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ABSTRACT

HIGGSLESS ELECTROWEAK SYMMETRY BREAKING FROM

THEORY SPACE

By

Roshan Foadi

We propose a Higgsless model of electroweak symmetry breaking, with inspiration

from the physics of one compactified extra-dimension. The gauge sector consists of

an SU(2) Yang-Mills theory on an extra-dimensional interval, with boundary con-

ditions breaking SU(2) to U(1) at one end, and large brane kinetic terms on both

boundaries. Exchanges of Kaluza—Klein modes are shown to postpone the unitarity

violation of longitudinal gauge boson scattering amplitudes to energy scales higher

than the customary limits of Dicus-Mathur or Lee-Quigg-Thacker. Fermions are first

implemented into the model as brane-localized fields, and then as bulk fields with

large brane kinetic terms on both boundaries. Only in the latter case can unitarity

and precision electroweak constraints coexist, as long as the amounts of leakage into

the bulk of the Standard Model gauge bosons and the Standard Model left-handed

fermions are properly related. In order to achieve a realistic top mass without violat-

ing unitarity of gauge boson scattering amplitudes, the gauge-sector compactification

radius, R9, and the fermion-sector compactification radius, Rf, are made indepen-

dent by breaking the five-dimensional Lorentz invariance. Unitarity and experimental

constraints are shown to impose, respectively. upper and lower bounds on l/Rg and

1/12,.
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Chapter 1

Introduction

The SU(3)C010r><SU(2)LxU(1)y gauge model of particle physics is a very succesful

theory, as decades of experiments have confirmed its predictions to a high level of ac-

curacy. Nonetheless there are still several unanswered questions, the most prominent

being the mechanism of electroweak symmetry breaking (EWSB). If the electroweak

symmetry were unbroken, all particles so far discovered would be massless. Since

most particles are massive, with masses which range from a few eV’s for the lightest

neutrino to ~174 GeV for the top quark, there must be some mechanism, lying at

energies above the top mass, which spontaneously breaks the SU(2)LXU(1)Y elec-

troweak symmetry to the U(1)Q symmetry of electromagnetism.

The process of mass acquisition via symmetry breaking is generically known as

Higgs mechanism [1] [2] [3]. In its most common versions it consists of one or more

scalar fields in a linear representation of the gauge group, with the scalar potential

producing a non-zero vacuum expectation value (VEV) which spontaneously breaks a

higher symmetry to a lower one.

The simplest renormalizable theory of EWSB with scalar fields is the Glashow-

Weinberg-Salam model (GWS) [4] [5], in which one scalar doublet is coupled to the

SU(2)L x U(1)y gauge group. When the SU(3)C01or gauge group of Quantum Chromo-

Dynamics is included, together with three generations of matter fields, the GWS

model becomes the Standard Model (SM) of particle physics. In this model, like in

other models of EWSB, the W and Z boson masses depend on the gauge couplings



and the VEV. The latter is therefore constrained, and turns out to be around 250

GeV.

Theories of EWSB via scalar fields are particularly simple, but are also affected

by problems like triviality, hierarchy, and vacuum stability. Nonetheless they have

been proposed in a variety of theoretical frameworks, besides the SM: Supersymme—

try, composite Higgs models, little Higgs models, extra-dimension, and so on. The

main reason for this is unitarity. In any quantum field theory, a straightforward

consequence of the S-matrix unitarity is that scattering amplitudes cannot grow in-

definitely with energy. More specifically, the coefficients of the partial wave expansion

computed in the theory must be less than 1 /2, or else the theory becomes strongly

interacting. This poses a serious problem for the scattering of longitudinal vector

bosons, since the corresponding tree—level amplitudes grow with energy [6] [7] [8] [9].

In fact the polarization vector of a longitudinal gauge boson grows like E, where E

is the particle energy, and the tree—level scattering amplitudes can potentially grow

as badly as E4. Gauge invariance always guarantees the cancellation of the E4 co—

efficient, but the coefficient of the E2 term can be different from zero. However in

renormalizable theories of EWSB via scalar fields this does not happen. For exam-

ple, consider the SM Higgs doublet, which is complex and has therefore four real

scalar fields. Three of these are absorbed by the W, and Z bosons to acquire the

longitudinal component and become massive. These are the Goldstone bosons. How-

ever the unabsorbed scalar field corresponds to a physical spin-0 particle, the Higgs

boson. In the scattering of longitudinal gauge bosons, the interactions with a vir-

tual Higgs-boson exchange precisely cancel the bad high energy behavior and restore

unitarity [7] [10] [11] [12]. Of course this is not a miracle, but just a consequence

of the Goldstone boson equivalence theorem: At high energy, the longitudinal gauge

boson scattering amplitudes become identical to the scattering amplitudes of the cor-

responding Goldstone bosons [9] [11] [13] [14] [15] [16] [17] [18] [19]. Analyzing these

amplitudes in a linear representation of the gauge group shows that no terms growing

with energy can be present, since the cubic and quartic interactions do not involve

derivatives. It is important to stress, however, that the cancellation of the terms



which grow like E2 is not enough to insure unitarity. This is easily understood if we

decouple the Higgs boson from the theory by sending its mass to infinity, in which

case the scattering amplitudes would no longer be unitarized. In fact in such case the

Goldstone fields would necessarily be in a non-linear realization of the gauge group,

with interaction terms involving derivatives, and the Goldstone boson scattering am-

plitudes would grow like E2. Therefore, unitarity poses an upper limit on the Higgs

boson mass, which turns out to be below 1 TeV [10] [11].1

After these considerations, the emerging picture is the following: in an SU(2)Lx

U(1)y gauge theory, EWSB via scalar doublets is viable, as long as the VEV is close

to 250 GeV, and the Higgs boson is a light particle (below 1 TeV), which should be

detected in the upcoming generation of hadron and linear colliders. Recently it has

been pointed out that the VEV and the Higgs mass can be raised if the gauge group

is larger than SU(2)LxU(1)y. For example, Georgi has shown that an SU(2)89XU(1)

[gauge theory can reproduce the SM results with a VEV greater than 2 TeV [20]. The

reason for this (and the motivation for considering such a ridiculously large gauge

structure) finds its origin in the physics of extra-dimension. A spatially compactified

extra-dimension, substantially larger than the Planck length (10—33cm), but small

enough to elude detection in the past generations of hadron and linear colliders,

might exist [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]. A gauge theory on

a compactified extra-dimension can be seen from two different standpoints. First,

it can be seen as a five-dimensional theory whose Lorentz invariance along the fifth

dimension is explicitly violated by compactification. Effects of the Lorentz symmetry

breaking would then be proportional to powers of 1 /ER, where E is the typical

energy of a physical process, and R is the size of the extra-dimension, which will be

referred to as the compactification radius. Second, it can be seen as a four—dimensional

theory, by expanding the four-dimensional components of the gauge field in a series of

massive vector bosons, the Kaluza-Klein (KK) modes, whose mass spacing is of order

of the inverse compactification radius. The fifth component of the gauge field would

 

1The upper bound on the Higgs mass imposed by triviality is stronger than the bound imposed

by unitarity.



then be expanded in a KK tower of massive scalar particles. These scalars cannot

be physical, since in a five-dimensional gauge theory, under certain assumptions, the

fifth component of a gauge field can be transformed away [33]. They are therefore to

be interpreted as Goldstone bosons, eaten by the massive KK modes.

It is then clear that a gauge theory on a compactified extra-dimension has a spon-

taneously broken enhanced symmetry, with consequent generation of massive vector

bosons and eaten Goldstone bosons. Chivukula et al. showed that this large sym-

metry structure has the important effect of delaying unitarity violation of scattering

amplitudes to energy scales higher than the customary limit of Dicus—Mathur or

Lee-Quigg-Thacker [7] [10] [11] [12]. The violation delay is achieved by introducing

interactions with exchange of virtual KK modes [34] [35] [36]. In particular, the co—

efficient of the term growing like E2 exactly vanishes. This can be understood by

using a Kaluza-Klein equivalence theorem (KK-ET), which results from the geomet-

ric Higgs mechanism of compactification. From a four-dimensional point of View, the

KK-ET relates the scattering amplitudes of longitudinal KK modes to the scattering

amplitudes of the corresponding KK Goldstone bosons, which — as we argued before

- do not grow with energy.

Eventually unitarity ends up being violated at large energies. The reason for

this can be intuitively understood in two different ways. First, Yang-Mills theories

are non renormalizable in 5D. Then a bad high-energy behavior of loop diagrams

corresponds, through the optical theorem, to a bad high-energy behavior of the cut

tree-level amplitudes. Second, even in absence of an E2 term, a logarithmic growth

in energy is still present: this comes from the infrared singularity in the t-channel.

In the SM, or in other theories with a Higgs boson, such contribution is negligible

for all non-exponentially large energies. However, in models from extra-dimension,

as the number of exchanged KK modes is allowed to increase, the term proportional

to logE becomes important, and eventually leads to a unitarity violation of any

scattering amplitude. The scale of unitarity violation can be estimated by taking the

extra-dimension to be infinite in size, because we are interested in the high energy

behavior. Then the only mass scale is 1/93, where 95 is the gauge coupling of the



five-dimensional theory, with mass dimension -1 /2. Therefore, we expect unitarity to

be violated at energy scales of order 1/gg times a numerical factor [37] [38].

This violation scale can be rather high, suggesting that perhaps there is a con-

sistent way of breaking the electroweak symmetry without producing a Higgs boson,

at least in the energy range predicted by SU(2)LXU(1)y gauge theories with one or

more Higgs doublets, as suggested by Georgi’s model. The latter can be seen — when

the Higgs fields are integrated out — as a deconstructed [39] [40], or latticized, version

of a five-dimensional SU(2) gauge theory on an interval, rather than a circle, where

each SU(2) group corresponds to a point on the extra-dimensional interval.2 In fact

when the extra-dimension is put on a lattice, a G-invariant gauge theory becomes a

G'N+2 non-linear sigma model (NLSM), where N + 2 is the number of points in the

lattice (two at the interval ends and N internal). NLSMs are usually depicted by

moose diagrams, like the one in Fig.1.1(a). Each circle, or site, represents a gauge

group G -, and its coupling gj. A line connecting two circles represents a NLSM

field, Ej, and its VEV fj. The field Ej(:r) transforms under both Gj-1 and G'j,

like Ej(:r) —> [1]-:11 (1:)Ej(1:)Uj(.r). In a deconstructed model all gauge groups are of

course identical, and the 2 fields correspond to the value of the gauge-field fifth com-

ponent at discrete points. If a flat background is assumed, all couplings and VEVs

are also identical. The only possible exception is represented by the first and the

last site, where boundary conditions (BCs) and brane kinetic terms, in the underly-

ing five-dimensional theory, can result in different gauge groups and couplings in the

deconstructed model. We will come back to this point later in this introduction. The

moose diagram of a deconstructed model looks therefore like the one in Fig.1.1(b).

In deconstructed models the coefficient of the E2 term does not vanish precisely,

but it is suppressed by 1/N2, for N —> 00. As a consequence, the delay of unitarity

violation is not as large as in the full five-dimensional models [36] [41] [42]. Nonetheless

deconstruction is still a powerful tool for model building for at least two reasons. First,

 

2In Georgi‘s model fermions are coupled in a peculiar way, which makes the interpretation as

a deconstructed five-dimensional model not viable. Nonetheless such interpretation is valid for the

gauge sector.



 
Figure 1.1: (a) Structure of a linear moose diagram. The circles represent gauge

groups Gj, and their couplings gj. A line connecting two circles represents a non-

linear sigma model field, 23-, and its VEV fj. Each 2 field transforms bilinearly

under the adjacent gauge groups. (b) Moose diagram of a deconstructed model in a

flat background: All gauge groups, couplings, and VEVs are identical, because of the

translational invariance of the underlying five-dimensional theory. The only possible

exception is for the first and the last site, depending on the boundary conditions.

it allows for common four-dimensional UV completions, like linear sigma models (as in

Georgi’s model) or dynamical symmetry breaking. This turns out to be particularly

useful in Technicolor-like models, since a strongly coupled physics at the TeV scale is

disfavoured by electroweak precision (EWP) data [43] [44], and deconstructed models

with a large symmetry structure can raise the scale of unitarity violation by a factor

10 [45] [46]. Second, deconstructed models allow for more freedom in model building

than strict five—dimensional theories. This feature is especially welcome when it comes

to coupling a model to matter fields. As opposed to five-dimensional theories, where

the interaction of fermions with the gauge-field fifth component has the same strength



as the ordinary gauge interactions, in deconstructed models the Yukawa coupling to

the 2 fields can be made independent of the gauge interactions. Moreover, terms

which are not local in a five-dimensional theory make perfect sense in deconstructed

models. Theories represented by moose diagrams are commonly referred to as models

from theory space (TS). As the number of sites goes to infinity, a theory-space chain of

gauge groups becomes an extra-dimensional interval only under special assumptions.

We will discuss the relation between extra-dimension and theory space in section 3.5.

Having established that extra-dimension and theory space provide new interac-

tions which delay unitarity violation, the next step is to inquire whether EWSB can

be implemented in these frameworks. Models with a compactified extra-dimension

are usually mapped onto five-dimensional intervals, where the interval ends are four-

dimensional branes with rather special properties, depending on the BC’s. The fifth-

dimensional interval is commonly referred to as the bulk of the extra-dimension. Csaki

et al. showed that an appropriate choice of the gauge group in the bulk, supplied with

suitable BCs, can give a symmetry breaking pattern which contains EWSB. There-

fore, Higgsless EWSB is indeed a potentially viable alternative to the more traditional

models with a Higgs boson in the GeV range [36] [42] [45] [46] [47] [48] [49] [50]. The

W boson would then be interpreted as the lightest mode of a charged KK tower, while

the photon and the Z boson would be interpreted as the lightest modes of a neutral

KK tower; The elastic scatterings W+W" —) W+W— and WiZ —> WiZ would

be unitarized by exchanges of virtual Zn and W5“ KK modes, respectively, where

n = 1,2,... [36] [42]. However the cancellation of the terms which grow like E2 is

not enough to ensure unitarity. In gauge theories with a Higgs boson, we argued that

unitarity requires an upper bound on the Higgs mass. Similarly, in extra-dimensional

models the delay of unitarity violation imposes an upper bound on the compactifica-

tion scale [46] [50].

Of course unitarity is not the only constraint we must consider. First, a realis—

tic model of EWSB must reproduce the mass spectrum of the observed particles, top

quark included. Second, it must satisfy the constraints imposed by EWP data. Third,

low-energy anomalous interactions must be within the experimental bounds. Consid-



erable effort has been recently spent in the attempt to meet all these requirements.

A model, in particular, has emerged as a potentially serious candidate: the SU(2)L

xSU(2)RXU(1)B—L five-dimensional gauge theory, coupled to a warped anti-de Sit-

ter (AdS), Randall-Sundrum (R81) model [51], where BCs break SU(2)LX SU(2)R

down to SU(2ldiagonal at the infra-red, or “TeV” brane, and break SU(2)RX U(1)B—L

down to U(1)y at the ultra-violet, or “Planck” brane [46] [47] [52]. The electroweak

symmetry SU(2)LXU(1)y is therefore localized on the Planck brane, and is broken

by the extra-dimensional bulk and the BCs on the TeV brane.

The SU(2)L xSU(2)R 'T’SU(2)diagonal structure is designed to satisfy the bounds

on the p parameter. The latter is defined as the ratio between the strength of the

charged-current interactions and the neutral-current interactions at zero momentum.

Experimental results show that p differs from unity by less than 2.5-10'3 [53]. The

natural way to meet the constraints on the p parameter is to guarantee that a global

isospin symmetry is still present even after EWSB, and is only broken by hyper-

charge and Yukawa interactions [54]. Such global symmetry is known as custodial

isospin, and is naturally embedded in the SM. In the extra-dimensional model, the

SU(2)L xSU(2)R —>SU(2)diag0nal structure guarantees a custodial symmetry if the

five-dimensional profile of the matter fields is appropriately chosen. For example,

with matter fields localized on the x5 = 0 brane the tree-level p parameter does not

differ from unity: This has been proved for a wide class of deconstructed models,

with arbitrary gauge couplings and f—constants [55]. However in general the charged-

current and neutral-current interactions are not necessarily mediated by the W and

the Z bosons only, since exchanges of the heavy KK modes might be equally impor-

tant. This is potentially problematic, because a sizable contribution of the heavy KK

exchanges means that the first heavy charged and neutral gauge bosons are relatively

light, and could be below the direct—search experimental bounds. The AdS warping

factor solves this problem, because it pushes the lightest KK ecitations toward the

TeV range, while keeping the W and Z masses light [47]. This in turn means that

the charged-current and neutral-current interactions, at zero momentum, are almost

entirely mediated by the SM gauge bosons.



 
(b)

Figure 1.2: (a) Deconstruction of the SU(2)LXSU(2)RXU( 1) model on a flat back-

ground and brane kinetic terms on the Planck brane. (b) The same model can be

unfolded to a single chain of SU(2) groups, and a chain of U(1) groups.

Warping seems therefore to be a necessary ingredient for a five-dimensional Hig-

gsless model to meet the experimental contraints on the direct search of heavy gauge

bosons. However, integrating out a large slice of AdS5 in the proximity of the Planck

brane leaves an effective field theory with a nearly flat background, and a kinetic

term localized on one of the boundaries, which “mimics” the warping of the extra-

dimension [56] [57] [58]. In this way we can still work with a flat extra-dimension,

which means that we can work with sines and cosines, rather than Bessel functions,

thereby simplifying the mathematical content of the model. This approach is only

valid as long as the energy is much smaller than the curvature of the AdS5 profile,

which lies in the Planck scale, and begins to break down as the energy increases. The

corresponding deconstructed model is shown in Fig. 1.2(a). The brane kinetic terms



force the first SU(2) and U(1) gauge groups to have different couplings. The same

model has been unfolded in Fig. 1.2(b). Notice that the unfolded moose diagram

shows explicitly the equivalence between an SU(2)LXSU(2)R gauge symmetry in the

bulk, broken to SU(2ldiagonal on one brane, and a single SU(2). We will demonstrate

this in section 3.2.

Of course there are more constraints to be considered, other than the p parameter.

If the contribution of the new physics on the low energy observables is approximately

oblique — that is, it does not change the form of the interactions, but only modifies

their relative strength - then it can be parametrized in terms of the Peskin-Takeuchi

S, T, and U variables, where S = T = U = 0 corresponds to the SM [43] [44] [59].

T is directly related to the p parameter, and for models with a custodial symmetry

is zero at tree level. U is usually expected to differ from zero by only a percent of

T, and is therefore negligible. The constraints on the S parameter are usually more

difiicult to meet, since a small S often requires the new physics scale to be higher,

which is harmful for unitarity. In Higgsless models from extra-dimension the value

[of S depends on the fermion profiles. It is well known that when the matter fields

are localized on the Planck brane, the S parameter is positive, while matter fields

localized on the TeV brane give a negative S value [60]. It is then clear that in order

for S to vanish, the matter fields must be delocalized. This has been proved for a

wide class of Higgsless models [46] [55] [61] [62] [63] [64]. We will return to these

results in chapter 5.

The model of Fig. 1.2(b) can be simplified by reducing the number of U(1) groups

to one, as in Fig. 1.3. By eliminating the chain of U(1) groups, we necessarily in-

troduce interactions which would be non-local in a deconstructed five-dimensional

theory [42] [45]. In fact, in order to maintain gauge invariance, all fermions in the

bulk must couple to the U(1) group with left-handed hypercharge YL. However from

a purely TS point of view this is perfectly legitimate. This is a first example of what

was mentioned before, namely that TS offers more freedom, in model building, than

the rigid structure of a real extra—dimension.

The SU(2) x SU(2)N >< U(1) model of Fig. 1.3 is arguably a minimal Higgsless model
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SU(2) SU(2) SU(2) SU(2) U(1)

    
Figure 1.3: Moose diagram for an SU(2) xSU(2)N xU(1) Higgsless model. The gauge

couplings of the internal sites, and the 2 field VEV’s are identical, as the underlying

five-dimensional model is translationally invariant. If g, 9’ << 57/m, g and g’ are

approximately equal to the SM SU(2)xU(1) gauge couplings.

of EWSB, and is the model we will consider in this dissertation. The SU(2) and

U(1) gauge groups on the two edges of the moose chain act approximately as the

SM SU(2)L XU(I)y, and the SU(2)N gauge group represents approximately the new-

physics contribution. This approximation is valid as long as the the effective SU(2)N

gauge coupling, g/m, is large, if compared to the coupling of the first SU(2)

group, 9, and the coupling of the U(1) group, 9’. Then 9 and 9' have approximately

their SM values. The fermion sector follows the same pattern of the gauge sector.

If matter fields are delocalized, as required by the experimental contraints on the S

parameter, then the SM fermions are mainly, but not exclusively, charged under the

SU(2) and U(1) gauge groups on the chain edges, with SM quantum numbers. The

new, heavy fermions are mainly coupled to the SU(2)N group, with approximately

vector-like couplings [42] [45].

As N -——+ 00, this theory becomes a model from continuum TS: The discrete site

index of Fig. 1.3 becomes a continuous variable, but the non-local couplings of matter

fields disfavour the extra-dimensional interpretation. Despite this, the continuum TS

limit is more convenient for calculational purposes: Recurrence relations and eigen-

value equations become differential equations and transcendental equations, which

are simpler to solve. Therefore, in this dissertation we will carry out most of the

calculations in the continuum limit.

The main source of tension, in Higgsless models of this kind, is between the uni-
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tarity bounds, and the constraints from EWP data and the top-quark sector. In par»

ticular, a heavy top mass is problematic, if the compactification scale is to be within

the unitarity bounds. In order to solve this problem, two compactification scales are

introduced: one for the gauge sector, and one, higher, for the fermion sector. This

makes the extra-dimensional interpretation even more problematic: It corresponds to

a microscopic breaking of the five-dimensional Lorentz invariance, in addition to the

macroscopic breaking due to compactification. On the other hand, from a discrete

TS standpoint this just corresponds to Yukawa couplings being independent of gauge

couplings [20] [45]. -

This dissertation is organized as it follows. In chapter 2 the unitarity of longitudi-

nal gauge boson scattering amplitudes is analyzed in the SM, as well as the role of the

Higgs boson and the corresponding bounds on its mass. In chapter 3 the role of extra-

dimension as a tool to delay unitarity violation is discussed in details. Deconstructed

models, and TS are then shown to be viable alternatives. The goal of this chapter is

to show how to build theories without Higgs bosons, which are weakly coupled and

unitary up to high energy scales. In chapter 4 these concepts are applied to models of

EWSB. We first consider the extra-dimensional SU(2)LxSU(2)RxU(1) model. Then

we introduce the model which is the object of our study. The gauge sector is an SU(2)

Yang-Mills theory on an extra-dimensional interval, with BCs breaking SU(2) down

to U(1) on one end. In order to obtain the right masses for the SM gauge bosons,

large kinetic terms are added on both branes, without affecting the delay of unitar-

ity violation. Unitarity upper bounds on the compactification scale are calculated

numerically in terms of the cutoff scale. Deconstruction is then shown to preserve

the important features of the extra-dimensional model, in a familiar four-dimensional

context. In chapter 5 matter fields are coupled to the model in two different ways:

First, with brane-localized fermions, and second, with slightly delocalized fermions.

