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ABSTRACT

OPEN READING FRAME COMPOSITION AND ORGANIZATION AS INDICATORS OF

PHENOTYPIC DIVERSITY IN BACTERIA AND ARCHAEA

By

SCOTT HENRY HARRISON

Phenotypically, intragenomic recombination enables prokaryotic organisms to respond to

dramatic changes in environmental conditions by restructuring the genome. The relationship

between adaptation and alterations to genome structure over time impacts phylogeny and

relates to factors regarding the optimal physiological configuration of genome structure. This

study provides a quantitative treatment of open reading frame (ORF) organization based on

aspects of functional conservation and DNA mobility. An analytical software system was

built to facilitate randomizations, subsamplings, and comparative treatments of calculated

and organized measures of open reading frame (ORF) attributes encompassing 447,551

annotated ORFs from 155 fully sequenced prokaryotic genomes. An operational subset of

ORFS (O—ORFS) of putative phenotypic importance was selected based on a simple heuristic

of similar length and content in comparison to five or more other ORFs. The proportion of

total, annotated ORFs represented by O-ORFS strongly correlated with a predicted 3:1

signal-to—noise ratio of O-ORFs, likely associated with some phenotype, to putatively silent

ORFs (S-ORFs) of unknown and undefined phenotype. The O-ORF subset had a significant

degree of clustered chromosomal organization across a broad phylogenetic range. Additional

study of ORF organization was conducted by developing quantitative measures of ORF

clustering based on segmentation of the chromosomal sequence into consecutive regions of

specified scalings. Properties associated with performance of non-parametric measures were

partly characterized by simulation using an extended model of an abstract expansion

modification system. Measures of ORF organization were evaluated as potential signatures of

the recombinational history of an organism. As predicted by a postulated relationship

between genomic organization and phylogenetic relatedness, the measurements had

significant correspondence with times of divergence from last common ancestors. The

presence of mobile elements predictably correlated with greater deviations from

organizational symmetries of ORFs.
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Chapter 1: Introduction

1.1 Overview

Recombinations are one of two major forms of heritable change in prokaryotic genomes,

and the consequence of a recombination event is to restructure the organization and

composition of genomic elements such as open reading frames (ORFs) (Brown, 2002). The

other form of heritable change, sequence-level mutations, has been well studied in terms of

evolutionary models and comparative treatments (Zuckerkandl & Pauling, 1965; Woese, 1987;

Ochman et al., 1999). There exists a database of functionally grouped clusters of orthologous

genes that characterizes those genes with conserved sequences implicating a directly vertical

last common ancestor (Tatusov et al., 1997a, 2003). There is not however a database with a

function-based cataloguing of the formations and disruptions of genomic structure.

Characterizing prokaryotic diversity in terms of the functional aspects of recombinative

change may help develop current proposals as to how expansions and modifications of

genomic structure relate to specific phenotypes of an organism (Bentley & Parkhill, 2004;

Cohan, 2004; Moran & Plague, 2004; Ochman & Davalos, 2006).

Significant phenotypic change does not necessarily correspond with conventional

evaluations of conserved sequence and genomic structure. Mycobacterium avium subspecies

avium is frequently encountered in the environment and causes infections in certain animals

and immunocompromised patients. Mycobacterium avium subspecies paratuberculosis has

significantly different behavior than M. avium in terms of a much slower growth rate and

different pathogenicity. Yet, when M. avium subspecies paratuberculosis is compared to M.

avium subspecies auium, it is almost identical for 168 rRNA sequence, conserved genomic

organization, and the region surrounding oriC (Bannantine et al., 2003). Furthermore, it is a

complex question to consider how phenotypic categorizations of diversity may efficiently

account for the variable lifestyles, ecologies, ancestral lineages, appearances and behaviors of

prokaryotic organisms. Taxonomically, for prokaryotes, there is not yet “a consensus for

defining the fundamental unit of biological diversity, the species” (Cohan, 2002).

Reconstructions of the prokaryotic phylogeny have often been based upon patterns of



sequence similarity as a primary means for asserting homology (inferred origin of DNA

sequence from the same ancestral sequence) (Morell, 1997; Zhaxybayeva et al., 2004;

Patterson, 1988). Differences between sequences help reveal branch points in the phylogeny

(Pearson & Lipman, 1988) as well as the rates at which mutating random events occur from

various branch points to the present (Ochman & Wilson, 1987; Ochman et al., 1999).

Sequence-level changes themselves do not fully resolve how surrounding changes in

evolutionary rate may occur. For higher taxa, it is especially difficult to see how a procession

of changes in ribosomal sequence may closely follow significant alterations in proteomic

content. fi-proteobacteria differ from a-proteobacteria not just by ribosomal sequence but

also by photoreaction centers, cytochrome c type, and having cytochromes of the small type

compared to the medium-large type (Woese, 1987). More comprehensive assays of genome

structure and content may provide the empirical information needed to directly characterize

the emergence of such properties within the proteome.

Inspection of synteny (conserved arrangement of genome structure) (Horimoto et al.,

2001; Kalrnan et al., 1999; Rocap et al., 2003) can be a means for inferring branch points

based on lineages experiencing different series of rearranging recombinations. This has been

especially the case when comparing closely-related strains (Naas et al., 1994; Dalevi et al.,

2002; Rocap et al., 2003). While ancestral genome structure may partially dissipate due to

both horizontal transfer events (Doolittle, 1999a; Xie et al., 2004) and a high level of

intragenomic recombination (Wolf et al., 2001), patterns of vertical ancestry are not

completely removed. There are various cases of vertically inherited recombinations being

stable despite presumed competition from ongoing emergent recombinants. For example,

pulsed-field gel electrophoresis measurements have identified stable recombinant strains of

Campylobacter jejuni coming from poultry processing batches (Wassenaar et al., 1998). The

stability in C. jejuni genome structure cannot be attributed to horizontal gene transfer

because natural transformation between Campylobacter jejuni strains does not occur in vivo

(Wassenaar et al., 1998). Higher clade investigation in the Enterobacteriaceae family presents

another case of tractable vertical evolution. Free and random intragenomic shuffling and

horizontal replication of genomic structure between species does not occur (Sanderson, 1976;

Souza & Eguiarte, 1997). There may also be gross structural conservation between members



from differing phyla or from each of the two domains, Archaea and Bacteria. Horimoto et al.

(2001) finds a statistically significant portion of orthologs to be constrained in chromosomal

position across a phylogenetic span represented by nineteen archaeal and bacterial genomes.

While a comprehensive, functional decomposition cannot yet be accomplished by

analysis of a fully sequenced genome, genome sequences do help to delineate practical

distinctions between prokaryotic organisms. Genomovars has been a term coined to

characterize the capability of genome sequence to chart taxonomic boundaries independent of

direct biochemical assessments of phenotype (Ursing et al., 1995). A variety of studies have

illustrated how genomovars work to help categorize diverse sets of strains from the genera

Pseudomonas (Cladera et al., 2004), Burkholderia (Vandamme, 2001), and Sinorhizobium

(Young, 2003). In terms of chromosomal organization, functional accountings of non-random

symmetries or periodicities have been proposed to involve past duplications of the

chromosome (Kunisawa & Otsuka, 1988), the effects of supercoiling (Jeong et al., 2004), and

aspects of gene dosage (Jurka & Savageau, 1985). There is mounting empirical and

comparative evidence as to how the physical organization of proteins as they are encoded by

open reading frames on the physical length of a chromosome corresponds with both

expression (Deng et al., 2005; Higgins et al., 1990) and function (Li et al., 2005; Wolf et al.,

2001). This evidence suggests that an analysis of chromosomal ORF organization on the

expanding data set of fully sequenced genomes may aid in a greater characterization of the

functional and phylogenetic nature of prokaryotic genomes.

1.2 Genomic Variation and Phylogeny

A major goal in biology has been to determine the “universal tree of life” (Philipe 85

Forterre, 1999; Doolittle, 1999b; Kennedy & Norman, 2005) where various lineages of

organisms generate progeny that either survive and reproduce, or do not. Survival and

reproduction is influenced by competition with other organisms, ecological conditions, the

inherited genetics of the organism, and chance events (Darwin, 1859; Kutschera & Niklas,

2004). For a time period of over several billion years (Schidlowski, 1988), organisms have

been affected by many large-scale ecological changes (Nisbet & Sleep, 2001; Battistuzzi et al.,



2004), so it is difficult to re-enact in vivo the entire formation of life’s history. Yet, the

evolutionary history of known organisms can be inferred from comparisons of data to produce

a phylogeny, a tree of life based on ancestral lineages (Harvey & Pagel, 1991). Comparisons

between different ancestral lineages involves measurement of difference, and attempting to

characterize when and why differences emerge. On a phylogenetic tree, there are large

branches from which smaller branches emerge, eventually leading to known contemporary

organisms which are placed at the leaves of the tree. The Woesian tree’s largest branches

represent three superkingdoms: Archaea, Bacteria, and Eukarya (Woese et al., 1990). Two of

these superkingdoms, Archaea and Bacteria, are prokaryotic; they contain unicellular

organisms lacking organelles. The asexual form of prokaryotic reproduction is advantageous

for evolutionary studies due to the non-reticulating pattern of vertical ancestry associated

with asexual reproduction.

Although prokaryotes reproduce asexually, not all heritable characteristics follow a

tree-shaped vertical ancestry. Through a variety of mechanisms, different strains can share

genetic material with one another through a process called lateral, or horizontal, gene

transfer (LGT or HGT) (Doolittle, 1999a; Battistuzzi et al., 2004). Evidence for LGT

challenges the idea of an immutably core set of monophyletic genes; LGT appears to have

been a process that extends back billions of years (Rivera & Lake, 2004) with an effect

ranging across most, if not all, functional categories of genes (Battistuzzi et al., 2004).

Currently, available data and the number of putatively conserved core genes is small enough

so as to preclude estimation of the last common ancestor branchpoint (Battistuzzi et al.,

2004). Other phenomena that contravene or confound tests for vertical ancestry among the

prokaryotes include paralogous origination of new genes (Patterson, 1988) and phenotypic

switching (Balaban et al., 2004).

To meaningfully predict behavior as a result of phylogenetic history, changes in the

environment must be evaluated in addition to vertical (or horizontal) changes to the genome

(Rjdley, 1993; Lande, 1985, 1982). Calibrating an inferred history of mutational events

against historical changes in the environment enables inferrence of an evolutionary 'clock’s

relationship to physical time (Ochman et al., 1999; Battistuzzi et al., 2004). Informationally,

such a strategy of analysis has theoretical justification (Zuckerkandl & Pauling, 1965; Woese,



1987). When such calibration has occurred for sequence-level phylogenetic reconstructions

however, there is significant variability of molecular clock rates between lineages.

Contemporary efforts have sought resolution with either explicitly parametric models

(Gillooly et al., 2005), or semiparametric methods that help compensate for the complex

“interplay between estimates of divergence times and rates” (Sanderson, 2002). To approach

a molecular clock characterization of the dynamics between recombination events and

phylogenetic branch points, there may be additional sources of complexity to the available

information. Lineage-related diversity of recombinative mechanisms is extensive (Craig et al.,

2002). Furthermore, in the DNA sequence, historical evidence of DNA mobility gradually

disappears through amelioration (Campbell, 2002). Visualizing and comparing different sets

of recombinative events necessarily would involve a degree of inference for reconstructions of

past history, especially as might be applicable to the testing of hypotheses involving

historical changes in the environment.

While the theory underpinning a molecular clock is informational (Zuckerkandl &

Pauling, 1965), hypothesis testing to characterize how lifestyle (evolutionary mode) causes

variation in neutral changes (evolutionary tempo) requires identification of the “molecular

counterpart of that ill-defined quality, evolutionary mode” (Woese, 1987). Recent

observations of recombinative systems under experimental conditions have been consistent

with recombinative behavior producing mutations under selective conditions that “cannot

readily be produced by point mutations” (Schneider & Lenski, 2004). Treatment of

recombinative changes in addition to sequence-level changes may therefore increase the

amount of molecular data that can characterize evolutionary tempo and mode. With

additional molecular data, wide-ranging credibility intervals for times of divergence in

prokaryotic phylogeny (Battistuzzi et al., 2004) may be to some degree shortened. An

alternate possibility is that changes in lifestyle may be characterized more in terms of how

environmental factors intersect with altered functional compositions produced by

recombination (Konstantinidis & Tiedje, 2004).

Evolutionary mode and tempo have been characterized as being quasi-independent

(Woese, 1987). Contrasting the effects of mode and tempo would require distinguishing these

dynamics of change based on concepts corresponding to nature. Woese (1987) proposes three



distinguishing characteristics for evolutionary tempo: chronic ongoing change (“clocklike

behavior”), action over a long period of time (“range”), and “loosely coupled domains” over

which chronic changes are averaged (or, as called by Woese: “size”). Recombinations are

being associated with an increased number of functional consequences (Schneider & Lenski,

2004). The increasing number of different functional consequences may elevate the possibility

of there being “loosely coupled domains” as to how and where different recombinations occur

throughout the genome. As would correspond to the chronic-like property of evolutionary

tempo, recombinative activity has also been observed to be ongoing throughout both stressful

and non-stressful conditions.

In general, gene order is poorly conserved in bacteria, even among closely related

bacteria such as Escherichia coli and Pseudomonas aeruginosa (Nolling et al., 2001). While

gene order is more strongly conserved for other lineages such as the Clostridia, there is still

prevalent disruption of low-level structures such as operons. Yet, although recombination can

greatly disrupt genomic structure and, correspondingly, open reading frame (ORF)

arrangement (Suerbaum et al., 1998), comparisons of regions larger than operons show

remarkably wide-ranging proximal similarity between orthologous pairings among genomes

across phylogeny (Horimoto et al., 2001). Such a finding suggests that strong forces of

conservation prohibit dissipation of large scale ancestral ORF arrangement. If the pattern of

ORF arrangement is retained over lengthy evolutionary ranges, and if changes occur in a

chronic ongoing process that each independently influence disparate parts of the genome,

then there is theoretical support for some of the variation in ORF structure to reflect

evolutionary tempo. Testing of a proposed molecular clock can compare branch lengths so as

to evaluate likelihood ratios (Shimodaira & Hasegawa, 1999). Furthermore, to independently

compare the robustness of how recombinational history covaries with ribosomal phylogeny,

different subtrees in the phylogeny can be identified and a nested analysis, such as that

described by Bell (1989), performed.

The process of robustly measured ORF arrangement for clocklike properties may also

facilitate baseline comparisons for how supercoiling arrangements contrast with optimal

adaptation to variation in the environment. Water, virulence, salt and temperature have all

been proposed as environmental factors associated with supercoiling (Higgins et al., 1990;



Luttinger, 1995; Mojica et al., 1994). The absence of a formula to precisely model the

biochemistry between supercoiling and an external environment makes comparative tests of

optimality implicit in that they rest upon preliminary expectations of maximized levels of

“Darwinian fitness” (Harvey & Pagel, 1991). The construction of more explicit assessments

could foreseeably involve dynamics of how the regulatory role of supercoiling controls DNA

condensation and the transcriptional availability of genomic regions (Worcel & Burgi, 1972;

Aki & Adhya, 1997; Reznikoff et al., 1985). Based on current knowledge, there is difficulty

with arriving at an explicit assessment. For example, there are varying estimates of nucleoid

structure with supercoiling domains being conflictingly characterized as 10 kb per domain

(Postow et al., 2004) versus 50 kb - 100 kb per domain (Miller & Simons, 1993).

Informational analyses may still help elucidate general evolutionary dynamics such as

selection against deleterious mutants (Kimura, 1983). While initial characterization of various

evolutionary consequences to recombinative change may be implicit for environment-based

optima, implicit functional assessments are “a reasonable first step” (Harvey & Pagel, 1991).

While the fitness of genomic restructuring cannot yet be accounted for by an explicit

formula, evolutionary comparisons can infer aspects of fitness and their phylogenetic range.

A variety of “functional barriers” have been proposed to the fitness consequences of

recombination (Mahan et al., 1990). For example, a phenomenon of “replichore balancing”

occurs where evolutionary fit recombinations act to keep the origin of replication at a position

halfway (180°) from the termini. This phylogenetically widespread phenomenon can be

inferred from various comparisons of closely related genomes belonging to different lineages

(Dalevi et al., 2002; Ren et al., 2003; Andersson, 2000; Leblond & Decaris, 1998; Deng et al.,

2002). Replichore balancing has also been confirmed experimentally in both Gram negative

(Hill & Gray, 1988) and Gram positive bacteria (Campo et al., 2004). The presence of

functional barriers such as replichore balancing implies possibilities where selection against

definitively deleterious mutants would occur, consistent with neutral theory (Kimura, 1983).

Yet, replichore balancing is not mandatory. The high frequency of IS—element recombinations

in Bordetella spp. appears to overwhelm any selective pressure associated with replichore

balancing (Preston et al., 2004). Also, Chlamydophila pneumoniae strains J 138 and CWL029

have 16 kb hot spots of rearrangements that are not near the chromosomal origin or terminus



(Shirai et al., 2000). In controlled experiments, recombinational events have been observed to

cause a wide range of variation without necessarily lethal effect (Mahan et al., 1990). Other

proposed “functional barriers” to recombination have included gene dosage effects, and

conservation of structure around chromosomal termini (Mahan et al., 1990). Shigella fleameri

is thought to deviate significantly from Escherichia coli based on reoptimized placement of

its transcriptional units in respect to the gene dosage gradient relative to oriC (Jin et al.,

2002). Further evaluation as to the strength of selection, measurement of fitness, and

long-term competitiveness of recombinants may be helpful to characterize the evolutionary

dynamics of recombinative events.

For purposes of inference, the amount of divergence associated with recombinative

change between lineages must be considered. While “most sequence evolution is

predominantly divergent” (Harvey & Pagel, 1991), several aspects of recombination confound

a scenario of divergent heritable changes. Phenomena include reciprocal events occurring to

balance the replichore (Deng et al., 2002), balanced influx and loss of genome segments

through horizontal transfer (Lawrence et al., 2001; Parkhill et al., 2001a), biphasic

rearrangements (Barbour, 2002; Nanassy & Hughes, 2003), and duplication amplifications

(Sonti & Roth, 1989; Read at al., 2000). Promisingly, recombination does not appear to be

convergent in scenarios where that might otherwise be expected (Schneider et al., 2000).

Recombinative divergence per se can be essential for driving rapid evolution of new traits

(Sanderson & Liu, 1998). An overall divergent phenomenon of interest is where there is

extensive gross-level conservation of genome structure compared to mosaic-like differences in

smaller-scale structures. An instance of this phenomena can be observed with the 3 species of

Mycobacterium: M. leprae, M. tuberculosis, and M. bovis (Philipp et al., 1998).

The available genomes and their ORFs, having arised from various evolutionary lineages,

may present challenges with causal and population inferences. Whether concerning

sequence-level changes, non-vertical inheritance, or recombinative changes (Gillooly et al.,

2005; Zhaxybayeva et al., 2004; Craig et al., 2002), each lineage considered as a treatment is

not a random allocation, so causal inference is not directly achievable (Lunneborg, 2000).

Population inference requires random sampling (Lunneborg, 2000). The

Gammaproteobacteria are likely to be over-represented as evident from larger compilations



structured from rRNA analyses (Garrity et al., 2004). Additionally, beyond just the

population of genomes, the ORF population is over-annotated and contains many false

positives (Snyder & Gerstein, 2003). Beyond considerations of randomized treatments and

randomized samples (or a rich, well-curated data set from which random resampling could be

extensively performed), further difficulty with an analysis may come from the imperfectly

resolved phylogeny (Kennedy & Norman, 2005) as well as the inavailability of explicit models

to relate recombinative change to fitness and speciation. These aspects of observational noise

(e.g., hypothetical ORFs), estimation error (e.g., over-representation of certain taxa), and

dynamic noise (e.g., the consequences of a given recombination in an organismal population

and the surrounding environment) are real-world complexities that make it difficult to

characterize system dynamics (Casdagli et al., 1991). A comparative method requires an

evolutionary model (Harvey & Pagel, 1991), and a model would ideally have one data point

per uniform taxon (Grafen & Ridley, 1997). Aspects of recombinative constancy to the

genome is not something yet established for uniform taxonomic classifications.

It may be practically significant to address notions that explore populations of genes

from a paradigm of behavioral ecology (Kurland, 2005; Dawkins, 1976). ORFs, mobile

elements, and chromosomes have each been characterized as interdependent “populations”

with aspects of competitive growth, fitness, and function (Lawrence & Roth, 1996; Schneider

& Lenski, 2004; Terzaghi & O’Hara, 1990). Improved measures of associated patterns may

better quantify both the observed population of ORFs and the consequences of different

rearrangements. There have recently been advances that address the distribution of ORFs as

informational units (Azad et al., 2002), as well as advances in how informational signatures

of interactions between populations can be detected (Sandvik et al., 2004).

Azad et al. (2002) presents an investigation for ORF traits and their relationship to

coding sequence versus non-coding sequence. By looking at dynamics of information, Azad

et al. (2002) claim to “go beyond an analysis of the functional parts of the DNA.” The

informational analysis of Azad et al. (2002) proceeds with measuring information present

inside various segments (successive regions of genomic DNA of a specific length in base

pairs). Segmentation studies of genomic DNA serve to “break up a complex object into its

’constituent’ parts...to understand how the organization comes about in the first place”



(Azad et al., 2002). Azad et al. (2002) abstractly evaluate region lengths of potential coding

space against a breakage process also known as the Kolmogorov theory of physical

fragmentation. Essentially, the breakage of units at random points along their length leads to

a log-normal distribution (Li, 1991; Azad et al., 2002). Such a mode of ORF fragmentation

could be attributable to nonsense codon mutations; in a study that separates actual genes

from annotated genes, the length-based effects of randomly occurring start-stop codon pairs

is utilized as a chief and phylogenetically widespread criterion to separate “real” from

“non-real” ORFs (Skovgaard et al., 2001).

The diversity and cryptic evidence of past recombinative histories (Campbell, 2002;

Craig et al., 2002) makes an exact parameteric model difficult to achieve since such noise

must be evaluated to defensibly reconstruct changes in state (Casdagli et al., 1991). Linear

relationships cannot be fully assumed for how recombinative changes pass from ancestor to

progeny. Ongoing debate and dialogue concerns, for example, the reticulating role of

horizontal transfer and paralogous duplication (Kurland, 2000) and the implication of

circular evolutionary pathways (Rivera & Lake, 2004). Strategies for direct manipulation of

the interactions, parameterization of mechanical models, or direct simplifying assumptions

that help characterize “linear relationships between response and predictor values” (Sandvik

et al., 2004) may all be significantly limited by current inferrence when applied to charting

recombinational history. The field of ecology is producing new approaches that “do not make

any a priori assumptions about dynamic properties” (Sandvik et al., 2004). Sandvik et al.

(2004) measures robust signatures of ecological interaction between multiple populations.

Sandvik et al. (2004) demonstrate the usage of an approach for rigorously characterizing

signals of interaction “that avoids these [mechanical models and linear relationships]

difficulties.”

Aside from bibliographic references to the literature item(s) characterizing particular

submitted genome sequences, ecological and phenotypic information is generally absent from

submitted genome sequence data files. A curatorial challenge has been to comparatively

qualify the different lifestyles and ecologies associated with each genome-sequenced strain.

Distinctions implicating varying schemes of genomic expansions, modifications, and

contractions can involve the organism’s intracellular or extracellular setting as well as
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metabolic activity (Bentley & Parkhill, 2004; Ochman & Davalos, 2006). A limiting aspect to

the analysis that may bias the set of 155 genomes, is that only 1% of all estimated microbes

can be cultivated in artificial laboratory conditions, and the biochemical and metabolic

properties of culturable organisms become, by default, “key characteristics” (Santos &

Ochman, 2004). Conventional morphological and nutritional criteria used to describe

microbes do not lead to a natural taxonomy (Pace, 1997).

A full characterization of phenotypic diversity across the phylogenetic range represented

by fully sequenced prokaryotic genomes is a significant enterprise involving hereditary

information in addition to the behavior and environments inhabited by prokaryotic strains.

The current phylogenetic estimates are quite variable. As calculated from nucleotide

sequence changes, the divergence of Yersinia from E. coli is estimated to be 375 Ma 3145

Ma (Deng et al., 2002). Even the comparably richer historical record concerning Y. pestis

and Y. pseudotuberculosis leads to an estimated time of divergence 1,500—20,000 years ago

(Achtman et al., 1999). For time spans involving billions of years, the range of variation for

credibility intervals is approximately :1: 10—20% (Battistuzzi et al., 2004).

At minimum, for most of the fully sequenced prokaryotes, the genomic DNA is present

in the form of at least one distinct chromosome. Variation between species can extend to

multiple copies of the same chromosome, multiple different chromosomes, and other replicons

such as plasmids. A functional definition of a plasmid is that it is unnecessary for the

viability of a particular organism (Bentley & Parkhill, 2004). Yet, such a distinction may not

be perfect for current classifications of replicons. Larger plasmids may have especially high

maintenance costs and there would need to be some offsetting selective advantage to promote

their presence within a prokaryotic organism. Halobacterium has a 200 kb plasmid, pNRCIOO,

that has “properties of resistance to curing suggest that this replicon may be evolving into a

new chromosome” (Ng at al., 1998). Other large plasmids associated with fully sequenced

genomes include a 2 million base pair plasmid in Ralstonia solanacearum, and a 1.6 million

base pair plasmid in Sinorhizobium meliloti. Conversely, there are various chromosomes that,

based on size and horizontal ancestry, might otherwise be considered plasmids except for

having some degree of “essentiality” to the life of the organism. Vibrio cholerae has a

chromosome that appears to be a captured megaplasmid from a non-Proteobacterial origin
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(Heidelberg et al., 2000). It has also been suggested that unknown, novel chromosomal

structures may yet be identified. For instance, the conventional PFGE approach misses what

new methods, such as optical mapping, can find (Lin et al., 1999; Zhou & Schwartz, 2004).

The number of distinct chromosomes is not necessarily fixed between closely related

strains. Different biovars in Brucella suis can have either a single 3.3 Mb chromosome, or 2

chromosomes of smaller sizes (Jumas-Bilak et al., 1998; Paulsen et al., 2002). In the sense of

a cellular stoichiometry, there can be multiple copies of the same chromosome per cell.

Stoichiometric measurements have some relationship to growth, but do not follow an exact

formula across all taxa. Methanocaldococcus jannaschii has an incremental L-shaped

distribution from 1 to 5 chromosome equivalents for stationary growth, and an L—shaped

curve ranging from 1 to 15 chromosome equivalents for exponential growth (Malandrin et al.,

1999). This is in contrast to the “multiple of 2” distribution of chromosome copy numbers in

Escherichia coli where the copy numbers of chromosome equivalents ascend in the sequence:

1,2,4,8 (Malandrin et al., 1999). At what may be an upper extreme, Buchnera can have 100

genomic copies per cell (Shigenobu et al., 2000).

Association with metabolism and lifestyle is sometimes explicable from recombinative

dynamics and conservation. For example, a recombination deletion event can be inferred

when observing that Buchnera aphidicola has many fli and fig orthologs to Escherichia coli,

yet it is missing a fliC gene (Tamas et al., 2002). This is evidence for non-motile behavior

and corresponds to how the endosymbiotic lifestyle of B. aphidicola contrasts with the

free-living Escherichia coli (Tamas et al., 2002). Intracellular bacteria such as B. aphidicola

generally represent strains with stable genomes where deletions of repeated sequences are

irreversible and mobility has been reduced (Andersson & Kurland, 1998). By contrast,

non—intracellular pathogens and commensals that face greater competition and more

fluctuation of available resources in their host environments rely on genomic rearrangement

to facilitate frequent and revertible phenotypic changes (Ballet, 2001).

In whatever degree of detail the data set is evaluated, there remain additional obstacles

to inferring exact molecular changes over a lengthy periods of time. Both the amelioration of

DNA composition (Campbell, 2002) and the highly composite, dynamic interaction between

interleaving IS elements (Campbell, 2002; Gray, 2000) introduce substantial complexity as to
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how the history of the internal genomic structure may be retrospectively untangled. The

challenge for a comparative analysis is to identify, measure, and account for the variance of

common properties across the phylogenetic range being evaluated. There is not yet however a

broadly prescribed method for inferring a historical series of recombinative events so as to

evaluate diverse hypotheses about how recombinative changes impact fitness. Explanations

as to how strategies of recombinative expansions and modifications relate to ecological

adaptation are presently anecdotal (Bentley & Parkhill, 2004). It is difficult to envisage an

explicitly parametric model that can directly evaluate how recombinative change relates to

the correspondence of phenotypic diversity with genomic structure. The fact that an

informational approach does not rely on assuming the constraints of one particular model

versus another may be advantageous, especially given the uncertainty as to how

recombinative changes in genomic structure relate to changes in fitness for an organism and

its lineage.

1 .3 Genomic Mobility

W’ithin sets of closely related strains, change in chromosome size is largely due to

recombination events. Evolutionary experiments by Bergthorsson & Ochman (1999) show

that such changes in the size of chromosomes occur more often than base pair mutations

altering restriction sites. Recombination also alters the internal structure of a replicon such

as a chromosome (Andersson, 2000). Chromosomal variation is often measured in terms of

length differences between ribosomal sequences as assayed by restrictive digests (Ge &

Taylor, 1998; Ralyea et al., 1998). This variation is called “ribotype diversity”, and is

generally attributed to recombinations between rrn operons. In strains of Salmonella typhi,

ribotype diversity is much greater than corresponding base pair diversity (Ng et al., 1999).

