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ABSTRACT
HIGGSLESS ELECTROWEAK SYMMETRY BREAKING FROM
THEORY SPACE
By
Roshan Foadi

We propose a Higgsless model of electroweak symmetry breaking, with inspiration
from the physics of one compactified extra-dimension. The gauge sector consists of
an SU(2) Yang-Mills theory on an extra-dimensional interval, with boundary con-
ditions breaking SU(2) to U(1) at one end, and large brane kinetic terms on both
boundaries. Exchanges of Kaluza-Klein modes are shown to postpone the unitarity
violation of longitudinal gauge boson scattering amplitudes to energy scales higher
than the customary limits of Dicus-Mathur or Lee-Quigg-Thacker. Fermions are first
implemented into the model as brane-localized fields, and then as bulk fields with
large brane kinetic terms on both boundaries. Only in the latter case can unitarity
and precision electroweak constraints coexist, as long as the amounts of leakage into
the bulk of the Standard Model gauge bosons and the Standard Model left-handed
fermions are properly related. In order to achieve a realistic top mass without violat-
ing unitarity of gauge boson scattering amplitudes, the gauge-sector compactification
radius, Ry, and the fermion-sector compactification radius, R 1, are made indepen-
dent by breaking the five-dimensional Lorentz invariance. Unitarity and experimental

constraints are shown to impose, respectively. upper and lower bounds on 1/Rg and

1/R;.
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Chapter 1

Introduction

The SU(3)color XSU(2)1,xU(1)y gauge model of particle physics is a very succesful
theory, as decades of experiments have confirmed its predictions to a high level of ac-
curacy. Nonetheless there are still several unanswered questions, the most prominent
being the mechanism of electroweak symmetry breaking (EWSB). If the electroweak
symmetry were unbroken, all particles so far discovered would be massless. Since
most particles are massive, with masses which range from a few eV’s for the lightest
neutrino to ~174 GeV for the top quark, there must be some mechanism, lying at
energies above the top mass, which spontaneously breaks the SU(2) xU(1)y elec-
troweak symmetry to the U(1)gp symmetry of electromagnetism.

The process of mass acquisition via symmetry breaking is generically known as
Higgs mechanism (1] [2] [3]. In its most common versions it consists of one or more
scalar fields in a linear representation of the gauge group, with the scalar potential
producing a non-zero vacuum ezpectation value (VEV) which spontaneously breaks a
higher symmetry to a lower one.

The simplest renormalizable theory of EWSB with scalar fields is the Glashow-
Weinberg-Salam model (GWS) [4] [5], in which one scalar doublet is coupled to the
SU(2)1,xU(1)y gauge group. When the SU(3).,1or gauge group of Quantum Chromo-
Dynamics is included, together with three generations of matter fields, the GWS
model becomes the Standard Model (SM) of particle physics. In this model, like in
other models of EWSB, the W and Z boson masses depend on the gauge couplings



and the VEV. The latter is therefore constrained, and turns out to be around 250
GeV.

Theories of EWSB via scalar fields are particularly simple, but are also affected
by problems like triviality, hierarchy, and vacuum stability. Nonetheless they have
been proposed in a variety of theoretical frameworks, besides the SM: Supersymme-
try, composite Higgs models, little Higgs models, extra-dimension, and so on. The
main reason for this is unitarity. In any quantum field theory, a straightforward
consequence of the S-matrix unitarity is that scattering amplitudes cannot grow in-
definitely with energy. More specifically, the coeflicients of the partial wave expansion
computed in the theory must be less than 1/2, or else the theory becomes strongly
interacting. This poses a serious problem for the scattering of longitudinal vector
bosons, since the corresponding tree-level amplitudes grow with energy (6] [7] [8] [9].
In fact the polarization vector of a longitudinal gauge boson grows like E, where F
is the particle energy, and the tree-level scattering amplitudes can potentially grow
as badly as E4. Gauge invariance always guarantees the cancellation of the E* co-
cfficient, but the cocfficient of the E2 term can be different from zero. However in
renormalizable theories of EWSB via scalar fields this does not happen. For exam-
ple, consider the SM Higgs doublet, which is complex and has therefore four real
scalar fields. Three of these are absorbed by the W, and Z bosons to acquire the
longitudinal component and become massive. These are the Goldstone bosons. How-
ever the unabsorbed scalar ficld corresponds to a physical spin-0 particle, the Higgs
boson. In the scattering of longitudinal gauge bosons, the interactions with a vir-
tual Higgs-boson exchange precisely cancel the bad high energy behavior and restore
unitarity [7] [10] [11] [12]. Of course this is not a miracle, but just a consequence
of the Goldstone boson equivalence theorem: At high energy, the longitudinal gauge
boson scattering amplitudes become identical to the scattering amplitudes of the cor-
responding Goldstone bosons [9] [11] [13] [14] [15] [16] [17] [18] [19]. Analyzing these
amplitudes in a linear representation of the gauge group shows that no terms growing
with energy can be present, since the cubic and quartic interactions do not involve

derivatives. It is important to stress, however, that the cancellation of the terms



which grow like EZ is not enough to insure unitarity. This is easily understood if we
decouple the Higgs boson from the theory by sending its mass to infinity, in which
case the scattering amplitudes would no longer be unitarized. In fact in such case the
Goldstone ficlds would necessarily be in a non-linear realization of the gauge group,
with interaction terms involving derivatives, and the Goldstone boson scattering am-
plitudes would grow like E2. Therefore, unitarity poses an upper limit on the Higgs
boson mass, which turns out to be below 1 TeV [10] [11].1

After these considerations, the emerging picture is the following: in an SU(2)1, x
U(1)y gauge theory, EWSB via scalar doublets is viable, as long as the VEV is close
to 250 GeV, and the Higgs boson is a light particle (below 1 TeV), which should be
detected in the upcoming generation of hadron and linear colliders. Recently it has
been pointed out that the VEV and the Higgs mass can be raised if the gauge group
is larger than SU(2), xU(1)y. For example, Georgi has shown that an SU(2)89x U(1)
'gauge theory can reproduce the SM results with a VEV greater than 2 TeV [20]. The
reason for this (and the motivation for considering such a ridiculously large gauge
structure) finds its origin in the physics of extra-dimension. A spatially compactified
extra-dimension, substantially larger than the Planck length (10~33cm), but small
enough to elude detection in the past generations of hadron and linear colliders,
might exist [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]. A gauge theory on
a compactified extra-dimension can be seen from two different standpoints. First,
it can be seen as a five-dimensional theory whose Lorentz invariance along the fifth
dimension is explicitly violated by compactification. Effects of the Lorentz symmetry
breaking would then be proportional to powers of 1/ER, where E is the typical
energy of a physical process, and R is the size of the extra-dimension, which will be
‘referred to as the compactification radius. Second, it can be seen as a four-dimensional
theory, by expanding the four-dimensional components of the gauge field in a series of
massive vector bosons, the Kaluza-Klein (KK) modes, whose mass spacing is of order

of the inverse compactification radius. The fifth component of the gauge ficld would

IThe upper bound on the Higgs mass imposed by triviality is stronger than the bound imposed
by unitarity.



then be expanded in a KK tower of massive scalar particles. These scalars cannot
be physical, since in a five-dimensional gauge theory, under certain assumptions, the
fifth component of a gauge field can be transformed away [33]. They are therefore to
be interpreted as Goldstone bosons, eaten by the massive KK modes.

It is then clear that a gauge theory on a compactified extra-dimension has a spon-
taneously broken enhanced symmetry, with consequent generation of massive vector
bosons and eaten Goldstone bosons. Chivukula et al. showed that this large sym-
metry structure has the important effect of delaying unitarity violation of scattering
amplitudes to energy scales higher than the customary limit of Dicus-Mathur or
Lee-Quigg-Thacker (7] [10] [11] [12]. The violation delay is achieved by introducing
interactions with exchange of virtual KK modes [34] [35] [36]. In particular, the co-
efficient of the term growing like E? exactly vanishes. This can be understood by
using a Kaluza-Klein equivalence theorem (KK-ET), which results from the geomet-
ric Higgs mechanism of compactification. From a four-dimensional point of view, the
KK-ET relates the scattering amplitudes of longitudinal KK modes to the scattering
amplitudes of the corresponding KK Goldstone bosons, which - as we argued before
- do not grow with energy.

Eventually unitarity ends up being violated at large energies. The reason for
this can be intuitively understood in two different ways. First, Yang-Mills theories
are non renormalizable in 5D. Then a bad high-energy behavior of loop diagrams
corresponds, through the optical theorem, to a bad high-energy behavior of the cut
tree-level amplitudes. Second, even in absence of an E? term, a logarithmic growth
in energy is still present: this comes from the infrared singularity in the t-channel.
In the SM, or in other theories with a Higgs boson, such contribution is negligible
for all non-exponentially large energies. However, in models from extra-dimension,
as the number of exchanged KK modes is allowed to increase, the term proportional
to log E becomes important, and eventually leads to a unitarity violation of any
scattering amplitude. The scale of unitarity violation can be estimated by taking the

extra-dimension to be infinite in size, because we are interested in the high energy
2

behavior. Then the only mass scale is 1/g%, where g5 is the gauge coupling of the



five-dimensional theory, with mass dimension -1/2. Therefore, we expect unitarity to
be violated at energy scales of order 1/ gg times a numerical factor [37] [38].

This violation scale can be rather high, suggesting that perhaps there is a con-
sistent way of breaking the electroweak symmetry without producing a Higgs boson,
at least in the energy range predicted by SU(2);, xU(1)y gauge theories with one or
more Higgs doublets, as suggested by Georgi’s model. The latter can be seen — when
the Higgs fields are integrated out — as a deconstructed [39] [40], or latticized, version
of a five-dimensional SU(2) gauge theory on an interval, rather than a circle, where
each SU(2) group corresponds to a point on the extra-dimensional interval.? In fact
when the extra-dimension is put on a lattice, a G-invariant gauge theory becomes a
GN*2 non-linear sigma model (NLSM), where N + 2 is the number of points in the
lattice (two at the interval ends and N internal). NLSMs are usually depicted by
moose diagrams, like the one in Fig.1.1(a). Each circle, or site, represents a gauge
group Gj, and its coupling g;. A line connecting two circles represents a NLSM
field, £;, and its VEV f;. The field £;(z) transforms under both G;_; and Gj,
like X;(z) - U J'_ll (r)Z;(z)Uj(r). In a deconstructed model all gauge groups are of
course identical, and the ¥ fields correspond to the value of the gauge-field fifth com-
ponent at discrete points. If a flat background is assumed, all couplings and VEVs
are also identical. The only possible exception is represented by the first and the
last site, where boundary conditions (BCs) and brane kinetic terms, in the underly-
ing five-dimensional theory, can result in different gauge groups and couplings in the
deconstructed model. We will come back to this point later in this introduction. The
moose diagram of a deconstructed model looks therefore like the one in Fig.1.1(b).

In deconstructed models the coefficient of the E2? term does not vanish precisely,
but it is suppressed by 1 /N2, for N — o0o. As a consequence, the delay of unitarity
violation is not as large as in the full five-dimensional models [36] [41] [42]. Nonetheless

deconstruction is still a powerful tool for model building for at least two reasons. First,

%In Georgi's model fermions are coupled in a peculiar way, which makes the interpretation as
a deconstructed five-dimensional model not viable. Nonetheless such interpretation is valid for the

gauge sector.
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Figure 1.1: (a) Structure of a linear moose diagram. The circles represent gauge
groups G, and their couplings g;. A line connecting two circles represents a non-
linear sigma model field, ¥;, and its VEV f;. Each ¥ field transforms bilinearly
under the adjacent gauge groups. (b) Moose diagram of a deconstructed model in a
flat background: All gauge groups, couplings, and VEVs are identical, because of the
translational invariance of the underlying five-dimensional theory. The only possible

exception is for the first and the last site, depending on the boundary conditions.

it allows for common four-dimensional UV completions, like linear sigma models (as in
Georgi'’s model) or dynamical symmetry breaking. This turns out to be particularly
useful in Technicolor-like models, since a strongly coupled physics at the TeV scale is
disfavoured by electroweak precision (EWP) data [43] [44], and deconstructed models
with a large symmetry structure can raise the scale of unitarity violation by a factor
10 [45] [46]. Second, deconstructed models allow for more freedom in model building
than strict five-dimensional theories. This feature is especially welcome when it comes
to coupling a model to matter fields. As opposed to five-dimensional theories, where

the interaction of fermions with the gauge-field fifth component has the same strength



as the ordinary gauge interactions, in deconstructed models the Yukawa coupling to
the X fields can be made independent of the gauge interactions. Moreover, terms
which are not local in a five-dimensional theory make perfect sense in deconstructed
models. Theories represented by moose diagrams are commonly referred to as models
from theory space (TS). As the number of sites goes to infinity, a theory-space chain of
gauge groups becomes an extra-dimensional interval only under special assumptions.
We will discuss the relation between extra-dimension and theory space in section 3.5.

Having established that extra-dimension and theory space provide new interac-
tions which delay unitarity violation, the next step is to inquire whether EWSB can
be implemented in these frameworks. Models with a compactified extra-dimension
are usually mapped onto five-dimensional intervals, where the interval ends are four-
dimensional branes with rather special properties, depending on the BC’s. The fifth-
dimensional interval is commonly referred to as the bulk of the extra-dimension. Csaki
et al. showed that an appropriate choice of the gauge group in the bulk, supplied with
suitable BCs, can give a symmetry breaking pattern which contains EWSB. There-
fore, Higgsless EWSB is indeed a potentially viable alternative to the more traditional
models with a Higgs boson in the GeV range [36] [42] [45] [46] [47] [48] [49] [50]. The
W boson would then be interpreted as the lightest mode of a charged KK tower, while
the photon and the Z boson would be interpreted as the lightest modes of a neutral
KK tower: The elastic scatterings WtW~ — W*W~ and W*Z — W*Z would
be unitarized by exchanges of virtual Z, and W,:,t KK modes, respectively, where
n=1,2,... [36] [42]. However the cancellation of the terms which grow like E? is
not enough to ensure unitarity. In gauge theories with a Higgs boson, we argued that
unitarity requires an upper bound on the Higgs mass. Similarly, in extra-dimensional
models the delay of unitarity violation imposes an upper bound on the compactifica-
tion scale [46] [50].

Of course unitarity is not the only constraint we must consider. First, a realis-
tic model of EWSB must reproduce the mass spectrum of the observed particles, top
quark included. Second, it must satisfy the constraints imposed by EWP data. Third,

low-energy anomalous interactions must be within the experimental bounds. Consid-



erable effort has been recently spent in the attempt to meet all these requirements.
A model, in particular, has emerged as a potentially serious candidate: the SU(2)r,
xSU(2)grxU(1) g_ five-dimensional gauge theory, coupled to a warped anti-de Sit-
ter (AdS), Randall-Sundrum (RS1) model [51], where BCs break SU(2);,x SU(2)r
down to SU(2)giagonal at the infra-red, or “TeV” brane, and break SU(2)gx U(1)p_
down to U(1)y at the ultra-violet, or “Planck” brane [46] [47] [52]. The electroweak
symmetry SU(2);,xU(1)y is therefore localized on the Planck brane, and is broken
by the extra-dimensional bulk and the BCs on the TeV brane.

The SU(2), xSU(2)r —SU(2)diagonal Structure is designed to satisfy the bounds
on the p parameter. The latter is defined as the ratio between the strength of the
charged-current interactions and the neutral-current interactions at zero momentum.
Experimental results show that p differs from unity by less than 2.5-1073 [53]. The
natural way to meet the constraints on the p parameter is to guarantee that a global
isospin symmetry is still present even after EWSB, and is only broken by hyper-
charge and Yukawa interactions [54]. Such global symmetry is known as custodial
isospin, and is naturally embedded in the SM. In the extra-dimensional model, the
SU(2)L, xSU(2)r —SU(2)giagonal Structure guarantees a custodial symmetry if the
five-dimensional profile of the matter fields is appropriately chosen. For example,
with matter fields localized on the z° = 0 brane the tree-level p parameter does not
differ from unity: This has been proved for a wide class of deconstructed models,
with arbitrary gauge couplings and f-constants [55]. However in general the charged-
current and neutral-current interactions are not necessarily mediated by the W and
the Z bosons only, since exchanges of the heavy KK modes might be equally impor-
tant. This is potentially problematic, because a sizable contribution of the heavy KK
exchanges means that the first heavy charged and neutral gauge bosons are relatively
light, and could be below the direct-search experimental bounds. The AdS warping
factor solves this problem, because it pushes the lightest KK ecitations toward the
TeV range, while keeping the W and Z masses light [47]. This in turn means that
the charged-current and neutral-current interactions, at zero momentum, are almost

entirely mediated by the SM gauge bosons.



(b)

Figure 1.2: (a) Deconstruction of the SU(2);,xSU(2)gr xU(1) model on a flat back-
ground and brane kinetic terms on the Planck brane. (b) The same model can be

unfolded to a single chain of SU(2) groups, and a chain of U(1) groups.

Warping scems therefore to be a necessary ingredient for a five-dimensional Hig-
gsless model to meet the experimental contraints on the direct search of heavy gauge
bosons. However, integrating out a large slice of AdSg in the proximity of the Planck
brane leaves an cffective field theory with a nearly flat background, and a kinetic
term localized on one of the boundaries, which “mimics” the warping of the extra-
dimension [56] [57] [58]. In this way we can still work with a flat extra-dimension,
which means that we can work with sines and cosines, rather than Bessel functions,
thereby simplifying the mathematical content of the model. This approach is only
valid as long as the energy is much smaller than the curvature of the AdSs profile,
which lies in the Planck scale, and begins to break down as the energy increases. The

corresponding deconstructed model is shown in Fig. 1.2(a). The brane kinetic terms



force the first SU(2) and U(1) gauge groups to have different couplings. The same
model has been unfolded in Fig. 1.2(b). Notice that the unfolded moose diagram
shows explicitly the equivalence between an SU(2)1,xSU(2)g gauge symmetry in the
bulk, broken to SU(2)giagonal On one brane, and a single SU(2). We will demonstrate
this in section 3.2.

Of course there are more constraints to be considered, other than the p parameter.
If the contribution of the new physics on the low energy observables is approximately
oblique - that is, it does not change the form of the interactions, but only modifies
their relative strength — then it can be parametrized in terms of the Peskin-Takeuchi
S, T, and U variables, where S = T = U = 0 corresponds to the SM [43] [44] [59].
T is directly related to the p parameter, and for models with a custodial symmetry
is zero at tree level. U is usually expected to differ from zero by only a percent of
T, and is therefore negligible. The constraints on the S parameter are usually more
difficult to meet, since a small S often requires the new physics scale to be higher,
which is harmful for unitarity. In Higgsless models from extra-dimension the value
of S depends on the fermion profiles. It is well known that when the matter fields
are localized on the Planck brane, the S parameter is positive, while matter fields
localized on the TeV brane give a negative S value [60]. It is then clear that in order
for S to vanish, the matter fields must be delocalized. This has been proved for a
wide class of Higgsless models [46] [55] [61] [62] [63] [64]. We will return to these
results in chapter 5.

The model of Fig. 1.2(b) can be simplified by reducing the number of U(1) groups
to one, as in Fig. 1.3. By eliminating the chain of U(1) groups, we necessarily in-
troduce interactions which would be non-local in a deconstructed five-dimensional
theory [42] [45]. In fact, in order to maintain gauge invariance, all fermions in the
bulk must couple to the U(1) group with left-handed hypercharge Y;. However from
a purely TS point of view this is perfectly legitimate. This is a first example of what
was mentioned before, némely that TS offers more freedom, in model building, than
the rigid structure of a real extra-dimension.

The SU(2)xSU(2) x U(1) model of Fig. 1.3 is arguably a minimal Higgsless model

10



SU(2) SU(2) SU(2) SU(2) u(l)

N+1

0 1 2 N N+1

Figure 1.3: Moose diagram for an SU(2)xSU(2)"¥ xU(1) Higgsless model. The gauge
couplings of the internal sites, and the ¥ field VEV's are identical, as the underlying
five-dimensional model is translationally invariant. If g, ¢’ < §/V/N + 1, g and ¢’ are
approximately equal to the SM SU(2)xU(1) gauge couplings.

of EWSB, and is the model we will consider in this dissertation. The SU(2) and
U(1) gauge groups on the two edges of the moose chain act approximately as the
SM SU(2)1,xU(1)y, and the SU(2)V gauge group represents approximately the new-
physics contribution. This approximation is valid as long as the the effective SU(2)V
gauge coupling, §/v/N + 1, is large, if compared to the coupling of the first SU(2)
group, g, and the coupling of the U(1) group, ¢’. Then g and g’ have approximately
their SM values. The fermion sector follows the same pattern of the gauge sector.
If matter fields are delocalized, as required by the experimental contraints on the S
parameter, then the SM fermions are mainly, but not exclusively, charged under the
SU(2) and U(1) gauge groups on the chain edges, with SM quantum numbers. The
new, heavy fermions are mainly coupled to the SU(2)N group, with approximately
vector-like couplings [42] [45].

As N — oo, this theory becomes a model from continuum TS: The discrete site
index of Fig. 1.3 becomes a continuous variable, but the non-local couplings of matter
fields disfavour the extra-dimensional interpretation. Despite this, the continuum TS
limit is more convenient for calculational purposes: Recurrence relations and eigen-
value equations become differential equations and transcendental equations, which
are simpler to solve. Therefore, in this dissertation we will carry out most of the
calculations in the continuum limit.

The main source of tension, in Higgsless models of this kind, is between the uni-

11



tarity bounds, and the constraints from EWP data and the top-quark sector. In par-
ticular, a heavy top mass is problematic, if the compactification scale is to be within
the unitarity bounds. In order to solve this problem, two compactification scales are
introduced: one for the gauge sector, and one, higher, for the fermion sector. This
makes the extra-dimensional interpretation even more problematic: It corresponds to
a microscopic breaking of the five-dimensional Lorentz invariance, in addition to the
macroscopic breaking due to compactification. On the other hand, from a discrete
TS standpoint this just corresponds to Yukawa couplings being independent of gauge
couplings [20] [45]. -

This dissertation is organized as it follows. In chapter 2 the unitarity of longitudi-
nal gauge boson scattering amplitudes is analyzed in the SM, as well as the role of the
Higgs boson and the corresponding bounds on its mass. In chapter 3 the role of extra-
dimension as a tool to delay unitarity violation is discussed in details. Deconstructed
models, and TS are then shown to be viable alternatives. The goal of this chapter is
to show how to build theories without Higgs bosons, which are weakly coupled and
unitary up to high energy scales. In chap.ter 4 these concepts are applied to models of
EWSB. We first consider the extra-dimensional SU(2)1,xSU(2)g xU(1) model. Then
we introduce the model which is the object of our study. The gallge sector is an SU(2)
Yang-Mills theory on an extra-dimensional interval, with BCs breaking SU(2) down
to U(1) on one end. In order to obtain the right masses for the SM gauge bosons,
large kinetic terms arc added on both branes, without affecting the delay of unitar-
ity violation. Unitarity upper bounds on the compactification scale are calculated
numerically in terms of the cutoff scale. Deconstruction is then shown to preserve
the important features of the extra-dimensional model, in a familiar four-dimensional
context. In chapter 5 matter fields are coupled to the model in two different ways:
First, with brane-localized fermions, and second, with slightly delocalized fermions.
In both cases the extra-dimensional interpretation is not viéble, because non-local
interactions must be introduced. Therefore, the N — oo limit of the deconstructed
model should be interpreted as a continuum TS. The constraints from the EWP

data are analyzed for both ways of coupling fermions, including lower bounds on the
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mass of the W) and Z; bosons. While the tree-level T parameter is naturally sup-
pressed by custodial isospin in both cases, the bounds on the S parameter can only
be satisfied by the delocalized model, as long as the fermion leakage into the bulk is
appropriately tuned. Also, multiple generations and fermion mixings are shown to
be naturally implemented in the delocalized model. In chapter 6 a heavy top mass
is shown to be unattainable, when the unitarity bounds of gauge boson scattering
amplitudes are imposed. However, from a continuum TS standpoint, the compactifi-
cation scales for the gauge sector and the fermion sector are shown to be independent
quantities. This allows to accommodate the top mass without violating the gauge-
sector unitarity bounds. Unitarity of tf — WZ "L, and experimental constraints on
the right-handed tbW coupling are translated into upper and lower bounds, respec-
tively, for the fermion-sector compactification scale. Finally, in chapter 7 we offer our

conclusions.
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Chapter 2

Unitarity in the Standard Model

Any respectable quantum theory must return probabilities between zero and one. In
scattering theory this requirement is guaranteed by unitarity of the S matrix: The
wavefunctions of scattered particles differ from the wavefunctions of incident particles
by unitary transformations. This forces the partial wave amplitudes to lie on a radius-
one circle in the complex plane. In this chapter we derive the precise formulation of
this constraint, and find its implications for the scattering of longitudinal vector

bosons in the SM.