In both cases the extra-dimensional interpretation is not viable, because non-local

interactions must be introduced. Therefore, the N —> oo limit of the deconstructed

model should be interpreted as a continuum TS. The constraints from'the EWP

data are analyzed for both ways of coupling fermions, including lower bounds on the

12



mass of the W1 and 21 bosons. While the tree-level T parameter is naturally sup-

pressed by custodial isospin in both cases, the bounds on the S parameter can only

be satisfied by the delocalized model, as long as the fermion leakage into the bulk is

appropriately tuned. Also, multiple generations and fermion mixings are shown to

be naturally implemented in the delocalized model. In chapter 6 a heavy top mass

is shown to be unattainable, when the unitarity bounds of gauge boson scattering

amplitudes are imposed. However, from a continuum TS standpoint, the compactifi-

cation scales for the gauge sector and the fermion sector are shown to be independent

quantities. This allows to accommodate the top mass without violating the gauge-

sector unitarity bounds. Unitarity of if —> W2" 71:, and experimental constraints on

the right-handed th coupling are translated into upper and lower bounds, respec-

tively, for the fermion-sector compactification scale. Finally, in chapter 7 we offer our

conclusions.

13



Chapter 2

Unitarity in the Standard Model

Any respectable quantum theory must return probabilities between zero and one. In

scattering theory this requirement is guaranteed by unitarity of the S matrix: The

wavefunctions of scattered particles differ from the wavefunctions of incident particles

by unitary transformations. This forces the partial wave amplitudes to lie on a radius-

one circle in the complex plane. In this chapter we derive the precise formulation of

this constraint, and find its implications for the scattering of longitudinal vector

bosons in the SM.

2.1 Partial Wave Expansion

Let us consider a two-particle elastic scattering process in the spin-0 channel. In the

center-of-mass (COM) frame, this process is equivalent to a one-particle scattering off

a spinless fixed target, and can be described in the context of ordinary one-particle

quantum mechanics.

With all couplings turned off, the total wavefunction is just a plane wave propa-

gating, say, along the z axis. An expansion in spherical waves gives

00

w, = em (2.] +1) [(—1)Je—ip’" — elm] PJ(c086) , (2.1)
2pr J=0

where p is the magnitude of the particle momentum in the COM frame, 6 is the

scattering angle, and r is the radial distance from the COM. This expansion is a
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superposition of incoming and outgoing spherical waves, 6‘27”" and em" , respectively.

The scattering center can only affect the outgoing wave. For an elastic scattering, with

no absorption, unitarity of the S matrix implies that the corresponding partial wave

coefficients are multiplied by phase factors, which we denote by €273.70». Therefore,

the total wavefunction is

‘ w . . - -

I/total—_ figs(2I +1)[(—(1—)Je—W — e2wJ(p)esz] PJ(cosa) . (2.2)

The scattered wave represents the difference between the outgoing waves in UI’total

 

 

and a,

' eipr oo €2i6J(p)_

7(scattered : 2 (2J + 1l—PJ(COS 6)
pr J20 2i

eil’T

where F(p, 6) is the scattering amplitude,

00 )62idl(p) _1

The scattered outgoing flux in a solid angle (19, through a sphere of radius r, is

'L’Ol‘vbscatteredl27'2dQ = ”OlFU): 6)l2dQ ,

where vo is the outgoing particles speed. This expression is by definition equal to the

product of the scattering cross-section and the incident flux, vii/5111i" = vi:

v0[F(p, 6)|2dQ = vida .

Since the collision is elastic, vi = vo, and

d0) 2

-— = W2?, 9)| - (2.5)

(d0 COM, elastic

In quantum field theory, at high energy, with Lorentz-invariant normalization of

the quantum states, equation (2.5) reads

(1 w ,0 2

(l) =——-—"(5’ ”2, (26)
‘19 COM, elastic 64” '41)
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Figure 2.1: The partial wave coefficients of elastic scattering amplitudes are complex

numbers which must lie on the unitarity circle. When a tree-level amplitude — which

is real — reaches :l:1 /2, radiative corrections become as large as the leading order

contribution, forcing the theory to be strongly interacting.

where M(p, 6) is the scattering amplitude [65]. Equating the right-hand side of (2.5)

and (2.6), and using (2.4), leads to the partial wave expansion of M(p, 6), with the

appropriate normalization factor,

00

1W(p, 6’) = 167r 2 (2J +1)aJ(p)PJ(c086) , (2.7)

J=0

where

62i6J(p) _ 1

aJ09) =T - (2-8)

In the complex plane, aJ(p) lies on a radius-1/2 circle centered on i/2, the unitarity

circle, as shown in Fig 2.1. Since tree-level scattering amplitudes are real, aJ(p) can

only lie on the circle if loop corrections are included. These become more and more

important as the tree-level amplitude increases in magnitude. When the latter reaches

:l:1/2, radiative corrections become as important as the leading-order contribution.

Therefore, at tree level, either

, (2.9)

N
I
H

la-J(P)| S
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Figure 2.2: Tree-level diagrams for the W;WI: —’ WZ' WI: elastic scattering, in the

SM.

   

 

W]:

or the theory must be strongly interacting.

2.2 Longitudinal Gauge Boson Scattering in the

Standard Model

We now apply last section results to the scattering amplitude of longitudinal W

bosons in the SM. As before, we consider the scattering in the COM frame, with

initial momenta along the z-axis. The four momenta, for the scattering particles and

the scattered particles, are, respectively, (E,0,0,:tp) and (E, 0, ip sin 6,ipcos 0),

where E = M. The polarization vectors are respectively (p, 0,0, iE)/mw

and (p, 0, iE sin 6, :l:E cos 6)/mW. At tree level, in unitary gauge, there] are seven

diagrams, as shown in Figure 2.2. A simple power counting shows that the amplitude

can diverge as badly as (E/mw)4, for large values of E/mW, because each polariza-

tion vector grows like E/mw, and longitudinal gauge boson propagators do not fall

off with energy.
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The contact interaction, plus the photon and Z' exchanges give the amplitude

 

2

Mgauge = i4— [p2E2(—2+6cos6)-E4 311126]
771W

1 F 2 2c0826

+ T e— + g___2_vr (—4p2(p2 — 3E2)2) 0036

mW _ s s -— mZ J

1 ' 2 2 26 ‘ 2
+ 4 €—+gC—OS-QE- [—4E2 (p2+(E2—2p2)cos6)

mW _ t t — mZ _  
2

—2p2(1 + cos 6) (2E2 — p2 — E2 cos 6) ] , (2.10)

where s = 4E2, and t = —2p2(1 — cos 6). In the limit of large E/mW, this expression

becomes

Mgauge
 
 

2 4cos2 6W(1 — cos 6)

+ O ((le/E)2) . (2.11)

21+cos6( E )2+gQ3-2cos26w(1—cos6)2+cos26

mw

The term proportional to (E/mW)4 vanishes because of gauge invariance, which

guarantees the special relation e2 = 92 sin2 6W between different coupling constants.

Nonetheless the term proportional to (E/mW)2 does not cancel. Therefore, if only

interactions from the gauge sector were to be included, the J = 0 partial wave would

violate unitarity at

 \/§ : Sfimw 8’“ 6W ~ 1.7 TeV, (2.12)
e

and the J = 1 partial wave would violate unitarity at J; 2: 2.9 TeV.

However there are two more diagrams in Fig.2.2 which have not been considered

yet, the Higgs exchanges. Their contribution to the scattering amplitude is

  

 

 

[\[Higgs _ __ 92 (3 " 2mfi’)2 (f + 2771a; COS 9):? 2 13

— 4 2 2 + t 2 ' ( ‘ )
mW S ‘— mH _ mH

For E2,m%{ >> me this becomes

2

MHiggs 2 _g21+:059( E)

mW

2 2
g m s t

— —- 2H 2 + 2 . (2.14)
4 mW s — mH t, — mH

A comparison of (2.14) and (2.11) shows that the coefficients of the (E/mw)2 term

exactly cancel. The J = 0 partial wave amplitude for the IVER/"I: —> WITH]:
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Figure 2.3: J = 0 partial wave amplitude for the WEW; -—+ WIT WI: scattering, with

(blue) and without (dashed red) the contribution of the Higgs boson, for mH =400

GeV. Without the Higgs boson, the amplitude grows like 3, leading to unitarity viola-

tion at ~1.6 TeV. The Higgs exchanges unitarize the amplitude by exactly canceling

the energy growing terms.

scattering is then shown in Fig 2.3, with and without the Higgs boson contribution,

for mH =400 GeV. (A small m7=1 GeV photon mass has been included, in order to

regulate the singularity in the t-channel. This is inconsequential in the high energy

region in which we are interested.) It is evident that the Higgs boson exchanges are

essential to maintain unitarity in the TeV range. Notice that near the Higgs pole the

amplitude is tamed by finite-width effects, which are sufficient to keep a0 below 1 /2.

The cancellation of the quadratically divergent term is not enough to prevent uni-

tarity violation at sufficiently high energies, since the term proportional to (mW/E)0

can be of order one. The contributions to the J = 0 partial wave of the con-

tact interaction, plus the photon and Z exchanges, give an 0 ((mW/E)0) term of

order (92/3211') log(E/mw), and is therefore safe for non-exponentially large ener-

gies. (The logarithmic growth comes from the integration near cos6 = 1, where
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Figure 2.4: J = 0 partial wave amplitude for the MEI/II: ——> WEI'VL— scattering in

the SM, for my = 0.6 TeV (green), well below the critical value (2.18), and my =

1 TeV (red), above the critical value. In the first case unitarity is satisfied for all

non-exponentially large energies. In the second case unitarity is already violated at

energies above the Higgs pole.

mQZ/t becomes large, and high energy regions become important.) On the other

hand, the contribution of the Higgs exchanges give an 0 ((mW/E)0) term of order

(92/321r)(m%1/m%[;), and can be large, depending on the Higgs boson mass. There-

fore, for s,m%1 >> mahrngz, the WEWE —> WELWE scattering amplitude is to a

good approximation given by the second term of (2.14),

  

 

 

M(l/l'+W‘ W+li’“) 92 mf’ [ S + t ] (215)
"LL—*’L"L1‘—2 _2 _.2’ -

4 mW s mH t "1”

and the J = 0 partial wave amplitude is

2 2 2 2

' 7— 7 y— m m m 8

(10(14wa —4 ”fl/1L): Tiff—2H [2+ ”.2 — H log (1+ —,—)] .
7T mW S — mH S mH

(2.16)

In the limit of large energy, this amplitude approaches a constant value:

2 2
m

irl/Til?“ —» l/V+il»" 2: ——9— H . 2.17aOl L L L L l 3271, mf/l ( l
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Then unitarity demands

4 f I 1'

< fir”: 3mg“ ~ 0.9 TeV. (2.18) 

mH

If the Higgs mass is well below this critical value, the J = 0 amplitude satisfies the

unitarity bound at all (non-exponentially large) energies. If the Higgs mass attains

or exceeds the critical value, unitarity is already violated at energies above the Higgs

pole, as shown in Fig.2.4.

It is possible to refine the bound (2.18) by considering the neutral four-channel

system WITWIT, (1/\/2)ZLZL, (1/\/2)HH, and HZL, rather than just WZWE [10].

Then (2.17) is replaced by a 4x4 matrix:

/ 1
1 l

78 78 0)
2 2 l 3 1 0

a0=—i—1"7H- 75 Z Z (2.19)

8

1  

This scattering matrix has a surprising simple eigenchannel structure. The largest

eigenvalue corresponds to the elastic scattering of the channel 2W3W; + ZL + ZL +

HH , and leads to the most stringent unitarity bound on the Higgs mass:

 mH < Sfimg‘ésm 6W ~ 0.6 TeV . (2.20)

At this point, two questions naturally arise: (i) Why do terms growing like E2

exactly cancel out from longitudinal vector boson scattering amplitudes ? (ii) What

makes the four neutral-channel system WEWI: , (1 / x/2)ZLZL, (1 /V2)HH, and HZL,

so special and so simple, compared to other two-body neutral channels ? The answer

to these questions can be found in the Goldstone boson equivalence theorem, which

relates amplitudes for absorption and emission of longitudinal vector bosons, to am-

plitudes for absorption and emission of the corresponding eaten Goldstone bosons.

This will be the subject of the next section.
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Figure 2.5: Tree-level diagrams for the n+7r" —+ n+7r‘ scattering, in the SM.

2.3 Unitarity and the Equivalence Theorem

i are the GoldstoneConsider the 7r+7r_ —+ n+7r— scattering in the SM, where 7r

bosons eaten by the W5c boson. At tree level there are seven diagrams, which are

shown in Fig. 2.5. For 3, mg, >> ma), m2Z, the interactions from the Higgs sector are

dominant, because the corresponding couplings are enhanced by a factor ruff/map

Therefore, the amplitude is approximately given by the first three diagrams. In a

general R5 gauge, and ignoring the Goldstone boson masses, we obtain

2 2
m s t

M(7r+7r-—>rr+7r-)2—%1— 2H 2 + 2 .,

mW s—mH l—mH

  (2.21)

in agreement with (2.15). This is an expected result. In fact, the Goldstone boson

equivalence theorem tells us that the amplitudes for absorption or emission of a longi-

tudinal gauge boson approach, at high energies, the same amplitudes with the gauge

boson replaced by its eaten Goldstone boson [9] [11] [13] [14] [15] [16] [17] [18] [19].

We are therefore in a position to answer the two questions posed at the end of

sec. 2.2. (i) The cancellation of the terms growing like (E/mW)2 occurs because

at high energy longitudinal gauge boson scattering amplitudes become identical to

Goldstone boson scattering amplitudes. These cannot steadily grow with energy, as a

simple power counting shows. In fact, in a general R5 gauge, gauge boson propagators
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Figure 2.6: Moose diagram for the GWS model with the Higgs boson integrated out.

fall off with energy, and — working in a linear representation of the gauge group —

the coupling with the Goldstone bosons involves only one power of momentum. Then

gauge boson exchange amplitudes approach a constant value, of order 92. In the Higgs

sector, the coupling Higgs-Goldstone does not depend on momentum, thus the Higgs

exchanges fall off with energy, for J3 > mH- Therefore, as the energy increases,

only the contact interaction — which is constant, and of order 92m2Mia, — becomes

relevant. (ii) The four channels W L,(1/\/2)ZLZL, (1/\/2)HH, and HZL have a

«simple eigenchannel structure becauseLthey correspond, via the equivalence theorem,

to the Higgs-sector neutral channels. n+1r , (1/\/-2_)7r0 0, (1/\/2)HH , and HNo,

where no is the Goldstone boson eaten by the Z. The simplicity of the scattering

matrix (2.19) is then a consequence of the underlying global symmetries of the Higgs

sector.

Of course the equivalence theorem by itself is not enough to guarantee the can-

cellation of the terms growing like (E/mw)2: The key ingredient here is the Higgs

boson. This has been shown explicitly in sec. 2.2, and can be seen also using the

equivalence theorem. If we take the GWS model, and integrate out the Higgs boson,

what is left is an SU(2)L><SU(2)R NLSM whose SU(2)LxU(1) part is gauged. The

corresponding moose diagram is shown in Fig. 2.6. At low external momenta, and

before the gauge couplings are turned on, the Goldstone boson Lagrangian is

2
v

£Goldstone : 'ZTr [all 26142] 9 (2.22)

where v is the SM VEV, and

E—— exp(inyou/v) (2.23)
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Figure 2.7: Diagrams for the n+7r— —> n+7)” scattering in the SM without the Higgs

boson: (a) Tree-level amplitude. (b) One-loop corrections.

The ira’s are the usual SM Goldstone bosons, and the 00’s are the Pauli matrices.

Expanding the exponential, the first non—zero interacting term is a quartic interaction:

5(4) _ 1 [((W+)2(a,,—)2 + (nT)2(87r+)2 — 27r+7r_(67r+)(37T-))
- 6112

— 2 ((87TT)(E)7rT)(7r0)2 + 7r+7r7(87r0)2 — (877+)7r_(87r0)7r0) ]. (2.24)

+

The tree-level n+7r— —2 7r 7r‘ scattering is only given by a contact interaction,

Fig.2.7(a). The corresponding amplitude is

 

+ - + — _ U
M(rr 7r ——>7r 7r ) — —v—2

2

1+cos6 E

in agreement with the leading term of (2.11): The equivalence theorem still works.

But the term growing like (E/mW)2 does not cancel. The difference, with the Higgs

sector of the SM, is in the couplings, which involve derivatives of the Goldstone

fields, and thus the external momenta. This happens because a model with only

Goldstone bosons and no physical scalars is necessarily in a non linear realization of

the symmetry group. Then the Lagrangian can only be built out of derivative terms,

because terms without derivatives vanish. Therefore, in an SU(2) x U(1) gauge theory

the Higgs boson is a necessary ingredient for unitarity.

This example sheds some light on the connection between unitarity violation and

non-renormalizability. As the tree-level amplitude grows like E2, the one-loop cor-

rections, Fig.2.7(b), grow like E4, by simple power counting. Then, at the unitarity
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violation scale the loop corrections become as important as the leading order con-

tribution, and the perturbative expansion breaks down. Moreover, as the external

momenta grow, higher order terms must be added to (2.22), and new terms in the

expansion of the 2 field must be considered, because they cease to be negligible.

Thus, as the energy increases, the non renormalizable operators become important.

Above the unitarity violation scale a new theory must take over. Such theory must

reproduce the low-energy physics of the SU(3)c010rxSU(2)L x U(1) model, and restore

unitarity, or delay unitarity violation to higher energy scales.
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Chapter 3

Unitarity Without the Higgs Boson

The non-linearly realized SU(2)LxU(1)y gauge theory has been shown to violate

unitarity of longitudinal gauge boson scattering amplitudes at few TeV’s. In order

to restore unitarity, or delay unitarity violation to higher energy scales, new particles

must come into play, and mediate interactions which cancel the bad high energy

behavior. In the SM, the Higgs boson suffices to restore unitarity at (almost) all

energies. Recently, models with one compactified extra-dimension have been shown

to violate unitarity at energy scales higher than the customary limit of Dicus-Mathur

or Lee-Quigg-Thacker. The violation delay is mediated by a tower of massive gauge

bosons, rather than a scalar particle.

In this chapter the physics of one compactified extra-dimension is introduced and

discussed. From a four-dimensional standpoint, the extra-dimensional compactifica-

tion breaks a countable infinity of gauge symmetries, with a corresponding generation

of towers of Goldstone bosons and massive gauge bosons. The residual gauge symme-

try can be further broken by an appropriate choice of BCs. Gauge symmetry breaking

via compactification and BCs is shown to be soft (spontaneous), rather than hard (ex-

plicit), for all BCs consistent with the variational principle. Deconstructed models,

where the extra-dimension is put on a lattice, and models from theory space are

introduced as viable alternatives.
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3.1 Compactified Extra-Dimension

The structure of our universe may be larger than the ordinary space—time four dimen-

sions. There might be a compactified spatial extra-dimension, substantially larger

than the Planck scale, but small enough to elude detection in the past generation

of hadron and linear colliders [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32].

Being compact, the fifth-dimension is usually taken to be an interval. For instance,

a circular fifth-dimension of radius R can be mapped onto a [0,27rR] interval with

periodic BCs. As a second example, if a Z2 symmetry is imposed on the circle, the

fifth-dimension can be conveniently represented on a [0, 7rR] interval, with BCs which

follow from the field transformations under Z2.

In order to maintain generality, it is therefore convenient to specify a gauge theory

on a [0, 7rR] interval, where R is an arbitrary length, and derive the most general class

of allowed BCsl. For an arbitrary gauge group G, the action of a Yang-Mills theory

on a flat background is

all 1- 1
/

Sgauge = /d4x/0 dar"[— —F1(fINFa
MN

 

4952)

— 1 (6 .4““+§85Aa5)2 (3.1)

2.035 ,1 i

where

FffIN = 321243? — (UV/Ill! + f“Mfg/13,, - (3-2)

Here a is the gauge index, f“be the structure constants, and 95 the five-dimensional

gauge coupling, with mass dimension -1 / 2. Notice that with this normalization, the

gauge fields have mass dimension 1, as in 4D. The five-dimensional coordinates are

labeled by M,N 6 (11,5), with p E (0,1,2,3), and the metric tensor — assuming

a flat background — is GMN = diag(1,-1,-1,-1,-1). The gauge-fixing term we have

chosen explicitly violates the five-dimensional gauge invariance. However the latter

is already broken by compactification, which forces the AZ and Ag fields to behave

differently. It is therefore convenient to get rid of the B5Afit9t‘A‘5' mixing term from

F3517“"5, and the gauge-fixing term of (3.1) is especially designed for this purpose.

 

1This and the next. two sections follow closely the content of Ref. [36].
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The variation of the action (3.1) leads to the equations of motion (EOM)

1
BMF‘I'M” _ fachbAIVAfi/I + Eat/80A: _ 8118514551 : O ,

301535 — fabCF§5Aw + 6565A“ — 585’. g = 0 . (3.3)

However the boundary pieces must vanish as well. This leads to the requirement

[Fg5aAW+ (3AW — 585.4g)5Ag]gR = 0 . (3.4)

Periodic BCS (with period n1?) clearly satisfy (3.4). If the fields are not periodic,

(3.4) implies that the equations

F3564” = 0 ,

(ea/1““ — 585Ag)64‘5‘ = 0 (3.5)

hold at x5 = 0 and 3:5 = 7rR. For instance, if the extra-dimension is a radius-R circle,

and a Z2 symmetry is imposed on the gauge fields [66] [67],

Age, $5) = 4:3(12, 4:5) , Affine") = —Ag(x, —x5) , (3.6)

the independent degrees of freedom lie on only one half of the circle, say, the upper

half. Then the BCS on the [0, 7rR] interval are

(”Jr/la = 0,

O u , x5 = 0,7rR . (3,7)

Ag = 0

It is not difficult to prove that (3.7) satisfies (3.5). However the requirement (3.5)

allows for a broader set of BCs, even those which have no interpretation in terms of an

orbifolded circle. There are three choices of BCs which respect the four-dimensional

Lorentz invariance:

Aa—— 0, As—— const. (3.8)

Af, = 0 , 65/15 = 0 (3.9)

55 = 0 , Ag‘ = const. . (3.10)

Notice that the orbifold BCS (3.7) correspond to the choice (3.10), although the

condition F:5 = 0 is satisfied in a trivial way. In addition to (3.8)—(3.10), there are
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also more interesting choices in which the sum of different terms in (3.5) vanish, rather

than each individual term. We will return to this points later in this section.

Although the EOM (3.3) are uniquely determined by the principle of least action,

the BCS are arbitrary, and correspond to different physical scenarios. An illuminating

analogy is given by the physics of a vibrating rod. The wave equation governs the

displacements inside the rod, but the BCS determine what kind of motion can actually

take place. If both ends of the rod are fixed, the displacement at the boundaries is

zero, which is analogous to Af‘, = 0 in the extra-dimensional model. However if only

one end is fixed, the behavior at the loose end is governed by a non-trivial equation,

which is analogous to PS5 = 0.

We are interested in the four-dimensional implications of the five-dimensional

theory. It is then convenient to expand the five-dimensional gauge fields in KK modes,

that is, in eigenfunctions of —p§ E 6% satisfying the chosen BCS. For simplicity, we

first consider BCs which do not depend on the gauge index a. Then we can write

40((I, r5=zofn(-’17A§lp(7‘»)

' = : en($5)7T%(:v). (3.11)
n=0

where a: is a four-dimensional coordinate, and the expansion coefficients are obviously

:r-dependent. The eigenfunctions fn(:1:5) and (15,,(335) satisfy the equations

—m%fn(r5) .

