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ABSTRACT

HYPERSPECTRAL DATA MODELING FOR WATER QUALITY STUDIES

IN MICHIGAN’S INLAND LAKES

By

Narumon Wiangwang

Hyperspectral remote sensing imagery has been used to estimate spatial and

temporal variation of water quality, such as chlorophyll a, transparency, and

suspended solids, primarily for marine and coastal waters. Although

physicochemical properties of marine and inland waters difler, hyperspectral

data and modeling may provide an alternative tool for inland lake assessment.

However, little has been done to identify the most suitable spectral bands for

water quality estimation and there is a lack of quantitative relationship between

water quality and hyperspectral data. The primary objectives of this study are

to identify optimal spectral bands most sensitive to water quality indicators and

to develop improved hyperspectral water quality indicators of inland lakes. The

secondary objective is to determine the most effective filters for noise removal in

hyperspectral data.

To address these objectives, a field campaign was conducted on 42 inland lakes

in Michigan in 2004. Radiometric spectra, Secchi disk depth, dissolved oxygen,

temperature, and light extinction profile data were collected. Water samples

were analyzed for chlorophyll a, suspended solid, total nitrogen, total

phosphorus, non-purgable organic carbon, and phytoplankton species

composition. Spectral radiances were measured with a hand-held spectrometer



(LabSpec® Pro) and with an airborne Imaging Spectrometer for Applications

(AISA) sensor, to correlate the water quality and hyperspectral data.

Principal Component Analysis was used to identify the narrow-wavebands, and

derivative analysis used to determine the region-wavebands. Statistical spectral

water quality indicators were developed to correlate with Secchi depth,

chlorophyll a, total suspended solid, non-purgable organic carbon, diatom

biomass, green algal biomass, and bluegreen algal biomass. These relations

were validated to suggest that high accuracies were achieved for Secchi depth

(R2 0.76 - 0.84), chlorophyll a (R2 0.70 — 0.76), and bluegreen algae (R2 0.56 —

0.72). The quantitative relationship between remotely sensed variables and

water quality indicators can be used to extrapolate point—based water quality

measurements to large spatial extents for an improved water quality

assessment. Additionally, the Savitsky Golay filter was found the best to

remove spectral noises. The innovation of this study is that it developed a

quantitative relationship between hyperspectral data and water quality

variables of inland lakes in Michigan.
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CHAPTER 1

INTRODUCTION

Lakes are valuable water resources. Tens of thousands of inland lakes have

served as crucial resources for drinking water, irrigation, industry,

transportation, recreation, fishing, support of biodiversity, and sheer aesthetic

enjoyment for the 516,000 km2 area of the Upper Midwest region (Carpenter et

al., 1998). These lakes are of immense importance to the region (Lillesand,

2002). Fresh water is a limited resource. Although over 70 percent of the

Earth’s surface is water—covered, only 2.6 percent of it is freshwater. It can be

increased only slightly with tremendous cost, for example, desalinization of

ocean water requires enormous energy, and once the product is obtained

distribution is energetically prohibitive. For many reasons, the usable

freshwater supply is in reality much smaller than the absolute total. Of all the

freshwater, 77 percent is tied up in the polar ice caps and 1 1 percent is stored

in deep groundwater aquifers leaving 12 percent in an active circulation (Brooks

et al., 2003). Water consumption has increased exponentially with demotechnic

growth. And potentially the most serious factor from the growth is the severe

degradation by contaminants to water quality (Wetzel, 2001).

Fresh waters around the world are experiencing accelerating rates of qualitative

and quantitative degradation (Wetzel, 1992). Throughout human history, water

has been used to wash away and dilute pollutants. Pollutant inputs have

increased in recent decades and have degraded water quality of many rivers,



lakes, and coastal oceans. Degradation of these vital water resources can be

measured as the loss of natural ecosystems, their component species, and the

amenities they provide (Postel and Carpenter, 1997; US. EPA, 1996). Water

shortages are increasingly common and likely to become more severe in the

future (Postel, 1997; Postel et al., 1996). In 2001, the United Nations

commemorated a World Day for Water in which it concluded that the demands

for freshwater exceeded supplies by 17 percent and over the next 25 years, two-

thirds of the world population will experience a severe water shortage (Brooks et

al., 2003).

A well documented effect of human activities upon aquatic ecosystems is

eutrophication, a process whereby water bodies, such as lakes, estuaries, or

slow-moving streams receive excess nutrients that stimulate excessive

productivity, simplification of biotic communities, and a reduction in the ability

of the metabolism of the organisms to adapt to the nutrient loading. When

eutrophication occurs, excessive inputs often exceed the capacity of the

ecosystems to be balanced, thus the conditions lead to reduced stability of the

ecosystem. In order to effectively maintain the quality of inland waters, it is

necessary to monitor humans’ utilization of these resources independently in

terms of residential, industrial, and agricultural activities (Wetzel, 2001).

Although the fundamental laws of resource utilization may be recognized by

most agencies and industries, they are not being seriously implemented.

Therefore, an effective water quality assessment and monitoring techniques are

needed to maintain a sustainable natural ecosystems.



1.1 Eutrophication Consequences on Water Quality

Eutrophication caused by excessive inputs of phosphorus and nitrogen is the

most common impairment of surface waters in the United States (US. EPA,

1990), with impairment measured as the area of surface water not suitable for

designated uses such as drinking, irrigation, industry, recreation, or fishing.

Eutrophication accounts for approximately 50 percent of impaired lake areas

and 60 percent of the impaired river reaches in the United States (US. EPA,

1996), and is the most widespread pollution problem of US. estuaries (NRC,

1993i

Eutrophication has many negative effects on aquatic ecosystems. Perhaps the

most obvious consequence is the increased growth of algae and aquatic weeds

that interfere with use of the water for fisheries, recreation, industry,

agriculture, and drinking water. As the mass of algae in the water grows, the

water may become murkier and less aesthetically pleasing. Particularly, when

the algae die and decompose, periods of oxygen depletion (hypoxia and anoxia)

occur more frequently (Carpenter et al., 1998). Even living algae create

conditions favorable for some species over others and may cause shifts in the

structure of phytoplankton, zooplankton, and bottom-dwelling (benthic)

communities (Howarth et al., 2000). Eutrophication brings on ecological

changes that decrease the biological diversity — the variety of living organisms -

in the ecosystem (Seehausen et al., 1997).



Explosive growth of nuisance algae are among the most damaging effects of

eutrophication (Anderson and Garrison, 1997). Blooms of harmful algae such

as red and brown tide organisms may become more frequent and extensive.

These algae are harmful to humans and other organisms, sometimes resulting

in human illness via shellfish poisonings (Carpenter et al., 1998). Just as

important, subtle changes in the plankton community and other ecological

factors may trigger reduced growth and recruitment of fish species and a

lowered fishery production (Howarth et al., 2000). For example, in marine

systems, blooms of Lyngbya majuscule in Moreton Bay, southeast Queensland,

Australia have significantly impacted the environment (Relfsema et al., 2001).

In freshwater, blooms of cyanobacteria (bluegreen algae) are a prominent

symptom of eutrophication (Smith, 1998; Kotak et al., 1993; MCComb and

Davis, 1993). These blooms contribute to a wide range of water-related

problems including summer fishkills, foul odors, and unpalatable drinking

water (Kotak et al., 1994; Palmstrom et al., 1988). Water-soluble neuro— and

hepatotoxins, released when cyanobacterial blooms die or are ingested, can kill

livestock and may pose a serious health hazard to humans (Carpenter et al.,

1998).

Various mathematical models have been developed and applied to rivers, lakes,

and estuaries in an effort to monitor, simulate and control eutrophication (e.g.,

Kloiber et al., 2002; Dekker et al., 2001; Flink et al., 2001; Giardino et al.,

2001; Koponen et al., 2001; Pulliainen et al., 2001; Shafique et al., 2001;

Subramaniam et al., 1999). Most water quality models demand comprehensive



water quality sampling programs. In an ideal circumstance, monitoring of

water bodies includes the determination of concentrations of water quality

variables and the processes that generate their spatial distribution and

temporal variation of those variables (Fisher, 1994; Van Stokkom et al., 1993).

However, the conventional measurement of water quality requires in situ

sampling, and expensive and time-consuming laboratory work (Giardino et al.,

2001). Therefore, it is usually based on the determination of concentrations at

one or only a few fixed stations that are assumed to represent the overall

distribution of phytoplankton in a lake, or the spatial interpolation of the

concentration from the stations to obtain continuous field maps of the various

water quality parameters (Kallio et al., 2003). Algal blooms are extremely

patchy, both temporally and spatially. Consequently, they often remain

unobserved using the traditional sampling methods based on temporally sparse

sampling at fixed monitoring stations (Harma et al., 2001). Traditional in situ

sampling methods also do not provide the spatial overview that is necessary for

the regional assessment and monitoring of lake water quality (Shafique et al.,

2001). On the other hand, optical indications of water qUality have the

potential of enhancing the abilities of resource managers to monitor water

bodies in a timely and cost-effective manner.

1.2 Remote Sensing Alternative

Remote sensing is defined as acquisition of information about the properties of

electromagnetic waves emitted, reflected or diffracted by the sensed objects

without being in direct physical contact. Broad scope remote sensing based



water quality research has been developed to detect environmental indicators

that are useful in assessing, quantifying and monitoring inland water quality.

More fundamentally, the absorption and scattering of light by components of

the lacustrine water column provide basic information about the substances

suspended in the water (Jupp et al., 1994). Although a fairly new method, the

development of spectral indices can be a useful and effective tool for the

diagnosis of water conditions by water resource managers (Shafique et al.,

20011

Remote sensing offers a significant source of information, and methods have

been developed for operational large-scale monitoring of water quality (Harma et

al., 2001). For example, remote sensing enables the monitoring of a wide

spatial extent of phytoplankton distribution in the surface water layer more

effectively (Shafique et al., 2001). Reliable spatial coverage and cost-efficient

remote monitoring techniques of lakes and coastal waters are generally growing

in importance as a consequence of increasing symptoms of eutrophication

processes (Giardino et al., 2001; Harma et al., 2001). A number of studies have

shown that applications of remote sensing can meet the demand for the large

sample sizes required of water quality studies conducted on the watershed

scale. Algal blooms have been mapped successfully from remotely sensed data

in a number of different riverine (Lathrop and Lillesand, 1989; Lillesand et al.,

1983), estuarine (Harding et al., 1995; Verdin, 1985), and oceanic (Ruiz—Azuara,

1995) environments around the world. Imagery from satellite and aircraft

remote sensing systems have been used in the assessment of water quality



parameters such as temperature, chlorophyll a, turbidity, and total suspended

solids (Relfsema et al., 2001; Jupp et al., 1994). Estimation of chlorophyll a

distribution in lakes by remote sensing techniques has included the use of

airborne photography (Wrigley and Home, 1974), airborne spectrometry (George

and Malthus, 2001; Ostlund et al., 2001; Heege and Fischer, 2000; Jupp et al.,

1994; Dekker et al., 1992) and satellite sensors (Giardino et al., 2001; Ostlund

et al., 2001; Vos and Rijkeboer, 2000; Dekker and Peters, 1993). Results were

usually reported in the form of concentration maps (Kallio et al., 2003).

1.3 Current Problems with Remote Sensing Water Quality

Data acquisition by remote sensing is fast (e.g., tens of lakes may be acquired

within a day by an airborne sensor or hundreds of lakes by a spacebome

sensor), and large areas can be surveyed over a short period of time. However,

the spectral and spatial configurations of current aquatic satellite sensors are

not suitable for inland water quality monitoring. In most cases they are not

suitable for phytoplankton monitoring in lakes due to their spectral

configuration and poor spatial resolution (typically from several hundred meters

to 1,000 m). The low spatial resolution of most satellite data can produce

sources of error in empirical approaches used to assess water quality

indicators. For example, a single in situ sample may not be representative of an

entire pixel area. In most cases, a single pixel is greater than several meters in

diameter, and it is rare for a single object or target feature to fill any one pixel.

Thus, the characteristics of any pixel can rarely be considered truly

homogenous (Tsi and Philpot, 1998). In addition, the accuracy of locating the



pixel that corresponds to the in situ sample may be uncertain depending on the

geolocation method used (Giardino et al., 2001).

Spaceborne sensors provide the global coverage of the Earth’s surface

conditions at diflerent spatial and temporal resolutions, but the efficacy of all

current spaceborne remote sensing systems for detailed Characterization of

water quality parameters is limited by their spatial and spectral resolutions.

Sensors with high spatial resolution do not have a sufficient number of narrow

spectral bands (e.g., IKONOS, QuiCkBird, Landsat, and ASTER), while narrow-

waveband spaceborne sensors usually have coarse spatial resolution (e. g.,

MODIS). Satellite sensor systems such as Landsat TM and ETM+, and ASTER

currently provide data of sufficient spatial resolution for inland lake

applications. However, their spectral resolution is questionable. It is important

to recognize that these sensors average the spectral information over the entire

width of the spectral band (Dekker et al., 1992). Narrow-waveband sensors

may provide better fundamental information about the biophysical

Characteristics of inland waters. Various ground-based radiometers have been

used with different bandpass filters to mimic the operational airborne

radiometers and spaceborne scanners. Airborne sensors are generally designed

to serve as a prototype for future spaceborne sensor systems.

1.4 Hyperspectral Remote Sensing

Hyperspectral sensors (0.4 pm - 2.5 pm wavelength range) capture the

hopefully unique spectra (or ‘spectral signature) of an object. These signatures



can be used to identify and quantify the materials of which it is composed (The

Canadian Space Agency, 2003). With this principle, hyperspectral data enable

the identification of the Earth’s surface features with greater thematic accuracy.

Airborne imaging spectrometers have been used to assess the trophic status of

lakes and to map the spatial distribution of phytoplankton (Malthus et al.,

1996). The analysis of hyperspectral imagery involves the decomposition of

each reflectance pixel into its biophysical constituents. The identity of these

constituents is determined by comparison with ‘library’ spectra of known

materials measured in the field or in the laboratory (Richards and Jia, 1999).

The previous generation of spaceborne optical imagers are limited to either

panchromatic or multispectral devices providing only a few spectral bands and

limited resolving power. Numerous effective methods, mostly derived from

multivariate statistics, have been developed and applied successfully for spatial

or spectral analysis of these data (Tsai and Philpot, 1998). Hyperspectral

imagers typically collect data in tens to several hundred contiguous, narrow

bands in the electromagnetic spectrum. The large numbers of bands that are

simultaneously imaged produce vast quantities of information. With higher

resolution, spectrally continuous data, researchers tended to select a subset of

suitable bands to optimize the existing algorithms for multispectral data

analysis or to generate new algorithms based on traditional multispectral

concepts (Penuelas et al., 1994; Martin and Aber, 1993; Chappelle et al., 1992;

Curran et al., 1992).



The new generation of airborne imaging spectrometers, such as the Airborne

Imaging Spectrometer for Applications (AISA) and the Compact Airborne

Spectrographic Imager (CASI), offer considerable advances in terms of

radiometric sensitivity and operational flexibility (George and Malthus, 2001).

The main problems with hyperspectral data are the substantial redundancy of

the information, the difficulties in identifying the optical bandwidth and center

wavelength of the bands that maximize the explanation of biophysical

attributes, and the system limitations associated with the storage of the image

data volumes.

1.4.1 Spectral Data Characteristics

Given the enormous number of wavebands recorded, the data produced by the

imaging spectrometers are different from those of multispectral scanners —

leading to the term hyperspectral. The data produced for a given geographical

area can be viewed as a cube, as shown in Figure 1- 1, having three dimensions

that represent spatial location (two dimension) and spectral wavelength (the

third dimension) (Richards and Jia, 1999).
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Figure 1-1 Hyperspectral “cube” of image data such as recorded by an imaging

Spectrometer (after Richard and Jia, 1999)

When displaying remotely sensed data on the display device, only three of the

spectral bands are usually assigned to the red, green and blue color elements of

the device. Careful band selection ensures the most informative display. This

is relatively simple for multispectral data, such as the six 30 m bands from

Landsat, but with hyperspectral data, selecting the three bands to display can

be challenging. Choosing the most appropriate three channels to display is not

straightforward and, in any case, would lead to substantial loss of the spectral

benefits offered by these type of data. However, unless spectral transformations

are employed, a set of three bands comparable to those used with multispectral

imagery are often adopted (near IR, red, green) for simple display of the data

(Richards and Jia, 1999).



1.4.2 Hyperspectral Data Volume and Redundancy

It is obvious that the major differences between multispectral and hyperspectral

data (e.g., Landsat versus AVIRIS) is the number of wavebands (7 versus 224)

and the radiometric quantization (8 versus 10 bits per pixel per band).

Disregarding differences in spatial resolution, the relative data volume per pixel

are 7 x 8 vs. 224 x 10 — i.e., 56 : 2240 bits per pixel. For each pixel, there are

40 times as many bits for AVIRIS as for TM data. Consequently, storage and

transmission of hyperspectral data are issues for consideration (Richards and

Jia, 1999).

Unfortunately, 40 times as much data per pixel does not imply 40 times as

much information can be extracted about the ground cover types being imaged.

Even though additional data often enhance the possibility in discovering that

information, much of it does not add to the potential information content.

Hyperspectral data often contain substantial overlap or redundancy of

information content among the bands of data recorded for a given pixel.

Spectral redundancy means that the information content of one band can be

fully or partly predicted from the other bands in the data (Richards and Jia,

19991

1.5 Research Objectives

The objectives of this study are to:

(1) identify the optimal spectral bands that are most sensitive to water quality

indicators in the various water bodies within Michigan;

(2) develop improved spectral water quality indicators; and
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(3) determine the most effective filters for noise removal in hyperspectral remote

sensing data.

Many previous studies relied on the correlation of local in situ measurements of

Chlorophyll a, suspended sediment, with the remote sensing data. These

algorithms are not truly generalizable. They are only good for the particular

location and cannot usually be generalized across space or time. This study

attempts to develop generalizable algorithms that are spatially and temporally

independent. The main purpose is to detect absorption and reflectance features

within the spectral data, and then to develop the spectral indicators, such as

under-curve area, curve height/width ratio, or narrow-waveband indices, that

could estimate the water quality parameters (Chlorophyll a, Secchi depth, total

suspended sediment, non-purgable organic carbon, and algae biomass).
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CHAPTER 2

LITERATURE REVIEW

Several remote sensing studies have estimated water quality parameters such

as Secchi depth, Chlorophyll a, and bluegreen algae. Some researchers used

multispectral remote sensing data to map the general water quality indicator for

Secchi depth; however, the data do not provide enough spectral resolution for

the detection of algae or accurate assessment of Chlorophyll a. Other

researchers used hyperspectral data to predict suspended sediment, chlorophyll

a and harmful bluegreen algae in the ocean where concentration of

complicating optical factors (e.g., total suspended sediment and dissolved

organic carbon) are very low. Various studies used different analytical

techniques, such as principle component analysis (PCA), derivative

spectroscopy, and regression techniques, to identify optimal narrow spectral

wavebands and develop water quality models. None of the reviewed studies

developed water quality indicators by fitting polynomial curves in the region-

wavebands as presented in this study (Chapter 3). The region-waveband

indicators can be more sensitive to Changes in biophysical variables and less

affected by noise from the atmosphere or the sensor itself than the narrow-

waveband indicators. The literature review presented in this chapter served as

a guideline of what has been done and what can be done to improve water

quality assessment algorithms.
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2.1 Spectral Response of Water Bodies

When conducting remote sensing investigations on water bodies, it is useful to

understand how pure water selectively absorbs and scatters incident solar.

Bukata et al. (1995) summarized the absorption coefficient a(A), the scattering

coefficient b(A), and the total attenuation coefficient C(A) of pure water molecules

at wavelengths from 250 nm — 800 nm from a number of studies (Table 21).

Several important relationships were observed when the absorption and

scattering data were graphed, as shown in Figure 2-1 (Jensen, 2000).
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Table 2-1 Optical properties of pure water (derived from various sources by

Bukata et al., 1995)

 

 

 

Wavelength Absorption Scattering Total .

(nm) am (m-l) be) (m-l) Attenuatm
C(A) (m1)

250 — ultraviolet 0.190 0.0320 0.2200

300 - ultraviolet 0.040 0.0150 0.0550

320 - ultraviolet 0.020 0.0120 0.0320

350 - ultraviolet 0.012 0.0082 0.0202

400 - violet 0.006 0.0048 0.0108

420 - violet 0.005 0.0040 0.0090

440 - violet 0.004 0.0032 0.0072

460 — dark blue 0.002 0.0027 0.0047

480 - dark blue 0.003 0.0022 0.0052

500 - light blue 0.006 0.0019 0.0079

520 - green 0.014 0.0016 0.0156

540 - green 0.029 0.0014 0.0304

560 — green 0.039 0.0012 0.0402

580 - yellow 0.074 0.00 11 0.0751

600 — orange 0.200 0.0009 0.2009

620 - orange 0.240 0.0008 0.2408

640 - red 0.270 0.0007 0.2707

660 - red 0.310 0.0006 0.3106

680 — red 0.380 0.0005 0.3806

700 - red 0.600 0.0005 0.6005

740 — near-infrared 2.250 0.0004 2.2504

760 - near-infrared 2.560 0.0004 2.5604

800 - near-infrared 2.020 0.0003 2.0203    
l6
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Figure 2- 1 Absorption and scattering of light in pure water (after Jensen, 2000)

0.10
 

0.09 ~

0.08 ~

0.07 -

0.06 ~

0.05 ~

0.04 -

0.03 ..

0.02 -

0.01 ~ 0.00

250 300 350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

I

 

I

Absorption

Scattering

viole .

I

T

blue

I

I

green

I

—_

 

red

near-

infrare

Blue wavelength region from approximately 400 nm - 500 nm had the least

amount of absorption and scattering of incident light in the water column, with

the minimum absorption at 460 nm — 480 nm. The wavelengths of violet to

light blue light penetrated further than any other range of light into the water

column because they had the best transmission (Clark et al., 1997). The water

column absorbed incoming irradiance in the green and yellow wavelengths from

520 nm - 580 nm very well with relatively little scattering taking place. Almost
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all of the incident red and infrared (580 nm — 3,000 nm) radiance entering deep

pure water was absorbed with negligible scattering (Figure 2-1). Consequently,

pure water appeared blue to our eyes due to the combined effect of molecular

scattering of violet and blue light (< 520 nm) and significant absorption of green

and red light (520 nm — 700 nm) in the same water column. Blue colored

waters are typically found in pure mid-ocean water and deep non-turbid inland

water bodies (Jensen, 2000).

In the natural environment, the spectrum shape characteristics of water from

different lakes differed significantly depending on dissolved and suspended

constituents within the water. The trophic state of water strongly influenced

the spectral signatures (Pulliainen et al., 2001).

2.2 Spectral Characteristics of Chlorophyll a

The spectral reflectance characteristics of pure water Changed when Chlorophyll

a was introduced. For example, Figure 2-2 depicted the spectral reflectance

characteristics of clear water and the same water laden with algae consisting

primarily of chlorophyll a (Han, 1997). Basically, as chlorophyll a

concentration increased in the water column, the amount of energy reflected in

the blue and red wavelengths significantly decreased but that in green

wavelength increased. Clear water reflected approximately 2 percent between

400 nm and 500 nm and dropped gradually to less than 1 percent at

wavelengths beyond 710 nm (Jensen, 2000). Conversely, the algae-laden water

18



presents four pronounced scattering/ absorption features of chlorophyll (Figure

2-2; Jensen, 2000; Han, 1997; Rundquist et al., 1995; Gitelson, 1992):

(1) strong chlorophyll a absorption in blue region between 400 nm and 500 nm;

(2) maximum reflectance in green wavelengths around 550 nm (green peak)

caused by relatively lower absorption of green light by algae;

(3) strong chlorophyll a absorption in red wavelengths at approximately 675

nm; and

(4) prominent reflectance peak between 690 nm — 700 nm caused by an

interaction of algal-cell scattering and a combined effect of minimum pigment

and water absorption. The height of this peak above the baseline (absorption

trough) has been used to accurately measure chlorophyll amount.
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Figure 2-2 Percent reflectance of Clear and algae-laden water based on in situ

spectroradiometer measurements (after Han, 1997)
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Dekker et al. (200 1) illustrated the key spectral features in lake water signature

curves. From their measured reflectance spectra in Figure 2-3, it was obvious

that the absorption and scattering of the various constituents created a

distinctive reflectance spectrum for each of the water samples. In general, there

was little reflectance at shorter wavelengths of 400 nm - 500 nm, due to the

combined effects of absorption by colored dissolved organic matter (CDOM),

inanimate particles (tripton) and phytoplankton pigments. A local maximum in

reflectance, caused by a local minimum in the combined absorption eflects of

CDOM and tripton absorption (which both exponentially decline with increasing

wavelength) and a low phytoplankton pigment absorption efficiency, was found

at approximately 550 nm - 580 nm. The local minimum in reflectance at 630

nm is caused by the combined effects of cyanophycocyanin absorption and a

first shoulder in the absorption of water was noticeable. As this local minimum

became more pronounced, the relative contribution of cyanobacteria to the total

algal components increased. The local reflectance peak at 650 nm is due to a

local minimum in absorption by pigments and an increasingly smaller

contribution from CDOM and tripton absorption. A narrow reflectance

minimum is centered at 676 nm, which was the in vivo Chlorophyll a maximum

absorption peak. Beyond 680 nm, reflectance increased significantly to a

maximum of 14 percent at 706 nm. In the studied lake there was a vast

amount of algae identifiable by the large reflectance at 706 nm, and the major

algal pigment absorption at wavelengths from 400 nm - 680 nm (Figure 2-3).
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Figure 2-3 Spectra reflectance of Frisian waters, measured in situ in August

1995, with Landsat TM bands 14 superimposed (after Dekker et al., 2001)

Over the full Spectral range, the shape of the spectral signature for water was

broadly determined by the spectral absorption of dissolved organic matter in the

blue, and by the absorption of chlorophyll a and water itself in the red and

near-infrared (Figure 2-4). Attention had concentrated on the wavelength range

from 600 nm to 740 nm, which included the effect of the interaction of the

water absorption (with a peak absorption near 770 nm; Figure 2-4) and the

chlorophyll a absorption (with a peak near 675 nm). This effect produced a

minimum in absorption and thus a peak in reflectance, at about 700 nm. As

chlorophyll a increased the peak size near 700 nm, measured with respect to

adjacent wavelengths, increased in a non-linear fashion with shift to longer
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wavelengths (i.e., Figure 3-2 showed the peak near 720 nm). Many studies

used red/NIR spectral region in their spectral indices (Kallio et al., 2003; Harma

et al., 2001; Kallio et al., 2001; Gitelson et al., 1993). A notable consequence of

the use of these wavelengths was the negligible effects of DOM in the

Chlorophyll a retrieval compared with techniques using blue and green

wavelengths (Green, 1998; Sathyendranath and Platt, 1989; Tassan, 1988).
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Figure 2-4 The lower three curves represent the absorption of water and its

constituents: the dashed curve the absorption of water, the (----- ) absorption of

60 mg/l of chlorophyll, the dotted curve is the DOM absorption (0.14 /m @440

nm) and the solid represents the sum of the water, chlorophyll and DOM

absorption. The upper hatched curve is an observed reflectance spectrum over

the lake (after Green 1998)
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Figure 2-5 presented an example reflectance spectrum of a lake with high

chlorophyll a content and one with very little chlorophyll (Green, 1998).
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Figure 2-5 Example reflectance from a high Chlorophyll content lake (85 mg/ l —

dash line) and one from a low chlorophyll content lake (3 mg/1; TSM 3.5 mg/l —

solid line) (after Green, 1998)

With continued increase in Chlorophyll a content, the reflectance peak of water

shifted toward longer wavelengths (Figure 2-6; Gitelson, 1992). Thus, the

indicator of the chlorophyll a concentration of the water column was related to

the shape of the reflectance curve in this region, and not simply the peak height

(Green, 1998).
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Figure 2-6 Reflectance spectra of the water bodies studied in Dall’Olmo and

Gitelson (2005). Some examples are highlighted: curve “Low” (Chl—a = 11 mg/l;

TSS = 5 mg/l), curve “High” (Chl—a = 89 mg/l; TSS = 21 mg/l), and curve

“Moderate” (Chl—a = 24 mg/l; TSS = 55 mg/l)

2.3 Spectral Characteristics of Complicating Factors (TSS and DOC)

A general problem concerning remote sensing of all waters was that the

reflectance signals were very weak and often also wavelength-specific (Ostlund

et al., 2001). The radiance leaving water was a function of solar intensity and

angle and the optical properties of the water attenuation, absorption, and

scattering. While solar incoming radiation varied in time, optical properties

varied in relation to the concentrations of optically active constituents, e.g.,
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phytoplankton pigments, particulate substances, and aquatic humus (Pepe et

al., 2001). The water column contained a mixture of dissolved organics,

inorganic suspended sediments, and chlorophyll a, which masked and

interfered with the spectral identification of the Chlorophyll a alone, especially

since the inorganic suspended sediment is a much brighter target than the

chlorophyll.

In the deep ocean environment, dissolved and suspended matter seldom played

important roles and often only one species of algae dominated (Ostlund et al.,

2001). Remote sensing spectral signature of chlorophyll a in the 400 nm — 550

nm region was used to estimate phytoplankton in the oceans (O’Reilly et al.,

1998). Such chlorophyll retrieval algorithms were derived solely from

regression techniques and ignore the specific absorption and scattering

properties of the water body being remotely sensed. The success of these

algorithms was largely a consequence of the optically simple characteristics of

mid-ocean and many near-coastal waters. Even though the optical properties

of deep off shore waters were primarily a function of phytoplankton

concentration, coastal and inland waters represented a much more complex

optical environment. Water bodies strongly influenced by land masses

displayed higher orders of optical complexity. This was a result of an increased

number of optically-active components co-existing within the water column, as

well as greater ranges in the variations of the concentrations of these aquatic

components. Due to the optically competitive compositions of coastal,

estuarine, lake, and river water masses, mathematical models developed mainly
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on marine waters might not adequately describe the same variables of interest

in lakes. The same wavelength region could not be applied in lakes, mainly

because absorption by colored dissolved organic matter hid the spectral

signature of chlorophyll a at these wavelengths. Instead, the interpretation of

chlorophyll a from remote sensing data in lakes was usually based on the 660

nm — 715 nm spectral region (Kallio et al., 2003; Kallio et al., 2001; Gitelson et

al., 1993). Harma et al. (2001) suggested that humic lakes needed to be

separated and interpreted using specific models developed for these types of

water bodies. Suspended sediment in lakes also had a significant effect on

chlorophyll a signature extraction because its reflectance was much higher;

therefore, it masked out the chlorophyll a absorption feature. Because of the

same reason, oligotrophic lakes might need to be interpreted separately.

Oligotrophic waters had week signatures that could be interfered easily by other

substances in the water.

Inland water color was related to the types and amounts of these substances in

the water column which interacted with light absorbing or scattering it (Flink et

al., 2001). The optical properties of natural bodies of water were influenced by

three main components, which could vary independently from each other

(Figure 2-7). These are (IOCCG Report Number 3, 2000):

(1) Phytoplankton - includes phytoplankton and other microscopic free-floating

organisms found in the illuminated surface layers of water. They were the

living organisms that form the base of the aquatic food web, and were an

important component of the global carbon cycle. The concentration of the main
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phytoplankton pigment, chlorophyll a, was often taken as an index of

phytoplankton biomass;

(2) Suspended inorganic material - included all inorganic particulate material

that was not included in the phytoplankton component; and

(3) Yellow substances — included the colored, dissolved organic substances, and

also “detrital” particulate material, for example from the degradation of

phytoplankton cells and other organic particles.
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Figure 2—7 Absorption spectral properties of optically active constituents in

water (after Dall’Olmo, 2005)

Extracting quantitative information about the constituents of interest from the

remotely sensed data from natural water that contained a mixture of materials
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was one of the greatest challenges in remote sensing (Goodin et al., 1993). To

begin with, it would be instructive to look at the effect that each of these

constituents had on the spectral reflectance characteristics of a water column

(Jensen, 2000).

