the required matrix calculations; last, the 

prediction algorithm tends to converge to a fixed prediction model, which makes it difficult to 

adapt to different driving patterns for HEV applications. 

Compared with two existing prediction algorithms, step-by-step and fixed-gain prediction ones, 

this research proposes an adaptive recursive multi-step prediction algorithm for estimating the 

hybrid powertrain torque demand in real-time based upon the ARX model. The proposed algorithm 

uses both conditioned and raw acceleration pedal position signals for direct multi-step prediction 

instead of iterative step-by-step approach, and the cumulative error is reduced dramatically. Also 

two weighting coefficients are introduced. One is used as the forgetting factor for the past data and 

it is adaptively adjusted to control the over and under flow problems to improve prediction 

accuracy; and the other is the weighting factor for current data used to make regression model 

adapt to new driving patterns quickly. Simulation study was conducted to compare three prediction 

algorithms under FTP driving cycle, along with the other four typical driving cycles. The study is 

also conducted to minimize regression order with the desired accuracy to make the real-time 

implementation possible. At last, the robustness to different driver behaviors is investigated by 

altering the driver model parameters (“D” gain) in simulation study. The main contribution of this 

research is to develop a pedal position based multi-step desired torque prediction algorithm to 

predict the future desired torque. In the simulation validation, 50-step prediction was utilized. The 

second contribution is the utilizing of  and  to weight the past and incoming data, which weighs 
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less on the past (old) data and weighs more on current data. This is very important, since driver 

change could totally affect the desired powertrain torque pattern. Weighting more on new data 

would be important to have an accurate prediction. 

This chapter is organized as follows. Section 2.2 discusses two existing prediction algorithms, 

step-by-step and fixed-gain ones, and proposes an adaptive recursive prediction algorithm. A 

hybrid vehicle model is described for evaluating the proposed algorithm in section 2.3. Section 2.4 

presents the simulation results with respect to the effectiveness of the weighting factors, prediction 

errors and computational load of the three algorithms, regression order selection, as well as the 

prediction algorithm robustness to different driving patterns. Section 2.5 adds the conclusions.  

2.2  Desired torque prediction algorithms  

In statistics and signal processing, the AR and ARX models are widely used to represent 

certain random processes. For instance, it is often used to describe certain time-varying random 

processes with the output variable depending linearly on its previous values and inputs.  In this 

research, AR and ARX models are selected to predict future powertrain desired torque based upon 

current and past acceleration pedal position output (raw pedal position output) and desired torque 

demand output (conditioned pedal position output). 

2.2.1  Step-by-step prediction algorithm  

 

The step-by-step prediction algorithm makes one-step prediction based upon current and past 

output values. As is shown in Figure 2. 1, values of current and past desired torque demand outputs 
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  Figure 2. 1  Step-by-step prediction diagram 
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y (conditioned pedal position output) are utilized as inputs for the one-step prediction to estimate 

future desired torque yp. 

At time step k, AR based one-step prediction model can be expressed by 

1

0

( 1) ( ) ( )




  
n

p i

i

y k y k i a k                                                (1.1) 

where ( 1)py k  is the one-step ahead prediction based upon the current and past information

( )y k i ; n is the number of data points used for the one-step prediction at sample step k; ai(k) (i = 

0, 1, …, n-1) is the AR model weighting coefficients.  

To establish the mapping between the predicted and the known outputs, equation (1.1) can be 

expressed as the following:  

ˆˆ( 1) ( ) ( )p n ny k k k                                                  (1.2) 

where vector  ˆ ( ) ( ) ( 1) ( 1)n k y k y k y k n      represents the current and past data 

that can be obtained by sampling the conditioned pedal output y; and 
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n nk a k a k a k  denotes the AR model regression vector at sample step k. 
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Equation (1.1) can be expressed as follows: 
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,
ˆˆ( 1) ( ) ( )p N N nY k k k                                                    (1.5) 

To obtain regression vector ˆ ( )n k , define the following cost function: 

2
ˆˆ( ) ( ) ( 1) ( ) ,    1one step N N nJ k Y k k k N                                     (1.6) 

The corresponding solution that minimizes the cost defined in equation (1.6) is the Least-

Squares (LS) solution (see [36] and [37]) below, provided the indicated inverse exists. 

1
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n N N N Nk k k k Y k

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Note that equation (1.7) can be expressed in the following form to reduce computational load. 
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Since the regression vector defined in equation (1.8) can only provide one-step prediction, to 

have a multi-step prediction, the step-by-step prediction approach [38] is adopted, where the m-

step prediction ( )py k m  can be obtained using the following iterative formulae: 

( 1) ( , ) ( , ),   1,  2,  ,  1.p C ny k j k j k j j m                                (1.9) 

where  
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By applying the algorithm described in equations (1.9) to (1.11) repeatedly for j = 1, 2, …, m-
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1,  m-step prediction can be achieved. The algorithm is also summarized in Figure 2. 2.  

The disadvantages of the step-by-step prediction algorithm are two-fold: low prediction 

accuracy and high computational load due to the inverse calculation described in equation (1.8). 

The low prediction accuracy is mainly due to the fact that the predicted output was used repeatedly 

during the step-by-step prediction. This will be confirmed in the simulation section. High amount 

of computational load is due to the fact that a new regression vector needs to be calculated online 

for each prediction. 

 

2.2.2  Fixed-gain prediction algorithm 

For the fixed-gain prediction, the m-step prediction will be calculated directly without using 

the iterative process used in the step-by-step prediction. To improve the prediction accuracy, both 

conditioned pedal position output y and raw pedal position output u are used for prediction; see 

Figure 2. 3. 

 

Start at sample step k

j=j+1

Calculate yp(k+j) using 

equations (2.9)-(2.11)

j<m ?

yp(k+m)

using equation (2.2)

Initialize j, m, n, N;

Calculate         using equation (2.8)

Yes

ˆ ( )k

 

Figure 2. 2  Flow chart of step-by-step prediction algorithm 
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The ARX based fixed-gain multi-step prediction model can be expressed as  

 
1

0

( ) ( ) ( )
n

p i i

i

y k m y k i a u k i b




                                     (1.12) 

where ( )py k m is the multi-step prediction based upon the current and past information ( )y k i

and ( )u k i ; ai and bi (i = 0, 1, …, n-1) are the weighting coefficients of y and u, respectively. 

Equation (1.12) can be expressed as follows: 

2 2( ) ( )p n ny k m k                                               (1.13) 

where  2 0 1 1 0 1 1,  ,  ,  ,  ,  ,  ,  
T

n n na a a b b b   is the constant regression coefficient vector and 

the data vector  2 ( ) ( ),  ,  ( 1),  ( ),  ,  ( 1)n k y k y k n u k u k n      can be obtained by 

sampling the conditioned pedal position output y and raw pedal position output u, see Figure 2. 4. 

 

 Note that the notations used in the fixed-gain prediction subsection are the same as those used 

in the step-by-step prediction subsection. Define the following vector in a similar way to the step-

by-step algorithm. 
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Figure 2. 3  Multi-step prediction diagram 
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                                                (1.14) 

and we have 

, 2( ) ( )p N N nY k m k                                                 (1.15) 

where , ( )p NY k m  is defined in (1.4). Now define the following cost function: 

  
2

2( ) ( ) ( ) ,   1multi step N N nJ k Y k k m N                                   (1.16) 

where ( )NY k  is defined in (1.4). The LS solution that minimizes the cost in (1.16) is provided 

below, assuming the indicated inverse exists.  

1

2 ( ) ( ) ( ) ( )T T

n N N N Nk m k m k m Y k


                                     (1.17) 

The major difference between the step-by-step and fixed-gain multi-step prediction is that the 

ARX regression gain vector is updated in every step for the step-by-step algorithm, while the fixed-

gain one is not. In the fixed-gain algorithm, 
2n is calculated based upon the pre-collected data 

and it will not be updated during the online prediction process. Since the driver behaviors could 

be quite different for different drivers under different driving cycles, the fixed-gain prediction may 

not be able to provide accurate prediction, which leads to the development of the adaptive recursive 

prediction algorithm. 

2.2.3  Adaptive recursive prediction algorithm 

As discussed in the above subsection, the fixed-gain algorithm may not provide satisfactory 

prediction since it cannot adapt to different driving pattern and behaviors. This subsection proposes 

the adaptive recursive prediction algorithm, where the ARX adaptive recursive multi-step 
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prediction model can be expressed as follows,  

2 2( ) ( ) ( )p n ny k m k k                                              (1.18) 

where ( )py k m and 2 ( )n k are defined in (1.12) and (1.13),

 2 0 1 1 0 1 1( ) ( ),  ( ),  ,  ( ),  ( ),  ( ),  ,  ( )
T

n n nk a k a k a k b k b k b k   is the ARX model regression 

vector at sample step k, and define the following 

2

2

2

(0) (0)(0)

(1) (1)(1)
( ) ,  ( ) ,  ( )

( ) ( )( )

p n

p n

p

p n

y y

y y
Y k Y k k

y k ky k







    
    
       
    
    
      

                        (1.19) 

Define the multi-step prediction as follows 

2

2

( 1) ( 1)
( )

( ) ( )

p

n

p n

Y k m k
k

y k m k

 

 

      
       

                            (1.20) 

where ( ,  1] ( 0)    and 1  are two weighting coefficients for the iterative regression 

prediction algorithm. Note that  is a forgetting factor used for the data sampled in the past, and 

  is used to increase the weight for the current sample data.  

To calculate the regression coefficient at each sample, define the following cost function at 

time step k. 

2

2

2

( 1)( 1)
( ) ( ) , 1

( )( )
multi step n

n

k mY k
J k k N

k my k






     
         

                  (1.21) 

The corresponding LS solution that minimizes the cost defined in (1.21) is given below, 

provided the indicated inverse exists. 

1
2 2

2 2 2

2 2

2

( ) ( 1) ( 1) ( ) ( )

            ( 1) ( 1) ( ) ( )

T T

n n n

T T

n

k k m k m k m k m

k m Y k k m y k

   

  



            

        

            (1.22) 
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Applying the approach in [38] to avoid matrix inversion in (1.22), 

 
11 1 1 1 1 1A BCD A A B DA B C DA
                                    (1.23) 

Let
2 ( 1) ( 1)TA k m k m       , 

2

2 ( )T

nB k m   , C I , and 2 ( )nD k m  , and 

(1.23) becomes  
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  2( 1) ( 1) ( 1) ( )Tk m Y k k m y k        

     (1.24) 

Reorganize (1.24) leads to 
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(1.25) 

Since  

1

2 ( 1) [ ( 1) ( 1)] ( 1) ( 1)T T

n k k m k m k m Y k                              (1.26) 

Noted that  
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( 2) ( 2)
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( 1) ( 1)n
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k m Y k

k m y k
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              

                 (1.27) 

(1.26) can also be expressed as the following 

1
2 2

2 2 2

2 2

2

( 1) ( 2) ( 2) ( 1) ( 1)

                  ( 2) ( 2) ( 1) ( 1)

T T

n n n

T T
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k m Y k k m y k
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  



               

          

       (1.28) 

Letting 

1

( 1) ( 1) ( 1)TP k k m k m


                                          (1.29) 

 Due to (1.27), equation (1.29) is also in the following form, 

1
2 2

2 2( 1) ( 2) ( 2) + ( 1) ( 1)T T

n nP k k m k m k m k m   


                      (1.30) 

Based upon (1.26) and (1.29), (1.25) can be simplified as 
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(1.31) 

Since 
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                            (1.32) 

then we have 
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Noted that ( )P k  can be expressed as the following to guarantee that it is symmetric during the 

numerical calculations: 
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                       (1.34) 

Therefore the adaptive recursive prediction algorithm can be expressed as 
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 (1.35) 

Note that the initial values of
2 (1)n  and (1)P can be obtained using the approach described 

in the fixed-gain prediction subsection with pre-collected data. Although the adaptive recursive 

algorithm calculates the regression vector online, due to the iterative nature, the computational 

load required to execute the algorithm in real-time is relatively low. This will be demonstrated in 

subsection 2.4.5. 

From the definition in (1.35), it is clear that matrix ( ) ( 1,  2,  ...)P k k   is a monotonically 

decreasing positive semi-definite and symmetric matrix when 1   . Since a monotonically 

decreasing sequence bounded below will converge to a limit above or equal to its lower bound. 

Once ( )P k is converged, 
2 ( )n k will become a constant vector, and the algorithm becomes a fixed-

gain prediction algorithm. As a result, the multi-step prediction algorithm will not be able to adapt 

to different driver behaviors. However, in the practical application, we would like to let 
2 ( )n k

change at certain rate to reflect the change of driver behavior, so that the predicted torque will also 

affected by the driver behaviors, which is the main motivation that parameters and   are added 

as weighting factors so that the weight of past and current data can be adjusted in the regression 

algorithm.  

Based upon the definition of ( 1)P k  in appendix, it is necessary to solve the ( )P k iteratively, 

since ( )P k contains newly sampled information 2 ( )n k m  . Parameter ( ,  1]  is mainly used as 
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forgetting factor so that the effect of the old data could be diminished. From equation (1.35), it can 

be observed that when 1  , matrix ( )P k  might not be a monotonically decreasing, since 2  is 

greater than 1. It can also be observed that the past data is weighted by k , and as k goes to infinity 

the effect of the past reduces so that the current data becomes important. In this case, the adaptive 

algorithm can adapt to different driving patterns and behaviors. 

For vehicles under different driving cycles with different drivers, the driving behavior could 

be quite different. To adapt to different driver behaviors, it is desirable to eliminate the influence 

of extremely old data and incorporate current ones [39] due to the process changing. In this study, 

 is chosen to be less than one to forget the past data, that is, to get the effect of the past data decay 

exponentially. The smaller the coefficient , the faster the past data is discarded. Parameter  is 

used to weight the current data. The bigger the coefficient  , the faster the regression model adapts 

to current driving behavior.  

However, even with a fixed , the decay rate of the past data could change due to different 

driving patterns and behaviors. High decay rate could reduce prediction accuracy due to lack of 

enough past information. For instance, when the vehicle is stopped at the traffic light, no new 

information will be provided by the acceleration pedal during that period, and the past data is the 

only information available for the prediction. To solve this problem, it is proposed to maintain the 

size (norm) of matrix ( )P k constant by adaptively adjusting parameter . The following adaptive 

scheme is used. 

( ) ( 1) ( 1),   ( ) ( ( ))k k e k k sat k                                    (1.36) 

where ( )sat  is a saturation function to keep ( ,  1]  ; and 0  is the adaptive gain. Error ( )e k

is defined below 
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  
1

0

1
( ) ( ) ,    ( ) ( ( )),  0

p

n eF
i

e k P P k i e k sat e k p
p





                         (1.37) 

where ( )esat   is a saturation function to limit error ( )e k  to be between maxerr  and maxerr , and

max 0err  ; nP is the given norm target for matrix ( )P k ; and 
F

represents the Frobenius norm. 

 

From (1.21), one may say that only one parameter (the ratio of and  ) is needed for the 

recursive regression algorithm since cost function (1.21) is equivalent to the cost function with 

1  and free parameter  . However, for each iteration step, we are minimizing a different cost 

function, which makes parameter independent of  . This can be observed from ( )P k in (1.35), 

where
2 

is an independent parameter. The specific influences of parameters and  to the 

recursive regression prediction will be discussed in the simulation section. 

Note that, in this research, the driving data was collected from a PID simulation driver model 

based on different driving cycles, which could be different from a real driver on the vehicles or 

Fixed-gain Θ1, P1

Calculate adaptive α     
using equation (2.36)

Calculate                      using 

equation (2.35)

yP(k+m) 

using equation (2.18)

Initialization

 m, n, α , β, Pn, k=2,                , P(1)=P1

Current u(k), y(k)

Sample step k=k+1

2 ( ), ( )n k P k

2 1(1)n 

 
Figure 2. 5  Flow chart of adaptive recursive prediction algorithm 



 

 

24 

 

driving simulators. Therefore, the future work is to validate the proposed algorithm under actual 

driving conditions.  

The adaptive recursive prediction algorithm, using fixed-gain regression parameters as initial 

regression parameter and updating the regression coefficients online, is shown in Figure 2. 5. 

2.3  Hybrid electric vehicle model 

 

There are two different approaches for the HEV modeling: the backward and forward modeling. 

