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ABSTRACT 

 

ADOPTION OF NEXT-GENERATION 16S BACTERIAL SEQUENCNG PRACTICES 

FOR THE FORENSIC ANALYSIS OF SOIL 

 

By  

 

Ellen Marie Jesmok 

 

Soil has the potential to link items or individuals to a crime scene; however, the nature of 

traditional forensic soil analysis does not typically allow for its individualization. Rather than 

develop an entirely new methodology, it is more logical to adopt next-generation sequencing of 

the bacterial 16S ribosomal RNA gene, a well-established, scientifically validated technique in 

microbiology, for the forensic analysis of soil. Next-generation sequencing was employed to 

generate bacterial profiles from soils collected in ten diverse and nine similar habitats, across 

time and space within three habitats, and from various evidentiary items. Bacterial abundance 

charts, nonmetric multidimensional scaling, and a supervised classification technique were used 

to analyze profiles. Soils from diverse and similar habitats were largely differentiated from one 

another, with bacterial profiles separating in multidimensional space and/or being correctly 

assigned to their location of origin. Time and space within a habitat affected bacterial profile 

similarity; however, not enough to prevent the traceability of soils. Bacterial profiles from 

evidentiary items were correctly classified to their location of origin over a full year of storage, 

regardless of evidentiary type or storage temperature. These studies highlight the utility of next-

generation sequencing and a combination of robust bacterial profile statistical methods for 

forensic soil analysis while also emphasizing the adoption of established techniques from other 

scientific disciplines to strengthen forensic science as a whole. 
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INTRODUCTION 

Soil can become evidence in a criminal investigation when a crime occurs in an outdoor 

location or it is collected from clothing, shoes, tires, or other items connected with a crime. The 

association of such evidentiary soil samples with a location of origin has the potential to link a 

suspect or victim to the scene (Dawson and Hillier, 2010). Soil has been involved in criminal 

investigations as far back as the 1800s, when a visual comparison of sand was used to link a 

barrel that had once been filled with silver to a specific train station on the Prussian railroad, 

resulting in a conviction (Scientific American, 1856). Traditional forensic techniques for soil 

analysis, similar to those used in the silver theft case, involve the examination of class 

characteristics such as grain size, color, pH, and moisture content (Murray and Solebello, 2002; 

Saferstein, 2002; Ruffell, 2010). Soil containing very rare attributes may be highly probative; 

however, the comparison of soils using these techniques is time consuming and often does not 

result in definitive associations. Additionally, many such examinations are visual comparisons, 

with similarity being subjectively judged. Given this, the need for a more objective, robust 

forensic soil analysis method that allows for stronger sample association and potentially location 

of origin assignment is evident. 

 

Ideal Elements of a Forensic Evidence Association Technique 

A National Academy of Sciences (NAS) committee published a report in 2009 assessing 

the strength of current forensic methods and technologies (National Research Council). The main 

message was one of great concern; many forensic disciplines were criticized for their inability to 

statistically link or individualize evidentiary items in an objective manner. Pattern evidence was 

regarded as especially weak in the report, as associations between evidentiary items were based 
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largely on human interpretation. The lack of established, objective scientific methods is contrary 

to the 1993 Daubert v. Merrell Dow Pharmaceuticals, Inc. ruling (509 U.S. 579), in which an 

expert’s “principles and methodology” must be based upon “scientific validity” to be acceptable 

in court.  

 Forensic methodologies should possess several elements in addition to objectivity, many 

of which were mentioned in the NAS report. One of these attributes, important to all scientific 

methods, is reproducibility. Multiple scientists may analyze the same evidence in a criminal 

investigation and their conclusions might differ if a technique is not reproducible, lowering its 

probative value and chances of gaining court acceptance. Associated with reproducibility is the 

availability and standardization of methodologies. This includes access to and acceptance of 

analysis and statistical procedures. Not all crime laboratories have the resources to purchase 

expensive analytical equipment. Additionally, a new analysis process has to be validated, 

technicians have to be trained, and in some cases databases need to be created before any data for 

criminal investigations are produced. Again, different experts may analyze the same piece of 

evidence, and all of these processes must be standardized to ensure the same conclusions are 

reached. 

Another important quality of a scientific analysis technique specific to forensic science is 

layperson interpretability. Following data production and analysis, a forensic scientist might be 

called to testify on their results. This presents a challenge if the analysis process is overly 

complicated, as a judge or jury may not be able to easily understand how association or 

discrimination between samples was achieved, nor the strength of a scientist’s conclusions. The 

ability to display data in a way that intuitively demonstrates how a conclusion was reached or 
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what the results mean for the particular case can prove advantageous for the non-scientist’s 

comprehension in a court of law. 

 Current forensic methods to analyze soil possess some of the above qualities, but not all. 

A few traditional techniques are objective (e.g., pH measurements and elemental analysis); 

however, these measurements only provide class characteristics and can be time consuming, 

limiting their overall value. Such techniques are easily interpreted by laypersons, but definitive 

association between two soil samples is unlikely. There are three possible avenues that could be 

taken to improve forensic soil analysis: expand upon the traditional techniques, develop an 

entirely new methodology, or adopt already established techniques from another scientific 

discipline. The latter represents an interesting option because it could allow for a departure from 

the largely subjective traditional methods for the forensic examination of soil while avoiding the 

long process of developing a novel methodology. Additionally, there are several disciplines that 

currently analyze different aspects of soils, offering multiple options for adoption into forensic 

science. Experts in the fields of microbiology, agricultural biology, ecology, and geology have 

different soil analysis goals than forensic science; however, their methodologies are well-studied 

and might allow for the development of stronger associations between known and questioned 

soil samples than traditional forensic analysis. Microbiologists in particular have established 

techniques for the comparison of soils, and the adoption of their practices offers a possible 

approach to satisfy the recommendations of the NAS report, making soil evidence more 

valuable. 
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Microbiological Techniques for Soil Analysis  

Microbiologists characterize soil types by analyzing the living organisms within, 

including plants, small eukaryotes, fungi, and bacteria. The latter is the most numerous in soil; 

one gram contains between 4 x 107 and 2 x 109 bacteria, which vary widely in diversity and 

species abundance (Daniel, 2005), providing massive amounts of information from small 

amounts of soil. Woese and Fox (1977) pioneered the use of 16S ribosomal RNA (rRNA) gene 

analysis for constructing bacterial phylogenies. This marker is conserved across bacteria and 

archaea but contains variable regions (Figure 1) that can be used to identify bacteria down to 

species. Two decades later, Liu et al. (1997) described terminal restriction fragment length 

polymorphism (T-RFLP) analysis, which can be employed to generate a snapshot of the 

microbial community within a sample (a microbial profile) via DNA amplification, restriction 

enzyme digestion, and electrophoresis. The resultant electropherograms or autoradiographs are 

compared to estimate microbial similarities among samples. Since then, T-RFLP analysis of the 

16S rRNA gene has been widely used in both the microbiological (e.g., Fierer and Jackson, 

2006) and forensic fields (e.g., Horswell et al., 2002; Meyers and Foran, 2008; Lenz and Foran, 

2010) to generate soil bacterial profiles. Unfortunately, the massive number of bacterial species 

in soil and the limited resolving power of T-RFLP makes its forensic utility limited. Several 

different types of bacteria may share the same restriction site, resulting in an underrepresentation 

of diversity in a given profile. Additionally, background noise due to drop-in, which can occur 

when DNA is only partially digested, poses difficulties for microbial profile comparison (Egert 

and Friedrich, 2003). Given these problems, it is apparent that forensic analysis of soils based on 

their bacterial makeup requires the production of more complete and higher resolution data. 
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Figure 1—The 1500 base pair 16S rRNA gene showing conserved regions (black segments) and 

variable regions (green segments). Base pair ranges (Yarza et al., 2014) are shown above or 

below the respective variable region.  

 

Next-generation sequencing of the 16S rRNA gene, first described by Jonasson et al. 

(2002), represents an extremely robust methodology for bacterial identification that does not 

suffer from the resolution and reproducibility weaknesses of past techniques. It is now used 

extensively by microbiologists for bacterial community analysis (e.g., Kravchenko et al., 2014; 

Luo et al., 2014), and large bacterial sequence reference databases have been created (e.g., Cole 

et al., 2004; Quast et al., 2013), providing classification of bacteria at taxonomic levels from 

phylum to species. Classification based on the entire 16S rRNA gene is ideal; however, many 

next-generation technologies do not allow for full 16S sequencing, and the choice of which 

variable region(s) to sequence depends on the capacities of the platform used, ranging from 100 

to 900 base pairs (reviewed by Liu et al., 2012; Quail et al., 2012). The nine variable regions of 

the 16S gene confer different amounts of bacterial classification coverage at the sequence and/or 

taxonomic levels based on their levels of sequence diversity. Studies measuring the taxonomic 

classification accuracy of each variable region or combinations of regions (e.g., Yu and 

Morrison, 2004; Chakravorty et al., 2007) have shown V3 to be the most informative, having 

higher sequence diversity than other regions. Additionally, this region can be easily sequenced 

16S Ribosomal RNA Gene

V1 V2 V3 V4 

                   137 – 242                                          576 – 682                                  986 – 1043             1243 – 1294  

V5 V6 V7 V8 V9 

      69 – 99                                     433 – 497                                   822 – 879                    1117 – 1173               1435 – 1456 
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due to its moderate size (Figure 1), making it an excellent target for forensic science. Mizrahi-

Man et al. (2013) sequenced V1, V3 – V7, and V9 to determine which provided the highest level 

of bacterial differentiability, finding regions V3 and V4 conferred the greatest classification 

coverage, and paired sequencing of both regions was suggested as the most effective method for 

bacterial profile generation. 

Several next-generation sequencing platforms exist, including ion-semiconductor 

sequencing (Life Technologies, Carlsbad, CA), pyrosequencing (e.g., Roche, San Francisco, 

CA), or Illumina sequencing by synthesis (San Diego, CA). Loman et al. (2012) compared the 

performance of these three platforms in sequencing an E.coli isolate and found the latter 

produced the lowest error rate and highest throughput. Illumina sequencing by synthesis has 

since been used to produce bacterial profiles from several different media (e.g., Bokulich et al., 

2012; Maughan et al., 2012; Ward et al., 2013). Caporaso et al. (2012) used an Illumina 

HiSeq2000 and MiSeq to generate bacterial profiles from 24 different environments including 

the human gut, skin, and soil, but its forensic value for soil characterization was not examined. 

The reason behind the sequencing efficiency of Illumina technology may come from its cluster 

generation and sequencing by synthesis technology. Rather than beginning DNA sequencing 

immediately after a sample is placed in the machine, the Illumina platform first amplifies each 

DNA strand, forming clusters of identical sequences. Millions of these DNA clusters are then 

simultaneously sequenced, producing massive datasets from each sequencing run. The 

advantages of this method include the ability to sequence more than 95 samples concurrently and 

produce read lengths of up to 500 base pairs (www.Illumina.com), which is sufficient to 

sequence the informative V3 and V4 regions of the bacterial 16S rRNA gene. 

 

http://www.illumina.com/
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Past Forensic Soil Research 

 Microbiologists have already developed robust, well-studied methodologies for soil 

analysis via generation and interpretation of bacterial profiles. These techniques have the 

potential to increase the value of forensic soil evidence; however, factors that influence such 

profiles must first be considered. The main goal of forensic soil analysis is to associate or 

discriminate samples from two sources: an evidentiary item and a crime scene. While variability 

among locations (of both diverse and similar habitat type) is necessary to distinguish forensic 

soils, variability within a habitat may result in the generation of differing bacterial profiles and 

potentially prevent association of evidentiary soil with its location of origin. Known soil samples 

will not be collected at the same time or in the exact same place as an evidentiary soil, making 

knowledge of temporal and spatial bacterial variation within a location important. Additionally, 

exposure to various items (e.g., tools, clothing, or weapons) and/or time in storage could affect 

soil bacterial profiles, resulting in false exclusions when soils originated from the same location.  

Many profile generation techniques have been utilized to assess bacterial variation in past 

forensic research, detecting differences across habitats as well as over time and space. T-RFLP 

analysis is the most prevalent technique for bacterial profiling in the forensic soil literature. 

Horswell et al. (2002) exposed shoes and clothing to soil at a hypothetical crime scene and used 

T-RFLP analysis to generate bacterial profiles from soil on the evidentiary items, from the scene, 

and from three different locations of similar habitat type immediately following exposure and 

again after eight months. Similarity values were calculated based on shared T-RFLP peak 

presence or absence. Peaks were defined as over 150 relative fluorescence units (RFUs) and 

were regarded as identical if they differed by one base or less. They found that soil originating 

from the same location produced bacterial profiles more similar to one another than profiles from 
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other locations; however, samples collected after eight months in these same locations produced 

dissimilar profiles, showing temporal bacterial variation exists. Temporal changes could prevent 

the forensic scientist from making associations between two soil samples if the knowns are 

collected long after a crime occurs. Heath and Saunders (2006) generated bacterial T-RFLP 

profiles from soil collected at five points within three distinct habitats to assess spatial variation. 

Each sample was divided into three subsamples and DNA was extracted separately to determine 

the reproducibility of T-RFLP analysis. Again, the shared presence or absence of peaks (over 25 

RFUs) were used to calculate similarities between profiles; however, only peaks that differed by 

less than 0.5 bases were considered shared, and DNA quantity within each T-RFLP profile was 

standardized based on the smallest total relative fluorescence across replicate subsamples before 

analysis. Additionally, hierarchical cluster analysis (Ward, 1963) was employed to group profiles 

based on relative similarity. The five soil samples collected in each location were more similar to 

one another than soils across habitats, but the reproducibility of T-RFLP bacterial profiles among 

replicate subsamples was only 67.6%, indicating this method may not be effective in forensic 

science where results must be reproducible. Meyers and Foran (2008) employed T-RFLP 

analysis to generate bacterial profiles from five diverse habitats over one year and from soil 10 

feet in the cardinal directions within each habitat every three months to assess temporal and 

spatial variation. T-RFLP profiles were compared by calculating similarity based on normalized 

profiles, including only shared peaks over 50 RFUs. Their results mirrored those of past studies: 

the greatest similarity values were between soils collected from the same location, but the 

bacterial content of the soil varied across time. Spatial factors also lowered profile similarity 

slightly; however, soils within a habitat were usually more similar than soils across habitats. The 

reliability of T-RFLP for forensic analysis was also questioned in Meyers and Foran’s research, 
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as the normalization of the data or number of peaks included in similarity calculations can affect 

associations. Although T-RFLP analysis may lack the resolution and repeatability desired for a 

forensic technique, these studies demonstrate the potential of using microbial populations within 

the soil to associate two samples. 

 The advent of next-generation sequencing techniques and their application in the 

microbiological world has also influenced forensic soil analysis research. Young et al. (2014) 

used next-generation sequencing in their assessment of which soil microbes confer the highest 

distinguishability of soils and therefore have the highest forensic potential. They compared the 

reproducibility and resolution of multiple molecular markers in distinguishing soils collected 

from two habitats. Portions of the bacterial 16S rRNA gene, eukaryotic 18S rRNA gene, a 

chloroplast tRNA gene intron (trnL), and a fungal spacer between two RNA subunits (internal 

transcribed spacer [ITS]) were amplified and sequenced using an Ion Torrent Personal Genome 

Machine™ (Life Technologies). All markers allowed for discrimination of the two sites, 

however the ITS marker exhibited the highest profile reproducibility among both replicates from 

the same collection and replicates collected 1 meter apart within a habitat. ITS profiles also 

contained the lowest diversity; however, it and the eukaryotic 18S rRNA gene provided the most 

accurate sample discrimination. Additionally, analysis of the 16S rRNA gene was recommended 

for use in the discrimination of locations on a small scale, such as at short distances within 

habitats, due to the heterogeneous nature of soil bacteria. However, only 150 to 250 base pairs of 

each marker were sequenced, limiting their potential discriminatory power for soil analysis. 