2.3.1 Spectral Characteristics of Suspended Sediments

Sediment came from a variety of sources, such as agricultural cropland erosion

and urban surface runoff. The particles ranged from fine clay particles (3 pm —

4 pm in diameter), to silt (5 pm - 40 pm), to fine-grain sand (41 pm - 130 um),

and coarse grain sand (131 um - 250 pm). Most of the suspended mineral

sediment was concentrated in the inland and nearshore water bodies (Bukata et

al., 1995). Thus, suspended mineral concentration was usually of no

significance to deep ocean remote sensing studies. On the other hand, inland

water bodies might carry a significant load of suspended sediment that could

dramatically impact the spectral reflectance characteristics of the water bodies

(Jensen, 2000; Nanu, 1993).

For several reasons, it was important to monitor the type, amount, and spatial

distribution of suspended minerals in inland water bodies. First, sediment

affected water quality and its suitability for drinking, recreation, and industrial

purposes. Second, sediment served as a carrier and storage agent of pesticides,

absorbed phosphorus, nitrogen, and organic compounds and could be an

indicator of pollution. Third, photosynthesis by phytoplankton and submerged

aquatic vegetation could be significantly impacted as suspended sediments
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impede the transmission of solar radiation in the water column. These

phytoplankton and aquatic vegetation played a vital role in the food Chain of the

aquatic ecosystem (Jensen, 2000).

Fortunately, remote sensing had been used to monitor the suspended mineral

concentrations in water bodies. The in situ measurements of suspended

mineral concentrations were usually required to derive a quantitative

relationship with the remote sensor data. When collecting samples, the remote

sensor data and the in situ suspended sediment measurements should be

collected on days that have little wind because wind-roughened surface water

created specula reflections (Jensen, 2000; Han and Rundquist, 1998).

When both suspended mineral sediment and Chlorophyll were present in the

water body at the same time, a dramatically different spectral response was

produced. For example, Figure 2-8 illustrated the spectral response of water as

red loam sediment concentrations from 0 - 500 mg/l were added to water that

contained algae. For algae laden water, the green peak reflectance shifted from

547 nm at 0 mg/l to 596 nm at 500 mg/l (Jensen, 2000).
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Figure 2-8 Percent reflectance of algae-laden water with various concentrations

of suspended sediment ranging from 0 — 500 mg/l (after l-Ian, 1997)

Figure 2-9 depicted the spectral reflectance of clear water and water with

varying suspended sediment concentrations of two different type of soils; clayey

and silty. For a deep clear water, spectral reflectance dropped continuously

after approximately 580 nm due to increased absorption in the water column.

Increased in suspended particulates (either inorganic or organic) were related to

increase in overall brightness (Shafique et al., 2001). A water body with

suspended sediment in it would generally appear brighter in imagery than a
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water body without any suspended sediment. The clayey soil (Figure 2-9b) had

approximately 10 percent lower reflectance at all wavelengths than the light-

colored silty soil because it contained more organic matter and was darker in

color (Figure 2-9a). If the suspended particulates were organic in nature, the

reflectance data indicated a relative increased at about 705 nm (Shafique et al.,

2001). Reflectance increased in the 580 nm — 690 nm region and in the near-

infrared region as more minerals sediments were added to the water bodies.

Thus, the peak reflectance Shifted toward longer wavelengths in the visible

region as suspended sediments increased (Jensen, 2000). These results

suggested that: (1) the type of suspended sediments (soil) in waters might be

assessed using the visible wavelength range of 580 nm — 690 nm; and (2) the

amount of suspended minerals in waters where suspended minerals were the

predominant constituent might be estimated using the near-infrared

wavelength range of 714 nm — 880 nm.
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Figure 2-9 (a) In situ spectral reflectance measurements of Clear water and clear

water with various levels of clayey soil suspended sediment concentrations from

0 - 1,000 mg/1. (b) In situ spectral reflectance measurements of clear water and

clear water with various levels of silty soil suspended sediment concentrations

(after Lodhi et al., 1997)
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2.3.2 Spectral Characteristics of Dissolved Organic Carbon

A group of lakes that have high humic concentration made the interpretation of

present multispectral remote sensing data practically impossible. The remotely

measured signal was very low from these lakes due to strong absorption caused

by high concentrations of colored dissolved organic matter (DOM), and low

concentrations of particles causing scattering (Kutser et al., 2001).

The effects of dissolved organic compounds on the absorption of light energy

were marked (Wetzel, 2001). Sunlight penetrates into the water column at

certain photic depth (the vertical distance from the water surface to the 1

percent subsurface irradiance level). Within this depth, phytoplankton

consumed nutrients and converted them into organic matter via

photosynthesis. The process was called primary production. Zooplankton also

consumed the phytoplankton and created organic matter. Bacterioplankton

decomposed these organic material. All the conversion produced dissolved

organic matter (DOM) in the water bodies. The more productive the

phytoplankton, the greater the released of dissolved organic matter. In certain

instances, there might be sufficient dissolved organic matter in the water to

reduce the penetration of light in the water column (Jensen, 2000; Bukata et

al., 1995).

These dissolved humic substances were called yellow substance and could (1)

impact the absorption and scattering of light in the water column, and (2)

change the color of the water (Jensen, 2000). In comparison to pure water, lake
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water with increasing concentrations of dissolved organic compounds,

particularly humic acids, not only drastically reduced the transmission of light

but shifted absorption selectively. Clear waters had a very high absorption in

red and infrared wavelengths, but a relatively little absorption in UV

wavelengths (300 nm - 400 nm; Figure 2-1). Very low concentrations of

dissolved organic compounds increased UV absorption greatly. Most of the

irradiance in UV, blue, and green wavelengths were essentially absorbed in

much less than a depth of 1 m in lakes highly stained with humic compounds

(Wetzel, 2001).

Phytoplankton was not the only source of dissolved organic matter. For

example, the brownish—yellow color of the water in many rivers in the northern

United States was due to the high concentrations of tannin from the eastern

hemlock (Tsuga Canadensis) and various other species of trees and plants

grown in bogs in these areas. These tannins potentially create problems with

remote sensing of inland water bodies (Jensen, 2000).

Information about the phytoplankton pigments from remotely sensed data of

natural inland water body that was effected by dissolved organic matter (DOM)

was often more difficult to unwind. Figure 2- 10 showed the spectra of natural

waters that were dominated by different concentration of chlorophyll a and

dissolved organic matter.
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Figure 2- 10 Examples of water reflectance for different chlorophyll a

concentrations in natural waters (after Dall’Olmo, 2005)

2.4 Spectral Characteristics of Algae

Algae were extremely diverse, and many exhibited a very wide tolerance to

environmental conditions found under natural limnological situations.

Nonetheless, certain Characteristic phytoplanktonic associations occurred

repeatedly in lakes of increasing nutrient enrichment. Some of the commonly

observed major associations were described in Table 2-2 based on the detailed

discussion of Hutchinson (1967) as cited in Wetzel (2001). However, the wide
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spectrum of intergradations was often observed, and species composition shifts

occurred seasonally from one type to another, especially among more

productive waters. Nevertheless, such Characterizations yielded insight into

regulating environmental factors, thus they were useful from the standpoint of

general correlations between qualitative and quantitative abundance of the

algae and available nutrients.

Table 2-2 Characteristics of common major associations of the phytoplankton

in relation to increasing lake fertility (after Hutchinson, 1967 as cited in Wetzel,

 

 

 

  
 

 

  

200 1)

General lake Water characteristics Dominant algae Other

trophy commonly

occurring algae

Oligotrophic Slightly acidic; very low Desmids Sphaerocystis,

salinity Staurodesmus, Gloeocystis,

Staurastrum Rhizosolenia,

Tabellaria

Oligotrophic Neutral to slightly Diatoms, Some

alkaline; nutrient-poor especially Asterionella spp.,

lakes Cyclotella and some Melosira

Tabellaria spp., Dinobryon

Oligotrophic Neutral to slightly Chrysophycean Other

alkaline; nutrient-poor algae, especially chrysophyceans,

lakes or more Dinobryon, some (e.g., Synura and

productive lakes at Mallomonas Uroglena); diatom

seasons of nutrient Tabellaria

reduction

Oligotrophic Neutral to slightly Chlorococcal Oligotrophic

alkaline; nutrient-poor Oocystis or diatoms

lakes Chrysophycean

Botryoooccus  
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Oligotrophic Neutral to slightly

alkaline; generally

nutrient poor; common

in shallow Arctic lakes

Dinoflagellates,

especially some

Peridinium and

Ceratium spp.

Small

Chrysophytes,

cryptophytes,

and diatoms
 

Mesotrophic

or eutrophic

Neutral to slightly

alkaline; annual

dominants or in

eutrophic lakes at

certain seasons

Dinoflagellates,

some Pen'dinium

and Ceratium

spp.

Glenodinium and

many other algae

 

 

    

Eutrophic Usually alkaline lakes Diatoms much of Many other

with nutrient year, especially algae, especially

enrichment Asterionella spp., greens and

Fragilaria cyanobacteria

crotonensis, during warmer

Synedra, periods of year;

Stephanodiscus, desmids if

and Melosira dissolved organic

granulata matter is fairly

high

Eutrophic Usually alkaline; Cyanobacteria, Other

nutrient enriched; especially cyanobacteria;

common in warmer Anacystis euglenophytes if

periods of temperate (=Microcystis), organically

takes or perennially in Aphanizomenon, enriched or

enriched tropical lakes Anabaena polluted
 

2.4.1 Spectral Characteristics of Algal Pigments

The amount of chlorophyll a was considered a reasonable representative for the

organic component of optically complex natural waters (Bukata et al., 1995). It

was a good indicator of the quality of lake water as it correlated well with the

total productivity of a lake and; therefore, with the nutrient load and overall

condition of the lake (Koponen et al., 2001).
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Algae contained colored pigments - the chlorophylls, carotenoids, and

biliproteins, which gave them characteristic spectral features. The pigments

were used in the photosynthetic process. All algae and cyanobacteria contained

the photosynthetically active pignent chlorophyll a as it was the primary

photosynthetic pigment of all oxygen-evolving photosynthetic organisms.

Chlorophyll a absorbed light in the blue (near 430 nm) and red (660 nm —- 665

nm) parts of the spectrum, thus giving the substance itself a green color

(Wetzel, 2001). Bluegreen algae, or cyanobacteria had other important

phytoplankton photosynthesizing agents: carotenoids, and phycobilins (primary

phycocyanin in freshwater, and phycoerythrin in marine environments).

Phycocyanin absorbed more toward the yellow and green part of the spectrum

giving the pigment a blue shade.

Fortunately, different genus of phytoplankton appeared as different colors to

sensitive remote sensors because they had different types and concentrations of

pigments (Figure 2- 11). The wavelengths of pigment absorptions could be used

together with nearby wavelengths, which were less affected by the pigment

absorption, to detect the presence of the pigment. Often indices, which were

used for quantification, were constructed from reflectance at pigment

absorption wavelengths (Flink et al., 2001). Thus, the amount and general type

of phytoplankton might be estimated by recording the optical spectra of the

water body, and information about the health and chemistry of the water body

could be assessed. Changes of optical water condition over time could be

monitored by comparing images taken at different times (Jensen, 2000).
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Figure 2-11 Maximum and minimum absorption values in the reflectance

spectra of pure algal culture (after Shafique et al., 2001)

In addition, other pignent peaks might also be apparent in the reflectance

curves. The measurement of phycocyanin spectral Characteristic done in a

controlled laboratory environment resulted in a maximum absorption at 630

nm. The absorption feature should also be observable as a trough in the in situ

reflectance curve. In Figure 2- 12, the effect of this additional pignent

absorption was demonstrated. The two lakes, with similar chlorophyll

concentrations, differed in that one was predominately by green algae while the

other was predominate by cyanobacteria. The relative size of the chlorophyll a/

water peak near 700 nm was the same; the extra absorption in this region,

most notably at 630 nm, was due to the phycocyanin content. This showed the
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potential of the remote sensing as “cyanobacteria detectors” which could benefit

environmental monitoring because some of these blue-green algae are toxic

(Green, 1998).
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Figure 2- 12 Two reflectance curves from lakes with similar high levels of

chlorophyll — but one contains phycocyanin, indicating a cyanobacteria (the

phycocyanin absorption peak at 630 nm is expressed as a trough in

reflectance), while the other exhibits the properties of green algae (after Green,

1998)
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2.4.2 Cyanobacteria (Bluegreen Algae) Detection (Potential Toxic Algal

Detection)

Subramaniam et al. (1999) parameterized a standard remote-sensing

reflectance model using measured values of Trichodesmium’s inherent optical

properties, namely the spectral dependence of the chlorophyll-specific optical

absorption cross-sections and the spectral dependence of the chlorophyll-

specific backseatter cross-sections. Sea truth and data from the Advanced Very

High Resolution Radiometer (AVHRR) were used to map a 300,000 km2

Trichodesmium bloom ofi' the Somali Coast in May 1995.

In biological oceanography, changes in optical properties had been used to infer

upper ocean chlorophyll a concentrations, which could, in turn, be related to

primary productivity. It had been very difficult, however, to quantify the

temporal and spatial extent of new production in the oceans, let alone the

contribution of N2 fixation to that flux. The nonheterocystous, colonial

cyanobacterium, Trichodesmium spp., was responsible for most of the N2

fixation in the open oceans (Capone et al., 1997). Hence, a remote-sensing

algorithm capable of distinguishing these organisms from all other

phytoplankton would be of enormous value in constraining estimates of N2

fixation in the world’s oceans.

Together, the optical properties and physiological behavior of Trichodesmium

potentially provided a basis for developing algorithms capable of uniquely

identifying and quantifying their distributions based on remotely sensed
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information (Subramaniam and Carpenter, 1994). The research analyzed the

backseatter properties, in conjunction with absorption properties, of

Trichodesmium and parameterized a remote sensing reflectance model which

derive satellite observations of ocean color in the visible and near-infrared

(Subramaniam et al., 1999).

The backseatter coefficient for Trichodesmium was wavelength dependent.

“Backseatter” peaks centered between 550 nm and 579 nm and at 640 nm were

a consequence of phycoerythrin and allophycocyanin fluorescence, respectively,

rather than true elastic backseatter. Typically, chlorophyll a fluorescence

emission overwhelmed the red absorption band, such that the backseatter

spectrum revealed a peak in this region (Ahn et al., 1992). Remote sensing

reflectance spectra of phytoplankton blooms typically contained a “green peak,”

centered around 575 nm. The peak was a consequence of an absorption

minimum in that portion of the spectrum in most phytoplankton taxa, coupled

with a sharp increased in the water absorption spectrum. As a consequence of

both the intrinsically high backscatter and phycoerythrin fluorescence, the

remote-sensing reflectance was extremely high around 575 nm for blooms of

Trichodesmium The reflectance was approximately fivefold higher than that for

Synechococcus or typical phytoplankton at high densities of Chlorophyll

biomass (10 mg Chl m-3; Figure 2-13).
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Figure 2- 13 Reflectance model for chlorophyll = 10 mg/m3 (after Subramaniam

et al., 1999)

Although remote sensing of phytoplankton in the ocean was primarily based on

water-leaving radiance in the visible, the colonial and buoyancy behaviors of

gas vacuolated cyanobacteria offered opportunities to exploit the red and near-

infrared regions of the spectrum as well. In the specific case of Trichodesmium,

the virtual absence of solar—induced fluorescence of Chlorophyll a, the optical

brightness resulting from gas vacuoles, and the removal of absorption by water

in the near-infrared permitted the development of simple two-Channel

reflectance difference indices from AVHRR data to map distributions of surface

blooms. While this approach was inferior to that utilizing visible color
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information, AVHRR data could be used to map, retrospectively, the

distribution of surface blooms where there was simultaneous in situ information

identifying the bloom organism.

2.5 Most Sensitive Spectral Bands

Spectral wavebands that were successfully used in the reviewed researches

were summarized in Table 2-3. Several studies have shown spectral bands that

were found link to water quality variables were in common spectral regions.

However, a slight Shift in wavelengths might occur due to the different nature of

research (e.g., controlled laboratory setting versus natural condition) and/or

different condition of water (e.g., high DOC and TSS). When Chlorophyll

increased, the near-infrared peak often shifted to the longer wavelength as well.

The spectral bands that were found to be sigrificant from previous studies were

used as a general guide in the optimal spectral band identification process in

later sections.
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Table 2-3 Summary of wavebands from literature review
 

 

 

 

 

 

 

 

 

 
 

 

 

Parameter Wavelength (nm) Optical Properties Reference

Chlorophyll a 440-450 Distinct absorbance Shafique et al., 2001

in blue

575 “Green peak” from Subramanium et al.,

min algae abs + 1999

sharp increase water

abs

650 Min absorbance Dekker et al., 1992

670-680 Distinct max Kallio et al., 2003

absorbance in red Shafique et al., 2001

Dekker et al., 1992

705 Local peak due to Kallio et al., 2003

max abs at 670 + Shafique et al., 2001

growing water

absorption

SS 705 Type of sediment Shafique et al., 2001

580-690 Amount of sediment

Cyanobacteria 550-579 Phycoerythrin Subramanium et al.,

1999

625 Phycocyanin Jupp et al., 1994

630 Local minimum Dekker et al., 1992

reflectance

640 Allophycocyanin Subramanium et al.,   1999
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2.6 Spectral Band Selection Methods

Several analytical methods were used to determine wavebands that best

described biOphysical variables. The methods that were used most frequently

in the remote sensing of water studies were principle component analysis and

the spectral derivative analysis.

2.6.1 Principle Component Analysis (PCA)

In order to create an index suitable for water quality variable mapping, the

wavelengths where substance-specific features existed must be identified. Such

an index should exhibit high variance, which will reduce the influence of noise

in subsequent regression analysis. The amount of data collected by

hyperspectral spectrometers is immense and it is, therefore, often necessary to

remove redundancy in the dataset. Principal Component Analysis (PCA) can be

used to determine the inherent dimensionality of the dataset. Flink et al. (2001)

used reflectance values derived from CASI bands 35-288. Figure 2- 14 showed

the standard deviation as a function of wavelength. Low variation was

associated with the chlorophyll a absorption wavelengths.
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Figure 2- 14 Standard deviation of the data at different wavelengths for Lake

Erken (after Flink et al., 2001)

A PCA was performed on these correlation matrix, and constructed new

variables called principal components (PCs) as linear combinations of the

original variables. PCA also concentrates the majority of the variance of the

dataset into a few new non-correlated components, thus reducing redundancy.

In this study, more than 96 percent of the total variance of the data was

contained in only three PCs (i.e., any spectra in the lakes could be fairly well

approximated by a weighted sum of only three PCS). Flink et al. (200 1)

reconstructed all 100 lake spectra from their three first PCs and then

subtracted them from the corresponding original spectra to derive the

approximation error. Flink et al. (2001) cautioned that PCA should be used
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with care. The PCs should be identified with physical phenomena only when

there are obvious connections, as in previous work, e.g., Doerffer et al. (1989),

where they interpreted PCs calculated from TM data as physical variables based

on factor analysis. Their identified factors were temperature, suspended matter

and aerosol effect. These factors were likely to have been uncorrelated, just as

are the PCS. Other variables such as chlorophyll a and suspended particulate

matter (SPM) (and even suspended inorganic material) were often highly

correlated. One should keep in mind that a PCA gave uncorrelated variables as

its result; therefore, the PCs should be interpreted with care. Measurements of

variables were very seldom uncorrelated in reality, either because the variables

were inherently correlated or because the method used for measuring them

yielded a correlation (Flink et al., 2001).

Many single band algorithms performed well in Lake Erken data, e.g., Band 550

nm gives an R2 of 0.94 between lake spectra and chlorophyll a. However, at the

corresponding wavelength (550 nm) it was difficult to determine if the variations

were caused by chlorophyll a or by some other substance in the water. Thus,

mapping by means of one single band was possible, as long as chlorophyll a

constitutes almost the entire amount of material in the lake. A physically

sound model, however, should include bands at chlorophyll-specific features

(e.g., a ratio between bands at 708 nm and 680 nm), which is probably the

most widespread way of measuring Chlorophyll a.
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2.6.2 Spectral Derivative Analysis

Spectroscopic derivatives are obtained by taking the difference between the

reflectance of two bands and dividing that value by the difference between the

wavelengths separating the two bands (Philpot, 1991). When the two bands

used in the calculation are adjacent to one another, the result is the first

derivative (Shafique et al., 2001). Pepe et al. (2001) developed the chlorophyll a

model using derivative method. The model based on the higher sensitivity of

reflectance lst derivative spectra to concentrations of optically active substances

than the radiance reflectance spectra themselves. Correlation analyses were

carried out with a first derivative at each hand-held spectroradiometer band

pass. Spectral band at 676 nm proved to be the best-correlating wavelength in

most cases, corresponding with a peak in Chlorophyll a absorption (Han and

Rundquist, 1997). On the basis of those results, 676 nm as a sole wavelength

was used to evaluate the applicability of the first derivative spectra model to

every lake condition. Considering the results of the first-derivative model over

the complete acquired spectrum (380 nm — 780 nm), the result showed that

higher correlation values were dependent on wavelength with respect to

chlorophyll contents and sampling depths. In any case 676 nm proved to be

the most often correlated wavelength. The first derivative of reflectance at 676

nm was sufliciently reliable only when average chlorophyll a contents higher

than 2 ug/l; and when the Cyanophyceae (bluegreen algae) presence less than

20 percent in the phytoplankton biomass. The accuracy of let derivative

method and the near-infrared/red reflectance ratio (NIR/red) were tested in the

study. The NIR/red model was based on the contrast between a local
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reflectance peak feature at approximately 705 nm due to a minimum

absorption by the pignent and the water, and a local reflectance minimum

feature at approximately 670 nm due to the absorption maximum of Chlorophyll

a. The results showed that NIR/red model results were less satisfactory than

the first derivative one.

Rencz (1999), and Huguenin and Jones (1986) examined a variety of higher-

order derivatives of spectra in an effort to identify the location of individual

absorption regions. While assuming that each absorption was symmetric

around its band center, the method did not require that absorptions have a

specific Shape. Band centers were identified where the second derivative of the

spectrum was negative, the fourth derivative was positive, and the fifth

derivative was zero. Like any derivative analysis, this method was highly

sensitive to noise. Therefore, the Huguenin and Jones (1986) approach was

critically dependent on an intelligent smoothing algorithm. Nonetheless, their

approach was capable of resolving overlapping band centers separated by as

little as 0.1 to 1.0 of the full width at half maximum (assuming Gaussian

shaped absorptions). Although derivative technique was sensitive to noise, Tsai

and Philpot (1998) concluded that an algorithm for derivative analysis of

hyperspectal data was a tool that treated hyperspectal data as truly spectrally

continuous data. Moreover, the approach could be used with no need to

assume that the data were generated in highly controlled environments.
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2.7 Spectral Indicators

In order to assess water quality by using remote sensing data, the relationship

between spectral data and water quality variables such as Secchi depth,

Chlorophyll a, and suspended sediment need to be identified and quantified. A

variety of statistical methods such as band rationing and regression techniques

have been used to derive these water quality modeling. Wavebands that were

identified to be important for water quality indicators were usually set as the

dependant variables while water quality parameters were independent

variables.

2.7.1 Spectral Band Ratio Method

Certain band ratios , could be used successfully for chlorophyll mapping in

inland waters (Koponen et al., 2001; Gitelson et al., 1993). Dekker (1993) and

Gitelson et al. (1993) found that the optimum ratio of spectral radiance or

reflectance at two wavelengths (Ax) and (Ay) is achieved where (Ax) was in the

range from approximately 680 nm - 710 nm (corresponding to the chlorophyll a

fluorescence peak and volume scattering from particulate matter) and (Ay) was

at approximately 665 nm - 680 nm (the region of the chlorophyll a absorption

maximum).

 

(Eq 2-1)

“ o l Lu“)Chla(pg/l) —- a + a [Lay-)1

Pulliainen et al. (2001) employed the wavelength ranges suggested by Gitelson

et al. (1993) in their chlorophyll a retrieval algorithms. The optimum channel
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ratio was selected empirically using a training data set to determine the highest

correlation with Chlorophyll a concentration. A linear regression model

employing the Channel ratio Ifl02nm / Leesmm yielded a maximum value of R2 =

0.94. However, when the predicting waters were affected by various substrates

besides chlorophyll (e.g., humic and high suspended sediment), application of

Eq 2-1 with remote sensing data may encounter some problems especially if

other parameters in addition to chlorophyll a affect the ratio L01.) / L(Ay). This

method might require the data set to be pre-classified into different sub-groups,

e.g., based on the shape of the measured radiance spectra, in order to increase

the chlorophyll a estimation accuracy.

Koponen et al. (2001) also used the AISA data to measure Chlorophyll a

concentration in lakes. The study found the 702 nm/ 673 nm band ratio

produced the best result. Their results confirmed that an airborne

spectrometer was a useful tool for chlorophyll a monitoring in lakes. The result

corresponded well to the finding of other authors (e.g., Dekker et al., 1992 or

Gitelson et al., 1993).

George and Malthus (200 1) used an array of wavelength-specific correlation

coefficients to determine the ‘single band.’ Low coefficient values indicated that

the radiance values at these wavelengths were not influenced by the presence of

phytoplankton. High positive or negative values indicated that the radiance

values were strongly influenced by the concentration of phytoplankton. The

strongest correlation between the two variables was recorded in the green and

52



red portions of the spectrum where the ‘r‘ values were positive and reached a

maximum value of 0.86 (P < 0.05). Then, the correlation between all possible

combinations and the measured concentration of chlorophyll a was calculated.

The results suggested that the most effective multi-band algorithm would

contrast the amount of ‘green’ light reflected with that absorbed at the ‘blue’

end of the spectrum. The ratio of measurements centered at 550 nm and 440

nm (the ratio identical to the blue/green ratio suggested by Clarke et al., 1970)

was found to perform best for chlorophyll prediction, and the ratio of

measurements at 685 nm and 745 nm (rather similar to the long-waveband

ratio recommended by Dekker, 1993) performed well for waters containing high

concentrations of dissolved organic matter.

2.7.2 Statistical Method

Multivariate statistics have been developed and applied successfully for spatial

or spectral analysis of remote sensing data, usually derived from established

methods in multivariate statistics (Tsi and Philpot, 1998; Richards, 1993; Duda

and Hart, 1973). Giardino et al. (2001) adopted several statistical techniques to

examine the relationship between in situ measured parameters (i.e., Secchi disk

and chlorophyll a) and remote sensing reflectance values fi'om the Landsat

Thematic Mapper sensor. These models included linear, exponential and log

transformations. A few previous studies used nonlinear power models (y=aXb)

to address the curvilinear behavior of this relationship (e.g., Cox et al., 1998;

Lathrop, 1992). Although a power model provided a strong correlation,

residuals from it were not normally distributed. In contrast, the semilog
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equation used by Kloiber et al. (2002) met the model assumptions. A similar

result had been found by Pattiaratchi et al. (1994). Regression models were

used to determine the relationship between the difference between reflectance

values difference between TM bands 1 and 3 (TM 1 — TM3), and the ratio

between TM bands 1 and 2 (TMl /TM2). These models allowed the surface

distribution of chlorophyll a concentrations and Secchi disk depths to be

determined with good confidence (the coefficients of determination were 0.99

and 0.85, respectively; Giardino et al., 2001).

Kloiber et al. (2002) took a further step to develop a standard model that used a

consistent equation form for using satellite remote sensing data to estimate key

variables related to lake management issues, such as trophic state condition

and water clarity. Rather than using regression equations where the

independent variables were different for each image, the feasibility of using a

consistent equation form to relate ground observations and satellite data was

examined. A Pearson correlation matrix was developed to examine the relative

strength of correlation between Secchi disk transparency depth (SD) and

various Landsat TM bands and band ratios. Results indicated that regressed

log-transformed SD versus the TM 1 /TM3 ratio plus TM 1 (TM 1/TM3 + TM 1)

provided strong predictive relationships for multiple images over a 25-year

period. However, the efl'ect of increased scattering by suspended particles

impacted much of the visible and near-infrared portion of the spectrum from

about 500 nm to about 850 nm. This scattering effect overwhelmed the subtler

influence of other features such as the Chlorophyll a minimum. Although a
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relationship between water clarity and Landsat measured reflectance can be

established, this should not be construed to imply that such relationships

could be developed for other water quality variables such as chlorophyll a.

Kloiber et al. (2002) noted the importance of radiometric calibration. The

brightness values of the pixels in a satellite image were affected by sun angle,

atmospheric interference, changes in detector response, and numerous other

factors. If radiometric correction techniques accounted for these factors, then

the coeflicients for the models would be more consistent, and one set of

coefficients would apply for different images across time and space.

All relevant publications on techniques that were used with hyperspectral data

were reviewed and discussed, specifically what had been done, and what

needed to be done in order to improve remote sensing of water quality.

Although some of the spectral bands were identified in the previous studies,

they were not generalizable due to the disadvantages of empirical methods that

are data dependant. An empirical model was often derived based on

relationship between dependant and independent variables from a specific set

of data. Spectral indicators based on correlations between local in situ

measurements of water quality and spectral variables at one location may not

represent the relationship between the same variables at different locations.

Spectral indicators developed from wavebands that truly explain optical

properties of the variables such as absorption and reflectance features are the

potential solution. However, very few studies have been conducted on deriving
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the spectral features of water, such as spectral library development, when

compared to those in mineral and vegetation sciences. In addition, the spectral

bands identified by these derivative techniques were mostly derived from a

specially controlled environment. Therefore, they may not be applicable in the

real natural environment. Water quality studies should be conducted on a

spatial extent large enough to account for the local biophysical conditions, such

as dissolved organic carbon from woods in nearby swamps or suspended

inorganic sediment areas with high slopes, in order for the method to be

generalizable. A study to use spectral bands that were developed based on

optical properties of water quality variables to quantify the relationship between

water quality and spectral data within a natural biophysical condition needed to

be conducted at large scales. This study attempts to develop in the remaining

chapters generalizable algorithms that are spatially and temporally

independent. The objectives of this study are to (1) identify optimal spectral

bands that are most sensitive to water quality indicators in the various water

bodies within Michigan; (2) develop improved spectral water quality indicators;

and (3) determine the most effective filters for noise removal in hyperspectral

remote sensing data.

56



CHAPTER 3

EXPERIMENTAL DESIGN

Fieldwork was conducted throughout the Lower Peninsula of Michigan. A

majority of the sampled lakes was in the Muskegon River Watershed due to the

extensive amount of ecological research that had been going on within this

watershed. Muskegon River Watershed attracts researchers because it contains

high variation in topography and land use/ land cover types. However, the

experiment was desigied to include lakes in a wide trophic range. The study

site was therefore extended to the entire Lower Peninsula of Michigan. One

purpose of this study was to quantify the relationship between spectral

information and biophysical variables that indicate water quality. Bathymetric

maps were used to predetermine the sample sites within the lakes in order to

diminish the effects of other features, such as lake bottoms and submerge

vegetations. Data were collected when the sky was cloud and haze free to

minimize inconsistency in down-welling radiance and the effect of atmospheric

gases, and when the sun elevation was high above the horizon to reduce the

sun-glint (hotspot) effects. The Characteristics of the study area, spectral and

water quality data acquisition procedures along with analytical methods are

presented in the following sections.
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3.1 Description of the Study Area

The study site covered almost the entire Lower Peninsula of Michigan.