2.1 Partial Wave Expansion

Let us consider a two-particle elastic scattering process in the spin-0 channel. In the
center-of-mass (COM) frame, this process is equivalent to a one-particle scattering off
a spinless fixed target, and can be described in the context of ordinary one-particle
quantum mechanics.

With all couplings turned off, the total wavefunction is just a plane wave propa-
gating, say, along the z axis. An expansion in spherical waves gives

o0

¥ = eP? = (2J +1) [(=1)7 ™" — 77| Pj(cosf) , (2.1)

2pr =0
where p is the magnitude of the particle momentum in the COM frame, 6 is the

scattering angle, and r is the radial distance from the COM. This expansion is a
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superposition of incoming and outgoing spherical waves, eP" and e'P", respectively.
The scattering center can only affect the outgoing wave. For an elastic scattering, with
no absorption, unitarity of the S matrix implies that the corresponding partial wave
coefficients are multiplied by phase factors, which we denote by e207(p), Therefore,
the total wavefunction is
R J —i 2i6 :
Protal = Sor J§=:0(2J +1) [(=1) 77T — 205 ®)PT] Py (cos) . (2.2)

The scattered wave represents the difference between the outgoing waves in ¥4,

and v,
eiPr e2107(p) _ 1
Yscattered = R Z (2] +1) 2—PJ(0059)
etPr
= TF(P,5)~ (2:3)

where F(p,0) is the scattering amplitude,

F(p,0) Z (2J + 1)< Pj(cosf) . (2.4)
The scattered outgoing flux in a solid angle df?, through a sphere of radius r, is

'L'O|wscattered|27'2d9 = vo|F(p, 9)l2dQ )

where 1, is the outgoing particles speed. This expression is by definition equal to the

product of the scattering cross-section and the incident flux, vy = v;:
volF(p,0)|2dQ = ydo .
Since the collision is elastic, v; = vo, and

dU) 2
il = |F(p,0)2 . (2.5)
(dQ COM, elastic

In quantum field theory, at high energy, with Lorentz-invariant normalization of

the quantum states, equation (2.5) reads

d M(p,6)2
(i) ot o 29)
dQ ) coM, elastic 647 - 4p
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Figure 2.1: The partial wave coefficients of elastic scattering amplitudes are complex
numbers which must lie on the unitarity circle. When a tree-level amplitude — which
is real — reaches +1/2, radiative corrections become as large as the leading order

contribution, forcing the theory to be strongly interacting.

where M (p,8) is the scattering amplitude [65]. Equating the right-hand side of (2.5)
and (2.6), and using (2.4), leads to the partial wave expansion of M(p,0), with the

appropriate normalization factor,

oC
M(p.6) =167 Y_ (2J + 1)ay(p)Py(cosb) (2.7)
J=0
where 28.1(2)
i6y(P) _ 1
ayj(p) = 2——21— . (2.8)

In the complex plane, a j(p) lies on a radius-1/2 circle centered on i/2, the unitarity
circle, as shown in Fig 2.1. Since tree-level scattering amplitudes are real, a j(p) can
only lie on the circle if loop corrections are included. These become more and more
important as the tree-level amplitude increases in magnitude. When the latter reaches
+1/2, radiative corrections become as important as the leading-order contribution.
Therefore, at tree level, either

lasP) <5, (2.9)

N —
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Figure 2.2: Tree-level diagrams for the WZ' T — WE W[ elastic scattering, in the
SM.

or the theory must be strongly interacting.

2.2 Longitudinal Gauge Boson Scattering in the
Standard Model

We now apply last section results to the scattering amplitude of longitudinal W’
bosons in the SM. As before, we consider the scattering in the COM frame, with
initial momenta along the z-axis. The four momenta, for the scattering particles and
the scattered particles, are, respectively, (F,0,0,+p) and (E,0,+psinf, +pcos®),
where F = m The polarization vectors are respectively (p,0,0,+FE)/my
and (p,0,+Fsinf,+E cosf)/mys. At tree level, in unitary gauge, there are seven
diagrams, as shown in Figure 2.2. A simple power counting shows that the amplitude
can diverge as badly as (E/my)?, for large values of E/myy, because each polariza-
tion vector grows like E/my, and longitudinal gauge boson propagators do not fall

off with energy.
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The contact interaction, plus the photon and Z exchanges give the amplitude

2
MBauge 9_4 [p2E2(—2 + 6cosf) — E* sin? 9]
an
2 2 29 .,
o [e_ + LM] (~4p2(p? - 3E%)?) cos 6
‘nlW S S — mz
1 [e2 g2 cos? Ow 2/ 9 2 2 2
Yo [T o) [ (0 (B - 2% o)

—2p?(1 + cos ) (2E2 — p? — E2 cos 0)2] , (2.10)

where s = 4E2, and t = —2p%(1 — cos ). In the limit of large E /my, this expression

becomes

)pgauge

g21 +cosf [ E \? N g23 — 2cos? Oy (1 — cos 8)2 + cos? 6
2 4 cos? By (1 — cosb)

+ O((mw/E)?) . (2.11)

my

The term proportional to (E/myy)* vanishes because of gauge invariance, which
guarantees the special relation e2 = g2 sin? 0w between different coupling constants.
Nonetheless the term proportional to (E/my)? does not cancel. Therefore, if only
interactions from the gauge sector were to be included, the J = 0 partial wave would

violate unitarity at

Vi~ Bmmwsnbw oy (2.12)
e

and the J = 1 partial wave would violate unitarity at /s ~ 2.9 TeV.
However there are two more diagrams in Fig.2.2 which have not been considered

yet, the Higgs exchanges. Their contribution to the scattering amplitude is

A[Higgs _ g2 (s = 2m‘24,)2 N (t+ 2m%l" cos 0)2 213
, T T am2 s — m2 T2 . .
w H H
For Ez,m%; > m%v this becomes
2
MHiges o _g21 +;3059 ( E )
mw
2.2
g my S t
I + : 2.14
4 771%‘/ [5 — rn%{ t — "L%-[] ( )

A comparison of (2.14) and (2.11) shows that the cocfficients of the (E/my;)? term
exactly cancel. The J = 0 partial wave amplitude for the WL"WE — WE'H'E
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Figure 2.3: J = 0 partial wave amplitude for the W E Wi — W}f W scattering, with
(blue) and without (dashed red) the contribution of the Higgs boson, for my =400
GeV. Without the Higgs boson, the amplitude grows like s, leading to unitarity viola-
tion at ~1.6 TeV. The Higgs exchanges unitarize the amplitude by exactly canceling

the energy growing terms.

scattering is then shown in Fig 2.3, with and without the Higgs boson contribution,
for mg =400 GeV. (A small m,=1 GeV photon mass has been included, in order to
regulate the singularity in the t-channel. This is inconsequential in the high energy
region in which we are interested.) It is evident that the Higgs boson exchanges are
essential to maintain unitarity in the TeV range. Notice that near the Higgs pole the
amplitude is tamed by finite-width effects, which are sufficient to keep ag below 1/2.

The cancellation of the quadratically divergent term is not enough to prevent uni-
tarity violation at sufficiently high energies, since the term proportional to (my:/E )0
can be of order one. The contributions to the J = 0 partial wave of the con-
tact interaction, plus the photon and Z exchanges, give an O ((mW / E)O) term of
order (¢g2/327)log(F/mw), and is therefore safe for non-exponentially large ener-

gies. (The logarithmic growth comes from the integration near cosf = 1, where
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Figure 2.4: J = 0 partial wave amplitude for the WZ W, — WZ’ W[ scattering in
the SM, for my = 0.6 TeV (green), well below the critical value (2.18), and mpy =
1 TeV (red), above the critical value. In the first case unitarity is satisfied for all
non-exponentially large energies. In the second case unitarity is already violated at

energies above the Higgs pole.

m2Z/t becomes large, and high energy regions become important.) On the other
hand, the contribution of the Higgs exchanges give an O ((mW / E)O) term of order
(92/ 327r)(m%, / m%V), and can be large, depending on the Higgs boson mass. There-
fore, for s,m%{ > m%v,m?Z, the W;Wi — WZW [ scattering amplitude is to a

good approximation given by the second term of (2.14),

MWFW: - Wiw:) oy [ u ! ] (2.15)
TN LWL = WW ) == =t | > :
4 my. |8 —my t mey
and the J = 0 partial wave amplitude is
2 2 2 2
aWiwp - winw)~ -2 TH o, TH __TH (14 5 )| .
64n myy, s—my s m
(2.16)
In the limit of large energy, this amplitude approaches a constant value:
2 2
S I vtw—y ~ 9 my
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Then unitarity demands

4 e 1 7
< ﬁm“e SI6W 0.9 Tev . (2.18)

my

If the Higgs mass is well below this critical value, the J = 0 amplitude satisfies the

unitarity bound at all (non-exponentially large) energies. If the Higgs mass attains

or exceeds the critical value, unitarity is already violated at energies above the Higgs
pole, as shown in Fig.2.4.

It is possible to refine the bound (2.18) by considering the neutral four-channel

system WELWE, (1/vV2)ZyZy, (1/vV/2)HH, and HZ[, rather than just WI'J*WL" (10].

Then (2.17) is replaced by a 4x4 matrix:

1 1
1 % 5 0
2 92 1 3 1 0
a=-2TH|VE & 1 (2.19)
321 miy, 7l_ % % 0
8
o 0 0 3

This scattering matrix has a surprising simple eigenchannel structure. The largest
eigenvalue corresponds to the elastic scattering of the channel 2WE’ Wp+Zp+2Z+
HH, and leads to the most stringent unitarity bound on the Higgs mass:

my < 8ﬁm‘;Ve‘°’m0W ~ 0.6 TeV . (2.20)

At this point, two questions naturally arise: (i) Why do terms growing like E2
exactly cancel out from longitudinal vector boson scattering amplitudes ? (ii) What
makes the four neutral-channel system WZ’WE ,(1/V2)Z1Z1, (1/V2)HH,and HZ],
so special and so simple, compared to other two-body neutral channels ? The answer
to these questions can be found in the Goldstone boson equivalence theorem, which
relates amplitudes for absorption and emission of longitudinal vector bosons, to am-
plitudes for absorption and emission of the corresponding eaten Goldstone bosons.

This will be the subject of the next section.
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Figure 2.5: Tree-level diagrams for the 7*7~ — 777~ scattering, in the SM.

2.3 Unitarity and the Equivalence Theorem

* are the Goldstone

Consider the 777~ — 777~ scattering in the SM, where 7
bosons eaten by the W= boson. At tree level there are seven diagrams, which are
shown in Fig. 2.5. For s, m%{ > m%v, m2Z, the interactions from the Higgs sector are
dominant, because the corresponding couplings are enhanced by a factor m%{ /m%,v.
Therefore, the amplitude is approximately given by the first three diagrams. In a

general R¢ gauge, and ignoring the Goldstone boson masses, we obtain

2.2
m S t
. TH -+

2.21
4 m%V s—my - m%l ( )

MrTn” 7777 )~ -

in agreement with (2.15). This is an expected result. In fact, the Goldstone boson
equivalence theorem tells us that the amplitudes for absorption or emission of a longi-
tudinal gauge boson approach, at high energies, the same amplitudes with the gauge
boson replaced by its eaten Goldstone boson [9] [11] [13] [14] [15] [16] [17] [18] [19].
We are therefore in a position to answer the two questions posed at the end of
sec. 2.2. (i) The cancellation of the terms growing like (E/my)? occurs because
at high energy longitudinal gauge boson scattering amplitudes become identical to
Goldstone boson scattering amplitudes. These cannot steadily grow with energy, as a

simple power counting shows. In fact, in a general R¢ gauge, gauge boson propagators
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Figure 2.6: Moose diagram for the GWS model with the Higgs boson integrated out.

fall off with energy, and — working in a linear representation of the gauge group -
the coupling with the Goldstone bosons involves only one power of momentum. Then
gauge boson exchange amplitudes approach a constant value, of order g2. In the Higgs
sector, the coupling Higgs-Goldstone does not depend on momentum, thus the Higgs
exchanges fall off with energy, for /s > mpy. Therefore, as the energy increases,
only the contact interaction — which is constant, and of order g2m%{ /m%‘, - becomes
relevant. (i) The four channels W/ W, (1/v2)ZZy, (1/v2)HH, and HZ], have a
simple eigenchannel structure because they correspond, via the equivalence theorem,
to the Higgs-sector neutral channels: w*r~, (1/v/2)7%°, (1/v2)HH, and Hx°,
where 70 is the Goldstone boson eaten by the Z. The simplicity of the scattering
matrix (2.19) is then a consequence of the underlying global symmetries of the Higgs
sector.

Of course the equivalence theorem by itself is not enough to guarantee the can-
cellation of the terms growing like (E/mys)%: The key ingredient here is the Higgs
boson. This has been shown explicitly in sec. 2.2, and can be seen also using the
equivalence theorem. If we take the GWS model, and integrate out the Higgs boson,
what is left is an SU(2);, xSU(2)g NLSM whose SU(2),xU(1) part is gauged. The
corresponding moose diagram is shown in Fig. 2.6. At low external momenta, and

before the gauge couplings are turned on, the Goldstone boson Lagrangian is
2
‘ll
['Goldstone = 'ZTr [8”):3“2] s (2-22)
where v is the SM VEV, and

¥ = exp (in%%/v). (2.23)
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Figure 2.7: Diagrams for the 777~ — 7+ 7~ scattering in the SM without the Higgs

boson: (a) Tree-level amplitude. (b) One-loop corrections.

The 7%’s are the usual SM Goldstone bosons, and the 0%’s are the Pauli matrices.
Expanding the exponential, the first non-zero interacting term is a quartic interaction:

@) = 61%[((71’"‘)2(871'_)2 + (@)@t = 2ntn(0nt)(On~ ))

- 2 ((67r"')(c")71'")(71’0)2 +rtr(0n9)? - (87T+)7r_(87r0)7r0) ] (2.24)

+

The tree-level 777~ — 77~ scattering is only given by a contact interaction,

Fig.2.7(a). The corresponding amplitude is

+ - +_—y u
A/I(W mT — T 7 ) = —‘U_2
2
l1+cosb [ F
= g2—2 (—-mw) , (2.25)

in agreement with the leading term of (2.11): The equivalence theorem still works.
But the term growing like (E/my)? does not cancel. The difference, with the Higgs
sector of the SM, is in the couplings, which involve derivatives of the Goldstone
fields, and thus the external momenta. This happens because a model with only
Goldstone bosons and no physical scalars is necessarily in a non linear realization of
the symmetry group. Then the Lagrangian can only be built out of derivative terms,
because terms without derivatives vanish. Therefore, in an SU(2)x U(1) gauge theory
the Higgs boson is a necessary ingredient for unitarity.

This example sheds some light on the connection between unitarity violation and
non-renormalizability. As the tree-level amplitude grows like E2, the one-loop cor-

rections, Fig.2.7(b), grow like E*, by simple power counting. Then, at the unitarity
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violation scale the loop corrections become as important as. the leading order con-
tribution, and the perturbative expansion breaks down. Moreover, as the external
momenta grow, higher order terms must be added to (2.22), and new terms in the
expansion of the ¥ ficld must be considered, because they ccase to be negligible.
Thus, as the energy increases, the non renormalizable operators become important.
Above the unitarity violation scale a new theory must take over. Such theory must
reproduce the low-energy physics of the SU(3)co10r XSU(2)1, x U(1) model, and restore

unitarity, or delay unitarity violation to higher energy scales.
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Chapter 3

Unitarity without the Higgs Boson

The non-linearly realized SU(2),xU(1)y gauge theory has been shown to violate
unitarity of longitudinal gauge boson scattering amplitudes at few TeV’s. In order
to restore unitarity, or delay unitarity violation to higher energy scales, new particles
must come into play, and mediate interactions which cancel the bad high energy
behavior. In the SM, the Higgs boson suffices to restore unitarity at (almost) all
energics. Recently, models with one compactified extra-dimension have been shown
to violate unitarity at energy scales higher than the customary limit of Dicus-Mathur
or Lee-Quigg-Thacker. The violation delay is mediated by a tower of massive gauge
bosons, rather than a scalar particle.

In this chapter the physics of one compactified extra-dimension is introduced and
discussed. From a four-dimensional standpoint, the extra-dimensional compactifica-
tion breaks a countable infinity of gauge symmetries, with a corresponding generation
of towers of Goldstone bosons and massive gauge bosons. The residual gauge symme-
try can be further broken by an appropriate choice of BCs. Gauge symmetry breaking
via compactification and BCs is shown to be soft (spontaneous), rather than hard (ex-
plicit), for all BCs consistent with the variational principle. Deconstructed models,
where the extra-dimension is put on a lattice, and models from theory space are

introduced as viable alternatives.
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3.1 Compactified Extra-Dimension

The structure of our universe may be larger than the ordinary space-time four dimen-
sions. There might be a compactified spatial extra-dimension, substantially larger
than the Planck scale, but small enough to elude detection in the past generation
of hadron and linear colliders [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32].
Being compact, the fifth-dimension is usually taken to be an interval. For instance,
a circular fifth-dimension of radius R can be mapped onto a [0,27R] interval with
periodic BCs. As a second example, if a Zs symmetry is imposed on the circle, the
fifth-dimension can be conveniently represented on a [0, 7 R] interval, with BCs which
follow from the field transformations under Zs.

In order to maintain generality, it is therefore convenient to specify a gauge theory
on a [0, 7 R] interval, where R is an arbitrary length, and derive the most general class
of allowed BCs!. For an arbitrary gauge group G, the action of a Yang-Mills theory

on a flat background is

R 1
Sga.uge = /d4l'/ dz’| — —QFxINFa}uN

1 5\ 2
- B, A% + £05 A% ] , (3.1)
2¢2¢ ( K )
where
Fin = Op A% — OnASy + 198,45, . (3.2)

Here a is the gauge index, f abe the structure constants, and g5 the five-dimensional
gauge coupling, with mass dimension -1/2. Notice that with this normalization, the
gauge fields have mass dimension 1, as in 4D. The five-dimensional coordinates are
labeled by M, N € (u,5), with u € (0,1,2.3), and the metric tensor — assuming
a flat background - is Gyn = diag(l,-1,-1,-1,-1). The gauge-fixing term we have
chosen explicitly violates the five-dimensional gauge invariance. However the latter
is alrcady broken by compactification, which forces the Az and A$ ficlds to behave
differently. It is therefore convenient to get rid of the 65Az6”Ag mixing term from

FﬁsF““5, and the gauge-fixing term of (3.1) is especially designed for this purpose.

1This and the next two sections follow closely the content of Ref. [36].
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The variation of the action (3.1) leads to the equations of motion (EOM)
dpg MY _ pobepbMv ge %auaoAg _ 078542 = 0,
87 Fly — fAFS A% 4 850, A%7 — €02A2 =0 . (3.3)
However the boundary pieces must vanish as well. This leads to the requirement
[Fos6 AY + (05 A% — €05 40)5,40] . (3.4)

Periodic BCs (with period 7R) clearly satisfy (3.4). If the fields are not periodic,
(3.4) implies that the equations

Fl(/156‘4al/ = 0 )
(Bg A% — €85 AZ)6AS =0 (3.5)

hold at 2% = 0 and z° = 7 R. For instance, if the extra-dimension is a radius-R circle,

and a Z symmetry is imposed on the gauge fields [66] [67],
A%(z,2%) = A%(z,-2%) | Al(z,2%) = —Ad(z, -2 , (3.6)

the independent degrees of freedom lie on only one half of the circle, say, the upper

half. Then the BCs on the [0, 7 R] interval are

95 A2 = 0
57w 5 =0,7R. (3.7)
A2 =0

It is not difficult to prove that (3.7) satisfies (3.5). However the requirement (3.5)
allows for a broader set of BCs, even those which have no interpretation in terms of an

orbifolded circle. There are three choices of BCs which respect the four-dimensional

Lorentz invariance:

A, =0, A§ = const. (3.8)
AT =0, 3548 =0 (3.9)
Fjj5 =0, A§ = const. . (3.10)

Notice that the orbifold BCs (3.7) correspond to the choice (3.10), although the
condition p5 = 0 is satisfied in a trivial way. In addition to (3.8)-(3.10), there are

28



also more interesting choices in which the sum of different terms in (3.5) vanish, rather
than each individual term. We will return to this points later in this section.

Although the EOM (3.3) are uniquely determined by the principle of least action,
the BCs are arbitrary, and correspond to different physical scenarios. An illuminating
analogy is given by the physics of a vibrating rod. The wave equation governs the
displacements inside the rod, but the BCs determine what kind of motion can actually
take place. If both ends of the rod are fixed, the displacement at the boundaries is
zero, which is analogous to A, = 0 in the extra-dimensional model. However if only
one end is fixed, the behavior at the loose end is governed by a non-trivial equation,
which is analogous to F;}5 =0.

We are interested in the four-dimensional implications of the five-dimensional
theory. It is then convenient to expand the five-dimensional gauge fields in KK modes,
that is, in eigenfunctions of —-ﬁg = 8§ satisfying the chosen BCs. For simplicity, we

first consider BCs which do not depend on the gauge index a. Then we can write
4 S5 |4
AZ(I,.T") = Z fn(.r")A?w(.T) ,
n=0
_ oC
Ad(z,2%) = ¥ on(2®)7l(z) , (3.11)
=0

where z is a four-dimensional coordinate, and the expansion coeflicients are obviously

r-dependent. The eigenfunctions fn(z°) and ¢n, (z°) satisfy the equations

r
n(z”)

om(z°)

—m2 fn(z5) |

—M26,(z%) (3.12)

and the BCs. These requirements determine my,, Ay, jn(:r5), and ¢n($5) up to
a normalization constant for the wavefunctions. A canonical normalization of the

four-dimensional fields requires

R 5 5 5 2
b 4z (@) fn(2®) = 686 .
R o5 5 5y _ 2
/(; dz°dn(z°)pm(z°) = 956nm - (3.13)

Inserting (3.11) in the free part of the action (3.1), and using (3.12) and (3.13), leads
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to

x.
Sf“’e = Z /fr[%Agm (9’“132 - (1 - %) 1o +gl“’7n%) Agw
n=0

1 a 1 a
+§(8,,7rn)2 - 551\,1,%(#,,)2] . (3.14)

This action describes a tower of mass-m, gauge bosons, and a tower of mass-\/£ My
Goldstone bosons. The Goldstone bosons can be removed from (3.14) by going to
unitary gauge, £ — oo, except for the massless mode, if there is any. Since the
natural size for the mass spacing is 1/R, as R — oo all gauge boson masses go to
zcero. This shows that compactification — that is, the acquisition of a finite value for
R - acts as a “geometrical” Higgs mechanism, which breaks a countable infinity of
gauge symmetries, with consequent generation of a tower of massive gauge bosons,
and a tower of eaten Goldstone bosons.

