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ABSTRACT

TRANSIENT REFLECTION OF PLANE WAVES FROM A
LORENTZ-MEDIUM HALF-SPACE
By

Steven Michael Cossmann

For materials that exhibit resonances, or have parameters that vary rapidly with
frequency, the Lorentz model is becoming increasingly more popular, especially when
dealing with signals with content at optical frequencies. The propagation and reflec-
tion of transient pulses by these media is of particular interest.

It has been shown previously that the transient plane-wave field reflected from a
Lorentz-medium half-space can be represented as an infinite sum of fractional-order
Bessel functions. In order to gain more physical insight into the physical behavior
of the problem, in this thesis a closed form solution is formulated which has no
infinite sums. The solution is obtained by taking an inverse Laplace transform of
the frequency-domain reflection coefficient. This is accomplished by rearranging the
frequency-domain reflection coefficient into separate terms which have inverse Laplace
transforms which are found in standard tables.

The results obtained using the closed-form solutions are verified through com-
parison with an inverse fast Fourier transform of the frequency-domain reflection

coefficient.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Simple electromagnetic materials are often modeled as having constitutive parame-
ters that are constant with frequency. More complicated materials with frequency-
dependent parameters are often represented using the Debye model, which is valid
for many liquids at moderate frequency. For materials that exhibit resonances, or
have parameters that vary rapidly with frequency, the Lorentz model is becoming in-
creasingly more popular, especially when dealing with signals with content at optical
frequencies [1].

The propagation and reflection of short duration transient pulses in these disper-
sive materials has generated much interest, and the effects of dispersion on the shape
of the propagating wave, particularly in the Sommerfeld and Brillouin precursors, has
been extensively studied [2]-[5]. Recently, the use of short pulses to probe materials
has prompted the investigation of the reflection of transient waves from material half
spaces of various types [6]-[9].

The transient field reflection of a plane wave from a Lorentz-medium half-space
has been calculated previously for both TE polarization [10] and TM polarization
(11] by expanding the frequency-domain reflection coefficient using a simple expan-
sion method and taking the inverse Laplace transform of each term in the infinite
series. This produces a result which is given as an infinite sum of Bessel functions
of fractional-order. While this method produces a convenient solution for numerical
techniques, it provides little insight into the behavior of the reflected field.

This thesis proposes a method for formulating the transient reflection coefficient
by rearranging the frequency-domain reflection coefficient into a form which enables

the inverse Laplace transform to be taken without making an expansion as done



previously. This leads to a solution containing a finite number of convolutions of
Bessel functions and exponentials, which gives a clearer picture of the behavior of
the reflection coefficient. Material parameter and incidence angle choices determine
whether the convolution terms contain ordinary or modified Bessel functions. In
order to obtain a complete solution to the problem, different sets of parameters are
chosen which are representative of all the possible combinations of standard Bessel
functions and modified Bessel functions. The various combinations of standard Bessel
functions and modified Bessel functions allow for the general behavior of the reflected
wave to be predicted from the material choices. A more oscillatory reflection would
be expected from a solution containing only standard Bessel functions, while a less
oscillatory reflection would be expected from a solution containing only modified
Bessel functions.

With certain material parameters, there are some angles of incidence in which the
final transient expression for a TM-polarized wave contains a non-causal term. For a
TE-polarized wave this is not the case as long as the material is not highly magnetic.
Explanation for these non-causal terms are examined in more detail as they arise in
formulation.

Once the result is formulated, the transient reflection coefficient is computed nu-

merically and then compared to the inverse fast Fourier transform (FFT).



CHAPTER 2

FREQUENCY DOMAIN REFLECTION COEFFICIENTS

In order to derive the time-domain reflection coefficient for a Lorentz-medium half-
space, the frequency domain reflection coefficient must first be formulated. The most
general way to accomplish this is to enforce tangential field continuity across the
boundary of the half-space. In this chapter the frequency domain reflection coefficient
of an obliquely incident plane wave from a material half-space is derived. This solution

is valid for any homogeneous, isotropic material.

2.1 The Frequency Domain Wave Equation

Maxwell’s equations for a source-free region of linear, isotropic, homogeneous material
for a time-harmonic field are given in point form in terms of E(r,w) and H(r,w) as

[12]

V x E = —jwuH, (2.1)
V x H = jweE, (2.2)
V-E=0, (2.3)
V-H=0, (2.4)

where € is the frequency dependant complex permittivity. Taking the curl of (2.1)

produces

VxVxE=—jwu(V xH)

= w?ucE, (2.5)



where (2.2) has be substituted for V x H. Utilizing both (2.3) and the vector identity
V xV xE=V(V-E)- V2E, allows (2.5) to be rewritten as

V2E + k’E =0, (2.6)

where the wave number in the medium is given as k = \/pe. This is the homogeneous
vector Helmholtz equation for the electric field. By a similar process, the homogeneous

vector Helmholtz equation for the magnetic field can be written as
V2H + k*H = 0. (2.7)

In cartesian coordinates, each component of E and H must satisfy the scalar
Helmholtz equation

V2 + k% =0. (2.8)

The expression for the electric field of a plane wave can be written as
E = Ege kT, (2.9)
where k is the wave vector defined as
k = xky + yhky + 2k, (2.10)
with |k| = k and r is the position vector defined as

r=Xr+yy+2:z. (2.11)



The magnetic field for a uniform plane wave is related to the electric field by

H-XxE (2.12)
wit

2.2 Reflection from a Half-Space

The problem of interest is a plane wave in free space (region 1) incident on a material
half-space. A portion of the wave is reflected and a portion is transmitted into the
material half-space (region 2). The problem geometry can be seen in Figure 2.1.
Examining the geometry, it can be seen that since the wave is propagating in the x-z
plane, the field is invariant in the y-direction which means k; = 0. It can also be seen

from examining the geometry that the wavenumber for the incident wave is given as

ko = kosiné;, (2.13a)

k.o = kg cos;, (2.13b)

and the wavenumber for the transmitted wave is given as

kz = ksin 6y, (2.14a)

k: = kcos 6. (2.14b)

Any uniform plane wave incident on a planar surface may be decomposed into two
orthogonal polarization components, one perpendicular and one parallel to the plane
of incidence. The perpendicular polarization is also known as TE polarization, and the
parallel polarization is also known as TM polarization. Each of these polarizations
can be solved for separately and their solutions can be added together to form a

complete solution for the total field.



2.2.1 TE Polarization

The fields for a TE-polarized plane wave incident on a material half-space can be seen

in Figure 2.2. The fields for the incident plane wave in free space can be given as

Ell _ yE(i)e—jkO(a: sind;+z cosﬂi)’ (2.15)
. E! S ‘
H' = 7’30 (=% cosf; + Zsin 6,) e JFo(zsind;+zcosf;) (2.16)

were 19 = /po/€o and kg = w /1p€g. The total field in region 1 can be expressed as

the incident plane wave plus a reflected plane wave. The reflected field is given as

El _ yEge—jkO(xsin 0p—z cosOr), (2‘17)
ET . .

H', = =9 (xcos, + zsin6,) e Jholrsinbr—zcosfr) (2.18)
N0

In region 2, the area to the right of the interface, the transmitted field can be repre-

sented as a plane wave given as

E! = yE(t,)e—jk(z sinfp+2 cosOt)’ (2,19)
Et . .

H,i _ %o (=% cos B + 7 sin ;) C—]k(z:sm 9,+zcos¢9t), (2.20)
n

were n = y/u/e. In order to have phase continuity across the interface for all values

of r, the exponential terms must be equal at the interface, z = 0. This implies that

kosin0; = kgsin 8, = k sin ;. (2.21)

It can be easily deduced from this equation that

01 = 01-,



sinfy kg [eono
sing, k | en’ (2.22)

The boundary conditions at the interface requires the tangential electric fields to be

continuous across the interface. This requires

2x (E\ +E1) (2.23)

Using (2.23) and the fact that the phase is continuous across the interface, and using

the expressions for the electric fields it can be seen that
E}y + E} = E}. (2.24)

Dividing this by the incident field amplitude leads to

Ey _ Ej
Ey E}
1+F_1_ =TJ_, (225)

where I' | is the reflection coefficient and T’ is the transmission coefficient.
The boundary conditions also require that the magnetic field be continuous across

the interface. This requires

— 5 t
=2 xHY
z=0

(2.26)

2x (H +H) .
2=0

Using (2.26) and the fact that the phase is continuous across the interface, and using

the expressions for the magnetic field it can be seen that

1 T t

E E
— =% cos6; + =L cos by = ——2 cosb;. (2.27)
o 0 n



Dividing by the incident wave amplitude again yields

1 Ej EY
——cosb; + 0 cos¢97=———g-c059t,
0 Ejmo Egn
1

r T
——cos6; + L cosfp = — =L cos by.
o 0 n

Combining (2.25) and (2.28) allows both '} and T'| to be solved for as

T = 2Z |
1= Z_L + Z(),
[ - Z, -2
LTz ¥ 2y
with the definitions
70
70 =
0 cosb;’
gz o _ kn
17 cos 0, 12— k% sin2 91“

In the above expression, using (2.22) cos6; is given as

k2 — kg sin? 0;
k

cos @y =

2.2.2 TM Polarization

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

For a TM-polarized plane wave, the method to formulate the reflection and transmis-

sion coeflicients is similar to the method for the TE case. The fields for a TM-polarized

plane wave incident on a material half-space can be seen in Figure 2.3. The fields for

the incident plane wave in free-space can be given as

Ej = E{ (X cos6; — sing;) e~ Ko(zsinbitzcosfy),

(2.34)



{
h - y%e—jko(xsin 0,42 cosei). (2.35)
0

The reflected and transmitted fields are given as

E| = Ej (Xcosfr — zsinfy) e~ Iko(zsinr—zcosbr) (2.36)
ET . : i
ﬁ — _y;BQC_JkO(IS“‘oT_ZCOSOT), (2.37)
and
Efl _ E(t) (% cosf; — zsin 8;) e—jk(rsin0t+z cosOt), (2.38)
E} _ik(zsind 0
Hitl _ 5,706—1 (zsin@y+2 cos t)’ (2.39)

respectively. Just as in the TE case, enforcing phase continuity across the boundary

leads to
01' = 01‘1
sinfy kg €010
=—=,/—. 2.4
sinf; k \/ €€ (240)
Using
zx (EY + ET =2xEl|l | (2.41)
( I ||> =0 I,—o
yields
E(") cos0; + Efjcos 8, = Efcos 6. (2.42)
Dividing by the incident wave amplitude leads to
ET t
cosf; + —? cosfr = —? cos B,
EO EO
cosf; + ') cos b = T cos ;. (2.43)



Enforcing tangential field continuity for the magnetic field across the interface requires

zx(Hﬁ+HD —axHi| | (2.44)
z=0 z=0
which leads to
E{ E; E}
~0 L 20 _ 20, (2.45)
n 7o n
Dividing by the incident wave amplitude leads to
1  Ej1 _Epl
o Eymo Eym
1 T T
R (2.46)
M 70 n

Combining (2.43) and (2.46) allows T’ and T to be solved for as

r = 24 2.47
r, = 21— % (2.48)
= Z“ -+ Z()’ '
with the definitions
Z() = T)p COS 0.,', (249)
Z) =ncosfy = 0 k2 - k3 sin?6;. (2.50)

k
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Figure 2.1. Geometry for an incident wave at a discontinuity between two material
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Figure 2.2. Fields for a TE-polarized plane wave incident on a material half-space.

12



-
”
-

1 .

| ki

i

Figure 2.3. Fields for a TM-polarized plane wave incident on a material half-space.
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CHAPTER 3

TE PLANE WAVE REFLECTION FOR THE OPTICAL CASE

The transient reflection from a Lorentz-medium half-space for a plane wave can be
found analytically using an inverse Laplace transform technique. The simplest case
to examine is that of a TE-polarized plane wave. A steady-state TE-polarized plane
wave of frequency w is obliquely incident on an interface separating free space (region
1) from a homogeneous Lorentz medium (region 2). The angle of incidence @ is
measured from the normal to the interface. This geometry can be seen in Figure 2.2.
As shown in Chapter 2, the reflection coefficient for a plane wave from a material

half-space can be expressed as

Z)(w) =2

L) =z o720

(3.1)

For a TE-polarized plane wave, the impedance of the incident wave is Zy = 79/ cos 0

and the wave impedance of the transmitted wave is given by

K@)

Z1(w) = k:(w)

where

o = v ko/€o, (3.3a)
n=vule, (3.3b)
k= \/k% - k2 sin? 6, (3.3¢)

ko = wy/noco, (3.3d)
k = w\/ue, (3.3¢)
€ = €p€r(w). (3.3f)



The relative permittivity of a single-resonance Lorentz medium is given by [1]

w(2)(63 — €xc)

- 2jwé —wg’

er(w) = €xc —

(3.4)

where wq is the resonance frequency and é is the damping coefficient. €4 is the static
permittivity which is the value of €, when w = 0, and e is the optical permittivity
which is the value of €, as w — o0o. In optical problems, the case when €5, = 1 and
the relative permeability g, = 1 is of the most interest. In this case, (3.4) can be

rewritten as (4]
b2

e&r(w)=1+
r(«) 0 —w? 4 2jwd’

(3.5)

where b is the plasma frequency of the medium.

3.1 Laplace Domain Representation

A frequency domain quantity can be generalized to the Laplace domain using s = jw.

Using this, (3.5) can be represented in the Laplace domain as

b2
, =14+ —-— 3.6
€r(s) s2 + 28s + wg (36)

The wave number in the Lorentz medium can then be calculated as

K(s) = —jsy/lie

—]s\/,&o_e\/l-i-

2+26s+w

s2 4+ 285 + w? + b2
. 0
— 78/ 1ho€ . 3.7
! ”00\/ s2 + 265 + w} (37)

It is then convenient to make the substitution

s2+263+w3 = (s — s1)(s — s9), (3.8)

15



where
s19=-0+4/62 - wg, (3.9)

and also the substitution
2 2 2 _
s+ 20s+wj+b°= (s — s3)(s — s4), (3.10)

where
s34 = —0 £ /6% —wg - b2. (3.11)

The Laplace domain reflection coefficient can then be written as

ka0 + Kk

cos — \/ (/ko)? — sin29

cos + 1/ (k/ko)? — sin20

cos8 — \/[(s — s3)(s = 54)}/[(s — 51)(5 - 52)] — sin?8

cos 8+ 1/[(s = s3)(s = 54)]/[(s — s1)(s — 52)] — sin26
cos0v/5 = s1v/5 = 52 = /(s = 53)(s = 54) = sin? (5 — 51)(5 = )

- . (3.12)
cos 85315 =53 + /(5 — 53)(5 — 54) — sin20(s — s1)(s — s2)

[(s) =

Expanding (s — s1)(s — s2) and (s — s3)(s — s4) using (3.8) and (3.10) respectively

allows the reflection coefficient to be written as

[(s) = | cos8y/s — s1v/5 — 53 — [s3(1 — sin® ) + 28s(1 — sin®8)+
(wg +b% - wg sin? 9)]1/2] / [cosB\/s —$1Vs—so+ [32(1 — sin? 0)+

265(1 — sin 0) + (wd + b% — g sin?9))V/ 2]

16



VS — 81/5 — s3 — \/:2+263 +wg+b2/00520

. (3.13)
VS —Ss1V/s—s2+ \/;2 + 26s +w(2) + b2/ cos? 9
It is then convenient to make another substitution with the definition
32+26s+w3+b2/c0s20= (s — s5)(s — sg), (3.14)
where
556 = —8 % /62— wf — b2/ cos? . (3.15)

Substituting (3.14) into (3.13) allows the reflection coefficient in the Laplace domain

to be rewritten as

_ Vs —s1Vs—sy— /s —s5v5— 86
[(s) = VS —81VS — s2+ /s — s5v/5 — s (3.16)

3.2 Time-Domain Reflection Coefficient

Using the frequency-domain reflection coefficient found in Section 3.1, the time-
domain reflection coefficient can be found using an inverse Laplace transform [13].
In order to perform the inverse Laplace transform, the frequency-domain reflection
coefficient may be rearranged into a more manageable form. Rationalizing the de-

nominator in (3.16) leads to

_Wes1Vs=s - Vs=ssy/i=55)° _ N
P = o))~ —ss)5-5) D (3.07)

Examining the denominator term in more detail it can be seen that

D = (s = s1)(s — s2) — (s — 55)(s — 36)

b2

2 2 2 2

= 20 - 26 ——
(s* +20s+wj) — (s“+ s+w0+cos29)
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= —b2/cos2 0

= -B% (3.18)

The numerator can then be expanded to

N = (s—s1)(s — 52) = 2V/s — s1v/s — s2v/s — s5v/s — 56 + (s — s5)(s — s6),
= [(s = s1)(s — s2) = Vs — s1V/s — 52V/5 — s51/5 — 5] +
[(s = s5)(s — s6) — V/s — s1V/s — s9v/s — s5/5 — s¢] ,

= 91(s) + g2(s). (3.19)

This last separation is taken in order to make the inverse Laplace transform easier to
perform.