Therefore, biotic and abiotic components of the Lower Peninsula were described

following (Albert, 1995; Schuette and Skjaerlund, 1994; Veatch, 1941).

3.1.1 Climate

The weather of Michigan was controlled by three major air masses, the

Continental Polar, Maritime Tropical, and the Maritime Polar (Eichenlaub, 1979).

The Continental Polar air mass, forming over land in the Arctic, brought cold,

dry weather in the winter and cool conditions in the summer. The Maritime

Tropical, forming over the waters of the Gulf of Mexico to the south, brought

warm moist winter weather and hot humid summer conditions. The Maritime

Polar air mass originated in the northern Pacific Ocean, although it originally

carried large amounts of moisture, much of this was lost on the western slope

of the Rocky Mountains. The air warmed as it descended from the mountains.

The Maritime Polar air mass brought mild weather with little precipitation to

the Midwest.

The Great Lakes were another major control on climate for Michigan. These

effects increased the amount of storms over and nearby to the lakes during the

winter, but decreased the intensity of storms and increased the stability of air

masses over the lakes during the spring and summer. Areas where elevation

increases rapidly near lakes receive the most lake-effect precipitation. Climate

was responsible for major differences in both soils and vegetation. Along the
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Great Lakes, the air near the coast warms more slowly in the spring and cools

more slowly in the fall than in the continental climate area.

3.1.2 Bedrock Geology

The continental interior of North America, including all of Michigan, Minnesota,

and Wisconsin, was known as the Central Stable Region or craton, an area that

was relatively stable during the Paleozoic (Dorr and Eschman, 1984). During

the Paleozoic, from Cambrian to Pennsylvanian times, the southern portion of

the craton, including Michigan, Minnesota, and Wisconsin, was intermittently

submerged beneath shallow seas. Marine and near shore sediments, including

limestone, dolomite, evaporites, sandstone, and shale, were deposited over

Precambrian bedrock.

Roughly 31.6 percent of Michigan was comprised of poorly drained soil (Veatch,

1941). The terms “clay soil,” often referred to land underlain by clay at a depth

of a few inches to approximately one foot. This broad group of soil constituted

the greater part of the highly productive and durable agicultural land in the

State of Michigan. An estimated 70 — 75 percent of the original wet or shrub

land underlain by clay had been cleared and drained for some sort of

agicultural use by 1941 (Veatch, 1941).
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3.1.3 Physiography

Modern physiog'aphy and soils were the result of postglacial erosion and soil

formation processes as the result of glacial deposits during the Wisconsinan

Glaciation of the Pleistocene Epoch. Erosion of bedrock and unconsolidated

materials occurred beneath the advancing glacier. The advancing ice scoured

the bedrock uplands, producing rounded knobs. Rocks and soil materials were

carried in the glacial ice and later redeposited and formed diverse features,

including moraines, drumlins, eskers, kames, and outwash plains. Lakes and

depressions were common in the glacial landscape. Many lakes formed when

large blocks of ice were surrounded by outwash sands as the glacier melted.

Lakes also formed in linear depressions that had been scoured out by the

glacier. Swamps and marshes occur where vegetation colonized shallow

depressions. Michigan’s unique geographical location provided its citizens with

rich freshwater resources including over 11,000 inland lakes. In addition to

ecological value, lakes provided tremendous aesthetic and recreational value for

people in Michigan.

3.1.4 History of Land use/ Land cover in Michigan

The present-day vegetation of Michigan resulted from the physical environment,

post-Pleistocene species migration patterns (Albert, 1995), and human

alteration of lands and plant communities. Disturbances such as logging,

agiculture, drainage, fire, and fire exclusion had significantly altered plant

cover and composition (Albert, 1995). Located in the Midwestern Corn Belt,

Michigan has an enormous area of agicultural land. Most farmers apply
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nutrients to maximize their crop yields, but excessive nutrients carried by water

runoff became pollutants downstream. The tile-drained soil of Michigan

enhanced the severity of the nutrient pollution problem by preventing

penetration of nutrients into the ground. As a result, considerable amounts of

fertilizers accumulated into nearby lakes.

During the past 100 — 125 years the natural landscape of Michigan had been

altered by human actions (Veatch, 1953). Humans cannot change the major

elements of the environment, such as the climate, the land forms, the

composition of the Glacial drift covering, or the bedrock; however, they can

make alterations in the cover of vegetation, the fauna, the soil, and the waters.

The effects of man’s activities after 100 years were not geographically uniform

throughout the state, partly because of the differences in regional Climate,

topography, soil and other resources. Those variable impacts resulted in part

from the spatial distribution of the population in Michigan. Historically,

approximately 90 percent of the people in the state lived in the southern half of

the region with only 5 percent in the entire Upper Peninsula (Veatch, 1953).

Out of the approximately 149,734 km2 of the land area of Michigan, 72,843 km2

(48.6 percent) were Classified by the US. Census (1953) as farmland and as

much as 8,094 km2 as cities, industrial sites, highways, and rural homes

(Veatch, 1953). Agiculture contributed more than 37 billion dollars annually

to the state economy (Schuette and Skjaerlund, 1994). Michigan has many

agicultural advantages, such as an abundance of inland fresh water, fertile

soils and a mild Climate moderated by the Great Lakes. Because of its unique
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micro-climates, the state of Michigan was ranked second in the nation with

agicultural diversity. Over 100 different food and fiber products had been

produced in Michigan. The state has been the lead producer of tart cherries,

blueberries, flowers and edible beans (Schuette and Skjaerlund, 1994).

Land use in Michigan has decreased in agicultural land and pasture. This

decrease in agicultural acreage occurred in concert with increases in urban

and built-up land (National Resources Inventory, 1987). Agiculture was

directly impacted by recent trends in land use patterns. Michigan had not

experienced sig'iificant increases in population during the last 20-25 years,

although a dramatic shift in the location of residential development had

occurred. As a result, the amount of land used for residential housing had

continued to increase at a rapid rate, placing additional pressures on

agicultural land. When suburbs expanded, they often invaded lands

previously planed in agricultural corps (Schuette and Skjaerlund, 1994). The

impact of increasing residential development was not only in the loss of

farmland, but also impacts existing farm operations. Decreasing farm size led

to increase in crop production by intensification of cultivation and improvement

of farm management. Where the natural fertility was not favorable, increased

use of commercial fertilizers was an alternative to help boost production

(Veatch, 1953). This change in farm operations could magnify the non-point

source pollution problem.
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3.1.5 Selected Lakes in this Study

In situ data were collected from 42 lakes in Michigan from April 24 to August

26, 2004 (Figure 3— 1). Some lakes were revisited in both spring and summer

eresulting in 49 independent in situ measurements of chlorophyll a (CHL), total

suspended sediment (TSS), Secchi disk depth (SD), total nitrogen (TN), total

phosphorus (TP), non-purgable organic carbon (NPOC), light extinction profile,

dissolved oxygen (DO) profile, temperature profile, phytoplankton species

composition, and reflectance spectra. In situ upwelling radiance from the water

column was measured with the hand-held spectroradiometer (LabSpec® Pro,

Range 350 nm — 2,500 nm with sampling interval 1.4 nm @ 350 — 1050 nm and

2 nm @ 1,000 nm — 2,500 nm). An intensive ground truth data set was

collected between July 24 — 28, 2004 within days of the airborne hyperspectral

imagery acquisition (July 24 and July 26, 2004), respectively.
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Figure 3- 1 Geographic location of the lakes sampled in the study

The field measurement lakes were selected to represent a wide range of water

quality characteristics (from hypertrophic waters to oligotrophic waters) based

on the preliminary trophic state data estimated from historic CHL and SD

measurements from three sampling programs: (1) the Michigan Department of

Environmental Quality’s (MDEQ) Lake Water Quality Assessment (LWQA)
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Monitoring Program, (2) the Michigan Cooperative Lake Monitoring Progam

(CLMP), and (3) Professor R. Jan Stevenson’s algal ecology lab, MSU

Department of Zoology. These data were collected in spring and summer

between May - August of 2001 to 2003. Water conditions of the sample lakes

varied from Clear (SD 8.5 m) oligotrophic lakes to turbid (SD 0.5 m)

hypertrophic lakes. Approximately 86 percent of the water depth at the

sampling sites was, at a minimum, twice the Secchi depth. Therefore, the effect

of bottom reflections on remote sensing observations was negligible. The rest of

the sample sites were collected at the deepest basins where the bottom was not

visible, although water depth was less than twice the SD. The detailed field

procedure is included in Appendix A.

3.2 Remote Sensing Data Acquisition

Two sets of hyperspectral remote sensing data were used in the study. The two

data sets were acquired from a hand-held ASD sensor and an airborne AISA

SCHSOI'.

3.2.1 Hand-held Analytical Spectral Devices (ASD)

Upwelling radiance data (for determination of reflectance spectra) were collected

at the same time as water sampling from 42 lakes (48 spectra, 6 revisited).

Recorded radiance represented the vertical flux of energy upward from the

water surface (primarily solar energy backseattered within the water column

and emerging from the water surface). These nadir optical measurements were

collected using the LabSpec FR instrument from Analytical Spectral Devices
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(ASD, Inc., 2006), positioned approximately 1 m above the water surface and

approximately 0.7 m from the side of the boat not affected by a shadow. The

radiance samples were taken from the deepest basins of the lakes except for

Higgins Lake because the deepest site was too far for the sampling team to be in

a safe working condition. The samples from Higgins Lake were taken

approximately 3 km offshore where the water was extremely deep (>35 m);

therefore, bottom effect was negligible.

Forty eight representative radiance spectra were recorded consisting of 2, 150

spectral bands ranging from 350 nm to 2,500 nm at l-nm intervals. At least 10

replicate upwelling and downwelling scans were recorded at each sampling

location. These spectra were averaged to produce a representative reflectance

sigiature for each lake. Down-welling irradiance was indirectly evaluated by

measuring the reflected light from a white, near-lambertain reference

Spectralon plate® (LabSphere, Inc., 2006). This reference panel is made from

sintered polytetrafluoroethylene that is a near-perfect Lambertian reflector.

Figure 3-2 showed the variation of up- and down-welling radiance of a high

trophic lake (Hess) and a low trophic lake (Higgins).

In summary, spectra collection performed at each sample site comprised (l) the

average of approximately 10 radiance spectra of the reference panel at the

beginning of each measuring session; (2) the up-welling nadir radiance, where

each measurement was an average of approximately 15 spectra collected at
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every sampling site; and (3) another average of approximately 10 spectra of the

reflectance panel at the end of the measuring session.

 

Up- and downwelling radiance in lakes
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Figure 3-2 The variation of up- and down-welling radiance as measured from

ASD. The 10x of mean of upwelling radiance are plotted to scale the reflectance

values up for visual comparison with the downwelling radiance

The fraction of light reflected from lake water was very small compared to other

natural surfaces, such as soils and vegetation. Water—leaving radiances from

natural water bodies are commonly less than 10 percent of the total radiance

measured at the sensor. Most of them are even often less than 1 percent

(Gordon, 1987). Typically, in Clear water, the radiance is maximal in the blue (A

= 440 nm), medium in the green (A z 550 nm) and negligible in the near-infrared

(A 2 750 nm). Since the desired water-leaving radiance is only a small part of

the signal recorded by the sensor, accurate radiometric correction is critical

(Gordon, 1987). To extract the true representative reflectance of substances in
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water column, the collected spectra needed to be transformed to reflectance

values at difierent wavelengths that: (1) maximally relate to the concentration of

the constituent of interest; and (2) minimize the effects of other optically active

constituents and survey conditions.

3.2.2 Airborne Imaging Spectrometer for Applications (AISA)

Another spectrometer used in the surveys was the Airborne Imaging

Spectrometer for Applications (AISA). AISA is a pushbroom imager with a

charge-coupled device (CCD) array. The two-dimensional array consisted of a

spatial axis of 364 detectors, and a spectral axis of 286 detectors. The

instantaneous field of view across the track was one milliradian, which resulted

in 1-m-wide pixels from an altitude of 1,000 m. The Channel combinations of

the two surveys differed slightly: the number of Channels was 20 on July 24

acquisition, and 30 on July 26 acquisition. The integration time in the surveys

was 30 ms for 20 bands imagery acquired on July 24, 2004 and 20 ms for 30

bands acquired on July 26, 2004. During the surveys, the flight altitudes were

approximately 1,200 m. The 20 hand imagery pixel length along the track was

approximately 1.45 m, and across track was approximately 1.09 m (1.09 m x

1.45 m). Ground resolution of the 30 band imagery was approximately 1.06 m

x 1.11 m.

The AISA has flexibility in selecting the sensor’s spatial and spectral resolution

characteristics. It operates at a wavelength range of 430 nm — 900 nm with a

maximum number of 286 Channels (width prog'ammable from 2 nm — 10 nm).
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The data rate associated with the short integ‘ation times (sampling rates)

required of the sensor in most operational/flight modes, limits the number of

Channels. The selected channels for this study covered the wavelength range

between 434 nm - 900 nm almost continuously with a channel width of 3 nm —

8 nm. Tables 3-1 and 3-2 listed the band-sets selected and indicate the range

of wavelengths covered by each band.

Table 3- 1 Spectral configurations of the 20 band AISA data
 

 

        

Nbr channel Min wvl center wvl Max wvl thm‘ avg.of'fset avg.gain

1 6 434.45 438.43 442.40 7.95 0 2 1.8771

2 17 451.94 455.92 459.89 7.95 0 17.8561

3 22 459.89 463.87 467.84 7.95 0 15.9328

4 47 499.64 503.62 507.59 7.95 0 7.1509

5 59 518.72 522.70 526.67 7.95 0 5.6548

6 94 575.56 579.73 583.91 8.35 0 3.382

7 100 585.58 589.75 593.93 8.35 0 3.2076

8 121 620.65 624.82 629.00 8.35 0 2.9989

9 135 644.03 648.20 652.38 8.35 0 2.9429

10 141 654.05 658.22 662.40 8.35 0 2.8382

1 1 153 674.09 676.60 679.10 5.01 0 3.9341

12 159 684.11 685.78 687.45 3.34 0 5.3284

13 162 689.12 691.62 694.13 5.01 0 3.4042

14 182 723.06 725.65 728.25 5.19 0 3.4821

15 187 731.71 734.31 736.90 5.19 0 3.5483

16 191 738.63 741.23 743.82 5.19 0 3.6101

17 202 757.66 760.25 762.85 5.19 0 4.0223

18 217 783.61 786.21 788.80 5.19 0 5.2317

19 246 833.78 836.38 838.97 5.19 0 5.8467

20 271 877.03 879.62 882.22 5.19 0 7.3689
 

’thm: Full-width, half maximum in nanometers
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Table 3-2 Spectral configurations of the 30 hand AISA data
 

 

        

Nbr channel min.wvl center wvl max.wvl th' avg.offset avg.gain

1 6 434.45 438.43 442.40 7.95 0 32.8156

2 1 1 442.40 446.38 450.35 7.95 0 30.5965

3 17 451.94 455.92 459.89 7.95 0 26.7842

4 22 459.89 463.87 467.84 7.95 0 23.8992

5 34 478.97 482.95 486.92 7.95 0 17.0929

6 47 499.64 503.62 507.59 7.95 0 10.7264

7 59 518.72 522.70 526.67 7.95 0 8.4822

8 77 547.34 551.32 555.29 7.95 0 6.4266

9 94 575.56 579.73 583.91 8.35 0 5.0729

10 100 585.58 589.75 593.93 8.35 0 4.8114

11 121 620.65 624.82 629.00 8.35 0 4.4983

12 135 644.03 648.20 652.38 8.35 0 4.4144

13 141 654.05 658.22 662.40 8.35 0 4.2573

14 153 674.09 676.60 679.10 5.01 0 5.9012

15 159 684.11 685.78 687.45 3.34 0 7.9926

16 162 689.12 691.62 694.13 5.01 0 5.1063

17 170 702.48 704.99 707.49 5.01 0 5.0089

18 182 723.06 725.65 728.25 5.19 0 5.2232

19 187 731.71 734.31 736.90 5.19 0 5.3224

20 191 738.63 741.23 743.82 5.19 0 5.4151

2 1 202 757.66 760.25 762.85 5.19 0 6.0335

22 207 766.31 768.90 771.50 5.19 0 6.5596

23 217 783.61 786.21 788.80 5.19 0 7.8476

24 222 792.26 794.86 797.45 5.19 0 8.3681

25 232 809.56 812.15 814.75 5.19 0 8.743

26 246 833.78 836.38 838.97 5.19 0 8.77

27 257 852.81 855.40 858.00 5.19 0 9.0624

28 261 859.73 862.33 864.92 5.19 0 9.4207

29 271 877.03 879.62 882.22 5.19 0 11.0533

30 278 889.14 891.74 894.33 5.19 0 12.7728
 

'thm: Full-width, half maximum in nanometers
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The coordinates of the sampling stations were determined in advance. The

AISA sensor was installed aboard an aircraft, which was equipped with a

differential GPS navigation system that made it possible to accurately overfly

the sampling stations. The AISA sensor system also incorporates the Fiber

Optic Downwelling Irradiance System (FODIS). FODIS allows for the

concurrent measurement of downwelling and upwelling radiance by the AISA

sensor head. A diffuse collector installed on the top of the plane is connected to

the AISA head via a fiber optic cable and collects downwelling irradiance in the

same bandwidth configrrations as the areas being imaged. The calibration of

the FODIS coupled with the AISA sensor allows for the calculation of apparent

at-platform reflectance. The AISA pre-processing software (CaliGeo) provides for

the automatic geometric correction, rectification, mosaicing, and calculation of

radiance or apparent at-platform reflectance (FODIS ratio). The program uses

the GPS and attitude information to perform the geometric, georeferencing and

mosaicing operations. The AISA data used in this study were radiometrically

and geometrically corrected to apparent reflectance at sensor level.

3.3 Water Quality Parameter Data

Field activities at the sites included collection of water samples for laboratory

analysis of CHL, TSS, TN, TP, NPOC, and phytoplankton types, and the on-site

measurement of SD, lake depth, light-extinction profile, DO, and temperature

profile. SD was measured by lowered a Secchi disc (a 20-Centimeter diameter,

black and white disc attached to a calibrated rope with permanent ink marks)

into the water while observing the depth at which it disappeared. The disc was
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lowered more and then raised until it reappeared. The depth of the water where

the disc vanishes and reappears is the Secchi depth. DO and temperature were

measured using a YSI® 55 Dissolved Oxygen Meter, and the underwater light

was measured using an LI-250 light meter with the LI—193SA underwater

spherical quantum sensor attached to a 30-meter underwater cable.

The water samples for the Chlorophyll a and TSS analyses were collected in

bottles, kept in the dark and filtered at the end of the field day through 47 mm

Whatman GF/F filters (0.7-um pore size membrane). The filters for pigment

analysis were wrapped in aluminum foil, stored in an ice cooler, transfer and

storage in a freezer, and then analysis was carried out. This occurred within

five weeks from storage. The filters for TSS measurement were also wrapped

with aluminum foil and stored in the freezer. Water samples (850 ml) for

phytoplankton analysis were immediately fixed with the iodine solution (M3) on

site. The samples were then concentrated in the laboratory and stored in the

30 ml vials until analysis. Samples for NPOC analysis were stored in 30 ml

vials at the sample site, wrapped in aluminum foil, and stored in a refrigerator

until analysis.

3.3.1 Lab Analytical Methods for Chlorophyll a

Samples were removed from the freezer and brought to the dark room, which

only had yellow and orange light. Aluminum wrap were not removed until the

fluorescence light was turned ofl‘. Each sample was supplemented with 9 mL

90 percent ETOH and was tightly covered with the cap and the aluminum foil.
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The samples were sonicated for 15 minutes, covered entirely with aluminum

foil, and then placed in the fridge for 24 hours. Then filters were removed and

the remaining ETOH solutions were centrifuged for 10 minutes. A text file (.txt)

was created in the computer connected to the fluorometer to allow file transfer.

A new Excel spreadsheet was also created and all sample information (sample

site, sample number, date, and filtered volume) were input into the

spreadsheet. Once the samples were centrifuged, they were ready to be

measured. Sample adaptor in the fluorometer was replaced with the solid

standard. The standard was measured by pressing the [*]. The standard

values should be confirmed to match with the calibration values. The solid

standard was then replaced with the sample adaptor. The supernatant of

centrifuged samples were pipetted into 13 mm sample cuvette until

approximately 75 percent full. Blank sample was inserted into the fluorometer

and measured for the fluorescence value. The value was confirmed to be near

zero (~0.05), if not a new blank would be made and used immediately.

Fluorescence of all samples were measured (Rd) and recorded into the

spreadsheet. Samples with high chlorophyll concentration were diluted with

the ratio of 1:5 (1 mL sample with 5 mL 90 percent ETOH). Each sample was

acidified by adding 8 drops of 0.1 N HCL (0.15 mL for every 5.0 mL of sample)

and stirring thoroughly. Approximately 90 seconds after mixing the acid, the

samples were measured again for the fluorescence values (RC).
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3.3.2 Lab Analytical Methods for Total Suspended Sediment

TSS determination followed the Filter TSS/ISS method. Approximately eight

TSS samples were taken out from the freezer at a time. Information from the

label (e.g., site, date, volume, filter number) was recorded. Next, the aluminum

dishes used in the process were labeled and weighed (Dish number. and Dish

Wt). Sample filters were then individually placed in the dishes, and dried in the

oven for 1 hour at ~ 105°C. The dishes were transferred into the desiccator for 1

hour before being Weighed again for dried weight (Dried Wt). The dish and

sediment were placed in muffle furnace at 500 °C for 15 minutes, and

transferred to the desiccator for 1 hour. The samples were then weighed to

determine loss on ignition (LOI). TSS was calculated using Eq 3- 1 and 3-2).

TSS (mg/ L) = (Dried Wt — Dish Wt — Filter Wt) / (Volume Filtered*1,000) (Eq 3- 1)

ISS (mg/ L) = (LOI — Dish Wt — Filter Wt) / (Volume Filtered*l,000) (Eq 3-2)

3.3.3 Lab Analytical Methods for Non — Purgable Organic Carbon

NPOC were analyzed at Hamilton’s laboratory at Kellogg Biological Station,

MSU. The NPOC analytical method was slightly modified from Hamilton lab

NPOC/DOC protocol written by Dave Weed. The method was written for the

Shimadzu TOC-chh carbon analyzer with the total nitrogen module (TNM- 1),

and the ASI-V autosampler. The system was set up to automatically add

portions of 2M Hydrochloric acid to each standard and sample, and to sparge

each of them with Chromatogaphic grade or zero air for a predetermined time
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period. Each sample was sparged just prior to injection onto a combustion

chamber containing platinum catalyst. The vaporized sample then traveled out

to a CO2 detector and to the TNM-l module for chemiluminescence detection of

nitrogen.

(1) Acid Preparation: 2M hydrochloric acid (HCl) was made by adding 41 - 42

mL concentrated HCl to approximately 200 mL of deionized water in a 250 mL

volumetric flask, then diluted to the mark with deionized water.

(2) Standard Preparation: Carbon analysis stock standard was made by drying

potassium hydrogen phthalate (KHP) at 105 - 120°C for 1 hour and cool in

desiccator. The 2.1254 grams KHP was accurately weighed into weigh boat

before transferred to 1 L volumetric flask and diluted to mark with deionized

water (use zero grade water if available for the best results). Nitrogen analysis

stock standard was made by drying potassium nitrate (KNO3) at 105-120°C for

three hours and cool in desiccator. The 7.1282 gn KNO3 was accurately

weighed into weigh boat before transferred into 1L volumetric flask and diluted

to mark with deionized water (use zero grade water if available for the best

results) .

(3) Mixed C/N standards: The following standards were typically made for a

combination NPOC/TN analysis: 5, 10, 25, 50, and 100 parts per million

Carbon and Nitrogen.
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(4) Autosampler Rack Preparation: The autosampler rack had 93 positions and

used 24 mL vials with corresponding caps and septa. A complete set of

standards (including blanks) were placed at the beginning and end of the rack,

and Check standards (either 5ppm C, N or 10 ppm C, N) were placed among

every 15-20 samples. Approximately 20 mL each of sample or standard were

poured ofl into 24 mL vials, then capped with open-hole caps and septa, and

placed into rack. The sample level in the vial was usually even with the top of

the rack.

(5) Instrument Preparation: The two outside rinse water reservoirs were Checked

to make sure they were filled with deionized water. Front panel was opened to

make sure that the two water traps on the bottom right internal area of the

instrument had water at the correct levels. The front trap had high and low

markings; the back trap should be filled to the level of the clamp that holds it.

The 2M hydrochloric acid reservoir should be filled if low. A full HCl reservoir

should contain enough acid to run about five complete racks (93 samples per

rack), if not more. The main cylinder valve (large silver knob on top of cylinder)

and the regulator valve (black knob) were opened on the zero air compressed

gas cylinder. The instruments were powered on to open gas lines to the

instrument and turn the fans on. The actual instrument settings were

initialized using the TOC software located on the Dell Computer next to the Ion

Chromatograph.

76



(6) Setup using TOC software: The TOC oven must be heated to 720°C and

stabilize prior to running samples/ standards. The TN module also required

some stabilization time. This process took at least 20-30 minutes.

(7) Sample Table: The sample table was used to assign methods and rack

positions for each standard and sample. The software was capable of running

the calibration standards, but typically all standards were run as unknowns.

Afterwards, the data was used with MS Excel to create calibration curves.

The principle of Non-purgable organic carbon analysis was to measure samples

that were acidified (pH less than 2.0) and sparged with CO2 free air. The

sample was injected into a TC (Total Carbon) combustion tube, which had been

filled with oxidation catalyst and heated to 720°C. The sample was combusted

or decomposed to C02. The combustion product was sent through an IC

reaction vessel, cooled, dried by a dehumidifier and then sent through a

halogen scrubber. The NPOC component was detected for CO2 in a non-

dispersive infrared gas analyzer (NDIR). The peak area count was proportional

to the NPOC concentration of the sample.

3.3.4 Lab Analytical Methods for Algal Community Counting

Phytoplankton community counts used the Soft Algae Counts method. Species

composition and biomass was determined by counting a known volume sample

under a microscope followed the steps:
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(1) A sample list was created to indicate initial volumes (collected from field),

sample ID (what lake and date the sample was from), volume of sample (in lab

before counting).

(2) The initial volume of the sample was measured by comparison with a

marked ‘Standard bottle.’ The standard bottle was made by marking the

outside surface of the empty bottle that was exactly the same as the bottles in

which the original samples were collected with lines that correspond to volumes

precisely measured with a graduated cylinder. The reference 35 mL bottle was

marked every 1 mL.

(3) The outside of the sample bottle that represented lower meniscus level of the

sample was marked with a fine tip permanent marker to precisely measure the

sample volume without transferring the sample into a graduated cylinder of

beaker, which was time consuming and required adding rinse water. The mark

was compared with the closest measure on the ‘Standard bottle’ and the volume

' was measured and recorded. Measurement and recording volumes were done

with all samples.

(4) A pipette was used to transfer 0.1 mL sample into the Palmer-Maloney

Counting Cell. There should be approximately 15-30 natural units in a field of

view in order to count a sample in a timely manner without drying of the

subsample in Palmer Maloney counting chamber. If algal density met the

requirement, start counting. If not, the sample needed to be diluted or
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concentrated further. Algal division, size, and number of colonies were

recorded along with the counting distance on the microscope (for area

calculation) .

(5) Representative biovolume for each algal category was determined. Known

algal genera were recorded when counting. The biovolume of these genera were

derived from Stevenson et al. (1996), Buzzi (2002), and the biovolumes of algal

taxa in samples collected by the USGS National Water Quality Assessment

(NAWQA) Program 2004 (The Academy of Natural Sciences, 2006). Biovolume

for several genera in each category was averaged to obtain the representative

biovolume. These biovolumes were used to multiply cell density for each Class

for each sample.
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3.4 Spectral Analytical Methods

The spectral analytical process followed the flow diagram showed in Figure 3-3.
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Figure 3-3 Spectral analytical procedure flow diag'ams
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3.4.1 ASD Data Preprocessing

Reflectance is the percentage of light reflected by a target. It minimizes the

eflect of different illumination conditions, thus allows a better quantitatively

measuring of the water color. Radiance measurements from the field were

converted to surface reflectance by using nearly coincident measurements over

the Spectralon panel (Eq 3-3). These reflectance data represent the ratio of

reflected energy to incident energy with values ranging from 0.0 to 1.0 (0.0 for

no reflectance and 1.0 for 100 percent reflectance). The multiple spectra

collected from each site were averaged to determine a mean spectral response

for that lake.

0° in-situ = ET in-situ / ET spec * p° spec (Eq 3'3)

Where:

p0 imam; = In situ target percent reflectance

ET in-situ = In situ target radiance

ET spec = Linearly interpolated reference panel radiance

0 s c = Reference anel reflectance coefficient
PC

Reflectance of forty eight spectra of water bodies are Shown in Figure 3-4. It is

notable that reflectance below 400 nm and above 900 nm are dominated by

noise. The relatively small amounts of solar energy outside the 400 nm — 900

nm range result in data with comparatively high levels of noise (Harrington and

Repic, 1995). Further spectral processing and analysis in this research will be

based on the spectral data between 400 nm — 900 nm (Figure 3-5). This range
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of wavelength has been used in a number of studies on inland waters (Dekker

et al., 2001; Flink et al., 2001; George and Malthus, 2001; Harma et al., 2001;

Koponen et al, 2001; Pepe et al., 2001; Pulliainen et al., 2001; Shafique et al.,

2001; Jensen, 2000; Subramaniam et al., 1999).

