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ABSTRACT

TRAVEL TIME ESTIMATION AND SHORT-TERM PREDICTION IN URBAN

ARTERIAL NETWORKS USING CONDITIONAL INDEPENDENCE GRAPHS AND

STATE-SPACE NEURAL NETWORKS

By

Ajay Kumar Singh

An important component of Advanced Traveler Information Systems (ATIS) and

Advanced Traffic Management Systems (ATMS) is the travel time estimation and short-

term prediction on urban arterial networks. This thesis develops robust and efficient

average travel time estimation and short-term prediction model for both congested and

non-congested conditions appearing throughout a day on a network. A State-Space

Neural Network model is proposed. An innovative implementation of Conditional

Independence graph is used to identify the independence and interaction between

observable traffic parameters that are used to estimate and predict the travel time. This

led to the selection of relevant variables from a set of independent variables for travel

time prediction. The predictive and computational performance of the Conditional

Independence graph coupled with State-Space Neural Network outperformed the

traditional State-Space Neural Network model in this study. The travel time estimation

and prediction models are developed for links and routes in an arterial network.

Keywords: Travel Time Estimation, Short-term Prediction, Urban Arterials, Networks,

Conditional Independence Graphs, State-Space Neural Networks.
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Introduction

Traffic congestion is a severe problem on urban arterials and freeways. In 2003,

congestion in urban areas caused 3.7 billion hours of travel delay and 2.3 billion gallons

of wasted fuel. This is an increase of 79 million hours and 69 million gallons from 2002

and costs more than $63 billion (Schrank and Lornax 2005). Advanced Traveler

Information Systems (ATIS) and Advanced Transportation Management Systems

(ATMS) are two important components of Intelligent Transportation Systems (ITS).

ATIS and ATMS are identified as innovative solutions to traffic congestion problem in

urban areas.

Travel time is an easily perceptible measure of traffic conditions on arterials or on

freeways and is equally popular among researchers, traffic engineers, and users of the

transportation system. Travel time is a key input to the traffic operations of the system as

well as transportation planning. It indicates the overall performance of the system, a real-

time measure of traffic congestion, and an input to the traffic management strategies

(Longfoot 1991).

The main requirements of ATIS are: to help drivers make better and informed choices, to

assist drivers in avoiding congestion and unexpected delays, and to reduce the time spent

driving. This requires dissemination of reliable travel time information to drivers about

the current traffic conditions and also about near future when they actually start their

trips. The ATMS must have some sort of predictive capability in order to manage and

control the transportation system in proactive manner: “... for these systems (ATIS and

ATMS) to be effective, the generated strategies should be proactive (i.e. based on



predicted traffic conditions) as opposed to reactive, in order to avoid many undesirable .

effects such as overreaction, which reflects the situation where many travelers react to a

known current traffic condition in a similar fashion resulting in simply transferring the

congestion to another location” (Ben—Akiva, et' a1. 2001).

The traffic management strategies on arterial networks under congested and over-

saturated conditions have been proposed by various researchers. The optimal signal

control is one of the traffic management strategies applicable on arterial networks. Abu-

Lebdeh and Benekohal (2000, 2003) propose traffic management strategies based on

dynamic signal control and queue management on arterials. A recent paper by Chen and

Abu-Lebdeh (2006) presents dynamic-signal dynamic-speed traffic management strategy

for arterials. Wey and Jayakrishnan (2004) present an integer-linear programming

formulation for network traffic control scheme optimization. The studies for dynamic

traffic signal optimization usually minimize the total delay on the traffic network. This

delay is correlated with the travel time on the arterial network.

There is a need of efficient, accurate and reliable travel time estimation and prediction

methodologies for urban arterial networks. A significant amount of research for travel

time estimation and prediction on freeways and highways has been done. But, the area of

urban arterials lacks comparable research. The probable reasons are the vastness of the

arterial system, complexity of traffic behavior on arterials due to presence of signal

control devices, and lack of extensive traffic surveillance systems as compared to

freeways. This implies that travel time prediction on urban arterials should rely only on

easily available data that can be obtained in the field using traffic detection technologies

like loop detectors or other image-processing based technologies. A methodology is



required which can avoid the dependence on extensive traffic surveillance systems for

travel time estimation and prediction.

The complexity of traffic dynamics is another aspect of travel time on arterials which

should be explicitly taken into account in the modeling approach. The traffic dynamics on

arterial networks is more complex than on freeways because of the signal interruptions.

These signal interruptions cause interference to the traffic movement which is not present

in uninterrupted facilities like freeways. The traffic stream approaching a signalized

intersection undergoes a platoon compression, a complete stop during red interval, and

then a platoon expansion after the vehicles cross the signalized intersection. The

interference that is caused by this chain of compression and expansion within small

distances adds to the complexity of process. Moreover, the turning movements and

phasing scheme for each movement causes interference to vehicles throughout the length

of arterial link.

This thesis is based on the state-space notion of traffic that is suitable for urban arterials.

The state-space representation to a complex dynamical system provides insight to model

it better. The State-Space Neural Networks are a generic form of Recurrent Neural

Networks and are used to model the travel time estimation and prediction in this study.

The State-Space Neural Networks or, generally, Artificial Neural Networks (ANN) is an

efficient input-output mapping technique. One of the drawbacks of ANN is that it does

not provide the understanding of the process and the interaction among variables in the

process being modeled. So, Conditional Independence Graphs are used, which are a

powerful statistical technique to analyze the independence and interaction among

variables involved in a process. The combination of Conditional Independence graphs



and State-Space Neural Networks is implemented for the first time in this study. It

provides a robust and efficient modeling framework to estimate and predict travel time

for short-terrn in future. This modeling framework relies on data that can be easily

available in the field and hence has enormous potential in ATIS and ATMS applications.



Chapter 1

Literature Review

The research on travel time estimation and short-term prediction is similar to short-term

traffic forecasting. The short-terrn traffic forecasting includes forecasting of traffic

variables like travel time, average speed, flow rate, occupancy, queue length etc. There

has been a lot of research on travel time prediction for freeways. The application area of

arterial networks is still lagging as compared to that of freeways. Here, travel time

prediction studies have been surveyed for freeways as well as arterial networks. The

techniques of Conditional Independence graphs and State-Space Neural Networks are

used in this study. A brief survey of literature on the applications of these techniques is

presented.

1.1 Travel Time Estimation and Prediction on Freeways

A recent paper by Vlahogianni, et a1. (2004) gives a critical discussion on the short-term

traffic forecasting techniques for freeways and urban arterials for different types of

implementation like Advanced Traveler Information Systems (ATIS) and Advanced

Transportation Management Systems (ATMS). The discussion of methodologies for

traffic forecasting identifies two broad categories: parametric and non-parametric



techniques. This review asserts that the non-parametric modeling techniques like

Artificial Neural Networks (ANN) is promising for traffic forecasting problems and gives

robust and accurate models. Zwet and Rice (2004) propose a travel time prediction

scheme for a freeway section by means of linear regression with time-varying

coefficients. These coefficients are subjected to the time of day and time until start of a

vehicle on a section. The varying coefficients show the dynamic behavior of the traffic

which can also be captured by other advanced parametric and non-parametric techniques.

Ishak and Al-Deek (2002) proposed a non-linear time-series approach to make short-term

predictions of speed using the most recent speed profile at each loop detector station and

then mathematically found travel time from speed. This study is based on freeways data

and also presents statistical analysis to identify the parameters like congestion index,

rolling horizon, prediction horizon and their interaction terms with congestion index to be

significant for model’s performance. Wu, et a1. (2004) use Support Vector Regression to

predict travel time for highways in Taiwan. Chien and Kuchipudi (2003) applied Kalman

Filtering to predict the link and path based travel time based on the time-series data

collected through wireless technologies on freeways.

There is significant volume of studies related to the application of different type of ANN

in short-term travel time prediction on freeways. Mark and Sadek (2004) proposed an

ANN model for freeways to predict the experiential travel time under transient traffic

conditions, including incidents. They found out that speed appears to be the most

influential input variable for travel time prediction on freeways. A special type of

Recurrent Neural Networks (RNN) called State-Space Neural Networks (SSNN) is

employed by van Lint (2004) and van Lint, et al. (2002) for freeways travel time



prediction on the basis of flow and speed. They further show that the analysis of the

internal states and weight configurations of SSNN could develop an internal model that is

closely linked to the underlying traffic process.

1.2 Travel Time Estimation and Prediction on Urban Arterials

Travel time prediction on urban arterials is still lacking efficient models. Sisiopiku and

Rouphail (1994) presented a literature review of methods for travel time estimation on

urban arterials. They listed the traffic parameters used by various researchers that

influence the travel time on arterials and concluded that most of the existing models are

link-specific rather than estimating travel time at a section (path) level. Sisiopiku et al.

(1994) proposed the linear regression equations between travel time and percentage

occupancy for occupancies in a range of approximately 17 to 60 percent. No model for

the congested conditions which results into higher percentage occupancy is reported in

this study. Rajaraman (1998) proposed travel time estimation model that has two

components, overflow queue estimation and travel time calculation. Stathopoulos and

Karlaftis (2003) proposed a multivariate time-series state-space model for traffic flow

prediction on arterials and compare it with other time-series techniques like ARIMA

modeling. They also assert that different model specifications are appropriate for

different time periods of a day. Lin, et al. (2004) decomposed travel time on arterials into

two components, free flow travel time and delay. The total delay on an arterial is further

decomposed into link delay and intersection delay. The travel time prediction model is

based on the flow condition, the proportion of net inflows into the arterial from the cross



streets, and the signal coordination level. The inherent limitation in this model is that it

relies on existing intersection delay formulas which are not suitable for over-saturated

conditions. A recent study reported by Liu, et a1. (2006) presents a State-Space Neural

Networks and the extended Kalman filter (EKF) hybrid model for travel time prediction.

The model is developed for a test bed in the Delft, Netherlands using license plate

cameras and loop detectors for data collection of travel time and flow rates. This model is

based on a particular section of road and is not taking into account the signal control

parameters and the geometries of the arterial. This limits this model’s applicability to a

new arterial network where the Signal control and geometries are different. These studies

identify the need of a generalized travel time prediction model that explicitly takes into

account varying traffic demand, turning movements, signal control, and geometries on

urban arterial networks. The present study overcomes these limitations as the geometries

and signal control are taken as independent variables affecting travel time.

There are some research studies forecasting other traffic variables like average flow rate,

queue length, speed etc. for signalized arterials. Since, travel time is dependent on the

input variables like average flow rate, queue length, speed etc., the forecasting of these

traffic variables can be integrated with travel time estimation and prediction models.

Gang and Su (1995) developed a queue length prediction model at signalized

intersections based on given flow, occupancy, queue length and signal state from past.

Ledoux (1997) also developed models to forecast queue length at signalized intersections

from flow and queue length measurements in past time periods. These models when

integrated with travel time estimation and forecasting models can result in prediction of

more than one traffic parameter for urban arterials.
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1.3 Conditional Independence Graphs Applications

The Conditional Independence graphs are a component of Bayesian Belief Networks

which have several applications in traffic. engineering. Conditional Independence

relationships and ideas of Bayesian forecasting are proposed by Whittaker, et al. (1997)

for predicting traffic for freeways. A dynamic state-space model is proposed in the study

with optimal state estimation is coming from the Kalman filter. Apart from this reference,

no other paper is found to explicitly use Conditional Independence graph-based models

for short-term traffic forecasting or travel time prediction.

1.4 State-Space Neural Networks Applications

The State-Space Neural Networks have been recently used for short-term travel time

prediction on freeways as well as urban arterials. The studies shown in van Lint (2004)

and van Lint, et al. (2002) use State-Space Neural Networks for freeways travel time

prediction the basis of flow and speed. A hybrid model for urban arterial travel time

prediction has been recently introduced by Liu, et al. (2006). This hybrid model is based

on State-Space Neural Networks and the extended Kalman Filter. This study also finds

the State-Space Neural Networks proposed by these researchers to provide a reliable and

generalized travel time estimation and prediction model.



1.5 Conclusions

The literature survey for this study suggests there is a need to develop a travel time

estimation and prediction model that relies onltraffic parameters that are easily obtained

in field. These traffic parameters can be obtained using basic detection technologies like

loop detectors and image processing-based technologies. The modeling approach should

explicitly take into account the geometries and signal control parameters. The inclusion

of geometries and signal control in the modeling approach will provide a generalized

model applicable to a real arterial network. A State-Space Neural Network (SSNN)

model which has been successfully employed by van Lint (2004) and van Lint, et a1.

(2002) for freeways is found promising here. The SSNN model is expected to capture the

non-linear and complex spatio-temporal relationship between traffic parameters and

travel time on a section of arterial. The Conditional Independence (CI) Graphs is

identified as a statistical tool to understand the interaction and independence among

parameters affecting travel time or any other output in a process. The information

obtained using CI graphs about the process can be used for SSNN modeling. The

combination of CI graphs and SSNN can provide a reliable and efficient travel time

prediction model for arterials.
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Chapter 2

Problem Statement and Research Objective

The problem of average travel time estimation and short—term prediction is a basic

component of Advanced Traveler Information Systems (ATIS) and Advanced

Transportation Management Systems (ATMS). With the advancement of traffic

surveillance infi'astructure on urban arterials and freeways, Intelligent Transportation

Systems (ITS) become an integral part of solutions to congestion and transportation

system management.

It is important that reliable and efficient methodologies are developed which can make

the best use of existing traffic surveillance information and improve traffic operations.

This study provides a prediction model that can rely on existing surveillance systems like

loop-detectors and other basic information available about the network like geometries,

and existing signal control scheme for use as input information. Thus, it avoids the

deployment of more sophisticated and costly surveillance systems which are based on

tracking individual vehicles in a traffic network to provide accurate estimates of travel

time and prevalent traffic conditions information.

This chapter introduces the urban arterial networks which is the study area for this work.

The notion of average travel time and its prediction is illustrated. The difference between

travel time estimation and prediction is made clear. The problem formulation of travel

time estimation and short-term prediction provides a conceptual base for modeling the
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travel time on arterial networks. The dependence of average travel time on the traffic

variables like flow rate, average speed, queue length, geometries and signal control

variables, which shape the traffic conditions on an arterial network is presented. The last

section provides an overview of the different steps in the modeling framework adopted in

this research.

2.1 Background and Definitions

The short-term travel time prediction model developed is based on and is applicable to

urban arterial networks. This section provides the definition of an arterial link, arterial,

and arterial route for which the model is applicable.

An urban arterial network consists of several arterial links aligned in a geo-spatial

manner forming a grid. This grid network can be broadly represented by major and minor

streets crossing each other. The crossings in this network are signalized intersections. The

signalized intersections are main point of operations and control in the network.

First, the definition of an arterial link, arterial, arterial route, and a network is presented

below-

Definition 1: An ‘Arterial Link’ is a two-way length ofthe road that begins just at the end

of a signalized intersection and extends through (and includes) the next downstream

signalized intersection.
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Definition 2: An ‘Arterial’ is the set of arterial links which are traversed by a vehicle

remaining in through movement only starting from an origin arterial link to the end of its

destination arterial link.

Definition 3: An ‘Arterial Route’ is the set of arterial links which are traversed by a

vehicle being in through movement as well as taking left and right turns as required

starting from an origin arterial link to the end of its destination arterial link.

Definition 4: An ‘Arterial Network’ is a system which contains all the arterial links in the

area of study. These arterial links are arranged such that the network symbolizes a grid

network having major arterials and minor arterials.

In this thesis, unless otherwise stated, a link means an arterial link, and a route means an

arterial route as stated in above definitions.

An arterial network is traversed by individual vehicles contained in a traffic stream. The

ATIS and ATMS applications are generally dependent on the travel time value of a traffic

stream rather than travel time experienced by an individual vehicle traversing an arterial

link. This notion of travel time of an individual vehicle and all the vehicles following a

traffic stream is stated below.

Definition 5: The ‘Individual Vehicle Travel Time’ is the travel time obtained by tracking

an individual vehicle along an arterial link. Hence, it is the property of an individual
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vehicle and may not represent the travel time incurred on a particular arterial link or a set

of such links.

Definition 6: The ‘Average Travel Time’ is the average value of the travel time incurred

by individual vehicles if each vehicle can be tracked on an arterial link. The average

travel time is a property of an arterial link indicating the level of service of link.

Once, a prediction model is developed for the average travel time on a link, it can be

easily used for an arterial or an arterial route comprising a set of links. This study aims

for a model to be used for ATIS and ATMS applications to improve the level of service

and operations on an arterial link or an arterial route in the system.

2.2 Difference between Average Travel Time Estimation and Prediction

The travel time studies done by several researchers deal with the estimation of travel time

or its prediction for future unseen traffic conditions. The traffic conditions on an arterial

link at any time period can be represented by a set of traffic variables like average flow

rate, average speed, queue length etc. The term used for the traffic conditions on an

arterial link in this study is the ‘state’ of the link. The notion of state of the system

(arterial network comprising links) is important in this study as it acts as input variable to

estimate and predict the average travel time. The definition ofthe estimated and predicted

average travel time is important to state here.

14
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Definition 7: The Estimated Average Travel Time on an arterial link or arterial route is

the ‘experiential’ travel time by the vehicles traversing that link or route. The term

‘experiential’ denotes the travel time which is already experienced by the vehicles that

have departed in the current or past time—periods when the state of the system was known

or estimated.

Definition 8: The Predicted Average Travel Time on an arterial link or arterial route is

the travel time which will be experienced by the vehicles when their departure is in a

future time-period during which the traffic conditions are unseen and unknown.

There is an inherent distinction between the estimation and prediction of average travel

time. The travel time estimation is done when the vehicle has already departed and has

experienced a travel time in its trip. This travel time is a complex function of current or

past state traffic conditions that are signified by independent variables like average flow

rate, average speed, queue length etc. These independent variables can in turn be

observed in the field directly by using traffic detection technology or can be measured

from other known variables, or even can be predicted from the past values of some

variables. The average travel time estimation problem requires a modeling technique

which is able to efficiently model the static input-output relationships (van Lint 2004).

The average travel time prediction is a different problem from the estimation as it needs a

modeling technique to capture the dynamic (time-dependent) relationship among known

traffic variables and future traffic conditions or future travel time. The prediction of travel

time is done using the current state traffic variable values for the travel time that will be
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experienced in the future, when the future traffic conditions are unknown. Thus, travel

time prediction is more complex than travel time estimation problem as it requires the

consideration of dynamic spatio-temporal relationship that occurs between traffic

variables. This thesis provides the methodology for estimating the average travel time as

well its prediction for the short-term into the future.