The backward model calculates the powertrain fuel consumption based upon the vehicle speed of 

a given driving cycle. Therefore, the driver model is not required since it is assumed that the given 

driving cycle speed is the vehicle speed. The benefit of the backward vehicle model is its simplicity 

and low computational load [40]. This type of model is often used for study vehicle fuel economy. 

The forward modeling approach tracks the driving cycle vehicle speed using a driver model, where 

the driver model tries to follow the given driving cycle speed. The advantage of the forward 

modeling approach is that it simulates the actual vehicle behavior assuming that the driver model 

is accurate. It provides practical vehicle simulations with higher computational load than that of 

backward model. The forward vehicle model is often used for steady transient vehicle performance 

study such as fuel economy and emissions.   

The HEV model is constructed in the MATLAB/Simulink, which is shown in Figure 2. 6.   
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Figure 2. 6  Architecture of the HEV model 
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2.3.1  Driver model 

The driver model consists of two PID controllers: one is for controlling the accelerator pedal, 

and the other is for brake pedal, see Figure 2. 7. Both controllers using the vehicle speed error as 

the input. 

 

The driver model control parameters are shown in Table 2. 1. These parameters are tuned to 

minimize the vehicle speed tracking error. Note that the parameters can also be tuned to reflect 

different driver behaviors, and usually relatively high “D” gain represents aggressive driver 

behavior. Meanwhile, to let powertrain subsystem have the proper acceleration pedal information, 

a first order low pass filter is used to condition the raw pedal position output signal; see Figure 2. 

1 and Figure 2. 3. The low pass filter parameter is included in Table 2. 1. 

 

2.3.2  Hybrid powertrain model 

The hybrid powertrain model includes an IC engine, two EMs and a planetary gear. EM can 

work as a generator or a motor. At low speeds, the vehicle can be powered by EMs and/or the IC 

engine; see Figure 2. 6.  

Accelerator 
Pedal Signal

Actural
Vehicle Speed

Desired 
Vehicle Speed

_

Accelerator Pedal 

PID Controller

Brake Pedal

PID Controller

Brake 
Pedal Signal

 
Figure 2. 7  Driver model 

Table 2. 1  Driver model control parameters 

Item Parameter Value 

Accelerator Pedal 

PID Controller 

Proportional gain, Kp 150 

Integral gain, Ki 10 

Derivative gain, Kd 0  (default) 

Brake Pedal 

PID Controller 

Proportional gain, Kp 200 

Integral gain, Ki 0.01 

Derivative gain, Kd 0 

Low Pass Filter Time constant, τ 0.05 
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2.3.2.1  IC Engine model 

The output power of the IC engine is modeled as a function of fueling input em below 

( , ) ( , ),  e e e e e e ein e LHV e e eP P T P m H P T                                 (1.38) 

where eP is the IC engine power output; e is the efficiency map of the IC engine as a function of 

engine output torque eT  and speed e ; e is the IC engine time constant; einP is the input fuel 

energy as a function of fuel mass flow rate em  and the corresponding fuel low heating value LHVH . 

2.3.2.2  Electric motor/generator model 

Since the response time of EM is much fast than the IC engine [41], the EM is modeled without 

dynamics as follows: 

m( , ) ( , )m m m m m m elecP T T P U I                                        (1.39) 

where Pm is the motor power output and, ηm is efficiency map of motor as a function of motor 

output torque mT and speed m ; elecP is the electric power input, a function of electric bus voltageU

and motor current Im. When the motor is operated under the generator mode, it is modeled as 

( , ) ( , )g g g m m m m mP UI T P T                                           (1.40) 

where Pg is the generated power; Ig is the generator current; and ηg is the efficiency map of 

generator.  

2.3.2.3  Planetary gear model 

The planetary gear is connected to all the mechanical power plants and acts as a transmission 

to split power between the engine and EMs. For the planetary gear set configuration, the following 

equation holds  

 ( )R S CR S R S                                                        (1.41) 

where R , S , and C are the rotational speed of ring gear, sun gear, and carrier gear, respectively; 
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and R and S are the number of ring and sun gear teeth, respectively.  

The rotational gear speeds and torques satisfy the following equations,   

  

(1 / ) / ,

/

A S C R

B R veh d w

e C

R S R S

f r

   

  

 

   


 
 

                                             (1.42) 
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                                              (1.43) 

where veh is the vehicle linear speed; df is the final drive ratio; wr  is the radius of the wheel; RT , ST

and CT are the ring gear, sun gear and carrier gear torques, respectively; and tF is the traction force. 

2.3.2.4  Battery model 

Battery state of charge (SOC) model is relatively complicated compared with other subsystem 

models in an HEV. The simple and effective Rint model [42] is used and, the estimation of SOC 

can be expressed as follows: 

max

max

used coulombAh Ah
SOC

Ah


                                           (1.44) 

where coulomb is the coulomb efficiency of the battery, maxAh is the maximum capacity of the 

battery, and usedAh is the used capacity of the battery.  

Noticed that SOC should be maintained within its predefined bounds to protect the battery for 

extended life. 

Thermal model was also developed to monitor the effects of the average internal battery 

temperature to be used to estimate the battery capacity under driving condition, and the model is 

based upon as the following equation: 
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Q Q
T d

m c





                                                (1.45) 

where 
genQ  is the heat generated by the battery calculated from coulomb and internal resistance 

losses; caseQ is the combined heat of the conduction and convection from the battery to the air; batm

is the mass of energy storage module; pc is the average heat capacity of the module. Note that the 

battery temperature changes gradually under a driving cycle and the desired driving toque changes 

at a much fast rate. In the simulation study in this research the battery capacity within the prediction 

horizon is based upon the current battery temperature.  

2.3.3  Supervisory controller 

 

Based upon the driving torque (desired torque) demand, the supervisory controller controls the 

IC engine and electric machine powers on the basis of the sub-system states such as SOC, engine 

and EM speed and load to meet the torque requirement. Noted that the prediction algorithm is part 

Table 2. 2  Technical and simulation parameters of the HEV 

Item Parameter Value 

Vehicle Mass 2956 kg 

Engine 

Type and description 90-degree V-type, liquid-cooled 

Power output 345 hp (257.2 kW) @ 5300 rpm 

Torque 380 lb-ft. (515.2 N.m) @ 4200 rpm 

Maximum Engine Speed 5800 rpm 

Generator 
Type Brushless permanent magnet 

Rated/Peak power 100/150kW 

EM 

Type  Brushless permanent magnet  

Rated/Peak power 200 /300 kW 

Maximum torque 1300 N.m 

Speed range 0-5000 r/min 

Battery 

Type Lithium battery pack 

Rated voltage, Voltage range 360V, 300-420 V 

Rated capacity 90 Ah 

Simulation 

Default driving cycle FTP 

Battery initial temperature -30℃ 

Prediction steps 50 (0.5s)  

Simulation solver Fixed-step, 0.01s 
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of the supervisory controller located right after the driver model; see Figure 2. 6. It uses both the 

raw and conditioned acceleration pedal position (desired torque) signals as inputs to predict future 

desired torque. The detailed control strategy is not provided here.  

The main technical parameters of the HEV and simulation variables in this research are listed 

in Table 2. 2. 

2.4  Simulation study and validation 

2.4.1  Weighting factor effect 

 

From equation (1.35) it can be observed that when 1   , ( )
F

P k is a monotonically 

decreasing function of time. Figure 2. 8 shows that under the FTP driving cycle ( )
F

P k would 

gradually converge to zero as time increases, leading to a fixed-gain prediction as described in 

subsection 2.2.3. This could result in low prediction accuracy since the prediction algorithm cannot 

adaptive to the different driving patterns and behaviors. 

However, letting to be a constant less than 1, for example 0.999  with 1  , could lead to 
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unbounded ( )
F

P k and may result in increasing prediction errors. Therefore, a non-constant 

adaptive proposed in (1.36) is required.  

The adaptive  algorithm described in equations (1.36) and (1.37) has a few parameters to be 

selected. The following list describes the parameter selection process: 

Saturation bounds for : The upper bound for is 1 since greater than 1 leads to over 

emphasizing the past data; and the lower bound of  is equal to 1  and was selected as 0.9995

for this application to make sure that the past data will be forgotten gradually. Note that the 

forgiving effect of the given over time is dependent on the sample period of the prediction 

algorithm. For the same forgiving effect, the required approaches one as the sample period 

reduces. Since the sample period is 0.01s, the selected is very close one at 0.9995. The selected 

bounds are shown in Table 4. 

Adaptive gain : Parameter  is related to the convergence rate of ( )
F

P k . Large leads to 

fast convergence but could also cause the adaptive process unstable so it is a tune coefficient is 

selected as
63 10 ; see Table 2. 3. 

Error bounds for ( )e k : Error bounds are used to limit the effect of large error to a fairly slow 

adaptive process. The absolute bound maxerr was selected to be 10% of nP in this study. 

 

Parameters p and nP : These two parameters are tuned to have the minimal prediction error; 

see values in Table 2. 3.  

The simulation is conducted under the FTP driving cycle with the parameters shown in Table 

Table 2. 3  Influence of prediction steps (FTP cycle) 

Item Value Item Value 

( )sat   [0.9995, 1] ( )esat e  [-40, 40] 

p  10   63 10  

nP  24 10  m 50 
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2. 3, and ( )
F

P k converges to its target value 24 10 within about 50 seconds and remains at the 

same level afterwards; see in Figure 2. 9. The stays between its saturated range [0.9995, 1].  From 

Figure 2. 9 it can also be observed that adaptive coefficient equals to one when the vehicle speed 

is close to constant or zero. Note that in this case the acceleration pedal position will also remain 

close to constant, leading to almost no new information provided. In this case, coefficient is 

selected to one so that the past information will not be forgotten and can be used for prediction. 

 

Parameter  is mainly used to influence prediction performance at the beginning, so that the 

initial prediction error can be reduced. This is due to the fact that as prediction continues, the 

influence of  would be significantly reduced. Figure 2. 10 shows prediction error variations as 

changes with 1  . It can be observed that as  increases, the initial predictive error reduces 

significantly and the error remains almost unchanged after 80 seconds.  Also, when  is greater 

than 20, the initial prediction error improves a little. Therefore,  was chosen to be 20. 

 
Figure 2. 9  ( )
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2.4.2  Prediction algorithm validation and comparison 

 

 The step-by-step prediction algorithm described in Figure 2. 2 of subsection 2.2.1 realizes m-

step prediction by iteratively applying equations (1.9) to (1.11) for m times. However, the 

prediction errors could be fairly high due to the error accumulation by repeatedly using equations 

(1.9) to (1.11). The other disadvantage is that the raw pedal position output is not used. Figure 2. 

11 shows step-by-step prediction results for m=50, where the dotted line represents predictive 

  

Figure 2. 10  Influence of   
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Figure 2. 11  50-step step-by-step prediction 
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torque for the first 600 seconds of the FTP cycle, and the solid one is the torque demand 

(conditioned pedal position output). It is clear that the peak prediction error is as much as 200% 

of its torque demand, indicating that it cannot be used in practice.  

 

Fixed-gain prediction algorithm is capable of making multi-step prediction directly based upon 

both conditioned and raw pedal position outputs. However, the regression gain is fixed and is not 

updated online. Although the fixed-gain method gets rid of the cumulated error, the prediction 

error is still fairly high. Figure 2. 12 shows the 50-step fixed-gain prediction results, where the 

dotted and solid lines represent the predicted torque and actual torque demand, respectively. It can 

be seen that the peak torque error reduced notably from 200% to 22% over the first 600 seconds 

of the FTP driving cycle, but the prediction error is still too high to be applied in applications. Note 

that there is also a steady state prediction error between 400s and 600s (see Figure 2. 12) since the 

DC-gain is not equal to one for the fixed-gain prediction transfer function.  

The adaptive recursive prediction algorithm is proposed to overcome drawbacks of both step-

by-step and fixed-gain prediction algorithms with following features:  

Regression gain is updated online to adapt to different driving patterns and behaviors.  

 
Figure 2. 12  50-step fixed-gain prediction 
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Weighting factors ( and  ) are introduced to scale the past and current data; and  is 

adaptively adjusted also to overcome the numerical over and under flow issues; see the discussion 

in subsections 2.2.3 and 2.4.1. 

Online computational load is significantly reduced due to the iterative nature, and it will be 

discussed in subsection 2.4.5 and therefore, it is suitable for real-time prediction.   

 

Figure 2. 13 shows the simulation results under the first 600 seconds under FTP driving cycle. 

It indicates that the adaptive recursive prediction algorithm reduces the peak prediction error from 

22% to approximately 4% comparing with the fixed-gain predictions. This makes the proposed 

algorithm the best among the three prediction algorithms. Note that the regression order is chosen 

as 6, see the next subsection for the order selection process. 

Simulation results indicate that adaptive recursive algorithm provides a fairly good 

performance for the multi-step prediction under FTP driving cycle. However, the FTP driving 

cycle covers only a certain driving conditions. To check the prediction accuracy under other 

conditions, four other typical driving cycles, IM240, NYCC, US06 and ARB02, are used to 

compare with the FTP simulation results. Figure 2. 14 shows the simulation results under all five 

 
Figure 2. 13  Adaptive recursive prediction 
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driving cycles, and the peak prediction errors are all below 4% of their torque demand. 

 

2.4.3  Influence of regression order  

As shown in (1.35), for the adaptive recursive algorithm, 2 ( )n k  contains past data 

information, and the regression order (2n) depends on numbers of how many past u and y were 

used. Normally, the higher the regression order, the smaller the prediction error. However, too 

much past data could also lead to the poor prediction model as indicated below in the simulation 

study. On the other hand, high prediction model order would increase the computational load 

exponentially, making the online application impossible. The study conducted in this subsection 

is to find a proper regression order with satisfactory prediction error.    

Predictive Torque Error (N-m)   

 

 

 

 

 
Figure 2. 14  Driving cycle validation 
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50-step prediction errors with different regression orders under FTP cycle are studied, and the 

simulation results are shown in Figure 2. 15. It can be observed that for the fixed-gain prediction, 

the maximum prediction errors range from 68% to 22%.The smallest error occurs at regression 

order 16. However, for the adaptive recursive prediction algorithm, the maximum predictive error 

is under 3.6% over the regression order range from 2 to 24. Although the smallest prediction error 

occurs at order 16, the prediction error remains almost constant between order 6 and 16. 

Considering the computational load, regression order 6 was chosen due to the following reasons: 

 The computational load decreases dramatically from
2(10 16 )O  to 

2(10 6 )O  (see 

subsection 2.4.5) with a less than 0.03% increment of prediction error;  

 The prediction error will be increased significantly if regression order 4 is selected.  

2.4.4  Prediction robustness 

Prediction robustness to different driver behaviors is an important prediction property. As 

stated in subsection 2.2.3, under different driving cycles with different drivers, driving behavior 

could be quite different. To have different driver behaviors, the driver model parameter (the 

derivative or “D” gain of the PID controller) is adjusted. Therefore, an aggressive or hasty driving 

 

Figure 2. 15  Prediction errors with different vector orders 
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behavior can be modeled with a relative high “D” gain. As the driving behavior gets aggressive or 

hasty, the “D” gain increases. The influence of “D” gain changing on accumulated torque errors 

(ATE) is shown in Figure 2. 16, where the ATE is defined as 

 (  ) ( )ATE abs Torque error abs Torque                       (1.46) 

 

It can be observed from Figure 2. 16 that with the increment of derivative gain, the fixed-gain 

ATE goes up, while the adaptive recursive ATE remains almost the same, indicating the adaptive 

recursive prediction is robust to different driver behaviors, which is a very important property in 

practical applications. As stated before, in this research, the driver behavior data is only collected 

from a PID driver model based on different driving cycles, which may be quite different from the 

data collected from a real driver on a real vehicle or a simulator. Therefore, one of our future works 

is to validate the proposed algorithm under actual driving situations. 