The invertible form of the reflection coefficient is then given by
—B?I(s) = g1(s) + 02(), (3.20)

where each term, g;(s) and ga(s), can then be inverted separately.
3.2.1 Inversion of the g;(s) and go(s) Terms

When inverting the term gj(s), it is convenient to make the substitutions

s12=—-0% A, (3.21)
856 = —0 £ As, (3.22)
where
AL = 4/62 — i, (3.23a)
A5 = /6% — w3 - B2, (3.23b)



and B2 is as defined in (3.18). In order to perform the inverse Laplace transform,

91(s) may be rearranged into

91(8) = (s — 51)(s — 52)(s — 55)(5 — s6) %
1 1

(s —s5)(s —86) /5515 — 52v/5 — 55v/5 — 56

(3.24)

Using partial fraction expansion, the first term in the brackets can be rewritten in

the form
1 _ K N Ko
(s —s5)(s—sg) s—s5 s—sg

where K1 and K9 are given by

1 1
K = = —
! s5—sg 2X5
1 1
Ky = =——.
2 S6 — S5 25

(3.25)

(3.26a)

(3.26b)

Since wg and B2 are both positive numbers, Re{s56} < 0 always. This means the

standard inverse Laplace transform [14]

1
s+ 3

— e Ply(p)

h

(3.27)

can be used, where u(t) is a unit step function which is zero for t < 0 and has unit

amplitude for t > 0. Using this identity, (3.25) can be transformed into

1 sst t
— |55t — %6 t
(s —s5)(s — sg) — 2)5 [e ¢ ] u(t)
-6t
— e Ast _ —Ast
e
-6t

=< sinh(Ast)u(t).
As

19
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The second term in the bracket in (3.24) can be transformed into a convolution

between two terms if the following inverse Laplace transform is used [14]:

1

_1 1
L mglptaty (L
Vstp/sto ¢ lo [2([) U)t] u(t), (3.29)

where I,,(x) is the modified Bessel function of the first kind of order n. Using this,

the second term can be transformed into

1
Vs = s1V/s — s2v/s — s5v/s — 56

— e [{To(Artu(®)} * {To(Asthu(t)}].  (3.30)

Using (3.8), (3.14), (3.28) and (3.30), and using the differentiation theorem, it is

possible to write g (t) as

d? d o d? d o .9
g1(t) = <2+25dt )(dt2+26dt+w0+3 X

e~ [i sinh(Agt) — {To(AMt)u(t)} * {In(Ast) (t)}] . (3.31)
As

The next step is to carry out the derivatives. It is important to note at this point
that when taking a derivative in time of two signals convolved with respect to time,
the derivative only needs to be taken over one of the signals in the convolution. This

can be expressed mathematically as

df . dg
SUrg)=Fag=re3. (332)
Defining
G1(8) = et Xl-sinh(/\ ~ {ToOt)u(®)} = {lpOst)u(®)} | (3.33)

5
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makes the solution easier to compute. The first derivative of g;(¢) computed using

the product rule is given by

d

910 = =03,(1) + 31 (1), (3.34)

where §'1(t) is the exponential term multiplied by the derivative of the term in the

brackets in (3.31). Using the bessel function identity [15]

Iy(z) =Ti(z), (3.35)
and the identity

d

Eu(t) = 4(t), (3.36)

allows g} (t) to be written as

71(t) = e [eosh(Ast)u(t) — A5 {To(rt)u(t)} * {Tli(Ast)u(t)} — To(Art)u(t)]. (3.37)

In the convolution term, the derivative was taken on the second modified Bessel
function containing the argument Ast. The modified Bessel function of order zero
came from the fact that {Iy(A1t)u(t)} * {Iop(As5t)d(t)} = Ig(A1t)u(t). The second

derivative is given by

Sl

-~

~—
]

2
((lit2‘ ) (%m(t)) + %a&(t)
= =6 (=07, (t) + g1 (t)) — 691 (t) + 1 (t)

= 82g,(t) — 263, (t) + G (¢), (3.38)
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where g/ (t) is defined as the exponential term multiplied by the derivative of the term

in the brackets in (3.37). Using the Bessel function identity [15]

() = 5 Tt () + Lt (9)] (339)

and again takin the derivative on the second modified Bessel function in the convo-

lution term allows g/ (t) to be solved for as

2
gi(t) = e [/\5 sinh(Ast)u(t) — % {To(t)u(t)} * {To(Ast)u(t)} —

22
?5 {I()(/\lt ll } {12 /\5f } - /\111 /\1f)ll( ) . (340)
Combining (3.33), (3.34) and (3.38), it can be seen that

9i+253+ 2+ B% | g,(t) = 6°g,(t) — 269, (t) + g7 (t)—

a2 mCar THo 91{1) =091

82g.(t) + 2051 (t) + (w§ + B%)gy(t)

=91(t) - (8% - - BA)ai (1) (3.41)
Using the definition for A5 given in (3.23), (3.41) can be rewritten as

d? d 9 2\_
T3t 20+ Wi+ B 91(t) = 71 (t) — Mg (D)

= e_‘st[ 3 {To(Mt)u(t)} * {10 Ast)u(t) — Ia(Ast)u(t)} — ’\III(Alt)u(t)jI
=e % [/\5 {To(At)u(t)} * {I—L()i’tt—)l—l@} - )\111()\10"(’)]

=h,(t), (3.42)

22



which takes advantage of the identity [15)

2n

-T'In(-T) =In-1(z) = Int1(x). (3.43)
It is then possible to find
d— - —
g (t) = —6hi(t) + hy (1), (3.44)

where ﬁrl(t) is the exponential term multiplied by the derivative of the term in the
brackets in (3.42). Performing the derivative on the first modified Bessel function in

. =/ .
the convolution allows hj(t) to be written as

- s I; (Ast)u(t A2
Rt = e [ms (o) « {14 Sl 050 - B(Astluln -
/\2
?1[10(/\10 +IL(A)u(t)] (3.45)
The second derivative is then found to be
dzﬁ (t) = dy )| + dT’(t)
a2 VT T @t at !

=5 [—aﬁl(t) + E’l(t)] —SRY() + R (@)

= 2R\ (t) — 26Ry (t) + Ry (1), (3.46)

where ﬁll’(t) is the exponential term multiplied by the derivative of the term in the
brackets in (3.45). When taking the derivative of the convolution term, the derivative

is taken on the first modified Bessel function. This leads to

—I —(St /\%/\5

hi(t)=e 5 {{To(Mt) + Io(A1t)]u(t)} * {

I (Ast)u(t)
__?___} +
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A3 A A - A
7 1(st) = I3(AsOlu() = ZBL(At) +3(Ab)u(t) | + =5—4(t).
(3.47)
Combining (3.42).(3.44) and (3.46) it can be seen that
d? d 2\ 27 i -1
7] + 26-& +wy | h1(t) = 0°hy(t) — 20h (t) + hy(t)—
20%h1 (t) + 26R1 (t) + wdhy(t)
=Tt - (8- wg) R(t). (3.48)
Using the definition for Ay given in (3.23), (3.48) can be rewritten as
d? d 2\ + o~ 27
= g1(t), (3.49)

which leads to

_ . R . . pYIpY.
g16) = % [0+ hist) + MT20) + L0t + 25L8(0), (3.50)

where

in(z) = I"f)u(x). (3.51)

The same approach can be taken to find

_ . . . . PY DY
go(t) = ™% [—/\%)\gll()\lt)*Il(Ast)+/\”;'12(,\1t)+/\§12(/\5t)]— o). (352)

24



3.2.2 Final Expression for I'(t)

Substituting g;(¢) from (3.50) and go(t) from (3.52) into (3.20) yields the final ex-

pression for the reflection coefficient

2 _ A , : :
D(t) =S¢~ ML () « i 0gt) = Ala(un) - AL (0st)] (3.53)

The solution (3.53) is generally valid for all cases, but when A} or Ag is imaginary,
the modified Bessel functions can be replaced with ordinary Bessel functions according
to three possible cases. Case 1 occurs when wg > 62. In this case both A; and Ag are

purely imaginary and defined as
—jM = =W =02 —jrs =X =Jul+ B2~ 42 (3.54)
Then, using the property [15]
L,(jr) = 7" (x), (3.55)

allows the reflection coefficient to be rewritten as

2 5t [v2v2% Yoy 33 5 33 7
D) = 3¢~ [MIXh e « i (st) - oMt - XeJo(hst)], (3.56)
where, similar to (3.51),
5 Jn(z
Jn(z) = "i )u(x). (3.57)

Case 2 occurs when wg + B? < 2. In this case, both A\; and A5 are purely real and
the same expression from (3.53) can be used. Case 3 occurs when — B2 < w(z) -2 <0.

In this case, A is purely real and )5 is purely imaginary. As is defined as it was in
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(3.54) and the expression for the reflection coefficient can be written as
2 _ <22 5T : w35 T
L(t) =~z [/\%/\511(/\10 * J1(st) + A3Ta(Mt) + /\5J2()\5t)] . (3.58)

3.3 Numerical Results

In order to validate the expressions derived in the previous section, the time-domain
reflection coefficient is evaluated numerically in Fortran, and then compared to the
inverse FFT of the frequency domain reflection coefficient given in (3.16). The For-
tran code is included in Appendix A. The inverse FFT was done using WaveCalc.
The frequency-domain data was zero-padded up to the maximum limit allowed by
WaveCalc, 32,768, before the inverse FFT was taken. Since the signal had already
decayed to zero by this point, no windowing was necessary. A set of parameters cor-
responding to each of the three possible cases is used. The number of points and step
size for the results varied between the different cases.

The first set of parameters is the same as those chosen by Brillouin {16]: wp =
4.0 x 1016 571 p2 =20.0 x 1032 572, § = 0.28 x 1010 s~1. This choice of parameters
corresponds to case 1. When computing the numerical results, for the frequency-
domain data 16,384 frequency points were calculated with a step size of 8,000 GHz.
In the time-domain, 4,096 points were calculated with a step size of 1x10~9 ns. Using
6 = 30°, (3.56) has been plotted in Figure 3.1 and compared to the inverse FFT. The
results show excellent agreement. Since this function includes only standard Bessel
functions, which are highly oscillatory, and no modified Bessel functions, which are
not oscillatory, the waveform is highly oscillatory and only lightly damped.

The next choice of parameters is: wg = 2.0 x 1013 571, 42 =20.0 x 1029 s72, 6§ =
0.28 x 1016 51 which corresponds to case 2, (3.53). When computing the numerical
results, for the frequency-domain data 4,096 frequency points were calculated with a

step size of 400 GHz. In the time-domain, 4,096 points were calculated with a step size
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of 1 x 1078 ns. The results are shown in Figure 3.2. Again, the closed-form expression
and the inverse FFT compare well. For this choice of parameters 62 > wg + B2, and
the resulting waveform is overdamped, showing no oscillatory behavior and only a
single negative peak. Since the expression for case 2 only involves modified Bessel
functions, which do not have the oscillatory behavior of ordinary Bessel functions, this
observed behavior is easily predicted from the mathematical form of the expression.

The final choice of parameters, which corresponds to case 3, is: wy = 2.0 x
1015 571 p2 = 20.0 x 1032 572, § = 0.28 x 1016 s_l, which corresponds to case 3,
(3.58). When computing the numerical results, for the frequency-domain data 16,384
frequency points were calculated with a step size of 8,000 GHz. In the time-domain,
4,096 points were calculated with a step size of 1 x 10™2 ns. The analytic expression
again matches the inverse FFT, as seen in Figure 3.3. As expected, since § > wp, but
8 < w% + B2, there is more damping and less oscillation than with case 1, but more
oscillation than with case 2. Here the expression for the reflection coefficient has a

combination of ordinary and modified Bessel functions.
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Figure 3.1. Time-domain reflection coefficient with incidence angle § = 30° and mate-
rial parameters wy = 4.0 x 1016571, 52 = 20.0 x 1032572, § = 0.28 x 101651 This
choice of parameters corresponds to case 1, Eq. (3.56).
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x 10" Case 2
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Figure 3.2. Time-domain reflection coefficient with incidence angle § = 30° and mate-
rial parameters wy = 2.0 x 101551 42 =20.0 x 1029572, § = 0.28 x 10165~1. This
choice of parameters corresponds to case 2, Eq. (3.53).
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x 10" Case 3
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Figure 3.3. Time-domain reflection coefficient with at an angle of § = 30° with param-
eter choices of wp = 2.0 x 101%s~1, b2 = 20.0 x 103252, § = 0.28 x 1016s~1. This
choice of parameters corresponds to case 3, Eq. (3.58).
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CHAPTER 4

TM PLANE WAVE REFLECTION FOR THE OPTICAL CASE

The reflection of a TM plane wave from a Lorentz medium half-space can be found
with a similar method as for the TE case. The problem is defined as in Chapter
3 with a plane wave from free space obliquely incident on a homogeneous Lorentz
medium at an angle § measured normal to the interface. This geometry can be seen
in Figure 2.3. As shown in Chapter 2, the reflection coefficient for a plane wave from
a material half-space can be expressed as

_ Z”(uu) - Z(]

T mETA (4.1)

For a TM-polarized plane wave, the impedance of the incident wave is Zy = ngcosf

and the wave impedance of the transmitted wave is given by

Z)(w) = = (4.2)

where the terms k,,7, and k are defined in (3.3). The relative permittivity is the

same as given in (3.5).

4.1 Laplace-Domain Representation

For a TM-polarized plane wave, the Laplace domain reflection coefficient can be
written as
_ k., —€rk,0
k: + erkzo
\/(k/k0)2 —sin? — € cos §
) \/(k/k0)2 —sin?6 + €, cos §

['(s)

31



€ —sin? @ — ¢ cos @

Ver —sin? 0 + €, cosf

(4.3)

Combining the relative permittivity €, into one fraction, it can be substituted into

(4.3) to give

I(s) = [\/(32 +20s + w} +b2) /(s + 265 + wd) — sin? 6 — [(32 + 205 + Wi + %)/

(s® + 265 + wg)] cos 0] / [\/(32 + 265 + w3 + b2)/(s% + 265 + w3) — sin? 6+
[(32 +26s + w(z) + b?)/(s2 + 205 + w(z))] cos 0]
1 2
[\/s—s Vs — 82 [.s +20s + wd + 0% — (s® + 285 + wd) sin® 6] /

(s —s3)(s —s4) COSG] [\/s—s Vs — s9 [s +26s+w +b2—

]1/2

(s® +26s + wg) sin? 6 + (s — s3)(s — s4) cos 6’}

,/s—.s Vs — 82 \/s2+263+w + b2/ cos28 — (s — s3)(s — s4)
\/s—s N \/52+26s+w +b2/cos20+(s—33)(s—34)

(4.4)

where 51 2 are defined as in (3.9) and s3 4 are defined as in (3.11). Using the substi-
tution defined in (3.14), allows (4.4) to be rewritten into the final frequency-domain

reflection coefficient

I(s) = JS—81¢S—82v3-85¢3—36—(S—S3X3—Sd

VS = 51VS — 52/5 — s5/5 — s + (s — s3)(s — s4) (45)

4.2 Time-Domain Reflection Coefficient

Using the frequency-domain reflection coefficient found in Section 4.1, the time-
domain reflection coefficient can be found using an inverse Laplace transform. In order
to perform the inverse Laplace transform, the frequency-domain reflection coefficient

may be rearranged into a more manageable form. Rationalizing the denominator in
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(4.5) leads to

I(s) = [V5 = 51v/5 = 52v/5 = 555 — 6 — (s — s3)(s — s4)]* _

(s = s1)(s — s2)(s — 55)(s — 56) — (5 — 53)%(s — 54)%

Noting that
b2

(s —53)(s —s4) = (s —s1)(s—59) + pert

allows the denominator to be expanded into

b2

D =(s—s1)(s — s2) [(s —s1)(s—s2)+ g

= (- 2) o= o) - ) -

0082

= b2(t.an20 - 1)(52 + 28s + w%) — bt

b2
2 2 2 2
=b(t'd.[l 0—1)(8 +2(53+w0—gm—_—1>

= b2(ta.n2 6—1)(s—s4)(s—sB),

where

b2

SA'B=—6:E\/52—wg+t—a;l_2—0———_l

=-0+ Ay

Using this, (4.6) can be rewritten as

b2(tan® 0 — 1)T'(s) = [Vs = 51v/5 —sav/5 — 855 — 56 — (s — 53)(s

— 542

STES
=
=2

] ~[ts=s0s—s0) + 7]’

(4.8)

(4.9)

(s —s54)(s —sB)

Using (4.7), the numerator can be expanded into

N = (s — 51)(s — s2)(5 — s5)(s — s6)—
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2(s — 53)(s — 54)v/5 — 515 — 52v/5 — 55v/5 — 56 + (5 — 83)*(s — 54)?
= (5 —s1)(s — s2)(s — s5)(5 — s6)—

2(s — s1)(s — s2)V's — s1V/s — s2v/s — 55/5 — 56—

26%\/5 = s1v/5 — 52v/s — 55/5 — 56 + (s — 51)2(s — 52)2+

2% (s — s1)(s — s9) + b, (4.11)

At this point, factoring out (s — s1)(s — s2) allows the numerator to be rewritten in
a form that includes both g¢)(s) and go(s) which are defined and inverted previously

in Section 3.2.