Recombinations can cause deletions, duplications, inversions, and translocations

(Andersson, 2000), and recombination frequently involves double strand separation of the

double helix to reveal single strands. These strands can either interact with macromolecules

to facilitate recombinative mechanisms or, by homology, complementarily bind directly to a

single strand of DNA at another site on the double-stranded DNA molecule (Brown, 2002).
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Recombinations can sometimes be attributed to mechanisms of replication slippage at the

replication fork and duplication events (Li?) et al., 1996; Tillier & Collins, 2000). Mechanisms

of recombination can be categorized as follows: site-specific, homologous, and illegitimate

(Brown, 2002; Ikeda et al., 1982; Bachellier et al., 1996; Nair et al., 2004). The frequency of a

recombination event can be dependent on the mobilized length of DNA (Bi & Liu, 1994), and

there are also “hot spots” of recombinative activity as well as highly conserved regions

(Watanabe et al., 1997).

Recombination frequency is significantly dependent on the mechanism.

RecA-independent recombination between large repeats (> 100 base pairs) happens at a rate

of 10‘5 to 10‘4 recombinations per large repeat per generation; when occurring due to a

slippage mechanism, this requires that repeats be less than 10 kb apart (Lovett, 2004).

RecA—dependent tandem duplications between IS elements occurs at a frequency from 10‘4 to

10‘2 per IS element per generation (Haack & Roth, 1995). Per hour, this rate has been

observed experimentally per IS element as being 2 * 10‘6 to 9 no: 10"6 per cell per hour.

(Schneider & Lenski, 2004). Estimates of sequence-level mutational rates range from 10‘8

(Lovett, 2004) to 10‘11 (Ochman et al., 1999) changes per genomic base pair per generation.

With an estimated 100—300 successful generations per year, Ochman et al. (1999) calculate

there to be 0.0045 mutations per genome base pair per million years. For a 3 million base

pair genome, this corresponds to 1,350 mutations per genome per million years.

Contrastingly, without negative selection or reversible changes, tandem duplications

attributable to IS element-based changes would be expected to introduce a staggering

number of about 200,000 changes per genome per million years.

DNA mobility may relate to evolutionary dynamics in a number of ways. Mobile

elements may either be conserved in a mutualistic sense to promote heterogeneous offspring

or, alternatively, persist based on their own “selfish” parasite—like behavior (Schneider &

Lenski, 2004). The frequency of DNA mobility may impact general diversity of a species-like

taxa. Staphylococcus aureus has a recombination rate 3 times lower than mutation compared

to Neisseria meningitidis which has a recombination rate 3.6 times more frequent than

mutation (Cohan, 2004). Staphylococcus aureus may be thus expected to exhibit greater

population clonality in comparison to Neisseria meningitidis, where clonality is the stable
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transmission of multiple sets of alleles (Wisplinghoff et al., 2003). Intriguingly, Neisseria

meningitidis can still be very clonal in nature due to a few highly successful strains (Souza &

Eguiarte, 1997). In this sense, externally-influenced dynamics of selection can act to filter the

retrospectively calculated stochastic dynamics of occurrence.

Recombinant changes between generations may be evolutionarily unstable. Stable,

vertically divergent recombinations may be a different type of evolutionary dynamic than

genomic plasticity, a variation-producing feature of frequently generated, unstable changes.

Genomic plasticity can involve reciprocating changes that occur in response to alternating

environmental conditions. One example of genomic plasticity involves the amplifying

expression of the his operon in the Salmonella genome. RecA dependent tandem duplications

of this operon occur at a frequency of 0.01 to 1 percent of progeny and can be preserved

under selected conditions (Haack & Roth, 1995). The rate of deletion that removes these

duplicated operons is 1 to 30 percent of progeny. Tandem duplications are often deleted since

their duplication produces direct repeats that can subsequently undergo a D—shaped

recombination event (Romero & Palacios, 1997). Another example of genomic plasticity

involves a site-specific inversion system in Salmonella (Nanassy & Hughes, 2003). A hin

recombinase mediates inversion of 1,000 bp in order to biphasically vary an antigen protein so

as to “outsmart” the immune system. None of these examples, however, suggest a basis for

the type of long-term trajectory of divergent, conserved change that could correspond to the

recombinative dynamics proposed by Lathe et al. (2000) or Horimoto et al. (2001).

One way to estimate the influence of stable recombinations, is to assess the rules that

may apply to how recombinations proceed in nature. There are a variety of parsimonious

criteria that, if applicable, can act to compile and summarize the most likely phylogenetic

tree (Harvey & Pagel, 1991). Dollo’s law “states that complex characters will not have

evolved more than once” (Harvey & Pagel, 1991). Yet, since recombinations are frequently

produced by specific recombinations involving IS elements on the genome, it is possible that

evolution may be somewhat parallel. In the case of 18 replicate populations that were each

separately propagated for 1,000 generations, patterns of both parallel and divergent evolution

were observed for conditions related to 2,4 dichlorophenoxyacetic acid as a sole carbon source

(Nakatsu et al., 1998). Multiple composite recombinations can lead to a wide range of
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combinations (Gray, 2000) so, over time, it is plausible that many steps of recombination

would be divergent enough to produce distinct signatures for various lineages. Some

additional, alternative parsimonious criteria to consider are: “the smallest number of

character trait transitions,” and “derived characters being lost on fewest occasions” (Harvey

& Pagel, 1991). Yet, recombinations can readily violate some of the above assumptions

governing vertical ancestry (Patterson, 1988; Snel et al., 2002), so it is difficult to know if

there are consistent levels at which rules of vertical ancestry can be considered reliable versus

relaxed.

An alternative to parsimonious reconstruction is to approach efforts at phylogenetic

reconstruction as a statistical problem. In a parametric fashion however, degrees of freedom

may be difficult to characterize in more sophisticated statistical models related to DNA

mobility. As mobile DNA and other changes act to both expand and otherwise alter a

genome, it is comparable to the, albeit simpler, expansion-modification systems proposed by

Li (1991). These systems are a type of “probabilistic context—free Lindenmayer systems”

that, as open dynamical systems, have changing degrees of freedom. The fact that these

changes occur on a nested hierarchical phylogeny also leads to variable precision as to how

degrees of freedom might be characterized (Harvey & Pagel, 1991). Species belonging to the

same genus generally have fewer degrees of freedom than species coming from different genera

(Harvey & Pagel, 1991). In a biological sense, a hierarchy of recombinational differences may

be variable in how they constitute adaptive differences, and such a distinction may be

difficult to model (Harvey & Pagel, 1991).

There is also natural variation in how DNA mobility does not fully reflect an

intragenomic dynamic proceeding along a vertical hierarchy. The estimated fraction of a

genome that has been laterally transferred from other species is 5-10‘70 (Cohan, 2004).

Lateral transfer does not always readily occur between species though, and bacterial

“sexuality” can be limited to closely related strains within a species such as for

Sinorhizobium meliloti or occur with significantly fewer constraints of close relationship such

as for Neisseria gonorrhoeae (Souza & Eguiarte, 1997). Overall, the non-vertical dynamic of

intraspecies genomic exchange can be quite frequent. Lawrence (2002) estimate that less

than 10 LGT events successfully occur per million years with Escherichia coli. Zhaxybayeva

16



et al. (2004) estimate that “several hundred [genes] every four million years” are transferred

among some sets of closely related strains.

A further complication for modelling recombinative change involves the dynamic of

illegitimate recombination. At the lower end of recombination frequencies (10‘12 to 10’15 per

genome base pair per generation), illegitimate recombinations were first proposed to involve

12 base pairs or less in the asymmetric pairing of complementary sequence (Franklin, 1971).

As is the case with bacteriophage A, these can be site-specific and require extra factors and

enzymes like the integration host factor (IHF) and viral integrase (int) in order to facilitate

the illegitimate recombination (Franklin, 1971). These can also, rather than requiring extra

factors, be facilitated directly by hairpin structures (palindromic repeats) surrounded by

direct repeats. Hairpin structures like these have been seen in a recombining 96bp Borrelia

segment that generates genomic diversity in such a way as “to avoid host immune

elimination” (Wang et al., 1997). A more updated definition of illegitimate recombination is

that it “involves junctions of nonhomologous or very short homologous DNA sequences (often

less than 3 bp) which are not recognized by site-specific enzymes” (Nair et al., 2004).

Despite their regulatory importance, operon structures are not conserved and are widely

disrupted across various lineages by both intragenomic and intergenomic dynamics

(Watanabe et al., 1997; Nolling et al., 2001). Yet, in the form of positive selection, operons

can be selected targets of duplication such as can be seen with the multiple copies of

ammonia monooxygenase (amo) operons in ammonia-oxidizing autotrophic bacteria (Klotz &

Norton, 1998). Such a duplicated operon corresponds to an analysis from Snel et al. (2002)

suggesting that gene addition is under positive selection. Despite disruption at a localized

operon level, there appear to be larger “uber-operonic” aspects to conserved ORF location

(Horimoto et al., 2001; Lathe et al., 2000). The fact that laterally transferred, functionally

related genes do not reassociate with a corresponding uber-operonic functional complex

suggests some limitation as to the frequency or fitness characteristics associated with

localized rearrangement events (Lathe et al., 2000).

From the standpoint of altered expression and host immune evasion, DNA

rearrangement has been equated to the network motif of a noise amplifier—contributing to

population heterogeneity and antigenic variation (Wolf & Arkin, 2003). This noise is
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proposed as a way to spread risk over multiple phenotypes and, in abstract engineering

terms, may also enhance signal by “stochastic resonance” (Wolf & Arkin, 2003) where

possible negative side-effects of an otherwise successful change are balanced out. The

spreading of risk may correspond to a lottery model described by (Smith, 1975). In this case

of augmented population heterogeneity, those strains with a greater chance of introducing

diverse progeny are more likely to hit a metaphorical “jackpot.” Another related scenario is

the “arms race.” This scenario involves those species that can react more quickly to the

environment by adaptively changing first with respect to fitness, thereby succeeding over

those who are diversifying without direct relationship to fitness (Williams, 1971).

Recombinations associated with speciation do not necessarily relate solely to

considerations of stochastic frequency and external conditions. The evolutionarily stable

changes may possibly be those that best conserve characteristics of expression or regulation

associated with the large scale topology of the entire supercoiled prokaryotic genome (Deng

et al., 2005). In addition to specific hot spots on a chromosome influencing the incidence and

impact of recombinations such as oriC, there may also be other aspects governing the overall

genomic distribution on a replicon’s topology. A more sophisticated molecular model may be

proposed that characterizes how the superstructure to the genome may influence regulation

based on topology. The location of functional promoter domains near HU-mediated

supercoiling (Tanaka et al., 1993) sterically hinders expression (Kohno et al., 1994). Yet, if

ORFs are positioned far away from HU-sites, the degree of expression, looking at 14 different

sigma factors, is independent of which supercoiled loop a regulated open reading frame is

present upon (Reznikoff et al., 1985). This independence of location is confirmed in a broader

survey of other prokaryotes (Wolffe & Drew, 1995). Regulatory dynamics occur between

distant chromosomal regions. For example, xylene/toluene metabolism can have four

different operon/transcriptional control regions with interactive regulation (Ramos et al.,

1997). If recombination repositioned an open reading frame near an HU-site, this could have

an impact that may cascade across large functional networks such as described by Ramos

et al. (1997) and Li et al. (2005).

Mechanistically, RecA and HU are some of the many macromolecules that bind to DNA

that may potentially effect genomic structure and subsequent expression. Macromolecular
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binding is sequence—dependent, frequently involving DNA recognition of a specific sequence

by proteins with the helix-turn-helix motif (Harrison & Aggarwal, 1990). In the case of

DNase I, these sequences have been found to be about 8 nucleotides, corresponding to groove

width and stiffness associated with the helically wound double-stranded DNA (Lahm & Suck,

1991). Another mechanism involves illegitimate recombinations that are facilitated by DNA

gyrase (Ikeda et al., 1982). If gyrase-stimulated recombinations correspond to producing

functionally competitive progeny, the archaealogy of genome structure would show how

locations of gyrase activity correspond to optimal characteristics of genome organization.

Indeed, DNA gyrase activity correlates positionally with restraints on spatial patterns of

transcriptional activity (Jeong et al., 2004). It is conceivable that there is a framework of

recombinational mechanisms and consequences in fitness that may be corroborated by

measures of optimal genome arrangement. It is unknown, however, as to how precisely an

analysis of recombinational mechanisms and fitness dynamics will map to the many different

possibilities for such a framework. It is also unknown as to how complex the framework

would have to be to account for a wide view of both Archaea and Bacteria.

ORF arrangement and clustering may exhibit some invariance based on patterns of

content, size, and distances of ORFs as they occur between diiffering chromosomal regions.

While genome structure may change to some extent, various assays provide a basis for

relating measures of ORF clustering to evolutionary range. Sequence similarity among ORFs

is abundant; “50% of prokaryotic genes emerge from duplication” (Li et al., 2005) where

duplicate sequence pattern has been produced from past gene duplications and conserved

amongst various domain rearrangements. There is also evidence that the evolutionary

heritage of a DNA segment containing multiple ORFs relates to the evolutionary heritage of

encoded ORFs. In Thermoplasma acidophilum, 32% (484) of the ORFs are found in 139

conserved gene clusters (Ruepp et al., 2000). Cluster-related conservation is ascertained by

comparison with 13 other prokaryotic genomes where pairs of potentially orthologous ORF

sets were separated by at most three other ORFs (Ruepp et al., 2000). In another approach

of conserved orthologous proximity, Horimoto et al. (2001) find that, while ORFs may wind

up on separate locations between two circular replicons from two different species, the ORFs

significantly trend to remaining within a 20° (e.g., 600 kb on a 3 Mb chromosome) region on
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a chromosomal circle relative in position to to other ORFs. Horimoto et al. (2001) note that

regional constraints of an ORF are influenced by the functional role of the ORF as evident

from functional categories for COG. These inferred regional constraints suggest some

interdependence between content of a chromosomal segment and dynamics of alteration to

ORF clustering. From the standpoint of function, the Escherichia coli K-12 genome may

possibly include a 600 kb “supercluster” periodicity that appears to associate with

coordinated gene expression (Allen et al., 2003). (Kunisawa & Otsuka, 1988) claim to have

found a “7 minute periodicity” (i.e., 350 kb) on the E. coli K-12 genome to the clustering

arrangement of ORFs. A more recent evaluation characterizes E. coli K-12’s large-scale

periodicity as being “weak” and, in summary, Koonin et al. (1996) offer two explanations for

large-scale periodic arrangement of ORFs: 1) duplication of large segments of the

chromosome early in evolution; and 2) “the periodicity relates to nucleoid superstructure.”

Yet, a well-parameterized model that makes a defensible account of causative dynamics for

large-scale periodicity has not yet been proposed.

1.4 Annotated Open Reading flames

“Many genomes are over-annotated” in the sense that real genes are not discriminated

from random ORFs (Larsen & Krogh, 2003). There exist false positives in the form of

annotated ORFs that are not transcribed into functional units such as enzymes (Frishman

et al., 1998). A variety of studies have either indicated or predicted that the fraction of

annotated ORFs with low, “unreal”, or non-functional importance to the organism is z 25%

of the total set of annotated ORFs for a given genome (Williamson et al., 1993; Jackson

et al., 2002; Skovgaard et al., 2001; Tatusov et al., 2003). An exact, prescribed

characterization of every ORF has not yet been achieved (Roberts et al., 2004) and “the

boundary between living and dead genes is often not sharp” (Snyder & Gerstein, 2003). This

may in part be due to a complex diversity of characteristics and categorizations that may be

used to consider each ORF. One set of groupings for ORFs (originally proposed for yeast)

has been proposed as: “eORF (essential ORF), kORF (known ORF with a well-characterized

function), hORF (ORF validated by homology only), shORF (short ORF), tORF
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(transposon identified ORF), qORF (questionable ORF), and dORF (disabled ORF or

pseudogene)” (Snyder & Gerstein, 2003).

Analytical criteria that help weigh “the likelihood that a gene encodes a functional

product” are: sequence features, evidence for transcription, sequence conservation, patterns of

gene inactivation, and functional genomics information (Snyder & Gerstein, 2003). Sequence

conservation analyses work to compare an individual DNA sequence from one organism to

the sequences of other known sequences, and is “an excellent method to gauge the

importance of the gene product” (Snyder & Gerstein, 2003). Sequence features can involve

detailed measurement of mutational effects such as codon bias, since there are dynamics

underyling the nonrandom use of codons compared to non-coding regions and distinguishng

associations between genes involving aspects of expression (Duret & Mouchiroud, 1999), gene

length (Eyre-Walker, 1996), and horizontal gene transfer (Garcia-Valivé et al., 2000).

A sequence conservation approach is, however, strongly influenced by the phylogenetic

proxirnities of relationship between the associated organisms (Snyder & Gerstein, 2003).

Strains that are phylogenetically close have had, over time, less opportunity for phenotypic

deviation due to a recent shared ancestry (Harvey & Pagel, 1991). Strains that are

phylogenetically far apart may have conserved sequences due to LGT, or strong evolutionary

forces of conservation. In order to utilize sequence conservation as a criterion for separating

“real” ORFs from ORFs of little functional or evolutionary importance, there must be some

account for phyletic pattern (Glazko & Mushegian, 2004). A monophyletic distribution of

similar ORFs saturates a phylogenetic subtree where a last common ancestor can be inferred

as having vertically transferred specific ORFs to its descendants. Other phyletic distributions

include polyphyletic (occurring among various disparate lineages in a way to suggest

non-vertical evolution) and paraphyletic (a subtree with a sub-subtree removed) distributions.

As modelled by Snel et al. (2002), LGT may account for polyphyletic distributions of ORFs

among prokaryotic organisms, and gene loss may account for paraphyletic distributions.

Sequence conservation is often used as a basis for making functional annotations to

ORFs whose activity and function have not been directly assayed. Yet, functional genomics

information, as recorded in ORF annotations, is significantly incomplete: “all prokaryotic

genomes sequenced to date have a fairly high fraction (between 20 and 40%) of genes for
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which no function has been assigned” (Van Sluys et al., 2002). Furthermore, 5-10% of

functional annotations are wrong (Roberts et al., 2004). The present situation with

prokaryotic genomes is that curatorial efforts for improved annotations of ORFs have been

“sluggish”, and the blurry boundary between living and dead genes may be partly a function

of insufficient curatorial effort as well as a lack of more exacting assays of the transcriptome

and proteome (Roberts et al., 2004).

Evidence for transcription involves measurement of RNA or protein expression that

comes from a given DNA sequence. Rom the vantage point of transcriptional evidence, a

“conceptually straightforward” approach may be to utilize a whole-genome DNA microarray

designed to study a fully sequenced microbe (Cummings & Relrnan, 2000). In Escherichia

coli, the number of annotated genes to express above background levels is 3,496 (81%) out of

a total possible 4,290 ORFs (Tao et al., 1999). Assessments of DNA expression can be

unreliable however due to the frequency at which a probe for a falsely annotated gene may

associate with an untranslated region of an expressed gene (Skovgaard et al., 2001).

Gene inactivation assays involve measuring the effect of how artificially-induced

mutations have a phenotypic consequence due to an inactivated, though still expressed, gene

or set of genes. There are currently limits to the availability of data. For Bacillus subtilis

(Biaudet et al., 1997), only 13% of annotated ORFs have been assessed for patterns of

phenotypic inactivation. In general, experimental assessments of annotated ORF operation

and function have not been comprehensively performed for the larger set of publicly

available, fully sequenced genomes.

Over—annotated false positives (random, “unreal” ORFS) occur predominantly for ORFs

that trend toward shortness in length (Larsen & Krogh, 2003; Skovgaard et al., 2001). Such a

trend may occur by truncating nonsense mutations (Skovgaard et al., 2001), although there

may also be physiological differences to ORF lengths that are accounted for by the

multidomain structures of the encoded proteins (Liang et al., 2002). A direct structural

classification of evolutionarily divergent proteins and their internal modules is not easily

performed. Within the Structural Classification of Proteins database (SCOP) (Murzin et al.,

1995), folds (structural similarities) from divergent sequences of common origin lead to

superfamily predictions that are only 29% accurate (Lindahl & Elofsson, 2000). Assessment

22



of sequence similarity on conserved domains, with divergent sequence, are on the level of 75%

accuracy (Lindahl & Elofsson, 2000). There are other approaches, such as BLASTCLUST,

that address the issue of common evolutionary origins with a variety of default choices for

percent identical residues, comparison of length, and BLAST score density which is the

proportional amount of length covered by a high scoring segment pair (Altschul et al., 1990).

Additional refinements to a sequence conservation analyses can filter out common motifs,

such as coiled coil regions, which by themselves do not add much evolutionary signal

(Tatusov et al., 1997b). Any comprehensive handling of structural protein features and data

involves some “curatorial pain” (Chung & Yona, 2004), and more automated refinements,

such as practical adjustment of the expectation score in terms of repetitive low complexity

protein structure—especially for smaller proteins (Birkland et al., 2005)—are still not fully

usable. Whatever the profile (domain structure) diversity of an ORF, it is generally

recommended to evaluate as many sequence homologs as possible to assert meaningful

ancestral membership within a protein family (Sadreyev & Grishin, 2004). For example, the

detection of remote homologies is three times more likely when more than 2 sequences are

used to assess for homology (Park et al., 1998), and there are sequences with less than 30%

pairwise identities to other sequences that, when analyzed in groups of several or more,

significantly cluster together as homologs. Overall, for purposes of asserting some vertical

origin, e-value cutoffs appear to range from 10’2 (Altschul & Koonin) to 10‘8 (Pagni &

Jongeneel, 2001; Sadreyev, 2003). Even for strict expectation score cutoffs like 10‘”, false

positives have still been observed (Sadreyev, 2003). For the purposes of evaluating a sampling

of ORFs, there is a way to estimate the number of false positive hits based on a given

expectation score cutoff. Expectation scores less than 0.01 are equivalent to the expected

percentage of random (false positive) hits within a population of sequences (Koonin &

Galperin, 2003). In this regard, surveying 10,000 sequences for a match to a sequence based

on an expectation score threshold of 10‘3 would amount to approximately 10 random hits.

Evolutionary dynamics other than stop codon truncations can also be inferred from

ORF length characteristics. For example, Teichmann et al. (1998) report, beyond the

approximate quarter of Mycoplasma genitolium ORFs that contain just one conserved

domain, that the “large majority of proteins in the MG genome have involved rearrangement
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of domains.” This qualification is based on a characteristic distribution of ORFs with

distinct composite domains. Wheelan et al. (2000), however, find that, whatever the

underlying dynamics of gene rearrangements are, the domain size distributions lead to

discontinuous frequencies of various ORF lengths. Savageau (1986) makes a case for proteins

in Escherichia coli generally occurring in structural subunits of 14 kDa which is about 127

amino acids (aa). While E. coli protein modules (single domains) have an average length of

219 aa, the normative “bulk” of evaluated modules range in length from 100 to 150 aa (Liang

et al., 2002). In an informational sense then, based on relationships between distributions,

the impact of recombinative processes of change can be sometimes revealed. Future

resolution may involve case-by-case assessments of proteomic structure and function. This is

however dependent upon a mixture of curatorial effort and biochemical detail that may be

difficult to uniformly apply to each fully sequenced genome.

For operons, a predictive genome-wide algorithm and database was recently established

for Staphylococcus aureus Mu50 (Wang et al., 2004) which represents a significant innovation

beyond databases that have been limited to evaluating Escherichia coli K-12 (Huerta et al.,

1997). Predictive algorithms are important; even in the well-studied E. coli K-12 genome,

the RegulonDB database shows that just 869 operons are known compared to 2325 operons

that are predicted (Huerta et al., 1997). Operons vary in the number of ORFs that they

transcriptionally co—express. In E. coli K-12, up to 70% of the transcriptional units are

“monocistronic,” having just one ORF (Blattner et al., 1997). S. aureus is calculated to have

62% of its transcriptional units as monocistronic with an average operon size of 3.47. About

90% of operons have 5 or less ORFs, and only a marginal amount have any more than 10

ORFs (Wang et al., 2004; Huerta et al., 1997). The largest predicted operon in S. aureus

Mu50 contains 29 ORFs and encodes ribosomal proteins. The two largest predicted operons

in E. coli K-12 contain 11 ORFs each, and encode phenylacetic acid degradation and sugar

transport functions (Huerta et al., 1997). Algorithms for operon (or transcriptional unit)

detection have been extended to analyze a variety of other Bacteria and Archaea (Stormo &

Tan, 2002; Liu et al., 2003), yet there does not yet appear to be a well-curated database with

predicted operon structures on all of the fully sequenced genomes- Other algorithmic efforts

are being developed to better quantify the accuracy of operon predictions compared to
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evidence from sequence and expressional data (Bockhorst et al., 2003).

It is possible to arrive at some correspondence between an organism’s set of ORFs versus

metabolic capabilities necessary for the organism’s lifestyle. Tamas et al. (2002) identify B.

aphidicola APS as requiring a set of ORFs active in sulphur assimilation since it is

endosymbiotic to an aphid that, eating legumes, does not ingest as much cysteine as the

grass-eating aphid host of B. aphidicola Sg. Evidence suggests that sulphur assimilation

genes became inactive in response to cysteine-rich conditions of B. aphidicola Sg (Tamas

et al., 2002).

While there are existing systematic catalogues of taxa, phenotypes, and some

corresponding metabolic and physiologic characteristics (Garrity, 2001), there is not yet an

up—to—date synthesis that equates the ORF complement to the phenotype. Analysis of

clusters of orthologous groups (COGS) has been one effort in this direction where functional

7? 6‘

categories such as “RNA processing and modification, extracellular structures,” and “cell

motility” are identified (Tatusov et al., 1997b). The link, however, between unique ORFs and

speciation (Konstantinidis & Tiedje, 2004), as well as the restriction of important

orthologous sets to taxonomic boundaries (Kurland, 2000), suggests that ORF similarity

alone cannot fully map the metabolism and physiology.

While functional assessments of ORFs partly rely on anecdotal approaches,

characterization of ORFs may be a meaningful step in the accelerating rise of available

sequence, ecological, and evolutionary information. Schilling et al. (1999) describe a

cascading succession of various knowledge domains that are rising up to characterize the

genome, transcriptome, proteome, metabolome, and beyond. This succession may be

currently evident from the increasing number of tools available to access and characterize the

content and metadata surrounding the growing numbers of strains, chromosomes, and

genomic structures such as ORFs (Murzin et al., 1995; Koonin & Galperin, 2003; Chung &

Yona, 2004; Kent et al., 2005; Wang et al., 2004).
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1.5 Summary and Objectives

Aspects of genomic stability have been found to relate to the ecological lifestyle of a

prokaryotic organism (Ochman 85 Davalos, 2006), and various underlying factors of

chromosomal topolog and expression suggest that the organization of ORFs may have a

functional role in the physiology of the organism (Deng et al., 2005; Képés, 2004; Kunisawa

& Otsuka, 1988; Svetic et al., 2004; Lathe et al., 2000). Prokaryotic diversity relates to

overall genome content, and recombinative expansions and modifications can allow for a

faster tempo of change than possibilities attributable to single point mutations (Bentley &

Parkhill, 2004). Mechanisms, such as those involving mobile elements, are providing some

ability to account for structural changes in genome organization and the density of insertion

sequence (IS) elements on the genome that can be an indicator of lifestyle (Moran & Plague,

2004). Many of these studies have drawn their observations and results from the recent

increase of publicly available, fully sequenced genomes. There remain, however, a variety of

past hypothesis-driven approaches to genomic organization that have not yet been carried

forward to the present set of fully sequenced genomes. In particular, there is a set of studies

that have sought to account for whether gene density is non-random on the Escherichia coli

chromosome (Bachmann et al., 1976; Jurka & Savageau, 1985; Kunisawa & Otsuka, 1988;

Williamson et al., 1993). In the past, based on the predicted locations of protein-coding

sequence, gene density has been evaluated as the number of ORFs per equal-sized segments

of a replicon (Jurka & Savageau, 1985). Yet, some ORFs may be more important or “real”

than other ORFs (Snyder & Gerstein, 2003; Larsen & Krogh, 2003). Conserved orthology has

been an initial approach to characterizing functional roles of ORFs (Bentley & Parkhill, 2004;

Tatusov et al., 1997b), and the genomic context can be predictive of gene function (Wolf

et al., 2001).

While operon structures and genomic landmarks such as oriC may play a role in the

functional expression of an ORF (Jin et al., 2002; Wolf et al., 2001), they are not the only

factors underlying the conserved positioning of conserved ORFs. The relative locations of

multiple sets of orthologs show evidence of conservation across the entire stretch of a genome

despite extensive, localized rearrangement and fluid-like alteration of operons (Horimoto

et al., 2001; Lathe et al., 2000; Wolf et al., 2001). The functional consequences of
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recombinative change have been a topic of substantial interest and modelling (Terzaghi &

O’Hara, 1990; Wolf & Arkin, 2003; Snel et al., 2002), and a question arises as to what kind of

physiological limits may exist for a prokaryotic organism in terms of radical alterations to

ORF organization. For instance, mobile elements are thought to disrupt functional barriers

like replichore balancing (Preston et al., 2004) and cotranscriptional association with the

direction of replication (Andersson et al., 1998; Briiggemann et al., 2003).

My hypotheses of physical clustering initially approach the question of ORF density and

organization by segmenting the physical chromosome into spatial regions. There are three

basic hypotheses: 1) ORF density is random; 2) there is periodicity to the distribution of

ORF densities on the chromosome; and 3) ORF densities form localized shapes that are

non-random and interdependent with other regions on the chromosome. A controlling

parameter to the evaluation of these hypotheses is the actual segmentation size (region length

in base pairs) used to count up numbers of ORFS per segment. A parallel hypothesis relates

to some ORFS being more important than other ORFS, and my fourth hypothesis is that

only a limited subset of 75% of annotated ORFS are truly coding for function (Jackson et al.,

2002; Tatusov et al., 2003).

An additional set of hypotheses is based on the notion that varying arrangements of

open reading frames would, in part, reflect different sets of recombinative events occurring in

the midst of evolutionary dynamics. In this set of hypotheses, I seek to evaluate whether

there is any intragenomic aspect of ORF clustering that occurs robustly as a uniform

property of each prokaryotic organism. These hypotheses are: 1) there is cotranscriptional

association with the direction of replication for all prokaryotic organisms; and 2) the physical

clustering of ORFs within COGS is non-random. I also seek to revisit my three spatial

hypotheses based on evaluation of a 75% subset of ORFS constructed by filtering out those

annotated ORFS that are putative false positives. As a testable outcome to the study, I

would postulate that a meaningful measure of the internal physical clustering of ORFS would

show some characteristic of vertical ancestry, and that outliers from a trend of vertically

conserved ORF organization are attributable to the activity of mobile elements.