2.4.5  Prediction error and computational load  

Table 2. 4 shows the prediction errors of all three studied prediction algorithms in this research, 

where the step-by-step algorithm has the highest prediction errors; the fixed-gain algorithm is with 

the medium prediction errors among the three algorithms; and the adaptive recursive algorithm is 

 
Driver behaviors (index function of derivative gain) 

Figure 2. 16  Comparison of accumulated torque error 
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the most accurate one. It is also interest to see associated prediction algorithm computational load 

even though it seems unfair to compare the computational efficiency of a recursive algorithm with 

a matrix inversion-based algorithm. Note that the computational load of a prediction algorithm can 

be expressed as time complexity and formulated as 

 ( ) ( ( )) T n O f n                                                         (1.47) 

where ( )T n is the maximum amount of time used for any input of size n ; ( )O  is the time complexity 

notation; ( )f n is the computational load growth rate [43], [44]. The approximate computational 

load growth rate are listed in Table 2. 4 for all three algorithms. From Table 2. 4, it can be see that 

the adaptive recursive algorithm has the time complexity of (360)O ; the step-by-step algorithm 

has the time complexity of (1664)O ; and the fixed-gain algorithm has the lowest time complexity 

of (16)O since its prediction model is not updated online. As a summary, the adaptive recursive 

algorithm has the smallest estimation error with relatively low time complexity due to the fact that 

there is no matrix inverse calculation with a relatively low regression order 6.  

 

2.5  Conclusions 

Three desired torque prediction algorithms are studied in this research, step-by-step, fixed-gain, 

and the proposed adaptive recursive prediction algorithms. Through simulation study under FTP 

and other four typical driving cycles, the step-by-step prediction algorithm is not capable of real-

time application due to the heavy computational load requirement and very high prediction error. 

Table 2. 4  Prediction accuracy ( 1 28, 6n n  ) 

 Step-by-step Fixed-gain Adaptive recursive 

Prediction errors 200% 22% 4% 

( )f n  3 2

1 12( ) 10( )n n  12n  2

210( )n  

Time Complexity (1664)O  (16)O  (360)O  
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Although the fixed-gain prediction algorithm reduces the computational load significantly with 

much lower prediction error than that of the step-by-step one, the prediction error is still too high 

to be used in applications. The proposed adaptive recursive prediction algorithm updates the 

prediction gains online and its relatively low computational load makes it feasible for real-time 

applications. The simulation results also show that the adaptive recursive prediction algorithm 

reduces the prediction error significantly with a 4% maximum error. The introduced weighting 

factors for the past and current data are the key for improving prediction accuracy and avoiding 

the over and under flow issues during recursive calculations. In addition, due to the online updating 

of regression gains, the proposed algorithm is also robust to various driver behaviors. Furthermore, 

the proposed algorithm has the lowest regression order among the three, leading to significant low 

computational load especially compared with the step-by-step prediction algorithm. 
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CHAPTER 3:  STOCHASTIC PREDICTIVE BATTERY BOUNDARY 

MANAGEMENT  

 

 

 

3.1  Introduction 

Due to the prominent advantages of increased fuel economy with reduced emissions, Hybrid 

Electric Vehicles (HEVs) outperform conventional vehicles powered only by the internal 

combustion (IC) engine. As stated in the previous work [45], when the driver requested power is 

greater than the battery output power limit and the engine is off, slow response of the IC engine, 

especially during the crank-start, leads to over-discharge the battery to meet the output power 

requirement until the engine is ready. Note that the battery performance decreases significantly 

over time especially at low temperature [46]-[47] due to the increment of its internal resistance 

and inherent decrement of its energy storage capacity [5]-[6]. Therefore, when the drivetrain torque 

is solely provided by the EM(s) under cold start operations with low battery temperature, the 

battery is more likely to be over-discharged than at the normal temperature. In this case, the actual 

battery power output will exceed its power output limit. Over-discharging is inevitable due to rapid 

transient powertrain responses required by real-world driving. However, frequent or persistent 

over-discharging will permanently damage the battery, leading to reduced battery life. If the total 

battery over-discharging duration is reduced, the battery useful life can be extended. Note that the 

battery over-charging is also a very interesting topic but it is not the subject of this chapter. 
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Many control schemes have been developed to prevent batteries from over-discharging as 

summarized in [48]. Low battery voltage sensing is a widely used method to prevent further power 

draw by reducing the EM power output. However, sudden reduction of powertrain power output 

not only reduces the driving performance but also puts the vehicle in danger of a collision. Low 

battery voltage sensing with power cutback is a similar scheme as the aforementioned one. It 

cutbacks the power by certain percentage when the battery reaches the given power threshold. This 

approach overcomes the sudden power cutback, but it is difficult to determine the percentage of 

the power cutback. State of Charge (SOC) estimation with power cutback scheme is proposed to 

limit battery discharging power, but selecting an SOC level to cutback power is a challenge. 

Reference [49] presents a road testing result of the ambient temperature influence to the HEV 

battery performance but it does not consider how to reduce or eliminate over-discharging. 

Reference [5] proposes two approaches to mitigate the impact of low temperature on battery 

performance: increasing the battery temperature with an external heater or combining the battery 

with a super-capacitor. An energy management strategy is presented in [50] to minimize the battery 

usage thereby to extend battery life, where the reduced battery usage is based on a small penalty 

on fuel consumption by limiting battery power output instead of preventing battery from over-

discharging. 

The literature review indicates that the prior research in this area is limited to either limiting 

the battery power output or using external device to increase battery temperature. The disadvantage 

of limiting battery power output is the degraded driving performance, and the disadvantage of 

using battery heating element is the increment of both system cost and vehicle weight. As a 

summary, the existing methods of preventing battery from over-discharging involve only in 

powertrain electric subsystems (e.g., EM and battery). However, as part of the hybrid powertrain, 
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the IC engine is able to provide additional power to the powertrain when the available electric 

power is limited; and once the engine is turned on, the engine can provide additional power to 

meeting the driver’s power request and the battery over-discharging can be reduced or eliminated. 

However, the main issue is that the slow response characteristics of the IC engine, especially when 

the engine is fully stopped, can prevent it from providing the additional power on time. In this 

chapter, a stochastic predictive boundary management (SPBM) strategy is proposed based on three 

main signals, predicted torque demand [45], prediction error variance, and confidence level (see 

subsection 3.3), to proactively turn on the IC engine when the predicted power exceeds current 

battery capacity. In this way, the battery over-discharging duration can be significantly reduced. 

The prediction error variance is calculated in real-time and used to determine if the engine needs 

to be crank-started. A series-parallel forward HEV model [51] is developed in MATLAB/Simulink 

for developing and validating the proposed control strategy. In the hybrid powertrain model, the 

battery capacity and its maximum discharging/charging current are functions of temperature. That 

is, as the temperature decreases the battery maximum output power reduces, so does the maximum 

allowed discharging/charging current.  

For comparison purpose, two control strategies are used in this chapter: the baseline power-

follower control strategy (PFCS) [42], [52]-[54] (an extension from a series to parallel hybrid 

powertrain) and the predictive boundary management strategy (PBM) proposed in [55]. For the 

PFCS strategy, once the driving power demand is greater than the battery output power limit, the 

IC engine will be turned on to provide additional power to meeting the hybrid powertrain torque 

demand. However, it could take more than half second for the engine to be ready to make power 

available. While the engine is getting ready, the battery has to be over-discharged to meet the 

powertrain power output requirement, which can lead to the reduced battery life. However, based 
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on the predicted torque demand, the PBM strategy can proactively turn on the engine half second 

(or more) ahead before the actual power demand exceeds the battery output power limit. This 

reduces battery over-discharging duration effectively, leading to improved battery life and HEV 

performance.  

The prediction error stochastic properties are analyzed under five typical driving cycles. It 

shows that the prediction error distribution can be modeled as an average of three different normal 

distribution functions, where the deviation of each normal distribution function is proportional to 

the prediction error variance. Most importantly the prediction error variance can be calculated 

online. Therefore, with the predicted torque and online calculated error variance, it is feasible to 

find a smallest upper bound of future desired power with a given confidence level. As a result, an 

SPBM strategy is proposed, where the smallest upper bound of future desired power is used to 

determine if the engine needs to be proactively turned on. Note that the smallest upper bound of 

future desired power level is a function of predicted torque, percentage of confidence level, and 

prediction error variance. Also, it is found that the percentage of confidence level can be used as a 

calibration to balance the battery over-discharging duration and fuel economy penalty. The 

effectiveness of SPBM strategy is validated in simulations under five typical driving cycles with 

different initial battery temperatures. Significant improvement is achieved over both baseline 

PFCS and PBM strategies.  

The rest of the chapter is organized as follows. In section 3.2, a simple series-parallel hybrid 

vehicle model is presented along with the baseline PFCS. Section 3.3 analyzes the prediction error 

stochastic properties. The SPBM strategy is proposed in section 3.4; and simulation results are 

provided in section 3.5. Conclusions are added in section 3.6. 
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3.2  Hybrid electric vehicle subsystem models and its baseline control strategy  

In this chapter, the same hybrid electric vehicle model described in Figure 2. 6 is used, also 

including the same driver model described in Figure 2. 7, the same EMB and EMA models 

described in (1.39) and (1.40), and planetary gear model described from (1.41) to (1.43).  

3.2.1  Hybrid powertrain model 

In this subsection, the models of the two main hybrid powertrain components are presented: 

IC engine and battery models. 

3.2.1.1  IC engine model 

The IC engine is described as a first order dynamic subsystem similar to [45]. In the model, 

the engine start delay is included, and the output power ( eP ) is expressed as a function of engine 

input energy and engine efficiency map as follows, 

( , ) ,

0

e e ein e e e e e e e s

e s

P P T P P T t

P t
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

     


 

        

                                                        
                     (2.1) 

where eP is the IC engine output power, a product of engine torque eT and speed e ; einP is the engine 

input energy and e is the engine efficiency map; e is the IC engine time constant; and s is the 

engine crank-start delay time. 

3.2.1.2  Battery model 

The SOC is one of the most important parameters in the battery management system, and in 

general it is defined as the ratio of the current battery capacity to the nominal fully-charged battery 

capacity [42], [52], [60]-[71]. However, at different temperatures the battery capacity could be 

different, and hence the SOC is modeled as a function of both discharging/charging current and 

battery temperature. Note that an accurate SOC model can be used to not only protect the battery 

from over-discharging but also improve fuel economy. In this chapter, the SOC is one of the 
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parameters used to determine when the IC engine shall be turned on or off. Therefore, considering 

the impact of temperature to battery capacity, the Ah Coulomb counting method is used for SOC 

calculation:   

0

0

( )
( ) ( )

( )

t

mt

I
SOC t SOC t d

C T

 



                                               (2.2) 

where
0( )SOC t is the initial value of SOC; ( )mC T is the maximum battery capacity at temperature 

T, and normally the lower the temperature, the lower the battery capacity;   is the Coulomb 

efficiency defined as the ratio of discharged capacity to the capacity needed to be charged back to 

the initial state of the discharge [66], where 1  for discharging and 1  for charging; ( )I  is the 

current at time  and it can be calculated using the following formulae 
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where
brP is the required battery output power;

OCV is the open circuit voltage that is a function of 

SOC and T; and ( )batr T is the battery internal resistance and different resistance values are used for 

charging and discharging due to the variant concentrations of available reactants for charging and 

discharging [67]. The battery current ( )I  satisfies the following constrains: 

dis-max

ch-max

( ) ( )      ( ) 0

( ) ( )       ( ) 0

 

 

 


 

I I T I

I I T I
                                                (2.4) 

where ( ) 0I   is for discharging, and ( ) 0I   for charging; dis-max ( )I T is the maximum allowed 

battery discharging current (positive) at temperature T, and ch-max ( )I T is the maximum allowed 

battery charging current (negative) at temperature T. Note that dis-max ( )I T and ch-max ( )I T can be 
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calculated based on the constrain of depth of discharge (DOD), and be expressed as 
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                                                    (2.5) 

where
pV is the lower bound of DOD battery voltage that is a function of SOC and temperature T.  

 Notice that the SOC should be maintained within its predefined operational range to protect 

the battery and it can be seen from (2.2) that the SOC rate of variation is inversely proportional to

( )mC T . Therefore, under low temperature with reduced ( )mC T , the SOC drops more quickly than 

that under normal temperature. Also the DOD is only used to prevent the battery from extremely 

over-discharging.  

 

Thermal model is also developed to monitor the effects of average internal battery temperature 

for estimating the battery capacity using the following equation: 

 
0

t gen case

bat

bat p

Q Q
T dt

m c




                                                      (2.6) 

where genQ is the heat generated from Coulomb and internal resistance losses; caseQ is the combined 

Table 3. 1 Technical parameters of the HEV 

Item Parameter Value 

Vehicle Mass 1750kg 

Engine 
Power output 43 kW (58hp) @ 4000 rpm 

Torque 102 N-m (75lbf-ft) @4000rpm 

Generator 
Type  Brushless permanent magnet  

Peak power 15 kW (20hp)  

Motor 

Type  Brushless permanent magnet  

Peak power 30 kW (40hp) @ 940~ 2000 rpm 

Maximum torque 305 N-m (225lbf-ft) @ 0~940 rpm 

Battery 

Type Lithium battery pack 

Rated voltage 288 V 

Rated capacity 6.0 Ah 
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heat of the conduction and convection from the battery to the air; batm is the mass of the energy 

storage module; cp is the average heat capacity of the module. Since the battery temperature 

changes gradually under a driving cycle and the desired driving torque changes at a much fast pace, 

in the simulation study, the battery capacity within the prediction horizon is based on the current 

battery temperature. 

The main parameters of vehicle and powertrain system are listed in Table 3. 1. 

3.2.2  Baseline power-follower control strategy 

The baseline control strategy is an extension of the equivalent power-follower control strategy 

(PFCS) of a series hybrid powertrain [42] to the parallel one. The desired torque (power), battery 

power output limit, SOC, vehicle speed, and other parameters are used as primary control 

parameters to turn on or off the engine, see Figure 3. 1. When the engine is off, the battery-EM set 

is the only power source for the vehicle; and when the engine is on, engine along with the EM set 

provides the power for the vehicle operation and charges the battery to target SOC level. Note that 

the control strategy was not optimized for fuel economy since it is not the subject of this study. 

 

3.2.2.1  IC engine control logic 

The engine control logic can be described below: 
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Figure 3. 1  PFCS implementation 
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                    (2.7) 

where ( ) 1egS k  means that engine is on; ( ) 0egS k  indicates that engine is off; ( 1)egS k 

represents the previous step engine state; SOCL and SOCU are the lower and upper bounds of SOC 

under normal battery operations, respectively; rP is the driver desired power; ,b sP and ,b lmtP are the 

predetermined battery output power thresholds at a given temperature to form hysteresis to avoid 

frequently turning the engine on or off, where
, ,b s b lmtP P .  

The control logic is also illustrated in Figure 3. 2, where ,maxeP is the maximum engine power 

output; the gridded portion is the hysteresis area. Note that both minimal engine on and off 

durations are also part of the engine on-off control strategy. 

 

 3.2.2.2  Power distribution 

The corresponding parallel HEV PFCS power distribution is stated as the following, 

0 PrPb,lmt Pe,max

SOCU

SOCL

1
Seg(k)=1

Seg(k)=0

Seg(k)=0 if Seg(k-1)=0

Seg(k)=1 if Seg(k-1)=1

Pb,s

SOC

 
Figure 3. 2  Engine control diagram of PFCS 
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where batP  is the battery power output; BP is the EMB power output; and AP  is the generator power 

output satisfying the following equation, 

( )A ch TP P SOC SOC                                                         (2.9) 

where SOCT  is the target SOC; and chP is the preselected battery charging power constant. 

During the braking operation, the power charged to the battery is expressed as 

( ) 1
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A B eg
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P P S k
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,          
                                                        (2.10) 

The power distribution can also be explained in Table 3. 2. 

 

Since allowing charging current to exceed the battery charging limit could damage the battery 

and reduce its useful life, regenerative power needs to be well controlled. The details will not be 

described here since it is not the subject of this chapter. 

3.3  Prediction error stochastic analysis under different driving cycles 

This subsection studies the characteristics of the prediction errors of the adaptive recursive 

algorithm. The prediction error can be defined as the difference between the actual and predicted 

desired torque as shown in the following, 

Table 3. 2 Power distribution 

Engine state, Seg(k) 0 1 

Engine power output, Pe 0 (Pr -PB)+PA 

Battery power output, Pbat Pr PB 

Charging power, Pc PB PA+PB 
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ˆ( ) ( ) - ( )k y k y k                                                        (2.11) 

where ( )y k is the actual desired torque and
2 2

ˆ( ) ( ) ( )n ny k k m k m    is the predicted one at 

time k. For a given number of data points N, the mean value µ and variance σ of ( )k can be 

calculated as follows. 
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To study the prediction error distribution, simulations were conducted under the FTP driving 

cycle. The probability density function (PDF) of the prediction errors is plotted in Figure 3. 3, 

where χ is the prediction error. 