Additionally, no assessment of microbial profiles across time and larger spaces was carried out, 

factors that may influence each group of microorganisms differently. 
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Soil will most often be recovered from evidentiary items in a forensic scenario, and it is 

crucial to determine whether such samples will produce microbial profiles that can be traced to a 

location of origin. Young et al. (2015) sequenced 200 base pairs of the eukaryotic 18S rRNA 

gene in an investigation of soil evidence traceability. A mock crime scenario was developed in 

which a body had been left on a roadside. A hypothetical suspect was identified, claiming to 

have never been at the crime scene; however, a soil covered shovel and pair of shoes were found 

in the trunk of his car 6 weeks after the body was discovered. Two soil samples were collected 

from the shoes, three were collected from the shovel, and one was collected from the trunk of the 

vehicle. Soil was also collected at the roadside where the body was located as well as three 

samples 5 meters from the center site. Additionally, soil was collected in triplicate from six other 

locations, three of similar and three of different habitat type. Resulting eukaryotic profiles were 

ordinated in non-constrained multidimensional scaling plots, and statistically compared through 

pairwise comparisons and analysis of similarities (Clarke, 1993). Evidentiary soil samples 

clustered near the crime scene samples in multidimensional space and were the most similar as a 

group to that site; however, some profile variation was obvious in those samples.  

 These studies highlight the potential of next-generation sequencing for forensic soil 

analysis, while also stressing the importance of considering various factors that might affect 

microbial profile composition in soil (e.g., time, space, and storage). However, these researchers 

did not measure the full potential of bacterial profiling for forensic soil analysis. Higher levels of 

distinguishability may be achieved if longer stretches of DNA are sequenced, allowing for 

differentiation of very similar taxa. Additionally, further studies assessing profile change after 

storage of soil on evidentiary items for longer periods of time and in various conditions are 

necessary to understand how bacteria will behave in forensic scenarios.  
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Statistical comparisons of microbial profiles differed in the above studies, with several 

requiring subjective data interpretation (e.g., multidimensional scaling) and others providing 

more objective statistical discrimination among groups of samples (e.g., analysis of similarities). 

However, no authors specifically mention if any of these statistical methods would be useful for 

forensic analysis. Hopkins (2014) aimed to identify next-generation sequencing data analysis 

techniques found in the microbiological literature that have potential to meet the demands of 

forensic bacterial profile comparison. He generated bacterial profiles from replicate soil samples 

taken at the surface and at various depths within a habitat, and at a central location within three 

habitats over one year. Additionally, soil samples were collected 5 to 100 feet from the central 

location in each of the cardinal directions. Statistical analysis methods used to compare bacterial 

profiles included: bacterial abundance charts (Whittaker, 1965), hierarchical cluster analysis 

(Ward, 1963), two types of pairwise comparisons (UniFrac; Lozupone and Knight, 2005 and ∫-

LIBSHUFF; Schloss et al., 2004), nonmetric multidimensional scaling (NMDS; Kruskal, 1964), 

and k-Nearest Neighbor (k-NN; Cover and Hart, 1967). Three of the analysis techniques stood 

out as potential forensic options, as they possessed at least one of the traits desired in a 

scientifically robust forensic analysis method. Ideally, bacterial profile analysis would combine 

many statistical qualities, allowing for objective association of soil samples while also being 

easily interpreted by a lay audience. Abundance charts, NMDS, and k-NN were employed in the 

current research for bacterial profile analysis based on their abilities to associate soils collected 

in the same location and produce easily interpretable data depictions. 
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Soil Bacterial Profile Analysis Methods 

Abundance charts (e.g., Figure 2) are generated from taxonomic data, producing a simple 

visualization of bacterial groups present in a given soil from most to least abundant. The charts 

can be created at any taxonomic level; however, if too many groups exist, such as when 

considering genera or species, the charts are largely uninterpretable; therefore, most 

microbiologists build abundance charts at the phylum or class level (e.g., Meadow and Zabinski, 

2012; Jansson and Tas, 2014). Researchers have used bacterial abundance charts to examine, for 

instance, the influence of environmental stressors such as repeated wetting and drying (Barnard 

et al., 2013) or diesel fuel contamination (Sutton et al., 2013) on the bacterial makeup of soil. 

Such charts have also been used to show the changing bacterial abundance on and within 

decomposing bodies (Hyde et al., 2013). In court, abundance charts could provide the expert 

witness with a useful visualization tool for a jury. However, they do not provide a statistical 

measure of relative similarities among bacterial profiles; therefore, additional analysis methods 

are necessary. 
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Figure 2—Exemplary abundance chart displaying bacterial profiles generated from soils 

collected at a hypothetical crime scene and alibi location, and from an evidentiary item. The 

chart was generated from taxonomic class data and are in ascending order from most overall 

abundant to least overall abundant class. The evidentiary profile appears more similar to the alibi 

location than the crime scene. Very different profiles are fairly noticeable in abundance charts; 

however, similar soil types are often difficult to visually discriminate. 

 

Further analysis of bacterial profiles requires the calculation of dis/similarity values 

between profiles. More than fifty similarity and/or distance measures exist for the comparison of 

two samples containing complex data, calculated based on the shared presence/absence of 

specific groups and/or abundance differences within shared groups (Choi et al., 2010). The most 

widely used of these indices in microbiological research are the Bray-Curtis index (Bray and 

Curtis, 1957), the Jaccard index (Jaccard, 1901), and Sørensen-Dice coefficients (Dice, 1945; 

Sørensen, 1948), each of which are calculated in a different way. Bray-Curtis measures both 
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which sequences are shared between profiles as well as any difference in shared sequence 

abundance. Alternatively, Jaccard and Sørensen-Dice ignore abundance differences between 

profiles, measuring only the presence of shared sequences, with Sørensen-Dice placing twice the 

weight on such commonalities (see equation below). The choice of which statistic to employ can 

affect the outcome of downstream results. Daliresefat et al. (2009) compared several indices and 

concluded that for the analysis of specific DNA regions (such as the 16S rRNA gene), indices 

that are calculated based only on the shared presence of sequences, such as Jaccard or Sørensen-

Dice, are more accurate. Further, with massive datasets like those produced via next-generation 

sequencing, it is intuitive that some fluctuation in abundance of specific sequences between two 

soil bacterial profiles are bound to exist, which will affect statistics like Bray-Curtis, making 

dissimilarity values artificially large. The Sørensen-Dice coefficient was used in the current 

research due to its wide application in microbiological studies as well as its success in 

characterizing soil bacterial profiles in past research (reviewed by Hopkins, 2014).  

The equation for the Sørensen-Dice dissimilarity coefficient is 

 1 −
2Z
X+Y 

where X is the number of unique sequences in one profile, Y is the number of unique sequences 

in a second profile, and Z is the number of shared sequences between the two profiles. A 

dissimilarity matrix is developed from these calculations comparing each sample to the others in 

a pairwise fashion. This matrix can then be used for a variety of ordination and classification 

techniques (Chahouki, 2011). 

NMDS is an ordination technique that provides a visualization of relative association 

among multiple samples in a dataset. It can be used in soil analysis for orienting bacterial 

profiles in multidimensional space (e.g., Figure 3) based on calculated similarity or dissimilarity 
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values. More similar bacterial profiles plot closer together in space, forming clusters (Ramette, 

2007). Increasing the number of dimensions can tease out subtle differences among samples; 

however, two-dimensional plots are the easiest to interpret. A goodness of fit measure in the 

form of stress is generated with NMDS plots, providing the user with information on how well a 

plot is reflecting the inputted dissimilarity values (Holland, 2008). High stress indicates that not 

all pairwise relationships are accurately represented in the plot, potentially posing a problem for 

forming conclusions on relative similarity. Stress levels are typically higher when more samples 

are ordinated together or when a very dissimilar sample is included in the dataset, as such a 

sample will force others together (Kenkel and Orlóci, 1986). Thus, it may be more beneficial to 

ordinate a subset of samples from a given dataset to accurately reflect their dissimilarity. NMDS 

plots, like abundance charts, have a subjective component, as there is no standard mechanism for 

defining a cluster. Despite this, the data depiction that NMDS plots provide may have value for 

jury comprehension of soil bacterial profiling. The location of a forensic unknown (evidentiary) 

sample in an NMDS plot can impart important information on which known profiles it is most 

similar to, helping to form associations among samples. 
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Figure 3—Ordination of hypothetical soil bacterial profiles in multidimensional space. Profiles 1 

and 2 come from a hypothetical crime scene, while 4 – 7 represent two alibi locations. The 

bacterial profile produced from evidentiary soil (3) plots closest to an alibi location, indicating it 

is more similar to this location than the crime scene. 

 

Supervised classification techniques allow for an objective assignment of bacterial 

profiles to a location of origin (Mohri, 2012). These techniques build models derived from 

groups of known samples collectively called training sets. Unknowns are compared to the 

training sets, either simultaneously or after training set validation, and assigned to the closest 

group or, depending on the technique, to no group at all. Yang et al. (2006) used supervised 

classification to assign soil microbial profiles to their location of origin with approximately 90% 

accuracy, based on length differences in 16S rRNA variable regions 1, 2, 3, and 9. This 
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methodology does not hold the resolving power of next-generation sequencing, data from which 

may classify with higher accuracy; however, it does highlight the potential utility of supervised 

classifiers for bacterial profile analysis. 

 k-NN is one of the simplest supervised classification techniques and is widely used in 

microbiology research (e.g., Gaus et al., 2006; Diaz et al., 2009). k-NN utilizes a majority-vote 

method in which the closest known samples in multivariate space determine the assignment of an 

unknown sample (Coomans and Massart, 1982). Figure 4 is a representation of how k-NN 

classifies unknowns. A training set is built from known samples representing different groups. A 

test set is also created, made up of evidentiary samples. The training and test sets are run 

together, forming a model while simultaneously identifying the unknowns’ nearest neighbors and 

classifying them to a known group. One benefit of k-NN analysis is that it first measures how 

closely related the knowns in a training set are via a jackknife method (Tukey, 1958), where one 

sample is compared to the remaining knowns in a round robin fashion. This training set 

validation offers the user an opportunity to identify any problem samples (outliers), which can be 

removed, allowing for the construction of strong, representative known groups. A downfall of k-

NN is that it is a hard classifier, meaning unknowns are assigned to a group even if they do not 

belong with any of the known groups. Misclassifications can often be identified through 

interpretation of threshold values in both the training set validation and classification of 

unknowns. These values are similar to a t-test statistic and are based on a comparison of the 

distance an unknown sample falls from its single nearest neighbor in the group it classified to 

and the smallest intra-point distances of the known samples within that group. The threshold 

value itself is the number of standard deviations away an unknown can fall and still be 
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considered correctly classified. It acts as a goodness-of-fit measure, telling the user how well a 

data point is classifying to a known group (Pirouette user guide, version 4.0).  

 

 

Figure 4—Visual representation of k-Nearest Neighbor analysis. In a hypothetical forensic 

scenario, three groups of known bacterial profiles (blue circles, green triangles, and yellow 

rectangles), representing three different soil sampling locations, make up the training set. An 

evidentiary bacterial profile (red diamond) is also analyzed, and its three nearest neighbors are 

identified. The majority-vote rule classifies the evidence as a member of group 1, meaning that it 

is most similar to bacterial profiles from that location. 

 

 Calculation methods for threshold values and the overall validity of k-NN analysis are 

disputed in the literature. Beebe et al. (1998) recommended calculating threshold values as 

described above, given that this strategy might help account for natural bacterial variation in a 

group of knowns, while allowing differences in threshold values based on the amount of 
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variation within a given group. Lavine and Davidson (2006) argued the opposite, saying k-NN 

cannot accurately measure how well an unknown is classifying, but rather acts as a benchmark 

test to show the potential of classification techniques in analyzing a particular type of data. This 

disagreement has led to the general consensus that k-NN should be regarded as a baseline 

technique (e.g., Zhang et al., 2006; Bubeck and Luxberg, 2009), where classification accuracy 

reflects how more advanced supervised classifiers are likely to perform with the same type of 

data. k-NN uses a relatively simple classification algorithm and only a small number of samples 

are needed to build training and test sets, providing faster run times and easier analysis, making it 

an ideal baseline technique.  

   

Goals of This Thesis Research  

 The overall goal of the research presented in this thesis was to examine whether next-

generation sequencing techniques developed by microbiologists could be successfully adopted 

for the forensic analysis of soil. Traditional forensic soil analysis techniques are often subjective 

and do not allow for statistical association between samples. The generation of microbial profiles 

using methods described in the microbiology literature offers the potential to form more 

definitive associations, as unique characteristics can be identified. Although several molecular 

methods exist for profile generation, next-generation sequencing of the 16S rRNA gene to assay 

the bacteria within soil has the most promise, producing massive datasets with high resolution. 

Sensabaugh (2009) outlined three criteria that should be satisfied for any new microbial 

technique to gain footing in the forensic sciences. First, it should allow for differentiation of 

samples collected from different locations. Second, it should have high discriminatory power 

while also remaining repeatable and robust. Finally, statistical methods used to analyze microbial 
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profiles should be objective. Attempts to satisfy the first two recommendations using next-

generation sequencing were undertaken in this thesis research through comparison of soil 

bacterial profiles originating from diverse and similar habitats, as well as across time and space 

within habitats. Additionally, bacterial profiles were generated from soils on mock forensic items 

to examine whether evidentiary soil could be traced to a single location of origin after being 

stored up to 1 year. Sensabaugh’s third condition was addressed in combination with the 

examination of what statistical analysis techniques can satisfy the many demands of forensic 

science. Bacterial profile comparison using abundance charts, NMDS plots, and supervised 

classification has shown forensic potential (Hopkins, 2014); however, these methods had not yet 

been used on a large scale to compare bacterial profiles generated from many different soil 

samples.  
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MATERIALS AND METHODS  

Soil Sampling  

Habitat types, GPS coordinates, the study or studies that soils were included in, and the 

number of collections at each location are displayed in Table 1. Soil samples (except those in the 

vertical space study) were gathered in the same manner: approximately 100 g of surface soil was 

collected with a garden trowel rinsed with RO water between collections. Three scoops of soil 

from a 1×1 foot area at each site were homogenized in an 18-oz Whirl-Pak® bag (Nasco, Fort 

Atkinson, WI). Soil samples were stored at -20°C until DNA extraction and were always 

extracted within 1 month of sampling. The bags were kept on ice if they could not be frozen 

within 1 hour of collection. Photographs of collection sites and evidentiary items can be found in 

Appendix A. The ground was covered with over a foot of snow and a layer of ice in February 

2014, and soil was collected by digging through the snow and chiseling at the ground with a 

hammer and a screw driver. Chips of soil were collected in sampling bags and the screw driver 

was washed with RO water between collections. At least an inch of snow was present from 

December through March; however, chiseling through ice was only necessary in February.  

Soil Collection from Diverse Habitats 

 Soil samples were collected from 10 diverse habitats in the Greater Lansing area every 3 

months for 1 year in 2013 and 2014. A map of the sampling locations is displayed in Figure 5. 

Four of the habitats were located in the Fenner Nature Center, a 134-acre park, shown in the box 

in Figure 5.  
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Table 1—Summary of soils collected for all studies. 

