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ABSTRACT

STATISTICAL PROPERTIES OF SOME ALMOST ANOSOV SYSTEMS

By

Xu Zhang

We investigate the polynomial lower and upper bounds for decay of correlations of a class

of two-dimensional almost Anosov diffeomorphisms with respect to their Sinai-Ruelle-Bowen

measures (SRB measures), where the almost Anosov diffeomorphism is a system which is

hyperbolic everywhere except for one point. At the indifferent fixed point, the Jacobian

matrix is an identity matrix. The degrees of the bounds are determined by the expansion

and contraction rates as the orbits approach the indifferent fixed point, and can be expressed

by using coefficients of the third order terms in the Taylor expansions of the diffeomorphisms

at the indifferent fixed points.

We discuss the relationship between the existence of SRB measures and the differentia-

bility of some almost Anosov diffeomorphisms near the indifferent fixed points in dimensions

bigger than one. The eigenvalue of Jacobian matrix at the indifferent fixed point along the

one-dimensional contraction subspace is less than one, while the other eigenvalues along the

expansion subspaces are equal to one. As a consequence, there are twice-differentiable al-

most Anosov diffeomorphisms that admit infinite SRB measures in two or three-dimensional

spaces; there exist twice-differentiable almost Anosov diffeomorphisms with SRB measures

in dimensions bigger than three. Further, we obtain the polynomial lower and upper bounds

for the correlation functions of these almost Anosov maps that admit SRB measures.
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Chapter 1

Introduction

The research of dynamical systems is motivated by the problems in classical physics,

statistical mechanics and so on. Given a space X, a deterministic and discrete dynamical

system is defined by a map T : X → X, where X is a Riemannian manifold, and the map T

preserves an invariant probability measure µ. This dynamical system is denoted by (X,T, µ).

The orbit of an initial state x ∈ X is denoted by {x, Tx, ..., Tnx, ...}, which represents the

long term behaviour of the system.

In dynamical systems, there exist lots of simple maps T with complicated dynamics,

which lead to interesting stories about chaos theory. We are concerned with ergodic theory,

which can be seen as a quantitative description of the dynamics with the help of measure

theory. The state space X should come with a σ-algebra B of measurable subsets.

The statistical properties of an observable function φ on X with respect to the map T is

also an interesting problem. We introduce a sequence of random variables Xn = φ ◦Tn, this

sequence of random variables are identically distributed since the measure µ is invariant with

respect to the map T . For the statistical properties of dynamical systems, there exist lots

of interesting problems, for example, the existence of Sinai-Bowen-Ruelle measures (SRB

measures), decay of correlations for some observable functions, central limit theorems, large

deviation principles, almost sure invariance principles, and so on.

There exist lots of work on the study of the SRB measures. Given a twice-differentiable
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Anosov diffeomorphism on a compact connected Riemannian manifold with the Riemannian

measure, there is a unique invariant Borel probability measure with respect to this diffeo-

morphism such that the measure has absolutely continuous conditional measure on unstable

manifolds, the map has positive Lyappunov exponents, the metric entropy is equal to the

sum of the positive Lyapunov exponents, and the map has exponential decay of correlations

for Hölder continuous observable functions [42]. For Axiom A attractors, similar results

have been obtained by Bowen, Ruelle, and so on [4]. Pesin, Ledrappier, Young and others

have extended the theory on nonuniformly hyperbolic sets [29, 45]. For Hénon attractors,

Benedicks and Young showed that there exist SRB measures for certain parameters and good

statistical properties [3]. For more information on Siani-Ruelle-Bowen measure, please refer

to [47]. We will study the existence of SRB or infinite SRB measures for a class of almost

Anosov diffeomorphisms in dimensions bigger than one.

The correlation function of a system is used to describe how fast the state of the sys-

tem becomes uncorrelated with its future status, and to estimate this function is a very

interesting problem in dynamical systems. To investigate the statistical properties, Young

introduced a powerful tool “Young Tower”, which has been successfully applied to study

many systems [45]. In [46], Young applied the “coupling method” to obtain the polynomial

upper bounds for the correlation functions of some systems. Later, Sarig introduced a pow-

erful method, estimating the asymptotic norms of renewal sequences of bounded operators

acting on Banach spaces, and gave the polynomial lower bounds for correlation functions

[40]. And, Gouëzel sharped Sarig’s results and obtained better estimates for some systems

[8].

For the study of the correlation functions of the maps on two-dimensional spaces, Liverani

and Martens investigated a class of area preserving maps on torus, and obtained the poly-
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nomial upper bounds. In [12], Hu showed that there exist either SRB measures or infinite

SRB measures for almost Anosov diffeomorphisms with non-degeneracy conditions, where

the decomposition of the tangent space of the almost Anosov systems is discontinuous at the

indifferent fixed points. It is an interesting problem to investigate the statistical properties

of almost Anosov systems, since this kind of systems can be thought of as the generalization

of the map x→ x+ x1+s [13], which has polynomial lower bounds for correlation functions.

We will show that some almost Anosov diffeomorphisms have both the polynomial upper

and lower bounds.

For the study of the large deviation principles, there are lots of interesting results. Kifer

provided a unified method to establish large deviation principles based on the existence of

a pressure functional and on the uniqueness of equilibrium states for certain dense sets of

functions [19]. Young studied the large deviation estimates for continuous maps of compact

metric spaces and applied these results in differentiable maps and shift spaces [43]. In [37],

the authors obtained the rate functions for certain maps based on the theory of Young

Towers with exponential return time functions. Melbourne investigated the large deviation

principles for a class of nonuniformly hyperbolic dynamical systems with polynomial decay

of correlations and some moderate deviations [26]. In [27], Melbourne and Nicol studied

the large deviation estimates for a large class of nonuniformly hyperbolic systems, which

are defined on Young towers with summable decay of correlations. In [31], Pollicott and

Sharp studied the large deviation behavior of the orbits of interval maps with indifferent

fixed points, and obtained the polynomial and the exponential level I estimation results

for functions, as well as the polynomial and the exponential level II estimation results for

measures. We will study the large deviation estimates for two-dimensional almost Anosov

diffeomorphims and apply these results to the study of the decay of correlations for Hölder
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observable functions.

The rest is organized as follows. In Chapter 1, some useful concepts and results are

introduced. In Chapter 2, we study the polynomial lower and upper bounds for decay of

correlations of a class of two-dimensional almost Anosov diffeomorphisms with respect to

their SRB measures. It is discovered that the degrees of the bounds could be described

by the expansion and contraction rates as the orbits approach the indifferent fixed point,

and can be expressed by using coefficients of the third order terms in the Taylor expansions

of the diffeomorphisms at the indifferent fixed points. In Chapter 3, it is to investigate

the relationship between the existence of SRB measures and the differentiability of some

almost Anosov diffeomorphisms near the indifferent fixed points in dimensions bigger than

one, where the almost Anosov diffeomorphism is a system which is hyperbolic everywhere

except for one point. As a consequence, there are twice-differentiable almost Anosov diffeo-

morphisms that admit infinite SRB measures in two or three-dimensional spaces; there exist

twice-differentiable almost Anosov diffeomorphisms with SRB measures in dimensions bigger

than three. Further, we obtain the polynomial lower and upper bounds for the correlation

functions of some almost Anosov maps that admit SRB measures.

1.1 Preliminary

In this section, we introduce some basic definitions and useful properties.

Consider a non-singular measurable map T : X → X, where X is measurable space, B is

the σ algebra, µ is a σ-finite measure. The measure µ is called non-singular if µ(T−1(E)) = 0

is equivalent to µ(E) = 0 for any E ∈ B.

Definition 1.1.1. [41] The transfer operator of a non-singular map (X,B, µ, T ) is the op-
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erator T : L1(µ)→ L1(µ), which is defined by

T f =
dµf ◦ T−1

dµ
,

where µf is the measure µf (E) =
∫
E fdµ.

Proposition 1.1.1. [41] There is a unique solution ψ ∈ L1(µ) to the equation
∫
φ · ψdµ =∫

(φ ◦ T ) · fdµ for any function φ ∈ L∞. The solution is ψ = T f .

Proposition 1.1.2. [41] The transfer operator is a positive bounded linear operator with

norm one, and satisfying that

(1) for any φ ∈ L1 and ψ ∈ L∞, we have T [(ψ ◦ T ) · φ] = ψ · (T φ), µ-almost everywhere;

(2) if T is a measure-preserving map, then for any φ ∈ L1(µ), we have (T φ) ◦ T =

Eµ(φ|T−1B), µ-almost everywhere.

For any given map f and its invariant probability measure µ, the correlation function for

two observable functions Φ and Ψ is defined by

Corn(Φ,Ψ; f, µ) :=

∫
(Ψ ◦ (fn))Φdµ−

∫
Φdµ

∫
Ψdµ,

where n is a positive integer.

Definition 1.1.2. Let µ be an f -invariant Borel probability measure and let H be a class

of functions on M . We say that (f, µ) has exponential decay of correlations for functions in

H if there is 0 < τ < 1 such that for any Φ,Ψ ∈ H, there exists C = C(Ψ,Φ) such that

|Corn(Φ,Ψ; f, µ)| ≤ Cτn.
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Definition 1.1.3. Let µ be an f -invariant Borel probability measure and let H be a class

of functions on M . We say that (f, µ) has polynomial decay of correlations for functions in

H if there is τ > 0 such that for any Φ,Ψ ∈ H, there exists C = C(Ψ,Φ) such that

|Corn(Φ,Ψ; f, µ)| ≤ Cn−τ .

Definition 1.1.4. Given a measurable space X with a probability measure ν and a measur-

able partition ξ, there exists a family of probability measures {νξx : x ∈ X}, which is called

a canonical system of conditional measures for ν and ξ [39], satisfying that

(i) ν
ξ
x(ξ(x)) = 1, where ξ(x) ∈ ξ containing x;

(ii) for any measurable set B ⊂ X, the map x→ ν
ξ
x(B) is measurable;

(iii) ν(B) =
∫
X ν

ξ
x(B)dν(x).

Let M be a C∞ compact Riemannian manifold without boundary. Let ν be the Lebesgue

measure on M . Let µ be an invariant measure with respect to a map f on M , where

f : (M,µ) → (M,µ) is a C1+α measurable map with positive Lyapunov exponents almost

everywhere, and α > 0. It follows from Pesin theory [29] that the unstable manifold Wu(x)

exists almost everywhere and it is an immersed submanifold of M . Denote by νux the Rie-

mannian measure induced on Wu(x). Given a measurable partition ξ, if ξ(x) ⊂ Wu(x) and

ξ(x) contains an open neighborhood of x in Wu(x) for almost every x with respect to the

measure µ, then ξ is said to be subordinate to unstable manifolds; further, if µ
ξ
x is absolutely

continuous with respect to νux for µ almost everywhere x ∈ M , then the measure µ is said

to have absolutely continuous conditional measures on unstable manifolds, where µ
ξ
x is a

canonical system of conditional measures for µ and ξ [22].
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Definition 1.1.5. An invariant Borel probability measure µ for the map f on M is said to

be an SRB measure if

(a) f has positive Lyapunov exponents almost everywhere with respect to the measure µ;

(b) µ has absolutely continuous conditional measures on unstable manifolds.

Definition 1.1.6. An infinite invariant Borel probability measure µ for the map f on M is

said to be an infinite SRB measure if

(i) there is a set E, for any open neighborhood V of the set E, one has µ(M \ V ) <∞;

(ii) the first return map (see Definition 3.3.4) defined on the set M \ V has positive Lya-

punov exponents almost everywhere with respect to µ;

(iii) the measure µ has absolutely continuous conditional measures on unstable manifolds.

1.2 Renewal Theory

In this section, we talk about the application of the renewal theory in dynamical systems,

which could be applied to study the systems with the polynomial return time. This method

was introduced by Sarig [40], and was extended by Gouëzel [8].

Given a measurable dynamical system (X,B, µ, T ), a subset A ∈ B, the induced trans-

formation on A is (A,B ∩ A, µA, TA), where B ∩ A = {B ∩ A : B ∈ B}, µA(E) =
µ(A∩E)
µ(A)

,

and TA(x) = TRA(x)(x), where RA(x) := 1A(x) inf{n ≥ 1 : Tn(x) ∈ A}.

Proposition 1.2.1. [40, Proposition 1] For a conservative non-singular transformation

(X,B, µ, T ), A ∈ B with 0 < µ(A) <∞. Set Tnφ := 1AT n(φ1A) andRnφ = 1AT n(φ1RA=n).

Then, for any z ∈ D,

T (z) = (I −R(z))−1,

7



where

R(z) =
∞∑
n=1

znRn, T (z) =
∞∑
n=0

znTn, T0 = I, z ∈ D.

And,

Tn =
n∑
k=1

RkTn−k =
n−1∑
k=0

TkRn−k.

Theorem 1.2.1. Let Tn be bounded linear operators on a Banach space L such that T (z) =

I +
∑
n≥1 z

nTn converges in Hom(L,L) for evry z ∈ D,

(1) Rnewal Equation: for every z ∈ D, T (z) = (I −R(z))−1, where R(z) =
∑
n≥1 z

nRn ∈

Hom(L,L) and
∑
‖Rn‖ <∞.

(2) Spectral Gap: the spectrum of R(1) consists of an isolated simple eigenvalue at 1 and

a compact subset of D.

(3) Aperiodicity: the spectral radius of R(z) is strictly less than one for all z ∈ D \ {1}.

Let P be the eigenprojection of R(1) at 1. If
∑
k>n ‖Rk‖ = O(1/nβ for some β > 2 and

PR′(1)P 6= 0, then for all n

Tn =
1

µ
P +

1

µ2

∞∑
k=n+1

Pk + En,

where µ is given by PR′(1)P = µP , Pn =
∑
l>n PRlP , and En ∈ Hom(L,L) satisfy

‖En‖ = O(1/nbβc).

Lemma 1.2.1 (Sarig, 2002; Gouëzel, 2004). Let (X,B,m, T,F) be a topologically mixing

probability preserving Markov map, and log gmF has a (TF ,FF ) locally Hölder continuous

version for some F , where gmF = dm
dm◦TF

. Assume that TF has the big image property, i.e.,

the measure of the images of the elements of the partition are bounded away from 0 (which
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is always true when the number of element in F is finite). If m[RF > n] = O(1/nγ) with

γ > 1, then there are κ ∈ (0, 1) and C > 0 such that for any Φ ∈ L and Ψ ∈ L∞ supported

inside F , one has

∣∣∣∣Corn(Φ,Ψ;T,m)−
( ∞∑
k=n+1

m[RF > k]

)∫
Φ

∫
Ψ

∣∣∣∣
≤CFγ(n)‖Ψ‖∞‖Φ‖L,

where Fγ(n) = 1/nγ , ifγ > 2; Fγ(n) = (log n)/n2, if γ = 2; Fγ(n) = 1/n2γ−2, if 2 > γ > 1.
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Chapter 2

Polynomial decay of correlations for

almost Anosov diffeomorphisms

2.1 Introduction

The theory of dynamical systems plays an important role in the understanding of physical

phenomena, and many systems in physics provide good models of dynamical systems such as

the pendulum equation, Billiard systems, Lorentz gas, etc. ([17]). Some interesting physical

systems are thought of as dynamical systems, like anomalous transport, fractional kinetics,

[20, 48]. Many physical systems exhibit a variety of mixing properties. It is well known that

hyperbolicity gives rise to exponential mixing with respect to the physical measures. For

systems with slower decay rates, some different physical phenomena could be observed, e.g.

sticky domain, intermittency, and so on ([35, 48]). In this work we present a simple model in

the categogy of invertible smooth dynamical systems in which the systems have intermittent

behavior ([34, 35]) and therefore the rates of mixing can be regarded as polynomial.

The systems we consider are Cr, r ≥ 4, almost Anosov diffeomorphisms f of a two-

dimensional manifold M with an indifferent fixed point p at which Dfp = id. We show

that under some nondegeneracy conditions, if the coefficients of the third order terms in

the Taylor expansions of f at p satisfy certain conditions then f has polynomial decay of
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correlations, and the degrees of the decay rates are given by the coefficients of the xy2 and

y3 terms. 1

Polynomial decay for one-dimensional expanding maps with an indifferent fixed point

has been studied extensively (see e.g. [23, 33, 45, 13]). There are some systematic ways

developed to obtain polynomial decay rates. The tower structures introduced in [44, 45]

are widely used that can apply for both exponential and subexponential decay rates. The

renew methods proposed in [40] provide a way to obtain upper and lower bound estimates.

For higher-dimensional expanding maps with an indifferent periodic points, upper bounds

estimates were made in [33]. Recently both upper and lower bound estimates were obtained

in [15] for some non-Morkov maps. Though the methods in both [44] and [40] can be applied

to invertible case, there are fewer results in this direction. Liverani and Martens investigated

a class of area preserving maps on torus and obtained the upper bounds for the correlation

functions [24]. In this work we obtain both upper and lower bound estimates of polynomial

decay rates for diffeomorphisms.

Our strategy to prove the results is more or less standard. We first induce two-dimensional

almost hyperbolic systems to one-dimensional almost expanding systems by collapsing the

stable leaves in a Markov partitions, following the scheme described in [44] in particular.

Then we use a corresponding theorem, stated in [40] (and [8] as well), for the induced

systems to obtain polynomial decay rates, in which first return maps are used. The last step

is to pass the rates we obtained for the induced systems to the original ones.

The most challenging part of the work is to estimate the size of the level sets [τ > n],

1We mention here that in the Taylor expansion, the conditions Dfp = id means that
the linear terms are trivial, and hyperbolicity implies that the second order terms must
vanish. So under the nondegeneracy conditions the third order terms determine the ergodic
properties of the systems.
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where τ is the first return time with respect to the set M \ P , where P is a rectangle whose

interior contains p. Note that restricted to the unstable manifold of the indifferent fixed point

p, the map has the form f(r) ≈ r + a0r
3. (See (2.2.2) and (2.2.3) with x = r and y = 0.)

So if we take any point z in the the local unstable manifold of p, then the backward orbit

f−n(z) converges to p at a speed proportional to n−1/2, that is unsummable. Fortunately,

the size of the level sets [τ > n] is of order between n−1/α and n−1/β , where 1/β > 1/α > 2,

because the stable foliation is not Lipschitz continuous near the indifferent fixed point p!

(See (2.2.4) for the value of α and β, and Proposition 2.5.1 for the estimates.) We obtain

such estimates by controlling the slopes of the stable leaves at the points close to the local

stable manifold of p.

Another problem comes from the last step, when we use the decay rates of the induced

systems to obtain the decay rates of the original ones. In this step we need to estimate of

the sizes of the rectangles after nth iteration. We use large deviation estimation to get that

most rectangles shrink exponentially fast, and prove directly that other rectangles shrink

fast enough, and the measure of the union of such rectangles is small.