 

It shows that the mean of prediction errors is very close to zero (see Table 3. 3 for numerical 

values), and its distribution is also close to normal distribution; see the fitted normal distribution 

curve (dashed line) with mean (µ = 0) and variance (σ = 0.4017). The distribution can also be fitted 

with improved accuracy by an average of three different normal distributions (see the solid line in 

 
Figure 3. 3  Prediction error distribution 
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the figure) with the PDF expressed below, 

 1 2 3( , ) ( , ) ( , ) ( , ) / 3                                     (2.13) 

where  and σ are the mean and variance of the prediction errors, respectively; and 1( , )  ,

2( , )   and 3( , )   are normal distributions with mean value  and variances 1 , 2 ,   

and 3  , respectively. The coefficients associated with the three distributions are 1 0.86  ,

2 0.92  and 3 2.2  . This composite normal distribution improves the fitting and reduces the 

distribution error over the fitted normal distribution.  

 

 Simulations were also conducted under other four typical driving cycles, US06, ARB02, 

NYCC, and IM240. The prediction error PDFs are plotted in Figure 3. 4 and their means and 

variances are provided in Table 3. 3. It is clear that all the mean values of the prediction errors are 

extremely close to zero, which indicates that the predicted value represents the statistical mean 

 

 
Figure 3. 4  Prediction error distribution under other four typical driving cycles 
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value of the actual signals. Simulation results also demonstrated that PDF fitting expression (2.13) 

can also be used for these four typical driving cycles with the same coefficients 1 , 2 and 3 . This 

is very important since in this case only the error variance is needed to determine the PDF.  

 

Since the adaptive recursive prediction is the Least-Squares (LS) based estimation, the LS 

estimation provides zero error mean and the above simulation results confirm that 
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where ( )E  is the expectation operator. However, it should be pointed out that as time N goes to 

infinity, the computational load to calculate both mean and variance increases. For the purpose of 

real-time implementation, the following equations were used 
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where N is the number of samples of the moving window for the mean and variance calculation. 

Noticed that N should be selected properly to make real-time calculation possible while meeting 

the accuracy requirement. 

Assuming that data ( ) ( , 1,..., 1)i i k N k N k       is stored in the memory, the mean ( )k

and variance ( )k  can be updated using current and 1-step recursive history data as follows: 
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Table 3. 3 Prediction error distribution in typical driving cycles  

Distribution US06 ARB02 NYCC FTP IM240 

µ (mean) 0.0003 0.0012 0.0009 0.0014 0.0018 

σ (variance) 0.9494 0.7546 0.5071 0.4017 0.4037 
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Therefore, for the fixed point calculation, selecting the N in the form of 2l  ( 0l , an integer) 

has the advantage of reducing calculation load since the division can be completed by arithmetic 

shift of a binary number.  

 

Since the prediction error is zero mean with known PDF of the averaged three Gaussian 

distributions, there are potentials to further reduce the battery over-discharging based upon the 

PDF.  As shown in Figure 3. 5, the bell curve is the prediction error PDF. Note that since the mean 

of the prediction error is zero, the predicted value is the mean value of the signal. If the predicted 

power (torque) value is directly used as the threshold to start the engine (e.g. the PBM case), there 

is a 50% chance that the engine will get started proactively to cover the power demand. This is 

because there is a 50% chance that the actual desired power (torque) is higher than the mean one 

(see Figure 3. 5), where the cumulative probability (or the percentage of confidence level) can be 

expressed as the integral of the known PDF. 
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Figure 3. 5  Probability density function 
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where γ is the given variance multiplier.    

 

Figure 3. 5 shows the PDF of prediction errors for the FTP driving cycle, where the shaded 

area represents the cumulative probability (or percentage of confidence level), and it is 

proportional to the multiplier (γ) of prediction error variance. The bigger the γ, the lager the 

cumulative probability (shaded area). The relationship between γ and the cumulative probability 

is plotted in Figure 3. 6.  

It is clear that as γ goes up, the percentage of cumulative probability is increased from 50% to 

100% as listed in Table 3. 4.  

 

Given a percentage of confidence level along with the predicted powertrain power, a smallest 

upper bound of future desired power level can be determined that will be used to proactively turn 

on the engine, and hence the battery over-discharged duration can be further reduced, which lead 

 
Figure 3. 6  Confidence level profile 
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Table 3. 4 Relationship between confidence level and γ  

γ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Confidence 

level 

50.0

% 

63.1

% 

74.4

% 

82.8

% 

88.6

% 

92.2

% 

94.5

% 

95.9

% 

γ 4.0 4.5 5.0 5.5 6.0 6.5 7.0  

Confidence 

level 

97.1

% 

97.9

% 

98.5

% 

98.9

% 

99.3

% 

99.5

% 

99.7

% 
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to the proposed SPBM strategy. Note that the PBM strategy is a special case of SPBM with 50% 

of confidence level (γ = 0). 

 3.4  Battery boundary management strategy 

 

One of the key strategies for a hybrid supervisory controller is to distribute power among 

engine, generator, and motor based upon driver demand and current powertrain status. This section 

discusses the proposed SPBM strategy. The main advantage of the aforementioned PFCS is its 

simplicity. Whereas, similar to other exist hybrid powertrain control systems, the battery is easily 

to be over-discharged under the PFCS, leading to reduced battery life and degraded overall HEV 

performance. This could happen especially under the transient operations at low ambient 

temperature. Since the PFCS uses desired power to determine if the IC engine needs to be turned 

on to ensure that enough power is provided to the powertrain. However, it could take more than 

half second for an IC engine to crank-start and make power available. During this period, the 

battery has to be over-discharged to provide desired power to the powertrain until the engine power 

is available. To reduce the overall battery over-discharged power, an SPBM strategy is proposed 

based on the predicted desired torque (power) and its prediction error variance to proactively turn 

the engine on and make its power available, when the predicted future power with certain 

confidence level exceeds current battery output power limit. As a result, the battery over-
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Figure 3. 7  SPBM implementation 
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discharging duration can be reduced significantly. For the control strategy implementation, both 

current desired torque demand and predicted one with prediction error variance are used as inputs 

to hybrid powertrain control system, see Figure 3. 7.  

The core of the proposed control strategy consists of two portions. One is using the adaptive 

recursive prediction algorithm [45] to estimate future hybrid powertrain desired torque (power) 

based upon the current and past desired torque information, see Figure 3. 7. Both the raw and 

conditioned acceleration pedal positions (desired torques) are used as inputs for the desired torque 

prediction. The other is the prediction error variance calculation based on the current and past 

prediction error; see (2.16). Note that both desired torque prediction and its prediction error 

variance are calculated in real-time. For an appropriate pre-selected confidence level, the smallest 

upper bound of future desired power can be found in terms of ˆ ( )py k  based on the prediction 

error variance, where ˆ ( )py k  is the predicted torque at time k. It will be used to determine whether 

the engine needs to be proactively turned on; see the discussion at the end of section 3.3. 

As demonstrated in section III, the predicted value is the mean of the future signal, and the 

PBM strategy is a special case of SPBM one with 50% of confidence level (cumulated probability). 

The higher the confidence level, the larger the smallest upper bound of the future desired power, 

and consequently, the earlier the engine will get crank-started, which further reduces the battery 

over-discharging duration. On the other hand, large confidence level could also lead to unnecessary 

engine-start. Note that from Figure 3. 6 there is a one-to-one mapping between the percentage of 

confidence level and the variance multiplier γ. Therefore, for a given percentage of confidence 

level (CL), a smallest upper bound of the driving power, ( )CLy k can be found; see Figure 3. 5, 

where 

ˆ( ) ( )CL py k y k                                                      (2.18) 
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Note that the multiplier γ is a positive number. The CL needs to be selected properly since high 

CL could lead to unnecessary engine-start and the selection needs to balance the reduction of 

battery over-discharging duration and unnecessary engine-start. The details of how to select the 

confidence level will be addressed in subsection 3.5.4. 

3.4.1  Engine control logic 

As aforementioned, it could take more than half second for the engine to crank-start and make 

the power available to the powertrain. Based upon the raw and conditioned pedal positions, the 

prediction algorithm is able to forecast the future desired torque half second ahead. The proposed 

SPBM strategy uses the predicted desired torque and its prediction error variance with the given 

confidence level to proactively turn on the engine half second in advance to make the engine power 

available, which could reduce the battery over-discharging duration greatly and thereby to extend 

the useful life of battery. 

Based on py , prediction error variance , and the given confidence level , the SPBM engine 

control logic, inherited from PFCS, is described as the following: 
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                (2.19) 

where LSOC , USOC , ( 1)egS k  , ,b lmtP and ,b sP are defined in (2.7); and dP is the predicted desired 

power which can be expressed as follows. 
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where the predicted desired torque
py can be obtained using the algorithm mentioned in section 

3.3; prediction error variance is calculated on-line; veh is the current vehicle speed; wr is the tire 

radius; and df is the final drive ratio from planetary gear to wheel. The control logic can also be 

illustrated in Figure 3. 8, where the x-axis is Pr and dP , which is different from PFCS. 

 

There are three engine operation regions in Figure 3. 8. Region 1 is engine-on region (the dark 

area), where predicted power is equal to or greater than battery power limit ,b lmtP  or SOC is equal 

to or below the predefined SOC lower bound. This region can be extended to the adjacent gridded 

hysteresis region, Region 2 (the gridded area). In this region the engine state remains unchanged 

to prevent the engine from being frequently turned on or off, where SOC is greater than its lower 

bound but below its upper bound and predicted power is smaller than the battery output power 

limit ,b lmtP  and greater than battery output power thresholds ,b sP . Region 3 (white area) is the 

engine-off region, where SOC is equal to or greater than predefined SOC upper bound and desired 

power is smaller than battery output power thresholds ,b sP . This region can be extended to the 

adjacent gridded hysteresis region as well. 

Note that the desired power (torque) is used for engine off control in (2.19) because there is 

0 Pr & PdPb,lmt Pe,max

SOCU

SOCL

1
Seg(k)=1

Seg(k)=0

Seg(k)=0 if Seg(k-1)=0

Seg(k)=1 if Seg(k-1)=1

Pb,s

SOC

 

Figure 3. 8  SPBM engine control logic diagram 
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almost no engine off delay, i.e., it can be shut down immediately. Also a minimum engine-on and 

off time strategies are also used to avoid engine being frequently turned on and off. But the 

minimum engine-off time needs to be carefully chosen since long minimum engine-off time [42] 

could prevent the engine to be turned on immediately as needed while the minimal-off time is still 

active. This could limit reducing the battery over-discharging duration effectively. In this research, 

the minimum engine-off time is only used to ensure that the engine is completely turned off before 

it is turned on.  

For the proposed SPBM strategy power distribution, equations (2.8), (2.9) and (2.10) hold. 

3.5  Simulation study and validation 

To evaluate the performance of the baseline PFCS, PBM strategy, and the proposed SPBM 

strategy, the developed series-parallel HEV model was simulated under five typical driving cycles. 

They are US06, ARB02, NYCC, IM240 and FTP, where the US06 and ARB02 driving cycles are 

used to study the influence of aggressive driving behaviors with rapid speed variations after vehicle 

start-up; the NYCC cycle is used for studying rich stop-and-go city driving conditions; IM240 is 

used for highway driving test, and FTP is for the mixed city and highway driving studies. The key 

simulation parameters are listed in Table 3. 5. 

 

Table 3. 5  Key simulation parameters 

Item Parameter Value 

Engine 

Start response time, τs 0.5 s 

Time constant, τe   0.015~0.04s 

Minimum engine on time 15s 

Battery 

SOC upper bound, SOCU 0.75  

SOC lower bound, SOCL  0.45 

Engine start SOC 0.5 

SOC target, SOCT  0.6 

Prediction 
Prediction horizon 0.5s 

Step size 0.01s 
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3.5.1  Battery performance at low temperatures 

 

Figure 3. 9 shows the simulation results of battery temperature, maximum power, and internal 

resistance variations under ARB02 driving cycle with 0℃ initial battery temperature. The battery 

temperature gradually goes up to around 22℃ at the end of ARB02 driving cycle, and with the 

increment of temperature, the battery maximum power is increased correspondingly while the 

battery internal resistance decreases. 

Figure 3. 10 provides simulation results of the battery performance under ARB02 driving cycle 

at different initial battery temperatures, where positive battery power output indicates battery 

discharging and negative one means charging. The battery over-discharging/charging happens 

when the battery power output exceeds its limit. Since the battery maximum power is decreased 

as the internal resistance increases at low temperatures and so does the power output limit, the 

battery is easier to be over-discharged compared with at higher temperatures. For example at -20℃, 

the battery is more frequently over-discharged than at 20℃. 

 

Figure 3. 9  Battery temperature, maximum power and internal resistance trace 
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 3.5.2  PFCS simulation 

Figure 3. 11 shows battery power output and engine on and off status under the US06 driving 

cycle at close to 0℃. When the vehicle starts up, the IC engine is off; and once the battery output 

power reaches its output power limit at around 90th second, the engine is turned on. Due to the 

minimal engine-on time requirement and SOC discharging/charging hysteresis rules (between 0.45 

and 0.75), the engine is kept on until the engine off conditions are satisfied around the 520th 

seconds. 

From equation (2.8), it is clear that when the engine is off ( 0egS  ), the battery-EMB set 

provides all the driving power to the powertrain; and while the engine is on ( 1egS  ), the engine 

provides majority of the driving power to the drivetrain except under the transient operations. In 

 

 
Figure 3. 10  Battery performance at different temperatures 
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Figure 3. 12, there is a certain EMB torque output when the engine is on at around the 90th, 130th, 

and 500th seconds, which is due to the relatively slow response of the engine that requires the EMB 

to provide additional torque to the drivetrain. 

 

When the vehicle is under deceleration, the EMB also provides regenerative torque (negative 

EMB torque in Figure 3. 12) for braking and generating electricity to charge the battery. 

It can also be observed from Figure 3. 12 that there is a short time delay between the engine 

desired torque output and the actual one. In order to maintain the powertrain power output at the 

desired level, the battery has to provide power at a level that is beyond its normal operational limit, 

see the enlarged area in Figure 3. 11. In this case, the battery power output exceeds its output limits 

before the engine power becomes available. As stated previously, a short period of over-

discharging is inevitable and might not damage the battery, but frequent or persistence over-

 

 

 

Figure 3. 11  Battery power output under US06 cycle at 0°C 
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discharging, especially at low battery temperature (it can be observed in Figure 3. 9 at -30℃ case), 

could permanent damage the battery, leading to reduced battery life. If the total battery over-

discharging power is reduced, then the battery can be protected and its useful life can be extended, 

which leads to the PBM strategy. 

 

3.5.3  PBM simulation 

Besides the input signals used for baseline control strategy, the predicted desired torque 

(power) is directly used as an additional input for the PBM strategy to turn engine on. In order to 

validate the PBM strategy and evaluate its performance, simulations were conducted under the 

same condition as that for PFCS. As shown in the enlarged area in the top graph of Figure 3. 13, 

the battery over-discharging duration is reduced to a certain degree, where the triangle area above 

the battery power limit line is reduced to a small dotted-line enclosed triangle area, detailed 

(enlarged) plot see Figure 3. 14.  

 Also, it can be seen from SOC profile in the bottom plot of Figure 3. 13 that once the engine 

 

 

 
 

Figure 3. 12  Engine and EMB torque outputs 
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is turned on, the battery is being charged. In order to quantify how much battery energy is over-

discharged, the following integration is used as a measure, 

 , ,
0

,

,
( )

0,

t

b b lmt b b lmt

b b lmt

P P d P P
E t

P P

  
 



                                        (2.21) 

The total reduction of over-discharged energy is defined as 

( )
( ) 1

( )

PBM
r

PFCS

E t
E t

E t

 
  
 

                                                 (2.22) 

where ( )PBME t and ( )PFCSE t represent total over-discharged energy integration under PFCS and 

PBM strategy, respectively.  

 

The over-discharged energy reduction can be illustrated in Figure 3. 14, where the gridded area 

represents over-discharged energy reduction for the simulation case shown in Figure 3. 13. It is 

obvious that after the PBM strategy is applied, the total over-discharged energy is reduced to a 

small gray area. Specific simulation data is listed in Table 3. 6. 