If the BCs on A§ are 05A% = 0 on both ends, then the lowest KK mode in the
expansion of A? is a physical massless scalar field, 7§, in the adjoint representation
of the gauge group. As we shall see later in this chapter, such field is not essential for
unitarity. Moreover, it does not behave as a Higgs boson, because it does not have
the appropriate quantum numbers. Therefore, in the following we will always impose

BCs which do not allow for such massless state to exist.

3.2 Symmetry Breaking by Boundary Conditions

We have just seen that compactification is a symmetry-breaking mechanism. How-
ever compactification cannot break the symmetries which are localized on the four-
dimensional branes. Therefore, if the gauge group G is unbroken on both branes,
then the four-dimensional theory will be G-invariant, and the mass of the lowest KK
mode will be zero, my = 0. As an example, consider the gauge group SU(2), and

impose the BCs

, 2 =0,7R . (3.15)
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Notice that these are the orbifold BCs (3.7). Since only the derivative of Aj(z, %) is
fixed by (3.15), the gauge fields can have any value on the boundaries. This means
that SU(2) is unbroken on both branes, and therefore also in the four-dimensional
theory. The BCs on A% do not allow for a massless scalar, thus in unitary gauge we

only have to consider Aj;. The solution of (3.12) for fn(z9) is
Ja(z%) = Ay cos(mnz®) + By sin(maz®) .
The BCs (3.15) imply By, = 0 and sin(mp7R) = 0, whence

n=012.... (3.16)

mn =

As expected, there is a triplet of massless gauge bosons, due to the unbroken SU(2).
Notice that the wavefunction of the massless fields is flat, which means that the corre-
sponding particles have equal probability of being anywhere, in the extra-dimensional
interval.

A more interesting case is when only a subgroup of G is unbroken on the two
branes. Then the four-dimensional theory will not be invariant under the full group
G, but only under the subgroup which is unbroken on both branes. In other words,
BCs can be used to break four-dimensional gauge symmetries. In order to better

understand this concept, we consider three examples of symmetry breaking via BCs.

(1) G=SU(2), and BCs breaking SU(2) down to U(1) at one end of the interval:

0-A% =0 4
oTH ' } ,z° P =7R. (3.17)

3457 =0, A3 =0

1,2 _ 3 _
Ay =0, 854, =0, .
a-0

These BCs can be seen as deriving from a Zy x Zy orbifold on a radius-2R circle,
A/t(l" _15) = Au(xalj) .
As(z, ~2%) = —As(z,2%)
Au(z, 7R+ 2% = PA,(z, 7R — 2%)P71
As(z, TR+ 1% = —PAs(z, 7R — 2%)P71 | (3.18)
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where P = diag(1, —1) is the orbifold projection operator. The BCs (3.17) do not
allow for a massless scalar, thus in unitary gauge A% = 0, and we can focus on the
four-dimensional components only.

There are two different KK towers, one for the charged sector, and one for the

neutral sector. The KK expansions are?

Af(m,;rs) = z fn(:L‘s)W’ni#(:r) ,

Zgn )Znpu(z) (3.19)

The eigenfunctions are as usual combinations of sines and cosines, and the BCs (3.17)

lead to the mass equations.

cos(mpmR) =

0
sin(MpmR) = 0, (3.20)

Here and in the examples below m, (Mp) is the mass of the n-th charged-boson
(neutral-boson). The solutions are
n—1/2

R
Mp== ,n=012.... (3.21)

mnp = ,'n=1,2,...,

The lowest mode of the charged KK tower is a massive particle. However the lowest
mode of the neutral tower is a massless particle: It is the massless gauge boson of the

unbroken U(1) symmetry. Finally, the normalized wavefunctions are

2g2 .
fn(x5) = &cos(mnr") ,

TR

gn(2®) = \/ i‘% cos(Mna®) (3.22)

which include the flat wavefunction of the massless neutral boson, 90(15) = const..

2Here and in the following, the superscript “+” in A% refers to the SU(2) linear combination

(A' FiA?)/V2.
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(2) G=S0(4)~SU(2),xSU(2)R, and BCs breaking SU(2)g down to U(1) at one
end of the interval, and SO(4) down to SU(2)gjagonal &t the other end. In addition

to the gauge fields A7, and A%,,, it is convenient to define A% ,, by

A + A%
A%, = 2LM* ZRM 393
V2 (3.23)

Then the BCs read
a _— —
8514141—0,/4%5—0, Aa _0 B_Aa _O
A1,2_0 1.2 ,_5_0 —u Vo Yol_5 = Y, 5 R
Ry — ’65AR5_0’ y L= , " =mHR.

9542, =0, A%; =0
d54%, =0, Af =0 v o
(3.24)

These BCs do not allow for a zero-mode scalar, thus in unitary gauge A5 = A% = 0.

As in example (1), there is a charged KK tower, and a neutral KK tower:

Af# T, z° z fin(z (),
n=0

00
A3, (2,25 = Y 91n(2%) Znp(z)

n—O
AR/; , 1' Z fRn nu( ) 3
ARu . z° Z 9Rn(z Znu ) (3.25)

The BCs (3.24) lead to the mass equations

cos(2mpmR) = 0,

sin(2MpmR) = 0. (3.26)
The solutions are
n—1/2
mp = SR n=12,...,
n
M"—'gﬁ ,n=0.12..., (3.27)

and the normalized wavefunctions are

2
Jin(a®) = | & cos(mna®)
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SU(2),
SU@)
0 TR
s |
0 1r'R 2rR

Figure 3.1: Equivalence between the SO(4)~SU(2), xSU(2)g gauge theory on a five-
dimensional interval, with SO(4) broken down to SU(2)giagonal at one end, and a
single SU(2) with double interval length.

2
= g'— [
fRa(2®) = V;T—'-’ﬁcos (mn(27rR - x")) ,
5 gg r
91n(z®) = || 22 cos(Mna®) |
[4 gg 5
JES 3 9] 4
Gprn (%) = ﬁcos(/\ln(%rli’,—.r ) - (3.28)

Comparing (3.26)-(3.27) with (3.20)-(3.21), we observe that model (2) can be obtained
from model (1) by replacing R with 2R. In fact the boundary 7R acts as a mirror:
The SU(2)r wavefunctions are just the mirror images of the SU(2)}, wavefunctions,
as a comparison between (3.28) and (3.22) shows explicitly. Then we arrive at the
conclusion that an SU(2), xSU(2)R gauge group in the bulk, with SU(2);, xSU(2)g
broken down to SU(2)gjagonal 2t one end of the interval, is equivalent to a single SU(2)

in a bulk with double interval length. This is schematically shown in Fig. 3.1 .

(3) G=SO(4)xU(1)~SU(2),xSU(2)r xU(1), BCs breaking SU(2)g xU(1) to U(1)
at one end of the interval, and SO(4) to SU(2)gjagonal at the other end. Defining the
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A% fields as in (3.23), the BCs are

8543, =0, Af; =0,
12 _ 12 _
Apa =0, 9A[ =0,

, 0 =0
A%, —Bu=0, 85(A}s— Bs) =0,
B5(98 A%y, +98Bu) =0, g2 A%s +¢2B5 =0
A%, =0, 05A%5=0,
954%, =0, A% =0, ¢ P =7R. (3.29)

O5B, =0, Bs=0
Once again the gauge-field fifth components can be transformed away. As in models
(1) and (2) there is a charged-boson KK tower, which is identical to the one of model

(2), and a neutral-boson KK tower. The KK expansions are
Afu(e2° z f1n(@®)Wii(@) |

AL# , -77 E gLn Znu )

AR# T, 17 Z fRn ( ) )
A%M(z,z Z 9Rn(T an(:r)

B (z, z° Z hn(z Z,,ﬂ 7). (3.30)
The BCs (3.29) lead to the mass equations

cos(2mpmR) = 0

tan(MpwR) = 1+

(3.31)
The solutions are

-1/2
mn=n2R/ ,n=12...

0 n=0

My = 2%{ —arctan,/1+2g5/g5+n—1) n=13,5,... , (3.32)
TIR ——arctan\/1+2g5/go+n> n=24,86,...

and the normalized wavefunctions are
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fin(2®) = \/g:—RCOS(mnx‘r’) ,
s

cos (mn(27rR 5)) ,

1 9595

g9r0(z®) =
ViR /g2 + 295
2 g5 COS(Mn.TS)

5 = >1
91n(2”) R \/;2_,_2!]/2 2cos(MpmR)’ T
' 9590
9ro(z
WV 93 + 292
cos (Myn(27R — x°
9Rn(®) = - iR 2'('5 - g"(M = )),nZI.
g \/g5+2g5 cos(MnpmR)
5 1 9595
ho(z°) = 2
v \/95 + 29
hn(z®) = ‘/ cos M (rR—-z%), n>1. (3.33)

In all these examples there is an unbroken U(1) symmetry, and therefore a massless
gauge boson. However, from a purely four-dimensional standpoint, it is not clear yet
what symmetry is actually broken down to U(1). A better understanding can be
achieved by putting the extra-dimensional interval on a lattice: The corresponding
model will then be purely four-dimensional, with a larger symmetry group, but also
with a clear symmetry breaking pattern. We will come back to this point in sec. 3.5.
Also, we still have to show that symmetry breaking via compactification and BCs is
soft (spontaneous), rather than hard (explicit). In other words, we must show that the
symmetry-breaking mechanism preserves the special relation between gauge couplings
which guarantees the cancellation of the energy-growing terms, in longitudinal gauge

boson scattering amplitudes. This will be the subject of the next section.
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Figure 3.2: Diagrams contributing to the elastic scattering A%Af, — A,‘;Ag: Contact

interaction plus s-channel, t-channel, and u-channel exchanges.
3.3 Unitarity in Extra-Dimension

In the last section we have seen that BCs may lead to different symmetry breaking
patterns. We now want to show that symmetry breaking via compactification and
BCs is soft. In other words, we want to show that the terms growing like E4 and
E2, in longitudinal gauge boson scattering amplitudes, exactly vanish when the BCs
satisfy (3.5).
Let us consider the elastic scattering amplitude for the process A?,Ag — A A;j,.
In general we expect four diagrams, as shown in Fig.3.2: The four-point interaction,
plus s, t, and u exchanges of KK modes. We will assume that the external modes
satisfy the same BCs, but we will not assume this for the exchanged modes. At high
energy, the scattering amplitude can be expanded in powers of E/my, where my, is
the A% mass:
M= MW (3)4 + MO (3)2 + MO+ 0 ((ma/E)?) . (3.34)
mp mp
It might seem inappropriate to formally expand the amplitude in powers of E/m,,
when for a given energy F there is an infinite number of exchanged KK modes whose

mass is larger than E, and the series is potentially divergent. On the other hand,
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imposing a sharp cutoff on the spectrum would explicitly break the gauge invariance.
However such a hard breaking would have little effect on the scattering amplitudes,
because the couplings with the heavy KK modes are suppressed. This can be seen by
considering the higher-order gauge-invariant operators which result from integrating
out the KK modes above a spectrum cutoff A. In D dimensions, an example of such
operators is
A(;;_D(FAIN):} , (3.35)

where we are still using the normalization of (3.1), with —1/ (4g2D) multiplying the
kinetic term: Then (Fjsx)? has dimension 6, whence the AS=D factor in the denom-
inator of (3.35). Alternatively, we can see that this operator contains three gauge
fields, so if it comes from loops of heavy KK modes it should contain three powers
of the coupling in canonical normalization, and zero powers in the normalization of
(3.1).

We would like to compare the contribution of the (Fjysn)3 and (Fpsn)2 operators
to the A%Afl — A% A9 scattering amplitude. The ordinary (Fpsn)2 operator gives a
contribution of order

9h(ER)* . (3.36)

This can be seen from the four-point interaction: There are two powers of the cou-
pling, and four polarization vectors, each carrying a power of E/m, ~ ER.

The contribution of (Fasn)3 can potentially scale like ES. However this contribu-
tion comes from two factors of 8, A, — 9, A, and two factors of the gauge fields. This
implies that two of the polarization vectors appear in the combination pye, — puey,
which, after substitution in the scattering amplitude, turns out to give a contribu-
tion proportional to the mass of the external gauge bosons, rather than growing with
)3

energy. Therefore, the (Fpspn)° term gives a contribution of order

‘7}1) 2
A*G_DE , (3.37)

where two powers of gp come from the ¢, 4, — 9, A, terms, and the remaining two

powers come from the quadratic term. The ratio between the (Fasn)3 and (Fyn)?
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contributions is 0
9p - 93
AS-DE2R4 (AR)G—D(ER)2 :
where we scaled gQD as ggRD ~4. For E> 1/R, AR > 1, and D < 6, the contribution

(3.38)

from the large-n KK modes is suppressed. This remains true also when the non-trivial
cancellation of the (ER)* term in (3.36) is taken into account, as long as AR > 1 and
D < 6. For a five-dimensional theory AR can be as large as 2473 [68].

In practice we can therefore extend the series of virtual KK modes to infinity: It
is just a simple way to preserve the gauge invariance. Then we obtain the following

coefficients for the expansion (3.34):

M@ = (g?m,m - ngmk) [(3 + 6.cos 6 — cos? g) fabe pede
k
+2(3 — cos? G)f“‘cefbde] . (3.39)

M@ = — pace pbde (493mm% - s}jg?mw,%>
k

mn

! cabe rede | 4 2 2 2 g2
- mfa fce[4ynnnn7”n_3§gnnk1\lk

+ (IQg?l,,nynm% + Zgznk(Bm% - 16m%)) cos 0} ,
k

(3.40)

where g2, is the contact-interaction coupling, g, is the coupling of the external
modes to the k-th exchanged KK mode, and M, is the mass of the k-th exchanged KK
mode. Notice that the KK indices should be interpreted as double indices, including
both KK and color index, e.g., k — (k,e). Since the external modes are assumed to
satisfy the same BCs, the KK index n is color-blind. In the expression for M 2), the
Jacobi identity on the structure constants has been used. This requires summations
like 3 g;'ll,’fk or Y gg?fk(Mif )2 to be independent of the color index e, which will be

confirmed below.

If g20n = Sk gfmk. M@ cancels, and M(2) becomes

i . 90
M® = — (493n,nnm‘£ - 3293,1k./\1£) (£ 72 — sin® 2 oo gty - (3.41)
n k
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Therefore, the conditions for the cancellation of E4 and E? terms are

2 Z
gnnnn = gyzlnk 3 (342)
k

491%nnnn1121 = 3291217;};1”3 . (3.43)
k

In terms of the wavefunctions, the condition (3.42) reads

7R

- TR P R = 3 [4
[dad e = [T e} [T def RReD AR Daned) . 34)
k

where f, and g, are the wavefunctions of the external modes and the exchanged
modes, respectively. This condition is indeed satisfied for any set of BCs which
guarantee the hermiticity of the 6% operator, because in such case the wavefunctions
gk satisfy the completeness relation 3 i gx(y)gr(z) = 8(y — 2), which immediately

implies (3.44). The Bg operator is hermitian for a large class of “mixed” BCs,
95A%(0.7R) = V2 pAL(0,7R) , (3.45)

where VO‘I,fr r = 0 corresponds von Neumann BCs , and VO";’r R = 0o corresponds
Dirichlet BCs. The BCs (3.8)-(3.10) are indeed either of the Dirichlet or the von
Neumann type.3

Since (3.42) is satisfied, the condition for the cancellation of the £? terms is (3.43),

or, in terms of the wavefunctions,

3o MR [k [ ek 1202 Do ah) = amd [ dxd fhh)
¢ (3.46)
Using the equations of motion f)g,fn = —m% fn and (’)gyk = -Mkz.gk, integrating by
parts, and using the completeness relation, it is not difficult to show that (3.46) is
satisfied up to contact terms like [f3f210%, [f24,)7%, and [fnf}gx)5F, which vanish
for Dirichlet or von Neumann BCs. Therefore, we arrive at the conclusion that the
BCs (3.8)-(3.10) guarantee the cancellation of both E4 and E? terms in longitudinal

gauge boson scattering amplitudes. Notice that mixed BCs, eq. (3.45), only insure

3Notice that (3.10) is a von Neumann BC in unitary gauge, A% = 0, or for A2 vanishing on the

boundaries.
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the cancellation of the E* terms, but the E2 terms are in general non-zero. In fact
mixed BCs can be obtained by including brane mass terms for the gauge fields, which
explicitly break the gauge invariance. A brane localized Higgs field would then be
necessary to cancel the bad high energy behavior.

The cancellation of the E4 and E? terms delays unitarity violation to higher
energy scales rather than restoring unitarity at all energies. In fact even after the
cancellation there is still a logarithmic growth in the partial wave amplitudes, which
becomes more and more important as the number of the exchanged KK modes is
allowed to increase. The high energy behavior will be analyzed in chapter 4 for a
specific model of EWSB. However the scale of unitarity violation can be estimated
by taking the extra-dimension to be infinite in size, because the high energy limit
corresponds to distances short compared to the interval length. Then the only mass
scaleis 1/ gg, and we therefore expect unitarity to be violated at energy scales of order

1/g2 times a numerical factor [34] [37] [38].

3.4 Unitarity and the KK Equivalence Theorem

In section 3.3 we have seen that the terms growing like E4 and E2, in longitudinal
gauge boson scattering amplitudes, exactly vanish for BCs consistent with the vari-
ational principle. This can be seen also by using the Goldstone boson equivalence
theorem. In a five-dimensional theory the Goldstone bosons are the KK excitations of
the gauge field fifth component. This interacts with the four-dimensional components

via cubic and quartic terms in the action (3.1):
Sgauge ) /d41/ dl‘ [_.__Fa Faua]
/d4 / dr [fabc (aul - 05 4(1) Ab“Ag

22 Lo oAb ag AH Ag] :

(3.47)
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A quick dimensional analysis shows that the Goldstone boson scattering amplitudes
cannot grow with energy, because each cubic vertex carries only one power of mo-
mentum.

However we have seen in section 3.3 that in longitudinal gauge boson scattering
amplitudes the term growing like E2 only cancels for BCs consistent with the varia-
tional principle. (While the term growing like E4 cancels for a broader set of BCs.)
On the other hand we have just seen that the Goldstone boson scattering amplitudes
cannot grow like E2, by simply power counting. This again proves that symmetry
breaking via BCs which are not consistent with with the variational principle is not
soft, and the equivalence theorem does not apply.

It is not our intention to give here a proof of the KK equivalence theorem, but
we want to show that the KK excitations of A§ behave properly as eaten Goldstone
bosons when the gauge fields satisfy the BCs (3.8)-(3.10). In the action (3.1) the

quadratic term mixing the y-component with the 5-component is

R
s®. /d4r _/7r dz® [—%35/4““8”14%]

mixing

= [A% 0,787 +/d4/ di —A 1O,05A .
95

The contact terms vanish for BCs of the type (3.8)-(3.10), and the last term has the
right form to be a gauge-Goldstone quadratic term. For simplicity, we consider BCs
which do not depend on the gauge index a. Then, using the expansions (3.11) leads
to
g = > 3 [ate [T ,,fm %) AR @) (0)Bumilz) . (3.48)
m=0n=0
From this expression we find that the Goldstone boson 7%, eaten by the m-th gauge

boson is a superposition of the mass eigenstates

- 1 TR 1 r
7& = N_m/O dx5-—2fm(:r:5)85A‘51(x, z°)
1 [e.°]

L [/0” 452 fa%) (%) | 783(e) (3.49)
g

m pn=(
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where the constant Ny, is determined by requiring that #2, is properly normalized,

and is therefore given by

2

. 00 TR 1 '
Nm= 3> [ /0 dzd = fm(x5) ¢ (29)| . (3.50)
n=0 g5
Then (3.48) gives a four-dimensional mixing Lagrangian
5(2) N Aau a 3 rl
mixing = Z m (z)0y7 m(x) (3.51)

=0
from which it is clear that 7%, beahves properly as an eaten Goldstone boson (giving
tree-level vacuum polarization amplitudes with a transverse structure) only if Ny,

equals the mass of the m-th KK gauge boson,
Arm =Mm . (3.52)

In order to prove (3.52) we start from the definition of Ny, eq. (3.50), which gives

X R
M= 3 [ et [ e a0 e 00610
n=0
X 7R
= 3 [ [T e e ent on()
+ [fmon]3T terms . (3.53)

The contact terms are zero for gauge fields satisfying the BCs (3.8)-(3.10)4. Then,
using the completeness relation

0 1 = 14

> —2-05n(;1:")¢n(:£"’) =6§(z° - 2, (3.54)

n=0 95
which is valid for a broader set of BCs, (3.53) becomes

NG = / 2”5 (2 ()

- 5 [fmfm "R / A Il ). (3.55)

4Strictly speaking the BCs (3.10) involve a non-trivial dynamics on the boundaries, which requires
a more detailed analysis. Here we only demand that (3.10) is trivially satisfied by the choice 95 4j, = 0

and A¢ = 0, in which case the contact terms in eq. (3.53) vanish.
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The contact terms [ fm f,’n]gR are zero under the same conditions which guarantee that
[fm¢n]6rR = 0. Therefore, using the equation of motion (3.12) and the normalization
condition (3.13) we obtain (3.52).

With these results, the KK equivalence theorem for the A%Ag — AS AT elastic

scattering reads
M(AG AL — AGAR) = Crog M(7375 — #570) + O (ma/E)?) ,  (3.56)

where the radiative modification factor Cpoq = 1 + O(loop) arises only at one-
loop level [15] [16] [17] [18] [19]. We have already noticed that in general the eaten
Goldstone bosons are not mass eigenstates. For the 73’s to be mass eigenstates, with
the same masses my of the KK gauge bosons A% (in Feynman-'t Hooft gauge), the

condition
én(2°) = mn fn(z®) (3.57)

must be satisfied. For instance, this is true for the BCs of an orbifolded circle, eq.
(3.7), because the corresponding gauge-boson and Goldstone-boson wavefunctions are

cosines and sines, respectively, of the same argument [34].

3.5 Deconstructed Models

The KK expansion is a way to sce five-dimensional gauge theories on an interval
from a four-dimensional point of view. A different, purely four-dimensional approach
is provided by deconstruction, in which the extra-dimensional interval is put on a
regular lattice {39] [40] [41]. In the five-dimensional action

TR 1 i
S = /d4.7)/ d.’l‘5[— QFXIArFaA!A]

R . 1 5
= / d4x /0 " (1;1:0[—41 Fg,,Faﬂ"—%FgSF“W] (3.58)

93
the z° coordinate is replaced by a discrete index j, and the integral in dz? is replaced

by a summation over j.
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Figure 3.3: Rectangular Wilson loop in the (i, 5) plane, with the fifth-dimensional

interval on a lattice.