Lake surface reflectance
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Figure 3-4 ASD spectral signatures (350 nm — 2,500 nm) of 48 representative

water samples
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Figure 3-5 ASD spectral signatures (400 nm — 900 nm) of 48 representative

water samples
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Optical characteristics of different biophysical conditions in water are shown in

Figure 3-6. Pickerel Lake and Ford Lake exhibit high trophic conditions (CHL =

113.79 mg/L and CHL = 80.54 mg/L, respectively). The difference between the

two water bodies is that Ford Lake had a much shallower Secchi depth of 0.95

III, while the SD in Pickerel Lake was 2.20 m. Lower SD lakes have higher

reflectance. Both reflectance curves Show the unique CHL sigrature features

such as high reflectance in green wavelengths (500 nm - 600 nm), absorption in

red wavelengths (650 nm - 700 nm), and a secondary peak reflectance at near-

infrared wavelengths (near 700 nm). The reflectance curves for Brooks Lake

and Tamarack Lake are indicative of waters with moderate concentrations of

suspended sediment (TSS = 64.00 mg/L and TSS = 51.40 mg/ L). These two

lakes had the highest TSS of all lakes sampled.
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Figure 3-6 ASD spectral Characteristics of different biophysical dominate in

waters
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3.4.2 AISA Image Preprocessing

Representative reflectance values for each ground-truth site were extracted for

each band at locations that coincided with the sampling stations. Mean values

were calculated within 3 x 3 pixels window (approximately 3.2 x 3.3 meters)

around the sampling station. This pixel window size was reasonable enough to

smooth out noise or errors in the spectral data, yet maintain homogeneous

water quality. Pearson correlations were used to investigate the relationship

between the airborne AISA spectra and the hand-held ASD measurements. The

AISA 20-band data set had low, and some negative, correlations with ground-

truth ASD (Table 3-3; Figure 3-7). On the other hand, the 30-band AISA data

set produced very high correlations with the ground measurement ASD (Table

3-4; Figure 3-8). Despite the fact that some of the AISA spectra were correlated

with the ASD spectra of different dates (May and June, due to the lack of ASD

data near the date), and atmospheric effects could play an important role in low

correlations, the sky on July 24 was overcast with patchy clouds that could

have constantly change the incident light. The sky was clear when

measurements were made on July 26. As a consequence, only the 30 hand

data set will be used in further analysis. Figures of 20-band and 30-band AISA

imagery are provided in Appendix B.
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Table 3-3 Pearson correlation between 20 band AISA and ASD spectra
 

 

 

Lakes AISA Date ASD Date Correlation

Brooks 7/24/2004 7/27/2004 0.928

Clear (@Mecosta) 7 /24/2004 7/24/2004 -0.249

Hess 7/24/2004 7/27/2004 0.973

Higgins 7/24/2004 7/27/2004 0.776

Houghton 7/24/2004 7/26/2004 0.908

Jehnsen 7/24/2004 5/ 19/2004* -0.368

Kimball 7/24/2004 5/26/2004* 0.229

Marl 7 /24/2004 7/27/2004 -0.879

Mecosta 7/24/2004 7/24/2004 -0.323

Mitchell 7/24/2004 7/25/2004 0.627

Muskegon 7/24/2004 7/28/2004 0.424

Roger dam pond 7/24/2004 7/24/2004 0.351

Round 7/24/2004 7/24/2004 0.020

Silver 7/24/2004 7/25/2004 0.801

Tamarack 7/24/2004 6/ 5/2004* 0.090   
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Table 3-4 Pearson correlation between 30 band AISA and ASD spectra
 

 

    

Lakes AISA Date ASD Date Correlation

Arbutus 7/26/2004 7/26/2004 0.971

Brooks 7/26/2004 7/27/2004 0.982

Clear (@Mecosta) 7/26/2004 7/24/2004 0.934

Hess 7/26/2004 7/27/2004 0.987

Higgins 7/26/2004 7/27/2004 0.985

Houghton 7/26/2004 7/26/2004 0.914

Jehnsen 7/ 26/2004 5/ 19 /2004* 0.936

Kimball 7/26/2004 5/26/2004* 0.591

Marl 7/26/2004 7/27/2004 0.915

Mitchell 7/26/2004 7/25/2004 0.832

Muskegon 7/26/2004 7/28/2004 0.801

Pickerel 7/26/2004 5/26/2004* 0.623

Roger dam pond 7/26/2004 7/24/2004 0.892

Sapphire 7/26/2004 7/25/2004 0.989

Tamarack 7/26/2004 6/ 5/2004* 0.950
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3.4.3 Air-Water Interface Correction

The total radiance, (Ll) recorded by the remote sensor is a function of the

electromagretic energy from the four sources identified in Figure 3-9 (Eq 3-4)

(Jensen, 2000) .

L1=Lp+Ls+Lv+Lb (E934)

Where:

Lp is an atmospheric noise commonly referred to as path radiance. It is the

portion of the radiance recorded by a remote sensing instrument resulting from

the downwelling solar (Esun) and sky (Esky) radiation that never actually reaches

the water surface.

L3 is sometimes called the free-surface layer or boundary layer. It is the

radiance from the downwelling solar radiance that reaches the air-water

interface but only penetrates it a millimeter or so and is then reflected from the

water surface. This reflected energy contains spectral information about the

near-surface Characteristics of the water body. Unfortunately, if the solar

zenith angle and sensor viewing angle are almost identical, this spectral

component presents only a purely specular reflection (sun—glint effect).

L. is the subsurface volumetric radiance. It is the radiance that actually

penetrates the air-water interface, interacts with the water and

organic/inorganic constituents and then exits the water column without
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encountering the bottom. This radiance provides valuable information about

the characteristics of the water column.

Lb is the portion of the radiance that reflected back from the bottom of the

waterbody. If the objective of the study is to obtain information about the

bottom, i.e. bathymetric mapping or coral reef mapping, then this radiance

component may be of significant value. However, in water column study,

radiance from the bottom causes difiiculty for properly a characterizing the

water column above it.

Downwelling LP

L

b

 

Figure 3-9 Down- and up-welling radiances from water bodies (after Jensen,

2000)

90



To achieve the goal of identifying the organic and inorganic constituents in the

water column, volumetric radiance (Lu) needs to be extracted from all the other

radiance components being recorded by the sensor (Eq 3-5).

Lo=Lr—(Lp+Ls+Lb) (Eq3-5)

The data used in this study were collected 1 m from the water surface with a

hand-held ASD and 1 km above surface on a very clear day with an airborne

AISA. Therefore, atmospheric attenuation (LP) should not have much effect on

these data. Bottom reflectance (Lb) was carefully avoided during field sampling

(see Appendix B). However, surface sunglint and other surface reflection (Ls)

needed to be corrected because it was impossible to avoid in the field

measurements.

The analytical process is to convert surface reflectance to subsurface volume

reflectance, or volume reflectance, because it is nearly independent of

atmospheric properties and is almost entirely determined by the optical

properties of the water and its constituents (Bukata et al., 1995). The equation

used by Morel and Gentili (1993; Eq 3-6) was modified to Eq 3-7, which was

applied to the data to convert the surface reflectance (remote sensing reflectance)

into subsurface reflectance.

Rm: (1-p2*(1-p')*§(w+stf (Eq 3-6)

1—r*R(0—)*n *Q
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Rrs — Rsurf (Eq 3-7)

R(0-)= ,
(1—p)*(1-p) . . _

n2 +r Q (Rrs Rsurjf)

 

 

Where:

Rrs is the remote sensing reflectance

R(O-) is the volume reflectance

Rsurf is a specular reflectance from the surface of the water body

Q is a ratio of downwelling irradiance to upwelling radiance (5 sr"1)

p is an internal Fresnel reflectance (0.03)

p' is an air-water Fresnel reflection at the interface (0.54)

n is a refractive index of water (1.34)

r is the water-air reflection (0.54)

Gege (2001) applied this model for calculating remote sensing reflectance in

the WASI 2.0 (Water Colour Simulator) software. Default values indicated in

the brackets of the key of Equation 3-7 were taken from the WASI 2.0 (Gege,

20011

Upwelling spectra measured above the water can be affected by sun glint

from the water surface (specular reflectance, &urj) due to waves. The

assumption that light absorption by pure water is predominant in NIR (970

nm - 1,000 nm), and the water-leaving radiance in this region is zero, was

suggested to estimate Reufin the measured spectra (Ouillon et al., 1997). It

should be noted that this assumption may not hold valid in highly turbid

waters (Doxaran et al., 2002). However, the TSS range of the study sites were
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considered low to moderate; therefore, the waters were assumed not highly

turbid and the assumption of Ouillon et al. (1997) was implemented. Due to

the high noise levels of the collected spectra, the spectral range between 1,250

nm — 1,260 nm were found more stable than other NIR regions (Figure 3-4).

The average reflectance from this range was used to remove specular

reflectance and wave effects by subtracting it from the whole spectra (Eq 3-7).

Figure 3- 10 and 3-11 show the reflectance before and after corrected for air-water

interface. The corrected volume spectra are generally higher than the measured

surface reflectance. The volume reflectance spectrum that was below zero was

Round Lake. The samples were taken from this lake late in the evening and the

sun elevation angle was very low. There was a fair amount of sun glint reflected

from the water surface, which causes a problem when converting from surface

reflectance to subsurface volume reflectance.
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Figure 3- 1 1 Subsurface volume reflectance R(O—)
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3.4.4 Noise Reduction

The volume reflectance were used in the principle component analysis (PCA)

and the derivative analysis in order to determine the optimal spectral bands

that best related to biophysical parameters within the water column. Both PCA

and derivative techniques are based on the variation within the data; therefore,

they are very sensitive to noise in the data. Noise can obscure important

features such as peaks, valleys, or peak widths, or make calculation of sigial

features such as slopes, areas, peak widths and so forth difficult. The volume

reflectance spectra needed to be filtered to produce the data that are

uncontaminated by noise sigral from the atmosphere or the sensor itself. The

filter should maintain the sharpest absorption/reflectance features in the

original Sigial. Mean and Savitsky Golay filter, and Daubechies and symlet

wavelet de-noising transformations were used (Schmidth and Skidmore, 2004).

Several configurations of these methods were applied to the volumetric

reflectance (Appendix C). The methods were compared based on the criteria

that the selected model must smooth out high frequency noise while

maintaining the smallest features that could be associated with biophysical

attributes (absorption troughs and reflectance peaks). If the higher wavelet

order and level did not provide more optical information than the lower ones,

the simpler models were selected.

In this process, the volume spectra were filtered with: Mean 1x3, Savitsky Golay

(Sgolay), Daubechies de-noising wavelet, and Symlet de-noising wavelet. Mean

filter is the simplest method. Savitzky Golay seeks to preserve shapes of
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reflectance peaks. The Savitzky Golay filter method essentially performs a local

polynomial regression to determine the smoothed value for each data point.

This method is superior to adjacent averaging because it tends to preserve

features such as peak height and width, which are usually 'washed out' by

adjacent averaging (Figure 3-12).

The general wavelet de-noising procedure involves three principle steps:

decomposition, threshold selection, and reconstruction. First, a wavelet is

selected and a level at which the wavelet decomposition will be computed. In

this study, two wavelets were selected as the best wavelet options, Daubechies

order 1 level 3 (dbl) and Symlet order 8 level 3 (s8). The coefficients of all

component of a third-level decomposition (that is the third-level approximation

and the first three levels of detail) are returned concatenated into one vector, C.

Vector L gives the lengths of each component. Second, select a threshold such

as global thresholding (gbl) and apply it to the detail coefficients. Third,

compute wavelet reconstruction using the original approximation coefficients

and the modified detail coefficients (Figure 3-13; The MathWorks Inc., 2006).
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Figure 3- 13 Examples of Daubechies (dbl) and Symlet (s8) wavelet de-noising

transformation on Pickerel Lake
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3.4.5 Narrow-Waveband (1 nm) Indicator: Principal Component Analysis

A number of approaches have been developed to maximize the spectral variance

of remote sensing data to assist in the discrimination of different surface

materials. The most widely used of these techniques is principal components

analysis (PCA) (e.g., Becker et al., 2005; Lillesand and Kiefer, 2000; Jensen,

1996; Davis, 1986). PCA has been effectively used with multispectral data

through the compression of the information into fewer, independent (orthogonal

channels) components. The principal components transformation assists

removing the inherent redundancy through a decorrelation process followed by

the discarding of low variance components (Richards and Jia, 1999). It is

sometimes used as a tool for feature reduction in multispectral data analysis.

When employing the method with hyperspectral data, the high computational

load is the main concern (Richards and Jia, 1999).

PCA requires no a priori information and is based on the entire spectral domain

of the data set (Rencz, 1999). PCA is generally based on the correlation matrix

between spectral channels. Conceptually, the process defines a new set of

orthogonal uncorrelated coordinate system or vector space that maximizes the

amount of variance that each axis describes. In doing so, it produces a space

in which the data have the most variance along its first axis, the next largest

variance along a second orthogonal axis, and so on. In general, the later

principal components would be expected to show little variance and thus can be

ignored. Eigenvalues explain the amount of the spectral variability contained in

each component, and the eigenvectors explain the relative proportion or
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contribution of each band to that component (Rencz, 1999). The technique is

only of value however if the spectral structure of the data is distributed

substantially along the first few axes (Richards and Jia, 1999).

Generally, high data variance is usually needed for separating different features

in the data. Thus, higher order components with low variance can be discarded

without significant information loss. The first few high variance features

(principal components) are usually selected. Increasing use of high spectral

resolution remote sensing requires larger image storage. Bandwidth

compression has become more important. Another advantage of PCA is that the

original spectral or image data can be reconstructed from the reduced

representation (using an inverse principal components transform) although

with loss of information. Since the reconstructed data may differ, the

information loss is sometimes referred to as distortion from the original

(Richards and Jia, 1999).

PCA is thus an effective tool for summarizing the common components of

spectral variability of the hyperspectral data into a small number of variables.

The separation of materials in a remote sensing scene by PCA is driven by the

spectral variability of the substances and is thus linked to spectral properties

(Rencz, 1999). However, it is important to recognize that some features selected

in this way may be misleading. For example, original noisy bands will lead to

some principal components with high variance but low separability (Richards

and Jia, 1999).
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Fourteen out of 48 water spectra were separated for validation. Thirty four

filtered spectra were used to develop the spectral indicators for water quality.

These 34 filtered volume reflectance at wavelength between 400 nm — 900 nm

were used in the PCA analysis. The spectral data were arranged in the format

that each row represented spectral data of the lake and each column referenced

a specific waveband. SPSS® software package was used to perform PCA and

transform the 500 independent spectral bands into their principal components.

Band number was the independent variable. PCA was performed with the

minimum eigenvalue: 1.0. Correlation-based and covariance-based PCA were

performed to compare the emciency of the two methods. Both PCA methods

used standardized input variables that have a mean of zero and a variance of

one. This standardization tends to inflate the contribution of variables whose

variance is small, and reduce the influence of variables whose variations are

large (Davis, 1986). PC analyses based on correlation matrices generate

dimensions that emphasize the features that best capture the predominant

similarities among the variables (Davis, 1986). PCA based on covariance

matrices generate dimensions that emphasize the features that best capture

predominant target differences. Both methods were investigated and compared.

Unrotated PCs from both methods produced a very high percent of total

variance explained in the 1m component, which made meaningful interpretation

difficult. Rotation of the factors to right angles (uncorrelated) with the first

removes the effects of variables highly loaded on the first factor and enables an
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assessment of patterns independent of them (Rummel, 1970). PCA was

performed again with the verimax rotation. Rotated correlation-based and

rotated covariance-based PCA produced almost the same results with the same

ranges of high component loadings, but different loading values. The results

consistently showed that there were three significant components to extract

from the spectra of 34 lakes. The percent variance explained by the 4th

component dropped dramatically from the first three. Although both PCA

methods produced consistent results, principle components from correlation-

based PCA provided more confidence in locating the spectral bands because of

the more defined peak. Therefore, three principle components, which explain

the whole data set while significantly reduce redundancy in dataset from 500

bands to 3 principle bands, were produced from correlation-based PCA. The

three principle components (Figure 3-14) consisted of PC12 band 700 nm (NIR

peak), PC2: band 435 nm and 455 nm (blue absorption) for different filter

methods, and PC3: band 896 nm which was suspected to detect the

atmospheric effect because water absorbed most incident light after 800 nm.

These bands were selected repeatedly as the principle components regardless of

different filter and different PCA methods. Each component explained 36

percent, 37 percent, and 26 percent of the variance of the data. The first three

components together explained more than 99 percent of the variance of the

data. However, only PCI and PC2 will be used in the water quality indicator

model development because they contain information about biophysical

characteristics in waters.
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Figure 3- 14 Example of PCA result

The first principle waveband was located precisely at the near-infrared

reflectance peak of high trophic lake spectra. The second principle wavebands,

especially band 435 nm, were located close to blue absorption region.

3.4.6 Spectral Derivative Analysis

Although the massive amount of hyperspectral data (the hundreds of spectral

bands) may cause difficulties in traditional image processing and data handling

techniques, it provides information to allow analyses based on a knowledge of

spectroscopic principles. Data used in spectroscopy are usually collected under

controlled laboratory conditions with full control of the intensity and spectral

distribution of the illumination as well as viewing geometry (Tsai and Philpot,
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1998). However, having a well-defined spectrum and knowledge of spectral

features means that a scientific approach to interpretation of the real world

features can be carried out (Richards and Jia, 1999). Absorption features (seen

as localized dips) are often observed in the reflectance spectra of specific

substances. These features provide characteristics of the substrates of interest

when sumcient spectral resolution is obtained. Characterization, and thus

automatic detection of such absorption features, is of particular interest in

hyperspectral image recognition. Absorption features can be characterized by

their locations (bands), relative depths and widths (full width at half the

maximum depth). A complete spectrum is divided into several regions and

absorption features (Richards and Jia, 1999).

Derivative spectroscopy is particularly promising tool among the techniques

developed in spectroscopy for use with remote sensing data (Tsai and Philpot,

1998). Spectral derivative techniques have long been applied in spectral

studies, and have been found to eliminate background signals, differentiate

overlapping signatures, and reduce the affects of turbidity in aquatic

chlorophyll a investigations (Demetriades-Shah, 1990). In hyperspectral

analyses, derivatives are found to be very sensitive to noise. Derivatives of the

second order or higher should be relatively insensitive to variations in

illumination. Nonetheless, first and second order derivatives have been the

most commonly used by scientists (Tsai and Philpot, 1998; Fell and Smith,

1982; Butler and Hopkins, 1970).
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After random noise was minimized from the 34 spectral measurements, the

derivatives were calculated from volume reflectance for each of the four filter

methods: Mean, Sgolay, dbl and s8 (Figure 3-15). Spectroscopic first

derivatives were obtained by taking the difference between the reflectance of two

bands and dividing that value by the difference between the wavelengths

separating the two bands. The first step is to determine the slope of a line

segment by simply dividing reflectance value difi'erences by the wavelength

interval separating them (rise / run) as indicated by Eq 3-8.

d1“ = (9m: - on) / (Ann -2...) (Eq 3-8)

where:

n = band number

dlst = lst-derivative (line segment slope)

percent reflectance

'
0 II

A = wavelength (nm)
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Spectral absorption/reflectance features were revealed in the lat derivative

products, especially in Savitsky Golay filter method. These optical

characteristics are related to the various constituents in the water column. For

example, green reflectance of CHL between 560 nm — 620 nm and maximum

red absorption of CHL near 680 nm. The derivative transformation reveals

waveband regions that are most appropriate for the differentiation of the input

spectra. The mean filter method did not provide useful wavebands; it was thus

omitted from further consideration.

The 2nd derivative approximations are calculated using Eq 3-9 to investigate

whether more pattern or information can be extracted (Figure 3-16). An

expansion multiplier (0.5) was incorporated in the denominator as this was

found to enhance the differences in reflectance amplitude (Becker et al., 2005).

(12nd = (dIStrHl - dIStn) / 0.5 (Ann — An) (Eq 3-9)

where:

n = band number

dlst = 1st derivative

d2nd = 2nd derivative approximation

A = wavelength (nm)
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Second derivatives did not provide much information compared to the first

derivative because no additional clear absorption or reflectance features could

be extracted. Therefore, only the 1m derivatives will be used in further analyses.

3.4.7 Region-Waveband

Region—wavebands were determined based on the observed features in

derivative curves and the reviewed literature (Table 3-5, Figure 3-17). Previous

studies indicate single spectral bands that were successfully used to explain

water quality variables. None of the studies developed water quality indicators

based on a region-waveband. In this study, region-wavebands were indicated

using narrow band locations from the reviewed researches as a guideline. The

first-order derivatives fi'om filtered volume reflectance spectra were used as a

primary source in the waveband determination. Spectral features were

obviously showed in Figure 3-17. These features indicate waveband regions

that are most sensitive to changes in biophysical variables. Reviewed

researches provided the information to associate each spectral region to its

optical properties (Table 3-5). These wavebands were used to develop spectral

indices for water quality in the next step. Lakes that have high and low trophic

conditions have different optical properties. To insure the ability to differentiate

the same biophysical characteristic but different lake trophic condition, some of

the region-wavebands were overlapped.
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Table 3-5 Selected waveband regions for water quality assessment

 

 

 

Sgolay db1 s8 Biophysical characteristics

A:435-475 A:435-485 A:435-475 BLUE absorption

B:470-570 82480-575 B2490-570 GREEN reflectance

C:565-620 C:550-630 C:560-610 GR/RED edge

D:670-690 D:670-700 D:660-700 RED max chl a absorption for

Low trophic lake

E:675-700 E:660-705 RED max chl a absorption for

High trophic lake

F:690-740 F:690-745 F:690-740 NIR peak for Low trophic lake

G:700-740 G:700-745 G:700-740 NIR peak for High trophic lake   
 

109

 



 

, Sgolay Filtered Volume Reflectance

A B C DEFG

.
0
N o

_
O

.
3

U
1

 

R
e
fl
e
c
t
a
n
c
e

O 8

 

l 400 450 500 550 600 650 700 750

i Wavelength   
 

 . Sgolay filtered 1st derivative

I A a c D E FG

 

1
s
t
d
e
r
i
v
a
t
i
v
e

 

         

 

Wavelength  
Figure 3— 17 Example of region-waveband selection on Sgolay method
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3.4.8 Area Under Spectral Curve Indicator

First, derivative curves for each filter method are separated into region-

wavebands (Table 3-5). Figure 3-17 displays spectral and derivative curves with

continuous lines, but the data are in fact the series of discrete points. To

extract the area under the curve, a 2nd order polynomial function was fitted to

these data points for each lake (Figure 3-18). To calculate the area that

represents relative inherent constituents (e.g., smaller area for lower CHL

concentration and larger area for higher CHL concentration), the derivative data

need to be adjusted such that all the data points fall above zero (for absorption

curves) or below zero (for reflectance curves). For the absorption curves, the

minimum value within the region was added to all data within the region. For

reflectance curves, the maximum value was added to the rest of the data within

the same region. Appendix D shows the area index for the three filters.

Daubechies wavelet created a staircase artifact in the filtered signals, which

produce a large number of zero values in the 18t derivative product. Fitting a

polynomial function to data that has numerous zero values weighs the curve

down near zero. Dbl curve fitting was adjusted to eliminating all the zero

values from the function in order to minimize the artifact of this filter method.
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3.4.9 Spectral Curve Height]Width Ratio Indicator

Maximum height of the same polynomial fitting function measured from y = 0

was determined for each lake and each filter (Appendix E). The width used in

calculation of height/width ratio is basically the width of the region-waveband

 

 

 

 

  

 

 

   
     
 

 

 

  

  

  

 
 

  
 

 

 

   

(Figure 3-19).
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Figure 3- 19 Examples of height and width measurements
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3.4.10 Spectral Band Ratio Technique

Band ratios have been most used extensively in the analyses of broadband

sensors such as Landsat Multispectral Scanner (MSS), Thematic Mapper (TM),

and Systeme Pour I’Observation de la Terre (SPOT). Ratios can also be used for

the analysis of data from two major classes of absorption: visible to near-

infrared absorptions such as the spectral characteristics of chlorophyll a and

other photosynthetic pigments. Ratio indices, created by dividing one spectral

channel by another, are widely used in biophysical investigations. The method

has been used to enhance the discrimination of surface spectral characteristics.

Band rationing can be very efi'ective spectral analysis tools when applied with a

well-formulated rationale and spectroscopic basis. The major advantages of the

ratio indexes are that effects of bi-directional reflectance are removed and the

relative color properties of substances are enhanced (Rencz, 1999). Common to

spectroscopic tools, the data must be corrected for the system contribution

(e.g., dark current) or environmental signal (e.g., atmospheric path radiance)

that is additive to the measured radiance. These additive noises contribute

significantly to errors in the results (Rencz, 1999).

Spectral features that are strong in biophysical characteristics (e.g., the green

peak and red edge in chlorophyll spectra) can be used with band ratios to

rapidly detect areas with these properties and therefore can be effective for

environmental monitoring (Rencz, 1999). PCA and spectral derivative

techniques were used to determine the optimal wavebands and region-

waveband that are sensitive to changes in biophysical attributes in waters. The
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selected bands will be used both as the single bands alone and the ratio bands.

Single-band algorithms have an advantage of simplicity but multi-band

algorithm has an advantage in that they can be applied in situations where the

target is not evenly illuminated. Therefore, multi-band variables can be used in

a wide range of circumstance (George and Malthus, 2001).

Ratios were calculated for both area and height/width region-waveband (e. g.,

A/B, A/C, A/D, ..., G/D, G/E, GF). The narrow-wavebands were originally

selected by PCA. It was observed that these bands were closest to the lower

edge wavelengths of the region-wavebands (e.g., 435 nm, 470 nm, 480 nm, 490

nm, 550 nm, 560 nm, 565 nm, 660 nm, 670 nm, 675 nm, 690 nm, and 700

nm). Therefore, narrow-wavebands (l-nm) from the lower edges of region

wavebands were selected for the narrow-waveband indicators in addition

(Appendix F). Ratios were calculated for all narrow-wavebands.

3.4.1 1 Development of New Spectral Indicators for Water Quality

The relationship between the spectral indicators (e. g., area, height/width, and

narrow-waveband) and the water quality indicators (e.g., SD, CHL, TSS, NPOC,

diatom, green and bluegreen algae) measured at the same sites was determined.

Multiple regression methods were used to test the correlation of water quality

observations and spectral data both with the region—waveband, and narrow-

waveband and their multi-band ratio. The water quality parameters and

corresponding ASD spectral indicators from 34 lake data set were used to

develop the models and determine the empirical coefficients for SD, CHL, TSS,
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NPOC, diatom, green, and bluegreen algae algorithms. Stepwise regression was

first performed on all variables to investigate all possible combinations of

spectral bands that potentially best explain biophysical characteristics in the

water. These wavebands were then used in the determination for the final

models based on their level of significance (P s 0.05, two-tailed analysis),

correlation coefiicient, distribution of residuals, tolerance value, and optical

properties of the bands. The models will be validated by the 12 remaining ASD

data to determine and compare the accuracy of the model to ASD sensor. The

best performance models for each water quality variable will be applied to the

AISA data set from the same 12 lakes to investigate an ability to expand the

algorithm to an airborne hyperspectral data.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Michigan Lake Water Quality from Field Observation

Initial observations of water quality indicators include bar graphs, histograms

and Pearson correlation matrices of the parameters (Figure 4-1 to 4-5; Table 4-

1). The histograms (Figure 4-1 and 4-2) reveal that both Secchi depth (SD) and

chlorophyll a (CHL) concentration varied widely among the sampled lakes, but

some of the other biophysical parameters such as total suspended solids (TSS),

non-purgable organic carbon (NPOC), diatom, green and bluegreen algae had

only a few samples with high values, and the rest of the data values were low.

This caused some of the variables to be non-normally distributed (Figure 4-3).

Both logarithm base 10 (LOG) and natural logarithm (LN) transformations of

these data were compared. Both transformations generated more normally

distributed data, but the LN produced a range of values that were more

appropriate to use in the regression models (Figure 4-4). Table 4-1 and Figure

4-5 demonstrated that Secchi depth (SD) had a relatively strong negative

correlation with chlorophyll a (CHL) and total suspended solids (TSS), meaning

that CHL and TSS are the major constituents that change clarity in the sample

waters. The relationship between SD and CHL was stronger. SD and TSS had

a relatively strong correlation with CHL and green algae, suggesting that most

of the TSS was caused by algae rather than inorganic substances (e.g., silt).
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Table 4- 1 Pearson correlation matrix of water quality indicators

 

 

 

 

 

   

 

   

    

 
 

 
   

        

SD CHL TSS NPOC DIA‘I‘OM GREEN BLUEGREEN

SD 1.000

CHL -O.546 1.000

TSS -0.463 0.377 1.000

NPOC -0.151 0.050 0.357 1.000

DIA'I‘OM -0.l35 0.042 0.305 0.720 1.000

GREEN -0.388 0.393 0.370 0.554 0.653 1.000

BLUEGREEN -0.343 0.268 0.284 -0.069 -0.125 0.137 1.000
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Figure 4-5 Pearson correlation graphs and histogram plots of water quality

indicators
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4.2 Optimal Spectral Bands

Two types of optimal spectral wavebands were identified, the region-wavebands

and the narrow—wavebands (Tables 4-2 and 4-3). Region-wavebands were

determined using the spectral derivative spectroscopy method. Important

absorption and reflectance features that associated with optical water quality

variables were extracted from the first derivative curves. Narrow-wavebands

were determined using Principle Component Analysis together with the results

from the region-waveband determination. PCA identified three principle

wavebands that explained over 90 percent of variation in the 500 wavebands.

One of the waveband was suspected to cause by atmospheric noise and

therefore excluded from the final optimal waveband set. The wavebands at the

lower edge of the region-wavebands were added to the narrow-waveband set

because these wavebands represented the maximum peak or trough in water

spectral signatures.

Table 4-2 Identified region-wavebands
 

 

 

Sgolay db1 s8 Biophysical characteristics

A:435-475 A:435-485 A:435-475 BLUE absorption

B:470-570 B:480-575 B:490-570 GREEN reflectance

C:565-620 C:550-630 C:560-610 GR/RED edge

D:670-690 D:670-700 D:660-700 RED max chl a absorption for

Low trophic waters

E:675-700 E:660-705 RED max chl a absorption for

High trophic waters

F:690-740 F:690-745 F:690-740 NIR peak for Low trophic waters

G:700-740 G:700-745 G:700-740 NIR peak for High trophic waters   
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Table 4-3 Identified narrow-wavebands
 

 

Narrow-band Wavelength Biophysical characteristics

A 435 BLUE absorption

B 455 BLUE absorption from PCA

C 470 Beginning of GREEN reflectance

D 565 GREEN and RED edge

E 670 RED max chl a absorption for

Low trophic waters

F 675 RED max chl a absorption for

High trophic waters

690 NIR peak for Low trophic waters   H 700 NIR peak for High trophic waters
 

4.3 Spectral Indicators

Several optimum spectral indicators were developed to relate water quality

variables with the spectral information of the same site. These indicators may

be used to assess water quality parameters where adequate remote sensing

data is available without the needs for in situ water samples.

4.3.1 Spectral Indicators for Chlorophyll a

Spectral wavebands were determined using PCA and derivative methods

(detailed description in Section 3.4.5 and 3.4.7) and are summarized in Tables 4-2

and 4-3. The selected wavebands from the three filter methods were regressed

against LN(CHL). The final models were compared in Tables 4-4 to 4-5.
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Table 4-4 Chlorophyll a area models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay AG -1.687 0.472 0.000 0.787 0.757

DG 1.509 0.175 0.028

FE -0.331 0.708 0.003

GD 1.132 0.188 0.005

CONSTANT 3.234 0.003

db1 AC 7.263 0.874 0.000 0.710 0.680

AF -3.081 0.935 0.000

DF 2.166 0.882 0.010

CONSTANT 2.160 0.064

s8 AG -3.268 0.912 0.000 0.765 0.749

CE -1.304 0.912 0.005

CONSTANT 7.352 0.000
 

Table 4-5 Chlorophyll a height/width models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay HWAG -1.930 0.800 0.000 0.7 18 0.699

HWBD 5.181 0.800 0.013

CONSTANT 5.891 0.000

db1 HWCF -4.891 0.592 0.000 0.599 0.572

HWFB -1.881 0.592 0.006

CONSTANT 10.042 0.000

s8 HWAG -2.244 0.787 0.000 0.709 0.690

HWCD —1.570 0.787 0.005

CONSTANT 6.139 0.000
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The regression models selected 2 — 4 variables out of 49 variables (7 single—

bands and 42 ratio-bands). The wavebands that were selected most repeatedly

are A (blue absorption) and G (NIR peak for high trophic). These two

wavebands link directly to the optical characteristics of CHL as reviewed in

Section 2.2. This regression result proves that the narrower region-waveband G

(700 nm — 740 nm, which represents the waveband region of higher trophic

lakes) correlated better to the CHL than the broader region-waveband F (690

nm - 740 nm, which represents lower trophic lakes). Bands D and E also

appeared in the models, but they do not contribute as large an influence as

bands A and G do (consider variable coefficients, e.g., larger positive or negative

coefficient value suggested a larger influence of the variable in the model). Both

band D and E represent the regions of maximum CHL absorption in the red

wavelengths. They could be used to differentiate CHL in water because higher

CHL should produce a deeper absorption feature (valley) in this region. It is

notable that the shorter wavelength band D (670 nm - 690 nm) was selected

more frequently than the longer wavelength band E (675 nm — 700 nm) in the

region-waveband indices.