Sampling Location GPS Coordinates Study n* 

Marsh† 42°42'32.0"N 84°30'53.4"W Diverse Habitat 5 

Fallow Agricultural Field 42°45'06.4"N 84°39'42.8"W Diverse Habitat 5 

Beach 42°45'13.9"N 84°24'16.5"W Diverse Habitat 5 

Coniferous Forest 42°41'11.9"N 84°38'05.1"W Diverse Habitat 5 

Field† 42°42'38.9"N 84°31'15.4"W Diverse Habitat 5 

Corn Agricultural Field 42°42'33.5"N 84°28'17.5"W Diverse Habitat 5 

Dirt Roadside 42°48'17.2"N 84°09'33.5"W Diverse Habitat 5‡ 

Roadside 42°48'03.4"N 84°11'10.1"W Diverse Habitat 5 

Deciduous Woodlot† 42°42'33.7"N 84°31'01.3"W Diverse Habitat, Temporal, Horizontal 

and Vertical Space 

51 

Yard† 42°42'39.0"N 84°30'53.5"W Diverse Habitat, Temporal, Horizontal 

and Vertical Space 

51 

Treated Yard 1 42°43'26.6"N 84°28'02.5"W Temporal, Horizontal Space 44 

Treated Yard 2 42°43'44.0"N 84°28'23.4"W Vertical Space 7 

Deciduous Woodlot 1 42°42'33.7"N 84°31'00.6"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 2 42°44'28.2"N 84°27'09.8"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 3 42°41'03.3"N 84°31'26.1"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 4 42°40'57.2"N 84°28'05.6"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 5 42°43'38.9"N 84°30'08.8"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 6 42°44'38.9"N 84°28'57.9"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 7 42°42'50.8"N 84°28'38.5"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 8 42°42'00.8"N 84°31'35.0"W Similar Habitat, Evidentiary 5 

Deciduous Woodlot 9 42°41'25.6"N 84°27'41.2"W Similar Habitat, Evidentiary 5 

Tire  - Preliminary Evidentiary 5 

Shoe  - Preliminary Evidentiary 5 

Sock  - Preliminary Evidentiary 5 

Shirt  - Preliminary Evidentiary 5 

Shovel  - Preliminary Evidentiary 5 

T-shirts (24°C) - T-Shirt Evidentiary 44 

T-shirts (4°C) - T-Shirt Evidentiary 44 

*Number of collections 

†Habitats within the Fenner Nature Center 

‡One soil sample from this set produced less than 3000 sequence reads and was excluded from 

further processing. 
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Figure 5—Map of soil sampling locations for the diverse habitat study. The four collection sites 

at the Fenner Nature Center are shown in the inset. 

 

Soil Collection from Similar Habitats 

Soil samples were collected from nine deciduous woodlots in the Greater Lansing area 

once every 2 weeks for 8 weeks starting in May 2014. Collection locations are shown in Figure 

6.  

 



24 

 

 

Figure 6—Map of soil sampling locations for the similar habitat study. Locations were within 6 

miles of one another in the Greater Lansing area.  

 

Soil Collection from Three Habitats over Time  

 Surface soil samples were collected at a central point in three habitats, a yard and a 

deciduous woodlot at the Fenner Nature Center and a yard treated with pesticides and fertilizer 

on the Michigan State University campus, once a day for 4 days, once a week for 2 months, and 

once a month for the remainder of the year starting in August 2013. 

Soil Collection from Three Habitats over Horizontal Space 

 Surface soil samples were collected in three habitats, a yard and a deciduous woodlot at 

the Fenner Nature Center and a treated yard on the Michigan State University campus, in March 

2014. A central soil sample and 16 additional samples 5, 10, 50, and 100 feet in each cardinal 

direction were collected, resulting in 17 samples per location. 
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Soil Collection from Three Habitats over Vertical Space  

 Soils samples were collected at a yard and a deciduous woodlot at the Fenner Nature 

Center and a second treated yard on the Michigan State University campus in October 20131 and 

April 2014 using a soil corer and mud auger (AMS, Inc. American Falls, ID) that were rinsed 

with RO water between samplings. After a surface soil sample was taken, the mud auger was 

driven into the ground, removed, and soil samples at 1, 2, 5, and 10 inches below the surface 

were collected. A soil corer was then driven into the ground in the same location, removed, and 

soil samples were collected at 20 and 60 inches below the surface. A maximum depth of 25 

inches was reached in the treated yard due to obstruction. Soil samples at depths of 20 inches or 

more were lighter brown in color and clay-like in all habitats. 

Soil Collection from Evidentiary Items 

Soil was collected for a preliminary mock evidence study from deciduous woodlot 1 and 

deposited on a shoe, steel shovel blade, cotton polo shirt, and cotton sock while in the woodlot, 

which were placed in brown paper bags. Additional soil was collected from the site, transported 

to a storage room near the forensic science laboratory in Giltner Hall on the Michigan State 

University campus, and deposited on a tire. Items were stored in the room at ambient 

temperature for 1 year. Soil was collected from three different areas on each evidentiary item as 

well as one sample of homogenized soil after 6 months of storage. Soil was again collected from 

three locations on each evidentiary item and homogenized into one sample after the full year. 

Bacterial profiles were not generated from the items prior to soil exposure. 

 A second evidentiary study was conducted in which eight new white cotton T-shirts 

(Hanes®, Winston Salem, NC) were exposed to soil in a 2×2 foot area of deciduous woodlot 1 

                                                 
1The treated yard vertical space collections in October 2013 were processed via 454 pyrosequencing by Hopkins 

(2014). Therefore, the analysis of these bacterial profiles is not included in this research.  
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by placing soil on a shirt, folding the sides of the shirt around the soil, and rubbing it into the 

fabric while wearing vinyl exam gloves. The shirts were placed in numbered brown paper bags. 

T-shirts 1 – 4 were stored in an incubator (24°C), while T-shirts 5 – 8 were stored in a laboratory 

refrigerator (4°C) for the duration of the study. On day zero and once a week for 8 weeks, small 

(ca. 1 cm2) soil-covered portions were cut and collected from each shirt. Additional portions 

were collected once a month for 2 months following the 8-week period. A cutting was taken 

from a clean shirt on the initial sampling day. On day 0 and every 2 weeks for 8 weeks, soil was 

collected from the deciduous woodlot of origin (woodlot 1) and from the eight other deciduous 

woodlots described in the similar habitat study. 

 

DNA Extraction from Soil 

A Spectrolinker XL-1500 UV Crosslinker (Spectronic Corporation, Lincoln, NE) was 

used to UV irradiate pipette tips, pipettes, tubes, and scissors for 5 min (~ 2.5 J/cm2). DNA was 

extracted from soil samples with a PowerSoil® DNA Isolation Kit (MoBio, Carlsbad, CA) 

following the manufacturer’s protocol with two changes: spin filters containing bound DNA 

were washed with 500 μL of 70% ethanol and centrifuged for 30 s at 10,000 × g immediately 

following protocol step 17. Additionally, solution C6 was heated in a 55°C incubator prior to its 

addition to the spin filter. The soil covered cuttings and the clean cutting collected from the T-

shirts were placed directly into extraction tubes. Reagent blanks were processed with every 

extraction. 
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PCR Amplification of 16S rRNA Variable Regions 3 and 4  

Bacterial 16S rRNA gene variable regions 3 and 4 were amplified using a forward primer 

(357F [Haas et al., 2011]) and a reverse primer (806R [Caporaso et al., 2010]) that contained one 

of 96 barcodes, allowing for identification of which soil sample each sequence originated from in 

downstream analysis. Fifteen microliter PCR reactions contained final concentrations of 1X 

AmpliTaq Gold buffer (Life Technologies, Carlsbad, CA), 2.5 mM MgCl2, 0.2 mM nucleotide 

triphosphates, 0.4 μg/μL bovine serum albumin, 1U AmpliTaq Gold (Life Technologies), 1 µL 

of template DNA, and 1 µL of 10 µM premixed forward and reverse primers. DNAs were 

denatured on an Applied Biosystems® 2720 thermal cycler (Life Technologies) for 10 min at 

94°C, followed by 35 cycles of 94°C for 30 s, 60°C for 45 s, and 72°C for 60 s, and a final 

extension of 10 min at 70°C. Four microliters of the PCR product were electrophoresed on a 

1.5% agarose gel followed by ethidium bromide staining and UV visualization.  

 

DNA Quantification and Equimolar Pooling 

PCR products were quantified using a Quant-iT™ PicoGreen® dsDNA Assay Kit (Life 

Technologies) following the manufacturer’s protocol, and pooled such that each bacterial sample 

was at equal concentration (~6 ng/µL). Pooled DNAs were purified using Agencourt® 

AMPure® XP (Beckman Coulter, Brea, CA) beads. The beads were vortexed and added in a 

0.6:1 ratio to the tube containing pooled DNAs. This solution was vortexed for 15 s and allowed 

to incubate for 15 min at room temperature. The tube was placed in a MagnaRack™ (Life 

Technologies) for 5 min. The supernatant was aspirated and discarded. Five hundred microliters 

of 70% ethanol was used to wash the bound beads. The supernatant was aspirated away after 30 s 

and the ethanol washing process was repeated. The tube, still in the MagnaRack™, was placed in 
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a 37°C incubator and allowed to dry for 30 min. It was removed from the rack and 100 μL of 10 

mM Tris at pH 8 was used to elute the DNA by vortexing for 10 s. The tube was placed back in 

the MagnaRack™ for 5 min, and the supernatant was transferred to a 1.5 mL microcentrifuge 

tube.  

 

Sequencing of Purified PCR Products  

The pooled bacterial DNAs were sequenced on an Illumina MiSeq (Illumina, San Diego, 

CA) following the manufacturer’s protocol using a paired end 250 bp v2 Reagent Kit (Illumina). 

Base calling was performed with Real Time Analysis software v1.18.54 (Illumina), and the 

output was demultiplexed and converted to FastQ files with Bcl2fastq Conversion Software 

v1.8.4 (Illumina).  

 

Next-Generation Sequencing Data Processing 

Sequencing data were processed using open-source mothur software following the MiSeq 

sequence processing standard operating procedures on the mothur webpage (Schloss et al., 2009; 

www.mothur.org). Sequence processing commands for mothur are given in Appendix B. 

Bacterial profiles were subsampled to 3000 sequences per soil sample2. Sequences were 

organized into operational taxonomic units (OTUs) at a 97% similarity cutoff. The number of 

OTUs in each profile was documented and considered to represent sequence diversity. 

 

 

                                                 
2 Subsampling is a necessary step in sequence processing due to the computational limits when handling massive 

amounts of data such as those produced via next-generation sequencing. The effects of subsampling on sequence 

libraries were examined by subsampling the diverse habitat soil samples (n=49) down to 3000 sequences four times 

and assessing congruity. Each subsampling resulted in approximately equivalent measures of dissimilarity and 

orientation in NMDS plots, demonstrating that subsampling had little effect on profile analysis.  
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Next-Generation Sequencing Data Analysis Procedures  

OTUs were used to calculate Sørensen-Dice coefficients within mothur, and the resulting 

square symmetric dissimilarity matrices were used as the input for NMDS, which was run in 

XLSTAT Pro (Addinsoft, New York, NY), and k-NN, which was run in Pirouette 4.0 

(Infometrix, Inc. ©, Bothell, WA). A jackknife resampling method was employed for k-NN 

analysis of diverse and similar habitat soil bacterial profiles, in which each soil bacterial profile 

was tested against the other four collected from the same site resulting in a calibration accuracy. 

Training and test sets for k-NN analysis are described in Table 2. The accuracy of k-NN was 

measured by its ability to classify soil bacterial profiles to their location of origin. Threshold 

values were recorded at a 95% confidence level. Bacterial profile OTUs were also classified 

using the SILVA bacterial reference alignment (Quast et al., 2013), and abundance charts were 

created at the taxonomic class level in Excel (Microsoft, Redmond, WA). The number of 

bacterial classes in each profile was documented and representative of taxonomic class diversity. 
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Table 2—Training and test sets for k-NN analysis of soil bacterial profiles. 

Study Training Set Test Set 

Diverse 

Habitats* 
N=4 per habitat N=1 

Similar 

Habitats* 
N=4 per woodlot  N=1 

Temporal 

First seven 

bacterial profiles 

(August and 

September) 

All other collections 

over 1 year 

Within-Habitat 

Horizontal 

Space 

Center, 5 ft N, 5 ft 

S, 5 ft W, 5 ft E  

All other distance soil 

bacterial profiles  

Center, 5 ft E, 10 ft 

N, 50 ft W, and 

100 ft S† 

All other distance soil 

bacterial profiles 

Center, 100 ft N, 

100 ft S, 100 ft W, 

100 ft E 

All other distance soil 

bacterial profiles 

Within-Habitat 

Vertical Space 

Surface, 2 in,10 in, 

and 60 in 

All other depth soil 

bacterial profiles 

Preliminary 

Evidentiary 

Woodlot soil 

bacterial profiles 

over 8-wk period 

Various evidentiary 

soil bacterial profiles 

after 6 months and 1 

year 

T-Shirt 

Evidentiary 

Woodlot soil 

bacterial profiles 

over 8-wk period 

T-shirt evidentiary soil 

bacterial profiles over 

4 months 

 

*Analyzed via the jackknife resampling method (Tukey, 1958) in which each of the five soil 

bacterial profiles was systematically left out and tested against the other four profiles. 
†Three additional spiral training sets were also tested in this manner with different 5 ft starting 

points. 
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RESULTS 

Soil Collection, Extraction, and Amplification 

Soil samples collected for the temporal study from the Fenner deciduous woodlot, the 

Fenner yard, and the Michigan State University treated yard in December – March and for the 

diverse habitat study in February contained ice and snow. These soils were very slushy and 

sometimes completely submerged when thawed for extraction. Water could not be avoided 

during soil weighing and the mass of the soil was exaggerated by the moisture, therefore its 

amount in the extraction tube was likely less than other collections. 

DNA from the soil-covered T-shirt cuttings did not amplify as well as samples containing 

only soil; however, quantification revealed enough amplified DNA was present for sequencing in 

all cases. DNA from the clean T-shirt cutting also did not amplify well and had to be re-

sequenced in order to obtain more than 3000 sequences. The resulting bacterial profile contained 

256 OTUs representing 30 bacterial classes, all of which were present in at least one profile 

generated from the deciduous woodlot in which t-shirts were exposed to soil. The bacterial 

profile generated from the clean shirt forced others together in NMDS plots (data not shown) and 

did not classify as the woodlot of origin, nor was it under the threshold value for any other 

deciduous woodlot in k-NN. All other bacterial DNAs amplified well, with an average post-PCR 

quantification of approximately 20 ng/µL; however, no particular location possessed soil that 

consistently had the highest DNA quantifications. 

 

Illumina MiSeq Sequencing Efficiency 

 MiSeq sequencing resulted in datasets of approximately 150,000 sequence reads per soil 

sample. Processing of bacterial sequence libraries in mothur led to the removal of 94 to 97% of 
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sequences, primarily during the subsampling portion of sequence analysis. Only the dirt road 

collection from February did not produce the requisite number of sequences and it was excluded 

from analysis.  

 

Soil Bacterial Profile OTU Diversity 

Soil bacterial profiles contained between 242 and 1231 OTUs (Tables C1 – C7, Appendix 

C)—each representing 97% similar sequences—with the dirt road soils having the lowest 

average (276) and the treated yard soils having the highest average (1033). Fewer OTUs were 

generated from soils collected in late February from the Fenner deciduous woodlot (483) and in 

late February and March from the Fenner yard (739 and 764, respectively) than from deciduous 

woodlot and yard soils collected in the other months of the year (average of 1012 and 1071, 

respectively). Additionally, the yard soil sample collected 5 feet east of the center sampling site 

contained fewer OTUs (781) than the rest of the yard surface samples (average of 1000). Soil 

samples collected at different depths contained similar numbers of OTUs with the exception of 

the 60 inch sample from the deciduous woodlot in October which contained substantially fewer 

(242 OTUs). The number of OTUs in the April 60 inch deciduous woodlot sample was also 

relatively low (647). Fewer OTUs were present in preliminary evidentiary soil profiles after 

storage for 6 months (average of 765) and 1 year (average of 895) than soil samples collected 

from the deciduous woodlot of origin (average of 1050). Soil samples from evidentiary T-shirts 

initially contained similar numbers of OTUs as woodlot of origin soils (Figure 7); however, the 

number of OTUs decreased over the 4-month period at both storage temperatures. 
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Figure 7—Number of OTUs in bacterial profiles generated from evidentiary T-shirts over the 4-

month storage period. Trend lines showing the decrease of OTUs over time at each storage 

temperature are displayed. The quantity of OTUs varied among the replicate shirts at each 

sampling time; however, soils generally contained fewer OTUs the longer they were stored. This 

decrease occurred at a slightly faster rate in soil on T-shirts stored at 24°C. 