In order to evaluate F),5, we consider a rectangular Wilson loop in the (u, 5) plane,
as shown in Fig. 3.3. We denote the unitary link operator (or comparator) between
the points (zl,z‘;’) and (2, mg) by U (:cl,:c?lmg, Tg), and the position in the latticized
fifth dimension by ja, where a = 7R/(N + 1) is the lattice spacing, and N + 2 is the
number of points in the lattice (N internal plus the two endpoints). The U(X|Y)

operator is defined by its transformation law under the gauge group,
(/’(X')’) — elua(x)Ga(](x,|}r)e—lQ (Y)G , (3.59)

where the G%'s are the group generators, and the a(X)%'s are the transformation
parameters. (Here X and Y are points in the five-dimensional space.) Therefore, the

trace of the unitary operator

U(x,ja) = U(r,jalr,(j+1)a) U(r. (7 + Dalz + €1, (j + 1)a)

Ul + i, (G + Dalx + ¢ji. ja) Ue + i, jal, ja) ,  (3.60)

where /1 is a unit vector in the y direction, is invariant under a gauge transformation.

For ¢ « 1, we can express the link U(z, ja|r + €1, ja) in terms of the gauge field yi-th
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component,

. € ~ - 3
Utz sale + e ja) = ¢ A (48492) 10 (3.61)

where A, = A{G? On the other hand, U(z,jalz,(j + 1)a) cannot be properly
expressed in terms of Ag, because a is not an infinitesimal quantity. Then we define
the ¥;(z) field by

L(z) = U(z, jalz,(j + 1)a) . (3.62)

Its transformation law can be derived directly from (3.59),

ia%(z)GY (z)GY

iab
Ti(z) — & gi(x)e N+ (3.63)

where a?(x) = a®%(x,ja). (The “color” index a should not be confused with the

lattice spacing a.) Expanding in powers of ¢, the operator (3.60) becomes

Uz, ja) = 1+ €55(x) (DuZ;(@) ' + 0() (3.64)
where
Dy%; = 0,85 - iGaAg_lu‘:j + iZjGaA?# , (3.65)

and A;,(xr) = Ay(z,ja) is the gauge field corresponding to the j — th rotation,
Jn 7
aj(z) = a(z,ja). Dy¥;(zx) is the covariant derivative(of ¥j(z). In fact, from the

transformation law of the five-dimensional gauge fields,
. b b .
31(X)G® = I (43 (X)G? + 10py) e KT, (3.66)

it follows

—ia;?(a:)GC’

. b b
e (3.67)

A% ()G — A,(2)G® +i0,) e

and D, %;(x) transforms like ¥;(z). Therefore, Tr ((Dqu(.r))TD"Zj(r)) is invari-
ant, and D, ¥ ;(z) must be proportional to F’ 55(2, ja), the deconstructed version of

F 55(1, 2%). The proportionality factor can be found by letting a to be small, so that
¥;(x) can be expressed in terms of A5(X) = A%(X)G*

—iaAg (x.(j+%)a).

Zi(x) = U(z,jalz.(j +1)a) = ¢ (3.68)
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Expanding in a, and taking the 9,-derivative, gives
) )
Fis(z,ja) = ~Du%;(z). (369

Therefore, replacing the integral over 29 with a sum over 7,

R N+1
dy — ) a, (3.70)

the Lagrangian of a deconstructed five-dimensional gauge theory becomes

P NRL 2N ;
b=z ZO FjwF5 + 7 Zl Tr (D% D 5;5) (3.71)
J= =

where FJ-“W is the field-strength tensor for the gauge field A;u. The dimensionless

four-dimensional gauge coupling ¢ is

=L - B JNT, (3.72)

N
)
=

and the dimension-one f constant is
2 2
I = ava ™ wvaR
Notice that both § and f grow like /N + 1, but what really enters in the calculation

VN1 (3.73)

of scattering amplitudes are the effective coupling §/v/N + 1 and the effective mass
scale f/v/N + 1, which are independent on the number of sites.

This results prove what was claimed in chapter 1, namely that deconstructed five-
dimensional gauge theories on a flat background are NLSMs with identical couplings
and VEV's. The ¥; ficld can be expressed in terms of the Goldstone boson fields:

2m3(@)G/f

Zj(:l‘) = (3.74)

Comparing this equation with (3.68) we see that the Goldstone fields are related to

the fifth component of the gauge field,

7%(x) = -gAg (x G + %)a) . (3.75)

Therefore, in deconstruction the four-dimensional components of the gauge fields are
taken at the lattice points, while the fifth component is taken between the points.

This picture corresponds precisely to the circles and lines of a moose diagram.
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SU(2) SU(2) SU(2) SU(2) u(l)

0 1 2

Figure 3.4: Moose diagram for the deconstructed SU(2) gauge theory on a five-
dimensional interval, with BC’s breaking SU(2) to U(1) at one end of the interval.

Notice that: (i) If the five-dimensional theory is invariant under a gauge group
G, and BCs break G down to Gy and Gy, at z° = 0 and x° = 7R, respectively, the
corresponding deconstructed four-dimensional model is invariant under a larger gauge
group, GoxGV xG. (ii) In the five-dimensional theory spontaneous symmetry break-
ing is due to compactification, while in the four-dimensional deconstructed model
spontaneous symmetry breaking is achieved through the ¥ fields VEV, Zg = f-1,
where 1 is the identity operator. (iii) As the mechanism which leads to compacti-
fication is not explained in the five-dimensional model, and must be supplied by a
UV completion of the theory, so the deconstructed model does not explain the ori-
gin of the VEV, and must be UV completed by a more fundamental theory whose
low-energy content is described by the NLSM.

Deconstruction makes the symmetry breaking pattern more explicit. For example,
a five-dimensional SU(2) gauge theory, with BCs which leave the symmetry unbro-

)N +2 gauge symmetry which is sponta-

ken on both branes, corresponds to an SU(2
neously broken to SU(2) by the ¥ fields VEV. We now consider the three examples
of section 3.2, with symmetry-breaking BCs, and deconstruct the corresponding five-

dimensional theories.

(1) G=SU(2), and BCs breaking SU(2) down to U(1) at one end of the interval.
The deconstructed model is an SU(2)N+2 NLSM whose SU(2)N+1x U(1) part is
gauged, with the U(1) coupling identical to the SU(2)¥*1 coupling. With the BCs
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Figure 3.5: Moose diagram of the deconstructed SU(2);,xSU(2)Rr gauge theory on a
five-dimensional interval, with BCs breaking SU(2)R to U(1) at one end of the interval
and SU(2);,xSU(2)R to SU(2)giagonal at the other end. This model is just a single
chain of SU(2) groups and a U(1) group.

Aff(ﬂ'R) =0, from (3.65) we obtain, for D, ¥ 11, the expression
D#ZAY+1 = 0#2N+1 - 'iGaA‘IZ\'#ZN+1 + izN‘FleA?V-i—lp 5 (376)

which shows how the U(1) group is embdded in the SU(2) structure, with the G3
generator of SU(2) acting as the U(1) generator. The su@2)V +1xU(1) gauge sym-
metry is broken to U(1) by the ¥ fields VEV. The moose diagram of this model is

then shown in Fig. 3.4.

(2) G=SO0(4)~SU(2) xSU(2)R, and BCs breaking SU(2)g to U(1) at one end of
the interval, and SO(4) to SU(2)gjagonal at the other end. The deconstructed model
is described by two SU(2) moose diagrams, one for the SU(2)f, group and one for
the SU(2)R group, with the SU(2)gjagonal Site connecting the two chains. Therefore,
the deconstructed model is an SU(2)2V*+3 NLSM whose SU(2)2V+2xU(1) part is
gauged, as shown in Fig. 3.5. It is then evident that this model is identical to model
(1), with N replaced by 2N + 1. The identity between these two models, which was
demonstrated in section 3.2 by considering the mass spectrum and the wavefunctions,

is even more explicit after deconstruction.
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Figure 3.6: Moose diagram of the deconstructed SU(2);, xSU(2)gU(1) gauge theory
on a five-dimensional interval, with BCs breaking SU(2)g xU(1) to U(1) at one end
of the interval and SU(2);,xSU(2)R to SU(2)giagonal at the other end.

(3) G=SO(4)xU(1)~SU(2)1,xSU(2)g xU(1), with BCs breaking SU(2)gx U(1) to
U(1) at one end of the interval, and SO(4) to SU(2)giagonal at the other end. The
deconstructed model is an SU(2)3V*+4 NLSM whose SU(2)2¥+2x U(1)¥+2 part is
gauged. This gauge symmetry is then broken to U(1) by the X ficlds VEV. In this
model there are three coupling constants: The coupling of the 2N + 2 SU(2) groups,
g, the coupling of N + 1 U(1) groups, §’, and the coupling of the unbroken U(1)
group on the z° = 0 boundary, é = §§' / W The moose diagram is shown in
Fig. 3.6.



Chapter 4

Higgsless Electroweak Symmetry
Breaking

In chapter 3 we have seen that a gauge theory on an extra-dimensional interval
has, from a four-dimensional point of view, an enhanced and spontaneously broken
gauge symmetry, which postpones the unitarity violation of longitudinal gauge boson
scattering amplitudes to energy scales higher than the customary limits of Dicus-
Mathur or Lee-Quigg-Thacker 7] [10] [11] [12]. We have also seen that different
choices of gauge group and BCs lcad to different symmetry breaking patterns, in the
four-dimensional theory.

In this chapter we will show that EWSB can be implemented in this framework.
We will first consider an SO(4) xU(1) gauge theory in the bulk, with BCs breaking
SO(4)~SU(2)LxSU(2)R to SU(2)giagonal at one end of the interval, and SU(2)g x U(1)
at the other end. This model will be briefly described in a flat background, where it
proves to be inconsistent with EWP data, in a Randall-Sundrum warped backround,
and with brane kinetic terms [69] [70]. A more minimal model is then introduced,
with an SU(2) symmetry in the bulk, BCs breaking SU(2) to U(1) at one end, and
brane kinetic terms. From a deconstructed viewpoint, this theory is an SU(Q)N"'2
NLSM whose SU(2)xSU(2)" xU(1) part is gauged. We study the N = 1, arbitrary

N, and N — oc models, with the latter corresponding to the extra-dimensional case.



4.1 Higgsless Models on a Warped Background

In section 3.2 we considered three examples of Yang-Mills theories on a flat extra-
dimensional interval, with BCs breaking the gauge symmetry. Those models share
some common features: First, the unbroken symmetry is U(1). Second, there is a
charged-boson KK tower and a neutral-boson KK tower. Third, the lowest mode
of the neutral tower is the massless gauge boson of the unbroken U(1) symmetry.
In section 3.5 we considered the corresponding deconstructed versions. Each of them
has a symmetry breaking pattern which contains SU(2)xU(1)—U(1), and is therefore
potentially a model of EWSB.

Model (1) has an SU(2) gauge symmetry in the bulk, with BCs breaking SU(2)
to U(1) at one end of the extra-dimensional interval. We found that the mass of the
lightest massive neutral boson is twice as large the mass of the lightest charged boson,
and so they cannot be interpreted as the SM W and Z bosons. Therefore, model (1)
has obviously no chance of being a realistic model of EWSB. Neither does model (2),
which we saw being equivalent to model (1).

Model (3) has an SO(4)xU(1) gauge symmetry in the bulk, with BCs breaking
SO(4)~SU(2)L xSU(2)R to SU(2)gjag at one end of the interval, and SU(2)g xU(1)
to U(1) at the other end [36]. The mass of the KK modes are given by (3.32). For

the lightest massive charged and neutral boson we havel

1
mWo = IR
1 2arctan\/1+2g§)2/g§
mZO = '2—}'2' p . (41)

Notice that for g5 = 0 we obtain mw, = mz,, while for 0 < 2_(132 < gg the neutral
boson mass becomes slightly larger than the charged boson mass, as in the SM. To
check whether this can be a realistic model of EWSB, we must also consider the heavy

KK modes. For mw, and m z (3.32) gives

my, = mpy + 2mw0

'Here we substitute the KK index n of (3.32) with n — 1, so that the lightest massive modes

correspond to n = 0, rather than n = 1.

52



mz, = mgz, + 2mw'0 . (4.2)

These values are very low, and can only be realistic if the fermion couplings with the
heavy gauge bosons are suppressed.

In five dimensions the smallest irreducible representation of the Lorentz group is
four-dimensional, thus our fundamental objects are Dirac spinors. In order to obtain a
low-energy effective Lagrangian in agreement with the SM, we introduce two fermion

SU(2) doublets, ¥ and ¥, whose Lorentz-Dirac structures are

¥, = VL g XR

XL YR
To be more specific, ¥y, and xr (¥g and xg) are doublets under SU(2)r, (SU(2)R),
and singlets under SU(2)g (SU(2),). The U(1) charge is chosen to be (B — L)/2
for both ¥ and ¥R, where B stands for baryon number, and L for lepton number.

Then the five-dimensional Lagrangian for one generation (of quarks or leptons) is

c® o _ §grM (aM — a9, —iBy 2L S L) v

fermion

+ \i’]girlu (8}11 — iA{ T - iBA,IB ; L) Up. (4.3)

The matrices T = ¢%/2 are the SU(2) generators, where ¢? is the a-th Pauli matrix.
The matrices I'™ are the five-dimensional version of the four-dimensional v* matrices,
and are defined by rM = (v#, —iv‘") [71]. In this Lagrangian we omitted the mass
terms, which are not of our concern now.

Since the electroweak symmetry is unbroken on the z° = 0 brane, it is natural to
try first with fermions which are strictly localized at z° = 0. Using the BCs (3.29)
for the gauge fields, working in unitary gauge, (all gauge-field fifth components equal
to zero), and imposing the BCs x (x,0) = xg(z,0) = 0 for the fermion fields2, the

fermion action becomes
R =
_ 4. [T 5.5\ ()
Sfermion - /d T/O d.’c"ﬁ(.’r‘))ﬁfermi(m
B-L

2Consistent BCs for fermion fields are discussed in Ref. [71].
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+¢: iyt (8,, - iB,,Y) VR

(4.4)

where we used the SM relations (B—L)/2 = Y1, and T3+ (B—L)/2 = Yg. Notice that
Y}, is proportional to the 2x2 unit matrix, while Y is diagonal but not proportional
to the unit matrix. Writing ¥ in terms of its SU(2) components, ¥ = (uR,dR).
we recognize in (4.4) the electroweak fermion Lagrangian, with the four-dimensional
gauge fields replaced by the five-dimensional fields A‘iu and By, taken at 0 =0.

In order to evaluate the effective couplings of the fermion fields with the KK gauge
ficlds, we must substitute the expansions (3.30) in (4.4). The charged-current and

neutral-current Lagrangians are

© r,CC
Loo = ), [ Py P T4 Wn“] +he.,
=0
noo (o) 3
Lye = Y [0 (o CPLT® + 95EQ) v Zuy) (4.5)
n=0

where ¢ = ¥ + ¥, P = (1 - ) /2 is the usual left-handed projection matrix,
T* = T1 £ T2 are the isospin raising and lowering matrices, and Q = T3 +Y is the

charge matrix. The effective couplings are related to the Wy and Z, wavefunctions

at ° = 0:
‘lnCC = an(O)’
g€ = grn(0) = hn(0)
905 = hal0) . (4.6)
From (3.33) we obtain
cc _ 9
In TR
NC o 2 sin(ManR)
9n = 7rR g5 S nm s

r
95 cos(MnrR) . (4.7)

NC
g = e ——————
Qn - ,—g?, n 2962
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From these equations we notice that the fermion couplings with the heavy KK gauge
bosons are not suppressed, relative to the couplings with W and Zy. Therefore,
the values (4.2) for the first heavy KK modes are well below the experimental lower
bounds from the direct searches [72] [73].

In order for the extra-dimensional model to be realistic, mw, and m z, must be
heavier, and this can be achieved by replacing the flat background with a warped

RS1 metric. The latter is given by
;) I
ds? = e~ 2kz Nuvdzhdz” — dr’dz® | (4.8)

where, as usual, z° € [0, 7 R], and k measures the AdSs curvature. With an exponen-
tial factor multiplying the Minkowskian metric, the EWSB scale and the Planck
scale can be naturally embedded in the same model, for a factor knR of order
log(Mpianck/TeV) ~ 30 is sufficient to achieve the goal. The metric (4.8) is often
written as

ds? =

1
L [17,,,,d1"d$" - (d:)2] , (4.9)
where z is defined by

ek? (4.10)

N
I

bl B

and belongs to the interval

1 ek'trR
(zhzz)gzg(zvz A ) , (4.11)

where z; 1 is of order of the Planck scale. and Zy 1isin the TeV range. (The subscripts

“h” and “v” stand respectively for hidden and visible.)

With the warped metric (4.9), the wavefunctions are superpositions of Bessel
functions, rather than sines and cosines. Therefore, mass equations and normalization
integrals become more complicated than in the flat-metric case [47]. For the gauge

boson masses, a perturbative expansion in 1/log (z,/zy) gives, to leading order,
1 1

my = ——mm—

2y 2 )
log (”h

2 12
gt +2¢:° 1 1
g5 + 95 v \/log (:,.)
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for the W and the Z boson, while numerical results show that the W; and Z; masses
are around 1.2 TeV, heavy enough to have evaded detection at the Tevatron, but

within the reach of the next generation of colliders.

4.2 Brane Kinetic Terms

The main motivation for using the AdSs geometry is of course the large hierarchy
between the TeV scale and the Planck scale. However, since we are only interested
in the EWSB scale, it is sufficient to consider an effective field theory where the
high momentum modes - all the way down from the Planck scale to the TeV scale
— are integrated out. In other words, for our purposes it is sufficient to consider an
effective theory with a new hidden brane bounding the space at zy, > a > zp, with
the requirement for the new theory to reproduce the same physics from the point of
view of an observer living at z > a [56] [57] [58]. The resulting five-dimensional model
has still the same bulk and TeV brane Lagrangians, due to the conformal invariance,
but new kinetic terms localized on the hidden brane. For example, for a free photon

field the coefficient of the localized kinetic term runs like [57]

ﬁa) = 62(1—%) +2log (i) : (4.13)
where 1/e2(z) is the coefficient of the initial kinetic term localized on the Planck
brane. If a large slice of AdSs is integrated out — that is, if a/2; > 1 — the corre-
sponding extra-dimensional interval will be approximately flat, as shown in Fig. 4.1,
and the integrated-out region will generate large kinetic terms on the UV brane.
These results lead us to believe that the SO(4) x U(1) model with a flat background,
and large kinetic terms on the brane where the electroweak symmetry is unbroken,
can potentially be realistic. Of course a model like this is only an effective field theory

with a cutoff in the TeV range, and an unknown UV completion. However this does
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Planck TeV Planck UV TeV
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Figure 4.1: Background of a Randall-Sundrum model (a). The same model after
integrating out a large slice of AdS; near the Planck brane (b). The new model has
a smaller radius, an approximately flat background, and a large brane kinetic term

on the UV brane.

not bother us. The corresponding action, for the gauge sector, is3

mR o[ L My _ L MN
Sgauge = /.141/0 d.r"[—ggAZMNA“L = 32 o A

5

1 MN _00) o o 8(2%) v
- B, B - Af A - & 4.
Pl 397 AL T g Buy B ] (4.14)

with the BCs
Agy(0) =0, 4%,(0) = Bu(0) ,
A%, (7R) =0 .05A% ,(nR) = 0. (4.15)
From (4.15) we see that the last term could have been equally written as
5(15) 3 3uv
=27 M A
This model was first introduced in Ref. [49]. Notice that the presence of §-functions

on the % = 0 brane generates discontinuities in the ds-derivatives of the gauge fields.

3Here and in the following we omit the gauge-fixing terms. We always assume BCs which do not
allow for a scalar zero mode, and work in unitary gauge, where all gauge-field fifth components are

set to zero.
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This can be seen by pushing the brane kinetic terms slightly away from the boundary,
to make them part of the bulk. Then the equations of motion for A‘i#, A%#,.and B,

become

be 12
(()“A,W @ AL#,,A"“—()5 ‘;J,,)

§(z = o) (0443, — Al AP) =

+
ci%ol o ‘le - c‘:?wl =

: be 2
(0"4%,, — Ak, AL - 03A%,)
1 4
+ g725(15 =) (0n Ay, - Al A%) =0,
1 1 ~
e (0"Byuw — 03B,) + 9725(39 —€)3"By, =0, (4.16)
5

where 0 < € < 1, and %€ is the SU(2) antisymmetric tensor. An integration around

the delta functions picks the discontinuity of 65A‘1‘4‘, 65A:1’2“, and 05 B,:
+ 1 be ¢
[65’4 u]e,_ + _5 (aﬂA%yu e AL;WA M)C =0,
v.)
1
52)[arA 3, 1t g (6"A o — €A RWA”‘) =0,
l et u
[a;,By] g,2 (#Buv), =0 (4.17)

With the brane terms as part of the bulk, the BCs 85Ai#(0) = 0 and 85(g§2A:13{# +
ggBu(O)) = 0 should be imposed, since these are the BCs which leave the electroweak
symmetry unbroken on the z% = 0 boundary (see eq. (3.29)). Then, taking the limit

¢ — 0, and using the bulk equations of motion, (4.17) gives

lim (652 G- 9—265/4‘,1“) =
o0t 95

2
Jim (ag(A:;m + By) — ——g——,—2—85( AR# + gdB,,)) =0. (4.18)
90+ 9595

These equations, together with the BCs (4.15), give rise to non-trivial mass spec-
tra, for both charged sector and neutral sector. We do not show here the solutions,
since our focus will be on a simpler model, which will be introduced in the next
section. However, it is clear that with a flat background the wavefunctions are super-
positions of sines and cosines, rather than Bessel functions. This makes this class of

models considerably simpler than the warped extra-dimension scenario.



4.3 A Minimal Higgsless Model

In section 4.2 we introduced an SO(4)xU(1) gauge theory on a flat extra-dimensional
interval, with large localized kinetic terms on the brané where the electroweak sym-
metry is unbroken. The deconstructed model is represented by the moose diagram
of Fig. 1.2 (a), where the couplings of the SU(2) and U(1) groups corresponding to
2% = 0 are the gauge couplings of the brane fields. The same moose diagram can
be unfolded to a single chain of SU(2) groups followed by a chain of U(1) groups, as
shown in Fig. 1.2 (b).

A simpler model can be obtained by eliminating all U(1) sites, with the only
exception of the first one, which corresponds to the U(1) gauge group on the =0
brane. What is left is an SU(2)V*2 NLSM whose SU(2)xSU(2)N xU(1) part is
gauged, and the corresponding moose diagram is shown in Fig. 1.3. In this section
we study the gauge sector of this model for N = 1, arbitrary N, and N — oo, where
the latter corresponds to the continuum limit [42]. We find the unitarity bounds
of longitudinal gauge boson scattering amplitudes for each case, where our analysis
is restricted to unitarity of the WZWE — WZ W[ scattering. We will work in

tree-level approximation throughout the rest of this dissertation.

4.3.1 The SU(2),xSU(2);xU(1) Model

We begin by studying the simplest Higgsless extension of the SM model, namely an
SU(2)gxSU(2); xSU(2)9 NLSM whose SU(2)gxSU(2);xU(1) part is gauged. The
corresponding moose diagram is shown in Fig. 4.2. The NLSM ficlds,

S1(r) = ATEOT () = K @T 2 (4.19)

consist of two SU(2) triplets, which are coupled to the gauge ficlds by the covariant

derivatives?

D1 = 8,51 — igTWE,T1 + G T UL,

4In this section and in the next one we will work in canonical normalization. where the coefficient

of the gauge kinetic terms is -1/4.
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SU(2) SU(2) U(l)

Figure 4.2: Moose diagram for a global SU(2)gxSU(2); xSU(2) NLSM whose
SU(2)gxSU(2); xU(1) part is gauged. All parameters are taken to be independent
quantities.