2.3 Formulation for Average Travel Time Estimation and Short-Term

Prediction

Let an arterial route on a network consisting of n number of arterial links represented as

X], X2, X3,... X". Let tp‘ be the current time-period of departure of a vehicle which starts

from entry-point (upstream intersection) of link X1 and ends its trip after clearing the

i #

intersection that ends link Xn. This time-period tp is starting from a time-instant to and

i t t *

ending at time instant t1 . So, tp = [to , t1 ]. The traffic parameters that shape prevailing

traffic conditions (like average flow rate, average Speed, queue length etc.) on the arterial

a:

network in the current departure time-period tp can be obtained in the field through

traffic detection system, or can be estimated through other already obtained traffic

variables.

It is assumed that the traffic conditions are constant within each time-period if the length

of such time-period is taken very small. In many traffic engineering studies and

particularly short-term travel time forecasting, it is assumed that traffic conditions are
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constant within short time-periods of l to 15 minutes. The time-period of 1 minute

provides high temporal resolution to the data and may be useful if cycle-by-cyele analysis

is required. On the other end, 15 minutes is a low temporal resolution for forecasting as

the unstable traffic conditions during congestion and over-saturation may get overlooked

or averaged due to long time-period. Sisiopiku, et al. (1994) assert in a travel time

estimation study that the effects from cycle failures, short-term events, congestion built

up downstream of the subject link, and so forth cannot be detected using lS-minutes

observation periods. Mark and Sadek (2004) recommend temporal resolution of 5

minutes for travel time forecasting and find that no statistically significant increase in

performance was gained by increasing the temporal resolution of the data-set from 5

minutes time averages to 1 minute time averages. In consideration to studies on travel

time forecasting on freeways and arterials, here, the length of each time period is taken as

*1:

5 minutes which is called the aggregation interval, (D. Thus, (D = t1 - t0 .

i

Let the known traffic conditions on a link X1 in current departure time-period tp be

i *

V(X1, tp ). The vector V(X1, tp ) which contains the variables depicting traffic conditions

*

on a link X1 in a time-period tp is called ‘State’ of an arterial link. The ‘State’ of an

arterial or arterial route is simply a vector which contains the state of each link

comprising that arterial or route during a given time-period. This generic term for traffic

conditions on a link is very important in the context of travel time estimation and

prediction because it is the set of input variables like average flow rate, average speed,

queue length etc., which are affecting the travel time. It will be seen from now on that the
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modeling approach is trying to model the function that exists between the state of a link

and travel time on that link.

*

The average travel time to traverse a link X1 during the current departure time-period tp

*

is denoted as T'T (X1, tp ). The problem of estimation of average travel time can now be

defined using the terminology explained in the earlier paragraphs as follows:

Definition 9: The average travel time estimation on arterial link X1 is the modeling

problem to approximate the underlying function between average travel time

t *

(TT (X1, tp )) and the state (V(X1, tp )) on link X1 during current departure time-period

a

tp.

The average travel time prediction problem is formulated now after stating the average

travel time estimation problem. Assume that the average travel time is to be predicted for

t

a future time-period which is just starting when the current departure time-period tp ends

*

(i.e. time instant t1 ). A term called ‘prediction horizon’ denoted as A is stated, which is a

short-interval of time in the firture for which the average travel time is to be predicted.

The future departure time-period is denoted as tp+1A = [t0, t1], where, this time-period

begins at to and ends at t1. This implies that the to value of future time-period is same as

* *

t1 , the ending time instant of the current time-period. So, to = t1 . Moreover, the length

of this future departure time-period, tp+1A is simply the addition of prediction horizon
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* * II

(A) to the ending time of current time-period tp (t1 ). So, tp+1A = t1 +A. Since, the

future departure time-period of tp+1A is a single multiple of prediction horizon (A), it is

called as one-step future time-period and the predicted value of average travel time for

this one-step future time-period will be called the one-step predicted average travel time.

Conveniently, the prediction horizon (A) can be assumed same as aggregation interval

(O) defined earlier. So, A = O (= 5 minutes, here). This assumption is made so that the

temporal scale at which the state of a link and travel time is analyzed can be same for all

the time-periods whether it is current, past, or future. Moreover, it makes the task of

updating the state of the link and travel time values evolving with time-periods easy.

The predicted average travel time to traverse a link X1 during the one-step future

departure time-period tp+1A is denoted as TT (X1, tp+1A). The problem of one-step

average travel time prediction can now be defined using the terminology explained in

earlier paragraphs as follows,

Definition 10: The one-step average travel time prediction on an arterial link X1 is the

modeling problem to approximate the underlying function between the one-step predicted

average travel time (TT (X1, tp+1A)) during one-step future departure time-period, tp+1A,

t t

the current state (V(X1, tp )), and the estimated average travel time TT (X1, tp )) on link

1:

X1 during current departure time-period tp .
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It is important to note in the above definition that the state or traffic conditions and the

estimated average travel time of a link in the current time period are used as inputs for the

one-step predicted average travel time which is expected to occur when unseen and

unknown traffic conditions will happen on that link in the one-step future time-period.

The average travel time prediction for any nth step in the firture can be developed on the

same basis, where n 21. Assume that the time-period in 11th steps ahead in future is

represented as tp-I-nA’ when the nth step predicted average travel time is denoted as 77’

(X1, tp+nA)' The known information for average travel time prediction for nth step is still

a: It

the state of the link, V(X1, tp ) and estimated travel time, TT (X1, tp ) at current time-

. "' . . . th

period tp . Moreover, the predicted average travel time till n-l steps are also taken as

Input variables for 11 average travel time prediction. The definition of average travel

. . . th . .

trrne prediction for 11 step In future 13 presented as follows:

Definition 11: The 11th step average travel time prediction on an arterial link X1 is the

modeling problem to approximate the underlying function between the nth step predicted

average travel time (TT (X1, tp-I-nA» during the nth step future departure time-period,

tp+nA and the current state (V(X1, tp 1.)), the estimated average travel time T'I‘ (X1, tp") on

link X1 during the current departure time-period tp *, and the predicted average travel time

till the n-lth step.
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So, the predicted travel time at the nth firture departure time-period = function (current

state, estimated travel time at the cmrent departure time-period, and the predicted travel

time till n-rth firture time-step).

The average travel time prediction for the nth step in the future is called the Multiple-Step

prediction. The Short-terrn prediction of average travel time which is the ultimate aim of

this work can be defined as follows:

Definition 12: The Short-term average travel time prediction is solving the multiple step

average travel time prediction problem. The multiple-step average travel time prediction

is a chain process ofprediction from step =1 to step n as required for the system.

This study focuses on n =1 step average travel time prediction problem. The n 21 steps

prediction can be done if required using the same methodology adopted in this study for

n=1 step. However, it is expected that the accuracy may decrease as the prediction is

done farther in n steps in the future. Ishak and Al-Deek (2002) found in a travel time

prediction study on fi'eeways that for longer prediction time-steps, less accuracy in

predictions are observed due to the dynamic nature of traffic conditions and the increased

likelihood of larger deviations fi'om actual conditions. Thus, the short-term average travel

time prediction is done in the present work in terms of one-step prediction only.

Figure 2.1 presents a pictorial form of the above formulation in a time-space domain. The

space domain shows a single link X1 and the time scale shows time-periods ranging from

t

the current departure time-period (tp ) to the n-step time-period in future ( tp+1A_ tp+2A,
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tp+3A,...) for which the prediction is to be made. This time—space domain shows the

an:

assumed vehicle trajectory in each time period. The current departure time period, tp is

termed as ‘Current Horizon’ and future departure time-periods are termed as ‘Prediction

Horizon’. As shown and consistent with the terminology explained in this section, current

.. :-

horizon is starting from time instant t0 and ending at time-instant t1 forming time

I * * o o o a

period tp (length of tp = aggregation Interval, O). The state of link X1 representing

*

prevalent traffic conditions is shown as V(X1, tp ) in the current horizon. The first-step

*

prediction horizon starts from time-instant to (same as t1 ) and ends at t1, forming first

step future departure time-period, tp+1A. Similarly, second-step, and third-step prediction

horizons are as Shown. Each future departure time-period is of length A. As said earlier, A

=O.
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Figure 2.1 — Time — Space Domain of Problem Formulation for Average Travel Time

Estimation and Short-Term Prediction.

2.4 Factors Affecting Average Travel Time Estimation and Prediction

The traffic conditions on an arterial link termed as State of the link represent the set of

variables which affect average travel time. Here, the traffic variables are identified whose

values in a particular time-period can affect the average travel time experienced during
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that time-period. These variables will form the inputs in the modeling approach for both

average travel time estimation as well as prediction.

The average travel time on a link is a complex function of the traffic demand on the link,

supply of the link (usually capacity of the intersection, also, capacity of the link if signal

spacing is large) and other factors like weather conditions, incidents, driver behavior,

vehicle composition, etc. It is obvious that an urban arterial network will have traffic

demand fluctuations depending upon the average flow rate on the network during

different times of the day. Due to this varying traffic demand it is intuitive that average

travel time will be higher for high traffic demand, resulting into low speed and lower for

low traffic demand resulting into higher speed. So, average flow rate and average speed

are required to be added as input variables affecting travel time.

The varying traffic demand at arterial links in a network interacts with the signal control

parameters like cycle length, green splits, offsets and phasing sequence. This interaction

of the traffic demand at a link and signal control scheme at the intersection has different

outcomes which depend on the traffic demand and signal control scheme itself. If the

traffic demand is low (non-congested conditions), the average travel time does not have

wide fluctuations because the demand is much lesser than the capacity. In this scenario,

the adjacent links in the arterial act independently and have very less interaction among

each other. On the other hand, when traffic demand is high (congested and over-saturated

conditions), the interaction causes queue build-up and even queue spill-over at an

intersection which results in affecting the progression on the upstream links. This

suggests including signal control parameters and progression variables like green

interval, red interval, and offsets as input variables affecting travel time. Also, presence
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of queue length at the beginning of green at signalized intersections should be taken into

account for through and right-turning lanes and left-turning lane separately.

The other complexity in traffic behavior is due to the lane-changing among vehicles

traversing a link. This lane-changing is due to the turning movements on a link and is

associated with the driver behavior. The average travel time on a link is a complex

function of this lane-changing behavior. The number of lane-changes in a link is not

considered as input variable because it is difficult to determine in the field. But, the

turning movements which cause the lane-changing are explicitly accounted in this study.

The average flow rate and average speed should be accounted for through, left and right-

turning movements separately to model average travel time for these three types of

movements.

It is also known that average travel time is a basic function of the geometries of a link,

especially link length and posted speed limit. So, speed limit and estimates of the ideal

travel time for through, left and right-turning movement which are based on link length,

speed limit, and known green intervals for through and left-turning movements should be

included in the study.

The present work aims to find estimation and prediction models for average travel time

on a link for through, left and right-turning movements separately. The variables that act

as independent variables affecting average travel time for through, left and right-turning

movement in this study are specified below:

0 Traffic demand variables —- Average flow rate for through, left and right-turning

movements denoted as VT, VL, and VR respectively.
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Average speed for through, left and right-turning movements denoted as ST, SL,

and SR respectively

Signal control variables — Green interval for an approach, denoted as G, and offset

between a pair of signalized intersections for an approach, denoted as Off.

Queue Length variables — Queue length at through and right-turning movement

lanes denoted as Qr. Queue length at left-turning lane denoted as QL.

Speed limit posted for a link, denoted as S.L.

Geometries of arterial link variables — Ideal travel time for through and right-

tuming movement, denoted as ITTT. ITTT is the summation of ratio of length of

link to speed limit (S.L.) plus the green interval for the left-turning movement.

Ideal travel time for the left-turning movement is denoted as ITTL. ITTL is the

summation of ratio of link length to speed limit (S.L.) plus the green interval for

the through movement and red interval for an approach. The phasing scheme for

intersections is assumed as exclusive left-tum phase with leading green in this

study. Hence, the definition of ITTT and ITTL is given according to this

assumption of leading green only.

The variables listed above are highly interrelated with each other. For example, average

speed is the result of interaction of average flow rate with signal control parameters and

queue length at signalized intersection. The fluctuations in average travel time resulting

from the interactions discussed above makes it a dynamic and complex spatial-temporal
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function of the demand and supply of the link under consideration. This thesis aims to

understand the interaction among these factors and model the travel time so that it

accounts for this interaction.

2.5 Modeling Approach for Travel Time Estimation and Short-Term

Prediction

The travel time estimation problem is a first step for prediction of average travel time.

The estimation and short-term prediction of travel time has been done separately for

through, left and right-turning movement on an arterial link. So, three different models

have been developed in this problem, but, the methodology underlying these three models

is based on the same techniques and tools.

The literature survey shows that several modeling techniques have been used for traffic

variables forecasting and in particular travel time estimation and forecasting. The

modeling techniques used in the present work are explained in details in the following

chapters. Here, it is worth presenting a brief framework or flowchart as shown in Figure

2.2 of the entire modeling approach to prepare for the upcoming chapters. This figure

starts with problem formulation which has already been dealt in this chapter. The

conclusion of problem formulation is that travel time should be modeled explicitly for

three types ofmovements. The further chapters will deal with data-collection using TSIS-

CORSIM, average speed estimation for each type of movement. This estimation of

average speed estimation is needed so as to propose a travel time model that can rely on

readily available data in the field. The understanding of interaction between factors
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affecting travel time is required and is done using a statistical technique called the

Conditional Independence (CI) graph. This technique helps particularly in refining the

state of a link and in selecting parent input variables. The parent input variables are found

sufficient to estimate and predict the travel time. Using these parent input variables,

State-Space Neural Networks (SSNN) models are developed for travel time estimation on

arterial links. The estimated travel time from the SSNN model, parent input variables

from the CI graph, and the average speed estimates are used to develop SSNN prediction

models for travel time. Once SSNN models are developed for arterial links, the results are

extended for arterial route travel time prediction.
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Chapter 3

Experimental Set-up

The experimental set-up in this study consists of an urban arterial network for which

travel time estimation and prediction models are to be developed. This study uses

microscopic traffic simulation software to create a hypothetical arterial network. This

arterial network is designed such that it represents a ‘real arterial network’ as closely as

possible. The experimental set-up considers different traffic variables that affect travel

time. It is tried through the experimental set-up to simulate a real arterial network by

varying geometries of the arterials as well as traffic demand.

The chapter introduces TSIS-CORSIM traffic simulation sofiware and its suitability for

this study. The arterial network as designed and data-collection for travel time study are

illustrated. Also, some issues which are related to the use of CORSLM in this study in

particular are discussed.

3.1 Overview of TSIS-CORSIM and its Suitability for this Study

An urban arterial network is designed in TSIS-CORSIM, Version 5.1. The TSIS-

CORSIM consists of a Graphical-User-Interface (GUI) based traffic network and

simulation input editor known as TRAFED. CORSIM is the microscopic traffic
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simulation module of the TSIS-CORSIM. The microscopic simulation can be viewed in

the animation and graphics module ofTSIS-CORSIM known as TRAFVU.

The travel time estimation and prediction models for urban arterial networks are still in

the developing stage. The travel time estimation and prediction requires analyzing the

interaction between a set of traffic variables which are supposed to affect the travel time.

So, a large number of experiments should be performed with changing the traffic

parameters like geometries of the network, signal control parameters, and traffic demand,

which is difficult to perform in the field and quite expensive. All these constraints require

use of traffic simulation software to perform the required experiments. Due to the above

mentioned requirements and limitations, TSIS-CORSIM is used for this study.

CORSIM is microscopic traffic simulation software that tracks individual vehicle on a

network based on car-following logic and gap-acceptance lane-changing model. Its

microscopic approach helps accurately modeling the traffic movement and steps which

result due to the control scheme at signalized intersections and varying traffic demand.

Almost all possible geometry conditions on the field can be simulated in CORSIM and

effect of incidents and other interruptions to the traffic movement can be duly accounted

for.

The primary features of CORSIM that made it suitable for the present study are listed as

follows:

0 CORSIM has an ability to model the time-varying traffic flow throughout a

sequence of ‘time-periods’ as specified by the user. Inside each ‘time-period’

value, smaller slices of time termed as ‘time-intervals’ are specified. CORSIM
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calculates the different traffic parameters like traffic flow, average speed etc in

every time-interval. Mostly, the value of time-interval is fixed as one minute. The

traffic variables which are calculated at each of the time-interval is aggregated or

averaged for each time-period. The signal control parameters can also be varied at

each time-period in CORSIM, if some study needs to analyze the effect of

variation of signal control scheme for varying traffic demand.

CORSIM has a unique advantage to model the over-saturated traffic conditions as

compared to other empirical and analytical methods (Owen, et a1. 2000). The car-

following logic inherent in CORSIM simulates the stop and go nature of traffic

during heavy traffic demand as well as the queuing delay caused by signal

interruptions. The over-saturated conditions resulting in queue spill-over when the

queue at a downstream intersection interferes with the traffic movement on the

upstream link is also accounted in CORSIM. The present study requires traffic

demand to vary from uncongested conditions (low-volume) to the congested

conditions (high-volume) and again come back to the uncongested conditions.

This variation in traffic flow can be seen throughout the day on an urban arterial.

CORSIM captures this variation in traffic flow and provides the traffic parameters

values for each time period.

CORSIM produces an output file having detailed Measures of Effectiveness

(MOE’s) for a study. This study requires finding out traffic variables which affect

the travel time. CORSIM provides extensive report of MOE’s which helps to

analyze the travel time process.
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3.2 Urban Arterial Network Designed in TSIS-CORSIM

An urban arterial network is deigned in TSIS-CORSIM in this study. The network is

shown in Figure 5.1 that consists of 25 signalized intersections. These signalized

intersections are numbered from 1 to 25 and are shown as smooth-lined circles. The other

intersections which are numbered from 26-45 and shown as dashed circles are the entry

and exit nodes for this arterial network. There are five arterials running in east-westbound

direction. These are numbered as 1-5, 6-10, 11-15, 16-20, and 21-25. These arterials are

major arterials as they are designed to serve higher traffic demand than the other cross-

arterials. The cross-arterials running along north-southbound direction are numbered as

1-21, 2-22, 3-23, 4-24, and 5-25. These arterials are minor arterials as are designed to

serve lesser traffic demand as compared to major arterials. Each arterial consists of four

arterial links bounded by signalized intersections on either side. For example, 1-6, 6-11,

11-16, and 16-21 are four links in arterial 1-21. It is to be noted that the notion of major

and minor arterials as taken in this study depends on the network in question. The

directions of major and minor arterials may change as the network varies. But, it is not

critical in this study as the major and minor arterials are considered equally in the

modeling approach. Hence, here, it is just a matter of naming the arterials as major and

minor based on traffic demand served.