 

General Soil Bacterial Profile Analysis Results 

Each soil bacterial profile contained approximately 50 bacterial taxonomic classes (range: 

41 to 58), with the exception of profiles generated from dirt road soils, which had lower class 

diversity (see below) and the profiles generated from soil collected in February from the Fenner 

deciduous woodlot, which contained 22 classes. All other bacterial profiles shared classes that 
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made up a large fraction of their abundance; differences among soil profiles tended to be in the 

least abundant classes3. 

The Scree diagrams produced with NMDS plots showed decreasing stress as dimensions 

increased, with a characteristic elbow at two dimensions (e.g., Figure 8). Additionally, Shepard 

diagrams produced with the plots exhibited close association between distances and disparities, 

confirming the low stress at two dimensions in the Scree diagram (e.g. Figure 9). 

 

 

Figure 8—Scree diagram generated from the ordination of temporal soil bacterial profiles 

showing an elbow signifying the substantial decrease in stress from one to two dimensions, and a 

general leveling off with additional dimensions. All Scree diagrams were similar. 

 

                                                 
3 Note that in the abundance charts that follow, bacterial classes are graphed in order of abundance for a given 

sample set, thus class order can differ among charts.  
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Figure 9—Shepard diagram generated with similar habitat NMDS plot. Distances fell close to 

corresponding disparities, indicating good correlation between the two metrics in the 

accompanying NMDS plot. All Shepard diagrams were similar. 

 

 Intermingling of soil sampling location clusters was common when many profiles were 

ordinated together in NMDS plots; however, these clusters were resolved when the locations 

containing overlapping members were ordinated in pairs or triads. Additionally, NMDS plots 

developed with all bacterial profiles for a given study always had higher stress than when a 

subset of those profiles were ordinated together (data not shown).  

Table 3 summarizes the k-NN classification results for all bacterial profiles, specifying 

the training sets used, classification accuracy, and which profiles were misclassified. Training 

sets consisted of five or more members, with the exception of one vertical space training set, 

made up of only four. k-NN analysis resulted in accurate classification of soils to their location 

of origin for 97.6% of the bacterial profiles generated in this research (percentage based on the 
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training set that produced the most accurate classification in each study, as it did change slightly 

depending on the bacterial profiles acting as knowns). Table 4 summarizes k-NN threshold value 

results, specifying the number of profiles correctly classified, the percentage of profiles correctly 

classified and under the threshold values, and which profiles were correctly classified but over 

the threshold value. 

 

Table 3—k-NN classification results. Multiple training sets were examined for all soil sets with 

the exception of the temporal and evidentiary studies. 

Study Training Set Number of 

Profiles Analyzed 

Classification 

Accuracy 
Misclassified Profiles 

Diverse 

Habitats 

 

All habitat 

bacterial 

profiles* 

49 88% August Marsh, Fallow 

Ag† Field, Deciduous 

Woodlot, and Yard 

 Marsh and 

Fallow Ag† 

Field profiles* 

10 100% - 

 Deciduous 

Woodlot and 

Yard profiles* 

10 100% - 

Similar 

Habitats 

 

All location 

bacterial 

profiles* 

45 87.5% All from Deciduous 

Woodlot 8 and one from 

Deciduous Woodlot 9‡ 

 Deciduous 

Woodlots 1 – 7 

profiles* 

35 100% - 

Temporal First seven 

profiles in each 

habitat (August 

and 

September) 

48 93.8% February Deciduous 

Woodlot and Yard, March 

Yard‡ 
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Table 3 (cont’d)     

Horizontal 

Space 

 

Profiles from 

the center, 5 ft 

N, 5 ft S, 5 ft 

W, 5 ft E 

36 94.4% Yard 100 ft N, Deciduous 

Woodlot 100 ft S‡ 

 Profiles from 

the center, 5 ft 

E, 10 ft N, 50 

ft W, and 100 

ft S§ 

36 97.2% Deciduous Woodlot 100 ft 

N‡ 

 Profiles from 

the center, 100 

ft N, 100 ft S, 

100 ft W, 100 

ft E 

36 94.4% Yard 5 ft E, Yard 10 ft N‡ 

Vertical 

Space 

Profiles from 

the surface, 2 

in, 10 in, 60 in  

15 100% - 

 Profiles from 

the surface, 1 

in, 2 in, 5 in, 

10 in 

10 80% Deciduous Woodlot 60 in 

(October and April) ‡ 

Preliminary 

Evidentiary  

Deciduous 

Woodlots 1 – 9 

profiles 

25 100% - 

T-Shirt 

Evidentiary 

Deciduous 

Woodlots 1 – 9 

profiles 

88 100% - 

* Analyzed via jackknife method (Tukey, 1958)  
†Ag=Agricultural 
‡Pairwise k-NN analysis did not resolve bacterial profiles from these locations 
§Other training sets developed using this spiral method produced similar results (see below) 
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Table 4—k-NN threshold value results. Threshold values were evaluated only if profiles were 

correctly classified. 

Study Training Set 

Number of Profiles 

Correctly 

Classified 

Percent Correctly 

Classified and 

under Threshold 

Value 

Profiles Correctly 

Classified and 

over Threshold 

Diverse 

Habitats 

All habitat 

bacterial 

profiles* 
43 90.2% 

February 

Coniferous Forest 

and Roadside, 

May Beach and 

Dirt Road 

Marsh and 

Fallow Ag† Field 

profiles* 
10 90.0% 

February Fallow 

Ag Field 

Deciduous 

Woodlot and 

Yard profiles* 

10 100.0% - 

Similar 

Habitats 

All location 

bacterial 

profiles* 
39 93.3% 

June Woodlot 4 

and 5, July 

Woodlot 1 

Deciduous 

Woodlots 1 – 7 

profiles* 
35 91.4% 

May Woodlot 7, 

June Woodlot 6, 

and July Woodlot 

4 

Temporal 

First seven 

profiles in each 

habitat (August 

and September) 

38 73.7% 

January Treated 

Yard, February 

all habitats, 

March Woodlot, 

April Woodlot 

and Yard, May 

Woodlot, June 

Yard, December 

Woodlot 

Horizontal 

Space 

 

Profiles from the 

center, 5 ft N, 5 

ft S, 5 ft W, 5 ft 

E 

36 100.0% - 
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Table 4 (cont’d) 

Horizontal 

Space 

Profiles from the 

center, 5 ft E, 10 

ft N, 50 ft W, 

and 100 ft S 

36 100.0% - 

Profiles from the 

center, 100 ft N, 

100 ft S, 100 ft 

W, 100 ft E 

36 100.0% - 

Vertical 

Space 

Profiles from the 

surface, 2 in, 10 

in, 60 in 
23 100.0% - 

Profiles from the 

surface, 1 in, 2 

in, 5 in, 10 in 
20 100.0% - 

Preliminary 

Evidentiary 

Deciduous 

Woodlots 1 – 9 

profiles 
25 0.0% All 

T-Shirt 

Evidentiary 

Deciduous 

Woodlots 1 – 9 

profiles 
88 (See Figure X) (See Figure X) 

*Analyzed via jackknife method (Tukey, 1958)  
†Ag=Agricultural 

 

Analysis of Soils from Diverse Habitats  

Bacterial Abundance Charts 

Averaged diverse habitat profiles (Figure 10) appeared similar, with the exception of the 

dirt road, which had lower class diversity (range: 24 to 29) and yielded substantially lower levels 

of Acidobacteria and Betaproteobacteria, and higher levels of Flavobacteria, 
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Gammaproteobacteria, Clostridia, and Bacilli (denoted by arrows) relative to the other habitats. 

Abundance charts of soils collected at each sampling time can be found in Appendix D.  

 

 

Figure 10—Average bacterial class abundance of five soil samples from ten diverse habitats. 

The dirt road soil clearly differed from the other habitats, containing higher levels of 

Flavobacteria, Clostridia, and Bacilli (denoted by arrows in ascending order on the right), along 

with lower levels of Acidobacteria and Betaproteobacteria (denoted by arrows in ascending 

order on the left). Ag=Agricultural. 
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Nonmetric Multidimensional Scaling 

 Bacterial profiles generated from soil collected within a habitat clustered together in 

NMDS plots (Figure 11), but some intermingling occurred among the 10 habitats. Clusters of 

bacterial profiles generated from soil collected in the deciduous woodlot, yard, and field at the 

Fenner Nature Center overlapped, the marsh and fallow agricultural field clusters intermingled 

slightly, and profiles from the agricultural field, roadside, and beach clusters intermixed. 

Removal of the dirt road profiles, which clustered the farthest away in the plot, did not resolve 

these intermingled clusters (data not shown). When two or three habitats were oriented at a time, 

clusters separated in all cases (e.g., Figure 12); however, profiles from the same location did not 

cluster as tightly as they did when all habitats were oriented together.  

k-Nearest Neighbor  

k-NN accurately classified diverse habitat soil bacterial profiles 88% of the time when all 

habitats were analyzed together (Table 3). Misclassifications occurred between the marsh and 

fallow agricultural field soil bacterial profiles and between the Fenner deciduous woodlot and 

yard profiles. These profiles were correctly classified to their habitat when analyzed as pairs in a 

k-NN model. 
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Figure 11—NMDS plot ordinating soil bacterial profiles from the 10 diverse habitats. Replicate 

profiles from the same habitat formed clusters, but intermingling occurred among some of the 

habitats. Ag=Agricultural. 
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Figure 12—NMDS plot ordinating soil bacterial profiles from the agricultural (Ag) field, beach, 

and roadside. Profiles from these locations intermingled when all habitats were ordinated 

together, but were resolved when analyzed as pairs or triads in NMDS plots. 
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woodlots, ranging from 40 to 59 bacterial classes per profile. Abundance charts of soils collected 

at each sampling time can be found in Appendix D.  

 

 

Figure 13—Average bacterial class abundance of five soil samples from nine deciduous 

woodlots. The profiles appeared very similar, sharing the most abundant bacterial classes.  
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Nonmetric Multidimensional Scaling 

Soil bacterial profiles from a given deciduous woodlot clustered together in NMDS plots 

(Figure 14), but intermingling occurred among several of the clusters, such as woodlots 2 and 3, 

and one profile from woodlot 5. The most substantial overlap involved woodlot 8, whose 

bacterial profiles were interspersed among several other clusters. By ordinating profiles in pairs 

or triads, separation of deciduous woodlots occurred in all cases (e.g., Figure 15). NMDS plots 

showing the separation of woodlot 8 from others can be found in Appendix E.  
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Figure 14—NMDS plot ordinating soil bacterial profiles from the nine deciduous woodlots. 

Profiles from the same location formed clusters, but intermingling occurred among some of the 

location clusters. Woodlot 8 replicate profiles clustered relatively poorly, intermingling with 

several other woodlot profiles; however, these clusters were resolved when fewer woodlots were 

ordinated together. 

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1D
im

2

Dim1

NMDS Plot of Replicate Soil Bacterial Profiles 

from Nine Deciduous Woodlots

Woodlot 1 Woodlot 2 Woodlot 3 Woodlot 4 Woodlot 5

Woodlot 6 Woodlot 7 Woodlot 8 Woodlot 9



47 

 

 

Figure 15—NMDS plot ordinating bacterial profiles generated from soil collected in deciduous 

woodlots 2, 3, and 5. These profiles were intermingled when all woodlots were ordinated 

together (Figure 14), but were resolved when they were analyzed alone using NMDS. 
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even when run in pairs with the woodlots to which they classified. When these profiles were 

removed from the model, 100% classification accuracy was achieved. 

 

Analysis of Soils from Three Habitats over Time 

Bacterial Abundance Charts 

 Class abundance of soil bacterial profiles over time within the Fenner deciduous woodlot, 

yard, and treated yard appeared very similar (e.g. Figure 16). Temporal fluctuations were evident 

in all habitats, but were not as pronounced as differences across the 10 diverse habitat profiles. 

Abundance charts of temporal soil collections from the deciduous woodlot and treated yard can 

be found in Appendix D. 
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Figure 16—Bacterial class abundance of yard soils over 1 year (left to right). Soil was collected 

daily for 4 days, weekly for two months and monthly for the remainder of the year, so the chart 

is not evenly spaced in time. Slight fluctuations in abundance were evident, but soils shared the 

most abundant bacterial classes throughout the year.  

 

Nonmetric Multidimensional Scaling 

 Soil bacterial profiles generated from soil collected over time formed clusters based on 

their habitat of origin in multidimensional space (Figure 17). February and March profiles from 

the Fenner deciduous woodlot and yard fell the farthest from the main habitat clusters. Habitat 
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clusters did not change substantially when February and March profiles were removed from the 

plot (data not shown).  

 

 

Figure 17—NMDS plot ordinating temporal soil bacterial profiles from three habitats. Profiles 

from each habitat formed distinct clusters. Bacterial profiles generated from Fenner deciduous 

woodlot and yard soils collected in late February and March fell the farthest away from their 

corresponding habitat cluster (labeled below point with date of collection).  

 

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5D
im

2

Dim1

NMDS Plot of Soil Bacterial Profiles from 

Deciduous Woodlot, Yard, and Treated Yard Over 

1 Year

Deciduous Woodlot Yard Treated Yard

3-30-14 

2-28-14 

2-28-14 

3-30-14 



51 

 

k-Nearest Neighbor  

 k-NN accurately classified 93.8% of soil bacterial profiles to their site of origin over the 

full year (Table 3). Profiles from the Fenner deciduous woodlot in February and the yard in 

February and March were misclassified, all being assigned to the treated yard. Ten of the 38 

correctly classified bacterial profiles were above the threshold value for their given habitat, six of 

which were generated from soil samples collected in December, January, February, or March.  

 

Analysis of Soils from Three Habitats over Horizontal Space 

Bacterial Abundance Charts 

Bacterial profiles generated from soil samples collected across the surface of three 

habitats appeared similar, with shared taxonomic classes making up a large portion of each 

profile (e.g. Figure 18). Class abundance differences were evident in profiles generated from 

soils within a habitat, but were not pronounced. Abundance charts of horizontal soil collections 

from the yard and treated yard can be found in Appendix D. 
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Figure 18—Bacterial class abundance of Fenner deciduous woodlot surface soils collected at a 

center point and 5, 10, 50, and 100 ft in the cardinal directions. Shared bacterial classes made up 

a large proportion of each bacterial profile, but slight differences in abundance were evident.  
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feet east of the center point plotted relatively far from the rest of the yard profiles. The treated 

yard cluster was completely separated from the deciduous woodlot and yard clusters, while the 

latter two intermingled slightly. Ordination of bacterial profiles from only the deciduous woodlot 

and yard did not resolve these clusters. 
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Figure 19—NMDS plot ordinating soil bacterial profiles generated from soil collected on the 

surface of three habitats. Profiles from each habitat formed clusters, but the deciduous woodlot 

and yard profiles intermingled. Profiles from soils collected the farthest from the center sampling 

site, plotted farther away in multidimensional space (one 100 ft profile from each habitat is 

labeled above the corresponding point). Additionally, the profile generated from the 5 ft east soil 

sample in the yard (far left square) plotted relatively far from the center of the cluster.  