The recent increase in the number of publicly available, fully sequenced genomes has led

to an opportunity for revisiting questions concerning the nature and organization of ORFS.

27



By investigating relationships between distributions of ORFS on fully sequenced prokaryotic

chromosomes, this study measures the internal physical clustering of open reading frames.

The performance of ORF organization as an indicator of vertical evolution can be assessed

from estimated times of divergence from a last common ancestor as they are available in

published studies (Battistuzzi et al., 2004) and there are initial summaries of mobile element

densities that may account for variation within the data set (Moran & Plague, 2004).
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Chapter 2: Methods and Developed

Methodology

2. 1 Analytical Design

There is difficulty with establishing parameters for how genomic organization influences

the phenotype of a strain, and I did not find previously developed parametric methods for

fully characterizing ORF organization on the genome as a product of evolution. In order to

arrive at legitimate statistical inferences, I structured the analysis to take into account the

limited sample Size and, where possible, avoid a priori assumptions.

Figure 1 is a synthesized view of how this study navigates between approaches to

random and non-random resamplings and inference based on a structured approach to data

analysis (Lunneborg, 2000). The data set provides ORF annotations that contain a

potentially separable mixture of both real ORFS and putative false positives. I sought to

establish a Significant filtering between real and false ORFS and further compare the results

of this distinction to random assignment of “realness.” To examine this distinction over the

chromosome, I conducted segmentation analyses to examine ORF clustering by delineating

sections of the chromosome and, as a negative control, shuffling the x1, 3:2, 3:3, ..., 277,, series of

ORF regions of segmentation size r (Figure 2). Systems of simulation and comparisons

against the likely phylogenetic tree are two approaches for evaluating the potential types of

causes that might be associated with given chromosomal organizations of ORFS. In the event

that random resampling may not allow for testing inferences of causality or population, I

sought to perform basic subsampling to see how the data may be robustly described and

effectively interpreted. A robust description that has significant coverage across either the

phylogeny or functional grouping may lead to more confident assessments of constraints

associated with the underlying natural system.

It is in the form of a rough confirmatory analysis (Behrens, 1997; Darlington, 1990) that

I moved beyond a merely correlative approach to evaluate what underlying physiological and

phenotypic relationships may relate the arrangement and mobility of genomic structure to
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Figure 1: Resampling strategies and randomization design. Differing assumptions (shown in

boxes) underlying a data set control the different ways (shown in ovals) there are for describing

and resampling the data. My specific techniques for assaying the data are described in the

text outside of each oval.
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Figure 2: Calculation of regional ORF counts. The DNA sequence of a chromosome is subdi-

vided into regions of equal physical length in base pairs. The locations of region boundaries are

symbolically represented by the series ..., xi, :5,- + 1, xi + 2,132- + 3, The translational start

point of each ORF, shown as a straight vertical edge, is used as the reference point for counting

within each region. Two region—based ORF counting series are presented. The upper series is a

count of all ORFS occurring within each region. The bottom series is a count corresponding to

a filtered subset of ORFS (indicated by slashed shading). The process of counting is illustrated

by the curved lines descending from the ORFS in of each chromosomal region to the associated

ORF count.

the optimal function of the prokaryotic organism. With hypotheses concerning ORF density

(Jackson et al., 2002), organization (Kunisawa & Otsuka, 1988; Jurka & Savageau, 1985),

and the role of mobile elements (Bentley & Parkhill, 2004; Ochman & Davalos, 2006), I

sought to investigate general correspondences and detailed variation.

2.2 Data Assembly

2.2.1 Collection of Genome Data

The data set of fully sequenced prokaryotic genomes was accessed from the National

Center for Biotechnology Information (NCBI) public archives (Wheeler et al., 2000) in

March, 2004. Data set files in these archives are distributed per chromosome and plasmid

replicons. For the 155 fully sequenced genomes, there were 234 sets of files corresponding to

165 chromosomes and 69 plasmids available from the FTP address

ftp://ftp.ncbi .nlm.nih. gov/genomes/Bacteria/. There were four file formats for each of

the replicons (Table 1). Specific versions of genomes corresponding to the original time of

download can be accessed by visiting

http://www.ncbi.nlm.nih.gov/entrez/sutils/girevhist.cgi.

The species of Archaea and their associated chromosomal accession numbers are
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Aeropyrum pernir (NC-000854), Archaeoglobus fulgidus DSM 4304 (NC.000917),

Halobacterium Sp. NRC-1 (NC.002607), Methanocaldococcus jannaschii (NC.000909),

Methanopyrus kandleri AV19 (NC.003551), Methanosarcina acetivorans C2A (NC.003552),

Methanosarcina mazei Goel (NC-003901), Methanothermobacter thermautotrophicus str.

Delta H (NC-000916), Nanoarchaeum equitans Kin4—M (NC.005213), Pyrobaculum

aemphilum str. IMZ (NC.003364), Pyrococcus abyssi (NC.000868), Pyrococcus furiosus DSM

3638 (NC.003413), Pyrococcus horikoshii (NC.000961), Sulfolobus solfataricus (NC.002754),

Sulfolobus tokodaii (NC-003106), Thermoplasma acidophilum (NC.002578), and

Thermoplasma volcanium (NC.002689).

The species of Bacteria and their associated chromosomal accession numbers are

Agrobacterium tumefaciens str. C58 (Cereon) (NC.003062, NC_003063), Agrobacterium

tumefaciens str. C58 (U. Washington) (NC-003304, NC_003305), Aquifer aeolicus VF5

(NC-000918), Bacillus anthracis str. A2012 (NC.003995), Bacillus anthracis str. Ames

(NC.003997), Bacillus cereus ATCC 10987 (NC.003909), Bacillus cereus ATCC 14579

(NC.004722), Bacillus halodurans (NC.002570), Bacillus subtilis subsp. subtilis str. 168

(NC-000964), Bactemides thetaiotaomicron VPI-5482 (NC.004663), Bdellovibrio

bacteriouorus (NC.005363), Bifidobacterium longum NCC2705 (NC.004307), Bordetella

bmnchiseptica (NC.002927), Bordetella parapertussis (NC.002928), Bordetella pertussis

(NC-002929), Borrelia burgdorferi B31 (NC.001318), Bradyrhizobium japonicum USDA 110

(NC-004463), Brucella melitensis 16M (NC.003317, NC_003318), Brucella suis 1330

(NC-004310, NC_004311), Buchnera aphidicola str. APS (Acyrthosiphon pisum)

(NC.002528), Buchnera aphidicola str. Bp (Baizongia pistaciae) (NC.004545), Buchnera

aphidicola str. Sg (Schizophis graminum) (NC.004061), Campylobacter jejuni subsp. jejuni

Table 1: Descriptions of four file formats for the NCBI prokaryotic genome FTP repository.

 

Format Description
 

. asn ASN stands for abstract syntax notion

.gbk a readable plain text version of the .asn files

.faa FASTA-formatted listing of amino acid sequences

.ffn PASTA-formatted listing of coding strand nucleotide sequences
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NCTC 11168 (NC.002163), Candidatus Blochmannia fioridanus (NC.005061), Caulobacter

crescentus CB15 (NC.002696), Chlamydia muridarum (NC.002620), Chlamydia trachomatis

(NC-000117), Chlamydophila caviae GPIC (NC.003361), Chlamydophila pneumoniae AR39

(NC-002179), Chlamydophila pneumoniae CWL029 (NC.000922), Chlamydophila pneumoniae

J 138 (NC-002491), Chlamydophila pneumoniae TW—l83 (NC.005043), Chlorobium tepidum

TLS (NC-002932), Chromobacterium violaceum ATCC 12472 (NC.005085), Clostridium

acetobutylicum (NC-003030), Clostridium perfringens str. 13 (NC.003366), Clostridium

tetani E88 (NC-004557), Corynebacterium diphtheriae (NC.002935), Corynebacterium

efi'iciens YS—314 (NC.004369), Corynebacterium glutamicum ATCC 13032 (NC.003450),

Coxiella bumetii RSA 493 (NC.002971), Deinococcus radiodurans R1 (NC.001263,

NC_001264), Enterococcus faecalis V583 (NC.004668), Escherichia coli CFT073

(NC.004431), Escherichia coli K-12 (NC-000913), Escherichia coli 0157:H7 (NC.002695),

Escherichia coli Ol57:H7 EDL933 (NC.002655), Fusobacterium nucleatum subsp. nucleatum

ATCC 25586 (NC.003454), Geobacter sulfurreducens PCA (NC.002939), Gloeobacter

violaceus (NC.005125), Haemophilus ducreyi 35000HP (NC.002940), Haemophilus influenzae

Rd KW20 (NC.000907), Helicobacter hepaticus ATCC 51449 (NC.004917), Helicobacter

pylori 26695 (NC.000915), Helicobacter pylori J99 (NC.000921), Lactobacillus johnsonii

NCC 533 (NC-005362), Lactobacillus plantarum WCFSl (NC.004567), Lactococcus lactis

subsp. lactis (NC.002662), Leptospira interrogans serovar lai str. 56601 (NC.004342,

NC_004343), Listeria innocua (NC-003212), Listeria monocytogenes EGD-e (NC.003210),

Mesorhizobium loti (NC.002678), Mycobacterium avium subsp. paratuberculosis str. k10

(NC.002944), Mycobacterium bovis subsp. bouis AF2122/97 (NC.002945), Mycobacterium

leprae (NC.002677), Mycobacterium tuberculosis CDC1551 (NC.002755), Mycobacterium

tuberculosis H37Rv (NC.000962), Mycoplasma gallisepticum R (NC.004829), Mycoplasma

genitalium (NC.000908), Mycoplasma mycoides subsp. mycoides SC (NC.005364),

Mycoplasma penetrans (NC.004432), Mycoplasma pneumoniae (NC.000912), Mycoplasma

pulmonis (NC.002771), Neisseria meningitidis MC58 (NC.003112), Neisseria meningitidis

Z2491 (NC.003116), Nitrosomonas europaea ATCC 19718 (NC.004757), Nostoc sp. PCC

7120 (NC.003272), Oceanobacillus iheyensis HTE831 (NC.004193), Onion yellows

phytoplasma (NC.005303), Pasteurella multocida (NC.002663), Photorhabdus luminescens
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subsp. laumondii TTOI (NC-005126), Pirellula sp. 1 (NC.005027), Porphyromonas

gingivalis W83 (NC-002950), Prochlorococcus marinus str. MIT 9313 (NC.005071),

Prochlorococcus marinas subsp. marinas str. CCMP1375 (NC.005042), Prochlorococcus

marinas subsp. pastoris str. CCMP1986 (NC.005072), Pseudomonas aeruginosa PAOl

(NC-002516), Pseudomonas putida KT2440 (NC.002947), Pseudomonas syringae pv. tomato

str. DC3000 (NC.004578), Ralstonia solanacearum (NC.003295), Rhodopseudomonas

palustris CGA009 (NC.005296), Rickettsia conorii (NC.003103), Rickettsia prowazekii

(NC.000963), Salmonella enterica subsp. enterica serovar Typhi (NC.003198), Salmonella

enterica subsp. enterica serovar Typhi Ty2 (NC.004631), Salmonella typhimurium LT2

(NC.003197), She'wanella oneidensis MR—l (NC.004347), Shigella flermeri 2a str. 2457T

(NC-004741), Shigella flexneri 2a str. 301 (NC.004337), Sinorhizobium meliloti

(NC-003047), Staphylococcus aureus subsp. aureus MW2 (NC.003923), Staphylococcus aureus

subsp. aureus Mu50 (NC.002758), Staphylococcus aureus subsp. aureus N315 (NC.002745),

Staphylococcus epidermidis ATCC 12228 (NC.004461), Streptococcus agalactiae 2603V/R

(NC.004116), Streptococcus agalactiae NEMBI6 (NC.004368), Streptococcus mutans UA159

(NC.004350), Streptococcus pneumoniae R6 (NC-003098), Streptococcus pneumoniae TIGR4

(NC-003028), Streptococcus pyogenes M1 GAS (NC.002737), Streptococcus pyogenes

MGAS315 (NC-004070), Streptococcus pyogenes MGAS8232 (NC.003485), Streptococcus

pyogenes SSI-l (NC.004606), Streptomyces avermitilis MA-4680 (NC.003155), Streptomyces

coelicolor A3(2) (NC-003888), Synechococcus sp. WH 8102 (NC.005070), Synechocystis sp.

PCC 6803 (NC-000911), Therrnoanaerobacter tengcongensis (NC.003869),

Thermosynechococcus elongatus BP-l (NC.004113), Thermotoga maritima (NC.000853),

Theponema denticola ATCC 35405 (NC.002967), Peponema pallidum (NC.000919),

Tropheryma whipplei TW'08/27 (NC.004551), Tropheryma whipplei str. Twist (NC.004572),

Ureaplasma urealyticum (NC.002162), Vibrio cholerae (NC.002505, NC_002506), Vibrio

parahaemolyticus RIMD 2210633 (NC-004603, NC_004605), Vibrio vulnificus CMCP6

(NC-004459, NC_004460), Vibrio vulnificus YJ016 (NC.005139, NC_005140), Wigglesworthia

glossinidia endosymbiont of Glossina brevipalpis (NC.004344), Wolbachia endosymbiont of

Drosophila melanogaster (NC.002978), Wolinella succinogenes (NC.005090), Xanthomonas

aronopodis pv. citri str. 306 (NC-003919), Xanthomonas campestris pv. campestris str.
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ATCC 33913 (NC-003902), Xylella fastidiosa 9a5c (NC.002488), Xylella fastidiosa Temeculal

(NC-004556), Yersinia pestis C092 (NC.003143), and Yersinia pestis KIM (NC.004088).

I inspected the data of these chromosomes for annotated circular or linear topologies and

also identified those genomes with multiple, distinct chromosomes based on information in

the NCBI data files and in the literature. Other key attributes to the chromosomes were

their physical lengths and NCBI taxonomy.

I evaluated other general qualities to the data set such as associated plasmids as well as

changes to ORF lengths and ORF annotations over time. I identified the sequenced plasmids

associated with each of the 155 genomes based on the NCBI data files and compared this to

what was characterized in the literature. I evaluated the number of fully sequenced genomes,

ORF counts, and distribution values for ORF lengths at three different dates: December

2002, March 2004, and June 2005. As a prelude to intensive analysis of ORF data, I

identified changes to the ORF accession versions as they occurred between the three different

dates of December 2002, March 2004, and June 2005. Based on changes in ORF accession

version numbers, I counted up and characterized the changes to ORFS and the number of

associated genomes.

2.2.2 Management of ORF Data

The scope of the data set involved 447,551 ORFS present on 165 chromosomes as well as

other associated chromosomal attributes that were originally sourced from the NCBI

(Wheeler et al., 2000). I did the initial parsing of NCBI data files with various small perl

scripts and manual investigations of resultant output. I managed BLASTP calculations and

statistical analyses among the ORFS with a controllable analytical software pipeline I

constructed across a set of five computers. To make a clear division between the initial

parsing and subsequent analyses of specific ORF subsets, I developed a web application

named MYCROW (Matrix-Yanking Coding Region Objects Workbench) as a front-end to

my software pipeline. The central feature of MYCROW is to allow users to retrieve specific

chromosomal sets of ORF records that provide fields containing various descriptive and

quantitative characteristics for each ORF. I developed a simple XML approach to manage

the packaging, installation, upgrading, and running of service scripts and application files
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Table 2: Abbreviated labels for chromosomal accession numbers.

 

 

Accession Label NCBI Name

NC-000854 A.pnx. Aeropyrum pemir

NC-000917 Arch.ful. Archaeoglobus fulgidus DSM 4304

NC-002696 Caulcre. Caulobacter crescentus CB15

NC-003450 Cor.glut. Corynebacterium glutamicum ATCC 13032

NC-002662 Lac.lact. Lactococcus lactis subsp. lactis

NC.003552 Mt.acet. Methanosarcina acetivorans C2A

NC.003901 Mt.maz. Methanosarcina mazei Goel

NC-002755 tbl551 Mycobacterium tuberculosis CDC1551

NC-000962 th37Rv Mycobacterium tuberculosis H37Rv

NC.000908 M.gen. Mycoplasma genitalium

NC-000912 M.pnm. Mycoplasma pneumoniae

NC.002771 M.pulm. Mycoplasma pulmonis

NC-003272 Nostoc Nostoc sp. PCC 7120

NC-000868 Py.aby. Pyrococcus abyssi

NC.000961 Py.hor. Pyrococcus horikoshii

NC-003413 Py.fur. Pyrococcus furiosus DSM 3638

NC-003103 R.con. Rickettsia conorii

NC.000963 R.pro. Rickettsia prowazekii

NC-002737 S.pyog. Streptococcus pyogenes Ml GAS

NC-003028 Str.pnm. Streptococcus pneumoniae TIGR4

NC.002754 Sulf.solf. Sulfolobus solfataricus

NC-003106 Sulf.tok. Sulfolobus tokodaii

NC-000911 Synec. Synechocystis sp. PCC 6803

NC-004113 Thelon. Thermosynechococcus elongatus BP-l

NC-003919 Xn.axon. Xanthomonas aronopodis pv. citri str. 306

NC.003902 Xn.cmp. Xanthomonas campestris pv. campestris str. ATCC 33913

NC-004556 X.fas. Xylella fastidiosa Temeculal
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associated with the MYCROW system as it emerged from a prototype into a reliable

laboratory solution.

Two of the five computers were used for archiving and curating the data set. The

front-end archive computer was used to dynamically compile specific data sets for further

analysis, and was set up as a web server to provide an interface for specifying and retrieving

various matrices of ORF-specific data. The back-end archive computer handled and

processed a pipeline of information coming from external sources such as NCBI. Much of the

parsing of NCBI genome files and sequence-level BLAST calculations occurred on the

back-end archive computer. Both archive computers ran FreeBSD 4.9 or higher.

I used the other three of the five computers for data analysis of the curated, retrievable

data set. One of these computers was used as a relational database and archive of statistical

methods. The database was run with MySQL version 3.23 or higher. The interactive data

analysis was distributed on 2 other computers. All three of these computers ran Mandriva

Linux version 10.0 or higher. The “8” statistics language (Chambers & Hastie, 1992) was

used to perform most of the statistical calculations, and was run on the “R” statistical

environment (R Development Core Team, 2005). Perl and R were the primary software

languages used to write necessary algorithms on both the curatorial and data analysis

computers.

The front-end web server computer ran with an Intel Pentium 4 ® CPU 1.60 GHz

computer chip, and 750 MB RAM memory. The back-end archive server ran with an Intel

Pentium 4 ® CPU 2.40 GHz, and 750 MB RAM memory. The statistics archive and MySQL

database server ran on a Pentium II ® 400 MHz computer chip, and 500 MB RAM memory.

One of the computers for interactive data analysis ran on a AMD Athlon ® 1.67 Hz

computer chip, and 500 MB RAM memory. The other computer used for interactive data

analysis ran on a Pentium III ® 931 MHz computer chip, and 500 MB RAM memory.

For the purposes of a final, expedited run of the bootstrap residue calculations, a

128-processor computer was used, courtesy of the MSU High Performance Computing Center

(http://www.hpc.msu.edu/)

Screenshots of the MYCROW user interface are shown in Figures 3 and 4. The options

for the retrieval fields associated with ORF records are: similarity score (based on
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expectation score < 10_6), GenBank accession number (the sequence-unique “geninfo”

number was used for this), annotation, function, product, amino acid length, nucleotide

length, chromosome location of the translational start point, chromosome location of the

translational end point (excluding stop codon), polarity (orientation on chromosome),

chromosome shape, chromosome size, a series of numbers quantifying the period-three signal

in the DNA, organism identifier (NCBI taxon id), organism name (the NCBI epithet-like

name), translation table (the value is based on descriptions at EMBL), statistical profile (%

GC, codon counts), DNA sequence, and amino acid sequence.

2.2.3 Taxonomic and Phylogenetic Categorizations

I applied a taxonomic hierarchy to the data set of fully sequenced genomes by using the

taxonomic rankings and nomenclature from the National Center for Biotechnology

Information (NCBI). The chromosomal accession numbers were used as a querying list for

the NCBI Taxonomy Common Tree application

(http://www.ncbi .nlm.nih. gov/Taxonomy/CommonTree/wwwcmt . cgi). The data was

parsed, and an outline of taxonomic groups built, by tallying up those taxonomic groupings

that contained less than 20 representative strains.

For subsampling, I generally used five taxonomy-based groupings of genomes. These

taxonomic groupings are: Archaea - 17 genomes; Actinobacteria - 13 genomes;

Enterobacteriales - 17 genomes; Gammaproteobacteria without Enterobacteriales - 20

genomes; and Lactobacillales - 13 genomes.

I built four phylogenetic trees with times of divergence based on estimates from

Battistuzzi et al. (2004) to characterize samplings of Archaea, Gammaproteobacteria, Bacilli,

and Actinobacteria. I evaluated the growth of phylogenetic range by looking at the number

of available chromosomes, species with more than one representative strain, and number of

representative phyla for each year since the beginning of 1995 based on associated date of

publication in the literature or submission to GenBank.

I also sought to evaluate the relationship of the set of 155 genomes with natural diversity

of the prokaryotic biota based on an historical reference on infectious disease (Hoeprich,

1972) and my own classifications of ecological and lifestyle categories based largely on
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Construct a data set

ORFS are tagged with their Gen/"to (GI) numbers

0 Select one or more ORF attributes

I— Homology Score (based on expectation score<10'6)

I- GenBank Accession Number

I- Annotation

I- Function

I" Product

I- Amino acid length

I- Nucleotide length

I— Chromosome location; translational start point

I- Chromosome location; translational end point (excluding stop codon)

l— Polarity (orientation on chromosome)

I- Chromosome Shape

I" Chromosome Size

I- DNA Fourier Signal

I- Organism ID

I- Organism Name

I- Translation Table (the value is based on descriptions at EMBL)

I" statistical profile (% GC, codon counts, fairly large)

I- DNA sequence (warning, this could produce a large file)

I'- Amino acid sequence (warning, this could produce a large file)   
Figure 3: Selecting ORF attributes for retrieval from the online MYCROW information re-

trieval web page. The user constructs the columns of a data set by selecting checkboxes

corresponding to ORF features of interest.
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° Select one or more of the following organism/chromosome sets

Organisms (1+ chromosomes)

 

All organisms

Aeropyrum pemix

Agrobacterium tumefaciens str. C58 (Cereon)

Agrobacterium tumefaciens str. C58 (U. Washington)

Aquifex aeolicus VF5

Archaeoglobus fulgidus DSM 4304

Bacillus anthracis str. A2012 
Individual chromosomes

 

All chromosomes

Aeropyrum pemix (circular); 1.7M: NC_000854)

Agrobacterium tumefaciens str. C58 (Cereon) (circular); 2.8M; NC_003062)

Agrobacterium tumefaciens str. C58 (Cereon) (linear); 2.]M; NC_003063)

Agrobacterium tumefaciens str. C58 (U. Washington) (circular): 2.8M; NC_003304)

Agrobacterium tumefaciens str. C58 (U. Washington) (linear); 2.1M; NC_003305)

Aquifex aeolicus VF5 (circular): 1.6M; NC_000918) Anna.-.

0 Filter choice #1

IORF ATTRIBUTE I '??‘?‘???? I I

0 Format the output

 

|'~7 Prepend the dataset with descriptive header information

I Tab I field delimiter

Get it! I CLEAR J
   
 

Figure 4: Selecting a set of chromosomes or organisms from the online MYCROW information

retrieval web page. Options for conditionally filtering the set of ORFS based on ORF attributes,

and options for formatting the output are provided in addition to the chromosome and organism

selection windows.
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descriptions in the original genome journal publications.

2.2.4 External ORF-Based Data Sets

A study from Covert et al. (2004) focuses on Escherichia coli K-12, and uses functional

predictions and microarray assays of gene expression to better characterize bacterial

networks. Their “Supplementary Data 6” data file provides raw microarray data organized

into treatments of one wild-type strain and six knockout mutant strains growing under

aerobic versus anaerobic conditions. Of the 3699 ORF regions listed in the microarray data,

3309 of these regions (89%) had identifiers that mapped to ORFS within the MYCROW

database records for Escherichia coli K-12. There were 3 strain replicate trials for each type

of strain under both aerobic and anaerobic conditions. The resulting 42 characterizations of

gene expression (present, absent, marginal) were evaluated to assess the general

transcriptional expression of each ORF.

The analysis of Bacillus subtilis by Biaudet et al. (1997) characterizes 19 phenotypic

consequences of mutation associated with 554 genes. In that study, mutations are found to

range in effect from single phenotypic changes to six phenotypic changes. The phenotypic

categories are: osmotic stress, oxidative stress, temperature and pH stress, electron transfer,

general stress, stress by metals, starvation stress, N or C sources, glucose effect, amino acid

induction and repression, amino-acids and translation, macromolecules, protein/secretion,

envelope/lysogeny, envelope/AP/BG, cell cycle, competence, sporulation, and germination.

There were 533 of the 554 genes that had unambiguous matches to B. subtilis ORFS inside

the MYCROW database based on identifier information.

I compared the degree of paralogous representation of my ORF similarity clusters (as

calculated by the criteria of section 2.5) to paralogy sets as calculated by (Pushker et al.,

2004) for 4 strains of Escherichia coli, 3 species of Pseudomonas, 4 strains of Streptococcus

pyogenes, and 3 strains of Staphylococcus aureus.

2.2.5 Mobile Elements

Data on IS element density for 50 genomes came from a study by Moran & Plague

(2004). From their graphical plot of IS density, I assayed density values by intervals of 1 IS
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element per 350,018 bp to construct boundaried bins of i/350018 to (i + 1) /350018 where

i = {1,2, 3, ..., 34, 35}. The characteristic IS element density for each genome was set to the

value of i. The data for IS element served to comparatively characterize underlying molecular

factors of disruption to chromosomal organization.

2.3 Dot Matrix Evaluation of Conserved Chromosomal

Organization

To build dot matrices, I used data from the NCBI GenePlot application (Wheeler et al.,

2000) to gather the symmetrical best hits of ORFS as they occur between pairs of genomes. I

translated the identifiers of the bidirectional best hits, as catalogued by the NCBI GenePlot

application, to base pair coordinate information from ORF objects stored inside the

MYCROW data files. Each dot matrix represents a pairwise comparison upon which a

greater-ranging phylogenetic analysis can be conducted. I constructed a set of nine

phylogenetic comparisons where each comparison involved three strains with characterized

times of divergence from Battistuzzi et al. (2004). Among these sets of three strains, two of

the strains were more closely related to each other than to a third more “distant cousin.”

2.4 Measuring Mutual Information

Mutual information (W'eaver & Shannon, 1949; Feeny & Lin, 2004; Church & Hanks,

1990) was a measurement approach for two contexts. As applied to the dot matrix plots, I

divided the plots into square windows sag, y of a given size w (see Figure 5). The remaining,

sometimes rectangular, windows on the mth row and nth column were also included in the

analysis. These square (and remaining) windows were summed up by columns

(Cy = 2;”: 1(32', y)) and rows (rm = 2?: 1(s$,,;)). I calculated the total sum as

t = 233"“: 1 :3“ = 1(333, y). For each square window 31:, y containing plotted points

(513.1! ¢ 0), I calculated the pointwise mutual information by Equation 1. The average

pointwise mutual information was the arithmetic mean of all values of IC(x, y) where

317,31 ¢ 0. I evaluated the average pointwise mutual information for various window sizes,
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w = 10 kb, 20 kb, 30 kb, , 150 kb. I wrote a function that ran in the “R” statistics

package, version 1.9.1, to perform this calculation.

81? , )

10013.31) =10g2 (T c (1)

in“
My second context of usage was to evaluate the lag average mutual information (AMI)

 

calculations for neighboring window-Sized calculations of intrachromosomal organization (see

section 2.8). I calculated lag mutual information (in this case based on natural logarithms)

with the “mutual” function of the “tseriesChaos” package, version 0.1-6 with the “R”

statistics package, version 2.3.0. For a given window—sized calculation of intrachromosomal

organization Gw(h) on a chromosome h and the ORF densities based on that window w,- (see

the P and Q measures of Section 2.8.3), the AMI was calculated for various lag comparisons

b based on the following procedure. At most, 16 bins u,- on the ORF densities series dz- were

determined. The mutual information IL (x, y)b between each pair of differing bins, U1; and

uy, was calculated as Shown in Equation 2. Let H(w, i, h) = Cw,(h). The b value is the

amount of lag between the two series, 3' = H(w, 1, h), H(w, 2, h), H(w, 3, h), ..., H(w, N, h)

and k = H(w,b + 1, h), H(w,b + 2, h), H(w,b + 3, h), ..., H(w,b + N, h). A circular boundary

condition was applied where H(w,i + N, h) = H(w, i, h). Two counting functions were used.