The geometry of links comprising each arterial is varied to account for the variations

possible in any real arterial network. Moreover, this will lead to study the variation of

travel time with variables that represent geometry of links. The link length varies fi'om

1500 ft to 6000 it as shown in the Figure 5.1. All links have two lanes in each direction
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and each intersection approach has a left-turn pocket or bay to accommodate the left-

tuming traffic. The speed limit posted on arterial links is also varied and is kept as 30

miles per hour for small links (link length of 1500 ft) and 45 miles per hour for the
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Figure 3.1 - Urban Arterial Network Designed in TSIS-CORSIM for Travel Time

Estimation and Prediction.
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The provision of time-interval and time-period in CORSIM is used in this study to

simulate varying traffic conditions that can be as close to reality as possible. There are

total 19 time-periods each of 5 minutes duration. Hence, each simulation run was made

for 95 minutes or 5700 seconds (19*5 minutes). As said earlier, CORSIM calculates

values of traffic variables at each time-interval which is specified as 1 minute here. So,

the values obtained every one minute are aggregated or averaged for a time-period.

The variation of traffic demand in the network is achieved by varying the traffic flow in

every time-period at the entry links of the network. The variation of traffic flow in

general begins from an uncongested state to a congested state and then gradually back to

the uncongested conditions. The traffic flow variation for each arterial is different but is

kept the same for both directions in an arterial. For example, the traffic flow variation is

different for arterials 6-10 and 16-20 but the same variation is used for eastbound and

westbound directions of both arterials. The traffic flow variation in the minor arterials is

different from that on the major arterials but is kept the same for all the minor arterials.

Figure 5.2 shows the traffic flow variation at five major arterials (arterials 1-5, 6-10, 11-

15, 16-20, and 21-25) and one representative minor arterial (arterial 3-23). As can be seen

the average flow rate is increasing from as low as 250 vehicles per hour to a maximum of

2300 vehicles per hour. Figure 5.2 clearly shows that enough variability in traffic flow is

accounted for which makes travel time estimation and prediction on this network a

challenging problem similar to that in field.

This study explicitly considers turning movements at signalized intersections. Each

intersection is having average flow rate for through, left and right-turning movement. At
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each intersection, left-turning traffic is kept as 20% and right-turning as 10% of total

traffic flow which is input at the entry node of each arterial.

The signal control in the network is optimized using Synchro which is a macroscopic

traffic software. The signal optimization and control phasing scheme are covered in the

next section.
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3.3 Signal Control Optimization using Synchro

Synchro is a software application for optimizing traffic signal timing and performing

capacity analysis. The software optimizes splits, offsets, and cycle lengths for individual

intersections, arterial, or a complete network (http://www.trafficware.eom/synchro.htm).

Its wide popularity among researchers and practitioners and its efficiency makes it

suitable for signal control optimization for this study as well. The optimized signal

control scheme is obtained from Synchro for the urban arterial network shown in Figure

5.1. This optimized signal control scheme is then exported to TSIS-CORSIM. The cycle

length, green splits, and offsets are optimized at intersection and network level for the

peak-hour traffic flow in the network. The pre-timed signals are incorporated in this study

which is installed in most of the urban networks. The phasing scheme given by Synchro

for a typical intersection (Intersection 9) in the network is shown in figure 5.3. This

phasing scheme is an exclusive left-tum phase with leading green which has four phases.

Since, the left-turn bays or pockets are provided in the geometries of network, so, this

type ofphasing is logical to follow for all the intersections.
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Figure 3.3 — Exclusive Left-Turn Phase with Leading Green Phasing Scheme for a

Typical Intersection in the Network of Study.

The signal optimization in Synchro allows green splits, offsets to be taken as explanatory

variables affecting travel time in this study. These variables are easily available to a

traffic agency responsible for a traffic network and are very easy to use these in the

model here.

3.4 Definition of Traffic Variables used in the Study based on TSIS-

CORSIM

The TSIS-CORSIM tracks each individual vehicle and aggregates the values of traffic

variables for each time-period. So, the values of traffic variables are space-mean values

or true values that are representative of traffic conditions on an entire link. The definition

of traffic variables involved in the present study as given by CORSIM is stated here

(User’s Guide, Traffic Software Integrated System (TSIS), Version 5.1):
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0 Vehicle Trips - The number of vehicles that have been discharged from the link

since the beginning ofthe simulation.

0 Average Volume (vehicles per hour) - Total vehicle trips divided by the

simulation time.

0 Vehicle Miles - The vehicle trips times the length of link.

0 Total Time (vehicle-minute) - Total time on the link for all vehicles.

0 Average Speed (miles per hour) — Total vehicle miles divided by the total travel

time.

0 Maximum Queue Length by lane (vehicle) - The maximum queue length that was

observed on a lane since the beginning of the simulation (i.e., 100 percentile).

0 Total Time per vehicle (seconds per vehicle) - The average travel time on a link

for each vehicle, calculated by taking the total travel time and dividing it by the

number of vehicle trips.

It is to be noted that some variables are given by CORSIM for specific time-periods and

others as cumulative for the entire simulation time. All the variables used are finally

obtained for specific time-periods by using the above definitions.

3.5 Data Collection from TSIS-CORSIM

The data set having average travel time (seconds per vehicle) and the traffic variables

affecting average travel time are obtained from CORSIM. The traffic variables that affect

travel time are already mentioned in Chapter 2 (see Section 2.4).

39



A total of two CORSIM runs were done for data collection with different random seeds.

The random seeds are varied in CORSIM runs for headway seed, vehicle seed, and traffic

seed. The difference in random seeds provides data-sets which represent different traffic

demand patterns for the same network. The data set obtained from the first CORSIM run

is termed as ‘training set’ and the second run data set as ‘testing set’. In all modeling

steps (i.e. multiple linear regression of average speed, Conditional Independence graphs

analysis, and State-Space Neural Networks modeling) presented in Chapters 4-6, models

are developed from the training set only, and are tested using the testing set to evaluate

the efficiency of the models when new traffic patterns are presented (i.e. model’s ability

to generalize).

The modeling steps are limited to four arterials selected from the arterial network shown

in Figure 5.1. The selected arterials are 6-10, 16-20, 21-25, and 3-23. The entire modeling

deals with traffic conditions and travel times on the links of these arterials only. This is

done just to reduce the amount of time and effort needed to account for the entire

network. The consideration of these four arterials is sufficient to evaluate the efficiency

of the models developed as the variability needed in geometries, traffic demand, and

signal control is met with these four arterials.

As stated earlier (Section 3.2), each CORSIM simulation run was made for 95 minutes

(5700 seconds), where data is averaged every 5 minutes. So, 19 data-points are available

for each arterial link in one run. Here, four arterials mentioned in the above paragraph are

selected where each arterial consists of four links. So, a total of 304 data-points are

available for training and the same number for testing sets (19 data-points per link * 4

links per arterial * 4 arterials). All 304 data-points are used as the data-set in the
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modeling steps except for the State-Space Neural Network model that was developed for

travel time prediction. The reason is that for first 5 minutes of the simulation on each

link, the travel time can not be predicted as there are no values of traffic variables for the

past 5 minutes time period earlier than the current time period (because it is the first time-

period of simulation). So, 18 data-points are used for each link for travel time prediction,

which gives a total 288 data-points for training and a similar number for testing sets (18

data-points per link * 4 links per arterial * 4 arterials).

3.6 Miscellaneous Issues in Data Collection using TSIS-CORSIM

Some issues are identified and discussed here which are encountered during the data

collection for the study. These are as follows:

0 Calibration and validation of CORSIM — An important aspect of all computer

simulation programs including CORSIM are calibration and validation whenever

the model is applied to field or a new site. This fact has been acknowledged in the

discussion of application of simulation programs (May, 1990). Sisiopiku et al.

(1994) present calibration of NETSIM (component of CORSIM for surface

streets) with field studies. They have found that observed values in the field for

variables like occupancy, capacity, flows, and delays are different from those

obtained from simulation. But, the differences between simulated and observed

values are due primarily to insufficient model calibration rather than actual

deficiency in the simulation code to properly model traffic processes. Thus, this

study also believes that traffic patterns simulated by CORSIM are approximate
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depiction of the field situations. It is recommended to calibrate the values of

traffic variables especially average travel time for field studies wherever the

proposed model is applied.

Randomness of traflic patterns and number of random seeds — This study

develops travel time model using one CORSIM run data and tests it on dataset

obtained from a second run with different random seeds. Usually, the studies

using CORSIM simulation average data from about 2-10 random seed runs. The

model in this study does not need to estimate a value of travel time per se which is

subjected to specific traffic conditions. The idea is to obtain a dynamic model

which can learn the firnctional relationships between travel time and the varying

traffic conditions. A single run in CORSIM is sufficient to fulfill this requirement.

Even in a single run, 304 data-points are obtained where each data-point

represents the travel time as an outcome of other traffic variables. A total of 16

arterial links are used in training and testing sets to model travel time for any

arterial link in question. The testing set considered is a different traffic demand

pattern where the model is tested. Thus, sufficient variability has been taken into

account in this study to develop travel time estimation and prediction model.

Maximum Queue Length in CORSIM — According to the definition of maximum

queue length noted earlier (Section 3.4); CORSIM does not give maximum queue

length for each time-period. It identifies the maximum value of queue length

observed from the beginning of simulation even for an intermediate time-period.

This maximum queue length is not a good estimate of queue length in the

situation when simulation observes high traffic demand in the starting time-
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periods resulting into a maximum queue length. For later time-periods, even when

traffic demand lowers, the maximum queue length stays the same. This does not

affect the model much as the inclusion of maximum queue length is done with

other traffic variables which act as inputs to the model. Hence, it is required that

during application of this model in the field, queue length should be duly

considered and accurate value of queue length is obtained. A more accurate value

of queue length will increase the efficiency and accuracy of the proposed travel

time model in this study.

Concluding this chapter, it can be said that this experimental set-up presents all the

complexity and variation which are needed to account for in any travel time study. The

following chapters deal with the modeling approach using data collected from this

experimental set-up.
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Chapter 4

Multiple Linear Regression for Average Speed Estimation

The multiple linear regression is done here to obtain estimated average speed on arterials.

The difficulty of obtaining average speed from loop detectors is duly considered in this

approach. The proposed model provides estimated speed which is obtained by fitting a

multiple linear regression with other traffic variables which are easy to obtain in the field.

The true average speed that was obtained from CORSIM simulation is replaced by the

estimated average speed obtained here. Using this known relationship in further modeling

steps, the travel time can be estimated and predicted by using the estimated average speed

instead ofthe average speed obtained from the field.

4.1 Utility of Average Speed Estimation for Travel Time Modeling

Average speed is an important traffic variable affecting travel time on an arterial link.

The travel time prediction models developed for freeways consider speed as one of the

input traffic parameters (for example, see vanLint 2004 and Mark and Sadek 2004).

Several travel time estimation models developed for urban arterials as reviewed by

Sisiopiku and Rouphail (1994) use speed as an input traffic parameter.



The average speed obtained from TSIS-CORSIM in this study can be considered as the

true average speed, as it is calculated by tracking individual vehicles in the simulation.

The average speed is a traffic parameter which is difficult to observe or estimate in the

field. Some of the loop detectors calculate speed on a link. The recommended location of

loop detectors for speed estimation in the field for arterial networks is specified in Traffic

Detector Handbook (1990). But, this speed is limited to the location of the detector itself.

For example, if the detector for estimating speed is located close to the stop line of the

signalized intersection, the estimated speed is of lower value. This is because the vehicles

slow' down and even completely stop when they approach a signalized intersection during

red interval. On the other hand, if a detector is installed midway on a link, the estimated

speed will be a higher value because of the low interference to the vehicle from the signal

control and neighboring vehicles in the traffic stream. The average speed will be a true

average speed, if and only if each individual vehicle is tracked and their acceleration and

deceleration profiles are obtained. This task is fairly complicated and expensive in the

field. Moreover, it is recognized that average speed is different for different types of

movement on an arterial link. That is to say that average speed for through, left and right-

turning vehicles is different. Recognizing the complexity in finding average speed in the

field for the entire traffic stream neglecting their turning movement, it is more complex to

find average speed for each traffic movement.

This study aims to provide a modeling approach for travel time estimation and prediction

which relies only on easily available data in the field. So, it is required that average speed

is calculated from other traffic variables that are easy to obtain from existing traffic

detection technologies. The traffic variables other than average speed (like VT, VL, VR,
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G, Off, Of, QL, S.L., ITTT, and ITTL) affecting travel time can be easily obtained in the

field. So, an intermediate modeling step is required to estimate average speed from other

known and easily obtainable traffic variables. This estimated average is used in the next

modeling steps to model travel time.

4.2 Multiple Linear Regression for Average Speed Estimation

The traffic variables that are easy to obtain in field are VT, VI, VR, G, Oflf Q7; Q1, S.L.,

ITTT, and 1771,. The function between average speed for each type of movement (i.e.

through, left and right-tum) and these traffic variables is to be obtained. The technique

used to model or approximate this function is multiple linear regression. The average

speed for through, left and right-tum movements (ST, 5],. and SR respectively) are termed

as response variables in this case, and the known traffic variables like VT, VL, VR, G, 01?:

Q7, QL, S.L., 1T1"T, and [ITL are termed as predictor variables. Due to the presence of

more than one predictor variable (here 10 predictor variables), multiple linear regression

is a promising choice.

Consider a response variable Y and its value Y,- in the ith trial. A set of predictor variables

like X1 and X2 is identified and Xi] and X3 are their respective values in ith trial. The

regression model which gives a relationship between Y and X1 and X2 is an example of a

multiple linear regression model. Consider the model given below-
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Yr =flo +131Xr°1 +fl2Xiz+ 5i

It is called a first-order multiple linear regression model. The parameters of this model

are fig, ,81, ,82, and the error term is 6;. The parameters ,81, fig are sometimes called as

partial regression coefficients because they reflect the partial effect of one predictor

variable when the other predictor variable is included in the model and is held constant

(Kutner, et al. 2004).

Assuming that the expected value of the error, i.e., E{ 51-} =0, the regression function is

15:97:50 +31 X1 +132X2

The similar equation can be extended to more than two predictor variables and to 10

variables in the speed estimation here. The multiple linear regression models for this

study which need to be determined are-

ST =130T + fin VT + flzr VL+ flsr VR + .34T 0+ fl5T Off + .36T Q7"r .37T QL+ fier-L- +

fl9r 1771+ firorITTL

SL =fl0T + flIT VT + ,32T VL+ 163T VR + 3410+ 357 Off + .B6T QT+ .377“ QL+ .38TS-L- +

.B9T ITTT+fl10T1TTL

SR =fl0r + [in VT + fizr VL+ flsr‘ VR + .347 0+ fl5rOfl + .362" Q7"r fin" QL+ fier-L- +

,39T ITTT+ fiIOTITTL
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The fiij with appropriate notation of i andj are the parameters of these models which are

to be estimated. The value offig is found by using the method of least squares.

Let the least square criterion be L for the regression model between Y and X1 and X2, as

stated earlier. The value ofL can be written as —

" 2
L = Z(Yi=fi0+fi1 Xi1+fi2XiZ)

i=1

According to the method of least squares, the estimators of fig, fi1, and fig are those

values that minimize the criterion L for the given sample observations (Kutner, et al.

2004)

The multiple linear regression for average speed estimation was done using SPSS 14.0

for Windows. The stepwise regression method was used which is also called as statistical

regression. Stepwise regression is a way of computing ordinary least squares (OLS) in

stages. In stage one, the predictor (independent) variable best correlated with the response

(dependent) variable is included in the equation. In the second stage, the remaining

independent variable with the highest partial correlation coefficient with the dependent

variable, controlling for the first independent variable, is entered. This process is

repeated, until the addition of a remaining independent variable does not increase square

of correlation coefficient (R2) by a significant amount (or until all independent variables

are entered).

The data-set that is used to obtain a multiple linear regression model for average speed is

the training set as discussed earlier in Chapter 3. Recalling that training set consists of
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data collected by first run of CORSIM simulation. The training set consists of 304 data

points. The obtained regression model is evaluated by applying it on testing set. The

testing set was obtained from second run ofCORSIM simulation.

The training and testing sets are transformed by a linear function to scale in a range of 0.1

and 0.9. This transformation is also done with the dataset when it is used for the

Conditional Independence graph and State-Space Neural Networks as discussed in later

chapters. The scaling of data is required for fast and stable learning in neural networks

(Haykin 1999). The scaling of data is done for average speed estimation here just for the

sake of uniformity in data set so that obtained speed is in the required range and can be

directly fed to next modeling steps.

There are various tests for analysis of appropriateness of regression model and analysis of

variance as explained in Kutner, et al. (2004). These tests are provided by SPSS during

report generation for a model. The following statistical tests and results can be used to

evaluate the efficiency of multiple linear regression models -

o descriptive statistics including mean and standard deviation of set of variables

0 model summary

0 ANOVA

o Coefficients

0 Residual statistics

In the present travel time modeling approach, the travel time estimation and prediction is

done on the basis of the training set and is applied on the testing set. Thus, same approach

is used for evaluating the efficiency of these regression models also. The reliability of

regression model in this study is tested by doing cross-validation i.e. by applying it on a
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testing set. The performance of regression model on testing set states the efficiency of the

model. The statistical tests mentioned above are usually required for multiple linear

regression model evaluation. However, the use of testing set for evaluating its

performance is assumed enough in the scope of present study.

As noted earlier, three regression models for average speed of through, left and right-tum

movement on arterial links were obtained. The speed estimation models were developed

for the major and minor arterials separately in the arterial network. The major and minor

arterials in the studied arterial network are stated earlier in Chapter 3 (Section 3.2).

4.2.1 Average Speed Estimation for Major Arterials

The average speed estimation for through, left, and right-turn movements on arterial links

is discussed here. First, the average speed estimation for through movement vehicles on

major arterials is presented. It is noted again that the average speed is scaled by a linear

function to lie in a range of 0.1 and 0.9. The training set is used for the regression model

development. The following regression models are obtained by using stepwise regression

method for average speed estimation on major arterials-

sT= 0.444- 0.462 QT+ 0.317S.L. + 0.593 117T- 0.398 ITTL

sL = 0.165 - 0.073 VT— 0.159 VL + 0.261 G — 0.07Ofl— 0.07 QL+0.I57S.L. +0403 IYTL

SR - 0.458- 0.086 G - 0.396 QT + 0.336 S.L. +0. 649 ITI‘T— 0.602 1777,
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The efficiency of the estimation models is first evaluated for the training set. This is done

by plotting best-fit line between scaled estimated and actual average speed. Figures 4.1,

4.2, and 4.3 show the plots for through, left and right -turn movement on major arterials.