It is well known that for almost expanding maps of the interval with indifferent fixed

point p = 0, if f(x) ≈ x+ x1+s, s ∈ (0, 1), then the rates of decay of correlations are of the

order n−(1/s−1). So faster decay rates are given by stronger expansion near the indifferent

fixed point (smaller s). In our case, near the fixed point f(x, y) ≈
(
x(1+a2y

2), y(1− b2y2)
)
,

and a2/2b2 plays the role as 1/s in one-dimensional systems. The rates of decay are roughly

of the order n−(a2/2b2−1). This means that the rates of decay for two-dimensional almost

hyperbolic systems are determined by the effect of both contraction and expansion when

orbits approach the indifferent fixed point, and faster decay rates are given by either stronger
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expansion (larger a2) or weaker contraction (smaller b2) or both. 2

We would like to mention that besides [24], there are also some upper bound estimates for

billiards (see [49] and the references therein). Also, the lower bound estimates are announced

in [7].

The rest of the chapter is organized as follows. In Section 2.2, we introduce some related

definitions and state the Main Theorem. In Section 2.3, we give the proof of the theorem.

The proof consists of three major steps, which are carried out in three subsections. In Sub-

section 2.3.1, we introduce a quotient map by collapsing the map along the stable manifolds.

In Subsection 2.3.2, we obtain both the lower and upper polynomial bounds for the induced

systems. In Subsection 2.3.3, we obtain the polynomial bounds for Hölder continuous ob-

servables for the original systems. Section 2.4 is for distortion estimates, mainly used in

Subsection 2.3.1. The size of the level sets are estimated in Section 2.5, where quantita-

tive analysis is performed. And the decay rates of the size of rectangles are estimated in

Sections 2.6 and 2.7.

2.2 Statement of results

In this section, some basic concepts and the main results are introduced.

Consider a C∞ two-dimensional compact Riemannian manifold M without boundary,

and the Riemannian measure on M is m. Let Diff4(M) be the set of four times differentiable

diffeomorphisms.

Definition 2.2.1. [[12] Definition 1] A map f ∈ Diff4(M) is called an almost Anosov

diffeomorphism, if there exist two continuous families of cones x→ Cux , Csx such that, except

2We refer Remark 2.2.6 for the reasons that a0 and b0 are not involved here.
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for a finite set S,

(i) DfxCux ⊆ Cuf(x)
and DfxCsx ⊇ Csf(x)

;

(ii) |Dfxv| > |v| for any v ∈ Cux and |Dfxv| < |v| for any v ∈ Csx.

Since S is a finite set, we only need to consider that S is an invariant set by studying fn

instead of f for some nonnegative integer n. Assume that S consists of a single fixed point

p. A fixed point p is called indifferent if Dfp has an eigenvalue of modulus 1.

Remark 2.2.1. (i) By Proposition 4.2 in [12], there is an invariant decomposition of the

tangent bundle into TM = Eu⊕Es, the decomposition is continuous except at the indifferent

fixed point. By Definition 2.2.1, away from the fixed point angle between Es and Eu is

bounded away from zero.

(ii) It follows from Proposition 4.4 in [12] local unstable manifolds exist for all x ∈ M .

Existence of local stable manifolds follows similarly.

Definition 2.2.2. [[12] Definition 2] An almost Anosov diffeomorphism f is said to be non-

degenerate (up to the third order), if there exist constants r0 > 0 and κu, κs > 0 such that

for any x ∈ B(S, r0),

|Dfxv| ≥ (1 + κud(x, S)2)|v|, ∀v ∈ Cux ;

|Dfxv| ≤ (1− κsd(x, S)2)|v|, ∀v ∈ Csx.
(2.2.1)

By choosing a suitable coordinate system, there is a neighborhood B(p, r∗) of p such that

p = (0, 0) and f can be expressed as

f(x, y) =

(
x(1 + φ(x, y)), y(1− ψ(x, y))

)
, (2.2.2)
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where (x, y) ∈ R2 and

φ(x, y) = a0x
2 + a1xy + a2y

2 +O(|(x, y)|3),

ψ(x, y) = b0x
2 + b1xy + b2y

2 +O(|(x, y)|3).

(2.2.3)

Remark 2.2.2. By (2.2.1), we know that φ(x, y), ψ(x, y) > 0 for any (x, y) ∈ B(p, r∗)\{p}.

Hence, we have a0, a2, b0, b2 > 0. In this paper, we will consider the case a1 = b1 = 0.

In Lemma 7.1 of [12], it is in fact proved that if f is an almost Anosov diffeomorphism

of a torus M = T2, then for any neighborhood U of p, there exists θ∗ ∈ (0, 1), such that the

unstable subspaces are Hölder continuous with Hölder exponent θ∗.

By applying the renewal theory developed by [40] and [8], we could obtain the following

results:

Main Theorem. Let f ∈ Diff4(M) be a topologically mixing almost Anosov diffeomorphism

that has an indifferent fixed point p at which (2.2.1)–(2.2.3) are satisfied. Suppose a0b2 −

a2b0 > 0, 4b2 < a2, and a1 = b1 = 0. Fix any α, β ∈ (0, 1/2) with

α

1 + α
< β <

2a2b2

a2
2 + a2b2 + b22

<
2b2
a2

< α. (2.2.4)

Then for any neighborhood U of p, and any Hölder continuous functions Φ,Ψ with the

exponent θ, supp Φ, supp Ψ ⊂M \ U , and
∫

Φdµ
∫

Ψdµ 6= 0, we have

A′

n
1
β
−1
≤
∣∣∣Corn(Φ,Ψ; f, µ)

∣∣∣ ≤ A

n
1
α−1

, (2.2.5)

where µ is an SRB measure, θ ∈ (max{(1/β − 1/α)(3/2 + b0/(2a0))−1, θ∗}, 1], and A′ and

A are positive constants dependent on Φ and Ψ.
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Remark 2.2.3. The condition on topological mixing seems unnecessary. It can be proved

that f is topologically conjugate to an Anosov diffeomorphism on the two-dimensional torus.

Hence, f is topologically transitive, and M is the only basic set of f . By the spectral

decomposition theorem, f is topologically mixing on M . However, since there is no suitable

reference, we put this condition in the theorem.

Remark 2.2.4. (i) Since α <
1

2
, the decay rates are faster than n−1.

(ii) In inequalities (2.2.4), we can take α &
2b2
a2

and β .
2a2b2

a2
2 + a2b2 + b22

. Hence
1

β
− 1

α
&

1

2
+
α

4
, while the first inequalities in (2.2.4) is equivalent to

1

β
− 1

α
< 1. So if 4b2 < a2, then

we can always choose α and β satisfying (2.2.4).

Remark 2.2.5. As we see in the above remark, 1/β− 1/α & 1/2 +α/4, and 1/2 +α/4 < 1.

Hence, we can take θ ≤ 1. In particular, if 2b2/a2 is sufficiently small, then θ can be close

to 1/2.

Remark 2.2.6. To get decay rates of such a system we need to consider a first return map

with respect to M \ P , where P is a rectangle with p in its interior. The decay rates are

determined by the size of the level sets [τ = n], where τ is the first return time. For all

large n, the sets are in regions close to the local stable manifold of p. More precisely, if f

has the form given by (2.2.2) and (2.2.3) under some coordinate system, then the level sets

[τ = n] are in regions of the form {(x, y) : 0 < |x| � r1 ≤ |y| ≤ r2} for some 0 < r1 < r2.

In the regions a0x
2 and b0x

2 are much smaller than a2y
2 and b2y

2, and hence we have

f(x, y) ≈ (x(1 + a2y
2), y(1− b2y2)). So the degree of the rates of decay only depends on a2

and b2.
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2.3 Proof of the main theorem

In this section, we prove the Main Theorem. The proof consists of three steps, and is carried

out in three subsections. In the first step, we induce the system (f,M) to one-dimensional

expanding system (f̄ ,M) with an indifferent fixed point p̄ by taking a Markov partition P

and then collapsing the stable manifolds in each element of the partition. In the second

step, we apply a result of Sarig [40] to obtain the lower and upper bounds for the decay of

correlations for observable functions on the reduced manifold M , where the key step is to

estimate the measure of the level sets [τ = n] for the first return time function τ . In the last

step, we obtain the decay rates for (f,M) by using the estimates for (f̄ ,M), where the main

ingredient is to estimate the size of the elements of the partition ∨ni=−nf
iP .

2.3.1 Induce to one-dimensional map

Take a finite Markov partition P = {P0, P1, · · · , Pr} such that p ∈ intP0 ⊂ U , where U

is given in the Main Theorem. For any Pi and x ∈ Pi, denote by γu(x) the connected

component of unstable leaf containing x in Pi, and by Wu(Pi) the set of all such leaves.

And, γs(x) and W s(Pi) are understood in a similar way.

Define an equivalent relation on M by x ∼ y if x and y are in the same stable leave

γs ∈ W s(Pi) for some Pi. Denote by x̄ = γs(x) the equivalent class that contains x. Denote

M = M/ ∼. Let π : M →M be the natural projection.

Denote by B the completion of the Borel algebra of M .

Since P is a Markov partition, f(γs(x)) ⊂ γs(f(x)) for any x ∈ Pi with f(x) ∈ Pj . Hence,

the quotient map f : M →M given by f(x̄) = f(x) is well defined. Denote P i = Pi/ ∼ and

P = {P 0, ..., P r}. Since f(γu(x)) ⊃ γu(f(x)) for any x ∈ Pi with f(x) ∈ Pj , P is a Markov

17



partition for f .

Fix an arbitrary γ̂ui ∈ W
u(Pi), 0 ≤ i ≤ r. By abuse of notation we also let π : Pi → γ̂ui

be the sliding map along stable leaves such that for any x ∈ Pi, π(x) = γs(x) ∩ γ̂ui = x̂,

where γs(x) ∈ W s(Pi).

Now, we define a reference measure ν on M . For each γ ∈ Wu(Pi), denote by mγ the

Lebesgue measure restricted to γ. We introduce the following function

un(x) :=
n−1∑
i=0

(
log |Dfxi|Euxi

| − log |Dfx̂i|Eux̂i
|
)
,

where xi = f i(x). By Lemma 2.4.1 in the next section, one has that un converges uniformly

to some function u. We define ν by dνγ(x) := eu(x)dmγ(x). By (1) of Lemma 2.4.3 in the

next section, we can define a measure ν on M satisfying ν|Pi = νγ̂ui
.

Note that the Jacobian of f with respect to ν is given by

J(f)(x) = |D(f)|Eux | · e
u(f(x)) · e−u(x)

for νγ almost every x ∈M . By (2) of Lemma 2.4.3, we have that J(f)(x̄) can be defined as

J(f)(y) for any y ∈ γs(x).

By Theorem B in [12], f has an SRB measure µ under our assumption. And, µ induces

an invariant measure µ on M in an obvious way. The estimates for bounded distortion given

by Proposition 7.5 in [12] imply that the conditional measure is equivalent to the Lebesgue

measure, when the measure is restricted to any unstable curve γu away from the indifferent

fixed point p. Hence, µ is an absolutely continuous invariant measure with respect to ν, and

is equivalent to ν away from p̄.
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Now, we obtain a Markov map (M,B, µ̄, f ,P) in the following sense (see [1, 40]):

(i) (Generator property) B is complete and is the smallest σ-algebra containing ∪n≥0f
−n

(P);

(ii) (Markov property) P is a Markov partition, that is, for any P i, P j ∈ P , if µ̄(f(P i) ∩

P j) > 0, then f(P i) ⊃ P j (mod µ̄);

(iii) (Local invertibility) for any P i ∈ P with µ̄(P i) > 0, f : P i → f(P i) is invertible with

measurable inverse.

By the assumption that f is topologically mixing, the Markov map is irreducible.

2.3.2 Polynomial decay rates

Recall that the indifferent fixed point p ∈ intP0, and hence, p̄ ∈ intP 0. Denote M̃ = M \P 0.

Take the first return map f̃ = fτ of f with respect to M \ P0, that is, f̃(x) = fτ(x)(x),

where τ is the first return time, τ(x) = min{n > 0 : fn(x) ∈M \P0}. Clearly f̃ : M \P0 →

M \ P0 induces a first return map from M̃ to itself. For the sake of simplicity of notation

we also denote it by f̃ .

Let T′ = {[τ = n] : n = 1, 2, . . . } be a partition into the level sets. Then let T = T′ ∨P0,

where P0 = P \ {P0} is the Markov partition of M̃ . It is clear that T is a Markov partition

of M̃ .

For any point x̄, ȳ ∈ M̃ , the separation time is defined by

s(x̄, ȳ) := sup{n ≥ 0 : f̃ i(ȳ) ∈ T(f̃ i(x̄)), 0 ≤ i ≤ n}.

We may also regard s(x, y) = s(x̄, ȳ) if x ∈ x̄ and y ∈ ȳ.
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Let

λ = sup{‖Dfx|Eux‖
−1, ‖Dfx|Esx‖ : x ∈M \ P0}. (2.3.1)

Clearly λ ∈ (0, 1). Let θ∗ ∈ (0, 1) as in Lemma 2.4.1, and then take θ ∈ [θ∗, 1).

For any function Φ defined on M , take a semi-norm by

DΦ := sup
x̄,ȳ∈M̃

|Φ(x̄)− Φ(ȳ)|√
λ θs(x̄,ȳ)

.

Then we consider the Banach space

L := {Φ : supp Φ ⊂ M̃, ‖Φ‖∞ +DΦ <∞}. (2.3.2)

and take the norm in L by ‖Φ‖L = ‖Φ‖∞ +DΦ.

It is clear that L contains Hölder functions with Hölder exponent θ supported on M̃ . If

Φ ∈ L, then for any x̄, ȳ with s(x̄, ȳ) ≥ n, we have

|Φ(x̄)− Φ(ȳ)| ≤ (DΦ)λθs(x̄,ȳ) ≤ (DΦ)(λθ)n ≤ (DΦ)(
√
λ
θ
)n.

That is, Φ is locally Hölder continuous in the sense given in [40] (see also [1]).

By Lemma 3.3.1, we know that log J(f̃) ∈ L. By standard arguments, it is easy to know

(e.g. see Lemma 2 in Subsection 3.1 in [44]) that f̃ admits an absolutely continuous invariant

measure µ̃ on M̃ with the density function h̃ with respect to ν̃, and the density function

satisfies log h̃ ∈ L and is bounded away from 0 and infinity. By uniqueness we know that µ̃

is the conditional measure mentioned in the last subsection with respect to M̃ .
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The Jacobian of f̃ with respect to µ̃ is given by

Jµ̃(f̃) = J(f̃)
h̃ ◦ f̃
h̃

.

Since both log J(f̃) and log h̃ are in L, so is − log Jµ̃(f̃). Hence, − log Jµ̃(f̃) is locally Hölder

continuous.

Now we are ready to apply the following theorem that is directly derived from Theorem 2

in [40].

Theorem. Let (M,B, µ̄, f ,P) be an irreducible measure preserving Markov map with µ̄(M) =

1, and assume that − log |Jµ̃(f̃)| has a (f̃ ,T)-locally Hölder continuous version for M . If

g.c.d. {τ(x̄) − τ(ȳ) : x̄, ȳ ∈ M} = 1, and µ̄[τ > n] = O(1/n%) with % > 2, then there exists

C > 0 such that for any Φ ∈ L and Ψ ∈ L∞ with supp Φ, supp Ψ ⊂ M̃ , one has

∣∣∣∣Corn(Φ,Ψ; f, µ̄)−
( ∞∑
k=n+1

µ̄[τ > k]

)∫
Φ

∫
Ψ

∣∣∣∣ ≤ CF%(n)‖Ψ‖∞‖Φ‖L,

where F%(n) = O(1/n%).

We have an irreducible measure preserving Markov map (M,B, µ̄, f ,P) by the previous

subsection. By above arguments we know that − log |Jµ̃(f̃)| has a (f̃ ,T)-locally Hölder

continuous version. It is clear that {τ(x̄) − τ(ȳ) : x̄, ȳ ∈ M} = 1 by our construction. So,

what we need to do is to estimate µ̄[τ > n], that is, to estimate the exponent %.

Recall that P = P0 is the element of the Markov Partition P with p ∈ intP . Denote

Q = f−1P \ P . Clearly Q is a rectangle and the set of points x ∈ M with τ(x) > 1, where

τ is the first return time given at the beginning of this subsection. Denote Qk = [τ ≥ k].

Clearly Q = Q2 and Qk+1 ⊂ Qk for any k ≥ 2. Moreover, Qk are rectangles such that for
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any x ∈ Qk, W s(x,Qk) = W s(x,Q) and Wu(x,Qk) ⊂ Wu(x,Q).

For any unstable curve γu ∈ Wu(Q), let γuk = γu ∩ Qk. By Proposition 2.5.1, we know

that there exist Dα > 0 and Dβ > 0 such that

Dβ

k
1
β

≤ mu
γ(γuk ) ≤ Dα

k
1
α

,

where α and β are given in the Main Theorem, and mu
γ is the Lebesgue measure restricted

to γu.

Denote by µuγ the conditional measure of the SRB measure µ on γu. Since the distortion

of f along any unstable curve is uniformly bounded above and below away from p (see

Lemma 2.4.1, also Proposition 7.5 in [12]), so is the density function
dµuγ
dmu

γ
. Hence, there

exist Cα, Cβ > 0 such that

Cβ

k
1
β

≤ µuγ(γuk ) ≤ Cα

k
1
α

.

By integration, we get that similar inequalities are true for µQk = µ[τ > k] with different

constant coefficients, that is, there exist two positive constants Bα, Bβ > 0 such that

Bβ

k
1
β

≤ µ(Qk) ≤ Bα

k
1
α

. (2.3.3)

It gives that
∞∑

k=n+1

µ̄[τ > k] has the order between n−( 1
α−1) and n

−( 1
β
−1)

.

By (3.4.5), we can take % = 1/α. Since F%(n) is of order of n−% and % >
1

β
− 1, we get

that there exist Aα, Aβ > 0 such that

Aβ

n
1
β
−1
≤ Corn(Φ,Ψ; f, µ̄) ≤ Aα

n
1
α−1

. (2.3.4)
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2.3.3 Polynomial decay rates for diffeomorphisms

In this subsection, we establish polynomial decay of correlations for almost Anosov diffeo-

morphisms using the results we obtained in the reduced systems.

Recall that P is a Markov partition, and P = P0 is the element of P containing p, and

M0 = M \ P0.