DSy = 8,5 — igT* Wi, Ty + ig'SoT3B,, . (4.20)

Notice that, in order to maintain generality, we take the VEVs of the ¥ ficlds to be

independent parameters. The Lagrangian for this model is

1., , 1 . 1
L = —ZH/&W‘/{ 61#" _ ZW law/w{wu _ ZBI‘"BMI
f12T D, DHY fgn D, ¥o)t DH
+ T ((DuS)TDFEL) + 2 Tr ((DuS2)'DHE,) | (4.21)

where we only kept the lowest dimension opertors. After the ¥ fields acquire the
VEV, < Z; >= 1, the SU(2)gxSU(2); xU(1) gauge symmetry breaks down to U(1),
and the last two terms in the Lagrangian become mass terms for the gauge fields. The
mass spectrum consists of a neutral massless gauge boson, which will be identified
with the photon, a tower of two charged gauge bosons, and a tower of two neutral
gauge bosons. The light modes of these towers will be identified with the SM W and
Z bosons. The heavy modes are two new particles, which will be denoted as W’ and
VA

There are overall five independent parameters: g, §.¢’, f1. fo. We can trade three
of these for the electromagnetic coupling, e, and the W and Z boson masses, my-
and mz. The remaining two parameters can be expressed in terms of the W’ and Z’
masses, my,» and m . The gauge eigenstates, W, W', and B can be expanded in

terms of the mass eigenstates. We have

V"(;t = agoWT +ag W't ,
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Figure 4.3: Tree-level diagrams for the I/If T — WE’ W elastic scattering, in the
SU(2)gxSU(2); xU(1) NLSM model.

Wi

.

WE = qoW® +a W=, (4.22)
for the charged sector, and

We = (¢/9)A+booZ + by 2,

Wi = (e/§)A+bioZ +b11Z" .
B = (e/¢)A+byZ + b2, (4.23)

for the neutral sector. Formulas for the original parameters g, g, ¢’, f1, f2, and the
mixing matrices ajn, bjn, as functions of the physical parameters e, my,, mz, My,
mgr, can be found in appendix A. Notice that the coefficients of the photon field are
necessarily e/g, e/, and e/g’, because the photon is the gauge field of an unbroken
symmetry, and must couple to the ¥ fields (as well as to any other field) with its

gauge coupling e. Inserting this result in the Lagrangian (4.21) gives

1_1.1 1
9°  g?

7 (4.24)

62—

Having set up the model, we would like now to study the high energy behavior

of longitudinal gauge boson scattering amplitudes, restricting our analysis to the
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Figure 4.4: The coefficient of the (E/my/)? term in the W EL W, — WE‘WE scat-
tering amplitude in the SU(2)gxSU(2); xU(1) model (blue) as a function of the Z’
and W' mass difference, with myyr = 500 GeV fixed. The same (iuantity in the SM

without a Higgs boson (red) is also plotted. The vertical line indicates the position

2 2

. _ - m2 _
where m Ty = MG — i

2
ZI
WE’W L — WZ W scattering. In addition to the SM exchanges of virtual photons
and Z bosons, there are exchanges of virtual Z’ bosons, in the s- and t-channel, as
shown in Fig. 4.3. The amplitude is an easy generalization of (2.10):

112
M = LN [pQEQ(—2 +6cosf) — E*sin? 0]

mu/

[ 2

2 2
C g YA q 49 14
— 4 WWZ | CWW g’ ] (-47)2(7)2 - 3E2)2) cosf

1

m_“‘,; S s—m2Z s —myy,
1

Hlur

— +
t - m% - 11122,

S 0
e Iywuz +gwwz’]

x[ - 4E2 (p? + (E® - 2p%) cosf)”
—2p?(1 + cos 9) (2E2 —p? — E?cos 9)2] . (4.25)

The quartic and cubic couplings are obtained by inserting the expansions (4.22),
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Figure 4.5: The quantities f; (blue) and f5 (red) as a function of the Z’ and W' mass

difference, with my;,» = 500 GeV fixed. The vertical line indicates the position where

mzz, - m%‘,, = mzz - ma'

(4.23) into the gauge kinetic terms of the Lagrangian (4.21). This gives

2 . 9
= g agoboo + g ajpbio -

Iwwz
g 9 ajobor + § afobny
W'Wzl 00 10 !
2 2 4 -2 4

At high energy the amplitude can be expanded in powers of E/mys. The term

proportional to (E/mW)4 exactly vanishes due to gauge invariance. The leading

contribution is then proportional to (FE/my)2:
2
E 1+ cosf 0
M = (mw) K +0 ((mw/E)) , (4.27)
where
C 42 3 (2 2 2 92
K = 4yWWWW - m_:i)y (""ZgWWZ + mZ'(JWWZ’) . (4.28)

Using the formulae in appendix A, we can treat K = K(myr,m ) as a function of

myyr and m .
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Figure 4.6: The coupling constants ag = g%/4n (blue), ay = g¢'?/4n (red), and

g
G = §% /4 (green), as a function of the Z’ and W’ mass difference, with myyr = 500
2 2

GceV fixed. The vertical line indicates the position where m o= m%v, = m2Z - mi.

In Fig. 4.4 we plot K as a function of the mass difference, m ;1 — myr, for my» =
500 GeV fixed. As a comparison we also plot the same quantity in the SM without the
Higgs boson. Notice that K is significantly suppressed for m2Z, - m%v, ~ mZZ - m%‘
When this relation holds, the value of K is reduced by almost precisely a factor of
1/4, a result which does not depend on the particular value of my;,. This indicates
that the unitarity violation that occurs in the SM without the Higgs boson would be
postponed to higher energy in this model.

We also plot in Fig. 4.5 the scales f; and f9, and in Fig. 4.6 the couplings constants
ag = g% /4, o = g% /4n, and ag = §%/4n, as a function of the Z’ and W' mass
difference, with my,» = 500 GeV fixed. We notice that the relation mZZ, - m%v, ~
mQZ - mrﬁ, also corresponds to f; ~ fo and § > g,¢’. In fact when this relation holds
the couplings are given to a good approximation by g = e/ sin 6y, ¢’ = e/ cos 8y, and
g = (my1/2my)g, up to corrections of order m%v / ma - (We have used the tree level

definition of cosfy = my:/mz.) Thus, the SU(2)g and the U(1) act approximately
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Figure 4.7: The J = 0 partial wave amplitude as a function of /s for the SM without
a Higgs boson (red) and the SU(2)gxSU(2);xU(1) model (blue) with my;,» = 500

GeV and mQZ, - m%v, = mzz - m%‘;.

like the SU(2)L, and U(1)y of the SM, while the intervening SU(2); has the effect of
softening the unitarity violation of the SM WZWE - WEWE scattering.

We can observe the effect of the delayed unitary violation by plotting the J = 0
partial wave amplitude as a function of \/s = 2E. This is shown in Fig. 4.7 for both
the SM without a Higgs boson and in the SU(2)gxSU(2); x U(1) model with my,, =
500 GeV and m2Z, —m%v, = m2Z - m%v. Since unitarity requires |Reag| < 1/2, we can
use this figure to infer that unitarity violation in this amplitude has been postponed
from a scale of /s ~ 1.6 TeV in the SM without a Higgs boson to /s ~ 2.65 TeV in
the SU(2)gxSU(2); xU(1) model with this choice of parameters.

We have found that the behavior of the WL" W — Z1Z, amplitude to be essen-
tially identical to that for WE‘ Wp — WZ‘ W, . In particular the corresponding value
of K, the coefficient of the leading E2 /m%v term in that amplitude, is reduced by the

same factor of 1/4 when m2Z, - m%v, ~ mzZ - 77),%‘,'.

65



SU(2) SU(2) SU(2) SU(2) u(l)

Figure 4.8: Moose diagram for the SU(2)xSU(2) xU(1) Higgsless model.

4.3.2 The SU(2)xSU(2)"xU(1) Model

In section 4.3.1 we saw that the choice of parameters which produced the greatest
postponement of unitarity led to a model where the SM SU(2);, and U(1)y gauge
groups were separated in TS by an extra intervening SU(2). Following the extra-
dimensional analogue further, we now extend this to a series of intervening SU(2)’s,
all with the same coupling and all VEVs chosen to be the same. The moose diagram
for this theory is shown in Fig. 4.8.

The Lagrangian is

, 1 y
L = glwu " Z Z Juuwam - _BI“/BIW
f2 N+1
+ 7 Zl tr[(Duz;) DH5;5) (4.29)
]:

and the NLSM fields can be parameterized by

2in9Ta
5 = el (4.30)
The ;s are coupled to the gange fields by the covariant derivatives
DySy = 0u%y — T WG, +igT T WY, |
DuEj = 0u%; —igT* Wi 125 +19%; T H J=2,....N),
DuSn41 = OuEng1 — T WR, Enp +ig EN+1T"B,, : (4.31)

As in the previous model. the  ficlds can be removed in unitary gauge, giving

a mass to the gauge bosons. We can then expand the charged fields in terms of the
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mass eigenstates

N
Wi =ajgW* + 3 ajn Wyt (4.32)
n=1

and similarly for the neutral fields

N
W’g’ = (¢/g)A + byoZ + Z bonZ;l ,

n=1
3 N /
W5 = (e/g)A +bjoZ + Zl binZn (G=2...,N),
n=
/ N ’
B=(e/g')A+ b(]\.'+1)oz + Z b(N+l)nZn , (4.33)
n=1

where the photon A is exactly massless as required. Inserting these expansions in the
kinetic terms we obtain, for the coupling of the unbroken U(1),

L
92

1
L 4.34
g (4.34)

=

1_

e?

We give the general solution for the diagonalization of these mass matrices in
Appendix B. For this model there are four independent parameters, ¢/, §, g, f, which
can be fixed by e, my,, mz, and the mass of W{, mW{. In accordance with the

results of section 4.3.1, we assume g, ¢’ < §/v/N + 1, and let A2 = ¢2(N +1)/32 and

A2 = ¢"2(N + 1)/g%. Then a perturbative expansion in A2, and A2 gives the masses

m2, = Z%(l+0(/\2)),

iy = Rl (1 o0),

m2, = 3 (sinQ(A:l—Z_l))2+2m%V <cos2(]\7—11)>2<1+0(/\2)>,
iy = 3 (g ) +amd (cos g ) (1 00).

(4.35)

It is easy to check that for N = 1 this gives m?, — mﬁ,{ ~ rnQZ - m%y, and g =

2/
Z

(mW{ /2myy)g, up to corrections of order m%v /m as found in section 4.3.1.

2
wy’
The scattering of longitudinal W's is easily generalized from the N = 1 case, since

the exchanges of a single Z’ in the s- and the t-channel are replaced by echanges of N
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Figure 4.9: Tree-level diagrams for the WEL W — EME elastic scattering, in the
SU(2)xSU(2)N xU(1) model.

heavy neutral bosons, ans shown in Fig. 4.9. The amplitude for WI:" W — VVE wp

is

2

g I I47 ie
M = WWWW [p2E2(—2+6c:os0)—E4sin26]

mW
- 2
2 N g
1 e 9y y
+ o |S o+ EEL 5 | (—4p2(” - 3E%)) cost
my | § s —mjz n=13_mz1lz

r 2
2 N ¢
1 |e?2 gy wwz! 2
+ —3 T+tuw‘22 +> o [—4E2 (p2+(E2—2p2)cos¢9)
my, -mz .1 t—mZ{1

2
—2p%(1 + cos ) (2E‘2 —p? — E2cos 0) ] , (4.36)
where the cubic and quartic couplings are
2 N 2
Iwwz = 9 adoboo +9 Z ajobjo
g

wWWwzl,

J:
2 2 4 2 N 4
Iwwww = 9 @00 +g Z ajo - (4.37)
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Figure 4.10: The J = 0 partial wave amplitude as a function of /s for the SM without
a Higgs boson (red) and the SU(2)xSU(2)N xU(1) model (blue) for N = 1 to 100
with my;,, = 500 GeV.

1

Then the coefficient of the leading (E/my)? term, defined by (4.27), is

N
_ 42 3 (22 2 2

In Appendix B we obtain for this model

: g 2
K = (—m + 0()\ )
= % +0(?) . (4.39)

where the corrections also fall off as (N + 1)_2. As expected, this agrees with the
results of the previous section for N = 1.

In Fig. 4.10 we plot the J = 0 partial wave amplitude as a function of /s for
both the SM without a Higgs boson and in the SU(2)xSU(2)N xU(1) model with
mwi = 500 GeV for N =1 to 100. For large N in this model the unitarity violation
is delayed to an energy of about /s = 19 TeV. Thus, we may expect that the effective
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theory with a KK tower of vector bosons should be reliable up to about this scale.®

At high energies and large N, the partial wave amplitude asymptotes to

1 2 452 1
ag — = g + g (logi——)]

Q

32m |4m, (N+1)2 " N+1\ °A2 2
r 2
1 s g2 4g2m { s 1
R e |+ L (log — — = 4.4
327 |4m2, N+1)2+ 72 m? (IOgA2 2) ’ (4.40)
i W w

where A is a scale on the order of a few times Myt
1

4.3.3 The N — oo Limit

From the analysis of section 3.5 we know that the limit N — oo gives a gauge
theory on an extra-dimensional interval, as long as § and f grow like N + 1. The

five-dimensional gauge coupling and the interval length are then given by

7
fR = lim 2N*+D
N-—o00 gf
0
2 . g
g5 = 1\}1—I»nooT (4.41)

Since the gauge couplings of the edge sites are different, the five-dimensional action

has localized kinetic terms on both branes,
d4 TR aMN a (170 uv
Sgauge = / z / dy |- 1 2 RW MNW ~ W)= W;u/W

—8(rR —y) P IQVV,::',,W?”“’ . (4.42)

where the dimensionless five-dimensional coupling g5 is defined by ggnR = g%, and
the five-dimensional coordinate z° has been renamed y.

As explained in section 4.2, the é-functions should be intended as slightly pushed
inside the bulk, with the BCs leaving SU(2) unbroken at y = 0, and breaking SU(2) to
U(1) at y = mR. These are the same BCs we met in the toy model (1) of section 3.2,

which allow us to set W§ = 0, in unitary gauge. Then, pushing the delta functions

5A coupled-channel analysis, as considered in Ref. [34], would give a lower energy scale for

unitarity violation.
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back to the branes, we obtain

2
. 2 /\ P a _
yE,%l-l- (()5 Wﬁ - m()swu) =0 ’

lim 32uf'3+£asw3 = 0
y—rR=\ ° H T wRTH ’

WE(rR) =0, (4.43)

for the behavior of the gange fields near the boundaries, where A2 = g2 /q?) and
N2 =g?/2.

All of the results found in appendix B have a well-defined limit as N — oo, with
the discrete label j becoming the continuous extra-dimensional variable y, and the
vector expansions (4.32), (4.33) becoming KK expansions. An alternative method for
deriving the solutions consists in working directly with the continuum model, as in

section 3.1, and KK expanding the five-dimensional gauge fields,
+ = +
WH(z,y) = > faly)Wit(z),
n=0
3 o0
WH(z,y) = eA¥(z)+ ) gn(y)Zf(2) . (4.44)
n=0
where Wg‘(:c) and Zy(x) will be identified with the SM W and Z boson, respectively.

The wavefunctions fn(y), gn(y) are superpositions of the 652, operator, namely sines

and cosines. The photon wavefunction is trivially obtained to be constant and equal

to ¢, where
1 1 1 1
S=3t3t+t 5. (4.45)
€ 9 95 9

The fn(y) and gn(y) wavefunctions satisfying the BCs (4.43) are

fa(y) = Fsin[mu, (tR-y)] ,
gn(y) = Gn [COS(mzny) - "ié" Sin(mzny)] , (4.46)

where the masses my, , mz, solve the transcendental equations

M, tantmy, = A%,
2472 9 0

(ﬁzzn— - )tanﬁzzn = A4+ M4, (4.47)
mz,
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with 7hn = mnR. The normalization constants Fy,, G, are determined by requiring a

canonical orthonormalization of the mass eigenstates:
TR 1 1 -
|7 dy |z + =8| fa@)fr ) = 8
0 95 g

tmR
TR 1 1.
Jy |z 520) + TR = )| gn()900) = A

@En

(4.48)

Notice that the integrands in (4.48), for equal values of n and n/, should be
interpreted as position probability densities in the extra-dimensional interval. The
presence of é-function terms tells us that the charged gauge bosons have non-zero
probability of being exactly localized at y = 0, and the neutral gauge bosons have
non-zero probability of being exactly localized at y = 0 and y = 7R.

Using the mass equations, we obtain

1), sin2mw, 172
953 2w, :

P -9 . na -1/2
1 sin2my 1 .9 my sin2myg
G = gr. | — 1 - —=Fn —5 si 7 z 1 - 3
no= 9 lz ( oz, ) NPV I VT =y

Fn

(4.49)

for the normalization constants.

Once the normalized wavefunctions are found, the cubic and quartic gauge coup-

ings can be computed using the formulas

P gjm + 20| S ImB)n(s)

FeW) fi(y) fm(y) fa(y)

~—

.95

+ =8 | L) iy gm(Y)gn () -

1
@TR g

ﬂRd 1
I TF =2
mR 1 1 5
gwkwlwmwn = /0 dy %2R + 9—2 (y
TR 1
d
v

IW LW Zm Zn

(4.50)

These formulas are also valid for couplings involving the photons, for it is sufficient

to replace the gn(y)'s with the photon wavefunction, g4(y) = e. Therefore, using also
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Figure 4.11: The coupling constants ag = g2/4n (blue), ag = g%/4rn (red), and

oy = §§/47r (green). as a function of 1/R.

the normalization conditions (4.48), we obtain

Wy = €Omn
_ 2
Iy = € Omn
g”'(w'mZn’Y = €W WmZn - (4.51)

In the examples with a finite number of sites we saw that the largest postponement
of unitarity violation occurs for g2, g% <« §2 /(N + 1), which in the continuum model
corresponds to ¢2, ¢ <« 5}52,. Therefore, we can find the solutions perturbatively for

/\2, M2 « 1. For the masses, we obtain

2 _ 9 A2 A2 4
my = THW'O = W 1- ? + O(’\ ) )
NN A2402 0 A2
2 _ 2 4
= 3 = - . 4.
Mz =Mz, (7R)2 5 Tazear PO (452)

for the SM gauge bosons, and

n\2 22
m%i'n = (§> [1 + 2W + 0(/\4)] n=12 ..,
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Figure 4.12: Probability density for the position of the W boson (red), W; (green),
and W (blue) in the extra-dimensional interval, for 1/R =500 GeV, with é(y) re-

placed by a narrow Gaussian.

2 22422
2 _ (N ATA 4 =
my = (R) [1+2 et O )] n=12, .., (4.53)

for the heavy gauge bosons. Inserting these equations in (4.49) gives

N PR Y
Fo = /\[1+6+0(/\)] ,

V2g A2 4
F, = 1- =12, ..
" A 2(nm)? +OM)| n T
A M 22202 oM
Go = —=2 S +oY)| |
VAT 2 6 (A2 + X2)
V29X 32242 4
Gn = AL AR A =1,2,... 4.54
" nm 2 (nm)? FOWH|m T (454

for the normalization constants. Perturbative expansions for the couplings (4.50) are
given in appendix C.

This model has four parameters: g,g’, g5, and the compactification scale R. We
can trade g,¢’, g5 for e, mys, mz, leaving R as the only parameter beyond the SM.

In Fig. 4.11 we show the behavior of ag = g2/4r, ay = g'%/4n, and Qg = g§/47r as
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Figure 4.13: Probability density for the position of the photon (dashed), the Z boson
(red), Z; (green), and Zy (blue) in the extra-dimensional interval, for 1/R =500 GeV,
with d(y) and §(7 R — y) replaced by narrow Gaussians.

functions of 1/R, which, as shown by (4.53), is approximately equal to the mass of
the W) and Z; bosons. We see that large values of 1/R correspond to small values of
A2 and M2, This can be seen directly from the relations (4.52), which fix the W and
Z mass, and is in agreement with the results we found for the deconstructed model.

Inserting the normalization factors (4.54) and the masses (4.52), (4.53) in (4.46),
we obtain that near y = 0 and y = 7R the wavefunctions of the SM gauge bosons are
of order of the electroweak couplings, and are not suppressed by any power of A. On
the other hand, the wavefunctions of the heavy modes are suppressed by one power
of A. Since the position probability densities have §-functions at y = 0 and y = 7R,
with coefficients 1/A2 and 1/A"2, respectively (see eq. (4.48)), it follows that all gauge
bosons have non-zero probability of being exactly localized on the two branes, but
this probability is much larger for the SM gauge bosons than for the heavy KK modes.
In Fig 4.12 we show the probability density for the position of the W boson, Wj, and

WY in the extra-dimensional interval, for 1/R =500 GeV, where the §-functions have
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Figure 4.14: Unitarity violation curve for the Wg W — WZ W scattering, in the
(v/s,1/R) plane. For a given value of 1/R, unitarity is satisfied for values of \/s below

the curve.

been replaced with narrow Gaussians. In Fig. 4.13 we show the probability density
for the photon, the Z boson, Z;, and Z3. We see that the SM gauge bosons spend
indeed more time than the heavy modes near the branes. Therefore, in accordance to
what we had found in the deconstructed models, the brane SU(2) and U(1) groups
act approximately as the SM SU(2);, and U(1)y. In the limit A ,)’ — 0 we must
also have R — 0, and the heavy modes decouple. Therefore, the A ,\’ — 0 limit
corresponds to a four-dimensional theory, namely the SM without the Higgs boson.
With the model fully set up, we can calculate the unitarity bounds from longitu-
dinal gauge boson scattering amplitudes. The Wzr Wp — WZ W, scattering is given
by the diagrams of Fig. 4.9, and the amplitude by (4.36) (without the primes on the
KK gauge bosons), with N replaced by oo, and the gauge couplings given by (4.50).
The coefficient of the (E/myy)? term, in the high energy expansion, is easily found to
be zero by taking the N — oo limit in (4.39). Alternatively we can prove this directly

from the extra-dimensional model, as we did in section 3.3, with the difference that
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the gauge couplings receive contributions from the §-function terms.

Since R is the only free parameter, the amplitude M depends on E, 0, and R,
M = M(E,6,R). Therefore, the J = 0 partial wave amplitude depends on E and
R, ag = ag(E, R). In Fig 4.14 we show the ag = 1/2 curve in the (\/s,1/R) plane:
unitarity is satisfied below the curve, where ag < 1/2. We observe that for a given
energy, unitarity sets an upper bound on 1/R. This was expected, since the heavy
neutral bosons must come into play early enough to unitarize the amplitude.

The asymptotic behavior of ag can be found by taking the limit N — oo in (4.40),

which gives

2
1 (46> ™My s 1
- L s ] 155
a0 327r|:7r2 m%v (OgA 2} (4.55)

where A is a scale of the order of a few times my,. Using (4.52) and (4.53). we
notice that, to leading order in A2, the cocfficient of the logarithmic term in (4.55) is
g?, times a numerical factor. Therefore, the unitarity violation scale is approximately
given by the reciprocal of the dimensionful coupling gg times a numerical factor, in

agreement with the discussion at the end of section 3.3 [34] [37] [38].
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Chapter 5

Coupling to Matter Fields and

Experimental Constraints

In chapter 4 we have introduced the gauge sector of an SU(2)xSU(2)"¥ x U(1) NLSM,
where the N — oo limit corresponds to an SU(2) gauge theory on an five-dimensional
interval, with BCs breaking SU(2) to U(1) at one of the boundaries, and localized
kinetic terms on the two branes. In this chapter we will add matter fields to this
model.