There was a counting function that determined the number of j or k values falling within a

given respective bin q(ux) or q(uy). There was also a counting function that determined the

number of j and k values jointly falling within two bins q(ug;, uy) at the specified lag b. I

verified performance of the “tseriesChaos” package’s “mutual” function by custom-writing a

separate function that produced the same results over various test cases.

q(u$iu)

sense
I compared the lag AMI series for the different measures of intrachromosomal

ILfiI’, ylb =108

organization described in Section 2.8.3.
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Figure 5: Calculating the pointwise mutual information on a dot matrix of conserved ORF

organization. A grid of m rows and n columns is applied to a dot matrix based on a given

window size 11). Rows (rm), columns (Cy) and squares on the grid (rm) are regions used for

counting up relative densities to the overall number of dots on the dot matrix.
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2.5 Specification of Operational ORF Subset

Similarity counts were evaluated for each of the 447,551 ORFS. The Similarity count was

the inclusive number of ORFS in the set of 447,551 ORFS that matched a similarity filter for

a given ORF based on characteristics of the amino acid sequences. The similarity filter

involved two requisite criteria: a BLASTP expectation score 3 10—6, and an amino acid

length difference of at most :I: 10%. To avoid computational times exceeding one month, I

did not calculate 447,551 consecutive one-to-many BLASTP comparisons, nor did I run a

BLASTCLUST computation on the entire set of 447,551 ORFS. Rather, I developed a

speedier approach that took 8 days on the archive computer. This approach is done by

calculating sets of ORF that range in length by 10%. The parameters for length variation are

incremented stepwise by 5%. BLASTCLUST is then calculated on each length-based set of

ORFS. Then, for each ORF, I re-tallied the computed similarity clusters to identify the

putatively matching ORFS that were within a length range of i 10% of the particular ORF.

I performed one iteration of resolving transitive relationships.

I then categorized each ORF by the number of similar ORFS in the data set of 447,551

ORFS. An ORF that was not “similar” (according to the criteria of 10% length and S 10—6

expectation score similarity) to any other ORF was in a cluster of size 1. A pair of ORFS

that were only similar to each other were in a similarity cluster of size 2. I characterized

O-ORFS as belonging to similarity clusters of size 2 6, and the putatively false set of ORFS

(S-ORFS) as belonging to similarity clusters of size S 5.

2.6 Running Tally

I developed an approach I call a “running tally” to measure the nonrandomness of

chromosomal clustering and ORFS. Running tallies contrast the spatial chromosomal

clustering attributable to original assignments of ORF properties with the clustering effect

due to randomized assignments of ORF properties. Figure 6 illustrates how the running tally

approach can visually present both the magnitude and shape of the natural invariance

compared to a randomized control. The running tally approach is similar to that of plotting

and measuring a random walk (Pearson, 1905).

45



I initially used running tallies on the ORFS of each chromosome to assess both the

inclusion and exclusion of ORFS within COGS as well as the associated coding strand

(polarity). Polarity data came from the MYCROW web application. COG data was accessed

from the COG database, ftp://ftp.ncbi .nih.gov/pub/COG/COG (Tatusov et al., 1997b,

2003), and represents data updated on March 2, 2003. The scope of NCBI’S COG database

limited the evaluation to just 67 (41%) of the 165 chromosomes. Of these 67 chromosomes,

there were 4 Actinobacteria, 13 Archaea, 12 Gammaproteobacteria, 3 Lactobacillales and 32

bacteria belonging to other taxonomic classes. I also used running tallies to evaluate the

clustering of O-ORF and S—ORF assignments.

I used a bootstrap to calculate the z-score difference between running tally measures

related to two negative controls versus those running tally measures involving original

assignments. I measured the difference between each pairwise comparison by calculating the

integral area between the two running tallies. I characterized the z-score value by the

standard deviation 0 of the distribution calculated by measured differences among pairs of

negative controls. Significance was evaluated by bootstrap where, for multiple times, the area

between running tallies of 50 randomized assignments versus the non-randomized assignment

was calculated. The mean of these 50 measurements was calculated. This step was repeated

100 times so that there were 100 means from which a bootstrap estimate mt was calculated.

This estimate was contrasted with 50 x 100 measurements between the running tallies from

pairs of two randomized assignments from which an estimate mf was calculated and a

standard deviation 0 . The z-score difference between m and m was characterized as

f t f

(mt - mf)/of.

2.7 Simulation of Informational Expansion and

Modification

I built a simulated model of recombination similar to an expansion-modification system

(EMS) (Li, 1991), yet my simulation model is a probabilistic context-sensitive grammar as

opposed to a probabilistic context—free grammar. My test was to see whether various initially

set parameters of the simulation model can be inferred retrospectively from a measurement of
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Figure 6: My method for counting up a running tally for original and randomized ORF annota-

tions. Two annotation states are evaluated and scored with either a +1 or a -1. A deliberately

constructed non-random pattern of ORFS is shown in the uppermost solid rectangle. A pattern

of ORFS based on randomized assignments of ORF annotations is shown at the bottom of the

figure in a dashed boundaried rectangle. A running tally series for the upper pattern of ORFS

is plotted with closed circles and solid lines. The running tally series for the lower pattern of

ORFS is plotted with small squares and dotted lines.
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the constructed pattern built with simulated expansions and movement of information.

The symbolic structure of my EMS-like model consists of a series of letters from the set

{A,B,C,D,E,F,G,H} as described in Equation 5. Various functions T1;(S) and Dg;(S) are

abstractions of cut-and-paste ( “translocation”) and tandem copy operations on the model

replicon. While my symbolic model is not applicable to the physicochemical detail of

recombinative change, it serves to 1) validate the idea that different sizes and stochastics

associated with mobile and duplicating segments of a sequence can produce an interpretable

signature and 2) test assumptions about how a given measure corresponds to underlying

model parameters. To investigate segmentation patterns within the final output series of

alphabetic symbols produced by each simulation (3;; E S) I calculated densities of “H”

characters within windowed subseries of each generated sp.

Equations 3 and 4 show a sequence of 8 letters that is triplicated to form a sequence that

is 24 letters in length. Depending on the value for n in Equation 4, other replicate structures

of octets can be generated (e.g., n = 2, duplicated octets; n = 4, quadruplicated octets; or

n = 5, quintuplicated octets). The n parameter acts to both set the length of the starting

sequence and establish an initial, non-stochastic pattern.

The Dg;(S) rule system (Equation 9) is to tandemly duplicate a randomly selected

internal 6-letter sequence. For example, the sequence ABCDEFGHABCDEFGH can have a

randomly selected 6-letter subsequence - AB(CDEFGH)ABCDEFGH - that, when

duplicated, creates ABCDEFGHCDEFGHABCDEFGH. The N(Y) = 6 condition is an

adjustable, initial parameter for the simulation, and I evaluated this condition over a range of

conditions N(Y) = 2 to N(Y) = 12.

The T3(S) rule system (Equations 6 - 8) involves identifying two locations of a “HA”

subsequence. A target location for this translocational event is then identified and the

translocation event performed. A more detailed illustration of this system is shown in Figure

63 in Chapter 5.

My stochastic rule system is shown in Equation 11 where q is a uniformly distributed

random variable on the interval [0, 1].

In a rough sense, I meant for the original simulation design to have one letter

corresponding to 10,000 bases. Based on this relationship, 500 letters equals 5,000,000 bases,
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a value that is loosely representative of a prokaryotic chromosome’s size. The simulation ends

once the sequence expands to more than 500 letters.

.11 a {A, 3,0, D, E, F, 0,11}

.1 -—+ ABCDEFGH

Ls{awx=1}

n=3

L—->[.rrr[:r=J}

: If 3(W, X, Y, Z)

: If 301". X, Y, Z)

 

SI SE A!“
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Z 6 M‘)

 

/\ (

A (Y e HAAPHA) .3 -+ S (8)

/\ (
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(X e M‘)
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/\ (Z 6 AI”)

/\ (1V(Y): 6)

S—> 733(5) {1‘9} (11)

Bails) {Q}

There is a total of three parameters that can be specified for each simulation trial: 1) the

stochastic incidence q of tandem copy events (Dx(S)) versus cut-and-paste events (T1(S)),

2) the size of tandem copy events specified by the N(Y) condition in Equations 9 and 10, and

3) the number of consecutive octets representing the starting sequence (Equation 4).

2.8 Measures of Internal Physical Clustering

2.8.1 ORF Density Calculation and Randomization

Let C be the set of chromosomes where C = {01,02, C3, "-1616416165l- Let A,- be the set

of ORFS on each chromosome c,- as they are annotated from the NCBI microbial genomes

database (Wheeler et al., 2000). Based on the O-ORF subset definition arrived at in Chapter

4, define R,- C A, as the set of O-ORFs for a given chromosome Cir and let r1: 6 R1; As
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measured from a somewhat arbitrary zero—point on a chromosome c231 let P(rx) represent

the translational start point of each O-ORF r3. When dividing the chromosome length L

into 6-sized segments, let A(a, b) represent the number of ORFS for which

a S P(rx) < (a + b). A(6n,6) is the number of ORFS for which 6n 3 P(T‘1‘) < 6(n + 1).

Let F be the O-ORF density series {A(06,6),A(16,6), A(26,6), ...,A((n — 1)6, 6), A(n6, 6)}

I evaluated chromosomal segmentation sizes 6 ranging up to 150,000 bp. Shuffiing

involved rearrangement of 6—sized segments. For each segmentation size 6, I constructed 10

shuffled chromosomes for each of the 165 chromosomes to generate a set of 1,650 shuffled

versions of chromosomes. Shuffling was done by randomizing the ordering of A(6n, 6)

observations to produce the x set. Let x 2 X1, X2, ..., X10 be independent, identically

distributed shuffled samples from the ordered sequence of translational start point counts F.

For example, if F = {A(06,6), A(16, 6), A(26, 6), A(36, 6), A(46, 6)}, then a random

reassignment of order could be X1 = {A(36, 6), A(26,6), A(46, 6),A(16, 6), A(06, 6)}.

To contrast F with x, I used the bootstrap procedure by resampling shuffled versions of

the 165 chromosomes. For both unshuffled and shuffled versions of chromosomes, I calculated

various measures of internal physical ORF clustering (Section 2.8.3). My objective was to use

the distribution of measures on the X set as a basis for assessing measures of F (the

unshuffled chromosome) versus any single X,- (a shuffled chromosome). A more detailed

description of how bootstrap calculations were organized is in Section 2.8.4.

2.8.2 Lag k Autocorrelation

For a series of ORF densities of length N, I calculated kth neighbor product-moment

autocorrelations by lagging the series by k and dividing a covariance by the product of

deviations as shown in Equation 12 (Box & Jenkins, 1976). B represents either N — k or N

for linear or circular chromosomes respectively. Let dz- = Fi' With respect to circular

chromosomes, a circular boundary condition applies where d,- + N = dza For each analyzed

chromosome, a series of Pearson product moment autocorrelation r values

1The zero location on a chromosome was based on NCBI’s data files and does not defini-

tively correlate with any natural landmarks on the chromosome such as oriC. For example,

annotated locations of non-zero oriC on chromosomes include locations 915,732 (on a sequence

of 2,841,490 bp), 4,788,169 (on a sequence of 5,528,445 bp), and 3,840,051 (on a sequence of

4,599,354 bp).
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(r1,r2, r3, ...,rB _1) is generated.

,k z 2.”: 1w.- —H><d.-+i ——?1‘>

(B —1>\/Z(d.-— 71)? 2w.- .. k — 3)?

 
 (12)

2.8.3 Scalar Residue Measures of Internal Clustering

To quantify the interdependence among consecutive values in a lag is autocorrelation

series (rk, rk + 1177: + 2, ...), I calculated a sum of squared differences as shown in Equation

13. I compared the E(F) value to similarly calculated values based on shuffled versions of the

ORF count series E(Xi), and the deviation from the bootstrapped distribution of

shuffled-based values calculated.

k<(N—1)

E(F) = 2 (r1. — wk- 1)? (13)

1:23

The calculated deviation was relative in that I compared the bootstrapped distribution of

abs(E(F) — E(Xi) to the bootstrapped distribution of abs(E(X,) — E(Xj)) as described in

Section 2.8.4.

I also developed an alternate measure of ORF arrangement that is similar to that

described for the Angular quuency Transform of Sandvik et al. (2004). This alternate

measure treats the ORF count series as a pseudophase space. The trajectory angles 62- and

rotations w are measured on the pseudophase space, and frequency of occurrence evaluated.

The transform of F2- to 92- was done through the plotting of a: and y coordinates as described

in Equations 14 - 16.

(frat/1P (FivFi+1) (14)

(Iiv$i+11$i+2) = (63541117242) (15)

(yiayi-I-lty’i-I-Z)=(Fi+11Fi+29Fi+3) (16)

The angle 62- and its rotational direction to is calculated with the three points (xi, y,),
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(r,- + 1, 31,- + 1), (r,- + 2,11,; + 2). Clockwise rotations are represented by w = 1.

Counter-clockwise rotations are represented by w = —1. The rotational angle 62' is the

product of w and 62:; 62- = 6,- * w.

I assessed the heteroscedasticity of the angular change distribution of 6, values on the

pseudophase space based on shuffled versions of the ORF count series (see Section 2.8.4). I

evaluated D(F, Xi) as the average Kolmogorov-Smirnov (KS) statistic (Young, 1977)

between the distribution of 8,- values from F versus the 62- distribution from a randomly

selected (with replacement) Xi- I compared D(F, Xz) to measures of the KS statistic

between two shuffle-based distributions, D(Xiv Xj)' The bootstrapped difference between the

mean characteristic value of D(F, X21) and the mean characteristic value of 00%, Xj) was an

angular frequency residue P(Ci, 6) of a given chromosome cz- and segmentation size 6.

Both P(c2-, 6) and Q(c,-, 6) were evaluated for multiple O-ORF density series based on

segmentation sizes ranging from 500 bp to 150,000 bp.

2.8.4 Bootstrapping

For each segment size and chromosome, the differences were resampled 10 times based

on measures of the unshuflied version versus a randomly selected (with replacement) shuffled

version from a set X of 10 shuffled versions. The mean of these 10 values was computed,

v = '55. The process for computing 1) scores was repeated 20 times to produce the values

V = {121, ..., v20}. The mean of these 20 values was computed, b = V. The process of

computing b scores was repeated 10 times to produce the values B = {b1, ..., blo}. The

process for computing B was repeated 10 times for the pseudophase angular assay (related to

the D function) and 20 times for the lag k-based assay (related to the E function of Equation

13). The means for each of the B assays were selected as the characteristic scores for the

evaluated segment size and chromosome. As a random control, the characteristic scores were

recalculated with a pool of ten random shuffled versions substituting (at random) for the

unshuffled version for each of the mean(B) calculations. The scheme of calculating processes

repeating other sub-processes led to an initial sampling iteration count of 10 and resampling

iteration counts of 4,000 for Q(c2-, 6) scores (based on the E comparisons, Equation 13) and

2,000 P(cz-, 6) scores (based on D(F, Xi) — D(X2', Xj) comparisons) for each segment length 6
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and chromosome 6i The bootstrapping iterations on the averaged 1) values were respectively

200 and 100. Overall, I ran 2,970,000,000 calculations of these scalar measures for internal

physical clustering. Multiple trials of this entire process led to characteristic scores that were

generally at most :l:5% different from repetitious calculations of characteristic scores for the

same segment size and chromosome. The Q scores were termed as symmetry scores, and the

P scores were termed as symmetrical shape scores.

2.8.5 Harmonic Symmetry of ORF Density and the Windowed

Asymmetric Deviation

My goal was to 1) identify those segmentation sizes 6 (500 bp, 1,000 bp, 1,500 bp, ...,

149,500 bp, 150,000 bp) most closely associated with non-shuffled series of O-ORF densities

(F) and 2) characterize and compare the degrees of non-randomness attributable to measures

of internal physical clustering. To accommodate the influence of neighboring segmentation

sizes, a further objective was to inspect windows of Q(ci, 6) values covering multiple

segmentation sizes 6.

I first evaluated the simulated outputs sp 6 8 (Section 2.7) to investigate whether

Q(sx, 61) was related to Q(sa;, 62) when the difference in segmentation sizes (61 — 62) for

computing density of “H” letters was predictive of the initial model parameter T. To

evaluate how differences in Q values relate to underlying segmentation related factors of

61 — 62 and T, I applied a fast Fourier transform (FFT) to each T-based series

{Q(sx, 1), Q(sx, 2),Q(sx, 3), ...,Q(s$, 29), Q(s$, 30)}. My theory for this is that insertions of

predictable sizes T should produce similar values of Q(s;1;, 61) and Q(s;1;, 62), and the

frequencies associated with the higher FFT-computed amplitudes should inversely relate to

the periodicity-generating effect of a particular T value.

With the assumption that mobile elements guide the insertion of new DNA into a

replicon of a restricted or non-restricted range of insertion size (comparable to a potentially

heritable T-like parameter characteristic of a lineage), I sought to determine the range of

segmentation sizes that captured a significant overall rise and fall of Q values. I ran windows

of 51 values (25,000 kb) on series of 300 Q(cz-, 6) values where 6 ranged from 500, 1,000,

1,500,..., 149,500, 150,000. For a given window start point I, the 51 values corresponded to a
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6-based series of r, z + 500,1 + 1, 000, 1' + 1, 500, ..., I + 25, 000. To filter out small-scale

effects and characterize the relative amplitude of the overall rise and fall for this range, I

calculated the first spectral modulus from an FFT on the series of 6-based Q values for a

given Ci and 1‘ (Figure 7). The first spectral modulus is the square root of the sum of squared

sine and cosine coefficients associated with a frequency value of 1, and I termed this value to

be the windowed asymmetric deviation.
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Figure 7: Illustration of the windowed asymmetric deviation measure. An amplitude A1 is

measured for a period-1 wave on a windowed series of Q values. Subfigures a and b show how the

characteristic A1 value can change based on a different window start point 1:. A1 is calculated

as the first spectral modulus of the FFT on a window of the 300 Q values corresponding to

segmentation sizes 6 ranging from 500 bp to 150,000 bp.
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Chapter 3: Diversity and Stability of

Chromosomal Organization and

Content

3.1 Taxonomy of Chromosomal Data

3.1.1 Patchiness of Taxonomic Representation

Based on the NCBI taxonomy (Wheeler et al., 2000), the scope of analysis for the 155

strains with fully sequenced genomes involves 16 phyla, 82 genera, and 126 species. These

taxonomic groupings are consistent with an externally developed phylogeny (Battistuzzi

et al., 2004). A visual outline of this taxonomy (Fig. 8) is a key to the relative representation

of various taxonomic groups. Some groups are well-represented while others are not. The two

most prominent phyla in Fig. 8 are the Proteobacteria and Firmicutes, each containing over

several dozen strains with fully sequenced genomes. At the class level, the

Gammaproteobacteria are disproportionately well-represented, representing 24% of the 155

genomes in this study. Seven phyla have only one representative genome. These seven,

sparsely represented phyla are Nanoarchaeota, Thermotogae, Aquificae,

Deinococcus-Thermus, Plantomycetes, Chlorobi, and Fusobacteria.

A bias for certain types of organisms exists in the data set of 155 strains with fully

sequenced genomes. In particular, by using names of species as listed in a widely-cited,

historical reference on infectious diseases (Hoeprich, 1972), I calculated a significant bias for

pathogenic bacteria in the set of 155 strains. 50 (32%) of the 155 strains were implicated, by

their epithet, as belonging to one of the 99 pathogenic bacterial species indexed by Hoeprich

(1972). Of the 52 genera I found indexed by Hoeprich (1972), 25 (48%) genera were present

in the set of 155 strains. Of the 99 infectious disease species I found listed in Hoeprich

(1972), 35 (35%) of these correspond to species in the set of 155 strains. Also, from the
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Figure 8: Taxonomic scope of 155 fully sequenced genomes. The patchiness of taxonomic

branch representation for 155 genomes is shown by an outline of groupings where each branch

contains less than 20 distinct genomes. The hierarchical structure and naming of taxonomic

units is based on the NCBI taxonomy. Higher level taxa are labelled underneath their corre

sponding branch line. Gammaprot. = Gammaproteobacteria.
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vantage point of making closely related strain—to—strain comparisons, the 35 infectious disease

species in the set of 155 strains corresponded to 50 strains (32%). By contrast, there are 91

species in the set of 155 strains that are not present in Hoeprich (1972). These 91 species

correspond to 105 of the 155 strains.

The bias of pathogenic bacteria representing approximately one third of the 155 strains

is further characterized by sets of closely related strains. For the 21 sets of strains having the

same species name (Fig. 13b), 19 of these sets associated with pathogenic bacteria compared

to only 2 sets associated with non-pathogenic bacteria.

3.1.2 Evolutionary Times of Divergence

Fig. 9 - 12 show how the 155 genomes of this study relate to a reconstructed timescale of

prokaryotic evolution based on a universal last common ancestor of 4,250 million years ago

(Ma) (Battistuzzi et al., 2004). Timescale reconstruction for the Archaea involved a 1,200

Ma fossil calibration (Battistuzzi et al., 2004) (Fig. 9). Timescale reconstruction for the

Bacteria involved a 2,300 Ma minimum geological calibration (Fig. 10 - 12). Based on these

timescale reconstructions, I found that membership within the same genus corresponds to a

time range of 6 Ma - 1,300 Ma.

3.1.3 Comparative Power of Data Set

The breadth and depth of the 155 genomes (165 chromosome sequences) has accumulated

over time with increasing comparative power and phylogenetic coverage as shown in Fig. 13.

21 species are present for which there was more than one representative strain and

corresponding genomic sequence. 48 fully sequenced genomes had at least one other closely

related genome sharing the same species name. Overall, the data set of 155 genomes contains

well over a dozen different sampling points for studying broad, phylum-independent patterns

as well as for evaluating distinctions among strain-to—strain comparisons.
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Figure 9: Times of divergence for 15 Archaea. Branch length units are in millions of years

(Ma). a=233 Ma. b=215 Ma. c=254 Ma. d=188 Ma. e=323 Ma. f=338 Ma. g=377 Ma.
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Figure 10: Times of divergence for 12 Gammaproteobacteria. Branch length units are in

millions of years (Ma). a=6 Ma. b=102 Ma. c=96 Ma. d=105 Ma. e=57 Ma. f=106 Ma.
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Figure 11: Times of divergence for 8 Bacilli. Branch length units are in millions of years (Ma).
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Figure 12: Times of divergence for 4 Actinobacteria. Branch length units are in millions of

years (Ma).

3.1.4 Replicon Topology, Size, and Composition

The number and variety of distinct chromosomes constituting each overall genome varied

between one and two. A majority (145, 94%) of the 155 genomes contained only a single

distinct chromosome. Two distinct chromosomes appeared in the following 10 of the 155

genomes: (Agrobacterium tumefaciens C58 U. Washington and C58 Cereon; Brucella

melitensis 16M; Brucella suis 1330; Vibrio vulnificans CMCP6 and YJ016; Vibrio cholerae;

Vibrio parahaemolyticus; Deinococcus radiodurans; and Leptospira interrogans).

While the replicon topology for most of the chromosomes was circular, five of the

chromosomes were linear. The genomes with linear chromosomes are Borrelia burgdorferi

B31, Agrobacterium tumefaciens (2 strains, C58 U-Washington and C58 Cereon),

Streptomyces coelicolor A3(2), and Streptomyces auermitilis MA-4680. The A. tumefaciens

genomes have two topologically distinct chromosomes where one chromosome is circular and

the other is linear.

The sizes of the 165 chromosomes range from 360 kb (one of the two distinct

chromosomes present inside Leptospira interrogans serovar lai str. 56601) to 9,100 kb

(Bradyrhizobium japonicum USDA 110). Tables 3 and 4 show genus—level and species-level

variation in genome sizes based solely on DNA associated with distinct chromosomes. Even

with this restricted consideration of genomic content, variation within a genus can be almost

three—fold such as with fully sequenced strains of Mycoplasma and Treponema. As

characterized by Tables 3 and 4, the range in median genome size differences among members

of the same genus is 256 kb compared to a 52 kb difference among members of the same

species. Differences among members of the same species are generally quite small in
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Figure 13: Comparative scope of available chromosomes and genome-sequenced over time.

Annual trends showing the cumulative total of (a) number of sequenced chromosomes, (b) sets

of two or more genome-sequenced strains belonging to the same species, and (c) number of phyla

with one or more sequenced genome-sequenced strains. Start and stop dates are 1995/7/28

(Haemophilus influenzae) to 2004/3/20. Years are based on date of cited publication for the

genome (or corresponding species set or phyla). When there is not a regular publication, the

date of online publication (i.e., “epub”) or time of initial full sequence submission to GenBank,

was used.
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Table 3: Conservation of total genome size for various genera.

 

 

Genusa No. of Size Range Genome Sizes

species (kb) (Mb)

Brucella 2 20 3.3, 3.3

Therrnoplasma 2 20 1.6, 1.6

Chlamydia 2 30 1.0, 1.0

Listeria 2 67 2.9, 3.0

Xanthomonas 2 99 5.1, 5.2

Haemophilus 2 131 1.7, 1.8

Rickettsia 2 157 1.1, 1.3

Pyrococcus 3 170 1.7, 1.8, 1.9

Pseudomonas 3 215 6.2, 6.3, 6.4

Sulfolobus 2 297 2.7, 3.0

Streptomyces 2 358 8.7, 9.0

Mycoplasma 6 779 0.58, 0.82, 1.0, 1.0, 1.2, 1.4

Corynebacterium 3 820 2.5, 3.1, 3.3

Clostridium 3 1,141 2.8, 3.0, 3.9

Bordetella 3 1,253 4.1, 4.8, 5.3

Lactobacillus 2 1,316 2.0, 3.3

Methanosarcina 2 1,655 4.1, 5.8

Treponema 2 1,705 2.8, 1.1

 

3The listed comparisons involve strains that are of different species, but belong to the same

genus.

comparison to most genus-level comparisons, except for the differences between

Prochlorococcus marinas strains and Escherichia coli that each approach a one million base

pair (Mb) difference in genome size.

Based on the available data for fully sequenced genomes, I found genomes to be variable

in their number of corresponding plasmids. There were 69 sequenced plasmids of variable

topology, and these belonged to just 30 of the 155 genomes. 51 of the plasmids are annotated

as having a circular topology, and the data files for 18 other plasmids do not have an

annotated topology. I found that many of the plasmids without an annotated topology were

reportedly linear (Ikeda et al., 2003; Casjens et al., 2000; Ivanova et al., 2003). As

characterized by available data files, 11 of the fully sequenced genomes have just 1 plasmid,

and 12 of the fully sequenced genomes have 2 plasmids. The Yersinia pestis C092 genome

has 3 plasmids. Nostoc sp. PCC 7120 has 6 plasmids. Borrelia burydorferi B31 has 21

plasmids. I found the range of plasmid size to be 1,286 base pairs to 2,095,000 base pairs.

The first to third quartile range of plasmid size is 25,110 to 161,600 base pairs. The median
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Table 4: Conservation of total genome size for various species.

 

 

Species No. of Size Range Genome Sizes

strains (kb) (Mb) ~

A. tumefaciens 2 0.7 4.9, 4.9

Tropheryma whipplei 2 1 0.9, 0.9

Chl. pneumoniae 4 4 1.2, 1.2, 1.2, 1.2

Myco. tuberculosis 2 8 4.4, 4.4

Shigella fierneri 2 8 4.6, 4.6

S. enterica 2 17 4.8, 4.8

Helicobacter pylori 2 24 1.6, 1.7

Buchnera aphidicola 3 25 0.641, 0.641, 0.641

Streptococcus pyogenes 4 48 1.9, 1.9, 1.9, 1.9

Streptococcus agalactiae 2 51 2.2, 2.2

Yersinia pestis 2 53 4.6, 4.7

Staphylococcus aureus 3 63 2.8, 2.8, 2.9

Vibrio vulnificus 2 85 5.1, 5.2

Neisseria meningitidis 2 88 2.2, 2.3

Streptococcus pneumoniae 2 122 2.0, 2.2

Bacillus anthracis 2 134 5.1, 5.2

Xylella fastidiosa 2 160 2.5, 2.7

Bacillus cereus 2 188 5.2, 5.4

Prochlorococcus marinus 3 753 1.7, 1.8, 2.4

Escherichia coli 4 889 4.6, 5.2, 5.5, 5.5

 

plasmid size is 40,340 base pairs. I found instances where plasmids were not included as part

of the fully sequenced genome data, such as for the three plasmids of Yersinia pestis KIM

(Deng et al., 2002).
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Figure 14: Number of annotated ORFS versus genome size for 155 genomes. The slope is 893

ORFS per Mb of chromosomal DNA (intercept = 94). r2 = 0.97.

3.2 Structural Constraints of Chromosomal

Organization and Content

3.2.1 Open Reading Frames

NCBI data files for fully sequenced genomes present a total of 447,551 annotated open

reading frames (ORFS) for 155 genomes. Based on these ORF annotations, I found that a

total amount of 415,890,648 base pairs (bp) of 483,773,411 bp (86.0%) encodes for amino

acids from chromosomal DNA. Per organism, this ratio of total ORF content to chromosome

size varied from 49.5% (Mycobacterium leprae) to 96.8% (Pirellula sp. 1) and encompassed a

first-to—third quartile range of 84.1% to 89.5%. I calculated there to be, on average, a density

of one ORF for every 1,086 bp for the set of 165 chromosomes. The first quartile value is one

ORF for every 1,140 bp, and the third quartile value is one ORF for every 1,020 bp. The

lowest density is one ORF for every 2,036 bp (M. leprae), and the highest density is one ORF

for every 853 bp (Pyrobaculum aerophilum str. 1M2). Fig. 14 shows a strong linear

correlation of annotated ORFS versus total chromosomal content and corresponds to a

density of one ORF for every 1,112 bp. I found that the annotated locations and lengths of

ORFS remains relatively constant across various versions of data in the NCBI database.

I characterized ORF lengths by the number of encoded amino acids (aa) typically
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Figure 15: Distribution of 447,551 ORF lengths for 155 genomes. ORF lengths are shown as

the number of encoded amino acids (aa) in each ORF. ORF length histograms are shown for

three different scalings: (a) 0 to 2,000 aa, bin size = 25 aa; (b) 1,000 to 5,000 aa, bin size =

250 aa; and (c) 5,000 to 20,000 aa, bin size = 1,000 aa.

associated with the translated protein product. Fig. 15a shows an L—shaped distribution of

ORF lengths. Most ORFS (> 95%) range in size from 0 to 705 aa. Only 1.4% of ORFS are

greater than 1,000 bp (Fig. 15b and 15c). The average ORF length is 310 a with a standard

deviation of 237 aa. The median ORF length is 265 aa.