We introduce a type of Hölder functions:

Hθ :=
{

Φ : ∃HΦ > 0 s.t. |Φ(x)− Φ(y)| ≤ HΦ|x− y|θ and supp(Φ) ⊂M0},

where θ ∈ (max{(1/β−1/α)(3/2+b0/(2a0))−1, θ∗}, 1], and θ∗ ∈ (0, 1) is specified in Lemma

7.1 of [12], which is dependent on the map f and the element P0.

Set P0 := P and Pk,n :=
∨n
i=k f

−i(P0), and Pn = P0,n.

For any Φ,Ψ ∈ Hθ and for any k > 0, we define Φk by Φk|B := inf{Φ(x) : x ∈ fk(B)}

for any B ∈ P0,2k, and define Ψk in the same way.

By Lemma 2.3.1 below, the direct calculation gives

|Corn−k(Φ,Ψ ◦ fk; f, µ)− Corn−k(Φ,Ψk; f, µ)|

≤
∣∣∣ ∫ (Ψ ◦ fk −Ψk) ◦ (fn−k) · Φdµ

∣∣∣+
∣∣∣ ∫ (Ψ ◦ fk −Ψk)dµ ·

∫
Φdµ

∣∣∣
≤(2 max |Φ|)

∫
|Ψ ◦ fk −Ψk|dµ ≤ (2 max |Φ|) · CAHΨ

kβ
∗ ,

(2.3.5)

where β∗ is specified in Lemma 2.3.1.

For Φk defined as above, let Φkµ be the signed measure whose density with respect to µ

is Φk, and set Φk :=
d((fk)∗(Φkµ))

dµ
.

Let | · | be the total variation of a signed measure, and note that (fk)∗(Φ ◦ (fk)µ) = Φµ,
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where |µ|(A) =
∫
A d|µ| for any Borel set A ⊂M . Applying Lemma 2.3.1 for Φ we can get

∫
|Φ− Φk|dµ = |Φµ− Φkµ|(M) = |(fk)∗((Φ ◦ (fk)µ)− (fk)∗(Φkµ)|(M)

≤|(Φ ◦ fk − Φk)µ|(M) =

∫
|Φ ◦ fk − Φk|dµ ≤

CAHΦ

kβ
∗ .

Hence, by similar computation as previously, we have

∣∣∣Corn−k(Φ,Ψk; f, µ)− Corn−k(Φk,Ψk; f, µ)
∣∣∣

≤
∣∣∣ ∫ (Ψk ◦ (fn−k))(Φ− Φk)dµ

∣∣∣+
∣∣∣ ∫ Ψkdµ ·

∫
(Φ− Φk)dµ

∣∣∣
≤(2 max |Ψ|)

∫
|Φ− Φk|dµ ≤ (2 max |Ψ|)CAHΦ

kβ
∗ .

(2.3.6)

Now we show that Corn−k(Φk,Ψk; f, µ) can be expressed as functions only dependent on

the unstable manifolds, which means that these functions are constant along stable manifolds

on each element of Pi. Since Ψk is constant along stable manifolds on each rectangle Pi ∈ P ,

we can regard it as a function on M as well. Also we have π∗(Φkµ) = Φk(π∗µ) = Φk(µ̄),

and f ◦ π = π ◦ f . So,

∫
(Ψk ◦ (fn−k))Φkdµ =

∫
(Ψk ◦ (fn−k))d((fk)∗(Φkµ))

=

∫
Ψkd((fn−k)∗(fk)∗(Φkµ)) =

∫
Ψkd((fn)∗(Φkµ))

=

∫
Ψkd(π∗(fn)∗(Φkµ)) =

∫
Ψkd((f

n
)∗(Φkµ̄)) =

∫
Ψk ◦ f

n · Φkdµ̄,

and, ∫
Φkdµ

∫
Ψkdµ =

∫
d((fk)∗(Φkµ)) ·

∫
Ψkdµ̄ =

∫
Φkdµ̄ ·

∫
Ψkdµ̄.

It means |Corn−k(Φk,Ψk; f, µ)| = |Corn−k(Φk,Ψk; f, µ̄)|. Hence, by (3.4.9) and (3.4.10),
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we have

|Corn(Φ,Ψ; f, µ)| = |Corn−k(Φ,Ψ ◦ fk; f, µ)|

≤|Corn−k(Φ,Ψ ◦ fk; f, µ)− Corn−k(Φ,Ψk; f, µ)|

+|Corn−k(Φ,Ψk; f, µ)− Corn−k(Φk,Ψk; f, µ)|+ |Corn−k(Φk,Ψk; f, µ)|

=(2 max |Φ|) · CAHΨ

kβ
∗ + (2 max |Ψ|) · CAHΦ

kβ
∗ + |Corn−k(Φk,Ψk; f, µ̄)|.

Take k = [n/2]. Since β∗ >
1

β
− 1, by (2.3.4), we obtain that there exist A > 21/α−1Aα

and A′ < 21/β−1Aβ such that

A′

n
1
β
−1
≤ |Corn(Φ,Ψ; f, µ)| ≤ A

n
1
α−1

.

This completes the whole proof of the Main Theorem.

Lemma 2.3.1. Given any θ ∈ (max{(1/β − 1/α)(3/2 + b0/(2a0))−1, θ∗}, 1], there exist

CA > 0, K > 0 and β∗ = β∗(θ) >
1

β
− 1 such that for any Ψ ∈ Hθ and k ≥ K,

∫ ∣∣Ψ ◦ fk −Ψk

∣∣dµ ≤ CAHΨ

kβ
∗ .

Proof. Recall that by the definition, Ψk|B := inf{Ψ(x) : x ∈ fk(B)}, where B ∈ P0,2k. So

for any x, there is y ∈ P0,2k(x) such that Ψ ◦ fk(x)−Ψk(x) = Ψ ◦ fk(x)−Ψ ◦ fk(y). Since

Ψ ∈ Hθ and fk(P0,2k(x)) = P−k,k(fk(x)), we have that for x ∈ B with B ∈ P0,2k,

|Ψ ◦ fk(x)−Ψk(x)| = |Ψ ◦ fk(x)−Ψ ◦ fk(y)|

≤HΨ|fk(x)− fk(y)|θ ≤ HΨdiam(fk(B))θ = HΨdiam(P−k,k(fk(x)))θ.
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It means

|Ψ(x)−Ψk(f−k(x))| ≤ HΨdiam(P−k,k(x))θ. (2.3.7)

Hence, we need to estimate the diameter of the sets in P−k,k.

Let δ ∈ (0, δ0), where δ0 is given in Proposition 2.7.1. Let

Sk = {x ∈M \ P : diam(P−k,k(x)) ≥ e−kδ}.

By Remark 2.2.1, there is a uniform lower bound for the angle between Eux and Esx for all

x ∈M \P . Hence, there exist C` > 0 such that for any x ∈ Sk, either there exists an unstable

manifold γuk (xu) ⊂ P−k,k(x) with the length larger than C`e
−kδ, where xu ∈ P−k,k(x), or

there exists a stable manifold γsk(xs) ⊂ P−k,k(x) with the length larger than C`e
−kδ, where

xs ∈ P−k,k(x).

In the former case, by the fact fk(γuk (xu)) = γs0(fk(xu)), there is Cd > 0 and yu ∈

γuk (xu) such that |Dfkyu |Euyu
| < Cde

kδ. Hence, by distortion given in Lemma 2.4.1, for any

y ∈ γuk (xu), |Dfky |Euy | < CdJue
kδ, and then for any z ∈ γsk(y), y ∈ γuk (xu), |Dfkz |Esz | <

CdJuJse
kδ, that is, the inequality holds for all z ∈ P−k,k(x). In particular, we have

|Dfkx |Esx | < CdJuJse
kδ. Similarly, in the latter case, we can get that |Df−kx |Esx | < C ′dJ

′
sJ
′
ue
kδ

for some C ′D > 0, where J ′s and J ′u are given in Lemma 2.4.2. So we can get

Sk ⊂
{
x ∈M : |Dfkx |Eux | < Eekδ

}⋃{
x ∈M : |Df−kx |Esx | < E′ekδ

}
,

where E = CdJuJs and E′ = C ′dJ
′
uJ
′
s. By applying Proposition 2.7.1, we get that there exist

CD, C
′
D > 0 such that

µ(Sk) ≤
C∗D(log k)2(1/α−1)

k1/α−1
,
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where C∗D = CD + C ′D,

Let Tk be given in Proposition 2.6.1. By this proposition, µ(Tk) ≤ Cs log k

k1/α
. For any

x ∈ Tk, by Propositions 2.6.1 and 2.6.2, diam(P−k,k(x)) ≤ Ch

k1/2+α′
, where α′ =

b0
2a0

, and

Ch is a constant larger than the constants Cs and Cu given by Proposition 2.6.1 and 2.6.2.

For any x /∈ Tk, diam(P−k,k(x)) ≤ Cs

k3/2+α′
by Proposition 2.6.1.

Hence, by invariance of µ and (2.3.7), the above estimates give

∫ ∣∣Ψ ◦ fk −Ψk

∣∣dµ =

∫ ∣∣Ψ−Ψk ◦ f−k
∣∣dµ

=

∫
Tc
k
∩Sc
k

|Ψ ◦ fk −Ψk|dµ+

∫
Tc
k
∩Sk
|Ψ ◦ fk −Ψk|dµ+

∫
Tk

|Ψ ◦ fk −Ψk|dµ

≤HΨe
−kδθ +

HΨC
θ
s

k(3/2+α′)θ
·
C∗D(log k)2(1/α−1)

k1/α−1
+

HΨC
θ
s

k(1/2+α′)θ
· Cs log k

k1/α
≤ CAHΨ

kβ
∗

for some CA > 0 independent of Ψ, where β∗ >
(

3
2 + α′

)
θ + 1

α − 1. By the choice of θ, we

have that β∗ >
1

β
− 1.

2.4 Some distortion estimates

In this section we provide some distortion estimates which were used in Subsection 2.3.1 and

will be used in Section 2.6 as well.

Lemma 2.4.1. There are positive constants Js, Ju > 0, and θ∗ ∈ (0, 1] such that for any

γs ∈ W s(Pi), i = 1, · · · , r, x, y ∈ γs and n ≥ 0,

log
|Dfny |Euy |

|Dfnx |Eux |
≤ Jsd

s(x, y)θ
∗
; (2.4.1)
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and for any γu ∈ Wu(Pi), i = 1, · · · , r, x, y ∈ γu and n ≥ 0,

log
|Df−ny |Euy |

|Df−nx |Eux |
≤ Jud

u(x, y)θ
∗
. (2.4.2)

Proof. Denote P = P0. By the same method as in the proof of Lemma 7.4 in [12], we can get

that there exists constant Is > 0 such that if γs ⊂ f−1P\P is a W s-segment with f iγs ⊂ P ,

i = 1, · · ·n− 1, then for any x, y ∈ γs,

log

∣∣Dfny |Euy ∣∣∣∣Dfnx |Eux ∣∣ ≤ Isd
u(x, y)θ

∗
,

where θ∗ = θ is given in Lemma 7.1 of [12].

With this result we can get a proof of (2.4.1) using the same idea as in the proof of

Proposition 7.5 in [12], whose details can be found in Proposition 3.1 in [16].

The second inequality (2.4.2) can be obtained similarly.

Similarly, we have the following result:

Lemma 2.4.2. There are two positive constants J ′s and J ′u, and θ∗ ∈ (0, 1] such that for

any γs ∈ W s(Pi), i = 1, · · · , r, x, y ∈ γs and n ≥ 0,

log
|Dfny |Esy |

|Dfnx |Esx |
≤ J ′sd

s(x, y)θ
∗
;

and for any γu ∈ Wu(Pi), i = 1, · · · , r, x, y ∈ γu and n ≥ 0,

log
|Df−ny |Esy |

|Df−nx |Esx |
≤ J ′ud

u(x, y)θ
∗
.
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Lemma 2.4.3. (1) Let γu, γ̂ui ∈ W
u(Pi). For the sliding map π : γu → γ̂ui , one has that

π∗µγ = µγ̂ui
.

(2) J(f)(x) = J(f)(y) for any y ∈ γs(x).

Proof. The statements and proof are the same as (1) and (2) of Lemma 1 in Subsection 3.1

in [44].

Lemma 2.4.4. There are C > 0, λ ∈ (0, 1), and θ∗ ∈ (0, 1) such that for any γu ∈ Wu(Pi),

i = 1, ..., r, x, y ∈ γu,

log

∣∣∣∣J(f̃)(x)

J(f̃)(y)

∣∣∣∣ ≤ C
√
λ
θ∗s(x,y)

,

where s(x, y) is given in Subsection 2.3.2.

Proof. For any x ∈ γu ∩ Pi, i 6= 0, one has

J(f̃)(x) = |Df̃x|Eux | · e
u(f̃(x)) · e−u(x).

Denote φ(x) = log |Df̃x|Eux |. We can write

|u(x)− u(y)| ≤
∣∣∣∣ k∑
i=0

[φ(f̃ i(x))− φ(f̃ i(y))]

∣∣∣∣+

∣∣∣∣ k∑
i=0

[φ(f̃ i(x̂))− φ(f̃ i(ŷ))]

∣∣∣∣
+

∣∣∣∣ ∞∑
i=k+1

[φ(f̃ i(x))− φ(f̃ i(x̂))]

∣∣∣∣+

∣∣∣∣ ∞∑
i=k+1

[φ(f̃ i(y))− φ(f̃ i(ŷ))]

∣∣∣∣.
We take k > 0 such that fk = f̃s

∗(x,y)/2, where s∗(x, y) = s(x, y) if s(x, y) is even and

s∗(x, y) = s(x, y) + 1, otherwise. Hence, fk(x), fk(x̂), fk(y), fk(ŷ) /∈ P , and (2.4.1) and
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(2.4.2) can be applied to the sums of the right hand side. So, we can get

|u(x)− u(y)| ≤Judu(fk(x), fk(y))θ
∗

+ Jud
u(fk(x̂), fk(ŷ))θ

∗

+Jsd
s(fk(x), fk(x̂))θ

∗
+ Jsd

s(fk(y), fk(ŷ))θ
∗
.

Recall that λ is defined in (3.4.2). We can get that

du(fk(x), fk(y))θ
∗

=du(f̃s(x,y)(x), f̃s(x,y)(y))θ
∗
· d

u(f̃s(x,y)∗/2(x), f̃s(x,y)∗/2(y))θ
∗

du(f̃s(x,y)(x), f̃s(x,y)(y))θ
∗ ≤ Cdλ

θ∗s(x,y)/2,

where Cd is determined by the maximum radius of each element in the Markov partition,

we use the fact that f̃s(x,y)(x) and f̃s(x,y)(y) are in the same element of the Markov par-

tition P , and hence, du(f̃s(x,y)(x), f̃s(x,y)(y))θ
∗

is uniformly bounded. Similarly, we have

du(fk(x̂), fk(ŷ))θ
∗
, Jud

s(fk(x), fk(x̂))θ
∗
, Jud

s(fk(y), fk(ŷ))θ
∗ ≤ C ′λθ

∗s(x,y)/2, where C ′ is

a positive constant. Hence,

|u(x)− u(y)| ≤ 4Cλθ
∗s(x,y)/2,

where C is a positive constant.

Since log |Df̃x|Eux | − log |Df̃y|Euy | and u(f̃(x)) − u(f̃(y)) can be estimated in a similar

way, we get the inequality we need.

This competes the proof.
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2.5 Rates of convergence of the level sets

In this section, we prove Proposition 2.5.1 that is the key step to estimate the term µ[τ > n].

Recall that Q = Q2 = f−1P \ P , and Qi = [τ ≥ i] for i ≥ 2.

Note that the map f has a local product structure, that is, there exist positive constants

ε and δ such that for any x, y ∈ M with d(x, y) ≤ δ, [x, y] := Wu
ε (x) ∩ W s

ε (y) contains

exactly one point.

Take a coordinate system in a neighborhood U∗ of p such that the map has the form given

in (2.2.2) and (2.2.3). Hence, the y-axis and x-axis are the stable and unstable manifold of

p, respectively. Recall that we assume a1 = 0 = b1.

Let r > 0 be small such that the ball centered at p of radius r is contained in U∗. We

also assume that P = P0 is small enough such that P , f(P ), and f−1(P ) are contained in

the ball.

Proposition 2.5.1. Suppose α, β ∈ (0, 1) satisfies β <
2a2b2

a2
2 + a2b2 + b22

<
2b2
a2

< α. Then

there exist Dα, Dβ > 0 such that for any unstable curve γu ∈ Wu(Q), for any k > 0, we

have

Dβ

k
1
β

≤ mu
γ(γuk ) ≤ Dα

k
1
α

.

where γuk = γu ∩Qk and mu
γ is the Lebesgue measure restricted to γu.

Proof. Let γu ∈ Wu(Q) be an unstable curve in Q. Denote q = γu ∩W s
ε (p).

For any z = (x, y) ∈ γu, denote z1 = (x1, y1) = f(z), and z̄ = (x̄, ȳ) = [z, fz] =

Wu(z) ∩W s(fz). Since both z1 and z̄ are in the same stable curve, z ∈ Qk if and only

if z̄ ∈ Qk−1. So if z is an endpoint of γuk , then z̄ is an endpoint of γuk−1. In order to

estimate the length of γuk , we estimate the ratio mu
γ(γuk−1)/mu

γ(γuk ) firstly. This is equivalent

to estimate x̄/x.
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Denote by vsz a real number or ∞ such that (vsz, 1) is a tangent vector of W s
r (z). Take

the function ρ̂ on [0, r] as in Proposition 2.5.2. By Lemmas 2.5.2 and 2.5.4 below, we know

that if z = z0 is sufficiently close to q, then

−
(a2

b2
+ ρ̂(y0)

)
(1− xα0 )

x0

y0
≤ vsz0 ≤ −

(a2

b2
+ ρ̂(y0)

)
(1− xβ0 )

x0

y0
.

With the estimates for vsz, we can get by Lemmas 2.5.3 and 2.5.5 that there exist Eα, Eβ > 0

such that

x0 + Eαx
1+α
0 ≤ x̄0 ≤ x0 + Eβx

1+α
0 .

If we denote sk = mu(γuk ), the inequalities mean

sk + Eαs
1+α
k ≤ sk−1 ≤ sk + Eβs

1+α
k .

for all k sufficiently large. Hence, it follows (e.g. see Lemma 3.1 in [14]) that there exist Dα,

Dβ > 0 such that for all k > 0,

Dβ

k
1
β

≤ sk ≤
Dα

k
1
α

.

This is what we need.