5

—M2¢n(;r) , (3.12)

F

film")

911(95)

and the BCs. These requirements determine in", Mn, fn(:r5), and 0575(25) up to

a normalization constant for the wavefunctions. A canonical normalization of the

four-dimensional fields requires

[7: dxsfn(;r5)fm(1‘5) :J55nm~

[OR (125071(335),$¢m(5)=ggdnm. (3.13)

Inserting (3.11) in the free part of the action (3.1), and using (3.12) and (3.13), leads
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to

00 1 I

Sfree = 2 [444524314 (9“"32 - (1-E)0“3” + 9“”7713.) 243w

n=0

1 1

+§(a,,7rg)2 — §gM§(ng)2] . (3.14)

This action describes a tower of mass-mu gauge bosons, and a tower of mass-JEM."

Goldstone bosons. The Goldstone bosons can be removed from (3.14) by going to

unitary gauge, 5 —> 00, except for the massless mode, if there is any. Since the

natural size for the mass spacing is 1/R, as R —+ 00 all gauge boson masses go to

zero. This shows that compactification — that is, the acquisition of a finite value for

R — acts as a “geometrical” Higgs mechanism, which breaks a countable infinity of

gauge symmetries, with consequent generation of a tower of massive gauge bosons,

and a tower of eaten Goldstone bosons.

If the BCs on Ag are 65Ag = 0 on both ends, then the lowest KK mode in the

expansion of Ag is a physical massless scalar field, n8, in the adjoint representation

of the gauge group. As we shall see later in this chapter, such field is not essential for

unitarity. Moreover, it does not behave as a Higgs boson, because it does not have

the appropriate quantum numbers. Therefore, in the following we will always impose

BCS which do not allow for such massless state to exist.

3.2 Symmetry Breaking by Boundary Conditions

We have just seen that compactification is a symmetry—breaking mechanism. How-

ever compactification cannot break the symmetries which are localized on the four-

dimensional branes. Therefore, if the gauge group G is unbroken on both branes,

then the four-dimensional theory will be G—invariant, and the mass of the lowest KK

mode will be zero, m0 = 0. As an example, consider the gauge group SU(2), and

impose the BCS

, r5 = 0,7rR . (3.15)
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Notice that these are the orbifold BCS (3.7). Since only the derivative of A$(2:, x5) is

fixed by (3.15), the gauge fields can have any value on the boundaries. This means

that SU(2) is unbroken on both branes, and therefore also in the four-dimensional

theory. The BCS on A31 do not allow for a massless scalar, thus in unitary gauge we

only have to consider Afi. The solution of (3.12) for fn(;r5) is

fn(x5) = An cos(mnzr5) + B", Sin(mn:1:5) .

The BCS (3.15) imply 8,, = 0 and sin(mn7rR) = 0, whence

,n=aL2H.. (3m)mn = B

As expected, there is a triplet of massless gauge bosons, due to the unbroken SU(2).

Notice that the wavefunction of the massless fields is flat, which means that the corre-

sponding particles have equal probability of being anywhere, in the extra-dimensional

interval.

A more interesting case is when only a subgroup of G is unbroken on the two

branes. Then the four-dimensional theory will not be invariant under the full group

C, but only under the subgroup which is unbroken on both branes. In other words,

BCS can be used to break four-dimensional gauge symmetries. In order to better

understand this concept, we consider three examples of symmetry breaking via BCS.

(1) G=SU(2), and BCS breaking SU(2) down to U(1) at one end of the interval:

62A“: , 4122=0, 8rA3=0, 5
o ’u x5 u 12 0 ‘1 ,x"=7rR. (3.17)

These BCS can be seen as deriving from a 22 x Z2 orbifold on a radius-2R circle,

(

A,,(a:, «R + 1:5) 2 PA,,(.1:, 7rR — 1‘5)P_1 ,

Agendr+xh==—PAgxndt—x%P-1, B18)
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where P = diag(1, -1) is the orbifold projection operator. The BCS (3.17) do not

allow for a massless scalar, thus in unitary gauge Ag 5 0, and we can focus on the

four-dimensional components only.

There are two different KK towers, one for the charged sector, and one for the

neutral sector. The KK expansions are2

r )= Z fn,(.’135)l'V,§1(:r) ,

A3((1:, 3:5 =20 gn(2:5)Z,w(:1:) . (3.19)

The eigenfunctions are as usual combinations of sines and cosines, and the BCS (3.17)

lead to the mass equations.

cos(mn7rR) = 0

sin(Mn7rR) = 0, (3.20)

Here and in the examples below mn (Mn) is the mass of the n-th charged-boson

(neutral-boson). The solutions are

 

n—l 2

mn: R/ ,n=1,2,...,

Mn=% ,n=0,1,2.... (3.21)

The lowest mode of the charged KK tower is a massive particle. However the lowest

mode of the neutral tower is a massless particle: It is the massless gauge boson of the

unbroken U(1) symmetry. Finally, the normalized wavefunctions are

 

2 2 5

f,,(15) = ficoamnxo) ,
7rR

. 2 2

115(1-0) = 11% cos(Mn:r5), (3.22)

which include the flat wavefunction of the massless neutral boson, 90(15) = const..

 

2Here and in the following, the superscript “i” in A:t refers to the SU(2) linear combination

(Al r iA2)/\/§.
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(2) G=SO(4)~SU(2)LXSU(2)R, and BCS breaking SU(2)R down to U(1) at one

end of the interval, and 80(4) down to SU(2)diagonal at the other end. In addition

to the gauge fields A6131)! and A‘hM, it is convenient to define A;M by

A“ :tAa

311w:— --’--—-'—LM\/§RM (3.23)

Then the BCS read

_ a __ a _
60‘4Lp—0’AL5—0’ A“ _0 B'Aa _0

12 1.2 5 —M_ ’ 0 -5_ ’ 5

AR’u=0,05AR‘5=0, ,.’L‘=0 ,:r =7rR.

65A1u20, Ai5=0
3 __ 3 _

8514R’u—0, 44125—0

(3.24)

These BCS do not allow for a zero-mode scalar, thus in unitary gauge A355 E Ah.) E 0.

As in example (1), there is a charged KK tower, and a neutral KK tower:

Af11<.1 :15 =20 111(1 (1),

A1411, :51: =ZOgL11(l‘5)($an$1)

AR/1(~73 “75 =ZOfR11($ )W1111(I)1

11%,,(115):209111,(r5)z111(x). (3.25)

The BCs (3.24) lead to the mass equations

cos(2'm.n7rl1’.) = 0,

 

sin(2Mn7rR) = 0 . (3.26)

The solutions are

n — 1 2

mn: 2R/ ,7221,2,...,

n,

Mn 2 ~27?- , n = 0,1,2... , (3.27)

and the normalized wavefunctions are

.— 2

111(1): (/,f—§,cos<m115> .
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SU(2)1

0 «R

311(2)

0 1rR 23R

Figure 3.1: Equivalence between the 80(4)~8U(2)Lx8U(2)R gauge. theory on a five-

dimensional interval, with 80(4) broken down to SU(2ldiagonal at one end, and a

single SU(2) with double interval length.

- / 2 ,
fRn(:z:°) = :3]? cos (mn(27rR — 130)) ,

2

gLn(:1:5) = W 73—22 cos(]lzfn:r") ,

an(;1r5) = 5% cos (ll/[11(27r/1’. — $23)) . (3.28)

Comparing (3.26)-(3.27) with (3.20)-(3.21), we observe that model (2) can be obtained

from model (1) by replacing R with 2R. In fact the boundary 7r]? acts as a mirror:

The SU(2)R wavefunctions are just the mirror images of the SU(2)L wavefunctions,

as a comparison between (3.28) and (3.22) shows explicitly. Then we arrive at the

conclusion that an 8U(2)Lx8U(2)R gauge group in the bulk, with 8U(2)Lx8U(2)R

broken down to SU(2ldiagonal at one end of the interval, is equivalent to a single SU(2)

in a bulk with double interval length. This is schematically shown in Fig. 3.1 .

(3) 0280(4)xU(1)~8U(2)Lx8U(2)RxU(1), BCS breaking SU(2)RXU(1) to U(1)

at one end of the interval, and 80(4) to SU(2)diagonal at the other end. Defining the
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A; fields as in (3.23), the BCS are

65A%H=O,A%5=O, ‘

1,2 _ 1,2 _

14:3,” — 3,, = mag/11,35 — 35) = o,

65(gg2Ag‘,” + 952,31) = 0 , 93214:},5 + 9335 = 0 , 
Ail, = 0, 05A‘l5 = 0,

65Af‘wzo, A1520, ,$5=7rR. (3.29)

85 B” = 0 , B5 = 0

Once again the gauge-field fifth components can be transformed away. As in models

(1) and (2) there is a charged—boson KK tower, which is identical to the one of model

(2), and a neutral—boson KK tower. The KK expansions are

Am.1 1:5 =20 111(1: 311:0)

A1,,1(2: x5 =ZogL11(r (1,)

AimI $5=ZOfR11(I1111I()

A11,1(1:, m5 =20 9121101: (:r.)

B,,(1: 1:5 =2 11,,(1: 2,1,,(1:1:). (3.30)

The BCS (3.29) lead to the mass equations

cos(2mn7rl1’.) = 0,

 

 

2g;2

tan(Mn7rR) = 1 + é’ . (3.31)

95

The solutions are

n — 1/2

= ' = 1.2,. .. ,
mn 2R 7 n .

0 n = 0

Mn: 2% garctan1/1+2952/g5+n-1)
1121735,,” , (332)

2%; ——arctan(/1+2g5/gs+n)
"=2141611-1

and the normalized wavefunctions are
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111(15): jf—Rcos<m115> ,

5 9'

.fRn(-T )2:\/17:_R

95955)

9L0(x r——'

RQgV5 +92295

cos(Mn:r5)

9L11(33 V—:1?(g295+29/2 2cos(Mn1rR)

$5) 9595

952+2932

 cos (mn(27rl? — 15)) ,

9120(55

cos (Mn(27rR — 1:5))

9Rn<T1—_V7133/g2g5+g29/2 2008(Mn7TR)

h0(15)= —g—-—595

V77R(/g59:293),

1:5) — 5 >1)=‘/W2—2—R9525:2952 cos (A1,,(11R 1 )), 11 _ . (3.33)

In all these examples there is an unbroken U(1) symmetry, and therefore a massless

 

17t21.

 

gauge boson. However, from a purely four-dimensional standpoint, it is not clear yet

what symmetry is actually broken down to U(1). A better understanding can be

achieved by putting the extra-dimensional interval on a lattice: The corresponding

model will then be purely four-dimensional, with a larger symmetry group, but also

with a clear symmetry breaking pattern. We will come back to this point in sec. 3.5.

Also, we still have to show that symmetry breaking via compactification and BCS is

soft (spontaneous), rather than hard (explicit). In other words, we must show that the

symmetry-breaking mechanism preserves the special relation between gauge couplings

which guarantees the cancellation of the energy-growing terms, in longitudinal gauge

boson scattering amplitudes. This will be the subject of the next section.
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Figure 3.2: Diagrams contributing to the elastic scattering AgAIT’, —> AfiAg: Contact

interaction plus s-channel, t-channel, and u-channel exchanges.

3.3 Unitarity in Extra-Dimension

In the last section we have seen that BCs may lead to different symmetry breaking

patterns. We now want to show that symmetry breaking via compactification and

BCS is soft. In other words, we want to show that the terms growing like E4 and

E2, in longitudinal gauge boson scattering amplitudes, exactly vanish when the BCS

satisfy (3.5).

Let us consider the elastic scattering amplitude for the process AfiAg —> AgAg.

In general we expect four diagrams, as shown in Fig.3.2: The four—point interaction,

plus 3, t, and u exchanges of KK modes. We will assume that the external modes

satisfy the same BCS, but we will not assume this for the exchanged modes. At high

energy, the scattering amplitude can be expanded in powers of E/mn, where mm is

the A: mass:

M = MW (3)4 + Mm (ff—)2 + mm) + 0 ((mn/E)2) . (3.34)
"In mn

It might seem inappropriate to formally expand the amplitude in powers of E/m",

when for a given energy E there is an infinite number of cxchanged KK modes whose

mass is larger than E, and the series is potentially divergent. On the other hand,
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imposing a sharp cutoff on the spectrum would explicitly break the gauge invariance.

However such a hard breaking would have little effect on the scattering amplitudes,

because the couplings with the heavy KK modes are suppressed. This can be seen by

considering the higher-order gauge-invariant operators which result from integrating

out the KK modes above a spectrum cutoff A. In D dimensions, an example of such

operators is

I

FEWMNP , (335)

where we are still using the normalization of (3.1), with —1/(4g2D) multiplying the

kinetic term: Then (FMN)3 has dimension 6, whence the AG‘D factor in the denom-

inator of (3.35). Alternatively, we can see that this operator contains three gauge

fields, so if it comes from loops of heavy KK modes it should contain three powers

of the coupling in canonical normalization, and zero powers in the normalization of

(3.1).

We would like to compare the contribution of the (FMN)3 and (FMN)2 operators

to the fig/ll}, ——> AgAg scattering amplitude. The ordinary (FMN)2 operator gives a

contribution of order

939mg . (3.36)

This can be seen from the four-point interaction: There are two powers of the cou-

pling, and four polarization vectors, each carrying a power of E/mn ~ ER.

The contribution of (FMN)3 can potentially scale like E6. However this contribu-

tion comes from two factors of 6,). V — EVA”. and two factors of the gauge fields. This

implies that two of the polarization vectors appear in the combination pfleu — pueu,

which, after substitution in the scattering amplitude, turns out to give a contribu-

tion proportional to the mass of the external gauge bosons, rather than growing with

)3
energy. Therefore, the (FMN term gives a contribution of order

931) 2
A6_DE , (3.37)
 

where two powers of gD come from the fly/1,, — (iv/l), terms, and the remaining two

powers come from the quadratic term. The ratio between the (FMN)3 and (FA1N)2
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contributions is

2

91) 94

A6—DE2R4~ (AR)6“D(ER)2

where we scaled 90 as 942RD4. For E >> 1/R AR > 1, and D < 6, the contribution

 (3.38)

from the large-n KK modes is suppressed. This remains true also when the non-trivial

cancellation of the (ER)4 term in (3.36) is taken into account, as long as AR > 1 and

D < 6. For a five-dimensional theory AR can be as large as 247r3 [68].

In practice we can therefore extend the series of virtual KK modes to infinity: It

is just a simple way to preserve the gauge invariance. Then we obtain the following

coefficients for the expansion (3.34):

M“) = (gimm— €329,179.) [((3 + 6cos9 — cos2 9)fab6fcde

+2(3 — cos2 6)fa'cefbde] , (3.39)

Ala) : 7—,12—i—facefbde (4937111112mn- 3 Zgnnkfilk)

n

_ 57:12—fab€dee [49mmn7nn_ 3 Zgnnk All;

+ (1293",,"7713, + EggnkBmi — 16mg») cos 6] ,

k

(3.40)

where 93mm is the contact-interaction coupling, gunk is the coupling of the external

modes to the k-th exchanged KK mode, and Mk is the mass of the k-th exchanged KK

mode. Notice that the KK indices should be interpreted as double indices, including

both KK and color index, 8.9., k —> (k, 6). Since the external modes are assumed to

satisfy the same BCS, the KK index n is color-blind. In the expression for M(2), the

Jacobi identity on the structure constants has been used. This requires summations

like 2k gunk or :1: gfiifiUWf)? to be independent of the color index 6, which will be

confirmed below.

If 93”,," = 2k yank. M(4) cancels, and M(2) becomes

M(2>=L2(4g%nnnmfi—3zginwf)<f“"‘f”d€—sin2§f“bef""). (341)
mn
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Therefore, the conditions for the cancellation of E4 and E2 terms are

2 2

9111mm : Z gunk 3 (342)

k

9 o

4ggnnnm; = 3Zg$nkMk2H (3.43)

k

In terms of the wavefunctions, the condition (3.42) reads

/O"R c1221 LAID: Z/dual/ 6112 In x1)f..<3g)(3)9323) (3.44)

where fn and 9;, are the wavefunctions of the external modes and the exchanged

modes, respectively. This condition is indeed satisfied for any set of BCS which

guarantee the hermiticity of the 8% operator, because in such case the wavefunctions

gk satisfy the completeness relation 21: gk(y)gk(z) = 6(y — z), which immediately

implies (3.44). The 652, operator is hermitian for a large class of “mixed” BCS,

ammo. 7rR) = V071;1242(0) 7rR) , (3.45)

where l’OabR =0 corresponds von Neumann BCS , and Vab = 00 corresponds

Dirichlet BCs. The BCS (3.8)-(3.10) are indeed either of the Dirichlet or the von

Neumann type.3

Since (3.42) is satisfied, the condition for the cancellation of the [5.2 terms is (3.43),

or, in terms of the wavefunctions,

3: ME (”c1223 [0“? c123 ffi<x3>f3<x3>gk<r3m<x3> = 4771?. ("Eda I323) .

k (3.46)

Using the equations of motion Ugfn = —m%fn and aggk = _A/Ik2‘gk’ integrating by

parts, and using the completeness relation, it is not difficult to show that (3.46) is

satisfied up to contact terms like [fnfn]6R, [fn2 ’gka, and [£1];ngR, which vanish

for Dirichlet or von Neumann BCS. Therefore, we arrive at the conclusion that the

BCs (3.8)-(3.10) guarantee the cancellation of both E4 and E2 terms in longitudinal

gauge boson scattering amplitudes. Notice that mixed BCS, eq. (3.45), only insure

 

3Notice that (3.10) is a von Neumann BC in unitary gauge, Ag E 0, or for Ag vanishing on the

boundaries.
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the cancellation of the E4 terms, but the E2 terms are in general non-zero. In fact

mixed BCS can be obtained by including brane mass terms for the gauge fields, which

explicitly break the gauge invariance. A brane localized Higgs field would then be

necessary to cancel the bad high energy behavior.

The cancellation of the E4 and E2 terms delays unitarity violation to higher

energy scales rather than restoring unitarity at all energies. In fact even after the

cancellation there is still a logarithmic growth in the partial wave amplitudes, which

becomes more and more important as the number of the exchanged KK modes is

allowed to increase. The high energy behavior will be analyzed in chapter 4 for a

specific model of EWSB. However the scale of unitarity violation can be estimated

by taking the extra—dimension to be infinite in size, because the high energy limit

corresponds to distances short compared to the interval length. Then the only mass

scale is l/gg, and we therefore expect unitarity to be violated at energy scales of order

1/gg times a numerical factor [34] [37] [38].

3.4 Unitarity and the KK Equivalence Theorem

In section 3.3 we have seen that the terms growing like E4 and E2, in longitudinal

gauge boson scattering amplitudes, exactly vanish for BCS consistent with the vari-

ational principle. This can be seen also by using the Goldstone boson equivalence

theorem. In a five-dimensional theory the Goldstone bosons are the KK excitations of

the gauge field fifth component. This interacts with the four-dimensional components

via cubic and quartic terms in the action (3.1):

Sgauge 3 / d4m [NR dsr5 __1_Farpaus

0 29% #0

NR 1

3 / (14:1: [0 (19:5 [fabcag—g (6,,A‘5 — (95.42) Abf‘Ag

1
+2—7fabcfadeAzAgAd’1AE] .

95

(3.47)
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A quick dimensional analysis shows that the Goldstone boson scattering amplitudes

cannot grow with energy, because each cubic vertex carries only one power of mo-

mentum.

However we have seen in section 3.3 that in longitudinal gauge boson scattering

amplitudes the term growing like B2 only cancels for BCs consistent with the varia-

tional principle. (While the term growing like E4 cancels for a broader set of BCS.)

On the other hand we have just seen that the Goldstone boson scattering amplitudes

cannot grow like E2, by simply power counting. This again proves that symmetry

breaking via BCS which are not consistent with with the variational principle is not

soft, and the equivalence theorem does not apply.

It is not our intention to give here a proof of the KK equivalence theorem, but

we want to show that the KK excitations of Ag behave properly as eaten Goldstone

bosons when the gauge fields satisfy the BCS (3.8)—(3.10). In the action (3.1) the

quadratic term mixing the u-component with the 5-component is

R

8(2) = f (143 f” (12:5 [—i265Aa#a,,Ag]
mixing

= —1§.[4a#a,, Ag]0"R + / (14x /0R (135—1403,35/13

95

The contact terms vanish for BCs of the type (3.8)-(3.10), and the last term has the

right form to be a gauge-Goldstone quadratic term. For simplicity, we consider BCS

which do not depend on the gauge index (1. Then, using the expansions (3.11) leads

to

M)A?#(x)¢t<x5)aiw3<x) (3.48)531...: $5 5: /d4/” dzif
m=0 n=0 95

From this expression we find that the Goldstone boson 33,, eaten by the m-th gauge

boson is a superposition of the mass eigenstates

~ 1 NR 1

1 0° M!
= __ —— z. , .4Nmn:0[/O (1::F’gg/n.(3)¢:.<r‘3vr)3<r) (3 9)
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where the constant Nm is determined by requiring that $73, is properly normalized,

and is therefore given by

 

. 0° 7rR 51 , _, 2

Am = 2: / da: —2fm<x5)¢;.(a=5) . (3.50)
n=0 0 95

Then (3.48) gives a four-dimensional mixing Lagrangian

2 ~

4,32%: 2 NmAmx)a2ng,(x) , (3.51)

m:0

from which it is clear that if?” beahves properly as an eaten Goldstone boson (giving

tree-level vacuum polarization amplitudes with a transverse structure) only if Nm

equals the mass of the m-th KK gauge boson,

In order to prove (3.52) we start from the definition of Nm, eq. (3.50), which gives

N3. = 55513/12 d’5ggfmor5)fm(x’5><b:.(x5)¢£2(r’5)

7TH
r f

r.__ Z:02 :32? 0Rd2”'2—2fin(Win(z'5>¢n.(r5>¢n<x’°)
71:0

5

+ [fmgbnmR terms.
(3'53)

The contact terms are zero for gauge fields satisfying the BCS (3.8)-(3.10)4. Then,

using the completeness relation

:0 29a 5)q>2(:c’5) = 6(m5 — :65) , (3.54)

which is valid for a broader set of BCS, (3.53) becomes

N3, = [”3 c1159- x5)fma¥(5)

= g—g-[fmfZlS’in— f,” (115521m<5>m<'-5>. (3.55)

 

4Strictly speaking the BCS (3.10) involve a non-trivial dynamics on the boundaries, which requires

a more detailed analysis. Here we only demand that (3.10) is trivially satisfied by the choice 8514;: = 0

and Ag '2 0, in which case the contact terms in eq. (3.53) vanish.
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The contact terms [fmfln] 3R are zero under the same conditions which guarantee that

lfm¢nl3R = 0. Therefore, using the equation of motion (3.12) and the normalization

condition (3.13) we obtain (3.52).