The R2 values are as shown in these figures. The R2 values obtained for the training set

are reasonably well and these models are selected for the purpose here. It is to be

remembered that average speed estimation is an intermediate step in modeling travel

time. There are other variables also which act as input to travel time model. Hence, a

reasonable estimate of average speed was required and this purpose is fulfilled here.
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The performance of the average speed estimation models needs to be tested on the testing

set. Figures 4.4, 4.5 and 4.6 show the plots between scaled estimated and scaled actual

average speed for through, left and right-tum movements on major arterials. It is seen that

R2 values for the testing set are better as compared to that of training set. This

observation is just a coincident and may be because the average speed values in the

testing set is similar to those average speed values in the training set which were

accurately captured by the model. The testing set was not used in the model development

and represents different traffic patterns than the training set. This evidence gives support

to use these models for average speed estimation. The proposed average speed estimation

models are assumed as generalized models on the basis of their comparable and even

better efficiency on testing set.
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4.2.2 Average Speed Estimation for Minor Arterials

The average speed estimation for minor arterials is done separately fiom major arterials.

The minor arterials serve lesser traffic demand as compared to the major arterials. The

resulting average speed is considered to have different dependence on the input variables.

Due to this reason, the minor arterials were considered separately for average speed

estimation to improve the accuracy of the models.

The average speed estimation for through movement vehicles on minor arterial links is

discussed here. It is noted again that the average speed is scaled by a linear function to lie

in the range of 0.1 and 0.9. The training set is used for the regression model development.

The following regression models were obtained by using the stepwise regression method

for average speed estimation on minor arterials-

ST=0.564 - 0.286 VT - 0.115 VR + 0.126S.L. + 1.476ITTT- 1.14IITTL

SL = 0.466 - 0.179 VL — 0.481 0fl+ 0.513 S.L. — 0.104ITTL

SR . 0.575— 0.305 VT - 0.126 VR + 0.096 S.L. +1.04 ITTT - 0.829 ITTL

The efficiency of these estimation models is first evaluated for the training set. This is

done by plotting the best-fit line between scaled estimated average speed and scaled

actual average speed for each type of movement. Figures 4.7, 4.8, and 4.9 show these

plots for through, left and right —turn movements on minor arterials. The R2 values are as
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shown in the figures. On the basis of R2 values, the proposed average speed estimation

models are found satisfactory.
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The performance of the average speed estimation models is further evaluated on the

testing set. Figures 4.10, 4.11 and 4.12 show the plots between scaled estimated and

scaled actual average speed for through, left, and right-tum movements on minor

. . . 2 .

arterials. It rs again observed that the R values for testing set are better as compared to

that of the training set. The argument given for this observation for major arterials holds

true here also. The testing set was not used in the model development and represents

different traffic patterns than the training set. This evidence gives support to use these

models for average speed estimation. The proposed average speed estimation models are

assumed as generalized models on the basis of their comparable efficiency on the testing

set.
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The average speed estimation models presented in this chapter provide accurate and

reliable estimates of average speed for major and minor arterials. It is also observed that

the average speed estimation for right-turning movement is less capable as compared to

through and left-turning models in terms of accuracy. The reason for lesser accuracy in

right-turning movement models is attributed to the complexity of average speed variation

with traffic demand in these movements. The right-turning movement shares the same

lane and same signal control state as that of through movement on an arterial link. Hence,

none of the input variables except the average flow rate for right-turning movement was

distinguishing the average speed for right-turning movement. The lesser accuracy of

speed estimation for right-turning movement can impact the travel time estimation and

prediction models for right-turning movement. The results of the travel time estimation

and prediction for right-turning movement on arterial links is presented in Chapter 7

where this impact is revisited.

60



Chapter 5

Conditional Independence Graphs Based Analysis of

Travel Time Estimation and Prediction

The Conditional Independence (CI) graph is a founding stone of a series of Probabilistic

Graphical models like the Markov Networks and the Bayesian Belief Networks. This

section uses CI graph as a tool to analyze the interaction and conditional independence

between traffic variables that represent the state of a link and hence influence the travel

time. The application of the CI graph to this problem serves three-fold purposes:

understanding the travel time estimation and prediction process, selecting parent input

variables which refine the state of link, and improving the efficiency of State-Space

Neural Networks which are used as the ultimate modeling tool for this problem.

This chapter begins with an overview of graphical models and CI graphs and presents the

theory behind it. The next sections apply CI graph to analyze average travel time

estimation and prediction for through, left, and right-tum movements on an arterial link.

Much of the content of this chapter is inspired by the text on ‘Graphical Models in

Applied Multivariate Statistics’ by Whittaker (1990).
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5.1 Graphical Models and Conditional Independence Graphs in Applied

Multivariate Statistics

5.1.1 Overview of Graphical Models and Conditional Independence Graphs

A Graphical model is a family of probability distributions that incorporates a specific set

of conditional independence constraints listed in an independence graph. Graphical

models are a statistical technique which provides a graph depicting conditional

independence among a set of variables in a process which have multivariate normal

distribution. This independence graph is called the Conditional Independence (CI) graph,

simply because it is based on the notion of conditional probability among two sets of

variables given another variable or set of variables. Thus, CI graph is a powerful way of

summarizing the independence and interaction among a set of variables in a process.

The CI graphs are constructed from knowing the pair-wise conditional independencies

among variables in a process. The tool that is needed to interpret this graph is the

Markovian property. The Markovian property based inferences can be made solely after

the construction of CI graph. As can be realized, CI graph provides that information on

how different variables in an underlying process are interacting with each other on the

basis of the conditional independence. It can be further extended to measure the amount

of information contained in one random variable about the values of the other random

variable. This information measure is called the Kullback—Leibler Information

Divergence.
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The construction of Conditional Independence graph can be further used to develop a

Graphical Gaussian Model, which assumes a multivariate normal distribution among

variables. The graphical Gaussian model can be fitted to the obtained CI graph with

Kullback-Leibler Information Divergence to model the joint probability distribution of

variables. The techniques of Maximum Likelihood estimation and likelihood ratio tests

are used to determine the best fitting parameters in the graphical Gaussian model.

5.1.2 Utility and Scope of Graphical Models and Conditional Independence Graphs

in Present Study

In the previous section, it was noted that the Cl graphs are usually extended to fit a

graphical Gaussian model to obtain the joint probability distribution of variables. The

graphical Gaussian models are themselves a modeling technique for a process which has

normal distribution for the variables. This thesis uses CI graph and estimation of

Kullback-Leibler Information Divergence as a way to understand the process of travel

time estimation and prediction. This study does not aim to fit a graphical Gaussian model

extending the obtained CI graph. The reason is that State-Space Neural Networks

(SSNN) has been found robust and reliable models to approximate complex non-linear

processes like the average travel time estimation and prediction. So, no effort has been

done to obtain the graphical Gaussian models for average travel time estimation and

prediction. Instead, the CI graph and Kullback-Leibler Information Divergence are

combined with SSNN for three—fold reasons:
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Understanding the travel time estimation and prediction - The SSNN is capable

ofmodeling a complex non-linear process because of its topology which provides

it with associative memory for capturing temporal fluctuations as well as acting

as an efficient input-output mapping tool. The associative memory of SSNN

captures the state of a link, which is discussed in detail in the next chapter. But, it

will be shown there that this associative memory is hard to decipher and is not

directly correlated with the effect of different input variables. Thus, it prohibits

the modeler from understanding the relationship and interactions among different

variables affecting travel time. This deficiency of Artificial Neural Networks in

general is called as ‘black-box’ nature. The CI graph is used to improve the

understanding of average travel time estimation and prediction process. The

concept of Kullback-Leibler Information Divergence is helpful in evaluating the

amount of information contained in traffic variables about travel time, hence

increasing the understanding of this process.

. Selecting parent input variables - The SSNN in itself does not distinguish if all

variables used are important and needed for modeling the process, or if some

variables are redundant. This deficiency does not provide the modeler any

. information on which variables are significant for modeling the process and

which variables are insignificant. The use of the Markovian property on C1 graph

selects a set of variables termed as parent input variables. These parent input

variables give sufficient information about travel time that remaining variables

are redundant and can be dropped from the input vector. The selection of parent

input variables is covered in the following sections.
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3. Improving efficiency ofSSNN— The efficiency of SSNN may decrease because of

the complexity in the topology which in turn appears because of the inclusion of

more variables than necessary. So, CI graph has been combined for the first time

in this study to reduce the number of variables needed as inputs to model the

average travel time. It is found in this study that the efficiency of the SSNN

actually increased using the information from C1 graph.

5.1.3 Constructing Conditional Independence Graphs and Selection of Parent Input

Variables

This section illustrates applying the CI graph in a process and finding the interaction and

independence between the variables involved, which have a multivariate normal

distribution. First the basic theory of conditional independence and Markovian property is

presented which is used later to interpret a CI graph. The construction steps for obtaining

a CI graph from a dataset is presented. Later on, Markovian properties are used to

interpret CI graph.

Conditional Independence - The theory of independence and conditional independence

between events or random variables is cemented into the very foundations of probability

and statistics theory.

Consider two random vectors X and Y. The conditional density function of X knowing Y

is written as,
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fXY(x;y)
fX Y (x.'y) =

I IN»

The random vectors X and Y are independent if and only if the joint probability density

function,ny, satisfies

fXY (Ly) =fX(X)fY (y)

for all values ofx and y. The relationship is denoted by X-u-Y.

Using the above relation which says that the joint probability density function ofX and Y

is the product of their marginal density functions, we get,

fx| 1» (any) =fX(x) for all x.

Thus, X-u-Y if and only if the conditional and the marginal density functions are identical.

Consider three random vectors X, Y, and Z. In a similar way, the random vectors Y and Z

are conditionally independent on X if and only if

fYZlX 0.2.96) =an OH)fZlX (2:16)

for all values of y and z and for all x for which fX(x)>0. This is written as Y-u-ZIX.

Conditional Independence Graph — After stating the meaning of conditional

independence among a set of variables; consider a graph showing these variables and

conditional independencies among them.

Let X = (X1, X2 Xk ) denote a vector of random variables. A graph is constructed

considering each of the random variable as a node or vertex. These nodes or vertices are

either connected by an edge or left disconnected based on a certain rule that corresponds

to the conditional independence among two variables knowing remaining all other
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variables. Let K = {1, 2,..., k} be the corresponding set of vertices which denote the

random variables. The rule followed for connecting the vertices with an edge or leaving

them disconnected in the graph is stated as follows: if a graph is constructed such that

there is no edge between two vertices whenever a pair of variables is independent given

all the remaining variables, the resulting graph is an independence graph, or more

precisely a Conditional Independence graph. Stating a formal definition of conditional

independence graph from Whittaker (1990)-

Definition 1: The conditional independence graph ofX is the undirected graph G = (K,

E) where G is the graphical model, K = {1, 2, k} and (i,j) is not in the edge set E if and

only ifolXJ-lxmm.

For Example, taking k = 4; i.e. for X = (X1, X2, X3, X4), assume that the following

independence relations are identified among these variables: X11X3|{X2, X4},

X11X4|{X2, X3} and Xz-u-X4l {X1, X3}. The CI graph resulting from these relations is

shown in the Figure 5.1. It is clear from this figure that the two variables which are

conditionally independent like X1 and X3 do not have any connecting edge in the graph.

The variables X) and X3 are also separated by the rest of variables (X2, X4) given which

they are independent. The resulting graph gives a picture of the pattern of dependence or

association between the variables (Whittaker. 1990).
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Figure 5.1 - A Simple Conditional Independence (CI) Graph for Conditional

Independence Relations of Four Random Variables.

In the present study, a CI graph is obtained following the construction steps as mentioned

later. Based on C1 graph, the objective is to make some conditional independencies

statements which will be similar to the statements made in the earlier example.

Markovian property - The Figure 5.1 is termed as Markov chain. The independence

relations as specified for this example are based on three Markovian properties. These

properties are listed as below (Whittaker, 1990):

- “the pairwise Markov property: that non-adjacent pairs of variables are

independent conditional on remaining variables;

' the local Markov property: that conditional only on the adjacent variables, any

variable is independent of all the remaining variables; and

I the global Markov property: that any two subsets of variables separated by a third

is independent conditionally only on variables in the third subset.”
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The details of these Markovian properties are dealt in Whittaker (1990). Here, these are

listed and applied to understand the independence statements that can be made for a CI

graph.

Constructing conditional independence graph — The construction of the CI graph is

presented here given the values of variables involved in the process being modeled.

Suppose there are N observations of a k-dimensional random variable X = (X1, X2, Xk)

as noted earlier. The steps for constructing a CI graph for this variable X is adapted from

Whittaker (1990) and is presented below:

Step I — Estimate the sample correlation matrix S = corr N(X).

Step 2 — Compute the inverse of the sample correlation matrix, i.e. S4. The diagonal

elements of this sample inverse correlation matrix are interpreted as being the proportion

of variation in the corresponding variable explained by regressing on the remaining or

rest of the variables. More explicitly, each diagonal element equals/ 2 , where R

(1- R )

is the multiple correlation coefficient between that variable and the rest of the variables.

Step 3- Scale the sample inverse correlation matrix such that the diagonal elements are

equal to 1. In this scaled inverse correlation matrix, the off-diagonal elements are the

negatives of partial correlation coefficients, i.e. corr N(Xi, Xj I rest), where ‘rest’ means

rest or remaining of the variables.
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Step 4 — Set any sufficiently small element of the scaled inverse correlation matrix to

zero.

Step 5 - A graph G = (K, E) is drawn such that there are k nodes representing k

dimensions of variable X, and E denotes the set of edges between the nodes. The rule that

is followed in drawing this graph is that there is no connecting edge between two

variables if their corresponding partial correlation coefficient is zero. The resulting graph

is called a CI graph.

Parent input variables — The selection of parent input variables is one of the aims of

using CI graph in this work. The parent input variables are a set of variables obtained

from the CI graph which have sufficient information contained in them such that the

remaining variables do not add any extra information to travel time estimation and

prediction. For example, take the independence relation X1-u-X3|{X2, X4} used in earlier

example in this section. The parent input variables for modeling X] are X2 and X4, since

knowing these two variables X1 is conditionally independent ofX3.

Kullback-Leibler Information Divergence — Kullback-Leibler Information Divergence,

1 (fig) is used to evaluate the amount of information available to discriminate between

density functionsf and g. The calculation of Kullback-Leibler Information Divergence is

extended to evaluate the amount of information contained in one random variable about

the values of others. In other words, it measures the strength of the specified conditional

independencies shown in a CI graph.
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Definition 2: The Kullback—Leibler information divergence between two probability

density functionsfand g for the random vectorX is

f(X)

(f .9) egg“)

where, E is the expectation taken with respect to the densityf.

The measure to evaluate the information in one random vector about another is called

information proper, which is directly related to information divergence.

Definition 3 : The information in one random vector about another, the information

proper, is

Inf(X-"-Y) = 1(fxy:fXfr)

where, I is the Kullback-Leibler information divergence.

It is already mentioned that if and only if XJLY, ny = fX fy. So, 1030/; fX fy)=0, i.e.,

Inf(X-“-Y) = O in this case. This implies that if X-u-Y, no information is contained in X

about the values of Y and vice-versa.

The information divergence and the information proper are related to the partial

correlation coefficients (p) obtained fi'om the scaled inverse correlation matrix. The

following equation gives the relation between information proper and p,

p = + {1-eXP (-21nt)} ”2

Inf= -1/2 {log(1- 02)}
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So, Inf (X-u-erest) = -l/2 {log(l- p2)}, where p = corr N(X, Y I rest).

5.2 Conditional Independence Graphs for Average Travel Time Estimation and

Prediction for Through Movement

This section deals thoroughly with the construction of CI graph for average travel time

estimation for through movement in an arterial link. Once the CI graph for travel time

estimation is obtained, the inferences for travel time prediction are made. In this study,

the CI graphs are developed for the travel time estimation only and the same selected

parent input variables are chosen for travel time prediction modeling also. The travel time

estimation and prediction modeling have the same output, i.e. the average travel time,

with the only difference being whether it is observed in current or future departure time-

period. So, the dependence of travel time on the traffic variables is the focus here

irrespective of the departure time-period in which it is observed. Hence, the selected

parent input variables by constructing the CI graph for travel time estimation can be used

for prediction modeling also.

The variables that represent the state of a link as discussed in Chapter 2 are average flow

rate for through, left, and right-turning movements (VT, VL, and VR respectively);

average speed for through, left, and right turning movements (ST, SL, and SR

respectively); green interval for the approach (G); offsets between the two signalized

intersections forming the link (017); speed limit of link (S.L.), and the ideal travel time for

through and left turn movement (117"T and ITTL, respectively). Chapter 4 deals with the
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estimation of average speed for each type of movement fi'om basic available data. Since,

the modeling approach in this study relies on basic available data only, estimated values

of average speed are used for modeling here as well as further in the thesis.

Now, the construction of CI graph for average travel time estimation is presented for the

arterial links. The assumption that the distributions of travel time estimation and the

variables composing the state of the link are multivariate normal is made. So, all the data

can be represented with sample mean vector and sample variance-covariance matrix. The

sample correlation matrix is obtained from this variance-covariance matrix because it is

easier to interpret the correlation matrix than the variance-covariance matrix.

The sample correlation matrix obtained from the data of average travel time for through

movement and the state of the link in the current departure time period is presented in

Table 5.1. This sample correlation matrix represents the degree of linear association

between travel time and the independent variables depicting the state of the link, but it

also shows that the independent variables are correlated among themselves. Hence, the

correlation matrix does not provide useful information in the sense that if dependence of

travel time is to be analyzed taking into account inter-correlation among independent

variables.

The inverse matrix of this sample correlation matrix is found and scaled such that the

diagonal elements of the inverse matrix equal to l. The sample inverse correlation matrix

is shown in Table 5.2. The sample inverse correlation matrix gives useful information

which is used for constructing a CI graph. The off-diagonal elements of the scaled sample

inverse correlation matrix are the negatives of the partial correlation coefficients between

the corresponding pair of variables given the remaining variables. If the off-diagonal
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elements are zero then the corresponding variables are conditionally independent given

the remaining variables. So, this scaled inverse correlation matrix is approximated such

that the elements which have values close to zero (here, <0.l) are put as zero, and the

values 2 0.1 are non-zero entities, symbolized as *. This approximated scaled inverse

correlation matrix is shown in Table 5.3 gives the information about independence

among the variables and can be conveyed by a CI graph.
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Assume that the CI graph G = (K, E) where, K represents the nodes and E represents the

edges between these nodes. Each variable in the travel time estimation process is

considered as a node resulting in K = 14. Now, an edge is put between two variables if

there is a non-zero entity (represented by f) in Table 5.3. Also, no edge is put between

two variables if there is a zero value between them in this table. The obtained graph

following this rule is the CI graph for the average travel time estimation process. The

obtained CI graph is shown in Figure 5.2. As seen in the figure, there are two types of

edges between variables; directed and undirected. The directed edge is drawn if the

general understanding of this process tells that variable at the head of directed edge is

caused by variable at the tail of directed edge. For example, YTT is caused by all other

variables as they represent state of link. Similarly, if general understanding does not able

to figure out the causation, the edge is undirected edge. For example, whether G and Off

cause each other is not clear, so, undirected edge is put in between.