 

k-Nearest Neighbor  

k-NN accurately classified bacterial profiles from across a habitat surface to their location 

of origin 94.4 to 97.2% of the time (Table 3), depending on the profiles used for the training set. 
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The most accurate classification occurred when using the center and one profile from 5, 10, 50, 

and 100 feet distances going in a counterclockwise spiral as the training set (four different 

training sets total). Each spiral training set resulted in a misclassification of a 100 feet deciduous 

woodlot profile to the yard and was always at least 90 feet distant from the nearest training 

profile. The majority (94.4%) of deciduous woodlot and yard profiles were under the threshold 

for both habitats using any training set.  

 

Analysis of Soils from Three Habitats over Vertical Space 

Bacterial Abundance Charts 

Abundance charts generated from the vertical soil bacterial profiles revealed class 

differences with depth (e.g., Figure 20); however, no differences in the number of taxonomic 

classes (diversity) were evident (Figure 21). The most substantial class abundance differences in 

all habitats were higher amounts of Clostridia, Nitrospira, and SHA-26 (Saale, Halle, library A) 

and lower amounts of Spartobacteria (denoted by arrows in Figure 20) as depth increased. 

Abundance charts of vertical soil collections from the yard in October and April and the treated 

yard in April can be found in Appendix D. 
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Figure 20—Bacterial class abundance of deciduous woodlot depth soils in October. As depth 

increased, substantial increases in Clostridia, Nitrospira, and SHA-26 (denoted by arrows in 

ascending order on the right) and decreases in Spartobacteria (denoted by left arrow) existed in 

all habitats. 
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Figure 21—Levels of bacterial taxonomic class diversity in soils collected at various depths 

within the deciduous woodlot, yard, and treated yard. No diversity trends were evident across or 

within habitats. 
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collected in the deciduous woodlot and yard in October and plots ordinating the same habitat in 

each sampling month can be found in Appendix E. 

 

 

Figure 22—NMDS plot ordinating soil bacterial profiles generated from soil collected at various 

depths within three habitats in April. The treated yard profiles clustered separately, while the 

deciduous woodlot and yard profiles intermingled. A trend existed across all habitats, with the 

soil bacterial profiles moving away from the surface profile in multidimensional space as depth 

increased (arrows point in the direction of increasing depth). 
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Figure 23—NMDS plot ordinating deciduous woodlot and yard depth profiles in April. 

Although intermingled when plotted with the treated yard profiles (Figure 22), deciduous 

woodlot and yard clusters separated when ordinated as a pair. Again, plots reflected the trend of 

soil bacterial profiles moving away from the surface profile in multidimensional space as depth 

increased (arrows point in the direction of increasing depth4). 

 

                                                 
4 General orientation of bacterial profiles in NMDS plots is random, thus, the different direction of arrows across 

plots is not analytically relevant.  
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k-Nearest Neighbor 

Bacterial profiles generated from soils collected at different depths were accurately 

classified 80% of the time when the shallowest five profiles made up the training set (Table 3). 

The only misclassifications were the 60 inch deciduous woodlot bacterial profiles in both 

months. Soil profiles were accurately classified (Table 3) and fell under the threshold values 

(Table 4) when the surface, 2, 10, and 60 inch profiles were used as the training set in k-NN. 

 

Analysis of Preliminary Evidentiary Soils 

Bacterial Abundance Charts 

Bacterial profiles generated from the various evidence types exhibited abundance 

changes over time (e.g., Figure 24). Notably consistent change across all evidence types included 

an increase in Actinobacteria and Bacilli and a decrease in Acidobacteria, Sphingobacteria, 

Betaproteobacteria, and Spartobacteria. More change occurred within the first 6 months of 

storage, while less change happened between the 6 month and 1 year collections. Abundance 

charts of soil bacterial profiles from the other evidence types can be found in Appendix D. There 

were fewer bacterial classes present, on average, from the evidence items that had been stored 

for 6 months (41) than the deciduous woodlot of origin (56), however the average class diversity 

did not decrease after the full year (43). 
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Figure 24—Bacterial class abundance of three replicate soil collections from the deciduous 

woodlot of origin (left) and soil collections from the tire after 6 months and 1 year of storage at 

room temperature. Evidentiary profiles exhibited an increase in Actinobacteria and Bacilli 

(denoted by arrows in ascending order on the right of the figure) and a decrease in 

Acidobacteria, Sphingobacteria, Betaproteobacteria, and Spartobacteria (denoted by arrows in 

ascending order on the left of the figure). 

 

Nonmetric Multidimensional Scaling 

Bacterial profiles generated from evidentiary item soil after 6 months and 1 year of 

storage clustered together in multidimensional space, away from all deciduous woodlots, but in 
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closest proximity to the woodlot of origin (Figure 25). Soil bacterial profiles generated from soils 

collected after 1 year of storage were slightly more distant from the woodlot of origin profiles 

than were those collected after 6 months. 

 

 

Figure 25—NMDS plot ordinating evidentiary and deciduous woodlot soil bacterial profiles. 

Evidence profiles after both 6 months and 1 year in storage clustered together, nearest the 

woodlot of origin, with the 1-year profiles plotting slightly farther away. 
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k-Nearest Neighbor 

 k-NN accurately classified soil bacterial profiles from evidentiary items to their location 

of origin 100% of the time after 6 months and 1 year of storage; however, no profiles were under 

the threshold value (Table 4). 

 

Analysis of T-Shirt Evidentiary Soils 

Bacterial Abundance Charts 

 Bacterial profile abundance changes were evident in soil collections from T-shirts over 

the 4-month period (e.g., Figures 26 and 27), regardless of storage temperature. The same 

changes that occurred on the other evidentiary items occurred on the T-shirts: an increase in 

Actinobacteria (Figure 28) and Bacilli and a decrease in Acidobacteria, Sphingobacteria (Figure 

29), Betaproteobacteria, and Spartobacteria. These abundance changes began more slowly in 

the soils collected from T-shirts stored at 4°C. 
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Figure 26—Bacterial class abundance of 24°C T-shirt soil collections over the 4-month 

sampling period compared to soil collected from the deciduous woodlot of origin. Evidentiary 

soil profiles exhibited increases in Actinobacteria and Bacilli (denoted by arrows in ascending 

order on the right of the figure) and decreases in Acidobacteria, Sphingobacteria, 

Betaproteobacteria, and Spartobacteria (denoted by arrows in ascending order on the left of the 

figure). 
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Figure 27—Bacterial class abundance of T-shirt soil profiles stored at 4°C and collected over the 

4-month sampling period compared to one profile generated from deciduous woodlot of origin 

soil. Evidentiary soils exhibited notable increases in Actinobacteria and Bacilli (denoted by 

arrows in ascending order on the right of the figure) and decreases in Sphingobacteria, 

Acidobacteria, Betaproteobacteria, and Spartobacteria (denoted by arrows in ascending order on 

the left of the figure). 
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Figure 28—Average (n=4) Actinobacteria abundance in bacterial profiles generated from soil on 

T-shirts stored at 24°C and 4°C over a 4-month period. Members of this class increased in 

abundance over time in storage. 
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Figure 29—Average (n=4) Sphingobacteria abundance in bacterial profiles generated from soil 

on T-shirts stored at 24°C and 4°C over a 4-month period. Members of this class decreased in 

abundance over time in storage. 

 

Additionally, the average taxonomic class diversity from evidentiary items (48) was 

initially slightly lower than the diversity of deciduous woodlot of origin soils (56); however, this 

diversity did not decrease substantially over the 4-month storage period (Figure 30).  
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Figure 30—Number of bacterial classes in soils on evidentiary T-shirts over a 4-month storage 

period. T-shirt bacterial profiles had lower diversity than the deciduous woodlot of origin (which 

had an average of 56 bacterial classes); however, the diversity did not decrease markedly over 

the storage period in either temperature. 

 

Nonmetric Multidimensional Scaling 

 T-shirt soil bacterial profiles initially clustered together near their deciduous woodlot of 

origin (Figure 31) and began to drift away from all woodlots in multidimensional space over the 

4-month period (e.g., Figure 32 and Figure 33). An NMDS plot of all soil bacterial profiles 

generated from the T-shirts and nine deciduous woodlots can be found in Appendix E.  
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Figure 31—NMDS plot ordinating initial deciduous woodlot and T-shirt soil bacterial profiles. 

Evidentiary soil profiles clustered together nearest the deciduous woodlot of origin profile.  
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Figure 32—NMDS plot ordinating nine deciduous woodlots and T-shirt evidentiary bacterial 

profiles after 4 months of storage. Profiles generated from T-shirts kept at both storage 

temperatures clustered away from all woodlot profiles, remaining closest to the woodlot of origin 

cluster. 
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Figure 33—NMDS plot ordinating nine deciduous woodlots and soil bacterial profiles generated 

from one T-shirt at each storage temperature over 4 months. T-shirt soil profiles clustered 

together near the woodlot of origin cluster. Profiles drifted away from all woodlot profiles over 

time (in the direction of the arrow). 

 

k-Nearest Neighbor 
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woodlot of origin 100% of the time over the 4-month period (Table 3). Profiles from the four T-

shirts stored at 4°C were under the k-NN threshold for the woodlot of origin more often than 

24°C T-shirts (Figure 34); however, both fluctuated over the 4-month storage period. All eight 

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5D
im

2

Dim1

NMDS Plot of Soil Bacterial Profiles from Nine 

Deciduous Woodlots and Two T-Shirts over 4-

Month Storage

Woodlot of Origin Woodlot 2 Woodlot 3 Woodlot 4

Woodlot 5 Woodlot 6 Woodlot 7 Woodlot 8

Woodlot 9 T-Shirt 24°C T-Shirt 4°C



72 

 

T-shirt profiles were under the threshold on the initial exposure date and after 1 week of storage. 

Week 3 stood out, as only one T-shirt profile from each storage temperature was under the 

threshold value for the woodlot of origin. 

 

 

Figure 34—T-shirt evidentiary bacterial profiles under the threshold value for the deciduous 

woodlot of origin over a 4-month storage period at either 4°C (n=4) or 24°C (n=4). All T-shirt 

profiles were under the threshold initially and after 1 week of storage, but fluctuated for the rest 

of the sampling times. Soil profiles from T-shirts stored at 4°C were under the k-NN threshold 

value more often than profiles from T-shirts stored at 24°C. 
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DISCUSSION 

The transfer of soil to an item or individual during the course of a crime offers the 

potential to link a suspect or victim to the scene. In these situations, forensic scientists aim to 

compare two or more soil samples and ultimately determine whether they originated from the 

same location. Traditional forensic soil analysis techniques involve the examination of class 

characteristics, which can be time consuming and often do not result in definitive association. 

The adoption of a more individualizing technique from another soil science discipline has the 

potential to strengthen forensic soil analysis. Microbiologists have been developing techniques to 

compare soil samples for decades (reviewed by van Elsas and Boersma, 2011) via the generation 

of soil bacterial profiles. Forensic comparison of such profiles may provide stronger 

discrimination or association than traditional soil analysis techniques due to the diversity and 

complexity of bacterial communities within soil. However, adoption and implementation of 

microbiological profiling methods into crime laboratories requires multiple steps, the first of 

which is verification that the technique will meet the needs of forensic soil analysis. Sensabaugh 

(2009) described three conditions that any microbial technique must satisfy to gain footing in 

forensic science—differentiability, reproducibility, and objectivity—all of which were generally 

satisfied through the research presented in this thesis. Next-generation sequencing of the 16S 

rRNA gene in soil bacteria allowed for the differentiation of soils from diverse and similar 

habitats over both time and space. Additionally, the combination of abundance charts, NMDS 

plots, and k-NN offered visual and statistical comparisons of soil bacterial profiles. 

Illumina next-generation sequencing both surpasses the resolution of older microbial 

profile generation methods (e.g., T-RFLP [Cao et al., 2013]) and produces a greater number of 

sequence reads than other next-generation platforms (e.g., pyrosequencing [Will et al., 2010; 
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Sato et al., 2013; Hopkins, 2014]). Larger amounts of data provide both advantages and 

disadvantages to forensic soil analysis. High resolution sequence data allow for the identification 

of subtle variances (e.g., rare or low abundance bacteria), which can help differentiate soil from 

two or more very similar locations. The same differentiability can be detrimental in profile 

comparisons however, as slight bacterial variation within an area can result in higher 

dissimilarity between samples and potentially a false exclusion. This did not seem to be a 

problem in the research presented here, as bacterial profiles from the same location generally 

clustered or classified together. Large datasets also pose a problem for forensic soil analysis, 

requiring powerful computers to process and analyze sequences that may not be available in 

forensic laboratories. Subsampling reduces the amount of data to a more manageable level; 

however, this process results in data loss, potentially affecting association of profiles. Replicate 

subsampling performed using the diverse habitat samples in this research produced bacterial 

profiles that showed similar taxonomic class abundance and exhibited consistent clustering 

patterns in NMDS plots (data not shown), indicating that subsampling did not affect profile 

association. Given this, it was concluded that subsampling profiles to 3000 sequences (which had 

been necessary for all studies due to computational analysis capabilities) was adequate to 

accurately reflect the bacteria present in a soil sample, and the potential loss of rare sequences 

did not greatly affect the discrimination or association among bacterial profiles. 

The next-generation sequencing data analysis methods utilized in this research allowed 

for the comparison of bacterial profiles both visually at the taxonomic class level and statistically 

at the sequence level; proving beneficial when used in combination. Abundance charts offered a 

clear visualization of taxonomic classes present within each bacterial profile, along with 

differences in their quantity and taxonomic diversity. Almost all of the soils contained the same 
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most abundant bacterial classes, although no two charts were identical. Bacterial abundance 

charts from diverse habitats were less alike than those from similar habitats, which in turn were 

less alike than those from soils within a habitat. An exception to this was the vertical space soils, 

which had clear class differences as depth increased (e.g., increasing levels of Clostridia, 

Nitrospira, and SHA-26 and decreasing levels of Spartobacteria). Environmental factors in deep 

soils such as lower oxygen and nitrogen levels (Hinchee and Leeson, 1997; Schramm et al., 

1999) offer a possible explanation for why Clostridia and Nitrospira were more abundant in 

deeper samples from all habitats, as their members thrive under such conditions (O’Brien and 

Morris, 1971). SHA-26 has not been as thoroughly studied; however, members of this class have 

been found in deeper soils by Tsitko and Bomberg (2014), indicating its species can also thrive 

in the conditions below topsoil. 

The dirt road soil samples represent another interesting example of bacterial variation 

detectable in abundance charts. Soils from this habitat exhibited differences in specific bacterial 

classes compared to other habitats, as well as lower class diversity. Upon further investigation, 

this likely resulted from treatment of the road with calcium chloride to reduce dust levels 

(Shiawassee County Road Commission, personal communication, 2015). Such chemical 

treatment increases soil salinity, which has been shown to lower the overall number of bacteria 

(Hollister et al., 2010), while favoring halophilic species (Quesada et al., 1983; Amoozegar et al., 

2005), many of which exist in the bacterial classes that were unusually abundant (Clostridia, 

Bacilli, Flavobacteria, and Gammaproteobacteria [Oren, 1983; Ventosa et al., 1998; 

Albuquerque et al., 2008; Sorokin et al., 2010]).  