N = (5= s)(s = s2) (s = s1)(s = s2) + (s = 55)(s = 50)-

2 (s —s5)(s — s6)
2\/s — s1v/s — s9v/s — s5\/s — sg — 2b N eV 35\/5“56+
L +2b2}
(s —s1)(s — s2)
= (s = s1)(s = 52) [91(5) + g2(5) — 2%ga(s) + bhga(s) + 2?) (412)

In the above equation, the g, (s) terms are defined as

91(s) = (s — s1)(s — $2) — Vs — s1V/s — s2v/s — 55V/s — s6, (4.13a)
92(s) = (s — 85)(s — 86) — Vs — 51V/s — s2/5 — 55V/5 — 36, (4.13b)
_ (s — s5)(s — s6)
93(s) = VS = 81V/s — s2\/S — 85V/5 — sg (4.13¢c)
1
94(s) = G —s) (4.13d)

By defining
C(s) = (s —s1)(s = s2) (4.14)
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the reflection coefficient can be rewritten substituting (4.8), (4.12) and (4.14) into

(4.6) as

bz(t,am2 0 —1)I'(s) =C(s) [gl(s) + go(s) — 2b2g3(s) + b4g4(s) + 2b2]

= C(s)G(s). (4.15)

Each term in this expression can be inverted separately to give a final transient

reflection coefficient.
4.2.1 Inversion of the g,(s) Terms
Inversion of the g;(s) and ga(s) terms are solved for previously in Section 3.2.1 and

are given as

2 /\2

- : : : : Af -
a1(t) = =" [-ADEL ()« iOst) + Adla(n) + Al 0st)] — F==26(0),
(4.16)
_ . . . . A2 - a2
92(6) = 7 [-ADRZL () 1 0st) + Adla(Ant) + Al (Ast)] + “Lo26(0).
(4.17)

In these equations, A\; and A5 are defined in (3.23) and I,(z) is defined in (3.51).
The identity from (3.29), redefined below, can be used to perform the inversion

on g3(s) to find g3(t).

1 ~(p+a)t; |1
N ETNET, e Ip [2(p a)t] u(t). (4.18)

Using this, it is possible to write

b2
cos? 6

d? d
g3(t) = (— +20— +wd+

R b ) e~ [{Ty(tu()} = {To(Ast)u(t))]
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d? d b2
20— g3(t). .
(dt2+ +w, 0+ 0) 3(t) (4.19)
Taking the first derivative of g3(¢) using the product rule yields

Sa(1) = 070 + 3(0), (420)

where yg(t) is the exponential term multiplied by the derivative of the term in the
brackets in (4.19). Taking the derivative on the second term in the convolution allows

g5(t) to be written as

75(t) = €7 As {To(Mt)u(t)} * {Iy(Asthu(t)} + Ip(Ast)u(t)]. (4.21)

From this, the second derivative can be written as

d2 d
d

329t =0 azﬁa(f)] d 5’3(0
=~ [-0g3(t) + 35(t)] — 0g5(t) +74()

= 5%g;(t) — 2675(t) + G4 (¢), (4.22)

where §g' (t) is the exponential term multiplied by the derivative of the term in the
brackets in (4.21). Using the identity given in (3.39), it can then be shown that
1" ot A%

g3(t), = ™% | 3 {To(thu(t)} * {{Io(Ast) + Ta(Ast)] u(®)} + A1 (Art)u(t) +6(1) | ,
(4.23)

where the derivative was again taken on the second term in the convolution. Com-

bining (4.19), (4.20) and (4.22) allows g3(t) to be written as

93(t) = 6°g3(t) — 26g5(t) + G5 (t) — 26°G3(t) + 2675(¢) + (w§ + B*)g3(1)
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=g4(t) — (62 — wg — BY)g3(1). (4.24)

Using the definition for A5 given in (3.23), the final expression for g3(t) is found to

be

g3(t) = 75(t) — A§73(t)
2
=e [:\f {To(at)u(®)} * {[I2(Ast) — Ip(Ast)]u(t)} + /\111(/\1t)U(f)] +4(t)
—l [—Ag (oA u()) * 1 (Ast) + Alll(Alt)u(t)] + (). (4.25)

This took advantage of the Bessel identity defined in (3.43).

The final g-term to invert, g4(s), is given by (4.12) as

! (4.26)
(s —s1)(s—s2) '
Using partial fraction expansion, this term can be rewritten as
1
94(s) =
(s —s1)(s — s2)
K K
=1 4 2 (4.27)
§s—8] S-—S9
where
K, = L (4.28a)
1= o .28a
1
Ky = —— = —-Kj. 4.28b
2= 55 1 (4.28b)
This allows (4.27) to be rewritten as
1 1 1
) = —— - . 4.29
94(s) 2\ (s—sl 3—32) (4.29)



Using the identity as defined in (3.27), g4(t) is found to be

galt) — galt) = 5= [ = 2] ()

2\
-4t
=& [eMt et
2 [e ¢ ]“(t)
oot
= Tsxnh(Alt)u(t). (4.30)
1

Using (4.16), (4.17), (4.25) and (4.30), G(t) from (4.15) can be written as

G(t) = 2¢70 | = A2AZL (A1) + D1 (Ast) + A3Ta(Art) + ABTp(Ast)+

4
b2A2 {I()(/\lt)u(t)}*il(z\g,t)—b2/\111(/\1t)u(t.)+%sinh(/\lt)u(t) . (4.31)
1

4.2.2 Final expression for G(t)

Just as in the TE case in Chapter 3, there are cases where Ay or A5 can be found
to be imaginary and the modified Bessel functions in (4.31) can be replaced with
ordinary Bessel functions. These cases occur for the same material properties as in
the TE case. Case 1 occurs when wg > 62. In this case both A and A5 are purely
imaginary and defined as in (3.54). Then, using the property defined in (3.55) to

replace modified Bessel functions with standard Bessel functions and noting that
sinh(jx) = jsin(r), (4.32)

it can be seen that

G(t) = 2¢=% | = Xax2d1(Nt) * J1(Rst) + Nado(Rat) + Aeda(Rst)—
_ _ . - - - bt _
b2/\§ {J()(Alt)u(t)} * J](/\St) + b2/\1J1(/\1t)l.1(l‘) + K sin(Art)u(t)|, (4.33)
1
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where J;,(z)is defined in (3.57).

Case 2 occurs when wg + B? < §2. In this case, both A\; and A5 are purely real and
the same expression from (4.31) can be used. Case 3 occurs when —B? < wg -8 <0.
In this case, A; is purely real and A5 is purely imaginary. A5 is defined as it was in

(3.54) and the expression for G(t) can be written as

G(t) = 2¢7% | AFRZT (M) » 31 (Rst) + ATa(Mt) + X3Ta(st) -

4

b2xa {Io(xlt)u(t)}*jl(Xst)-b%ll(xlt)u(t)+5"A—Ismh(xlt)u(t) . (4.34)

4.2.3 Inversion of the C(s) Term

The C(s) term is defined in (4.14) as

c(s) = L= =)

(s —sa)s —s5)" (4.35)

Through algebraic manipulation and partial fraction expansion, it can be rewritten

into an invertible form as

., (s=s1)(s—s2) —(s—54)(s —sB)
Cla)=1+ (5= sa)s — 5p)
(s2 4 265 + w?) — (s® + 205 + W - ta—nbi)ﬁ)

(s —s4)(s —sB)
b2
(tan26 — 1)(s — s4)(s — sB)
b? 1 1
=1 — . 4.36
+2/\‘4(taxr120—1) [S—SA s—sp (4.36)

The inversion of C(s) depends on the values of s 4 and sg. If wg > b%/(tan?9 — 1),

C(s) can be inverted using the identity (3.27) into

b2
2\ 4(tan26 — 1

C(s) — C(t) = 8(t) + )[esAt — e*Bu(t)
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b26—5t

=0+ Ag(tan26 — 1)

sinh(A 4t)u(t). (4.37)

If wg > 62 + b%/(tan? @ — 1), A4 is purely imaginary and defined as

— b2
—JAg=Ayg = 2452 —— . 4.
IrA A \/wo tan2 — 1 (4:38)
In this case, using (4.32) C(t) can be simplified into
p2e—0t _
C(t) =46(t) + sin(A 4t)u(t). (4.39)

A4(tan26 — 1)

If wg > 62 + b?/(tan?@ — 1), A4 is real and less than §. In this case, (4.37) can be
used directly. If wg < b%/(tan®@ — 1), A4 is real and greater than 4. In this case

Re{sa} > 0, which requires the following inverse Laplace transform identity to be

used [14]:
1
s—p3

— —ePtu(—1). (4.40)

Using this identity and the identity defined previously in (3.27), C(t) can be written

as

2 -0t
C(t) = 8(t) + 53 (';;2 ey [—e’\Atu(—t) - e-’\Atu(t)]
b2e—5t
=4(t) e~ altl, (4.41)

- 2X4(tan% 8 — 1)

The crucial issue to address with this decomposition is the fact that this term is
non-causal (ie, has non-zero value for ¢ < 0). Further examination of the terms in
question show that this case can only occur at angles greater than 45°and between
some upper angle limit determined by the material properties. It appears that this
non-causality is due to a problem with the model for ¢,. A true plane wave is a

non-physical construct that is convenient in many cases, but does not exist. When
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an infinite plane wave is obliquely incident on an infinite half-space, it can be seen
that there is no point in time when the wave is not intersecting the half-space. This
has the potential to cause problems with causality such as in this case. Ultimately,
the non-causal term exists in this case solely due to this fact.

Using the final expressions for G(t) and C(t), the final expression for the reflection

coefficient can be written as

I(t) = ———5——C(t) * G(t). (4.42)

4.3 Numerical Results

In order to validate the expressions derived in the previous section, the time-domain
reflection coefficient is evaluated numerically in Fortran, and then compared to the
inverse FFT of the frequency domain reflection coefficient given in (4.5). The Fortran
code is included in Appendix B. The inverse FFT was done using WaveCalc. The
frequency-domain data was zero-padded up to the maximum limit allowed by Wave-
Calc, 32,768, before the inverse FFT was taken. Since the signal had already decayed
to zero by this point, no windowing was necessary. A set of parameters corresponding
to each of the three possible cases for G(t) is used. The angle is then adjusted for
the case 1 parameters to produce results that contain a non-causal contribution. The
number of points and step size for the results varied between the different cases.
The first set of parameters is the same as those chosen by Brillouin: wp = 4.0 x
1016 s—1 52 = 20.0 x 1032 572, § = 0.28 x 1016 s~1. This choice of parameters
corresponds to case 1. When computing the numerical results, for the frequency-
domain data 16,384 frequency points were calculated with a step size of 8,000 GHz.
In the time-domain, 4,096 points were calculated with a step size of 1 x 10~9 ns. Using
6 = 30°, (4.33) has been plotted in Figure 4.1 and compared to the inverse FFT. The

results show excellent agreement. Since this function includes only standard Bessel
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functions, which are highly oscillatory, and no modified Bessel functions, which are
not oscillatory, the waveform is highly oscillatory and only lightly damped.

The next choice of parameters is: wg = 2.0 x 1019 571 b2 =20.0x 1020 572, 6 =
0.28 x 1016 s~1 which corresponds to case 2, (4.31). When computing the numerical
results, for the frequency-domain data 32,768 frequency points were calculated with a
step size of 400 GHz. In the time-domain, 4,096 points were calculated with a step size
of 1 x 1079 ns. The results are shown in Figure 4.2. Again, the closed-form expression
and the inverse FFT compare well. For this choice of parameters 62 > wg + B2, and
the resulting waveform is overdamped, showing no oscillatory behavior and only a
single negative peak. Since the expression for case 2 only involves modified Bessel
functions, which do not have the oscillatory behavior of ordinary Bessel functions, this
observed behavior is easily predicted from the mathematical form of the expression.

The next choice of parameters, which corresponds to case 3, is: wg = 2.0 x
1019 s~ b2 = 20.0 x 1032 572, § = 0.28 x 1016 s~1 which corresponds to case 3,
(4.34). When computing the numerical results, for the frequency-domain data 32,768
frequency points were calculated with a step size of 6,000 GHz. In the time-domain,
16,384 points were calculated with a step size of 1 x 10~ 10 ps. The analytic expression
again matches the inverse FFT, as seen in Figure 4.3. As expected, since § > wyg, but
82 < wg + B2, there is more damping and less oscillation than with case 1, but more
oscillation than with case 2. Here the expression for the reflection coefficient has a
combination of ordinary and modified Bessel functions.

To examine the non-causal result which is possible for the C(t) term, Brillouin's
choice of parameters are used again, but at an angle of 50°. This causes the C(t)
term to be non-causal as shown in (4.41). When computing the numerical results, for
the frequency-domain data 16,384 frequency points were calculated with a step size
of 8,000 GHz. In the time-domain, 4,096 points were calculated with a step size of

1% 1079 ns with a starting time value of —4.096 x 1076 ns. Asseen in Figure 4.4, the
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expression again matches well with the inverse FF'T for ¢ > 0. For ¢t < 0, non-causal
term in the analytic expression is extremely small. Unfortunately, the inverse FFT
does not have the necessary resolution to capture the small non-causal portion of the
reflection coefficient, so it cannot be compared to the analytic expression.

In order to have a better insight into the non-causal term, the delta function
term was subtracted from the non-causal C-term and plotted in Figure 4.5. It can
immediately be seen that this term is extremely small when compared to the final
transient field. In order to examine the non-causality even further, this term is
convolved with G(t), as it is in the final expression for the reflection coefficient, and
plotted in Figure 4.6. Just as in Figure 4.4, the non-causal term is not even visible
in this plot. Taking a closer view of this plot in Figure 4.7 it can be seen that the
non-causal portion of the signal is around 3-orders of magnitude less than the causal

portion.
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x 10" Case 1

Reflection Coefficient

-6 Closed Form Expression
% Inverse FFT
_8 - 1 1 1 J
0 0.2 04 0.6 0.8 1

Time (fs)

Figure 4.1. Time-domain reflection coefficient with incidence angle = 30° and mate-
rial parameters wg = 4.0 x 10165=1 52 = 20.0 x 1032572, § = 0.28 x 1016571, This
choice of parameters corresponds to case 1, Eq. (4.33).
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x 10" Case 2

Reflection Coefficient

-45¢ Closed Form Expression
% - Inverse FFT
_5 L 1 1 1 )
0 1 2 3 4 5

Time (fs)

Figure 4.2. Time-domain reflection coefficient with incidence angle § = 30° and mate-
rial parameters wy = 2.0 x 1019571 2 = 20.0 x 1029572, § = 0.28 x 106s~1. This
choice of parameters corresponds to case 2, Eq. (4.31).
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X 1015 Case 3

Reflection Coefficient

-12¢ Closed Form Expression
~-x - Inverse FFT
-14 : : : ; ,
0 0.2 04 0.6 08 1

Time (fs)

Figure 4.3. Time-domain reflection coefficient with at an angle of § = 30° with param-
eter choices of wy = 2.0 x 1019571, b2 = 20.0 x 1032572, § = 0.28 x 1016s~1. This
choice of parameters corresponds to case 3, Eq. (4.34).
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x 10" Case 1 - Non-Causal

151
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Q
o
-0.5r
Closed Form Expression
% - Inverse FFT
_1 1 1 1 1 1 ]
-0.2 0 0.2 04 0.6 0.8 1

Time (fs)

Figure 4.4. Time-domain reflection coefficient with incidence angle 8 = 50° and mate-
rial parameters wy = 4.0 x 1016571, 52 = 20.0 x 1032572, § = 0.28 x 1016s~1. This

choice of parameters corresponds to case 1, Eq. (4.33) with non-causal term from Eq.
(4.41).
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Reflection Coefficient

x 108 Non-Causal C~term

-0.5 0 0.5
Time (fs)

Figure 4.5. Non-causal C(t) — 4(t) for case 1 results.