 

 

 

Figure 3. 13  Reduced battery over-discharging duration 
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Simulation results under US06 driving cycle indicates that PBM strategy provides a fairly good 

improvement of reducing the battery over-discharging duration. To check the effectiveness of the 

PBM strategy, four other typical driving cycles, ARB02, NYCC, IM240, and FTP are selected for 

simulation validation, and the results are summarized in Table 3. 6.  

 

It can be observed from Table 3. 6 that the PBM strategy performs quite well under five typical 

driving cycles especially at low temperature, and is very effective when vehicle is operated under 

aggressive driving cycles with high vehicle speed variations, i.e. US06 and ARB02, and the 

reduction of the over-discharged energy is more than 65%. Also, under city or mixed city and 

highway driving cycle (e.g. FTP), the total over-discharged battery energy is reduced more than 

45%. Even under IM240 highway driving cycle, the reduction is still more than 30%. Notice that, 

“-” in Table 3. 6 indicates no battery over-discharging occurred.  

Pb,lmt

Time (s)

Over-discharged power 
with prediction

Over-discharged 
power reducing

Pb

Battery power
hard constrain

 
Figure 3. 14  Over-discharged power reducing 

Table 3. 6  Over-discharged energy reducing with PBM 

Temperature ARB02 US06 NYCC FTP IM240 

20℃ 68% - - - - 

10℃ 60% - - - - 

0℃ 62% 75% - - - 

-10℃ 51% 85% 39% 42% - 

-20℃ 57% 80% 44% 56% 38% 

-30℃ 65% 77% 48% 52% 26% 

Average 68% 47% 32% 
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3.5.4  SPBM simulation 

As mentioned previously, given a percentage of confidence level for the predicted powertrain 

power, a smallest upper bound of future desired power level can be found and to be used to 

proactively turn on the engine, and hence the battery over-discharged duration can be further 

reduced. Note that there exists a one-to-one mapping (Figure 3. 6) between the percentage of 

confidence level and the variance multiplier γ, and for a given confidence level the corresponding 

γ can be found. However, large γ (high confidence level) could lead to unnecessary engine-start, 

therefore, the percentage of confidence level needs to be selected properly to balance the reduction 

of battery over-discharge and unnecessary engine-start.  

 

Figure 3. 15 shows that under FTP driving cycle at temperature of -10℃, the battery over-

discharging duration reduction with different confidence level from 50% to 94.5%. Firstly, the 

battery over-discharging duration is greatly reduced using PBM over the PFCS strategy, which 

was presented in previous subsection. Secondly, the battery over-discharging duration is further 

reduced using the SPBM strategy under the confidence levels greater than 50% over the PBM 

strategy, and it also shows that the higher the confidence level, the shorter the battery over-

 

Figure 3. 15  Over-discharging duration with confidence level 
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discharging duration. However, the reduction of the over-discharging energy (area) becomes 

smaller as the percentage of confidence level is close to 100%. 

On the other hand, as the over-discharging duration is gradually reduced with the increment of 

confidence level, the number of engine-start increases significantly at the same time. Figure 3. 16 

shows that under FTP driving cycle the integration of the battery over-discharged energy is 

reduced from around 360 to 55 (kWh·3.6×10-6) as confidence level increases from 50% to 94.5% 

(γ increases from 0 to 3), whereas, the number of engine-start is increased from 6 to 14. Note that 

when confidence level is greater than 88.6% (γ > 2), the battery over-discharged energy reduction 

is quite limited, for example, as confidence level increases from 88.6% to 94.5% (γ increases from 

2 to 3), the integration of the over-discharging energy reduction is only 5 from 60 to 55 

(kWh·3.6×10-6), see Figure 3. 16. There is a trade-off relationship between over-discharged energy 

reduction and number of engine-start (increased fuel consumption). Considering the balance 

between reduced battery over-discharging duration and the number of unnecessary engine-start, 

the confidence level is chosen as 74.4% (γ =1).  

 

 

Figure 3. 16  Reduced over-discharged energy with number of engine-start  
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The goal of studying the trade-off between the reduced over-discharging duration and the 

increased number of engine-start is to balance the fuel economy and reduced over-discharging 

energy. It can be seen from Figure 3. 17 that as confidence level goes up from 50% to 94.5%, the 

fuel consumption increases from 0.355 gallon to 0.371 gallon under FTP driving cycle due to the 

increment of number of engine-starts, that is, the increment of confidence level can result in a fuel 

economy penalty. For instance, change of confidence level from 50% to 74% leads to 1.9% fuel 

economy penalty. 

 

Simulations are also conducted under four other typical driving cycles, US06, ARB02, NYCC 

and IM240 to study the performance of the proposed SPBM strategy at 74.4% confidence level, 

and the simulation results are listed in Table 3. 7 using the following error definition similar to 

equation (2.22). 

_

( )
( ) 1

( )

SPBM
r SPBM

PFCS

E t
E t

E t

 
  
 

                                         (2.23) 

 

Figure 3. 17  Fuel consumption under different confidence levels 
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It can be observed from Table 3. 7 that the proposed SPBM strategy exhibits better 

performance over the PBM strategy in Table 3. 6. Under US06 and ARB02 aggressive driving 

cycles, the reduction of the battery over-discharging energy is increased from 69% to 83%; under 

FTP and NYCC city or mixed city and highway driving cycles, the improvement is from 47% to 

67%; and under IM240 highway driving cycle, the improvement is from 32% to 37%, respectively. 

3.6  Conclusions 

In order to extend the battery life, a hybrid powertrain stochastic predictive boundary 

management (SPBM) strategy is proposed in this chapter to reduce the battery over-discharging 

duration. Simulation studies are conducted under five typical driving cycles at different initial 

battery temperatures to compare the performance of proposed SPBM strategy with two other 

control strategies: the baseline power-follower control strategy (PFCS), and predictive boundary 

management (PBM) strategy. Simulation results show that the PFCS cannot effectively prevent 

the battery from over-discharging that will lead to the reduced battery life and degraded HEV 

performance; the PBM strategy reduces the battery over-discharging duration at certain degree, 

however, the proposed SPBM strategy is capable of reducing the battery over-discharging duration 

significantly over both PFCS and PBM strategy. The reduction of the average over-discharging 

energy is 82% under the aggressive US06 and ARB02 driving cycles, 67% under the NYCC and 

Table 3. 7  Over-discharged energy reducing with SPBM 

Temperature ARB02 US06 NYCC FTP IM240 

20℃ 81% - - - - 

10℃ 78% - - - - 

0℃ 79% 89% - - - 

-10℃ 70% 92% 62% 66% - 

-20℃ 75% 90% 80% 62% 41% 

-30℃ 79% 87% 71% 62% 32% 

Average 82% 67% 37% 
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FTP driving cycles, and 37% under the IM240 highway driving cycle. Most importantly, the 

adaptive prediction and its error variance can be calculated in real-time with very low 

computational load, which makes the proposed strategy feasible for practical applications. 
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CHAPTER 4:  MODEL PREDICTIVE CONTROL BASED ON LINEAR 

QUADRATIC TRACKING 

 

 

 

4.1  Introduction  

Compared with traditional vehicles powered by a single power source, the internal combustion 

(IC) engine, the hybrid electric vehicles (HEVs) propelled by both engine and electric motor(s) are 

able to improve fuel economy with reduced emissions by utilizing regenerative braking power, 

efficient power distribution and management [72]-[73]. Typical HEVs (series, parallel, or power-

split configuration) include IC engine, battery, and motor-generator subsystems. Due to the high 

degrees of freedom introduced by multiple power sources, HEV powertrains require sophistic 

supervisory control strategies to manage multiple power sources for the best fuel economy over 

traditional powertrains. Improvement in fuel economy and emissions of HEVs strongly depends 

on their supervisory control strategies.  

Many HEV supervisory control strategies have been proposed and developed in the past. 

Equivalent fuel consumption control is one of the popular strategies studied in literature [42], [74]-

[75], where the cost function is defined as the instant sum of actual fuel and weighted electric 

energy (equivalent fuel). However, such a cost function is heavily dependent on the priori 

knowledge of the driving conditions or scheduled driving cycles, and relies only on the information 

at current instant for one-step ahead control without considering future torque demand.  
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Reference [3] provides a model predictive control (MPC) strategy to optimally schedule the 

torque split ratio of a parallel hybrid vehicle. The equivalent fuel consumption cost function is 

minimized over a prediction horizon, and the prediction is based on the vehicle velocity estimation 

provided by telemetry. References [76] and [77] address an MPC scheme for a power-split HEV 

to manage the battery with or without the ultra-capacitor package, whereas the prediction is based 

on the assumption that torque demand decays exponentially. Literature [78] uses an MPC scheme 

to calculate the optimal control inputs for an ecological driving HEV to improve fuel economy, 

and the MPC scheme depends greatly on the traffic information of the intelligent transportation 

system (ITS). Reference [79] reports an MPC strategy for a torque-split HEV, where the engine 

start-stop transient characteristic is considered and the cost includes fuel consumption, equivalent 

battery energy, and engine key-on penalty. However, the control assumes that the vehicle future 

powertrain torque demands and driving cycle information are available. Reference [80] presents 

an energy management strategy for the vehicular electric power system of a series HEV to reduce 

the fuel consumption and emissions, where the optimization is based on dynamic programming 

(DP) and the control scheme is for an on-off electric generator, and  [81] proposes a Markov chain 

based stochastic optimal control for plug-in HEV power management.  

As a summary, most of the existing work has the following disadvantages. Firstly, the cost 

function is designed for the current instant. Secondly, the future powertrain power demand is 

predicted based on the assumption that the traffic/or driving cycle information is available in 

advance or based on the empirical exponential equation, where the driver behavior is ignored. It is 

well known that driver behavior is one of the important factors affecting the fuel economy. Finally, 

the optimal control strategy does not guarantee that the battery operates within its operational 

boundary and its state of charge (SOC) maintains at the desired level.  

http://dict.youdao.com/w/empirical_equation/


 

 

73 

 

This chapter develops an MPC scheme based on linear quadratic tracking (LQT) control to 

distribute power of a power-split HEV to track the driver torque demand utilizing the early work 

[45], [82] of the desired-torque prediction. For each step, the LQT controller minimizes the cost 

function (a combination of the tracking criterion and equivalent fuel consumption) over the 

prediction horizon and at the same time keeps the battery at its desired SOC. The LQT control law 

is updated at each step based on the new prediction horizon and powertrain states. In the chapter, 

a forward control-oriented hybrid vehicle model is developed in Simulink for designing and 

validating the proposed MPC-LQT strategy, and the control-oriented system model is linearized 

and discretized at each step and used for calculating the LQT control law. Four main steps are 

included in the MPC-LQT control scheme at each sample point: 1) linearizing and discretizing the 

system model at current operational condition (this can be done offline); 2) calculating the optimal 

LQT solution over the prediction horizon; 3) using the first step of LQT control scheme as the 

current control output; and 4) moving the entire prediction horizon to the next operational step.  

The effectiveness of the corresponding control strategy is studied in simulations under four 

typical driving cycles. Compared with baseline power-follower strategy, the proposed strategy 

improves the fuel economy significantly while maintaining the battery SOC at the desired level. 

9.9% fuel economy improvement is achieved under the FTP cycle, 7.3% under IM240, 3.6% under 

ARB02, and 3.8% under US06. 

Note that solving the LQT problem at each step requires to solve the difference Riccati 

equation (DRE) backwards that leads to very high computational load. Two open questions are if 

it is feasible to use an approximated Riccati solution to replace the exact DRE solution and what 

is the associated penalty to fuel economy. Two possible approximated solutions are investigated: 

algebraic Riccati equation (ARE) and iterative ARE solutions; see details in section 4.4. The ARE 
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and iterative ARE solutions have a potential of reducing the computational load by 8.3 and 50 

times, respectively, comparing with the DRE solution. Simulation results show that the iterative 

ARE solution provides better approximation in terms of fuel economy over the ARE one. For 

instance, the fuel economy improvement is 9.5% for iterative solution and 9.3% for steady-state 

under the FTP cycle. This indicates that iterative (ARE) solution balances the computational load 

and fuel economy improvement for the MPC-LQT strategy and makes it possible for real-time 

implementation.  

The main contribution of this chapter is a real-time feasible MPC-LQT HEV supervisory 

control strategy that tracks the predicted driver torque demand with optimized equivalent fuel 

consumption over a given horizon. At the same time, it guarantees that SOC remains at the target 

level and the battery operates within its operational boundary. 

The rest of the chapter is organized as follows. In section 4.2, a simplified HEV system model 

is presented. Section 4.3 describes the model predictive control scheme and provides the optimal 

solution using LQT control. Section 4.4 investigates the feasibility of approximating the DRE 

solution for real-time implementation and simulation results are provided in section 4.5. The last 

section adds some conclusions.  

4.2  Hybrid electric vehicle system model 

In this chapter a forward hybrid vehicle model, shown in Figure 2. 6, is developed and used 

for control strategy development and validation. 

The hybrid vehicle model includes driver, hybrid powertrain, and vehicle dynamics subsystem 

models. For the driver model, it consists of two PID controllers using the vehicle speed error as 

input and generates acceleration and brake pedal position control signals. The resulting signals are 

conditioned and converted into the desired powertrain driving and braking torques for the 
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powertrain supervisory controller to generate control commands for hybrid powertrain 

subsystems.  

For the hybrid powertrain subsystem model, it includes an IC engine, two electric motors 

(EMs), a battery, and a planetary gear set (see Figure 2. 6), where the IC engine is connected to 

the carrier gear (C), and the electric motors A and B (denoted by EMA and EMB, respectively) 

are connected to the sun gear (S) and ring gear (R) of the planetary gear assembly, respectively. In 

the HEV model, both EMs can be operated as a generator but only EMB serves as a traction motor.  

4.2.1  Power transmission and vehicle dynamics 

Figure 4. 1 shows the free-body diagram of the powertrain and vehicle dynamic systems. The 

power generated by the IC engine is split into two paths: mechanical and electrical. The mechanical 

path includes the IC engine power transmitted from carrier gear directly to the ring gear that is 

connected to the vehicle main driven shaft. The electrical path converts the rest of the IC engine 

power to electricity by EMA for charging the battery. EMB, connected to the ring gear, drive the 

vehicle directly and to regenerate power during braking. 

 

In order to obtain the control-oriented dynamic model, four key assumptions are made. They 

are a) all the shaft connections in power transmission system are rigid and no mechanical power 

loss; b) the inertias of the IC engine and EMs are lumped with the inertias of carrier, sun, and ring 
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Figure 4. 1 Free-body diagram of power transmission and vehicle dynamics 
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gears; c) the pinion gears and coupler inertias are ignored; and d) only longitudinal vehicle 

dynamics are considered. 

 The powertrain and vehicle dynamics are modeled as following: 

 ( )e e eJ T F S R                                                 (3.1) 

 A A AJ T F S                                                     (3.2) 

 B B B outJ T F R T                                                   (3.3) 

 21
cos sin

2

out d brk
veh veh d f veh veh r

w

T f T
m v C A v m g f

r
  


                       (3.4) 

where eJ , AJ , and BJ are inertias of the IC engine, EMA, and EMB, respectively; e , A , and B

are the corresponding speeds, and eT , AT , and BT are the torques. F represents the internal force 

applied to the planetary pinion gears; outT is the torque output of the powertrain; vehm , vehv , wr , and

df are the vehicle mass, speed, tire radius, and final drive ratio, respectively; g is the 

acceleration of gravity; rf is the rolling resistance coefficient; brkT is the brake torque;  , Cd, and

fA are the air density, vehicle drag coefficient and front area, respectively; and R, S, and C are the 

numbers of teeth of the ring, sun and carrier gears, respectively. They obey the following 

constrains: 

 ( )A B eS R R S                                                     (3.5) 

and 

 /veh B w dv r f                                                       (3.6) 

By substituting equations (3.5) and (3.6) into (3.1) - (3.4) to eliminate the interaction force F , 

the system model can be simplified below: 

http://dict.youdao.com/w/acceleration/
http://dict.youdao.com/w/of/
http://dict.youdao.com/w/gravity/
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      
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                      (3.7) 
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        (3.8) 

4.2.2  Hybrid battery dynamics 

Battery SOC is a very important parameter that reflects the status of the battery energy 

reservation. Its dynamics [72], [82] is described by 

 
2 4

2 ( )

oc oc bat bat

bat m

V V r P
SOC

r C T

 
                                            (3.9) 

where ocV , batr  , and ( )mC T are the battery open-circuit voltage, internal resistance, and capacity, 

respectively. Note that the battery capacity is a function of temperature T. batP is the battery power 

usage that can be expressed as, 

 bat A A B BP T T                                                     (3.10)  

or described as the following for non-regeneration case, 

 bat des B e eP T T                                                     (3.11) 

where desT is the desired powertrain torque that is obtained from the acceleration and braking pedal 

position. Noting that positive battery power indicates discharging and negative represents charging. 