Figure 5.2 shows the pair of variables that are conditionally independent knowing a

variable or set of variables. The point of interest in this figure is the average travel time.

The travel time of the through movement (TTT) is shown directly interacting with eight

variables namely QT, QL, ST, SL, SR, G, S.L., and ITI‘L. Following the global Markovian

property, it can be written as {UT-"- (VT, VL, VR, Off ITTT) I (QT, QL, ST, SL. SR, G,

S.L., ITTU}. The set of variables Q7, Q1, 87, S1, SR, G, S.L., and HTL is identified as the

parent input variables set. It is suggested by definition of conditional independence that

the parent input variables are sufficient to estimate the average travel time and that no

extra information is available in the remaining variables given the parent input variables.
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After identifying the parent input variables, the concept of Kullback-Leibler information

divergence and information proper can be used to evaluate the amount of information

contained in each of these variables about TTT. The information proper is calculated

using the relation Inf = -1/2 {log(1- p2)}, which is stated earlier. The p values are

obtained from Table 5.2. The information proper is calculated and is shown in Figure 5.2

in parentheses along with the directed edges that are connecting parent input variables to

TIT. This tells that QL and SL have almost the same amount of information about TI’T.

The variables like SR, and ITTL have almost double information about ITT as compared

to QL and SL. The green interval, G and S.L. have the least information about 17’]: Thus,

CI graph not only tells which traffic variables are parent input variables but also their

relative importance to estimate travel time.

It becomes obvious choice to use parent input variables alone instead of all the variables

which were assumed previously to affect the estimation of average travel time. As

discussed earlier in this section, the same parent input variables obtained for the travel

time estimation process are used for prediction modeling also. These parent input

variables will be used as input variables for the next modeling step, i.e. use of the State-

Space Neural Networks (SSNN) for average travel time estimation and prediction of

through movement.
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Figure 5.2 — Conditional Independence Graph for Average Travel Time Estimation for

Through Movement
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5.3 Conditional Independence Graph for Average Travel Time Estimation and

Prediction for Left-Tum Movement

The CI graph for travel time of the left-tum movement is drawn following the same

methodology of the through movement presented in Section 5.2. The sample correlation

matrix is shown in Table 5.4, which shows that almost all the variables have some

correlation with TTL, the average travel time for left-tum movement. The scaled inverse

correlation matrix is shown in Table 5.5. The scaled inverse correlation matrix is

approximated such that elements having values <0.1 are assumed to be zero entities and

elements having values 2 0.1 are non-zero entities, symbolized by *. The approximated

scaled inverse correlation matrix is presented in Table 5.6. Using this table, the CI graph

is constructed for estimation of TTL. This CI graph is presented in Figure 5.3, which can

be interpreted using the global Markovian property as {ITL J‘- (VT, VI, VR, S7, S1, Ofif

IYTT) I (QT, Q1, SR, G, S.L., HT1)}. So, the parent input variables to be used for

estimation of average travel time, left-tum movement are QT, Q1, SR, G, S.L., ITTL.

After identifying the parent input variables, the information proper is calculated using the

relation Inf = -1/2 {log(l- p2)}, which is stated earlier. The p values are obtained from

Table 5.5. The information proper is calculated and is shown in parentheses in Figure 5.3

along with the directed edges that are connecting the parent input variables to TTL. This

shows that QT, G and S.L. have almost same amount of information about TTT. The

variable Q), has almost triple information about 7TL as compared to QT, G and S.L. The
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variables SR and 117'L have almost five times information compared to Q7, G and S.L.,

and are most informative about TTL. Thus, the CI graph not only tells which traffic

variables are the parent input variables but also their relative importance to estimate

travel time.

As discussed earlier in the Section 5.2, the same parent input variables obtained for the

travel time estimation process are used for prediction modeling also. These parent input

variables will be used as input variables in the next modeling step, i.e. use of the State-

Space Neural Networks (SSNN) for average travel time estimation and prediction of left-

tum movement.
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Left-Turn Movement.

Figure 5.3 — Conditional Independence Graph for Average Travel Time Estimation for
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5.4 Conditional Independence Graph for Average Travel Time Estimation and

Prediction for Right-Turn Movement

The CI graph for travel time of the right-turn movement is drawn following the same

methodology of the through movement presented in Section 5.2. The sample correlation

matrix is shown in Table 5.7, which shows that almost all variables have some correlation

with 17);, the average travel time for right-turn movement. The scaled inverse correlation

matrix is shown in Table 5.8. The scaled inverse correlation matrix is approximated such

that elements having values <0.1 are assumed to be zero entities and elements having

values 2 0.1 are non-zero entities, symbolized by *. The approximated scaled inverse

correlation matrix is presented in Table 5.9. Using this table, the CI graph is constructed

for estimation of TTR. This CI graph is presented in Figure 5.4, which can be interpreted

using the global Markovian property as {TI'RJL (VT, VL, VR, Ofif ITTT) I (QT, QL. ST, S),

SR, G, S.L., 1TT1)}. So, the parent input variables to be used for estimation of average

travel time for right-turn movement are Q7, Q1, 57, SL. SR, G, S.L., and ITTL.

After identifying the parent input variables, the information proper is calculated using the

relation Inf = -1/2 {log(l- p2)}, which is stated earlier. The p values are obtained from

Table 5.8. The information proper is calculated and is shown in parentheses in Figure 5.4

along with the directed edges that are connecting the parent input variables to T1"R- This

shows that SR and HTL have the most information about 17‘R4 The least information is

contained in G and S.L. about TTR. Thus, CI graph not only tells which traffic variables
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are the parent input variables but also their relative importance to estimate travel time.

As discussed earlier in the Section 5.2, the same parent input variables obtained for the

travel time estimation process are used for prediction modeling also. These parent input

variables will be used as input variables for the next modeling step i.e. use of the State-

Space Neural Networks (SSNN) for average travel time estimation and prediction of

right-turn movement.
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Chapter 6

State-Space Neural Networks Modeling for Average Travel

Time Estimation and Prediction

The Conditional Independence (CI) graphs that were developed in the previous chapter

select parent input variables required for travel time estimation and prediction. The next

modeling step is to develop the State-Space Neural Network (SSNN) models to use the

information from the CI graphs to model the travel time process.

This chapter provides a review of modeling approaches that have been used by

researchers for short-term traffic forecasting in general. The SSNN is identified as a

promising tool to model the complex nonlinear dynamic process of travel time on urban

arterial networks. The SSNN models are developed for the smallest unit of arterial

networks, i.e. arterial links. This study develops separate SSNN models based on the

same topology for three types of traffic movements possible on each arterial link i.e.

through, left, and right-turn movements. The topology of the SSNN models is discussed

and found suitable for the study. The training and testing aspects of neural network

modeling is illustrated. Finally, the travel time estimation and prediction for an arterial

route is developed using SSNN models already developed for its components, i.e. arterial

links.
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6.1 Modeling Approaches for Travel Time Estimation and Prediction

The problem of short-term travel time prediction is similar in methodology as forecasting

traffic conditions on a transportation networks. There has been considerable research on

short-term forecasting of average flow rate, average speed, and queue length. Though,

travel time prediction is similar to the forecasting of other traffic condition indicators or

variables, it is much more complex in formulation. An extensive literature survey has

been presented by Vlahogianni, et al. (2004) discussing modeling approaches for short-

term traffic forecasting in general.

Here, three broad categories are identified in which modeling approaches for short-term

travel time prediction can be classified:

1. Univariate Time-Series Forecasting — This approach is quite popular time-series

forecasting approach used in all disciplines including traffic engineering. The

travel time is considered a random variable and is forecasted by focusing on the

second-order properties only. IfXt is a certain random variable representing travel

time at any time instant t, the expected values of E(Xt) and expected products,

E(Xt+h, Xt), t = 1, 2,..., and h = 0 ,l, 2,...are specified. The properties of sequence

Xt is dependent on these expected values and expected products only, and that is

why it is refered to as second-order properties (Brockwell and Davis 2002). Thus,

here the dependence of travel time on other variables is ignored and only focused

on the second-order properties. The Autoregressive (AR), Moving Average (MA),

Autoregressive Moving Average (ARMA), and Autoregressive Integrated Moving

Average (ARIMA) family of time series models are used in this case.
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2. Multivariate Time-Series Forecasting — This approach considers that the time

series (here, travel time series) is represented as components of some multivariate

time series Xt. Here, not only serial dependence within each component series

{Xti} exists, but also interdependence between the different component series

{Xti} and {th}, #j (Brockwell and Davis 2002). The multivariate time-series are

modeled using multivariate ARMA processes. The State-Space models and the

associated Kalman recursions also belong to the family ofmultivariate time-series

forecasting and are powerful approaches.

3. Non-Parametric Modeling- Unlike the two time-series models mentioned earlier,

non-parametric modeling approach does not assume any specific functional form

for the dependent and independent variables. These are data-driven approaches

and can be again broadly classified into two modeling techniques, namely Non-

parametric regression, and Artificial Neural Networks (ANN). Various forms of

ANN have been used for the prediction of traffic conditions indicators and travel

time.

This thesis uses a variant ofANN called State-Space Neural Networks (SSNN), a generic

form of the Recurrent Neural Networks (RNN) to model travel time estimation and

prediction.
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6.2 State-Space Neural Networks

The State-Space Neural Networks are a generic form of Recurrent Neural Networks. The

utility of SSNN lies in its topology which can be represented by state-space equations.

The notion of state is considered important in the traffic processes including travel time

estimation and prediction. The RNN and SSNN are introduced here and a brief survey of

literature is provided in these topics.

6.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a powerful class of Artificial Neural Networks

(ANN) to model non-linear dynamical systems. There have been vast applications of

RNN in system identification, signal processing, and forecasting. The Feed-forward

Neural Networks (FNN), which is a basic and general ANN, captures the system

dynamics by including present state and past state inputs as separate input nodes in the

input layer. However, RNN tends to capture the complex non-linear system dynamics by

involving feedback loop from inputs, outputs, or prediction errors. The text by Mandic

and Chambers (2001) compares RNN with FNN in terms of non-linear dynamic systems

modeling.

The RNN has two functional uses because of its topology (Haykin 1999)-

0 Associate memory and

o Input-output mapping network.
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Simply speaking, RNN have local feedback loops (recurrent loops) from the hidden layer

or outputs and can be trained as global feed-forward networks. The three types of RNN

which are most popular in the literature are globally recurrent neural networks (GRNN),

output-feedback recurrent neural networks (OFRNN), and fully recurrent neural network

(FRNN) as discussed in Medsker and Jain(1999).

Because of the inherent features of RNN like the recurrent loops with time delays and

input-output mapping networks, a variant of RNN called State-Space Neural Networks

(SSNN) is used in this study.

6.2.2. State-Space Neural Networks

The State-Space Neural Networks (SSNN) is a generic form of RNN which has

underlined state-space representation of the process being modeled. The state-space

representation of a SSNN is mathematically stated as state-space equations. Let a non-

linear time-variant dynamic system to be noise free (Haykin 1999), then,

M”) = 9* (Ward) + W6u(t))

y(t) = fot)

where,

q, number of unit delays used to feed the output of the hidden layer back to the input

layer (order of the model),

m, number ofinput variables,
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p, number of output variables,

t, a discrete time-point,

x(t), a q-by-l vector denoting the state of a nonlinear discrete -time system,

u(t), a m-by-l vector u(t) denoting the input applied to the system,

y(t), a p-by-l vector denoting the corresponding output ofthe system.

W,, a q-by-q matrix,

Wb, a q-by-(m+1) matrix,

C, a p-by-q matrix; and

qr is a nonlinear mapping function.

These state-space equations suppose that at each discrete time-point t, a vector valued

observation y(t) is related to x(t). The x(t) is termed as state of the system at discrete time-

point t. The second equation representing the relationship between y(t) and x(t) is called

observation equation. The observation is shown as a linear function of state of the system

(C), but this relationship can be captured by a non-linear function too. The first equation

is termed transition equation or state equation as it models the state of the system at any

time-point t. The state of the system at any time-point t+1 depends on the state at past

time-points (t), and external inputs (u(t)) to the system. The function that is modeled

between the state of the current time-point and the state in the past time-points and

external input vector is a non-linear mapping function (p). The state of the system is not

observed directly; only through a linear or non-linear mapping. Thus, these are the hidden

internal states of the system and they stay in the so-called space hence, are called State-

Space models (Honkela 2001 ).
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The conditional independence graph representation of these state—space equations is

presented by Whittaker, et al. (1997) for better understanding of these equations and

relationship between inputs, state, and output. The conditional independence graph

proposed by Whittaker, et al. (1997) is adapted and is shown in Figure 6.1. The state of

the system at any time-point t +1, x(t+1), is connected to input y(t) and the state of the

previous time-point, x(t). This dependence is shown by a connecting arrow in the figure.

The ‘past’ represents values of past state (like x(t-I), x(t-2)...) and input variables (u(t-I),

u(t-2)...). There is no edge to x(t+1) or to y(t) fi'om the past, which indicates that enough

information is held in the current state x(t) to render past information. This conditional

independence graph shows simple state-space models. In other cases, there can be an

edge from output 04(0) to the input vector (u(t)). Because of its simplicity, this graph is

discussed here. The advanced forms of state-space models will be encountered in further

discussion.
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Elman (1990) presented a state-space neural network shown in Figure 6.2. In the Elman

network, an additional layer called context layer is included which is connected to the

hidden layer. The hidden layer values with a time-delay activate the context layer. The

dotted lines represent trainable connections whereas the solid arch between hidden and

context units represent a non-trainable connection. This non-trainable connection

between context and hidden layer has a fixed weight of 1.0. The context layer is also a

hidden layer in the sense that it interacts with the nodes that are internal to the system and

not with the outside nodes (i.e. the input nodes). The provision of a context layer is useful

as it stores the hidden layer values of past time-point. In the state-space notion, hidden

and context layers act as the state of the system in current and past time-points

respectively. Thus, the context layer provides a short-term memory to the network which

is useful in learning dynamic systems.
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Figure 6.2 — A Simple Recurrent Neural Network Proposed by Elman with Context Layer

for Short-Term Memory.

Jordan (1986) also presented a recurrent neural network where a feedback item the

output layer is provided to the context layer.

6.3 State-Space Neural Networks Topology for Travel Time Estimation and

Prediction

In this research, State-Space Neural Network (SSNN) models are designed for the travel

time estimation and prediction problems. The SSNN models for travel time estimation

and prediction are developed separately because of the difference in the two problems in
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terms of time-instants at which inputs, state of system and output are considered in the

network.

The smallest unit of an urban arterial network is an arterial link, which is bounded by two

signalized intersections one at each end. An arterial link is characterized by the presence

of three types of vehicle movements: through, left and right-turning vehicles. In this

research, a SSNN topology is developed for an arterial link for each of the three

movements.

6.3.1 SSNN Topology for Travel Time Estimation

The SSNN model for travel time estimation is shown in Figure 6.3. The figure shows an

input layer whose input vector consists of input variables (U(t)) at the current departure

time-period t that affect travel time. This input layer is connected to the hidden layer by a

trainable connection, i.e. a connection whose weights are trained by the gradient descent

algorithm. The hidden layer in the network represents the state of the system at the time-

period t. This state at the time-period t activates the nodes in the context layer which

represent the state of system in the past departure time-period t-I. The context layer

nodes store the hidden nodes values with a time-delay of 1. The context layer has a

trainable connection with the hidden layer which provides information about the state at

the past time-period to the hidden layer. So, the state of the system (here, an arterial link)

at the current and the past time-periods is modeled as internal hidden and context layers

respectively.
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The hidden layer is then connected to the output layer by a trainable connection. The

output layer represents the output of the travel time process, which is the average travel

time. Since, the inputs and outputs are both at same time-periods t, this process is

modeling travel time estimation.

Three similar SSNN models are developed, one for each of the traffic movement. These

are termed SSNN-Thru, SSNN-Left, and SSNN-Right models. The output of the SSNN-

Thru model for travel time estimation of the through movement on an arterial link is the

average travel time at the current departure time-period for through movement. Similarly,

the outputs of the SSNN-Left and SSNN-Right models are the average travel time at the

current departure time-period for the left and right-turning traffic, respectively. Apart

from the difference in the outputs ofthree SSNN models, the inherent topology is same.
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Figure 6.3 - State-Space Neural Network Topology adopted for Travel Time Estimation

on an Arterial Link for Specific Through, Left, and Right-Tum Movements.
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One important issue about the topology of SSNN models is the number of nodes in the

hidden and context layers. Since, the models are developed for each arterial link; the state

of a link can be represented by one node only. Hence, there should be a single node in

each of the hidden and context layers. This is depicted in the Elman network also which

assumes a single non-linear node in the hidden and context layers representing the state

of the system. It has been argued by Rivals and Personnaz (1996) that the state variables

in a neural network can be computed with as many nonlinear hidden neurons as required.

It is also argued that in the Elman network, the nonlinear mapping function between the

observed output and the hidden layer is constrained by a single hidden neuron, which

leads generally to a non-optimal state-space representation. Following this argument in

the present SSNN models, the number of hidden neurons (which is equal to those in the

context layer) was selected after testing different numbers ranging fi'om 3 to 10 to obtain

a minimal optimal state-space representation. Hence, the SSNN models for each type of

traffic movement may have different number of hidden and context neurons in their

topology. Figure 6.3 is a generic representation for any type of traffic movement and

shows only 3 neurons in the hidden and context layers. The actual number of hidden and

context neurons for the SSNN models of the different traffic movements are presented in

Table 6.1.
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Table 6.1 — Number of Hidden and Context Layer Nodes used in SSNN Travel Time

Estimation Models for Through, Left, and Right-Tum Movements

 

 

 

 

SSNN Travel Time Estimation Models Number of Hidden and Context

Layer Nodes

SSNN-Thru 4

SSNN-Left 10

SSNN-Right 10   
 

6.3.2 SSNN Topology for Travel Time Prediction

The SSNN topology for short-term travel time prediction is similar to that of travel time

estimation as discussed in detail in the earlier section. This section deals mainly with the

difference in SSNN topology for the travel time prediction process. Figure 6.4 shows the

SSNN topology for the average travel time prediction on an arterial link for a specific

traffic movement. The input node consists of input vectors which are known at current

departure time-period t. The output node is the average travel time which is predicted for

one-step ahead future departure time-period t+I. The hidden nodes store the state of

arterial link for future time-period t+I, and the past state values for time-period t are

stored in the context layer nodes.