To obtain Lemmas 2.5.2 and 2.5.4, we consider vsz, where z is near the y-axis. Assume

that vsz has the form

vsz = −ρx
y
,

where ρ = ρ(x, y).
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Since (vsz, 1) is in the stable cone at z, without loss of generality, assume that

−1 ≤ vsz ≤ 1, ∀z ∈ B(p, r). (2.5.1)

Let ρ ba a function defined on U∗. Set z1 := f(z) and ρ1 := ρ(z1). Define

∆ρ(x, y) : = (ρ− ρ1)(1 + φ)(1− ψ) + ρ1y(1 + φ)ψy − y(1− ψ)φy

− ρ1ρx(1 + φ)ψx + ρx(1− ψ)φx,

where φ = φ(x, y) and ψ = ψ(x, y). We need the following facts.

Lemma 2.5.1 ([12] Lemma 8.3). If vsz ≤ −ρ(z)xy and 0 ≤ ∆ρ(x, y), then vsz1 ≤ −ρ(z1)
x1
y1

.

The result also holds if all “ 6 ” are replaced by “ > ”.

To get more precise form of ρ, we need the following results.

Proposition 2.5.2 ([12] Proposition 8.4). There exists a Lipschitz function ρ̂ on [0, r] with

ρ̂(0) = 0 satisfying the following two equations:

∆a2
b2

+ρ̂
(0, y) = (ρ̂(y)− ρ̂(y

(0)
1 ))(1 + φ)(1− ψ)

+

(
a2

b2
+ ρ̂(y

(0)
1 )

)
y(1 + φ)ψy − y(1− ψ)φy = 0,

and

b2 log(1 + φ) + a2 log(1− ψ)− b2
∫ y

y
(0)
1

ρ̂(t)

t
dt = 0, (2.5.2)

where φ = φ(0, y), ψ = ψ(0, y), and y
(0)
1 = y(1− ψ(0, y)).

The upper bound estimates have been proved in [12]. We state the corresponding lemmas

here for completion, which are Lemmas 9.1 and 9.2 in [12]
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Lemma 2.5.2. Suppose αa2 > 2b2, 0 < α < 1, and a0b2 − a2b0 > 0. Then for any point

q = (0, yq) with yq > 0 small, there exists ε > 0 such that for any z0 = (x0, y0) ∈ Wu
ε (q)

with x0 > 0,

vsz0 ≥ −
(
a2

b2
+ ρ̂(y0)

)
(1− xα0 )

x0

y0
.

Lemma 2.5.3. Let z0 = (x0, y0) with x0 > 0. If for all z = (x, y) in the stable curve that

joins z̄0 and z1,

vsz ≥ −
(
a2

b2
+ ρ̂(y)

)
(1− xα)

x

y
,

then

x̄0 ≥ x0 + Eαx
1+α
0 ,

where Eα is a positive constant dependent on y0.

The following lemma is the key step to get the lower bound estimates for x̄0/x0.

Lemma 2.5.4. Given any α, β ∈ (0, 1) with β <
2a2b2

a2
2 + a2b2 + b22

<
2b2
a2

< α. Then for any

point q = (0, yq) with yq > 0 small, there exists ε > 0 such that for any z0 = (x0, y0) ∈ Wu
ε (q)

with x0 > 0 small,

vsz0 ≤ −
(a2

b2
+ ρ̂(y0)

)
(1− xβ0 )

x0

y0
. (2.5.3)

Proof. For each z0 = (x0, y0) ∈ Wu
r (q), zi = (xi, yi) = f i(z0), define

c0 := 0, ci :=
A1x

β
0y

2
0∏i−1

j=0

(
1− θ0yjψy(0, yj)

) ∀i ≥ 1,

where A1 =
a2

2b2
(2b2 − βa2) and θ0 is specified in Lemma 2.5.6. It is evident that

ci+1 − ci = ci+1θ0yiψy(0, yi), ∀i > 0. (2.5.4)
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Set

ρi := ρ(zi) =

(
a2

b2
+ ρ̂(yi)

)
(1− xβi ), i ≥ 0, (2.5.5)

and

ρ̃i := ρi − ci, i ≥ 0. (2.5.6)

For any zi = (xi, yi), set

∆ρ̃i
(xi, yi) :=(ρ̃i − ρ̃i+1)(1 + φi)(1− ψi)

+ρ̃i+1yi(1 + φi)ψy(xi, yi)− yi(1− ψi)φy(xi, yi)

−ρ̃iρ̃i+1xi(1 + φi)ψx(xi, yi) + ρ̃ixi(1− ψi)φx(xi, yi),

where φi = φ(zi) = φ(xi, yi), ψi = ψ(zi) = ψ(xi, yi).

By contradiction, suppose that (2.5.3) is incorrect. It is to show that for yq > 0 small

enough, there is ε > 0 such that for any z0 = (x0, y0) ∈ Wu
ε (q) with q = (0, yq), x0, y0 > 0,

vszi
≥ −ρ̃i

xi
yi

and 0 ≥ ∆ρ̃i
(xi, yi),

this, together with Lemma 2.5.1, yields that

vszi+1
≥ −ρ̃i+1

xi+1

yi+1
.

By Lemma 2.5.6 below, we can take ε > 0 small enough such that cn0 > 1 + max{a2/b2 +

ρ̂(yi) : y ∈ [0, r]} and hence, ρ̃n0 < −1 for some n0 = n(z0). Since ci increases with i, it

follows that ρ̃i < −1 for any i ≥ n0. Note that xi is increasing and yi is decreasing when

the orbit under the iteration of f is in the neighborhood of the origin. Then there exists
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n1 ≥ n0 such that vszn1
> −ρ̃n1

xn1
yn1

> 1. This contradicts (2.5.1).

Now, we will show that for all i ≥ 0 with xi < yi,

∆ρ̃i
(xi, yi) ≤ 0.

Note that by (2.2.2) and (2.2.3)

φ(x, y) = φ(0, y) +O(x2 + xy2), ψ(x, y) = ψ(0, y) +O(x2 + xy2), (2.5.7)

φy(x, y) = φy(0, y) +O(x2 + xy), ψy(x, y) = ψy(0, y) +O(x2 + xy). (2.5.8)

Also,

φ(x, y) = a2y
2 +O(x2 + xy2 + y3) = a2y

2 +O(x2 + y3), (2.5.9)

yψy(x, y) = 2b2y
2 +O(x2y + xy2 + y3) = 2b2y

2 +O(x2y + y3), (2.5.10)

xφx(x, y), xψx(x, y) = O(x2 + x2y + xy2) = O(x2 + xy2). (2.5.11)

Since yi − yi+1 = yi − yi(1− ψ(xi, yi)) = yiψ(xi, yi), and ρ̂ is Lipschitz continuous,

ρ̂(yi)− ρ̂(yi+1) = O(yi − yi+1) = O(yiψ(xi, yi)) = O(yix
2
i + y3

i ). (2.5.12)

Denote y
(0)
i+1 := yi(1 − ψ(0, yi)). Then yi+1 − y

(0)
i+1 = O(yi(ψ(0, yi) − ψ(xi, yi))) and hence,

by (2.5.8),

ρ̂(yi+1)− ρ̂(y
(0)
i+1) = O(yi+1 − y

(0)
i+1) = O(x2

i yi + xiy
2
i ). (2.5.13)
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Note (1 + a)β − 1 = βa+O(a2). By (2.5.9), we have

x
β
i+1 − x

β
i = x

β
i ((1 + φ(xi, yi))

β − 1) = βa2x
β
i y

2
i + x

β
i O(x2

i + y3
i ). (2.5.14)

First, using (2.5.4), (2.5.7), (2.5.12), (2.5.13), and (2.5.14), we get

(ρ̃i − ρ̃i+1)(1 + φi)(1− ψi)

=
(
ρ̂(yi)− ρ̂(yi+1)

)
(1 + φi)(1− ψi)

+
(a2

b2
(x
β
i+1 − x

β
i ) +

(
ρ̂(yi+1)x

β
i+1 − ρ̂(yi)x

β
i

))
(1 + φi)(1− ψi)

+(ci+1 − ci)(1 + φi)(1− ψi)

=
(
ρ̂(yi)− ρ̂(y

(0)
i+1)

)
(1 + φ(0, yi))(1− ψ(0, yi))

+
a2

b2
βa2x

β
i y

2
i + (ci+1 − ci)(1 + φi)(1− ψi)

+O(x2
i yi + xiy

2
i ) + x

β
i O(x2

i + y3
i ).

(2.5.15)

Next, using (2.5.5) and (2.5.6), and then using (2.5.7), (2.5.8), (2.5.10), and (2.5.13), we get

ρ̃i+1yiψy(xi, yi)(1 + φi)− yi(1− ψi)φy(xi, yi)

=
(a2

b2
+ ρ̂(yi+1)

)
yiψy(xi, yi)(1 + φi)− yi(1− ψi)φy(xi, yi)

−
(a2

b2
+ ρ̂(yi+1)

)
x
β
i+1yiψy(xi, yi)(1 + φi)− ci+1yiψy(xi, yi)(1 + φi)

=
(a2

b2
+ ρ̂(y

(0)
i+1)

)
yiψy(0, yi)(1 + φ(0, yi))− yi(1− ψ(0, yi))φy(0, yi)

−a2

b2
2b2x

β
i y

2
i − ci+1yiψy(0, yi) + yiO(x2

i + xiyi) + x
β
i yiO(x2

i + y2
i ).

(2.5.16)
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Also, denote

Rρ̃(xi, yi) := −ρ̃iρ̃i+1xi(1 + φi)ψx(xi, yi) + ρ̃ixi(1− ψi)φx(xi, yi). (2.5.17)

The equations (2.5.15)-(2.5.17), (2.5.11), and Proposition 2.5.2 give

∆ρ̃i
(xi, yi) = −a2

b2
(2b2 − βa2)x

β
i y

2
i + (ci+1 − ci)(1 + φi)(1− ψi)

− ci+1yiψy(0, yi) +Rρ̃(xi, yi) +O(x2
i yi + xiy

2
i ) + x

β
i O(x2

i + y3
i ).

(2.5.18)

Note that the choice of β implies 2b2 − βa2 > 0. By (2.5.11), we have

Rρ̃(xi, yi)


= O(x2

i + xiy
2
i ) if ρ̃i ≥ −1;

< 0 if ρ̃i < 0.

For i = 0, c0 = 0 and c1 =
a2

2b2
(2b2 − βa2)x

β
0y

2
0 by the definition of ci. Hence,

∆ρ̃0
(x0, y0) = − a2

2b2
(2b2 − βa2)x

β
0y

2
0 − c1yiψy(0, yi) +O(x2

0 + x0y
3
0 + x

β
0y

3
0) < 0,

since we assume x0 is small compared with y0.

For 0 < i ≤ n0(z0), where n0 is given in Lemma 2.5.6, by (2.5.4), we have

(ci+1 − ci)(1 + φi)(1− ψi)− ci+1yiψy(0, yi) = −ci+1(1− θ0)yiψy(0, yi) + y2
iO(x2

i + y2
i ).

So, we have

∆ρ̃i
(xi, yi) = − a2

2b2
(2b2 − βa2)x

β
i y

2
i − ci+1(1− θ0)yiψy(0, yi) +O(x2

i + xiy
3
i + x

β
0y

3
i ) < 0,
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since we have Kxi < y1+β/(2−β), or x2
i ≤ K−(2−β)x

β
i y

2
i , for some K > 0 sufficiently large.

If i ≥ n0, then ρ̃i < 0. Hence, Rρ̃(xi, yi) < 0. Then by (2.5.18),

∆ρ̃i
(xi, yi) = − a2

2b2
(2b2 − βa2)x

β
i y

2
i − ci+1(1− θ0)yiψy(0, yi)

−|Rρ̃(xi, yi)|+O(x2
i yi + xiy

2
i ) + x

β
i O(x2

i + y3
i )) < 0.

This completes the proof.

Lemma 2.5.5. Let z0 = (x0, y0) with x0, y0 > 0. If for all z = (x, y) in the stable curve

that joins z̄0 and z1,

vsz ≤ −
(
a2

b2
+ ρ̂(y0)

)
(1− xβ0 )

x0

y0
, (2.5.19)

then

x̄0 ≤ x0 + Eβx
1+β
0 ,

where Eβ is a positive constant dependent on y0.

Proof. Since (vsz, 1) forms a tangent line of the stable manifold W s
r (z), (2.5.19) gives

dx

dy
≤ −

(a2

b2
+ ρ̂(y)

)
(1− xβ)

x

y
,

which implies that

dx

x(1− xβ)
+
(a2

b2
+ ρ̂(y)

)dy
y
≤ 0.

Integrating the function from z1 = (x1, y1) to z̄0 = (x̄0, ȳ0), we have

log
x̄0

x1
− 1

β
log

1− x̄β0
1− xβ1

+
a2

b2
log

ȳ0

y1
+

∫ ȳ0

y1

ρ̂(y)

y
dy ≤ 0.
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In the following discussions, we omit the subscript 0. The above inequality gives

x̄

x1
≤
(1− x̄β

1− xβ1

) 1
β
(y1

ȳ

)a2
b2 exp

(
−
∫ ȳ

y1

ρ̂(y)

y
dy
)
.

This, together with x1 = x(1 + φ(x, y)) and y1 = y(1− ψ(x, y)), yields that

x̄

x
≤ (1 + φ(x, y))(1− ψ(x, y))

a2
b2
(1− x̄β

1− xβ1

) 1
β
(y
ȳ

)a2
b2 exp

(
−
∫ ȳ

y(1−ψ(x,y))

ρ̂(y)

y
dy
)
.

By (2.5.7), φ(x, y) = φ(0, y) +O(x2 + xy2) and ψ(x, y) = ψ(0, y) +O(x2 + xy2). Hence,∫ ¯y(1−ψ(0,y))

y(1−ψ(x,y))

ρ̂(y)

y
dy = O(x), where we treat y as a constant. By (2.5.2), one has

(1 + φ(x, y))(1− ψ(x, y))

a2
b2 exp

(
−
∫ ȳ

y(1−ψ(x,y))

ρ̂(y)

y
dy
)

=(1 +O(x2)) exp
(∫ y

ȳ

ρ̂(y)

y
dy
)
.

Since z̄ = (x̄, ȳ) and z = (x, y) are in the same local unstable manifold, one has that

|ȳ − y| ≤ N(x̄− x) ≤ N(x1 − x) = Nxφ,

where N is a positive constant. So,

(y
ȳ

)a2
b2 ≤

(
1 +

Nxφ

ȳ

)a2
b2 = 1 +O(x) and exp

(∫ y

ȳ

ρ̂(y)

y
dy
)

= 1 +O(x).

Now we get

x̄

x
≤
(1− x̄β

1− xβ1

) 1
β (1 +O(x)

)
.
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Using the facts x
β
1 = xβ(1 + φ)β = xβ + βxβφ+ xβO(φ2) and x < x̄, we have

1− x̄β

1− xβ1
= 1 +

x
β
1 − x̄

β

1− xβ1
= 1 +

xβ + βxβφ− x̄β + xβO(φ2)

1− xβ1
≤ 1 +

βxβφ+ xβO(φ2)

1− xβ1
.

Therefore,

x̄

x
≤ 1 + Eβx

β ,

where Eβ is a positive constant dependent on y0.

This completes the proof.

Lemma 2.5.6. Suppose α, β ∈ (0, 1) satisfies β <
2a2b2

a2
2 + a2b2 + b22

<
2b2
a2

< α. Then there

exist θ0 ∈ (0, 1) and η >
a2b2

a2
2 + b22

such that for any positive constants K and N , a point

q = (0, yq) with yq > 0 small, there is ε > 0 such that for any z0 = (x0, y0) ∈ Wu
ε (q) with

x0 > 0, the following inequalities hold simultaneously for some positive integer n = n(z0):

x
β
0y

2
0

n∏
j=0

(
1− θ0yjψy(0, yj)

)−1
≥ N, Kxn < y1+η.

Proof. Since β <
2a2b2

a2
2 + a2b2 + b22

=
2a2b2(

a2
2 + b22

)(
1 +

a2b2

a2
2 + b22

) , there is γ > 1 +
a2b2

a2
2 + b22

such

that β =
2a2b2

γ(a2
2 + b22)

. Take
a2b2

a2
2 + b22

< η < γ − 1 and then take θ0 > 0 such that

1 > θ0 > max
{γβ

2
,

2− (γ − 1)β + ηβ

2

}
.

Clearly we have
β

2− β
<

2a2b2

2(a2
2 + a2b2 + b22)− 2a2b2

=
a2b2

a2
2 + b22

< η.

By the choices of θ0 and γ, we could assume that K is large enough such that if Kx ≤ y,
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then

1− θ0yψy(0, y) ≤ 1− θ12b2y
2 ≤ (1− ψ)2θ2 (2.5.20)

and

(1 + φ)β(1− ψ)2−γβ ≤ 1, (2.5.21)

where θ1 and θ2 satisfy

max
{γβ

2
,

2− (γ − 1)β + βη

2

}
< θ2 < θ1 < θ0. (2.5.22)

Hence, for any z0 = (x0, y0) with Kx0 < y0, by (2.5.21), we have

x
β
1y

2−γβ
1 ≤ x

β
0 (1 + φ0)βy

2−γβ
0 (1− ψ0)2−γβ ≤ x

β
0y

2−γβ
0 . (2.5.23)

Set n := n(z0) as the largest positive integer such that Kxn ≤ y
1+η
n and Kxn+1 > y

1+η
n+1.

Since 0 < y < 1, we have that if Kx < y1+η, then Kx < y. So,

x
β
0y

2−γβ
0 ≥ x

β
n+1y

2−γβ
n+1 ≥ K−βyβ(1+η)

n+1 y
2−γβ
n+1 = K−βy2+(1−γ)β+ηβ

n+1 .

By (2.5.20) and (2.5.23), we get

x
β
0y

2
0∏n

j=0

(
1− θ0yjψy(0, yj)

) ≥ y
2θ2
0 x

β
0y

2
0

y
2θ2
0

∏n
j=0(1− ψj)2θ2

≥
x
β
0y

2+2θ2
0

y
2θ2
n+1

≥
y

2θ2−γβ
0

Kβy
2θ2−(2−(γ−1)β+ηβ)
n+1

.

By (2.5.22), 2θ2 − (2− (γ − 1)β + ηβ) > 0. Hence, if z0 is sufficiently close to q, then yn+1
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can be arbitrarily small and the right hand side of the inequality can be arbitrarily large.

This lemma is thus proved.

2.6 Estimates of the size of elements of P−k,k

Recall that P is a Markov partition. Denote Pk,n = ∨ni=kf
i(P) and Pn = P0,n. Denote by

Pk,n(x) the element of Pk,n that contains x.