Fig. 16 shows the L-shaped distribution to be a robust property that occurs across

various taxa. The plotted 127 aa line is an indicator of a common protein domain size of 14

kDa (Savageau, 1986). The plotted first quartile mark ‘11 ranged from 235 aa to 267 aa. The

first quartile mark was about twice that associated with the common protein domain size of

127 aa. These markings on the frequency peak structures of Fig. 16 visually confirm a

scenario of modular protein structure where proteins are composed of one or multiple

domains. Fig. 17 portrays all 5 distributions together, with a cubic-spline smoothing of each

frequency distribution from Fig. 16. The smoothing function fails to produce lengthy,
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monotonic regions of increases or decreases in ORF length frequency for ORF lengths > 127

aa. There does appear to be a plateau between 127 aa and 254 aa that has an internal range

of variation to be at least 10% in relative frequency.

A lognormal transform of the ORF length distribution is shown in Fig. 18. The fit of

Fig. 18 to a normal distribution is p < 0.01 based on a Shapiro-Wilk test (Royston, 1982).

The skewness value (Joanes & Gill, 1998) on the lognormal transform was -0.32.

Distributions with a longer than normal left side have negative skewness values.
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3.2.2 ORF Arrangement

For a pairwise comparison of conserved ORF organization, I examined bidirectional best

hits of ORFS by constructing dot matrix plots with the physical coordinates of each ORF’S

translational start point. Fig. 19 shows the conservation of ORF arrangement among two

sets of strains sharing the same species name. A high level of conservation was indicated by a

generally non-interrupted line proceeding from the bottom left to the upper right of each dot

matrix, and membership within the same species correlated well with this pattern. Fig. 20

Shows two dot matrix comparisons between genomes that belong to the same family or genus,

but do not share the same species name. There was substantially less disruption of conserved

ORF organization in Fig. 19 compared to Fig. 20. The degree of conservation was quantified

for various segmentation sizes 6 through the use of average pointwise mutual information

(APMI), a property I evaluated for 6 = 10 kb, 20 kb, 30 kb, ..., 150 kb. Fig. 21a shows the

average APMI for species-level comparisons and genus-level comparisons. A smaller

segmentation size 6 corresponded to a higher amount of measured information common to

the relative ORF locations from each pairwise comparison. Higher values of APMI indicate a

greater degree of information between the paired genomes compared to lower values of

APMI. Mutual information is generally interpreted in units of bits, and APMI values can be

meaningfully compared across different chromosomes of different lengths and also for

different segmentation sizes 6. Visually, it appears that Fig. 19a and 20a each respectively

outperform Fig. 19b and 20b, and the APMI measures are consistent with this. For Fig. 20,

the APMI based on 6 = 40 kb has a 28% reduction in value compared to an 8% reduction in

value for APMI based on 6 = 10 kb. I generally found the 40 kb-based APMI values to have

a proportionately greater decline in value compared to the 10 kb—based APMI values across

various phylogenetic comparisons.

To investigate pairwise comparisons of genomic organization with an estimated time of

divergence from a last common ancestor, I evaluated conservation for the comparisons listed

in Table 5, and used the times of divergence characterized in Fig. 25 - 33. Fig. 21b shows the

average APMI E for comparisons from column 1 of Table 5 and the averaged APMI

7,; = {Lg-3 for comparisons from columns 2 and 3 of Table 5.

Table 6 lists the the correlations and slopes of how various 6-based APMI values relate to
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versus Ol57:H7. The APMI values for segmentation sizes 6 of 40 kb and 10 kb are indicated
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Table 5: Diverging set of phylogenetic comparisons.a

 

 

Pairwise Closest Pair Closest & Closest &

Comparisons Distant Ancestor Distant Ancestor

A Py.aby+Py.hor. Py.aby.+Py.fur. Py.hor.+Py.fur.

B Mt.acet.+Mt.maz. l\"It.a.cet.+Arch.ful. Mt.maz.+Arch.ful.

C Sulf.solf.+Sulf.tok. Sulf.solf.+A.pnx. Sulf.tok.+A.pnx.

D tb1551+th37Rv tb1551+Cor.glut. th37Rv+Cor.glut.

E Nostoc+Synec. Nostoc+Th.elon. Synec.-i-Thelon.

F S.pyog.+Str.pnm. S.pyog.+Lac.lact. Str.pnm.+Lac.lact.

G l\/I.gen.+l\I.pnm. l\-I.gen.+M.pulm. M.pnm.+M.pulm.

H R.pro.+R.con. R.pro.+Caul.cre. R.con.+Caul.cre.

I Xn.cmp.+Xn.axon. Xn.cmp.+X.fas. Xn.axon. + X.fas.
 

3’The closest pair column is a comparison between the two most closely related strains rel-

ative to comparisons involving a more distant last common ancestor (two rightmost columns).

The abbreviations used are defined in Table 2.
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Figure 20: Comparisons of ORF organization for two Mycobacterium species and two species

from the Enterobacteriales. (a) M. tuberculosis H37R and M. leprae. (b) Escherichia coli

K-12 and Yersinia pestis C092. The APMI values for segmentation size 6 of 40 kb and 10 kb

are indicated at the top of each dot matrix.
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and closed circles. The values of averaged APMI genus-level comparisons are shown by dashed
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Table 6: Correlation of APMI with time of divergence.“

 

 

6 m r

10 kb -0.421 0.434

20 kb -0.479 0.472

30 kb -0.517 0.508

40 kb -0.509 0.512

50 kb -0.477 0.490

60 kb -0.456 0.494

70 kb -0.398 0.459

80 kb -0.350 0.438

90 kb -0.297 0.401

100 kb -0.216 0.318

110 kb -0.222 0.342

120 kb -0.102 0.192

130 kb -0.141 0.241

140 kb -0.077 0.145

150 kb -0.009 0.000
 

”Average pointwise mutual information values are calculated for various segmenta-

tion sizes 6 from the pairwise comparisons described in Table 5 and associated times

of divergence. The slope m and correlation coefficient r are shown for a linear rela-

tionship.

an estimated time of divergence. In particular, for the highest correlating segmentation size,

6 = 40 kb, Fig. 22 shows how APMI pairwise comparisons from Table 5 relate to estimated

times of divergence. For all 6, the r values are very weak or statistically insignificant. The

best performing range of 6 values in terms of r > 0.4 appears to be for 10 kb to 90 kb. For 6

= 40 kb, the comparisons among the Archaea (A, B, and C) have the slopes mA = 0.77,

m3 = 0.35 and mo 2 0.21, and the comparisons among the Bacteria (D, E, F, G, H, and I)

have the slopes mD =1.8,mE =1.2,mp = 0.11, mg =1.4, my = 0.58, and m, =1.5.

The Ia — I(1 difference between averaged APMI values for each of the nine sets of

comparisons is shown in Fig. 23a and 23b. The highest differences are seen for the D, G, and

H series that reach their highest respective values at 6 = 30 kb, 6 = 40 kb, and 6 = 60 kb.

The average expectation for these lineage—based comparisons is shown in Fig. 23c. The

differences between Fig. 23c and generalized species-versus-genus comparisons (Fig. 23d) are

shown in Fig. 24, and have the highest. values for segmentation sizes 6 of 10 kb and 30 kb.
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Figure 22: APMI values on dot matrix plots for various times of divergence. The letters

represent pairwise comparisons described in Table 5. For each of the 9 letter pairs (18 plotted

points), the leftmost letter is the APMI value for the corresponding pairwise comparison from

column 1 in Table 5. The rightmost letter is the APMI value for the average of pairwise

comparisons from columns 2 and 3. APMI values are calculated for a segmentation size of 6 =

40 kb. For a fitted line with a slope of 0.51 Ga’l, the r correlation coefficient is 0.51.
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Figure 24: Difference between averaged W—values of lineage and species-genus comparisons.

The ordinate value represents, for a given 6, the difference between m and n values from the

Fig. 23c and 23d respectively.

To more closely inspect the relationship of estimated times of divergence from a common

ancestor to the loss of conserved genomic organization, I visually assayed 9 dot matrix

comparisons among a total of 3 Archaea (Fig. 25-27). I further assayed 18 dot matrix

comparisons among a total of 18 Bacteria (Fig. 2833). Overall, each figure (Fig. 25 - 33)

contrasts the similarity of genomic organization of two most closely related genomes to the

similarity seen with a third, more distant “cousin.” Shown in Fig. 25 is a set of three paired

comparisons among Pyrococcus furiosus, Pyrococcus abyssi, and Pyrococcus honkoshz’i. This

comparative set of Pyrococcus species presents a case of how the loss of ORF organization

may be directly related to longer times of estimated divergence. The two most closely related

strains, P. abyssi and P. hom'koshz'z', appear to have longer regions of successively matching

ORFS than comparisons with P. furiosus.

I found that the Archaea appear visually to relate the time of divergence to the loss of

conserved genomic organization (Table 7). The ordering based on times of divergence was

fully consistent with my visual orderings of the observed loss of conserved genomic

organization, prior to consideration of APMI values. The APMI values for 6 = 40 kb (140)
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Figure 25: Comparisons of conserved ORF organization among three Pyrococcus strains. (a)

times of divergence from a last common ancestor. (b—d) relative locations of bidirectional

best hits between ORFS are plotted based on pairwise comparisons among three chromosomes.

The averaged pointwise mutual information for each dot plot is calculated and shown for

segmentation sizes 40 kb and 10 kb.

and 6 = 10 kb (110) did not however perfectly equate to the times of divergence.

Inconsistencies of APMI values in a divergence time-based ranking generally involved Fig.

25c-d and 26c-d. The sets of comparisons involving genomes of strains that diverged > 2.5

Ca (Fig. 26c-d, and 27c-d) are essentially negligible in terms of any observable conservation.

For times of divergence < 1 Ga (Fig. 25, 26, and 27) conserved regions are present across the

chromosomes, and there are regions that are at least 100 kb in length for each pairwise

comparison.

In addition to the three subtrees of Archaea, I evaluated six subtrees of the Bacteria for

conserved patterns of ORF organization and these are shown in Fig. 28 — 33. The phyla that
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with A. fulgz'dus. (a) times of divergence from a last common ancestor. (b-d) relative locations

of bidirectional best hits between ORFS are plotted based on pairwise comparisons among three

chromosomes. The averaged pointwise mutual information for each dot plot is calculated and

shown for segmentation sizes 40 kb and 10 kb.
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common ancestor. (b-d) relative locations of bidirectional best hits between ORFS are plotted

based on pairwise comparisons among three chromosomes. The averaged pointwise mutual

information for each dot plot is calculated and shown for segmentation sizes 40 kb and 10 kb.
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Figure 28: Comparisons of conserved ORF organization among two Mycobacterium tubercu-

losis strains and Corynebacterium glutamicum. (a) times of divergence from a last common

ancestor. (b-d) relative locations of bidirectional best hits between ORFS are plotted based on

pairwise comparisons among three chromosomes. The averaged pointwise mutual information

for each dot plot is calculated and shown for segmentation sizes 40 kb and 10 kb.

are represented by these bacterial subtrees are the Actinobacteria, the Cyanobacteria, the

Firmicutes, and the Proteobacteria.

Bacteria show various visual trends of synteny that do not necessarily correspond with

estimated times of divergence as seen with the analyses involving Xylella fastidiosa and

Streptococci. Overall however, there appears to be a general trend of inverse correspondence

where a greater time of divergence corresponds to a lower amount of conserved ORF

arrangement. For times of divergence (TOD) much greater than 1 Ga, synteny appears to be

essentially lost.

My visual groupings of the dot matrix comparisons for a ranking of conserved ORF
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Figure 29: Comparisons of conserved ORF organization among Nostoc sp. PCC 7120, Syne—

chocystis sp. PCC 6803, and Themosynechococcus elongatus BP—l. (3) times of divergence

from a last common ancestor. (b-d) relative locations of bidirectional best hits between ORFS

are plotted based on pairwise comparisons among three chromosomes. The averaged pointwise

mutual information for each dot plot is calculated and shown for segmentation sizes 40 kb and

10 kb.
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Figure 30: Comparisons of conserved ORF organization among S. pyogenes, S. pneumoniae,

and L. lactis. (a) times of divergence from a last common ancestor. (b—d) relative locations of

bidirectional best hits between ORFS are plotted based on pairwise comparisons among three

chromosomes. The averaged pointwise mutual information for each dot plot is calculated and

shown for segmentation sizes 40 kb and 10 kb.
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Figure 31: Comparisons of conserved ORF organization among three Mycoplasma strains.

The averaged pointwise mutual information for each dot plot is calculated and shown for

segmentation sizes 40 kb and 10 kb. (a) times of divergence from a last common ancestor.

(b-d) relative locations of bidirectional best hits between ORFS are plotted based on pairwise

comparisons among three chromosomes. The averaged pointwise mutual information for each

dot plot is calculated and shown for segmentation sizes 40 kb and 10 kb.
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(a) times of divergence from a last common ancestor.

d) relative locations of bidirectional best hits between ORFS are plotted based on pairwise
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Table 7: Relationship of time of divergence to quantitative indicators of conserved ORF orga-

nization for pairwise comparisons of archaeal chromosomes.“

 

Comparison Fig. ToD I40 110

Mt.acet. vs Mt.maz. 26b 223 Ma 3.3 6.9

 

Py.aby. vs Py.hor. 25b 338 Ma 2.2 5.7

Py.aby. vs Py.fur. 25c 715 Ma 1.9 5.5

Py.hor. vs Py.fur. 25d 715 Ma 2.1 5.6

Sulf.solf. vs Sulf.tok. 27b 1.3 Ca 2.1 5.7

Mt.acet. vs Arch.ful. 26c 2.6 Ga 2.5 5.9

Mt.maz. vs Arch.ful. 26d 2.6 Ca 2.3 5.8

Sulf.solf. vs A.pnx. 27c 3.0 Ga 1.8 5.2

Sulf.tok. vs A.pnx 27d 3.0 Ga 1.8 5.2

“APMI values I40 and 110 are calculated for 6 = 40 kb and 6 = 10 kb for the pairwise

comparisons in Fig. 28—33. ToD is the time of divergence from a last common ancestor.

When multiple figures are listed in the same row, the averaged 140 and [10 values

are presented. The abbreviations used for organism names are. defined in Table 2.
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Table 8: Relationship of time of divergence to visual and quantitative indicators of conserved

ORF organization for pairwise comparisons of bacterial chromosomes.“

 

 

Comparison(s) Fig. ToD V.R. I40 110

tb1551 vs th37Rv 28b recent 1 4.7 7.7

M.gen. vs M.pnm. 31b 171 Ma 1 2.6 5.0

R.pro. vs R.con. 32b 250 Ma 1 3.4 5.8

Xn.cmp. vs Xn.axon. 33b 106 Ma 2 3.7 7.3

S.pyog. vs Str.pnm. 30b 328 Ma 4 2.0 5.5

(Xn.cmp.& Xnaxon.) vs X.fas. 33c-d 543 Ma 4 3.1 6.6

(S.pyog.&Str.pnm.) vs Lac.lact. 30c-d 713 Ma 4 1.9 5.5

Nostoc vs Synec. 29b 756 Ma 4 2.5 6.2

(tb1551&th37Rv) vs Cor.glut. 28c—d 928 Ma 3 3.0 6.6

(Nostoc&Synec) vs Th.elon. 29c—d 1 Ga 4 2.0 5.7

(M.gen.&lV’I.pnm.) vs M.pulm. 3lc-d 1.5 Ca 4 0.9 4.2

(R.pro.&R.con.) vs Caul.cre. 32c-d 2.3 Ca 4 2.3 5.4

“APMI values 140 and 110 are calculated for 6 = 40 kb and 6 = 10 kb for the

pairwise comparisons in Fig. 28-33. V.R. is the visual ranking (1: “strong diagonal”;

2: “diagonal plus scattering”; 3: “vestigial diagonal”; and 4: “noise”). ToD is the

time of divergence from a last common ancestor. When multiple figures are listed in

the same row, the averaged I40 and [10 values are presented. The abbreviations used

for organism names are defined in Table 2.

 

organization among bacteria as listed with times of divergence from a last common ancestor

(TOD) are: #1, “strong diagonal”, ToD are recent to 250 Ma - Fig. 28b, 31b, 32b; #2,

“diagonal plus scattering”, ToD is 106 Ma — Fig. 33; #3, “vestigial diagonal”, 928 Ma — Fig.

280-d; and #4, “noise”, ToD are 328 Ma to 2,300 Ma — Fig. 29b-d, 30b-d, 31c-d, 32c-d, and

33c-d. Table 8 shows the times of divergence, visual rank, and APMI values for 6 = 40 kb

and 10 kb.

As a preliminary assessment of intragenomic structure, Fig. 34 and 35 help characterize

the invariant arrangement of ORFS based on both polarity and COG membership. For my

population of 165 chromosomes, I inspected the z-score values of significance (number of
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Table 9: Normalized ranges of polarity tallies.“

 

   
 

 

Characteristic All ORFS 1...100 201...300 401...500

Lifestyle Mdn Mean Mdn Mean Mdn Mean Mdn Mean

Oblig. ancient 0.14 0.15 0.29 0.29 0.26 0.26 0.28 0.32

Oblig. recent 0.08 0.09 0.26 0.29 0.26 0.32 0.29 0.28

Freeliving repl. 0.09 0.10 0.24 0.26 0.24 0.28 0.29 0.28

 

“Bacterial chromosomes are grouped into three characteristic lifestyle categories: obli-

gate ancient host associated, obligate recent host associated, and free-living replicative

stage. The normalized range of polarity tally is the difference between the highest and

lowest points of the tally divided by the number of ORFS. The second column eval-

uates the entire stretch of the chromosome for each bacteria. The third, fourth, and

fifth columns look at selected sets of ORFS where ORFS are numbered consecutively

from the start point of the chromosomal annotation.

sigma 0 units separating original and randomized assignments of polarity and COG

membership) from my running tally methodology. The average polarity running tally z-score

difference was 79.70 (p < 0.0001). Only 10 of the 165 chromosomes (6%) had a z-score

< 1.640. Of these 10 chromosomes, the two most predominant phyla were Cyanobacteria

(n = 3) and Euryarchaeota (n = 2). The average COG running tally z-score difference was

14.380 (p < 0.0001), yet 14 of the 67 chromosomes (21%) had 2 < 1.640. Of these 14

chromosomes, the three most predominant phyla were Proteobacteria (n = 4), Euryarchaeota

(n = 2), and Firmicutes (n = 2). 49 of 67 chromosomes were significant (:-score 2 1.64) for

both polarity and COG membership.

Based on the approximate lifestyle boundaries of chromosome size shown in Figure 36,

there was an almost two-fold steeper descent and ascent of the polarity-based running tally

for obligate, ancient host-associated genome-sequenced strains compared to the genomes of

recently host—associated and freeliving strains (Table 9). This overall range of the polarity

tally did not uniformly correspond to changes for localized regions of the chromosome. The

start point of chromosomal annotations (most likely near to the origin of replication) did not

manifest a steeper descent or ascent of the polarity-based running tally for the genomes of

obligate, ancient host-associated strains.
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Figure 34: Running tally graphs of polarity along four chromosomes. The thick line represents

increments and decrements based on whether an ORF has an assigned polarity value of 1 or

not. The dotted diagonal represents random expectation where polarity values are randomly

assigned to a chromosomal set of ORFs. The dashed lines forming a V-shape represents the

pattern if polarity values were not intermingled. (a) Bacillus subtilis subsp. subtilis str. 168.

(b) Escherichia coli K-12. (c) Vibrio cholerae (large chromosome). ((1) Yersz'nz'a pestis C092.
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Figure 35: Running tally graphs of COG membership along four chromosomes. The thick line

represents increments and decrements based on whether an ORF is a member of a COG or

not. The dotted diagonal represents random expectation where COG membership is randomly

assigned to a chromosomal set of ORFS. The dashed lines forming a V-shape represents the

pattern if all COG non-members were together followed by COG members. (a) Bacillus subtilis

subsp. subtilis str. 168. (b) Escherichia coli K-12. (c) Vibrio cholerae (large chromosome).

((1) Yersinia pestis C092.
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3.2.3 Chromosome Size

I found that the smallest fully sequenced prokaryotic genome was represented by the

Nanoarchaeum equitans chromosome (491kb) and the largest prokaryotic genome was

represented by the Bradyrhizobium japonicum chromosome (9.1Mb). Across the set of 155

genome-sequenced strains, I found that genome size (as represented by chromosomes) was

suggestive of ecological boundaries (based on Wilcoxon rank sum calculations) in terms of my

own, ad hoc, ecological grouping. I also inspected taxonomic rankings to assess the general

degree to which genome size could be a distinguishing characteristic of shared ancestry.

Expectation of the difference between median genome sizes is represented by the symbol A.

The Archaea (genome size, 491kb - 5.8Mb) and Bacteria (genome size, 580kb - 9.1kb) are

statistically different based on median genome size (p < 0.03; 95% confidence interval (bp):

—1, 730, 369 < A < —91, 633). The Alphaproteobacteria (1.1Mb - 9.1Mb) versus

Gammaproteobacteria (616kb - 6.4Mb) do not however represent a significant difference in

the medians of genome sizes (p < 0.89; 95% confidence interval (bp):

—1, 408, 279 < A < 1, 595, 946). The Lactobacillales (1.9Mb - 3.3Mb) versus

Enterobacteriaceae (616kb - 5.7Mb) represent only a weak significance in median genome size

difference, and the interpretation is inconclusive based on the confidence interval (p < 0.059;

95% confidence interval (bp): —2,778, 116 < A < 1, 154, 717).

Fig. 36 presents the distributions made by the 165 prokaryotic chromosome sizes

(5: = 3.1 Mb, if = 2.7 Mb, and s = 1.83 Mb). The distribution of chromosome sizas appears

multimodal. The declining trends at the lower and upper limits of the distribution may

reflect a limit to the overall size of a prokaryotic genome. There is evidence for relationships

between multimodal ranges of genome size and “regimes” of recombinative change; most

intracellular endosymbiotic bacteria have low levels of recombination and smaller genomes

(genome size range 640kb to 1.3Mb), compared to free-living bacteria with bigger genomes

such as those in the soil (genome size range 42th to 9.0Mb) (Moran & Plague, 2004). The

plotted lifestyles and boundaries of Fig. 36 are based on Ochman & Davalos (2006) and

Moran & Plague (2004).

While I did not find that chromosome size directly corresponded to general taxonomic

distinctions for taxonomic rankings such as phylum, class, order, and family, I did find
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Figure 36: Histogram of 165 chromosome sizes. Bin size is 500,000 base pairs. Chromosome

sizes are shown for 165 different chromosomes coming from 155 genome-sequenced strains.

Frequencies of archaeal chromosome sizes are indicated by shaded boxes stacked above the fre-

quency counts of bacterial chromosomes shown by unshaded boxes. The approximate bound-

aries for three lifestyle-based ranges of genome sizes are listed at the top of the figure and are

indicated by vertically descending, dashed lines.
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evidence for conservation of chromosome size from a last common ancestor. While the overall

linear relationship between a change in chromosome size compared to time of divergence from

a last common ancestor does not fully account for variation (1‘2 = 0.24), the slopes in Fig.

37a are uniformly positive and support a general property of conserved genomic size. I found

that a change in chromosome size is independent of the shared pointwise mutual information

for various segmentation sizes. Fig. 37b characterizes the independence of chromosomal size

with respect to APMI for 6 =40 kb (140). While a change in chromosome size (ACS)

increases with a greater time of divergence, the trend for I40 is to decrease. To evaluate the

effect of a joint consideration of both I40 and changed chromosomal size (AC5), I evaluated

both AC's/I40 (Fig. 37c) and ACS — 140 (Fig. 37d). The joint considerations had stronger

linear correlations (r 2 0.6).
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Figure 37: Relationship of divergence time from a last common ancestor to changes in chro-

mosome size and pointwise mutual information. The letters represent pairwise comparisons

described in Table 5. (a) Absolute difference in chromosome size for various times of diver-

gence, m = 0.73, r = 0.49. (b) The absolute difference in chromosome size versus the APMI

for 40 kb ((ACs) - I40), m = 0.1 and r = 0. (c-d) Chromosomal difference for various times

of divergence based on joint considerations of APMI and chromosome size. (c) The product of

absolute difference in chromosome size with the reciprocal of the APMI for 40 kb (lACs | /I40),

m = 0.37 and r = 0.60. (d) The absolute difference in chromosome size with the reciprocal of

the APMI for 40 kb (lacsl - I40); m = 1.24 and 'r = 0.66.
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3.3 Discussion

The data set of 155 genomes does not reflect an accurate accounting for the overall

ecological and phylogenetic diversity of bacteria (Cohan, 2004). The estimated number of

prokaryotes on earth is 4 — 6 x 1030 with 92 to 94 percent of these prokaryotes being in soil

subsurface regions: “marine sediments below about four inches and terrestrial habitats below

about 30 feet” (Schloss & Handelsman, 2004). I found ecologies other than soil subsurface

regions to be oversampled in the data set of fully sequenced genomes. Despite the patchiness

of taxonomic representation, the set of fully sequenced genomes has been a key component in

contemporary interpretations and estimations of prokaryotic diversity concerning genomic

organization and phylogeny (Moran & Plague, 2004; Ochman & Davalos, 2006; Battistuzzi

et al., 2004; Horimoto et al., 2001). Taxonomic estimates based on available ribosomal data

are for 35,498 species and 50 phyla, and a total estimation of a planetary species count is 105

to 107 (Schloss & Handelsman, 2004). While only a paltry 126 species are represented by the

set of 155 genomes, the 16 represented phyla provide a broad phylogenetic coverage (32% of

50). In this sense, the set of 155 genomes may reasonably characterize wide-ranging aspects

of the prokaryotes. A variety of replicon structures characterizes each of the 155 genomes in

terms of linear and circular chromosome topologies and compositions of single or multiple

distinct chromosomes. I did not find plasmid sequence data to be consistent between the

public NCBI data archive of genomic sequences and the literature. The functional definition

of a plasmid as being of a non-essential, and possibly non-stable, association with a viable

organism may allow for it to be considered separately from a chromosomal representation of

a genome.

Comparing the organization of ORFS can be an effective technique for identifying

divergent recombinations (Horimoto et al., 2001; Kalman et al., 1999; Rocap et al., 2003;

Zivanovic et al., 2002). Yet, there are large gaps of time in the estimated phylogeny for which

the data set may not be large enough to resolve every recombinative event with sufficient

statistical power (Fig. 8 - 12), and multiple sets of mobile elements can be expected to

produce complex trajectories of altered chromosomal arrangement (Gray, 2000). Based on

their representative sample sizes inside my analyzed data set, the Proteobacteria (n = 68)

and the Firmicutes (n = 38) have the greatest comparative power to reconstruct distant
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recombinational events. Yet, the Proteobacteria and Firmicutes are well-populated with

pathogenic and symbiotic bacteria, and modern analyses of genome size and structure are

predisposed to produce categorizations aligned with host-associated lifestyles (Bentley &

Parkhill, 2004; Moran & Plague, 2004; Ochman & Davalos, 2006). While divergence from last

common ancestors between various prokaryotic strains extends back several billion years or

more, a focused perspective on host association only relates to a time span stretching back to

the Cambrian age 600 Ma and, more recently, the emergence of mammals 107 Ma (Rokas

et al., 2005). The inclusion of Archaea in the analysis helps obviate a limited view of past

history since the Archaea appear to strictly exclude pathogenicity as a form of host

association. While some Archaea are host-associated commensals, this phenotype may be

primarily due to metabolic pathways atypical of the bacteria that do not benefit from

mortality of the host organism (e.g., methanogenesis) (Gill et al., 2006). Based on phenotypic

descriptions inside genomic sequence publications, I found only one of the 17 Archaea in the

data set of 155 genomes to be host associated was Methanosarcina acetivorans (Galagan

et al., 2002).

An accurate evaluation of character evolution as a consequence of recombination would

require treatment of a patchy taxonomy by specification of a uniform taxon (Grafen &

Ridley, 1997). As Fig. 17 demonstrates, I used broad, mutually exclusive groupings based on

the taxonomy to conduct my subsampling. For a finer-grained treatment, I attempted to

contrast the effects of genus membership with effects of species membership, although species

and genus definitions are not yet fully defined (Cohan, 2002). Generally, in my analysis, the

sets of closely related strains and species (Tables 3 and 4) are distributed among various

lineages, and this supports the usage of the available data set to characterize dynamics of

chromosomal organization that are common to the prokaryotes. A finer resolution to identify

specific selection pressures associated with various lineages in various environments may be

achieved by greater numbers of representative strains. I did not arrive at a uniform taxon

that was useful for approaching hypotheses of specific recombinative character states. Ideally,

the rate of heritable changes produced by chromosomal reorganization could have been

analyzed for correspondence with generational or chronological measures (Pagel, 1994).

The scope of the represented taxonomy appeared to support a goal to identify common
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limits and general characteristics of prokaryotic change as relates to ORF organization. To

accomplish uniformity with the analysis, I sought to inspect prevalent “units” of information

on prokaryotic chromosomes, and the most uniformly annotated feature appeared to be that

of open reading frames (ORFS). The identification and annotation of these ORFS

significantly relies upon automated assessments of ORF regions and similarities to other

“known” ORFS (Frishman et al., 1998). A common software tool for identifying ORFS on a

DNA sequence is Glimmer (Salzberg et al., 1998), although there are ongoing efforts to

better characterize the degree of confidence associated with a computer-generated annotation

(Larsen & Krogh, 2003). The need for updating these initial annotations is dire (Roberts

et al., 2004). While ORFS may be more uniformly annotated in the NCBI data files than

other genomic features, a struggle has been to arrive at a better estimation of real ORFS

versus “not real” ORFS and, perhaps, take into account the natural dynamics of gene loss

and formation (Skovgaard et al., 2001; Snel et al., 2002). While the number of annotated

ORFS on a chromosome appears to correspond strongly to one ORF for every 1,112 base

pairs of chromosomal DNA (see Fig. 14), the number of chromosomal base pairs that encode

each ORF varies. Consistent with my findings for the data set of 155 genomes (Fig. 15 - 18),

a large set of ORF lengths generally follows an L-shaped, lognormal frequency distribution

(Skovgaard et al., 2001) that is locally disrupted in a fashion suggestive of underlying,

discretely-sized, multidomain protein structures (Wheelan et al., 2000; Savageau, 1986). The

lognormal distribution of ORF sizes may be partly explained by a physical model of

fragmentation (Azad et al., 2002) where, starting from the right-side of the distribution,

there is an exponential growth in the number of ORFS as the ORF length decreases.