48



Reflection Coefficient

x 10" Non-Causal C term convolved with G term

|

1 i 1

-0.5 0 0.5
Time (fs)

Figure 4.6. Non-causal [C(t) — §(t)] * G(t) for case 1 results.
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x 10" Non-Causal C term convolved with G term

Reflection Coefficient

_5 1 Il 1 1 J
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01
Time (fs)

Figure 4.7. Close-up of the non-causal [C(t) — §(t)] * G(t) for case 1 results.
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CHAPTER 5

TE PLANE WAVE REFLECTION FOR THE GENERAL CASE

In Chapter 3, the transient reflection of a TE plane-wave from the Lorentz-medium
half-space is examined for a Lorentz-medium simplified to the optical case. In this
chapter, the reflection coefficient will be examined for the most general case. As in
the Chapter 3, a steady-state TE-polarized plane wave of frequency w is obliquely
incident on an interface separating free space (region 1) from a homogeneous Lorentz
medium (region 2). The angle of incidence 6 is measured from the normal to the
interface. This geometry can be seen in Figure 2.2. As shown in Chapter 2, the
reflection coefficient for a plane wave from a material half-space can be expressed as

Z (W) =2

Filw) = Z, (W) + 2y

(5.1)

For a TE-polarized plane wave, the impedance of the incident wave is Zy = ng/ cos
and the wave impedance of the transmitted wave is given by

k(w)n(w)

Ziw) = ky(w)

(5.2)

where the terms k,,7, and k are defined in (3.3). The relative permittivity is the
same as given in (3.4). For the general case, the simplifications made in Chapter 3

cannot be made, but the relative permittivity can be rewritten as

where b is the plasma frequency of the medium.
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5.1 Laplace Domain Representation

Equation (5.3) can be represented in the Laplace domain as

b2

€&(s) =€+ 50—
r(s) = € 82+26s+w%

Using this, the wave number in the Lorentz medium can then be calculated as

k(s) = —jsy/iie
= —js\/,u(()\/(go +

b2
s2 4+ 28s + wg

52 +263+w8 + b2 /eco
s2 +26s +w[2)

For a TE-polarized plane wave, the Laplace domain reflection coeflicient can then be
written as
_ prk.o — kz

prkzo + kz

iy cosf — \/(k/ko)2 —sin26

fir cos 8 + \/(k/k0)2 —sin? @

tir-cos 8 — y/preoo(s — 53)(s — 54)/[(s = s1)(s — 52)] — sin20

iy cos 0 + \/,urcoo(s — 53)(s — 84)[(s — 51)(s — s2)] — sin?

[(s)

, (5.6)

where s 9 are the same as defined in (3.9) and s3 4 are defined as

2
534 = —(5:}:”62—(‘18——1)—, (5.7)
€00

which is derived from the fact that

b2
s% + 285 + wg + = (s — s3)(s — s4). (5.8)
oo
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Multiplying the numerator and denominator in (5.6) by /(s — s1)(s — s2) and ex-

panding (s — s1)(s — s2) and (s — s3)(s — s4) leads to

K cos@y/(s — s1)(s — s9) — \/ureoo(s — 53)(s — s54) —sin2 B(s — s1)(s — s9)

pr cos0y/(5 = s1)(5 = 52) + y aréoo(s = 53)(5 — 54) = sin? 6(s — 51)(s — 52)

1/2
wg(,ureoo —sin?6) + u,-b2) / jl/[ur cosBv/(s — s1)(s — s9)+

[/1,- cos 0/ (s — s1)(s — s2) — (32(;1,-600 —sin®8) + 265(ureco — sin’ 0)+

1/2
(32(;1.,{00 — sin ) + 265(preoo — sin 0) + w%(;treoo —sin?9) + urbz) / ] .

For convenience, define

K? = Hr€oo — sin? 6.

This allows (5.9) to be written as

() prcos8y/(s —s1)(s —s2) — K 32+263+w(2)+mb2/1(2
I'(s) =

It is then convenient to make the substitution

: b?
s+ 235 + wg + Hros = (s —s5)(s — sg),
where
2 b2
s56=—0=% 62 — wg — Mrﬁ-

prcosfy/(s — s1)(s — s9) + K\/s2 + 26s +w(2) +,urb2/K2.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

Substituting (5.12) into (5.11) allows the reflection coefficient in the Laplace domain

to be rewritten as

I(s) = ftrcos8\/s —s1\/s — s9 — K\/s — s5\/s — Sg
T i cos0y/s —s14/s — 5o+ K\/s — s5/5 — 56
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5.2 Time-Domain Reflection Coefficient

Using the frequency-domain reflection coefficient found in Section 5.1, the time-
domain reflection coefficient can be found using an inverse Laplace transform. In
order to perform the inverse Laplace transform, the frequency-domain reflection co-
efficient may be rearranged into a more manageable form. Before this can be done
however, it must be noted that as s — oo, the reflection coefficient does not tend

to zero. Instead it can be seen that

ircosf — K

as S — OO F(S) — m

(5.19)
This term results in a delta function contribution in the final time-domain reflection

coefficient. In order to perform the inverse Laplace transform, this term, defined as

I'se, needs to be subtracted from the total reflection coefficient. This leads to

[(s) =T(s) - T

_ fycosty/s —s1\/s —s9— K\/s—55/s—s5 prcosf — K
T cosOys — 515 —so+ K5 — s5/5 —sg  prcosf+ K
2K purcos[\/s —s1y/s — s2 — /s — s5y/s — s¢]

= . 5.16
(trcos 8 + K) (prcos0y/s — s14/s — so + K\/s — s51/5 — S¢) (5.16)

Rationalizing the denominator leads to

[(s) = [2Kpy cos (Vs =s1vs — 52— Vs — s5Vs — s¢) (pr cosy/s — s1v/s — sp—
K\/s = s5v/5 — sg) ] / [(ur cosf + K) [uz cos? B(s — s1)(s — s2)—
K2(s = (s - )] |

N
=A7 (5.17)
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where
2K jiyr cos 6
FL=——717—.
prcosf + K

(5.18)

Expanding the terms in the denominator and examining them in further detail, it can

be seen that

. b2
D = 2 cos?6(s® + 285 + w) — K2(s® + 205 + uf + B

= 32(;12 cos?0 — K?) + 26s(u? cos? — K?) + wg(u? cos? 0 — K?) — pb?

2
= (/13 cos? § — 1\'2) (32 + 26s + wg — __’ib___)

12 cos? § — K2

= (p%cos? 6 — K?) (82 + 24s + ’72) )

with the definition
2 _ 2 urb?

/ = W, —_—————
7 0 p2cos?§ — K2
At this point, it is convenient to define
-2 2 _
s+ 20s+9°=(s—sc)(s—sp),

where

sep=-0% 62 — ~2

=-0% Ac.

(5.19)

(5.20)

(5.21)

(5.22)

Substituting (5.21) into (5.19) allows the denominator to be written in its final form

as

D = (,ug cos? 8 — K2)(s — sc)(s —sp).

(5.23)



Expanding the numerator and examining it in further detail leads to

N = prcosb [(9 —51)(5 — 82) — Vs — 51V/5 — 52V/5 — 55V/5 — 56| +
K [(s — 55)(s — s6) — V/5 — 51v/5 — 52v/5 — 551/5 — 5¢]

= prcosfgi(s) + Kgafs). (5.24)

Applying the following definition

2K piy cos 8

F= )
(pr cos @ + K)2(ur cos 6 — K)

(5.25)

allows the Laplace domain reflection coefficient to be rewritten by substituting (5.23)

and (5.24) into (5.17) as

=, \ _ phrcosfgi(s) + Kga(s)

) = G so)s =)
= FC(s)G(s), (5.26)
where it is defined that
C(s) = ! (5.272)
~ (s—sc)(s—sp)’ '
G(s) = prcosbgy(s) + Kga(s). (5.27b)

5.2.1 Inversion of the G(s) Term

Both terms g;(s) and go(s) in G(s) were inverted previously in Section 3.2.1. The

solutions are given as

A2 — 22

g1(t) = e [-AIL (0 « hi0st) + Ml () + MT2(st)] - L52400),

(5.28)
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_ . . . . 22— A2
92(0) = e [-ADEL () « T st) + AT ) + A (st)] + T26(0).

(5.29)

In these equations, A\; and Aj are defined from
s12=—0 % Ap, (5.30)
556 = —0 £ A5, (5.31)

and I,,(z) is defined in (3.51). The final expression for G(t) can then be given as

G(t) = (urcosb + K)e™0 [-A%A%il(m) « 11 (Ast) + A3l (Agt) + Agig()\st)] -

Hrb2
2K (e cos @ — K)6(t). (5.32)

Just as in the optical TE case in Chapter 3, there are cases where A\; or A5 can be
found to be imaginary and the modified Bessel functions in (5.32) can be replaced
with ordinary Bessel functions. Case 1 occurs when wg > 62. In this case both \;

and Aj are purely imaginary and defined as

- [ - b2
—j)\l =}\1 = w3—52, ——j/\5=/\5= \/w(2)+u71(—2——52. (533)

Then, using the identity given in (3.55) to replace modified Bessel functions with

ordinary Bessel functions and the identity given in (4.32), (5.32) can be expressed as

G(t) = (urcosb + K)e™° [—Xfxg.‘]l(xlt) « J1(st) + XoJo(Mqt) + X§j2(X5t)] -

Hr b?

m(ur cos@ — K)é(t), (5.34)

where J,(z) was defined in (3.57).
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Case 2 occurs when wg +prb? /K 2 < 62. In this case, both A; and A are purely real
and the same expression from (5.32) can be used. Case 3 occurs when —pu,b?/K?2 <
w% — 6% < 0. In this case, A is purely real and A5 is purely imaginary. )5 is defined

as it was in (5.33) and the expression for G(t) can be written as

G(t) = (urcosf + I\’)e-ét [)\%Xgil(/\lt) * jl(X5t) + /\:1;12(/\11’) + ngg(X5t)] -

j17b2

2]‘—,2(/1,.,- cos B — K)4(t). (5.35)

5.2.2 Inversion of the C(s) Term

Using partial fraction expansion, C(s) can be rearranged into

1
(s —sc)(s = sp)

1 1 1
= - . 5.36
2X¢c (s—sc s—sD) (5.36)

As in previous cases, the values of s¢ and sp affect the inversion of C(s). If 72 >0,

C(s) =

then Re{sc p} < 0 and the inversion identity (3.27) can be used. Using this identity,
C(t) is found to be

-4t
_ & (At _ At
C(t) e (e e )u(t)
e—ét
= —— sinh(A¢gt)u(t). (5.37)
Ac

If 2 < 62, Ac is purely real and (5.37) can be used directly. If 2 > §2, Ac is purely

imaginary and can be defined as

—jAc =X = /7% - 62 (5.38)
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In this case, using the identity given in (4.32), (5.37) can be rewritten into

-0t _
C(t) = Vsin(/\ct)u(t). (5.39)

If 42 < 0, Ac is again purely real, but in this case, Re{sc} > 0, which requires the

identity given in (4.40) to be used. In this case, C'(t) is given as

o0t

€)= ~55= (e’\Ctu(—t) + e_’\Ctu(t))

o0t

= ———e 2l 5.40
e’ (5.40)

As in Chapter 4 for the TM optical case, there is a problem with causality in this
term, however an interesting result can be observed by examining the 42 term. In
order for 42 < 0 to occur, the following relationship must hold:

2 1rb?

< —F—5. 5.41
“0 u?cos20—K2 ( )

Examining the denominator on the right side of the equation in closer detail reveals
that as long as pr < €x, the denominator is negative at any angle. Since this is not
the optical case, it holds that exc > 1. The Lorentz model is generally used for a
dielectric material, so it is expected that u, < € will hold in general. This implies

that the causality issue is not a concern in this case.

5.3 Numerical Results

In order to validate the expressions derived in the previous section, the time-domain
reflection coefficient is evaluated numerically in Fortran, and then compared to the
inverse FFT of the frequency-domain reflection coefficient given in (5.16). The For-

tran code is included in Appendix C. The inverse FFT was done using WaveCalc.

59



The frequency-domain data was zero-padded up to the maximum limit allowed by
WaveCalc, 32,768, before the inverse FFT was taken. Since the signal had already
decayed to zero by this point, no windowing was necessary. A set of parameters
corresponding to each of the three possible cases is used.

The first set of parameters chosen are: wp = 4.0 x 1011 571, b =6.24 x 10! 71,
§=25x 1010 s—1 €00 = 2, iy = 1. This choice of parameters corresponds to case
1. When computing the numerical results, for the frequency-domain data 4,096 fre-
quency points were calculated with a step size of 400 MHz. In the time-domain, 4,096
points were calculated with a step size of 1 x 1074 ns. Using 6 = 30°, (5.34) has been
plotted in Figure 5.1 and compared to the inverse FFT. The results show excellent
agreement. Since this function includes only standard Bessel functions, which are
highly oscillatory, and no modified Bessel functions, which are not oscillatory, the
waveform is highly oscillatory and only lightly damped.

The next choice of parameters is: wy = 4.0 x 1010 571, b = 6.24 x 1010 571,
§ =25x 101 571 eoo = 2, pr = 1, which corresponds to case 2, (5.32). When
computing the numerical results, for the frequency-domain data 32,768 frequency
points were calculated with a step size of 4 MHz. In the time-domain, 8,192 points
were calculated with a step size of 2 x 10™4 ns. The results are shown in Figure
5.2. Again, the closed-form expression and the inverse FF'T compare well. For this
choice of parameters wg + prb? /K 2 < §2, and the resulting waveform is overdamped,
showing no oscillatory behavior and only a single negative peak. Since the expression
for case 2 only involves modified Bessel functions, which do not have the oscillatory
behavior of ordinary Bessel functions, this observed behavior is easily predicted from
the mathematical form of the expression.

The final choice of parameters, which corresponds to case 3, is: wg = 4.0 % 109 s71,
b=6.24x10" 571, 6§ =25x1010 571 ¢ =2, ur = 1, which corresponds to case 3,

(5.35). When computing the numerical results, for the frequency-domain data 8,192
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frequency points were calculated with a step size of 200 MHz. In the time-domain,
4,096 points were calculated with a step size of 1 x 10™4 ns. The analytic expression
again matches the inverse FFT, as seen in Figure 5.3. As expected, since 62 > w%, but
62 < wg + urb?/ K2, there is more damping and less oscillation than with case 1, but
more oscillation than with case 2. Here the expression for the reflection coefficient

has a combination of ordinary and modified Bessel functions.
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Figure 5.1. Time-domain reflection coefficient with incidence angle § = 30° and mate-
rial parameters wg = 4.0 X 10115~ b =6.24 x 10113‘1, 6=25x 10103‘1, €00 = 2,
pr = 1. This choice of parameters corresponds to case 1, Eq. (5.34).
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x 10° Case 2
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Figure 5.2. Time-domain reflection coefficient with incidence angle § = 30° and mate-
rial parameters wg = 4.0 x 1010s—1 b =6.24 x 1010571 § = 2.5 x 1011571, ey = 2,
pr = 1. This choice of parameters corresponds to case 2, Eq. (5.32).
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Figure 5.3. Time-domain reflection coefficient with at an angle of § = 30° with param-
eter choices of wy = 4.0 x 10971, b=6.24 x 101571, § =25 x 1010571 ¢ =2,
wr = 1. This choice of parameters corresponds to case 3, Eq. (5.35).
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CHAPTER 6

TM PLANE WAVE REFLECTION FOR THE GENERAL CASE

In Chapter 4, the transient reflection of a TM plane-wave from a Lorentz-medium
half-space is examined for a Lorentz-medium simplified to the optical case. In this
chapter, the reflection coefficient will be examined for the most general case. As in
the Chapter 4, a steady-state TM-polarized plane wave of frequency w is obliquely
incident on an interface separating free space (region 1) from a homogeneous Lorentz
medium (region 2). The angle of incidence 6 is measured from the normal to the
interface. This geometry can be seen in Figure 2.3. As shown in Chapter 2, the
reflection coefficient for a plane wave from a material half-space can be expressed as

_ Z“(w) — ZO

For a TM-polarized plane wave, the impedance of the incident wave is 79 cos and

the wave impedance of the transmitted wave is given by

Z)(w) = (6.2)

where the terms k;,7n, and k are defined in (3.3). The relative permittivity is the

same as given in (5.3).