Also, denote by γsn(x) the connected stable curves that contains x and is contained in

Pn(x), and by γun(x) the connected unstable curves that contains x and is contained in

P−n,0(x).

Recall that ms is the Lebesgue measure restricted to stable curves. Recall also that

Q = Q2 = f−1P \ P , and Qk = [τ ≥ k], k ≥ 2, are introduced in Subsection 2.3.2.

Denote Rk = [τ = k] = Qk \ Qk+1 for k ≥ 2. Then we denote Q+
k = fτ (Qk) and

R+
k = fτ (Rk) = fk(Rk), where fτ is the first return map of f with respect to M0 = M \P0.

Clearly Qk = ∪∞i=kRi and Q+
k = ∪∞i=kR

+
i .

Proposition 2.6.1. There exist Ks > 0 and Cs > 0 such that for any k ≥ Ks, we can find

a set Tk with the following properties:

(i) µ(Tk) ≤ Cs log k

k1/α
;

(ii) ms(γsk(x)) ≤ Cs

k1/2+α′
for any x ∈ Tk;

(iii) ms(γsk(x)) ≤ Cs

k3/2+α′
for any x /∈ Tk ∪ P ,

where α′ = b0/2a0.
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Proof. Take Ks ≥ 2K1, where K1 is given in Corollary 2.6.1.

Recall that λ is defined in (3.4.2). For each k > 0, take ` = `k = −
⌊ log k

log λ

⌋
. Then for

any j ≥ `k, λj <
1

k
.

Define

Tk =
⋃̀
i=0

(fτ )i(Q+
bk/2c),

where τ is the first return time with respect to M \ P . By (3.4.5), µ(Qbk/2c) ≤
21/αBα

k1/α
for

some Bα > 0. Since µ is preserved under the map fτ , we can get

µ(Tk) ≤ 21/αBα

k1/α
· ` ≤ C ′ log k

k1/α

for some C ′ > 0. Hence, we get part (i) if Cs ≥ C ′.

For any x ∈M , denote xk := f−k(x). If xk ∈ P , we define τ(xk) = min{i > 0 : f i(xk) ∈

M \ P}, the first time the orbit of xk enter M \ P .

We now prove a claim stronger than the requirements in (ii) and (iii): For any x /∈ P ,

the inequality in (ii) holds for any x ∈ Tk with xk ∈ P and τ(xk) > k/2; and that in (iii)

holds otherwise.

If xk /∈ P , then by Corollary 2.6.2(i), ms(γsk(x)) ≤ C2

k3/2+α′
.

If xk ∈ P and τ(xk) ≤ k/2, then we have fτ (xk) /∈ P and k − τ(xk) ≥ max{K1, k/2}.

Using Corollary 2.6.2(i) with fτ(xk)(xk) and x = fk−τ(xk)(fτ(xk)(xk)) we get

ms(γsk(x)) ≤ C2

(k − τ(xk)3/2+α′
≤ 23/2+α′C2

k3/2+α′
.

If xk ∈ P , τ(xk) > k/2 and x /∈ Tk, then we have γs
τ(xk)

(fτ(xk)(xk)) ⊂ Q+
bk/2c. By
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Corollary 2.6.2(ii) we have ms(γsτ(xk)(f
τ(xk)(xk))) ≤ C2

bk/2c1/2+α′
≤ 21/2+α′C2

k1/2+α′
. On the

other hand, x /∈ Tk implies k−τ(xk) ≥ τ(fτ (xk))+τ((fτ )2(xk))+ · · ·+τ((fτ )`(xk)). Hence

‖Dfk−τ(xk)
y |Esy‖ ≤ λ` ≤ 1

k
for any y ∈ γs

τ(xk)
(fτ(xk)(xk)) by the choice of `. Note that

fk−τ(xk)(γs
τ(xk)

(fτ(xk)(xk))
)

= τsk(x). We get

ms(γsk(x)) ≤ 1

k
·ms(γsτ(xk)(f

τ(xk)(xk))
)
≤ 1

k
· 21/2+α′C2

k1/2+α′
=

21/2+α′C2

k3/2+α′
.

On the other hand, if xk ∈ P , τ(xk) > k/2 and x ∈ Tk, then we can only get

ms(γsk(x)) ≤ ms(γsτ(xk)(f
τ(xk)(xk))

)
≤ C2

bk/2c1/2+α′
≤ 21/2+α′C2

k1/2+α′
.

Now we get what we claimed if we take Cs = 21/2+α′C2.

Proposition 2.6.2. There exist Ku > 0 and Cu > 0 such that for any k ≥ Ku, mu(γuk (x)) ≤
Cu

k1/α
for any x /∈ P .

Proof. The proof is similar to that for Proposition 2.6.1 by using the estimates given in

Proposition 2.5.1 for γuk ∈ W
u(Qk), instead of Corollary 2.6.2 for γsk ∈ W

s(Q+
k ).

To prove Lemma 2.6.3 below, we need the following facts.

Lemma 2.6.1 ([14] Lemmas 3.1 and 3.2). If

tn−1 ≥ tn + Ct
1+%
n +O(t

1+%′
n ) ∀n > 0, (2.6.1)
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where %′ > %, then for all large n,

tn ≤
1

(%C(n+ k))1/%
+O

(
1

(n+ k)δ
′

)
, (2.6.2)

for some δ′ > 1/% and k ∈ Z.

Moreover, if (2.6.2) holds and for all n > 0,

r(tn) ≤ 1− C ′t%n +O(t
1+%′
n ),

where C ′ > 0, then there exists D > 0 such that for all k0 > k,

n+k0−k∏
i=k0−k

r(ti) ≤ D
( k

n+ k

)C′/%C
.

The results remain true if we interchange “≤” and “≥”. Therefore, if (2.6.1) becomes an

equality, then so does (2.6.2).

Lemma 2.6.2 ([12] Propositions 2.6 and 2.8). For any ε > 0, there exists a constant

0 < r∗ ≤ r0 such that for any r ∈ (0, r∗) and x ∈ B(p, r), t ∈ (0, 1], j = 1, · · · ,
⌊

2

t2

⌋
, we

have

(1− ε)|tx| ≤
∣∣f j(tx)

∣∣ ≤ (1 + ε)|tx|;

and for any x, y ∈ B(p, r) with |Θ(x, y)| ≤ |Θ(x, f(x))| and |y| = t|x|, t ∈ (0, 1], we have

|Θ(y, f j(y))| ≤ |Θ(x, f(x))|+ ε|x|2 ∀ 0 ≤ j ≤
⌊

1

t2

⌋
;

|Θ(y, f j(y))| ≥ |Θ(x, f(x))| − ε|x|2 ∀
⌊

1

t2

⌋
≤ j ≤

⌊
2

t2

⌋
,
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where r0 is specified in Definition 2.2.2, and Θ(x, y) denotes the angle from x to y counter-

clockwise in R2.

Lemma 2.6.3. There exists C1 > 0 such that for any x ∈ Q with n = τ(x), ‖Dfnx |Esx‖ ≤
C1

n3/2+α′
, where α′ = b0/2a0.

Proof. Choose θu, θs > 0 small. Then take sectors Su = {z ∈ U : |∠(z, Eup )| ≤ θu} and

Ss = {z ∈ U : |∠(z, Esp)| ≤ θs}, where ∠(z, Eup ) is the angle between the vector from p to z

and the line Eup . Then let Sc = P \ (Ss ∪ Ss).

If N0 > 0 is large enough, then for any x ∈ QN0
, the orbit of x passes through Ss, Sc, and

Su consecutively before it leaves P . Note that if x ∈ Rn ⊂ QN0
, then n = nx = τ(x) ≥ N0.

We take ns,nc, nu > 0 such that ns = max{j > 0 : f i(x) ∈ Ss, ∀1 ≤ i ≤ j}, nc = max{j >

0 : fn
s+i(x) ∈ Sc, ∀1 ≤ i ≤ j}, and nu = nx − ns − nc. That is, x, f(x), . . . , fn

s
(x) ∈ Ss,

fn
s+1(x), . . . , fn

s+nc(x) ∈ Sc, and fn
s+nc+1(x), . . . , fnx(x) ∈ Su.

Note that (2.2.3) implies that f has the form f(r) = r(1 − b2r2 + O(r3)) restricted to

W s
ε (p), and Df has the form Df |Es = 1 − 3b2r

2 + O(r3) restricted to Esx for x = (0, r) ∈

W s
ε (p). Hence, by Lemma 2.6.1, for any point x̂ ∈ W s

ε (p) ∩ Q, |fn(x̂)| ≈ 1√
2b2n

and

‖Dfnx̂ |Esx̂
‖ ∼ d̂s√

n3
for some constant d̂s > 0, where ak ≈ bk means lim

k→∞
ak
bk

= 1, and

ak ∼ bk means ak/bk is bounded away from 0 and infinity. Since the points in Ss are close

to W s
ε (p), we can get that there exist cs > c′s > 0 and ds > d′s > 0 such that

c′s√
ns
≤ |fn

s
(x)| ≤ cs√

ns
and

d′s√
(ns)3

≤ ‖Dfn
s

x |Esx‖ ≤
ds√
(ns)3

. (2.6.3)

Now we consider the part of the orbit in Sc. Take z ∈ Ss such that fk(z) ∈ Su ∩ Q+
N0

with some k > 0. Define ks and kc in a way similar with that of ns and nc as above,

that is, ks is the largest positive integer such that f1(z), . . . , fk
s
(z) ∈ Ss, and kc is the
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largest positive integer such that fk
s+1(z), . . . , fk

s+kc(z) ∈ Sc. Consider Lemma 2.6.2 with

ε small. If N0 is sufficiently large, then for x ∈ QN0
, |fns(x)| = t|fks(z)| is small. Hence,

by Lemma 2.6.2, for i = 0, 1, . . . , nc,

(1− ε)k
c
|fn

s
(x)| ≤ |fn

s+i(x)| ≤ (1 + ε)k
c
|fn

s
(x)| and nc ∼ kc

t2
=
kc|fks(z)|2

|fns(x)|2
.

So, there exist cn > c′n > 0 and cc > c′c > 0 such that for i = 0, 1, . . . , nc,

c′n
|fns(x)|2

≤ nc ≤ cn

|fns(x)|2
, and c′c|fn

s
(x)| ≤ |fn

s+i(x)| ≤ cc|fn
s
(x)|. (2.6.4)

Note that (2.2.2) and (2.2.3) imply that there exist c > c′ > 0 such that 1 − c|y|2 ≤

‖Dfy|Esy‖ ≤ 1 − c′|y|2 for any y with |y| small. Hence, by taking y = fn
s+i(x), i =

0, 1, . . . , nc, we obtain that there exist 0 < d′c ≤ dc < 1 such that

d′c ≤ ‖Dfn
c

fn
s

(x)
|Es
fn
s

(x)
‖ ≤ dc. (2.6.5)

For the part of the orbit in Su, we note that (2.2.3) implies that f has the form f(r) =

r(1 + a0r
2 + O(r3)) restricted to Wu

ε (p), and Df has the form Df |Es = 1 − b0r2 + O(r3)

restricted to Esx for x = (r, 0) ∈ Wu
ε (p). Hence, by Lemma 2.6.1, for any point x̂ ∈ Wu

ε (p),

|f−n(x̂)| ≈ 1√
2a0n

and ‖Dfnx̂ |Esx̂
‖ ∼ 1

nb0/2a0
. Since points in Su are close to Wu

ε (p), we

can get that there exist cu > c′u > 0 and du > d′u > 0 such that

c′u√
nu
≤|fn

s+nc(x)| ≤ cu√
nu
,

d′u
(nu)b0/2a0

≤‖Dfn
u

fn
s+nc(x)

|Es
fn
s+nc(x)

‖ ≤ du

(nu)b0/2a0
.

(2.6.6)
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By the second inequality of (2.6.4), |fns+nc(x)| ∼ |fns(x)|. Hence, by (2.6.3), (2.6.4),

and (2.6.6), all ns, nc and nu are roughly proportional. Since ns + nc + nu = n = nx, we

know that there exist ρs, ρu ∈ (0, 1) such that ns ≥ ρsn and nu ≥ ρun. So by (2.6.3), (2.6.5)

and (2.6.6), we get

‖Dfnx |Esx‖ ≤
C1

n3/2+b0/2a0

for some C1 > 0.

The proof is completed.

Corollary 2.6.1. There exists K1 > 0 such that for any n > K1, if x, fn(x) /∈ P , then

‖Dfnx |Esx‖ ≤
C1

n3/2+α′
, where C1 and α′ are as in Lemma 2.6.3.

Proof. Take K ′1 > 0 such that
C1

k3/2+α′
· C1

n3/2+α′
≤ C1(

2(k + n)
)3/2+α′

, whenever k, n ≥ K ′1.

Let S = SK′1
= {f i(x) ∈ P : x ∈ QK′1

, i = 1, . . . , nx − 1}, where nx = τ(x). Since f is

uniformly hyperbolic on M \S, there exists ρ = ρS ∈ (0, 1) such that ‖Dfz|Esx‖ ≤ ρ for any

x ∈M \ S. Take K ′′1 > 0 such that for any n ≥ K ′′1 , ρn ≤ C1

(2n)3/2+α′
.

Take K1 = max{2K ′1, 2K
′′
1 }. For x, fnx /∈ P with n ≥ K1, we denote I = {i ∈ (1, n) :

f i(x) /∈ S}, and let kx be the cardinality of I. If kx ≥ n/2 > K ′′1 , then

‖Dfnx |Esx‖ ≤
∏
i∈I
‖Dffi(x)|Es

fi(x)
‖ ≤ ρkx ≤ C1

(2kx)3/2+α′
≤ C1

n3/2+α′
.

If kx ≤ n/2, then we may assume that the orbit {x, . . . , fn−1(x)} passes through QK′1

` times. Let k1 < k2 < · · · < k` < n such that f
kj (x) ∈ QK′1

, j = 1, . . . , `. Denote
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nj = τ(f
kj (x)). So, we have nj ≥ K ′1 for all j. Now we get

‖Dfnx |Esx‖ ≤
∏

1≤j≤`
‖Df

nj

f
kj (x)

|Es
f
kj (x)

‖ ≤
∏

1≤j≤`

C1

n
3/2+α′
j

≤ C1(
2(n1 + · · ·+ n`)

)3/2+α′
=

C1(
2(n− kx)

)3/2+α′
≤ C1

n3/2+α′
,

where we use the fact n1 + · · ·+ n` = n− kx > n/2.

This completes the proof.

Recall that Qn, Rn, Q+
n , R+

n and γsn(x) are given at the beginning of this section. Also,

we have Q+
n ∈ Pn.

Corollary 2.6.2. There exists C2 > 0 such that for any k > 0,

(i) ms(γsk(fk(x))
)
≤ C2

k3/2+α′
if x, fk(x) /∈ P ;

(ii) ms(γsk(x)
)
≤ C2

k1/2+α′
if x ∈ Q+

k .

Proof. (i) Note that fn(γs0(x)) = γsk(fk(x)). By Corollary 2.6.1, and distortion estimates

given in Lemma 2.4.2, we can get that ms
(
γsk(fk(x))

)
≤

C ′1
k3/2+α′

· ms
(
γs0(x)

)
for some

C ′1 > 0. Then we use the fact that ms
(
γs0(x)

)
are bounded above for all x ∈M .

(ii) Note that for y ∈ Ri, f
i(y) ∈ R+

i and f i(γs0(yi)) = γsi (f i(yi)). By using the

same arguments as above, and using Lemma 2.6.3 to replace Corollary 2.6.1, we can get

ms(γsi (f i(y))
)
≤ C2

i3/2+α′
for all y ∈ Ri. Since for any x ∈ Q+

k , γsk(x) is the union of the

stable curves γsi (zi), zi ∈ R+
i ∩γ

s
k(x), i = k, k+ 1, . . . , we get that ms(γsk(x)) ≤

∞∑
i=k

C2

i3/2+α′
.

Now we can increase C2 to get the result of part (ii).
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2.7 Some large deviation estimation

In this section, we study the large deviation estimates for the observable function Ψ ∈ L

with respect to the quotient map f̄ . We adopt the discussions used in [32].

Recall that (f,M) is the one-dimensional system induced from (f,M), and (f̃ , M̃) is the

first return maps of f with respect to M̃ = M \ P 0.

Lemma 2.7.1. Let 0 < α < 1
2 . Given any ε > 0, for any function Ψ ∈ L satisfying

|
∫

Ψdµ̄| ≥ ε, one has that

µ̄
{
x ∈M :

∣∣∣ n−1∑
i=0

(
Ψ(f̄ i(x))−

∫
Ψdµ̄

)∣∣∣ > nε
}

= O((log n)2( 1
α−1)n−( 1

α−1)). (2.7.1)

The transfer operator of the Markov map f̄ is defined as follows:

T Ψ(x) =
∑
f̄y=x

gµ̄(y)Ψ(y),

where gµ̄ = dµ̄/dµ̄ ◦ f̄ and Ψ ∈ L1(M). Since µ̄ is invariant with respect to the quotient

map f̄ , gµ̄ is said to be the g-function of µ̄.

Define the following operators:

TnΨ := 1QT
n(Ψ · 1Q), RnΨ := 1QT (Ψ · 1[R

Q
=n]).

By Proposition 1 of [40], one has the renewal equation:

T (z) = (I −R(z))−1, z ∈ D,
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where D is the unit disk in the complex plane, and

R(z) =
∞∑
n=1

znRn, T (z) = I +
∞∑
n=1

znTn, z ∈ D.

Proof of Lemma 2.7.1. For convenience, set Φ := Ψ−
∫

Ψdµ̄.

It follows from (2.3.4) and the fact that µ̄ is an invariant measure of f̄ that

∣∣∣ ∫ Φ ◦ f̄k · Φdµ̄
∣∣∣ =

∣∣∣ ∫ (Ψ ◦ f̄k −
∫

Ψdµ̄
)(

Ψ−
∫

Ψdµ̄
)
dµ̄
∣∣∣

=
∣∣∣ ∫ Ψ ◦ f̄k ·Ψdµ̄−

∫
Ψ ◦ f̄kdµ̄

∫
Ψdµ̄

∣∣∣ = |Corn(Ψ,Ψ; f̄ , µ̄)| ≤ C(Ψ)

k
1
α−1

.

By the renewal theory, Theorem 1 in [40] or Theorem 1.1 in [8],

Tn =
1

r
Pr +

1

r2

∞∑
k=n+1

Pk + En,

where Pr is the eigenprojection ofR(1) at 1, r is given by PrR′(1)Pr = rPr, Pn =
∑
l>n PrRlPr,

En ∈ Hom(L,L). By using Lemma 6.5 in [8] and (3.4.5), we have that ‖Rn‖ = O( 1
nα ). So,

we have ‖En‖ = o(1/n
1
α−1).