Since the SU(2) and U(1) gauge groups localized at the endpoints of the interval
act approximately as the SM SU(2)y, and U(1)y, the simplest choice is to have the SM
fermions charged under these groups only, with the usual quantum numbers. We will
show that this manner of coupling fermions leads to tension between the constraints
imposed by the EWP data and the unitarity constraints.

In order to rclcase this tension, we let the fermion fields to have some leakage
into the bulk — in a fashion similar to the gauge sector setup — with the left-handed
fermions peaked at the boundary where SU(2) is unbroken, and the right-handed
fermions peaked at the other boundary. We show that the correction to the SM
electroweak observables can be tuned to zero by imposing a relation between the
amount of lcakage into the bulk of the gauge fields and the left-handed fermion fields.
We also show that delocalized fermions in this model naturally allow for multiple

generations and fermion mixings.
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As the N — 0o model has been proved to be computationally easier than the
finite-N NLSMs, we will only present our results in this limit. However we should
not rely upon the extra-dimensional interpretation, because this would leave little
freedom for model building: Gauge-fermion interactions would be forced to be local,
in the five-dimensional interval, and “Yukawa” interactions between fermions and
the gauge ficld fifth-component would be forced to have the same strength of the
ordinary gauge interactions. We will then interpret the variable y of section 4.3.3 as a
continuum index, and the interval from which y picks its values as a TS interval, rather
than an extra-dimensional interval. We will take advantage of this interpretation in

both this chapter and the next one.

5.1 Model I

In section 4.3.3 we considered an SU(2) gauge theory on a [0, 7 R] extra-dimensional
interval, with BCs breaking SU(2) at y = 7R, and localized kinetic terms on both
branes. The action, for the gauge sector, is given by (4.42). Fig. 4.11 shows that,
as 1/R grows, the dimensionless bulk coupling _c}?, becomes larger than the brane
couplings, g% and ¢2. Fig. 4.12 and Fig. 4.13 show that, for small values of gz/ g}g
and g'2 / _(}g, the SM gauge bosons are much more peaked on the two branes than the
heavy KK gauge bosons. (The W™ boson is only peaked on the y = 0 brane, since
SU(2) is broken to U(1) at y = wR.) Therefore, as previously stressed, the SU(2)
and U(1) gauge groups on the two branes act approximately as the SM SU(2)L, and
U(l)y.

It is therefore reasonable to try first coupling the SM fermions to the SU(2) and
U(1) brane fields only, in exactly the same way they are coupled to the electroweak
gauge bosons in the GWS theory. With this choice, the action for one generation of

fermions is

I TR ) -
Stger)mion = /"4:" /0 dy [o(y)U’L"Y“Dll'«/"L

+d(rR —y) ('L—lR‘i'V,pDHUR <+ d-R‘i’j.'“D“dR)] (5.1)
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where ¥y = (ur.dy) is an SU(2) doublet, and up, dp are SU(2) singlets. The

covariant derivatives are

Dy = (8u—iT*Wi(y) — iYL W2(nR)) v ,
Dyup = (8 —iYRW2(v))ur ,
Dudr = (8u—iYRWS(v))dp . (5.2)

Notice that the left-handed field vy, lives at y = 0 but couples also to the gauge
field W3 at y = 7R. This is not allowed in a five-dimensional Yang-Mills theory,
but is perfectly reasonable in continuum TS. The fermion action could be made local
by folding the SU(2) gauge group at y = 7R, as in example (2) of section 3.2, and
coupling all fermions at y = 0. However, a mass term for the fermions can only arise
in this model from a Wilson line connecting the two branes. This is again a non-
local operator in 5D, but is fine from a four-dimensional standpoint. Therefore, as
previously argued, we see that giving up on the five-dimensional interpretation opens
new possibilities for model building, and our choice of labelling the z° coordinate as
y is to emphasize this point.
The four-dimensional charged-current and neutral-current Lagrangians are

ccy)

. = |9
Loe = E L" vy PLT Y Wi, +he| |

c), gjo [w‘( D p73 4 g ’)Q) v Znu] : (5.3)

where Wy, and Zy are the SM W and Z boson, respectively, and ¢ = ¥, + ¥ . The

couplings are

cCc)

gLn = fn(O) 3
gian(I) = gn(0) — gn(7R) ,
00" = ga(xR), (5.4)

where fr(y) and gn(y) are given by (4.46).
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5.2 Experimental Constraints on Model I

In this section we study the most immediate phenomenological implications of model
I. We will first briefly consider the direct constraints from producing the heavy gauge

bosons at colliders, and then consider the indirect constraints from the EWP data.

5.2.1 Direct Constraints on Heavy Boson Production

The most significant bounds on the W} and Z; masses come from the Tevatron and
LEP II, respectively. The Tevatron (CDF) limit on a W’ that couples with SM
strength is presented in Fig. 2 of Ref. [72]. In our case, the ratio o(¢g§ — W —
(v)/o(qg — W — (v) is suppressed by the small value of the W; wavefunction on
the boundary where the fermions are localized. The coupling of SM fermions with
Wy is nyC(I) = /1(0), which gives the suppression factor (f1(0)/¢g)2. Using (4.46),
together with (4.53) and (4.54), this gives

(SM)

) (5.5)

olqg — W) — CI/)J(I) -9 m%‘, [0’((]6 - W - fl/)
mwl

olqg — W — tv) o(qg —= W — tv)

By rescaling the cross sections shown in the figure, we estimate that the corresponding
limits in our case would be about myy, > 500 GeV.

The LEP II bound on new four fermion contact interactions are presented (for
the case of strong coupling) in Ref. [73] by making fits to o(ete™ — ff). This
can be translated to a bound on m z, since a heavy Z' effectively induces a four
fermion contact interaction. Extracting the relevant contact interactions induced in
our model, and comparing to the results of the LEP II analysis, we estimate that the

mass bound is about mz, > 480 GeV.

5.2.2 Indirect Constraints on the Low Energy Fermion La-
grangians

The fermion couplings with the gauge boson are given by the values of the correspond-

ing wavefunctions at the two interval ends, as shown by (5.4). In section 4.3.3 we have
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argued that the wavefunctions of the heavy modes are suppressed by one power of A
at y = 0 and y = wR: This is shown explicitly in Fig. 4.12 and Fig. 4.13. Therefore,
four-fermion operators arising from exchanges of heavy gauge bosons are suppressed
by M, with two powers of A coming from the couplings, and two powers from the
large mass in the gauge boson propagator (1/R ~ my /A, see (4.52)). The couplings
of the SM gauge bosons with the heavy gauge bosons are also suppressed by one
power of A, due to the little overlap of the corresponding wavefunctions. This means
that dimension five operators, with two SM fermions and two SM gauge bosons, only
arise at A4 order.

‘As a consequence, at order A2 the new-physics corrections to the low-energy ob-
servables are purely oblique, and are therefore entirely parametrized by the Peskin-
Takeuchi S, T, and U parameters, where S = T = U = 0 corresponds to the
SM [43] [44] [59]. The way these quantities enter in the charged-current and neutral-
current effective Lagrangians depends on the chosen set of input observables. It is
customary to take the electromagnetic coupling strength at the Z-pole, the Z boson
mass, and the Fermi constant, because these observables have been measured with a

high level of precision. The current estimates are [53]

a(mz)™! = 128.80+0.12,
91.1876 + 0.0021 ,

mz

Gr (1.16637 + 0.00001) x 1075 GeV~2 . (5.6)

However here we take myy, instead of G, even though my is not known as precisely
aamy:

my = 80.425 + 0.038 . (5.7)

This choice is in fact useful, because it is independent of the fermion profiles, and will
pay off in section 5.3, where we compare this model, in which fermions are localized,
with a different model, in which fermions are delocalized.

Taking a,mz, and my as input observables, and defining s by,

2
s$=1- m—‘;’ , (5.8)
mz
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with ¢ = V1 — s2, we find the following expressions for the low-energy charged-current

and neutral-current Lagrangians:

cc
Loc = L gy#P Ty W) +h
cC \/§ 7L P Wy .C. ,

Lyc = v (92 CPLT* +9§CQ) v 2, (5.9)

where

§C = e [1 N aS  c2aT (2 ~s2)(y(1] ’

s 452 252 8s4
NC _ ey aS (c? — s2)aT B (c® — s®)alU i
I = 4s2 252 8s1 ’
ye _ _esfy, ol ﬂ]
90 = - [1 + 252 + sl (5.10)

This equations show that T is related to the p parameter by
aT=p-1. (5.11)

This relation is however only valid as long as the new-physics contribution to the
low-energy interactions is purely oblique.

Inserting (4.46) in (5.4), and using the perturbative expansions (4.52) and (4.54)
for the masses and the normalization factors, respectively, leads to the following tree-

level expressions for the couplings in model I:

g = S [teatesonf]
e _ £[1+)\2/6+0(A4)],
ggcu) _ _fcf[l+0(/\4)] . (5.12)

Comparing these equations with (5.10), we obtain for this theory

aS = 2s22%/3,
aT = 0,
aU = 0. (5.13)

The fact that T = 0 at order O(/\z) is an expected result, because this model has

an approximate custodial symmetry: This is most easily seen in the deconstructed
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version, from the choice of coupling By, as the T3 component of a global SU(2). U is
usually expected to differ from T by a percent, and is accordingly approximately zero
in this model. However S is not zero at order O(A2). This is in agreement with a
general result found in Ref. [55]‘: In an arbitrary SU(2)oxSU(2)Y xU(1) y 41 xU(1)M
NLSM, with matter fields charged under SU(2)g and U(1) x4 only, it is always true
that S—4cosfy T > O(1). In our model T is naturally suppressed, thus the previous
relation reads S > (1), in agreement with (5.13), since o ~ A2.

Recent experimental constraints on S and T can be found in Ref.[78], where the
limits are given as a function of the Higgs boson mass. In principle, its contributions
must be subtracted from the above S and T parameters, since there is no Higgs boson
in our model. However, given that the dependence on m g is not too large, we can still
obtain an estimate of how these constraints impact our model. For my = 600 GeV
with the constraint S > 0, and using Bayesian statistics, the limit on S is S < 0.14.
This result corresponds to mw, > 3 TeV. Unfortunately, for models in which mw, is
so large, unitarity will be violated even before the scale of my, is reached, as shown
by Fig. 4.14. Therefore, it appears that the method used in this section to incorporate

matter fields into the model is not viable.

5.2.3 Indirect Constraints on the Low Energy Gauge La-
grangian

Although we have already proved that brane localized fermions violate the bounds
imposed by unitarity and the EWP data, we press on and consider the indirect con-
straints of this model on the low-energy gauge interactions. The results we find here
will be useful later in this chapter.

Additional constraints on the Wi mass can be found from the analysis of anoma-
lous couplings in the WW Z vertex. To leading order, in the absence of CP-violation,
the triple gauge boson vertices may be written in the Hagiwara-Peccei-Zeppenfeld-
Hikasa notation [74],

L3 = —ieg—i (1+ Akz) WiW, ZM — e (14 Any) WiHW, AR
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. C , - -
- zeé (1+Aagf) WHHwr - w w2z,
— e(WHHWW T — WA, , (5.14)

where the two-index Lorentz tensors denote the U(1)g-invariant field strength tensors
of the corresponding field, and the “Z standard” weak mixing angle is defined in terms

of e, mz, and Gg by

e2

4\/§Gpm% ’

s2Zc22 (5.15)

where, as usual 522 + CQZ =1

In the SM, Akz = Aky = Aglz = 0. In our Higgsless model, like in any vector-
resonance model, the interactions (5.14) come from re-expressing the nonabelian cou-
plings of the original Lagrangian in terms of the mass eigenstates, in which case one
obtains equal contributions to the deviation from the SM in the first and the third
terms, and in the second and the fourth terms [75]. Moreover, the contribution to

the fourth term is fixed by electromagnetic gauge invariance. Therefore, we obtain
Akz =0gf Ak, =0. (5.16)

In order to express the WW Z vertex in terms of sz, rather than s = my /mz,

we must find an expression for Gg. To order A2, we simply have
F !

\/2_GF = ——T— y (517)

because, as previously noticed, the heavy KK exchanges only contribute at order A4.

Using (5.10) and (5.13), we find

| Q
[\

o - 1 2[1+ns]
F 4\/§m%‘,s 252

1
4\/§mgws

mwR)?
[1 + % +0 ((mwwR)“)] ,

I(‘h
N N

(5.18)

where we used (4.52) to express A in terms of my, and R. Inserting this equation in
(5.15) gives

1 aS]

s = sz|l+ ————5—5
z [ 1- .S2Z/C2Z 4s2Z
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1 (mvyﬂ’R)2
1-s2/c% 6

The WW Z vertex can be found in appendix C. Expressing it in terms of ¢, s,

1+

= SZ

+0 ((mu,rwR)4)] (5.19)

and (my mR) gives

R 1
= eZ |1+ (mW7t2 i 3 ag +0((mw7rR) )
S7 12CZ CZ - SZ 4SZ

- 1w (2 ) o (R

Iwwz

Sz CZ - SZ CZ
(5.20)
whence, comparing with (5.14),
'mR)? 2 1
AgIZ=_(m”“ ) (2 2_T)<0. (5.21)
12 z—%z ¢z

The 95% C.L. upper limit from LEP-II is |Agiz | < 0.028 [76]. Using the experimental
results (5.6), (5.7) and eq. (5.15), the upper bound on AgIZ translates into the lower
bound 1/R =~ myy, > 682 GeV, which is considerably stronger than the direct-search

bound found in section 5.2.1.

5.3 Model 11

Drawing on the analogy of the gauge action (4.42), which has SU(2) and U(1) kinetic
terms peaked at the two ends of the interval and connected through the bulk kinetic
term, we now consider a theory with left-handed and right-handed fermion kinetic
terms peaked at the two ends of the interval and connected through a bulk fermion

kinetic term [45],[50]. The fermion action is
1 71- -
4 M ,
Sfernnon /d / dy [WR (Ewlr Dy + he — M'U)U')

- 1
+5(y)t—2U’LW“Du¢'L +6(7R - y)(t—uRW’ Dyup + —dm“/"DudR)
L up dR

(5.22)

The five-dimensional Dirac matrices were introduced in scction 4.1, and are defined

in terms of the four-dimensional ones by I'M = (4#, —i7°). The five-dimensional
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fermion is equivalent to a four-dimensional Dirac fermion, ¥y = v)y + ¥, where v,

and yp are SU(2) doublets,

. ur UR
v = s YR = .
dL dp

We have written the action for one doublet, consisting of an up and a down quark.
We will discuss the possibility of more generations and mixing in Section 5.3.2. We
can assume the bulk mass M to be real in (5.22) without any loss of generality. In
fact any imaginary part of M can be removed by the replacement ) — e(ImMy)y,
The sign of M, however, is physical. In analogy with the gauge brane kinetic terms
(see section 4.2), the fermion brane kinetic term at y = 0 is defined by interpreting
the d-function as §(y — ¢) for ¢ — 0% with the boundary condition ¥ = 0 at y = 0.
Similarly, the boundary term at y = 7R is defined by interpreting the §-function as
d(mR—y+ ¢) with the boundary condition 1y, = 0 at y = 7 R. The general treatment
of possible fermion boundary conditions can be found in Ref. [71].

The covariant derivative in (5.22) is
Dppio = (9pg — iT*Why(y) — YLWiy(R)) ¥, (5.23)

where Y} is the ¥f hypercharge. At the interval ends the four-dimensional part of

the covariant derivative (5.23) becomes:

(Dudp)y=0 = (8u —iT*WS(0) — iYL W3(nR)) vy ,
(DutR)y=rr = (0u —iTW2(nR) —iY,W3(nR)) ¥
= (0 —iYRW2(vR)) g, (5.24)

where the v hypercharge, Yg, is related to Yy, by Yg = T3+ Y], as in the SM. Note
that Yp is a 2x2 diagonal matrix, with the up hypercharge on the upper left, and
the dp hypercharge on the lower right. Therefore, at y = 7R the covariant derivative
term, J;R'y“D,,_w R. splits into two separately gauge invariant terms, #gy* D, up and
dry*Dudp, as in (5.22). Note also that in the limit of small tf, tup, and tdp the

(IT)

action Sfelrmi on describes massless left-handed fermions gauged under an SU(2)xU(1)
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group living on the left end of the fifth-dimensional interval, and massless right-
handed fermions gauged under a U(1) living on the right end of the interval, exactly
as in model I. It is the presence of the bulk fields which allow these light states to
communicate with each other, supplying the analog of the Yukawa coupling of the

SM, and giving mass to the fermions.

5.3.1 Fermion Masses and Wave Functions

In order to find the KK cigenstates for all fermion ficlds, we must diagonalize the free
action. Let x denote either u, the up-type fermions, or d, the down-type fermions.

Turning off the gauge couplings, the action of (5.22) becomes Sl(lo) + 8(0) , where

s =/d4x/0”Rdy

1 (_ . .
= (xm"auu + XRY"OuxRr

1 _ _ _ _
-3 (XrRO5xL — XLO5xR + h.c.) = M (XprxrL + XLXR))
1, 1L i
+ oy - 6)t7xu‘/ Ouxp +6(7R — €~ y)tg—xmv Ouxr| -  (5.25)
i XR

In (5.25) we have explicitly included a finite ¢ to push the delta-function terms

slightly away from the interval ends, allowing us to unambiguously impose the BCs
xr(0)=0 , x (mR)=0. (5.26)

The field equations in the bulk can be obtained by variation of S,((O). Integrating these
equations around the §-functions, taking the limit ¢ — 0, and using the boundary

conditions (5.26), leads to alternative expressions for the boundary limits:

1
lim = ——ivH0 0),
Y0+ XR t% Y /tXL( )
. 1
lim xp = —12—17"6#)(3(7#2) . (5.27)

Comparing (5.26) with (5.27), we see that x g has a discontinuity at y = 0, but x is
continuous. Similarly, x is discontinuous at y = mR, but x g is continuous.

The fermion fields can be expanded in a tower of four-dimensional KK states:

xp(zr.y) = Zaxn(y)XnL(x),

n=0
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XR(x y E ‘3)(11 y)XnR( ) (5'28)

n=0
The four dimensional fields xn; and xnp are the left-handed and right-handed pro-
jection, respectively, of a mass-my Dirac fermion, xn = xn L+ Xnp- Wavefunctions
and mass equations are obtained by diagonalizing (5.25). It is most convenient to
treat the action as finite in the bulk (0 < y < mR) with (5.27) as BCs. In this case

the bulk equations of motion become

67 n+1‘/]axn—mnﬁxn = 0’
Bxn = MByn +mnay, = 0, (5.29)
with the BCs
m
yl"(l)l /3Xn( ) = —t—;a)m(()) )
lim 0y, (TR) = _t’;’" Bn(7R) . (5.30)
y—rR XR

(Recall that masses with a hat are expressed in units of (7R)™!; i.e., i = m=nR.)

The wavefunctions must also satisfy the orthonormalization conditions

TR 1 1
[t |2+ 6w araen) =

TR 13
/Oany

1
where the integrands, for equal n and n/, should be interpreted as position probability

+,21 6(mR = y)| Bxn(¥)3(y) = 6, (5.31)

R

densities for the left-handed and the right-handed fermions, respectively.
With the five-dimensional fermion fields propagating into the bulk, the four-
dimensional charged-current and neutral-current Lagrangians involve not only KK

gauge bosons, but also KK fermions. For one generation of quarks (or leptons), we

have
(”) ce cc i
C = L; Uk’Y (gLn‘(uk.d[)PL + gR,l’(l,L~,dl)PR) d[ %) T-:;l + h.c.
n
L(II) - Z Z P73 4+ oN P 73 4 oN Q) 2
e kln udxm JL" AVAVEES ITn. (xpap) R 9Qn & ) Xt £np
X=

(5.32)
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where the coupling constants are given by

TR
ggnc.:(uk,dl) = /d41:/ dy [% + ﬂ%—)} auk( )adl( )f?l(y)
I (upedp) = / / 4 —RPu )B4 W) n(y)
B = [ [ Rdy [;R N "fé’)] . )y ) (9n(3) — 9n(R) |

dy
gNCe ) = = [d' / =85, V)8 () (9n(v) — 9n(xR)) |
an = gn(7R) . (5.33)
Perturbative expressions for the fermion couplings can be found in appendix C for
M=0.
The solutions to the mass equations are simplest in the case of zero bulk mass M.

We study this case first and then look at the numerical solutions for nonzero M.

(i) M =0. With no bulk mass, the solutions of (5.29) are

o, = An [cos(mny) - %sin(mny)] ,
L
Mn .
Byn = —An [tT cos(mpy) + sm(mny)} . (5.34)
L

Applying the boundary conditions given in (5.30) to these solutions leads to an equa-

tion for the fermion masses,

(t% + ti Yp tanmy, + mn = tLt (5.35)

XR -~
The lowest mass state of the KK tower corresponds to a standard model fermion.

This light mass can be easily obtained in a perturbation expansion if we assume t%

to be small:
oty 1+62 +1t3 /3
Mg = —-—i"%— 1 - — AR - XE47 +O(t}) (5.36)
JI+8, 2(1+4,)
If we also assume ti rto be small, the heavy state masses are
2
1 T+t
T (n - 5) 1+ —"£-2 +ouhH| n=12,... (5.37)
72 (n— )
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The normalization factor A, can be fixed by requiring the KK states to be canon-

ically normalized in the four-dimensional Lagrangian. We obtain

e . oe -1/2
1 sin 217y 1 9 . m,2, sin 21y,
= |=(1 - — 1~ . .
Ap [2 ( + S ) + t% cos” mn + 2t‘}J S (5.38)

For t% small this gives
2 4
L+ 83, + typ/3
2
2
2(1+¢,)

for the lightest state, and for both t% and t?( R small this gives

Ag=tr |1— 2 +0(t1)| , (5.39)

542 t2 +1t2
V2] 13 L7 xR 5 + oY n=1,2, .., (5.40)

for the heavy states.

4411 =

From (5.36) we see that the lightest fermion mass is suppressed by the factor
trtyxp- For small values of these parameters this lightest Dirac fermion lies mainly
on the branes, with small contribution from the bulk. The left-handed bulk wave
function ag(y) goes to zero as t;, — 0, and the right-handed bulk wave function
Bo(y) goes to zero as tg — 0. Since the fermion masses arise from the J5-terms,
which mix left-handed and right-handed wave functions, it follows that mg goes to
zero, as either ty — O ortg — 0.

Notice also that (5.36) and (5.37) are symmetric in tf, and ty 5. This was expected,
since the mass equation is {; — ty n symmetric. However, we shall treat ¢y and ¢y p
differently. For starters, ¢, is an SU(2) invariant parameter, whereas ¢, p can have
different values for the up and down fermions. We shall take this distinction further
by assuming that ¢; is universal for all quarks and leptons, and that the different
particle masses are determined by ¢, R We shall find in section 5.4 that if t7, is of
order ), it can be used to cancel the positive contribution to the S-parameter that
comes from the gauge sector. To have an idea of the orders of magnitude involved,

“let us assume R~ ~ 1 TeV and t; ~ A~ 10!, Then typ ranges from ~ 10~

for the lightest neutrino, to ~ 102 for the charm quark.
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Figure 5.1: Probability density for the position of the left-handed electron (red),
and its KK resonances, er, (green), and ey, (blue) in the extra-dimensional (or TS)
interval, for 1/R =500 GeV, and t; = A/V/3, with é(y) and (7R — y) replaced by

narrow Gaussians.