With these results, the KK equivalence theorem for the Ami), ——> AgAg elastic

scattering reads

MHz/15’. —> 44:443.) = Cmod ((405353 —> 53.53;) + 0 (mu/EV) , (3.56)

where the radiative modification factor Cmod = 1 + 0(loop) arises only at one-

loop level [15] [16] [17] [18] [19]. We have already noticed that in general the eaten

Goldstone bosons are not mass eigenstates. For the 53,59. to be mass eigenstates, with

the same masses mm of the KK gauge bosons Ag, (in Feynman-’t Hooft gauge), the

condition

¢$.(z5) = mnfn(:c5) (3.57)

must be satisfied. For instance, this is true for the BCs of an orbifolded circle, eq.

(3.7), because the corresponding gauge-boson and Goldstone-boson wavefunctions are

cosines and sines, respectively, of the same argument [34].

3.5 Deconstructed Models

The KK expansion is a way to see five-dimensional gauge theories on an interval

from a four-dimensional point of view. A different, purely four-dimensional approach

is provided by deconstruction, in which the extra-dimensional interval is put on a

regular lattice [39] [40] [41]. In the five-dimensional action

TTR 1

S = / (1423 / drr5[— 2

_ 4,, ”R ,,5 1 a any 1 a (1)15_ f (1.1. /0 (1.1. [—49§F,,,,F —QF#5F ] (3.58)

 
a aMN
FMNF ]

 

the $5 coordinate is replaced by a discrete index j, and the integral in c1235 is replaced

by a summation over j.
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Figure 3.3: Rectangular Wilson loop in the (n, 5) plane, with the fifth-dimensional

interval on a lattice.

In order to evaluate F#5, we consider a rectangular Wilson loop in the (p, 5) plane,

as shown in Fig. 3.3. We denote the unitary link operator (or comparator) between

the points ($1,115?) and (:32, 3:3) by U($1,:17§l.7?2, $3), and the position in the latticized

fifth dimension by ja, where a, .=_ 1rR/ (N + 1) is the lattice spacing, and N + 2 is the

number of points in the lattice (N internal plus the two endpoints). The U(X|Y)

operator is defined by its transformation law under the gauge group,

- . , . b b

U(XIY) _. e55a<X>GaU(X|Y)e—55 (ch , (3.59)

where the 00‘s are the group generators, and the a(X)a’s are the transformation

parameters. (Here X and Y are points in the five-dimensional space.) Therefore, the

trace of the unitary operator

U(.1:,j(:.) E U(.17,ju,|:r., (j +1)a) U(:r. (j + 1)(1l.’l’ + ([1, (j + 1)a.)

U(g17+(/1,(j + 1)a|.'1t + ([1, ja) U(l‘ + (fi,ja|:1‘,ja) , (3.60)

where )7. is a unit vector in the y. direction, is invariant under a gauge transformation.

For 6 << 1, we can express the link U(zr,ja|:r. + ([1, ja) in terms of the gauge field )1-th
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component,

.. —‘A +5“; +0 3
U(x,ja|:r+ep,]a)=e 16 ”(3E WHO) (6 ), (3.61)

where A“ E AfiGa. On the other hand, U($,ja|:r, (j + 1)a) cannot be properly

expressed in terms of A5, because a is not an infinitesimal quantity. Then we define

the 23(6) field by

Zj(r) E U(x,jal:1:, (j + 1)a) . (3.62)

Its transformation law can be derived directly from (3.59),

magma —mb (5)05
Ej(1:)—>e J Xj(:r)e j+1 (3.63)

where (155(1) E a“(;1:,ja.). (The “color” index a should not be confused with the

lattice spacing a.) Expanding in powers of c, the operator (3.60) becomes

U(m,ja) 2 1+ 622(5) (DA-(270* + 0(8) , (3.64)

where

[)#Zj 2 0H2]. — iGa/l?_1#2j + iEjGa/l?“ , (3.65)

and A- (1‘. E A (:13, ja) is the gauge field corresponding to the j — th rotation,
111 #1

cry-(2:) = a(:r,ja). DMZJ-(x) is the covariant derivativeof 23(3). In fact, from the

transformation law of the five—dimensional gauge fields,

. b b .

55,,(X)G5 —+ e55 <ch (A5,,(X)Ga + 562(2) e‘mcmcc, (3.66)

it follows

5 b_ .G'b . _' e GC

Agu(x)Ga —> 6103”) (A315#(r)Ga + 26),) e 201(I) , (3.67)

and D#2j(;r) transforms like Zj(1:). Therefore, Tr ((D#Zj(1:))lD“EJ-(:r.)) is invari-

ant, and D#2j(;r) must be proportional to 35(33, ja), the deconstructed version of

Fg5(:r, 3:5). The proportionality factor can be found by letting a to be small, so that

2j(1:) can be expressed in terms of A5(X) E Ag(X)Ga:

. . 1

22(6) 2 U(x, jalx, (j + 1)a) = e"'“‘A5(“'U+?)‘2. (3.68)
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Expanding in a, and taking the fig-derivative, gives

, i

FS5(I,]CL) = EDpzj-(x). (3.69)

Therefore, replacing the integral over 15 with a sum over j,

”R dy —-> Nil a, (3.70)

0 j=0

the Lagrangian of a deconstructed five-dimensional gauge theory becomes

13— "LINEN F55V+fi1§ln((0 sfipus) (3 71)
_ 4&2 j=0 JHU j 4 j=1 II J J ’ °

where FJaw! is the field-strength tensor for the gauge field Ag”. The dimensionless

four-dimensional gauge coupling 27 is

- _ g5 _ 95 N
_ _ \/ +1, 3.72

9 ,/5 7m, ( )

and the dimension-one f constant is

2 2

— 95\/a — gsVnR

Notice that both 5 and f grow like VN + 1, but what really enters in the calculation

  

f
 

V N + 1 (3.73)

of scattering amplitudes are the effective coupling g/JTV—fi and the effective mass

scale f/m, which are independent on the number of sites.

This results prove what was claimed in chapter 1, namely that deconstructed five-

dimensional gauge theories on a flat background are NLSMs with identical couplings

and VEV's. The Ej field can be expressed in terms of the Goldstone boson fields:

2559(5)Ga /f
6 J .Zj(:r) = (3.74)

Comparing this equation with (3.68) we see that the Goldstone fields are related to

the fifth component of the gauge field,

535(5) = —§A‘5‘ (x (j + %)a). (3.75)

Therefore, in deconstruction the four-dimensional components of the gauge fields are

taken at the lattice points, while the fifth component is taken between the points.

This picture corresponds precisely to the circles and lines of a moose diagram.
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SU(2) SU(2) SU(2) SU(2) U(1)

  
Figure 3.4: Moose diagram for the deconstructed SU(2) gauge theory on a five-

dimensional interval, with BC’s breaking SU(2) to U(1) at one end of the interval.

Notice that: (i) If the five-dimensional theory is invariant under a gauge group

G, and BCS break G down to GO and Cl, at 2:5 = 0 and 1:5 = 7TH, respectively, the

corresponding deconstructed four-dimensional model is invariant under a larger gauge

group, GO >< G'N x G1. (ii) In the five-dimensional theory spontaneous symmetry break-

ing is due to compactification, while in the four-dimensional deconstructed model

spontaneous symmetry breaking is achieved through the 2 fields VEV, Z? = f - 1,

where 1 is the identity operator. (iii) As the mechanism which leads to compacti-

fication is not explained in the five—dimensional model, and must be supplied by a

UV completion of the theory, so the deconstructed model does not explain the ori-

gin of the VEV, and must be UV completed by a more fundamental theory whose

low-energy content is described by the NLSM.

Deconstruction makes the symmetry breaking pattern more explicit. For example,

a five-dimensional SU(2) gauge theory, with BCs which leave the symmetry unbro-

ken on both branes, corresponds to an SU(2)N+2 gauge symmetry which is sponta-

neously broken to SU(2) by the 2 fields VEV. We now consider the three examples

of section 3.2, with symmetry-breaking BCS, and deconstruct the corresponding five-

dimensional theories.

(1) G=SU(2), and BCS breaking SU(2) down to U(1) at one end of the interval.

The deconstructed model is an SU(2)“,+2 NLSM whose SU(2)N+1x U(1) part is

gauged, with the U(1) coupling identical to the SU(2)N+1 coupling. With the BCS
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U(1) SU(2) SU(2) SU(2)

2N+2 2N+1 2N 2N-l

   

Figure 3.5: Moose diagram of the deconstructed SU(2)LXSU(2)R gauge theory on a

five-dimensional interval, with BCs breaking SU(2)R to U( 1) at one end of the interval

and SU(2)L><SU(2)R to SU(2)diagonal at the other end. This model is just a single

chain of SU(2) groups and a U(1) group.

Affirm = 0, from (3.65) we obtain, for 0221,41, the expression

DflzN+1 = (?#2N+1 - iGanrflzN+1 + izN+IG3Air+1H , (3.76)

which shows how the U(1) group is embdded in the SU(2) structure, with the G3

generator of SU(2) acting as the U(1) generator. The SU(2)N+1xU(1) gauge sym—

metry is broken to U(1) by the 2 fields VEV. The moose diagram of this model is

then shown in Fig. 3.4.

(2) G=SO(4)~SU(2)LXSU(2)R, and BCS breaking SU(2)R to U(1) at one end of

the interval, and 80(4) to SU(2)diagonal at the other end. The deconstructed model

is described by two SU(2) moose diagrams, one for the SU(2)L group and one for

the SU(2)R group, with the SU(2)diagonal site connecting the two chains. Therefore,

the deconstructed model is an SU(2)2N+3 NLSM whose SU(2)2N+2XU(1) part is

gauged, as shown in Fig. 3.5. It is then evident that this model is identical to model

(1), with N replaced by 2N + 1. The identity between these two models, which was

demonstrated in section 3.2 by considering the mass spectrum and the wavefunctions,

is even more explicit after deconstruction.
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Figure 3.6: Moose diagram of the deconstructed SU(2)LXSU(2)RU(1) gauge theory

on a five-dimensional interval, with BCs breaking SU(2)RxU(1) to U(1) at one end

of the interval and SU(2)LXSU(2)R to SU(2)diagonal at the other end.

(3) 0230(4)xU(1)~SU(2)LXSU(2)R><U(1), with BCS breaking SU(2)RX U(1) to

U(1) at one end of the interval, and 80(4) to SU(2)diagonal at the other end. The

deconstructed model is an SU(2)3N+4 NLSM whose SU(2)2N+2X U(1)N+2 part is

gauged. This gauge symmetry is then broken to U(1) by the 2 fields VEV. In this

model there are three coupling constants: The coupling of the 2N + 2 SU(2) groups,

g}, the coupling of N + 1 U(1) groups, [1’ , and the coupling of the unbroken U(1)

group on the $5 = 0 boundary, 6 E §§'/W. The moose diagram is shown in

Fig. 3.6.



Chapter 4

Higgsless Electroweak Symmetry

Breaking

In chapter 3 we have seen that a gauge theory on an extra-dimensional interval

has, from a four-dimensional point of view, an enhanced and spontaneously broken

gauge symmetry, which postpones the unitarity violation of longitudinal gauge boson

scattering amplitudes to energy scales higher than the customary limits of Dicus-

Mathur or Lee-Quigg-Thacker [7] [10] [11] [12]. We have also seen that different

choices of gauge group and BCs lead to different symmetry breaking patterns, in the

four-dimensional theory.

In this chapter we will show that EWSB can be implemented in this framework.

we will first consider an 80(4) xU(1) gauge theory in the bulk, with BCS breaking

80(4)~8U(2)L x8U(2)R to SU(2)diagonal at one end of the interval, and 8U(2)R><U(1)

at the other end. This model will be briefly described in a flat background, where it

proves to be inconsistent with EWP data, in a Randall-Sundrum warped backround,

and with brane kinetic terms [69] [70]. A more minimal model is then introduced,

with an SU(2) symmetry in the bulk, BCS breaking SU(2) to U(1) at one end, and

brane kinetic terms. From a deconstructed viewpoint, this theory is an 8U(2)N+2

NLSM whose 8U(2)x8U(2)NxU(1) part is gauged. We study the N = 1, arbitrary

N, and N —> 00 models, with the latter corresponding to the extra-dimensional case.



4.1 Higgsless Models on a Warped Background

In section 3.2 we considered three examples of Yang—Mills theories on a flat extra-

dimensional interval, with BCs breaking the gauge symmetry. These models share

some common features: First, the unbroken symmetry is U(1). Second, there is a

charged-boson KK tower and a neutral-boson KK tower. Third, the lowest mode

of the neutral tower is the massless gauge boson of the unbroken U(1) symmetry.

In section 3.5 we considered the corresponding deconstructed versions. Each of them

has a symmetry breaking pattern which contains SU(2) x U(1)—>U(1), and is therefore

potentially a model of EWSB.

Model (1) has an SU(2) gauge symmetry in the bulk, with BCS breaking SU(2)

to U(1) at one end of the extra-dimensional interval. We found that the mass of the

lightest massive neutral boson is twice as large the mass of the lightest charged boson,

and so they cannot be interpreted as the SM W and Z bosons. Therefore, model (1)

has obviously no chance of being a realistic model of EWSB. Neither does model (2),

which we saw being equivalent to model (1).

Model (3) has an 80(4)xU(1) gauge symmetry in the bulk, with BCS breaking

80(4)~8U(2)Lx8U(2)R to SU(2)diag at one end of the interval, and SU(2)RXU(1)

to U(1) at the other end [36]. The mass of the KK modes are given by (3.32). For

the lightest massive charged and neutral boson we have1

 

1

mW'O : 74—H- 1

12arctan(/1+2 ’2 2
95 /95

Notice that for g3 = 0 we obtain mWO = mZO’ while for O < 2g?)2 < g?) the neutral

boson mass becomes slightly larger than the charged boson mass, as in the 8M. To

check whether this can be a realistic model of EWSB, we must also consider the heavy

KK modes. For le and le (3.32) gives

mW1 2 mWU + 2mWO

 

1Here we substitute the KK index n of (3.32) with n —— 1, so that the lightest massive modes

correspond to n = 0, rather than n. = 1.
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77121 = mZO + 2mw0 . (4.2)

These values are very low, and can only be realistic if the fermion couplings with the

heavy gauge bosons are suppressed.

In five dimensions the smallest irreducible representation of the Lorentz group is

four-dimensional, thus our fundamental objects are Dirac spinors. In order to obtain a

low-energy effective Lagrangian in agreement with the 8M, we introduce two fermion

SU(2) doublets, \II L and \IIR, whose Lorentz—Dirac structures are

‘I’L ___ WI. \IIR : X12

XL we

To be more specific, 11)], and XL (21)]; and XR) are doublets under 8U(2)L (8U(2)R),

and singlets under 8U(2)R (8U(2)L). The U(1) charge is chosen to be (8 - L)/2

for both WL and W3, where B stands for baryon number, and L for lepton number.

Then the five-dimensional Lagrangian for one generation (of quarks or leptons) is

6‘5) = i: L515“ (6M — 3.4%MT“ — iBME—él—L) \IIL
fermion

 

_ , B - L

+ \I/Rirjw (811,] — iA‘II?A,ITa — i8)” 2 ) ‘I’R . (4.3)

The matrices T“ E a“/2 are the SU(2) generators, where a“ is the a-th Pauli matrix.

The matrices I‘M are the five-dimensional version of the four-dimensional 7" matrices,

and are defined by I‘M = (7“, —2'75) [71]. In this Lagrangian we omitted the mass

terms, which are not of our concern now.

Since the electroweak symmetry is unbroken on the 3:5 = 0 brane, it is natural to

try first with fermions which are strictly localized at x5 = 0. Using the BCS (3.29)

for the gauge fields, working in unitary gauge, (all gauge-field fifth components equal

to zero), and imposing the BCS XL(17, 0) = X1295» 0) = 0 for the fermion fields2, the

fermion action becomes

fermion

77R r r 5

Sfermion : /d4-T‘/(; d$06(-To)£()

- . . . B —- L

= [$520 (14.1: [(11275 (0), — 2.4%“Ta - zBflT) 'de

 

2Consistent BCS for fermion fields are discussed in Ref. [71].



 "ti/912M (0)21.—iBuM(T3++B;L))([;R

[T520 (141 [1]—127” (3— '- iByY) I/lL

+£32.75! (8,2 - inY)LT’l/iR] (4.4)

 

where we used the 8M relations (B—L)/2 = YL and T3+(B-L)/2 2 YR. Notice that

YL is proportional to the 2x2 unit matrix, while YR is diagonal but not proportional

to the unit matrix. Writing 1123 in terms of its SU(2) components, 11;}; == (uR,dR),

we recognize in (4.4) the electroweak fermion Lagrangian, with the four-dimensional

gauge fields replaced by the five-dimensional fields All.“ and Bl), taken at x5 = 0.

In order to evaluate the effective couplings of the fermion fields with the KK gauge

fields, we must substitute the expansions (3.30) in (4.4). The charged-current and

neutral-current Lagrangians are

.CCC = i [90C (pa/“PLW W+] + h.c.

/ n=0 fl n“ 1

LNC = Z [1177” (5171:.ICPLT3 + QIQVEQ) d" Zia/1.] a (4-5)

 

where (D E 2le + 11:13, PL E (1 — 75)/2 is the usual left—handed projection matrix,

Ti 5 T1 :1: 3T2 are the isospin raising and lowering matrices, and Q E T3 + Y is the

charge matrix. The effective couplings are related to the Wn and Zn wavefunctions

 

at 11:5 = 0:

6,875" = 152(0) .

of.” = {165(0) — hum) .

anC = 11.",(0). (4.6)

From (3.33) we obtain

(:0 = 95

g" m. ’

NC /_2
9,, = 7rR 95 sin(Mn7rR),

.2 2 ’2
98,? = ———g§—cos(Mn7rR) . (4.7)

77R V952) + 2932
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From these equations we notice that the fermion couplings with the heavy KK gauge

bosons are not suppressed, relative to the couplings with W0 and Z0. Therefore,

the values (4.2) for the first heavy KK modes are well below the experimental lower

bounds from the direct searches [72] [73].

In order for the extra-dimensional model to be realistic, le and m21 must be

heavier, and this can be achieved by replacing the flat background with a warped

R81 metric. The latter is given by

d52 : e‘2kxonflyd1‘“dr” — dx5dx5 , (4.8)

where, as usual, :55 E [0, 7TH], and It measures the Ad85 curvature. With an exponen-

tial factor multiplying the Minkowskian metric, the EWSB scale and the Planck

scale can be naturally embedded in the same model, for a factor k7rR of order

108(MPlanck/TeV) ~ 30 is sufficient to achieve the goal. The metric (4.8) is often

written as

(1.92 = (751—)? [7)de”d:r” — (d:)2] , (4.9)

where z is defined by

e555 , (4.10)

and belongs to the interval

1 Elm}?

(2h E ‘1‘“) S 3 S (2125 k ) , (4.11)

is of order of the Planck scale, and 5,71 is in the TeV range. (The subscripts

 

. 2-1
“here ~h

“h” and “v” stand respectively for hidden and visible.)

With the warped metric (4.9), the wavefunctions are superpositions of Bessel

functions, rather than sines and cosines. Therefore, mass equations and normalization

integrals become more complicated than in the flat-metric case [47]. For the gauge

boson masses, a perturbative expansion in 1/ log (322/13,) gives, to leading order,

1 1

mw = ————,

21; ~

10 (35)g “h

2 12
9. +29 1 1

m2 = ‘liQ—Tfé—T—a (4.12)

95+95 “5 10g(£1;)
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for the W and the Z boson, while numerical results show that the W1 and Z1 masses

are around 1.2 TeV, heavy enough to have evaded detection at the Tevatron, but

within the reach of the next generation of colliders.

4.2 Brane Kinetic Terms

The main motivation for using the Ad85 geometry is of course the large hierarchy

between the TeV scale and the Planck scale. However, since we are only interested

in the EWSB scale, it is sufiicient to consider an effective field theory where the

high momentum modes - all the way down from the Planck scale to the TeV scale

—— are integrated out. In other words, for our purposes it is sufficient to consider an

effective theory with a new hidden brane bounding the space at zv > a >> zh, with

the requirement for the new theory to reproduce the same physics from the point of

view of an observer living at z > a [56] [57] [58]. The resulting five-dimensional model

has still the same bulk and TeV brane Lagrangians, due to the conformal invariance,

but new kinetic terms localized on the hidden brane. For example, for a free photon

field the coefficient of the localized kinetic term runs like [57]

where 1/e2(zh) is the coefficient of the initial kinetic term localized on the Planck

brane. If a large slice of Ad85 is integrated out — that is, if a/zh >> 1 — the corre-

sponding extra-dimensional interval will be approximately flat, as shown in Fig. 4.1,

and the integrated-out region will generate large kinetic terms on the UV brane.

These results lead us to believe that the 80(4) x U(1) model with a flat background,

and large kinetic terms on the brane where the electroweak symmetry is unbroken,

can potentially be realistic. Of course a model like this is only an effective field theory

with a cutoff in the TeV range, and an unknown UV completion. However this does

56



  

    
Planck TeV

(a)

 

Figure 4.1: Background of a Randall-Sundrum model (a). The same model after

integrating out a large slice of AdS5 near the Planck brane (b). The new model has

a smaller radius, an approximately flat background, and a large brane kinetic term

on the UV brane.

not bother us. The corresponding action, for the gauge sector, is3

7I'R 1 1

= m Mai—2A2MNAzMIv—25MN5MN
0 495 495

1 MN 6(135) a and! 601:5) nu
ZEBMNB "' VALIIVAL — —4g—QB“VB ] , (4.14)

With the BCS

A255,,(0) = 0 .Ai’aw) = 8,.(0) .

Ai#(TrR) = 0 ,35 1#(7FR)= 0 . (4.15)

From (4.15) we see that the last term could have been equally written as

6(175) 3 3pu

_WAR#VAR .

This model was first introduced in Ref. [49]. Notice that the presence of 6—functions

on the 3:5 = 0 brane generates discontinuities in the 85-derivatives of the gauge fields.

 
3Here and in the following we omit the gauge-fixing terms. We always assume BCs which do not

allow for a scalar zero mode, and work in unitary gauge, where all gauge-field fifth components are

set to zero.
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This can be seen by pushing the brane kinetic terms slightly away from the boundary,

to make them part of the bulk. Then the equations of motion for Ail], 14%.grand Bu

become

“gig-(0” ALpu "‘ EabCALpl/AL (’5 Lu)

+ $25035 - 5) (0“ALW " 5mAL)“;AL“) = 05

i (0;:Alma _ 5.3554,.WAR5 — 53.4%,”)

+ 5,6(55 — .) (MARW— 5355.43,,”5") = 0,

91? (8118“,, B2B")++9126($5
— {)6} Bull 2 0 ’ (4'16)

where 0 < 6 << 1, and cube is the SU(2) antisymmetric tensor. An integration around

the delta functions picks the discontinuity of 65/13], 65422“, and 85B“:

1 _ bc .

_g—2la5AL1/lc_ + 7 (aflAipu— Ea Altai/ALp)e : 0 ’

10

—;};[65AR,,]:+ 9,2~1—2(8"ARW— e3bcARW/ij,55) :0,

+ 1
—E(65132]:_ + F (658...), = 0 . (4.17)

With the brane terms as part of the bulk, the BCS 05A‘Izl#(0) = 0 and 65(gg2A%# +

ggBu(0)) = 0 should be imposed, since these are the BCs which leave the electroweak

symmetry unbroken on the 2:5 = 0 boundary (see eq. (3.29)). Then, taking the limit

6 —> 0, and using the bulk equations of motion, (4.17) gives

g2

lim (6% g], — 9735/13) 2

5x5—>0+

I2

lim 8.2013 +B )- L8v(g5A3 +gr2B2)) =0. (4.18)

These equations, together with the BCS (4.15), give rise to non-trivial mass spec-

tra, for both charged sector and neutral sector. We do not show here the solutions,

since our focus will be on a simpler model, which will be introduced in the next

section. However, it is clear that with a flat background the wavefunctions are super-

positions of sines and cosines, rather than Bessel functions. This makes this class of

models considerably simpler than the warped extra-dimension scenario.