4.3  Model predictive control 

In this section, a model predictive control (MPC) strategy is presented, where the linear 

quadratic tracking (LQT) approach is used to obtain the closed-loop control law for the system 
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model discretized at the current operational condition. The LQT control tracks the predicted 

desired-torque trajectory over the finite prediction horizon while the equivalent fuel consumption 

is optimized and the battery SOC is maintained at the desired level.  

4.3.1  Control-oriented system model 

Since the hybrid vehicle system model described in (3.7) - (3.9) is nonlinear, the vehicle model 

needs to be linearized at each sample time under its current operational condition. Due to the fact 

that the brake torque is always an independent input which is from the driver directly, so there are 

three input torques for the system, eT , AT , and BT . The linearized powertrain model around an 

operational condition ( 0e , 0B , 0SOC , 0eT , 0AT , 0BT , and 0outT ) can be expressed below  

 
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        (3.12) 

where 
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R S
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 
, 

12 21 2
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= A

R R S
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r R
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f S

   
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  
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11 22 12 21D      . 

The associated linearized SOC model is 

 
sA A sB B s e e s B BSOC T T                                           (3.13) 

where 

 0 0 / /sA e BR S R S        , 0 /sB B   ,  0 / /s e A R ST S   ,

 0 0 / /s B B AT T R S   ，  2

0 0 0 0 04 /m OC bat A e B B BC V r T R S R S T             . 
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Due to the actuator dynamics (engine, EMA, and EMB), the following dynamic equations are 

augmented into the linearized system. 
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                                           (3.14) 

where e , A , and B are the time constants of IC engine, EMA, and EMB, respectively; _e desT , 

_A desT , and _B desT are the desired torque of IC engine, EMA, and EMB, respectively; and the 

relationships between system inputs and fuel em  (or equivalent fuel consumption eqm ) are,  
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                                       (3.15) 

where em is the actual IC engine fuel mass flowrate; LHVH is the corresponding low heating value 

[42] of fuel; e is the IC engine efficiency varying over the engine operational map; eqm is the 

equivalent fuel consumption (flowrate) of the battery pack [42]; and batC  is the equivalent fuel 

economy coefficients for the battery defined by 
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                                 (3.16) 

where 1 , 2 , 1 , and 2 are weighting coefficients to be selected to optimize the equivalent fuel 

economy and to encourage battery discharging (or charging) when SOC is greater (or less) than 

the desired target TSOC ; see [42] for details.  
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Since the goal is to minimize the total equivalent fuel consumption and the error between the 

actual powertrain output torque and the predicted desired-torque trajectory, the following cost 

function is defined, 

  
*

2 2 2

_ _ _

0

( ) ( ) ( , ) ( , , )
dN t

pre e e e des eq eq A des B desT y r m T r m T T d                 cJ        (3.17) 

where dt is the step size; N is the number of prediction steps; er and 
eqr are the weighting 

coefficients for engine and battery equivalent fuel consumption; and ( )preT  is the desired-torque 

prediction output based on the past and current desired powertrain torques using the adaptive 

recursive prediction algorithm (see [45] for details).   

Since the cost function (3.17) is fairly nonlinear due to (3.15) and also the control inputs need 

to be converted in terms of em  and eqm , let  

 
T

e equ m m                                                                (3.18) 

Using (3.11) and (3.15) yields the following equations  
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                                (3.19) 

The linearized model of (3.14) at the same operation condition ( 0e , 0B , 0SOC , 0eT , 0AT , 

0BT , 0outT , 0em  and 0eqm ) is shown below. 
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Therefore, equation (3.20) together with (3.12) and (3.13), forms the linearized system 

expressed below, 
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Note that 0e e e    , 0B B B    , 
0SOC SOC SOC  , 

0e e eT T T  , 
0A A AT T T  , 

0B B BT T T  , 
0out out outT T T  , _ _/ ( ),   / ( ).A des e B des des eT T S R S and T T T R R S       

and the following constraints need to be satisfied to operate the powertrain within its physical 

limits,  

max max0 ; 0 ;e e e eT T      min max min max;  ;B B B B B BT T T        

min max min max;  ;A A A A A AT T T       min max;  bat bat batP P P  min maxSOC SOC SOC  . 

where the superscript “min” and “max” refer to the known lower and upper limit, respectively. 

Also note that the battery power constraints, 
min

batP and
max

batP , are time-varying as a function of 

temperature. 

The linearized continuous-time model at current time index “j” is then discretized with a 

sample period of 10 ms for the LQT control in discrete-time domain based on [36].  
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where ( ) c sA

dA j e


 , ( ) c sA

d c sB j e B
  , ( )d cC j C , 

, ,e_ , _

T

j k j k j eq ku m m    , 

, , , , , , ,

T

j k j ek j Ak j Bk j ek j Bk j kx T T T SOC     , and , , _j k j out ky T . Note that ( )dA j , ( )dB j , and 

( )dC j need to be linearized at each sampling point “j” under the current operational condition so 

that the LQT control can be utilized. Note the subscript “j” represents the current discrete-time 

index and “k” is prediction horizon index.    

4.3.2  Linear quadratic tracking 

In this subsection, a finite horizon LQT controller is designed based on the linearized discrete-

time system model at current operational condition to track the predicted desired-torque trajectory. 
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Considering the system model obtained in (3.22), the discrete-time cost function of (3.17) for 

the current time index “ j ”can be written as  
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                (3.23) 

where Q  is a positive semi-definite symmetric matrix; [ , ]e eqdiag r rR  is a positive definite 

symmetric matrix; ( , ) ( , ) ( , 1)pre pre preT j k T j k T j k   , and when 0, ( ,0) ( )pre desk T j T j  ; The 

initial state is ,0jx ; the final state ,j Nx is free; and N is fixed. This is a typical finite horizon LQT 

problem with the following performance output  

 , ,( , )j k pre j ke T j k y                                                  (3.24) 

For the prediction information, it is stored in a reversed buffer in which the newest predicted 

desired torque information stays at the end of the buffer while the oldest one is at the beginning, 

see Figure 4. 2.   

 

In order to obtain the optimal tracking solution, define the following Hamiltonian function [84]. 
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Based on [84] the optimal state *

,j kx , co-state *

,j k , and control *

,j ku satisfy the following 

equations: 
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Therefore, the augmented system is   
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and the terminal condition can be expressed as 
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Let 
* *

, , , ,j k j k j k j k  P x g  and eliminating
*

,j k and 
*

, 1j k  leads to 

1
1

, , 1 , 1( ) ( ) ( ) ( ) ( ) ( )T T T

j k d j k d d j k d d dj j jA B B A j jC Cj




 
    P P I R P Q                (3.31) 

 
1

1 1 1

, , 1 , 1( ) ( ) ( ) ( ) ( ) ( ) ( , 1)T T T T

j k d j k d d d d k ej rd pj j j j j jA I B B jB kB C T


  

 
      g P R R g Q   (3.32) 

with the following terminal conditions 

 , ( ) ( )T

j N d dj jC C QP and , ( ) ( , )  T

j N pd rejC T j N Qg                                (3.33) 

Note that (3.31) is a matrix difference Riccati equation (DRE) that can be solved backwards 

using the terminal condition (3.33) and the vector difference equation (3.32) can also be solved 

backwards using the terminal condition (3.33). The resulting optimal control 
*

,j ku can be obtained 

for 0,  1,  ,  1k N  , 
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   
1

*

, , 1 , 1 , , 1( ) ( ) ( ) ( )T T

j k d j k d d j k d j k j kB B B A xj j j j


    u R P P g                      (3.34) 

Finally, at current time index “ j ”, let * *

,0j ju u , the MPC-LQT optimal control is 

* * * *

1 1;    0 and  0,  1,  j j j j    u u u u                                   (3.35) 

The MPC-LQT control algorithm is also shown in Figure 4. 3.  

Note that the engine-on strategy [55], [82], based on the predicted desired torque, is used to 

keep the battery operated within its operational boundary. 

 

4.4  Implementation feasibility study  

As shown in Figure 4. 3, to solve the matrix sequence ,j kP , DRE (3.31) needs to be iterated for 

N (prediction horizon) times at each step, yielding very high computational load (or time 
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Figure 4. 3 Flow chart of MPC-LQT algorithm 
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complexity). This makes it impossible for real-time implementation. This section intends to find 

an approximation of the DRE solution with low computational load.  

4.4.1  Steady-state discrete-time Riccati solution 

It is well known that as N goes to infinity, the finite horizon Riccati equation becomes the 

infinite horizon one. That is, at time index “j” the Riccati equation solution of (3.31) is a constant 

matrix 
jP  satisfying the following algebraic Riccati equation (ARE)  

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T

j d j d d d d j d d j d d j dA j A j C j C j A j B j B j B j B j A j


   P P Q P P P+ R    (3.36) 

Therefore, it is logical to use the ARE solution of infinity horizon problem to approximate the 

DRE solution.  

 

Figure 4. 4 shows the 2-norm error trace (dash-dot line) between the first ( 0)k  DRE solution 

at current step ,0jP and ARE solution jP  under US06 driving cycle, where the error is defined as  

 

Figure 4. 4 
2,0j jP P and

2
,0

ˆ
j jP P traces under US06 cycle 
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,0 2j j je  P P                                                              (3.37) 

It can be seen from the lower plot of Figure 4. 4 that the maximum relative error defined below 

is around 6.8%. 

  ,0

1

, 2j r j je e


 P                                                        (3.38) 

The effect of 6.8% relative error to the actual fuel economy will be studied in the next section.  

4.4.2  Iterative ARE solution 

The second approximation is based on the observation that the powertrain operational 

condition changes gradually. As a result, the solution of DRE shall also vary slowly. Therefore, it 

is possible to approximate the DRE solution by an iterative solution on the following Riccati 

equation 

1

1 1 1 1
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T

j d j d d d d j d d j d d j dA j A j C j C j A j B j B j B j B j A j


   
 


 


P P Q P P R P+   (3.39) 

where 
0 0

ˆ .P P  Using similar absolute and relative error definitions to (3.37) and (3.38) leads to, 

    ,0
2

ˆˆ
j jje  P P  and  

1

20, ,
ˆ ˆ

j r j je e


 P                                 (3.40) 

The associated 2-norm error trace is plotted in Figure 4. 4 (solid line) with around 4.8% 

maximum relative error that is less than ARE one. 

4.4.3  Computational load 

Time complexity is often used to evaluate the computational load of an algorithm and can be 

expressed as 

 ( ) ( ( ))T n O f n                                                    (3.41) 

where T(n) is the maximum amount of time used for any input size n; ( )O  denotes the time 

complexity; and f(n) is the growth rate of computational load [45], [43]-[44]. Table 4. 1 lists the 
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2-norm error and associated time complexity of three Riccati solution approaches. It can be seen 

that the DRE solution has very high time complexity of O(55800) due to the matrix equation solved 

backwards iteratively; the ARE solution approach solves the Riccati equation directly and reduces 

the time complexity greatly down to O(6696) with  a peak 2-norm error of 6.8%; and the iterative 

ARE solution has a time complexity of O(1116) with a maximum relative 2-norm error of 4.8%. 

 

Therefore, it is expected that the iterative ARE solution shall provide a good approximation to 

the exact DRE solution with significantly reduced time complexity. 

4.5  Simulation study and validation 

 

The developed forward HEV model (see vehicle parameters in Table 4. 2) was used to study 

the performance of the MPC-LQT scheme under four typical driving cycles, US06, ARB02, 

IM240, and FTP, where US06 and ARB02 are with aggressive driving behavior and fast speed 

variations; IM240 is for the highway, and FTP is with mixed city and highway driving. 

Table 4. 1 2-norm error and Time complexity (n=6, N=50) 

 DRE  solution ARE solution Iterative ARE solution 

2-norm error (max) - 6.8% 4.8% 

Optimization Optimal approximated  approximated 

Growth rate f(n) N ×[5(n3)+n2] n×[5(n3)+n2] 5(n3)+n2 

Time Complexity O(55800) O(6696) O(1116) 
 

Table 4. 2 Key simulation parameters 

Item Parameter Value 

Vehicle Mass 1750kg 

Engine 

Start delay 0.5 s 

Time constant    0.15s 

Power output 41 kW 

Max torque 115 N-m 

Battery 

SOC upper bound 0.75  

SOC lower bound 0.45 

SOC target 0.60 

Motor 
Power output 30 kW 

Max torque 320 N-m 
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4.5.1  Power-follower and MPC-LQT control strategies comparison  

Figure 4. 5 shows the simulation results of the power-follower and MPC-LQT control under 

US06 driving cycle, where the DRE solution is used to generate the LQT solution. The weight 

coefficients for this simulation are 1Q  , 35er  , and 300eqr  . 

 

 Acceleration: Near 10s, 50s, 130s and after 500s, motor assists engine to deliver the required 

power; 

 Engine-on operation: Once the engine is on (see [82] for detailed engine-on strategy), the 

MPC-LQT splits the requested power optimally between engine and battery, and both the 

engine and motor torque outputs are optimized.  

 SOC: The MPC-LQT maintains the SOC close to the target level, and the power-follower 

tends to deep discharge the battery. 

 Deceleration: the motor is in regeneration mode when the vehicle decelerates, where the 

 

 

 

Figure 4. 5 Power-follower and MPC-LQT performance 
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mechanical energy is converted to electricity to charge the battery at around 25s, 100s, 480s, 

and after 500s. 

 

As stated in [42], the fuel economy performance of the internal combustion engine mainly 

depends on its operation conditions. Figure 4. 6 shows engine and motor operation maps of both 

power-follower and MPC-LQT control strategies, where in the power follower control strategy the 

engine output power follows the driver’s requested, and in contrast, the MPC-LQT scheme 

considers both engine efficiency and battery operational range. That is, the engine is operated in 

its most efficient region and at the same time the battery is protected from over 

discharging/charging and its SOC is maintained close to its target. For the battery protection, it is 

a part of MPC-LQT control strategy also based on desired torque prediction. That is, once the 

predicted powertrain power is greater than the battery capacity, the IC engine will be turned on 

 

 
 

Figure 4. 6 Engine and motor operation maps under US06 driving cycle 
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proactively to provide power to the drivetrain [55], [82]. As a result, the battery over-discharging 

duration is reduced and therefore the battery is protected.  

4.5.2  Cost function weight selection  

 

As indicated in the cost function (3.23), Q is a positive semi-definite symmetric matrix 

(coefficient in this case), [ , ]e eqdiag r rR  is a positive definite symmetric matrix. Since Q and R  

are not independent, Q is set to 1 and R  ( er , eqr ) is used to tune the cost function for the best fuel 

economy performance. That is, er and eqr are utilized as tuning parameters for engine fuel economy 

over a given driving cycle. Note that increasing er leads to reduced engine fuel consumption 

relatively over the given horizon and the same for eqr to battery. In this section, a two-step cost 

function weight selection search is conducted to find the best er  and eqr  for the best overall fuel 

economy under a given driving cycle, where the overall fuel economy is defined as the quantity of 

the fuel used for the IC engine plus the equivalent fuel consumption due to the SOC difference at 

the start and end of the driving cycle. Firstly, a fixed ratio of 1 to 10 is used for er  and eqr ; see 

Table 4. 3 and Figure 4. 7. That is, the weighting coefficients are searched along a line where both 

er  and eqr  are increased linearly. The searching points are listed in Table 4. 3 and shown in Figure 

Table 4. 3 Optimal weightings line searching (Q=1) 

Weightings Tracking error 

(N-m, RMS) 
Fuel consumption 

(gallon / %) re req 

1 10 2.224 0.3178 /3.2 

5 50 2.736 0.3170 /3.5  

10 100 2.892 0.3166 /3.6 

20 200 2.966 0.3163 /3.7 

30 300 3.012 0.3161 /3.8 

40 400 3.018 0.3161 /3.8 

50 500 3.024 0.3162 /3.7 

               Note: RMS means root mean square. 
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4. 7. The coefficients with the best overall fuel economy are highlighted with bold characters. Note 

that in this study the US06 driving cycle is used. 