Potentially then, those ORFS experiencing a higher degree of arbitrary, nonsense mutations

will constitute a closer fit to a lognormal distribution than ORFS encoding a protein

structure that is strongly conserved in an inviolate form. As seen from Fig. 16 and 17, those

ORFS that range in length from 0 to 127 aa are comparatively non-disrupted in their

frequency distribution compared to ORFS long enough (2 127 aa) to contain a protein

domain. The entire distribution of ORFS demonstrates some non-lognormality based on a

rightwards shift of the distribution (Fig. 18). For ORFS that are most important to the

fitness of an organism, I postulate that their log-scaled distribution of lengths would range
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higher in value and have a greater characteristic of non-normality relative to a set of falsely

annotated, or putatively noisy ORFS.

ORFS that are members of clusters of orthologous groups (COGS) are a possible lower

bound to the total number of annotated ORFS that correspond to real proteins (Skovgaard

et al., 2001). In practice, COGS are established by bidirectional best hits, and this strong

conservation of sequence is used as a basis to infer vertical divergence from a common

ancestral ORF. This characteristic of bidirectional best hits is also useful for assaying

conserved ORF organization among related genomes (Zivanovic et al., 2002) as demonstrated

by Fig. 19 and 20. Comparisons among genomes belonging to the same species tend to

produce a diagonal line from the bottom left to the upper right. The slight deviation observed

for the comparison of Escherichia coli strains in Fig. 19b is likely attributable to prophage

insertions (Hayashi et al., 2001; Canchaya et al., 2003). For more distant times of divergence

from a last common ancestor, Fig. 25 - 33 show patterns of dispersal for orthologous ORFS.

Across multiple lineages, I did not find a constant relationship of the time of divergence

to the degree of disruption for visual and quantitative assays of conserved ORF organization,

although a general trend was evident. There are competing possibilities concerning the

interpretation of dot matrix plots of conserved ORF organization. While comparisons with a

distant relation Pyrococcus furiosus (715 Ma) exhibit less conservation (Fig. 25c-d) than for

more closely related Pyrococcus species (338 Ma, Fig. 25b), this may relate to more than just

a rate of recombinative change over time. There is a set of 23 homologous insertion sequence

elements exclusively present in P. furiosus (Zivanovic et al., 2002; Lecompte et al., 2001)

that is closely associated with putative locations of rearrangement on the P. furiosus

chromosome, and this greater amount of mobile elements may also account for the greater

pattern of disruption. The conservation of ORF organization of Yersinia pestis compared to

Escherichia coli (Fig. 20b) is less than among Pyrococcus species (Fig. 25) despite similar

times of divergence (Battistuzzi et al., 2004). This may in part correspond to the

disproportionately high degree of IS elements in the Yersinia pestis genome (3.7%) (Parkhill

et al., 2001b) where there are > 100 IS elements (Deng et al., 2002). Other heavily disrupted

dot matrix plots with relatively recent (5 1 Ga) times of divergence are for the set of

Cyanobacteria (Fig. 29) and a set of Lactobacillales (Fig. 30). The dense pattern seen for
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the Cyanobacteria may be attributable to the prevalence of transposase genes in freshwater

cyanobacteria and the complex adjustments needed to support free-living oxyphototrophy in

an unstable aqueous environment (Dufresne et al., 2003). The extensive scattering and

rearrangement for Streptococcus pyogenes may be due to phage activity (Nakagawa et al.,

2003). By comparison, the Mycoplasma lineage relies on homologous recombination due to

direct repeats more so than IS elements (Rocha & Blanchard, 2002), and there is less

scattering involving solitary ORFS seen on the dot matrix plot in Fig. 31b). While the dot

matrices are interpretable from closer analyses oriented for specific genomes, I did not find a

simple relationship involving mobile elements, or strong correlation with time, that would

uniformly account for the diversity of dot matrix pattern across various lineages. Overall,

there is a variety of factors that may underly the patterns of the dot matrix plots, and a

comparative study would benefit from a greater sample size to confirm many of the putative

relationships with recombinative mechanisms and strategies for genomic plasticity.

Phylogenetically broad patterns of genomic content and reorganization implicate aspects

of microbial ecology (Terzaghi & O’Hara, 1990; Moran, 1996). I found evidence for

relationships between multimodal ranges of genome size and “regimes” of recombinative

change where most intracellular endosymbiotic bacteria have low levels of recombination and

smaller genomes (genome size range 640kb to 1.3Mb) compared to free-living bacteria with

bigger genomes such as those in the soil (genome size range 4.2Mb to 9.0Mb). Ochman &

Davalos (2006) propose a high degree of instability for genomes that are 2 Mb to 5 Mb in

size. If this instability means a greater rate of departure from this size range than rate of

entry per organism, then the trough in frequency for chromosome sizes between 3.5 Mb - 4

Mb and the chromosome size frequency peaks at approximately 2 Mb and 5 Mb are

consistent with such a differential flux in genomic content (Fig. 36).

The internals of genomic structure offer some evidence to account for the diversity of

ORF organization. A potential consequence for varying degrees of activity of mobile elements

may implicate a difference in colinearity of transcription and replication. A reduced

correspondence of polarity of ORFS with the replichores is reported for P. furiosus where the

primary pattern is for only the highly transcribed ORFS to correspond in transcriptional

polarity with direction of replication (Zivanovic et al., 2002). My running tally method
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implicated astronomically high levels of significance for both ORF polarity and COG

membership organization. I found that my measure is inconsistent with the claim by

Briiggemann et al. (2003) that the Vibrio cholerae and Yersinia pestis chromosomes do not

manifest a cotranscriptional effect. Overall, based on my running tally measure, only 84% of

chromosomes were significant for organizational patterns of both ORF polarity and COG

membership, and the pattern of ORF polarity was more pronounced than for COG

membership. Almost half of the Cyanobacteria genomes were not significant for my

polarity-based measure of organization, and there was a steeper descent and ascent of the

polarity-based running tally for obligate, ancient host-associated genome-sequenced strains

(Table 9). I did not find any further, simple indicators to account for the variation of z-scores

in terms of mobile elements or taxonomic groupings. There was some evidence of the the

polarity tally being influenced by more than just a cotranscriptional effect; the indistinct

change in tally near the origin of replication for obligate, ancient host-associated

genomesequenced strains would be consistent with the origin of replication as a hot spot of

localized rearrangements, perhaps due to the greater availability of a single-stranded

intermediate at the origin. The pattern of COG member clustering did not correspond to any

simple indicators of lifestyle or taxonomy. Broadly considered, the non-random pattern of

COG member clustering may be attributable to regulatory (Lathe et al., 2000) and

functional (Li et al., 2005; Wolf et al., 2001) constraints on sustainable schemes of genomic

reorganization as well as paralog-forming pathways of gene addition (Snel et al., 2002; Liang

et al., 2002).

Compared to other types of functional assessments such as operons and promoters, ORF

data on the 155 genomes is better annotated and may have greater analytical power both in

representative size, and the potential for consistent informational treatment. Also, ORFS

appear, as a population, to address meaningful comparisons for metabolic, ecological, and

evolutionary questions (Bentley & Parkhill, 2004; Konstantinidis & Tiedje, 2004).

Additionally, there are simple quantities that detail an ORF object: start, stop and length

are all generally determined by integers corresponding to a zero point on a replicon sequence.

There is a reasonable level of accuracy (> 99%) for identification of ORF start and stop

points (Delcher et al., 1999). A quantitative approach based on these simple, exactly
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described values may be more readily achievable than, for example, estimated kinetics of

macromolecular bindings to various consensus-based estimates of promoter sequences. A

meaningful evaluation of ORFS as a population across the phylogeny may require some

uniform capacity to determine those ORFS that encode for proteins that are important to the

physiology of the cell.

Approachas to characterizing ORF sequence conservation have largely involved simplistic

ORF comparisons of similarity. A principal criterion of COG assignments is based upon

bidirectional best hits (Tatusov et al., 1997b). Bidirectional best hits relate to a pairwise

comparison between organisms where an ORF in one organism’s genome matches most

closely to a particular ORF on the other organism’s genome, and vice versa. A COG must

contain at least three members from three reasonably separate lineages. Overall, 75% of

annotated, prokaryotic ORFS belong to COGS (Tatusov et al., 2003).

The calculation of COGS, as described, has deficiences. The parameters of COG

Similarity are lax enough to avoid false negatives but, subsequent to the BLASTP search,

putative COG groupings have to be manually inspected and sometimes split apart (Tatusov

et al., 1997b). The bidirectional best-hit criterion is a pairwise comparison of ORF

similarities that ignores meaningful information that can come from comparisons involving

several or more ORFS (Park et al., 1998). Pairwise comparison is not just limiting for the

assessment of orthology. Over half of the paralogous gene relationships in Mycoplasma

genitalium are not accounted for when just pairwise sequence comparisons are utilized

(Teichmann et al., 1998).

By relaxing or tightening a filter for sequence conservation, various temporal

relationships can be investigated. The identification of recent paralogs has involved length

similarity of 95% or more and sequence Similarity of 95% or more (this implicates about 5%

of ORFS) (Kawarabayasi et al., 2001). For larger familial groupings (52% of ORFS),

Kawarabayasi et al. (2001) considers amino acid identity higher than 30% for over 70% of the

entire ORF region. There have been a variety of efforts to better define the meaningful

cut-off values for BLAST-like similarity computations and how they relate to structure and

function (Chung & Yona, 2004; Bern & Goldberg, 2005; Sadreyev, 2003; Pagni & Jongeneel,

2001; Krasnogor, 2004). A current trend has been for inspecting protein domains (Birkland
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et al., 2005; Yang et al., 2005; Service, 2005). While Similarity values may sometimes be too

restrictive and miss out on larger protein family or functional relationships, being too relaxed

can impede discernment of underlying trends associated with conserved domains.

Comparisons of biological function is appropriate when there is sequence—level identity of 25%

(Krasnogor, 2004). Yet, for sequence-based identities of 20—30%, only one half of the domain

repertoire relationships are Shown in Mycoplasma genitalium (Teichmann et al., 1998).

If the task is to approach a uniform separation of ORF sets that is meaningful across

different lineages, a heuristic may utilize patterns of ancestral conservation while

accommodating some range of natural divergence. I propose a separation be sought only

along generalized objectives to characterize efficiently an approach that removes about

10—30% of the ORFS, separates multiple regimes of variance, and correlates with expected

factors of sequence features and functional genomics information. Only after arriving at a

plausible distinction of ORFS, can a specific, hypothesized ratio of operational versus Silent

annotated ORFS be evaluated. Reducing the complex nature of genomic content and

organization into comparable events of change across the phylogeny requires some capacity to

establish limits and parameters for recombinative units. Prior to evaluating specific

hypotheses concerning the nature of ORF clustering, the natural fluctuations of the

ORF-ome and the prevalence of putatively false or Silent ORFS in the annotated data files

presents a challenge for broadly distinguishing those ORFS of functional and evolutionary

importance to the composition and organization of a chromosome.
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Chapter 4: Subsets of Open Reading

Frames

4.1 Comparative Parameters of Sequence Conservation

Ideally, the identification of a generally legitimate, “real” subset of ORFS would reduce

observational noise, and further provide some account for the fluctuations and evolutionary

pressures that influence the set of ORFS in a given prokaryotic genome. As described in

Section 1.4, conservation of sequence is a reasonable basis for inferring the importance of

ORFS, and effective approaches have involved measures of sequence similarity (Snyder &

Gerstein, 2003), ORF length (Skovgaard et al., 2001), and grouped similarities involving

more than just two sequences (Park et al., 1998). I sought to construct a general filter with

the parameters L (identity of ORF length), B (identity of ORF sequence), and S, size of a

Similarity cluster. S is evaluated as an inclusive count of a similarity set. If a sequence is only

similar to itself, then S = 1. If an ORF sequence is Similar to 4 other ORFS (in addition to

itself), then S = 1 + 4 = 5. As S > 2 for a given ORF, information exceeding that of a

pairwise comparison is incorporated. S is interdependent with the constraints of similarity

specified by L and B.

I evaluated the strength of similarity between any two ORFS as a function of B and L.

The basis for a length constraint is that it enforces some conformity for the internal

structural integrity of two ORFS with Shared ancestry (Wheelan et al., 2000), and further

focuses the assessment of similarity to the distribution of “immutable” ORFS, as opposed to

those ORFS altered by gene fusions and fissions. Localized alterations to ORF content and

structure may have structural and functional consequences in terms of important motifs such

as conserved domains. Constraining L so as to achieve this distinction is not a well-modelled

proposition, so L was characterized as being, at most, :I:10%. For example, with

L —+ [—10%, +10%], an ORF length of 200 aa would match ORFS of lengths 180 aa to 220 aa

but not lengths < 180 aa or > 220 aa. By Spot checking a few test cases, I found that a L
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constraint of i10% was effective in reducing erroneous homologies that might otherwise be

inferred from low-complexity protein domains.

A value of B s 10’6 is the default for the BLASTCLUST application, where B is the

expectation score of a BLASTP comparison among ORFS clustered by similarity. The default

parameters of BLASTCLUST reportedly work to “anecdotally” identify closely related

protein families from closely related prokaryotes, and “virtually eliminate false positives”

(Wolf, 2004). The parameters of “coverage” (-L 0.0) and “score density” (-S 0.0) were set

so as to not be evaluated by the BLASTCLUST algorithm.

If L —-+ i10% and B 5 10’s, the remaining objective for defining an initial sequence

conservation threshold for ORFS relates to the value of the similarity cluster size, S. As S

increases, the pervasiveness of the ORF as an immutable unit of evolution across phylogeny

is justified. Two aspects to the performance of a given S-based constraint involve 1) random

similarity matches versus truly homologous matches, and 2) the phylogenetic range of

observed matches. In the set of 155 genomes, there were a variety of closely related strains in

the data set with up to 5 members of the same Species, so an S value of 5 may sometimes

only implicate a recently emerged last common ancestor. AS ORFS with larger S values are

identified, this may encompass a larger phylogenetic range by implicating more distantly

related lineages. An S value of 155 would implicate an ORF common to all 155 genomes.

If an ORF matches just one other ORF different than itself (S = 2), then there may be a

significant chance for the match to be a false positive. A BLASTP expectation score

threshold of B 3 10"”, corresponds to an expectation for finding a single (10’2 x 100 = 1)

false positive match against a set of 100 other sequences (Koonin & Galperin, 2003). In a

Bayesian sense, if B s 10‘6 , then the percent chance for a false positive match (S = 2) to

another ORF from the 165 chromosomes is 45% (447, 550 x 10‘6 = 0.45). For an ORF to

have two other false positive matches (S = 3), the probability is 0.45 x 0.45 = 0.20. When

S = 5 and S = 6, the Bayesian-calculated probabilities approach statistically acceptable

levels of significance, respectively 0.454 = 0.041 and 0.455 = 0.018. While S 2 5 significantly

implicates a true match with at least one other ORF (p > 0.95 for a legitimate set of

“twins”), S 2 6 implicates the existence of at least two other matches (a legitimate set of

“triplets”) and a potentially wider range of phylogenetic coverage. If a filtered ORF subset.

105



were to be based on evolutionary information from more than just two ORFS, S 2 6 would

be the preferable constraint. Generally considered, ORFS with high S values would more

likely belong to an evolutionarily conserved subset compared to ORFS of relatively low S

counts such as S = 1. ORFS belonging to very large similarity clusters may be pervasively

Similar due to strong sequence features of evolutionary importance or because of ubiquitous

low-complexity subsequences such as those that encode for coiled-coiled regions. For the

analysis, ORFS corresponding to S > 40 were given an inclusive S value of “40+” so as to

not resolve complex transitive relationships of ORF similarity cluster assignments. I termed

the subset of ORFS with S > 40 as the “ubiquitous” subset of ORFS (U-ORFS). Based on

the statistical considerations of length |L| S 10%, sequence similarity B S 10‘6 and

Similarity cluster size S 2 6, I arrived at an initial distinction for operational ORFS

(O-ORFS) versus a “Silent”, putatively false subset of ORFS (S-ORFS) with the expected

relationship of U-ORFS C O-ORFS. The subset of O-ORFS that does not include U-ORFS

(6 S S S 40) is a subset that I termed as the N-ORF subset. A summary of ORF subset

terminology is shown in Table 10.

4.2 Paralogous ORFS

I evaluated my similarity clusters for possible instances of paralogy where two or more

ORFS in the same similarity cluster belonged to the same chromosome. Objectives for this

assay were to 1) evaluate the presence of intragenomic pattern attributable to duplication of

content, and 2) analyze and infer taxon-based constraints for paralog formation. The number

of recorded paralogs inside the defined similarity clusters for the 165 chromosomes

(2 S S S 40) ranged from 1% (Chlamydia trachomatis MoPn) to 18% (Methanosancina

mazei) of the total number of annotated ORFS for each evaluated chromosome. I compared

my putative paralogs to a more expansive effort at characterizing paralogy (Pushker et al.,

2004). Pushker et al. (2004) characterize a a range of 10% to 50% of ORFS on a given

chromosome as belonging to a paralogous cluster of ORFS. My calculation of paralogs for the

165 chromosomes discarded the U-ORF group (S > 40), and this may be significant Since the

average paralogous family Size often exceeds 40 (Pushker et al., 2004). A possible
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Table 10: Names and descriptions of open reading frame subsets.

 

Subset Name Description

 

ORFS

O-ORFS

S-ORFS

U-ORFS

N-ORFS

C-ORFS

X-ORFS

The full set of ORFS as they are currently annotated in NCB1-

based data files of fully sequenced prokaryotic genomes.

Putatively operational ORFS. This subset consists of those

ORFS belonging to Similarity clusters of size 3 6.

Putatively silent ORFS (putative false positives in the full,

annotated set). This subset consists of those ORFS belonging

to similarity clusters of Size 3 5.

Putatively ubiquitous ORFS. This subset consists of those

ORFS belonging to Similarity clusters of size > 40.

Putatively operational, but not ubiquitous, ORFS. This sub-

set consists of those ORFS belonging to similarity clusters of

Size 2 6 and S 40.

The subset of ORFS that are members of a COG (cluster of

orthologous groups). This subset covers 25 functional classi-

fications of COGS, including the R and S functional classes

that are respectively for “general function predictions” and

“unknown functions.” C-ORFS are only established for the

67 chromosomes for which COG assignments have been con-

ducted.

The subset of ORFS that are members of one of the 67 chro-

mosomes for which COG assignments have been conducted,

yet are not members of a COG.
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consequence to inspecting the N-ORF group (1 S S S 40) and not the U-ORF group may be

to limit the general evaluation of paralogy to those ORFS that are more recently diverged

and are limited to a particular branch on the phylogenetic tree.

Fig. 38 - 41 Show distances between paralogous pairs for various sets of closely related

genomes based on data from my similarity cluster calculations as well as from Pushker et al.

(2004). The pattern of paralogy on each chromosome implicates hot spots of duplicated

content and distances between Similar ORFS in a way that may be visually diagnostic of the

species-level taxonomy. Some of the wild-type Escherichia coli strains (Ol57:H7 and

CFT073) have high peaks in frequency for long distances between related paralogs that are

Similar in value to the first bin (< 5, 000 bp) (Fig. 38). Most of the Streptococcus pyogenes

strains have distinctly elevated frequency peaks for related paralogs that are more than

100,000 bp apart (Fig. 40). Most of the paralogs for chromosomes of the Pseudomonas

Species appear to be separated by distances less than 5,000 base pairs (Fig. 39). In addition

to having high frequency peaks for related paralogs that are 0 to 10,000 bp apart,

Staphylococcus aureus species have a Slight upswing in frequency for distances greater than

10,000 bp approaching 200,000 base pairs (Fig. 41). For many of the low frequency distances

between paralogs, Pushker et al. (2004) characterize paralogy for well over 10x the number

of paralogous ORFS that I place into similarity clusters. By contrast, the distinctly high

frequency peaks of paralogs from my Similarity clusters (Fig. 38—41[a,c,e,g]) versus the

paralogy clusters of Pushker et al. (2004) (Fig. 38-41[b,d,f,h]) are generally less than an order

of magnitude (10x) different in value for examinations of identical locations on the respective

histograms.
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Figure 38: Frequency of distances between related paralogs for four strains of Escherichia coli.

Only those distances < 200,000 base pairs are Shown. Bin sizes are 5,000 bp. (a,c,e,g) Show

the distances between all pairs of paralogs based on similarity clusters involving ORFS on the

same chromosome where 6 _<_ S S 40. (b,d,f,h) are based on data from Pushker et al. (2004).
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Figure 39: Frequency of distances between related paralogs for three strains of Pseudomonas

species. Only those distances < 200,000 base pairs are shown. Bin sizes are 5,000 bp. (a,c,e)

Show the distances between all pairs of paralogs based on similarity clusters involving ORFS

on the same strain’S chromosome where 6 S S S 40. (b,d,f) are based on data from Pushker

et al. (2004). Frequency values higher than 50 are truncated on the plot and range from 52-232.
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Figure 40: Frequency of distances between related paralogs for four strains of Streptococcus

pyogenes. Only those distances < 200,000 base pairs are Shown. Bin sizes are 5,000 bp.

(a,c,e,g) Show the distances between all pairs of paralogs based on similarity clusters involving

ORFS on the same strain’s chromosome where 6 S S S 40. (b,d,f,h) are based on data from

Pushker et al. (2004).
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Figure 41: Frequency of distances between related paralogs for three strains of Staphylococcus

aureus. Only those distances < 200,000 base pairs are shown. Bin sizes are 5,000 bp. (a,c,e)

Show the distances between all pairs of paralogs based on similarity clusters involving ORFS

on the same strain’s chromosome where 6 S S S 40. (b,d,f) are based on data from Pushker

et al. (2004). Frequency values higher than 50 are truncated on the plot and range from 56—336.
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4.3 Findings for an Operational ORF Subset

4.3.1 Differences in Length and Similarity Cluster Size

Lognormal, multimodal ORF length distributions have been previously reported

(Skovgaard et al., 2001). As would be expected for a theoretical fit to a normal distribution

of log-transformed ORF lengths, I investigated how similar the sample mean is to the sample

median (Table 11). The S-ORF and O-ORF subsets (n=140,805 and n=306,746) had a

stronger theoretical fit to a lognormal model than the entire set of ORFS (n=447,551). The

difference in median and mean values for the S-ORF subset was consistent with a

distribution slightly skewed to the left, and the difference in median and mean values for the

O-ORF subset was consistent with a distribution skewed to the right. The observed ranges of

ORF length medians across the taxonomic groupings were 246-286 aa (all ORFS), 126-187 aa

(S-ORFS), and 291-329 aa (O-ORFS) Although the median values for O-ORF lengths were

almost twice that of S-ORF lengths, the variance of lengths produced a Significant overlap

between the two ORF length distributions as Shown in Fig. 42.

The relative numbers of ORFS, S-ORFS, O-ORFS and U-ORFS for each taxonomic

grouping are shown in Table 12. Proportionally, the five subsamplings of O-ORFS ranged

between 54.5% (Archaea) to 82.0% (Enterobacteriales). The five subsamplings of S-ORFS

ranged between 18.0% (Enterobacteriales) to 45.5% (Archaea). These ranges broadly

encompass a predicted 3:1 ratio of O—ORFS to S-ORFS. The Archaea had the lowest relative

percentage of U-ORFS. Proportional trends for O-ORFs, S-ORFS, and U-ORFS are further

characterized by Fig. 43. The Enterobacteriales set had the second greatest number of

representative ORFS in the set of 447,551 ORFS and had the highest proportional amount of

O-ORFS (82.0%), possibly due to the large number of Enterobacteriales genomes present in

the data set acting by relation to elevate the similarity cluster sizes specifying the O-ORF

subset. Yet, the Enterobacteriales O-ORF set shows a similar trend of length perhaps

indicating that the B and L thresholds compensate for over-representation of the

Enterobacteriales taxon. The taxonomic grouping with the highest proportional number of

S-ORFS is the Archaea.
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Table 11: O-ORF and S-ORF comparison of ORF length norms for 6 taxonomic groupings.“

 

  
 

 

All ORFS S-ORFS O-ORFS

Taxonomic Group Mdn an.Mean Mdn an.Mean Mdn an.Mean

All 155 265 245 (-7%) 157 160 (+2%) 310 299 (-4%)

Actinobacteria 286 269 (-6%) 187 189 (+1%) 329 324 (-2%)

Archaea 246 232 (—6%) 169 175 (+4%) 310 294 (-5%)

Enterobacteriales 262 244 (-7%) 134 140 (+4%) 291 275 (-5%)

Cam. no Ent. 271 250 (-8%) 153 152 ( 0%) 315 307 (-3%)

Lactobacillales 254 234 (-8%) 126 133 (+6%) 289 281 (-3%)

“All 155 = all of the 155 genomes. 5 taxonomic subsamplings were taken from this set

of 155 genomes. Gam. no Ent. = Gammaproteobacteria without Enterobacteriales.

The two statistical norms for ORF lengths are a median (Mdn), and a lognormal mean

(an.Mean; the exponential function of the mean of the logarithm-transformed ORF

lengths). The percentage increase or decrease from the median to the lognormal mean

iS indicated. ORF length units are in the number of corresponding amino acids to

their translated product.
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Figure 42: Relative frequency distributions of S-ORF, O-ORF, and U-ORF lengths for 155

genomes. Only the subset of ORFS that are S 1000 aa in length is presented (441,040 out of

447,551 ORFS). The x-axis is labelled with the boundaries of each bin (bin size = 100 aa).
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ORFS occur within various ranges of similarity cluster sizes more tightly bounded than

S 2 6 (Fig. 44). I found that as the ORFS were evaluated for the discrete set of similarity

cluster size intervals, S = {1, 2, 3, ..., 39, 40}, the S—ORF versus O-ORF distinction appeared

to separate two regimes of variation (Fig. 45, 46 and 47).
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The relationship between median ORF lengths and associated Similarity cluster size is

Shown in Fig. 45-46. For the S—ORFS, there was a steady rise of median ORF lengths from a

lower bound of 100 aa to values ranging from 160-250 aa. The changes in median ORF

lengths were variable between different subsampled sets from the 155 genomes. For S values

between 1 and 5, the Actinobacteria rise from 160 aa to 250 aa. The Enterobacteriales rise

from about 100 aa to 160 aa. Except for the Actinobacteria, the median ORF lengths

appeared to reach 250 aa. for S 2 20. For O-ORFS, there iS a less steep ascent of median

ORF length that proceeds from values greater than 200 aa to values greater than 280 aa.

The O-ORF ascent in median ORF length is somewhat continuous, and had various rises and

falls of 50 aa to 100 aa in magnitude occurring for differential changes in the similarity

cluster size of z 5.

A log-log relationship accounted for how the number of ORFS equates to increasing

range intervals of S as shown in Fig. 47 where the range intervals of S are [1,1], [1,2], [1,3],

..., [1,40]. The second value for each interval is the similarity cluster size limit, 0. The most

inclusive S range of [1,40] (c = 40) includes all those ORFS with 1 g S S 40, but not S > 40.

The logarithm of the number of ORFS characterized by [1, c] was directly proportional to the

logarithm of c. The slopes and correlations of three linear fits were calculated for various

ranges of the Similarity cluster size limit (c H [1, 40], c —> [1,5], and c —+ [6, 40]), and in all

comparisons, the slope for c —-> [1, 5] is 23% to 100% steeper than the slope for c -+ [6,40].

The largest distinctions between c —> [1,5] and c —+ [6,40] were for the Actinobacteria and

the Archaea. For all taxonomic groupings examined, the linear fits associated with c —> [1,5]

and c —+ [6,40] had the strongest correlations with a linear fit, although all of the fitted lines

significantly accounted for variation (7‘2 > 0.97).
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I inspected the linear relationship between observed distributions and expected

distributions (as calculated from sample means and standard deviations) for the

log-transformed lengths of various subsets of ORFS (Fig. 48-50). Fig. 49 presents positive

skewness values (w > 0), implicating a non-normal leftwards shift to the distribution of

S—ORF lengths. By contrast, the ORF set and O-ORF subset had negative skewness values

(w < 0), implicating a non-normal rightwards shift to the distribution of ORF lengths. These

directional shifts were consistent with my findings for the arithmetic mean’s relationship to

the median (Table 11).
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4.3.2 Composition of Phyla within ORF Similarity Clusters

I investigated the number of ORFS in each similarity cluster belonging to the same

lineage based on membership Within one or all of 7 different phyla (Fig. 51 and 52). For each

analysis, a random selection of 1000 ORFS came from the phylum (or 7 phyla) under

evalation. The Proteobacteria and Firmicutes had the highest degree of similarity clusters of

sizes 6 to 15 containing members within the phyla. Yet, at least 25% of Proteobacteria and

Firmicutes similarity clusters tended to have non-phylum members for S 2 6.

4.3.3 Expressional, Phenotypic, and Functional Aspects of the

ORF Subsets

I evaluated expressional, functional, and phenotypic aspects of the O-ORF and S-ORF

subsets to more fully assess their empirical correspondence with a distinction of real ORFS

versus unreal ORFS.

I assessed published transcriptional data for 3,309 ORFS of Escherichia coli K-12

(Covert et al., 2004) and compared patterns of presence or absence of transcriptional

expression to the similarity cluster size stored in the MYCROW database. In this set of 3,309

ORFS, there were 2,112 U-ORFs (64%), 290 S-ORFS (9%), 3,019 O-ORFs (91%), and 2,787

C-ORFs (84%). By comparison, for the total set of annotated ORFS for E. coli K-12

(n=4,311), there were 2,388 U-ORFs (55%), 513 S-ORFs (12%), 3,798 O-ORFS (88%), and

3,153 C-ORFs (73%).