6.1 Laplace Domain Representation

The Laplace domain reflection coefficient for a TM-polarized plane wave can be writ-

ten as
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V (k/ko)2 — sin? 6 — cr cos
V (k/kg)2 — 5in20 + ¢ cos 0

_ VHrer — sin @ — €y cosf
vV rer — sin2 @ + €rcos

= [[fwoccs — 53)(s — 54)/[(s = 51)(s — 52)] — sin? 6]1/2—

e costs = sa)s = sa) (s = )5 = ]|/
lircaels = s9)(s = sa)(s = s1)(s = s0)] = sin? 0] 2+

50 08 0(s — 3)(s — s4)/[(s = 51)(s - s2>1], (6.3)

where s1 9 are the same as defined in (3.9) and s3 4 are the same as defined in (5.7).

Multiplying the numerator and denominator by /(s — s1)(s — s2) and expanding
(s —s1)(s — s92) and (s — s3)(s — s4) leads to
I(s) = [m\/é——sg[ureoo(s — s3)(s — s4) — sin” (s — s1)(s — 2)]'/?~
ol = sa)(s = sg)cost]/ Vi sl - sa)(s - s1)-
sin? (s — s1)(s — 32)]1/2 + €xc(s — $3)(s — s4) cos 0]
— |V o = sin 052 + 28s(rc —sin? )+

Blress —sin20) + urt?] 7 — cog cos(s — s3)(s - s4>]/
[\/s*Ts_lm [(p.reoo — sin® 0)s? + 265(preco — sin® 0)+

1/2
wg(,urcoo —sin®6) + p,«bQ] / + €00 cosO(s — s3)(s — 34)] . (6.4)
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Substituting K2 as defined in (5.10) allows (6.4) to be written as

K\/s —s1v/s— 82\/32 + 20s +w3 + b2/ K2 — €00 cos O(s — s3)(s — s4)
K\/s —s1ys — 32\/32 + 26s + w% + b2 /K2 + € cos B(s — s3)(s — 34).
(6.5)

[(s)

Substituting (5.12) into (6.5) allows the final form of the reflection coefficient to be

rewritten as

[(s) = K\/s —$1v/s — s9\/s — 551/8 — S6 — €xc COs (s — s3)(s — s4)

= . 6.6
K\/s —s1vs — s2\/s — s51/5 — s + €xc Cos (s — s3)(s — s4) (6.6)

6.2 Time-Domain Reflection Coeflicient

Using the frequency-domain reflection coefficient found in Section 6.1, the time-
domain reflection coefficient can be found using an inverse Laplace transform. In
order to perform the inverse Laplace transform, the frequency-domain reflection co-
efficient may be rearranged into a more manageable form. Before this can be done
however, it must be noted that as s — oo, the reflection coefficient does not tend

to zero. Instead it can be seen that

K — exocosf

as § — 00 I's) —m ———,
(s) K + €xo cos

(6.7)
which produces a delta function in the final time-domain reflection coefficient. In
order to perform the inverse Laplace transform, this term, defined as ', needs to

be subtracted from the total reflection coefficient. This leads to

[(s) =(s) — Foo

K5 =515 —53\/5s =51/ — 59 —exccosO(s — 53)(s — s84) K — €xccosb
T K5 — 815 — 59\/5 — 51/5 — 59 + €xc c0s0(s — 53)(5 — 84) K + exocos
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2Kexc cosO[\/s — s1v/s — sav/s — s5v/s — s6 — (s — s3)(s — s4)]
(K + exccost) [Ky/s — s1y/s — s9\/s — 55/5 — S6 + €xc cOsO(s — s3)(s — s4)]

(6.8)
Rationalizing the denominator allows the denominator to be written as
D = (K + ecx cos8) [K2(s = 51)(s = 53)(s = 55)(s — 56)—
2. cos?O(s — s3)%(s — 34)2] , (6.9)
and the numerator to be written as
N =2Kex cosH[I\'(s —81)(s — s9)(s — s5)(s — sg)—
(K + €xccos)(s — s3)(s — s4)Vs — s1Vs — s9v/s — s5V/s — sg+
€0 COSB(s — 53)%(s — 54)2] ) (6.10)
Using the definition
2 _ bz(/f,r — ¢4 cOS2 9) (6.11)
K2 - ego cos? 6
the denominator term can be expanded and written as
D = (K + €oo cos 0) (K% — €2, cos6) [34 +46s% + (ng + 462 + 4%)s%+
. b4 cos? 6
2 2N, 4, 2.2
(4(5&/0 + 2(5’)/ ).S + (.4.«0 + WU')‘ I(2 — ego C032 0] . (612)

The next step is to factor the denominator term. This is accomplished by dividing
the quartic function in the denominator by s? + 28s + wg + ~2 /2 + x using a long

division technique. The remainder term is set equal to zero and solved for x. This
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allows the denominator to be written as

2
D= (K+ eoocos())Q(K — €c0 COs0) (32 +263+w(2, + 12- - x) X

2 7
(s +253+w(2)+7+x),

where x is defined as
b2o
2(K? — €2 cos?6)’

X =
and o is defined as

0% = ,u,% + sin2(20).

It is then convenient to redefine the denominator as
D = (K + esc cos0)2(K — exgcos0)(s — sg)(s — sp)(s — sq)(s = sy),

where

2
(S_SE)(S_SF)=S2+2(SS+QJ8+%_X‘

2
(s—sG)(s—sH)=s2+253+wg+jé——+—x.

The roots can then be found to be

2 2 72
SE,F=—6:t ) —(w0+7—x)

=-0% g,

,72

=% Ag.
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The numerator also needs to be rearranged in order for the inverse Laplace trans-

form to be taken. Noting that

2
(5 = 53)(s ~ 54) = s = s1)(s = 52) + =, (6.19)

o0

it is possible to rewrite the numerator term as

N =2Kexcos6(s — s1)(s — s2) [foc cosB[(s — s1)(s — s9)—

Vs = s1Vs — sav/s — s5v/s — sg] + K[(s — s5)(s — s6)—

2
Vs —s1Vs — sovV/s — s5v/s — sg) — Eb—(K + €xc c0s 8)(s — s5)(s — sg) ¥
o0
1 bt cosd 9
+ + 2b“ cos @
\/5—51\/8—52\/5—85\/S~56] € (s—s1)(s—s2)

=2Kexcosb(s — s1)(s — s2) [coc cos g1 (s) + Kga(s)—

b? b cos 8
— (K + e cosB)g3(s) + o8 94(s) + 262 cos 6}
€00 €00
= 2Kexc cosf(s — s1)(s — s2)G(s). (6.20)

The gn(s) terms are the same as in the previous cases. The reflection coefficient in

the frequency domain can then be written as

~ 2Kexo cosB(s — s1)(s — $2)G(s)

I'(s) = . (6.21
(s) (K + €oc cos 0)2(K — €00 cosB)(s — sg)(s — sp)(s — sg)(s — sg) (6.21)
Making the convenient substitutions
2K e cos
F, = , .
2 (K + €00 c0s 0)2(K — € cos ) (6:222)
C(s) = (s — s1)(s — s2) (6.22b)

(s —sg)(s —sp)(s—sg)(s — sg)’
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allows (6.21) to be rewritten as

I[(s) = FyC(s)G(s). (6.23)

The Laplace transform of both the C'(s) and the G(s) term can be taken separately

and the time-domain reflection coefficient is simply a convolution of those terms.
6.2.1 Inversion of the G(s) Term

As shown in (6.20), G(s) is given as

b2 btcosd
G(s) = |eoxccos8g;(s) + Kga(s) — — (K + ex c0s0)g3(s) + o

€00 (3e%)

94(s) + 2b% cosf|.

(6.24)

All of the terms in G(s) are solved in previous sections. The inversion of the g;(s)
and go(s) terms is done in Section 3.2.1 and the inversion of the g3(s) and g4(s) is

done in Section 4.2. These terms are given as

- ) R . R . /\2 _ ,\2
g1(t) = =" [ =ADET ) * i (Ast) + ATa(t) + Ao (Ast) | — —524(2),
(6.25a)
. ) R . . . /\2 _ )‘2
g2() = €% [=APAET () « h(st) + Ao () + Ml (Ast) | + T524(0),
(6.25b)
g3(t) = e~ 0t '—Ag{ Toy(At)u(t) }*il(/\st) + /\111(/\1t)u(t)] +8(t), (6.25¢)
oot
94(t) = Bve sinh(Ajt)u(t). (6.25d)

In these equations, A; and Aj are defined as in (5.30) and I,(z) is defined as in (3.51).

The final expression for G(t) can then be given as

R . b2 .
G(t) = e % {(K + €oo COs 6) [-A%Agll(xlt) « 1 (Ast) + €—A§ {To(At)u(t)} = 11 (Ast)—
o0
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b? 34 3 bt cos 6
— AL (At)u(t) + Afla(Agt) + /\:512(/\51‘)] + Sinh()\lt)u(t)} +
€ €00A]
e — 2K?
V2K — exc cosb) ("(;\—%-) 8(t). (6.26)
oC

Just as in the optical TM case in Chapter 4, there are cases where A\; or A5 can be
found to be imaginary and the modified Bessel functions in (6.26) can be replaced
with ordinary Bessel functions. Case 1 occurs when wg > 62. In this case both )\
and A are purely imaginary and defined as in (5.33). Then, using the properties

(3.55) and (4.32), it can be seen that (6.26) can be expressed as

9. _ . b2 _ _ .
G(t) = e~ 0t {(K + €oc cos ) [-A"fngl(Alt) « 31 (gt) — ;/\E {Jo(ut)u(t)} * 31 (Rst)+
o - 3. 3. — Veosf  —
— A Ji(At)u(t) + /\?JQ(/\lf) + )\ng()\5t):| + CO_S sin(/\lt)u(t)} +
€oo €001
i Cae — 2K2
B2(K — €50 cos 6) (“’2}0‘—2%—) 8(t), (6.27)

where J,,(z) is defined in (3.57).

Case 2 occurs when wg+prb2/1\'2 < 62. In this case, both A; and As are purely real
and the same expression from (6.26) can be used. Case 3 occurs when —pu,b?/K? <
wg — 62 < 0. In this case, A is purely real and )5 is purely imaginary. A5 is defined

as in (5.30) and the expression for G(t) can be written as

- — - — 2 — ~ —
G(t) = e 0t {(R + € COs 0) [/\%Xgll()\lt) * J1(Ast) — g;/\g {To(At)u(t)} * J1(Ast)—

2 . . 4
B L) + A3 (t) + 2da(et) | + 2% sinh(a () b +
€0 €o0A1
- 2K?
b2 (K — €oo cos B) (%) 5(t). (6.28)
00
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6.2.2 Inversion of the C(s) Term

As described in (6.22), C(s) is given in the Laplace domain as

_ (5 —s1)(s — s9)
) = o) —sr) G —se) o —sm)’ (6.29)

Using partial fraction expansion, this term can be rewritten as

C(s) =

0 — j1y + 2ex cos2 8 1 1
40/\E [S—SE_S—SF]
O+ jir — 265 COSZ 0 1 1
YD Ye! [ - ]

s—sg S-Sy

= c1(s) + ca(s). (6.30)

An inverse Laplace transform of each term in (6.30) can be taken separately. When
inverting cy(s), if wg +~%/2 — x > 0 the standard transform used in (3.27) can be

applied directly resulting in the expression

0 — Uy + 26 cos? 9
40‘/\E

— 4y + 2€00 cOS2 O
_ 0 = hr +2e0gcos e~ sinh(Apt)u(t). (6.31)
20\

c1(s) — c1(t) = e 0t [e)‘Et - e_’\Et] u(t)

If w% + 72/2 —x > &2, Ag is purely imaginary and defined as

_ 2
—j/\EZ’\E=\/“}g+%_X—62' (6.32)

This allows (6.31) to be rewritten as

_ <2 -
_ o — ur+ 2_500 Cos ee—ét sin(Xgt)u(t). (6.33)
20\

c1(t)
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If wg +12/2 — x < 0 however, Re{sg} > 0. In this case the identity given in (4.40)

must be used. This produces the result

0 — ir + 2ec cos® 0 _g
- e

ci(t) = 10Ag [e/\Etu(“t) + e_/\Etu(t)]
L 2
_ O~ +2ec0co8 He“”e"\E“', (6.34)
40\

which is non-causal. As argued in Chapter 4, this non-causality is due to the infinite
nature of the problem and is not a physical phenomenon.

Taking the Laplace inversion of c9(s) can be done in much the same manner as
for c1(s). If w% ++2/2 + x > 0 the standard transform used in (3.27) can be applied

directly resulting in the expression

-2 20
C2(3) —s ('Z(t) — o + AU’T 40/\600 COs e—&t [e/\Gt _ e—/\Gt] u(t)
G
_ 2 9
_otpr 202;* O 7 e~ sinh(Agt)u(t). (6.35)
G

If w% +72/2 + x > 62, Ag is purely imaginary and defined as

_ 2
—j/\0=)‘c=\/wg+%+x—62. (6.36)

This allows (6.35) to be rewritten as

B 2 _
o+ lr 2_€oo cos 96-& sin(Agt)u(t). (6.37)
20)q

cx(t) =

If uJ(2) +792/2 4+ x < 0 however, Re{sg} > 0. In this case the identity given in (4.40)

must again be used. This produces the result

0+ pr — 26000820 _g
- e
%PV

co(t) = [e’\Gtu(—t) + e—’\Gtu(t)]

74



_ _ O+ Hr — 200 cos? ge—dte")‘Gltl
d0)¢ ’

(6.38)

which is again non-causal. The same argument from earlier can be used to explain
this non-causality.
Analyzing these two terms, it can be seen that in general, C(t) is causal whenever

X < —Iw(‘)? +~2/2| and non-causal when x > ——|w(2) +~2/2|.

6.3 Numerical Results

In order to validate the expressions derived in the previous section, the time-domain
reflection coefficient is evaluated numerically in Fortran, and then compared to the in-
verse FFT of the frequency domain reflection coefficient given in (6.21). The Fortran
code is included in Appendix D. The inverse FFT was done using WaveCalc. The
frequency-domain data was zero-padded up to the maximum limit allowed by Wave-
Calc, 32,768, before the inverse FFT was taken. Since the signal had already decayed
to zero by this point, no windowing was necessary. A set of parameters corresponding
to each of the three possible cases for G(t) is used. The angle is then adjusted for
the case 1 parameters to produce results that contain a non-causal contribution. The
number of points and step size for the results varied between the different cases.
The first set of parameters chosen are: wy = 4.0 x 1011 s'l, b =6.24 x 10!! s‘l,
6 =25x1010 571 ex =2, ur = 1. This choice of parameters corresponds to case
1. When computing the numerical results, for the frequency-domain data 8,192 fre-
quency points were calculated with a step size of 400 MHz. In the time-domain, 8,192
points were calculated with a step size of 1 x 10~4 ns. Using 6 = 30°, (6.27) has been
plotted in Figure 6.1 and compared to the inverse FFT. The results show excellent
agreement. Since this function includes only standard Bessel functions, which are
highly oscillatory, and no modified Bessel functions, which are not oscillatory, the

waveform is highly oscillatory and only lightly damped.



The next choice of parameters is: wp = 4.0 x 1010 571, b = 6.24 x 1010 s~1,
6§ =25x 101 s71 e = 2, pur = 1, which corresponds to case 2, (6.26). When
computing the numerical results, for the frequency-domain data 32,768 frequency
points were calculated with a step size of 4 MHz. In the time-domain, 8,192 points
were calculated with a step size of 1 x 1074 ns. The results are shown in Figure
6.2. Again, the closed-form expression and the inverse FFT compare well. For this
choice of parameters wg + prb? /K 2 < 62, and the resulting waveform is overdamped,
showing no oscillatory behavior and only a single negative peak. Since the expression
for case 2 only involves modified Bessel functions, which do not have the oscillatory
behavior of ordinary Bessel functions, this observed behavior is easily predicted from

the mathematical form of the expression.