 

Once the candidate coefficients with the fixed ratio for the best fuel economy are located, area 

search is conducted around the neighborhood of these coefficients, see Table 4. 4. 

 

As is shown in Table 4. 3, with the increment of weighting coefficients (re and req) along the 

search line, the root mean square (RMS) of tracking error goes up slowly. This is expected since 

the relative weighting for tracking error decreases. The overall fuel consumption reaches its 

minimal when ( 30,  300)e eqr r   and ( 40,  400)e eqr r  marked with black ‘*’ in Figure 4. 7. 

Therefore, the area used for searching weighting coefficients with the best overall fuel economy 

is listed in Table 4. 4 and marked with blue ‘’ in Figure 4. 7, where the optimal weighting 

Table 4. 4 Optimal weightings area seeking for best fuel consumption (Q=1) 

req 

re 
250 300 350 400 450 

25 0.3162 0.3162 0.3162 0.3163 0.3163 

30 0.3162 0.3161 0.3161 0.3162 0.3162 

35 0.3161 0.3160 0.3161 0.3162 0.3162 

40 0.3161 0.3160 0.3160 0.3161 0.3162 

45 0.3161 0.3161 0.3161 0.3162 0.3162 
 

 
Figure 4. 7 Optimal weightings seeking 
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coefficients are positioned at three locations marked with red ‘*’ and they are ( 35,  300)e eqr r  , 

( 40,  300)e eqr r  , and ( 40,  400)e eqr r  . The optimal weighting coefficients of 

35 and 300e eqr r   are selected for the rest of study since it has the smallest tracking error with 

similar overall fuel economy. 

4.5.3  Fuel economy improvement study  

For this study the overall fuel economy is defined as the accumulated engine fuel consumption 

plus the equivalent fuel consumption due to the SOC difference at start and end of the driving 

cycle. Four typical previously mentioned driving cycles are utilized for studying the fuel economy 

improvement over the traditional power-follower one, and the total equivalent fuel consumptions 

are listed in Table 4. 5.  

 

It can be seen from Table 4. 5 that with exact DRE solution the best fuel economy (9.9%) 

improvement is achieved under FTP mixed city and highway driving cycle. Under IM240, the 

improvement is 7.3%, and Under ARB02 and US06 are 3.6% and 3.8%, respectively. The reduced 

fuel economy for ARB02 and US06 is due to the aggressive driving behavior and fast vehicle 

speed variations. With ARE solution approximating the DRE one, the maximum overall fuel 

consumption improvement reduces to 9.3% (from 9.9%) for the FTP cycle, and the improvements 

are 7.1%, 3.5%, and 3.6% for IM240, ARB02 and US06 cycles, respectively. While the 

Table 4. 5 Total equivalent fuel consumptions 

Driving cycles 
(distance, miles) 

Power 

follower 

(gallon) 

Backwards/ 

Improvement 

(gallon/%) 

Steady-state/ 

Improvement 

(gallon/%) 

Iterative/ 

Improvement 

(gallon/%) 

FTP    (11.04) 0.3127 0.2816/9.9 0.2835/9.3 0.2831/9.5 

IM240  (1.96) 0.0409 0.0379/7.3 0.0380/7.1 0.0379/7.3 

ARB02 (19.8) 0.7385 0.7122/3.6 0.7127/3.5 0.7126/3.5 

US06    (8.01) 0.3286 0.3161/3.8 0.3168/3.6 0.3164/3.7 
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corresponding improvements with iterative ARE solution approximation are 9.5%, 7.3%, 3.5% 

and 3.7%, respectively. Note that they are slightly better than ARE solution case and little worse 

than the exact DRE case. The total equivalent fuel economy (consumption) improvements are 

plotted in Figure 4. 8. 

 

It can be observed from Figure 4. 8 that the optimal MPC-LQT control law is able to improve 

the overall fuel economy effectively. Using exact DRE solution achieves the best fuel economy 

among the three options but with extremely heavy computation load (see subsection 4.4.3 for 

details); Using the ARE solution approximation leads the least overall fuel economy improvement; 

and the iterative ARE solution approximation yields reasonable overall fuel economy 

improvement with computational load reduction of 50 times and it is also feasible for real-time 

implementation. Therefore, balancing the overall fuel economy improvement and computational 

load, the iterative ARE solution is chosen for MPC-LQT scheme in real-time applications. 

4.6  Conclusions 

A model predictive control (MPC) scheme, based on linear quadratic tracking (LQT) optimal 

control, is presented in this chapter. The proposed MPC-LQT supervisory control strategy tracks 

 
Figure 4. 8 Total fuel consumption improvement comparison 
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the predicted driver torque demand and minimizes the equivalent fuel consumption over a given 

horizon and at the same time the battery state of charge (SOC) is maintained close to the target 

level and the battery is operated within its operational boundary. The effectiveness of the proposed 

MPC-LQT control strategy is validated in simulations under four typical driving cycles. Compared 

with baseline power-follower control strategy, the fuel economy is greatly improved with the exact 

difference Riccati equation (DRE) solution. To be specific, 9.9% is achieved over the traditional 

power-follower scheme under FTP driving cycle, 7.3% under IM240, 3.6% under ARB02, and 

3.8% under US06. Since the MPC-LQT scheme using the exact DRE solution has extremely high 

computational load and it is not feasible for real-time implementation, two approximated solutions 

to the DRE are studied: ARE and iterative ARE solutions. The iterative ARE reduces the 

computational load dramatically by 50 times with a peak relative error of 4.8% for the Riccati 

equation solution and with fairly small overall fuel economy penalty. Therefore, for real-time 

implementation, the iterative ARE solution approximation is chosen for MPC-LQT scheme.  
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CHAPTER 5:  CONCLUSIONS 

 

 

 

5.1  Conclusions 

This dissertation presents a model predictive supervisory control strategy using linear quadratic 

tracking control based on the developed adaptive recursive desired torque prediction algorithm and 

stochastic predictive battery boundary management strategy. The conclusions are summarized as 

follows. 

The proposed adaptive recursive prediction algorithm shows significant improvement over two 

exist step-by-step and fixed-gain algorithms based on the simulation results. The step-by-step 

prediction algorithm is not capable of real-time application due to the extremely high 

computational load and large prediction error. Although the fixed gain prediction algorithm 

reduces the computational load greatly with relatively smaller prediction error over step-by-step 

one, its prediction error is not low enough for practical applications. The proposed adaptive 

recursive prediction algorithm updates its prediction gains online and reduces the prediction error 

significantly with only 4% peak error under FTP and other four typical driving cycles. The 

introduced two weighting coefficients for the past and current pedal position signals are the key to 

improve the prediction accuracy and to avoid numerical over and under flow during real-time 

calculations. In addition, the algorithm is robust to different driver behaviors due to the regression 

gains updated online. With the extremely low computational load this algorithm is feasible for 

real-time implementation. 
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The proposed stochastic predictive boundary management (SPBM) strategy greatly reduces 

the battery over-discharging duration over the baseline power-follower and non-stochastic 

predictive battery boundary management strategies, where the simulation studies was conducted 

under typical driving cycles with different initial battery temperatures. The baseline power-

follower control strategy cannot effectively prevent the battery from over-discharging, leading to 

reduced battery life and degraded HEV performance; and the non-stochastic predictive boundary 

management strategy reduces the battery over-discharging duration to a certain degree, however 

the proposed SPBM strategy is able to reduce the battery over-discharging duration significantly 

especially under aggressive driving cycles. The average over-discharge energy reduction is 82% 

under US06 and ARB02 driving cycles, 67% under NYCC and FTP driving cycles, and 37% under 

IM240 driving cycle. Most importantly, since the desired torque prediction and its error variance 

can be calculated online with very low computational load, the proposed SPBM strategy can be 

implemented for practical application.    

The developed model predictive supervisory control strategy using linear quadratic tracking 

(LQT) control greatly improves the HEV performance over baseline power-follower strategy, 

where the predicted desired torque is used for LQT and stochastic predictive battery boundary 

management was integrated into the model predictive control (MPC). Simulation results show that 

the MPC-LQT strategy tracks the predicted driver torque demand, minimizes the total equivalent 

fuel consumption, and at the same time maintains the battery SOC close to its desired level while 

keeping the battery operating within the designed boundary. The fuel economy is improved 

significantly with exact difference Riccati equation (DRE) solution. 9.9% is achieved under FTP 

driving cycle, 7.3% under IM240 cycle, 3.6% under ARB02 cycle and 3.8% under US06 driving 

cycle. Most importantly, after studied two approximation solutions to the difference Riccati 
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equation (DRE) used in the LQT control: algebraic Riccati equation (ARE) and iterative ARE 

solutions. It is found that compared to exact DRE the iterative ARE solution reduces the 

computational load dramatically by 50 times with only 4.8% peak relative error and however, the 

overall fuel economy penalty is very small. For real-time implementation, it is recommended to 

use the iterative ARE approximation solution for the MPC-LQT control scheme.  

5.2  Recommendation for future works 

The research work in this dissertation is still in its early stage. There are several technical and 

practical issues deserving further investigations: 

1) In this dissertation, within the finite prediction horizon, both the battery 

discharging/charging limits and current SOC are assumed to be constants. However, as 

stated in chapters 2 and 3, the battery capacity and internal resistance are functions of 

temperature. The battery discharging/charging limits and SOC shall be varied within the 

prediction horizon.  

2) The maximum prediction horizon is confined to 0.5s. It might not be enough for various 

driving conditions.  For instance, if the vehicle speed is 50 mph, 0.5s prediction horizon 

only lasts 11.2 m in distance.  

3) Road gradient is a very important factor that affects the fuel economy, it should be 

considered in future works.  

4) All the algorithms developed in this dissertation are for real-time implementation. 

However, they are only validated in the MATLAB/Simulink simulations, real-time 

implementation is recommend for future investigations.  
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APPENDIX 

APPENDIX A: Key parameters of the HEV 

Table A. 1. Key parameters of the HEV 

Item Parameter Value 

 

Item Parameter Value 

air_density ρ 1.23 kg/m3 vc_idle_spd  80 rad/s 

cs_eng_on_soc  0.5 veh_FA Af 3.12 m2 

cs_hi_soc  0.75 veh_cargo_mass mc 0 

cs_lo_soc  0.45 veh_CD cd 0.37 

cs_target_soc  0.60 veh_gravity g 9.8 m/s2 

ess_init_soc  0.6 wheel_mass mw 50 kg 

cs_min_off_time  3s wheel_radius rw 0.3 m 

cs_min_on_time  10s    

cyc_grade  0    

ess_module_num  40    

ess_module_mass  0.9979 kg    

fd_ratio fd 3.2667    

fc_fuel_den ρf 749 kg/m3    

tx_pg_r R 86    

tx_pg_s S 44    
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APPENDIX B: HEV MATLAB/Simulink models  

 
 

 
 

 
Figure B.1 HEV model 

 
Figure B.2 HEV driver model 
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Figure B.3 HEV supervisory controller model 

    
Figure B.4 HEV engine on/off control model 
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Figure B.5 HEV supervisory power distribution model 

 
Figure B.6 HEV engine model 
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Figure B. 7 HEV EMA model 

 
Figure B. 8 HEV EMB model 
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Figure B. 9 HEV battery model 

 
Figure B. 10 HEV battery VOC and Rint model 
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Figure B. 11 HEV battery limited power model 
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Figure B. 12 HEV battery output current model 

 
Figure B. 13 HEV battery SOC model 
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Figure B. 14 HEV battery air flow/temperature model 

 
Figure B. 15 HEV vehicle dynamics model 
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Figure B. 16 HEV braking regeneration model 

 
Figure B. 17 HEV planetary gear model 
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APPENDIX C: System functions 

C.1  Adaptive recursive prediction algorithm 
% This m code is based on s-function 

steps=50;% 50-step prediction; 
Beta1=20;% weighting factor for current; 

 
y_data_length=3; % desired torque  
u_data_length=y_data_length+1; % pedal position  

  
ne=4*(y_data_length+u_data_length); % number of equations for Least-Squares 

solotion. 
sda=y_data_length+1+steps+ne; % total sampled data 

  
%============== 
I=eye(2*y_data_length+1,2*y_data_length+1); 

  
%======initialize the value of u_input and y_input=================== 

  
    yin=block.InputPort(1).Data; 
    y_input=block.Dwork(1).Data; 
    y_input(1,:)=[]; 
    y_input=[y_input;yin]; 
    block.Dwork(1).Data=y_input; 

     
    uin=block.InputPort(2).Data; 
    u_input=block.Dwork(2).Data;     
    u_input(1,:)=[]; 
    u_input=[u_input;uin]; 
    block.Dwork(2).Data=u_input; 

  
y_input1=y_input(sda-y_data_length:sda-1,1);% y data vector(desired torque); 
u_input1=u_input(sda-u_data_length+1:sda,1); % up data vector(pedal 

position); 
phiT=[y_input1;u_input1]; 

     
y_input2=y_input(sda-y_data_length:sda-1,1);% y data vector; 
u_input2=u_input(sda-u_data_length+1:sda,1); % u data vector; 

  
phiT1=[y_input2;u_input2]; 

  
%=====let bk=Dwork(4)============== 
bk=block.Dwork(4).Data;% current coefficients (denoted as big theta in 

dissertation) 
%================================== 

 
%=====let pk=Dwork(5)============== 
pp=block.Dwork(5).Data; % current recursive P in dissertation 
for j=1:(2*y_data_length+1) 
    for i=1:(2*y_data_length+1) 
        pk(i,j)=pp(i+(j-1)*(2*y_data_length+1)); 
    end 
end 
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%%==================================calculation for trace============= 
ppt_lmt = 2; 
error_max=30; 
Alpha1=block.Dwork(7).Data;% weighting factor for past data 

  
%============gradient================ 
target_F_norm=400;%block.Dwork(8).Data; %old 
F_norm=block.Dwork(6).Data; %new 
error1=(target_F_norm-F_norm); 

     
norm0=block.Dwork(9).Data; 
norm0(1,:)=[]; 
norm0=[norm0;error1]; 
block.Dwork(9).Data=norm0; 
norm_error=mean(norm0); 

     
% block.Dwork(8).Data=block.Dwork(6).Data; 

  
if norm_error<-error_max 
    norm_error=-error_max; 
elseif norm_error>error_max 
    norm_error=error_max; 
end   
ppt=norm_error; 
 

%==========Conditions for update========Conditions for update============= 
if uin<=0.1 && ppt<=1*ppt_lmt && ppt>=-1*ppt_lmt %If pedal position is less 

than 1%, coefficient doesn't need to be updated. 
    bk1=bk; 
    pk1=pk; 
    Alpha1=1; 
else 
    Alpha1=Alpha1-(5.61e-006)*ppt; % adaptive scheme 

  
    ratio=(Beta1/Alpha1)^2; 

bk1=(I-pk*phiT*phiT'/(phiT'*pk*phiT+1/ratio))*(bk+ratio*pk*phiT*yin); % 

yin is the current new desired torque data 

    pk01=(1/Alpha1^2)*pk-(1/Alpha1^2)* (phiT'*pk)'* (phiT'*pk)/ 

(phiT'*pk*phiT+1/ratio); 
    pk1=0.5*(pk01+pk01'); 
end 

  
F_norm=norm(pk1,'fro'); 
 

yp=phiT1'*bk1;% for output 

 

block.Dwork(3).Data=yp; % prediction 

block.Dwork(4).Data=bk1; % regressive gains 
block.Dwork(5).Data=pp1; % P 
block.Dwork(6).Data=F_norm; % Norm 
block.Dwork(7).Data=Alpha1; % weighting factor for past 
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C.2  Prediction error variance algorithm 
% This a s-function based m code 

    dimention=512; 
    yin=(block.InputPort(1).Data)^2; 
    y_input=block.Dwork(1).Data; 
    y_input(1,:)=[]; 
    y_input=[y_input;yin]; 
    block.Dwork(1).Data=y_input; 

     
sigma=sqrt(sum(y_input)/dimention);% traditional calculation 

 

 

C.3  MPC-LQT control algorithm 
% this m code is s-function based. 