Bacterial abundance charts also have forensic value beyond the identification of 

extremely different profiles. The relative abundance of taxonomic groups within known bacterial 
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profiles could be used to develop confidence intervals for a given location. Evidentiary profile 

relative abundance would then be compared to known profile confidence intervals and classified 

as being consistent or not. For example, the average ratio of Actinobacteria to Spartobacteria 

could be determined for a set of known profiles, measuring the variation within that location. An 

evidentiary sample with a very similar Actinobacteria-Spartobacteria ratio that falls within the 

confidence interval would be considered consistent with that location. The combination of many 

such ratio comparisons would increase the assurance of evidentiary and known profile 

association. Ratio calculations have been used in past soil microbiological research, but have not 

been studied for forensic application. Bossio et al. (1998) used phospholipid fatty acid profiles to 

calculate the ratio of fungal to bacterial biomass and determine how fertilizer affects microbial 

communities. Thomson et al. (2010) examined whether the removal of vegetation on agricultural 

land influenced bacteria based on relative T-RFLP peak height at specific restriction sites within 

the 16S gene. Ratio comparisons similar to these past studies, but based on the relative 

abundance of various bacterial groups (at any taxonomic level), would be especially helpful 

when analyzing forensic samples from very similar locations, where differences may not be 

readily visualized through abundance charts. However, such methods may be attacked in court, 

especially if associations were based on ratios involving rare bacterial classes. For example, it 

could be argued that two soils are inconsistent because the known profiles have a 1:500 ratio of a 

rare class to a common class, but the rare class is not present in the single evidentiary profile. 

Such differences may result from natural bacterial variation within a location, from subsampling, 

or from other sources of variation, such as long storage periods or the environmental conditions 

of storage (discussed below). Therefore, it may be more accurate to calculate ratios among only 

common groups at the respective taxonomic level to ensure slight bacterial variation does not 
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influence association or discrimination. Further research is necessary to determine which 

taxonomic level and bacterial groups provide the most discriminatory information; ideally 

differing among habitats but not within a single location.  

NMDS can help differentiate bacterial profiles that appear very similar in abundance 

charts, and it too generates a visualization of the data, potentially providing the expert witness an 

easily explainable concept when presenting results in court. NMDS reflected differences 

apparent in bacterial abundance charts in this thesis research (e.g., the dirt road profiles plotted 

the farthest from other habitats, and the depth profiles plotted progressively farther from the 

surface profile), while also allowing for differentiation of profiles that were visually similar in 

abundance charts. However, plots ordinating many locations together had relatively high stress, 

and profile clusters often intermingled. Several locations may be in question as the source of an 

evidentiary soil sample in a criminal investigation, and such intermingling of known bacterial 

profiles could prevent the association of an evidentiary profile and a single location. Stress is 

typically lower when fewer samples are ordinated in NMDS plots (Holland, 2008), resulting in a 

better depiction of sample dissimilarity and, in a forensic scenario, a more accurate 

representation of which location an evidentiary soil profile is most similar to. Ordination of 

profiles from pairs or triads of locations in this research resulted in the resolution of intermingled 

clusters, allowing for discrimination of the most similar bacterial profiles from different 

locations in both the diverse and similar habitat studies. It should be noted that the intermingled 

profiles were not removed in this exercise, they were simply analyzed without the pressure of 

other, more dissimilar profiles forcing them together. The clustering characteristics of NMDS 

plots can also be used to exclude locations as a possible source of an evidentiary soil sample. The 

relative position of evidentiary soil profiles in a plot allows the user to identify the most 
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dissimilar known clusters. Distant clusters can then be excluded as a site of origin, reducing the 

number of potential soil transfer locations to be compared with more definitive analysis methods. 

However, while these benefits make NMDS a powerful analysis technique, the evaluation of 

stress and the identification of clusters is still somewhat subjective. It has been suggested that 

stress values over 0.2 should be interpreted with caution, and that lower stress is always a better 

representation of profile relationships (Clarke, 1993), but a universally accepted stress value is 

not defined in the microbiology literature. The individual interpreting an NMDS plot is also 

responsible for identifying clusters, as there is no defined proximity measure for whether profiles 

are close enough to be considered associated. However, once identified, clusters of profiles can 

be compared using statistical tests such as analysis of similarities (Clarke, 1993) or multivariate 

analysis of variance (Johnson and Wichern, 2002), which provide a p-value and greater 

discriminatory power than the visual interpretation of an NMDS plot alone. Although helpful for 

statistically discriminating profiles from two locations, such methods probably have limited 

forensic value, as they require multiple profiles within each group being compared, and there 

may only exist one evidentiary sample in a criminal investigation. Due to its subjectivity and 

inadequate statistical power, NMDS cannot stand alone as a soil bacterial profile analysis 

technique in forensic science, if the goal is to definitively determine where a soil sample 

originated. 

Supervised classification techniques provide the objectivity necessary for forensic 

science, allowing for definitive assignment of a bacterial profile to a location of origin. In a 

forensic setting, training sets will be made up of known soil bacterial profiles representative of 

two or more potential locations of origin. Misclassification of a known profile can be identified 

in the training set validation step, and can be removed from analysis, or profiles from fewer 
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locations can be analyzed in a process analogous to what was done by analyzing pairs or triads of 

samples with NMDS. However, the former option is not ideal, as failure to classify in the 

training set validation could be indicative of variation within a location, and removal of the 

profile would make the training set less representative of the location of origin, and possibly 

result in a false exclusion of an evidentiary profile from a crime scene. Additionally, removal of 

profiles may be seen as data manipulation in court, potentially lowering the reputability of soil 

analysis results. The misclassification of marsh and fallow agricultural field profiles when all 

habitats were analyzed together in this research provides one example of how the comparison of 

fewer profiles at once, rather than the removal of profiles, resulted in accurate classification. 

Although there is no way to be sure what an unknown’s neighbors were in k-NN, it is likely 

some nearest neighbors of the misclassified profiles were from a third location, reducing the 

number that could be divided between the habitats with which they were most similar. This 

represents an instance where NMDS could be used together with supervised classification to 

visualize potential nearest neighbors and determine if a single known profile is plotting near an 

evidentiary profile and skewing classification. Marsh profiles in this research clustered near both 

fallow agricultural and agricultural field profiles in NMDS plots, suggesting nearest neighbors 

were being divided among those three locations, forcing classification based on a smaller nearest 

neighbor majority. Analysis with training sets made up of only marsh and fallow agricultural 

field knowns allowed all nearest neighbors to be decided between them, providing classification 

to the most similar location without losing neighbors to less similar groups. Supervised 

classification may be better suited for forensic science if knowns from pairs of locations are 

compared to evidentiary profiles in this manner. In the event that several potential locations are 

involved in a criminal investigation, all pair combinations could be analyzed with the evidentiary 
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profile, narrowing down the location with which an unknown sample is most similar, while 

ensuring all nearest neighbors are decided between only two locations at once.   

A training group assignment does not hold much forensic value without the interpretation 

of threshold values, as k-NN will force classification even if an unknown belongs to no training 

group. Although questioned as a statistically valid measure (Lavine and Davison, 2006), 

threshold values allow for an assessment of how well soil profiles are classifying, adding another 

layer of confidence. In the current research, dissimilarity of bacterial profiles in abundance charts 

or NMDS plots was usually reflected in k-NN threshold values. For example, evidentiary soil 

bacterial profiles were not consistently under the threshold value for their woodlot of origin as 

storage time increased, mirroring the divergence seen in both class abundance and NMDS plots. 

Conversely, there were instances where bacterial profiles were similar in abundance 

charts and NMDS plots but were not under threshold values in k-NN. Bacterial profiles from the 

nine deciduous woodlots exhibited this discrepancy, appearing alike in abundance charts and 

clustering well when ordinated as pairs or triads in NMDS plots; however, not all profiles were 

under the threshold values of their location of origin when run with all woodlots or in pairs. The 

calculation of threshold values can explain why these profiles were poorly classified. If the four 

training profiles acting as knowns are extremely similar, their average intra-point standard 

deviation would be low, and even slight variation in the fifth profile would push it over the 

threshold value. Based on this research, collection of more than five samples may be better 

suited for forensic analysis, lowering the chance of having one extremely dissimilar profile while 

more accurately capturing within habitat variation (discussed below). 

Other supervised classification techniques that can produce statistical values not affected 

by slight variations among bacterial profiles from the same location may perform better than k-
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NN for forensic analysis. Two supervised classifiers that provide a more robust measure of 

association are soft independent modelling of class analogies (SIMCA) and decision trees, which 

assess the different attributes of data (e.g., OTU or taxonomic class similarities), rather than 

dissimilarity measures, to group samples. SIMCA statistically compares the residual variance 

between an unknown and the group it is classified to (Lavine and Davidson, 2006), outputting a 

group assignment and goodness of fit value. Unlike k-NN, it is a soft classifier, not forcing 

assignment if the unknown does not fit with any of the known groups in the training set. 

Alternatively, decision trees produce probabilities, measuring how likely an unknown sample 

belongs with a specific training group based on classification along a branching tree (Rokach and 

Maimon, 2008), where each branch is a different profile attribute (e.g., a specific taxonomic 

class). The variance and probability statistics generated by both of these classifiers, as well as 

several others, is much more definitive than k-NN thresholds, and these techniques may provide 

an even more objective assessment of the location from which soil originated. 

Supervised classification via k-NN analysis correctly classified the vast majority of 

profiles to their location or origin in this research; however, one profile from deciduous woodlot 

9 and all profiles from deciduous woodlot 8 failed to correctly classify, whether being compared 

with all similar habitat profiles or in a smaller training set. Complete cluster separation was 

achieved in NMDS when profiles from pairs or triads of locations were ordinated, but the 

bacterial variation among these profiles was too high for accurate classification. The dissimilar 

profile from woodlot 9 was collected on the final sampling date (July 14), when construction was 

occurring on a nearby road. Although abundance charts for all profiles from woodlot 9 appeared 

alike, chemicals or disturbances from the construction activity might have altered the bacterial 

makeup of the soil at the OTU level. A similar possibility exists for the intra-location variability 
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of profiles generated from woodlot 8. An area of land directly adjacent to this sampling site was 

previously a gravel pit, which was converted to a park in 1999 (Ingham County Website, 2015). 

Such anthropogenic soils (IUSS Working Group WRB, 2006) are often complex mixtures of 

different soil types and can possess extreme spatial heterogeneity (Fitzpatrick, 2013) that 

influences the microbial community, sometimes resulting in very different profiles from soils 

collected short distances apart. Soil samples were collected based on GPS coordinates, but it is 

possible that small distances resulted in dissimilar profiles if strong spatial variability existed. 

Other anthropogenic soils in this research (e.g., agricultural field and roadside) did not exhibit 

the same micro-spatial variation, potentially due to the uniform treatment of such habitats 

compared to a mining location where massive turnover of soil occurs. Extreme spatial 

heterogeneity would affect classification, especially if only a few soil samples are collected from 

an anthropogenic location. Variation among known profiles will result in training sets with high 

standard deviation and low training set validation success. Again, rather than collecting fewer 

known samples or removing dissimilar profiles to avoid variation, the collection and analysis of 

additional knowns is recommended based on these results. Highly variable soil can still produce 

tight clustering and strong training sets if profiles across a gradient of differences are 

represented. This means that two profiles within a training set can be fairly dissimilar; however, 

additional profiles at varying degrees of dissimilarity would also exist in the knowns, 

representing the location of origin while keeping standard deviation relatively low. 

It may also be beneficial to combine bacterial profiling with traditional soil analysis 

techniques for human-influenced soils. The identification of extreme variation can act as a signal 

that the soil is anthropogenic and potentially possesses individualizing characteristics beyond 

microbes. The presence of rare elements has led to strong associations between evidentiary and 
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crime scene soil in both historical cases (e.g., the Eva Disch murder investigation [Murray and 

Tedrow, 1975]) and modern investigations (e.g., the Adelaide hills double murder [Fitzpatrick et 

al., 2007]). Elemental analysis (e.g., X-ray florescence) or microscopy may reveal these unique 

characteristics (Dawson and Hillier, 2010) and allow the forensic scientist to associate two soil 

samples with or without the use of bacterial profiling. Unique soil characteristics are extremely 

rare however (Dawson and Hillier, 2009), and traditional techniques are not as useful when 

analyzing similar soil types. Future studies on the variation present within anthropogenic 

locations would help in determining if bacterial profiling is a viable option or if combinations of 

techniques are better suited for the analysis of heterogeneous soils. 

Another important consideration for the forensic use of bacterial profiling is how 

bacterial communities are changing over time. It is fundamentally impossible to collect known 

soil samples at the time a crime occurs; consequently, temporal changes in bacterial makeup 

must be examined. Past studies assessing change over time through T-RFLP analysis (Meyers 

and Foran, 2008) and pyrosequencing (Lauber et al., 2013; Hopkins, 2014) of the 16S locus have 

revealed substantial differences in bacterial profiles generated from soil collected in different 

months; however, no specific trends were evident. Some temporal differences in bacterial 

profiles were apparent in the current study, most of which were based on the months of 

collection rather than the time separating two collections. Six of the 10 profiles that classified 

correctly in k-NN but were over the threshold value came from soil samples collected December 

– March. Additionally, profiles from the deciduous woods and yard in February and the yard in 

March were misclassified and contained substantially fewer OTUs than profiles generated from 

soil in other months. These bacterial profile differences seem to be more seasonal than temporal, 

and several seasonal factors could have affected the bacteria, including the amount of daylight, 
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colder temperatures, snow, and ice. However, not all samples collected in winter months 

produced profiles that misclassified or did not cluster together in NMDS plots, suggesting that 

the seasonal conditions of winter are not the main cause of dissimilar profile generation.  

Rather than being an exclusively seasonal or temporal affect, profile dissimilarity may 

have stemmed from the collection of water with the soil samples. Soils from the winter months 

contained snow and ice and were slushy when thawed for extraction, which potentially affected 

the bacterial diversity of the resulting profile due to the chemistries of the extraction kit. A 

PowerSoil® kit utilizes bead beating technology, where cells are lysed in the initial extraction 

step by the collision of beads moving in solution (PowerSoil® Instruction Manual). Extra water 

in the extraction tube both dilutes regents and spreads beads further apart, potentially reducing 

their lysing capabilities. Stronger celled bacteria (often gram positive) will not be lysed as 

readily in these situations and would thus not be represented in the final bacterial profile. 

Although there was no indication that such bacteria (e.g., members of Actinobacteria and Bacilli) 

were in lower abundance in profiles generated from wet samples, there may have been 

differences at other taxonomic levels. Extraction reagent and bead dilution could potentially be 

solved by pelleting a wet soil sample and removing excess water before addition of reagents; as 

is recommended in the troubleshooting section of the PowerSoil® kit instruction manual; 

however, if some bacteria do not pellet, the resulting profile would still be inaccurate. A second 

option is to dry the soils before weighing them for extraction. Drying would allow for the correct 

mass of soil to be added to extraction tubes and prevent both reagent and bead dilution. Young et 

al. (2015) found that air drying soil samples for 72 hours in a 25°C incubator did not affect the 

OTU diversity nor change similarity among eukaryotic profiles from dried and fresh soil 

samples; however, little research has been done on the effects of drying soil before extraction on 
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bacterial profiles. Soils that were dried during storage in the t-shirt evidentiary study presented 

here exhibited differences after several weeks, but sample collections up to 1 week of storage did 

not produce noticeably dissimilar profiles from the location of origin, suggesting short drying 

periods (e.g., overnight) do not affect representative profile generation. Despite the slushy soil 

samples producing dissimilar bacterial profiles, the vast majority (93.7%) of profiles correctly 

classified to their location of origin over the full year of sampling, indicating that temporal 

changes do not greatly influence the ability to associate soil profiles generated via next-

generation sequencing. 

It is also unlikely that known soil samples will be collected from the precise spot an item 

was exposed, but instead could be collected feet, yards, or greater distances away, stressing the 

importance of understanding spatial variability of bacterial communities within a location. 