All these features are made explicit in Fig. 5.1 and Fig. 5.2, where we show
the position probability density in the [0, 7R] interval for the left-handed and the
right-handed electron, respectively, together with the first two KK resonances, for
1/R =500 GeV, and t;, = A/V/3. As we did previously for the gauge boson probabil-
ity densities, we replaced §(y) and §(mR — y) with narrow Gaussians (with the same
width, for a faithful comparison). We can directly observe the suppression in the bulk
of ae(y), and the very large suppression of G¢(y). Correspondingly, the left-handed
electron spends most of its time near the y = 0 brane, while the right-handed electron
spends virtually 100% of its time in proximity of the y = mR brane. Notice that these
considerations apply only to light fermions. We shall return to the issue of the third

generation in chapter 6.
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Figure 5.2: Probability density for the position of the right-handed electron (red),
and its KK resonances, eg, (green), and ep, (blue) in the extra-dimensional (or TS)
interval, for 1/R =500 GeV, and t; = A\/V3, with §(y) and (7R — y) replaced by

narrow Gaussians.

(ii) M # 0. For nonzero bulk mass, the analysis is similar; the equations are just a

bit longer. The equation for the fermion'ma&ees becomes
[(ﬁz% + '%[in) M + (li + 112\12) 171?,‘] T(mg) = '%”in —m2, (5.41)
where the function T'(my) depends on the relation between my and M:
' mtan V2 — M2 for mn > |M|,
2_

T(mn) = A (5.42)

Th tanh /M2 — 2 for M| > mp .
| VM2-md

For a large and positive bulk mass M >0, M > 1, there is one light solution to this

mass equation, given approximately by

my ~ 1315 pe M (5.43)
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Figure 5.3: Masses of fermions, as a function of the bulk mass, for {7 = 1071, tp =1,
and 1/R = 500 GeV.

For a large and negative bulk mass M < 0, |M| > 1, there are two light solutions,

which are asymptotically given by (for tf, < ty )

m

Q

2|M|t?

—h ON

Q

o 2AM|E3 , . (5.44)

This behavior is displayed in Fig. 5.3, where we plot the mass states as a function
of the bulk mass M, with the other parameters fixed at t; = 1071, txg = 1, and
1/R = 500 GeV. The transformation M — —M can be shown to be equivalent to
a reflection in the fifth dimension. Since the boundary conditions (5.26) that we
have imposed are asymmetric in this reflection, we obtain the asymmetric behavior
in M — —M of Fig. 5.3, even in the absence of the brane kinetic terms. The heavier

modes are less asymmetric, because they are less affected by the boundaries.
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5.3.2 Generation Mixings

It is not difficult to implement multiple generations in our fermion model II. In general
the bulk mass, M, and the normalizations of the brane kinetic terms, tz2, ty 12?,
and t(’i‘;, would be independent 3 x 3 matrices for both the leptons and the quarks.
However, this proliferation of mixing matrices would open the door to large flavor-
changing neutral currents, which must somehow be avoided. The simplest way to
achieve this is to restrict all of the flavor physics to the right brane, and impose a
global U(3)quark X U(3)iepton Symmetry on the quark and lepton doublets in the bulk
and on the left brane. This flavor symmetry would only be broken by the kinetic
terms on the right brane (which, incidentally, is also the only place where the SU(2)
weak gauge svmmetry is broken). The generalization of the fermion action in (5.22)

1s

R - ] yAN]
sUD Z/J“I/O" dy[i (%WirMDMz/M h.c.—MvJ”t/)’)

fermion TR

b

1 -, L o . i .
+ (5(y)t7w2Lr/"D#w1L +d(rR—y) (u’RK,"l]z'y“Dpu;{ + JIR[\;]W“Dud;g)
L

(5.45)

where i and j are generation indices, and there is an equivalent contribution for
leptons. In principle the t; and M parameters, as well as the K matrices, can be
different for the lepton and quark sectors. The five-dimensional fermion fields ¥/i's

can be considered four-dimensional Dirac fermions, which are also SU(2) doublets:
vi= wi + tng = s |+ ) (5.46)

The quark sector matrices K, and K are arbitrary Hermitian matrices; however,
we can exploit the U(3)qyark Symmetry of the quark fields in the bulk and on the left
brane to reduce the number of real physical parameters to 9 + 9 — (9—1) = 10, where
we have taken into account the fact that the U(1) part of U(3) is just an overall phase
symmetry. We can identify these 10 parameters as the six quark masses, and the four
physical paramecters of the CKM matrix. To see how this works, we first perform an

SU(3) transformation on the v' to diagonalize Ky. Thus, without loss of generality,
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we can assume Kflj = (t;fR)Jij . We can also assume that K;j is diagonalized by a
unitary matrix V, so that Kfij = yik (t;:R)(VT)kj . We now relate the (primed) gauge
eigenstates to the (unprimed) mass eigenstates by the redefinition d’L R = & dJL R

The action now becomes

R - : T
S = [ [ &[# (384T Dy + be. — Miiud)

fermion

1 - . 1 ) 1 - .
+ 8(y) 5 YL Dl + 6(7R — y) | s—1uRiv* Dpup + 2—fni7"D#d1R ,
(5.47)

where
A N A R T (5.48)
vy dJL vu d}{
The unitary matrix V' corresponds precisely to the CKM matrix in the SM, only
arising in terms that involve the exchange of charged SU(2) gauge bosons. Just as
for the CKM matrix, it can be reduced to three real parameters and one phase, via
five independent phase redefinitions of the uy, g and dy, g ficlds.

It is not difficult to see that any implementations of the SM can be mapped into
this picture. In the lepton sector, for example, we could induce a see-saw mechanism
by including a Majorana mass term for the neutrino, at y = 7R. In that case the
matrix V would contain two more physical parameters, corresponding to the Majorana
phases of the MNS matrix. Alternatively, we could have a zero-mass neutrino, by
imposing the boundary condition vg = 0 at y = 7R. In that case the number of

physical parameters would be 9-(9-3)=3, corresponding to the three lepton masses.

5.4 Experimental Constraints on Model 11

We would like now to study the experimental constraints on model II, starting from
the four-dimensional Lagrangians (5.32), and the coupling strengths given in ap-
pendix C. We consider first the direct constraints on W; and Z; production, and

then the indirect constraints of EWP data on the low energy effective Lagrangians.
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5.4.1 Direct Constraints on Heavy Boson Production

With the fermions in the bulk, the overlap of the light fermion wavefunctions, with
the heavy gauge boson wavefunctions is enhanced, relative to model I, by a factor
of order 1/ AZ. However the probability for the light fermions to be in the bulk is
suppressed by a factor of order t%, and thus we expect the coupling of light fermions
to heavy gauge bosons to be of the same size in model I and model II (for I% ~ /\2).

However the cross sections for W} and Z; production change by numerical factors.
The relation between the ratio a(q7 — W) — fv)/o(q7 — W — év) in the SM and
in model II is now

o(q7 — Wy — )]0 _ 2 miy 1- 2i * (g7 = W1 — &)™
o(gg — W — tv) B X2) |olgg— W = )

. (5.49)
mvvl

for M = 0. In accordance with the results of the next section, we set t; = A/v/3, so

that last expression becomes

[U(qq - W - (’u)] un _ g m%‘; [o(qq - W; - {u)] (SM) ' (5.50)

a(qg — W — tv) 9 m%Vl o(qg— W — )

The suppression factor is nine times smaller than in model I (see eq. (5.5)). Rescaling
the cross section shown in Fig. 2 of Ref. [72], we find my;, > 350 GeV, which is
significantly weaker than the corresponding bound in model I. It can be shown that
numerical factors also significantly weaken the bounds on mz,, relative to the model

with localized fermions.

5.4.2 Indirect Constraints on the Low Energy Fermion La-
grangians

In section 5.4.1 we argued that the couplings of light fermions (and SM gauge bosons)
to heavy gauge bosons are also suppressed in model II as they were in model I
Therefore, dimension-five and dimension-six operators do not arise at A2 order, in the
low-energy effective Lagrangian. Also, we observe that although the delocalization
of fermion fields give rise to anomalous right-handed couplings, these must vanish as

txp — 0, because in this limit the right-handed fields become exactly localized on the
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y = TR boundary, where the five-dimensional W*(z,y) is zero, and W3(z,y) only
couple with Yp = Qp. Since ¢, R 1s negligibly small for light fermions, no anomalous
interactions are relevant at low energy.

Therefore, the new-physics constribution to the low-energy interactions is still
oblique, with the charged-current and neutral-current Lagrangians given by (5.9).

The couplings are now

GO = o [t [y [+ S awtiaat 28

1
O = O [t [y | o B o 1o () BT
ggcm) _ ggcu ’ (5.51)

where we used (5.4) and the normalization conditions (5.31). The ratios in (5.51) are

positive and less than one,

foly) _go(y) —go(nR) 'y
O H0 T w0 —waEr ' TrR S

and the suppression factors for ggC and gg C are identical to leading order in 22,

(5.52)

Evaluating the integrals, we obtain

gr U0 = 7P -a),
g CUD = ¥ _ A,
ot = 5cm (5.53)
where
A = (~trsinh Al —L(1—6—MM) . (5.54)
M 2M M

In the limit M — 0 we find A — 1/2 [45]. By allowing the fermions to extend into
the bulk, as in model II, one can cancel the effects of S in electroweak measurements.
Comparing (5.53) with (5.12), we see that S can effectively be set to zero (while
retaining 7" = U = 0) by the choice

o= . (5.55)
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5.4.3 Indirect Constraints on the Low Energy Gauge La-
grangian

In section 5.2.3 we analyzed in the constraints imposed by the EWP data on the
WW Z vertex in model 1. The results we found there can be easily adapted to model
IL. In fact, in equations (5.18), (5.19), and (5.20), the first line is also applicable to
model II, because it is generically written in terms of the S parameter. We have just
seen that the latter can be adjusted to zero in model II by setting t; = A\/v/3, for

M = 0. Therefore, with this choice we obtain
1 2

- & TR
Gp = Wi, 2 [1+ 0 (mwrR)*)] , (5.56)
for the Fermi constant,
s=sgz [1 +0 ((mW'ﬂR)4)] , (5.57)
for the relation between the sin 6y, 's defined by (5.8) and (5.15), and
c mwmR)? .
Iwwz = e;i— [1 + -(-1272)— +0 ((7nw7rR)4)J . (5.58)

for the coupling in the WW Z vertex.
Comparing last equation with (5.14) gives
myR)?
Ag? = (mu L )
12CZ

With this result, the 95% C.L. upper limit |Agf| < 0.028 from LEP-II [76] translates

>0. (5.59)

into the lower bound myy, > 498 GeV for the W) mass. This is weaker than the
corresponding bound with localized fermions, but stronger than the direct search
bound we found in section 5.4.1.

The analyses of direct and indirect constraints in model II show that delocaliz-
ing fermions can always relieve the tension between unitarity and experimental data.
However we have not yet considered the constraints imposed by the top quark phe-
nomenology, which might be severe. In fact t; g may not be small enough to suppress
anomalous right-handed couplings. Worse, there might not even be a #; R which gives
a realistic top mass. We will see that this is indeed the case, and offer a solution to

this problem in the next chapter.
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Chapter 6

The Top Sector

In Section 5.3.1 it was shown that the fermion masses are suppressed by the factor
trtxp- In Section 5.4.2, we saw that we could choose ¢ty to cancel gauge sector
contributions to the S parameter, thereby relating ¢7 to A by (5.55). Thus, we are
left with ¢, g as the final degree of freedom to fit the fermion masses. In this chapter
we will see that this works well for all of the light fermions, except the top quark. In
fact, accommodating a realistic top mass would require the increase of the value of
1/R beyond the bounds imposed by unitarity of the WEWE — i"W [ scattering.
We will then show that this problem can be solved by breaking the five-dimensional
Lorentz syminetry, which lcads to two independent compactification radii, or mass
scales: One for the gauge sector, and one for the fermion sector. Upper bounds on the
latter are then shown to arise from the 7 — WELWZ scattering, and lower bounds

from EWP data on the tbl{" vertex.

6.1 The Top Mass in Theory Space

In chapters 4 and 5 we have presented a Higgsless model of EWSB from continuum
TS, whose full action is given by the sum of the gauge action (4.42), and the fermion
action of model II, given by (5.22) (or (5.45), for multiple generations). In this model
the overall mass scale is set by 1/R — which is required to be less than about a TeV in

order to sufficiently delay unitarity in ¥ "E' W — WE'W [ scattering — and the other
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Figure 6.1: Mass of the lightest fermion, as a function of the bulk mass, for t; chosen
to adjust the S-parameter to zero, and 1/R = 500 GeV. The curves correspond to
several values of t, g from 107! to infinity.

independent parameter is t; (which measures the amount of leakage of left-handed
fermions into the bulk) while the ¢y ,’s (which measure the amount of leakage of
right-handed fermions into the bulk) are in a one-to-one correspondence with the SM
fermion masses. In section 5.4.2 we saw that we could choose t; to cancel gauge
sector contributions to the S parameter, by relating ¢; to A by (5.55). Therefore,
1/R is left as the only free parameter beyond the SM.

With this setup, however, it is impossible to obtain a realistic top quark mass
of 175 GeV. For example, for 1/R = 500 GeV, M = 0, and ¢, fixed by (5.55), the
lightest fermion mass solution to (5.41) has a maximum value of about 45 GeV. Even
if we allow the bulk mass M to be nonzero, we cannot do much better, since (5.55)

involves M in a dramatic way. In particular, when M — —o0, tJ tends exponentially
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to zero, and so does mg. In the other limit of M — oo, the solution for mg itself is
exponentially suppressed, as shown in (5.43). Thus we find a peak near M = 0 in
the curve for mg as a function of M (for fixed ¢, R)’ as shown in Fig. 6.1. From this
curve with 1/R = 500 GeV, we find that the maximum possible quark mass for any
value of M is about 47 GeV, which occurs for ¢, g set to infinity.

One possible way to solve this problem is to allow a diffcrent t; for the third
generation of quarks. This approach might be viable, since the constraints on the
S parameter do not directly involve the third generation fermions. However, we
find it unattractive, since universality of t; (and M) was the simplest way to avoid
any dangerous flavor-changing neutral currents. Moreover, large values of ¢, for the
top-bottom doublet could lead to a violation of the experimental constraints on the
Zbb vertex. An alternate solution that we prefer is to allow a different size of R for
the gauge sector and the fermion sector. This possibility had been suggested in the
context of the warped-space model in Ref. [46]. It is even more sensible in the context
of a theory space, since there is no reason for the coefficients of d?l"“Duw and YI° D5y
to be identical, in the bulk sector of (5.22). In terms of the deconstructed version
of the theory, this just corresponds to allowing the gauge couplings and the Yukawa
couplings to be independent of each other [20]. The most general extension of model

II, with y-independent parameters, is described by the action Sgayge +Sf(”)’

ermion’ where

Sgauge is just the gauge sector action given in (4.42, and

(ary _ (TR 1 /- , -5, LT
Sfermion = /0 dy/d“x [m (WF“DML + K (§w1F D5y + h.c.) - Mw_L)
1 .- 1 1 -
+ 5(y)glU’L7uDu¢L +6(mR—vy) (T“‘R'WD#UR + -t—g-—zdR'y"D#dR” ,
e R .

(6.1)

where x is a new parameter. Notice that from an extra-dimensional point of view,
this action corresponds to a theory with a microscopic breaking of the Lorentz invari-
ance along the fifth dimension, in addition to the macroscopic breaking due to the

compactification. Rescaling the parameter y by y — y’ = y/x, the action Sg{r)l'ion
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becomes identical to SU! ), with R replaced by R/f;.l Therefore, the gauge sector
mass scale, 1/Rg = 1/R, and the fermion sector mass scale, 1/Ry = k/R, are inde-
pendent quantities in theory space: setting Ry = Ry is an unnecessary and arbitrary

choice.

With the action S(”),

fermion the fermion masses are (for M = 0),

replacing S (1

fermion’

2 4

t3 +12
Mp = KT (n - -;-) 1+ ——é—ﬂ? +othHl n=1,2,... (6.3)
n (n-3)

Now we can account for m; by simply increasing k. Of course k cannot be too large,

2 +011)| . (6.2)

due to unitarity constraints similar to those which give bounds on 1/Ry. In the case
of 1/R s the limits come from scattering processes such as tt — Wi"W L - We shall

investigate these unitarity bounds in the next section.

6.2 Unitarity of Fermion Scattering Amplitudes

Here we shall restrict ourselves to coﬁsidering the unitarity bounds coming from the
tt — WE W scattering process. General constraints on couplings in Higgsless models
from this and related processes have been considered previously in Ref. [79]. In the
SM, the tree-level tt — Wg’ W scattering amplitude is given by the four diagrams
of Fig. 6.2(a). If t and ¢ have opposite helicities, the v- and Z-exchange diagrams
produce quadratically divergent terms, in the high-energy limit, which are cancelled
by the b-exchange diagram [11). The Higgs boson is not involved in this cancellation,
which is confined to the J = 1 partial wave, so there is no quadratic growth of the
amplitude with energy, regardless of the Higgs boson mass. If ¢t and ¢ have the same
helicity, the b-exchange diagram produces a linearly divergent high-energy term in
the J = 0 channel, which is cancelled by the Higgs boson exchange diagram.

In our Higgsless model the Higgs boson exchange diagram, of course, does not

occur. The «-, Z-, and b-exchange diagrams are supplemented by corresponding dia-

!The only difference is the interaction term with W¢, which is zero in unitary gauge anyway.
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Figure 6.2: (a) Diagrams contributing to the tt — WZ W tree-level scattering

amplitude in the SM. (b) Same process, in our Higgsless model.

grams with exchange of heavy Z,’s and by,’s, as shown in Fig. 6.2(b). As 1/Ry — o0,
these heavy Z,’s and b,’s are removed from the theory, which becomes equivalent to
the SM without the Higgs boson. Thus, it is reasonable to expect that the cancella-
tion that occurs for opposite helicity ¢ and f in the SM also occurs in our Higgsless
model, and that the amplitude does not display quadratic energy growth at any scale.
We have directly verified this in our model. However, if the ¢ and ¢ have the same
helicity, the linear growth in energy, that was cancelled by Higgs boson exchange in
the SM, now must be cancelled by some other sector of the theory. In our Higgsless
model this cancellation occurs through the b,-exchange diagrams. In this respect,
the heavy b-quarks play the role of the SM Higgs boson for this scattering process.
In section 4.3.3 we used the quadratic growth in energy of the W[jL W — WZ' W
scattering amplitude to place approximate bounds on the scale 1/ Rg, where the heavy
vector states come in to restore unitarity. We can now do the same here, using the
w—w ['f W[ process to place approximate bounds on 1/Ry. Note that, since the

fermion amplitude only shows linear growth with energy in the high-energy limit, the
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corresponding limits on the heavy fermion states will be significantly weaker.
For left-handed t and £, the J = 0 partial wave amplitude is given by
1 & 1

7 ) =
aoltrty = Wy W) = 64m 220112-1-162 +m§n
n=|

[((hﬁ? )2+ (hES)?) (mtkg@n) + 2;'l-”§vt;pE2h<{n) - mtpf(en))

+ PAEEAGE (4% 6n) - 202" - m%v)mn))} , (6.4)

where

2pk
én = YW (6.5)

E and p are the t (or ) energy and momentum, respectively, k is the WE (or W)

momentum, and my,, is the by mass, with my, = my. The functions f(z), g(z), and

h(z) are
1. 1+4+«zx
= Zlp—1=
J@) = S,
2 1. 14+«
o) = (1= i=D)
2 1-22 1412
h(l‘) = ;‘7(1—-—2;—1111—2) . (66)

Using the notation of eq. (5.33), the couplings are hgf = gfoc(to bn) and hgg =
ggg (tg.bn)" For M = 0, to leading order in t%, t%R, and A2, the formulas of appendix C
give

h§E = g[1+od)] .
2
1+t 7r2(”_%) ,rs(n_%)
teply
h%oc = gQ—RB-é—- [l +0(t2)] ,
1/1 +t3 R
72 (n - %) \/1+tt2R

In the high energy limit, (6.4) becomes

ccC
th

cc _
hRn =

1+0(})] n=12.... (6.7)

aoltzi - WEWE) = o= PE 5 (WF0)2 4 (GO - 2Pk GCRGEY . (68)
o\tLtr L"L/ = 3o- m%V A Ln Rn e inNkn |- .
2
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It is straightforward to show that this vanishes, to leading order in t%, th, and \2,
using the couplings given in (6.7) and the masses given in (6.2) and (6.3), applied to

m¢ and my, , respectively. In fact, using the completeness relations

> [# + @] ap, Wap, (v) = dy—-y),
i

n=0
X |1 é ' c ’
2 IR + 7%)] Bon W)3pn(y) = d(y—y), (6.9)

as well as the equations of motion, (5.29), and the boundary conditions, (5.30), for
the t. and the by’s, it can be shown that
— [(1CC\2 | (,CC\2 _ o™bn ,CC}CC
S [(hE6)2 + (hG9)? - 2 hCERGT] = 0. (6.10)
n=0 me
Therefore, this cancellation is exact in this model for any values of the couplings, and

the linear growth in energy at high energies does not occur.

6.3 Bounds on the Model Parameters

Of course, the cancellation of the term that grows with energy is not a sufficient
condition for the unitarization of the amplitude (6.4): The latter could stop growing
after unitarity is already violated. The heavy b-quarks should come into play early
enough to cancel the bad high-energy behavior, and this is only possible if 1/R; is
not too large. Enforcing (5.55), to keep S fixed at zero, and setting M = 0, the only
parameters that are not fixed by the light SM fermions and bosons are Rg and Ry,
which set the scale for the heavy vector bosons and the heavy fermions, respectively.
We can put some reasonable constraints on these two parameters by requiring that the
trtp — WE’WE and the WEWZ — Wf W scattering amplitudes remain unitary
up to some value of the center-of-mass energy /s. As an example, in Fig. 6.3 we
display the region in the (1/Rg.1/Ry) plane that is allowed by the requirement that
ag < 1/2 up to /s =10 TeV or /s =5 TeV for both scattering amplitudes. As
expected, we see that 1/Ry can indeed be much larger than 1/Ry. If we require the
theory to respect unitarity up to /s =10 TeV in both amplitudes, we find 1/Rg <
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Figure 6.3: Bounds imposed by unitarity constraints on the tf — WZ W scattering
at /s =10 TeV (upper curve), and the WLJ'W[ — WEWE scattering at /s =10
TeV and /s =5 TeV (vertical lines), in the (1/Rg, 1/Ry) plane. Specifically, we have
assumed the requirement of ag < 1/2 for both scattering processes. The tt — VVZ’ wp
scattering at /s =5 TeV imposes no bound, since at this energy the no Higgs boson
is required to unitarize the amplitude. The two curves on the bottom correspond to
the minimum value of 1/ Ry which allows a top mass of 175 GeV to be a solution of
the mass equation for M = 0 (lower), and the minimum value of 1/Ry which gives
a thW right-handed coupling in agreement with the experimental constraint (upper).
The vertical curve on the left corresponds to the experimental bound on mw, from

analysis of the WW Z vertex.