Based on this topology, three SSNN models are developed for travel time prediction for

through, left, and right-turning movements on a link. The numbers of nodes in the hidden

and context layer are shown to be 3 just for the sake of representation. The actual number
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of hidden and context nodes vary for the three different SSNN models that were

developed for through, left, and right-turning movement. The actual number of hidden

and context neurons for the SSNN models for the different traffic movements are

presented in Table 6.2.
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Table 6.2 - Number of Hidden and Context Layer Nodes used in SSNN Travel Time

Prediction Models for Through, Left, and Right-Turn Movements

 

 

 

 

SSNN Travel Time Prediction Models Number of Hidden and Context

Layer Nodes

SSNN-Thru ' 4

SSNN-Left 10

SSNN-Right 10  
 

 

6.4 State-Space Neural Networks based on Conditional Independence

Graphs for Travel Time Estimation and Prediction

In the SSNN topology, the input layer consists of one input node in each SSNN model.

This input node is fed with the input vector which consists of the set of traffic variables

that affect travel time. The Conditional Independence graph application to understand the

travel time process has the effect of refining the independent traffic variables and retains

only those variables that affect travel time. These input variables were called the parent

input variables in Chapter 5. The travel time estimation process is modeled by SSNN

models where the inputs to the model are parent input variables only (instead of all the

traffic variables). The parent input variables were identified in Chapter 5 for average

travel estimation. Table 6.3 lists the parent input variables which act as input vector to the

SSNN models along with the corresponding output of the model.
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Table 6.3 — Input and Output Variables for SSNN Travel Time Estimation Models for

Through, Left, and Right-Turn Movements

 

SSNN Travel Input Variables (current departure Output Variable

Time period) (current departure

Estimation ‘ period)

Models

 

SSNN-Thru QT» QL ST, SL, SR, G, S.L., and 177’L YTT

 

SSNN-Left QT, Q), SR, G, S.L., HT), 771.

 

SSNN-Right QT» QL ST, SL- SR» G, S.L., andHTL 77'R    
 

The SSNN models for travel time estimation use input variables as a set of parent input

variables which were selected using the conditional independence (CI) graph analysis.

The selection of parent input variables is an important component of SSNN models for

travel time estimation process. Here, the SSNN models are based on the CI graphs and

hence, these models are termed CI-SSNN models. Thus, three CI-SSNN models termed

Cl-SSNN-Thru, CI-SSNN-Left, and CI-SSNN-Right are developed for travel time

estimation on an arterial link for the three types of traffic movements.

The SSNN models for travel time prediction also include the same parent input variables

obtained from the CI graphs. Additionally, the input vector contains the estimated travel

time of the current departure time-period, which is the output of CI-SSNN models for

travel time estimation. Hence, travel time prediction models are also termed CI-SSNN-

Thru, CI-SSNN-Left, and CI-SSNN-Right for travel time prediction on an arterial link for
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the three types of traffic movements. Table 6.4 lists the input and output variables for CI-

SSNN models for travel time prediction.

Table 6.4 — Input and Output Variables for SSNN Travel Time Prediction Models for

Through, Left, and Right-Tum Movements

 

SSNN Travel Input Variables (current departure Output Variable

Time Prediction period) (future departure

Models period)

 

SSNN'Thm YTT (estimated), QT, Q1, ST, SL. SR. 64 ITT

S.L., and1m,

 

SSNN-Left T1"L (estimated), Q7; Q1, SR, G. S.L.. nL

ITTL

 

SSNN-Right 17R (estimated), QT, Q1, 5']: 51,. SR. 04 TTR

S.L., and [TI],    
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6.5 Training and Testing of State-Space Neural Networks for Travel time

Estimation and Prediction

The CI-SSNN models as discussed in earlier section are trained and tested to evaluate

their performance and efficiency to model travel time. A programming code is written in

MATLAB software to create a Recurrent Neural Network based on the topology

presented earlier. After creating the RNN, the network is trained using a training set. The

input patterns are presented sequentially (retaining the exact sequence of time-periods as

it evolves) rather than as concurrent matrix (implying batch-mode of training), which is

usually done in simple Feed-forward Neural Networks (FNN). This sequential

presentation of the training set allows the network to learn temporal fluctuations in traffic

conditions affecting travel time. The code for the SSNN models used in this study is

provided in Appendix A.

The training and testing sets are obtained from the data-collection done using CORSIM

simulation. The process of obtaining training and testing sets is already covered in

Chapter 3. Here, a review is provided of the composition of these sets. The training and

testing sets consist of data or values of traffic variables for four arterials namely 6—10, 16-

20, 21-25, and 3-23 on the arterial network (refer to Figure 5.1 in Chapter 5). Each of

these arterials contains 4 links. The CORSIM simulation was run two times with different

random seeds. The first simulation run is taken as training set and the second as testing

set.
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The features of the training and testing sets for travel time estimation and prediction are

presented in Table 6.5. It specifies the CORSIM run and data-points that each set is based

on.

It is noted in this study that no validation set is used apart from the training and testing

sets. The reason that the validation set is generally used in Artificial Neural Networks is

to ensure that the neural network model is not over-trained, so that it performs

comparably well on both training and testing sets. The validation set is not used in this

study due to the lack of data and moreover, sufficient number of trials have been done to

obtain a neural network model that performs comparably well on the training as well as

testing sets. This argument holds good as the analysis of the results of neural network

models in next chapter show the comparable accuracy on training and testing sets.

Table 6.5 — Training and Testing Sets Composition for SSNN Travel Time Estimation

and Prediction Models

 

CI-SSNN Training Set CORSIM simulation Run 1 304 data-points

Travel Time

 

 

 

Estimation . . . .

Testing Set CORSIM srmulat10n Run 2 304 data-pomts

Models

CI-SSNN Training Set CORSIM simulation Run 1 288 data-points

Travel Time

Prediction Testing Set CORSIM simulation Run 2 288 data-points

Models      
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There are certain guidelines for training and testing in Artificial Neural Networks as

discussed in Haykin (1999). These guidelines were found usefirl and easy to follow and

they provide an efficient learning and testing of a neural network model. The guidelines

are usually for selecting learning rate, momentum constant, and number of hidden nodes

in the network. These values are obtained using the trial and error approach. Different

values within a range are tried and the selected values are those that provide a smooth

training graph and meet the goal error requirements. The optimum values of learning rate

and momentum constants found for the networks in this study were 0.0001 and 0.9

respectively. The optimmn number of hidden nodes obtained for different CI-SSNN

models were previously shown in Tables 6.1 and 6.2.

The training graph is plotted by MATLAB between the Mean Square Error (MSE) and

the number of iterations the model has run. When the MSE value meets the specified goal

error (0.001 in this study), the network is assumed to have converged to an optimum

weight configurations. The model is tested using the trained neural network with the

obtained optimum weight configuration. A criterion of an efficient training by a neural

network is to see the training graph by doing different trials with the learning rate,

momentum constant and hidden node values. A training graph which is smooth without

many fluctuations represents an efficient learning or training of the network. Figure 6.5

shows a training graph which is representative of an efficient training for the Cl-SSNN

models in this study. In this figure, the X-axis represents the epochs or iterations and the

Y-axis represents the mean square error of training.
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Figure 6.5 — A Sample Training Graph of State-Space Neural Network Model for this

Study.

In closing, three CI-SSNN models were developed for the average travel time estimation.

Similarly, three CI-SSNN models were developed for average travel time prediction.

Hence, each of the three traffic movements has its own CI-SSNN models that provide the

travel time value of the specific movement. Once the CI-SSNN models are developed for

arterial links, they can be extended to any route that includes the selected arterial links.

The results ofthe CI-SSNN models for arterial links are discussed in the next chapter.
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6.6 Conditional Independence Graph based State-Space Neural Networks for

Arterial Route

ATIS and ATMS applications are generally interested in travel time along an arterial

route rather than an arterial link. After developing CI-SSNN models for travel time

estimation and prediction for each type of traffic movement on arterial links, the models

can extended to provide results for an arterial route. An arterial route which consists of a

finite number of links included in the study can be specified. The CI-SSNN models

which are developed for each type of traffic movement on arterial links can be used for

travel time estimation and prediction for an arterial route. The travel time on an arterial

route is simply the summation of travel time for links comprising that route taking into

consideration the movement that is required to traverse that route.

The example arterial route which is used in this study is shown in Figure 6.6 with dark

arrows on the urban arterial network. On this route, a vehicle starts its trip at origin

intersection l6 and wants to get to destination intersection 25. The route that is taken is

marked by turning movements required to traverse the route. The vehicle is considered as

a through movement vehicle on arterial link 16-17, right-turning vehicle on arterial link

17-18, left-turning vehicle on arterial link 18-23, through movement vehicle on arterial

link 23-24, and through movement vehicle on arterial link 24-25. So, the travel time

estimation or prediction problem for this route uses the appropriate CI-SSNN models for

the required traffic movements. The travel time on this route is simply the summation of

the average travel time for the specified turning movements.
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Hence, this study shows that if travel time for all three types of turning movements is

modeled by CI-SSNN models, it can be easily implemented for any route in question.

The results of implementation of CI-SSNN models for an arterial route are discussed in

the next chapter.

 

 

 

 

    
 

 

 

           

    

‘\.I‘ ’6...) (’1‘)

l.
O

0

”440003 1 ~

4352 11> $1) 4 i 913?.)
’ ll " A ll

P‘ l A. V_‘ v_V L: l =

+543) 1 > 10 _<8> $9) $10) (35‘

' '1 '0 'll ’ ’11 'll "

-4 "7“: L— : "7“: L9: 7‘ ‘

(35,4 _ 11 <1 ) 113) $14) 115) L35)
' " '11 ' ' 'll '1 r

_ ll__ V r_ V r__ L = , ‘

1371 (g) 119) 19 l) g-)

«f 11_ ll__ ‘ Lfi i_ K

(:91 Q1) (22) (23) ( ) 50)

IT‘ I“ ([3] "\ -~
/

( I

\../ s-’ \.,’ s-’ x...’

Figure 6.6 — An Example Arterial Route between Intersections l6 and 25 used for Travel

Time Estimation and Prediction.
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Chapter 7

Results and Discussions

This chapter presents the results of the State-Space Neural Network (SSNN) based on the

Conditional Independence (CI) Graph (here, called as CI-SSNN model) for the arterial

links and arterial route travel time estimation and prediction. The measures of

performance used for analyzing the efficiency of the models are specified. The

performance of the CI-SSNN models are presented for through, left, and right turning

vehicles on an arterial link for travel time estimation and prediction. A comparison of

SSNN model with and without using Cl graphs shows the benefit of using) the CI graphs

in the modeling fi'arnework. The last section illustrates the performance of the models for

travel time prediction on the example arterial route.

7.1. Measures of Performance

The measures of performance used for evaluating the accuracy and predictive

performance of the Cl-SSNN models are stated below (Kutner, et al. 2004 and Zhang and

Rice 2003):
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Square ofCorrelation Coefficient (R2)-

A commonly used measure of performance is the coefficient of determination (R2). The

coefficient of determination is interpreted as the proportionate reduction of total variation

associated with the use of predictor variable X (here, actual travel time). A larger R2

value means that more the total variation of the dependent variable Y (here, predicted

travel time) is reduced by introducing the predictor variable X.

A measure of linear association between Y and X when both Y and X are random is the

coefficient of correlation (r). The coefficient of correlation is the square root of

coefficient of determination with positive/negative value attributed to it (i.e. i \i R2 ). The

positive/negative value determines whether the slope of regression line is positive or

negative.

The square of the coefficient of correlation (r2 = (i J—R—Z )2 = R2) is chosen here as the

measure of performance. It is expected that the scatter plot of the predicted travel time

versus actual travel time should be a linear line with slope of one and intercept of zero.

Thus, R2 should be close to one in an ideal condition when the predicted travel time fiom

the model is exactly the same as the actual travel time observed.

Mean Absolute Error (MAE) —

Let a (t, TpRED (t)) = Tacmar (t) - TPRED (t) be the error of TpRED (t), where TAUUALU) and

TpRED (t) are the actual and the predicted average travel time at any time period t

respectively. The Mean Absolute Error (MAE) is the expected value of the absolute value
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of the error, i.e. E |a(t)| over the sample space of the average travel times at all time-

periods. Thus, MAE measures the average of the absolute prediction error of average

travel time over the entire temporal spectrum on a link. The MAE of the training or

testing set implies the MAE for all the links considered in the set. The value of MAE is

specific to the magnitude and the range of the average travel time in this study and should

be viewed in that context. It is not advisable to compare the MAE values from two test

studies with different magnitudes and range of travel times.

Root Mean Square Error (RMSE) —

Let fi (t, TPRED (t)) = (TACTUAL (t) - Tani-:1) (t))2 be the Square Error (SE) of TpRED (t). The

Mean Square Error (MSE) is the expected value of the Square Error, i.e. E Ifi(t)| over the

sample space of the average travel time at all time-periods. The Root Mean Square Error

(RMSE) is the square root of the E|fi(t)| measuring the root mean square of the

prediction error of the average travel time over the entire temporal spectrum on a link.

The RMSE of the training or testing set implies the RMSE for all the links considered in

the set. The RMSE values are also specific to this study like MAE.

Mean Absolute Percentage Error (MAPE) —

TACI‘UAL(I) - TPRED(t)

Let y (t, Tpaeo (t)) = new“ (t)

 x100 be the Percentage Error (PE) of TpRED (t).

The Mean Absolute Percentage Error (MAPE) is the expected value of the PE, i.e.
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E|y(t)| over the sample space of the average travel time at all time-periods. Thus, MAPE

measures the absolute value of the percentage prediction error of average travel time over

the entire temporal spectrum on a link. The MAPE of training or testing set implies the

MAPE for all the links considered in the. set. The MAPE is a unit free value unlike MAE

and RMSE, and can be compared with the MAPE values obtained in other studies

irrespective of the magnitude and the range of the average travel time.

7.2 Results of Travel Time Estimation on Arterial Links

The Conditional Independence (CI) graph analysis of average travel time for through,

left, and right-turn movements resulted in selection of parent input variables. These

parent input variables are fed as inputs to the State-Space Neural Network (SSNN) model

for travel time estimation. Since, the SSNN model is based on parent input variables from

C1 graph, the resulting model are called the CI-SSNN model. The three different CI-

SSNN models are proposed for average travel time estimation for through, left, and right-

tum movements on arterial links, termed CI-SSNN-Thru, CI-SSNN-Left, and CI-SSNN-

Right, respectively. These models learn the travel time pattern from the traffic conditions

in a training set and are applied on different traffic conditions in a testing set.

The output of the CI-SSNN models is the estimated travel time for the current departure

time-period for the training and testing sets. The utility of these models is to obtain the

estimated travel time values which are then used as an additional input to the travel time

prediction models
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7.2.1 Results of CI-SSNN-Thru Travel Time Estimation Model for Through

Movement

The results of the CI-SSNN-Thru model for travel time estimation of the training and

testing sets are presented here. First, the correlation coefficient and goodness of fit

between predicted travel time (model-generated estimated travel time) and actual travel

time is presented in Figure 7.1 for the training set. The R2 value is 0.9 which shows

efficient learning of the model using the training set.
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Figure 7.1 - Training Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Estimation for Through Movement.

The results in terms of performance measures like MAE, RMSE, and MAPE for the CI-

SSNN-Thru model on arterial links comprising the training set is presented in Table 7.1.
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The model based on the training set is providing good results with a Mean Absolute

Percentage Error value of 7.6%.

Table 7.1 — Performance Measure of CI-SSNN-Thru Model for Travel Time Estimation

for Through Movement on Training Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 6.6 8.4 7.6

16-20 6.3 8.4 7.2

21-25 8.1 11.4 7.6

3-23 6.9 9.1 8.1

Total Training Set 6.9 9.4 7.6     

The model is then applied to the testing set which includes the same arterials but different

traffic demand pattern. The correlation coefficient and scatter plot between predicted

travel time (model-generated estimated travel time) and actual travel time is presented in

Figure 7.2 for the testing set. The R2 value of 0.9 is obtained which is the same as that of

the training set. This shows that the CI-SSNN-Thru model performed with equal

efficiency on both training and testing sets.

The results of the CI-SSNN-Thru model on testing set are presented in terms of

performance measures in Table 7.2. The performance measure values for the testing set

are comparable to that of the training set. This shows the robustness and efficiency of the

CI—SSNN-Thru model for the average travel time estimation for through movement on an

arterial link.
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Figure 7.2 — Testing Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Estimation for Through Movement.

Table 7.2 — Performance Measure of CI-SSNN-Thru Model for Travel Time Estimation

for Through Movement on Testing Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 7.3 10.3 7.7

16-20 5.6 7.0 6.5

21 -25 6.2 9.0 6.5

3-23 7.1 9.0 8.5

Total Testing Set 6.6 8.9 7.3    
 

125



7.2.2 Results of CI—SSNN-Left Travel Time Estimation Model for Left-Turn

Movement

The results of the CI-SSNN-Leit model for travel time estimation using the training and

testing sets are presented. The correlation coefficient and goodness of fit between the

predicted travel time and actual travel time is presented in Figure 7.3 for the training set.

The R2 value is 0.87 which shows efficient learning of the model using the training set.
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Figure 7.3 — Training Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Prediction for Left-Turn Movement.

It is also noted in Figure 7.3 that the travel time values are falling in two clusters. One

cluster has travel time values less than 150 seconds and the second cluster has travel time

values greater than 150 seconds. The formation of these clusters pertains to the geometry

and signal control scheme at the signalized intersections in the network. It was observed
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in the data that the travel time values for longer arterial links (link length of 6000 ft and

4000 ft) are generally greater than 150 seconds. The travel time values for the links

having smaller length are lesser than 150 seconds. It is also to be noted that this cluster

formation is not observed in the scatter plots of through movement (see Figures 7.1 and

7.2). This is because of the exclusive left-tum phasing with lead green that was adopted

for the signal control in the network. The traffic conditions as viewed in the CORSIM

microscopic simulation showed that majority of the left-tum vehicles could not clear the

intersection during the lead left-tum phase in which they arrived at the intersection

mostly during congested conditions. They had to wait for the next left-tum green in the

next signal cycle. This increases the waiting time (and hence the travel time) for the left-

tum traffic movement at signalized intersections in particular for longer links. This

explains the higher travel time for left-tum traffic movement especially in longer arterial

links.

The proposed CI-SSNN-Left model is expected to capture the different ranges of the

travel time that pertains to geometries and signal control phasing scheme. It will be

observed in the later detailed discussion of the results of this model that the travel time

was estimated with a similar efficiency for varied link lengths and signal control

schemes. This strengthens the claim that the proposed travel time models are generalized

and explicitly account for geometries and signal control state of the arterial links.

The results in terms of performance measures like MAE, RMSE, and MAPE for the CI-

SSNN-Left model on arterial links comprising the training set is presented in Table 7.3.

The model using the training set provides good results with a Mean Absolute Percentage

Error value of 7.5%.