1

Y

The next choice of parameters, which corresponds to case 3, is: wg = 4.0x109 s~
b=6.24x101 571 §=25x 1010 s e =2, ur = 1, which corresponds to case 3,
(6.28). When computing the numerical results, for the frequency-domain data 32,768
frequency points were calculated with a step size of 400 MHz. In the time-domain,
8,192 points were calculated with a step size of 5 x 10™° ns. The analytic expression
again matches the inverse FFT, as seen in Figure 6.3. As expected, since § > wp, but
8 < wg + urb?/ K2, there is more damping and less oscillation than with case 1, but
more oscillation than with case 2. Here the expression for the reflection coefficient
has a combination of ordinary and modified Bessel functions.

To examine the non-causal result which is possible for the C(t) term, the material
parameters corresponding to case 1 are used again, but at an angle of 60°. This
causes the cj(t) term in C(t) to be non-causal as shown in (6.34). When computing
the numerical results, for the frequency-domain data 32,768 frequency points were
calculated with a step size of 400 MHz. In the time-domain, 8,192 points were cal-
culated with a step size of 5 x 1075 ns with a starting time value of —1.024 x 10~!

ns. As seen in Figure 6.4, the expression again matches well with the inverse FFT

76



for t > 0. For t < 0, non-causal term in the analytic expression is extremely small.
Unfortunately, the inverse FFT does not have the necessary resolution to capture the
small non-causal portion of the reflection coefficient, so it cannot be compared to the
analytic expression.

In order to gain better insight into the non-causal term, the non-causal C(t) term
is plotted in Figure 6.5. The non-causal part is much more significant in this C(t)
than in the TM optical case. To investigate further, C(¢) was convolved with G(t)
minus the delta function term. This can be seen in Figure 6.6. Again, the non-causal
portion has a significant contribution to this term. However, when C(t) is convolved
with the delta function term, it can be seen in Figure 6.7 that the non-causal portion
has the opposite sign of the term in Figure 6.6, and when those terms are added, the

non-causal portion becomes extremely small in the final transient reflected field.

77



x 10" Case 1

Reflection Coefficient

Closed Form Expression
% - Inverse FFT
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Figure 6.1. Time-domain reflection coefficient with incidence angle § = 30° and mate-
rial parameters wy = 4.0 x 1011571 b =6.24 x 1011571, § = 2.5 x 1010571, ¢ = 2,
ur = 1. This choice of parameters corresponds to case 1, Eq. (6.27).
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x 10° Case 2

Reflection Coefficient
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Closed Form Expression
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Figure 6.2. Time-domain reflection coefficient with incidence angle § = 30° and mate-
rial parameters wg = 4.0 x 1010571 b =6.24 x 1019571, § = 2.5 x 1011571 ¢op = 2,
pr = 1. This choice of parameters corresponds to case 2, Eq. (6.26).
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x 10" Case 3

Reflection Coefficient

-12¢ Closed Form Expression
~%x - Inverse FFT
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0 0.02 0.04 0.06 0.08 0.1
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Figure 6.3. Time-domain reflection coefficient with at an angle of § = 30° with param-
eter choices of wy = 4.0 x 10971 b=6.24 x 1011571, § =25 x 1010571, ¢, =2,
pr = 1. This choice of parameters corresponds to case 3, Eq. (6.28).
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x 10 Case 1 - Non-Causal

Reflection Coefficient

-6 Closed Form Expression
~x - Inverse FFT
-0.02 0 0.02 0.04 0.06 0.08 0.1

Time (ns)

Figure 6.4. Time-domain reflection coefficient with at an angle of § = 60° with param-
eter choices of wy = 4.0 x 1011s71, b =6.24 x 1011571, § =2.5 x 1010571 ¢, =2,
ir = 1. This choice of parameters corresponds to case 1, Eq. (6.27) with a non-causal
term from Eq. (6.34).
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Figure 6.5. Non-causal C(t) term for case 1 results.
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10 Non-Causal C-term convolved with G-term
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Figure 6.6. Non-causal C(t) term convolved with G(t) minus the delta function term
for case 1 results.
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x 10° Non-Causal C-term Multiplied by Delta Function Term
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Figure 6.7. Non-causal C(t) term convolved with the delta function term for case 1
results.
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CHAPTER 7

CONCLUSIONS

In this thesis an analytic solution for the transient reflection coefficient of plane waves
from a Lorentz-medium half-space is formulated analytically. Using an inverse Laplace
transform technique, the solution was found to be a combination of Bessel functions
and convolutions of Bessel functions with a decaying exponential factor proportional
to 4, the damping coefficient of the material.

Unlike previous work [10],{11] which represent the transient field as an infinite
sum of fractional-order Bessel functions, the formulation in this thesis has no infinite
sums and presents much more physical insight into the behavior of the transient
field. Depending on field polarization, material properties, and angle of incidence,
the expression for the transient field changes and gives a clearer view of the time-
domain behavior. It is also clear that for certain angles there is a problem with
causality that occurrs in the TM-polarized case. This non-causal function is due to
the infinite nature of the problem and is not a physical phenomenon. It is, however,

an interesting discovery.

7.1 Suggestions for Future Work

The Lorentz model is a single resonance model that is closely related to the permit-
tivity of a cold plasma. A very similar reflection coeflicient can be developed using
plasma equations. Using this same method, developing the transient field reflection
coefficient from a cold plasma half-space is a problem that is of some interest.
Transmission into dispersive material is also a topic of interest. It would be
interesting to formulate the transient transmitted field using the same basic techniques

outlined in this thesis for the reflected field.
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APPENDIX A

FORTRAN CODE FOR OPTICAL TE CASE

program special _TE

implicit none

integer nsize

parameter(nsize = 10000)

real*8 BESSI,omO,delta,b,theta,rlaml,rlam5,dt,ct,t,pi
real*8 j1,j2,jlp,j2p,i1,i2,df,f,om,gammat (nsize)
real*8 jllh(nsize),j12h(nsize),j21h(nsize),j22h(nsize)
real*8 ilih(nsize),il2h(nsize),i21h(nsize),i22h(nsize)
real*8 j1jl(nsize),ilil(nsize),iljl(nsize),expon(nsize)
integer i,nt,nf

complex*16 z1,z2,s,zj,gamma,zz1,zz2,s1,s52,85,s6

om0 = 4.d16

b = dsqrt(20.d32)
delta = 0.28d16

theta = 0.d0

pi = 4.d0*atan(1.d0)

ct = cos(thetaxpi/180.d0)

zj=dcmplx(0.d0,1.d0)
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df = 8d3

nf = ((4095%2+1)*2+1)
nt = 4096
dt = 1.4-18

zz1 = cdsqrt(dcmplx(delta*delta-om0*om0,0.d0))

sl = -delta+zzl

s2 = -delta-zzl

zz2 = cdsqrt(dcmplx(delta*delta-omO*omO-b*b/(ct*ct),0.d0))
s5 = -delta+zz2

s6 = -delta-zz2

open (10,file=’gamma.dat’,status=’unknown’)
do i=1,nf

f = df*i

om = 2.dO*pi*f=*1.d9

s = zj*om

z1

cdsqrt(s-s1)*cdsqrt(s-s2)

z2

cdsqrt (s-s5)*cdsqrt (s-s6)

gamma = (z1-22)/(z1+22)

write (10,*) f,real(gamma),aimag(gamma)
end do

close (10)

do i=1,nt
t = (i-1)*dt+.00001*dt

expon(i) = exp(-deltaxt)
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end do

write(*,*) ’om~2 ?, omO*om0

write(*,*) ’om~2+B~2 = ’,omO*omO+b*b/(ct*ct)

write(*,*) ’delta”2 ’ delta*delta

CASE 1
om0~2 > delta"2
if ((omO*om0) .gt. (delta*delta)) then
write(*,*) "CASE 1"
rlaml = dsqrt(omO*omO-delta*delta)
rlam5 = dsqrt(omO*omO+(b*b/(ct*ct))-delta*delta)
do i=1,nt
t = (i-1)*dt+.00001*dt
call jbess(rlamix*t,2,j2,j2p)
j21h(i) = j2/(rlami*t)
call jbess(rlam5xt,2,j2,j2p)
j22h(i) = j2/(rlam5+t)
call jbess(rlamix*t,1,j1,jlp)
j11h(i) = j1/(rlamix*t)
call jbess(rlamb*t,1,j1,jlp)
j12h(i) = j1/(rlam5*t)
end do

call conv(j1ih,j12h,nt,dt,j1j1)

open(10,file=’gammat.dat’,status=’unknown’)

do i=1,nt
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gammat (i) = expon(i)*(2.d0*(rlami*#*3)*j21h(i)+
2 2.d0*(rlamb**3)*j22h(i)-2.dO*rlami*rlami*rlam5*rlamS*
3 31j1(1))
gammat (i) = -gammat(i)*ct*ct/(b*b)
write(10,*) ((i-1)*dt+.00001*dt)*1.d9,gammat (i)
end do
close(10)
CASE 2
om0~2 + B"2 < delta”2

elseif ((omO*omO+ (b*b/(ct*ct))).1lt.delta*delta) then

write(*,*) "CASE 2"
rlaml = dsqrt(delta*delta-omO*om0)
rlam5 = dsqrt(-omO*omO-(b*b/(ct*ct))+delta*delta)
do i=1,nt

t = (i-1)*dt+.00001*dt

i2 = BESSI(2,rlamil*t)

i21h(i) = i2/(rlami*t)

i2 = BESSI(2,rlam5*t)

i22h(i) = i2/(rlamS*t)

i1l = BESSI(1,rlami*t)

i11h(i) = i1/(rlamixt)

i1 = BESSI(1,rlam5*t)

i12h(i) = i1/(rlam5+*t)

end do
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call conv(ilih,i12h,nt,dt,ilil)

open(10,file=’gammat.dat’,status=’unknown’)
do i=1,nt
gammat (i) = expon(i)*(2.d0*(rlam1**3)*i21h(i)+
2 2.d0*(rlam5**3)*i22h(i)-2.d0O*rlami*rlaml*rlam5*rlam5*
3 i1i1(i))
gammat (i) = -gammat (i)*ct*ct/(b*b)
write(10,*) ((i-1)*dt+.00001*dt)*1.d9,gammat (i)
end do
close(10)
else
CASE 3
om0~2 + B"2 > delta”2 & om0~2 < delta~2

write(*,*) "CASE 3"

rlaml = dsqrt(delta*delta-omO*om0)
rlam5 = dsqrt(omO*omO+(b*b/(ct*ct))-delta*delta)
do i=1,nt

t = (i-1)*dt+.00001*dt

i2 = BESSI(2,rlamix*t)
i21h(i) = i2/(rlami*t)

call jbess(rlamS*t,2,j2,j2p)
j22h(i) = j2/(rlam5+t)

il = BESSI(1,rlaml*t)

i11th(i) = i1/(rlami*t)
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call jbess(rlam5*t,1,j1,jlp)
j12h(i) = j1/(rlamS*t)
end do

call conv(ilih,ji12h,nt,dt,il1j1)

open(10,file=’gammat.dat’,status=’unknown’)
do i=1,nt
gammat (i) = expon(i)*(2.d0*(rlam1**3)*i21h(i)+
2 2.d0*(rlamb5**3)*j22h(i)+2.d0*rlaml*rlami*rlam5*rlam5*
3 11j1(i))
gammat (i) = -gammat(i)*ct*ct/(b*b)
write(10,*) ((i-1)*dt+.00001*dt)*1.d9,gammat (i)
end do
close(10)

endif

end

subroutine conv(f,g,n,del,c)

performs convolution of waveforms f and g using

linear interpolation

parameter (nsize=10000)
parameter (c13=0.33333333333333333333d0,

2 c16=0.16666666666666666666d0)
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implicit real*8 (a-h,o-z)
real*8 f(nsize),g(nsize),c(nsize)
c(1)=0.4d0
do k=2,n
sum = 0.d0
do 1=1,k-1

sum = sum + c13*f(1+1)*g(k-1)

2 + c13*f (1) *g(k-1+1)

3 + c16*f (1) *g(k-1)

4 + c16%f (1+1) *xg(k-1+1)
end do

c(k) = del*sum
end do
return

end

FUNCTION BESSI(N,X)

This subroutine calculates the first kind modified Bessel function
of integer order N, for any REAL X. We use here the classical
recursion formula, when X > N. For X < N, the Miller’s algorithm
is used to avoid overflows.

REFERENCE:

C.W.CLENSHAW, CHEBYSHEV SERIES FOR MATHEMATICAL FUNCTIONS,

MATHEMATICAL TABLES, VOL.5, 1962.
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PARAMETER (IACC = 40,BIGNO = 1.D10, BIGNI = 1.D-10)
REAL *8 X,BESSI,BESSIO,BESSI1,TOX,BIM,BI,BIP
IF (N.EQ.0) THEN

BESSI = BESSIO(X)

RETURN

ENDIF

IF (N.EQ.1) THEN

BESSI = BESSI1(X)

RETURN

ENDIF

IF(X.EQ.0.DO) THEN

BESSI=0.D0

RETURN

ENDIF

TOX = 2.D0/X

[}
o

BIP .DO

BI = 1.D0O

BESSI = 0.DO

M = 2x((N+INT(SQRT(FLOAT(IACC*N)))))

DO 12 J = M,1,-1

BIM = BIP+DFLOAT(J)*TOX*BI
BIP = BI
BI = BIM

IF (ABS(BI).GT.BIGNO) THEN

BI BI*BIGNI

BIP

BIP*BIGNI
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BESSI = BESSI*BIGNI
ENDIF
IF (J.EQ.N) BESSI = BIP
12 CONTINUE
BESSI = BESSI*BESSIO(X)/BI
RETURN

END

! Auxiliary Bessel functions for N=0, N=1

FUNCTION BESSIO(X)

REAL *8 X,BESSIO,Y,P1,P2,P3,P4,P5,P6,P7,

* Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,AX,BX

DATA P1,P2,P3,P4,P5,P6,P7/1.D0,3.5156229D0,3.0899424D0,1.2067429D0
* ,0.2659732D0,0.360768D-1,0.45813D-2/

DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,0.1328592D-1,
* 0.225319D-2,-0.157565D-2,0.916281D-2,-0.2057706D-1,

* 0.2635537D-1,-0.1647633D-1,0.392377D-2/
IF(ABS(X).LT.3.75D0) THEN

Y=(X/3.75D0) **2

BESSIO=P1+Y* (P2+Y* (P3+Y* (P4+Y*(P5+Y*(P6+Y*P7)))))

ELSE

AX=ABS (X)

Y=3.75D0/AX

BX=EXP (AX) /SQRT (AX)

AX=Q1+Y* (Q2+Y* (Q3+Y* (Q4+Y* (Q5+Y* (Q6+Y* (Q7+Y*(Q8+Y*Q9)))))))
BESSIO=AX*BX

ENDIF
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RETURN

END

FUNCTION BESSI1(X)

REAL *8 X,BESSI1,Y,P1,P2,P3,P4,P5,P6,P7,

* Q1,Q2,Q3,Q4,Q5,36,Q7,Q8,Q9,AX,BX

DATA P1,P2,P3,P4,P5,P6,P7/0.5D0,0.87890594D0,0.51498869D0,
* 0.15084934D0,0.2658733D-1,0.301532D-2,0.32411D-3/

DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,-0.3988024D-1,
* -0.362018D-2,0.163801D-2,-0.1031555D-1,0.2282967D-1,
* -0.2895312D-1,0.1787654D-1,-0.420059D-2/

IF(ABS(X) .LT.3.75D0) THEN

Y=(X/3.75D0) **2
BESSI1=X*(P1+Y*(P2+Y* (P3+Y* (P4+Y* (P5+Y* (P6+Y*P7))))))

ELSE

AX=ABS(X)

Y=3.75D0/AX

BX=EXP (AX) /SQRT (AX)