For the 42 separate assays of transcriptional expression on the set of 3,309 ORFS, 1,992

ORFS were designated “present” for all 42 transcriptional assays of expression, 331 ORFS

were designated “absent” for all 42 transcriptional assays of expression, and 780 ORFS had

marginal or conflicting expression designations of presence and absence among the 42

transcriptional assays. Of the 2,323 ORFS that are either uniformly present or absent across

the 42 assays of transcription, 86% are transcriptionally present compared to 14% that are

absent. Of the 1,992 transcriptionally present ORFS, there is a ratio of 22:3 for ORFS

belonging to a COG and a 24:1 ratio for ORFS belonging to the O-ORF subset. Of the 331

transcriptionally absent ORFS, there is a 1:3 ratio for ORFS belonging to the O-ORF subset
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Figure 51: Membership within phyla for similarity clusters. All 7 phyla (Actinobacte-

ria, Crenarchaeota, Cyanobacteria, Euryarchaeota, Firmicutes, Proteobacteria, Spirochaetes;

148 genomes) and, separately, the three phyla, Crenarchaeota (4 genomes), Spirochaetes (5

genomes), and Cyanobacteria (genomes) are examined. Each plot is based on 1000 randomly

selected ORFS and their corresponding similarity clusters. Black: median percentage member-

ship of similarity cluster belonging to the same phylum. Blue: the first quartile of percentage

memberships for same phylum. Red: the relative percentage of ORFS belonging to each range

of similarity cluster sizes.
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Figure 52: Membership within four other phyla for similarity clusters. Four separately con-

sidered phyla: Euryarchaeota (12 genomes), Actinobacteria (13 genomes), Firmicutes (38

genomes), and Proteobacteria (68 genomes). Each plot is based on 1000 randomly selected

ORFS and their corresponding similarity clusters. Black: median percentage membership of

similarity cluster belonging to the same phylum. Blue: the first quartile of percentage mem-

berships for same phylum. Red: the relative percentage of ORFS belonging to each range of

similarity cluster sizes.
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and a 3:7 ratio of ORFS belonging to a COG. Both in terms of proportional categorization

(86% versus 91%) and ratios of association (24:1 and 1:3), the O—ORF versus S—ORF subsets

were more closely aligned with expectations for transcriptional expression for E. coli K—12

than a COG-based distinction.

Covert et al. (2004) also propose various ORFS as having functional and regulatory

importance based on growth and no growth predictions for 143 types of media conditions

such as “growth on citric acid”, “growth on methionine”, and “growth on adenosine.” Of the

ORFS (99 of 110) that were unambiguously mapped to ORFS within the MYCROW

database, 98 (99%) of these ORFS were O—ORFs and 80 (80%) were U—ORFs. Only one ORF

was an S-ORF and it belonged to a similarity cluster size of 5.

Table 13 shows the association between number of phenotype effects and similarity

cluster size S based on data for Bacillus subtilis (Biaudet et al., 1997). Of the 352 genes that

only have a single phenotypic effect when mutated (66%), 28% of them were S—ORFs. Of the

181 genes that have two or more phenotypic effects (34%), only 19% of them were S-ORFs.

261 of the 533 ORFS were U-ORFS (49%) and 140 ORFS were N-ORFs (26%). 73% of

S-ORFS had a single phenotype effect, whereas only 63% of N-ORFs and 64% of U-ORFs

had a single phenotype effect. Quadruple and sextuple phenotype effects occurred exclusively

for O-ORFs. Overall, multiple phenotypic effects were found to be more closely associated

with O-ORFs than S-ORFS, although inactivation of S-ORFS is generally associated with a

phenotypic consequence.

Also, as seen in Table 14, examination of data for Bacillus subtilis (Biaudet et al., 1997)

showed an increase in “single phenotype” ORFS for S—ORFs compared to ORFS that are not

in COGS, and a proportionately greater amount of “multiple phenotype” ORFS for O-ORFs

compared to C-ORFS. The evidence, while not exhaustive, is consistent with the O-ORF

versus S-ORF distinction relating to whether or not an ORF is expressed and whether or not

there is significant operational consequence to the organism’s physiology.

For functional grouping of ORFS, the functional classification of COGS was evaluated

based on NCBI’S COG database that contained data for 67 (41%) of the 165 chromosomes.

For this sampling of 67 chromosomes and their total numbers of ORFS, the mean and median

levels of O-ORFS were both equal to 68% whereas the mean and median levels of C-ORFs
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Table 13: Phenotypic inactivation associated with Bacillus subtilis O-ORFs and S-ORFS.“

All ORFS S-ORFS O-ORFS

Number of Affected #ORFS Rel.% #ORFS Rel.% #ORFS Rel.%

Phenotypes

 

   

 

1 01‘ more 533 100.0% 132 24.8% 401 75.2%

2 or more 181 100.0% 35 19.3% 146 80.7%

3 or more 47 100.0% 10 21.3% 37 78.7%

4 or more 13 100.0% 0 0.0% 13 100.0%
 

“533 ORFS, when mutated, ranged from single phenotype effects to six phenotypic

effects. The number of ORFS (# ORFS) is shown as well as the relative percentage

(Rel.%) that number of ORFS to the total sample of ORFS for the given range of

phenotypic effects.

Table 14: ORF counts from Bacillus subtilis for single and multiple phenotypes based on COG

and O-ORF categorizations.

 

S-ORF X—ORF O-ORF C-ORF

Single Phenotype ’ 97 84 255 268

 

Multiple Phenotypes 35 32 146 148
 

were both equal to 74% (based on 25 functional classes). An expectedly stronger association

was observed between O-ORFS and C-ORFS (median, 64%) compared to O-ORFS and

X-ORFS (median 4%). An expectedly stronger association was also observed between

S-ORFS and X-ORFs (median, 20%) compared to S-ORFS and C-ORFS (median, 11%). The

“General function prediction only” and “Function unknown” subsets of COGS amounted to

about 11% and 7% respectively of 161,990 ORFS for 67 chromosomes.

Linear modelling, as Shown in Fig. 53 and 54, further investigated how categories of

COG and O-ORF membership scale with comparison to the total count of ORFS for a given

replicon. In these models, the proportional measure of O-ORFS to total ORFS was 73% and,

for COGS, 72%. The strongest linear associations were for the subset of ORFS that are jointly

both O-ORFS and C-ORFS, and the separately considered O-ORF and C-ORF subsets. The

next strongest linear association was for the X-ORFS. Although still accounting for most of

the original variability (7‘2 > .5), both the S-ORF subset and the joint intersection subset of

the S-ORF and C-ORF subsets showed markedly reduced linear correlation coefficients,
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suggesting that the number of S-ORFS is less likely to relate directly to the total ORF count.

The scattering of dots away from the fitted line in Fig. 53c and 53c-d occurs between 2,000

annotated ORFS and 2,500 annotated ORFS. Based on a relationship of one ORF for every

1,100 base pairs of chromosomal DNA, the increased pattern of scattering attributable to

S-ORFS likely occurs for chromosome sizes > 2 Mb, corresponding to a a proposed distinction

of microbial ecology and genomic stability (Fig. 36) (Ochman & Davalos, 2006). Further

measurement showed the canonical correlation, T2, to be different for ranges of total ORF

counts < 2, 000 compared to > 2, 000. The 1‘2 value for the S-ORF subset count where total

ORF count < 2, 000 is 0.58 compared to 0.43 for the X-ORF subset. For total ORF counts

> 2, 000, r2 for the S-ORF subset count iS 0.39 compared to 0.65 for the X—ORF subset.

As ORF sets are examined by 25 different functional COG categories, Fig. 55 shows

there to be close correspondence between the number of O-ORFS and overall number of

ORFS for a given COG category. The greatest variation appears to be for the COG

categories of “general function prediction only” and “function unknown” where the number

of corresponding O-ORFS drops, with an inverse rise in the number of S-ORFS.

Table 15 Shows how the percentage amounts of S-ORFS can vary for different functional

COG categories across different subsets of the genomes. Most ORFS that are not in a COG

are S-ORFS (77%). For most all categories, the Archaea have the highest percentage of

S—ORFS. The Actinobacteria generally have the second highest percentage association of

S—ORFS with functional COG categories except for the categories of cell motility (N) and

secondary metabolites biosynthesis, transport and metabolism (Q). If S-ORFS truly mean

“not operational”, the lower values of Actinobacteria S-ORFS for categories N and Q is

consistent with the soil lifestyle (Garrity, 2001).
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Figure 53: ORF membership subset comparisons with total ORF counts. Each of the four

plots shows the relative proportions of the O-ORF, C-ORF, S—ORF, and X—ORF subset ORF

counts, where each point corresponds to one of 67 genomes. A fitted line is shown along with

slope (m) and r2.
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with the pound symbol. 25 different functional categories are shown.

Figure 55: Number of ORFS, O—ORFS, and S-ORFS for various COG—based categories of

function. The number of ORFS (black line) and O-ORFs (blue line) are indicated by the axis on

the left. The number of S-ORFS are indicated by the axis on the right. The rightmost number

of S-ORFS (32,608) for the “Not in COG” category is not plotted to scale, but abbreviated
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If the COG set includes falsely annotated ORFS, I theorize that the O-ORFS inside

functional classifications of COGS Should enhance the positive and negative genome Size

correlations characterized for various functional groupings (Bentley & Parkhill, 2004;

Konstantinidis & Tiedje, 2004). Table 16 shows how the O-ORF counts for the J, L, D and F

set of COG functional categories enhanced the predicted negative genome size correlation,

and even more strongly enhanced the predicted positive genome size correlation associated

with the K, T, N, Q, and C set of COG functional categories. The definitions of the R, S,

and X groups suggest a gradient of decreasing functional evidence for their respective sets of

ORFS, and the decreasing proportion of O-ORFS inside each group corresponds to this

gradient.
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4.4 Non-Stochastic Clustering of O-ORFS

For my population of 165 chromosomes, I inspected the z-score values of significance

(number of Sigma 0 units separating original and randomized assignments of O—ORF

membership) from my running tally methodology. The O-ORF running tally z-score

difference was 14.90. There were 28 of the 165 chromosomes (17%) that had a z-score

< 1.640. Of the 14 of the 67 chromosomes evaluated for COG membership with COG-based

z-scores < 1.640, 7 (50%) had O-ORF-based z-scores < 1.640.

4.5 Discussion

I established the parameters for distinguishing real ORFS from putative, false ORFS by

general statistical expectations. As shown by Fig. 55, I found the O-ORF subset to follow

trends similar to a COG membership subset of ORFS (C—ORFS). C-ORFS have been

previously reported by Skovgaard et al. (2001) as a lower bound to the total number of

annotated ORFS that correspond to real proteins. AS shown by Table 17, my O-ORF

specification follows a higher threshold parameter of similarity cluster size (S), and has

requisite criteria for ORF length similarity (L) and sequence similarity (B). Despite

significantly different approaches to threshold parameters, similar percentages of ORFS

belong to the subset of O-ORFs (73%) compared to the subset of C-ORFS (72%). While the

O-ORF Specification involves a variety of more stringent threshold parameters, it neither

imposes the orthologous bidirectional best hit criterion of COGS, nor does it require sequence

conservation to exist across three distant lineages. The inclusion of paralogs and recently

evolved ORFS in the similarity cluster scoring of O-ORF membership may meaningfully

account for differing results for the prevalence of O-ORFS compared to C-ORFS.

Based on Fig. 54a and 54d, there are about 64% of ORFS per chromosome inside both

the C-ORF and O—ORF subsets compared to 19% that are not inside either of the subsets. I

expect the O-ORF specification to be better aligned with a real ORF specification versus the

C-ORF specification based on greater pairwise comparison thresholds for homology, and the

inclusive scoring of paralogs and recently evolved ORFS that are a likely source of functional

and real ORFS (Snel et al., 2002; Kurland et al., 2003; Liang et al., 2002: Konstantinidis &
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Figure 56: Running tally graphs of O-ORF membership along four chromosomes. The thick

line represents increments and decrements based on whether an ORF is an O-ORF or not.

The dotted diagonal represents random expectation where O-ORF membership iS randomly

assigned to a chromosomal set of ORFS. The dashed lines forming a V-shape represents the

pattern if all S-ORFS were together followed by O-ORF members. (a) Bacillus subtilis subsp.

subtilis str. 168. (b) Escherichia coli K-12. (c) Vibrio cholerae (large chromosome). ((1)

Yersinia pestis C092.
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Table 17: Threshold parameters of sequence conservation for the operational ORF subset

(O-ORFS) and the COG membership subset (C—ORFS).

 

Threshold O-ORF C-ORFa

Length Similarity :I:10% i33%

 

Sequence Similarityb S 10‘6 < 10‘3

Similarity Cluster Size 2 6 2 3

 

aSpecification criteria for COGS include bidirectional best hits involving three disparate

lineages and manual inspection and splitting of tentative clusters. COG analyses are not based

on explicit thresholds for sequence similarity. The length similarity and sequence Similarity

values for COGS characterize the retrospective 90% confidence interval for how any two pairs

of ORFS belonging to the same COG correspond in Similarity.

bBLASTP expectation score for a pairwise comparison.

Tiedje, 2004). By comparison, the C-ORF specification requires distant orthologies. In my

study, several analyses provided evidence that the O—ORF set is a more optimal specification

for real ORFS compared to the C-ORF set. A greater proportion of O-ORFS are transcribed

compared to C-ORFS. The O-ORF and S-ORF specification may also be effective for further

characterizing functional groups relevant to fluctuations in genome size and associated

prokaryotic lifestyles (Table 16). The S-ORF, O-ORF transition between S = 5 and S = 6

appears to be an accurate point of separation for different regimes of variation seen for 1)

ORF length and similarity cluster size (Fig. 45) and 2) frequency of ORFS associated with

various Similarity cluster sizes (Fig. 47). Overall, the hypothesis of a coding space limit

(Jackson et al., 2002), where 75% of the total set of annotated ORFS would be expected to

be real, is supported by two independently developed sets of parameters for O-ORFs and

C-ORFS as shown by the linear relationships in Fig. 53.

Transcriptional expression data (Covert et al., 2004) and data from studies of phenotypic

inactivation (Biaudet et al., 1997), when applied to the O-ORF and S—ORF subsets, do

indicate that some of the S-ORF assignments confer a phenotype or are transcribed.

Intriguingly, those ORFS with the highest number of phenotypic effects are all O-ORFS, and

this may relate to a high degree of interaction with other proteins (Table 13). Protein

evolution is rapid, and only the most highly interactive proteins have a slow rate of evolution

(Jordan et al., 2003). The ongoing fluctuation of gene loss, modification, and addition would

indicate that there are some ORFS that are in the process of becoming S-ORFS or are in the
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process of becoming O-ORFS. Beyond this study, a closer inspection as to the properties of

gene loss versus gene addition may further characterize the natural dynamics that account

for putative distinctions between real and falsely annotated ORFS. A more refined heuristic

might be arrived at by formally characterizing differences between exemplar sets of ORFS

with none, some, or all known features of evolutionary and functional importance.

The O-ORF specification allows for paralogy, and Fig. 38-41 help characterize the degree

to which paralogy contributes to the O-ORF specification. Precise characterizations of

paralogs versus non-paralogs may be difficult to arrive at as evident by conflicting

estimations of paralogy for various strains (Nelson et al., 2002; Pushker et al., 2004;

Andersson et al., 1998; Simpson et al., 2000), and it may be difficult to comprehensively

characterize and compare dynamics of paralogy formation across a broad phylogenetic range.

Yet, my more constrained, independently developed filter of sequence conservation effectively

characterizes the higher frequencies of distances between related paralogs when compared to

data from Pushker et al. (2004). These high frequency peaks may represent recent formations

of paralogs involving the duplication and translocation of a single region containing a cohort

of ORFS, or these peaks may represent two differently located hot Spots of tandemly

duplicating sets of similar ORFS. The paralogy analysis establishes visual distinctions

between four different sets of closely related strains, and this implies different lineage-specific

constraints of chromosomal mobility and ORF duplication.

The O-ORF Similarity cluster size Specifications are inclusive of the effect of paralogs

whereas the specification of COGS is designed to exclude paralogs. The presence of paralogy

Significantly increases as a function of genome size (and, correspondingly, total ORF count)

(Pushker et al., 2004). For genome sizes < 2 Mb, the percentage of paralogs ranges from 0 to

20 (Pushker et al., 2004). For genome sizes > 2 Mb, the percentage of paralogs ranges from

10 to 50 (Pushker et al., 2004). The X-ORF subset may more Significantly include the

paralogs (which are by definition excluded from the C-ORF set) than the S-ORF subset. The

presence of paralogs may account for the higher correlation of X-ORFS (r = 0.81) versus the

correlation of S—ORFS (r = 0.62) for total annotation counts exceeding 2,000 ORFS (Fig.

53c).

If S-ORFS are interpreted as trending away from duplicate elements (quasi-independent
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of paralogous, lateral, or orthologous originations), then they may represent either newly

made ORFS, unique ORFS, or significantly “destroyed” and mutated sequences. Subsets

based around COG membership (C—ORFS and X—ORFS) scale in closer association with the

annotated ORF count compared to O-ORF and S—ORF membership. While assessments of

COG membership may be ideal for characterizing the vertically inherited functionality of a

genome, fluctuations such as the recombinative generation of paralogs and attenuation of

expression, may be better approached with the O-ORF versus S—ORF criteria. The

production of noise has been proposed as a key feature of recombination in pathogenic

organisms (Wolf & Arkin, 2003).

The characteristics of organisms as conferred by their O-ORF chromosomal organization

may be problematic to compare across lineages. Typically, uniform taxons should be

characterized to each contribute single data points to a comparative analysis (Grafen &

Ridley, 1997), yet my O-ORF specification is likely to be biased by the over-representation of

Proteobacteria and Firmicutes in the set of 155 genomes. Fig. 51-52 shows how the impact of

phylum over-representation inflates the similarity cluster size S. While there is an elevating

effect on the S score for each ORF, Fig. 43 does establish that sizable populations of S-ORFS

(S S 5) are still characterized for taxonomic classes and orders of the Proteobacteria and

Firmicutes. Moreover, the limited inclusion of paralogs is evidence that the B and L

thresholds for similarity work to reduce O-ORF membership for ORFS that significantly

fluctuate their composition, and phantom similarities among atrophying sequences within an

over-represented higher taxonomic rank may in this sense have been somewhat avoided.

Lateral gene transfer (LGT) may complicate the inferred ancestries of orthology for various

ORFS (Koonin et al., 2001), and phylogenetic trees based on ORFS such as metabolic and

environmental genes do not concur with rRNA phylogenies (Pace, 1997). LGT only accounts

for z 6% of the ORFS (Kurland et al., 2003) however, and if an ORF is laterally transferred

and conserved, that would be a case for inclusion in the O-ORF subset.

Further investigation of meaningful boundaries to ORF subsets could integrate the

results of more expansive analyses (Allen et al., 2003; Glasner et al., 2003) with more precise

characterizations of similarity based on protein structure (Chung & Yona, 2004) and

expectation concerning ORF length (Larsen & Krogh, 2003). From the standpoint of
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comparatively characterizing recombinative events as functionally important data points in

the context of an evolutionary model, the emergence and role of genes in functional groupings

and metabolic pathways may help to more closely establish the consequences associated with

associated chromosomal rearrangements along phylogenetic branches. There are a variety of

efforts that seek to comprehensively evaluate the functional and metabolic dynamics of ORF

populations within each genome (Karp et al., 2005; Caspi et al., 2006) and their relationship

to phenotype (Schilling et al., 2006). Yet, from a contemporary standopint, based on the

recent, “unprecedented” discoveries of decayed ORFS (Ochman & Davalos, 2006), it is

currently a meaningful step to focus upon a broad distinction between an operational subset

of ORFS compared to contrasting or randomly selected subsets. While there may be complex

dynamics of ORF populations, a more inferrential, prescribed approach may suffer from a

priori assumptions, estimation error, and also hinder repeatability of an analysis to the

expanding data set of fully sequenced genomes.

I evaluated the clustering of O-ORFS by the same running tally methodology used to

characterize the statistical significance of C-ORF and polarity-based clustering. The degree of

statistical significance for O-ORF clustering is similar to the degree of statistical significance

established for C-ORF clustering. The terms “shuffling” and “fluidity” have been used to

characterize the relocations of ORFS over time (Zivanovic et al., 2002; Lathe et al., 2000),

and the negative control used for establishing the Sigma 0 unit for the bootstrapped z-score

difference in distributions is based on a context of completely random, stochastic resamplings

of ORF designations as either S-ORFS or O-ORFS. This style of stochastic assignments may

be drastically and predictably different than natural processes of ORF addition and loss

(Snel et al., 2002), and may also relate to possible fitness constraints on the recombinative

relocation of ORFS (Wolf et al., 2001; Lathe et al., 2000). The degree of non-stochastic

positioning of O-ORFS and C-ORFS may 1) better support a proposed model of localized

rearrangements of chromosomal organization that does not fully obliterate a global

conservation of ORF organization (Horimoto et al., 2001), and 2) act to retain localized

positioning of ORFS so as to better optimize regulatory expression or protein-protein

interaction (Lathe et al., 2000; Svetic et al., 2004) . A more refined approach to measuring

chromosomal organization so as to inductively characterize probable pathways and
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limitations of recombinative change would involve a more accurate treatment of underlying

factors and dynamics more refined than a negative control of completely shuffled ORFS.
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Chapter 5: Measures of Internal

Physical O-ORF Clustering

5.1 Lagged Autocorrelations of O-ORF Densities

To investigate periodic invariance of O-ORF density, I evaluated lag k autocorrelations

on the series of O-ORF densities (Equation 12). I found a general, 6-dependent, property to

unshuffled ORF densities where there appeared to be Similarity between neighboring values

on lag k autocorrelation series (Fig. 57a, 57c, 57e). This property of similarity between

neighboring rk values contrasted with what I observed for lag k autocorrelation series

computed from shuffled series of ORF densities. Fig. 57b, 57d, 57f present extreme cases of

neighboring dissimilarities along lag k autocorrelation series calculated from shufflings of

ORF densities. Similarity between neighboring T10 and Tk + 1 values generally occurred

within the range of -—0.2 < Tk < 0.2 and did not rely on the first neighbor r1 autocorrelation

value to be greater than 0.3. This weak smoothness property appeared limited to 6 values

ranging from 20 kb to 80 kb. While the weak smoothness property involving 1'k z Tic + 1 and

—0.2 < rk < 0.2 may be evidence against both a purely random distribution of O-ORF

densities and strong periodic effects related to O-ORF organization, it may also evidence for

a third hypothesis where O-ORF densities form localized variances or shapes that are

non-random and interdependent with other regions on the chromosome. To better assess the

potential for such a hypothesis, I sought to further model and characterize by approximation

the observed non—random smoothness on the lag k autocorrelation series. Elucidating a

possible, underlying rule-based system associated with ORF densities is a prerequisite for

hypothesis-driven testing.

I postulate that the smoother series of rk values in Fig. 57a, 57c, and 57e is an effect of

similarly-sized expansions c that act to make a Tk autocorrelation value Similar to a rk + 1

autocorrelation value based on a segmentation size 6 where e z 6. When 6 is generally similar

to 6, I describe this as a scenario of constrained Sizes of expansion that do not perturb

segmentation-based symmetries of chromosomal organization. A more asymmetric variability
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Figure 57: Lag k autocorrelation values calculated on ORF density series built with segmenta-

tion Size 6 = 40 kb. k starts at 1. The right column (b, d, f) represents 7‘ values corresponding

to shuffled density series. The left column (a, c, e) is for the non-shuffled density series. (a,b)

Bacillus subtilis. (c,d) Vibrio cholerae (large chromosome). (e,f) Pyrococcus furiosus.
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to O-ORF densities would correspond to 6 values where e —- 6 7e 0, potentially resulting in

larger differences between rk and rk + 1 autocorrelation values.

5.2 Scalar Residue Measures

5.2.1 Sum of Squared Differences on Lagged Autocorrelation

Series

To non-parametrically measure the degree of symmetry for various segmentation sizes 6,

the Q(c,j, 6) symmetry score is based on a bootstrap comparison of sum of squared differences

on the rk series for shuffled and unshuffied versions of an O—ORF density series F (Equation

13). The first-neighbor autocorrelation value TI is not included in the Q scoring. High values

in the Q series correspond to reduced squared differences between 7k and rk + 1, generally

implying a higher degree of symmetry where ’70 z rk + 1 for the given segmentation size 6.

Fig. 58 shows the Q-based series of values for two groups of related genomes where the main

chromosome c, for each genome is evaluated to produce the series

Q(ci,6 = 10 kb),Q(cz-,6 = 20 kb),Q(cz-,6 = 30 kb), ...,Q(c,~,6 = 150 kb). Genus-based

relatedness is apparent for both Sulfolobus and Mycobacterium when compared to the distant

relations Shown in Fig. 58c and 58f respectively.
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My postulate is that the Q scoring of symmetry indicates symmetry-conserving

expansions where 6 z e and rk 2 Th + 1. Yet, there may be the effect of Tk z rk + 1 z 0, in

which case there is minimal signal with which to assert that 6 = 6. Yet, if

Th 2 Th + 1 z rk + 2, I hypothesize that regions on a Q(c,~, 61-) series would more powerfully

imply an e constrait of symmetry-conserving expansions if a harmonic were observed where

Q(c,-,6) z Q(cz-,j x 6) where j is an integer.

Based on my postulate that a measure of the internal physical clustering of ORFS would

show some characteristic of vertical ancestry (Section 1.5), I expect significant instances of

heritability to be associated with a measure of segmentation-based symmetries among O-ORF

densities. To investigate pairwise comparisons of chromosomal organization as characterizaed

by the Q(c,~, 6) scorings of symmetry for 6—based values, I evaluated the cross-correlation

between pairs of Q-based scoring series among sets of related chromosomes (Table 18). For

each set of three chromosomes evaluated in each row of Table 18, the first column of Table 18

shows the cross-correlation between the two most closely related chromosomes. For the 3

archaeal sets, the cross-correlation identifies the most closely related chromosomes. Yet, of

the two most closely related chromosomes from the bacterial sets of comparisons, only the

strains of Mycobacterium tuberculosis correlate together, and the r = 0.33 value is weak.

To broadly assay intrachromosomal symmetries of O-ORF density across multiple phyla,

I constructed three series of values by chaining together the Q series of three sets of

chromosomes (01,02, C3) where the Q series were based on 6 = 10, 20, 30, ..., 150 kb. Based

on abbreviations listed in Table 2, the three sets of chromosomes were: C1 = (Py.aby.,

Mt.acet., Sulf.solf., tb1551, Nostoc, S.pyog., M.gen., R.pro., and Xn.cmp.}; C2 = {Py.hor.,

Mt.maz., Sulf.tok., th37Rv, Synec., Str.pnm., M.pnm., R.con., and Xn.axon.}; and C3 =

{Py.fur., Arch.ful., A.pnx., Cor.glut., Th.elon., Lac.lact., M.pulm., Caul.cre., and X.fas.}. In

this particular analysis, my measurement of dependence between Q(c,-, 6) and Q(c,', 6 + a) is

limited to a = 10 kb. I measured the first neighbor autocorrelation 1'1 and also average

mutual information values for lags of 1, 2, 3, 4, 5, 6, and 7 on each of the 3 constructed series

(Table 19).

Based on Table 19, a putative result to the analysis is that lag 1 or lag 2 measures of

average mutual information are generally higher than the lag 3-7 measures of average mutual
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Table 18: Cross-correlations 1‘ among sets of three chromosomes (c1,c2,c3) between se—

ries of Q(c,-,6) values for segmentation-based symmetries of O-ORF densities where 6 =

10, 20, 30, ..., 150 kb.a

 

 

Closest Pair Closest & Closest &

r Distant Ancestor r Distant Ancestor r

Py.aby+Py.hor. 0.37 Py.aby. +Py.fur. 0.017 Py.hor. +Py.fur. 0.17

Mt.acet.+l\1t.maz. 0.33 Mt.acet.+Arch.ful. 0.11 Mt.maz.+Arch.ful. -0.35

Sulf.solf.+Sulf.t0k. 0.78 Sulf.solf.+A.pnx. 0.36 Sulf.tok.+A.pnx. 0.32

tb1551+th37Rv 0.33 tb1551+Cor.glut. -0.11 th37Rv+C0r.glut. 0.075

Nostoc+Synec. -0.28 Nostoc+Th.elon. -0. 16 Synec. +Th.elon. -0.39

S.pyog.+Str.pnm. 0.069 S.pyog.+Lac.lact. -0.23 Str.pnm.+Lac.lact. 0.37

l\r‘I.gen.+M.pnm. 0.15 l\I.gen.+l\'I.pulm. -0.028 M.pnm.+M.pulm. ~0.32

R.pro.+R.con. -0.20 R.pro.+Caul.cre. 0.14 R.con.+Caul.cre. -0.26

Xn.cmp.+Xn.axon. -0.50 Xn.cmp.+X.fas. -0.10 Xn.axon.+X.fas. 0.31
 

3The two most closely related chromosomes are c, and c2.

Table 19: Average mutual information of lagged series for Q(c2-,6) values of the symmetry

score where segmentation size 6 = 10, 20, 30, ..., 150 kb.

 

Average Mutual Information
 

 

Series r1 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7

Cl 0.49 0.66 0.54 0.46 0.44 0.48 0.55 0.49

C2 0.24 0.50 0.52 0.49 0.49 0.44 0.50 0.47

C3 0.20 0.59 0.55 0.50 0.53 0.52 0.54 0.52
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information.