127



Table 7.3 — Performance Measure of CI-SSNN-Left Model for Travel Time Estimation

for Left-Turn Movement on Training Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 9.2 11.7 8.0

16-20 8.9 11.2 7.4

21-25 8.4 11.1 7.3

3-23 8.4 10.9 7.4

Total Training Set 8.7 11.2 7.5    
 

The model developed based on the training set is then applied to the testing set. The

correlation coefficient and scatter plot between predicted travel time (model-generated

estimated travel time) and actual travel time is presented in Figure 7.4 for the testing set.

The R2 value is 0.72, which is lower a bit than that of the training set. One reason that is

evident from the graph is that the model produces poor results when the actual travel time

is greater than 250 seconds. Comparing Figures 7.3 and 7.4, it is also clear that none of

the travel time value in the training set is more than 250 seconds. So, it is obvious that the

CI-SSNN-Left model performed efficiently on both sets within the observed range of

data-points in the training set. But, when the model was to extrapolate (because the large

travel time values were not present during training), it did not perform well. Neural

networks in general and also SSNN are not able to perform well in extrapolation. Thus,

during application of this model, it is advisable that the training set should include the

extreme boundary values, i.e. maximum and minimum travel time possible so that, the

model does not have to extrapolate.
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Another observation in Figure 7.4 is the presence of two distinct clusters of travel time

values. This observation was also noted in Figure 7.3, where it was discussed. The same

explanation holds well here also.

The results of the CI—SSNN-Left model on the testing set are presented in terms of

appropriate performance measures in Table 7.4. The performance measure values for the

testing set is comparable to that of the training set except arterial 6-10 where the travel

time values are found to be more than 250 seconds. This shows the robustness and

efficiency of the CI-SSNN-Left model for average travel time estimation for left-tum

movements on an arterial link.
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Table 7.4 — Performance Measure of CI-SSNN-Left Model for Travel Time Estimation

for Left-Turn Movement on Testing Set

 

 

 

 

 

 

 

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 16.8 ' 32.4 10.6

16-20 9.0 11.9 7.8

21-25 10.3 13.2 8.2

3-23 9.7 15.8 7.6

Total Testing Set 11.5 20.1 8.6     
 

7.2.3 Results of CI—SSNN-Right Travel Time Estimation Model for Right-Turn

Movement

The results of the CI-SSNN-Right model for the travel time estimation using the training

and testing sets are presented. The correlation coefficient and goodness of fit between

predicted travel time (model-generated estimated travel time) and actual travel time is

presented in Figure 7.5 for the training set. The R2 value is 0.91 which shows efficient

learning of the model based on the training set. Moreover, this R2 value is comparable to

that of the CI-SSNN-Thru model which is logical as through and right-turn movements

share the same green interval at the intersection unlike left-tum vehicles which have

separate green interval as well as a separate left-tum pocket which typically results in

different queue lengths.

The results in terms of performance measures like MAE, RMSE, and MAPE for the CI-

SSNN-Right model on arterials using the training set is presented in Table 7.5. The
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model based on the training set gives good results with a Mean Absolute Percentage
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Figure 7.5 — Training Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Estimation for Right-Tum Movement.

Table 7.5 — Performance Measure of CI-SSNN-Right Model for Travel Time Estimation

for Right-Tum Movement on Training Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 5.7 7.8 6.6

16-20 8.1 10.7 9.5

21-25 8.4 10.7 8.9

3-23 7.1 9.8 8.7

Total Training Set 7.3 9.8 8.4    
 

The model produced using the training set is applied to the testing set. The correlation

coefficient and scatter plot between predicted travel time (model-generated estimated
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travel time) and the actual travel time is presented in Figure 7.6 for the testing set. The R2

value of 0.83 is obtained which is comparable to that of the testing set. But, this is still a

satisfactory outcome taking into consideration that the testing set is a different traffic

demand pattern which was not presented to the model while training.
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Figure 7.6 — Testing Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Estimation for Right-Turn Movement.

The results of the CI-SSNN-Right model using the testing set are presented in terms of

performance measures in Table 7.6. The MAPE values for training and the testing set are

8.4% and 14.0%, respectively. This shows the robustness and efficiency of the CI-SSNN-

Right model for average travel time estimation for right-turn movements on an arterial

link.
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Table 7.6 — Performance Measure of CI-SSNN-Right Model for Travel Time Estimation

for Right-Tum Movement on Testing Set

 

 

 

 

 

 

      

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 11.9 15.5 13.4

16-20 11.3 13.6 14.7

21-25 13.8 18.0 15.0

3-23 10.4 13.8 13.1

Total Testing Set 11.8 15.3 14.0
 

The above results give satisfactory values of the estimated average travel time for current

time-period for through, left, and right-turn movements on an arterial link. The estimated

travel time for the current departure time-period is added to the parent input variables

used for travel time prediction. The next section deals with the average travel time

prediction for through, left, and right-turn movements.

7.3 Comparison of Results for State-Space Neural Networks with and

without using Conditional Independence Graphs

The travel time estimation done in the earlier section is based on a CI-SSNN model, i.e.

SSNN model combined with Cl graph. It is evident that use of CI graph reduces the

number of input variables required for modeling of travel time. It is still to be proven that

SSNN based on C1 graph produces better or comparable results to that of an ordinary

SSNN model that is typically used by researchers.

Here, travel time estimation is done by using an ordinary SSNN model without using the

CI graph. So, the input vector consists of all traffic variables: VT, VL, Va, 57, SL, SR, G,
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Off S.L., ITTT and ITTL. These input variables are fed to a SSNN-Thru model for

estimation of average travel time for through movement. The results are compared with

the CI-SSNN-Thru model which was presented in Section 7.2.1. If the results of the CI-

SSNN-Thru model are better or comparable to those of the SSNN-Thru model, the use of

the CI graph for improving the efficiency of SSNN models is justified and recommended.

The results obtained for travel time estimation for through movement using the training

and testing sets are presented in Tables 7.7 and 7.8, respectively.

Table 7.7 - Performance Measure of SSNN-Thru Model (State-Space Neural Networks

without using Conditional Independence Graphs) for Travel Time Estimation for

Through Movement on Training Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 5.7 7.9 6.0

16-20 6.2 8.2 7.1

21-25 7.1 10.2 6.0

3-23 6.6 9.0 7.6

Total Training Set 6.4 8.8 6.8    
 

Table 7.8 — Performance Measure of SSNN-Thru Model (State-Space Neural Networks

without using Conditional Independence Graphs) for Travel Time Estimation for

Through Movement on Testing Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 9.3 11.9 11.0

16-20 6.6 8.7 8.4

21 -25 4.7 6.3 5.2

3-23 7.0 9.0 8.5

Total Testing Set 6.9 9.2 8.2   
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A comparison of Tables 7.7 and 7.8 versus Tables 7.1 and 7.2 does not show much

difference between results of the two sets of models. However, the MAPE values for the

training set is lower in the SSNN-Thru model, which may suggest that inclusion of all

input variables leads to a better learning for the SSNN model. But, the MAPE value of

the testing set is higher for the SSNN-Thru model which may suggests that though

learning is better, the SSNN-Thru model suffers when tested on a different traffic demand

pattern.

The CI-SSNN models use lesser variables than the SSNN models and hence the CI-

SSNN models can easily be declared efficient on this practical basis only. The constraint

of limited amount of data obtained in any experiment or in the field makes the CI-SSNN

models more suitable than SSNN models. Hence, it is recommended that a CI graph

analysis be done prior to using artificial neural networks in general in a process that has

multivariate normal distribution. The comparison done here serves the purpose for travel

time estimation and prediction modeling. The further research in this topic is needed to

theoretically and experimentally draw a sound conclusion.

The comparison of the CI-SSNN and SSNN models is shown for through movement only

but the conclusion can be extended to modeling for left and right-turn movements also.

Hence, travel time prediction on arterial links in the following sections is done using CI-

SSNN models only, and it is assumed that the CI—SSNN model will provide better or

comparable results to those of the SSNN modeling.
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7.4 Results of Travel Time Prediction on Arterial Links

The three different CI-SSNN models are proposed for average travel time prediction for

through, left, and right-turn movements (hereby, termed as CI-SSNN-Thru, CI—SSNN-

Left, CI-SSNN-Right, respectively) on arterial links. These models for travel time

prediction work similar to the travel time estimation models. The only difference is that

the output in this case is the average travel time for a future departure time-period instead

of the current departure time-period. The parent input variables for average travel time

prediction contains the parent input variables used in the travel time estimation models

developed earlier. The estimated travel time from the travel time estimation models is

also included as an additional input variable for the travel time prediction modeling. The

prediction models learn the travel time pattern from the traffic conditions contained in a

training set and are then applied to entirely different traffic conditions in a testing set.

7.4.1. Results of CI—SSNN-Thru Travel Time Prediction Model for Through

Movement on Training Set

The complex non-linear relationship of average travel time for through movement and the

parent input variables is approximated by the CI-SSNN-Thru model. The predicted

average travel time (model generated) is plotted against the actual travel time (as

obtained from the CORSIM simulation) in Figure 7.7. The R2 value of 0.87 shows that

the proposed CI-SSNN-Thru model is able to learn well from the training set.
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Figure 7.7 — Training Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Prediction for Through Movement.

A detailed analysis of the learning and performance of the CI-SSNN-Thru model is

needed for the training set. The detailed analysis enables to analyze the model results

with respect to each arterial link contained in the study. The Absolute Percentage Error

(APE) is plotted for all of the four arterials whose data was fed into the model. The plot

of APE against departure time period (5 minutes to 95 minutes on each link) for each

arterial is presented. Figures 7.8, 7.9, 7.10, and 7.11 show these plots for training sets 1,

2, 3, and 4, which represent arterials 6-10, 16-20, 21-25, and 3-23 respectively. The APE

values are mostly lesser than 15% for each individual link in the arterials.
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It is also noted that the CI-SSNN-Thru model is not able to learn well for some links as

depicted from their APE distribution. Links 6-7, 8-9, 16-17, 22-23, 24-25 and 13-18 are

remarkable in this aspect. Though, it can not be inferred that the relatively high APE

distribution on these links is because these links are at a particular location that they act

as a critical link for an arterial. The critical links are those links which have the least

capacity in an arterial or a sequence of links and hence may act as bottlenecks. So, the

relatively high APE distribution of such links may be due to the inherent stochastic nature

of the CORSIM simulation. If there is some unidentified characteristic of a link or traffic

stream which is not explicitly accounted in the model formulation, the APE distribution

of the testing set for the same links should be relatively high as compared to other links.

This argument is revisited in Section 7.4.2., when the testing sets are analyzed.

In conclusion of this section, the measures of performance like MAE, RMSE, and MAPE

of the CI-SSNN-Thru model for the training set are presented in Table 7.9. The model

gives MAPE value of 9% for the training set. It is expected that this model can generalize

and is able to predict the average travel time for through movements when new traffic

demand conditions in the testing set are presented.

Table 7.9 — Performance Measure of CI-SSNN-Thru Model for Travel Time Prediction

for Through Movement on Training Set

 

 

 

 

 

 

 

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 7.6 10.0 8.4

16—20 7.7 9.7 8.8

21-25 8.9 13.2 8.4

3-23 9.0 11.8 10.7

Total Training Set 8.3 11.2 9.0     
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7.4.2. Results of CI-SSNN-Thru Travel Time Prediction Model for Through

Movement on Testing Set

After analyzing the efficiency of the CI-SSNN-Thru model to learn from the training set,

the model is applied to the testing set. It is expected that the model should perform with

similar efficiency on the traffic pattern of testing set.

The predicted average travel time is plotted against the actual travel time for testing set in

Figure 7.12. The R2 value is obtained as 0.88 which is close to the one obtained for the

training set. Thus, the CI—SSNN-Thru model has generalization ability so that when a

different traffic demand pattern is presented to the model, it predicts the average travel

time with comparable accuracy. This property is a necessary requirement for a reliable

prediction model that can be applied in the field.
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Figure 7.12 — Testing Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Prediction for Through Movement.

A detailed analysis of the predictive performance of the CI—SSNN-Thru model is needed

for the testing set to reinforce the claims made in the earlier paragraph. The Absolute

Percentage Error (APE) is plotted for all four arterials that constitute the testing set. The

plots of the APE against future departure time-period (5 minutes to 90 minutes on each

link) for each arterial is presented. Figures 7.13, 7.14, 7.15, and 7.16 show these plots for

training sets 1, 2, 3, and 4, which represent arterials 6-10, 16-20, 21-25, and 3-23,

respectively. These plots are consistent with the training set plots in the sense that the

APE values are mostly lesser than 15% for each individual links in an arterial.

The predictive performance of the proposed Cl-SSNN-Thru model is relatively weaker

for some links where the APE values for some time-periods is as high as 35%. These
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links are: 6-7, 7-8, 18-19, 23—24, 24-25 and 13-18. It is recalled (as stated in Section

7.4.1) that some links in the training set like 6-7, 8-9, 16-17, 22-23, 24-25 and 13-18 had

relatively larger APE values. Though, all these links do not perform poor in the testing

set as was expected earlier. So, the large values of APE in training and testing sets can be

attributed to the stochastic nature of the CORSIM simulation as stated earlier also in

Section 7.4.1.
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Figure 7.15 — Absolute Percentage Error of Predicted Travel Time versus Departure

Time-Period for Travel Time Prediction for Through Movement on Testing Set 3.
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Time-Period for Travel Time Prediction for Through Movement on Testing Set 4.

The patterns of the actual and predicted average travel time for the testing set are plotted

to see how closely the predicted values follow the actual travel time fluctuation. Figures

7.17, 7.18, 7.19, and 7.20 show the actual and predicted travel time patterns where future

departure time-period is on the X axis. It is seen that the predicted travel time closely

follows the actual travel time for all the arterial links except for link 24-25 shown in

Figure 7.19. The reason because of this variation between travel time values is not certain

as a similar variation was not observed during the training of the model (see Figure 7.10).

It is already mentioned that the links that give poor results during training do not perform

poor during testing of the model. Hence, one explanation could be the stochastic nature of

the CORSIM simulation.
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The following two inferences can be made about CI-SSNN-Thru model from these

figures:

1. The predicted average travel time lies in the same range as the actual average

travel time for all arterial links. This confirms that the CI-SSNN-Thru model is a

generalized model which can predict the average travel time within the range that

is typical of the given link. The range of average travel time for any link in

general is a function of variables like link length, and speed limit.

Close inspection of travel time patterns at each arterial link shows that the

predicted average travel time follows the actual average travel time pattern. It

shows that the CI-SSNN-Thru model captures the traffic dynamics and temporal

fluctuations in travel time on each link. This traffic dynamics and temporal nature

of average travel time follows from the varying traffic demand on an arterial link

throughout the day. The model is able to capture this aspect because of its

topology. The hidden and context layers in the SSNN topology provide a short-

terrn associative memory in the network in addition to the input-output mapping

feature inherent in artificial neural networks.

In conclusion of this section, the measures of performance like MAE, RMSE, and MAPE

of the CI-SSNN-Thru model for testing set are presented in Table 7.10. The MAE,

RMSE, and MAPE values in this table are comparable with those obtained for the

training set. This proves the generalization ability of the CI-SSNN-Thru model for short-

term average travel time prediction for through movements on arterial links.
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Table 7.10 — Performance Measure of CI-SSNN-Thru Model for Travel Time Prediction

for Through Movement on Testing Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 8.9 13.2 9.3

16-20 7.5 9.0 8.8

21-25 7.7 11.1 8.2

3-23 7.5 9.2 8.7

Total Testing Set 7.9 10.7 8.8    
 

7.4.3 Results of CI-SSNN-Left Travel Time Prediction Model for Left-Turn

Movement on Training Set

The CI-SSNN-Left model is trained using the training set. The efficiency of the model is

analyzed in similar lines with that of the CI-SSNN-Thru model presented in earlier

sections. The R2 value of the predicted versus actual average travel time shown in Figure

7.21 is 0.87. The Figure 7.21 also shows two distinct clusters of travel time values. This

observation was also made in Section 7.2.2 where the travel time estimation modeling for

left-tum movements on arterial links was presented. The explanation given there holds

good here also. The APE distribution for training sets 1, 2, 3, and 4, which represent

arterials 6-10, 16-20, 21-25, and 3-23, is presented in Figures 7.22, 7.23, 7.24, and 7.25,

respectively. The APE distribution is mostly within 15% error range. The arterial links

that have APE values more than 15% to 45% are 16-17, 19-20, 21-22, 24-25, and 13-18.

The detailed analysis of the results is done by calculating the performance measures

shown in Table 7.11. The overall MAPE value of 7.3% shows that the CI-SSNN-Left
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model is able to learn well the temporal fluctuations in predicted values of average travel

time.
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Table 7.11 — Performance Measure of CI-SSNN-Lefi Model for Travel Time Prediction

for Left-Turn Movement on Training Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 8.3 10.7 7.0

16-20 8.8 11.6 7.4

21-25 9.5 12.4 8.1

3-23 8.2 10.1 6.9

Total Training Set 8.7 11.2 7.3    
 

7.4.4 Results of CI-SSNN-Left Travel Time Prediction Model for Left-Turn

Movement on Testing Set

The CI-SSNN-Left model is now applied on a testing set which has different travel time

patterns than those presented in the training set. The R2 value for a plot between the

predicted versus actual average travel times as shown in Figure 7.26, is 0.73. This value

of R2 for the testing set is lower than that of the training set. One reason of the lower R2

value is attributed to the inability of artificial neural networks to extrapolate. This factor

was acknowledged in Section 7.2.2 also where the CI-SSNN-Lefi model results for travel

time estimation were discussed. It is expected that if training and testing sets have similar

travel time ranges, this model’s accuracy can be significantly improved.
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Figure 7.26 — Training Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Prediction for Left-Turn Movement.

The APE plots for testing sets 1, 2, 3, and 4, which represent arterials 6-10, 16-20, 21-25,

and 3-23, respectively, are presented in Figures 7.27, 7.28, 7.29, and 7.30. These plots

show that APE distribution is mostly less than 15% error, except for links 7-8, 9-10, 16-

17, 19-20, 24-25, 13-18, and 18-23. The plot of predicted and actual travel time patterns

with departure time-periods for different arterials is presented in Figures 7.31, 7.32, 7.33,

and 7.34. It is seen that the predicted travel time follows the actual travel time

fluctuations in most of the arterials in the testing set. Also, predicted travel time lies

within the same range as that of the actual travel time. It is also observed that there is a

large error for some future departure time-periods as shown in Figure 7.31 and 7.34. The
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reason is the same as mentioned earlier that the artificial neural networks are incapable of

performing well when the extrapolation is required.
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Figure 7.27 — Absolute Percentage Error of Predicted Travel Time versus Departure Time

for Travel Time Prediction for Left-Turn Movement on Testing Set 1.
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for Travel Time Prediction for Lefi-Tum Movement on Testing Set 2.
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Figure 7.30 — Absolute Percentage Error of Predicted Travel Time versus Departure Time

for Travel Time Prediction for Left-Turn Movement on Testing Set 4.
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Left-Turn Movement on Testing Set 4.