By the fact that PrΦ =
∫
Q Φdµ̄ (see the proof of Theorem 2 in [40]),

∫
Φdµ̄ = 0, and

Theorem 1.2 in [8], one has

∫
‖T nΦ‖dµ̄ =

∫
‖TnΦ‖dµ̄ = O

( 1

n
1
α−1

)
.

Next, it is to apply the method of the proof of Proposition 2.3 in [32] to prove (2.7.1).

By Proposition 1.2 in [41] and the fact that f̄ is measure preserving with respect to the

measure µ̄, Eµ̄(Φ|f̄−kB) = (T kΦ) ◦ f̄k for any positive integer k and Φ ∈ L1(M). By direct
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computation,

µ̄
{
x ∈M :

∣∣∣ n−1∑
i=0

Φ(f̄ i(x)) ·
∣∣∣ > nε

}
≤ 1

(nε)2ϑ

∫ ∣∣∣ n−1∑
i=0

Φ(f̄ i(x))
∣∣∣2ϑdµ̄(x)

≤ Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240

n∑
k=1

k−1/2‖Eµ̄(Φ ◦ f̄k|B)‖2ϑ
)2ϑ

=
Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240

n∑
k=1

k−1/2‖Eµ̄(Φ|f̄−kB)‖2ϑ
)2ϑ

=
Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240

n∑
k=1

k−1/2‖T kΦ‖2ϑ
)2ϑ

≤ Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240‖Φ‖(2ϑ−1)/(2ϑ)

∞

n∑
k=1

k−1/2
(∫
|T kΦ|dµ̄

) 1
2ϑ
)2ϑ

≤ C

nϑε2ϑ

(
‖Φ‖2ϑ + 240‖Φ‖(2ϑ−1)/(2ϑ)

∞

n∑
k=1

1

k

)2ϑ
,

where ϑ = 1
α − 1 > 1 and Corollary 1 from [28] is used in the second inequality. This shows

(2.7.1).

Finally we show a proposition which is used in Subsection 2.3.3.

Proposition 2.7.1. There exists δ0 > 0 such that for any 0 < δ < δ0, E,E′ > 0, we can

find CD, C ′D > 0 respectively and Nd > 0 satisfying

µ
{
x ∈M : |Dfnx |Eux | < Eenδ

}
≤ CD(log n)2( 1

α−1)

n
1
α−1

; (2.7.2)

µ
{
x ∈M : |Df−nx |Esx | < E′enδ

}
≤
C ′D(log n)2( 1

α−1)

n
1
α−1

(2.7.3)

for all n ≥ Nd.

Proof. Without loss of generality, we can assume that E = E′ = 1. This is because we can
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always take Nd sufficiently large and incease δ to some δ∗ > δ such that Eenδ ≤ enδ
∗

for all

n > Nd.

Now let us prove (2.7.2).

For the finite Markov partition P = {P0, P1, · · · , Pr} and fixed γ̂ui ∈ W
u(Pi), 0 ≤ i ≤ r,

consider the following function

ψ(x) =


0 if x ∈ P0;

log |Dfπ(x)|Eu
π(x)
| if x 6∈ P0,

where π is the sliding map defined in Subsection 2.3.1. Clearly ψ is constant along the stable

manifolds in Pi, 0 ≤ i ≤ r. It can be regarded as an element in L as well. It is evident that∫
ψdµ̄ > 0.

Since f is uniformly hyperbolic on M \ P , there exist two positive constants Cu and C ′u

such that

Cu ≤ log |Dfx|Eux | ≤ C ′u ∀x ∈M \ P.

Hence, if we let CL =
Cu
C ′u

and C ′L =
C ′u
Cu

, then

CL ≤
log |Dfx|Eux |

log |Dfπ(x)|Eu
π(x)
|
≤ C ′L ∀x ∈ Pi, i 6= 0.

So,

log |Dfnx |Eux | =
n−1∑
i=0

log |Df
fi(x)
|Eu
fi(x)

|

≥
n−1∑
i=0

1M\P0
log |Df

fi(x)
|Eu
fi(x)

| ≥ CL

n−1∑
i=0

ψ(f i(x)),
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where 1M\P0
is the indicator function. Hence,

{
x ∈M :

1

n
log |Dfnx |Eux | < δ

}
⊂
{
x ∈M :

1

n

n−1∑
i=0

ψ(f i(x)) <
δ

CL

}
(2.7.4)

for any δ > 0.

Take δ0 = CL
∫
ψdµ, and let 0 < δ < δ0. Set ε :=

∫
ψdµ− δ/CL. Clearly ε > 0. Recall

that we mentioned that ψ can be regarded as functions in L. So by Lemma 2.7.1, one has

that

µ̄
{
x ∈M :

∣∣∣ n−1∑
i=0

(
ψ(f̄ i(x))−

∫
ψdµ̄

)∣∣∣ > nε
}

= O((log n)2( 1
α−1)n−( 1

α−1)),

and therefore,

µ̄
{
x ∈M :

1

n

n−1∑
i=0

ψ(f̄ i(x)) <

∫
ψdµ̄− ε

}
= O((log n)2( 1

α−1)n−( 1
α−1)). (2.7.5)

By (2.7.4) and (2.7.5), and the fact that µ̄ is the quotient measure of µ, we have that

µ
{
x ∈M : |Dfnx |Eux | < enδ

}
≤ µ

{
x ∈M :

1

n

n−1∑
i=0

ψ(f i(x)) <
δ

CL

}

=µ̄
{
x ∈M :

1

n

n−1∑
i=0

ψ(f̄ i(x)) <

∫
ψdµ̄− ε

}
≤ CD(log n)2( 1

α−1)

n
1
α−1

for some CD > 0. This is (2.7.2).
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To get (2.7.3), we introduce the following function

ψ(x) =


0 if x ∈ P0;

− log |Dfπ(x)|Es
π(x)
| if x 6∈ P0.

Hence ψ is constant along the stable manifolds and can be regarded as a function in L. It is

also obvious that
∫
ψdµ̄ > 0. By using similar methods as above, we can obtain

µ
{
x ∈M : |Dfnx |Esx | > e−nδ

}
≤
C ′D(log n)2( 1

α−1)

n
1
α−1

for some C ′D > 0. Note that Es is one-dimensional. So |Df−n
fn(x)

|Es
fn(x)

| < enδ if and only

if |Dfnx |Esx | > e−nδ. Since µ is an invariant measure, we get (2.7.3).
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Chapter 3

Some statistical properties of almost

Anosov diffeomorphisms with spectral

gap

3.1 Introduction

The existence of an invariant measure of a map is a basic problem in ergodic theory [25].

In smooth ergodic theory, one important result of Sinai is that a twice-differentiable Anosov

diffeomorphism on a compact connected Riemannian manifold has an invariant measure,

which has absolutely continuous conditional measures on unstable manifolds [42]. This was

generalized to Axiom-A systems by Bowen and Ruelle [4]. Based on Sinai, Ruelle, and

Bowen’s work, a kind of invariant measures with absolutely continuous conditional measures

on unstable manifolds is called SRB measures. The maps with SRB measures have some

good dynamical properties in physics [5]. For more information on SRB measures, please

refer to the survey [47]. Lots of results about the existence of SRB measures have been

obtained for many systems, for example, non-uniformly hyperbolic systems by Pesin [2],

singular systems by Katok et al. [18], the billiard systems and so on [6, 21].

In smooth ergodic theory and physics, some interesting systems are generated by function-
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s of high differentiability. For example, the Lorenz system, Logistic map, Hénon map, and so

on [38]. And, the differentiability of the maps affects the dynamics. For example, there exists

a one-dimensional map T : [0, 1] → [0, 1], which is piecewise twice-differentiable expanding

and the derivative at one fixed point is equal to one, but T can not admit a finite absolutely

continuous invariant measure [30]; Hu and Young obtained that some twice-differentiable

almost Anosov diffeomorphisms defined on two-dimensional spaces admit infinite SRB mea-

sures [16]; Hu obtained some results on the existence of SRB measures and infinite SRB

measures for almost Anosov systems [12].

For a mixing dynamical system, the correlation function provides us with the quantitative

description about how fast the state of the system becomes uncorrelated with its future

status. The SRB measures play an important role in the study of the correlation functions.

The transfer operator with some function spaces is a powerful tool in the study of the decay

rate of correlation functions. For instance, the idea of the construction of “Young Tower”

has been successfully applied to the study of many systems with exponential decay rates, like

Hénon map, piecewise hyperbolic systems, scattering billiards and so on [45]. The estimation

of the polynomial upper bounds for the correlation functions of some systems is obtained by

the “coupling method” [46]. Later, the estimation of the polynomial lower bounds for the

correlation functions of some maps is studied by the “renewal theory” [40], which is sharped

by Gouëzel’s results [8].

There exist many interesting results about the estimation of the correlation functions of

the maps on two-dimensional manifolds. For instance, the work of Benedicks and Young on

Hénon map proved the existence of SRB measures, exponential decay of correlations and

so on [3], the study of Liverani and Martens on a class of area preserving maps on torus

gave the upper bounds for the correlation functions [24]. In [9], the upper bounds for the
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correlation functions have been obtained for some systems with one center unstable direction

Manneville-Pomeau-like map by Hatomoto.

In this chapter, we provide some almost Anosov maps defined on spaces with dimensions

no less than two, since there are few examples in higher dimensions, these maps could be

regarded as the generalization of Manneville-Pomeau-like maps in higher dimensions. And,

we study the existence of SRB or infinite SRB measures for this type of maps. We obtain that

the differentiability of the maps near the indifferent fixed points and the dimension of the

spaces affect the existence of SRB measures (See Theorem 3.2.1). As a consequence, there

are twice-differentiable almost Anosov diffeomorphisms that admit infinite SRB measures in

spaces with dimensions equal to two or three, which is a generalization of the results of [16];

there exist twice-differentiable almost Anosov diffeomorphisms that admit SRB measures in

spaces with dimensions bigger than three. Further, we apply the renewal theory to investigate

the polynomial lower and upper bounds for maps that admit SRB measures (see Theorem

3.2.2).

The rest is organized as follows. In Section 3.2, some basic definitions and the main results

are introduced. In Section 3.3, it is to study the existence of SRB or infinite SRB measures

in spaces with dimensions bigger than or equal to two. In Section 3.4, the polynomial

lower and upper bounds are obtained by using the renewal theory. This section consists of

three parts. In Subsection 3.4.1, a quotient map by collapsing the map along the stable

manifolds is introduced. In Subsection 3.4.2, both the lower and upper polynomial bounds

for the decay rate of the correlation functions are obtained by using the renewal theory,

where the observable functions are defined on the quotient manifold. In Subsection 3.4.3,

the polynomial bounds for Hölder observable functions for the original diffeomorphisms are

obtained.

59



3.2 Main results

In this section, the main results are introduced.

Assume M is a C∞ compact Riemannian manifold without boundary, and the dimension

of M is m ≥ 2. Let f be a diffeomorphism defined on M satisfying the following properties:

(1) if m ≥ 3, the map f is twice-differentiable on M , and has a fixed point p;

(1)′ if m = 2, the map f is C1+η on M , and has a fixed point p, where η > 0;

(2) the map f is topologically mixing, and topologically conjugate with an Anosov diffeo-

morphism;

(3) there exist a constant 0 < κs < 1 and a continuous function κu with

κu(x)


= 1 at x = p

> 1 elsewhere

,

and there is a decomposition of the tangent space TxM :

TxM = Eux ⊕ Esx,

such that

|Dfx|Esx | ≤ κs, m(Dfx|Eux ) ≥ κu(x), Dfp|Eup = id, κsL0 < 1,

where

m(Dfx|Eux ) = inf
v∈Eux,v 6=0

|Dfxv|
|v|

, L0 = sup
x∈M,v∈Eux,v 6=0

|Dfxv|
|v|

;
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(4) the dimension of Eux and Esx is m− 1 and 1, respectively;

(5) there is a coordinate system on a small neighborhood U of p such that the map f can

be written as follows:

f(x1, x2, ..., xm−1, xm)

=((1 + |(x1, ..., xm−1)|η + ρx2
m)x1, ..., (1 + |(x1, ..., xm−1)|η + ρx2

m)xm−1, κsxm)

(3.2.1)

where ρ is a nonzero constant and |(x1, ..., xm−1)| =
√∑m−1

i=0 x2
i .

Remark 3.2.1. The ρx2
m term could be replaced by some general differentiable function

ψ(xm) with ψ(0) = 0.

Theorem 3.2.1. For the diffeomorphism f satisfying the above assumptions and m ≥ 2, if

η > 0 and min{2,m − 2} ≤ η < m − 1, then there exists an SRB measure; if η ≥ m − 1,

then there is an infinite SRB measure.

Corollary 3.2.1. For the diffeomorphism f satisfying the assumptions of Theorem 3.2.1, if

f admits an SRB measure, then for any continuous function φ : M → R, for µ-a.e. x ∈ M ,

one has

1

n

n−1∑
i=0

φ(f i(x))→
∫
φdµ as n→∞,

where µ is the SRB measure introduced in Theorem 3.2.1; if f has an infinite SRB measure,

then for ν-a.e. x ∈M , one has

1

n

n−1∑
i=0

δ
fi(x)

→ δp as n→∞,
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where δz is the Dirac measure at z and ν is the Lebesgue measure on M , and the above

convergence is in the weak star topology.

By applying the renewal theory developed by [40] and [8], we could obtain the following

results:

Theorem 3.2.2. Let f be an almost Anosov diffeomorphism satisfying the above assump-

tions and m be an integer no less than 2. For η > 0, min{m − 2, 2} ≤ η < m − 1, and

m− 1− η < θ ≤ 1, any neighborhood V of p, and any Hölder functions Φ,Ψ with exponent

θ, suppΦ, suppΨ ⊂M \ V , and
∫

Φdµ
∫

Ψdµ 6= 0, we have

A′(Φ,Ψ)

n
m−1
η −1

≤ |Corn(Φ,Ψ; f, µ)| ≤ A(Φ,Ψ)

n
m−1
η −1

, (3.2.2)

where µ is an SRB measure specified in Theorem 3.2.1, and A′(Φ,Ψ) and A(Φ,Ψ) are positive

constants dependent on Φ and Ψ.

3.3 The existence of SRB measures

In this section, it is to show Theorem 3.2.1. In the following discussions, assume that f

satisfies the assumptions of Theorem 3.2.1.

For any x ∈M , let Eux and Esx be the unstable and stable tangent spaces at x, respectively.

For any positive constant β, set

Eux(β) := {v ∈ Eux : |v| ≤ β}, Esx(β) := {v ∈ Esx : |v| ≤ β},
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and

Ex(β) := Eux(β)× Esx(β).

Proposition 3.3.1. (a) For any x ∈M , the maps x→ Eux and x→ Esx are continuous.

(b) There exist two continuous foliations Fu and Fs on M tangential to Eu and Es,

respectively, such that

(1) the stable leaf Fs(x) is the stable manifold at x,

Fs(x) = {y ∈M : d(fk(x), fk(y)) ≤ Cs(κ
s)kd(x, y), ∀k ≥ 0};

(2) the unstable leaf Fu(x) is the unstable manifold at x, that is,

Fu(x) = {y ∈M : lim
k→∞

d(f−k(x), f−k(y)) = 0};

(3) there exist positive constants β and Cu such that Fuβ (x) is the component of

Fu(x)∩ expx(Ex(β)) containing x, then exp−1
x (Fuβ (x)) is the graph of a function

φux : Eux(β) → Esx(β) with φux(0) = 0 and ‖φux‖C1 ≤ Cu, where exp is the

exponential map. Similar results also hold for Fsβ(x).

Proof. Part (a) can be derived from the gap assumption κs < 1 = inf{κu(x) : x ∈M}.

Part (b) can be obtained by Theorems 5.5 and 5A.1 in [11].

For convenience, denote by Wu(x) := Fu(x) and Wu
β (x) := Fuβ (x) the unstable man-

ifold and local unstable manifold at x, respectively; one could define the stable manifold

W s(x) and the local stable manifold W s
β(x), similarly. For y ∈ W s(x), denote by ds(x, y)

the minimal distance from x to y along the stable manifold; for y ∈ Wu(x), let du(x, y)
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be the minimal distance between x and y on the unstable manifold, where the metric on

W s(x)/Wu(x) is induced by the Riemannian metric restricted to W s(x)/Wu(x).

By Proposition 3.3.1, one has the following result immediately.

Corollary 3.3.1. The map f has a local product structure, that is, there are constants

0 < ε < β such that for any y, z ∈M with d(y, z) < ε, one has that [y, z] = Wu
β (y) ∩W s

β(z)

and [z, y] = Wu
β (z) ∩W s

β(y) contain exactly one point, respectively.

Definition 3.3.1. [38] Given a set X in M , if for any x, y ∈ X, one has that [x, y], [y, x] ∈ X,

then X is said to be a rectangle. A rectangle P is called proper if intP = P .

By Corollary 3.3.1, it is reasonable to define the following rectangle

[γs, γu] = {Wu
β (x) ∩W s

β(y) : x ∈ γs, y ∈ γu},

where γs and γu are stable and unstable leaves, respectively, and the diameter of these two

leaves are sufficiently small. In the following discussions, assume that the rectangles are

defined by [γs, γu] with sufficiently small diameter. For any rectangle X and x ∈ X, set

Wu(x,X) := Wu
β (x) ∩ X and W s(x,X) := W s

β(x) ∩ X. Given two rectangles X1 and X2,

if for any x ∈ X1 with fk(x) ∈ X2 for some k ≥ 0, one has that fk(Wu(x,X1)) ∩ X2 =

Wu(fk(x), X2), then it is said that fk(X1) u-crosses X2; if for any x ∈ X1 with f−k(x) ∈ X2

for some k ≥ 0, one has that f−k(W s(x,X1)) ∩X2 = W s(f−k(x), X2), then it is said that

f−k(X1) s-crosses X2.

Definition 3.3.2. [38] A Markov partition of M is a finite covering P = {P0, P1, ..., Pl} of

M by proper rectangles satisfying that

(i) intPi ∩ intPj = ∅ for i 6= j;
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(ii) if x ∈ intPi and f(x) ∈ intPj , then f(Wu(x, Pi)) ⊃ Wu(f(x), Pj) and f(W s(x, Pi)) ⊂

W s(f(x), Pj).

By Assumption (2), there exists a Markov partition for the map f . Suppose the Markov

partition is P = {P0, ..., Pl} with p ∈ int(P0). Suppose that P = P0 and the radius of any

element in this Markov partition is sufficiently small.