AX=Q1+Y* (Q2+Y* (Q3+Y* (Q4+Y* (Q5+Y* (Q6+Y* (Q7+Y*(Q8+Y*Q9)))))))
BESSI1=AX*BX

ENDIF

RETURN

END

subroutine jbess (x,n,bj,bjp)
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calculates jn and jn’ for n positive or negative

implicit real*8 (a-h,o-z)

if (n .eq. 0) then

bj = bessj(0,x)
bjp = -bessj(1,x)
return

endif

if (n .ge. 0) then

endif

if (x .eq. 0.d0) then

bj = 0.d0

bjpl = bessj(m+1,x)

bjml = bessj(m-1,x)

bjp = (bjmi-bjp1)/2.d0
else

bj = bessj(m,x)

bjl = bessj(m+1,x)

bjp = -bjl + n*bj/x
endif
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if (n .1t. 0) then

bj = bj*(-1)**n
bjp = bjp*(-1)*xn
endif
return
end

FUNCTION BESSJO(X)

implicit real*8 (a-h,o0-z)

REAL*8 Y,P1,P2,P3,P4,P5,Q1,Q02,Q3,Q4,Q35,R1,R2,R3,R4,R5,R6,
* S1,52,S3,54,585,S6

DATA P1,P2,P3,P4,P5/1.D0,-.1098628627D-2, .2734510407D-4,

* -.2073370639D-5, .2093887211D-6/, Q1,Q2,Q3,Q4,Q5/-.1562499995D~
*1,
* .1430488765D-3,-.6911147651D-5, .7621095161D-6,~-.934945152D-7/

DATA R1,R2,R3,R4,R5,R6/57568490574.D0,-13362590354.D0,651619640.7D
*0,
* -11214424.18D0,77392.33017D0,-184.9052456D0/,
* S1,52,S3,54,55,56/57568490411.D0,1029532985.D0,
* 9494680.718D0,59272.64853D0, 267 .8532712D0,1.D0/
IF(ABS(X) .LT.8.)THEN
Y=X*%2

BESSJO=(R1+Y* (R2+Y* (R3+Y* (R4+Y*(R5+Y*R6)))))
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* / (S1+Y* (S2+Y* (S3+Y* (S4+Y* (55+Y*S6)))))
ELSE
AX=ABS(X)
Z2=8./AX
Y=Z#*2
XX=AX-.785398164
BESSJ0=SQRT(.636619772/AX) *(COS(XX) * (P1+Y* (P2+Y* (P3+Y* (P4+Y
* *P5))) ) -Z*SIN(XX) *(Q1+Y* (Q2+Y* (Q3+Y*(Q4+Y*Q5)))))
ENDIF
RETURN

END

FUNCTION BESSJ1(X)

implicit real*8 (a-h,o-z)

REAL#*8 Y,P1,P2,P3,P4,P5,Q1,Q2,Q3,Q4,Q5,R1,R2,R3,R4,R5,R6,

* S1,S2,S3,54,55,56

DATA R1,R2,R3,R4,R5,R6/72362614232.D0,-7895059235.D0,242396853. 1D0

*

* -2972611.439D0,15704.48260D0,-30.16036606D0/,
* S1,52,53,54,55,56/144725228442.D0,2300535178.D0,
* 18583304 .74D0, 99447 .43394D0,376.9991397D0,1.D0/

DATA P1,P2,P3,P4,P5/1.D0, .183105D-2,-.3516396496D-4, .2457520174D-5

*

* -.240337019D-6/, Q1,Q2,Q3,Q4,Q5/.04687499995D0, -.2002690873D-3

*,
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* .8449199096D-5,-.88228987D-6, .105787412D-6/
IF(ABS(X) .LT.8.)THEN
Y=X*%2
BESSJ1=X* (R1+Y* (R2+Y* (R3+Y* (R4+Y* (R5+Y*R6)))))
* / (S1+Y* (S2+Y* (S3+Y* (S4+Y* (S5+Y*S6)))))
ELSE
AX=ABS (X)
Z=8./AX
Y=2Z%%2
XX=AXj2.356194491
BESSJ1=SQRT(.636619772/AX) * (COS(XX)* (P1+Y* (P2+Y* (P3+Y* (P4+Y
* *P5))) ) -Z*SIN(XX) * (Q1+Y* (Q2+Y* (Q3+Y*(Q4+Y*Q5)))))
* *SIGN(1.,X)
ENDIF
RETURN

END

FUNCTION BESSJ(N,X)
implicit real*8 (a-h,o-z)
PARAMETER (IACC=40,BIGN0=1.d10,BIGNI=1.d-10)

if (x .ge. 0.d0) then

ff = 1.d0
else

ff = (-1.d0)**n
end if
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xx = abs(x)
if (n .eq. 0) then
bessj = ff*bessjO(xx)
return
endif
if (n .eq. 1) then
bessj = ff*bessjl(xx)
return
endif
TOX=2./Xx
IF (Xx.GT.FLOAT(N) ) THEN

BJM=BESSJO (Xx)

BJ=BESSJ1(Xx)

DO 11 J=1,N-1
BJP=J*TOX*BJ-BJM
BIM=BJ
BJ=BJP

11 CONTINUE

BESSJ=f£f*BJ

ELSE

M=2x ((N+INT(SQRT (FLOAT(IACC*N))))/2)

BESSJ=0.
JSUM=0
SUM=0.
BJP=0.
BJ=1.

DO 12 J=M,1,-1
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BJM=J*TOX*BJ-BJP
BJP=BJ
BJ=BJM
IF(ABS(BJ) .GT.BIGNO) THEN
BJ=BJ*BIGNI
BJP=BJP*BIGNI
BESSJ=BESSJ*BIGNI
SUM=SUM*BIGNI
ENDIF
IF(JSUM.NE.0) SUM=SUM+BJ
JSUM=1-JSUM
IF(J.EQ.N)BESSJ=BJP
12 CONTINUE
SUM=2.*SUM-BJ
BESSJ=ff*BESSJ/SUM
ENDIF
RETURN

END
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APPENDIX B

FORTRAN CODE FOR OPTICAL TM CASE

program special_TM

implicit none

integer nsize

parameter(nsize = 10000)

real*8

real*8

real*8

real*8

real*8

real*8

realx*8

real*8

BESSI,om0,delta,b,theta,dt,ct,tt,t,pi,df,f,om,YY
rlaml,rlam5,rlame,expon(nsize),gams,temp,terml,term2
i01(nsize),ill(nsize),i15(nsize),i21(nsize),i25(nsize)
illh(nsize),i15h(nsize),i21h(nsize),i25h(nsize),i0i2(nsize)
ilil(nsize),i2i2(nsize),i0il(nsize),i0i0O(nsize),i05(nsize)
c3ft(nsize),c3f_t(nsize),f_t(nsize),temp2(nsize)

c3(nsize) ,ft(nsize) ,gammat (nsize)

c3shift(nsize) ,ftshift(nsize),f_tshift(nsize)

integer i,nt,nf,c3case3,shift

complex*16 z1,z2,s,zj,gamma,zz1,222,s1,s2,s5,s6,zze,se,sf,num

om0

b

delta

theta

4.d416
dsqrt (20.d32)
0.28d16

30.d0

pi = 4.dO*atan(1.d0)
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ct

cos(theta*pi/180.d0)

tt

tan(theta*pi/180.d0)
zj=dcmplx(0.d0,1.d0)
gams = bxb/(tt*tt-1)

c3case3 = 0

shift = 4

df = 8d3

nf = 4096*2*2x*2
nt = 4096

dt = 1.4-18

zz1 = cdsqrt(dcmplx(delta*delta-omO*om0,0.d0))
sl = -deltatzzl
§2 = -delta-zzl
zz2 = cdsqrt(dcmplx(delta*delta-omO*omO-b*b/(ct*ct),0.d0))
s = -delta+zz2
s6 = -delta-zz2
zze = cdsqrt(dcmplx(delta*delta-omO*omO+gams,0.d0))
se = -deltatzze

sf = -delta-zze

open (10,file=’gamma.dat’,status=’unknown’)
do i=1,nf
f = df*i

om = 2.dO*pi*xf*1.d9

104



s = zj*om

z1

cdsqrt(s-s1)*cdsqrt (s-s2)*cdsqrt(s-s5)*cdsqrt (s-s6)

z2 = (s-s1)*(s-s2)+b*b

gamma = (z1-22)/(z1+22)

write (10,*) f,real(gamma),aimag(gamma)
end do
close (10)
do i=1,nt

t = (1-1)*dt+.00001*dt

expon(i) = exp(-deltaxt)

end do

if ((omO*om0) .gt. (delta*delta+gams)) then
write(*,x) "C term 1"
rlame = dsqrt(omO*om0-delta*delta-gams)
do i=1,nt
t = (i-1)*dt+.00001*dt
c3(i) = expon(i)*sin(rlame*t)/rlame
end do
elseif ((omO*om0) .gt. (gams)) then
write(*,*) "C term 2"
rlame = dsqrt(delta*delta-omO*om0O+gams)
do i=1,nt

t = (i-1)*dt+.00001*dt
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c3(i) = expon(i)*sinh(rlame*t)/rlame
end do
else
write(*,*) "C term 3"
rlame = dsqrt(delta*delta-omO*omO+gams)
c3case3 = 1
rlame = dsqrt(delta*delta-omO*omO+gams)
do i=1,nt/shift
t = (i-1-nt/shift)*dt+.00001*dt
c3(i) = -exp((-delta+rlame)*t)/(2.d0O*rlame)
end do
do i=nt/shift+1,nt
t = (i-1-nt/shift)*dt+.00001*dt
c3(i) = -exp(-(delta+rlame)*t)/(2.d0O*rlame)
end do

endif

Case 1: om0~2>delta”2

if ((omO*om0) .gt. (delta*delta)) then
write(*,*) "CASE 1"
rlaml = dsqrt(omO*omO-delta*delta)
rlam5 = dsqrt(omO*omO+(b*b/(ct*ct))-deltaxdelta)
do i=1,nt

t = (i-1)*dt+.00001*dt
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call jbess(rlaml*t,0,i01(i),temp)
call jbess(rlami*t,1,i11(i),temp)
call jbess(rlam5*t,1,i15(i),temp)
call jbess(rlamlxt,2,i21(i),temp)

call jbess(rlamb*t,2,i25(i),temp)

i11th(i) = i11@i)/t

i15h(i) = i156(i)/t

i21h(i) = i21(i)/t

i25h(i) = i25(i)/t
end do

call conv(ilih,il5h,nt,dt,il1il)
call conv(iO1,i15h,nt,dt,i0il1)
do i=1,nt
t = (i-1)*dt+.00001*dt
ft(i) = 2.d0O%expon(i)*(-rlami*rlam5*ilil(i)+rlami*rlaml*
2 i21h(i)+rlam5*rlam5*i25h(i)-b*b*rlam5*i0il(i)+

3 b*b*rlaml*i11(i)+b*b*b*b*sin(rlami*t)/(2.d0*rlami))

elseif ((omO*om0) .1t . (delta*delta-(b*b/(ct*ct)))) then
write(*,*) "CASE 2"
rlaml = dsqrt(delta*delta-omO*om0)
rlamb5 = dsqrt(-omO*omO-(b*b/(ct*ct))+delta*delta)
do i=1,nt

t = (i-1)*dt+.00001*dt
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i01(i) = BESSI(0,rlami*t)
111(i) = BESSI(1,rlamlxt)
115(i) = BESSI(1,rlam5*t)
i21(i) = BESSI(2,rlami*t)
i25(i) = BESSI(2,rlam5*t)
i11h(i) = i11(i)/t
i15h(i) = i15(i)/t
i21h(i) = i21(i)/t
i25h(i) = i25(i)/t
end do

call conv(illh,i15h,nt,dt,il1il)
call conv(i01,i15h,nt,dt,i0il1)
do i=1,nt
t = (i-1)*dt+.00001xdt
ft(i) = 2.dO*expon(i)*(;rlaml*rlamS*ilil(i)+r1am1*rlam1*
2 i21h(i)+rlam5*rlam5*i25h (i) +b*b*rlam6*i0il (i)-

3 b*b*rlam1*i11(i)+b*b*b*b*sinh(rlami*t)/(2.d0*rlam1))

write(*,*) "CASE 3"

rlaml = dsqrt(delta*delta-omO*om0)

rlam5 = dsqrt(omO*omO+(b*b/(ct*ct))-delta*delta)
do i=1,nt

t = (i-1)*dt+.00001*dt
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i01(1)

BESSI(0,rlaml*t)

i11(i) = BESSI(1,rlami*t)

call jbess(rlamb+*t,1,i15(i),temp)
i21(i) = BESSI(2,rlamix*t)

call jbess(rlamS*t,2,i25(i),temp)

i11th(i) = i11(@i)/t

i15h(i) = i15(@(i)/t

i21h(i) = i21(i)/t

i26h(i) = i256(i)/t
end do

call conv(ililh,ilbh,nt,dt,ilil)
call conv(i01,i15h,nt,dt,i0i1)
do i=1,nt

t = (i-1)*dt+.00001*dt

ft(i) = 2.dO*expon(i)*(rlami*rlam5*ilil(i)+rlami*rlamix*

2 i21h(i)+rlam5*rlam5*i25h (i) -b*b*rlam5*i0i1(i)-
3 b*b*rlaml*il11(i)+b*b*b*b*sinh(rlami*t)/(2.d0*rlaml))
end do
endif

term2 = b*b*(tt*tt-1)

if (theta.eq.45.d0) then
call conv(ft,ft,nt,dt,f_t)
do i=1,nt

gammat (i) = -f_t(i)/(b*b*b*b)
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end do
elseif (c3case3.eq.0) then
call conv(c3,ft,nt,dt,c3ft)
do i=1,nt
gammat (i) = (ft(i)+gams*c3ft(i))/term2
temp2(i) = gammat (i)
end do
else
do i=1, (nt/shift)
ftshift(i) = 0
end do
do i=(nt/shift+1),nt
ftshift(i) = ft(i-nt/shift)
end do
call conv(c3,ftshift,nt,dt,c3ft)
do i=1, (nt/shift)
f_tshift(i) = 0
end do
do i=(nt/shift+1),nt
f_tshift(i) = ftshift(i-nt/shift)
end do
do i=1,nt
gammat (i) = (f_tshift(i)+gams*c3ft(i))/term2
end do
endif
open(10,file=’gammat.dat’,status=’unknown’)

do i=1,nt
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if (c3case3.eq.0) then
write(10,*) ((i-1)*dt+.00001*dt)*1.d9,gammat (i)
else
write(10,*) ((i-1-2*nt/(shift))*dt+.00001*dt)*1.d9,
2 gammat (i)
endif
end do
close(10)

end

subroutine conv(f,g,n,del,c)

performs convolution of waveforms f and g using

linear interpolation

parameter (nsize=10000)
parameter (c13=0.33333333333333333333d0,

2 c16=0.16666666666666666666d0)
implicit real*8 (a-h,o0-z)
real*8 f(nsize),g(nsize),c(nsize)
c(1)=0.d0
do k=2,n

sum = 0.d0

do 1=1,k-1

sum = sum + c13*f(1+1)*g(k-1)

2 + c13%f (1) *g(k-1+1)
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3 + c16*f (1) *g(k-1)
4 + c16*f (1+1)*g(k-1+1)
end do
c(k) = del*sum
end do
return

end

FUNCTION BESSI(N,X)

This subroutine calculates the first kind modified Bessel function
of integer order N, for any REAL X. We use here the classical
recursion formula, when X > N. For X < N, the Miller’s algorithm
is used to avoid overflows.

REFERENCE:

C.W.CLENSHAW, CHEBYSHEV SERIES FOR MATHEMATICAL FUNCTIONS,

MATHEMATICAL TABLES, VOL.5, 1962.