Differences in bacterial profiles over small distances have been attributed to microenvironmental 

factors such as foliage, pH, and nutrient supply (Ettema and Wardle, 2002; Eichorst et al., 2007), 

although in reality, any number of factors could come into play. Bacterial profile variation or 

patchiness similar to that found in past studies (e.g., Meyers and Foran, 2008) was present in the 

current research, wherein profiles generated from soils collected across a habitat, either from the 

surface or at different depths, did not always cluster tightly in NMDS plots. Despite their loose 

clustering, k-NN analysis resulted in the accurate classification of both horizontal and vertical 

spatial soils when profiles from a range of distances and depths were used as the training set, 

highlighting the importance of using a variety of known samples to capture within-habitat 

bacterial variation. It is noteworthy that horizontally collected soil bacterial profiles that were 

misclassified stemmed from locations at least 90 feet distant from all or four of the five training 

samples, and were collected in either the deciduous woodlot or yard, which were less than 800 
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feet apart at the Fenner nature center. This result presents both a strength and weakness of 

bacterial profile classification. The generation of profiles via next-generation sequencing allowed 

for differentiation of these close-proximity sites; however, the edges of habitats began to blend, 

becoming more similar to the neighboring habitat. It may be beneficial to collect known soil 

samples across a habitat as well as a subset from the edges of habitats to capture these bacterial 

differences. The dissimilarity of resulting bacterial profiles could then be compared in NMDS 

plots to examine clustering behavior. If separate clusters representative of the habitat edge form, 

they can be analyzed in k-NN as separate known groups, representing different areas within a 

location. Classification to one of these groups would allow for the determination of whether soil 

transfer occurred in the center of a habitat or on the edge. 

Soil bacterial profiles generated from samples collected across time and space in this 

research classified to their location of origin with high reliability; however, actual forensic 

scenarios will combine many such factors with the added influence of the material evidentiary 

soil is deposited on, which may already possess its own microbial community. Items in the 

preliminary evidentiary study were previously used and/or worn; however, they had been rinsed 

or wiped with water prior to soil exposure. A background bacterial profile may still have existed 

that either resembled woodlot of origin profiles or contained bacteria that were substantially 

different from woodlot soils, both potentially influencing traceability. Bacterial profiles 

generated from those items contained similar numbers of OTUs and bacterial classes, indicating 

background bacteria did not have a substantial effect on the soil bacterial profiles after exposure 

in the woodlot. A clean T-shirt from the secondary study produced a bacterial profile with far 

fewer OTUs and bacterial classes than woodlot soils. Additionally, the profile was dissimilar 

from all deciduous woodlots and T-shirt soil bacterial profiles, clustering far away in NMDS 
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plots (data not shown). The clean shirt profile was assigned to deciduous woodlot 2 in k-NN; 

however, it was far above the threshold for all woodlots; an average of 25 standard deviations 

away from each training group’s intra-point distance. Realistic forensic scenarios will likely 

involve items that are not as pristine when first exposed to soil, such as a worn T-shirt or a used 

handkerchief, which could harbor very different bacteria than soil. The ubiquity of bacteria poses 

a potential challenge for forensic analysis in these cases, as the bacteria already present on such 

items could impact the soil bacterial profile that is generated and in turn, the ability to form 

associations. In these instances, it may be beneficial to extract DNA from a clean portion of an 

evidentiary item and subtract the OTUs or taxonomic groups from the resulting profiles, 

allowing for comparison of only soil bacteria. Subtraction should be done before subsampling, so 

as not to decrease the number of sequences within a profile more than necessary. There exists a 

risk of subtracting bacteria that are present in both the soil and on the clean item using this 

technique, and it is unclear how association would be affected. Therefore, more research is 

necessary to determine whether evidentiary soil profiles still classify to their location of origin 

after background bacterial subtraction. 

Fewer OTUs were generated from soils deposited on evidentiary items the longer they 

were stored in this research. Soils removed from their location of origin are no longer exposed to 

the same environment, and it is likely that not all bacterial types will persist, so the loss of OTU 

diversity is somewhat intuitive. The differences in abundance of taxonomic classes also made 

sense in the context of the environment change. Actinobacteria, which increased over time, 

contains species that thrive in dry environments (Ghorbani-Nasrabadi et al., 2013), and Bacilli, 

which also increased, contains species that persist in changing environments due to spores that 

are much more resilient than those of other bacteria (Claus and Berkeley, 2009). 
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Sphingobacteria, which decreased over time, is a class whose members produce large lipid 

membranes that require moisture (Boone and Castenholz, 2001), which was not present in 

storage. Characteristics like these could explain why members of specific taxonomic classes did 

or did not persist in stored deciduous woodlot soils. Ongoing research at Michigan State 

University has shown these same bacterial class changes in stored soils from an agricultural 

field, dirt road, treated yard, and coniferous forest (Alyssa Badgley, personal communication, 

2015), establishing that the abundance differences are not a phenomena specific to deciduous 

woodlot soils. Owing to these findings, it seems highly likely that the same bacterial class 

abundance changes will occur in most or all soil types when stored. Rather than being a 

hindrance for soil evidence investigation, predictable changes in bacterial profiles, at both the 

class and OTU level, could be used to develop a biological clock measuring how long soil has 

been removed from a location. Similar to how a post-mortem interval can be estimated based on 

insect presence and/or the stage of tissue decomposition (e.g., Catts and Goff, 1992; Nelson, 

2000), the rate of change in both taxonomic class and OTU abundance in storage might allow 

estimation of a time period within which evidentiary soil transfer occurred. For example, 

Actinobacteria, which never made up more than 20% of the profiles generated from soils in this 

research, increased markedly in soil stored on evidentiary items. If an evidentiary item profile 

showed extremely high levels of Actinobacteria (e.g., threefold higher than any known profile 

generated), it can be assumed that the soil sample is not fresh and that transfer probably occurred 

more than 2 months previous (based on this research). The relative abundance of several 

bacterial taxonomic classes combined with a measure of how many OTUs are present within a 

profile would result in a more precise clock, allowing for smaller range estimations. However, it 

should be noted that such a clock may be influenced by storage conditions, such as temperature, 



89 

 

humidity, or nutrient availability. Not all of these factors were examined in the current research, 

but cooler temperatures slowed the onset of bacterial abundance change and OTU reduction in 

profiles generated from the T-shirts. Temperature-dependent changes will affect how biological 

clocks are calibrated (e.g., if a piece of evidence is stored in an outdoor shed during winter 

versus an indoor closet). Studies examining various storage conditions and how they affect soil 

bacteria will need to be performed to increase our knowledge on how evidentiary profiles might 

differ from their location of origin after soil transfer occurs. 

The woodlot in which items were exposed to soil in the evidentiary studies was one of the 

most unique of the similar habitats, clustering the farthest from all other woodlot profiles in 

NMDS plots. This distinctiveness may have influenced the evidentiary soil traceability results, as 

evidentiary profiles were initially slightly different from all other locations. However, the 

profiles never developed characteristics of other woodlots over time, remaining most similar to 

the woodlot of origin even after 1 year of storage. Additionally, abundance charts of evidentiary 

profiles were not similar to any other location from the diverse habitat study, suggesting the 

same traceability results would have been obtained if the evidence were compared to those 

profiles. The ongoing research at Michigan State University mentioned above, assessing 

evidentiary profile traceability over time within four other habitat types has shown similar 

results: evidentiary soil on T-shirts classified to its location of origin in the months following 

exposure (Alyssa Badgley, personal communication, 2015). In combination with the research 

presented in this thesis, these results highlight the strong potential for bacterial profile 

traceability, as soil profiles correctly classified to their location of origin regardless of storage 

time or the material on which soil was stored. 
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The evidence traceability success in this research is promising; however, without proper 

collection of known soil samples, bacterial profile comparison and association is difficult or 

impossible. Crime scene investigators must be informed about where, when, and how to collect 

known soil samples as well as the number of samples to collect. A collection strategy can begin 

to be developed based on the results of this thesis research. Multiple known samples must be 

collected in order to develop location clusters in ordination techniques or training sets for 

supervised classification. Additionally, the collection of multiple known samples proved 

beneficial in capturing the bacterial variation present within habitats in this research, providing 

more accurate classification when a range of profiles generated from soil across a given location 

were used as the training set (e.g., the horizontal space soils). For these reasons, multiple samples 

over short distances across a habitat should be collected, which would allow for the development 

of strong training sets representative of habitat extremes, as well as a range of bacterial profiles 

within these extremes. Evidentiary profiles from a given location could then be discriminated or 

associated with a certain level of confidence, knowing that bacterial variation was represented 

within the training set.  

The collection of soil samples weeks or months after a crime occurred will likely not 

produce profiles dissimilar to evidentiary soils; however, excessive wetness due to 

environmental phenomena such as snow, ice, or rain should be taken into account by crime scene 

investigators when collecting knowns. Avoiding water during collection is the most logical 

course of action, but this may not be possible, especially in icy conditions. Therefore, the 

individual collecting known soil samples must be mindful of excess water, handling these 

samples differently, either by drying the soils before packaging at the crime scene or marking the 
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sample in some way to ensure laboratory analysts are aware that water could be a factor when 

the samples are thawed for extraction.  

Storage of known soil samples after collection is another facet of forensic analysis that 

must be considered. Bacterial change occurred at both evidentiary storage temperatures in this 

research (4°C and 24°C). The assessment of bacterial change in a subset of the known soil 

samples, which were stored at -20°C before DNA extraction, was recently performed (Alyssa 

Badgley, personal communication, 2015) in which four soil samples collected from the treated 

yard and stored for 1 year were re-extracted and their corresponding stored DNAs were re-

amplified for comparison to the original profiles. Re-amplified DNAs produced bacterial profiles 

very similar to the original amplification; however, frozen soils generated slightly dissimilar 

profiles, plotting farther away from habitat clusters in NMDS. Additionally, the bacterial classes 

that changed in frozen soils were different than those that had changed on stored evidentiary 

items (Acidobacteria and Actinobacteria decreased while Flavobacteria increased), showing 

cold storage temperatures affect bacteria differently. Forensic laboratories may store samples for 

long periods if a backlog of cases exists, and it will be important that the bacteria within stored 

soil are not changing during this time. Even colder storage of knowns (e.g., at -80°C) is one 

possibility to maintain bacterial profiles representative of their origin; however, evidentiary soils 

that have been exposed to a warmer environment before discovery may produce dissimilar 

bacterial profiles compared to fresh samples from the origin location. A better option is to 

recreate the evidentiary soil storage conditions and expose known samples from all locations 

involved in the investigation to that environment. Storage under similar conditions would likely 

result in similar bacterial changes if a known and evidentiary soil sample came from the same 

location. Conversely, soil profiles originating from different locations could be differentiated 
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using this technique, as their starting bacteria would be different, and the resulting stored profiles 

would also be dissimilar. 

 A final consideration for the adoption of next-generation sequencing for forensic soil 

analysis is its integration into both crime laboratories and court, a process that involves multiple 

steps. First, sequencing technology must be available, and in most cases this means adding it to 

the laboratory, as forensic laboratories do not currently employ next-generation sequencing for 

casework. However, it is unlikely every crime laboratory will have the means or desire to 

purchase and maintain expensive equipment such as a next-generation sequencer, especially if 

only a handful of samples are run per year. In this regard, the technology could be made 

available through a central or regional laboratory, much like the FBI has done with some of its 

mtDNA testing laboratories (Forensic Science Communications, 2003). Such a laboratory would 

receive samples from across the country or region, requiring only one team of personnel to be 

trained on next-generation sequencing analysis, saving time and money.  

The next step in the implementation process is the acceptance of the methods by the 

courts through satisfaction of Frye and Daubert standards. The methodology being presented by 

an expert witness must have been empirically tested, widely accepted in its appropriate field, 

published in the peer reviewed literature, have a known error rate, and possess standards for its 

operation (Daubert v. Merrell Dow Pharmaceuticals, Inc., 1993). The generation of bacterial 

profiles through next-generation sequencing already largely meets these criteria because it has 

been successfully used by so many in microbiology and other fields (reviewed by Shokralla et 

al., 2012). Bacterial sequencing has been extensively tested and presented in the microbiology 

peer reviewed literature, and approximate error rates for base calling are known for many next-

generation sequencing platforms (e.g., Loman et al., 2012; Liu et al., 2012; Quail et al., 2012). 
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However, the goals of forensic science differ from those of microbiology, where definitive 

association or discrimination is not necessary, as it is in forensic soil analysis. Forensic 

applications of soil bacterial profiling are not prevalent in the peer reviewed literature, but 

studies like those presented in this thesis represent the first steps toward validation of 

microbiological soil comparisons for use in forensic analysis. 

Another challenge remaining for laboratory implementation of bacterial profile soil 

analysis is to develop universal standards for the technique. Differences already exist among 

countries on which markers to assay for human DNA analysis (e.g., the United States 13 core 

loci [Budowle et al., 1998] and the Extended European Standard Set [European Council, 2001]), 

making international profile comparison difficult. Microbiological soil analysis offers even more 

options than human DNA, as several taxa can be assayed, and it is unclear whether profiles of 

different organisms within soil provide similar results. Young et al. (2014) found differences in 

diversity and reproducibility of profiles when sequencing genetic markers of soil fungi, 

eukaryotes, plants, and bacteria; however, profiles from all four taxa allowed for discrimination 

of two sites, suggesting any of these taxa could be utilized for forensic analysis. The use of 

different sequence processing methods has the potential to produce conflicting results across 

laboratories. For example, the employment of the Greengenes reference database (DeSantis et 

al., 2006) instead of SILVA in this research may have provided higher discriminatory power 

among bacterial profiles, affecting soil sample association. It seems beneficial to standardize the 

entire forensic soil analysis process rather than attempt to meet Daubert standards for and 

achieve court acceptance of the many microbial profile generation methods and processing 

techniques that exist in the microbiology literature. Forensic soil analysis could be regulated by a 

standardization body such as the Scientific Working Group on Microbial Genetics and Forensics 
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(Budowle, 2003), which already has guidelines for the implementation of microbiology into 

crime laboratories, but does not specifically outline standards for soil evidence. The same marker 

in one soil taxon could be assayed by all forensic laboratories, expediting the court acceptance 

process. Standardization would also make the presentation of results in court more 

understandable, allowing laypersons to easily compare two experts’ testimony, rather than 

focusing on how to compare data. 

 Despite the need for continued evidentiary soil research, crime laboratory 

implementation, and court acceptance, the research presented here shows the tremendous 

potential of next-generation sequencing to meet the main goal of forensic soil analysis: 

discrimination or association of an evidentiary sample and a crime scene. The development of 

soil bacterial profiles based on the 16S rRNA gene offers a promising avenue for such analysis, 

surpassing the value of class characteristics measured through time-consuming traditional 

methods. Many microbiological profiling techniques have shown potential for forensic analysis; 

however, this research demonstrates that next-generation sequencing provides the resolution and 

discriminatory power necessary for criminal investigations. 
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APPENDIX A. Photographs of Sampling Sites and Evidence 

Diverse Habitats 

 

Figure A1—Agricultural field in East Lansing, MI.  

 

Figure A2—Beach on Lake Lansing in Haslett, MI. 
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Figure A3—Coniferous forest at Woldumar Nature Center in Lansing, MI. 

 

Figure A4—Deciduous woodlot at Fenner Nature Center in Lansing, MI. 
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Figure A5—Dirt road in Perry, MI.  

 

Figure A6—Fallow agricultural field in Perry, MI.  
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Figure A7—Field at Fenner Nature Center in Lansing, MI.  

 

Figure A8—Marsh edge at Fenner Nature Center in Lansing, MI.  
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Figure A9—Roadside in Lansing, MI.  

 

Figure A10—Yard at Fenner Nature Center in Lansing, MI.  
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Similar Habitats 

 

Figure A11—Deciduous Woodlot 1 at Fenner Nature Center in Lansing, MI. 

 

Figure A12—Deciduous Woodlot 2 in East Lansing, MI. 
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Figure A13— Deciduous Woodlot 3 in East Lansing, MI. 

 

Figure A14— Deciduous Woodlot 4 in Lansing, MI. 
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Figure A15— Deciduous Woodlot 5 in East Lansing, MI. 

 

Figure A16— Deciduous Woodlot 6 in East Lansing, MI. 
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Figure A17— Deciduous Woodlot 7 in East Lansing, MI. 