4.3 A Minimal Higgsless Model

In section 4.2 we introduced an 80(4) xU(1) gauge theory on a. flat extra-dimensional

interval, with large localized kinetic terms on the brane where the electroweak sym-

metry is unbroken. The deconstructed model is represented by the moose diagram

of Fig. 1.2 (a), where the couplings of the SU(2) and U(1) groups corresponding to

2:5 = 0 are the gauge couplings of the brane fields. The same moose diagram can

be unfolded to a single chain of SU(2) groups followed by a chain of U(1) groups, as

shown in Fig. 1.2 (b).

A simpler model can be obtained by eliminating all U(1) sites, with the only

exception of the first one, which corresponds to the U( 1) gauge group on the 2:5 = 0

brane. What is left is an SU(2)N+2 NLSM whose SU(2)xSU(2)NxU(1) part is

gauged, and the corresponding moose diagram is shown in Fig. 1.3. In this section

we study the gauge sector of this model for N = 1, arbitrary N, and N —> 00, where

the latter corresponds to the continuum limit [42]. We find the unitarity bounds

of longitudinal gauge boson scattering amplitudes for each case, where our analysis

is restricted to unitarity of the WEWE —> WZWE scattering. We will work in

tree-level approximation throughout the rest of this dissertation.

4.3.1 The SU(2)0xSU(2)1XU(1) Model

We begin by studying the simplest Higgsless extension of the SM model, namely an

SU(2)0xSU(2)1xSU(2)2 NLSM whose SU(2)0xSU(2)1xU(1) part is gauged. The

corresponding nioosc diagram is shown in Fig. 4.2. The NLSM fields,

21(;,-)=e2”i"(5>7‘“/f1 , 29(.Ir)=(<25”‘2"($)T“/f2 (4.19)

consist. of two SU(2) triplets, which are coupled to the. gauge fields by the covariant

derivatives4

DRE, = aux, —2TgTa'l/l'"61#21 + igzlrau'fi, .

 

4In this section and in the next. one we will work in canonical normalization. where the coefficient

of the gauge kinetic terms is -1/4.
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Figure 4.2: Moose diagram for a global SU(2)0xSU(2)1xSU(2)2 NLSM whose

SU(2)0xSU(2)1xU(1) part is gauged. All parameters are taken to be independent

quantities.

0ng = aRzg — radii/{3,22 + ig'22T3BR . (4.20)

Notice that, in order to maintain generality, we take the VEVs of the 2 fields to be

independent parameters. The Lagrangian for this model is

1 , 1 , 1

‘C : ”ZWguz/l’l’gm "ZM'fuum/flpl/‘ZBWBW

2 2 A

+ %Tr((DR21)TD”21)+54llr((D,.E2)lD"Ez) , (421)

where we only kept the lowest dimension opertors. After the 2 fields acquire the

VEV, < 2,- >= 1, the SU(2)0xSU(2)1xU(1) gauge symmetry breaks down to U(1),

and the last two terms in the Lagrangian become mass terms for the gauge fields. The

mass spectrum consists of a neutral massless gauge boson, which will be identified

with the photon, a tower of two charged gauge bosons, and a tower of two neutral

gauge bosons. The light modes of these towers will be identified with the SM W and

Z bosons. The heavy modes are two new particles, which will be denoted as W’ and

Z’ .

There are overall five independent parameters: g, g, 9’, f1, f2. we can trade three

of these for the electromagnetic coupling, e, and the W and Z boson masses, mw

and mZ- The remaining two parameters can be expressed in terms of the W' and Z’

masses, mW/ and "’2’- The gauge eigenstates, W61, W1", and B can be expanded in

terms of the mass eigenstates. We have

”bi = a00Wt + 001””i ,
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Figure 4.3: Tree—level diagrams for the 142'W; ——> W”;W; elastic scattering, in the

SU(2)OXSU(2)1><U(1) NLSM model.

wli = alowi + allw’i , (4.22)

for the charged sector, and

””8 = ((i/g)/l + bOOZ + me’ ,

W? = (e/éM + bloz + buz’ .

B = (e/g’M + 5202 + 5212’ , (4.23)

for the neutral sector. Formulas for the original parameters g. g, 9’, f1, f2, and the

mixing matrices ajn, bJ-R, as functions of the physical parameters 6, mW, mZ, mW’?

mZ” can be found in appendix A. Notice that the coefficients of the photon field are

necessarily e/g, e/fi, and e/g’, because the photon is the gauge field of an unbroken

symmetry, and must couple to the 23 fields (as well as to any other field) with its

gauge coupling 6. Insertng this result in the Lagrangian (4.21) gives

11+1+1

2&2

9’2 '22-29
(4.24)

Having set up the model, we would like now to study the high energy behavior

of longitudinal gauge boson scattering amplitudes. restricting our analysis to the
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Figure 4.4: The coefficient of the (E/mw)2 term in the Will/VI: —» WEWI: scat-

tering amplitude in the SU(2)0><SU(2)1 xU( 1) model (blue) as a function of the Z'

and W’ mass difference, with mW/ = 500 GeV fixed. The same quantity in the SM

without a Higgs boson (red) is also plotted. The vertical line indicates the position

“’here 77122, — THEVI : 771.22 - Titan

'—

WZWI: —> W;H L scattering. In addition to the SM exchanges of virtual photons

and Z bosons, there are exchanges of virtual Z’ bosons, in the s- and t-channel, as

shown in Fig. 4.3. The amplitude is an easy generalization of (2.10):

 

2

gr ,' f f .

M = ”—“4M [p2E2(—2+6cosl9) — E4sm26]
m”;

l. 2 2 2

1 e 9 r . g , ,. ,

+ —4 — + H H g + WWZ2' (-4p2(p2 — 3E2)2) C080

m”: S S — 7712 8 — m2,

1 e2 9 g ,r I
+ _+_ HHZ+ ”VIZ

114‘le t I. — mQZ I — 171%,, h
x [ — 4E2 (p2 + (E2 — 2p2) cos 6)2

—2p2(1 + cos 9) (2E2 —- p2 — E2 cos 9)2] . (4.25)

The quartic and cubic couplings are obtained by inserting the expansions (4.22),
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Figure 4.5: The quantities f1 (blue) and f2 (red) as a function of the Z’ and W' mass

difference, with mW/ = 500 GeV fixed. The vertical line indicates the position where

77122, _ ma” = 771% —' may.

(4.23) into the gauge kinetic terms of the Lagrangian (4.21). This gives

gwwz = 9 a(2)0500 + £7 aiobm .

gWWZ’ 9 030501 + g afobll .

HERWWW 92 030 + 62 Clio - (426)

At high energy the amplitude can be expanded in powers of E/mw. The term

proportional to (E/mW)4 exactly vanishes due to gauge invariance. The leading

contribution is then proportional to (E/mW)2:

 

2
E 1 , 6

M = ( ) + COS K + 0 ((mW/E)0) , (4.27)
mW 2

where

. _ 2 _ 3 2 2 , 2 2
K — 4!]“rwyflfv‘; m‘f‘f (TIIZ'WZ + IIIZIQ‘%I”_Z’) . (4.28)

Using the formulae in appendix A, we can treat K E K(mwr. mZ’) as a function of

mwl and m2].
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Figure 4.6: The coupling constants 09 = 92/47r (blue), 0 I = g’2/47r (red), and
9

of] = §2/47r (green), as a function of the Z' and W’ mass difference, with mW/ = 500

GeV fixed. The vertical line indicates the position where 171%, — ma” = 77122 - may.

In Fig. 4.4 we plot K as a function of the mass difference, mZ’ - mWr, for mW/ =

500 GeV fixed. As a comparison we also plot the same quantity in the SM without the

Higgs boson. Notice that K is significantly suppressed for 771%, — Inf/V, 2 172.22 — may.

When this relation holds, the value of K is reduced by almost precisely a factor of

1 /4, a result which does not depend on the particular value of mW” This indicates

that the unitarity violation that occurs in the SM without the Higgs boson would be

postponed to higher energy in this model.

We also plot in Fig. 4.5 the scales f1 and f2, and in Fig. 4.6 the couplings constants

ag = 92/4713 agr = 9'2/47r, and ag = 52/42, as a function of the Z’ and W' mass

difference, with mW/ = 500 GeV fixed. We notice that the relation m2Z, — 771%,, 2

77122 - ma, also corresponds to f1 2 f2 and § >> 9, g’. In fact when this relation holds

the couplings are given to a good approximation by g = e/ sin 6W, 9' = e/ cos 6W, and

2

w' '

definition of cos 6W = mw/mZ.) Thus, the SU(2)0 and the U(1) act approximately

5 = (mW//2mw)g, up to corrections of order may /m (We have used the tree level
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Figure 4.7: The J = 0 partial wave amplitude as a function of \/E for the SM without

a Higgs boson (red) and the SU(2)0xSU(2)1xU(1) model (blue) with mW/ = 500

GeV and mzz, — ma” = m22 — may.

like the SU(2)L and U(1)y of the SM, while the intervening SU(2)1 has the effect of

softening the unitarity violation of the SM WZWI: —+ WZ'WE scattering.

We can observe the effect of the delayed unitary violation by plotting the J = 0

partial wave amplitude as a function of \/§ = 2E. This is shown in Fig. 4.7 for both

the SM without a Higgs boson and in the SU(2)0xSU(2)1x U(1) model with mW’ =

500 GeV and mQZ, — ma” = 77222 — mgv. Since unitarity requires |Re a0] < 1 /2, we can

use this figure to infer that unitarity violation in this amplitude has been postponed

from a scale of J3 2 1.6 TeV in the SM without a Higgs boson to J3 2 2.65 TeV in

the SU(2)0xSU(2)1xU(1) model with this choice of parameters.

We have found that the behavior of the W3WE —> ZLZL amplitude to be essen-

tially identical to that for W;”I: —-> WZ'WE . In particular the corresponding value

of K, the coefficient of the leading E2/mgv term in that amplitude, is reduced by the

same factor of 1/4 when 211%., — 772%,, 2 77122 - may.
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Figure 4.8: Moose diagram for the SU(2)xSU(2)N><U(1) Higgsless model.

4.3.2 The SU(2)xSU(2)NxU(1) Model

In section 4.3.1 we saw that the choice of parameters which produced the greatest

postponement of unitarity led to a model where the SM SU(2)L and U(1)y gauge

groups were separated in TS by an extra intervening SU(2). Following the extra-

dimensional analogue further, we now extend this to a series of intervening SU(2)’s,

all with the same coupling and all VEVs chosen to be the same. The moose diagram

for this theory is shown in Fig. 4.8.

The Lagrangian is

1 , , , 1 N , 1
£ 2 _ZM611LVM 6”“ — Z Z ngitl/WJQI“ - ZB/‘VBuV

i=1

f2 N+1 f

+ T Z cr[(DR2,-) Duzj] , (4.29)

i=1

and the NLSM fields can be parameterized by

2' 4T0
2,- = 6 ”J H . (4.30)

The 2 -’s are coupled to the gauge fields by the covariant. derivatives
.7

DREI = 8,121 —igTal/V(()l#$1+i§21TaHfiJ ,

DREJ- = 8,,Zj —i§TaH:;-I_1p2j + ingTal’l'fil , (j = 2, . . . . N) ,

As in the previous model. the 2 fields can be removed in unitary gauge, giving

a mass to the gauge bosons. 'We. can then expand the charged fields in terms of the
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mass eigenstates

N

W} = aJ-OWi + Z ajnu'gi , (4.32)

n=1

and similarly for the neutral fields

1‘?

W0” = («AIM + booZ + E 001725 ’
n=l

3 N I
W]- : (e/§)A + bJ-OZ + [15]-R2,, , (j = 2, . . . , N) ,

n:

A7

I I
B = (C/g ).4 + b(N+1)OZ + Z b(N+1)nZn , (4.33)

n=l

where the photon A is exactly massless as required. Inserting these expansions in the

kinetic terms we obtain, for the coupling of the unbroken U(1),

I

$=$+§+§. (me

We give the general solution for the diagonalization of these mass matrices in

Appendix B. For this model there are four independent parameters, 9’, 5, g, f, which

can be fixed by e, mw, mZ: and the mass of WI, mWf' In accordance with the

results of section 4.3.1, we assume 9, 9' << (Ht/N71, and let A2 E g2(N +1)/§j2 and

X2 E 9’2 (N + 1) /52. Then a perturbative expansion in A2, and X2 gives the masses

2 2

2, _ .51 f ( 2 >
mu, — —_4(N+1) 1+O()\) ,

2 I2 2

m2 = W0+0020 ,

2 2

,, _ 7171' 7171'

"LEV; : g2f2 (SID.m) +2',Tn%t (COSm) (1+O()\2)) ,

22

2 — *2 2 ' _"_’7r_ 2 l— 2
ng — gf (Sin2(N+1)) +2mZ(cos2(N+1)> (1+O(A)).

(4.35)

It is easy to check that for N = 1 this gives mQZ, — ma” 2 "’22 — mar, and g =

(mWI /2mW)g, up to corrections of order "lar/m as found in section 4.3.1.

1

2

w{’

The scattering of longitudinal W's is easily generalized from the N = 1 case, since

the exchanges of a single Z' in the s- and the t-channel are replaced by echanges of N
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Figure 4.9: Tree-level diagrams for the W3W; —+ WIT ”I: elastic scattering, in the

SU(2)xSU(2)NxU(1) model.

heavy neutral bosons, ans shown in Fig. 4.9. The amplitude for WEW; —> W;WI:

is

M

2

.(l 7 , r r
W[p252(_2 + 6c056) — E4 sin2 a]

 

mw

' 2

2 N g
1 e2 9 z ’

__4 _ + —”W? + E —WW§" (—4p2(p2 — 3E2)2) 0056

771W 8 S—‘mz nzls-mzh

' 2
2 N 9

1 62 9 , , WWZ’ 2
4 — + —-u“g + E ——2" [— 4E2 (p2 + (E2 — 2p?) cos 6)

mW - t —- m2 ”:1 t — ng 
2

—2p2(1 + cos 6) (2E2 — p2 — E2 cos 6) J , (4.36)

where the cubic and quartic couplings are

N

ng/VZ = g a80b00 + g :1 agobjo 9.

J:

2 ~ N 2

9“,”,72; g a’OObOn 'l' 9 32—2 ajObjn a

2 2 4 ~2 N 4

ngWI'W/W' = g Cl(_)0 + g .721 (1ij . (4.37)
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Figure 4.10: The J = 0 partial wave amplitude as a function of \/E for the SM without

a Higgs boson (red) and the SU(2)xSU(2)NxU(1) model (blue) for N = 1 to 100

with mva = 500 GeV.

1

Then the coefficient of the leading (E/mW)2 term, defined by (4.27), is

N

_ 2 _ 3 2 2 2 2
K — 4gVVI/VW'I'V m2 ( Zgl/VW'Z + Z mZthWZ’ ) (438)

W n=l n

In Appendix B we obtain for this model

2

A, = W+O(l\2)

= “If/+81??? + 0(A2) . (4.39)

where the corrections also fall off as (N + 1)‘2. As expected, this agrees with the

results of the previous section for N = 1.

In Fig. 4.10 we plot the J = 0 partial wave amplitude as a function of \/E for

both the SM without a Higgs boson and in the SU(2)xSU(2)N xU(1) model with

mWi = 500 GeV for N = 1 to 100. For large N in this model the unitarity violation

is delayed to an energy of about \/5 = 19 TeV. Thus, we may expect that the effective
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theory with a KK tower of vector bosons should be reliable up to about this scale.5

At high energies and large N, the partial wave amplitude asymptotes to

 

 

 

1 r s g2 + 4572 (10 s 1)
a z — __ _ _ _

0 327r _4m%,, (N + 1)2 N +1 g A2 2

F 2

1 2 4 2 mw’ 1
z -—-— 82 9 2 + Jay—24 (log '12 — —) , (4.40)

3277 4mW (N + 1) 7r mW A 2

where A is a scale on the order of a few times mW"

1

4.3.3 The N —> oo Limit

From the analysis of section 3.5 we know that the limit N ——> 00 gives a gauge

theory on an extra-dimensional interval, as long as g and f grow like N + 1. The

five-dimensional gauge coupling and the interval length are then given by

7

NR = lim 2(A~+1),

N—mo gf

2~

2 - 9

95 = Nil—131007. (4.41)

Since the gauge couplings of the edge sites are different, the five-dimensional action

has localized kinetic terms on both branes,

 

NR 1 1
8 , 2 [d4 / d _ vva rwra [VIN _ (S w'alWapI/

907198 I 0 y 493”]? [MIN (30492 In

1

—6(7r1r2—3))4—gfiw,~f,,w3W , (4.42)

where the dimensionless five-dimensional coupling 95 is defined by figflR = 9%, and

the five-dimensional coordinate 1:5 has been renamed y.

As explained in section 4.2, the 6-functions should be intended as slightly pushed

inside the bulk, with the BCS leaving SU(2) unbroken at y = 0, and breaking SU(2) to

U(1) at y = 7TB. These are the same BCS we met in the toy model (1) of section 3.2,

which allow us to set W5“ E 0, in unitary gauge. Then, pushing the delta functions

 

5A coupled-channel analysis, as considered in Ref. [34], would give a lower energy scale for

unitarity violation.
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back to the branes, we obtain

2

0 r2 0 A " a: _

Ell—1331+ (Us W” '— m()5wfl) —— 0 ,

- 2 3 A” 3
ylfl— (ash/”+fia5wp) = 0,

WlflnR) = 0 , (4.43)

for the behavior of the gauge fields near the boundaries, where A2 E g2/gg and

4’2 E 9’2/93-

All of the results found in appendix B have a well-defined limit as N —> 00, with

the discrete label j becoming the continuous extra-dimensional variable y, and the

vector expansions (4.32), (4.33) becoming KK expansions. An alternative method for

deriving the solutions consists in working directly with the continuum model, as in

section 3.1, and KK expanding the five-dimensional gauge fields,

:i: 00 "l-

W “(2% y) = Z fn(y)WrT“ (1C) .

7u=0

W3"(x,y) = eAM<x>+§gn<y>23<zL (4.44)
1u=0

where Worthy) and Z0(:1:) will be identified with the SM W and Z boson, respectively.

The wavefunctions fn(y), gn(y) are superpositions of the 6% operator, namely sines

and cosines. The photon wavefunction is trivially obtained to be constant and equal

to e, where

1 1 1 1

727+W+W' (“3
8 9 95 9

The fn(y) and gn(y) wavefunctions satisfying the BCs (4.43) are

My) Fn.sin[mw,,(er—y>] ,
A

07;, [coshflznm — ":6" Sin(mZny)] , (4.46) 

gn(y)

where the masses mwn, mZn solve the transcendental equations

 

rhWntanrhWn = A2,

2 I2 2 2

(Iiizn— - )tanfiign = /\ +/\’ , (4.47)

mg”
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with fn, E mIrR. The normalization constants Fn, Gn are determined by requiring a

canonical orthonormalization of the mass eigenstates:

1r}? 1 1 -

f0 dy T‘— + 975W) fn(y)fnl(y) = 07m! .

ggwR

NR (1

'l/0 .,

 

1 1 1 -

_R @7561) + 35““? — 31)] g"(y)9n'(?/) = 51m"
9&4

(4.48)

Notice that the integrands in (4.48), for equal values of n and 71', should be

interpreted as position probability densities in the extra-dimensional interval. The

presence of 6-function terms tells us that the charged gauge bosons have non-zero

probability of being exactly localized at y = 0, and the neutral gauge bosons have

non-zero probability of being exactly localized at y = 0 and y = 7rR.

Using the mass equations, we obtain

 

 

r - . -1/2

1 sm2mw
F = *, _ 1 ___n

" 9°12( + 2771M. )l ’

- o A
A2 . A -1/2

1 sm 2mg 1 2 mZ 811127712G = "r — 1—
n —_ o A n 1

n ,

n 9" 2( 27th )+,\2sm mzn+ 2A4 ( + 27542,,

(4.49)

for the normalization constants.

Once the normalized wavefunctions are found, the cubic and quartic gauge coup-

ings can be computed using the formulas

  

git/,sz, = (,"Rdy 55712-63) f1(y)fm(y)9n(y).

“NR : 1 1 :

gW’kl’Vll’VmW’n = /0 dy 5m+gjfly> fk(y)fz(y)fm(y)fn(y),

7TH - 1 1 2

ywkwlzmzn = [0 dy Egfig+gj5tyl .fklylfl(?/).(lm.(?/).‘In(?/)-

(4.50)

These formulas are also valid for couplings involving the photons, for it is sufficient

to replace the gn,(y)’s with the photon wavefunction. 97(y) = 6. Therefore, using also
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Figure 4.11: The coupling constants 09 = Q2/47T (blue), agI = g’2/47r (red), and

rigs = 63/42 (green), as a function of l/R.

the normalization conditions (4.48), we obtain

gl/an‘lfn‘y : 66m" ’

_ 2

gtt'mwm ‘ e 5m" .

91(1qu 2717 Z egll"lll"m,Zn - (4-51)

In the examples with a finite number of sites we saw that the largest postponement

of unitarity violation occurs for g2 ,9'2 << 92/(N + 1), whichin the continuum model

corresponds to 92, 9'2 << (352,. Therefore, we can find the solutions pcrturbatively for

A2, 2V2 << 1. For the masses, we obtain

 

2 2 A2 A2

7””? E "ll/V0 : —_(7TR)2 1 —' _3 + O(/\4)] a

A2 + 1'2 A2 + A’? /\_:__/\’2
2 _ 2 _ 4

 

for the SM gauge bosons, and

n. 2 A2

mavn : (E) [1+ 2(—7rn)2 + O(/\4)] Ii=1,2,.... ,
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Figure 4.12: Probability density for the position of the W boson (red), W1 (green),

and W'g (blue) in the extra-dimensional interval, for 1 /R =500 GeV, with 6(y) re-

placed by a narrow Gaussian.

‘ 2 A2 A12

2 ’1 l I l 4

1122 1 _ 1 2 on.» 40

for the heavy gauge bosons. Inserting these equations in (4.49) gives

2

F0 = 9—[1+’\—+0(A4)],

 

 

 

A 6

fig A2 4

F = —— 1——— 0 =1.2.....,
n A 2(7171’)2 + (A ) n ' '

A A4 + 2121/2 — 2x4

Co = ——g-— - +004) .
09+»? 6(A2+A’2)

2 2 l2

0,, = [94 l—gA—H‘5—+O(A4) n=1,2,...., (4.54)
rm 2 (mr)

for the normalization constants. Perturbative expansions for the couplings (4.50) are

given in appendix C.

This model has four parameters: 9, 9', Q5, and the compactification scale R. We

can trade 9, g', 55 for e, mw, mg, leaving R as the only parameter beyond the SM.