PARAMETER (IACC = 40,BIGNO = 1.D10, BIGNI = 1.D-10)
REAL =8 X,BESSI,BESSIO,BESSI1,TOX,BIM,BI,BIP

IF (N.EQ.O) THEN

BESSI = BESSIO(X)

RETURN

ENDIF

IF (N.EQ.1) THEN

112



BESSI = BESSI1(X)
RETURN

ENDIF
IF(X.EQ.0.DO) THEN
BESSI=0.D0

RETURN

ENDIF

TOX = 2.D0/X

BIP

L}
o

.DO

BI = 1.DO

BESSI = 0.DO
M = 2x((N+INT(SQRT(FLOAT(IACC*N)))))

DO 12 J = M,1,-1

BIM = BIP+DFLOAT(J)*TOX*BI
BIP = BI
BI = BIM

IF (ABS(BI).GT.BIGNO) THEN

BI

BI*BIGNI

BIP

BIP*BIGNI
BESSI = BESSI*BIGNI
ENDIF
IF (J.EQ.N) BESSI = BIP
12 CONTINUE
BESSI = BESSI*BESSIO(X)/BI
RETURN

END



! Auxiliary Bessel functions for N=0, N=1
FUNCTION BESSIO(X)
REAL *8 X,BESSsIO,Y,P1,P2,P3,P4,P5,P6,P7,
* Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,AX,BX
DATA P1,P2,P3,P4,P5,P6,P7/1.D0,3.5156229D0,3.0899424D0,1.2067429D0
* ,0.2659732D0,0.360768D-1,0.45813D-2/
DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,0.1328592D-1,
* 0.225319D-2,-0.157565D-2,0.916281D-2,-0.2057706D-1,
* 0.2635537D-1,-0.1647633D-1,0.392377D-2/
IF(ABS(X).LT.3.75D0) THEN
Y=(X/3.75D0) **2
BESSIO=P1+Y*(P2+Y* (P3+Y* (P4+Y* (P5+Y* (P6+Y*P7)))))
ELSE
AX=ABS (X)
Y=3.75D0/AX
BX=EXP (AX) /SQRT (AX)
AX=Q1+Y* (Q2+Y* (Q3+Y* (Q4+Y* (Q5+Y* (Q6+Y* (Q7+Y*(Q8+Y*Q9)))))))
BESSIO=AX*BX
ENDIF
RETURN

END

FUNCTION BESSI1(X)

REAL *8 X,BESSI1,Y,P1,P2,P3,P4,P5,P6,P7,

* Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,AX,BX

DATA P1,P2,P3,P4,P5,P6,P7/0.5D0,0.87890594D0,0.51498869D0,

* 0.15084934D0,0.2658733D-1,0.301532D-2,0.32411D-3/
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DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,-0.3988024D-1,
* -0.362018D-2,0.163801D-2,-0.1031555D-1,0.2282967D-1,

* -0.2895312D-1,0.1787654D-1,-0.420059D-2/

IF(ABS(X) .LT.3.75D0) THEN

Y=(X/3.75D0) **2

BESSI1=X* (P1+Y* (P2+Y* (P3+Y* (P4+Y*(P5+Y*(P6+Y*P7))))))

ELSE

AX=ABS(X)

Y=3.75D0/AX

BX=EXP (AX) /SQRT (AX)

AX=Q1+Y* (Q2+Y* (Q3+Y* (Q4+Y* (Q5+Y* (Q6+Y* (Q7+Y*(Q8+Y*Q9)))))))
BESSI1=AX*BX

ENDIF

RETURN

END

subroutine jbess (x,n,bj,bjp)

calculates jn and jn’ for n positive or negative

implicit real*8 (a-h,o-2z)

if (n .eq. 0) then

bj bessj(0,x)

bjp = -bessj(1,x)
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return

endif

if (n .ge. 0) then

endif

if (x .eq. 0.d0) then

bj = 0.d0

bjpl = bessj(m+1,x)

bjml = bessj(m-1,x)

bjp = (bjmi-bjp1)/2.d0
else

bj = bessj(m,x)

bjl = bessj(m+1,x)

bjp = -bjl + n*bj/x
endif

if (n .1t. 0) then

bj = bj*(-1)**n
bjp = bjp*(-1)**n
endif
return
end
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FUNCTION BESSJO(X)

implicit real*8 (a-h,o0-2)

REAL*8 Y,P1,P2,P3,P4,P5,Q1,Q2,Q3,Q4,Q5,R1,R2,R3,R4,R5,R6,
* S1,S2,53,54,S85,36

DATA P1,P2,P3,P4,P5/1.D0,-.1098628627D-2, .2734510407D-4,

* -.2073370639D-5, .2093887211D-6/, Q1,Q2,Q3,Q4,Q5/-.1562499995D~
*1,
* .1430488765D-3,-.6911147651D-5, .7621095161D-6,-.934945152D-7/

DATA R1,R2,R3,R4,R5,R6/57568490574.D0,-13362590354.D0,651619640.7D
*0,
* -11214424.18D0,77392.33017D0,-184.9052456D0/,
* S1,52,53,54,55,586/57568490411.D0, 1029532985 .D0,
* 9494680.718D0,59272.64853D0, 267 .8532712D0,1.D0/
IF(ABS(X).LT.8.)THEN
=X*%2
BESSJO=(R1+Y* (R2+Y*(R3+Y*(R4+Y* (R5+Y*R6)))))
* / (S1+Yx (S2+Y* (S3+Y* (S4+Y*(S5+Y*S6)))))
ELSE
AX=ABS (X)
Z=8./AX
Y=Z*%2
XX=AX-.785398164
BESSJO=SQRT(.636619772/AX) * (COS(XX) * (P1+Y* (P2+Y* (P3+Y* (P4+Y

* *P5))) ) -Z*SIN(XX) *(Q1+Y* (Q2+Y* (Q3+Y*(Q4+Y*Q5)))))
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ENDIF
RETURN

END

FUNCTION BESSJ1(X)

implicit real*8 (a-h,o-z)

REAL*8 Y,P1,P2,P3,P4,P5,Q1,Q2,Q3,0Q4,Q5,R1,R2,R3,R4,R5,R6,
* S51,52,83,54,585,S6

DATA R1,R2,R3,R4,R5,R6/72362614232.D0,~-7895059235.D0,242396853. 1D0

*’

* -2972611.439D0,15704.48260D0,-30.16036606D0/ ,
* S1,82,83,54,55,56/144725228442.D0,2300535178.D0,
* 18583304 .74D0, 99447 .43394D0, 376.9991397D0, 1.D0/

DATA P1,P2,P3,P4,P5/1.D0, .183105D-2,-.3516396496D-4, .2457520174D-5

*

* -.240337019D-6/, Q1,Q2,Q3,Q4,Q5/.04687499995D0, -.2002690873D-3

*

’

* .8449199096D-5,-.88228987D-6, . 105787412D-6/
IF(ABS(X) .LT.8.)THEN
Y=X**2

BESSJ1=X* (R1+Y* (R2+Y* (R3+Y* (R4+Y* (R5+Y*R6)))))

* /(S1+Y* (S2+Y* (S3+Y* (S4+Y* (S5+Y*S6)))))
ELSE
AX=ABS (X)
2=8./AX
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Y=Z#%2
XX=AX-2.356194491
BESSJ1=SQRT(.636619772/AX) * (COS (XX) * (P1+Y* (P2+Y* (P3+Y* (P4+Y
* *P5))) ) -Z*SIN(XX) * (Q1+Y*(Q2+Y* (Q3+Y*(Q4+Y*Q5)))))
* *SIGN(1.,X)
ENDIF
RETURN

END

FUNCTION BESSJ(N,X)
implicit real*8 (a-h,o0-2z)
PARAMETER (IACC=40,BIGNO=1.d10,BIGNI=1.d-10)

if (x .ge. 0.d0) then

ff = 1.d0
else

ff = (-1.d0)**n
end if

xx = abs(x)
if (n .eq. 0) then
bessj = ffxbessjo(xx)
return
endif
if (n .eq. 1) then
bessj = ffxbessjl(xx)

return
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endif
TOX=2./Xx
IF(Xx.GT.FLOAT(N) ) THEN

BJM=BESSJO(Xx)

BJ=BESSJ1(Xx)

DO 11 J=1,N-1
BJP=J*TOX*BJ-BJM
BJM=BJ
BJ=BJP

11 CONTINUE

BESSJ=ff*BJ

ELSE

M=2% ((N+INT(SQRT (FLOAT(IACC*N))))/2)

BESSJ=0.

JSUM=0

SUM=0.

BJP=0.

BJ=1.

DO 12 J=M,1,-1
BJIM=J*TOX*BJ-BJP
BJP=BJ
BJ=BJM
IF(ABS(BJ) .GT.BIGNO) THEN

BJ=BJ*BIGNI
BJP=BJP*BIGNI
BESSJ=BESSJ*BIGNI

SUM=SUM*BIGNI
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ENDIF
IF (JSUM.NE. 0) SUM=SUM+BJ
JSUM=1-JSUM
IF(J.EQ.N)BESSJ=BJP
12 CONTINUE
SUM=2.*SUM-BJ
BESSJ=f£*BESSJ/SUM
ENDIF
RETURN

END
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APPENDIX C

FORTRAN CODE FOR GENERAL TE CASE

program general TE

implicit none

integer nsize

parameter(nsize = 50000)

real*8 BESSI,omO,delta,b,theta,dt,ct,tt,t,pi,df,f,om,YY
real*8 rmur,epsinf,st,rkap,f1,f2

real*8 rlaml,rlam5,rlama,expon(nsize),gams,temp

real*8 illh(nsize),i15h(nsize),i15(nsize),ill1(nsize)
real*8 i21h(nsize),i25h(nsize),ilil(nsize)

real*8 c3ft(nsize),c3shift(nsize),ftshift(nsize)

real*8 c3(nsize),ft(nsize),gammat(nsize)

integer i,nt,nf,c3case3,shift

complex*16 z1,z2,s,zj,gamma,zzl,z22,s1,s2,s85,s6

rmur = 1.d0

epsinf = 2.d0

om0 4.d11

b

6.24d11
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delta = 2.5d10

theta = 60.40

pi = 4.d0*atan(1.d0)

ct = cos(theta*pi/180.d0)
st = sin(theta*pi/180.d0)
tt = tan(theta*pi/180.d0)

zj=dcmplx(0.d0,1.d0)

c3case3 = 0

shift = 8

rkap = dsqrt(rmur*epsinf-st*st)

gams = omO*omO- (rmur*b*b)/(rmur*rmur*ct*ct-rkap#*rkap)
f1 = 2.dO*rkap*rmur*ct/(rmur*ct+rkap)

f2 = f1/(rmur*rmur*ct*ct-rkap*rkap)

df = 0.4d0

nf = 4095%2

nt = 4096%*2

dt = 2.d-13

write(*,*) omO*om0O

write(*,*) deltaxdelta-rmur*b*b/(rkap*rkap)

zz1 = cdsqrt(dcmplx(delta*delta-omO*om0,0.d0))

sl = -deltatzzl

s2 = -delta-zzl

zz2 = cdsqrt(dcmplx(delta*xdelta-omO*omO-rmur*b*b/(rkap*rkap),0.d0))
s5 = -delta+zz2

s6 = -delta-zz2
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Frequency Domain Reflection Coefficient (gamma.dat)

open (10,file=’gamma.dat’,status=’unknown’)

do i=1,nf

f = df=*i

om = 2.d0*pi*f*1.d9

S=

zl

z2

zj*om

rmur*ct*cdsqrt(s-s1)*cdsqrt(s-s2)

rkap*cdsqrt (s-s5) *cdsqrt (s-s6)

gamma = (z1-22)/(z1+z2)-(rmur*ct-rkap)/(rmur*ct+rkap)

write (10,*) f,real(gamma),aimag(gamma)

end do

close (10)

do i=1,nt

t = (i-1)*dt+.00001*dt

expon(i) = exp(-deltaxt)

end do

—————,—_——_—_— i, , e, —, e ——————————— e —————

if (gams.gt. (delta*delta)) then

write(*,*) "C term 1"

rlama = dsqrt(gams-delta*delta)

do i=1,nt
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t = (i-1)*dt+.00001*dt
c3(i) = expon(i)*sin(rlama*t)/rlama
end do
elseif (0.gt.gams) then
write(*,*) "C term 3"
rlama = dsqrt(delta*delta-gams)
c3case3 = 1
do i=1,nt/shift
t = (i-1-nt/shift)*dt+.00001*dt
c3(i) = -exp((-delta+rlama)*t)/(2.d0O*rlama)
end do
do i=nt/shift+1,nt
t = (i-1-nt/shift)*dt+.00001*dt
c3(i) = -exp(-(delta+rlama)#t)/(2.d0*rlama)

end do

else
write(*,*) "C term 2"
rlama = dsqrt(delta*delta-gams)
do i=1,nt
t = (i-1)*dt+.00001*dt
c3(i) = expon(i)*sinh(rlama*t)/rlama

end do

Calculate G Term
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Case 1: om0~"2>delta"”2

if ((omO*om0) .gt. (delta*delta)) then
write(*,*) "CASE 1"
rlaml = dsqrt(omO*omO-delta*delta)
rlam5 = dsqrt(omO*omO+(rmur*b*b/(rkap*rkap))-delta*delta)
do i=1,nt
t = (i-1)*dt+.00001*dt
call jbess(rlami*t,1,i11h(i),temp)
call jbess(rlamb*t,1,i15(i),temp)
call jbess(rlamix*t,2,i21h(i),temp)

call jbess(rlam5*t,2,i25h(i),temp)

i11h(i) = i11h(i)/t

i15h(i) = i15(i)/t

i21h(i) = i21h(i)/t

i256h(i) = i25h(i)/t
end do

call conv(ililh,i15h,nt,dt,il1il)
do i=1,nt
ft(i) = expon(i)*(rmur*ct+rkap)*(-rlami*rlam5*ilil(i)+

2 rlami*rlami*i21h(i)+rlam5*rlam5*i25h(i))

elseif ((omO*om0).1t.(delta*delta-(rmur*b*b/(rkap*rkap)))) then
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write(*,*) "CASE 2"

rlaml = dsqrt(delta*delta-omO*om0)
rlamb = dsqrt(delta*delta-omO*omO-rmur*b*b/(rkap*rkap))
do i=1,nt

t = (i-1)*dt+.00001*dt

i11(i) = BESSI(1,rlami*t)
i15(i) = BESSI(1,rlam5*t)
i21h(i) = BESSI(2,rlamix*t)
i25h(i) = BESSI(2,rlam5xt)
i11th(i) = i11(i)/t

i15h(i) = i15(i)/t

i21h(i) = i21h(i)/t
i26h(i) = i25h(i)/t

end do

call conv(ilih,ii5h,nt,dt,ilil)
do i=1,nt
ft(i) = expon(i)*(rmur*ct+rkap)*(-rlami*rlamb*il1il1(i)+

2 rlami*rlami*i21h(i)+rlam5*rlam5*i25h(i))

write(*,*) "CASE 3"

rlaml = dsqrt(delta*delta-omO*om0)
rlam5 = dsqrt(omO*omO+(rmur*b*b/(rkap*rkap))-delta*delta)
do i=1,nt
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t = (i-1)*dt+.00001*dt

i11h(i) = BESSI(1,rlami#*t)

call jbess(rlamS5+t,1,i15(i),temp)
i21h(i) = BESSI(2,rlamlx*t)

call jbess(rlam5xt,2,i25h(i),temp)

i11h(i) = i11h(i)/t

i15h(i) = i15(i)/t

i21h(i) = i21h(i)/t

i25h(i) = i25h(i)/t
end do

call conv(ilih,il5h,nt,dt,il1il)
do i=1,nt
ft(i) = expon(i)*(rmur*ct+rkap)*(rlami*rlamS*ili1(i)+
2 rlaml*rlami*i21h(i)+rlam5*rlam5*i25h(i))
end do

endif

YY = (rmur*b#b)*(rkap-rmur*ct)/(2.d0*rkap*rkap)
if (ct.eq.rkap/rmur) then
write(*,*) ’Special Denom’
do i=1,nt
gammat (i) = -f1*ft(i)/(rmur*b*b)
end do
elseif (c3case3.eq.0) then

call conv(c3,ft,nt,dt,c3ft)
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do i=1,nt
gammat (i) = £2x(c3ft(i)+YY*c3(i))
end do
else
write(*,*) ’non-causal’
do i=1,(nt/shift)
ftshift(i) = 0
end do
do i=(nt/shift+1),nt
ftshift(i) = ft(i-nt/shift)
end do
call conv(c3,ftshift,nt,dt,c3ft)
do i=1,(nt/shift+1)
c3shift(i) = 0
end do
do i=(nt/shift+2),nt
c3shift(i) = c3(i-nt/shift-1)
end do
do i=1,nt
gammat (i) = f£2*(c3ft(i)+YY*c3shift(i))
end do

endif

open(10,file=’gammat.dat’,status=’unknown’)
do i=1,nt
if (c3case3.eq.0) then

write(10,*) ((i-1)*dt+.00001%dt)*1.d9,gammat (i)

129



else
write(10,*) ((i-1-2*nt/(shift))*dt+.00001*dt)*1.d9,gammat (i)
endif
end do

close(10)

end

subroutine conv(f,g,n,del,c)

performs convolution of waveforms f and g using

linear interpolation

parameter (nsize=10000)
parameter (c13=0.3333333333333333333340,

2 c16=0.1666666666666666<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>