126



Table 4-6 Chlorophyll a narrow-waveband models using the optimal wavebands
 

 

 
 

 

 
 

 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay A -38.605 0.264 0.000 0.785 0.754

E 42.536 0.125 0.004

EH -5.108 0.367 0.000

GA -1.549 0.102 0.025

CONSTANT 9.801 0.000

db1 A -18.323 0.649 0.011 0.709 0.679

H 19.859 0.469 0.004

FG 4.566 0.513 0.003

CONSTANT 7.414 0.000

s8 A -24.190 0.731 0.001 0.723 0.694

E 17.116 0.488 0.017

EG -3.598 0.605 0.000

CONSTANT 7.239 0.000  
 

The narrow-wavebands that were selected most frequently are A (435 nm, blue

absorption), E (670 nm, maximum red absorption), and G (690 nm, NIR peak).

Band A and G consistently performed well in the regression models for both

narrow-waveband and region-waveband indicators. Band E was expected to

appear to improve the prediction power of the model. It is noticed that between

band G (690 nm) and H (700 nm), which both represent NIR peak of lower and

higher trophic waters, band G was selected more often and had a larger

influence in the models.
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4.3.2 Spectral Indicators for Secchi Depth

Region-wavebands (area and height/width) indicators and narrow-wavebands

reflectance indicators from three filter methods were regressed against LN(SD).

The final models were compared in Tables 4-7 to 4-9.

Table 4-7 Secchi depth area models using the optimal wavebands

 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance I’m-tail) R2 Adjusted R2

Sgolay AB -5.560 0.473 0.004 0.736 0.700

AG 0.792 0.352 0.001

BF -2.183 0.575 0.029

EC -0.937 0.307 0.009

CONSTANT 3.955 0.012

db1 BD -0.252 0.636 0.006 0.638 0.615

DC -8.735 0.636 0.000

CONS 4.195 0.000

S8 C —36.227 0.166 0.000 0.718 0.679

BC -0.858 0.167 0.000

BE -1.418 0.453 0.001

FD 1.69 0.378 0.000

CONSTANT 2.888 0.000
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Table 4-8 Secchi depth a height/width models using the optimal wavebands
 

 

 
 

 

 
 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay HWC -47.187 0.356‘ 0.000 0.781 0.759

HWBA —1.742 0.426 0.000

HWGC -0.597 0.762 0.000

CONSTANT 4.559 0.000

db1 HWBC -7.035 0.108 0.000 0.596 0.570

HWCB -1.912 0.108 0.027

CONSTANT 9.084 0.001

S8 HWC -23.473 0.249 0.049 0.741 0.716

HWAG 0.909 0.537 0.001

HWBC -1.297 0.182 0.002

CONSTANT 1.465 0.078

 

 

   

The wavebands that were selected most repeatedly are band B (green

reflectance) and C (green and red edge). These two wavebands together covered

the entire green reflectance peak, which is the range that has the highest

variation in reflectance (Figure 4-6). Savitsky Golay models produced the

higher R2 for both area and height/width methods, suggesting that 70 percent

of the SD can be explained by the spectral indicators. Band A (blue absorption)

also appeared in Sgolay and s8 models. This band can measure clarity of the

water because it could penetrate deeper than other band regions (Figure 4-6).

SD mostly related to overall reflectance of all particles suspended in the water

column. Unlike CHL, SD does not need detail absorption/reflectance features

to detect the differences among lakes.
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Figure 4-6 Volume reflectance curves

When looking at the volume reflectance within the waveband B and C regions, it

was observed that the spectral signatures did not arrange from low SD to high

SD (Figure 4-7). However, the 18‘ derivative curves shows a clear pattern of SD

arranged from low to high (Figure 4—8). Derivative processes in this algorithm

improve the ability to relate remote sensing spectra to water quality parameters.
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Figure 4-7 Examples of volume reflectance curves on different SD in B and C

waveband regions

 

Sgolay 1st Derivative
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Figure 4-8 Examples of fitting curves on difi'erent SD in B and C waveband

regions
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Table 4-9 SD narrow-waveband models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay A -7. 1088 0.737 0.020 0.796 0.768

DA 1.1003 0.1 15 0.001

DC - 1.8842 0.102 0.000

GC -1.0169 0.583 0.000

CONSTANT 2.871 0.000

db1 E -11.875 0.289 0.000 0.877 0.855

BA 6.929 0.386 0.000

ED -0.791 0.558 0.000

GD - 1.36 0.291 0.000

GH -2.212 0.258 0.004

CONSTANT -1.1 15 0.304

s8 D -10.0724 0.387 0.000 0.865 0.841

AB -8.5365 0.313 0.000

BD 0.8514 0.439 0.017

DE -0.2994 0.192 0.01 1

EC —1.7623 0.159 0.000

CONSTANT 11.172 0.000
 

 

 

 

The R2 are very high for all narrow-waveband SD models. Similar to the region

wavebands models, the narrow-waveband models also have band A (435 nm).

Narrow-waveband models tend to select band G (690 nm, NIR peak for lower

trophic waters) over band H (700 nm, NIR peak for higher trophic waters).
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4.3.3 Spectral Indicators for TSS

Region-wavebands (area and height/width) indices and narrow-wavebands

volume reflectance indicators from three filter methods were regressed against

LN(TSS). The final models for TSS were compared in Tables 4-10 to 4-12.

Table 4-10 TSS area models using the optimal wavebands
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay DA 0.420 0.878 0.019 0.351 0.286

ED 1.088 0.983 0.017

GE 0.295 0.870 0.047

CONSTANT 0.405 0.498

db1 DC 3.171 1.000 0.001 0.286 0.264

CONSTANT 1 .748 0.000

s8 EC 0.179 0.996 0.037 0.283 0.237

GF 2.344 0.996 0.015

CONSTANT 1.375 0.000

Table 4- 11 TSS height/width models using the optimal wavebands

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay HWGC 0.213 1.000 0.004 0.231 0.207

CONSTANT 2.273 0.000

db1 HWEC 0.599 1.000 0.009 0.197 0.172

CONSTANT 1.262 0.010

s8 HWB 39.605 0.977 0.022 0.267 0.220

HWCA -0.874 0.977 0.012

CONSTANT 2.288 0.000 
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Table 4- 12 TSS narrow-waveband models using the optimal wavebands
 

 

 
 

 

 
 

 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay FH - 1.224 1.000 0.000 0.346 0.326

CONSTANT 3.876 0.000

db1 FH -1.073 1.000 0.001 0.318 0.296

CONSTANT 3.737 0.000

s8 E 8.3417 0.344 0.034 0.532 0.468

BC 3.1053 0.444 0.002

DF 0.2785 0.213 0.015

EC 1.034 0.264 0.001

CONSTANT - 1.9603 0.102  
 

TSS models have low R2 overall. Wavelet 88 produces better models in some

cases but the reported R2 are not much higher than Sgolay method. Several

waveband regions were selected in the models including band D, E and C.

These are the band range (565 nm - 700 nm) that varied the most when

suspended sediments were added to the water (Figure 2-9).

The narrow-waveband models selected band F (675 nm) and H (700 nm). These

are the maximum CHL absorption band and NIR peak band, which have been

used extensively in vegetation indices. The combination of these two bands

should indicate CHL. It is possible that these wavebands were selected because

most of the TSS in the data set may be dominated by algal biomass, which also

refers to CHL. TSS and CHL concentration distributions are actually look alike

(Figure 4- 1). However, correlation coefficients of TSS models are not as high as

CHL. This may be because TSS lab analysis used the simple mass
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measurement, which could encounter high error when TSS concentration is

low. On the other hand, CHL analysis uses equipment that is very sensitive to

CHL concentration.

4.3.4 Spectral Indicators for NPOC

The final models for NPOC were compared in Tables 4— 13 to 4- 15.

Table 4-13 NPOC area models using the optimal wavebands
 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R3
 

 
 

 

 
 

 

 

Sgolay EC* 0.485 1.000 0.052 0. 116 0.087

CONSTANT 1.882 0.000

dbl EA* 0.262 1.000 0.076 0.098 0.069

CONSTANT 1 .514 0.001

88 EC* 0. 194 1 .000 0.067 0.104 0.075

CONSTANT 1 .843 0.000
 

*Insignificant variable

Table 4- 14 NPOC height/width models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance 'P(2-tail) R2 Adjusted R2

Sgolay HWEC 0.100 1.000 0.037 0.133 0.105

CONSTANT 1.902 0.000

db 1 HWEC 0.602 1.000 0.020 0.164 0. 137

CONSTANT 0.945 0.082

s8 HWAC* 0.177 1.000 0.053 0.115 0.087

CONSTANT 1 .848 0.000
 

*Insignificant variable
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Table 4- 15 NPOC narrow-waveband models using the optimal wavebands
 

 

  
 

 

  
 

 

Filter Band Coefficient Tolerance P(2-tai1) R2 Adjusted R2|

Sgolay CH* -0.0872 1.000 0.12 1 0.076 0.046

CONSTANT 2.4076 0.000

db1 DF" -0.1206 1.000 0.124 0.075 0.045

CONSTANT 2.4426 0.000

s8 CE* -0. 1243 1.000 0.103 0.084 0.054

CONSTANT 2.4441 0.000  
 

*Insignificant variable

Most of the NPOC models are not valid and one that is valid has a very low R2

because there are very few high NPOC lakes in the data set. Although the

model was performed on LN(NPOC), which helped transformed the highly

skewed data to a normally distributed data set, a wide range of NPOC data was

lacking in the regression model development. Another reason could be that

NPOC absorb incident light so much that the measured spectral signature of

the two high NPOC lakes was so low and no spectral feature could be extracted

from them. Figure 4-9 compared spectral signature of the highest NPOC Croton

dam pond with the two other similar water condition lakes but lower NPOC.

It was almost consistent that band E and C have been selected very often, both

in significant and insignificant models. NPOC absorb light significantly in

shorter wavelengths; therefore, the useful wavebands (if there is one) should be

located in longer wavelengths, such as band D to G (Figure 2-7 and 2- 10).
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Figure 4-9 Comparison between high NPOC lake (Croton dam pond) and other

lakes with similar water condition but lower NPOC

4.3.5 Spectral Indicators for Diatom

Region-wavebands (area and height/width) indices and narrow-wavebands

volume reflectance indices from three filter methods were regressed against

LN(DIATOM), LN(GREEN) and LN(BLUEGREEN). The final models for diatom

were compared in Tables 4-16 to 4- 18.
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Table 4- 16 Diatom area models using the optimal wavebands
 

 

  
 

 
 

 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted Ra

Sgolay AD 2.670 0.322 0.048 0.280 0.208

DC 10.127 0.186 0.003

CC -3.522 0.345 0.004

CONSTANT 5.638 0.030

db1 BD -0.67 0.904 0.069 0.289 0.190

CA* -4.16 0.125 0.087

FA 3.852 0.148 0.020

GC -17.065 0.336 0.022

CONSTANT 20.061 0.000

s8 BA 3555 0.633 0.021 0.160 0.106

CG* -1.828 0.633 0.113

CONSTANT 19.298 0.000  
 

*Insignificant variable

Table 4- 17 Diatom height/width models using the optimal wavebands
 

 

  
 

 

   

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay HWEC 0.752 0.617 0.005 0.264 0.216

HWGA -1.729 0.617 0.005

CONSTANT 1 1.663 0.000

db1 HWD -26.578 0.230 0.01 1 0.203 0.151

HWED -12.835 0.230 0.011

CONSTANT 27.574 0.000

s8 HWAC* 0.733 1.000 0.085 0.090 0.062

CONSTANT 10.126 0.000  
 

*Insignificant variable
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Table 4— l8 Diatom narrow-waveband models using the optimal wavebands
 

 

  
 

 

  
 

 

Filter Band Coefficient Tolerance P(2-tai1) R2 Adjusted R2

Sgolay AD 4.718 1.000 0.004 0.230 0.206

CONSTANT 8.474 0.000

db1 FG —20.348 0.177 0.006 0.248 0.200

HF - 12.028 0. 1 77 0.003

CONSTANT 43.596 0.000

s8 AC 7.654 1.000 0.006 0.212 0.187

CONSTANT 5.059 0.034  
 

There were only a few diatom dominated lakes in the data set. Almost all of

these few lakes that had high diatom biomass also had high green algae

biomass. Therefore, the diatom dominated signatures to use in the model

development was lacking. The R2 of all models were low; however, Sgolay

produced better models than other methods in every case. Significance of the

models was determined based on Pvalue (P S 0.5; two-tailed test). When P

value of a variable was higher than 0.5, the model was considered invalid and

the variable that was most insignificant was eliminated fi'om the regression

analyses. The regression model was performed again based on the remaining

variables. In some cases, other variables became significant after the first

variable was removed and the model became significant. Otherwise, the

variable that had the next highest insignificant Pvalue was removed and the

regression model was performed again until all remaining variables produced a

significant valid model.
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The region wavebands that were selected repeatedly were D (maximum

chlorophyll absorption in red) and C (green and red edge). Waveband C (565

nm - 620 nm) could represent the general CHL curve, which is the major

pigment of all algae. According to Figure 2-11, The diatom spectral signature

has the prominent trough around 670 nm - 690 nm, which is the region

waveband D. The height/width model did not have band D, but it had band E

which was very similar (675 nm - 700 nm). Other bands that were selected,

band A and G, were the bands that were found to be the indicators of CHL.

The narrow-waveband models selected waveband in different region. According

to Figure 2-11, band D (565 nm) selected by Sgolay method was the distinctive

but very small valley appeared in diatom curve. This trough would be difficult

to identify the region waveband indicators. Wavelet db1 method did selected

band F (675 nm), which is the exact same prominent trough that showed in the

region waveband models. However, Sgolay produced a slightly better result,

therefore, it was used in validation process.

4.3.6 Spectral Indicators for Green Algae

Examples of green algal dominated lakes are shown in Figure 4- 10, and the

final models for green algae were compared in Tables 4-19 to 4-21.
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Figure 4- 10 Examples of volume reflectance of green algal dominated waters

Table 4-19 Green algae area models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay AD 1.642 0.190 0.047 0.328 0.285

EA 2.266 0.190 0.002

CONSTANT 9.847 0.000

db1 DA 2.734 1 .000 0.008 0.203 0.178

CONSTANT 13.071 0.000

s8 8* -39.786 0.171 0.081 0.231 0.154

AB -6.883 0.167 0.019

GB 7.548 0.423 0.016

CONSTANT 19.238 0.000
 

*Insignificant variable
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Table 4-20 Green algae height/width models using the optimal wavebands
 

 

  
 

 

  
 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted Ra

Sgolay HWEA 0.375 1.000 0.006 0.2 17 0. 192

CONSTANT 13.343 0.000

db1 HWAF* -1.267 1.000 0.064 0.103 0.075

CONSTANT 16.098 0.000

s8 HWAF -4.772 1.000 0.013 0.177 0.151

CONSTANT 1 7.84 0.000  
 

*Insignificant variable

Table 4-21 Green algae narrow-waveband models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay A -28.2 0.384 0.022 0.372 0.309

D 34.403 0.210 0.001

AB 14.341 0.406 0.000

CONSTANT -0.01 0.998

db1 BA -9.489 0.738 0.002 0.421 0.363

BC -78.591 0.740 0.006

GF 4.002 0.985 0.002

CONSTANT 99.102 0.001

s8 A -28.015 0.377 0.021 0.429 0.350

H 56.429 0.142 0.001

AC 3.854 0.758 0.007

EA -2.113 0.156 0.013

CONSTANT 12.596 0.000
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Area and narrow-waveband models tend to perform better than the

height/width model for green algae. All the models produce relatively low R2;

therefore, they could not be compared with a high confidence but it is observed

that height/width may not be as sensitive indicator to green algae as area does.

Due to the 2“d order polynomial fitting method, lakes with different algal

biomass may produce fitting curves with different area but the same height.

Figure 4- 1 1 demonstrated how height may be less sensitive to changes in

biophysical parameters than area.
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Figure 4-11 Examples of spectra that produce the same height but different

under curve area

Although Sgolay did not produce the best models in every case, it was selected

as the method to validate because it produced better results overall. Different

filters to use for the same water quality parameter cause a difficulty in

implementation.
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The region-waveband that was selected most repeatedly was band A (blue

absorption). Either or both band D and E (the maximum CHL absorption

bands) were also appeared in every model. These wavebands are the indicators

of chlorophyll pigment, which is the major component in green algae.

The narrow-waveband models selected band A (435 nm) and B (455 nm) most

often. Both region-waveband and narrow-waveband model selected band A,

which is the blue absorption. This band may be a good indicator of green algae.

4.3.7 Spectral Indicators for Bluegreen Algae

Examples of bluegreen algal dominated lakes is showed in Figure 4-12, and the

final models for bluegreen algae were compared in Tables 4-22 to 4-24.
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Figure 4-12 Examples of volume reflectance of bluegreen algal dominated

waters
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The first observation from the reflectance curve alone shows that the slight

bumps in blue wavelengths around 435 nm — 475 nm are noticeable. This blue

reflectance pattern did not appear clearly on the green algae curves (Figure 4-

10) except for Belleville Lake, which also has a high bluegreen algal biomass.

Table 4-22 Bluegreen algae area models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay AG -3.123 0.646 0.000 0.634 0.580

CA 1.977 0.756 0.005

DB -66.849 0.788 0.000

DE -7.727 0.811 0.044

CONSTANT 28.569 0.000

Dbl DB -22.962 0.644 0.013 0.200 0.144

DC* 12.158 0.644 0.066

CONSTANT 16.569

88 D -192.032 0.618 0.001 0.370 0.326

BA 5.106 0.618 0.001

CONSTANT 18.946 0.000
 

*Insignificant variable
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Table 4-23 Bluegreen algae height/width models using the optimal wavebands
 

 

 
 

 

 
 

 

 

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay HWF 133.395 0.542 0.001 0.436 0.353

HWAF -35.544 0.212 0.001

HWBF 69.307 0.495 0.001

HWDA -1.191 0.239 0.004

CONSTANT 1.266 0.834

Dbl HWBE 20.307 1.000 0.008 0.213 0.187

CONSTANT 6.387 0.032

s8 HWDB -3.233 1.000 0.000 0.373 0.352

CONSTANT 23.298 0.000
 

Table 4-24 Bluegreen algae narrow-waveband models using the optimal

 

 

 
 

 

 
 

 

wavebands

Filter Band Coefficient Tolerance P(2-tail) R2 Adjusted R2

Sgolay BE -2.107 0.405 0.000 0.364 0.320

HC -2.776 0.405 0.021

CONSTANT 19.926 0.000

Dbl BF -2.328 0.383 0.000 0.569 0.505

GH - 1 5.242 0.204 0.006

HE -7.000 0.22 1 0.009

HF -7.160 0.209 0.015

CONSTANT 44.931 0.000

s8 BE —1.429 0.961 0.000 0.477 0.441

EF 10.362 0.961 0.002

CONSTANT 5.577 0.088 
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Again, area and narrow-waveband models perform better than the height/width

model for bluegreen algae (discussed in Section4.3.6; Figure 4-11). The models

produce fairly good R2, approximately 50 - 60 percent of the bluegreen algal

biomass could be predicted by the area and the narrow-waveband spectral

indicator models. There were not as many toxicity lakes that were dominated

with bluegreen algae comparing to green algae. Nevertheless, the models select

spectral regions that could detect bluegreen algae. Giving a potential toxic of

this type of algae and the importance to assess and monitor for it in the real

ecosystem environment, 50 percent chance of detecting it with remote sensing

technology is useful. This hyperspectral remote sensing algorithm does not

require as much time as the traditional way of taking samples back to the lab

analysis. It allows a frequent monitoring by a hand-held sensor, or even a

spatial overview with an airborne or a satellite sensor. Hyperspectral satellite

sensors suitable for inland water monitoring are currently unavailable.

However, research on locating waveband regions and spectral band width such

as this study would help facilitate the future sensor configurations.

The region wavebands selected most frequently were hand A (435 nm - 475 nm,

blue absorption) and D (670 nm — 690 nm, maximum red absorption). Band A

is a good indicator of blue green algae. It separates bluegreen algae fi‘om other

algae type because bluegreen algae reflect light in blue wavelength regions,

whereas other algae absorb light in these regions (Figure 4-10 and 4- l2).

Waveband D is an indicator of chlorophyll maximum absorption. It is expected

to present in the models because most of the lakes that were dominated by

147

 



bluegreen algae had relatively high trophic. Waters that have high chlorophyll

would have a clear prominent absorption feature in band D. The narrow-

waveband models selected band B (455 nm) and E (670 nm), which are in the

ranges of band A and D in the region-waveband indicators. The narrow-

waveband indices show that wavelength 455 nm, which is close to the center of

the slight bump in blue wavelengths, is a good indicator of bluegreen algae.

Band H appears in the models as it is an indicator of higher CHL spectral

signature.

4.4 Model Validation

The spectral indicators for each water quality variable were validated with 14

samples from both ASD and AISA data set.

4.4.1 Chlorophyll a Model Validation

AISA sensor was flown on 14 lakes on July 26, 2004. Of all the 14 lakes, ASD

data are available for 13 of these lakes. Most of the measurements were made

within 3 days of the AISA fly-over. One of these 13 lakes, Marl Lake, was

extremely shallow. The deepest basin of the lake was only 1.5 meters and it

was impossible to launch the boat to collect the sample. ASD and water

samples were collected at the clock, which did not fall within the path of the

AISA image. The ASD reading was impacted largely by the bottom effect.

Spectral signature of this site did not purely represent inherent constituents

within the water column. Therefore, it was appropriate to exclude the lake from
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the validation data set. Consequently, the validation data set contained 12 ASD

and 12 AISA spectra of the same lakes.

4.4.1.1 Chlorophyll 0! ASD Validation

The best spectral indicator for CHL was from Sgolay method. This method

consistently performed better than the other approaches, and was therefore

selected to use in the validation process. Although the area indicator tended to

produce better results than the height/width index and narrow-waveband index

in general (in terms of correlation coefficient and distribution of residual), all

three indices were validated.

The ASD radiance spectra from 12 lakes were converted to volume reflectance

and filtered with Savitsky Golay method. The filtered volume reflectances were

then calculated for the 13‘ derivative. The derivative products were separated

into narrow-wavebands and region-wavebands according to Table 4-2 and 4—3.

Second order polynomial functions were fitted to the derivative data of region-

waveband, and area under the curve, height and width of the function were

calculated (detail described in Section 3.4.7 to 3.4.9). These waveband

variables were used in the CHL models (Tables 4-4 to 4-6) to calculate the

predicted CHL concentration for each lake (Table 4-25). The predicted CHL was

then correlated with the real CHL concentration measured from the sampled

water of the same site (Table 4-26; Figure 4-13).
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Table 4-25 Chlorophyll ASD validation
 

 

 

 

Lake Actual LNchl Predicted LNchl

Area Height]Width Narrow Band

HIGG0727 0.122 0.857 0.096 1.465

CLME0724 2.270 2.505 2.718 2.482

SAPP0725 2.315 2.787 2.800 2.725

ARBU0726 2.371 1.922 1.882 1.903

MITC0725 2.612 2.919 3.228 2.907

HOUG0726 2.851 2.577 2.641 2.633

ROGE0724 3.001 2.967 3.365 3.179

MUSK0728 3.334 3.626 3.928 3.377

JEHN0519 3.359 2.664 2.890 2.781

HESS0727 3.515 4.901 3.336 4.215

BROOO727 3.928 4.199 3.514 3.713

TAMA0605 4.456 3.133 3.304 2.866    
 

 

 
Table 4-26 Pearson correlation matrix of actual and predicted chlorophyll from

ASD
 

 

      

 

     

Predicted CHL Area Method Height/Width Method Narrow Band Method

Actual CHL 0.782 0.865 0.749

ASD PREDICTED CHL
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Figure 4-13 Correlation graphs between actual and predicted CHL fi'om ASD

Correlations between actual and predicted CHL were quite strong for all

methods. In a complex real natural ecosystem, many organic and inorganic
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constituents coexist at the same time. These substances have different optical

properties that could interfere or mask the signal of CHL in water. Therefore,

the correlation coeflicients of 0.75 - 0.87 were considered to be high especially

for the studies that base on the natural environment rather than a controlled

laboratory experimental condition. The CHL models selected spectral bands

that are strongly related to the optical properties of CHL. These spectral bands

were able to differentiate and provide a very good indication of CHL

concentration of various trophic states in Michigan’s inland lake waters.

4.4.1.2 Chlorophyll a AISA Validation

AISA spectra were extracted from the 30 bands AISA imagery using the 3x3

area of interest (AOI). The average reflectance values within the AOI were used

as the representative spectra of the lakes. These spectra were converted to

volume reflectance. The AISA volume reflectances did not need to be filtered

because the high frequency noise was not present. The average bandwidth was

5 nm — 8 nm. Filtering these spectra could result in losing useful

absorption/reflectance features. The filtered volume reflectance was calculated

for the 18‘ derivative. The derivative was then separated into narrow- and

region-wavebands according to the Sgolay spectral indicator model. Polynomial

functions 2“d order were fitted to the derivative data for each band regions, and

under curve area, height and width of the function were calculated (detail

described in Section 3.4.7 to 3.4.9). These spectral indicators were used to

predict CHL concentration for each lake (Table 4-27). The predicted CHL was

then correlated with the real CHL concentration measured from the sampled

water of the same site (Table 4-28; Figure 4-14).
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Table 4-27 Chlorophyll AISA validation
 

 

 

 

Lake Actual LNchl Predicted LNchl

Area Height/Width Narrow Band

HIGG0727 0.122 2.978 0.071 0.905

CLME0724 2.270 2.560 1.493 1.821

SAPP0725 2.315 2.371 2.688 2.438

ARBU0726 2.371 3.201 -0. 181 1 .652

TAMA0726 2.543 2.289 2.852 2.170

MITC0725 2.612 2.461 0.806 2.603

HOUG0726 2.851 2.319 2.917 2.090

JEHN0726 2.866 2.714 2.016 1.849

ROGE0724 3.001 1.467 4.617 2.657

MUSK0728 3.334 1.969 -0.293 1.204

HESS0727 3.515 1.713 3.689 3.962

BROOO727 3.928 2.053 3.019 3.591    
 

 

 
Table 4-28 Pearson correlation matrix of actual and predicted chlorophyll fiom

AISA

Predicted CHL Area Method Height/Width Method Narrow Band Method

Actual CHL -0.646 0.463 0.668
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Figure 4- 14 Correlation graphs between actual and predicted CHL from AISA

Correlation between the actual and predicted CHL from AISA data was lower

than expected. Two of the 12 AISA spectra were not reliable. Mitchell Lake
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image could not be successfully processed in an image export. However, part of

the image that was successfully exported, although far from the in situ sample

location, was used. The reflectance value was extracted from that part of the

image. Muskegon Lake contained a large amount of bad scan lines (Appendix

G). It was almost impossible to extract reflectance in 3x3 pixel window that was

not affected by the defective scan lines. These two lakes were excluded from the

data in the correlation process. The result shows a significant improvement on

height/width and narrow-waveband indicators (Table 4-29; Figure 4- 15).

 

Table 4-29 Pearson correlation matrix of actual and predicted chlorophyll from

AISA without Mitchell and Muskegon Lakes '
 

Predicted CHL Area Method Height/Width Method Narrow Band Method
 

     Actual CHL -0.627 0.685 0.836
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Figure 4- 15 Correlation graphs between actual and predicted CHL from AISA

without Mitchell and Muskegon Lakes

4.4.2 Secchi Depth Model Validation

Validation is tested on the ASD and the AISA data from the same 12 lakes.

Spectral radiance from both data sets was transformed to surface reflectance.
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Air-water interface correction and was applied to the reflectance. Three de-

noising filters were performed on the ASD data, and the 18‘ derivative was

calculated for each lake. The derivative products were then separated into

regions determined in the previous section (section 3.4.7). Under curve area,

height and width rationing were calculated. These indices, as well as the

narrow-waveband reflectance values were used in the multivariate regression

models. Since Sgolay produced the better results in the most biophysical

models, it was used to validate the efficiency of the models. Although Sgolay

did not produce the best SD model in the narrow-waveband model, the R2 was

not low. For an implementation purpose, it is more practical for the decision

makers to use the models that were calculated from one filter method to predict

water quality variables rather than applying different filters to the data for

different variables.

4.4.2.1 Secchi Depth ASD Validation

The ASD radiance spectra from 12 lakes were converted to volume reflectance

and filtered with Savitsky Golay method. The filtered volume reflectance was

then calculated for the 18‘ derivative. The derivative products were separated

into narrow-wavebands and region-wavebands according to Tables 4-2 and 4-3

(Sgolay indicator). Polynomial functions 2“(1 orders were fitted to the derivative

data of region-waveband, and under curve area, height and width of the

function were calculated (detail described in Section 3.4.7 to 3.4.9). These

waveband variables were used in the Secchi models to calculate the predicted

SD for each lake (Table 4-30). The predicted SD was then correlated with the
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real SD concentration measured from the sampled water of the same site (Table

4-31; Figure 4- 16).

Table 4-30 Secchi depth ASD validation
 

Predicted LNsd
 

 

 

Lake Actual LNsd

Area Helm]Width Narrow Band

HESS0727 -0.598 0.203 0.283 1.663

BROOO727 0.000 0.475 0.534 1 .010

ROGE0724 0.182 0.396 0.619 1.728

SAPP0725 0.336 0.902 0.855 2.457

MUSK0728 0.405 0.363 -0.067 1.302

HOUG0726 0.470 0.805 1.127 1.771

TAMA0605 0.531 0.865 0.623 1.169

MITC0725 0.642 0.574 0.589 1.543

JEHNOS19 0.693 0.795 0.880 2.122

CLME0724 1.065 0.995 1.075 2.1 14

ARBU0726 1.163 1.368 1.183 2.429

HIGG0727 2.054 2.208 1.920 3.258    
 

 
Table 4-3 1 Pearson correlation matrix of actual and predicted Secchi depth

 

 

fi'om ASD

Predicted SD Area Method Height/Width Method Narrow Band Method

Actual SD 0.918 0.810 0.718     
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Figure 4- 16 Correlation graphs between actual and predicted SD from ASD
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Correlations between actual and predicted SD were very strong for all methods.

The outlier point was Higgins Lake, which was the clearest lake in the data set

(SD = 7.8 m; CHL = 1.13 mg/L). Comparing within the Sgolay models, region-

waveband models are more accurate than the narrow-waveband model. The

selected bands were able to differentiate and provide a very good indication of

SD of various lakes in Michigan.

4.4.2.2 Secchi Depth AISA Validation

AISA spectra were extracted from the 30 bands AISA imagery and processed

according to Section 4.4.1.2. Sgolay SD models were applied to the AISA data

set to predict SD for each lakes (Table 4-32). The predicted SD was then

correlated with the actual reading SD from the same sample site (Table 4-33;

Figure 4- 17).

Table 4-32 Secchi depth AISA validation

 

 

 

 

 

Lake Actual LNsd Predicted LNsd

Area Height]Width Narrow Band

HESS0727 -0.598 3.459 -2.900 2.822

BROOO727 0.000 3.949 - 1.588 3.720

ROGE0724 0.182 6.216 -1.769 2.489

SAPP0725 0.336 2.474 1.131 3.330

MUSK0728 0.405 -0.242 -0.433 1.132

HOUG0726 0.470 2.099 0.893 2.997

TAMA0605 0.588 2.246 0.323 2.303

MITC0725 0.642 1.942 -0.154 6.967

JEHN0519 0.916 1 .991 1.352 5.997

CLME0724 1.065 2.423 1.410 4.213

ARBU0726 1.163 -0.990 2.236 5.810

HIGG0727 2.054 - 10.069 2.238 5.843    
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Table 4-33 Pearson correlation matrix of actual and predicted Secchi depth

 

 

from AISA

Predicted SD Area Method Height/Width Method 1Narrow Band Method

Actual SD -0.798 0.869 0.581     
 

AISA PREDICTED SD
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Figure 4-17 Correlation graphs between actual and predicted SD from AISA

Mitchell Lake and Muskegon Lake spectra were not reliable (explained in

Section 4.4.1.2). These lakes were removed and the result shows an

improvement on the narrow-waveband model (Table 4-34; Figure 4- 18).