In Fig. 4.11 we show the behavior of ag = 92/47T,0’gl = 9’2/47r, and 0&5 = fig/4w as
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Figure 4.13: Probability density for the position of the photon (dashed), the Z boson

(red), 21 (green), and 22 (blue) in the extra-dimensional interval, for 1/R =500 GeV,

with 6 (y) and 6(7rR — y) replaced by narrow Gaussians.

functions of 1/ R, which, as shown by (4.53), is approximately equal to the mass of

the W1 and Z1 bosons. We see that large values of 1 /R correspond to small values of

A2 and X2. This can be seen directly from the relations (4.52), which fix the W and

Z mass, and is in agreement with the results we found for the deconstructed model.

Inserting the normalization factors (4.54) and the masses (4.52), (4.53) in (4.46),

we obtain that near y = 0 and y = 77R the wavefunctions of the SM gauge bosons are

of order of the electroweak couplings, and are not suppressed by any power of A. On

the other hand, the wavefunctions of the heavy modes are suppressed by one power

of A. Since the position probability densities have 6-functions at y = 0 and y = 7rR,

with coefficients 1 //\2 and 1/A'2, respectively (see eq. (4.48)), it follows that all gauge

bosons have non-zero probability of being exactly localized on the two branes, but

this probability is much larger for the SM gauge bosons than for the heavy KK modes.

In Fig 4.12 we show the probability density for the position of the W boson, W1, and

W2 in the extra-dimensional interval, for 1 /R =500 GeV, where the 6-functions have



 20 . - -

   
0 0.5 1 1.5 2 2.5 3

1/R (T6V)

Figure 4.14: Unitarity violation curve for the W3WI: —> W3W1: scattering, in the

(fi, 1 /R) plane. For a given value of l/R, unitarity is satisfied for values of \/3 below

the curve.

been replaced with narrow Gaussians. In Fig. 4.13 we show the probability density

for the photon, the Z boson, Z1, and Z2. We see that the SM gauge bosons spend

indeed more time than the heavy modes near the branes. Therefore, in accordance to

what we had found in the deconstructed models, the brane SU(2) and U(1) groups

act approximately as the SM SU(2)L and U(1)y. In the limit A ,A’ —> O we must

also have R —’ 0, and the heavy modes decouple. Therefore, the A ,A' -’ 0 limit

corresponds to a four-dimensional theory, namely the SM without the Higgs boson.

With the model fully set up, we can calculate the unitarity bounds from longitu-

dinal gauge boson scattering amplitudes. The W3W1: —+ WEWE scattering is given

by the diagrams of Fig. 4.9, and the amplitude by (4.36) (without the primes on the

KK gauge bosons), with N replaced by 00, and the gauge couplings given by (4.50).

The coefficient of the (E/mw)2 term, in the high energy expansion, is easily found to

be zero by taking the N —> oo limit in (4.39). Alternatively we can prove this directly

from the extra-dimensional model, as we did in section 3.3, with the difference that

76



the gauge couplings receive contributions from the 6—function terms.

Since R is the only free parameter, the amplitude M depends on E, 6, and R,

M = M(E,0, R). Therefore, the J = 0 partial wave amplitude depends on E and

R, (1.0 = a0(E, R). In Fig 4.14 we show the (L0 = 1/2 curve in the (J3, l/R) plane:

unitarity is satisfied below the curve, where a0 < 1/2. We observe that for a given

energy, unitarity sets an upper bound on 1 / R. This was expected, since the heavy

neutral bosons must come into play early enough to unitarize the amplitude.

The asymptotic behavior of a0 can be found by taking the limit N -—+ 00 in (4.40),

which gives

2 m2

a0 z 237:; [:LQm—g; (log/i32— — $>J , (4.55)

where A is a scale of the order of a few times mwl. Using (4.52) and (4.53), we

notice that, to leading order in A2, the coefficient of the logarithmic term in (4.55) is

fig times a numerical factor. Therefore, the unitarity violation scale is approximately

given by the reciprocal of the dimensionful coupling 9% times a numerical factor, in

agreement with the discussion at the end of section 3.3 [34] [37] [38].
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Chapter 5

Coupling to Matter Fields and

Experimental Constraints

In chapter 4 we have introduced the gauge sector of an SU(2) xSU(2)N xU(1) NLSM,

where the N —+ 00 limit corresponds to an SU(2) gauge theory on an five-dimensional

interval, with BCs breaking SU(2) to U(1) at one of the boundaries, and localized

kinetic terms on the two branes. In this chapter we will add matter fields to this

model.

Since the SU(2) and U(1) gauge groups localized at the endpoints of the interval

act approximately as the SM SU(2)L and U(1)y, the simplest choice is to have the SM

fermions charged under these groups only, with the usual quantum numbers. We will

show that this manner of coupling fermions leads to tension between the constraints

imposed by the EWP data and the unitarity constraints.

In order to release this tension, we let the fermion fields to have some leakage

into the bulk — in a fashion similar to the gauge sector setup — with the left-handed

fermions peaked at the boundary where SU(2) is unbroken, and the right-handed

fermions peaked at the other boundary. We show that the correction to the SM

electroweak observables can be tuned to zero by imposing a relation between the

amount of leakage into the bulk of the gauge fields and the left-handed fermion fields.

We also show that delocalized fermions in this model naturally allow for multiple

generations and fermion mixings.
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As the N ——> 00 model has been proved to be computationally easier than the

finite-N NLSMs, we will only present our results in this limit. However we should

not rely upon the extra-dimensional interpretation, because this would leave little

freedom for model building: Gauge-fermion interactions would be forced to be local,

in the five—dimensional interval, and “Yukawa” interactions between fermions and

the gauge field fifth-component would be forced to have the same strength of the

ordinary gauge interactions. We will then interpret the variable y of section 4.3.3 as a

continuum index, and the interval from which y picks its values as a TS interval, rather

than an extra-dimensional interval. We will take advantage of this interpretation in

both this chapter and the next one.

5.1 Model I

In section 4.3.3 we considered an SU(2) gauge theory on a [0,1rR] extra—dimensional

interval, with BCS breaking SU(2) at y = 7rR, and localized kinetic terms on both

branes. The action, for the gauge sector, is given by (4.42). Fig. 4.11 shows that,

as 1 /R grows, the dimensionless bulk coupling 9?, becomes larger than the brane

couplings, g2 and 9’2. Fig. 4.12 and Fig. 4.13 show that, for small values of gz/yg

and ga/yg, the SM gauge bosons are much more peaked on the two branes than the

heavy KK gauge bosons. (The W boson is only peaked on the y = 0 brane, since

SU(2) is broken to U(1) at y = 7rR.) Therefore, as previously stressed, the SU(2)

and U(1) gauge groups on the two branes act approximately as the SM SU(2)L and

U(1)y.

It is therefore reasonable to try first coupling the SM fermions to the SU(2) and

U(1) brane fields only, in exactly the same way they are coupled to the electroweak

gauge bosons in the GWS theory. With this choice, the action for one generation of

fermions is

(I) , ”I? -
Sfermion = /(l4:1'0 (1y [0(y)wL2'y“DM/)L

+6(TTR — y) ('flRi’yi’lDuuR + JRiA/“DudRH (5.1)
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where if”, = (uL,dL) is an SU(2) doublet, and 113, dR are SU(2) singlets. The

covariant derivatives are

19pr = (8,,—2‘T“W§(y)—iYLW3(7rR))z/2L,

DWI? = (an-iYRWBOJD UR,

DfldR = (8#,—iYRl/l/3(y))d1;. (5.2)

Notice that the left-handed field 1,!)L lives at y = 0 but couples also to the gauge

field W3 at y = 7rR. This is not allowed in a five-dimensional Yang-Mills theory,

but is perfectly reasonable in continuum TS. The fermion action could be made local

by folding the SU(2) gauge group at y = 7rR, as in example (2) of section 3.2, and

coupling all fermions at y = 0. However, a mass term for the fermions can only arise

in this model from a Wilson line connecting the two branes. This is again a non-

local operator in 5D, but is fine from a four-dimensional standpoint. Therefore, as

previously argued, we see that giving up on the five-dimensional interpretation opens

new possibilities for model building, and our choice of labelling the x5 coordinate as

y is to emphasize this point.

The four-dimensional charged-current and neutral-current Lagrangians are

 

1 oo -gccu> _

LEX)? = Z __L\n/§ we/ll'PLT+IL‘ l/l/fiZ-l-ha] ,

n=0 _

1 °° '- N01 N01
55,}, = Z M(gLn ( )PLT3+an( )Q)wzn,.] . (5.3)

a II o

where W0, and 20 are the SM IV and Z boson, respectively, and w = 1121, + @013. The

couplings are

92?”) = we),

92?“) = yam—mm),

932?”) = gnch). (5.4)

where fn(y) and gn(y) are given by (4.46).
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5.2 Experimental Constraints on Model I

In this section we study the most immediate phenomenological implications of model

I. We will first briefly consider the direct constraints from producing the heavy gauge

bosons at colliders, and then consider the indirect constraints from the EVVP data.

5.2.1 Direct Constraints on Heavy Boson Production

The most significant bounds on the W1 and 21 masses come from the Tevatron and

LEP II, respectively. The Tevatron (CDF) limit on a W' that couples with SM

strength is presented in Fig. 2 of Ref. [72]. In our case, the ratio 0(qri —» W1 ——>

(u)/o(q(i —> W ——> 81/) is suppressed by the small value of the W1 wavefunction on

the boundary where the fermions are localized. The coupling of SM fermions with

W1 is gEOCU) = [1(0), which gives the suppression factor (f1(0)/g)2. Using (4.46),

together with (4.53) and (4.54), this gives

  2 (5.5)
‘ ’ 1 - 7 M

0qu —* ”"1 -+ (my )= 2mgV [U(qqa 14/1 —’ Eu) (S )

le0(qij —* W —> 131/) U(qij —’ W —» (JV)

By rescaling the cross sections shown in the figure, we estimate that the corresponding

limits in our case would be about mw1 > 500 GeV.

The LEP II bound on new four fermion contact interactions are presented (for

the case of strong coupling) in Ref. [73] by making fits to 0(e+e‘ -—+ ff). This

can be translated to a bound on mg1 since a heavy Z' effectively induces a four

fermion contact interaction. Extracting the relevant contact interactions induced in

our model, and comparing to the results of the LEP II analysis, we estimate that the

mass bound is about 77121 > 480 GeV.

5.2.2 Indirect Constraints on the Low Energy Fermion La-

grangians

The fermion couplings with the gauge boson are given by the values of the correspond-

ing wavefunctions at the two interval ends, as shown by (5.4). In section 4.3.3 we have
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argued that the wavefunctions of the heavy modes are suppressed by one power of A

at y = 0 and y = FRI This is shown explicitly in Fig. 4.12 and Fig. 4.13. Therefore,

four—fermion operators arising from exchanges of heavy gauge bosons are suppressed

by A4, with two powers of A coming from the couplings, and two powers from the

large mass in the gauge boson propagator (1/R ~ mw/A, see (4.52)). The couplings

of the SM gauge bosons with the heavy gauge bosons are also suppressed by one

power of A, due to the little overlap of the corresponding wavefunctions. This means

that dimension five operators, with two SM fermions and two SM gauge bosons, only

arise at A4 order.

'As a consequence, at order A2 the new-physics corrections to the low-energy ob-

servables are purely oblique, and are therefore entirely parametrized by the Peskin-

Takeuchi S, T, and U parameters, where S = T = U = 0 corresponds to the

SM [43] [44] [59]. The way these quantities enter in the charged-current and neutral-

current effective Lagrangians depends on the chosen set of input observables. It is

customary to take the electromagnetic coupling strength at the Z-pole, the Z boson

mass, and the Fermi constant, because these observables have been measured with a

high level of precision. The current estimates are [53]

a'(mZ)_1 = 12880212012,

mg = 91.1876i0.0021,

GF = (1.16637i0.00001)x10—5GeV_2. (5.6)

However here we take mW instead of CF, even though mW is not known as precisely

as mZ:

mW = 80.425 :1: 0.038 . (5.7)

This choice is in fact useful, because it is independent of the fermion profiles, and will

pay off in section 5.3, where we compare this model, in which fermions are localized,

with a different model, in which fermions are delocalized.

Taking (1, mg, and mW as input observables, and defining s by,

2

s2 E 1 — TL2L , (5.8)

”‘2
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with c E V1 — .92, we find the following expressions for the low-energy charged-current

and neutral-current Lagrangians:

 

qCC _

[:00 = ‘L2 dJ7HPLT+1/)l/l/;+h.c.,

ENC = 1132/“ (giYCPLT3+ggCQ) 11' Z); , (59)

where

 

 

CC _ 6 1 + as c207” _ (c2 — 82)(xU

gL — s 432 2.32 854 ’

NC _ _e_ 1+ 95 _ (C2 - .92)OT _ ( 2 — 52)aU ‘

gL — SC 482 232 854 ’

NC 68 aT 0U]

= —— 1 — — .1
9Q c i 232 834 (5 0)

This equations show that T is related to the p parameter by

asz—l. (5.11)

This relation is however only valid as long as the new-physics contribution to the

low—energy interactions is purely oblique.

Inserting (4.46) in (5.4), and using the perturbative expansions (4.52) and (4.54)

for the masses and the normalization factors, respectively, leads to the following tree—

level expressions for the couplings in model I:

950”) E [1 + 9/6 + 00.4)] ,

9150(1) = i [1 + A2/6 + O(,\4)] ,

930”) = J33 [1 + 0(A4)] . (5.12)
C

Comparing these equations with (5.10), we obtain for this theory

0:8 = 2.3/\2/3,

0T 2 0 ,

crU = 0 . (5.13)

The fact that T = 0 at order 0(A2) is an expected result, because this model has

an approximate custodial symmetry: This is most easily seen in the deconstructed
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version, from the choice of coupling 8,, as the T3 component of a global SU(2). U is

usually expected to differ from T by a percent, and is accordingly approximately zero

in this model. However S is not zero at order 0(A2). This is in agreement with a

general result found in Ref. [55]: In an arbitrary SU(2)0xSU(2)N><U(1)N+1xU(1)M

NLSM, with matter fields charged under SU(2)0 and U(1)N+1 only, it is always true

that S — 4 cos HWT > 0(1). In our model T is naturally suppressed, thus the previous

relation reads S > 0(1), in agreement with (5.13), since (1 ~‘ A2.

Recent experimental constraints on S and T can be found in Ref. [78], where the

limits are given as a function of the Higgs boson mass. In principle, its contributions

must be subtracted from the above S and T parameters, since there is no Higgs boson

in our model. However, given that the dependence on mH is not too large, we can still

obtain an estimate of how these constraints impact our model. For mH = 600 GeV

with the constraint S 2 0, and using Bayesian statistics, the limit on S is S S 0.14.

This result corresponds to le > 3 TeV. Unfortunately, for models in which le is

so large, unitarity will be violated even before the scale of le is reached, as shown

by Fig. 4.14. Therefore, it appears that the method used in this section to incorporate

matter fields into the model is not viable.

5.2.3 Indirect Constraints on the Low Energy Gauge La-

grangian

Although we have already proved that brane localized fermions violate the bounds

imposed by unitarity and the EWP data, we press on and consider the indirect con-

straints of this model on the low—energy gauge interactions. The results we find here

will be useful later in this chapter.

Additional constraints on the W1 mass can be found from the analysis of anoma-

lous couplings in the WWZ vertex. To leading order, in the absence of CP-violation,

the triple gauge boson vertices may be written in the Hagiwara-Peccei-Zeppenfeld-

Hikasa notation [74],

cgiLge = —ie:—‘: (1 + AKZ) Walgrzw — ie (1 + A5,) afar;AW
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— ie:—Z (1+ A912) (WWW; — W—ijm

Z

— ie(W+“"I/V’f — I4«"WW,;“)A,, , (5.14)

where the two-index Lorentz tensors denote the U(1)Q-invariant field strength tensors

of the corresponding field, and the “Z standard” weak mixing angle is defined in terms

of 6, mg, and GF by
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4&6”?ng ,

322022 (5.15)

where, as usual 5% + C22 2 1.

In the SM, AKZ 2 Ana, 2 Ang = 0. In our Higgsless model, like in any vector-

resonance model, the interactions (5.14) come from re-expressing the nonabelian cou-

plings of the original Lagrangian in terms of the mass eigenstates, in which case one

obtains equal contributions to the deviation from the SM in the first and the third

terms, and in the second and the fourth terms [75]. Moreover, the contribution to

the fourth term is fixed by electromagnetic gauge invariance. Therefore, we obtain

AKZ = A912 An, = 0 . (5.16)

In order to express the WW’Z vertex in terms of .92, rather than .9 E mw/mZ,

we must find an expression for 01:. To order A2, we simply have

00(1) 2

<5 >
mW

because, as previously noticed, the heavy KK exchanges only contribute at order A4.

'L'sing (5.10) and (5.13), we find

5
|
“

5,. = _1 2] +fi]
4\/2ma,8 232

1 (m.w1rR)2

4'\/2771%V S [ + 3

I
c
e

M
M

+ O ((mW'WR)4):| ,

(5.18)

where we used (4.52) to express A in terms of mW and R. Inserting this equation in

(5.15) gives

8:821

 

+ 1 0S]

1— .S2Z/C2Z 4522
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1 (mwer)2

= 8 1+

Z 1—82Z/C22 6

 
+ O ((mWnR)4)] (5.19)

The WWZ vertex can be found in appendix C. Expressing it in terms of e, 3Z2

and (mw7rR) gives

 

 

 

CZ — (rnW7rR)2 1 a8 4

,, = e—1+——'————————+O mr7rR

9” Vl’ Z 5‘Z _ 12C2Z 022 - 522 4322 (( W ) )

F 2
62 (m '7rR) 2 1

= e.— 1— W12 ( 2 2 — -2— +O((mW7rR)4) ,

SZ _ CZ ‘— SZ CZ

(5.20)

whence, comparing with (5.14),

, R 2 2 1

12 CZ ‘ Sz CZ

The 95% (3.1.. upper limit from LEP-II is IAgIZ | < 0.028 [76]. Using the experimental

results (5.6), (5.7) and eq. (5.15), the upper bound on Aglz translates into the lower

bound 1/R 2 mwl > 682 GeV, which is considerably stronger than the direct-search

bound found in section 5.2.1.

5.3 Model II

Drawing on the analogy of the gauge action (4.42), which has SU (2) and U(1) kinetic

terms peaked at the two ends of the interval and connected through the bulk kinetic

term, we now consider a theory with left-handed and right—handed fermion kinetic

terms peaked at the two ends of the interval and connected through a bulk fermion

kinetic term [45],[50]. The fermion action is

(11) _ 4 ”R
Sfermion _ _/ d a: /0 dy

1 .— . 1 _ . - .

+5(y)t7wLW”Du¢L + 5(7TR - y) (ig—unziflDuuR + TdRZV’mudR)
L ,

1 1 _. A’I _ I

f I L I I h. C I / 1’)

  

The five-dimensional Dirac matrices were introduced in section 4.1, and are defined

in terms of the four-dimensional ones by PM = (7”, —i75). The five-dimensional
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fermion is equivalent to a four-dimensional Dirac fermion, 1]) = 1/2L + #13, where 11)L

and 111R are SU(2) doublets,

11]le 7119B:

dL d1;

We have written the action for one doublet, consisting of an up and a down quark.

We will discuss the possibility of more generations and mixing in Section 5.3.2. We

can assume the bulk mass M to be real in (5.22) without any loss of generality. In

fact any imaginary part of M can be removed by the replacement 1/2 —’ eulmfi'lylw.

The sign of M, however, is physical. In analogy with the gauge brane kinetic terms

(see section 4.2), the fermion brane kinetic term at y = 0 is defined by interpreting

the 6-function as 6(y — c) for t. —+ 0+ with the boundary condition 1113 = 0 at y = 0.

Similarly, the boundary term at y = 7rR is defined by interpreting the 6-function as

6(7rR — y + c) with the boundary condition 1/2L = 0 at y = 7rR. The general treatment

of possible fermion boundary conditions can be found in Ref. [71].

The covariant derivative in (5.22) is

DM¢ = (3M — iTaWXMU) —iYLWii1(7TR)) 1b, (523)

where YL is the $1, hypercharge. At the interval ends the four-dimensional part of

the covariant derivative (5.23) becomes:

(Dame = (0,. — irawgw) — (Yin/Sore) we ,

(Dptyp),:,,p = (BM—iT3WE(7rR)—iYLW3(7rR)) 11’];

= (Bu—iYRll/gUrRDwR, (5.24)

where the 11.er hypercharge, YR, is related to YL by YR = T3 + Y , as in the SM. Note

that YR is a 2x2 diagonal matrix, with the uR hypercharge on the upper left, and

the LIE hypercharge on the lower right. Therefore, at y = 7rR the covariant derivative

term, J37”D,,,wR, splits into two separately gauge invariant terms, '17.Ryf‘DfluR and

dRyflDfldR, as in (5.22). Note also that in the limit of small tL, tuR, and th the

action SUI)fermion describes massless left-handed fermions gauged under an SU(2) x U(1)
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group living on the left end of the fifth-dimensional interval, and massless right-

handed fermions gauged under a U(1) living on the right end of the interval, exactly

as in model I. It is the presence of the bulk fields which allow these light states to

communicate with each other, supplying the analog of the Yukawa coupling of the

SM, and giving mass to the fermions.

5.3.1 Fermion Masses and Wave Functions

In order to find the KK eigenstates for all fermion fields, we must diagonalize the free

action. Let x denote either u, the up-type fermions, or d, the down-type fermions.

Turning off the gauge couplings, the action of (5.22) becomes 8280) + 8(9) , where

8(0) 2 /d4:1:/07ery

1 _ _ _ _
— 2 (XR05XL - XLasxR + h.C.) — 1” (XRXL + XLXR))

 

1 _ . _ . .

FE (airmen + momma

- 1 _ _ 1 _ . ,

+ 0(3/ - Elgar/“Bum + 50?}? — 6 * y)t—2-XRW”3;1XR] - (520)

L XR

In (5.25) we have explicitly included a finite c to push the delta—function terms

slightly away from the interval ends, allowing us to unambiguously impose the BCS

XR(0) = 0 , XL(7rR) = 0 - (536)

The field equations in the bulk can be obtained by variation of 8]?) . Integrating these

equations around the 6-functions, taking the limit 6 —+ 0, and using the boundary

conditions (5.26), leads to alternative expressions for the boundary limits:

1

lim 2 ——i ”8 0 ,y—»0+ X1? ti 7 [LXL( )

. 1 .
hm _ XL 2 —-t-§—27“8#XR(7TR) . (5.27)

Comparing (5.26) with (5.27), we see that XR has a discontinuity at y = 0, but X L is

continuous. Similarly, XL is discontinuous at y = 71R, but XR is continuous.

The fermion fields can be expanded in a tower of four—dimensional KK states:

xdaxy) = Z axn(y)XnL($)a

11:0
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XR :20 6X72(yan-W15°) (528)

The four dimensional fields XnL and X71}? are the left-handed and right-handed pro-

jection, respectively, of a mass-mu Dirac fermion, Xn = XnL + an. Wavefunctions

and mass equations are obtained by diagonalizing (5.25). It is most convenient to

treat the action as finite in the bulk (0 < y < 7rR) with (5.27) as BCS. In this case

the bulk equations of motion become

a Tl + (”Chm _ mnfixn : 0 ,

3;,” — Ma,” + mnaXn = 0 , (5.29)

with the BCs

7h

lim+)3)”,(0 ) = _7220‘Xn(0) ,

y-+0+ L

lim _ aXn(7rR) = —:;n3xn(7"R) . (5.30)

y—‘VITR XR

(Recall that masses with a hat are expressed in units of (7rR)—1; z'.e., 771. E m7rR.)