Definition 3.3.3. [16] Suppose that W1 and W2 are two Wu-leaves, and let the holonomy

map H : W1 → W2 be continuous map defined by the sliding map along the stable manifolds.

The stable manifold W s is Lipschitz if H is Lipschitz for every (W1,W2, H).

Proposition 3.3.2. The stable manifold W s is Lipschitz. Further, for any δ > 0, there is

CL > 0 such that for any (W1,W2, H) with ds(x,H(x)) < δ for any x ∈ W1, the Lipschitz

constant is less than CL. Further, if m ≥ 3, then the holonomy map is differentiable.

Proof. First, it is to study the case m ≥ 3. By Assumptions (1) and (3), the map f is twice-

differentiable and κsL0 < 1. One could apply the method used in the proof of Theorem 6.3

in [10] to obtain that the stable foliation is C1. Hence, the stable manifold W s is Lipschitz.

Second, it is to consider the case m = 2. By Assumption (1)′, f is C1+η. So, the

arguments for m ≥ 3 do not work. One could apply the arguments used in the proof of

Proposition 2.5 in [16] to obtain the Lipschitz property of the stable manifold W s.

This completes the proof.

Lemma 3.3.1. [12, Lemma 8.1] Let {ak}∞k=1 be a sequence of positive numbers, C and α

be two positive constants.

(i) If ak−1 ≥ ak + Ca1+α
k for any k ≥ 1, then there exist D > 0 and k0 ≥ 1 such that

ak ≤ D(k − k0)−
1
α for sufficiently large k.
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(ii) If ak−1 ≤ ak + Ca1+α
k for any k ≥ 1, then there exist D′ > 0 and k′0 ≥ 1 such that

ak ≥ D′(k + k′0)−
1
α for sufficiently large k.

Lemma 3.3.2. Let h : [−1, 1] → R be a map, which can be written as h(x) = x(1 +

xη + o(xη)) for x in a small neighborhood I of 0, where η > 0. For any a0 ∈ (0, 1] ∩ I,

set ak := h−k(a0), k ≥ 1. Given any positive integer m ≥ 2, if 0 < η < m − 1, then∑∞
k=1 a

m−1
k <∞; if η ≥ m− 1, then

∑∞
k=1 a

m−1
k =∞.

Proof. By Lemma 3.3.1, one has that for sufficiently large k, ak ≈ k
−1
η . So, if 0 < η < m−1,

then
∑∞
k=1 a

m−1
k <∞; if η ≥ m− 1, then

∑∞
k=1 a

m−1
k =∞.

Proposition 3.3.3. Given any small rectangle P containing p in its interior, there are two

positive constants δ and D such that if ∆ is a disk contained in some unstable manifold with

diam(∆) ≤ δ and ∆ ∩ P = ∅, then for any y, z ∈ ∆ and k > 0,

D−1 ≤
|Df−ky |Euy |

|Df−kz |Euz |
≤ D. (3.3.1)

Proof. First of all, we will study the case m = 3, the arguments for m = 3 below also work

for m > 3.

Assume that P is sufficiently small such that P ∪ f(P ) ⊂ U and diam(P ∪ f(P )) < ε,

where U is introduced in Assumption (5) and ε is specified in Corollary 3.3.1. So, the

map H introduced in Definition 3.3.3 is well defined with respect to the local unstable

manifolds contained in U . By Assumption (5), one does not need to consider the curvature

on the unstable manifold ∆ ⊂ U . Let du(y, z) denote the metric on ∆ with respect to the

Riemannian metric restricted to the unstable manifold. Let d(y, z) be the distance defined

by the Euclidean metric. By Assumption (5), one could assume that d(y, z) = du(y, z),

where y and z are in a common unstable manifold contained in U .

66



One could assume that there is a positive constant δ such that P = [W s
δ (p),Wu

δ (p)], it

is also reasonable to define

τ = inf
w∈∂sP∩Wu(p,P )

{du(w, f(w)) : the minimal length curve contained in Wu(p)

joining w and f(w)}, (3.3.2)

where ∂sP = {w ∈ P : w 6∈ intWu(w,P )} and ∂s(f(P )) is defined similarly.

Now, it is to investigate the distortion estimation along any unstable submanifold. Con-

sider ∆ ⊂ ((f(P ) \ P ) ∩Wu(x)) for some x ∈ f(P ) \ P , and f−i(∆) ⊂ P for 1 ≤ i ≤ k − 1,

then for any y, z ∈ ∆,

log
|Df−ky |Euy |

|Df−kz |Euz |
≤ E1

du(y, z)

τ
, (3.3.3)

where E1 is a positive constant determined later.

By (3.2.1), the local unstable manifold for the point in U is contained in some horizon

plane, where the horizon plane could be represented by

{(x1, x2, x3) : x3 is equal to some constant}.

So, assume that ∆ ⊂ {(x1, x2, x3) : x3 = E2}, where E2 is a real number. Set ∆i := f−i(∆),

0 ≤ i ≤ k. Hence,

∆i ⊂ Ai := {(x1, x2, x3) : x3 = κ−is E2}, 0 ≤ i ≤ k.

Next, let us introduce a function φ(w) = |Df−1
w |Euw |, where |Df−1

w |Euw | = det(Df−1
w |Euw).

Now, it is to study the analytic expression of φ(w) on U . By (3.2.1), set r := x2
1 + x2

2,
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the map f restricted to the unstable manifold can be written as

((1 + r
η
2 )x1 + ψ1(x1, x2, x3), (1 + r

η
2 )x2 + ψ2(x1, x2, x3)),

where ψ1(x1, x2, x3) = ρx2
3x1, ψ2(x1, x2, x3) = ρx2

3x2. By direct calculation, the Jacobian

matrix of φ(w) with respect to x1 and x2 is

 1 + r
η
2 + ηr

η
2−1x2

1 +
∂ψ1
∂x1

ηr
η
2−1x1x2 +

∂ψ1
∂x2

ηr
η
2−1x1x2 +

∂ψ2
∂x1

1 + r
η
2 + ηr

η
2−1x2

2 +
∂ψ2
∂x2

 .

Hence, the determinant is

(
1 + r

η
2 + ηr

η
2−1x2

1 +
∂ψ1

∂x1

)(
1 + r

η
2 + ηr

η
2−1x2

2 +
∂ψ2

∂x2

)
−
(
ηr

η
2−1x1x2 +

∂ψ1

∂x2

)(
ηr

η
2−1x1x2 +

∂ψ2

∂x1

)
=1 + (2 + η)r

η
2 + (1 + η)rη +

∂ψ1

∂x1
(1 + r

η
2 + ηr

η
2−1x2

2) +
∂ψ2

∂x2
(1 + r

η
2 + ηr

η
2−1x2

1)

+
∂ψ1

∂x1

∂ψ2

∂x2
− ηr

η
2−1x1x2

∂ψ2

∂x1
− ηr

η
2−1x1x2

∂ψ1

∂x2
− ∂ψ1

∂x2

∂ψ2

∂x1

=1 + (2 + η)r
η
2 + (1 + η)rη + ρx2

3(2 + 2r
η
2 + ηr

η
2 ) + ρ2x4

3. (3.3.4)

Hence, for fixed x3, the level curves for the function φ(w) are circles contained in some

horizon plane. This, together with (3.2.1) and (3.3.4), yields that the image of level curves

under f are also level curves.

Denote by yi := f−i(y) and zi := f−i(z), i ≥ 0. Let O1 be the plane containing the

x3-axis and the point y, O2 be the plane containing the x3-axis and the point z. By (3.2.1),

one has that yi ∈ O1 and zi ∈ O2, 0 ≤ i ≤ k. Denote by lzi the level curves contained in
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Ai. The set lzi ∩ O1 has two points, take z∗i ∈ lzi ∩ O1, which is closer to the point yi. Let

Si be the line segment in the plane Ai joining the points z∗i and yi. By (3.2.1), one has that

Si+1 = f−1(Si), and there is a line segment Γ0 such that S0 ⊂ Γ0 and the end points of Γ0

are two points w and w′, where w ∈ ∂sP and w′ ∈ ∂sf(P ), and ∂sP is specified in (3.3.2).

Set Γi := f−i(Γ0), i ≥ 0. So, length(Γ0) ≥ C0τ and Si ⊂ Γi, where C0 is a positive constant

determined by Proposition 3.3.2.

By Theorem 9.2 in [36] and f is twice-differentiable in Assumption (1), one has that

∣∣|Df−1
yi
|Euyi
| − |Df−1

z∗i
|Eu
z∗i
|
∣∣ =

∣∣∣∣ ∫ 1

0
D(|Df−1

(z∗i +t(yi−z∗i ))
|Eu

(z∗i +t(yi−z∗i ))
|)(yi − z∗i )dt

∣∣∣∣
≤C1|D(|Df−1

yi
|Euyi
|)||yi − z∗i | ≤ C2d(yi, z

∗
i ), (3.3.5)

where C1 and C2 are two positive constants, these are derived by the fact that |Df−1|Eu|

is uniformly continuous and differentiable, since f is twice-differentiable on the compact

manifold M , and the point z∗i falls into a uniformly small neighborhood of the point yi for

sufficiently large i. So, for j ≤ k, by Assumption (1), one has

log
|Df−jy |Euy |

|Df−jz |Euz |
≤ log

j−1∏
i=0

(
1 +

∣∣|Df−1
yi
|Euyi
| − |Df−1

zi
|Euzi
|
∣∣

|Df−1
zi
|Euzi
|

)
≤ C3

j−1∑
i=0

∣∣|Df−1
yi
|Euyi
| − |Df−1

zi
|Euzi
|
∣∣

=C3

j−1∑
i=0

∣∣|Df−1
yi
|Euyi
| − |Df−1

z∗i
|Eu
z∗i
|
∣∣ ≤ C3C2

j−1∑
i=0

|yi − z∗i | = C3C2

j−1∑
i=0

du(yi, z
∗
i ), (3.3.6)

where C3 > 0 is a constant dependent on f .

Since Γi is a line segment, for any w ∈ Γi, let |Df−1|Γi(w)| = |Df−1(w)~vw|, where ~vw

is a tangent vector of the curve Γi at the point w with unit length, and |Df−1(w)~vw| is the

length of the vector Df−1(w)~vw.
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It follows from the twice-differentiability of f and Theorem 9.2 in [36] that

∣∣|Df−1|Γi(yi)| − |Df
−1|Γi(z∗i )|

∣∣ =

∣∣∣∣ ∫ 1

0
D(|Df−1|Γi(z∗i +t(yi−z∗i ))|)(yi − z

∗
i )dt

∣∣∣∣
≤C4|D(|Df−1|Γi(yi)|)||yi − z

∗
i | ≤ C5d(yi, z

∗
i ) ≤ C5length(Γi), (3.3.7)

where C4 and C5 are two positive constants. Hence, for j ≤ k, one has

log
|Df−j |Γ0(y)|
|Df−j |Γ0(z∗)|

≤ log

j−1∏
i=0

(
1 +

∣∣|Df−1|Γi(yi)| − |Df
−1|Γi(z∗i )|

∣∣
|Df−1|Γi(z∗i )|

)

≤C6

j−1∑
i=0

∣∣|Df−1|Γi(yi)| − |Df
−1|Γi(z∗i )|

∣∣ ≤ C6C5

j−1∑
i=0

|yi − z∗i | = C6C5

j−1∑
i=0

du(yi, z
∗
i ),

(3.3.8)

where C6 > 0 is a constant dependent on f . Thus, one has

du(yj , z
∗
j )

length(Γj)
≤ C7

du(y, z∗)
length(Γ0)

, ∀j ≤ k, (3.3.9)

where C7 is a positive constant dependent on f .

Let Γ̂i be the image of Γi under the map H : ∆i → Wu(p), 0 ≤ i ≤ k. Since Γ̂i’s are

pairwise disjoint and Proposition 3.3.2, one has that

j−1∑
i=1

length(Γi) ≤
j−1∑
i=1

CLlength(Γ̂i) ≤ CLdiam(Wu(p, P )). (3.3.10)
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Hence, it follows from (3.3.6)–(3.3.10) that

log
|Df−jy |Euy |

|Df−jz |Euz |
≤
j−1∑
i=0

C3C2d
u(yi, z

∗
i )

≤C3C2C7CLdiam(Wu(p, P ))
du(y, z∗)

length(Γ0)
≤ E1

du(y, z∗)
τ

≤ E1
du(y, z)

τ
,

where E1 = C3C2C7CLdiam(Wu(p, P ))/C0. This verifies (3.3.3).

Now, it is to show (3.3.1).

By the properties of the Markov partition, there is a constant δ > 0 such that the

diameter of ∆ is less than δ and if int(∆i) ∩ (f(P ) \ P ) 6= ∅, then ∆i ⊂ f(P ) \ P . Suppose

that the number of the orbits of y and z comes back to P is s0, and there exist positive

integers ki and li, 1 ≤ i ≤ s0, such that

P ∩∆j 6= ∅, ∀j ∈
⋃

1≤i≤s0

((ki, ki + li) ∩ Z),

and

P ∩∆j = ∅, ∀j 6∈
⋃

1≤i≤s0

((ki, ki + li) ∩ Z),

where ∆j = f−j(∆). So,

log
|Df−ky |Euy |

|Df−kz |Euz |
=

s0∑
i=1

log

|Df−liyki
|Euyki

|

|Df−lizki
|Euzki

|
+

s0∑
i=0

ki+1−1∑
j=ki+li

log

|Df−1
yj
|Euyj
|

|Df−1
zj
|Euzj
|
.

The first part can be estimated by (3.3.3), and the second part is outside of P , which is a

geometric sequence by Assumption (3), where f is uniformly hyperbolic outside of P . So,

(3.3.1) holds.
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Finally, it is to study the case m = 2 and 0 < η < 1. For the case that m = 2 and η ≥ 1,

one could apply similar arguments for m = 3 as above.

Suppose that P ∪ f(P ) ⊂ U and diam(P ∪ f(P )) < ε. Fix any 0 < δ ≤ ε, it is to verify

that if ∆ is homermorphic to an interval such that ∆ ⊂ ((f(P ) \ P ) ∩ Wu(x)) for some

x ∈ f(P ) \ P , diam(∆) ≤ δ, and f−i(∆) ⊂ P for 1 ≤ i ≤ k − 1, then for any y, z ∈ ∆,

log
|Df−kz |Euz |

|Df−ky |Euy |
≤ D

′′
du(y, z)ϑ, (3.3.11)

where D
′′

is a positive constant and ϑ = η
1+η .

By Proposition 3.3.2, it suffices to study the distortion estimates along the unstable

manifold of the indifferent fixed point p, that is, it is enough to study f : Wu(p, P )→ Wu(p).

It is evident that f is injective when it is restricted to Wu(p, P ) and f−1(Wu(p, P )) ⊂

Wu(p, P ). Suppose f(x1) = x1+x
1+η
1 +φ(x1) for x1 > 0, when f is restricted to the unstable

manifold, where φ(x1) is the higher order term. In Assumption (5), there is no higher order

term, the reason we add this higher order term is that we find the arguments here also work

for the map with this higher order term. In other words, if m = 2 and 0 < η < 1, we could

generalize Assumption (5). So, assume that ∆ ⊂ f(Wu(p, P )) \Wu(p, P ). Hence, one has

that for any y, z ∈ ∆ with d(y, z) ≤ |y|/2,

d(f(y), f(z)) ≥ (1 + C̄ ′1|y|
η)d(y, z),

log

∣∣∣∣detDf(y)

detDf(z)

∣∣∣∣ ≤ C̄2|y|η−1d(y, z),

where C̄ ′1 and C̄2 are two positive constants. For any y, z ∈ ∆, set yi := f−i(y) and
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zi := f−i(z). By direct calculation, one has that

d(yi, zi)
1−ϑ ≤ d(yi, yi+1)1−ϑ ≤ D̄1|yi + y

η+1
i − yi|1−ϑ = D̄1|yi|(1+η)(1−ϑ) = D̄1|yi|,

where D̄1 is a positive constant. It follows from Lemma 3.3 in [14] that (3.3.11) holds.

By using (3.3.11) and the same argument in the case m ≥ 3 as above, one can show

(3.3.1) holds for m = 2 and 0 < η < 1.

This completes the proof.

Proposition 3.3.4. The unstable manifold Wu(p) and the stable manifold W s(p) are dense

in M , respectively.

Proof. It is to show that Wu(p) is dense. Similar arguments also work for W s(p).

Take any rectangle X with intX 6= ∅. Take a strictly smaller rectangle X̂ ⊂ intX. It

follows Assumption (2) that there is k > 0 such that f−k(X̂)∩P 6= ∅. So, if k is sufficiently

large, then f−k(X) s-crosses P . Hence, fk(Wu(p, P ))∩X 6= ∅. This completes the proof.

Definition 3.3.4. Given any subset E ⊂M , the first return map is given by g = fτ(x)(x) :

M \E →M \E, where τ(x) = min{i > 0 : f i(x) ∈M \E} is the first return time function

with respect to the set E.

Lemma 3.3.3. There exists an ergodic invariant Borel probability measure νg for the map

g, which has absolutely continuous conditional measures on the unstable manifolds of f .

Proof. First of all, it is to show the existence of an invariant measure, which has absolutely

continuous conditional measures on unstable manifolds.

Suppose that P = [Wu
δ (p),W s

δ (p)], where δ is a small positive constant. Denote P̂ :=

f(P )\P . If the dimension of M is bigger than two, then P̂ is connected. Set Q := Wu(x, P̂ ).

73



Denote by νQ the Lebesgue measure on Q, and (gk∗νQ)(E) = νQ(g−k(E)). Take a limit of

the sequence 1
k

∑k−1
i=0 g

i
∗(νQ) in the weak star topology, denoted by νg. It is evident that νg

is invariant.

Now, it is to show that νg has absolutely continuous conditional measures on unstable

manifolds.

For any small rectangle K in M \ P , each component of gi(Q) is a disjoint union of Wu

leaves, which are contained in some element from the Markov partition, and if any component

of gi(Q) intersects K, then it u-crosses K by Assumption (2) and the discussions used in

the proof of Proposition 3.3.4. Let ρi be the density of gi∗(νQ) with respect to the Lebesgue

measure on gi(Q), where νQ is the Riemannian measure ν induced on Q. It follows from

Proposition 3.3.3 that for any x, y in the same component of gi(Q) ∩K,

D−1 ≤ ρi(x)

ρi(y)
≤ D,

where D is independent of i. It is evident that similar estimates on the limit densities could

be obtained.

Finally, the ergodicity of g with respect to νg can be derived by the discussions in the

proof of Lemma 5.3 in [16], where the application of Lemma 5.1 in the proof of Lemma 5.3

of [16] is replaced by Assumption (2).