The detailed analysis of the CI-SSNN-Left model on the testing set is done by noting

suitable performance measures. The performance measures values presented in Table

7.12 show that a MAPE value of 8.8% is obtained for entire testing set. Also, MAE,

RMSE, and MAPE value of arterial 6-10 is higher as compared to other arterials. It is

also because of the same reason that average travel time value was greater than 250

seconds for arterial 6-10 in testing set. Since, the maximum value of travel time

encountered in training set was 250 seconds, so, CI-SSNN-Lefi failed to predict

extrapolated values.
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Table 7.12 — Performance Measure of CI-SSNN-Lefi Model for Travel Time Prediction

for Left-Turn Movement on Testing Set

 

 

 

 

 

 

  

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 15.8 30.0 9.8

16-20 10.1 12.8 8.6

21-25 10.7 13.7 8.5

3-23 10.8 17.6 8.4

Total Testing Set 11.8 19.8 8.8    
 

7.4.5 Results of CI-SSNN-Right Model for Travel Time Prediction for Rignt-Turn

Movement on Training Set

This section presents the efficiency of the CI-SSNN-Right model for training and its

predictive performance on the testing set for the average travel time prediction of right-

turning vehicles on an arterial link. The plot between the predicted travel time against

actual travel time for right-turn movement is shown in Figure 7.35. The R2 value is 0.88

which reflects an efficient leaming 0f the model. The APE distribution for training sets 1,

2, 3, and 4, which represent arterials 6-10, 16-20, 21-25, and 3-23, respectively, is shown

in Figures 7.36, 7.37, 7.38 and 7.39. The APE values for the arterials during most of the

future departure time-periods are less than 15%. The arterials that have an APE value

more than 15% for some future departure time-periods are 6-7, 16-17, 18-19, 23-24, 24-

25, 8-13, and 13—18. The probable reason for the poor performance of model on these

arterials is the stochastic nature of the CORSIM simulation.
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The performance measures of the Cl-SSNN-Right model on the training set is shown in

Table 7.13. The MAPE value for the entire training set is 9.6%. This shows an efficient

learning ability of the CI-SSNN-Right model. It is expected that this model should

perform with comparable accuracy when applied on a testing set.
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Table 7.13 — Performance Measure of CI-SSNN—Right Model for Travel Time Prediction

for Right-Tum Movement on Training Set

 

 

 

 

 

 

      

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 6.5 8.5 7.3

16-20 9.3 11.8 11.0

21-25 9.0 12.1 9.3

3-23 8.8 12.8 10.7

Total Training Set 8.4 11.4 9.6
 

7.4.6 Results of CI-SSNN-Right Travel Time Prediction Model for Travel Time

Prediction for Right-Tum Movement on Testing Set

After training of the CI-SSNN-Right model, it is applied on a testing set to evaluate the

generalization ability of the model. The plot of the predicted versus actual travel time is

shown in Figure 7.40. This plot shows a R2 value of 0.81, which is comparable to that

obtained in the training set.
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Figure 7.40 -— Testing Set Scatter Plot of Predicted versus Actual Travel Time for Travel

Time Prediction for Right-Tum Movement.

The APE distribution for testing sets 1, 2, 3, and 4, which represent arterials 6—10, l6-20,

21-25, and 3-23, respectively, is shown in Figures 7.41, 7.42, 7.43, and 7.44. The APE

distribution for the predicted travel time shows that most of the arterials in the testing set

have less than 20% percentage error value for predicted travel time. The arterial links

which have higher percentage error for some future departure time—periods are identified

as 6-7, 7-8, 8-9, 16-17, 18-19, 19-20, 21-22, 22-23, 24-25, 8-13, and 3-18. These arterials

show on average higher percentage error than 20% value. It indicates that the travel time

prediction models developed here perform relatively poor for right-turning movements as

compared to through and left-turning movements. The reason for the relatively poor

performance of prediction models for right-turning movements is because the right—

turning traffic shares the same lanes and signal control state as that of through
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movements. The interference caused by the through movement traffic to the right-turn

movements makes their travel time prediction difficult.
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Figure 7.42 — Absolute Percentage Error of Predicted Travel Time versus Departure Time

for Travel Time Prediction for Right-Tum Movement on Testing Set 2.
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Figure 7.44 — Absolute Percentage Error of Predicted Travel Time versus Departure Time

for Travel Time Prediction for Right-Tum Movement on Testing Set 4.

The plots showing pattern of the predicted and actual travel time are presented in Figures

7.45, 7.46, 7.47, and 7.48. It is shown that the predicted travel time is following the actual

travel time pattern except for the arterials which have higher APE distribution as shown

earlier.

The performance measure values of the CI-SSNN-Right model on the testing set are

presented in Table 7.14. The MAPE value for the testing set is 15.9%. It was also

observed in the APE distribution plots presented earlier that the percentage error values

are above 20% for a significant number of arterials. This indicates the relatively poor

predictive performance of travel time modeling when applied to the right-turn

movements.
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Figure 7.45 — Pattern of Actual and Predicted Travel Time for Travel Time Prediction for

Right-Tum Movement on Testing Set 1.
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Right-Tum Movement on Testing Set 2.
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Figure 7.48 — Pattern of Actual and Predicted Travel Time for Travel Time Prediction for

Right-Tum Movement on Testing Set 4.
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Table 7.14 — Performance Measure of CI-SSNN-Right Model for Travel Time Prediction

for Right-Tum Movement on Testing Set

 

 

 

 

 

 

      

Arterial MAE RMSE MAPE (%)

(seconds) (seconds)

6-10 13.5 19.5 15.3

16-20 13.6 16.5 17.9

21-25 15.4 20.7 16.9

3-23 10.9 14.9 13.3

Total Testing Set 13.4 18.0 15.9
 

7.5 Results of Travel Time Prediction on Arterial Route

The development of the travel time prediction models for specific traffic movement on

arterial links leads to an easy extension to any selected route in the network. The example

route which is selected in this study has intersection 16 as its origin and intersection 25 as

its destination. This example route was shown earlier in Figure 6.6. The path adopted for

this route covers links 16-17, 17-18, 18-23, 23-24, and 24-25. The way of extending the

CI-SSNN models developed earlier for this route is discussed in Chapter 6. Recalling that

the travel time prediction models developed earlier for specific traffic movement is

applied on each link comprising the route. In this way, the travel time prediction can be

done for arterial route once the models were developed for links.

The results obtained on the testing set are enough to show the predictive performance of

CI-SSNN models applied to this route. Figure 7.49 shows the pattern of the actual and

predicted average travel time on the route with departure time-periods in future. The first
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future departure time-period is starting from 5 minutes and ending at 10 minutes.

Similarly, the last future departure time-period starts at 90 minutes and ends at 95

minutes. It is seen that the predicted average travel time follows the same pattern of the

actual travel time.
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Figure 7.49 — Pattern of Actual and Predicted Travel Time for Travel Time Prediction for

Route 16-25 on Testing Set.

A detailed pattern of the actual and predicted travel time is presented in Figure 7.50

analyzing arterial links that comprise the example route 16-25. This figure shows that the

predicted travel time closely follows the actual travel time values for arterial links

considering appropriate traffic movement.
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Figure 7.50 — Pattern of Actual and Predicted Travel Time for Travel Time Prediction on

arterial links comprising the Route 16-25 on Testing Set.

A further investigation is required to see the Absolute Percentage Error (APE)

distribution for the route. Figure 7.51 shows that APE values for all the departure time-

periods are within 10% value. Table 7.15 lists values of the measures of performance for

this route which shows that the MAPE value is 3.8% for this route.

It is noted that the MAPE value for the travel time prediction on example route is much

lower than those for arterial links presented earlier. The reason is that the average travel

time for the route is obtained in this study by adding the travel time for each link

considering the appropriate traffic movement. At some of the links comprising the route,

the travel time may have been predicted as higher than actual travel time, and for the

other links, the predicted travel time may have been lower than actual travel time. The
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addition of the travel time on the links comprising the route balances out the negative and

positive errors and hence provides more accurate value of travel time for the route. It is

worth mentioning that the way of finding out the travel time on the route as adopted in

this study is valid as the appropriate traffic movement required to traverse the route on

each link is considered.
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Figure 7.51 — Absolute Percentage Error Distribution for Travel Time Prediction for

Route 16-25 on Testing Set.

Table 7.15 — Performance Measure of CI-SSNN Model for Travel Time Prediction for

Route 16-25 on Testing Set

 

Route MAE RMSE MAPE (%)

(seconds) (seconds) .
 

 

     16-25 (testing set) 18.4 23.2 3.8
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Chapter 8

Conclusions and Future Research

The conclusions and findings in this study are summarized. The limitations of the study

and scope of future research for field implementation of the proposed methodology is

discussed.

8.1 Conclusions and Findings

The conclusions and significant findings from this research on travel time estimation and

prediction are as follows:

1. Travel time estimation and prediction on urban arterial networks is a complex

dynamic process with non-linear relationship between traffic parameters like

average flow, average speed, queue length, geometries, etc. and the average travel

time of current and future departure time-periods.

2. Travel time prediction should be combined with the estimation of travel time as

the estimated travel time for current departure time-period acts as an important

input variable along with known traffic parameters for travel time prediction

modeling.

3. The proposed models of travel time estimation and short-term prediction are using

traffic parameters that can be easily obtained or collected in the field by traffic
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detection technologies like loop detectors and image processing based techniques.

The developed models estimate and predict the travel time using inputs as average

flow rate, queue length, geometries, and signal control parameters only. The

reliance of these models on easily available data makes the models economical

and feasible for field deployment for real-time applications.

. The developed models explicitly take into account turning movements,

geometries as well as signal control scheme on arterial networks. This is a

significant contribution of this study because of the complexity involved in

inclusion of all these parameters.

. The state-space dynamics of traffic behavior in an urban arterial is captured

successfully by using a generic class of Recurrent Neural Networks (RNN)

termed the State-Space Neural Networks (SSNN). The use of SSNN provides

flexibility and efficiency while at the same time modeling the non-linear

dynamical traffic system.

. A pre-processing of observable traffic parameters is required to minimize the

input parameters for SSNN models. A statistical technique called as the

Conditional Independence (CI) graph is introduced for the first time with artificial

neural networks in this research. The analysis of conditional independence and

interaction among observable traffic parameters and the average travel time

increases the understanding of the process as well as improves the predictive

performance of SSNN.

. The SSNN model based on the CI graphs is compared with the typical SSNN

model used by researchers in this study. It shows that the accuracy of the CI
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10.

graphs based SSNN model is comparable to that of typical SSNN models which

do not use the inferences made by the CI graphs. The CI graphs based SSNN

model is dependent upon lesser input traffic variables as compared to typical

SSNN model. The constraint of limited amount of data obtained in any

experiment or in the field makes the CI graphs based SSNN models a better

choice than the SSNN models. This application of the CI graphs is recommended

not only for the travel time estimation and prediction modeling as done in this

research but also to other traffic modeling problems.

Three SSNN models based on the CI graphs are developed for travel time

estimation for the specific traffic movement of through, left, and right-tum

movement on arterial links. Similarly, three SSNN models based on the CI graphs

are developed for short-term travel time prediction for arterial links. Each single

model is able to capture travel time fluctuations for uncongested, congested, and

the transition stage between these two traffic conditions on arterial links. Thus,

each single SSNN model can perform successfully on arterial networks

throughout the day.

A single SSNN model based on the CI graph is proposed for travel time

estimation and prediction on urban arterials for specific movement which is

efficient for both congested and non-congested traffic conditions occurring

throughout a day.

The CI graph based SSNN models developed for arterial links are extended to

obtain results on any route in arterial network. Thus, the developed travel time
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ll.

12.

13.

models can be applied on a single arterial link, an entire arterial or a route in a

network.

The Mean Absolute Percentage Error (MAPE) for proposed average travel time

estimation models for arterial links ranges from 6.5% to 15.0%. The MAPE value

for average travel time prediction models ranges from 6.9% to 17.9%. The MAPE

value for the route considered in this study is 3.8%.

The Mean Absolute Percentage Error for average travel time estimation and

prediction for right-turn movement is found more challenging that that of through

and left-tum movements. The reasons for complexity in right-turn movement

travel time modeling is the high interference among through and right-turn

movement vehicles on an arterial.

The travel time estimation and prediction modeling approach in this study is more

generalized as compared to the studies done to date. The proposed models

account for traffic variables like geometries, turning movements, signal control

scheme, which were either assumed constant or not explicitly taken into account

in earlier studies. The proposed models provide prediction for through, left, and

right-turning movements on arterial links and routes, which is a significant

contribution of this study.
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8.2 Limitations

The limitations of proposed modeling approach are listed as follows —

1. The proposed methodology does not include some factors like weather effects,

incidents etc. These factors are required for a real-time implementation of the

model in field. The flexibility of the modeling approach allows the inclusion of

these factors provided that the data is available.

2. The modeling of travel time estimation and short-term prediction is based on a

hypothetical arterial network created in a microscopic traffic simulation. The

implementation of the models in a real world setting requires calibration and

validation with site data. However, enough variability has been included in

experimental set-up that accounts for a wide range of geometric conditions and

traffic demands.

3. The accuracy of average travel time estimation and prediction models for right-

turning movements is not as good as through and left-turning movements. A high

interference between right-turning traffic and through traffic on arterial links is

observed at signalized intersections in this study. This makes the travel time

modeling for right-turning movements more challenging than other traffic

movements. Thus, the travel time modeling for right-turning movement requires

consideration for improvement ofthe accuracy.
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8.3 Scope of Future Research

There are some recommendations and scope of future research which are listed below:

1. The coupling of Conditional Independence graph with Artificial Neural Networks

(ANN) is recommended not only for travel time problem but also to other

engineering problems where ANN is used as a potential modeling or prediction

technique.

2. The short-term travel time prediction in this study focuses on 5 minutes time-

period ahead in future. The travel time prediction for further time-periods in the

future can be done using the same methodology.

3. The real-time implementation of travel time estimation and short-term prediction

model should be done using the same methodology. The author realizes that

issues related to data-collection in the field, data-fusion, and dissemination of

travel time information will pose another challenge to handle.
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APPENDIX

MATLAB Code for State-Space Neural Network

The Appendix presents the MATLAB code for State-Space Neural Network Model. This

code is written for travel time prediction of thru movement on arterials. Similar code can

be used for other SSNN models changing the parameters.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

display('TRAVEL TIME PREDICTION FOR THRU MOVEMENT');

load traininoutm ; %loading input data file

P = traininout(:,:);

P = rot90(P,1);

ptrl = P( 2:9,:);ptr1 = eon23eq(ptrl); %link 1 input

ttrl = P(1,:);ttr1= con23eq(ttrl); %link 1 output-travel time

for i = 1:288

ptr{1.i} =ptr1{1.i};

end

for i = 1:288

ttr{1,i} = ttr1{1,i};

end

%Loading up State Space Neural Network called here as net]

disp('Loading up network netl ...');

load not];

met] = init(net1); %Initializing the network

%Training Parameters

netl .adaptParam.epochs = 10000;
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net1.adaptParam.goal = 0.001;

net1.adaptParam.max_fail = 10000

%Five Validations to check when error rises

netl .adaptParam.mem_redue = 1;

%Full Jacobian Calculated, no memory restrictions

net1.adaptParam.min_grad = 1e-10;

net1.adaptParam.mu = 0.9; %momentum constant

net1.adaptParam.mu_dec = 0.001 ;

net1.adaptPararn.mu_inc = 10;

net1.adaptParam.mu_max = lelO;

net1.adaptParam.show = 100;

netl .adaptParam.time = inf;

net1.adaptparam.lr = 0.001; % Learning Rate

netl .perforchn = 'mse'; %Perfonnance = 'Mean Square Error'

%Training

disp('Training ...');

[netl ,tr]= adapt(net1 ,ptr,ttr);

save net1.MAT netl ;

%Conversion of ttr to concurrent matrix

ttr = seq200n(ttr);

%Results - Network Training

a2 = sim(net1,ptr);

a2 = seq2con(a2);

figure(1)

title('Regression Analysis of Training Results: Travel Time Thru'); hold on

[m,b,r] = postreg(a2 {1,1 },ttr{1,1}); hold off

perfirgl = mse(a2{1,1} - ttr{1,1})

perfirg2 = mae(a2{1,1} - ttr{1,1})

load testinoutm; %loading testing file

Q = testinout(:,:);

Q = rot90(Q,1);

test] = Q(2:9,:); testl = con23eq(test1);

fori = 1:288

test.P{1,i} = test3{1,i};

end
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testTl = Q(l,:);testT1 = con25eq(testT1);

for i = 1:288

test.T{1,i} =testT1{1,i};

end

test.T = seq2con(test.T);

%Results - Network Testing

a3 = sim(net1,test.P);

figure(5)

title('Regression Analysis ofTesting Results: Travel Time Thru'); hold on

[m,b,r] = postreg(a3 {1,1 },test.T { 1 ,1 }); hold off

perftstl = mse(a3{1,1} - test.T{1,1})

perftst2 = mae(a3{1,1} - test.T{1,1})

format short;

disp('Network Arehitecture');

disp('Number of Layers');

disp(netl .numlayers+1);

nneurons = 5;

slayer = size(netl .layers);

for i=1:slayer(l,1)

nneurons =[nneurons netl .layers {i} .size];

end

%saving input weights files

iwl = netl.IW{1}';

iw2 = netl.IW{2}’;

iw3 = netl.IW{3}';

iw4 = netl.IW{4}';

save iwl .dat iwl -ascii -tabs;

save iw2.dat iw2 -ascii —tabs;

save iw3.dat iw3 -aseii -tabs;

save iw4.dat iw4 -ascii -tabs;

%saving layerweights files

1w1= net1.LW{1,1}';

lw2 = net1.LW {2,2}';

lw3 = netl.LW{3,3}';
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lw4 = netl .LW {4,4}';

lw4l = net1.LW{4,1}';

lw42 = net1.LW{4,2}’;

lw43 = netl .LW {4,3}';

save lw1.dat lwl -ascii -tabs;

save lw2.dat lw2 ~ascii -tabs;

save lw3.dat lw3 -ascii -tabs;

save 1w4.dat lw4 -ascii ~tabs;

save lw41.dat lw41 -ascii -tabs;

save lw42.dat lw42 -aseii -tabs;

save lw43.dat lw43 -ascii -tabs;

%forming training and testing output files to save

trgoutttthru = a2 {1 }';

testoutttthru = a3 {1 }';

%saving output in .dat files

save trgoutttthru.dat trgoutttthru -ASCII -DOUBLE -TABS;

save testoutttthrudat testoutttthru -ASCII -DOUBLE -TABS;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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