The wavefunctions must also satisfy the orthonormalization conditions

1rR _ 1

d _

0 y _7rR

WRd [ 1 1—5 R—. — + 71'

/0 y 7rR t—2XR ( y)

+11%] a...<y>a,.,<y> = 6..., .
'L

fiXn(y),3n/(y) = 6n”; , (5.31)

 

 

where the integrands, for equal 71 and n’ , should be interpreted as position probability

densities for the left-handed and the right-handed fermions, respectively.

With the five-dimensional fermion fields propagating into the bulk, the four-

dimensional charged-current and neutral-current Lagrangians involve not only KK

gauge bosons, but also KK fermions. For one generation of quarks (or leptons), we

have

(11) 1 _ . CC CC ,+
CC = gut/.5 emu (gLn,(uk.d1)PL+ani(U},~~d1)PR)dl 11,,,,+he ,

(11) 3 NC 3
5N0 = Z Z in“ (gLnC(\k,,)PLT +912"(\1WPRT +983.CQ) szn,,

k. l.n x:—u.d

(5.32)
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where the coupling constants are given by

CC 1rR 1

9Ln,(uk,dl) : [Jim/0 dy a

912.1%] d“/Rig—aktymd,<y)fn(y).

+ 67%)] (25,6y>ad,<ym> ,
L

 

91m(\1xz) =/d4:r [0R d:[;r1§ + L]%)]aexp(y)ax,(y)(gn(y) -gn(7rR)) ,

925(X,XI)—/d4:r/01m;Td—R8Xk(y))3m(y)(gn(y) - 9n(7rR)) ,

anC = gn(7rR) . (5.33)

Perturbative expressions for the fermion couplings can be found in appendix C for

M = 0.

The solutions to the mass equations are simplest in the case of zero bulk mass M.

We study this case first and then look at the numerical solutions for nonzero M.

(i) M = 0. With no bulk mass, the solutions of (5.29) are

fit .
An [cos(mny) — :23 Sin(mny)] ,am 2

L

751T; .
,3)”, = —An [tTcos(mny)+sm(mny)] . (5.34)

L

Applying the boundary conditions given in (5.30) to these solutions leads to an equa-

tion for the fermion masses,

(15% -+- ti mn tan mn + mg, =tLt2 (5.35)
R) XR

The lowest mass state of the KK tower corresponds to a standard model fermion.

This light mass can be easily obtained in a perturbation expansion if we assume t%

to be small:

2 4

v1+th 2(1+t§R)

If we also assume t2XI? to be small. the heavy state masses are

 ti + C(11) . (5.36)

1 t2 +t2

771,,—_ it (n — 2) 1+ —L——"‘—B—,— + 0(t4) n = 1, 2, . (5.37)

e2 (n- y)
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The normalization factor An can be fixed by requiring the KK states to be canon-

ically normalized in the four-dimensional Lagrangian. We obtain

. . . . - —1/2
1 2 1 2 2
  

For t% small this gives

2 4
1+tXR+tXR/3

2(1+t2

1% + out) , (5.39)

X12)

A0=tL1-—
 

for the lightest state, and for both t% and tiR small this gives

46—9 426-92

for the heavy states.

+ 0(t4) n = 1,2, (5.40)

From (5.36) we see that the lightest fermion mass is suppressed by the factor

tthR' For small values of these parameters this lightest Dirac fermion lies mainly

on the branes, with small contribution from the bulk. The left-handed bulk wave

function a0(y) goes to zero as tL —+ 0, and the right-handed bulk wave function

50(3)) goes to zero as tR ——+ 0. Since the fermion masses arise from the 65-terms,

which mix left-handed and right-handed wave functions, it follows that m0 goes to

zero, as either tL ——> 0 or i}; —+ 0.

Notice also that (5.36) and (5.37) are symmetric in tL and tXR. This was expected,

since the mass equation is tL — tXR symmetric. However, we shall treat tL and tXR

differently. For starters, tL is an SU(2) invariant parameter, whereas txR can have

different values for the up and down fermions. We shall take this distinction further

by assuming that tL is universal for all quarks and leptons, and that the different

particle masses are determined by tXR' We shall find in section 5.4 that if tL is of

order A, it can be used to cancel the positive contribution to the S-parameter that

comes from the gauge sector. To have an idea of the orders of magnitude involved,

'let us assume R"1 ~ 1 TeV and tL ~ A ~ 10"]. Then tXR ranges from ~ 10—11

for the lightest neutrino, to ~ 10‘2 for the charm quark.
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Figure 5.1: Probability density for the position of the left-handed electron (red),

and its KK resonances, eL1 (green), and eL2 (blue) in the extra-dimensional (or T8)

interval, for l/R =500 GeV, and tL = A/\/§, with 6(y) and 6(7rR — y) replaced by

narrow Gaussians.

All these features are made explicit in Fig. 5.1 and Fig. 5.2, where we show

the position probability density in the [0,7rR] interval for the left-handed and the

right-handed electron, respectively, together with the first two KK resonances, for

1/R =500 GeV, and tL = A/x/S. As we did previously for the gauge boson probabil-

ity densities, we replaced 6 (y) and 6(7rR — y) with narrow Gaussians (with the same

width, for a faithful comparison). We can directly observe the suppression in the bulk

of ae(y), and the very large suppression of fie(y). Correspondingly, the left-handed

electron spends most of its time near the y = O brane, while the right-handed electron

spends virtually 100% of its time in proximity of the y = 7rR brane. Notice that these

considerations apply only to light fermions. We shall return to the issue of the third

generation in chapter 6.
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Figure 5.2: Probability density for the position of the right-handed electron (red),

and its KK resonances, eRI (green), and 632 (blue) in the extra-dimensional (or TS)

interval, for l/R =500 GeV, and tL = A/x/g, with 6(y) and 6(7rR — y) replaced by

narrow Gaussians.

(ii) M ¢ 0. For nonzero bulk mass, the analysis is similar; the equations are just a

bit longer. The equation for the fermionumasses becomes

[(mfi + (itiR) M + (tE+/§R)fi13,]7‘(mn) = {iii}? — m3, , (5.41)

where the function T(mn) depends on the relation between mn and M:

rmtan (hag, — A712 for mn > |M| ,
n_ .

T(mn) = ( (5.42)

1 tanh (M12 — m2 for IN] > m... .
r 2 A 2 TI

 
For a large and positive bulk mass A?! > 0, M >> 1, there is one light solution to this

mass equation, given approximately by

mg m (it? e—W . (5.43)
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Figure 5.3: Masses of fermions, as a function of the bulk mass, for tL = 10"], I.R = 1,

and l/R = 500 GeV.

For a large and negative bulk mass M < 0, IM | >> 1, there are two light solutions,

which are asymptotically given by (for tL < tXR)

n‘z leIti

#
4
0
O
N

2
2

2
2m 2|M)1§R . (5.44)

This behavior is displayed in Fig. 5.3, where we plot the mass states as a function

of the bulk mass M, with the other parameters fixed at Q; = 10'1, tXR = 1, and

l/R = 500 GeV. The transformation M —2 -M can be shown to be equivalent to

a reflection in the fifth dimension. Since the boundary conditions (5.26) that we

have imposed are asymmetric in this reflection, we obtain the asymmetric behavior

in A! —> —M of Fig. 5.3, even in the absence of the brane kinetic terms. The heavier

modes are less asymmetric, because they are less affected by the boundaries.
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5.3.2 Generation Mixings

It is not difficult to implement multiple generations in our fermion model II. In general

the bulk mass, M, and the normalizations of the brane kinetic terms, ti2, $12,,

and tag, would be independent 3 x 3 matrices for both the leptons and the quarks.

However, this proliferation of mixing matrices would open the door to large flavor-

changing neutral currents, which must somehow be avoided. The simplest way to

achieve this is to restrict all of the flavor physics to the right brane, and impose a

global U(3)quark x U(3)]epton symmetry on the quark and lepton doublets in the bulk

and on the left brane. This flavor symmetry would only be broken by the kinetic

terms on the right brane (which, incidentally, is also the only place where the SU(2)

weak gauge symmetry is broken). The generalization of the fermion action in (5.22)

is

fermion 7TH

R _. . _. .

8‘”) —/d“a:/O7r dy[i(%¢1iFMDjtfl/’z+ h.c.—Mz/»'(/;’)

3

17.. ,- _ _. . I... .

+ élylp‘wil"/“Duw2 + 0W? - y) (14ngWWW}, + J’Rhffnl‘Dpdfi)

L

 

(5.45)

where 11 and j are generation indices, and there is an equivalent contribution for

leptons. In principle the tL and M parameters, as well as the K matrices, can be

different for the lepton and quark sectors. The five-dimensional fermion fields this

can be considered four-dimensional Dirac fermions, which are also SU(2) doublets:

w = UL + 11'}; = I; + I} (5.46)

The quark sector matrices Ku and Kd are arbitrary Hermitian matrices; however,

we can exploit the U(3)quark symmetry of the quark fields in the bulk and on the left

brane to reduce the number of real physical parameters to 9 + 9 - (9 — 1) = 10, where

we have taken into account the fact that the U(1) part of U(3) is just an overall phase

symmetry. We can identify these 10 parameters as the six quark masses, and the four

physical parameters of the CKM matrix. To see how this works, we first perform an

SU(3) transformation on the if to diagonalize Ku. Thus, without loss of generality,

95



we can assume K:1] = 0172,2196”. We can also assume that K? is diagonalized by a

unitary matrix V, so that K}? = Vik(tgk2R)(Vl)kj . We now relate the (primed) gauge

eigenstates to the (unprimed) mass eigenstates by the redefinition d"): R = Vijdjf..R'

The action now becomes

R 1 1 _. . _(_ _

5542i” = f07r ill/(14$ [77R- (514741144pr + be — MWW)

 

1 —- , ,' 1 _- . ' 1 ' . f

+ 6(y)?2—2/2'Lw“Dpu27L + 6(7TR — y) (t2 uZRzyf‘Dflu}; + tTJlRWHD/xdhfl ,

'L “iR 'dm

(5.47)

where

1152 = u_L . , W)? = u}? . . (5.48)

V‘JdJL wad},

The unitary matrix V corresponds precisely to the CKM matrix in the SM, only

arising in terms that involve the exchange of charged SU(2) gauge bosons. Just as

for the CKM matrix, it can be reduced to three real parameters and one phase, via

five independent phase redefinitions of the uL,R and dL,R fields.

It is not difficult to see that any implementations of the SM can be mapped into

this picture. In the lepton sector, for example, we could induce a see-saw mechanism

by including a Majorana mass term for the neutrino, at y = 7rR. In that case the

matrix V would contain two more physical parameters, corresponding to the Majorana

phases of the MNS matrix. Alternatively, we could have a zero-mass neutrino, by

imposing the boundary condition VR 2 0 at y = 7rR. In that case the number of

physical parameters would be 9-(9-3)=3, corresponding to the three lepton masses.

5.4 Experimental Constraints on Model II

We would like now to study the experimental constraints on model 11, starting from

the four-dimensional Lagrangians (5.32), and the coupling strengths given in ap-

pendix C. We consider first the direct constraints on W1 and Z1 production, and

then the indirect constraints of EWP data on the low energy effective Lagrangians.
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5.4.1 Direct Constraints on Heavy Boson Production

With the fermions in the bulk, the overlap of the light fermion wavefunctions, with

the heavy gauge boson wavefunctions is enhanced, relative to model I, by a factor

of order 1//\2. However the probability for the light fermions to be in the bulk is

suppressed by a factor of order t2 , and thus we expect the coupling of light fermions

to heavy gauge bosons to be of the same size in model I and model II (for f% ~ A2).

However the cross sections for W1 and Z1 production change by numerical factors.

The relation between the ratio U(qri —* W1 ——> €1/)/0(q(7 ——> W —+ 61/) in the SM and

in model II is now

[U(qq —» w1 .4 45)] (1’) _ 2 ma, (1_ 2,2L )2 [0m _. W1 _, M] (SM)

0(qq -—+ I-"l' —-> (V) m?“ ? 0(qq —+ H" --* €11)

  , (5.49)

for M = 0. In accordance with the results of the next section, we set tL = A/\/§, so

that last expression becomes

  

[0(qu —& 1471 —> [IA] (11) Ema; [U(qq- —> W71 —> (11)] (SM) (550)

0((15 —+ W' —> (V) = 9 Ina/l U(qq —* W —* 61/)

The suppression factor is nine times smaller than in model I (see eq. (5.5)). Rescaling

the cross section shown in Fig. 2 of Ref. [72], we find mw1 > 350 GeV, which is

significantly weaker than the corresponding bound in model I. It can be shown that

numerical factors also significantly weaken the bounds on mZ1, relative to the model

with localized fermions.

5.4.2 Indirect Constraints on the Low Energy Fermion La-

grangians

In section 5.4.1 we argued that the couplings of light fermions (and SM gauge bosons)

to heavy gauge bosons are also suppressed in model II as they were in model 1.

Therefore, dimension-five and dimension-six operators do not arise at A2 order, in the

low-energy effective Lagrangian. Also, we observe that. although the delocalization

of fermion fields give rise to anomalous right-handed couplings, these must vanish as

(XR —> 0, because in this limit the right-handed fields become exactly localized on the
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y = 71R boundary, where the five-dimensional Witt, y) is zero, and W3(x,y) only

couple with YR E Q125 Since tXR is negligibly small for light fermions, no anomalous

interactions are relevant at low energy.

Therefore, the new-physics constribution to the low-energy interactions is still

oblique, with the charged-current and neutral-current Lagrangians given by (5.9).

The couplings are now

= gECW/“dy {-1- 3111104de<fiz—E—S
 

 

y)

R 0) ’

NC(11) _ 4 "R 16y) 9009- 90(711‘?)
9L — 0(1)] (1{/0 (111 7+ 72H]auk(y)rrd,(y)go(0_) 90(71R) ,

.1300” = :32 , (5.5)

where we used (5.4) and the normalization conditions (5.31). The ratios in (5.51) are

positive and less than one,

Mzgo(y)~go(7r3)zl_i <1

f0(0) 90(0) - 90(7TR) 71R — ’

and the suppression factors for goCand gNCare identical to leading order in A2.

(5.52) 

Evaluating the integrals, we obtain

CC 11 CC I

9L ( ) _ 9L ( )(1_At:124),

NC(II) _ gsz0(1)(1_At%),

9L —

N 11 NC]

950‘ l = .45 (l. (5.53)

where

(5.54) 47’8in All — —1.—(1—e-MM) .
M 2M

In the limit M ——> 0 we find A ——> 1/2 [45]. By allowing the fermions to extend into

the bulk, as in model II, one can cancel the effects of S in electroweak measurements.

Comparing (5.53) with (5.12), we see that S can effectively be set to zero (while

retaining T = U = 0) by the choice

{-2 = — . (5.55)
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5.4.3 Indirect Constraints on the Low Energy Gauge La-

grangian

In section 5.2.3 we analyzed in the constraints imposed by the EWP data on the

WWZ vertex in model I. The results we found there can be easily adapted to model

II. In fact, in equations (5.18), (5.19), and (5.20), the first line is also applicable to

model II, because it is generically written in terms of the S parameter. We have just

seen that the latter can be adjusted to zero in model II by setting tL = A/\/8, for

M = 0. Therefore, with this choice we obtain

1 82 4

for the Fermi constant,

.9 = 82 [1 + 0 ((mwer)4)] , (5.57)

for the relation between the sin HW’s defined by (5.8) and (5.15), and

__ CZ (TT'IWWR)2 4 -

gWWZ - 8'8; [1 + ——1-ZCTZ— + 0 (Gnu/FR) ) . (0.58)

for the coupling in the WWZ vertex.

Comparing last equation with (5.14) gives

(mwflif)2

2
12CZ

With this result, the 95% CL. upper limit IAglz I < 0.028 from LEP-II [76] translates

A912 = > 0 . (559)

into the lower bound le > 498 GeV for the W1 mass. This is weaker than the

corresponding bound with localized fermions, but stronger than the direct search

bound we found in section 5.4.1.

The analyses of direct and indirect constraints in model 11 show that delocaliz-

ing fermions can always relieve the tension between unitarity and experimental data.

However we have not yet considered the constraints imposed by the top quark phe-

nomenologv, which might be severe. In fact ttR may not be small enough to suppress

anomalous right-handed couplings. Worse, there might not even be a QR which gives

a realistic top mass. We will see that this is indeed the case, and offer a solution to

this problem in the next chapter.
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Chapter 6

The Top Sector

In Section 5.3.1 it was shown that the fermion masses are suppressed by the factor

tLtXR. In Section 5.4.2, we saw that we could choose tL to cancel gauge sector

contributions to the S parameter, thereby relating tL to A by (5.55). Thus, we are

left with ixR as the final degree of freedom to fit the fermion masses. In this chapter

we will see that this works well for all of the light fermions, except the top quark. In

fact, accommodating a realistic top mass would require the increase of the value of

1 /R beyond the bounds imposed by unitarity of the WZ'WI: ——+ WEI/VI: scattering.

We will then show that this problem can be solved by breaking the five-dimensional

Lorentz symmetry, which leads to two independent compactification radii, or mass

scales: One for the gauge sector, and one for the fermion sector. Upper bounds on the

latter are then shown to arise from the (I —+ W2" W1: scattering, and lower bounds

from EVVP data on the tbll" vertex.

6.1 The Top Mass in Theory Space

In chapters 4 and 5 we have presented a Higgsless model of EWSB from continuum

TS, whose full action is given by the sum of the gauge action (4.42), and the fermion

action of model 11, given by (5.22) (or (5.45), for multiple generations). In this model

the overall mass scale is set by 1/R — which is required to be less than about a TeV in

order to sufficiently delay unitarity in 11’3””; -—+ IV; ”E scattering — and the other
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Figure 6.1: Mass of the lightest fermion, as a function of the bulk mass, for tL chosen

to adjust the S-parameter to zero, and 1/R = 500 GeV. The curves correspond to

several values of tXR, from 10”1 to infinity.

independent parameter is tL (which measures the amount of leakage of left-handed

fermions into the bulk) while the tXR’s (which measure the amount of leakage of

right-handed fermions into the bulk) are in a one-to—one correspondence with the SM

fermion masses. In section 5.4.2 we saw that we could choose tL to cancel gauge

sector contributions to the S parameter, by relating tL to A by (5.55). Therefore,

1/R is left as the only free parameter beyond the SM.

With this setup, however, it is impossible to obtain a realistic top quark mass

of 175 GeV. For example, for 1/R = 500 GeV, M = 0, and tL fixed by (5.55), the

lightest fermion mass solution to (5.41) has a maximum value of about 45 GeV. Even

if we allow the bulk mass M to be nonzero, we cannot do much better, since (5.55)

involves M in a dramatic way. In particular, when M -—> —oo, tL tends exponentially
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to zero, and so does m0. In the other limit of M —> 00, the solution for ma itself is

exponentially suppressed, as shown in (5.43). Thus we find a peak near M = 0 in

the curve for mg as a function of M (for fixed tXR), as shown in Fig. 6.1. From this

curve with 1/R = 500 GeV, we find that the maximum possible quark mass for any

value of M is about 47 GeV, which occurs for tXR set to infinity.

One possible way to solve this problem is to allow a different tL for the third

generation of quarks. This approach might be viable, since the constraints on the

S parameter do not directly involve the third generation fermions. However, we

find it unattractive, since universality of tL (and M) was the simplest way to avoid

any dangerous flavor-changing neutral currents. Moreover, large values of tL for the

top-bottom doublet could lead to a violation of the experimental constraints on the

Zbf) vertex. An alternate solution that we prefer is to allow a different size of R for

the gauge sector and the fermion sector. This possibility had been suggested in the

context of the warped-space model in Ref. [46]. It is even more sensible in the context

of a theory space, since there is no reason for the coefficients of (Eleflt/J and 113F5D511’2

to be identical, in the bulk sector of (5.22). In terms of the deconstructed version

of the theory, this just corresponds to allowing the gauge couplings and the Yukawa

couplings to be independent of each other [20]. The most general extension of model

II, with y-independent parameters, is described by the action Sgauge +Sf(II)’
ermion ’ where

Sgauge is just the gauge sector action given in (4.42, and

11 “R 1 7. 1 7. 7
Stallion = [0 dy / 44:5[m (Mr/10W + 4. (54121150541 + h.C.) — MW)

7

1 — 1 I -.

+ 6(y)71111L7“D#wL + 6(7TR — y)(—2—11‘LRV"DpuR + TidRVMDde)

tL tuR th

 

(6.1)

where K- is a new parameter. Notice that from an extra-dimensional point of view,

this action corresponds to a theory with a microscopic breaking of the Lorentz invari-

ance along the fifth dimension, in addition to the macroscopic breaking due to the

(I)’
compactification. Rescaling the parameter y by y —-> y, = y/n, the action ngrmion
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(11)becomes identical to S , with R replaced by R/15.1 Therefore, the gauge sector

mass scale, 1/Rg E 1 /R, and the fermion sector mass scale, 1/Rf E n/R, are inde-

pendent quantities in theory space: setting Rf = R9 is an unnecessary and arbitrary

choice.

I)
With the action ngrm’ion replacing ngrl)mion, the fermion masses are (for M = 0),

tt 1+t2 +t4 /3

‘ — ~ L“? 1— "R XR 12L+0(t‘},) , (6.2) 

m0 — It? 2

\/1+th 2(1+t§R)

2 2
1 t +t

7h" = mr (Tl—5) 1+—-£—fl—+O(t4) n=1,2,.... (6.3)

7.2 (n - 92

Now we can account for mt by simply increasing 5:. Of course It cannot be too large,

due to unitarity constraints similar to those which give bounds on 1/ R9. In the case

of 1 /Rf the limits come from scattering processes such as tf —+ WZ'WI: . We shall

investigate these unitarity bounds in the next section.

6.2 Unitarity of Fermion Scattering Amplitudes

Here we shall restrict ourselves to considering the unitarity bounds coming from the

if —+ W3WI: scattering process. General constraints on couplings in Higgsless models

from this and related processes have been considered previously in Ref. [79]. In the

SM, the tree-level R —+ W;WI: scattering amplitude is given by the four diagrams

of Fig. 6.2(a). If t and t- have opposite helicities, the 7- and Z-exchange diagrams

produce quadratically divergent terms, in the high-energy limit, which are cancelled

by the b-exchange diagram [11]. The Higgs boson is not involved in this cancellation,

which is confined to the J = 1 partial wave, so there is no quadratic growth of the

amplitude with energy, regardless of the Higgs boson mass. If t and 5 have the same

helicity, the b-exchange diagram produces a linearly divergent high—energy term in

the J = 0 channel, which is cancelled by the Higgs boson exchange diagram.

In our Higgsless model the Higgs boson exchange diagram, of course, does not

occur. The 7-, Z-, and b—exchange diagrams are supplemented by corresponding dia-

 

1The only difference is the interaction term with Wg, which is zero in unitary gauge anyway.
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Figure 6.2: (a) Diagrams contributing to the R —+ W'Ij’WI: tree-level scattering

amplitude in the SM. (b) Same process, in our Higgsless model.

grams with exchange of heavy Zn’s and bn’s, as shown in Fig. 6.2(b). As 1 /Rf ——> 00,

these heavy Zn’s and bn’s are removed from the theory, which becomes equivalent to

the SM without the Higgs boson. Thus, it is reasonable to expect that the cancella-

tion that occurs for opposite helicity t and f in the SM also occurs in our Higgsless

model, and that the amplitude does not display quadratic energy growth at any scale.