Table 4-34 Pearson correlation matrix of actual and predicted Secchi depth

from AISA without Mitchell and Muskegon Lakes

Predicted SD Area Method Height/Width Method Narrow Band Method

Actual SD -0.820 0.872 0.735
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Figure 4- 18 Correlation graphs between actual and predicted SD from AISA

without Mitchell and Muskegon Lakes
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4.4.3 TSS Model Validation

The ASD and the AISA radiance spectra from 12 lakes were converted to volume

reflectance and filtered with Savitsky Golay method. The filtered volume

reflectance was then calculated for the l8t derivative. The derivative products

were separated into narrow-wavebands and region-wavebands according to

Tables 4-2 and 4-3 (Sgolay indicator). Polynomial functions 2nd orders were

fitted to the derivative data of region-waveband, and under-curve area, height

and width of the function were calculated (detail described in Section 3.4.7 to

3.4.9). These waveband variables were used in the TSS models to calculate the

predicted TSS for each lake (Table 4-35).

4.4.3.1 TSS ASD Validation

The predicted TSS values were correlated with the actual TSS concentration

measured from the sampled water of the same site (Table 4-36; Figure 4-19).

Table 4-35 TSS ASD validation
 

 

 

 

Predicted LNtss

Lake Actual LNtss

Area Height]Width Narrow Band

CLME0724 2.128 2.424 2.448 2.425

HIGG0727 2.197 2.313 2.348 2.338

MUSK0728 2.262 2.856 2.747 2.802

JEHNOS19 2.303 2.479 2.494 2.515

ROGE0724 2.542 2.510 2.735 2.616

ARBU0726 2.580 2.410 2.375 2.498

SAPP0725 2.879 2.559 2.462 2.591

MITC0725 2.944 2.569 2.681 2.570

HESS0727 3.401 2.92 1 2.993 2.682

HOUG0726 3.440 2.488 2.512 2.511

TAMA0605 3.940 2.597 2.548 2.526

BROOO727 4.159 2.760 2.818 2.676     
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Table 4-36 Pearson correlation matrix of actual and predicted TSS from ASD

Predicted TSS Area Method Height/Width Method Llanow Band Method

Actual TSS 0.453 0.442 0.294
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Figure 4-19 Correlation graphs between actual and predicted TSS biomass from

ASD

TSS concentration for each lake was predicted using the TSS spectral indicator

model developed in section 4.3.3 applied to spectral data from a handheld ASD

spectroradiometer. The models tend to underpredict TSS values when

concentration is high and slightly overpredict values when concentration is low.

This may be because the data set used to develop the models was mostly from

low TSS lakes. Therefore, the models tend to underpredict high TSS values

resulting in relatively low correlations between actual and predicted TSS

showed in the correlation graph point pattern. Comparing among all methods,

the area model appears to have a stronger correlation between predicted and

actual TSS.

4.4.3.2 TSS AISA Validation

AISA spectra were extracted from the 30 bands AISA imagery and processed

according to Section4.4.1.2. Sgolay TSS models were applied to the AISA data

set to predict TSS for each lakes (Table 4-37). The predicted TSS was then
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correlated with the actual reading TSS from the same sample site (Table 4-38;

Figure 4-20).

Table 4-37 TSS AISA validation
 

 

 

   

Lake Actual LNtss Predicted LNtss

Area Height/Width Narrow Band

CLME0724 2.128 2.847 3.168 2.377

HIGG0727 2.197 2.677 2.866 2.251

MUSK0728 2.262 3.812 3.923 2.417

ROGE0724 2.542 3.212 4.139 2.526

ARBU0726 2.580 2.628 2.787 2.411

TAMA0727 2.703 2.735 3.565 2.528

SAPP0725 2.879 2.509 3.192 2.424

MITC0725 2.944 2.599 3.796 2.526

JEHN0726 3.158 2.614 3.150 2.262

HESS0727 3.401 1.844 4.626 2.652

HOUG0726 3.440 2.673 3.330 2.433

BROOO727 4.159 2.237 4.207 2.655   
 

 

Table 4-38 Pearson correlation matrix of actual and predicted TSS from AISA
 

Predicted TSS Area Method Height/Width Method Narrow Band Method
 

     
 

 

Actual TSS -0.640 0.456 0.580
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Figure 4-20 Correlation graphs between actual and predicted TSS from AISA
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Two of the 12 AISA spectra were not reliable (discussed in Section 4.4.12).

Therefore, they were removed from the validation. The new prediction improved

only slightly (Table 4-39; Figure 4-21).

Table 4-39 Pearson correlation matrix of actual and predicted TSS from AISA

without Mitchell and Muskegon Lakes

Predicted TSS Area Method Height/Width Method Narrow Band Method

Actual TSS -0.631 0.562 0.590
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Figure 4-21 Correlation graphs between actual and predicted TSS from AISA

without Mitchell and Muskegon Lakes

Although the uncertain data were removed from the validation, the results

remain almost the same. Accuracy of AISA data was much lower than the ASD

because of the AISA configuration. Spectral band location and band width of

the sensor used in this study did not support the use of area model. Narrow-

waveband method produced the better result in this case.
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4.4.4 NPOC Model Validation

Although Sgolay did not produce the best models in every case, it was selected

as the method to validate because it produced better results for overall

biophysical parameters.

4.4.4.1 NPOC ASD Validation

The predicted NPOC data (Table 4-40) were correlated with the real NPOC

concentration measured from the sampled water of the same site (Table 4-41;

Figure 4-22).

Table 4-40 NPOC algae ASD validation
 

 

 

 

Lake Actual Predicted Lanoc

LNnpoc Area Height/Width Narrow Band

ARBU0726 1.550 2.075 2.063 2.146

BROOO727 2.086 2.220 2.222 2.285

CLME0724 2.496 2.166 2.167 2.147

HESSO727 2.447 2.210 2.189 2.281

HIGG0727 1.227 2.128 2.105 1.953

HOUG0726 2.259 2.229 2.223 2.236

JEHN0519 1.926 2.259 2.240 2.206

MITC0725 2.479 2.341 2.330 2.285

MUSK0728 2.257 2.516 2.520 2.276

ROGE0724 2.044 2.398 2.360 2.289

SAPP0725 2.123 2.248 2.218 2.128

TAMA0605 2.539 2.366 2.408 2.247    
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Table 4-41 Pearson correlation matrix of actual and predicted NPOC from ASD
 

 

     

 

 

 

  

 

Predicted NPOC Area Method Height/Width Method Narrow Band Method

Actual NPOC 0.491 0.539 0.712
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Figure 4-22 Correlation graphs between actual and predicted NPOC from ASD

The correlation graphs indicate no correlation between the actual and the

predicted NPOC. Similar to TSS, NPOC data set mostly contain low NPOC

lakes. A wide range of data was lacking in the model development process.

Therefore, a model that captures specific optical features of NPOC was not

successfully produced in this study.

4.4.4.2 NPOC AISA Validation

The predicted NPOC concentration were calculated and correlated with the

actual concentration values (Tables 4-42 and 4-43; Figure 4-23).
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Table 4-42 NPOC AISA validation
 

 

 

Predicted Lanoc

Lake Actual Lanoc

Area Height/Width Narrow Band

JEHN0726 1.227 1.256 2.637 2.043

MITC0725 1.550 1.379 2.510 2.136

SAPP0725 2.044 0.689 3.445 2.252

HOUG0726 2.086 0.905 3. 1 16 2.266

ARBU0726 2.123 1.240 2.755 2.155

MUSK0728 2.257 0.866 3.959 2.263

CLME0724 2.259 1.030 2.871 2.214

BROOO727 2.447 1.074 3.044 2.276

HESS0727 2.479 0.624 3.345 2.230

ROGE0724 2.496 1.054 2.92 1 2.1 57

 

      
 

Table 4-43 Pearson correlation matrix of actual and predicted NPOC from AISA

Predicted NPOC Area Method Height/Width Method Narrow Band Method

Actual NPOC -0.569 0.499 0.718
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Figure 4-23 Correlation graphs between actual and predicted NPOC from AISA

The correlations between actual and predicted NPOC are very low. Considering

correlation graph in Figure 4-23, there is no relationship between the predicted

and actual NPOC for region-waveband models. However, narrow-waveband

model appears to have a better correlation. This reflects the same explanation
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with the TSS models that AISA configuration used in this study may not

support region-waveband TSS models prediction. Therefore, no further test has

been done on excluding Mitchell and Muskegon lake data.

4.4.5 Algal Model Validation

The spectra of 12 lakes from ASD and AISA were used in the validation. The

data set used to develop the models and the data set used for validation were

compared (Table 4-44, Figure 4-24). Green algae was the only parameter that

has approximately the same distribution between the modeling and validating

data sets. Most of the validating data set for diatom and bluegreen algae had

lower algal biomass.

Table 4-44 Statistical comparison of modeling and validating data set

 

 

 

       

Diatom Green Bluegreen

Data set

Model Validate Model Validate Model Validate

Min 1259 30145 381352 868721 0 0

Max 471 l0080 9496427 27080095 24628622 19053542 1 1 150160

Mean 1807403 957288 4363092 5196300 4960194 3057239

Median 96388 2609 l 0 2001618 3065090 3343379 1 516637

Std. Dev. 7954953 2468981 6390964 6060236 5578742 398220 1
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Figure 4-24 Distribution of modeling and validating data set

4.4.5.1 Diatom ASD Validation

The ASD radiance spectra from 12 lakes were converted to volume reflectance

and filtered with Savitsky Golay method. The filtered volume reflectance was

then calculated for the 18‘ derivative. The derivative products were separated

into narrow-wavebands and region-wavebands according to Tables 4-2 and 4-3

(Sgolay indicator). Polynomial functions 2“(1 orders were fitted to the derivative

data of region-waveband, and under curve area, height and width of the

function were calculated (detail described in section 3.4.7 to 3.4.9). These
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waveband variables were used in the diatom biomass models to calculate the

predicted diatom biomass for each lake (Table 4-45). The predicted diatom

biomass was then correlated with the real diatom biomass concentration

measured from the sampled water of the same site (Table 4-46; Figure 4-25).

Table 4-45 Diatom ASD validation
 

 

 

Predicted LNdiatom

Lake LNdiatom

Area Height/Width Narrow Band

JEHN0519 7.539 9.174 10.222 11.787

MITC0725 10.314 9.439 9.852 1 1.622

SAPP0725 11.046 11.841 1 1.926 12.364

HOUG0726 11.934 11.263 1 1.592 12.922

ARBU0726 12.116 10.850 11.361 11.474

MUSK0728 12.161 11.994 11.821 11.974

CLME0724 12.554 12.265 12.415 11. 142

BROOO727 12.582 11.632 11.968 12.050

HESS0727 12.639 12.134 11.943 12.667

ROGE0724 13.560 13.634 12.271 1 1.911

HIGG0727 13.579 12.616 1 1.960 12.201

TAMA0605 16.066 13.6 11 12.879 13.632       
Table 4-46 Pearson correlation matrix of actual and predicted diatom from ASD
 

 

     

 

 

 

  

Predicted Diatom Area Method Height/Width Method Narrow Band Method

Actual Diatom 0.887 0.841 0.498
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Figure 4-25 Correlation graphs between actual and predicted diatom biomass

from ASD
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Correlations between actual and predicted diatom were quite strong for both

region waveband methods. Given a complexity in natural waters where many

algal types coexist, the region waveband models could predict nearly 80 percent

of diatom biomass (R2 = 0.787). The selected waveband regions are sensitive to

changes in diatom biomass. Despite the fact that lakes that were used for

validation have very low diatom biomass, and the data that used to create the

models have very few diatom dominated lakes to begin with, wavebands used in

the model were able to capture diatom optical characteristics.

4.4.5.2 Diatom AISA Validation

AISA spectra were extracted from the 30 bands AISA imagery and processed

according to Section 4.4.1.2. Sgolay SD models were applied to the AISA data

set to predict diatom biomass for each lake (Table 4-47). The predicted diatom

biomass was then correlated with the actual reading diatom biomass from the

same sample site (Table 4-48; Figure 4-26).

Table 4-47 Diatom AISA validation
 

 

 

 

     

Lake LNdiatom Predicted LNdiatom

Area Height]Width Narrow Band

JEHN0726 7.539 -11.573 19.376 12.007

MITC0725 10.314 -11.819 18.185 11.994

SAPP0725 11.046 -2.418 16.887 13.249

HOUG0726 11.364 -5.579 19.955 1 1.564

ARBU0726 1 1.934 -3.237 18.499 10.936

MUSK0728 12.116 1.900 15.652 9.777

CLME0724 12.161 -11.614 21.813 11.396'

BROOO727 12.554 0.088 16.598 8.934

HESS0727 12.582 -5.122 17.681 11.539

ROGE0724 13.560 0.285 26.576 1 1.177

HIGG0727 13.579 ~13.855 19.632 12.519
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Table 4-48 Pearson correlation matrix of actual and predicted diatom from AISA

Predicted Diatom Area Method Height/Width Method Narrow Band Method

Actual Diatom 0.346 0.245 -0.280
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Figure 4-26 Correlation graphs between actual and predicted diatom from AISA

Two of the 12 AISA spectra were not reliable (discussed in Section 4.4.1.2).

Therefore, they were removed from the validation. The result shows no

improvement at all (Table 4-49; Figure 4-27). The reasons could be that the

model is not sensitive to changes in diatom biomass, or the AISA spectral

setting used in this study does not support the estimation of diatom biomass.

Since ASD validation shows a very good result, the model should not be the

reason that causes such a low predictability with the AISA data. AISA data set

proved to produce high accuracy when applied with CHL (chlorophyll a) and SD

(Secchi depth) models. However, the average bandwidth of 5 nm — 8 nm (mostly

8 nm for the selected bands), may not provide the detail features needed for

biomass estimation of the algae. For example, band A (435 - 475 nm) has ASD

input of 40 data point to the polynomial fitting curve, whereas, AISA only has 5

data point input into the model. In this case, AISA waveband actually ranges

from 434.45 nm to 486.92 nm, which is not exactly same range as selected in
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the models. The worst case is band D (670 nm — 690 nm), which only have 3

data point input from AISA with spectral range between 674.09 nm to 694.13

nm. Table 4-49 showed Pearson correlation matrix of actual and predicted

diatom from AISA without Mitchell and Muskegon Lakes.

Table 4-49 Pearson correlation matrix of actual and predicted diatom from AISA

without Mitchell and Muskegon Lakes

Predicted Diatom Area Method Height/Width Method Narrow Band Method

Actual Diatom 0.315 -0.245 -0.283
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Figure 4-27 Correlation graphs between actual and predicted diatom from AISA

without Mitchell and Muskegon Lakes

4.4.5.3 Green Algae ASD Validation

The spectral indicator for green algae derived from Sgolay method consistently

performed better than the other approaches. It was therefore selected as the

best method and was used in the validation process. The predicted green algal

biomass was calculated and correlated with the real green algal biomass

measured from the sampled water of the same site (Tables 4-50 and 4-51;

Figure 4-28).
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Table 4-50 Green algae ASD validation
 

 

 

     

Predicted LNgreen

Lake LNgreen

Area Height]Width Narrow Band

JEHN0519 13.039 14.149 14.384 19.987

MITC0725 13.675 14.512 14.824 17.338

SAPP0725 14.164 14.723 14.073 24.155

HOUG0726 14.662 14.345 14.308 18.697

ARBU0726 14.781 14.901 14.974 16.542

MUSK0728 14.993 15.467 15.545 14.168

CLME0724 15.215 14.335 14.448 16.954

BROOO727 15.251 14.565 14.944 17.821

HESS0727 15.254 14.346 14.789 19.185

ROGE0724 15.676 14.271 14.785 17.950

HIGG0727 15.887 16.358 15.780 14.922

TAMA0605 17.019 14.425 14.651 19.728  
 

, _

Table 4-51 Pearson correlation matrix of actual and predicted green algae from

ASD
 

Predicted green Area Method Height/Width Method Narrow Band Method
 

Actual green 0.249 0.360 -0.243     
 

ASD PREDICTED GREEN ALGAL BIOMASS
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Figure 4-28 Correlation graphs between actual and predicted green algal

biomass from ASD
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There was no correlation between the actual and the predicted green algae. It

could be because green algae do not have a unique or distinctive absorption/

reflectance features other than the appearance of normal chlorophyll curve.

The model that captures specific optical features that could detect green algae

is not successfully produced in this study.

4.4.5.4 Green Algae AISA Validation

The predicted green algal biomass were calculated and correlated with the

actual green algal biomass (Tables 4-52 and 4-53; Figure 4-29).

Table 4-52 Green algae AISA validation
 

 

 

   

Lake LNgreen Predicted LNgreen

Area Height]Width Narrow-Band '

JEHN0726 13.039 15.003 13.754 16.155

MITC0725 13.675 15.421 13.650 18.967

SAPP0725 14.044 15.757 13.894 12.954

HOUG0726 14.164 14.504 13.806 18.624

ARBU0726 14.662 15.336 13.682 15.429

MUSK0728 14.781 15.339 13.854 19.032

CLME0724 15.2 1 5 15.240 13.66 1 15.982

BROOO727 15.254 15.9 11 13.776 16.495

HESS0727 15.676 20.985 14.730 18.881

ROGE0724 15.887 16.937 13.664 10.815

HIGG0727 17.019 15.692 13.880 19.035  
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Table 4-53 Pearson correlation matrix of actual and predicted green algae from

 

 

     
 

 

AISA

Predicted Green Area Method Height/Width Method Narrow Band Method

Actual Green 0.405 0.273 0.017
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Figure 4-29 Correlation graphs between actual and predicted green algae from

AISA

The correlations between actual and predicted green algae are very low.

Considering correlation graph in Figure 4-29, there is no relationship between

the predicted and actual green algae. Therefore, no further test has been done

on excluding Mitchell and Muskegon lake data.

4.4.5.5 Bluegreen Algae ASD Validation

The spectral indicator for bluegreen algae derived from Sgolay method was used

in the validation process. The predicted bluegreen algae was correlated with

the real bluegreen algal biomass measured from the sampled water of the same

site (Tables 4-54 and 4-55; Figure 4-30).
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Table 4-54 Bluegreen algae ASD validation
 

 

 

 

Predicted LNbluegreen

Lake LNbluegreen

Area Height/Width Narrow Band

JEHN0519 6.982 8.353 11.979 5.160

MITCO725 13.478 15.184 15.740 13.203

SAPP0725 13.501 14.828 14.910 10.995

HOUG0726 13.940 16.128 16.173 13.681

ARBU0726 14.368 14.713 14.659 13.586

MUSK0728 14.379 12.830 1 1.462 10.587

CLME0724 14.899 13.211 14.373 13.176

BROOO727 15.664 14.988 14.997 1 1.384

HESS0727 15.992 16.150 15.292 11.387

ROGE0724 16.227 15.337 15.298 13.275    
 

 
Table 4-55 Pearson correlation matrix of actual and predicted bluegreen algae

from ASD
 

Predicted Bluegreen Area Method Height]Width Method [Narrow Band Method
 

  Actual Bluegreen 0.849  0.536
 

0.811
 

ASD PREDICTED BLUEGREEN ALGAL BIOMASS
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Figure 4-30 Correlation graphs between actual and predicted bluegreen algal

biomass from ASD
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Although the correlation coefficients are high, there was no strong correlation

between the actual and the predicted green algae considering the correlation

graph. It could be because the validate data set does not have high bluegreen

biomass lakes that have the strong optical features mentioned in Section 4.4.5

(Figure 4-24).

4.4.5.6 Bluereen Algae AISA Validation

Statistical correlation was performed on the predicted bluegreen algal biomass

were calculated and correlated with the actual biomass (Tables 4-56 and 4-57;

Figure 4-31).

Table 4-56 Bluegreen algae AISA validation
 

 

 

     

Lake LNbluegreen Predicted LNbluegreen

Area Height[Width Narrow Band

JEHN0726 6.982 - 104.087 - 128.282 9.732

MITC0725 13.478 - 11.129 -37.148 12.828

SAPP0725 13.501 - 17.873 -45.334 10.719

HOUG0726 13.940 -6.085 - 15.480 13.159

ARBU0726 14.075 -23.372 -51.623 12.200

MUSK0728 14.368 —29. 146 - 103.32 1 12.438

CLME0724 14.379 - 1.465 - 129.525 11.945

BROO0727 14.899 -23.879 -4.993 12.069

HESSO727 15.664 -22.247 -70.829 11.858

ROGE0724 15.992 -30.9 18 -121.843 12.744

HIGG0727 16.227 -26.086 -46.916 12.434
 

175

 



Table 4-57 Pearson correlation matrix of actual and predicted bluegreen algae

from AISA
 

Predicted Bluegreen Area Method Height]Width Method Narrow Band Method

Actual Bluegreen 0.793 0.308 0.746
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Figure 4-31 Correlation graphs between actual and predicted green algae from

AISA

Although correlation coefficients are high, correlation graph also showed no

relationship between AISA predicted and actual bluegreen algae. The Higgins

lake data that were outliers was an exceptionally deep and clear lake. An

experiment had been made to exclude Mitchell, Muskegon, and Higgins lakes to

investigate if the model is able to predict bluegreen algal biomass at all since it

was expected to predict a half of the actual data according to the model R2

(Tables 4-22 to 4-24). Correlation graph shows some degree of correlation in

the region waveband methods, but the correlation appears to be negative

suggesting that the model could not be used effectively with this AISA data

(Table 4-58; Figure 4-32).
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Table 4-58 Pearson correlation matrix of actual and predicted bluegreen algae

 from AISA without Mitchell, Muskegon, and Higgins Lakes

Predicted Bluegreen Lina Method Height/Width Method Narrow Band Method

Actual Bluegreen -0.751 -0.516 0.164
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Figure 4-32 Correlation graphs between actual and predicted bluegreen algae

from AISA without Mitchell, Muskegon, and Higgins Lakes

4.5 Discussion on Spectral Indicators for Water Quality Assessment

Spectral indicator models developed from Savitsky Golay filter performed best

among the four filters. Performances of the models developed from Savitsky

Golay filter were summarized in this section. The dependant variables (spectral

wavebands) were discussed in terms of their linkages to the water quality

variables.

4.5. 1 Chlorophyll a

The best CHL spectral indicator models and their accuracies were summarized

in Table 4-59.
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Table 4-59 Chlorophyll model performances
 

 

Index Model Model Validation Validation

R2 ASD R2 AISA R2

Area LN(CHL) = -1.687(A/G) + 1.509(D/G) 0.757 0.612 0.393

- 0.331(F/E) + 1.132(G/D)

 

 

+ 3.234

Height/ LN(CHL) = -1.930(A/G) - 5.181(B/D) 0.699 0.748 0.469

Width + 5.891

Narrow LN(CHL) = -38.605(A) + 42.536(E) - 0.754 0.561 0.699

5.108(E/H) — 1.549(G/A) +

 

      9.801
 

The blue absorption band A (435 nm or 435 nm — 475 nm) and the ratio of it

with the NIR peak band G (690 nm or 700 nm — 740 nm) were the key

wavebands for chlorophyll assessment. Blue wavelengths not only contains the

most information of water column as they penetrate deeper than other

wavelengths, but they also represent an absorption region of CHL. NIR

wavebands are no doubt the indicator of CHL. NIR wavelengths have been used

in the inland vegetation indicators and blue wavelengths have been used in

water quality indicators.

The ratio between maximum CHL absorption in red wavelengths and the NIR

peak were selected repeatedly (region-waveband: D/G, F/E, G/D and narrow-

waveband: E/H). The RED/NIR ratio has also been used extensively in

vegetation studies. These wavebands are truly indicators of CHL.
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4.5.2 Secchi Depth

The best SD spectral indicator models and their accuracies were summarized in

Table 4-60.

Table 4-60 Secchi depth model performances
 

 

Index Model Model Validation Validation

R2 ASD R2 AISA R2

Area LN(SD) = - 5.560(A/B) + 0.792(A/G) 0.700 0.843 0.672

— 2.183(B/F) - 0.937(E/C)

 

 

+ 3.955

Height/ LN(SD) = - 47.187(C) — 1.742(B/A) 0.759 0.656 0.760

Width — 0.597(G/C) + 4.559

Narrow LN(SD) = -7.1088(A) + 1.1003(D/A) 0.768 0.516 0.540

— 1.8842(D/C) - 1.0169(G/C)

+ 2.871     
 

Shorter spectral wavelengths (blue waveband) between 435 nm — 475 nm (band

A) explained clarity in water. Blue wavelength region approximately 400 nm -

500 nm has the least amount of absorption and scattering of incident light in

the water column (Figure 2-6). These wavebands penetrate into the water

column deeper than other wavelengths. Reflectance from them contains

information of constituents in the water column. Therefore, they can be used to

differentiate clear and turbid waters. Longer wavebands (> 520 nm) get

absorbed by water very quickly; therefore, they could not detect and separate

clear water from turbid water. The longer wavebands that appeared in the
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models were mostly the indicators of chlorophyll. For examples, NIR peak for

band G, maximum CHL absorption for band D and E. Since turbidity in the

studied lakes was dominated by algal biomass, these selected bands could

improve the predictability of the SD model.

When incident light penetrates into the water column, it interacts with inherent

substances that are dissolved and suspended. Clarity measured by a Secchi

disk can results from almost everything optical objects in the water, such as,

algal biomass, inorganic suspended solid, and dissolved humic substances.

After the incident light interacts with substances in water, it reflects back and

gets measured by the remote sensor. The higher reflectance usually associates

with the higher substances. Except for the case that water contains high

concentration of dissolved organic carbon or other absorbing agents that low

reflectance would indicate high concentration of constituent in water. Secchi

depth (SD) is the measurement of visibility link to clarity of the water. It is

almost a direct optical measurement. Low SD reading usually means turbid

water. Turbid water has a lot of substances in the water for the incident light

to interact with and reflect back. Therefore the spectral reflectance of this lake

is expected to be high. Section 4.3.2 and Figure 4— 11 showed that derivative

product of the volume reflectance is higher in more turbid water (lower SD

value) and lower in clearer water (higher SD value).
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4.5.3 TSS and NPOC

The best TSS and NPOC spectral indicator models and their accuracies were

summarized in Tables 4-61 and 4-62.

Table 4-61 TSS model performances
 

 

 

 

     
 

 

 

 

 

Index Model Model Validation Validation

R2 ASD R2 AISA R3

Area LN(TSS) = 0.420(D/A) + 1.088(E/ D) 0.286 0.205 0.398

+ 0.295(G/E) + 0.405

Height/ LN(TSS) = 0.213(G/C) + 2.273 0.207 0.195 0.316

Width

Narrow LN(TSS) = -1.224(F/ H) + 3.876 0.326 0.086 0.348

Table 4-62 NPOC model performances

Index Model Model Validation Validation

R2 ASD R2 AISA R2

Area No Valid Model

Height/ LN(NPOC) = 0.100(E/C) + 1.902 0.105 0.291 0.249

Width

Narrow No Valid Model     
 

Majority of the lakes used in this study did not have high TSS or NPOC (Figure

4-1 and 4-3). Although the data were LN transformed to avoid the skewness

problem (Figure 4-4), the accuracy of the TSS models were low and only

height/width indicator produced a valid NPOC model. Although humic
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substances (NPOC) produces distinctively low reflectance curve by significantly

absorb incident light (Figure 4— 12), one or two low reflectance signatures were

not sufficient to produce a quantitative regression model.

4.5.4 Algae

The best algal spectral indicator models and their accuracies were summarized

in Tables 4-63 to 4-65.

Table 4-63 Diatom models performances
 

 

 

      
 

 

 

 

 

Index Model Model Validation Validation

R2 ASD R2 AISA R2

Area LN(Diatom) = 2.670(A/D) + 0.208 0.787 0.099

10.127(D/C) — 3.522(G/C)

+ 5.638

Height/ LN(Diatom) = 0.752(E/C) - 1.729(G/A) 0.216 0.707 0.060

Width + 11.663

Narrow LN(Diatom) = 4.718(A/D) + 8.474 0.206 0.248 0.080

Table 4-64 Green algae models performances

Index Model Model Validation Validation

Ra ASD R2 AISA R2

Area LN(Green) = 1.642(A/D) + 2.266(E/A) 0.285 0.062 0.164

+ 9.847

Height/ LN(Green) = 0.375(E/A) + 13.343 0.192 0.130 0.075

Width

Narrow LN(Green) = -28.200(A) + 34.403(D) 0.309 0.059 0.000

+ 14.341(A/B) — 0.010     
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Table 4-65 Bluegreen algae models performances
 

 

Index Model Model Validation Validation

R2 ASD R2 AISA R2

Area LN(Bluegreen) = - 3.123(A/G) 0.580 0.721 0.564

+ 1.977(C/A) — 66.849(D/B)

— 7.727(D/E) + 28.569
 

Height/ LN(Bluegreen) = 133.395(F) 0.353 0.287 0.266

Width — 35.544(A/F) + 69.307(B/F)

- 1.191(D/A) + 1.266
 

Narrow LN(Bluegreen) = - 2.107(B/ E) 0.320 0.658 0.027     — 2.776(H/C) + 19.926  
 

Comparing all algae indicators, bluegreen model reported high R2 but the

correlation plot showed no correlation (Figure 4-30 to 4-32). In fact, only ASD

diatom correlation graph showed a relatively strong correlation (Figure 4-25).

None of the other algal validation demonstrated a relationship between the

predicted and the actual algal biomass. AISA hyperspectral data in this study

could not be effectively used with the algal indicators at all. The band width

and location setting for the data used in this study may not be appropriate to

the algal division assessment, although it worked better in the chlorophyll

models.

There could be potential algal classification error associated with the algal

biomass data, such as misclassification of Dinobryon (a Chrysophyte) to the

green algae class. There was also some uncertainty associated in the
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calculation of biovolume because no one reference source contained all of the

standard biovolume for the algae found in studied samples. The standard

biovolume for each species were determined from three different sources

(Section 3.3.4) and some of them were different among the sources. In addition,

not all of the species cell biovolumes could be found in the reference sources,

and the exact number of cells within a unit was not recorded in the counting

process. Therefore, the accuracy of biovolume determination was limited by

insufficient data. Algal density was counted by unit (colonies), not by cell.

Approximate number of cells per unit was determined before multiply the

density with cell biovolume. The estimated biovolume of known species were

used to determine a constant biovolume factor to represent each algal category.

These factors were then multiplied with algal density for each lake. The fmal

biovolume of algae in each lake represents a relative biomass of algae in each

algal division. Figure 4-24 showed the range of algal biomass in the data sets.

Diatoms dominated only one lake, green algae dominated a few lakes, and

bluegreen algae (especially microcystis) appeared in many lakes and had an

almost continuous range. This may explain why the bluegreen indicator models

report higher R2 than other algal models. Bluegreen algae have absorption and

reflectance features that are different from other algal type (discussed in Section

4.3.7), and wavebands where these features occur were selected by the

regression model. Therefore, with larger and more complete data, there is a

potential to assess bluegreen algae.