 

Figure A18— Deciduous Woodlot 8 in Lansing, MI. 
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Figure A19— Deciduous Woodlot 9 in Okemos, MI.  

Spatial and Temporal Habitats 

 

Figure A20—Deciduous woodlot at Fenner Nature Center in Lansing, MI. 
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Figure A21—Yard at Fenner Nature Center in Lansing, MI.  

 

Figure A22—Treated Yard at Michigan State University in East Lansing, MI. Used for temporal 

and horizontal spatial studies.  
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Figure A23—Treated Yard at Michigan State University in East Lansing, MI. Used for depth 

study.  

Evidentiary Items  

 

Figure A24—Tire with soil collected from woodlot 1.  
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Figure A25—Shovel with soil collected from woodlot 1.  

 

Figure A26—Shirt with soil collected from woodlot 1.  
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Figure A27—Shoes with soil collected from woodlot 1.  

 

Figure A28—Sock with soil collected from woodlot 1.  
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Figure A29—T-shirt being exposed to soil in woodlot 1.  
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APPENDIX B. Sequence Processing Commands for Mothur Version 1.33.3 

“Samplefile” is the file name used in the following commands. All files must be in the same 

location as the mothur file being used for processing. Refer to 

http://www.mothur.org/wiki/MiSeq_SOP for additional information.  

1. mothur > make.contigs(file=samplefile.txt*, processors=8) 

2. mothur > summary.seqs(fasta=samplefile.trim.contigs.fasta) 

3. mothur > screen.seqs(fasta=samplefile.trim.contigs.fasta, 

group=samplefile.contigs.groups, maxambig=0, maxlength=475) 

4. mothur > summary.seqs(fasta=samplefile.trim.contigs.good.fasta) 

5. mothur > count.groups(group=samplefile.contigs.good.groups) 

6. OPTIONAL MERGE FILES COMMAND. Must merge both the fasta files and the group 

files separately.  

mothur > merge.files(input=fileA-fileB-fileC, output=fileABC) 

7. mothur > sub.sample(fasta=samplefile.trim.contigs.good.fasta, 

group=10locationsstability.contigs.good.groups, size=3000,persample=T) 

8. mothur > unique.seqs(fasta=samplefile.trim.contigs.good.Subsample.fasta) 

9. mothur > count.seqs(name=samplefile.trim.contigs.good.Subsample.names, 

group=10locationsstability.contigs.good.Subsample.groups) 

10. mothur > summary.seqs(count=samplefile.trim.contigs.good.Subsample.count_table) 

11. mothur > pcr.seqs(fasta=silva.bacteria.fasta†, start=11894, end=25319, keepdots=F, 

processors=8) 

12. mothur > system(rename silva.bacteria.pcr.fasta silva.samplefile.fasta) 

13. mothur > summary.seqs(fasta=silva.samplefile.fasta) 

14. mothur > align.seqs(fasta=samplefile.trim.contigs.good.Subsample.unique.fasta, 

reference=silva.samplefile.fasta) 

15. mothur > summary.seqs(fasta=samplefile.trim.contigs.good.Subsample.unique.align, 

count=samplefile.trim.contigs.good.Subsample.count_table) 

16. mothur > screen.seqs(fasta=samplefile.trim.contigs.good.Subsample.unique.align, 

group=samplefile.contigs.good.Subsample.groups, 

name=samplefile.trim.contigs.good.Subsample.names, 

summary=samplefile.trim.contigs.good.Subsample.unique.summary, start=1968, 

end=11550, maxhomop=8,processors=8) 

17. mothur > 

summary.seqs(fasta=samplefile.trim.contigs.good.subsample.unique.good.align, 

count=samplefile.trim.contigs.good.subsample.count_table) 

18. mothur > filter.seqs(fasta=samplefile.trim.contigs.good.subsample.unique.good.align, 

vertical=T, trump=., processors=8) 

19. mothur > 

unique.seqs(fasta=samplefile.trim.contigs.good.subsample.unique.good.filter.fasta, 

count=samplefile.trim.contigs.good.subsample.count_table) 

http://www.mothur.org/wiki/MiSeq_SOP
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20. mothur > 

pre.cluster(fasta=samplefile.trim.contigs.good.subsample.unique.good.filter.unique.fasta, 

count=samplefile.trim.contigs.good.subsample.unique.good.filter.count_table, diffs=2) 

21. classify.seqs(fasta=samplefile.trim.contigs.good.subsample.unique.good.filter.unique.pre

cluster.fasta, template=silva.samplefile.fasta, taxonomy=silva.bacteria.silva.tax†) 

22. mothur > 

cluster.split(fasta=samplefile.trim.contigs.good.subsample.unique.good.filter.unique.precl

uster.fasta, 

count=samplefile.trim.contigs.good.subsample.unique.good.filter.unique.precluster.count

_table, 

taxonomy=samplefile.trim.contigs.good.subsample.unique.good.filter.unique.precluster.s

ilva.wang.taxonomy,cutoff=.15, splitmethod=classify, taxlevel=3,processors=8) 

23. mothur > 

make.shared(list=samplefile.trim.contigs.good.subsample.unique.good.filter.unique.precl

uster.an.unique_list.list, 

count=samplefile.trim.contigs.good.subsample.unique.good.filter.unique.precluster.count

_table, label=0.03) 

24. mothur > summary.shared(shared=current,calc=braycurtis-sorclass) 

25. mothur > classify.otu(list=current, count=current, taxonomy=current, label=0.03) 

Summary files for Bray-Curtis/Sørensen-Dice calculation and taxonomy can be opened in 

excel. Final shared file contains operational taxonomic units of each sample.  

*This is a stability file constructed in Microsoft Excel and saved as a txt file. The format is 

sample name, R1 file name, R2 file name for each sample.  

†Bacterial reference files downloaded from SILVA data base at http://www.arb-silva.de/ 

(Quast et al., 2013) 

  

http://www.arb-silva.de/
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APPENDIX C. Bacterial Profile OTU Diversity  

Table C1—Number of OTUs in each bacterial profile generated from diverse habitat soils.  

 Date of Collection 

Habitat 8/29/2013 11/24/2013 2/7/2014 5/16/2014 8/13/2014 

Agricultural Field 857 1067 835 1031 648 

Beach 894 799 766 743 980 

Coniferous Forest 617 919 1062 829 803 

Fenner Deciduous Woodlot 889 1176 1039 1106 1038 

Dirt Road 259 282 - 285 278 

Fallow Agricultural Field 915 1198 1126 1065 1083 

Field 850 981 954 889 985 

Marsh 911 1121 1193 1168 927 

Roadside 584 859 581 709 738 

Yard 990 1149 762 628 1143 

 

Table C2—Number of OTUs in each bacterial profile generated from similar habitat soils.  

 Date of Collection 

Deciduous Woodlot 5/16/2014 5/30/2014 6/13/2014 6/27/2014 7/14/2014 

Woodlot 1 1056 1036 957 1044 952 

Woodlot 2 983 1046 1005 935 919 

Woodlot 3 1024 1099 1016 1050 1029 

Woodlot 4 983 1020 955 898 888 

Woodlot 5 1046 1027 904 1003 933 

Woodlot 6 1036 1052 845 920 911 

Woodlot 7 1067 1015 1004 1029 1036 

Woodlot 8 1119 1227 1009 908 954 

Woodlot 9 959 931 882 919 902 
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Table C3—Number of OTUs in each bacterial profile generated from three habitats over time. 

 Date of Collection 

Habitat 8/29/13 

  

8/30/13 

 

8/31/13 

 

9/1/13  9/5/13 

 

9/12/13 

 

9/19/13 9/16/13 

 

10/3/13  10/10/13  10/17/13  10/24/13 

Fenner Deciduous 

Woodlot 
889 1130 1030 1092 1175 1019 1086 1070 1022 1056 1016 1032 

Treated Yard 1160 1059 1042 1071 1067 1090 996 1084 962 1032 976 882 

Yard 990 1159 1107 1052 1086 1082 1050 1158 1038 1041 1065 1051 

 Date of Collection   

Habitat 

 

11/3/13 

 

12/2/13  1/2/14 

 

2/2/14 

 

2/28/14 

 

3/30/14 

  

4/26/14 

 

5/30/14 

 

6/27/14  7/31/14  8/29/14  

Fenner Deciduous 

Woodlot 
1007 1121 998 794 483 852 1029 956 943 996 960 

 

Treated Yard 923 891 830 874 823 1063 985 942 1099 985 1055  

Yard 1018 1095 1092 1120 739 764 954 1095 997 1183 1063  
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Table C4—Number of OTUs in each bacterial profile generated from soils across the surface of three habitats.  

 Location of Collection 

Habitat  Center  5'North 

 

5'South  5'East  5'West  10'North 

 

10'South  10'East 

 

10'West 

Fenner Deciduous 

Woodlot 1023 1076 1141 977 1104 1170 1144 973 1172 

Treated Yard 1231 1026 1049 1109 871 1127 1097 1022 1126 

Yard 972 860 1043 781 836 945 1015 861 1061 

 Location of Collection   

Habitat 

 

50'North 

 

50'South  50'East 

 

50'West 

 

100'North 

 

100'South  100'East 

 

100'West  

Fenner Deciduous 

Woodlot 940 1063 1001 1057 1057 1029 1228 900  

Treated Yard 994 1129 1155 1005 807 1118 1008 1124  

Yard 1014 1129 1069 1027 1011 1010 1108 1031  

 

Table C5—Number of OTUs in each bacterial profile generated from at different depths within three habitats. 

 Depth of Collection 

Habitat Surface  1"  2"  5"  10"  20"  60" 

Fenner Deciduous Woodlot October 1020 943 939 963 1058 993 242 

Fenner Deciduous Woodlot April 992 1203 1040 926 887 1197 647 

Yard October 1159 1138 1174 1139 1058 968 1047 

Yard April 1027 1057 1046 1141 1087 882 1010 

Treated Yard April 866 964 1048 1144 948 613 1063* 

*Soil collected at 25” due to obstruction. 
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Table C6—Number of OTUs in each bacterial profile generated from soil on stored evidentiary items.  

 Time in Storage 

Evidentiary Item 6 Months* 1 Year 

Shirt 605 853 

Shoe 873 958 

Shovel 714 699 

Sock  660 1015 

Tire 871 952 

*OTU value presented represents homogenized soil profile. 

Table C7—Average number of OTUs in bacterial profile generated from soil on stored T-shirts (n=4). The clean shirt bacterial profile 

contained 256 OTUs.  

 Time in Storage 

Storage 

Temperature  

0 

Weeks 

1 

Week 

2 

Weeks 

3 

Weeks 

4 

Weeks 

5 

Weeks 

6 

Weeks 

7 

Weeks 

8 

Weeks 

12 

Weeks 

16 

Weeks 

24°C 1033 986 919 732 919 832 856 765 689 703 775 

4°C 1021 1022 1008 899 930 957 947 897 772 895 790 
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APPENDIX D. Additional Bacterial Abundance Charts  

Diverse Habitat Soil Samples 

 

Figure D1—Bacterial class abundance of soil collections from the ten diverse habitats in August 

of 2013.  
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Figure D2—Bacterial class abundance of soil collections from the ten diverse habitats in 

November of 2013. 
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Figure D3—Bacterial class abundance of soil collections from the ten diverse habitats in 

February of 2014. Dirt road sample failed to produce 3000 sequences and was excluded from 

further processing.  
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Figure D4—Bacterial class abundance of soil collections from the ten diverse habitats in May of 

2014. 
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Figure D5—Bacterial class abundance of soil collections from the ten diverse habitats in August 

of 2014. 
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Similar Habitat Soil Collections 

 

Figure D6—Bacterial class abundance of soil collections from the nine deciduous woodlots in 

May of 2014. 
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Figure D7—Bacterial class abundance of soil samples collected from the nine deciduous 

woodlots in May of 2014. 
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Figure D8—Bacterial class abundance of soil collections from the nine deciduous woodlots in 

June of 2014. 
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Figure D9—Bacterial class abundance of soil collections from the nine deciduous woodlots in 

June of 2014. 
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Figure D10—Bacterial class abundance of soil collections from the nine deciduous woodlots in 

July of 2014. 
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Temporal Soil Samples 

 

Figure D11—Bacterial class abundance of soil collections from the same location within a 

deciduous woodlot from August 2013 – August 2014. Soils were collected daily for 4 days, 

weekly for 2 months, and monthly for the remainder of the year so chart is not evenly spaced 

over time. 
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Figure D12—Bacterial class abundance of soil collections from the same location within a 

treated yard from August 2013 – August 2014. Soils were collected daily for 4 days, weekly for 

2 months, and monthly for the remainder of the year so chart is not evenly spaced over time.  
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Spatial Soil Samples 

 

Figure D13—Bacterial class abundance of soil collections across the surface of a yard in March.  
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Figure D14—Bacterial class abundance of soil collections across the surface of a treated yard in 

March. 
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Figure D15—Bacterial class abundance of soil samples collected at different depths within a 

yard in October. 
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Figure D16—Bacterial class abundance of soil collections at different depths within a deciduous 

woodlot in April. 
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Figure D17—Bacterial class abundance of soil collections at different depths within a yard in 

April. 
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Figure D18—Bacterial class abundance of soil collections at different depths within a treated 

yard in April. 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bacterial Profile Class Abundance from Treated 

Yard Depth Soils in April



135 

 

Evidentiary Soil Samples 

 

Figure D19—Bacterial class abundance of soil samples collected off of evidentiary items that 

had been stored at room temperature for 6 months (3-27-14) and 1 year (8-29-14).  
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APPENDIX E. Additional Nonmetric Multidimensional Scaling Plots 

Similar Habitat Soil Samples 

 

Figure E1—NMDS plot ordinating soil bacterial profiles from deciduous woodlots 2 and 8 over 

an 8-week period. These profiles were intermingled when all woodlots were ordinated together 

(Figure 14), but were resolved when they were analyzed alone in a NMDS plot.  
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Figure E2—NMDS plot ordinating soil bacterial profiles from deciduous woodlots 3 and 8 over 

an 8-week period. These profiles were intermingled when all woodlots were ordinated together 

(Figure 14), but were resolved when they were analyzed alone in a NMDS plot. 
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Figure E3—NMDS plot ordinating soil bacterial profiles from deciduous woodlots 5, 7, and 8 

over an 8-week period. These profiles were intermingled when all woodlots were ordinated 

together (Figure 14) but were resolved when they were analyzed alone in a NMDS plot. 
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Spatial Soil Samples 

 

 

Figure E4—Ordination of soil bacterial profiles from soils at various depths within a deciduous 

woodlot and yard in October. Profiles from each habitat formed clusters with the exception of the 

60 inch collection in the deciduous woodlot (far right, labeled). A trend existed in both habitats 

where the soil bacterial profiles moved away from the surface profile in multidimensional space 

as depth increased (arrows point in the direction of increasing depth).    
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Figure E5—Ordination of soil bacterial profiles from soil collected at various depths within a 

deciduous woodlot in October 2013 and April 2014. Profiles from each sampling time formed 

clusters with the exception of the 60 inch profiles (far right, labeled). A trend existed in both 

months where the soil bacterial profiles moved away from the surface profile in 

multidimensional space as depth increased (arrows point in the direction of increasing depth).    
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Figure E6—Ordination of soil bacterial profiles from soil collected at various depths within the 

yard in October and April. Profiles from each sampling time intermingled. A trend existed in 

both months where the soil bacterial profiles moved away from the surface profile in 

multidimensional space as depth increased (arrows point in the direction of increasing depth).  
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T-Shirt Soil Samples 

 

Figure E7—NMDS plot of nine deciduous woodlots and soil profiles generated from t-shirts over four months. T-shirt profiles cluster 

together near the woodlot of origin cluster. Profiles drifted away from all woodlots over time (in the direction of the arrow).
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