570 GeV and 1/R; < 32 TeV. If we use the weaker requirement that the theory only
respect unitarity up to /s =5 TeV, then we find 1/Rg < 720 GeV, while there is no
constraint on 1/Ry, since the tpfy — " Z W scattering amplitude does not violate
unitarity at this energy even in the SM without a Higgs boson. Of course, any upper

bounds on 1/Rg and 1/Ry depend on the somewhat arbitrary scale choice for v/,
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Figure 6.4: Right-handed tbW coupling, in units of ¢/s, for 1/Rg = 550 GeV, as
a function of 1/R 7- The horizontal line corresponds to the experimental bound of

Ref. [80].

where the low energy Higgsless theory has broken down.

Lower bounds on 1/Rg and 1/R; can be obtained from experimental results. In
section 5.4.3 we found the lower bound 1/Ry > 498 GeV from indirect constraints
on the WW Z vertex, while the corresponding direct search bounds were estimated
in section 5.4.1 to be weaker. For the case of 1/R i, a minimal requirement is that
it is large enough to accommodate a top quark mass of 175 GeV. This is displayed
in the lower curve on the bottom of Fig. 6.3. It gives a lower bound of 1/Ry >
1-3 TeV, with the dependence on 1/R4 entering through the condition imposed by
(5.55). However, this curve corresponds to an infinite value of {; R which is not

viable. Tighter constraints can be obtained by limits on the right-handed tbW’ and
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ttZ couplings, which in appendix C are evaluated to lowest order in t; g top to be

cc g 2,2

IR(tb) = Sltrlbp [1+0(/\ ot )] ,

NC g9 .2 2 .2

IR(t) = lim [1+0(/\ )t )] : (6.11)

For example, in Ref. [80] it is estimated, using experimental results on the b — s~
process, that gﬁ, g,b) /g < 0.4-1072, at the 20 level. The corresponding bound on 1 /Ry
is displayed in the upper curve on the bottom of Fig. 6.3. For the particular value of
1/Rg = 550 GeV, we can see how the coupling ggc(t, b,W=)/g (where we have used
g = e/s) varies with 1/R; in Fig. 6.4. The experimental bound is satisfied for this
value of 1/Rg by 1/Ry 3.6 TeV, which corresponds to x 6.5. An even stronger bound
might be obtainable from limits on the right-handed neutral current coupling, since
it is quadratic in the parameter #; » however, the extraction of this coupling requires
more detailed analysis of higher order effects at the Z-pole in our model. Notice,
however, that there is no tree-level constraint on 1/R ¢ coming from the right-handed

Zbb coupling, because t,, R is a negligibly small quantity.
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Chapter 7

Conclusions

In this dissertation we have built a phenomenologically viable Higgsless model from
theory space, with inspiration from the physics of one compactified extra-dimension.
It is a well known fact that a gauge theory on an extra-dimensional interval corre-
sponds to a four-dimensional theory with an enhanced gauge symmetry. This large
symmetry structure has the important property of unitarizing the longitudinal gauge
boson scattering amplitudes. The unitarization occurs through exchanges of virtual
Kaluza-Klein modes, which ensure the cancellation of the terms growing like E4 and
EZ2, playing in this way the role which is played by the Higgs boson in the Standard
Model and its most common extensions. This is only true, however, for boundary con-
ditions on the five-dimensional gauge fields which are consistent with the variational
principle. Moreover, rather than restoring unitarity at (almost) all energies, as in the
Standard Model, the Kaluza-Klein modes lead to a delay of unitarity violation to en-
ergy scales higher than the customary limits of Dicus-Mathur or Lee-Quigg-Thacker.
Therefore, any Higgsless model should be regarded as an effective field theory, valid
up to the energy scale of unitarity violation.

Our model contains three features, which are crucial to any viable Higgsless model
of electroweak symmetry breaking. First, it contains a tower of vector bosons which
delay the unitarity violation in the W W; — W W and W Z; — W Z scattering
amplitudes, while giving the correct mass for the standard model W and Z (and

photon) as the lightest states in the tower. Thus, it can extend the applicability
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of the effective Higgsless theory up to a higher scale in the 5-10 TeV range. This
is accomplished using an SU(2) gauge symmetry on a theory-space interval, broken
down to U(1) at the right end of the interval, and with gauge kinetic terms on each
end of the interval. The normalization (A, A’) of the gauge kinetic terms on the
boundaries are easily arranged to give the correct mass for the SM W and Z bosons.

Second, it incorporates a cancellation of the large vector boson contributions to
the S parameter, which generically occur in Higgsless models. This cancellation is ob-
tained by allowing the light fermion wave functions to leak away from the ends of the
interval. In our model this leakage arises through boundary conditions and boundary
kinetic terms for the fermions, where the light left-handed fields are predominantly
located at the left end of the interval and the right-handed fields are predominantly
located at the right end of the interval. The leakage of the left-handed fields into the
bulk can be made to cancel the gauge boson contributions to S, while keeping the
T and U parameters naturally suppressed, by tuning the normalization (t7) of the
universal left-handed fermion kinetic term on the left boundary. Meanwhile the nor-
malization (1, R) of the right-handed fermion kinetic terms on the right boundary can
be used to give the correct mass for each of the light fermions. Furthermore, multiple
generations and fermion mixings are implemented in the model, without introducing
flavor-changing neutral currents, by confining all flavor physics to the right-handed
fermion brane kinetic terms, and imposing a global U (3)quark X U(3)iepton Symmetry
on the bulk and left brane.

Third, it has a realistic top quark mass and small nonstandard right-handed top
and bottom couplings. To obtain this goal, while maintaining the good unitarity
properties of the W W[ scattering, it was necessary to separate the overall gauge
sector scale (1/Rg) from the overall fermion sector scale (1/Ry). This requires an
explicit breaking of the five-dimensional Lorentz symmetry, which is theoretically
allowed, since such symmetry is already broken by compactification and brane kinetic
terms. In fact, within a theory-space model it can be considered natural, since the
difference in the size of the scales is analogous to having different sizes of gauge and

Yukawa couplings. By making 1/Ry larger than 1/Rg, it is possible to obtain the
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top quark mass. It is also possible to suppress any nonstandard right-handed top
and bottom couplings, since for a fixed fermion mass, an increase in 1/R £ requires a
compensatory decrease in ty p, leading to a decrease in right-handed couplings.

In this way, we have constructed a viable Higgsless model with only three unde-
termined parameters, 1/Rg, 1/R 1 and the bulk fermion mass M. Since the bulk
fermion mass does not seem to add any qualitatively new features to the model, it
is reasonable to set M = 0, leaving us with a two-parameter model. The parameter
1/ Ry sets the scale of the vector boson excitations, and the parameter 1/R sets the
scale of the fermionic excitations. Just as the scale 1/Rg cannot be too large and
still effectively delay unitarity violation in W Wy — W;W| scattering, the scale
1/ Ry cannot be too large and still effectively delay unitarity violation in tt - WWwp
scattering. Thus, both of these scales are bounded from above, the exact bounds
depending on the energy scale at which the effective Higgsless theory must be re-
placed by a more complete theory. A reasonable upper bound for 1/Rg is in the
570-720 GeV range, while the upper bound for 1/R 1 is much weaker, of order 30 TeV
or more. Experirhental lower limits on 1/R ¢ from right-handed tbW couplings are
in the range of 2-4 TeV. Precise experimental lower limits on 1/Rg require further
investigation, although given the small couplings between the light fermions and the
heavy W’ and Z’ states, there appears to be a reasonable range for this parameter
that is still allowed.

In conclusion, we have presented an existence proof of a viable Higgsless model,
that can satisfy all current experimental constraints, as far as we know. It is certainly
not the only Higgsless model that may work, and it is probably too simplistic in many
regards, but it has all of the features that any Higgsless model must have. Thus, it
offers a concrete example for use to explore the phenomenology of Higgsless models
at the Tevatron and the LHC. In particular, it is worthwhile to further investigate
its most relevant phenomenological aspects, with careful attention to those features

which are general, rather than characteristic of any particular model.
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Appendix A

Solutions for the

SU(2)0 X SU(2)1 XU(l) Model

In this model there are five independent parameters: g, g, ¢’, f1, fo. We can express
these in terms of the SM parameters e, my’, mz, and the masses of the heavy vector

bosons, m whhmgr:

2,2
2 _ G2 mzma
gz mé.m2, "
W "V,
o (m%‘r + m%‘,,)(m% + m2Z, - m%v - m%v,) + m%‘;m%{,, - m2Zm2Z,
g =9 (m% +m2, —m%, —m? ) ’
VA z! W w!
2
g =
9,2 m%,-m%‘,,((m%; + ma,/)(mQZ + mzz, - m%v - m%v,) + m%/vm%v, - mQZmzz,)
(”122 - m2zl)(m221 - m%‘,,)(m2z, - m%V)(m%V, - m2z) 7
2 2
16 mu,'m 1/
2 |41
i === )
9%*  f}
4
f22 = g_a("'QZ + 7!122, - 7"%&' - ""%V’) ) (A.1)

The charged boson mixing matrix, defined in (4.22) is given by agg = aj; = cos¢
and —ag] = ajg = sin @, where

ma,,(ma,, - 1!122)(71122, - 7"‘1124”)

2
cos® ¢ = |
m%)[:/(m%l,rl - mQZ)(mzz/ - m%V') + 7n%V(m2Z’ - m%y)(mQZ — m%‘)
n - iy (2, — ), - i)
mi(miy) = my)(my = mi,) + miy(m7, — mi) (my — miy;)
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(A.2)

The neutral boson mixing matrix, defined in (4.23), is given by

- 1/2
bog = nl%’vm‘azl(mzzl - m%{,)(mzz, - m%,,) /
i mQZ(mQZ, - rn2Z)M4 '
[ (2 2 2 2,\11/2
(m%y — mw)(mw, - m7y) 9 9 9
blo = 3 D) D) 4 (nlvvl + mw - mZ[) N
mZ(mZ, —-myz)M
- 1/2
[ = m ), = md)
i m%(m,%, - m2Z) '
) 1/2
b()l - _ m%&/m%‘rl (mQZ - m%&/)(m%‘ri - m2Z)
i m2Z(m22, - mQZ)M4

b [(mzz/ = m%{/)(m%l - m%w
11 =

mQZ(m2Z, - mzz)M4

)12
} (m%‘,, + m%y - mzz) ,

1/2
b _ (mzzl - m%V)(m2zl - m%vl) / (A 3)
21 mQZ,(mQZ, - m2Z) ' '

where

M = (m%‘; + m%v,)(mzz + m?Z, - m%;y - m%‘,/) + m%ymfv, - mzZmQZ, . (A9
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Appendix B

Solutions for the

SU(2)xSU(2)VxU(1) Model

The mass matrix for the charged bosons is

22 A
N+ TUNTI
2 2
N+1
0 -1
a2 o 8
W= T

L

where A = g/ N + 1/g. Note that the sequence of (—1 2 — 1) in each row of this

matrix (except the first and the last two) acts as a discrete second derivative, whose
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eigenfunction is a sine function. Thus, we try a solution of the form

[ @sin(N + Dwn) -

sin Nwp,)
sin (N = 1)w(n)
Yn) = Cn) 5 ; (B-2)
sin 3w (p,)

sin 2w

sinw(p)

where C, (n) is a normalization constant and the eigenvalues are

2 _ 2.2 2%n)
My = g f*“sin 5 - (B.3)

The coefficients of w(y), in (B.2), have been chosen to run downward from N + 1 to
1, because in the underlying extra-dimensional model W* = 0 at z° = nR. This
corresponds to the (N + 2)-th component to be sin(0- w()) = 0. The first row of the
eigenvector equation M%’w(n) = m%Vn ¢’(n) gives the characteristic equation for this

system
2

4N +1)

which has N +1 solutions, W(n)- Using this equation and trigonometric identities [77],

sin? %}sin (N+1lw = [sin (N + 1)w — sin Nw] , (B.4)

we obtain a simple formula for the normalization constant

N+1 sin [2(N + 1)“-’(n)] } e (B.5)

q”z[ 7 4sinw(y

Solving (B.4) perturbatively, and identifying the SM W = I/Vé, we obtain for the

charged boson masses

2 £2
2 _ _9°f 2 N@2N +1) 4
i ‘4N+np N snenz oW
2 2
2 _ 202 nm 2. nm 2)
My f (SIHQ(]\"+1)) + 2miy (COS2(N+1)> (1+0(/\) .

(B.6)

116



The elements of the charged boson mixing matrix are

agp = 1-— A%((%Ll—g +00Y,

wo = /\(}]VV:%-FO(/\:;),

e g

ajn = \/Z sin ”(N;:j)” +O0?) (B.7)

where j and n run from 1 to N.

The mass matrix for the neutral bosons is

22 o 0
N+1 VN +1
——2 2 -1
;1\'+1
ba] O -1 2
My = & . (BS)
2 -1 0
1 2 by
- TVN+T
. 0 _ A, A,2
I a Vhil NI

where \' = ¢’/N + 1/§. The eigenvector equation M%x(n) = ""2Zn X(n) Can be solved

in a similar manner to the charged mass matrix. The eigenvectors are

- @Sin (N + 1)p(ny + E(m))] -
sin [Np(n) + d(n)]

sin (N = 1)pg) + é(n))

X(n) = D) : , (B.9)

sin [2p(n) + & ()]

sin [p(n) + (b(,,)]

N+1
i sin b

where D, is a normalization constant and the eigenvalues are

p
m2, = g/ %sin? =L (B.10)
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The characteristic equation for this system is

A2 4 )2 A2\72

sin? g sin(N+1)p = m [sin (N +1)p—sin Np] + zsinNp, (B.11)

AN +1)

which has N + 2 solutions, P(n)- The phase constant D(n) satisfies

, P(n) A2
tan @, tan 5 = VI XN (B.12)

Using (B.11) and (B.12), we obtain for the normalization constant

Dy =

| ~1/2
. N + 1 > N + 1 + Qd)
N+1 N sin [( )P(n)] D [( )P(n) (")]} (B.13)

2 2sin p(n)

There is one trivial solution to (B.11) and (B.12), which corresponds to the photon
solution: P(y) = 0, Sy =m /2. In section 4.3.2, the mixing matrix elements for the
photons were shown to be constant, and equal to the U(1)g coupling e. Identifying
the standard model Z = Z('), we obtain for the the remaining neutral boson masses

N(2N+1)+ AN\2 N
6(N+1)2 A2+ )N2N+1

2 2
) 2.2 nmw 2 nmw 2 )
"'Z{l g°f (sm —————-—2(N " 1)) +2m% (cos —‘—-—2(1\" " 1)> (1 +O(X°)) .

o _(@*+g?)f
z 4(N +1)

[1 — (A2 42?2 + 0(A4)] :

(B.14)

The elements of the charged boson mixing matrix are

g 2 2, N(2N +1)
bog = ————|1- (N4 A2
/g2 + g2 12(N +1)2
AI4 N 4
SIS Y )] ’
A2 O N+1-—j A2 j
bjg = = ]2 —_ J 375 +O(/\3) ,
VAZEMNZ(N +1)3/2 VOZHNZ(N +1)%/

gl

b n = -7
(N+1)0
Vot +g?

N(2N +1)
12(N + 1)2
M N
+
2002+ NN +1

2 sinmaN/(N +1) 3
bor, = —A\ o),
On VV+1 s ™)

[1 - (N2 + 2

| 0<A4)] |
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) _ 2 . 7r(N+1—j)n 2
bin = ‘/N_,_lsm N1 + O\,

, 2 sinmn/(N + 1) 3
: = - ’/ A B.15
b(N+1)n A N +1 4sin® mn/2(N + 1) OO, ( )

where j and n run from 1 to N.

Finally, we can use the characteristic equations, (B.4), (B.11), and (B.12), along
with the orthonormality of the rows of the Z’ mixing matrix, to obtain a simple
expression for the leading E2/m€V, term in the W TW/~ — W/TW/~ scattering

n
amplitude, which is the generalization of K in (4.38). We find
3 sin [2(N + 1w(p) N sin [4(N + Lw(p)]

gV D+ Sin W) 4sin 2wy

(B.16)
It is interesting to note that this quantity is exactly independent of ¢/, and it falls off
as (N + 1)—2 for large N. Setting n = 0, we obtain the result for W+ W~ scattering
in this model which, to first non-zero order in )\2, is
2

9
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Appendix C

Coupling Constants in Model 11

C.1 Gauge Boson Couplings

The Feynman rules for the cubic and quartic vertices, in the continuum TS gauge
model of section 4.3.3, are shown in Fig. C.1, where W and Zj correspond to the W~

and Z boson, respectively. The coupling constants are

2 2 7.2 4
T, 1—-— .
Iwo.Wo.Wo Wy I [ 15’\ +00 )] '

6v2(-1)*
2 _ 2 2
Iw . wowpmy 9 k373 [1+00%)]

0 o[ 1
Iw, gy Y [(3 - 2k27r2> Ok
8(—1)k+ k| sin[(k — )]\ 2 2
SV L e (GO R B N P
+(k2—12)27r2 1 (k=0m [ +0(x )] ’

9 R (_1)k+l+m 11

1 1 1
Cwe oW W = O

+( 1 1 1)5 +( 1 1—1)5
m+k m k)OmHRT A\ Tk T 7)) ImkH
16 klm 1—-sin[(k—1—-m)r]/(k—1—-m)r

k+l+m k—l-m
- sin[(k +1 —m)n)/(k +1—m)r 1 —sin[(k = +m)n]/(k - | + m,)r]
k+1l-m k—l+m
x [1+003)] ,
9 .2(—1)k+1+m+n i
ng-W[-Wm.Wn = 95_—2—— [5k+l.m+n + 5k+m.l+n + Ok+n,l+m
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v 2
—Okl4+m+n — ‘sl,m+n+k - 5m.n+k+l - 5n.k+l+m] [1 + 0()\ )] )

4 2 2 19.14,2 _ 164
g [1_ 14¢% + 27" — 18¢" /9% - ¢" /g /\2+0(/\4)] ,

2 -
MWoWo2020 ~ g%+ g2 30(¢2 + ¢?)

_1\k
= (3¢° + (1 +2(-1)*)g"?) )\2%3—1-)—

(392 + (2+ (=1)™)g?)g 9 2v2(=1)*

2 2
Iw,.Wwy.20.20 [1+00%)]

2 _ 2
W Wo-Zm.Zy J+ 97 N =33 [1+003)],
\ (g =%+t gP+g" .
Iw,.w.20.2 3 g2+ g2 oi2.2 ) Okl
+8((—1)k+192+g'2) kU(sinl(k = D]\’ 14002
(K2 = 12)272 k= Dn ’

2 _ 9 9% _+d%\,
g”"k.WO,Zm.Zo - \/m k,m
4(-1)%Hm (292 + (14 (-D)*+™)g2) km _ sinl(k = m)n]\?
(k2 — m2)2q2 ( (k= m)rm ) ]
x [1+00?)] |

+

1 1
2 — 2 -
gWO~W0~Zm-Zn g [ (3 2m211'2) Sm.n

m+n : 2
+8(—1) T mn (1_ sm[(m—n)ﬂ]) ] g [1+0(/\2)] ’

(m?2 — n2)272 (m—n)m
k+l+m
2 R Gl ( 1 _l__l_)(;
gu'k.u/’l.Zm.ZO 9°+9°9s 2\/5,". l+m l m kJl4+m

+( L —-l—-l-)é +(._l__l_.l)5
m+k m k)OO k1 k1) ImkH
+92 + (~1)kHAMm2 16 k I m 1 —sin[(k - —m)7)/(k =1 —m)7

g%+ g"? k+l4+m k—l-m
><1—sin[(lv+l—m)7r]/(k+l—m)7rl—sin[(k—l+m)7r]/(k—l-!—m)ﬂ'
k+1—m k—l+m

x [1+00?)] ,

9 A _1)k+m+n 1 1 1
9w W Zm. 2 995 ( - —) 6k,m+n
kY04m<n 2V2r m+n m n

1 1 1 1 1 1
(o7 7) ekt (i 7 ) ke

n+k n m
16 kmn 1-sin[(k—m —n)7|/(k—m —n)m
k+m+n k—m-—mn
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= Z.gn'k.u‘,‘z,, 910k = @)u + gou(q = P)ps + guu(p — K)o
(b)

Figure C.1: Feynman rules for gauge interactions.

y 1 —sin[(k+m —n)n]/(k+m—n)r 1l —sin[(k —m +n)n]/(k —m+n)7
k+m-—-n k—-m+n

x [1+003)]
9 R (_1)k+l+m+n
=0k l+m+n = Olmtn+k = Omntk+l = 5n.k+1+m] [1 + O(’\2)] )

[\

5k+l.m+n + 5k+m,l+n + 5k+n.l+m
(C.1)

for the quartic vertices, and

DR O PO ki et .S, YOV
”0.” O'ZO \/92 + 9,2 ’

g9 +4g%) 4

22y 2+“’IQA[1—( 1)") + 0]

I wo2g = n3n3

B2 (0 1)+ o]

B \/y + g7 [u(-1)*‘+’r2 (sin((k+l)7r/2))2(sin((k—l)n/?))2
' ' (k+1)m/2 (k= 1)m/2

Iw.Wo.Zn

Ux- ’ =
W w2 2
2 _n

g9 2
‘j“sklgz '+_g"/2 [1 + O(/\ )] '
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; [k"(—l)k+"1r2 (Sin ((k + n>ﬂ/2>)"’ (sin (k- n)vr/z))2
2

Iw. Wy.Zn (k +n)m/2 (k —n)m/2
+5kn] [1+003?)] ,
_ (=1)"ngs [sin ((k + 1 +n)7/2)sin ((k +1 —n)7/2)
W Wizn T T Jog [ (k+1+n)/2 (k+1-mn)/2

sin((k =14+ n)r/2)sin((k -1 —n)r/2)
T (k=1+n)/2 (k—1-n)/2

for the cubic vertices. (In these expressions, and in the expressions below, whenever

][1+0(/\2)] . (C2)

numerator and denominator vanish, the right formula can be obtained by taking the
limit.) Notice that the vertices involving one or two photon lines can be obtained

from (C.1), (C.2) by using the relations (4.51).

C.2 Fermion Couplings

The Feynman rules for the charged-current and neutral-current vertices in model 11

are shown in Fig. C.2. The corresponding coupling constants, for M = 0, are

cc A
IL0ugdg) = 9|1 - e o(t%)| ,
cc VZ (1) gty 2
L0,(uy..dp) (k _ %)271-2 [ ]
cc VZ (=)l gty 9
910 (u = 1+ O(t?)
. 2 . 2
cc _ g |(sin((k=0m/2)\" (sin((k+1-1)7/2) 9
V2§
9y = o (1= ()M + ()" + O]
cc _ 8 n(=DMlgey 2
gLn.(uk.dO) - 71 + 4k(k . 1) _ 4712 [1 + O(t )] )
cc _ 8 n(=)lgey 2
Iin(uodp) = T1+ ak(k — 1) - dn2 [1+00*)] .

cc _ ngs|sin((k=1+n)r/2)sin((k-1—-n)r/2)

ILn (updp) = \/in[ (k—1+n)/2 (k—=1-mn)/2
sin((k+14+n-1)7n/2)sin((k+1—-n-1)7/2)
 (k+l+n-1)/2 (k+1-n-1)/2

] [1 + O(t'-’)] ,
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!
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Figure C.2: Feynman rules for charge-current and neutral-current interactions.

t t
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V2 gt
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124



(C.3)

4 /\2

for the charged-current interactions, and
4 2 .12
- + t3
L9 =%+ Lo )]

NC _ 2 ”
IL0.(xgx0) — VY TY 22+d% 6 2
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for the neutral-current interactions.
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