184

  



Comparing model accuracies of all variables, area region-waveband models

performed better than narrow-waveband indicators. Region-waveband

indicators take into account the wider range of wavelength that could be

responsible to the predicting variables. The results showed the generalizability

of the area region-waveband models that could capture changes in the signal of

responding biophysical parameters in the water.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

Hyperspectral remote sensing provides a valuable tool in water quality

assessment. It has been successfully used to estimate spatial and temporal

variation of water quality parameters primarily for marine waters, which has

less optical complicating factors such as suspended solids and dissolved

organic carbon than inland waters. Most of the previous hyperspectral studies

on inland waters were performed over small spatial extents (e.g., one or a few

lakes) or in controlled environments (e. g., laboratory spectral reading of several

chlorophyll and suspended sediment conditions). This study was conducted in

a natural environment of a large spatial extent (statewide scale) where several

biophysical variables coexist. A total of 48 individual measurements of

radiometric spectra, chlorophyll a, Secchi disc depth, suspended solid, non-

purgable organic carbon, and phytoplankton species composition including

diatom, green, and bluegreen algae, were collected during spring and summer

of 2004. Hyperspectral sensors used in the study included a hand-held

spectrometer (LabSpec® Pro, Range 350 nm — 2,500 nm, 1 nm interval with

sampling interval 1.4 nm @ 350 nm - 1,050 nm and 2 nm @ 1,000 nm — 2,500

nm) and an Airborne Imaging Spectrometer for Applications (AISA, Range 434

nm - 900 nm, 3 nm — 8 nm bandwidth). The objectives of the study were (1) to

identify optimal spectral bands that are most sensitive to water quality

indicators in the various water bodies within Michigan; (2) to develop improved

spectral water quality indicators; and (3) to compare the filter methods for noise
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removal in hyperspectral remote sensing data. The purpose of the study was to

develop generalizable algorithms that were spatially and temporally

independent. Each of the objectives is discussed in the following sections.

5.1 Optimal Spectral Bands

The most sensitive spectral bands that can be effectively used in inferring water

quality information were identified in this study. Two sets of wavebands were

located including narrow-wavebands and region-wavebands. The most

sensitive narrow-wavebands (1 nm bandwidth) were at 435 nm, 455 nm, 470

nm, 565 nm, 670 nm, 675 nm, 690 nm, and 700 nm. Biophysical

characteristics associated with these spectral bands were indicated in Table 4-

3. The wavebands were identified using principle component analysis (PCA)

and spectral derivative methods based on absorption and reflectance properties

of the biophysical variables of interest. Region—wavebands were identified using

a 18‘ derivative technique to detect spectral regions that were sensitive to

changes in water quality variables. These spectral regions were 435 nm — 475

nm, 470 nm — 570 nm, 565 nm - 620 nm, 670 nm - 690 nm, 675 nm — 700

nm, 690 nm — 740 nm, and 700 nm — 740 nm. Table 4-2 explained biophysical

characteristics associated with these wavebands. Different waveband regions

were identified for different trophic waters.

Two spectral regions were detected for each of the near-infiared (NIR) and red

regions to represent high and low trophic waters. Because the NIR peak shifted

to the longer wavelengths when chlorophyll a increased, it was reasonable to
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detect two spectral regions and compare which one was more sensitive to water

quality parameters. The results clearly showed that the higher trophic

waveband (waveband G) was selected in statistical process to use in the water

quality indicator models more frequently for the NIR reflectance peak region,

but the lower trophic waveband (waveband D) was used in the models more

fi'equently for the red absorption region. For the NIR case, the selected

waveband G had a narrower bandwidth (Figure 3- 17), which automatically

avoided an effect from the red absorption region (immediately next to it3n the

lower wavelength side). For the red spectral region case, waveband D covered

the absorption feature better for most lakes.

Validation for each of the variables showed that 8—nm bandwidth AISA data

provided similar accuracy as the l-nm-bandwidth ASD data in the narrow-

waveband models. However, when uSed in area and height/width region-

waveband models, the 8-nm-bandwidth AISA produced lower accuracy than 1-

nm-bandwidth ASD. The wide bandwidth of AISA particularly affected an

implementation of water quality parameters in the region-Waveband method,

especially the height/width indicator method. It lowered the‘ sensitivity of the

spectral band regions when nOt enough datawere available for the polynomial

fitting process. For example, waveband D (670 nm — 690 nm) has 20 data

values from the l-nm-bandwidth ASD to input in the polynomial curve fitting,

but only 3 data values from the 8-nm-bandwidth AISA. Results of this study

suggest that the bandwidth for hyperspectral data to be effectively used in

water quality assessment should be! approximately 3 nm, or not more than 4
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nm, and the waveband locations should be concentrated on wavelengths

between 435 nm - 740 nm (with an exclusion of wavelength between 620 nm —

670 nm).

5.2 Spectral Indicators for Water Quality Assessment

Quantitative relationships between water quality and remote sensing

parameters with polynomial fitting were derived for seven water quality

variables including Secchi depth (SD), Chlorophyll (CHL), Total Suspended Solid

(TSS), Non-Ptirgable Organic Carbon (NPOC), diatom biomass, green algal

biomass, and bluegreen algal biomass. Three spectral indicators - area,

height/width, and narrow-wavebands — were developed and compared. Area-

under—spectral-curve indicators were found to be the best indicators in this

study in terms of goodness—of-fit reported by the regression models. Narrow-

waveband indicators had the second best accuracy but the method is easier to

use because these indicators used the filtered volume spectral reflectance from

the lakes without processing through derivative calculation and polynomial

fitting. ‘Height/width indicatorswere not as sensitive to changes in biophysical

variables as the other two indicators.

Among the seven spectral indicator models for water quality, Secchi depth,

chlorophyll a, and bluegreen algal biomass models showed the most promising

results in terms of using remote sensing to map water quality. High accuracies

were reported in terms of goodness-of-fit when validated by hand-held and

airborne spectrometer. The results showed goodness-of-fit ranked from the
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Secchi depth (R2 0.76-0.84), chlorophyll a (R2 0.70-0.76), and bluegreen algae

(R2 056-072) models. Spectral indicators for chlorophyll a used spectral

regions from both low and high trophic types of water. They are therefore

independent of trophic states. The models can be used to assess chlorophyll a

condition in any waters regardless of trophic condition. The spectral indicators

for TSS (R2 021-040), NPOC (R2 0.11-0.25), diatom (R2 0.10-0.79) and green

algae (R2 013-031) did not produce accurate results due to limited availability

of a wide range of these data. The data collection focused on a wide range of

trophic state, which reflected in a continuous range of chlorophyll a and Secchi

depth. Historical data for TSS, NPOC, and algal compositions in lakes were not

available before the field data collection was conducted. Concentrations of

these variables were low in most of the sampled lakes; therefore, the models

were developed based on data that were bias toward the lower concentrations

and tended to underestimate the actual values.

5.3 Effective Filters for Noise Removal

A spectral filtering techniques need to be applied to hyperspectral data in order

to remove noise generated from the atmosphere or within the sensor itself.

Three hyperspectral denoising filters — Savitsky Golay, wavelet Daubechies and

wavelet Symlet - were compared for their ability to remove noise in the data

while maintain sharp spectral absorption/reflectance features. Savitsky Golay

proved to be the best method. It smoothed noise within the data while

preserving sharp peaks and troughs because the filter calculated a local

polynomial for every determined wavelength range (Figure 3-12). Symlet
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wavelet was the second best method. It generated de-noised spectral signatures

that seemed smooth but some of the high frequency noise still remained in the

signature (Figure 3- 13). The remaining noise showed in the 18‘ derivative

product. Unlike Savitsky Golay, Symlet tended to flatten out the curves, which

reduced the slope of the curve. As a result, derivatives from Symlet filter

appeared flat and the wavelength range of absorption and reflectance features

were more difficult to determine (Figure 3- 15). Daubechies wavelet performed

poorly in this study. It created a staircase artifact in the de-noised spectra,

which generated a tremendous amount of zero values in the derivative product

(Figure 3312 and 3- 15). The process required elimination of zero data, which

reduce the spectral resolution of continuous l-nm bandwidth to an inconsistent

bandwidth depending on the location of zero values. When amounts of data

were eliminated, polynomial fitting was based on fewer amounts of data than

other filter methods.

5.4 Major Findings

The important contributions of this study include the development of an

algorithm to answer remote sensing questions of which spectral wavebands are

effective in inferring water quality information, and what filter method can be

effective in removingnoise and preserving important absorption and reflectance

features. The study also answers the water quality monitoring question, “can

remote sensing can be used effectively to assess water quality variables in

natural ecosystem?” Quantitative relationships between remotely sensed

spectra‘and three water quality indicators - Secchi depth, chlorophyll a
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concentration, and bluegreen algal biomass — were developed with high

accuracies in this study. Through this study, it was demonstrated that

hyperspectral remote sensing could be used to infer water quality variables.

Validation methods in the study showed that results from a hand-held

hyperspectral instrument can be extended to airborne scale suggesting that

hyperspectral remote sensing has a promising potential to be used to map

water quality condition and facilitate improved water quality monitoring in large

spatial extents at low cost.

The study also demonstrated that field measurements are unpredictably

variable due to cloud condition, time of measurement, sun elevation angle,

relative sun-target-sensor angle, and shadow casting from the boat. These

potential sources of error could be avoided by taking multiple measurements at

one site so that the spectra could be averaged and the eflect of water surface

glare minimized. Reference reflectance from the white reflectance panel must

always be recorded immediately before and after the water reflectance

measurements are taken in order to ensure the correction for inconsistent

incident light. Water surface spectra should be taken as far from the boat as

possible to avoid shadow effect. Measurements must be done consistently at

the nadir angle regardless of waves on the water surface to keep the

measurement of all lakes on the same standard. More spectra may be

necessary if the water surface is rough.
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Based on this study, a limited number of spectral bands were identified for

water quality analysis. Based on the number of wavebands selected, it is

suggested that hyperspectral data are not needed if multispectral data are

designed to have narrow bandwidth position in the sensitive spectral

wavelengths. The spectral wavebands identified in this study suggest the

configuration of prototypes for the future satellite sensors, which provide useful

spectral information of hundreds of water bodies at one time at reasonable cost.

5.5 Future Research

( 1) A new algal cell counting method needs to be employed to produce a better

accurate in situ data. The algal samples should be counted to 300 units as did

in this study but number of cells in a unit should also be recorded.

(2) Future research should include samples from more humic and high-

suspended sediment lakes. The sampled lakes in this study were determined

based on their trophic states because information on TSS or DOC of majority of

lakes in Michigan was not obtainable. A more complete set of these data can

improve the determination of spectral indicator models in the statistical

process.

(3) Narrower and more frequent wavebands from an airborne hyperspectral

sensor should be tested. Although the ASD proved useful according to the

results and conclusion of this study and could save time and cost for water

sampling and laboratory analysis, an airborne sensors such as AISA provides
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additional spatial information such as mapping of water quality variables on a

larger area. ASD measurements involve traveling to the lake, launching the

boat, traveling to the sample sites, and then moving to the next lake. A

maximum of seven lakes could be sampled in a working day by ASD method,

but tens of lakes could be sampled by an airborne sensor in a shorter period of

time.

(4) An analytical method similar to this study should be explored, deriving

waveband regions and under-spectral-curve area directly from the spectral

reflectance of the water instead of the derivative product of it. The derivative

generally separated the reflectance curve in half. The method worked well in

this study because it responded to changes in biophysical variables very well.

However, by visual observation, the entire absorption/ reflectance curves from

spectral reflectance seemed to respond with water quality as well. Therefore,

they deserve further study.
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APPENDIX A

WATER QUALITY FIELD WORK PROTOCOL

1. Total 46 Michigan inland lakes, over 50 percent of which were in the

Muskegon River Watershed, were selected based on their trophic states to have

the widest range of trophic condition possible (Figure A-l; Table A-l). Trophic

State Index (TSI) values were calculated from historical chlorophyll a (CHL)

measurements from three sampling programs: (1) the Michigan Department of

Environmental Quality’s (MDEQ) Lake Water Quality Assessment (LWQA)

Monitoring Program, (2) the Michigan Cooperative Lake Monitoring Program

(CLMP), and (3) Professor R. Jan Stevenson’s algal ecology lab, MSU

Department of Zoology. These data were collected in spring and summer

between May - August of 2001 to 2003.
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Figure A-l Trophic conditions of the selected sample lakes
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Table A-1 List of selected sample lakes
 

 

 

TSI from TSI from

Lake CHL Lake (continued) CI-IL

Glen (Big) 31.00 Muskegon 53.40

Higgins 33.28 Hardy Darn Pond 54.09

Chemung 35.00 Houghton 54.50

Sapphire 35.00 Fremont 54.60

Arbutus 37.00 Mitchell 55.98

Long Lake (Grand Traverse) 37.00 Randall 56.92

Silver 40.00 Croton dam pond 57.88

Clear (St. Joseph) 40.40 Pickerel 60.12

Diamond 40.50 Hess 62.00

Mecosta 40.98 Brooks 62.74

Klinger 4 1 .50 Bear (Kalkaska) 70.61

Eagle 43.00 Belleville (Washtenaw) unknown

Marl Lake 44.94 Cass (Oakland) unknown

Big (Osceola) 45.50 Chipewa unknown

Rogers Dam Pond 46.00 Cub unknown

Tamarack 46.10 Ford (Washtenaw) unknown

Little Whitefish 46.48 Hicks unknown

Clear (Mecosta) 46.66 Kent (Oakland) unknown

Horsehead Lake 46.77 Loon (Oakland) unknown

Round (Mecosta) 48.50 Maceday (Oakland) unknown

Kimball 50.50 Oakland (Oakland) unknown

Pontiac (Oakland) 52.33 Orchard (Oakland) unknown

Jehnsen 53.37 Paw Paw unknown   
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2. Field work had been done in 13 weeks in two periods Apr 24 — Jun 12 and

Jul 17 - Aug 28 to collect:

2.1 GPS point coordinates

2.2 Spectral signatures using the ASD

2.3 Lake depth

2.4 Secchi-depth (SD)

2.5 Light extinction profile using LI-250 light meter

2.6 Dissolved Oxygen (DO)

2.7 Temperature

2.8 Chlorophyll a (Chl-a) I

2.9 Total suspended solid (TSS)

2.10 Phytoplankton

2.11 Nutrients (TP and TN)

2.12 Dissolved organic carbon (DOC)

3. Procedure:

3.1 Launch the boat.

3.2 Turn on ASD and GPS.

3.3 Drive the boat to the deep basin of the lake. Lower the anchor. Record the

GPS coordinate.
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3.4 Measure the lake depth by lowering the Secchi disc to the bottom of the

lake. Record the depth. Pull the Secchi disc up until it is visible. Record the

 
Secchi-depth (SD).

3.5 Measure the light, DO, and Temperature. All the sensors are tied together

with the lowering frame. Be sure to lower the lowering rope and not the sensor

cables. Begin measurement fiom the surface of water (where water just covers

the sensors). For lakes with shallower SD (< 4 m) record light, DO, and Temp

every 0.5 m. For lakes with deeper SD (> 4 111) record every 1.0 m. Lower the

sensors until the depth where light is lower 1 percent of the light at surface (at

the beginning). Turn off the meters.

3.6 Water samples are collected for Chl-a, TSS, nutrients, algae, and color

analysis. Samples for Chl-a, TSS, nutrients, and algae analysis will be taken

using three methods: 1) Photic depth, 2) Secchi depth, and 3) Epilimnion depth.

Samples for TN, TP, and DOC are taken using the photic depth method only.

- Photic depth can be calculated by multiplying the Secchi depth by 2.5.

The depth is then divided by four to indicate the actual depth at which the

water was collected each time. The mixture of the water from these four depths

represents the column of the photic layer. After four liters of water is collected

and drained into a bucket, it is transferred into one acid-washed 250ml-bottle  
for nutrients, two 30ml-glass vials for DOC, one 1,000rnl-bott1e for algae, one

1,000ml-bottle for Chl a, and one 1,000m1-bottle for TSS analysis.
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- Secchi depth method collects water from the Secchi depth column.

The depth is divided into four depths. Approximately four liters of water are

collected from four depths and mixed in a bucket. The sample is transferred

into one acid-washed 250ml-bottle for nutrients, one 1,000ml-bottle for algae,

and one 1,000m1-bottle for Chl-a and one 1,000ml-bottle for TSS analysis.

- The epilimnion layer does not appear in all lakes at the time of

sampling. For lakes that have drastic changes in temperature profiles, one

more set of samples will be collected for Chl—a, TSS, nutrients, and algae

analysis. The epilimnion depth is divided by four to indicate the actual depths

that samples are taken from.

- The chemical (M3) is added to the algae bottles to preserve algae cells.

The rest of the samples are placed in a cooler. Samples for Chl-a and TSS are

filtered in situ before covered with aluminum foil and kept in a freezer until

analysis. Samples for DOC analysis are covered with aluminum foil on site and

kept in a fridge until analysis. Samples for nutrients are kept in a freezer.

3.7 To take the spectral signatures

- Connect laptop with the ASD (after the ASD has warmed up for 15

minutes). Turn on the computer and navigate to FR B&W (an icon on the

screen).

- Select ‘Spectrum save’ and change the path to the workspace folder to

record spectral signatures. Change the starting number to 1. Change the view

angle to match the angle on the sensor.
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- Take out the white reflectance panel and hold the sensor above it. Be

careful not to have any shadow on the panel. Click on ‘OPI" and let the sensor

calibrate. Once finished, continue to hold the sensor above the white

reflectance panel and click on ‘WR’. Perform the WR calibration. Save the

white reflectance by pressing spacebar approximately 10 times.

- Hold the sensor approximately 1.5 meters above the water surface and

save the water signature (approximately 10- 15 signatures). Take another 10

signatures of white reflectance.

- Leave the laptop on if the distant to the next site is short. Move to the

next site immediately or click on ‘quit’ and turn off the computer to save the

laptop battery. Be sure to name the file differently when turning back on so it

will not overwrite the existing signatures.

- To ensure enough samples in a bad weather situation, the ASD light

source may be used if necessary when there is thick cloud cover.

- Move to two or three more sites in the lake to measure for the GPS

coordinates, spectral signatures, and the Secchi depth. No water sample is

taken at these sites. Turn off both laptop and ASD after finish the last site on

the lake to save the batteries.

In summary, for each lake 3-4 sites are measured for spectral signature

and SD, but only one deepest basin site is measured for Chl-a, TSS, algae,

nutrients, and DOC. Depending on stratification of the lakes, two or three sets

of Chl-a, TSS, nutrients, and algae samples are taken from each lake at the

same site but at different depth.
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APPENDIX B

AISA IMAGERY

AISA 20 bands image
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APPENDIX D

AREA UNDER THE SPECTRAL CURVE

Area under the curve used in area index agony altered model data set
 

 

 

 

Band A B C D E l" G

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

BEAR0819 0.0201 0.1189 0.0464 0.0189 0.0236 0.1153 0.0107

BELL0826 0.0169 0.1615 0.0386 0.0326 0.0401 0.1413 0.0408

8160820 0.0174 0.1378 0.0358 0.0178 0.0225 0.1205 0.0153

BR000526 0.0132 0.1425 0.0305 0.0198 0.0275 0. 1162 0.0135

CASS0810 0.0142 0.1347 0.0303 0.0176 0.0229 0.1190 0.0144

CHEM0826 0.0143 0.1333 0.0304 0.0186 0.0221 0.1201 0.0146

CHIP0820 0.0124 0.1403 0.0384 0.0183 0.0234 0.1208 0.0160

CLSJO603 0.0 188 0.1405 0.0452 0.0187 0.0243 0.1208 0.0164

CRO’I‘0605 0.0109 0.1245 0.0189 0.0195 0.0245 0.1217 0.0173

CUBO819 0.0200 0.1348 0.0470 0.0181 0.0221 0.1185 0.0130

DIAM0824 0.0246 0.1403 0.0740 0.0168 0.0214 0.1264 0.0206

EAGL0824 0.0157 0.1361 0.0390 0.0166 0.0208 0.1189 0.0137

FORD0826 0.0280 0.1910 0.0533 0.0384 0.0649 0.1531 0.0675

GLEN0819 0.0347 0.1004 0.0899 0.0154 0.0196 0.1226 0.0167

HES80526 0.0363 0.1815 0.0582 0.0225 0.0402 0.1549 0.0586

HICK0820 0.0227 0.1734 0.0398 0.0293 0.0432 0.1509 0.0536

HIGGO608 0.0213 0.1159 0.0435 0.0173 0.0233 0.1145 0.0106

KENT0826 0.0 150 0.1458 0.0332 0.0220 0.0259 0.1299 0.0245

KIM80526 0.0272 0.1665 0.0195 0.0144 0.0171 0.1573 0.0491

KLIN0603 0.0203 0.1251 0.0476 0.0172 0.0228 0.1172 0.0126

LOON0810 0.0158 0.1375 0.0314 0.0182 0.0238 0.1176 0.0132

LOTU0807 0.0301 0.1569 0.0716 0.0147 0.0175 0.1313 0.0238

MACE0807 0.0278 0.1495 0.0654 0.0168 0.0212 0.1218 0.0162

MEC00608 0.0141 0.1295 0.0287 0.0179 0.0231 0.1205 0.0158

MECOO724 0.0224 0.1551 0.0385 0.0205 0.0216 0.1290 0.0210

AWR10728 0.0140 0.1361 0.0254 0.0213 0.0284 0.1277 0.0248

OAKL0807 0.0160 0.1340 0.0298 0.0170 0.0219 0.1179 0.0131

ORCH0810 0.0280 0.1478 0.0685 0.0160 0.0191 0.1259 0.0189

PAWP0824 0.0244 0.1710 0.0594 0.0228 0.0296 0.1442 0.0403

PICK0526 0.0255 0.1729 0.0483 0.0261 0.0408 0.1471 0.0502

PONT0807 0.0274 0.1721 0.0458 0.0198 0.0252 0.1425 0.0371

RAND0603 0.0130 0.1294 0.0278 0.0198 0.0247 0.1188 0.0144

ROGE0519 0.0147 0.1344 0.0153 0.0193 0.0245 0.1285 0.0243

SILV0725 0.0264 0.1465 0.0582 0.0187 0.0230 0.1228 0.0174        
213

 



Area under the curve need in area index agolay filtered validation data aet
 

 

 

 

Band A B C D E l" G

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

ARBU0726 0.0193 0.1334 0.0545 0.0163 0.0217 0.1199 0.0150

BROOO727 0.0297 0.1754 0.0388 0.0217 0.0270 0.1697 0.0637

CLME0724 0.0167 0.1403 0.0381 0.0185 0.0223 0.1243 0.0185

HESSO727 0.0427 0.1982 0.0415 0.0207 0.0281 0.1846 0.0797

HIGG0727 0.0229 0.1095 0.0464 0.0174 0.0236 0.1127 0.0090

HOUGO726 0.0165 0.1432 0.0309 0.0176 0.0221 0.1254 0.0200

JEHN0519 0.0160 0.1413 0.0302 0.0189 0.0235 0.1231 0.0180

MITC0725 0.0164 0.1412 0.0244 0.0183 0.0231 0.1303 0.0251

MUSK0728 0.012 1 0.1305 0.0231 0.0233 0.0302 0.1263 0.0237

ROGE0724 0.0187 0.1456 0.0224 0.0201 0.0239 0.1348 0.0291

SAPP0725 0.0152 0.1360 0.0332 0.0189 0.0251 0.1200 0.0161

TAMA0605 0.0118 0.1273 0.0242 0.0199 0.0242 0.1184 0.0133        
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Area under the curve need in area index dhl filtered model data aet
 

 

 

 

Band A B C D F 0

Lake 435-485 485-575 550-630 675-700 690-745 700-746

BEAR08 19 0.1893 0.3664 0.4808 0.1100 0.4328 0.0978

BELL0826 0.1781 0.5562 0.4315 0.1552 0.4967 0. 1710

BIG0820 0.1638 0.4882 0.4465 0.0892 0.4571 0. 1097

BR000526 0.1295 0.4497 0.3803 0.1180 0.4223 0.0894

CASSOSIO 0.139 1 0.455 1 0.3962 0.1056 0.439 1 0.1018

CHEM0826 0.1322 0.4784 0.4374 0.0897 0.4602 0.1124

CHIP0820 0.1404 0.5042 0.4579 0.0903 0.463 1 0. 1219

CLSJ0603 0.1820 0.5054 0.4556 0.1030 0.4824 0.1367

CROT0605 0.1151 0.4034 0.3644 0.1067 0.4807 0.1404

CUBOS 19 0.179 1 0.4693 0.5153 0.0937 0.4744 0.1175

DIAM0824 0.2078 0.4756 0.5168 0.0947 0.4714 0.1279

EAGL0824 0.1566 0.4786 0.4323 0.0924 0.4547 0.1 149

FORD0826 0.2328 0.5876 0.4819 0.1885 0.5192 0.2120

GLEN0819 0.2436 0.2622 0.5618 0.0926 0.4766 0.1261

HESS0526 0.2350 0.5584 0.4794 0.1504 0.5019 0.1854

HICK0820 0.2133 0.6205 0.4299 0.1769 0.5304 0.2173

HIG60608 0.2024 0.3394 0.4702 0.0899 0.4442 0.1023

KENT0826 0.1569 0.5148 0.4120 0.1110 0.4833 0.1306

KIM80526 0.2041 0.5413 0.3436 0.0846 0.4951 0.1530

KLIN0603 0. 1850 0.3899 0.4859 0.0905 0.4438 0.1097

LOON0810 0.1573 0.4954 0.4072 0.1022 0.4594 0.1 171

LOTU0807 0.2245 0.5154 0.5119 0.0747 0.4828 0.1313

MACE0807 0.1904 0.4753 0.4469 0.0924 0.445 1 0.1014

MEC00608 0.1370 0.4419 0.4037 0.1077 0.4737 0. 1368

MEC00724 0.1970 0.6308 0.4667 0.1049 0.4998 0.1455

AWRIO728 0.1447 0.4895 0.4010 0.1242 0.4759 0.1400

OAKL0807 0.1606 0.4713 0.4266 0.0790 0.4795 0.1226

ORCH0810 0.2727 0.4788 0.5624 0.0860 0.4804 0.1217

PAWP0824 0.2064 0.5942 0.4947 0.1307 0.5355 0.1866

P1CK0526 0.2194 0.5948 0.4734 0.1708 0.5244 0.2187

PONT0807 0.2397 0.5915 0.4345 0.1130 0.5210 0.1692

RAND0603 0.1335 0.4357 0.4143 0.1005 0.4853 0.1340

ROGE0519 0.1428 0.4442 0.3335 0.1123 0.4328 0.0981

SILV0725 0.2386 0.5051 0.5399 0.0989 0.4879 0.1319       
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Area under the curve need in area index db1 filtered validation data eet
 

 

 

 

Band A B C D F G

Wavelength 435-485 485-575 550-630 675-700 690-745 700-745

ARBUO726 0.1674 0.4489 0.4517 0.0916 0.4496 0.1126

BROOO727 0.2673 0.7211 0.4611 0.1501 0.6208 0.2688

CLME0724 0.1566 0.5044 0.4420 0.1070 0.4673 0.1263

HESSO727 0.3171 0.8309 0.4566 0.1496 0.6180 0.2723

HIGG0727 0.1983 0.3219 0.4685 0.0995 0.4264 0.0920

HOUG0726 0.1496 0.5164 0.3987 0.1046 0.4661 0.1231

JEHN0519 0.1534 0.4568 0.3756 0.1122 0.4353 0.0997

MITC0725 0.1615 0.5078 0.3796 0.0951 0.4743 0.1324

MUSK0728 0.1234 0.4334 0.3888 0.1298 0.4523 0.1234

ROGE0724 0.1815 0.4970 0.3642 0.1151 0.4692 0.1282

SAPP0725 0.1499 0.4728 0.4066 0.1112 0.4512 0.1111

TAMA0605 0.1065 0.4322 0.4067 0.1035 0.4733 0.1163       
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Area under the curve need in area index e8 filtered model data eet
 

 

 

 

Band A B C D E l" 0

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

BEAR0819 0.0608 0.080 1 0.0506 0.0697 0.0781 0.1429 0.0403

BELLO826 0.0572 0.1215 0.0380 0.0850 0.0916 0.1695 0.07 12

BIG0820 0.06 16 0.0994 0.0375 0.0664 0.0739 0. 1480 0.0454

BR000526 0.0613 0.1053 0.0322 0.0702 0.0778 0.1440 0.0440

CASSO810 0.0607 0.0970 0.0323 0.0672 0.0749 0. 1467 0.0446

CHEM0826 0.0532 0.0964 0.0312 0.0682 0.0755 0. 1485 0.0452

CHIP0820 0.0569 0.1021 0.0391 0.0669 0.0746 0.1486 0.0458

CLSJ0603 0.0584 0.1014 0.0471 0.0679 0.0756 0. 1486 0.0463

CRO’I‘0605 0.0573 0.0880 0.0223 0.0700 0.0777 0.1493 0.0474

CUBO819 0.0593 0.0952 0.0493 0.0670 0.0747 0. 1456 0.0419

DIAM0824 0.061 1 0.1005 0.0763 0.0634 0.070 1 0. 1543 0.0508

EAGL0824 0.0556 0.0975 0.0386 0.0664 0.0747 0.1474 0.0438

FORD0826 0.0629 0.1476 0.0508 0.0985 0.1080 0. 1803 0.1001

GLEN0819 0.0769 0.0592 0.0942 0.0631 0.0703 0.1503 0.0467

HESSOS26 0.0755 0.1364 0.0563 0.0704 0.0767 0.1832 0.09 17

H1CK0820 0.0614 0.1322 0.0384 0.0805 0.0866 0.1790 0.0845

HIGGO608 0.0647 0.0767 0.0471 0.0681 0.0767 0.1423 0.0404

KENT0826 0.0589 0.1067 0.0344 0.0700 0.0762 0. 1581 0.0547

K1M80526 0.0737 0.1216 0.0214 0.0582 0.0628 0.1852 0.0795

KLIN0603 0.0647 0.0848 0.0506 0.0672 0.0751 0.1447 0.0429

LOON08 10 0.0607 0.0989 0.0330 0.0681 0.0758 0.1455 0.0432

LOTU0807 0.0686 0.1 1 19 0.0727 0.0598 0.0659 0. 1596 0.0539

MACE0807 0.0684 0. 1060 0.0673 0.0655 0.0730 0.1495 0.0462

MEC00608 0.0598 0.0923 0.031 1 0.0673 0.0748 0. 1482 0.0460

MECOO724 0.0654 0.1150 0.0405 0.0651 0.0709 0.1561 0.0497

AWR10728 0.0576 0.0981 0.0278 0.0716 0.0788 0.1556 0.0553

OAKL0807 0.0584 0.0955 0.0317 0.0678 0.0756 0. 1443 0.0422

ORCH0810 0.0656 0.1047 0.0702 0.0631 0.0691 0.1536 0.0483

PAWP0824 0.0582 0.1306 0.0578 0.0680 0.0731 0.1722 0.0702

PICK0526 0.0624 0.1308 0.0489 0.0780 0.0852 0. 1745 0.0807

PONT0807 0.0664 0.1284 0.0466 0.0649 0.0699 0.1708 0.0675

RAND0603 0.0551 0.0916 0.0300 0.0704 0.0782 0.1469 0.0443

ROGEOS 19 0.0609 0.0962 0.0184 0.0705 0.0779 0.1563 0.0546

S1LV0725 0.0628 0.1053 0.0604 0.0664 0.0736 0.1501 0.0467        
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Area under the curve need in area index e8 filtered validation data eet
 

 

 

 

Band A B C D E l" G

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

ARBU0726 0.0606 0.0949 0.0568 0.0653 0.0728 0. 1477 0.0452

BROOO727 0.0608 0. 1307 0.0388 0.0635 0.0664 0. 1967 0.0927

CLME0724 0.0573 0.1018 0.0401 0.0670 0.0742 0.1519 0.0485

HESSO727 0.0723 0.1501 0.0405 0.0630 0.0659 0.2134 0.1109

HIGG0727 0.0670 0.0710 0.0509 0.0689 0.0776 0.1404 0.0394

HOUG0726 0.0604 0.1049 0.0324 0.0652 0.0724 0. 153 1 0.0498

JEHN0519 0.0622 0.1025 0.0319 0.0681 0.0752 0.1509 0.048 1

MITC0725 0.0619 0.1022 0.0263 0.0667 0.0734 0.1581 0.0554

MUSK0728 0.0575 0.0934 0.0262 0.0748 0.0823 0.1541 0.0542

ROGE0724 0.0627 0.1065 0.0243 0.0680 0.0741 0.1626 0.0590

SAPP0725 0.0594 0.0981 0.0351 0.0685 0.0760 0. 1478 0.0462

TAMA0605 0.0536 0.0905 0.0266 0.0697 0.0771 0.1460 0.0431        
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APPENDIX E