 

    Pre_in=block.InputPort(1).Data; 
    Pre_input=block.Dwork(1).Data; 
    Pre_input(1,:)=[]; 
    Pre_input=[Pre_input;Pre_in]; 
    block.Dwork(1).Data=Pre_input; 
 

    Te0=block.InputPort(2).Data(1); 
    we0=block.InputPort(2).Data(2); 
    TA0=block.InputPort(2).Data(3); 
    wA0=block.InputPort(2).Data(4); 
    TB0=block.InputPort(2).Data(5); 
    wB0=block.InputPort(2).Data(6); 

     
    PbatMAX=block.InputPort(3).Data(1); 
    PbatMIN=block.InputPort(3).Data(2); 
    Dis_Chg=block.InputPort(3).Data(3); 
    Cbat=block.InputPort(3).Data(4); 
    Voc=block.InputPort(3).Data(5); 
    Rint=block.InputPort(3).Data(6); 
    CM=block.InputPort(3).Data(7); 
    SOC0=block.InputPort(3).Data(8); 
    Tbg0=block.InputPort(3).Data(9); 

     
    fuel_m=block.InputPort(4).Data; 
    Tdes0=block.InputPort(5).Data(1); 
    engineon=block.InputPort(5).Data(2); 

    flowrate=block.InputPort(4).Data; 

    equalflowrate=block.InputPort(5).Data; 

     
    LowHeatingValue=54; 
    gS=44;gR=86; % gear numbers 
% Matlab for discrete-time tracking system 

 
speedlimit=0.001;  
taoe=10;% Making motors 1000 times faster than IC engine.  
yitae=42; 
AC11=-1/taoe; 
AC12=0;AC13=0;AC14=0;AC15=0;AC16=0; 

  
taoA=0.015; 
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AC21=-1/taoA*gS/(gS+gR); 
AC22=-1/taoA; 
AC23=0;AC24=0;AC25=0;AC26=0; 

  
taoB=0.015; 
if abs(wB0)<=speedlimit 
    AC31=0; 
else 
    AC31=-1/taoB*(gR/(gR+gS)-we0/wB0); 
end 
AC32=0; 
AC33=-1/taoB; 
AC34=0;AC35=0;AC36=0; 

  
mveh=1750;JA=0.1;JB=0.1;Je=0.1;rw=0.3876;fd=3.2667; 

  
E11=Je+JA*((gS+gR)/gS)^2; 
E12=-JA*gR*(gS+gR)/gS/gS; 
E22=JB+mveh*(rw/fd)^2+JA*(gR/gS)^2; 
ED=E11*E22-E12*E12; 

  
AC41=E22/ED; 
AC42=(E22*(gS+gR)+E12*gR)/(gS*ED); 
AC43=-E12/ED; AC44=0; 
AC45=E12*1.2*0.37*3.12*rw^3*wB0/ED/fd/fd/fd; 
AC46=0; 

  
AC51=-E12/ED;AC52=-(E12*(gS+gR)+E11*gR)/gS/ED; 
AC53=E11/ED;AC54=0; 
AC55=-E11*1.2*0.37*3.12*rw^3*wB0/ED/fd/fd/fd; 
AC56=0; 

  
% [mm,nn]=size(Pre_input); 
% Tdes=Pre_input(mm,1); 

  
% demB=-1/CM/sqrt(Voc*Voc-4*Rint*(TA0*wA0+TB0*wB0)) 
% demA=-1/CM/sqrt(Voc*Voc-4*Rint*(TA0*wA0+TB0*wB0)) 
% demAB=-1/CM/sqrt(Voc*Voc-4*Rint*(TA0*(we0*(gS+gR)-wB0*gR)/gS+TB0*wB0)); 
% AC61=0; 
% AC62=demAB*(we0*(gS+gR)-wB0*gR)/gS; 
% AC63=demAB*wB0; 
% AC64=demAB*TA0*(gR+gS)/gS; 
% AC65=demAB*(TB0-TA0*gR/gS); 
pbat=Tdes0*wB0-Te0*we0-Tbg0; 
if pbat>=PbatMAX 
    pbat=PbatMAX; 
elseif pbat<=PbatMIN 
    pbat=PbatMIN; 
else 
end 
dem=1/CM/sqrt(Voc*Voc-4*Rint*pbat); 
AC61=dem*we0; 
AC62=0;AC63=0; 
AC64=dem*Te0; 
AC65=-dem*Tdes0; 
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AC66=0; 

  
MatrixAC=[AC11,AC12,AC13,AC14,AC15,AC16;... 
          AC21,AC22,AC23,AC24,AC25,AC26;... 
          AC31,AC32,AC33,AC34,AC35,AC36;... 
          AC41,AC42,AC43,AC44,AC45,AC46;... 
          AC51,AC52,AC53,AC54,AC55,AC56;... 
          AC61,AC62,AC63,AC64,AC65,AC66]; 
% MatrixA=exp(MatrixAC*0.01) 
MatrixA=eye(6)+MatrixAC*0.01; 

  
if abs(we0)<=79 || engineon==0 
    BC11=0; 
else 
%     BC11=fuel_m; 
    BC11=1/taoe*yitae*LowHeatingValue/we0; 
end 
BC12=0;BC21=0;BC22=0;BC31=0; 
if wB0==0 
    BC32=0; 
else 
    BC32=1/taoB/Cbat/wB0*(1-2*Rint/Voc/Voc/Cbat); 
end 
BC41=0;BC42=0;BC51=0;BC52=0;BC61=0;BC62=0; 

  
MatrixBC=[BC11,BC12;BC21,BC22;BC31 BC32;BC41 BC42;BC51 BC52;BC61 BC62]; 
% MatrixB0=exp(MatrixAC*0.01)*MatrixBC*0.01 
% MatrixB=MatrixBC*0.01; 

MatrixB=pinv(MatrixAC)*(exp(MatrixAC*0.01)-eye(6))*MatrixBC; 

MatrixC=[0 -gR/gS 1 0 0 0]; 
 

% state weighting matrix Q 
MatrixQ=1; % performance index 
MatrixR=[35,0;0,300]; % performance index control 
MatrixF=1; % performance index weighting matrix F 
maxsteps=5; 

 
%% Times4SOC=2000; 
x1(1)=Te0; %% initial condition on state x1 
x2(1)=TA0; %% initial condition on state x2 
x3(1)=TB0; %% initial condition on state x3 
x4(1)=we0; %% initial condition on state x4 
x5(1)=wB0; %% initial condition on state x5 
x6(1)=SOC0; 

  
xk=[x1(1);x2(1);x3(1);x4(1);x5(1);x6(1)]; 

  
% note that if kf =10 then 
% k=[k0, kf]=[0 1 2 3 ,...,10] 
% then we have 11 points and an array x1 should have subscript 
% x1(N) with N=1 to 11. This is because x(0) is illegal in array 
% definition in Matlab. let us use N=kf+1 
k0=0; % the initial instant k_0] 
kf=maxsteps-1; % the final instant k_f 
N=kf+1; % 
    for i=1:1:N-1 
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         zk(i)=Pre_input(i); 
    end 
zkf=Pre_input(maxsteps); 
[n,n]=size(MatrixA); % fixing the order of the system matrix A 
I=eye(n); % identity matrix I 
E=MatrixB*inv(MatrixR)*MatrixB'; % the matrix E=BR^(-1)B' 
V=MatrixC'*MatrixQ*MatrixC; 
W=MatrixC'*MatrixQ; 
% solve matrix difference Riccati equation 
% backwards starting from kf to k0 
% use the form P(k)=A'P(k+1)[I+EP(k+1)]^(-1)A+V 
% first fix the final condition S P(k_f)=F; 
% g(k_f)= C'FZ(k_f) 
% note that P, Q, R, F are all symmatric ij=ji 
pkplus1=MatrixC'*MatrixF*MatrixC; 
gkplus1=MatrixC'*MatrixF*zkf; 

 
p11(N)=pkplus1(1);p12(N)=pkplus1(2);p13(N)=pkplus1(3); 

p14(N)=pkplus1(4);p15(N)=pkplus1(5);p16(N)=pkplus1(6); 
p21(N)=pkplus1(7);p22(N)=pkplus1(8);p23(N)=pkplus1(9); 

p24(N)=pkplus1(10);p25(N)=pkplus1(11);p26(N)=pkplus1(12); 
p31(N)=pkplus1(13);p32(N)=pkplus1(14);p33(N)=pkplus1(15); 

p34(N)=pkplus1(16);p35(N)=pkplus1(17);p36(N)=pkplus1(18); 
p41(N)=pkplus1(19);p42(N)=pkplus1(20);p43(N)=pkplus1(21); 

p44(N)=pkplus1(22);p45(N)=pkplus1(23);p46(N)=pkplus1(24); 
p51(N)=pkplus1(25);p52(N)=pkplus1(26);p53(N)=pkplus1(27); 

p54(N)=pkplus1(28);p55(N)=pkplus1(29);p56(N)=pkplus1(30); 
p61(N)=pkplus1(31);p62(N)=pkplus1(32);p63(N)=pkplus1(33); 

p64(N)=pkplus1(34);p65(N)=pkplus1(35);p66(N)=pkplus1(36); 
% 
g1(N)=gkplus1(1);g2(N)=gkplus1(2);g3(N)=gkplus1(3); 
g4(N)=gkplus1(4);g5(N)=gkplus1(5);g6(N)=gkplus1(6); 
% 
for k=N-1:-1:1, 
    Pk=MatrixA'*pkplus1*inv(I+E*pkplus1)*MatrixA+V; 
    Lk=pinv(MatrixR+MatrixB'*pkplus1*MatrixB)*MatrixB'*pkplus1*MatrixA; 
    gk=(MatrixA-MatrixB*Lk)'*gkplus1+W*zk(k); 
    p11(k)=Pk(1,1);    p12(k)=Pk(1,2);    p13(k)=Pk(1,3);    p14(k)=Pk(1,4); 

    p15(k)=Pk(1,5);    p16(k)=Pk(1,6); 
    p21(k)=Pk(2,1);    p22(k)=Pk(2,2);    p23(k)=Pk(2,3);    p24(k)=Pk(2,4); 

    p25(k)=Pk(2,5);    p26(k)=Pk(2,6); 
    p31(k)=Pk(3,1);    p32(k)=Pk(3,2);    p33(k)=Pk(3,3);    p34(k)=Pk(3,4); 

    p35(k)=Pk(3,5);    p36(k)=Pk(3,6); 
    p41(k)=Pk(4,1);    p42(k)=Pk(4,2);    p43(k)=Pk(4,3);    p44(k)=Pk(4,4); 

    p45(k)=Pk(4,5);    p46(k)=Pk(4,6); 
    p51(k)=Pk(5,1);    p52(k)=Pk(5,2);    p53(k)=Pk(5,3);    p54(k)=Pk(5,4); 

    p55(k)=Pk(5,5);    p56(k)=Pk(5,6); 
    p61(k)=Pk(6,1);    p62(k)=Pk(6,2);    p63(k)=Pk(6,3);    p64(k)=Pk(6,4); 

    p65(k)=Pk(6,5);    p66(k)=Pk(6,6); 
 

    pkplus1=Pk; 
    % 
    g1(k)=gk(1);    g2(k)=gk(2);    g3(k)=gk(3);    g4(k)=gk(4); 

    g5(k)=gk(5);    g6(k)=gk(6);     
 

    gkplus1=gk; 
end 



 

 

116 

 

% calcuate the feedback coefficients L and Lg(k) 
% L(k)=(R+B'P(k+1)B)^(-1)BP(k+1)A 
% Lg(k)=[R+B'P(k+1)B]^(-1)B' 
% 
for k=N-1:-1:1, 
    Pk=[p11(k),p12(k),p13(k),p14(k),p15(k),p16(k);... 
        p21(k),p22(k),p23(k),p24(k),p25(k),p26(k);... 
        p31(k),p32(k),p33(k),p34(k),p35(k),p36(k);... 
        p41(k),p42(k),p43(k),p44(k),p45(k),p46(k);... 
        p51(k),p52(k),p53(k),p54(k),p55(k),p56(k);... 
        p61(k),p62(k),p63(k),p64(k),p65(k),p66(k)]; 
    gk=[g1(k);g2(k);g3(k);g4(k);g5(k);g6(k)]; 
    Lk=pinv(MatrixR+MatrixB'*pkplus1*MatrixB)*MatrixB'*pkplus1*MatrixA1; 

Lgk=pinv(MatrixR+MatrixB'*pkplus1*MatrixB)*MatrixB'; 

 
    l11(k)=Lk(1,1);    l12(k)=Lk(1,2);    l13(k)=Lk(1,3);    l14(k)=Lk(1,4); 

    l15(k)=Lk(1,5);    l16(k)=Lk(1,6); 
l21(k)=Lk(2,1);    l22(k)=Lk(2,2);    l23(k)=Lk(2,3);    l24(k)=Lk(2,4); 

l25(k)=Lk(2,5);    l26(k)=Lk(2,6); 

 
lg11(k)=Lgk(1,1);    lg12(k)=Lgk(1,2);    lg13(k)=Lgk(1,3); 

lg14(k)=Lgk(1,4);    lg15(k)=Lgk(1,5);    lg16(k)=Lgk(1,6); 
lg21(k)=Lgk(2,1);    lg22(k)=Lgk(2,2);    lg23(k)=Lgk(2,3);     

lg24(k)=Lgk(2,4);    lg25(k)=Lgk(2,5);    lg26(k)=Lgk(2,6); 

 
    pkplus1=Pk; 
    gkplus1=gk; 
end 
 

for k=1:N-2, 
    Lk=[l11(k),l12(k),l13(k),l14(k),l15(k),l16(k);... 
        l21(k),l22(k),l23(k),l24(k),l25(k),l26(k)]; 
    Lgk=[lg11(k),lg12(k),lg13(k),lg14(k),lg15(k),lg16(k);... 
         lg21(k),lg22(k),lg23(k),lg24(k),lg25(k),lg26(k)]; 
    Lgkplus1=[lg11(k+1),lg12(k+1),lg13(k+1),lg14(k+1),lg15(k+1),lg16(k+1);... 
              lg21(k+1),lg22(k+1),lg23(k+1),lg24(k+1),lg25(k+1),lg26(k+1)]; 
    xk=[x1(k);x2(k);x3(k);x4(k);x5(k);x6(k)]; 
    xkplus1=(MatrixA1-MatrixB*Lk)*xk+MatrixB*Lgkplus1*gk; 
    x1(k+1)=xkplus1(1); 
    x2(k+1)=xkplus1(2); 
    x3(k+1)=xkplus1(3); 
    x4(k+1)=xkplus1(4); 
    x5(k+1)=xkplus1(5); 
    x6(k+1)=xkplus1(6); 
end 
% 
% solve for optimal control 
% u(k) =-L(k)x(k)+Lg(k)g(k+1) 
% for k=1:N 
for k=1:N-1, 
    Lk=[l11(k),l12(k),l13(k),l14(k),l15(k),l16(k);... 
        l21(k),l22(k),l23(k),l24(k),l25(k),l26(k)]; 
    Lgk=[lg11(k),lg12(k),lg13(k),lg14(k),lg15(k),lg16(k);... 
         lg21(k),lg22(k),lg23(k),lg24(k),lg25(k),lg26(k)]; 
    gkplus1=[g1(k+1);g2(k+1);g3(k+1);g4(k+1);g5(k+1);g6(k+1)]; 
    xk=[x1(k);x2(k);x3(k);x4(k);x5(k);x6(k)]; 
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    uk=-Lk*xk+Lgk*gkplus1; 
    uk1(k)=uk(1); 
    uk2(k)=uk(2); 
end 
% 
block.Dwork(2).Data=uk1(1); 
block.Dwork(3).Data=uk2(1); 
block.Dwork(6).Data(1)=x1(1);% x1: Te 
block.Dwork(6).Data(2)=x1(2);% x1: Te 

  
block.Dwork(7).Data(1)=x2(1);% x2: TA 
block.Dwork(7).Data(2)=x2(2);% x2: TA 

 
block.Dwork(8).Data(1)=x3(1);% x3: TB 
block.Dwork(8).Data(2)=x3(2);% x3: TB 

 
block.Dwork(9).Data(1)=x4(1);% x4: we 
block.Dwork(9).Data(2)=x4(2);% x4: we 

 
block.Dwork(10).Data(1)=x5(1);% x5:wB 
block.Dwork(10).Data(2)=x5(2);% x5:wB 
 

block.Dwork(11).Data(1)=x6(1);% x6:SOC 
block.Dwork(11).Data(2)=x6(2);% x6:SOC 
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