This completes the proof.

Denote S := f−1P \P , where P = P0 is the element of the Markov partition P containing

p. Without loss of generality, assume that P = [Wu
δ (p),W s

δ (p)]. It is evident that S consists

of points x ∈M with τ(x) > 1, where τ is the first return time function defined in Definition
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3.3.4. Set S(k) := [τ ≥ k]. So, one has that S = S(2) and S(k+1) ⊂ S(k) for any k ≥ 2.

Further, one has that W s(x, S(k)) = W s(x, S) and Wu(x, S(k)) ⊂ Wu(x, S) for any x ∈ S(k).

For any unstable leaf γu ∈ Wu(S), denote by γuk = γu ∩ S(k). By Assumption (5) and

Lemma 3.3.1, one has that there exist D′η > 0 and Dη > 0 such that

D′η

k
m−1
η

≤ νuγ (γuk ) ≤
Dη

k
m−1
η

, (3.3.12)

where νuγ is the Lebesgue measure restricted to γu.

Finally, it is to show Theorem 3.2.1.

Proof. Set Ri := {x ∈M \ P : R(x) = i}. Denote

µ :=
∞∑
i=1

i−1∑
j=0

f
j
∗ (νg|Ri),

where νg is the measure specified in Lemma 3.3.3. So, µ has absolutely continuous conditional

measures on the unstable manifolds by Lemma 3.3.3.

Let S̃(i) be the projection of S(i) onto Wu(p, P ) along W s. By Proposition 3.3.2, one

has

µ(S(i)) ≈ ν(S̃(i)),

where ν(S̃(i)) is the volume or the Lebesgue measure of S̃(i) restricted to Wu(p, P ). This,

together with the fact that f i(S(i)) are pairwise disjoint subsets of P , µ is invariant, (3.3.12),

and Lemma 3.3.2, yields that

µ(P ) ≈
∞∑
i=1

µ(f i(S(i))) =
∞∑
i=1

µ(S(i)) ≈
∞∑
i=1

ν(S̃(i)) ≈
∞∑
i=1

i
−m−1

η ,
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which is convergent whenever 0 < η < m − 1, divergent whenever η ≥ m − 1. Hence, if

0 < η < m−1, then f has an SRB measure; if η ≥ m−1, the map f admits an infinite SRB

measure. Further, for any open neighborhood V of p, the set M \ (∩ki=−kf
i(P )) contains

the set M \ V for large enough k, and it is a finite set with respect to the measure µ. This

yields that µ is at most σ-finite.

This completes the proof of Theorem 3.2.1.

Now, it is to prove Corollary 3.2.1.

Proof. This could be derived by using the Birkhoff Ergodic Theorem and the arguments

used in the proof of Theorem B in [16].

3.4 Decay of correlations

In this section, it is to verify Theorem 3.2.2. The proof is split into three parts, which are

studied in three subsections. In the first subsection, a quotient one-dimensional expanding

system (f̄ ,M) with an indifferent fixed point p̄ for the original map (f,M) is introduced by

taking the Markov partition P and collapsing the stable manifolds in each element of the

partition. In the second subsection, the lower and upper bounds for the decay of correlations

for observable functions on the quotient manifold M is obtained by using the renewal theory.

In the last subsection, the decay rates for the original system (f,M) is studied by using the

estimates for the quotient map, where the main estimation is the size of the elements in the

set fk(M2k), where Mk is specified in (3.4.6).
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3.4.1 Induce to one-dimensional map

In this subsection, a quotient map by collapsing the map along the stable manifolds is

introduced.

For the given finite Markov partition P = {P0, P1, · · · , Pl}, assume that p ∈ intP0 ⊂ V ,

where V is specified in Theorem 3.2.2. Given any Pi and x ∈ Pi, let γs(x) be the connected

component of stable leaf containing x in Pi, and W s(Pi) be the set of all such leaves. And,

γu(x) and Wu(Pi) are defined similarly.

Now, it is to introduce an equivalent relation on M by x ∼ y, whenever x and y are belong

to the same stable leave γs ∈ W s(Pi) for some Pi. Let x̄ = γs(x) be the equivalent class

containing x for x ∈ Pi. Set M := M/ ∼. There is a natural projection map π : M → M .

Let B be the completion of the Borel algebra of M .

It follows from the fact that P is a Markov partition that f(γs(x)) ⊂ γs(f(x)) for any

x ∈ Pi with f(x) ∈ Pj . So, the quotient map f : x̄ ∈ M → f(x) ∈ M is well defined. Set

P i := Pi/ ∼ and P := {P 0, ..., P l}. From the fact that f(γu(x)) ⊃ γu(f(x)) for any x ∈ Pi

and f(x) ∈ Pj , it follows that P is a Markov partition for f .

Take an arbitrary γ̂ui ∈ W
u(Pi), 0 ≤ i ≤ l. By abuse of notation, let π : Pi → γ̂ui be

the sliding map along stable leaves such that for any x ∈ Pi, π(x) = x̂ := γs(x) ∩ γ̂ui , where

γs(x) ∈ W s(Pi).

Now, it is to define a reference measure υ on M . For each γ ∈ Wu(Pi), denote by νγ the

Lebesgue measure restricted to γ. We introduce the following function

uk(x) :=
k−1∑
i=0

(
log |Dfxi|Euxi

| − log |Dfx̂i|Eux̂i
|
)
,

where xi = f i(x) and x̂i = f i(x̂). By Proposition 3.3.3, one has that uk converges uniformly
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to some function u. The measure υ is defined by dυγ(x) := eu(x)dνγ(x). By using the

statement and proof of (1) of Lemma 1 in Subsection 3.1 in [45], it is reasonable to introduce

a measure υ on M satisfying υ|Pi = υγ̂ui
.

From the definition above, the Jacobian of f with respect to υ is

J(f)(x) = |D(f)|Eux | · e
u(f(x)) · e−u(x) (3.4.1)

for υγ almost every x ∈ M . By applying the statement and proof of (2) of Lemma 1 in

Subsection 3.1 in [45], one has that J(f)(x̄) can be defined as J(f)(x) for any x ∈ γsx.

Let µ be the SRB measure of f obtained by Theorem 3.2.1. So, µ induces an invariant

measure µ on M naturally. By Proposition 3.3.3, one has the equivalence of the conditional

measure and the Lebesgue measure, whenever the measure is restricted to any unstable leaf

γu away from the indifferent fixed point p. This tells us that µ is equivalent to υ away from

p̄, and it has an absolutely continuous measure with respect to υ.

Now, one has the following Markov map (M,B, µ̄, f ,P) (see [1, 40]):

(i) (Generator property) The complete and smallest σ-algebra containing ∪k≥0f
−k

(P) is

B;

(ii) (Markov property) f(P i) ⊃ P j (mod ν̄), whenever µ̄(f(P i)∩P j) > 0 for any P i, P j ∈

P ;

(iii) (Local invertibility) the map f : P i → f(P i) is invertible with measurable inverse for

any P i ∈ P with µ̄(P i) > 0.

It follows from Assumption (2) that this Markov map is irreducible.
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3.4.2 Polynomial decay rates

In this subsection, the lower and upper bounds for the decay rates of the observable functions

for the induced system (f̄ ,M) is investigated by applying the renewal theory.

Set M̃ := M \ P . Recall that g = fτ is the first return map on M \ P and P = P0. It

is evident that g on M \ P induces a first return map from M̃ to itself, denoted by f̃ . It

follows from p ∈ intP that p̄ ∈ intP .

Let P0 = P \ {P0} be the Markov partition of M̃ . Set T := T′ ∨ P0, where T′ = {Tk =

[τ = k] : k = 1, 2, · · · } is a partition into sets with the same return time.

The separation time is given by

s(x̄, ȳ) := sup{k ≥ 0 : f̃ i(ȳ) ∈ T(f̃ i(x̄)), 0 ≤ i ≤ k}, ∀x̄, ȳ ∈ M̃.

For any x ∈ x̄ and y ∈ ȳ, it is also reasonable to set s(x, y) := s(x̄, ȳ).

It follows from Assumption (3) that the map f is uniformly hyperbolic outside of any

neighborhood of the fixed point p. One could define

λ := sup{‖Dfx|Eux‖
−1, ‖Df−1

x |Esx‖
−1 : x ∈M \ P}, (3.4.2)

where ‖Dfx|Eux‖ = supv∈Eux,v 6=0
|Dfxv|
|v| and ‖Df−1

x |Esx‖ = supv∈Esx,v 6=0
|Df−1

x v|
|v| . It is evi-

dent that λ ∈ (0, 1).

Next, it is to introduce a Banach space defined on M :

L := {Φ : suppΦ ⊂ M̃, ‖Φ‖L := ‖Φ‖∞ +DΦ <∞}, (3.4.3)
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where ‖ · ‖L is the norm, DΦ is a semi-norm given by

DΦ := sup
x̄,ȳ∈M̃

|Φ(x̄)− Φ(ȳ)|
λθs(x̄,ȳ)

,

η > 0, min{2,m− 2} ≤ η < m− 1, and m− 1− η ≤ θ ≤ 1.

Remark 3.4.1. It is evident that L contains Hölder functions with exponent θ and the

support contained in M̃ .

Hence, one has the following result by using the renewal theory.

Lemma 3.4.1. Assume η > 0, min{2,m − 2} ≤ η < m − 1, and m − 1 − η ≤ θ ≤ 1. The

Markov map (M,B, µ̄, f ,P) is irreducible and measure preserving. There exists C > 0 such

that for any Φ ∈ L and Ψ ∈ L∞ with suppΨ ⊂ M̃ , one has

∣∣∣∣Corn(Φ,Ψ; f, µ̄)−
( ∞∑
k=n+1

µ̄[τ > k]

)∫
Φ

∫
Ψ

∣∣∣∣ ≤ CF%(n)‖Ψ‖∞‖Φ‖L, (3.4.4)

where
∞∑

k=n+1

µ̄[τ > k] has order n−(%−1), F%(n) = O(1/n2%−2), and % = m−1
η .

Proof. It follows from the discussions in the previous subsection that the Markov map

(M,B, µ̄, f ,P) is irreducible measure preserving.

Next, it is to apply Theorem 6.3 in [8] to show (3.4.4).

First, it is to prove that f̃ has big image property. This could be derived by the finiteness

of the Markov partition P and the discussions about the the big image property in Section

6.2 in [8].

Second, it is to verify that log J(f̃) is locally Hölder continuous, which is introduced in

[40] (see also [1]).
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It follows from Proposition 3.3.3 that log J(f̃) ∈ L. By applying similar arguments

used in Lemma 2 in Subsection 3.1 in [45], one has that f̃ admits an absolutely continuous

invariant measure µ̃ on M̃ with the density function h̃ with respect to υ̃, and the density

function satisfies log h̃ ∈ L and is bounded away from 0 and infinity. By uniqueness we know

that µ̃ is the conditional measure mentioned in the last subsection with respect to M̃ .

The Jacobian of f̃ with respect to µ̃ is defined as follows

Jµ̃(f̃) = J(f̃)
h̃ ◦ f̃
h̃

.

By the fact that log J(f̃) and log h̃ are in L, one has that − log Jµ̃(f̃) is also in L, yielding

that − log Jµ̃(f̃) is locally Hölder continuous.

Now, it is to prove that greatest common divisor of {τ(x̄)− τ(ȳ) : x̄, ȳ ∈M} is one, and

µ̄[τ > k] = O(1/k%).

It follows from our construction that the greatest common divisor of {τ(x̄)− τ(ȳ) : x̄, ȳ ∈

M} is one. So, one only needs to estimate µ̄[τ > k]. Let γu ∈ Wu(S) be any unstable leaf.

Denote by µuγ the conditional measure of the SRB measure µ when it is restricted to γu. By

Proposition 3.3.3, the distortion of f along any unstable leaf is uniformly bounded. Similar

conclusions also work for the density function
dµuγ
dνuγ

.

Hence, by (3.3.12), there exist C ′1, C1 > 0 such that

C1

n%
≤ µuγ(γun) ≤

C ′1
n%
.

By direct integration and Proposition 3.3.2, one has that similar inequalities also hold

for µ[τ > n] with different positive constant coefficients, that is, there exist two positive
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constants B′1 and B1 such that

B′1
n%
≤ µ[τ > n] ≤ B1

n%
. (3.4.5)

It gives that
∞∑

k=n+1

µ̄[τ > k] has the order n−(%−1).

It follows from Theorem 6.3 in [8] that the statement of this lemma is correct.

The proof is completed.

3.4.3 Polynomial decay rates for diffeomorphisms

In this subsection, it is to establish the polynomial decay rates of correlation function for

the almost Anosov diffeomorphisms by using the results in previous subsections.

First, it is to introduce a type of Hölder functions:

Hθ :=
{

Φ : ∃HΦ > 0 s.t. |Φ(x)− Φ(y)| ≤ HΦ|x− y|θ and supp(Φ) ⊂M \ P},

where m ≥ 2, η > 0, min{m− 2, 2} ≤ η < m− 1, and m− 1− η < θ ≤ 1.

Set

M0 := P = {P0, P1, · · · , Pl} and Mk :=
k∨
i=0

f−i(M0), (3.4.6)

where k is any positive integer.

For any n ∈ Z, let k = k(n) be a number smaller than n, which will be given later. For
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any Φ,Ψ ∈ Hθ, by direct calculation, one has

|Corn(Φ,Ψ; f, µ)| = |Corn−k(Φ,Ψ ◦ fk; f, µ)|

≤|Corn−k(Φ,Ψ ◦ fk; f, µ)− Corn−k(Φ,Ψk; f, µ)|

+|Corn−k(Φ,Ψk; f, µ)− Corn−k(Φk,Ψk; f, µ)|+ |Corn−k(Φk,Ψk; f, µ)|,

(3.4.7)

where Ψk is a function defined by Ψk|A := inf{Ψ(x) : x ∈ fk(A)} for any A ∈ M2k, Pk

is defined analogously, and Pk :=
d((fk)∗(Pkµ))

dµ , where Pkµ is the signed measure satisfying

that the density with respect to µ is Pk.

First, it is to estimate the diameter of the set (fk(M2k(x)), which is useful in the study

the each item in the inequality (3.4.7). Since f is uniformly hyperbolic outside of P , it

suffices to estimate the diameter of the set fk(∩2k
i=0f

−i(P )), and it is to show that

fk(∩2k
i=0f

−i(P )) ≤ Cdk
−1
η , (3.4.8)

where Cd is a positive constant.

Now, it is to study the diameter of fk(∩2k
i=0f

−i(P )) along the stable direction. By

Assumption (3), one has

diam(fk(M2k(x))) ≤ C ′s(κ
s)k;

the diameter of fk(∩2k
i=0f

−i(P )) along the unstable direction can be derived by using As-

sumption (5) and the discussions used in the proof of (3.3.12):

diam(fk(M2k(x))) ≤ C
′
uk
−1
η ,
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where C ′s and C
′
u are two positive constants. Hence, (3.4.8) holds.

Second, by direct calculation and (3.4.8), one has

|Corn−k(Φ,Ψ ◦ fk; f, µ)− Corn−k(Φ,Ψk; f, µ)|

≤
∣∣∣ ∫ (Ψ ◦ fk −Ψk) ◦ (fn−k) · Φdµ

∣∣∣+
∣∣∣ ∫ (Ψ ◦ fk −Ψk)dµ ·

∫
Φdµ

∣∣∣
≤(2 max |Φ|)

∫
|(Ψ ◦ fk −Ψk)|dµ ≤ (2 max |Φ|) ·

Cθd

k
θ
η

.

(3.4.9)

Third, denote by |·| the total variation of a signed measure. By using the fact ((fk)∗((P◦

(fk)µ) = Pµ and (3.4.8), one has

∣∣∣Corn−k(Φ,Ψk; f, µ)− Corn−k(Φk,Ψk; f, µ)
∣∣∣

≤
∣∣∣ ∫ (Ψk ◦ (fn−k))(Φ− Φk)dµ

∣∣∣+
∣∣∣ ∫ Ψkdµ ·

∫
(Φ− Φk)dµ

∣∣∣
≤(2 max |Ψ|)

∫
|Φ− Φk|dµ = (2 max |Ψ|)|Pµ− Pkµ|(M)

=(2 max |Ψ|)|(fk)∗((P ◦ (fk)µ)− (fk)∗(Pkµ)|(M)

≤(2 max |Ψ|)|(P ◦ fk − Pk)µ|(M) = (2 max |Ψ|)
∫
|P ◦ fk − Pk|dµ

≤(2 max |Ψ|) ·
Cθd

k
θ
η

.

(3.4.10)

Fourth, it is to show that

|Corn−k(Φk,Ψk; f, µ)| = |Corn−k(Φk,Ψk; f, µ̄)|. (3.4.11)

In other words, Corn−k(Φk,Ψk; f, µ) can be determined by functions, which are constant

along stable manifolds on each Pi ∈ P . Since Φ and Ψ are constant along stable manifolds

contained in any Pi, one could treat Φ and Ψ as functions defined on M . This, together
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with f ◦ π = π ◦ f and π∗(Φkµ) = Φk(π∗µ), implies that

∫
(Ψk ◦ (fn−k))Φkdµ =

∫
(Ψk ◦ (fn−k))d((fk)∗(Φkµ)) =

∫
Ψkd((fn−k)∗(fk)∗(Φkµ))

=

∫
Ψkd((fn)∗(Φkµ)) =

∫
Ψkd(π∗(fn)∗(Φkµ)) =

∫
Ψkd((f

n
)∗(Φkµ̄)) =

∫
Ψk ◦ f

n · Φkdµ̄,

and, ∫
Φkdµ

∫
Ψkdµ =

∫
d((fk)∗(Φkµ)) ·

∫
Ψkdµ̄ =

∫
Φkdµ̄ ·

∫
Ψkdµ̄.

This shows (3.4.11).

By Lemma 3.4.1, one has that

A′

(n− k)%−1
≤ |Corn−k(Φk,Ψk; f, µ̄)| ≤ A

(n− k)%−1
, (3.4.12)

where A and A′ are two positive constants.

Furthermore, since η > 0, min{m− 2, 2} ≤ η < m− 1, and m− 1− η < θ ≤ 1, one has

θ
η >

m−1
η − 1 = %− 1.

Therefore, take k = [n/2], by (3.4.7), (3.4.9), (3.4.10), (3.4.11), and (3.4.12), one has

A′(Φ,Ψ)

n%−1
≤ |Corn(Φ,Ψ; f, µ)| ≤ A(Φ,Ψ)

n%−1
,

where A′(Φ,Ψ) and A(Φ,Ψ) are two positive constants. This verifies (3.2.2).

This completes the whole proof of Theorem 3.2.2.
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