MAXIMUM SPECTRAL CURVE HEIGHT

Maximum height need in height]width index egolay filtered model data eet
 

 

 

 

Band A B C D E F G

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

BEAR0819 0.0005 0.0013 0.0011 0.0011 0.0012 0.0024 0.0004

BELLO826 0.0005 0.0019 0.0009 0.0018 0.0019 0.0034 0.0014

BIG0820 0.0004 0.0014 0.0009 0.0009 0.0011 0.0025 0.0005

BR000526 0.0003 0.0015 0.0007 0.0011 0.0012 0.0025 0.0005

CASS0810 0.0004 0.0014 0.0007 0.0009 0.0010 0.0024 0.0004

CHEM0826 0.0004 0.0014 0.0007 0.0011 0.0011 0.0025 0.0005

CHIP0820 0.0004 0.0015 0.0010 0.0010 0.0012 0.0025 0.0005

CLSJ0603 0.0005 0.0015 0.0011 0.0010 0.0011 0.0025 0.0005

CROT0605 0.0004 0.0013 0.0004 0.0010 0.0012 0.0025 0.0005

CUBO819 0.0005 0.0015 0.0011 0.0010 0.0011 0.0025 0.0005

DIAM0824 0.0007 0.0017 0.0018 0.0009 0.0010 0.0026 0.0006

EAGL0824 0.0005 0.0014 0.0009 0.0011 0.0010 0.0025 0.0004

FORD0826 0.0008 0.0023 0.0012 0.0033 0.0032 0.0044 0.0026

GLEN0819 0.0009 0.0015 0.0023 0.0009 0.0009 0.0025 0.0005

HESS0526 0.0010 0.0022 0.0013 0.0020 0.0020 0.0042 0.0022

HICK082O 0.0006 0.0020 0.0009 0.0020 0.0021 0.0037 0.0017

HIGGO608 0.0006 0.0014 0.0010 0.0009 0.0010 0.0023 0.0003

KENT0826 0.0004 0.0016 0.0008 0.0012 0.0013 0.0027 0.0007

KIMBOS26 0.0007 0.0017 0.0005 0.0008 0.0009 0.0035 0.0015

KLIN0603 0.0005 0.0014 0.0011 0.0009 0.0010 0.0024 0.0003

LOON0810 0.0004 0.0014 0.0007 0.0009 0.0011 0.0024 0.0005

LOTU0807 0.0008 0.0018 0.0019 0.0008 0.0009 0.0028 0.0008

MACE0807 0.0007 0.0017 0.0017 0.0009 0.0010 0.0025 0.0005

MEC00608 0.0004 0.0013 0.0006 0.0009 0.0010 0.0024 0.0004

MECOO724 0.0007 0.0016 0.0010 0.0011 0.0012 0.0028 0.0009

AWRIO728 0.0004 0.0014 0.0005 0.0012 0.0013 0.0028 0.0008

OAKL0807 0.0004 0.0014 0.0007 0.0010 0.0011 0.0024 0.0003

ORCH0810 0.0008 0.0017 0.0018 0.0009 0.0011 0.0026 0.0006

PAWP0824 0.0007 0.0020 0.0015 0.0014 0.0014 0.0033 0.0013

PICK0526 0.0007 0.0020 0.0011 0.0020 0.0020 0.0037 0.0017

PONT0807 0.0007 0.0019 0.0012 0.0011 0.0012 0.0032 0.0011

RAND0603 0.0004 0.0013 0.0006 0.0011 0.0012 0.0024 0.0004

ROGE0519 0.0004 0.0014 0.0003 0.0010 0.0011 0.0027 0.0007

SILV0725 0.0007 0.0017 0.0015 0.0010 0.0011 0.0025 0.0005        
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Maximum height need in height]width index egolay filtered validation data eet
 

 

 

 

Band A B C D E F G

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

ARBU0726 0.0005 0.0015 0.0013 0.0008 0.0010 0.0025 0.0005

BROOO727 0.0008 0.0019 0.0010 0.0013 0.0014 0.0039 0.0018

CLME0724 0.0005 0.0015 0.0009 0.0010 0.0011 0.0025 0.0006

HESSO727 0.0012 0.0022 0.0011 0.0013 0.0014 0.0046 0.0027

H1GG0727 0.0006 0.0013 0.0011 0.0009 0.0010 0.0023 0.0003

HOUG0726 0.0005 0.0015 0.0007 0.0009 0.001 1 0.0026 0.0006

JEHN0519 0.0004 0.0015 0.0007 0.0010 0.0011 0.0026 0.0006

MITC0725 0.0004 0.0015 0.0005 0.0010 0.0011 0.0028 0.0008

MUSK0728 0.0003 0.0014 0.0005 0.0012 0.0013 0.0028 0.0008

ROGE0724 0.0005 0.0015 0.0006 0.0011 0.0012 0.0029 0.0009

SAPP0725 0.0004 0.0014 0.0007 0.0010 0.0011 0.0025 0.0005

TAMA0605 0.0003 0.0013 0.0005 0.0010 0.0012 0.0025 0.0005         
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Maximum height need in height/width index db1 filtered model data eet
 

 

 

 

Band A B C D I" G

Lake 435-485 485-575 550-630 675-700 690-745 700-745

BEAR08 19 0.0038 0.0048 0.0068 0.0067 0.0081 0.0032

BELLO826 0.0047 0.0071 0.0065 0.0069 0.0 108 0.0050

BIG0820 0.0036 0.0059 0.0066 0.0063 0.0089 0.0029

BR000526 0.0027 0.0052 0.005 1 0.0050 0.0080 0.0023

CASSOB 10 0.0030 0.0053 0.0054 0.0046 0.0082 0.0025

CHEM0826 0.0032 0.0056 0.0066 0.0073 0.0090 0.0030

CHIP0820 0.0050 0.0065 0.0069 0.0053 0.0089 0.0034

CLSJ0603 0.0041 0.0069 0.0066 0.0069 0.0092 0.0035

CROT0605 0.0029 0.0047 0.0046 0.0078 0.0094 0.0040

CUBO819 0.0037 0.0061 0.0077 0.0095 0.0102 0.0032

DIAM0824 0.0045 0.0064 0.0073 0.0048 0.0088 0.0034

EAGL0824 0.0038 0.0060 0.0063 0.0118 0.0087 0.0031

FORD0826 0.0053 0.0076 0.0076 0.0089 0.01 19 0.0065

GLEN0819 0.0050 0.0037 0.0078 0.0061 0.0093 0.0035

HESS0526 0.0049 0.0072 0.007 1 0.0074 0.0108 0.0050

HICK0820 0.0050 0.0079 0.0070 0.0078 0.01 13 0.0057

HIGGO608 0.0045 0.0044 0.0062 0.0044 0.0081 0.0025

KEN'I‘0826 0.0042 0.0060 0.0062 0.0055 0.0097 0.0036

KIMBOS26 0.0042 0.0064 0.0052 0.0041 0.0095 0.0038

KLIN0603 0.0040 0.0051 0.0065 0.0048 0.0084 0.0029

LOON0810 0.0035 0.0060 0.0060 0.0064 0.0088 0.0031

LOTU0807 0.0051 0.0067 0.0076 0.0050 0.0094 0.0038

MACE0807 0.0040 0.0059 0.0064 0.0056 0.0087 0.0025

MECOO608 0.0029 0.0052 0.0055 0.0055 0.0090 0.0034

MECOO724 0.0050 0.0079 0.0084 0.0094 0.0 107 0.0071

AWR10728 0.0032 0.0060 0.0057 0.0057 0.0093 0.0035

OAKL0807 0.0035 0.0053 0.0061 0.0045 0.0 101 0.0029

ORCH0810 0.0061 0.0069 0.0086 0.0089 0.0102 0.0029

PAWP0824 0.0045 0.0078 0.0083 0.0061 0.0105 0.0049

PICK0526 0.0045 0.0077 0.0077 0.0077 0.01 16 0.0057

PONT0807 0.0061 0.0073 0.0068 0.0054 0.0100 0.0043

RAND0603 0.0032 0.0051 0.0058 0.0065 0.0093 0.0034

ROGE0519 0.0030 0.0050 0.0043 0.0052 0.0080 0.0022

SILV0725 0.0058 0.0067 0.008 1 0.0091 0.0108 0.0051       
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Maximum height need in height/width index dhl filtered validation data eet
 

 

 

 

Band A B C D l" G

Lake 435-485 485-575 550-630 675-700 690-745 700-745

ARBUO726 0.0036 0.0055 0.0062 0.0040 0.0084 0.0026

BR000727 0.0067 0.0101 0.0080 0.0075 0.0 124 0.0067

CLME0724 0.0033 0.0061 0.0070 0.0078 0.0088 0.0032

HESSO727 0.0078 0.0113 0.0086 0.0071 0.0138 0.0082

HIGGO727 0.0043 0.0040 0.0064 0.0061 0.0081 0.0025

HOUGO726 0.0032 0.0062 0.0060 0.0073 0.0090 0.0032

JEHN0519 0.0032 0.0051 0.0051 0.0057 0.0081 0.0024

MITC0725 0.0041 0.0059 0.0056 0.0049 0.0091 0.0041

MUSK0728 0.0030 0.0052 0.005 1 0.0056 0.0089 0.0032

ROGE0724 0.0042 0.0057 0.0053 0.0078 0.0089 0.0032

SAPP0725 0.0031 0.0057 0.0056 0.0055 0.0084 0.0027

TAMA0605 0.0029 0.0052 0.0057 0.0092 0.0101 0.0028      
 

222

 



Maximum height need in height/width index e8 filtered model data eet
 

 

 

 

Band A E C D E F 0

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

BEAR0819 0.0017 0.0011 0.0013 0.0019 0.0019 0.0031 0.0010

BELL0826 0.0016 0.0017 0.0009 0.0027 0.0026 0.0040 0.0022

3160820 0.0017 0.0013 0.0010 0.0018 0.0018 0.0031 0.0012

BR000526 0.0016 0.0014 0.0008 0.0019 0.0019 0.0030 0.0013

CASSOSIO 0.0016 0.0012 0.0008 0.0018 0.0017 0.0030 0.0012

CHEM0826 0.0017 0.0012 0.0008 0.0018 0.0018 0.0031 0.0013

CHIP0820 0.0016 0.0014 0.0011 0.0018 0.0018 0.0031 0.0013

CLSJO603 0.0016 0.0014 0.0012 0.0018 0.0018 0.0030 0.0012

CRO’I‘0605 0.0016 0.0011 0.0005 0.0018 0.0018 0.0030 0.0012

CU80819 0.0018 0.0013 0.0013 0.0018 0.0018 0.0031 0.0011

DIAM0824 0.0018 0.0015 0.0021 0.0017 0.0017 0.0032 0.0014

EAGL0824 0.0015 0.0013 0.0011 0.0018 0.0019 0.0032 0.0011

FORD0826 0.0018 0.0023 0.0013 0.0038 0.0036 0.0052 0.0035

GLEN0819 0.0021 0.0009 0.0026 0.0017 0.0016 0.0031 0.0013

HESS0526 0.0021 0.0021 0.0014 0.0025 0.0025 0.0049 0.0030

HICK082O 0.0018 0.0019 0.0010 0.0027 0.0027 0.0044 0.0026

HIGG0608 0.0017 0.0010 0.0012 0.0018 0.0018 0.0030 0.0010

KENT0826 0.0017 0.0014 0.0009 0.0020 0.0020 0.0033 0.0015

KIM80526 0.0019 0.0016 0.0006 0.0016 0.0016 0.0041 0.0023

KLIN0603 0.0017 0.0012 0.0013 0.0017 0.0017 0.0029 0.0011

LOON0810 0.0016 0.0013 0.0008 0.0018 0.0018 0.0030 0.0012

LOTU0807 0.0019 0.0016 0.0021 0.0016 0.0016 0.0033 0.0015

MACE0807 0.0019 0.0015 0.0019 0.0017 0.0017 0.0031 0.0012

MECOO608 0.0015 0.0012 0.0008 0.0018 0.0018 0.0030 0.0012

MECOO724 0.0019 0.0015 0.0011 0.0020 0.0019 0.0035 0.0016

AWRIO728 0.0015 0.0013 0.0006 0.0020 0.0020 0.0034 0.0015

OAKL0807 0.0015 0.0012 0.0008 0.0019 0.0019 0.0030 0.0011

ORCH0810 0.0018 0.0015 0.0019 0.0017 0.0017 0.0033 0.0013

PAWP0824 0.0017 0.0019 0.0016 0.0022 0.0022 0.0039 0.0021

PICK0526 0.0018 0.0019 0.0013 0.0025 0.0025 0.0043 0.0026

PONT0807 0.0018 0.0018 0.0013 0.0020 0.0019 0.0038 0.0019

RAND0603 0.0015 0.0012 0.0007 0.0019 0.0019 0.0030 0.0012

ROGE0519 0.0016 0.0012 0.0004 0.0019 0.0018 0.0033 0.0015

SILV0725 0.0022 0.0015 0.0017 0.0018 0.0018 0.0031 0.0013        
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Maximum height need in heigfht/width index e8 filtered validation data eet
 

 

 

 

Band A B C D E F G

Lake 435-475 470-570 565-620 670-690 675-700 690-740 700-740

ARBU0726 0.0017 0.0013 0.0015 0.0017 0.0017 0.0030 0.0012

BR000727 0.0017 0.0018 0.0011 0.0021 0.0021 0.0045 0.0027

CLME0724 0.0015 0.0013 0.0011 0.0018 0.0018 0.0031 0.0013

HESS0727 0.0023 0.002 1 0.0012 0.0021 0.0021 0.0052 0.0035

HIGG0727 0.0017 0.0010 0.0013 0.0018 0.0018 0.0028 0.0010

HOUGO726 0.0021 0.0014 0.0008 0.0018 0.0017 0.0032 0.0014

JEHNOS 19 0.0016 0.0013 0.0008 0.0018 0.0018 0.0031 0.0013

MITC0725 0.0016 0.0013 0.0006 0.0018 0.0018 0.0033 0.0015

MUSK0728 0.00 16 0.0012 0.0006 0.0021 0.002 1 0.0033 0.0016

ROGE0724 0.0017 0.0014 0.0006 0.0019 0.0019 0.0035 0.0017

SAPP0725 0.0016 0.0013 0.0009 0.0018 0.0018 0.0031 0.0012

TAMA0605 0.0016 0.0012 0.0006 0.0019 0.0019 0.0031 0.0012       
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APPENDIX F

NARROW-WAVEBAND VOLUME REFLECTANCE

Volume reflectance need in narrow-hand index egrolay filtered model data eet
 

 

 

         

Band A E C D E F G H

Lake 435 455 470 565 670 675 690 700

BEAR0819 0.04 10 0.0438 0.0462 0.0419 0.0094 0.0099 0.0096 0.0076

BELL0826 0.0464 0.0476 0.0486 0.0845 0.0426 0.0442 0.0560 0.0586

BIG0820 0.0309 0.0325 0.0338 0.0457 0.0207 0.0206 0.0197 0.0172

BR000526 0.0108 0.0102 0.0099 0.0262 0.0087 0.0080 0.0094 0.0095

CASS0810 0.0335 0.0330 0.0333 0.0420 0.0238 0.0235 0.0225 0.0205

CHEM0826 0.0358 0.0352 0.0357 0.0429 0.0249 0.0256 0.0247 0.02 18

CH1P0820 0.0328 0.0315 0.0307 0.0449 0.0165 0.0162 0.0159 0.0137

CLSJ0603 0.0334 0.0353 0.0373 0.0530 0.0172 0.0170 0.0170 0.0153

CROT0605 0.0293 0.0267 0.0260 0.0246 0.0210 0.0211 0.0216 0.0198

CUBOB 19 0.0346 0.0372 0.0396 0.0503 0.0149 0.0152 0.0142 0.0113

D1AM0824 0.0794 0.0850 0.0889 0. 1067 0.0357 0.0350 0.0336 0.0305

EAGL0824 0.0506 0.0500 0.0516 0.0623 0.0342 0.0346 0.0320 0.0295

FORD0826 0.0429 0.0499 0.0552 0.1213 0.0627 0.0603 0.0807 0.0987

GLEN0819 0.1216 0.1326 0.1401 0.1203 0.0363 0.0359 0.0329 0.0295

HESS0526 0.0859 0.0979 0.1060 0.1629 0.0954 0.0913 0.0979 0. 1052

HICK0820 0.0355 0.0398 0.0431 0.0906 0.0577 0.0562 0.0673 0.0733

HIGGO608 0.0490 0.0520 0.0551 0.0474 0.0170 0.0168 0.0154 0.0141

KEN'1‘0826 0.0365 0.0364 0.0368 0.0565 0.0314 0.0318 0.0345 0.0318

KIMBOS26 0.0445 0.0506 0.0556 0.0948 0.0839 0.0827 0.0794 0.0740

KLIN0603 0.0421 0.0447 0.0473 0.0486 0.0122 0.0119 0.0106 0.0086

LOON0810 0.0133 0.0135 0.0145 0.0261 0.0074 0.0073 0.0068 0.0052

LOTU0807 0.0642 0.0714 0.0780 0.1108 0.0418 0.0412 0.0377 0.0329

MACE0807 0.0364 0.0429 0.0482 0.0740 0.0173 0.017 1 0.0152 0.0123

MECOO608 0.0584 0.0581 0.0583 0.062 1 0.0447 0.0445 0.0437 0.0416

MECOO724 0.0318 0.0363 0.0388 0.0674 0.0373 0.0379 0.0390 0.0338

AWRIO728 0.0304 0.0300 0.0300 0.0402 0.0279 0.0275 0.0301 0.0300

OAKL0807 0.0265 0.0273 0.0278 0.0360 0.0199 0.0199 0.0180 0.0158

ORCH0810 0.0574 0.0633 0.0694 0.0935 0.0312 0.0308 0.0284 0.0241

PAWP0824 0.0576 0.0633 0.0671 0.1132 0.0525 0.0514 0.0560 0.0551

P1CK0526 0.0346 0.0407 0.0448 0.093 1 0.0506 0.0487 0.0571 0.0634

PONT0807 0.0431 0.0491 0.0545 0.1007 0.0596 0.0585 0.0603 0.0579

RAND0603 0.0242 0.0226 0.0228 0.0262 0.0112 0.0116 0.0121 0.0104

ROGE0519 0.0278 0.0276 0.0281 0.0361 0.0398 0.0400 0.0402 0.0386

S1LV0725 0.0415 0.0473 0.0523 0.0746 0.0252 0.0251 0.0250 0.0222
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Volume reflectance need in narrow-hand index agony filtered validation data eet
 

 

 

         

Band A B C D E F G H

Lake 435 455 470 565 670 675 690 700

ARBU0726 0.0653 0.0676 0.0698 0.0794 0.0328 0.0323 0.0302 0.0279

BROOO727 0.0863 0.0929 0.0999 0.1491 0.1156 0.1140 0.1181 0.1153

CLME0724 0.0315 0.0316 0.0335 0.0485 0.0196 0.0198 0.0193 0.0162

HESSO727 0.0694 0.0818 0.0947 0.1663 0. 1263 0.1240 0.1278 0.1261

HIGG0727 0.0492 0.0534 0.0570 0.0436 0.0109 0.0 107 0.0094 0.0082

HOUG0726 0.0316 0.0316 0.0337 0.0507 0.0300 0.0296 0.0287 0.0259

JEHN0519 0.0222 0.0227 0.0236 0.0386 0.0196 0.0197 0.0197 0.0 173

MITCO725 0.0288 0.0295 0.0305 0.0455 0.0351 0.0348 0.0344 0.0320

MUSK0728 0.0372 0.0357 0.0352 0.0398 0.0285 0.0289 0.0328 0.0331

ROGE0724 0.0326 0.0349 0.0366 0.0552 0.043 1 0.0433 0.0443 0.0415

SAPP0725 0.0256 0.0259 0.0264 0.0369 0.0145 0.0142 0.0144 0.0133

TAMA0605 0.0270 0.0252 0.0246 0.0257 0.0156 0.0158 0.0167 0.0140
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Volume reflectance need in narrow-hand index dbl filtered model data eet
 

 

 

 

Band A B C D E l" G H

Lake 435 450 455 480 550 670 690 700

BEAR08 19 0.0409 0.0434 0.0437 0.0471 0.0458 0.0094 0.0092 0.0073

BELL0826 0.0461 0.0473 0.0473 0.0489 0.08 13 0.0424 0.0569 0.0587

BIGO820 0.0312 0.0324 0.0324 0.0343 0.0445 0.0203 0.0191 0.0172

BR000526 0.0108 0.0103 0.0103 0.0097 0.0235 0.0086 0.0098 0.0099

CASSOB 10 0.0335 0.0330 0.0330 0.0334 0.0404 0.0239 0.0222 0.0204

CHEM0826 0.0358 0.0353 0.0353 0.0351 0.0402 0.0253 0.0237 0.0219

CHIP0820 0.0323 0.0318 0.0318 0.0305 0.0429 0.0 164 0.0157 0.0129

CLSJ0603 0.0331 0.0353 0.0353 0.0379 0.0526 0.0 174 0.0168 0.0150

CROT0605 0.0286 0.0273 0.0273 0.0261 0.0245 0.0209 0.0212 0.0196

CUBO819 0.0345 0.0366 0.0366 0.0403 0.0508 0.0150 0.0136 0.0110

DIAM0824 0.0795 0.0841 0.0844 0.0899 0.1099 0.0361 0.0333 0.0309

EAGLO824 0.0504 0.0500 0.0500 0.0519 0.0613 0.0351 0.0304 0.0295

FORD0826 0.0428 0.0485 0.0494 0.0570 0.1 157 0.0627 0.080 1 0.1003

GLEN0819 0.12 17 0.1308 0.1321 0.1427 0.1283 0.0369 0.0319 0.0298

HESSOS26 0.0861 0.0958 0.0974 0.1089 0.1607 0.0948 0.0974 0.1057

HICK0820 0.0351 0.0391 0.0391 0.0441 0.0844 0.0586 0.0687 0.0737

HIGGO608 0.0493 0.0515 0.0515 0.0560 0.0508 0.0173 0.0155 0.0136

KENT0826 0.0362 0.0365 0.0365 0.0371 0.0537 0.0314 0.0344 0.0322

KIMBOS26 0.0446 0.0494 0.0502 0.0583 0.0890 0.0841 0.0790 0.0747

KLIN0603 0.0424 0.0443 0.0444 0.0484 0.0514 0.0122 0.0103 0.0086

LOON0810 0.0 133 0.0 134 0.0134 0.0149 0.0246 0.0079 0.0066 0.0049

LOTUO807 0.0643 0.0702 0.0704 0.0809 0.1 102 0.0422 0.0373 0.0332

MACE0807 0.0362 0.0414 0.0425 0.0503 0.0732 0.0175 0.0150 0.0123

MECOO608 0.0581 0.0580 0.0580 0.0582 0.0615 0.0449 0.0435 0.0420

MEC00724 0.0326 0.0374 0.0374 0.0404 0.0624 0.0363 0.0388 0.0334

AWR10728 0.0298 0.0297 0.0297 0.0302 0.0391 0.0279 0.0305 0.0300

OAKL0807 0.0263 0.0274 0.0274 0.0282 0.0346 0.0202 0.0182 0.0156

ORCH0810 0.0575 0.0623 0.0623 0.0712 0.0946 0.0314 0.0279 0.0234

PAWP0824 0.0574 0.0625 0.0627 0.0680 0.1080 0.0528 0.0576 0.0549

PICK0526 0.0347 0.0400 0.0400 0.0462 0.0889 0.0519 0.0589 0.0639

PONT0807 0.0430 0.0484 0.0485 0.0568 0.0954 0.0599 0.0610 0.0583

RAND0603 0.0239 0.0225 0.0225 0.0227 0.0250 0.0110 0.0120 0.0099

ROGEOS 19 0.0278 0.0276 0.0276 0.0283 0.0344 0.0397 0.0402 0.0387

SILV0725 0.0425 0.0468 0.0468 0.0541 0.0761 0.0254 0.0244 0.0220         
227

 



Volume reflectance need in narrow-hand index dhl filtered validation data eet
 

 

 

         

Band A B C D E F G H

Lake 435 450 455 480 550 670 690 700

ARBU0726 0.065 1 0.0670 0.0671 0.0704 0.0805 0.0330 0.0298 0.0280

BR000727 0.0869 0.0916 0.0916 0.1028 0.1435 0. 1 162 0.1190 0.1166

CLME0724 0.0313 0.0315 0.0315 0.0342 0.0463 0.0201 0.0188 0.0162

HESSO727 0.0720 0.0798 0.0798 0.0994 ' 0.1579 0. 1276 0.1290 0.1260

HIGG0727 0.0492 0.0529 0.0530 0.0581 0.0482 0.0110 0.0087 0.0084

HOUG0726 0.0315 0.03 15 0.0315 0.0338 0.0475 0.0302 0.0283 0.0259

JEHN0519 0.0222 0.0226 0.0226 0.0240 0.0360 0.0196 0.0198 0.0175

MITC0725 0.0287 0.0295 0.0297 0.0309 0.0427 0.0353 0.0344 0.0317

MUSK0728 0.0372 0.0357 0.0357 0.0349 0.0400 0.0284 0.0330 0.0335

ROGE0724 0.0325 0.0346 0.0349 0.037 1 0.0509 0.0433 0.0440 0.0420

SAPP0725 0.0255 0.0257 0.0257 0.0266 0.0360 0.0146 0.0145 0.0133

TAMA0605 0.0272 0.0250 0.0250 0.0245 0.0251 0.0153 0.0163 0.0138
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Volume reflectance need in narrow-hand index e8 filtered model data eet
 

 

 

 

Band A B C D E F G H

Lake 435 450 490 560 660 690 698 700

BEAR0819 0.0410 0.0428 0.0480 0.0436 0.0093 0.0099 0.0075 0.007 1

BELL0826 0.0462 0.0470 0.051 1 0.0844 0.0461 0.0567 0.0590 0.0588

BIG0820 0.0311 0.032 1 0.0348 0.0454 0.0224 0.0198 0.0177 0.0 171

BR000526 0.0108 0.0103 0.0098 0.0257 0.0115 0.0096 0.0101 0.0098

CASS0810 0.0336 0.0329 0.0338 0.0417 0.0251 0.0227 0.0210 0.0205

CHEM0826 0.0360 0.0348 0.0353 0.0424 0.0252 0.0251 0.0222 0.0216

CHIP0820 0.0325 0.0319 0.0317 0.0441 0.0181 0.0162 0.0141 0.0133

CLSJ0603 0.0333 0.0345 0.0392 0.0532 0.0193 0.0175 0.0 155 0.0152

CRO’I‘0605 0.0292 0.0274 0.0252 0.0246 0.0217 0.0218 0.0200 0.0 198

CUBO819 0.0345 0.0373 0.0424 0.0509 0.0158 0.0149 0.0116 0.0 1 10

DIAM0824 0.0791 0.0833 0.09 17 0.1085 0.0389 0.0340 0.0313 0.0305

EAGL0824 0.0507 0.0488 0.0531 0.0620 0.0347 0.0329 0.0288 0.0290

FORD0826 0.0427 0.0478 0.06 13 0.1212 0.0754 0.0799 0.0986 0.1010

GLEN0819 0.1213 0.1300 0.1450 0.1235 0.0381 0.0331 0.0301 0.0295

HESS0526 0.0856 0.0947 0.1135 0.1633 0.1079 0.0966 0.1068 0.1063

HICK0820 0.0355 0.0384 0.047 1 0.0897 0.0661 0.0680 0.0744 0.0743

HIGGO608 0.0490 0.0509 0.0574 0.0489 0.0174 0.0159 0.0141 0.0138

KENT0826 0.0363 0.0365 0.0386 0.0559 0.0338 0.0352 0.0328 0.0319

KIMBOS26 0.0445 0.0490 0.0632 0.0930 0.0875 0.0797 0.0755 0.0741

KLIN0603 0.0422 0.0439 0.0507 0.0497 0.0132 0.0106 0.0091 0.0087

LOON0810 0.0 134 0.0130 0.0 160 0.0254 0.0087 0.0073 0.0054 0.0049

LOTU0807 0.0640 0.0693 0.0858 0.1 112 0.0445 0.0383 0.0336 0.0325

MACE0807 0.0362 0.04 10 0.0547 0.0743 0.0185 0.0156 0.0 127 0.0122

MECOO608 0.0583 0.0580 0.0583 0.0620 0.0463 0.0440 0.0421 0.0417

MEC00724 0.0326 0.0354 0.04 19 0.0665 0.0405 0.0401 0.0346 0.0336

AWR10728 0.0301 0.0301 0.0308 0.0399 0.0306 0.0303 0.0306 0.0303

OAKL0807 0.0263 0.0270 0.0293 0.0356 0.0198 0.0181 0.0 164 0.0160

ORCH0810 0.0571 0.061 1 0.0754 0.0942 0.0332 0.0294 0.0245 0.0239

PAWP0824 0.0574 0.0616 0.0701 0.1129 0.0593 0.0569 0.0566 0.0553

PICK0526 0.0345 0.0391 0.0497 0.0930 0.0585 0.0575 0.0639 0.0643

PONT0807 0.0430 0.0475 0.0609 0.0998 0.0651 0.0611 0.0594 0.0581

RAND0603 0.0244 0.0228 0.0233 0.0259 0.0115 0.0127 0.0 106 0.0 101

ROGEOS 19 0.0279 0.0276 0.0291 0.0356 0.0398 0.0403 0.0391 0.0386

SILV0725 0.0420 0.0454 0.0564 0.0749 0.0273 0.0253 0.0226 0.0218         
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Volume reflectance need in narrow-band index e8 filtered validation data eet 

 

 

        

Band A B C D E F G H

Lake 435 450 490 560 660 690 698 700

ARBU0726 0.0652 0.0668 0.0713 0.0803 0.0344 0.0304 0.0284 0.0279

BR000727 0.0868 0.0910 0.1074 0.1480 0.1241 0.1191 0.1176 0.1157

CLMEO724 0.0317 0.0310 0.0351 0.0479 0.0213 0.0197 0.0167 0.0163

HESSO727 0.0714 0.0776 0.1054 0.1644 0.1353 0.1284 0.1284 0.1265

HIGGO727 0.0490 0.0520 0.0586 0.0455 0.0112 0.0093 0.0083 0.0083

HOUG0726 0.0319 0.0310 0.0347 0.0499 0.0324 0.0291 0.0263 0.0257

JEHNOS 19 0.0222 0.0224 0.0251 0.0380 0.0210 0.0200 0.0179 0.0173

MITC0725 0.0287 0.0294 0.0324 0.0447 0.0372 0.0347 0.0327 0.0320

MUSK0728 0.0371 0.0359 0.0348 0.0401 0.0306 0.0331 0.0335 0.0333

ROGE0724 0.0325 0.0343 0.0383 0.0540 0.0453 0.0449 0.0422 0.0415

SAPP0725 0.0254 0.0257 0.0271 0.0368 0.0166 0.0147 0.0137 0.0133

TAMA0605 0.0270 0.0251 0.0242 0.0253 0.0165 0.0173 0.0147 0.0142 
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APPENDIX G

PRACTICAL PROBLEM WITH AISA IMAGE
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