5.2.2 Frequency of Changes in Angular Variation on the O-ORF

Density Series

To further verify the aspect of segmentation-based symmetries implicating an underlying

expansionary characteristic of c = 6 , I hypothesize that a Similar analysis based on angular

change on the pseudophase-Spaced series P(c,j, 6) Should demonstrate predictable information

between P(c,~, 6) and P(c,-, 6 + a) where a = 10 kb. The P(c.,-,6) scoring is based on a

comparison between angular frequency histograms D(F) for shuffled and unshuffied versions

of a pseudophased O—ORF density series F (Equations 14-16). High values of P(cZ-, 6)

indicate non-random angular relationships based on a Kolmogorov-Smirnov comparison with

a shuffled F series. Fig. 59 shows the P-based series of values for two groups of related

genomes where the main chromosome c,- for each genome is evaluated to produce the series

P(c,-,6 = 10 kb), P(c,~. 6 = 20 kb), P(cz-,6 = 30 kb), ...,P(c,-,6 = 150 kb). Putative,

genus-based relatedness is apparent for both Sulfolobus and Mycobacterium compared to

distant relations shown in Fig. 59c and 59f respectively. The non-randomness of

pseudophased angular change appears to rise with increasing values of 6, and this may be an

artificial measurement effect due to the less densely populated histograms of angular

frequencies based on fewer densities being generated by larger segmentation sizes.
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Table 20: Average mutual information of lagged series for P(Ci, 6) values of symmetric Shape

for segmentation sizes 6 = 10, 20, 30, ..., 150 kb.

 

Average Mutual Information
 

 

Series r1 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7

1 0.70 0.87 0.71 0.70 0.65 0.55 0.53 0.52

2 0.66 1.1 0.96 0.95 0.87 0.79 0.80 0.82

3 0.53 0.74 0.85 0.77 0.78 0.70 0.73 0.64
 

Based on Table 20, and consistent with Table 19, a putative aspect to the analysis is

that lag 1 or lag 2 measures of average mutual information are generally higher than the lag

3-7 measures of average mutual information. The upwards rise in values characterized by Fig.

59 likely accounts for the high r1 values in Table 20.

5.2.3 Taxonomic Correspondence

While there were some trends evident from the P and Q measures of O-ORF clustering

for 6 = 10, 20, 30, ..., 150 kb, the chaining together of unrelated chromosomes for Tables 19

and 20 does not allow for an inspection of phylogenetic differences between related organisms.

Also, while there was some correlation between the Q measure of segmentation-based

symmetries that may relate to phylogeny (Table 18), there was only a minor degree of

correlative pattern observed for bacterial chromosomes. To conduct a more detailed analysis,

I calculated the Q scoring of O-ORF density symmetries for 6 = 500, 1, 000, 1, 500, ..., 150, 000

bp. Fig. 60—62 contrasts the O-ORF density symmetry scores for a pair of two more closely

related chromosomes (leftmost columns) with a third more distantly related chromosome

(rightmost column). Compared to the low cross-correlation coefficients for bacterial

comparisons in Table 18, there is a putative similarity that can be more strikingly observed

based on the more detailed examination of segmentation sizes,

6 = 500, 1, 000, 1, 500, ..., 150, 000 bp, as Shown in Fig. 61-62. For instance, in Fig. 61, the two

strains of Mycobacterium tuberculosis appear dramatically different than their distant relation

in the Actinobacteria, Corynebacterium glutamicum (928 Ma). A notable exception however

is for the Xanthomonadaceae set of strains in Fig. 62 where Xanthomonas campestris shows

more similarity to Xylella fastidiosa than to Xanthomonas axonopodis. Yet, the various peaks
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and troughs associated with specific 6,- segmentation Sizes in Fig. 6062 do not perfectly align

from one chromosome to another and, despite the visual strong trend of consistency with

taxonomy, the 6-based values did not generally produce Significant correlative measures

between related chromosomes. Moreover, I did not find a simple smoothing algorithm that

would work to generalize the outlying patterns of peaks and troughs.

5.3 Simulation of Informational Change

5.3.1 Development and Characterization of Simulation Model

My hypothesis is that regions on a Q(c2-, 6]) series can imply an e constrait of

symmetry-conserving expansions. The diagnostic invariance of this symmetry-conserving

expansion would be such that 6 z e and Q(cz', 6) z Q(cz-, 6 + e). I sought to develop a model

of simulated chromosomal expansions and modifications in order to evaluate if Q(cz-, 6)

symmetry scores of the simulation model output meaningful relate, as proposed, to

constant-sized expansions. The hypothesized relationship of a harmonic association with 6

implies that a measure to characterize the amplitudes of the harmonic (e.g., moduli of the

fast Fourier transform) should be able to characterize c.

Chromosome simulations were conducted as described in Section 2.7 across various

parameters, S, N, and T. The relative stochastic level of occurrence between tandem

duplicating expansions and translocating modifications ranged, as a parameter, from 0.3 to

0.7 (S/ 10). The parameter, N, is defined as the number of consecutively stringed octets a:

where :r = ABCDEFGH, y = N, and my is the starting symbolic sequence. For the running

of each simulation trial, N ranged from 2 to 5 and the size of tandem duplications, T, ranged

from 3 to 12. A set of examples that helps illustrate the behavior of these parameters is

shown in Fig. 63. Segment size and counting was a function of consecutive subsequences of a

given length (i.e., segment size or “window” size on the output, simulation-based symbolic

sequence), and the number of “H” letters observed in the consecutively windowed

subsequences (i.e., a count).
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Figure 60: Q—based symmetry scores of O—ORF densities on 9 archaeal chromosomes. Each

row corresponds to a set of phylogenetically related strains. The first two columns represent

the chromosomes with the most recent common ancestor in comparison to the third column.

Abbreviated strain names are defined in Table 2. The Q(cz-, 6) measure iS described in Sections

2.8.3 and 2.8.4.
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Figure 61: Q-based symmetry scores of O-ORF densities on the chromosomes of 3 Actinobacte-

ria, 3 Cyanobacteria, and 3 Lactobacillales. Each row corresponds to a set of phylogenetically

related strains. The first two columns represent the chromosomes with the most recent com-

mon ancestor in comparison to the third column. Abbreviated strain names are defined in
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parison to the third column. Abbreviated strain names are defined in Table 2. The Q(c,-,6)

measure is described in Sections 2.8.3 and 2.8.4.
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Original Starting Sequence (the "N" parameter)

N = 1. ABCDEFGH

N = 2, ABCDEFGHABCDEFGH

N = 3. ABCDEFGHABCDEFGHABCDEFGH

Size of Tandem Duplications (the "T" parameter)

 

T = 5

ABCDEFGHABCDEFGH starting sequence

ABCDE / FGHAB I CDEFGH a window of5 characters is randomly selected

ABCDE / FGHAB + FGHAB / CDEFGH this window is tandemly duplicated

T = 3

ABCDEFGHABCDEFGH starting sequence

A / BCD / EFGHABCDEFGH a window of3 characters is randomly selected

A / BCD + BCD / EFGHABCDEFGH this window is tandemly duplicated

A "Translocation"

ABCDEFGHABCHABCDEFGHAB requires three "HA " subsequences

ABCDEFG / HA / BC / HA / BCDEFGHAB select a pair of2 "HA " subsequences

ABCDEFGHABCDEFGHA / BC IB and move window to a 3rd "HA " subsequence

(at the end, an "HA " subsequence is lost)

The chance of a tandem duplication event occurring

versus a translocation event being attempted is a

constant stochastic defined by the parameter S/10.    
Figure 63: Examples of the abstract simulation for structural duplications and translocations

on a symbolic sequence.
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5.3.2 Scalar and Spectral Measures of Model Output

Visual examples of symmetry scoring of Simulation-produced symbolic output are shown

in Fig. 64 - 65. There was some correspondence between symmetry measures for similar, yet

non-identical, parameters of S, N, and T as Shown in Fig. 66 - 68. The ordinate scale on the

Simulation-based plots may not directly equate in meaning to the ordinate scale of the

Q—based symmetry measures shown in Fig. 58 and Fig. 6062, yet the ranges are comparable

when T is low (T = 3) and N is of an intermediate value (N = 3 or N = 5). An effect of a

small T parameter and high N parameter was to reduce the presence of low (< —10)

symmetry scores from measurements of small segment sizes. Visually, the T parameter

appeared to correspond to a periodicity of the symmetry scoring. S did not have a dramatic

impact on the symmetry scores.

Fig. 66 and 67 Show how a spectral assessment with the fast Fourier transform (FFT) on

the Q series of symmetry scores may help reveal the underlying parameters to the Simulation.

As T changes (Fig. 66), the moduli of the FFT series form peaks at locations corresponding

approximately to 30/ (T-l). To illustrate this relationship, a tandem duplication parameter of

6 would potentially result in repetitious measures of density for every 6 characters on the

simulated output sequence of characters. The Q series may preferentially measure this effect

for segment sizes of 6, 12, 18, 24, and 30 as might be inferred from the behavior of plots in

Fig. 64 - 65. This succession of preferential segment Sizes (6, 12, 18, 24, and 30) corresponds

to a periodicity of 4 on a series from 1 to 30. Fig. 67 shows the visual effect on the FFT

modulus series for altering S and N parameters of the underlying Simulation model and a

mathematical relationship between the structure of the FFT modulus series (Mod(fft(Q))

compared to the S and N parameters is not readily apparent.

As S, N, or T is offset by 1, Fig. 68 Shows the degree to which the Q and

Mod(fft(Q))-based distributions are altered. Adjusting any simulation parameter by 1 does

not radically alter the Q series distributions (Fig. 68a — 68c) and, for alterations of S and N,

the Mod(fft(Q)-based distributions (Fig. 68d - 68c). Similarity between distributions is

significantly lost for the Mod(fft(Q))-based distributions when T is altered, even by a Single

increment (Fig. 68f). The Mod(fft(Q))-based assay, in this sense, demonstrates increased

sensitivity to relatively small changes in the size of tandemly duplicating expansions.
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Figure 64: Scorings of segmentation-based symmetries for simulations of informational ex-

pansion and modification. 29 segmentation sizes were evaluated (2,3,4, ...,30) for varying

parameters. S (relative stochastic) = 3. N (number of originating ABCDEFGH octets): 2, 3,

5. T (size of tandem duplications): 3, 6, 12. Each point characterizes the distribution of 50

replicate simulations on a given segmentation size and set of S, N, and T parameters: first

quartile Shown in blue; median shown in red; third quartile Shown in green.

162



        

 

 

     

o o

0

8| '7

8

7 3

.53
I

S o 8 o
I I I I I I I I I I I I I I I I I I

51015202530 51015202530 51015202530

S=7.N=2.T=3 S=7,N=2,T=6 S=7,N=2,T=12

E II, 003

O

0 IO

U) '7 $90

a .. ....

m

ETIIIIII$IIIIII$OTIIIII

w 51015202530 51015202530 51015202530

S=7,N=3,T=3 S=7,N=3,T=6 S=7,N=3,T=12

 

  O

I I I I I I I I I l I I I I I I

51015202530 51015202530 51015202530

S=7,N=5,T=3 S=7,N£.T=6 S=7,N=5,T=12

Segmentation Size

Figure 65: Scorings of segmentation-based symmetries for simulations of informational ex-

pansion and modification. 29 segmentation sizes were evaluated (23,4, ...,30) for varying

parameters. S (relative stochastic) = 7. N (number of originating ABCDEFGH octets): 2, 3,

5. T (size of tandem duplications): 3. 6, 12. Each point characterizes the distribution of 50

replicate simulations on a given segmentation size and set of S. N. and T parameters: first

quartile shown in blue; median shown in red; third quartile shown in green.
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5.4 Investigating Phylogeny

Calibration was for a symmetric scoring based on 51 segmentation Size values (25,000

bp), and the window for which 4 Streptococcus pyogenes chromosomes had the greatest

pairwise difference in their characteristic ranges of Q symmetry scores (see Fig. 69). The

rationale for this calibrating approach was to approximate the detection of divergence against

a lineage with known organizationally divergent properties at the subspecies level. A window

size of 25 kb approximates the general fluctation of high and low symmetry scores observable

in Fig. 58 and 59, and putatively evident from the lagged average mutual information

analyses in Tables 19 and 20.

The first spectral modulus from the 51-value window was used to characterize the range

of Q symmetry scores, and was termed the windowed asymmetric deviation. The highest

differences of windowed asymmetric deviations among S. pyogenes strains were the 75th

segmentation size, 37,500 bp, to the 125th segmentation size, 62,500 bp.

There were 24 sets of closely related species. The distribution of closely related species’

pairwise differences of windowed asymmetric deviation for 37.5 kb to 62.5 kb is shown in Fig.

70.

Fig. 71 shows the relationship of time of divergence from a last common ancestor to

differences in chromosomal structure and organization. I did not find direct cross-correlations

between the individual measures of chromosomal structure and organization: chromosome

size, windowed asymmetric variation, and average pointwise mutual information, so the

covariance of these multiplied measures with times of divergence has added significance. The

alphabetic letters in Fig. 71 correspond to pairwise comparisons among sets of three

chromosomes (the identity of which are described in Table 5). While linear correlations were

significant (0.66 S r S 0.87), the “I” and “E” sets of chromosomes (Xanthomonadaceae and

Cyanobacteria) were conflicting in their relationship of difference in chromosomal structure

and organization to the estimated time of divergence from a last common ancestor.

Incidentally, Similar to the analysis in Fig. 69, the highest correlations for the relationship of

difference in chromosomal structure and organization to the estimated time of divergence

from a last common ancestor occurred for windowed asymmetric deviations for the range of

segmentation sizes 6 = 37.5 kb to 62.5 kb.
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Figure 69: Differences of windowed asymmetric deviations between S. pyogenes strains based

on a 25 kb window of segmentation sizes. For the 4 strains evaluated, there were 6 pairwise

comparisons. The start point for each 25 kb window is the abscissa value.
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Figure 70: Frequency of differences between windowed asymmetric deviations among closely

related strains of the same Species. Bin size is 1. AS expected, the higher, outlying windowed

asymmetric deviation values correspond to comparisons among S. pyogenes strains.
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Fig. 72 Shows the relationship of the windowed asymmetric variation to IS element

density. The highest correlation value relates to a first modulus sampling window on the Q

series of 6 = 39,000 bp, 39,500 bp, 40,000 bp, ..., 64,000 bp. I did not find significant

correlation values (r > 0.3) with IS element density for comparative measures of average

pointwise mutual information or for chromosome size.
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Figure 71: Relationship of divergence time from a last common ancestor to differences in

chromosomal structure and organization. The windowed asymmetric deviation is based on a

characteristic range of residual summed squared differences on lag k correlation series calculated

from ORF densities 37,500 bp, 38,000 bp, ..., 62,500 bp. The letters correspond to comparisons

from Table 5. The letter with the smaller x coordinate value is the first column comparison

of Table 5. The letter with the higher x coordinate value is the average of the second and

third column comparisons. (a) Absolute difference in windowed asymmetric deviation for

various times of divergence, m = 3.86,r = 0.66. (b) Product of the absolute differences in

chromosome size and windowed asymmetric deviation for various times of divergence, m =

11.6,r = 0.77. (c) Absolute difference in windowed asymmetric deviation divided by the

average pointwise mutual information for 40 kb (I[40]), m = 2.47,r = 0.72. (d) Product of

the absolute differences in chromosome Size and windowed asymmetric deviation divided by

[[40], m = 5.54, r = 0.87.
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5.5 Discussion

There are a wide variety of approaches for quantifying how a measured complexity of

pattern may relate to underlying dynamics (Falconer, 1997; Casdagli et al., 1991; Stearns 82

Magwene, 2003). My final measure of a windowed asymmetric deviation may represent an

advancement beyond a cross-species or cross-strain interchromosomal correlation of gene

locations (Horimoto et al., 2001) in that the windowed asymmetric deviation is an

intrachromosomal residual value for comparison that may more directly implicate underlying

functional optima and mechanistic possibilities for change relating to the clustering of ORFS.

The symmetry scoring measure Q(c,-, 6) upon which the windowed asymmetric deviation is

based is the result of a fairly sophisticated algorithm that adds together the squared

differences along a lag k autocorrelation series and, by bootstrap, contrasts the outcome for

natural, unshuffled chromosomes versus artificially shuflied chromosomes. My Q(ci, 6)

measure did not emerge through a clear axiomatic procession of analysis upon a

well-parameterized model with pre-established properties, but more closely follows an

inductive measurement process (Goldfarb & Deshpande, 1997). The Q measure is based on a

bootstrapped contrast between sums of squared differences, and, in this sense, departs from

more conventional approaches involving means of squared differences. By directly measuring

the absolute difference of E(F) values with shuffling-based E(X,-) values (Equation 13) prior

to any averaging, more of the residual structure may be evaluated separate from any

assumption of an interval-strength measurement property (Sarle, 1995) attributed to the

E(F) function. This is especially important based on the reported incidence of symmetries in

the Spatial clustering of gene density being potentially attributable to the skewed frequency

distribution of gene densities, and not necessarily a consequence of non-shuffled chromosomal

organization (Jurka & Savageau, 1985).

The initial point of empirically based induction involved observations of the lag 1: series.

I developed two measures, Q(c,-, 6) and P(cz-, 6), to further quantify the observed invariance

where the intent for each of these measures was to independently quantify non-random effects

associated with localized variance on the series of ORF densities as opposed to directly

correlative assays of density magnitudes involving a defined zero point. Both the Q(cz-, 6) and

P(cz-, 6) measures are based on approaches frequently used in time series analyses that may
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be further developed to characterize an underlying temporal nature to the formation of ORF

clustering. The pseudophase space analysis of the P(cz-, 6) measure was based on an

embedding dimension of two. A more refined approach to assaying invariance on a phase

space would select an embedding dimension suflicient to accurately characterize nearest

neighbors on the dimensional projection (Kennel et al., 1992).

The model usage of my symmetry scoring measure Q(c.,-, 6) was to help quantify the

constraint of chromosomal expansions for a segmentation Size 6. I hypothesized a harmonic

relationship where consecutive chromosomal expansions of 6 would implicate chromosomal

expansions of 6 x j where j is an integer. If the symmetry scoring measure Q(c,~, 6) relates to

the likelihood of chromosomal expansion occurring for a given 6, then a reasonable

expectation would be for a harmonic effect where Q(ci, 6) z Q(ci, 6 x j). The simulation that

I constructed was a meaningful indicator as to the effectiveness of evaluating a harmonic

pattern on the Q series in order to infer underyling Sizes of organizational expansion. The

windowed asymmetric deviation captures a one wave harmonic to characterize rising and

falling from high symmetry scores to low symmetry scores.

The final set of r > 0.6 values in Fig. 71 demonstrates a relationship between structural

and organizational features of compared chromosomes versus time of divergence from a last

common ancestor. The windowed asymmetric deviation did not correlate with other

measures of chromosomal structure and organization such as chromosome size and average

pointwise mutual information. The windowed asymmetric deviation did correlate with time

of divergence from a last common ancestor, both by itself and as a jointly considered

indicator along with measured differences of chromosome size and average pointwise mutual

information. The advancement in methodology represented by the windowed asymmetric

deviation presents a novel capability to predict a time of divergence from a last common

ancestor independent from analyses of specific conserved sequences. The only sequence

analysis necessary to arrive at the windowed asymmetric deviation is to specify the locations

of O-ORF translational start points as they occur on a given chromosomal sequence. My

novel development of the windowed asymmetric deviation measure may be important to the

objectives of a polyphasic taxonomy (Stackebrandt, 2002). Recombinations may

conventionally be associated with transitions of evolutionary mode as evident from studies of
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genomic plasticity (Romero & Palacios, 1997; Aras et al., 2003; Fuller, 2003; Terzaghi &

O’Hara, 1990), as well as the increasingly clear relationship between genome size, genomic

instability and lifestyle adaptation (Ochman & Davalos, 2006; Moran & Plague, 2004). The

strong trends of chromosome structure and organization for times of divergence in Fig. 71

may contrastingly implicate a fair degree of vertical ancestry possibly aligned with theoretical

notions of an evolutionary tempo (Woese, 1987). A direct evaluation of functional

conservation would be based on empirical data concerning viable and non-viable

reorganizations of the chromosome. An assessment of functional conservation across multiple

prokaryotic phyla would likely focus on common molecular factors of chromosome structure.

A characterization of chromosomal organization in terms of physical base pair locations, as

performed in this study, may aid in the objective evaluation of structure separate from

lineage-specific distributions of other chromosomal features.

While an inductive measurement process per se is not hypothesis driven, the correlative

findings suggest that the stability of chromosomal structure and organization can be

characterized over long periods of time. Throughout my analyses, I tried to apply my various

measures of chromosomal organization to various evolutionary trait software packages (Pagel,

1994; Huelsenbeck et al., 2001; Ronquist & Huelsenbeck, 2003). Even by relaxing various

assumptions, I had difficulty with producing a hierarchy manifesting consensus with current

taxonomy. My sample size may be too small or the various measures of chromosomal

organization may not yet fully characterize the heritable aspects of the complex

recombinational system. Based on the sample of fully sequenced genomes, the most powerful

and focused analyses would be for well-represented taxons such as the Proteobacteria and the

Firmicutes. An effort for identifying possible metabolic and ecological factors associated with

recombinative change, and organisms that transition between differing degrees of genomic

stability, may be necessary to more meaningfully characterize branch points of divergence

from common ancestors. The optimal relocationing of ORFS may require empirically-driven

analyses for effects associated with physical supercoiling and expression (Deng et al., 2005),

and optimal expression levels for growth and fitness within the environment (Dekel & Alon,

2006).

The Significance to my measures of chromosomal organization may exceed that of simple
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correlation with mobile elements and times of divergence spanning billions of years of

evolution. It is unexpected by chance for mobile elements and assessments of vertical

ancestry to both implicate windows almost exactly the same (about 37,500 bp - 62,500 bp).

The repeated implication of high average pointwise mutual information (APMI) for

segmentation sizes surrounding 6 = 40 kb in Chapter 3 is also generally consistent with the

37,500 bp - 62,500 bp window. The product of differences between the inverse APMI for 40

kb, chromsome Size, and windowed asymmetric deviation act to increase correlation with a

time of divergence from a last common ancestor, and this may constitute evidence for

phylogenetic covariance of these structural and organizational properties.

For the various stages of the approximated model of organizational change to the

chromosome, there remain a variety of further empirically-driven treatments and efforts at

mathematical modelling that may more rigorously investigate specific molecular pathways of

change. The present informational analysis can also be extended by further development of

the abstract, simplified system of symbolic translocations and duplications. Presently, for

smaller values of the simulation model parameter T (i.e., 3 and 4), the Q symmetry score of

the simulated organization is more closely comparable to a natural chromosome based on an

ordinate range appearing to be predominantly between —1.0 and +1.0. Additional analysis

would be required to further ascertain meaningful correspondences between abstract,

simulated representations of chromosomal content and symmetry, and aspects of information

and noise inside natural chromosomes. A principal question may be to separately account for

how any large-scale periodicity to chromosomal organization relates to duplication of large

segments of the chromosome versus a relationship with nucleoid superstructure (Koonin

et al., 1996).
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Chapter 6: Summary and Conclusion

Hypotheses concerning ORF composition and organization of prokaryotic chromosomes

were evaluated. Based on prior characterizations of coding content (Jackson et al., 2002;

Tatusov et al., 2003; Skovgaard et al., 2001), this study evaluated the hypothesis that 75% of

annotated ORFS legitimately encode operational ORFS. This study also proposed and

addressed several hypotheses concerning the symmetrical or asymmetrical nature of ORF

clustering along prokaryotic chromosomes. The postulated outcome for a symmetrical

pattern of ORF clustering was correspondence with vertical ancestry and the effects of

mobile elements on detection of organization attributable to vertical ancestry. The findings of

this study correlate well with the postulated 75% subset of ORFS that likely have phenotypic

activity. In terms of a pattern of non-random clustering across 165 prokaryotic chromosomes,

the organization of the operational ORFS was generally non-random in relationship to the

contrasting 25% subset of non-operational ORFS. A segmentation analysis of ORF density

was conducted where ORFS were counted, based on the locations of their translational start

points, within consecutive segments for a given, physical segmentation length in base pairs.

For most chromosomes and segmentation sizes, a Significant periodic symmetry was not

observed on the series of ORF density values. Yet, a pattern of similarity between

neighboring lag k autocorrelation values (rk and rk + 1) was evident where the correlation

coefficients occurred within the range of —0.2 < rk < 0.2. The weak pattern between rk and

rk + 1 was hypothetically attributable to segmentary expansions that resulted in more

equalized rk and rk + 1 values. Development of a model to simulate organizational

expansions and modifications supported the efficacy of a proposed, hypothetical, harmonic

Signal measure to detect constraints on segmentary expansion. When first calibrated to a set

of Streptococcus pyogenes strains, the harmonic signal successfully correlated with postulated

outcomes for lengthy time periods of vertical divergence and the presence of mobile elements.

In the context of a dynamic analysis (Fig. 1), an avenue was explored in Chapter 4

where subpopulations of putatively “noisy” ORFS, likely not to contribute to phenotype,

were identified by a basic, heuristic approach that was not lineage-specific. Although the

ranges of protein lengths for an operational ORF subset (O-ORFS) and a putatively silent
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ORF subset (S-ORFS) were overlapping, trends of non-normality associated with a

fragmentation model of protein structure robustly supported a subset distinction of the

annotated ORF set across different phyletic groupings. Across the set of 67 chromosomes for

which ORFS were assigned to COGS (C-ORFS), the percentage composition of each

annotated set of ORFS was analyzed. The annotated set of ORFS for each chromosome

generally (r2 > 0.9) consisted of a 72% subset of O-ORFS and a 73% subset of C-ORFS. The

O-ORF and C-ORF subsets were not identical and, overall, 9% O-ORFS were did not belong

to a COG. Functional, phenotypic, and transcriptional assays resulted in greater empirical

support for the O-ORF subset to be operational compared to the C-ORF subset. Examining

the underlying nature of annotated ORFS (the principal objects of evaluation) (Chapter 4)

was an essential step to take prior to the reconstruction of recombinative and evolutionary

dynamics attributable to ORF clustering in Chapter 5. I did not find many of the invariant

characteristics of organization observed for O-ORFS to be present for either the total set of

ORFS or for randomly selected subsets of ORFS.

The correlative findings of this study for O-ORF organization establish an initial

measure for relating differences of chromosomal Size and intrachromosomal organization to

times of divergence from last common ancestors. Future advancements might jointly estimate

times of divergence by a measure constructed with both 168 rRNA sequence analysis along

with differences in chromosome size and intrachromosomal organization. Conservation of

ORF organization appears to be global across a chromosome and conserved across diverse

lineages despite substantially localized disruptions (Horimoto et al., 2001).

Proposed functional barriers of conservation against recombinative change have been

supercoiling, replichore balancing, and cotranscriptional effects (Mahan et al., 1990). The

relationship of physicochemical chromosomal topology to genomic arrangement is becoming a

closely examined phenomenon where the supercoiling structure of the chromosome associates

with processes of transcription and gene expression (Deng et al., 2005). Estimates of physical

lengths associated with supercoiling domains range from 10 kb to 100 kb (Postow et al.,

2004; Miller & Simons, 1993). By contrast, analyses in this study implicate narrower ranges

of 40 kb or 37.5-62.5 kb as the physical ranges of segmentation Sizes associated with

conserved ORF organization. While the dot matrix plots of Fig. 25-33 implicate mobility of
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chromosomal segments greater than 10 kb, there also appear to be individual, potentially

orthologous ORFS that are distributed away from the main diagonal of conserved ORF

organization. There is also a lack of significant periodic signal for long distances along the

chromosome (Fig. 57). Overall, the evidence suggests that supercoiling domains do not

define rigorous boundaries of ORF clustering, and this may be consistent with recent claims

that the supercoiling structure is dynamic and does not represent a fixed scaffold (Deng

et al., 2005). A further informational study beyond conventional dot matrices and my own

scalar measures of ORF symmetry may evaluate additional features such as the origin of

replication for the chromosome, and the directions of transcription for each ORF. The

transcriptional orientation of an ORF specific to one of the two intertwined chromosomal

strands is a strongly conserved aspect of chromosomal organization, and results from my

running tally method stand in direct contrast to a recent report that a significant association

of transcriptional directions with replication does not occur for Vibrio cholerae and Yersinia

pestis (Briiggemann et al., 2003). Other types of information Spanning the length of

chromosomes may also be potentially evaluated; Hallin & Ussery (2004) present an online

“genome atlas” where aspects such as intrinsic curvature, stacking energy, position

preference, direct repeats, inverted repeats, GC skew, and percent AT are charted in

concentric fashion around demarcations of ORFS. A major future objective will be to test the

emergent hypotheses from informational analyses of chromosomal structure for

correspondence with how lethality (Mahan et al., 1990) and diversification (Vulic et al., 1999)

result from alterations to ORF organization.

Beyond the scope of visual atlases, comparative studies of closely related strains, and

anecdotal reviews of genomic diversity, a challenge that this study sought to address was the

development of a quantitative data analysis that could be efficiently applied to the growing

set of fully sequenced prokaryotic genomes (Fig. 13). The rapid, ongoing increase of genomic

data is a strong basis for advocating that informational analyses aid in the gathering and

processing of observations. The final finding in my study was for an approximated

characteristic of chromosomal organization that correlated well with vertical conservation

and mobile elements, and more precise characterizations will be likely possible in the future

with the greater amount of analytical power provided by a larger data set.
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A genome presents not just an extant view of an organism, but may also encode an

archaeology corresponding to previous states of adaptation or ancestry. In this study,

Simulation was used to verify some of the properties associated with calculated, residual

values of ORF organization, and a sophisticated treatment based around measuring residual

signal led to characterizing prokaryotic diversity to a degree that would not be expected to

occur by chance. The properties of both natural and simulated variation provide evidence

that the developed measures of ORF organization are not due to artifacts of observational

noise or estimation error, and may represent interpretable signatures of past recombinative

change. The degree and utility for chromosomal organization to relate to ancestry and

divergence was Significantly established, and important questions concerning conservation of

information, evolutionary mode, tempo, and a legitimate polyphasic taxonomy (Zuckerkandl

& Pauling, 1965; Woese, 1987; Stackebrandt, 2002) may now be more addressable.
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