We have directly verified this in our model. However, if the t and t- have the same

helicity, the linear growth in energy, that was cancelled by Higgs boson exchange in

the SM, now must be cancelled by some other sector of the theory. In our Higgsless

model this cancellation occurs through the bn-exchange diagrams. In this respect,

the heavy b—quarks play the role of the SM Higgs boson for this scattering process.

In section 4.3.3 we used the quadratic growth in energy of the WELWI: —> W;WI:

scattering amplitude to place approximate bounds on the scale 1 /Rg, where the heavy

vector states come in to restore unitarity. We can now do the same here, using the

If —> W2"WE process to place approximate bounds on 1/Rf. Note that, since the

fermion amplitude only shows linear growth with energy in the high-energy limit, the
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corresponding limits on the heavy fermion states will be significantly weaker.

For left—handed t and f, the J -- 0 partial wave amplitude is given by

_ 1 00 1
+ ._ _

“09L” ’i WL ”1 ) _ 6'47 2 P2+k2+mgnn=0

 

((01323)? + ((15512) (mtkgen) + 2%19E2hfin) — mtpf<a>)

 

W

mb

+m_§hg.€hf£ (Newman) — 224215:2 — max-wen») , (5.4)

where

212k
E ,

6.5

{n p2 + k2 + m2 ( )

E and p are the t (or f) energy and momentum, respectively, k is the W; (or WI: )

momentum, and mbn is the bn mass, with mbo E mb. The functions f(:1:), g(a:), and

 

 

 

h(:r) are

1(4) = but:

= 50—5136
11(4) = ;§(1-1;f21njl:)- (6.6)

Using the notation of eq. (5.33), the couplings are 11%,? E 933000 b") and 111%? _=_

gg€(t0.bn)' For M = 0, to leading order in ti, th, and A2, the formulas of appendix C

 

give

thC = g[1+0(t2)],

CC _ fitL (-1)"+1 2&1; 2 _
th _ 91+th ”201—5), ”301—”, [1+O(t)] n—1,2,...,

  

. tt £6
11%? = g—M— [I + C(12)] ,

2,/1+t,2R

fl ('11;

g7r2 (n— %)2,/1+th

In the high energy limit, (6.4) becomes

5,9,6," = [1449(9)] n=1,2,.... (6.7)

a (t ? __) M,,,'+I,V—) ~ 1 mtE 00 (hCC)2 + (hCC)2 _ 27,7137! hCChCC (6 8)

0 L L L L — 327, mfv 2:0 Ln Rn —mt Ln Rn - .
, n:
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It is straightforward to show that this vanishes, to leading order in t2, th, and A2,

using the couplings given in (6.7) and the masses given in (6.2) and (6.3), applied to

mt and mbn, respectively. In fact, using the completeness relations

 

0° F 1 5(y) , -

112.211 517? t% labn(y)0'bn(y) = <>(y- y’) .

0° ' 1 6 _ ,

2 5+ 7%”) 13511113544) = 06-11), (6.9)
71:0 _ I bR

 

as well as the equations of motion, (5.29), and the boundary conditions, (5.30), for

the t. and the bn’s, it can be shown that

°° CC 2 CC 2 'mb CC CC
Z [(thi) + (hRn) — 2 n th hRn E 0 ' (6-10)

7120 mt

Therefore, this cancellation is exact in this model for any values of the couplings, and

the linear growth in energy at high energies does not occur.

6.3 Bounds on the Model Parameters

Of course, the cancellation of the term that grows with energy is not a sufficient

condition for the unitarization of the amplitude (6.4): The latter could stop growing

after unitarity is already violated. The heavy b—quarks should come into play early

enough to cancel the bad high-energy behavior, and this is only possible if 1 /Rf is

not too large. Enforcing (5.55), to keep S fixed at zero, and setting M = 0, the only

parameters that are not fixed by the light SM fermions and bosons are R9 and Rf,

which set the scale for the heavy vector bosons and the heavy fermions, respectively.

We can put some reasonable constraints on these two parameters by requiring that the

tI]L —+ WEWI: and the WEI/VI: —> WEWI: scattering amplitudes remain unitary

up to some value of the center-of-mass energy J3. As an example, in Fig. 6.3 we

display the region in the (1/Rg, 1 /Rf) plane that is allowed by the requirement that

a0 < 1/2 up to fl =10 TeV or \/§ =5 TeV for both scattering amplitudes. As

expected, we see that 1 /Rf can indeed be much larger than 1/Rg. If we require the

theory to respect unitarity up to J: =10 TeV in both amplitudes, we find 1/ R9 <
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Figure 6.3: Bounds imposed by unitarity constraints on the if —1 W2“WE scattering

at J3 =10 TeV (upper curve), and the WEWL— —+ WEWI: scattering at J3 =10

TeV and J3 =5 TeV (vertical lines), in the (l/Rg, 1 /Rf) plane. Specifically, we have

assumed the requirement of (10 < 1 /2 for both scattering processes The ti— —> W;W;

scattering at J3 =5 TeV imposes no bound, since at this energy the no Higgs boson

is required to unitarize the amplitude. The two curves on the bottom correspond to

the minimum value of 1 /Rf which allows a top mass of 175 GeV to be a solution of

the mass equation for M = 0 (lower), and the minimum value of 1/Rf which gives

a th right-handed coupling in agreement with the experimental constraint (upper).

The vertical curve on the left corresponds to the experimental bound on mW1 from

analysis of the WWZ vertex.

570 GeV and 1 /Rf < 32 TeV. If we use the weaker requirement that the theory only

respect unitarity up to J3 =5 TeV, then we find 1/Rg < 720 GeV, while there is no

constraint on 1 /Rf, since the tL?L —* Will/II: scattering amplitude does not violate

unitarity at this energy even in the SM without a Higgs boson. Of course, any upper

bounds on l/Rg and 1 / Rf depend on the somewhat arbitrary scale choice for J3,
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Figure 6.4: Right-handed th coupling, in units of 63/5, for 1/Rg = 550 GeV, as

a function of 1 /Rf. The horizontal line corresponds to the experimental bound of

Ref. [80].

where the low energy Higgsless theory has broken down.

Lower bounds on 1/R9 and 1 /Rf can be obtained from experimental results. In

section 5.4.3 we found the lower bound 1/Rg > 498 GeV from indirect constraints

on the WWZ vertex, while the corresponding direct search bounds were estimated

in section 5.4.1 to be weaker. For the case of 1 /Rf, a minimal requirement is that

it is large enough to accommodate a top quark mass of 175 GeV. This is displayed

in the lower curve on the bottom of Fig. 6.3. It gives a lower bound of 1/Rf >

1-3 TeV, with the dependence on 1/Rg entering through the condition imposed by

(5.55). However, this curve corresponds to an infinite value of “12’ which is not

viable. Tighter constraints can be obtained by limits on the right-handed th and
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ttZ couplings, which in appendix C are evaluated to lowest order in ttR, tb to be
R

CC __ g 2 2

9R,(t,b) — gtthbR [1+0(A ,t )] ,

NC 9 2 2 2

9R,(t,t) = Q—CttR [1+0()\ at l] - (6.11)

For example, in Ref. [80] it is estimated, using experimental results on the b —+ 31/

process, that ggfim/g S 0.4-10‘2, at the 20 level. The corresponding bound on 1 /Rf

is displayed in the upper curve on the bottom of Fig. 6.3. For the particular value of

l/Rg = 550 GeV, we can see how the coupling ggca, b, Wi)/g (where we have used

g E e/s) varies with 1 /Rf in Fig. 6.4. The experimental bound is satisfied for this

value of 1/ R9 by 1 /Rf 3.6 TeV, which corresponds to K. 6.5. An even stronger bound

might be obtainable from limits on the right-handed neutral current coupling, since

it is quadratic in the parameter ttR; however, the extraction of this coupling requires

more detailed analysis of higher order effects at the Z-pole in our model. Notice,

however, that there is no tree-level constraint on 1/R; coming from the right-handed

Z115 coupling, because 1.),R is a negligibly small quantity.
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Chapter 7

Conclusions

In this dissertation we have built a phenomenologically viable Higgsless model from

theory space, with inspiration from the physics of one compactified extra-dimension.

It is a well known fact that a gauge theory on an extra-dimensional interval corre-

sponds to a four-dimensional theory with an enhanced gauge symmetry. This large

symmetry structure has the important property of unitarizing the longitudinal gauge

boson scattering amplitudes. The unitarization occurs through exchanges of virtual

Kaluza—Klein modes, which ensure the cancellation of the terms growing like E4 and

E2, playing in this way the role which is played by the Higgs boson in the Standard

Model and its most common extensions. This is only true, however, for boundary con-

ditions on the five-dimensional gauge fields which are consistent with the variational

principle. Moreover, rather than restoring unitarity at (almost) all energies, as in the

Standard Model, the Kaluza-Klein modes lead to a delay of unitarity violation to en-

ergy scales higher than the customary limits of Dicus-Mathur or Lee-Quigg-Thacker.

Therefore, any Higgsless model should be regarded as an effective field theory, valid

up to the energy scale of unitarity violation.

Our model contains three features, which are crucial to any viable Higgsless model

of electroweak symmetry breaking. First, it contains a tower of vector bosons which

delay the unitarity violation in the WLWL —) WLWL and WLZL ——+ WLZL scattering

amplitudes, while giving the correct mass for the standard model W and Z (and

photon) as the lightest states in the tower. Thus, it can extend the applicability
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of the effective Higgsless theory up to a higher scale in the 5-10 TeV range. This

is accomplished using an SU(2) gauge symmetry on a theory-space interval, broken

down to U (1) at the right end of the interval, and with gauge kinetic terms on each

end of the interval. The normalization (A, A’) of the gauge kinetic terms on the

boundaries are easily arranged to give the correct mass for the SM W and Z bosons.

Second, it incorporates a cancellation of the large vector boson contributions to

the S parameter, which generically occur in Higgsless models. This cancellation is ob-

tained by allowing the light fermion wave functions to leak away from the ends of the

interval. In our model this leakage arises through boundary conditions and boundary

kinetic terms for the fermions, where the light left-handed fields are predominantly

located at the left end of the interval and the right-handed fields are predominantly

located at the right end of the interval. The leakage of the left-handed fields into the

bulk can be made to cancel the gauge boson contributions to S, while keeping the

T and U parameters naturally suppressed, by tuning the normalization (tL) of the

universal left-handed fermion kinetic term on the left boundary. Meanwhile the nor-

malization (I.XR) of the right-handed fermion kinetic terms on the right boundary can

be used to give the correct mass for each of the light fermions. Furthermore, multiple

generations and fermion mixings are implemented in the model, without introducing

flavor-changing neutral currents, by confining all flavor physics to the right-handed

fermion brane kinetic terms, and imposing a global U(3)quark x U(3)191),on symmetry

on the bulk and left brane.

Third, it has a realistic top quark mass and small nonstandard right-handed top

and bottom couplings. To obtain this goal, while maintaining the good unitarity

properties of the WLWL scattering, it was necessary to separate the overall gauge

sector scale (1 /R9) from the overall fermion sector scale (1 /Rf). This requires an

explicit breaking of the five-dimensional Lorentz symmetry, which is theoretically

allowed, since such symmetry is already broken by compactification and brane kinetic

terms. In fact, within a theory-space model it can be considered natural, since the

difference in the size of the scales is analogous to having different sizes of gauge and

Yukawa couplings. By making 1 /Rf larger than 1/Rg, it is possible to obtain the
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top quark mass. It is also possible to suppress any nonstandard right-handed top

and bottom couplings, since for a fixed fermion mass, an increase in 1 /Rf requires a

compensatory decrease in txR’ leading to a decrease in right-handed couplings.

In this way, we have constructed a viable Higgsless model with only three unde-

termined parameters, l/Rg, 1 /Rf, and the bulk fermion mass M. Since the bulk

fermion mass does not seem to add any qualitatively new features to the model, it

is reasonable to set M = 0, leaving us with a two-parameter model. The parameter

1/R9 sets the scale of the vector boson excitations, and the parameter 1 /Rf sets the

scale of the fermionic excitations. Just as the scale 1/R9 cannot be too large and

still effectively delay unitarity violation in WLWL —-+ WLWL scattering, the scale

1/ Rf cannot be too large and still effectively delay unitarity violation in tf —> WLWL

scattering. Thus, both of these scales are bounded from above, the exact bounds

depending on the energy scale at which the effective Higgsless theory must be re-

placed by a more complete theory. A reasonable upper bound for 1/Rg is in the

570-720 GeV range, while the upper bound for 1 /Rf is much weaker, of order 30 TeV

or more. Experimental lower limits on 1/ Rf from right-handed th couplings are

in the range of 2-4 TeV. Precise experimental lower limits on 1/Rg require further

investigation, although given the small couplings between the light fermions and the

heavy W’ and Z' states, there appears to be a reasonable range for this parameter

that is still allowed.

In conclusion, we have presented an existence proof of a viable Higgsless model,

that can satisfy all current experimental constraints, as far as we know. It is certainly

not the only Higgsless model that may work, and it is probably too simplistic in many

regards, but it has all of the features that any Higgsless model must have. Thus, it

offers a concrete example for use to explore the phenomenology of Higgsless models

at the Tevatron and the LHC. In particular, it is worthwhile to further investigate

its most relevant phenomenological aspects, with careful attention to those features

which are general, rather than characteristic of any particular model.
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Appendix A

Solutions for the

SU(2)0X SU(2)1XU(1) Model

In this model there are five independent parameters: g,§,g’, f1, [2. We can express

these in terms of the SM parameters 6, mw, mZ7 and the masses of the heavy vector

bosons, mW” m2]:

 

 

 

2 2

l2 _ 2 mZmZ’
g _ e 2 2 1

meW,

2 2 2 2 2 2 2 2 2 2
Q2 — ’2 (mnr + mnw’)(mZ + mZ, "' mW - mm”) + mI/V’nluf’ — mZmZ,

(7,122 + "1.22, - 771%»! — ma/q) 3

2
g :

2 2 2 2 2 2 2 2 2 2 2 2
9,2 m‘Wn1.H,,,((mH2; + mg,,)(m2z + mg, —' my; — ”lg/VI) +2mw/mu2,’ — mZmZ,)

(m2 — mZI)(mZI " mWI)(mZI " mw)(mwz - m2)

2 2
16 mu"m ,rl

2 ll

(1 = ~ 1

9292 f3

4

f22 = 97201122 + "122, —— may — ma”) . (A.1)

The charged boson mixing matrix, defined in (4.22) is given by 0.00 = all = cosd>

and —a01 = (110 = sin (b, where

 

 

2 "1‘24”(Tnqu — 711.22)(n12z, — mew)

cos “b = 2 2 2 2 2 2 2 2 2 2 .
mW/(mWI ‘ mg)(mZ/ - WWI) ‘l' mw(mZI - mwllmz — mw)

Sing <f> _ mfvlmggr - mii')(m2z “ miv)

mar/(marl - 77122) ("122! — may!) + m%,r(m2z, ‘ m%4,:)(m22 _ m2")
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The neutral boson mixing matrix, defined in (4.23), is given by

 

 

 

 

 

 

 

 

, 1 2

b mfi;m%,,(m2z, — meszZ’ — mad) /

00 = 1

_ mQZ(m2Z, — mQZ)1W4

" 2 2 2 2 1/2

_ m22(m22, — m2Z)/l'l4 W W Z ,

- 1/2

b _ _ ( 2.- mew... — mg)
20 — 2 2 _ 2 ,

mzlmzl m2)

- 1/2

b _ "Ia/marl (m2Z _ m%/)(m‘24/I — mQZ)

01 — _ 1112(m2 —m2)M4 ’
. Z Z’ Z

2 2 2 2 1/2
5,, = (mg, - mW)(mZ; — mu.) (mg/I + mt _ "122)

mQZ(mQZ, — 7'112Z)M4 M

1/2

(772,22, — mvamZZI —’ mall)

[’21 2 _ 2 2 2 1 (A3)

mZ,(mZ, - 7712)

where

M4 = (mar + 771%,”)(m22 + 77122; - ma; - ma”) + marmaxr - m2Zm2z’ . (A-4)
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Appendix B

Solutions for the

SU(2)xSU(2)N><U(1) Model

The mass matrix for the charged bosons is

 

A2 _ A 0 “

N+1 :7N+1

- A _

N+1 2 1

0 —1 2

M2 — @ng Bl
w - 4 , ( .)

2 —1 0

—1 2 —1

0 —1 2

L .J  
where /\ = g\/1\' + 1/g. Note that the sequence of (—1 2 — 1) in each row of this

matrix (except the first and the last two) acts as a discrete second derivative, whose

115



eigenfunction is a sine function. Thus, we try a solution of the form

:1

F NH sin (N +1)w(n)

sin Nwm)

sin (.N - 1)“)(77)

sin 3w(n)

sin 2w(n)

  Sin LUV!)

l. .J

where Q”) is a normalization constant and the eigenvalues are

u)

m2 ,, = §2f2sin2fl . (13.3)
”n 2

The coefficients of (U(n), in (8.2), have been chosen to run downward from N + 1 to

1, because in the underlying extra-dimensional model Wi = 0 at x5 = 1rR. This

corresponds to the (N + 2)-th component to be sin(0 - w(n)) E 0. The first row of the

eigenvector equation Affirm”) = maynwm) gives the characteristic equation for this

system

)‘2

4(N+1)[

which has N +1 solutions, mm). Using this equation and trigonometric identities [77],

sin2 “5) sin (N +1)w = sin (N +1)w -— sin Nw] , (B.4)

we obtain a simple formula for the normalization constant

   (13.5)

, 1 —l 2

N + 1 SID [2(N + 1)w(n) /

C(n) = ‘
2 4 sin w(n)

 

Solving (8.4) perturbatively, and identifying the SM [IV 5 ”’6, we obtain for the

charged boson masses

2 ff? [1_ ,2N(2N +1)‘ _ 4

"‘W _ 4(N+1) 6(N+1)2 +0“ )]

2 2

2 _ ~2 2 ,. "7r 2, "7T 2
mW,’, —g f <s1n2<N+1)) +2mw (C082(N+1)) (1+O(A )) .
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The elements of the charged boson mixing matrix are

 

  

  

N(2N +1) 4

1— 2———

‘10” ’\ 12(N + 1)2 + 0” ) ’

N +1 — j 3

as = ——+ O A ,

’0 (N +1)3/2 ( )

\/—2- sin (7mN/(N +1)) 3

= —A + O A .

00" N +1 4sin2 (7rn/2(N +1)) ( ) '

2 , 7r(N +1 —j n

ajn N +1 srn N +1 ) + (902) , (B.7)

where j and n run from 1 to N.

The mass matrix for the neutral bosons is

A2 _ A 0

A

— N+1 2 —1

~2 9 0 —1 2

M; = % , (B8)

2 —-1 0

1 2 V
— _71\m
0 _ A, A/2

where 2V : g'x/N + 1/5). The eigenvector equation MEXUI) = 17222” X(") can be solved

in a similar manner to the charged mass matrix. The eigenvectors are

P @Sm [(N + 1):”(11) + 6%)] -

Sin [Np(n) + ¢(n)l

Sin [(N - 1)fl(n.) + 0502)]

  

X(n) = D(n) , (13-9)

Sin [2002) + (1%)]

sin [p(n) + $01)]

flit: Sin ¢<n> l

where D(n) is a normalization constant and the eigenvalues are

2 ~2 2 - 2 ”(n)
mzh = g f sm -2—. (BIG)
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The characteristic equation for this system is

2 A2+A’2p A2x\’2

Sin ESin(1,\r+ 1);) = m 2Sin1’Vp, (8.11)[sin (A7 + 1)p—sin IVp]+m

which has N + 2 solutions, pm). The phase constant aim) satisfies

. p(n) _ x2

tan@(n)tan—2— — A’2—2(N+1) . (8.12) 

Using (8.11) and (8.12), we obtain for the normalization constant

D<n> =
 
 

r '
—1/2

A +1 + sm [(N+1)P(n)]003[(N +1)p(n) + 2d)(n)1] (13,13)

2 2 sin' pm)

 

There is one trivial solution to (8.11) and (8.12), which corresponds to the photon

solution: ph) = 0, (12(7) = 7r /2. In section 4.3.2, the mixing matrix elements for the

photons were shown to be constant, and equal to the U(1)Q coupling 6. Identifying

the standard model Z 5 Z6, we obtain for the the remaining neutral boson masses

N(2N+1)+ A2A’2 N

6(N+1)2 A2+X2N+1

2 2

~2 2 ‘_ 7171' 2 71.7? 2

7,121; = (} f (blnm) + 27722 (COSm) (1+ O()\ )) .

m2 = (92 +9'2)f2

Z 4(N + 1)

 1—(A2+A’2)

 

+ 0(8)] .

(13.14)

The elements of the charged boson mixing matrix are
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b 2 —A

+ O A ,0n
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‘ _ 2 . 7r(N+1—j)n 2

by", — ‘/N+lsm N+1 +C’)()\),

2 SlIlTl’Tl/(N + 1) 3

b , = —,\’(/ , 0 ,\ , 3.15

”+1“ N +14sin27rn/2(N + 1) + ( ) ( )

where j and n run from 1 to N.

 

Finally, we can use the characteristic equations, (8.4), (8.11), and (8.12), along

with the orthonormality of the rows of the Z’ mixing matrix, to obtain a simple

expression for the leading Ez/mfv, term in the W’fiWT’," —2 W,',+l/li’,’,_ scattering

n

amplitude, which is the generalization of K in (4.38). We find

4 mil/7’1 3 sin [2(N + 1)w(n)l Sin [4(N + 1)“J(n)l

KW) = C(n) [5 +
— N 1

2( + sin ”(71) 4sin 2w(n)

  

 

(8.16)

It is interesting to note that this quantity is exactly independent of g’, and it falls off

as (N + 1)‘2 for large N. Setting n = 0, we obtain the result for W+W‘ scattering

in this model which, to first non-zero order in A2, is

K = —g—— . (8.17)
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Appendix C

Coupling Constants in Model II

C.1 Gauge Boson Couplings

The Feynman rules for the cubic and quartic vertices, in the continuum TS gauge

model of section 4.3.3, are shown in Fig. C.1, where W0 and Z0 correspond to the 14'

and Z boson, respectively. The coupling constants are

7
2 2 4

. , . . = 1-—/\ +0 /\
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(b)

Figure C.1: Feynman rules for gauge interactions.
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— (1...). 14-..). 111W >1 , m
for the cubic vertices. (In these expressions, and in the expressions below, whenever

numerator and denominator vanish, the right formula can be obtained by taking the

limit.) Notice that the vertices involving one or two photon lines can be obtained

from (Cl), (C.2) by using the relations (4.51).

C.2 Fermion Couplings

The Feynman rules for the charged-current and neutral-current vertices in model II

are shown in Fig. C.2. The corresponding coupling constants, for M = 0, are
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Figure C.2: Feynman rules for charge-current and neutral-current interactions.
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for the charged-current interactions, and
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for the neutral-current interactions.
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